

Hands-On	Enterprise	Automation	with	Python

	

	

Automate	common	administrative	and	security	tasks
with	Python

	

	

	

	

	

	

	

	

	

	

	

	

Bassem	Aly

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Hands-On	Enterprise	Automation
with	Python
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for	any
damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Commissioning	Editor:	Vijin	Boricha
Acquisition	Editor:	Rohit	Rajkumar
Content	Development	Editor:	Ron	Kurien
Technical	Editor:	Manish	D	Shanbhag
Copy	Editor:	Safis	Editing
Project	Coordinator:	Judie	Jose
Proofreader:	Safis	Editing
Indexer:	Pratik	Shirodkar
Graphics:	Tom	Scaria
Production	Coordinator:	Aparna	Bhagat

First	published:	June	2018

Production	reference:	1270618

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78899-851-2

www.packtpub.com

	

http://www.packtpub.com

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

	

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	author
Bassem	Aly	is	an	experienced	SDN/NFV	solution	consultant	at	Juniper
Networks	and	has	been	working	in	the	telco	industry	for	the	last	9	years.	He	has
focused	on	designing	and	implementing	next-generation	solutions	by	leveraging
different	automation	and	DevOps	frameworks.	Also,	he	has	extensive	experience
of	architecting	and	deploying	telco	applications	over	OpenStack.	He	also
conducts	corporate	training	on	network	automation	and	network
programmability	using	Python	and	Ansible.

I	would	like	to	thank	my	amazing	wife,	Sarah,	and	my	fantastic	daughter,	Mariam.	They've	sacrificed	many
nights	and	meals	for	this	dream.	I	hope	Mariam	will	read	this	book	one	day	and	understand	why	I	spent	so
much	time	on	the	computer	instead	of	“chasing”.	Thanks	to	my	parents	for	their	encouragement,	which
made	me	who	I	am	today.	Finally,	thanks	to	my	mentor,	Ashraf	Albasti,	who	has	helped	me	in	countless
ways	in	my	career.

	

About	the	reviewer
Jere	Julian	is	a	senior	network	automation	engineer	with	nearly	two	decades	of
automation	experience	currently	focused	on	workflow	simplification	through
automation.	The	past	few	years	have	found	him	on	the	speaker	circuit	at	DevOps
Days	and	Interop	ITX,	as	well	as	regularly	contributing	to	network	computing.
He	lives	in	NC	with	his	wife	and	two	boys	and	fights	fire	as	a	community
volunteer	as	opposed	to	the	data	center.	He	can	be	contacted	on	Twitter	at
@julianje.

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

	

http://authors.packtpub.com

Table	of	Contents

Title	Page

Copyright	and	Credits

Hands-On	Enterprise	Automation	with	Python

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	author

About	the	reviewer

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Download	the	color	images

Conventions	used

Get	in	touch

Reviews

1.	 Setting	Up	Our	Python	Environment

An	introduction	to	Python

Python	versions

Why	are	there	two	active	versions?

Should	you	only	learn	Python	3?

Does	this	mean	I	can't	write	code	that	runs	on	both	Python	2	and	Pyt

hon	3?

Python	installation

Installing	the	PyCharm	IDE

Setting	up	a	Python	project	inside	PyCharm

Exploring	some	nifty	PyCharm	features

Code	debugging

Code	refactoring

Installing	packages	from	the	GUI

Summary

2.	 Common	Libraries	Used	in	Automation

Understanding	Python	packages

Package	search	paths

Common	Python	libraries

Network	Python	Libraries

System	and	cloud	Python	libraries

Accessing	module	source	code

Visualizing	Python	code

Summary

3.	 Setting	Up	the	Network	Lab	Environment

Technical	requirements

When	and	why	to	automate	the	network

Why	do	we	need	automation?

Screen	scraping	versus	API	automation

Why	use	Python	for	network	automation?

The	future	of	network	automation

Network	lab	setup

Getting	ready	–	installing	EVE-NG

Installation	on	VMware	Workstation

Installation	over	VMware	ESXi

Installation	over	Red	Hat	KVM

Accessing	EVE-NG

Installing	EVE-NG	client	pack

Loading	network	images	into	EVE-NG

Building	an	enterprise	network	topology

Adding	new	nodes

Connecting	nodes	together

Summary

4.	 Using	Python	to	Manage	Network	Devices

Technical	requirements

Python	and	SSH

Paramiko	module

Module	installation

SSH	to	the	network	device

Netmiko	module

Vendor	support

Installation	and	verification

Using	netmiko	for	SSH

Configuring	devices	using	netmiko

Exception	handling	in	netmiko

Device	auto	detect

Using	the	telnet	protocol	in	Python

Push	configuration	using	telnetlib

Handling	IP	addresses	and	networks	with	netaddr

Netaddr	installation

Exploring	netaddr	methods

Sample	use	cases

Backup	device	configuration

Building	the	python	script

Creating	your	own	access	terminal

Reading	data	from	an	Excel	sheet

More	use	cases

Summary

5.	 Extracting	Useful	Data	from	Network	Devices

Technical	requirements

Understanding	parsers

Introduction	to	regular	expressions

Creating	a	regular	expression	in	Python

Configuration	auditing	using	CiscoConfParse

CiscoConfParse	library

Supported	vendors

CiscoConfParse	installation

Working	with	CiscoConfParse

Visualizing	returned	data	with	matplotLib

Matplotlib	installation

Hands-on	with	matplotlib

Visualizing	SNMP	using	matplotlib

Summary

6.	 Configuration	Generator	with	Python	and	Jinja2

What	is	YAML?

YAML	file	formatting

Text	editor	tips

Building	a	golden	configuration	with	Jinja2

Reading	templates	from	the	filesystem

Using	Jinja2	loops	and	conditions

Summary

7.	 Parallel	Execution	of	Python	Script

How	a	computer	executes	your	Python	script

Python	multiprocessing	library

Getting	started	with	multiprocessing

Intercommunication	between	processes

Summary

8.	 Preparing	a	Lab	Environment

Getting	the	Linux	operating	system

Downloading	CentOS

Downloading	Ubuntu

Creating	an	automation	machine	on	a	hypervisor

Creating	a	Linux	machine	over	VMware	ESXi

Creating	a	Linux	machine	over	KVM

Getting	started	with	Cobbler

Understanding	how	Cobbler	works

Installing	Cobbler	on	an	automation	server

Provisioning	servers	through	Cobbler

Summary

9.	 Using	the	Subprocess	Module

The	popen()	subprocess

Reading	stdin,	stdout,	and	stderr

The	subprocess	call	suite

Summary

10.	 Running	System	Administration	Tasks	with	Fabric

Technical	requirements

What	is	Fabric?

Installation

Fabric	operations

Using	run	operation

Using	get	operation

Using	put	operation

Using	sudo	operation

Using	prompt	operation

Using	reboot	operation

Executing	your	first	Fabric	file

More	about	the	fab	tool

Discover	system	health	using	Fabric

Other	useful	features	in	Fabric

Fabric	roles

Fabric	context	managers

Summary

11.	 Generating	System	Reports	and	System	Monitoring

Collecting	data	from	Linux

Sending	generated	data	through	email

Using	the	time	and	date	modules

Running	the	script	on	a	regular	basis

Managing	users	in	Ansible

Linux	systems

Microsoft	Windows

Summary

12.	 Interacting	with	the	Database

Installing	MySQL	on	an	automation	server

Securing	the	installation

Verifying	the	database	installation

Accessing	the	MySQL	database	from	Python

Querying	the	database

Inserting	records	into	the	database

Summary

13.	 Ansible	for	System	Administration

Ansible	terminology

Installing	Ansible	on	Linux

On	RHEL	and	CentOS

Ubuntu

Using	Ansible	in	ad	hoc	mode

How	Ansible	actually	works

Creating	your	first	playbook

Understanding	Ansible	conditions,	handlers,	and	loops

Designing	conditions

Creating	loops	in	ansible

Trigger	tasks	with	handlers

Working	with	Ansible	facts

Working	with	the	Ansible	template

Summary

14.	 Creating	and	Managing	VMware	Virtual	Machines

Setting	up	the	environment

Generating	a	VMX	file	using	Jinja2

Building	the	VMX	template

Handling	Microsoft	Excel	data

Generating	VMX	files

VMware	Python	clients

Installing	PyVmomi

First	steps	with	pyvmomi

Changing	the	virtual	machine	state

There's	more

Using	Ansible	playbook	to	manage	instances

Summary

15.	 Interacting	with	the	OpenStack	API

Understanding	RESTful	web	services

Setting	up	the	environment

Installing	rdo-OpenStack	package

On	RHEL	7.4

On	CentOS	7.4

Generating	answer	file

Editing	answer	file

Run	the	packstack

Access	the	OpenStack	GUI

Sending	requests	to	the	OpenStack	keystone

Creating	instances	from	Python

Creating	the	image

Assigning	a	flavor

Creating	the	network	and	subnet

Launching	the	instance

Managing	OpenStack	instances	from	Ansible

Shade	and	Ansible	installation

Building	the	Ansible	playbook

Running	the	playbook

Summary

16.	 Automating	AWS	with	Boto3

AWS	Python	modules

Boto3	installation

Managing	AWS	instances

Instance	termination

Automating	AWS	S3	services

Creating	buckets

Uploading	a	file	to	a	bucket

Deleting	a	bucket

Summary

17.	 Using	the	Scapy	Framework

Understanding	Scapy

Installing	Scapy

Unix-based	systems

Installing	in	Debian	and	Ubuntu

Installing	in	Red	Hat/CentOS

Windows	and	macOS	X	Support

Generating	packets	and	network	streams	using	Scapy

Capturing	and	replaying	packets

Injecting	data	inside	packets

Packet	sniffing

Writing	the	packets	to	pcap

Summary

18.	 Building	a	Network	Scanner	Using	Python

Understanding	the	network	scanner

Building	a	network	scanner	with	Python

Enhancing	the	code

Scanning	the	services

Sharing	your	code	on	GitHub

Creating	an	account	on	GitHub

Creating	and	pushing	your	code

Summary

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
The	book	starts	by	covering	the	set	up	of	a	Python	environment	to	perform
automation	tasks,	as	well	as	the	modules,	libraries,	and	tools	you	will	be	using.	

We'll	explore	examples	of	network	automation	tasks	using	simple	Python
programs	and	Ansible.	Next,	we	will	walk	you	through	automating
administration	tasks	with	Python	Fabric,	where	you	will	learn	to	perform	server
configuration	and	administration	along	with	system	administration	tasks	such	as
user	management,	database	management,	and	process	management.	As	you
progress	through	this	book,	you'll	automate	several	testing	services	with	Python
scripts	and	perform	automation	tasks	on	virtual	machines	and	the	cloud
infrastructure	with	Python.	In	the	concluding	chapters,	you	will	cover	Python-
based	offensive	security	tools	and	learn	to	automate	your	security	tasks.

By	the	end	of	this	book,	you	will	have	mastered	the	skills	of	automating	several
system	administration	tasks	with	Python.

You	can	visit	the	author's	blog	at	the	following	link:	https://basimaly.wordpress.com/.

	

https://basimaly.wordpress.com/

Who	this	book	is	for
Hands-On	Enterprise	Automation	with	Python	is	for	system	administrators	and
DevOps	engineers	who	are	looking	for	an	alternative	to	major	automation
frameworks	such	as	Puppet	and	Chef.	Basic	programming	knowledge	with
Python	and	Linux	shell	scripting	is	necessary.

What	this	book	covers
Chapter	1,	Setting	Up	Python	Environment,	explores	how	to	download	and	install
the	Python	interpreter	along	with	the	Python	Integrated	Development
Environment,	called	JetBrains	PyCharm.	The	IDE	provides	you	with	smart
autocompletion,	intelligent	code	analysis,	powerful	refactoring	and	integrates
with	Git,	virtualenv,	Vagrant,	and	Docker.	This	will	help	you	to	write
professional	and	robust	Python	code.

Chapter	2,	Common	Libraries	Used	in	Automation,	covers	the	Python	libraries	that
are	available	today	and	that	are	used	for	automation.	We	will	categorize	them
based	on	their	usage	(system,	network,	and	cloud)	and	provide	a	simple
introduction.	As	you	progress	through	the	book,	you	will	find	yourself	deep
diving	into	each	of	them	and	understanding	their	usage.

Chapter	3,	Setting	up	Your	Network	Lab	Environment,	discusses	the	merits	of
network	automation	and	how	network	operators	use	it	today	to	automate	the
current	devices.	We	will	explore	popular	libraries	that	are	used	today	to	automate
network	nodes	from	Cisco,	Juniper,	and	Arista.	This	chapter	covers	how	to	build
a	networking	lab	to	apply	the	Python	script	on.	We	will	use	an	open	source
network	emulation	tool	called	EVE-NG.

Chapter	4,	Using	Python	to	Manage	Network	Devices,	dives	into	managing
networking	devices	through	telnet	and	SSH	connections	using	netmiko,
paramiko,	and	telnetlib.	We	will	learn	how	to	write	the	Python	code	to	access
switches	and	routers	and	execute	commands	on	the	terminal	and	then	return	the
output.	We	will	also	learn	how	to	utilize	different	Python	techniques	to	back	up
and	push	configuration.	The	chapter	ends	with	some	use	cases	used	today	in
modern	network	environment.

Chapter	5,	Extracting	Useful	Data	from	Network	Devices,	explains	how	to	use
different	tools	and	techniques	inside	Python	to	extract	useful	data	from	returned
output	and	act	upon	it.	Also,	we	will	use	a	special	library	called	CiscoConfParse
to	audit	the	configuration.	Then	we	will	learn	how	to	visualize	data	to	generate
appealing	graphs	and	reports	with	matplotlib.

Chapter	6,	Configuration	Generator	with	Python	and	Jinja2,	explains	how	to
generate	a	common	configuration	for	a	site	with	hundreds	of	network	nodes.	We
will	learn	how	to	write	a	template	and	use	it	to	generate	a	golden	configuration
with	a	templating	language	called	Jinja2.

Chapter	7,	Parallel	Execution	of	the	Python	Script,	covers	how	to	instantiate	and
execute	your	Python	code	in	parallel.	This	will	allow	us	to	finish	the	automation
workflow	faster	as	long	as	it	is	not	interdependent.

Chapter	8,	Preparing	a	Lab	Environment,	covers	the	installation	process	and
preparation	for	our	lab	environment.	We	will	install	our	automation	server	either
in	CentOS	or	Ubuntu	over	different	hypervisors.	Then	we	will	learn	how	to
automate	the	operating	system	installation	with	Cobbler.

Chapter	9,	Using	the	Subprocess	Module,	explains	how	to	send	a	command	from	a
Python	script	directly	to	the	operating	system	shell	and	investigate	the	returning
output.

Chapter	10,	Running	System	Administration	Tasks	with	Fabric,	introduces	Fabric,
which	is	a	Python	library	for	executing	system	administration	tasks	through
SSH.	Also,	it's	used	in	large	deployment	of	applications.	We	will	learn	how	to
utilize	and	leverage	this	library	to	execute	tasks	on	remote	servers.

Chapter	11,	Generating	System	Reports,	Managing	Users,	and	System	Monitoring,
explains	that	collecting	data	and	generating	recurring	reports	from	the	system	is
an	essential	task	for	any	system	administrator,	and	automating	this	task	will	help
you	to	discover	issues	early	and	provide	a	solutions	for	them.	In	this	chapter,	we
will	see	some	proven	ways	to	automate	data	collection	from	servers	and	generate
formal	reports.	We	will	learn	how	to	manage	new	and	existing	users	using
Python	and	Ansible.	Also,	we	will	dive	into	monitoring	the	system	KPI	and	logs
analysis.	You	can	also	schedule	the	monitoring	scripts	to	run	on	a	regular	basis
and	send	the	result	to	your	mail	inbox.

Chapter	12,	Interacting	with	the	Database,	states	that	if	you're	a	database
administrator	or	database	developer,	then	Python	provides	a	wide	range	of
libraries	and	modules	that	cover	managing	and	working	on	popular	DBMSes
such	as	MySQL,	Postgress,	and	Oracle.	In	this	chapter,	we	will	learn	how	to
interact	with	DBMSes	using	Python	connectors.

Chapter	13,	Ansible	for	System	Administration,	explores	one	of	the	most	powerful
tools	in	configuration	management	software.	Ansible	is	very	powerful	when	it
comes	to	system	administration	and	can	be	used	to	make	sure	the	configuration
is	replicated	exactly	across	hundreds	or	even	thousands	of	servers	at	the	same
time.

Chapter	14,	Creating	and	Managing	VMWare	Virtual	Machines,	explains	how	to
automate	VM	creation	on	a	VMWare	hypervisor.	We	will	discover	different
ways	to	create	and	manage	virtual	machines	over	ESXi	using	VMWare's	official
binding	library.

Chapter	15,	Interacting	with	Openstack	API,	explains	that	OpenStack	was	very
popular	in	creating	private	IaaS	when	it	came	to	private	cloud.	We	will	use
Python	modules	such	as	requests	to	create	REST	calls	and	interact	with
OpenStack	services	such	as	nova,	cinder,	and	neutron,	and	create	the	required
resources	over	OpenStack.	Later	in	the	chapter,	we	will	use	Ansible	playbooks
for	the	same	workflow.

Chapter	16,	Automating	AWS	with	Python	and	Boto3,	covers	how	to	automate
common	AWS	services	such	as	EC2	and	S3	using	official	Amazon	binindgs
(BOTO3),	which	provides	an	easy-to-use	API	for	services	access.

Chapter	17,	Using	the	SCAPY	Framework,	introduces	SCAPY,	which	is	a	powerful
Python	tool	used	to	build	and	craft	packets	and	then	send	them	on	the	wire.	You
can	build	any	type	of	network	stream	and	send	it	on	the	wire.	It	can	also	help
you	to	capture	network	packets	and	replay	them	to	the	wire.

Chapter	18,	Building	Network	Scanner	Using	Python,	provides	a	complete
example	of	building	a	network	scanner	using	Python.	You	can	scan	a	complete
subnet	for	different	protocols	and	ports	and	generate	a	report	for	each	scanned
host.	Then,	we	will	learn	how	to	share	the	code	with	the	open	source	community
(GitHub)	by	leveraging	Git.

To	get	the	most	out	of	this	book
The	reader	should	be	acquainted	with	the	basic	programming	paradigm	of
Python	programming	language	and	should	have	basic	knowledge	of	Linux	and
Linux	shell	scripting.

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/su
pport	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Hands-On-Enterprise-Automation-with-Python.	In	case	there's	an	update	to	the
code,	it	will	be	updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/

Download	the	color	images
We	also	provide	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	You	can	download	it	here:	http://www.packtpub.com/sites/default/fi
les/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"Some	large	packages	such	as	matplotlib	or	django
have	hundreds	of	modules	inside	them,	and	developers	usually	categorize	the
related	modules	into	a	sub-directories."

A	block	of	code	is	set	as	follows:

from	netmiko	import	ConnectHandler

from	devices	import	R1,SW1,SW2,SW3,SW4

nodes	=	[R1,SW1,SW2,SW3,SW4]

for	device	in	nodes:

	net_connect	=	ConnectHandler(**device)

	output	=	net_connect.send_command("show	run")

	print	output

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the
relevant	lines	or	items	are	set	in	bold:

hostname	{{hostname}}

Any	command-line	input	or	output	is	written	as	follows:

pip	install	jinja2	

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:

"Choose	your	platform	from	the	Download	page,	and	either	the	x86	or	x64
version."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

	

https://www.packtpub.com/

Setting	Up	Our	Python	Environment
	

In	this	chapter,	we	will	provide	a	brief	introduction	to	the	Python	programming
language	and	the	differences	between	the	current	versions.	Python	ships	in	two
active	versions,	and	making	a	decision	on	which	one	to	use	during	development
is	important.	In	this	chapter,	we	will	download	and	install	Python	binaries	into
the	operating	system.

At	the	end	of	the	chapter,	we	will	install	one	of	the	most	advanced	Integrated
Development	Editors	(IDEs)	used	by	professional	developers	around	the
world:	PyCharm.	PyCharm	provides	smart	code	completion,	code	inspections,
on-the-fly	error	highlighting	and	quick	fixes,	automated	code	refactoring,	and
rich	navigation	capabilities,	which	we	will	go	over	throughout	this	book,	as	we
write	and	develop	Python	code.

The	following	topics	will	be	covered	in	this	chapter:

An	introduction	to	Python
Installing	the	PyCharm	IDE
Exploring	some	nifty	PyCharm	features

	

	

An	introduction	to	Python
Python	is	a	high-level	programming	language	that	provides	a	friendly	syntax;	it
is	easy	to	learn	and	use,	for	both	beginner	and	expert	programmers.

Python	was	originally	developed	by	Guido	van	Rossum	in	1991;	it	depends	on	a
mix	of	C,	C++,	and	other	Unix	shell	tools.	Python	is	known	as	a	language	for
general	purpose	programming,	and	today	it's	used	in	many	fields,	such	as
software	development,	web	development,	network	automation,	system
administration,	and	scientific	fields.	Thanks	to	its	large	number	of	modules
available	for	download,	covering	many	fields,	Python	can	cut	development	time
down	to	a	minimum.

The	Python	syntax	was	designed	to	be	readable;	it	has	some	similarities	to	the
English	language,	while	the	code	construction	itself	is	beautiful.	Python	core
developers	provide	20	informational	rules,	called	the	Zen	of	Python,	that
influenced	the	design	of	the	Python	language;	most	of	them	involve	building
clean,	organized,	and	readable	code.	The	following	are	some	of	the	rules:
Beautiful	is	better	than	ugly.
Explicit	is	better	than	implicit.
Simple	is	better	than	complex.
Complex	is	better	than	complicated.

You	can	read	more	about	the	Zen	of	Python	at	https://www.python.org/dev/peps/pep-00
20/.

https://www.python.org/dev/peps/pep-0020/

Python	versions
Python	comes	with	two	major	versions:	Python	2.x	and	Python	3.x.	There	are
subtle	differences	between	the	two	versions;	the	most	obvious	is	the	way	their
print	functions	treat	multiple	strings.	Also,	all	new	features	will	only	be	added	to
3.x,	while	2.x	will	receive	security	updates	before	full	retirement.	This	won't	be
an	easy	migration,	as	many	applications	are	built	on	Python	2.x.

	

Why	are	there	two	active	versions?
I	will	quote	the	reason	from	the	official	Python	website:
""Guido	van	Rossum	(the	original	creator	of	the	Python	language)	decided	to	clean	up	Python	2.x	properly,	with	less	regard	for	backwards	compatibility	than	is	the	case	for	new	releases	in	the	2.x	range.
The	most	drastic	improvement	is	the	better	Unicode	support	(with	all	text	strings	being	Unicode	by	default)	as	well	as	saner	bytes/Unicode	separation.

"	""Besides,	several	aspects	of	the	core	language	(such	as	print	and	exec	being	statements,	integers	using	floor	division)	have	been	adjusted	to	be	easier	for	newcomers	to	learn	and	to	be	more	consistent
with	the	rest	of	the	language,	and	old	cruft	has	been	removed	(for	example,	all	classes	are	now	new-style,	"range()"	returns	a	memory	efficient	iterable,	not	a	list	as	in	2.x).""

You	can	read	more	about	this	topic	at	https://wiki.python.org/moin/Python2orPython3.

https://wiki.python.org/moin/Python2orPython3

Should	you	only	learn	Python	3?
It	depends.	Learning	Python	3	will	future-proof	your	code,	and	you	will	use	up-
to-date	features	from	the	developers.	However,	note	that	some	third-party
modules	and	frameworks	lack	support	for	Python	3	and	will	continue	to	do	so
for	the	near	future,	until	they	completely	port	their	libraries	to	Python	3.

Also,	note	that	some	network	vendors,	such	as	Cisco,	provide	limited	support	for
Python	3.x,	as	most	of	the	required	features	are	already	covered	in	Python	2.x
releases.	For	example,	the	following	are	the	supported	Python	versions	for	Cisco
devices;	you	will	see	that	all	devices	support	2.x,	not	3.x:

Source:	https://developer.cisco.com/site/python/

https://developer.cisco.com/site/python/

Does	this	mean	I	can't	write	code	that
runs	on	both	Python	2	and	Python	3?
No,	you	can,	of	course,	write	your	code	in	Python	2.x	and	make	it	compatible
with	both	versions,	but	you	will	need	to	import	a	few	libraries	first,	such	as	the
__future__	module,	to	make	it	backward	compatible.	This	module	contains	some
functions	that	tweak	the	Python	2.x	behavior	and	make	it	exactly	like	Python
3.x.	Take	a	look	at	the	following	examples	to	understand	the	differences	between
the	two	versions:

#python	2	only

print	"Welcome	to	Enterprise	Automation"

The	following	code	is	for	Python	2	and	3:

#	python	2	and	3

print("Welcome	to	Enterprise	Automation")

Now,	if	you	need	to	print	multiple	strings,	the	Python	2	syntax	will	be	as
follows:

#	python	2,	multiple	strings

print	"welcome",	"to",	"Enterprise",	"Automation"

#	python	3,	multiple	strings

print	("welcome",	"to",	"Enterprise",	"Automation")

If	you	try	to	use	parentheses	to	print	multiple	strings	in	Python	2,	it	will	interpret
it	as	a	tuple,	which	is	wrong.	For	that	reason,	we	will	import	the	__future__
module	at	the	beginning	of	our	code,	to	prevent	that	behavior	and	instruct
Python	to	print	multiple	strings.

The	output	will	be	as	follows:

Python	installation
Whether	you	choose	to	go	with	a	popular	Python	version	(2.x)	or	build	future-
proof	code	with	Python	3.x,	you	will	need	to	download	the	Python	binaries	from
the	official	website	and	install	them	in	your	operating	system.	Python	provides
support	for	different	platforms	(Windows,	Mac,	Linux,	Raspberry	PI,	and	so	on):

1.	 Go	to	https://www.python.org/downloads/	and	choose	the	latest	version	of	either
2.x	or	3.x:

https://www.python.org/downloads/

2.	 Choose	your	platform	from	the	Download	page,	and	either	the	x86	or	x64
version:

3.	 Install	the	package	as	usual.	It's	important	to	select	the	Add	python	to	the
path	option	during	the	installation,	in	order	to	access	Python	from	the
command	line	(in	the	case	of	Windows).	Otherwise,	Windows	won't
recognize	the	Python	commands	and	will	throw	an	error:

4.	 Verify	that	the	installation	is	complete	by	opening	the	command	line	or
terminal	in	your	operating	system	and	typing	python.	This	should	access	the
Python	console	and	provide	a	verification	that	Python	has	successfully
installed	on	your	system:

Installing	the	PyCharm	IDE
PyCharm	is	a	fully	fledged	IDE,	used	by	many	developers	around	the	world	to
write	and	develop	Python	code.	The	IDE	is	developed	by	the	Jetbrains	company
and	provides	rich	code	analysis	and	completion,	syntax	highlighting,	unit	testing,
code	coverage,	error	discovery,	and	other	Python	linting	operations.

Also,	PyCharm	Professional	Edition	supports	Python	web	frameworks,	such	as
Django,	web2py,	and	Flask,	beside	integrations	with	Docker	and	vagrant	for
running	a	code	over	them.	It	provides	amazing	integration	with	multiple	version
control	systems,	such	as	Git	(and	GitHub),	CVS,	and	subversion.

In	the	next	few	steps,	we	will	install	PyCharm	Community	Edition:

1.	 Go	to	the	PyCharm	download	page	(https://www.jetbrains.com/pycharm/download/)
and	choose	your	platform.	Also,	choose	to	download	either	the	Community
Edition	(free	forever)	or	the	Professional	Edition	(the	Community	version	is
completely	fine	for	running	the	codes	in	this	book):

2.	 Install	the	software	as	usual,	but	make	sure	that	you	select	the	following
options:

32-	or	64-bit	launcher	(depending	on	your	operating	system).
Create	Associations	(this	will	make	PyCharm	the	default	application

https://www.jetbrains.com/pycharm/download/)

for	Python	files).
Download	and	install	JRE	x86	by	JetBrains:

3.	 Wait	until	PyCharm	downloads	the	additional	packages	from	the	internet,
and	installs	it,	then	choose	Run	PyCharm	Community	Edition:

4.	 Since	this	is	a	new	and	fresh	installation,	we	won't	import	any	settings	from

5.	 Select	the	desired	UI	theme	(either	the	default	or	darcula,	for	dark	mode).
You	can	install	some	additional	plugins,	such	as	Markdown	and
BashSupport,	which	will	make	PyCharm	recognize	and	support	those
languages.	When	you	finish,	click	on	Start	Using	PyCharm:

	

Setting	up	a	Python	project	inside
PyCharm
Inside	PyCharm,	a	Python	project	is	a	collection	of	Python	files	that	you	have
developed	and	Python	modules	that	are	either	built	in	or	were	installed	from	a
third	party.	You	will	need	to	create	a	new	project	and	save	it	to	a	specific
location	inside	your	machine	before	starting	to	develop	your	code.	Also,	you	will
need	to	choose	the	default	interpreter	for	this	project.	By	default,	PyCharm	will
scan	the	default	location	on	the	system	and	search	for	the	Python	interpreter.	The
other	option	is	to	create	a	completely	isolated	environment,	using	Python
virtualenv.	The	basic	problem	with	the	virtualenv	address	is	its	package
dependencies.	Let's	assume	that	you're	working	on	multiple	different	Python
projects,	and	one	of	them	needs	a	specific	version	of	x	package.	On	the	other
hand,	one	of	the	other	projects	needs	a	completely	different	version	from	the
same	package.	Notice	that	all	installed	Python	packages	go	to
/usr/lib/python2.7/site-packages,	and	you	can't	store	different	versions	of	the	same
package.	The	virtualenv	will	solve	this	problem	by	creating	an	environment	that
has	its	own	installation	directories	and	its	own	package;	each	time	you	work	on
either	of	the	two	projects,	PyCharm	(with	the	help	of	virtualenv)	will	activate	the
corresponding	environment	to	avoid	any	conflict	between	packages.

Follow	these	steps	to	set	up	the	project:

1.	 Choose	Create	New	Project:

2.	 Choose	the	project	settings:

1.	 Select	the	type	of	project;	in	our	case,	it	will	be	Pure	Python.
2.	 Choose	the	project's	location	on	the	local	hard	drive.
3.	 Choose	the	Project	Interpreter.	Either	use	the	existing	Python

installation	in	the	default	directory,	or	create	a	new	virtual	environment
tied	specifically	to	that	project.

4.	 Click	on	Create.
3.	 Create	a	new	Python	File	inside	the	project:

1.	 Right-click	on	the	project	name	and	select	New.
2.	 Choose	Python	File	from	the	menu,	then	choose	a	filename.

A	new,	blank	file	is	opened,	and	you	can	write	a	Python	code	directly	into	it.
Try	to	import	the	__future__	module,	for	example,	and	PyCharm	will
automatically	open	a	pop-up	window	with	all	possible	completions	available
as	shown	in	the	following	screenshot:

4.	 Run	your	code:

1.	 Enter	the	code	that	you	wish	to	run.
2.	 Choose	Edit	Configuration	to	configure	the	runtime	settings	for	the

Python	file.

5.	 Configure	new	Python	settings	for	running	your	file:

1.	 Click	on	the	+	sign	to	add	a	new	configuration,	and	choose	Python.
2.	 Choose	the	configuration	name.
3.	 Choose	the	script	path	inside	your	project.
4.	 Click	on	OK.

6.	 Run	the	code:

1.	 Click	on	the	play	button	beside	the	configuration	name.
2.	 PyCharm	will	execute	the	code	inside	the	file	specified	in	the

configuration,	and	will	return	the	output	to	the	terminal.

Exploring	some	nifty	PyCharm
features
In	this	section,	we	will	explore	some	of	PyCharm's	features.	PyCharm	has	a
huge	collection	of	tools	out	of	the	box,	including	an	integrated	debugger	and	test
runner,	Python	profiler,	a	built-in	Terminal,	integration	with	major	VCS	and
built-in	database	tools,	remote	development	capabilities	with	remote	interpreters,
an	integrated	SSH	Terminal,	and	integration	with	Docker	and	Vagrant.	For	a	list
of	other	features,	please	check	the	official	site	(https://www.jetbrains.com/pycharm/fea
tures/).

	

https://www.jetbrains.com/pycharm/features/

Code	debugging
Code	debugging	is	a	process	that	can	help	you	to	understand	the	cause	of	an
error,	by	providing	an	input	to	the	code	and	walking	through	each	line	of	the
code	and	seeing	how	it	evaluates	at	the	end.	The	Python	language	contains	some
debugging	tools	to	get	insights	from	the	code,	starting	with	a	simple	print
function,	assert	command	till	a	complete	unit	testing	for	the	code.	PyCharm
provides	an	easy	way	to	debug	the	code	and	see	the	evaluated	values.

To	debug	code	in	PyCharm	(say,	a	nested	for	loop	with	if	clauses),	you	need	to
set	a	breakpoint	on	the	line	at	which	you	want	PyCharm	to	stop	the	program
execution.	When	PyCharm	hits	this	line,	it	will	pause	the	program	and	dump	the
memory	to	see	the	contents	of	each	variable:	

Notice	that	the	value	of	each	variable	is	printed	besides	it,	on	the	first	iteration:	

Also,	you	can	right-click	on	the	breakpoint	and	add	a	specific	condition	for	any
variable.	If	the	variable	is	evaluated	to	a	specific	value,	then	a	log	message	will

be	printed:	

Code	refactoring
Refactoring	the	code	is	the	process	of	changing	the	structure	of	a	specific
variable	name	inside	your	code.	For	example,	you	may	choose	a	name	for	your
variable	and	use	it	for	a	project	that	consists	of	multiple	source	files,	then	later
decide	to	rename	the	variable	to	something	more	descriptive.	PyCharm	provides
many	refactoring	techniques,	to	make	sure	that	the	code	can	be	updated	without
breaking	the	operation.

PyCharm	does	the	following:

The	refactoring	itself
Scans	every	file	inside	the	project	and	makes	sure	that	the	references	to	the
variables	are	updated
If	something	can't	be	updated	automatically,	it	will	give	you	a	warning	and
open	a	menu,	so	you	can	decide	what	to	do
Saves	the	code	before	refactoring	it,	so	you	can	revert	it	later

Let's	look	at	an	example.	Assume	that	we	have	three	Python	files	in	our	project,
called	refactor_1.py,	refactor_2.py,	and	refactor_3.py.	The	first	file	contains
important_funtion(x),	which	is	also	used	in	both	refactor_2.py	and	refactor_3.py.

	

Copy	the	following	code	in	a	refactor_1.py	file:

def	important_function(x):

	print(x)

Copy	the	following	code	in	a	refactor_2.py	file:

from	refactor_1	import	important_function

important_function(2)

Copy	the	following	code	in	a	refactor_3.py	file:

from	refactor_1	import	important_function

important_function(10)

To	perform	the	refactoring,	you	need	to	right-click	on	the	method	itself,	select
Refactor	|	Rename,	and	enter	the	new	name	for	the	method:

Notice	that	a	window	opens	at	the	bottom	of	the	IDE,	listing	all	references	of
this	function,	the	current	value	for	each	one,	and	which	file	will	be	affected	after
the	refactoring:

If	you	choose	Do	Refactor,	all	of	the	references	will	be	updated	with	the	new
name,	and	your	code	will	not	be	broken.

Installing	packages	from	the	GUI
PyCharm	can	be	used	to	install	packages	for	existing	interpreters	(or	the
virtualenv)	using	the	GUI.	Also,	you	can	see	a	list	of	all	installed	packages,	and
whether	upgrades	are	available	for	them.

First,	you	need	to	go	to	File	|	Settings	|	Project	|	Project	Interpreter:

As	shown	in	the	preceding	screenshot,	PyCharm	provides	a	list	of	installed
packages	and	their	current	versions.	You	can	click	on	the	+	sign	to	add	a	new
package	to	the	project	interpreter,	then	enter	the	package	initials	into	the	search

box:	

You	should	see	a	list	of	available	packages,	containing	a	name	and	description
for	each	one.	Also,	you	can	specify	a	specific	version	to	be	installed	on	your
interpreter.	Once	you	have	clicked	on	Install	Package,	PyCharm	will	execute	a
pip	command	on	your	system	(and	may	ask	you	for	a	permission);	then,	it	will
download	the	package	onto	the	installation	directory	and	execute	the	setup.py	file.

Summary
In	this	chapter,	you	learned	the	differences	between	Python	2	and	Python	3,	and
how	to	decide	which	one	to	use,	based	on	your	needs.	Also,	you	learned	how	to
install	a	Python	interpreter	and	how	to	use	PyCharm	as	an	advanced	editor	to
write	and	manage	your	code's	life	cycle.

In	the	next	chapter,	we	will	discuss	the	Python	package	structure	and	the
common	Python	packages	used	in	automation.

	

Common	Libraries	Used	in
Automation
	

This	chapter	will	walk	you	through	how	Python	packages	are	structured	and	the
common	libraries	used	today	to	automate	the	system	and	network	infrastructure.
There's	a	long	growing	list	of	Python	packages	that	cover	network	automation,
system	administration,	and	managing	public	and	private	clouds.

Also,	it's	important	to	understand	how	to	access	the	module	source	code	and	how
the	small	pieces	inside	the	Python	package	are	related	to	each	other	so	we	can
modify	the	code,	add	or	remove	features,	and	share	the	code	again	with	the
community.

The	following	topics	will	be	covered	in	this	chapter:

Understanding	Python	packages
Common	Python	libraries
Accessing	module	source	code

	

	

Understanding	Python	packages
Python	core	code	is	actually	small	by	design	to	maintain	simplicity.	Most
functionalities	will	be	through	adding	third-party	packages	and	modules.

Module	is	a	Python	file	that	contains	functions,	statements,	and	classes	that	will
be	used	inside	your	code.	The	first	thing	to	do	is	import	the	module	then	start	to
use	its	functions.

On	other	hand,	a	package	collects	related	modules	connected	to	each	other	and
puts	them	in	a	single	hierarchy.	Some	large	packages	such	as	matplotlib	or	django
have	hundreds	of	modules	inside	them,	and	developers	usually	categorize	the
related	modules	into	a	sub-directories.	For	example,	the	netmiko	package	contains
multiple	sub-directories	and	each	one	contains	modules	to	connect	to	network
devices	from	different	vendors:	

Doing	that	gives	the	package	maintainer	the	flexibility	to	add	or	remove	features
from	each	module	without	breaking	the	global	package	operation.

Package	search	paths
Typically,	Python	searches	for	modules	in	some	specific	system	paths.	You	can
print	these	paths	by	importing	the	sys	module	and	printing	the	sys.path.	This	will
actually	return	the	strings	inside	the	PYTHONPATH	environment	variable	and	inside
the	operating	system;	notice	the	result	is	just	a	normal	Python	list.	You	can	add
more	paths	to	the	search	scope	using	a	list	function	such	as	insert().

However,	it's	better	to	install	the	packages	in	the	default	search	paths	so	the	code
won't	break	when	you	share	it	with	other	developers:	

A	simple	package	structure	with	a	single	module	will	be	something	like	this:	

The	__init__	file	inside	each	package	(in	the	global	directory	or	in	the	sub-
directory)	will	tell	the	Python	interpreter	that	this	directory	is	a	Python	package,
and	each	file	ending	with	.py	will	be	a	module	file,	which	could	be	imported

inside	your	code.	The	second	function	of	the	init	file	is	to	execute	any	code
inside	it	once	the	package	is	imported.	However,	most	developers	leave	it	empty
and	just	use	it	to	mark	the	directory	as	a	Python	package.

Common	Python	libraries
In	the	next	sections,	we	will	explore	the	common	Python	libraries	used	for
network,	system,	and	cloud	automation.

Network	Python	Libraries
	

Network	environments	nowadays	contain	multiple	devices	from	many	vendors,
and	each	device	plays	a	different	role.	Design	and	automation	frameworks	for
network	devices	are	essential	to	network	engineers	in	order	to	automate	repeated
tasks	and	enhance	the	way	they	usually	do	their	job,	while	reducing	human
errors.	Large	enterprises	and	service	providers	usually	tend	to	design	a	workflow
that	can	automate	different	network	tasks	and	improve	network	resiliency	and
agility.	The	workflow	contains	a	series	of	related	tasks	that	together	form	a
process	or	a	workflow	that	will	be	executed	when	there's	a	change	needed	on	the
network.

Some	of	the	tasks	that	could	be	performed	by	a	network	automation	framework
without	human	intervention	are:

Root	cause	analysis	for	the	problem
Checking	and	updating	the	device	operating	system
Discovering	the	topology	and	relationships	between	nodes
Security	audits	and	compliance	reporting
Installing	and	withdrawing	routes	from	the	network	device	based	on	the
application	needs
Managing	device	configuration	and	rollback

Here	are	some	Python	libraries	that	are	used	to	automate	network	devices:

Network
Library Description Link

Netmiko

A	multi-vendor	library	that
supports	SSHing	and	Telnet	for
network	devices	and	executes
commands	on	it.	Support	includes
Cisco,	Arista,	Juniper,	HP,	Ciena,
and	many	other	vendors.

https://github.com/ktbyer

s/netmiko

https://github.com/ktbyers/netmiko

NAPALM

A	Python	library	that	works	as	a
wrapper	for	the	official	Vendor
API.	It	provides	abstraction
methods	that	connect	to	devices
from	multiple	vendors	and	extract
information	from	it	while
returning	the	output	in	an
structured	format.	This	can	be
easily	processed	by	software.

https://github.com/napalm

-automation/napalm

PyEZ

A	Python	library	used	to	manage
and	automate	Juniper	devices.	It
can	perform	CRUD	operation	on
the	device	from	the	Python	client.
Also,	it	can	retrieve	facts	about
the	device	such	as	the
management	IP,	serial	number,
and	version.	The	returned	output
will	be	in	JSON	or	XML	format.

https://github.com/Junipe

r/py-junos-eznc

infoblox-client

A	Python	client	used	to	interact
with	infoblox	NIOS	over	the
interface,	based	on	a	REST	called
WAPI.

https://github.com/infobl

oxopen/infoblox-client

NX-API

A	Cisco	Nexus	(some	platforms
only)	series	API	that	exposes	the
CLI	through	HTTP	and	HTTPS.
You	can	enter	a	show	command
in	the	provided	sandbox	portal
and	it	will	be	converted	to	an	API
call	to	the	device	and	will	return
the	output	in	JSON	and	XML
format.

https://developer.cisco.c

om/docs/nx-os/#!working-w

ith-nx-api-cli

pyeapi

A	Python	library	that	acts	as	a
wrapper	around	the	Arista	EOS
eAPI	and	is	used	to	configure
Arista	EOS	devices.	The	library
supports	eAPI	calls	over	HTTP

https://github.com/arista

-eosplus/pyeapi

https://github.com/napalm-automation/napalm
https://github.com/Juniper/py-junos-eznc
https://github.com/infobloxopen/infoblox-client
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://github.com/arista-eosplus/pyeapi

and	HTTPs.

netaddr

A	Python	library	for	working
with	network	addresses	such	as
IPv4,	IPv6,	and	layer	2	addresses
(MAC	addresses).	It	can	iterate,
slice,	sort,	and	summarize	the	IP
block.

https://github.com/drkjam

/netaddr

ciscoconfparse

A	Python	library	that	is	able	to
parse	a	Cisco	IOS-style
configuration	and	returns	the
output	in	a	structured	format.	The
library	also	provides	support	for
device	configuration	based	on
brace-delimited	configurations
such	as	Juniper	and	F5.

https://github.com/mpenni

ng/ciscoconfparse

NSoT

A	database	for	tracking	the
inventory	and	metadata	of
network	devices.	It	provides	a
frontend	GUI	based	on	Python
Django.	The	backend	is	based	on
SQLite	database	where	the	data	is
stored.	Also,	it	provides	the	API
interface	for	the	inventory	using
pynsot	bindings.

https://github.com/dropbo

x/nsot

Nornir

A	new	automation	framework
based	on	Python	and	consumed
directly	from	Python	code
without	a	need	to	have	custom
DSL	(Domain	Specific
Language).	The	Python	code	is
called	runbook	and	contains	a	set
of	tasks	that	can	run	against	the
devices	stored	in	the	inventory
(supports	also	Ansible	inventory
format).	The	tasks	can	utilize
other	libraries	(such	as

https://github.com/nornir

-automation/nornir

https://github.com/drkjam/netaddr
https://github.com/mpenning/ciscoconfparse
https://github.com/dropbox/nsot
https://github.com/nornir-automation/nornir

NAPALM)	to	get	information	or
configure	the	devices.

	

	

System	and	cloud	Python	libraries
Here	are	some	of	the	python	packages	that	can	be	used	for	both	system	and
cloud	administration.	Public	cloud	providers	such	as	Amazon	Web	Services
(AWS)	and	Google	tend	to	provide	open	and	standard	access	to	their	resources
in	order	to	be	easily	integrated	with	the	organization	DevOps	model.	Phases	like
continuous	integration,	testing,	and	deployment	require	continuous	access	to
infrastructure	(either	virtualized	or	bare	metal	servers)	in	order	to	complete	the
code	life	cycle.	This	can't	be	done	manually	and	needs	to	be	automated:

Library Description Link

ConfigParser

Python	standard
library	to	parse	and
work	with	the	INI
files.

https://github.com/python/cpython/

blob/master/Lib/configparser.py

Paramiko

Paramiko	is	a	Python
(2.7,	3.4+)
implementation	of	the
SSHv2	protocol,
providing	both	client
and	server
functionality.

https://github.com/paramiko/parami

ko

Pandas

A	library	providing
high-performance,
easy-to-use	data
structures	and	data
analysis	tools.

https://github.com/pandas-dev/pand

as

boto3

Offifical	Python
interface	that
manages	different
AWS	operations,	such
as	creating	EC2
instances	and	S3

https://github.com/boto/boto3

https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/paramiko/paramiko
https://github.com/pandas-dev/pandas
https://github.com/boto/boto3

storage.

google-api-python-

client

Google	official	API
client	library	for
Google	Cloud
Platform.

https://github.com/google/google-a

pi-python-client

pyVmomi

The	official	Python
SDK	from	VMWare
that	manages	ESXi
and	vCenter.

https://github.com/vmware/pyvmomi

PyMYSQL

A	pure	python
MySQL	driver	to
work	with	MySQL
DBMS.

https://github.com/PyMySQL/PyMySQL

Psycopg

The	PostgresSQL
adapter	for	python
which	conforms	to
DP-API	2.0	standard.

http://initd.org/psycopg/

Django

A	high-level	open
source	web
framework	based	on
Python.	The
framework	follows
the	MVT	(Model,
View,	and	Template)
architecture	design
for	building	web
applications	without
the	hassle	of	web
development	and
common	security
mistakes.

https://www.djangoproject.com/

Fabric

A	simple	Python	tool
for	executing
commands	and
software	deployments https://github.com/fabric/fabric

https://github.com/google/google-api-python-client
https://github.com/vmware/pyvmomi
https://github.com/PyMySQL/PyMySQL
http://initd.org/psycopg/
https://www.djangoproject.com/
https://github.com/fabric/fabric

on	remote	devices
based	on	SSH.

SCAPY

A	brilliant	Python-
based	packet
manipulation	that	is
able	to	handle	a	wide
range	of	protocols
and	can	build	packets
with	any	combination
of	network	layers;	it
can	also	send	them	on
the	wire.

https://github.com/secdev/scapy

Selenium

A	python	library	used
to	automate	web-
browser	tasks	and
web-acceptance
testing.	The	library
works	with	Selenium
webdrivers	for
Firefox,	Chrome,	and
Internet	Explorer	to
run	tests	on	web
browsers.

https://pypi.org/project/selenium/

You	can	find	more	of	the	python	packages	categorized	into	different	areas	at	the
following	link:	https://github.com/vinta/awesome-python.

	

https://github.com/secdev/scapy
https://pypi.org/project/selenium/
https://github.com/vinta/awesome-python

Accessing	module	source	code
You	can	access	the	source	code	of	any	module	that	you	use	in	two	ways.	First,
go	to	the	module	page	at	github.com	and	view	all	the	files,	releases,	commits,	and
issues	in	one	place,	as	in	the	following	screenshot.	I	have	read	access	to	all
shared	code	via	the	netmiko	module	maintainer	and	can	see	a	full	list	of	commits
and	file	contents:

https://github.com/

The	second	method	is	to	install	the	package	itself	in	the	Python	site-package
directory	using	pip	or	PyCharm	GUI.	What	pip	actually	does	is	it	goes	to	GitHub
and	downloads	the	module	content	and	runs	setup.py	to	install	and	register	the
module.	You	can	see	the	module	files,	but	this	time	you	have	full	read/write
access	on	all	files	and	you	can	change	the	original	code.	For	example,	the
following	code	leverages	the	netmiko	library	to	connect	to	a	Cisco	device	and
execute	the	show	arp	command	on	it:

from	netmiko	import	ConnectHandler

device	=	{"device_type":	"cisco_ios",

	"ip":	"10.10.88.110",

	"username":	"admin",

	"password":	"access123"}

net_connect	=	ConnectHandler(**device)

output	=	net_connect.send_command("show	arp")

If	I	want	to	see	the	netmiko	source	code,	I	can	go	either	to	site-packages	where
the	netmiko	library	installed	and	list	all	files	or	I	can	use	Ctrl	and	left-click	on
the	module	name	in	PyCharm.	This	will	open	the	source	code	in	a	new	tab:

Visualizing	Python	code
Ever	wondered	how	a	Python	custom	module	or	class	is	manufactured?	How
does	the	developer	write	the	Python	code	and	glue	it	together	to	create	this	nice
and	amazing	x	module?	What's	going	on	under	the	hood?

Documentation	is	a	good	start,	of	course,	but	we	all	know	that	it's	not	usually
updated	with	every	new	step	or	detail	that	the	developer	added.

For	example,	we	all	know	the	powerful	netmiko	library	created	and	maintained
by	Kirk	Byers	(https://github.com/ktbyers/netmiko)	that	leverages	another	popular
SSH	library	called	Paramiko	(http://www.paramiko.org/).	But	we	don't	understand
the	details	and	how	the	classes	are	related	to	each	other.	If	you	need	to
understand	the	magic	behind	netmiko	(or	any	other	library)	in	order	to	process
the	request	and	return	the	result,	please	follow	the	next	steps	(requires	PyCharm
professional	edition).

Code	visualization	and	inspection	in	PyCharm	is	not	supported	in	PyCharm	community
edition	and	is	only	supported	in	the	professional	version.

Following	are	the	steps	you	need	to	follow:

1.	 Go	to	the	netmiko	module	source	code	inside	the	Python	library	location
folder	(usually	C:\Python27\Lib\site-packages	on	Windows	or
/usr/local/lib/pyhon2.7/dist-packages	on	Linux)	and	open	the	file	from
PyCharm.

2.	 Right-click	on	the	module	name	that	appears	in	the	address	bar	and	choose
Diagrams	|	Show	Diagram.	Select	Python	class	diagram	from	the	pop-up
window:

https://github.com/ktbyers/netmiko
http://www.paramiko.org/

3.	 PyCharm	will	start	to	build	the	dependency	tree	between	all	classes	and
files	in	the	netmiko	module	and	then	will	show	it	in	the	same	window.	Note
this	process	may	require	some	time	depending	on	your	computer	memory.
Also,	it's	better	to	save	the	graph	as	an	external	image	to	view	it:

Based	on	the	resulting	graph,	you	can	see	that	Netmiko	is	supporting	a	lot	of
vendors	such	as	HP	Comware,	entrasys,	Cisco	ASA,	Force10,	Arista,	Avaya,	and
so	on,	and	all	of	these	classes	are	are	inheriting	from	the
netmiko.cisco_base_connection.CicsoSSHConnection	parent	class	(I	think	this	is	because
they	use	the	same	SSH	style	as	Cisco).	This	in	turn	inherits	from	another	big
parent	class	called	netmiko.cisco_base_connection.BaseConnection.

Also,	you	can	see	that	Juniper	has	its	own	class
(netmiko.juniper.juniper_ssh.JuniperSSH)	that	connects	directly	to	the	big	parent.
Finally,	we	connect	to	the	parent	of	all	parents	in	python:	the	Object	class
(remember	everything	in	Python	is	an	object	in	the	end).

You	can	find	a	lot	of	interesting	things	such	as	an	SCP	transfer	class	and	SNMP
class,	and	with	each	one	you	will	find	the	methods	and	parameters	used	to
initialize	the	class.

So	the	ConnectHandler	method	is	primarily	used	to	check	the	device_type	availability
in	the	vendor	classes	and,	based	on	returned	data,	it	will	use	the	corresponding
SSH	class:

Another	way	to	visualize	your	code	is	to	see	exactly	which	modules	and
functions	are	being	hit	during	code	execution.	This	is	called	profiling	and	it
allows	you	to	examine	the	functions	during	runtime.

First,	you	need	to	write	your	code	as	usual	and	then	right-click	on	an	empty
space	and	select	profile	instead	of	running	the	code	as	normal:

Wait	for	the	code	to	be	executed.	This	time	PyCharm	will	inspect	each	file	that	is
called	from	your	code	and	generate	the	call	graph	for	the	execution	so	you	can
easily	know	which	files	and	functions	are	used	and	count	the	execution	time	for
each	one:

As	you	can	see	in	the	previous	graph,	our	code	in	profile_code.py	(bottom	of	the
graph)	will	call	the	ConnectHandler()	function	which	in	turn	will	execute	__init__.py,
and	execution	will	continue.	On	the	graph's	left	side,	you	can	see	all	files	that	it
touched	during	your	code	execution.

Summary
In	this	chapter,	we	explored	some	of	most	popular	network,	system,	and	cloud
packages	provided	in	Python.	Also,	we	learned	how	to	access	the	module	source
code	and	to	visualize	it	for	better	understanding	of	the	internal	code.	We	looked
at	the	call	flow	for	code	while	running.	In	the	next	chapter,	we	will	start	building
a	lab	environment	and	apply	our	code	to	it.

	

Setting	Up	the	Network	Lab
Environment
	

We	now	have	a	fair	idea	of	how	to	write	and	develop	Python	scripts,	the	building
blocks	to	creating	programs.	We	will	now	move	on	to	understanding	why
automation	is	an	important	topic	in	today's	network,	and	then	we	will	build	our
network	automation	lab	using	one	of	the	popular	pieces	of	software,	called	EVE-
NG,	which	helps	us	to	virtualize	network	devices.

We	will	cover	the	following	topics	in	this	chapter:

When	and	why	to	automate	the	network
Screen	scraping	versus	API	automation
Why	to	use	Python	for	network	automation
The	future	of	network	automation
Lab	setup
Getting	ready:	installing	EVE-NG
Building	an	enterprise	network	topology

	

	

Technical	requirements
In	this	chapter,	we	will	cover	the	EVE-NG	installation	steps	and	how	to	create
our	lab	environment.	The	installation	will	be	done	over	VMware	Workstation,
VMware	ESXi,	and	finally	Red	Hat	KVM,	so	you	should	be	familiar	with	the
virtualization	concept	and	have	one	of	the	hypervisors	up	and	running	prior	to
lab	setup.

	

When	and	why	to	automate	the
network
Network	automation	is	increasing	all	over	the	network	world.	However,	it's
really	important	to	understand	when	and	why	to	automate	your	network.	For
example,	if	you're	an	administrator	of	a	few	network	devices	(three	or	four
switches)	and	you	don't	execute	so	many	tasks	on	them	regularly,	then	you	might
not	need	full	automation	for	them.	Actually,	the	time	needed	to	write	and
develop	a	script	and	test	and	troubleshoot	it	might	be	greater	than	the	time	to	do
a	simple	task	manually.	On	the	other	hand,	if	you're	responsible	for	a	big
enterprise	network	that	contains	multi-vendor	platforms	and	you	always	execute
repetitive	tasks,	then	it's	highly	recommended	to	have	a	script	to	automate	it.

	

Why	do	we	need	automation?
	

There	are	several	reasons	for	why	automation	is	important	for	networks	today:

Lower	costs:	Using	automation	solutions	(either	developed	in-house	or
purchased	from	vendors)	will	reduce	network	operation	complexity	and	the
time	required	to	provision,	configure,	and	operate	network	devices
Business	continuity:	Automation	will	reduce	human	error	during	service
creation	over	current	infrastructure,	and	hence,	allow	businesses	to	reduce
the	service	time	to	market	(TTM)
Business	agility:	Most	network	tasks	are	repeated	and	by	automating	them,
you	will	increase	productivity	and	drive	business	innovation
Correlation:	Building	a	solid	automation	workflow	allows	the	network	and
systems	administrators	to	perform	root	cause	analysis	faster	and	increases
the	possibility	of	solving	the	problem	by	correlating	multiple	events
together

	

	

Screen	scraping	versus	API
automation
	

For	a	long	period	of	time,	the	CLI	was	the	only	access	method	available	to
manage	and	operate	network	devices.	Operators	and	administrators	used	to	have
SSH	and	Telnet	to	access	the	network	terminal	for	configuration	and
troubleshooting.	Python,	or	any	programming	language,	has	two	approaches	to
communicating	with	devices.	The	first	one	is	to	use	SSH	or	telnet	the	same	as
before	and	get	the	information,	then	process	it.	This	method	is	called	screen
scraping	and	requires	libraries	that	will	be	able	to	establish	a	connection	to	the
device	and	execute	a	command	directly	on	the	terminal,	and	other	libraries	to
process	the	returned	information	to	extract	useful	data	from	it.	This	method	often
requires	knowledge	of	additional	parsing	languages,	such	as	regular	expressions,
to	match	the	data	pattern	from	the	output	and	extract	useful	data	from	it.

The	second	method	is	called	an	Application	Programmable	Interface	(API)
and	this	method	depends	entirely	on	sending	a	structured	request	using	REST	or
SOAP	protocols	to	the	device	and	returning	the	output,	also	in	structured	format,
encoded	in	JSON	or	XML.	The	time	needed	for	processing	the	returned	data	in
this	method	is	quite	small	compared	to	the	first	method;	however,	the	API
requires	additional	configuration	on	network	devices	to	support	it.

	

	

	

Why	use	Python	for	network
automation?
Python	is	a	pretty	well-structured	and	easy	programming	language	available
today	and	targets	many	areas	in	technology,	web	and	internet	development,	data
mining	and	visualization,	desktop	GUI,	analysis,	game	building,	and	automation
testing;	that's	why	it's	called	a	general	purpose	language.

So,	there	are	three	reasons	to	choose	Python:

Readability	and	ease	of	use:	When	you	develop	using	Python,	you
actually	find	yourself	writing	in	English.	Many	keywords	and	program
flows	inside	Python	are	structured	to	have	readable	statements.	Also,
Python	doesn't	require	;	or	curly	braces	to	start	and	end	blocks,	which	gives
Python	a	shallow	learning	curve.	Finally,	Python	has	some	optional	rules,
called	PEP	8,	that	tell	Python	developers	how	to	format	their	program	to
have	readable	code.

You	can	configure	PyCharm	to	take	care	of	these	rules	and	check
whether	your	code	violates	them	or	not	by	going	to	Settings	|	Inspections
|	PEP	8	coding	style	violation:

Libraries:	This	is	the	real	power	of	Python:	libraries	and	packages.	Python
has	a	wide	range	of	libraries	in	many	areas.	Any	Python	developer	can
easily	develop	a	Python	library	and	upload	it	online	to	make	it	available	to
other	developers.	Libraries	are	uploaded	to	a	website	called	PyPI	(https://py
pi.Python.org/pypi)	and	linked	to	a	GitHub	repository.	When	you	want	to
download	the	library	to	your	PC,	then	you	use	a	tool	called	pip	to	connect	to
PyPI	and	download	it	locally.	Network	vendors	such	as	Cisco,	Juniper,	and
Arista	developed	libraries	to	facilitate	access	to	their	platforms.	Most
vendors	are	pushing	to	make	their	libraries	easy	to	use	and	require
minimum	installation	and	configuration	steps	to	retrieve	useful	information
from	devices.

Powerful:	Python	tries	to	minimize	the	number	of	steps	required	to	reach
the	end	result.	For	example,	to	print	hello	world	using	Java,	you	will	need
this	block	of	code:

However,	in	Python,	the	whole	block	is	written	in	one	line	to	print	it,	as	shown

https://pypi.python.org/pypi

in	the	following	screenshot:

Combining	all	these	reasons	together	leads	to	making	Python	the	de	facto
standard	for	automation	and	the	first	choice	for	vendors	when	it	comes	to
automating	network	devices.

The	future	of	network	automation
	

For	a	long	period	of	time,	network	automation	only	meant	developing	a	script
using	a	programming	language	such	as	Perl,	TcL,	or	Python	in	order	to	execute
tasks	on	different	network	platforms.	This	approach	is	known	as	script-driven
network	automation.	But	as	the	network	becomes	more	complex	and	more
service-oriented,	new	types	of	automation	were	required	and	started	to	appear,
such	as	the	following:

Software-defined	network	automation:	Network	devices	will	have	only	a
forwarding	plane,	while	the	control	plane	is	implemented	and	created	using
an	external	software	called	an	SDN	controller.	The	benefit	of	this	approach
is	there	will	be	a	single	point	of	contact	for	any	network	changes	and	the
SDN	controller	can	accept	those	change	requests	from	other	software,	such
as	an	external	portal,	through	well-implemented	northbound	interfaces.

High-level	orchestration:	This	approach	requires	software	called	an
orchestrator	that	integrates	with	SDN	controllers	and	enables	the	creation	of
network	service	models	using	languages,	such	as	YANG,	that	abstract	the
service	from	the	underlying	devices	that	will	run	over	it.	Also,	an
orchestrator	can	integrate	with	a	Virtual	Infrastructure	Manager	(VIM)
such	as	OpenStack	and	vCenter,	in	order	to	manage	virtual	machines	as	a
part	of	network	service	modeling.
Policy-based	networking:	In	this	type	of	automation,	you	describe	what
you	want	to	have	in	the	network	and	the	system	has	all	the	details	to	figure
out	how	to	implement	it	in	the	underlying	devices.	This	allows	software
engineers	and	developers	to	implement	changes	in	the	network	and	describe
their	application's	needs	in	declarative	policies.

	

	

Network	lab	setup
Now,	we	will	start	building	our	networking	lab	on	a	popular	platform	called
EVE-NG.	You	could,	of	course,	use	a	physical	node	to	implement	the	topology,
but	a	virtualized	environment	gives	us	an	isolated	and	sandboxed	environment	to
test	many	different	configurations,	plus	the	flexibility	to	add/remove	nodes
to/from	the	topology	with	a	few	clicks.	Also,	we	can	have	multiple	snapshots	to
our	configuration	so	we	can	revert	back	to	any	scenario	at	any	time.

EVE-NG	(formerly	known	as	UNetLab)	is	one	of	the	most	popular	choices	in
network	emulation.	It	supports	a	wide	range	of	virtualized	nodes	from	different
vendors.	There's	another	option,	which	is	GNS3,	but,	as	we	will	see	during	this
chapter	and	the	next	one,	EVE-NG	provides	many	features	that	make	it	a	solid
choice	for	network	modeling.

EVE-NG	comes	in	three	editions:	Community,	Pro,	and	Learning	Center.	We
will	use	the	Community	edition	as	it	contains	all	the	features	that	we	will	need
during	this	book.

Getting	ready	–	installing	EVE-NG
EVE-NG	Community	edition	came	with	two	options,	OVA	and	ISO.	The	first
option	is	to	use	OVA,	which	gives	you	the	minimum	installation	steps	required,
given	that	you	already	have	VMware	Player/Workstation/Fusion,	or	VMware
ESXi,	or	Red	Hat	KVM.	The	second	option	is	to	install	it	directly	over	a	bare
metal	server	without	a	hypervisor,	this	time	using	Ubuntu	16.06	LTS	OS:

The	ISO	option,	however,	requires	some	advanced	skills	in	Linux	to	prepare	the
machine	itself	and	import	the	installation	repositories	into	the	operating	system.

Oracle	VirtualBox	doesn't	support	the	hardware	acceleration	needed	by	EVE-NG,	so	it's
better	to	install	it	either	in	VMware	or	KVM.

First,	head	to	http://www.eve-ng.net/index.php/downloads/eve-ng	to	download	the	latest
version	of	EVE-NG,	then	import	it	into	your	hypervisor.	I	dedicated	8	GB	of
memory	and	four	vCPUs	to	the	created	machine,	but	you	can	add	additional
resources	to	it.	In	the	next	section,	we	will	see	how	to	import	the	downloaded
image	to	hypervisors	and	configure	each	one.

http://www.eve-ng.net/index.php/downloads/eve-ng

Installation	on	VMware	Workstation
In	the	following	steps,	we	will	import	the	downloaded	EVE-NG	OVA	image	into
VMware	Workstation.	OVA-based	images	contain	files	that	describe	the	virtual
machine	in	terms	of	hard	disk,	CPU,	and	RAM	values.	You	can	later	modify
these	numbers	after	importing	them:

1.	 Open	VMware	workstation	and	from	File,	choose	Open	to	import	the	OVA.
2.	 After	completing	the	import	process,	right-click	on	the	newly	created

machine	and	choose	Edit	Settings.

3.	 Increase	the	number	of	processors	to	4	and	the	memory	allocated	to	8	GB
(again,	you	could	add	more	if	you	have	the	resources	but	this	setting	will	be
enough	for	our	lab).

4.	 Make	sure	the	Virtualize	Intel	VT-x/EPT	or	AMD-V/RVI	checkbox	is
enabled.	This	option	instructs	VMware	workstation	to	pass	the
virtualization	flags	to	the	guest	OS	(nested	virtualization):

Also,	it's	recommended	to	expand	the	hard	disk	by	adding	additional	space	to	the

existing	hard	disk	in	order	to	have	enough	space	to	host	multiple	images	from
vendors:

A	message	will	appear	after	expanding	the	disk,	indicating	that	the	operation	was
done	successfully	and	you	need	to	follow	some	procedures	in	the	guest	operating
system	to	merge	the	new	space	with	the	old	one.	Luckily	for	us,	we	don't	need	to
do	that	as	EVE-NG	will	merge	any	new	space	found	in	the	hard	disk	with	the	old
one	during	system	boot:

Installation	over	VMware	ESXi
VMware	ESXi	is	a	good	example	of	a	type	1	hypervisor	that	runs	directly	on	the
system.	Sometimes	they're	called	bare-metal	hypervisors,	and	they	provide	many
features	compared	to	type	2	hypervisors,	such	as	VMware	workstation/Fusion	or
VirtualBox:

1.	 Open	the	vSphere	client	and	connect	to	your	ESXi	server
2.	 From	the	File	menu,	choose	Deploy	OVF	Template
3.	 Enter	the	path	for	the	downloaded	OVA	image	and	click	Next:

4.	 Accept	all	the	default	settings	suggested	by	the	hypervisor	till	you	land	on
the	final	page,	Ready	to	Complete,	and	click	on	Finish:

ESXi	will	start	to	deploy	the	image	on	the	hypervisor,	and	later	you	can	change
its	settings	and	add	more	resources	to	it,	as	we	did	before	in	VMware
workstation.

Installation	over	Red	Hat	KVM
You	need	to	convert	the	downloaded	OVA	image	to	QCOW2	format,	which	is
supported	by	KVM.	Follow	these	steps	to	convert	one	format	into	another.	We
will	need	a	special	utility	called	qemu-img	available	inside	the	qemu-utils	package:

1.	 Untar	the	downloaded	OVA	to	extract	the	VMDK	file	(the	HDD	of	the
image):

tar	-xvf	EVE\	Community\	Edition.ova

EVE	Community	Edition.ovf

EVE	Community	Edition.vmdk

2.	 Install	the	qemu-utils	tools:

sudo	apt-get	install	qemu-utils

3.	 Now,	convert	the	VMDK	to	QCOW2.	It	may	take	a	few	minutes	for	the
conversion	to	be	complete:

qemu-img	convert	-O	qcow2	EVE\	Community\	Edition.vmdk	eve-ng.qcow

Finally,	we	have	our	own	qcow2	file	ready	to	be	hosted	inside	the	Red	Hat	KVM.
Open	the	KVM	console	and	choose	the	Import	existing	disk	image	option	from
the	menu:

Then,	choose	the	path	of	the	converted	image	and	click	on	Forward:

Accessing	EVE-NG
After	you	import	the	image	to	the	hypervisor	and	start	it,	you	will	be	asked	to
provide	some	information	to	complete	the	installation.	First,	you	will	be	greeted
with	the	EVE	logo	as	an	indication	that	the	machine	has	been	successfully
imported	over	the	hypervisor	and	it	is	ready	to	start	the	boot	phase:

1.	 Provide	the	root	password	that	will	be	used	for	SSHing	to	the	EVE
machine.	By	default,	it	will	be	eve:

2.	 Provide	the	hostname	that	will	be	used	as	a	name	inside	Linux:

3.	 Provide	a	domain	name	for	the	machine:

4.	 Choose	to	configure	networking	with	the	static	method.	This	will	ensure	the
IP	address	given	will	be	persistent	even	after	machine	reboot:

5.	 Finally,	provide	the	static	IP	address	from	a	range	that	is	reachable	from
your	network.	This	IP	will	be	used	to	SSH	to	EVE	and	upload	vendor
images	to	the	repositories:

In	order	to	access	the	EVE-NG	GUI,	you	need	to	open	a	browser	and	go	to
http://<server_ip>.	Please	note	server_IP	is	what	we	used	during	the	installation
steps:

The	default	username	for	the	GUI	is	admin	and	the	password	is	eve,	while	the	default	username
for	SSH	is	root	and	the	password	is	what	was	provided	during	the	installation	steps.

Installing	EVE-NG	client	pack
The	client	pack	that	comes	with	EVE-NG	allows	us	to	choose	which	application
is	used	when	you	telnet	or	SSH	to	the	device	(either	PuTTY	or	SecureCRT)	and
set	up	Wireshark	for	remote	packet	captures	between	links.	Also,	it	facilitates
work	on	RDP-	and	VNC-based	images.	First,	you	need	to	download	the	client
pack	to	your	PC	from	http://eve-ng.net/index.php/downloads/windows-client-side-pack,
then	extract	the	file	to	C:\Program	Files\EVE-NG:	

The	extracted	files	contain	many	scripts	written	in	Windows	batch	scripting
(.bat)	to	configure	the	machine	that	will	be	used	to	access	EVE-NG.	You	will
find	scripts	that	configure	the	default	Telnet/SSH	client	and	another	one	for
Wireshark	and	the	VNC.	The	software	sources	are	also	available	inside	the
folder:

http://eve-ng.net/index.php/downloads/windows-client-side-pack

If	you	are	using	a	Linux	desktop	such	as	Ubuntu	or	Fedora,	then	you	could	use	this	excellent
project	from	GitHub	to	get	the	client	pack:	https://github.com/SmartFinn/eve-ng-integration.

https://github.com/SmartFinn/eve-ng-integration

Loading	network	images	into	EVE-
NG
All	network	images	obtained	from	vendors	should	be	uploaded	to
/opt/unetlab/addons/qemu.	EVE-NG	support	QEMU-based	images	and	Dynamics
images,	and	also	iOL	(iOS	On	Linux).

When	you	get	an	image	from	a	vendor,	you	should	create	a	directory	inside
/opt/unetlab/addons/qemu	and	upload	the	image	to	that	directory;	then,	you	should
execute	this	script	to	fix	the	permission	of	the	uploaded	image:

/opt/unetlab/wrappers/unl_wrapper	-a	fixpermission

Building	an	enterprise	network
topology
In	our	base	lab	setup,	we	will	simulate	an	enterprise	network	that	has	four
switches	and	one	router	that	act	as	a	gateway	to	outside	networks.	Here	is	the	IP
schema	that	will	be	used	for	each	node:

Node	name IP

GW 10.10.88.110

Switch1 10.10.88.111

Switch2 10.10.88.112

Switch3 10.10.88.113

Switch4 10.10.88.114

	

Our	Python	script	(or	Ansible	playbook)	will	be	hosted	on	an	external	Windows
PC	that	connects	to	the	management	of	each	device.

Adding	new	nodes
We	will	start	by	choosing	the	IOSv	image	that	was	already	uploaded	to	EVE	and
add	four	switches	to	the	topology.	Right-click	on	any	empty	space	in	the
topology	and	from	the	drop-down	menu	named	Add	a	new	object,	choose	to	add

a	Node:	

You	should	see	two	Cisco	images	colored	blue	as	indication	that	they	were
successfully	added	to	the	available	images	inside	the	EVE-NG	library	and
mapped	to	the	corresponding	template.	Choose	Cisco	vIOS	L2	to	add	Cisco

switches:	

Increase	the	Number	of	nodes	to	add	to	4	and	click	OK:	

Now,	you	will	see	four	switches	added	to	the	topology;	repeat	this	again	and	add

the	router,	but	this	time	choose	Cisco	vIOS:	

Connecting	nodes	together
Now,	start	to	connect	the	nodes	with	each	other	while	the	nodes	are	offline,	and
repeat	for	each	node	till	you	finish	connecting	all	of	them	inside	the	topology;
then,	start	the	lab:

The	final	view	after	adding	IP	addresses	and	some	custom	shapes	to	the	topology
will	be	as	follows:

Now,	our	topology	is	ready	and	should	be	loaded	with	basic	configuration.	I
used	the	following	snippet	as	a	configuration	base	for	any	Cisco-IOS	device	that
enabled	SSH	and	telnet	and	configured	the	username	for	access.	Notice	that
there	are	some	parameters	surrounded	with	{{	}}.	We	will	discuss	them	in	the
next	chapter	when	we	generate	a	golden	configuration	using	a	Jinja2	template
but,	for	now,	replace	them	with	hostname	and	the	management	IP	address	for	each
device	respectively:

hostname	{{hostname}}

int	gig0/0

		no	shutdown

		ip	address	{{mgmt_ip}}	255.255.255.0

aaa	new-model

aaa	session-id	unique

aaa	authentication	login	default	local

aaa	authorization	exec	default	local	none	

enable	password	access123

username	admin	password	access123

no	ip	domain-lookup

lldp	run

ip	domain-name	EnterpriseAutomation.net

ip	ssh	version	2

ip	scp	server	enable

crypto	key	generate	rsa	general-keys	modulus	1024

Summary
	

In	this	chapter,	we	learned	about	the	different	types	of	network	automation
available	today	and	why	we	chose	Python	to	be	our	primary	tool	in	network
automation.	Also,	we	learned	how	to	install	EVE-NG	over	different	hypervisors
and	platforms,	how	to	provide	the	initial	configuration,	and	how	to	add	our
network	images	to	the	images	catalog.	Then,	we	added	different	nodes	and
connected	them	together	to	create	our	network	enterprise	lab.

In	the	next	chapter,	we	will	start	building	our	Python	scripts	that	automate
different	tasks	in	the	topology	using	different	Python	libraries,	such	as	telnetlib,
Netmiko,	Paramiko,	and	Pexpect.

	

	

	

Using	Python	to	Manage	Network
Devices
	

Now	we	have	a	fair	knowledge	about	how	to	use	and	install	Python	in	different
operating	systems	and	also	how	to	build	the	network	topology	using	the	EVE-
NG.	In	this	chapter,	we	will	discover	how	to	leverage	many	network	automation
libraries,	used	today	to	automate	various	network	tasks.	Python	can	interact	with
network	devices	on	many	layers.

First,	it	can	handle	low-level	layers	with	socket	programming	and	socket
modules,	which	serve	as	low-level	networking	interfaces	between	operating
systems	that	run	Python	and	the	network	device.	Also,	Python	modules	provide
higher-level	interaction	through	telnet,	SSH,	and	API.	In	this	chapter,	we	will
dive	deep	into	how	to	use	Python	to	establish	remote	connections	and	execute
commands	on	remote	devices	using	telnet	and	SSH	modules.

The	following	topics	will	be	covered:

Using	Python	to	telnet	to	devices
Python	and	SSH
Handling	IP	addresses	and	networks	with	netaddr
Network	automation	sample	use	cases

	

	

Technical	requirements
	

The	following	tools	should	be	installed	and	available	in	your	environment:

Python	2.7.1x
PyCharm	Community	or	Pro	Edition
EVE-NG	topology;	please	refer	to	Chapter	3,	Setting	up	the	Network	Lab
Environment,	for	how	to	install	and	configure	the	emulator

You	can	find	the	full	scripts	developed	in	this	chapter	at	the	following	GitHub
URL:	https://github.com/TheNetworker/EnterpriseAutomation.git.

	

	

	

https://github.com/TheNetworker/EnterpriseAutomation.git

Python	and	SSH
	

Unlike	telnet,	SSH	provides	a	secure	channel	to	exchange	data	between	client
and	server.	The	tunnel	created	between	the	client	and	the	device	is	encrypted
with	different	security	mechanisms	that	make	it	hard	for	anyone	to	decrypt	the
communication.	The	SSH	protocol	is	the	first	choice	for	network	engineers	who
need	to	securely	administrate	network	nodes.

Python	can	communicate	with	network	devices	using	the	SSH	protocol	by
utilizing	a	popular	library	called	Paramiko	that	supports	authentication,	key
handling	(DSA,	RSA,	ECDSA,	and	ED25519),	and	other	SSH	features	such	as
the	proxy	command	and	SFTP.

	

	

	

Paramiko	module
The	most	widely	used	module	for	SSH	in	Python	is	called	Paramiko	and,	as	the
GitHub	official	page	says,	the	name	Paramiko	is	a	combination	of	the	Esperanto
words	for	"paranoid"	and	"friend."	The	module	itself	is	written	and	developed
using	Python,	though	some	core	functions	like	crypto	depend	on	the	C	language.
You	can	find	out	more	about	the	contributors	and	module	history	at	the	official
GitHub	link	here:	https://github.com/paramiko/paramiko.

	

https://github.com/paramiko/paramiko

Module	installation
Open	Windows	cmd	or	Linux	shell	and	execute	the	following	command	to
download	the	latest	paramiko	module	from	PyPI.	It	will	download	additional
dependency	packages	such	as	cyrptography,	ipaddress,	and	six	and	install	them	on
your	machine:

pip	install	paramiko

You	can	verify	that	the	installation	is	done	successfully	by	entering	the	Python
shell	and	importing	the	paramiko	module	as	shown	in	the	following	screenshot.
Python	should	import	it	successfully	without	printing	any	errors:

SSH	to	the	network	device
As	usual,	in	every	Python	module,	we	first	need	to	import	it	into	our	Python
script,	then	we	will	create	an	SSH	client	by	inheriting	from	SSHClient().	After	that,
we	will	configure	the	Paramiko	to	automatically	add	any	unknown	host-key	and
trust	the	connection	between	you	and	the	server.	Then,	we	will	use	the	connect
function	and	provide	the	remote	host	credentials:

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

import	paramiko

import	time

Channel	=	paramiko.SSHClient()

Channel.set_missing_host_key_policy(paramiko.AutoAddPolicy())

Channel.connect(hostname="10.10.88.112",	username='admin',	password='access123',	

look_for_keys=False,allow_agent=False)

shell	=	Channel.invoke_shell()

AutoAddPolicy()	is	one	of	the	policies	that	can	be	used	inside	the	set_missing_host_key_policy()
function.	It's	preferred	and	acceptable	in	a	lab	environment.	However,	we	should	use	a	more
restrictive	policy	in	a	production	environment,	such	as	WarningPolicy()	or	RejectPolicy().

Finally,	the	invoke_shell()	will	start	the	interactive	shell	session	towards	our	SSH
server.	You	can	provide	additional	parameters	to	it	such	as	the	terminal	type,
width,	and	height.

Paramiko	connect	parameters:

Look_For_Keys:	By	default,	it's	True,	and	it	will	force	the	Paramiko	to	use	the
key-pair	authentication	where	the	user	is	using	both	private	and	public	keys
to	authenticate	against	the	network	device.	In	our	case,	we	will	set	it	to	False
as	we	will	use	password	authentication.
allow_agent	paramiko:	It	can	connect	to	a	local	SSH	agent	OS.	This	is
necessary	when	working	with	keys;	in	this	case,	since	authentication	is
performed	using	a	login/password,	we	will	disable	it.

The	final	step	is	to	send	a	series	of	commands	such	as	show	ip	int	b	and	show	arp	to
the	device	terminal	and	get	the	output	back	to	our	Python	shell:

shell.send("enable\n")

shell.send("access123\n")

shell.send("terminal	length	0\n")

shell.send("show	ip	int	b\n")

shell.send("show	arp	\n")

time.sleep(2)

print	shell.recv(5000)

Channel.close()

The	script	output	is:

It's	preferable	to	use	time.sleep()	when	you	need	to	execute	commands	that	will	take	a	long
time	on	a	remote	device	to	force	Python	to	wait	some	time	till	the	device	generates	output	and
sends	it	back	to	python.	Otherwise,	python	may	return	blank	output	to	the	user.

Netmiko	module
	

The	netmiko	module	is	an	enhanced	version	of	paramiko	and	targets	network
devices	specifically.	While	paramiko	is	designed	to	handle	SSH	connections	to	a
device	and	to	check	whether	the	device	is	a	server,	printer,	or	network	device,
Netmiko	is	designed	with	network	devices	in	mind	and	handles	SSH	connections
more	efficiently.	Also,	Netmiko	supports	a	wide	range	of	vendors	and	platforms.

Netmiko	is	considered	a	wrapper	around	paramiko	and	extends	its	features	with
many	additional	enhancements,	such	as	access	to	vendor-enabled	modes	directly
given	the	enable	password,	reading	configuration	from	a	file	and	pushing	it	to
devices,	disabling	paging	during	login,	and	sending	the	carriage	return	"\n"	by
default	after	each	command.

	

	

	

Vendor	support
Netmiko	supports	many	vendors	and	regularly	adds	new	vendors	to	the
supported	list.	Following	is	a	list	of	supported	vendors	categorized	into	three
groups:	Regularly	tested,	Limited	testing,	and	Experimental.	You	can	find	the	list
on	the	module	GitHub	page	at	https://github.com/ktbyers/netmiko#supports.

The	following	screenshot	shows	the	number	of	supported	vendors	under	the

Regularly	tested	category:	

The	following	screenshot	shows	the	number	of	supported	vendors	under	the

Limited	testing	category:	

The	following	screenshot	shows	the	number	of	supported	vendors	under	the

https://github.com/ktbyers/netmiko#supports

Experimental	category:	

Installation	and	verification
To	install	netmiko,	open	the	Windows	cmd	or	Linux	shell	and	execute	the
following	command	to	get	the	latest	package	from	PyPI:

pip	install	netmiko

Then	import	netmiko	from	the	Python	shell	to	make	sure	the	module	is	correctly
installed	into	Python	site-packages:

$python

>>>import	netmiko

Using	netmiko	for	SSH
Now	it's	time	to	utilize	netmiko	and	see	its	power	for	SSHing	to	network	devices
and	executing	commands.	By	default,	netmiko	handles	many	operations	in	the
background	during	session	establishment,	such	as	adding	unknown	SSH	key
hosts,	setting	the	terminal	type,	width,	and	height,	and	accessing	enable	mode
when	required,	then	disabling	paging	by	running	a	vendor-specific	command.
You	will	need	to	define	the	devices	first	in	dictionary	format	and	provide	five
mandatory	keys:

R1	=	{

	'device_type':	'cisco_ios',

	'ip':	'10.10.88.110',

	'username':	'admin',

	'password':	'access123',

	'secret':	'access123',

}

The	first	parameter	is	device_type,	and	it	is	used	to	define	the	platform	vendor	in
order	to	execute	the	correct	commands.	Then,	we	need	the	ip	address	for	SSH.
This	parameter	could	be	the	device	hostname	if	it's	already	been	resolved	by
your	DNS,	or	just	the	IP	address.	Then	we	provide	the	username,	password,	and
enable-mode	password	in	secret.	Notice	you	can	use	the	getpass()	module	to	hide
the	passwords	and	only	prompt	them	during	the	script	execution.

While	the	keys	order	inside	the	variable	is	not	important,	the	key's	name	should	be	exactly	the
same	as	provided	in	the	previous	example	in	order	for	netmiko	to	correctly	parse	the
dictionary	and	to	start	to	establish	a	connection	to	the	device.

Next,	we	will	import	the	ConnectHandler	function	from	the	netmiko	module	and
give	it	the	defined	dictionary	to	start	the	connection.	Since	all	our	devices	are
configured	with	an	enable-mode	password,	we	need	to	access	the	enable	mode
by	providing	.enable()	to	the	created	connection.	We	will	execute	the	command
on	the	router	terminal	by	using	.send_command(),	which	will	execute	the	command
and	return	the	device	output	to	the	variable:

from	netmiko	import	ConnectHandler

connection	=	ConnectHandler(**R1)

connection.enable()

output	=	connection.send_command("show	ip	int	b")

print	output

The	script	output	is:

Notice	how	the	output	is	already	cleaned	from	the	device	prompt	and	the
command	that	we	executed	on	the	device.	By	default,	Netmiko	replaces	them
and	generates	a	cleaned	output,	which	could	be	processed	by	regular
expressions,	as	we	will	see	in	the	next	chapter.

If	you	need	to	disable	this	behavior	and	want	to	see	the	device	prompt	and
executed	command	in	the	returned	output,	then	you	need	to	provide	additional
flags	to	.send_command()	functions:

output	=	connection.send_command("show	ip	int	

b",strip_command=False,strip_prompt=False)

The	strip_command=False	and	strip_prompt=False	flags	tell	netmiko	to	keep	both	the
prompt	and	command	and	not	to	replace	them.	They're	True	by	default	and	you
can	toggle	them	if	you	want:

Configuring	devices	using	netmiko
Netmiko	can	be	used	to	configure	remote	devices	over	SSH.	It	does	that	by
accessing	config	mode	using	the	.config	method	and	then	applies	the
configuration	given	in	list	format.	The	list	itself	can	be	provided	inside	the
Python	script	or	read	from	the	file,	then	converted	to	a	list	using	the	readlines()
method:

from	netmiko	import	ConnectHandler

SW2	=	{

	'device_type':	'cisco_ios',

	'ip':	'10.10.88.112',

	'username':	'admin',

	'password':	'access123',

	'secret':	'access123',

}

core_sw_config	=	["int	range	gig0/1	-	2","switchport	trunk	encapsulation	dot1q",

	"switchport	mode	trunk","switchport	trunk	allowed	vlan	1,2"]

print	"##########	Connecting	to	Device	{0}	############".format(SW2['ip'])

net_connect	=	ConnectHandler(**SW2)

net_connect.enable()

print	"*****	Sending	Configuration	to	Device	*****"

net_connect.send_config_set(core_sw_config)

In	the	previous	script,	we	did	the	same	thing	that	we	did	before	to	connect	to
SW2	and	enter	enable	mode,	but	this	time	we	leveraged	another	netmiko	method
called	send_config_set(),	which	takes	the	configuration	in	list	format	and	accesses
device	configuration	mode	and	starts	to	apply	it.	We	have	a	simple	configuration
that	modifies	the	gig0/1	and	gig0/2	and	applies	trunk	configuration	on	them.	You
can	check	if	the	command	executed	successfully	by	running	show	run	command
on	the	device;	you	should	get	output	similar	to	the	following:

Exception	handling	in	netmiko
	

When	we	design	our	Python	script,	we	assume	that	the	device	is	up	and	running
and	also	that	the	user	has	provided	the	correct	credentials,	which	is	not	always
the	case.	Sometimes	there's	a	network	connectivity	issue	between	Python	and	the
remote	device	or	the	user	enters	the	wrong	credentials.	Usually,	python	will
throw	an	exception	if	this	happens	and	will	exit,	which	is	not	the	optimum
solution.

The	exception	handling	module	in	netmiko,	netmiko.ssh_exception,	provides	some
exception	classes	that	can	handle	such	situations.	The	first	one	is
AuthenticationException,	and	will	catch	the	authentication	errors	in	the	remote
device.	The	second	class	is	NetMikoTimeoutException,	which	will	catch	timeouts	or
any	connectivity	issues	between	netmiko	and	the	device.	What	we	will	need	to
do	is	wrap	our	ConnectHandler()	method	with	the	try-except	clause	and	catch
timeout	and	authentication	exceptions:

from	netmiko	import	ConnectHandler

from	netmiko.ssh_exception	import	AuthenticationException,	NetMikoTimeoutException

device	=	{

	'device_type':	'cisco_ios',

	'ip':	'10.10.88.112',

	'username':	'admin',

	'password':	'access123',

	'secret':	'access123',

}

print	"##########	Connecting	to	Device	{0}	############".format(device['ip'])

try:

	net_connect	=	ConnectHandler(**device)

	net_connect.enable()

	print	"*****	show	ip	configuration	of	Device	*****"

	output	=	net_connect.send_command("show	ip	int	b")

	print	output

				net_connect.disconnect()

except	NetMikoTimeoutException:

	print	"===========	SOMETHING	WRONG	HAPPEN	WITH	{0}	============".format(device['ip'])

except	AuthenticationException:

	print	"=========	Authentication	Failed	with	{0}	============".format(device['ip'])

except	Exception	as	unknown_error:

	print	"============	SOMETHING	UNKNOWN	HAPPEN	WITH	{0}	============"

	

	

Device	auto	detect
	

Netmiko	provides	a	mechanism	that	can	guess	the	device	type	and	detect	it.	It
uses	a	combination	of	SNMP	discovery	OIDS	and	executes	several	show
commands	on	the	remote	console	to	detect	the	router	operating	system	and	type,
based	on	the	output	string.	Then	netmiko	will	load	the	appropriate	driver	into	the
ConnectHandler()	class:

#!/usr/local/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

from	netmiko	import	SSHDetect,	Netmiko

device	=	{

	'device_type':	'autodetect',

	'host':	'10.10.88.110',

	'username':	'admin',

	'password':	"access123",

}

detect_device	=	SSHDetect(**device)

device_type	=	detect_device.autodetect()

print(device_type)																			

print(detect_device.potential_matches)

device['device_type']	=	device_type

connection	=	Netmiko(**device)

In	the	previous	script:

The	device_type	inside	the	device	dictionary	will	be	autodetect,	which	will	tell
netmiko	to	wait	and	not	load	the	driver	till	the	netmiko	guesses	it.
Then	we	instruct	the	netmiko	to	perform	device	detection	using	the
SSHDetect()	class.	The	class	will	connect	to	the	device	using	SSH	and	will
execute	some	discovery	commands	to	define	the	operating	system	type.	The
returned	result	will	be	a	dictionary,	and	the	best	match	will	be	assigned	to
the	device_type	variable	using	the	autodetect()	function.
You	can	see	all	the	matching	results	by	printing	the	potential_matches.
Now	we	can	update	the	device	dictionary	and	assign	the	new	device_type	to
it.

	

	

Using	the	telnet	protocol	in	Python
Telnet	is	one	of	the	oldest	protocols	available	in	the	TCP/IP	stack.	It	is	used
primarily	to	exchange	data	over	an	established	connection	between	a	server	and
client.	It	uses	TCP	port	23	in	the	server	for	listening	to	the	incoming	connection
from	the	client.

In	our	case,	we	will	create	a	Python	script	that	acts	as	a	telnet	client,	and	other
routers	and	switches	in	the	topology	will	act	as	the	telnet	server.	Python	comes
with	a	native	support	for	telnet	via	a	library	called	telnetlib	so	we	don't	need	to
install	it.

After	creating	the	client	object	by	instantiating	it	from	the	Telnet()	class,
available	from	the	telnetlib	module,	we	can	use	the	two	important	functions
available	inside	telnetlib,	which	are	read_until()	(used	to	read	the	output)	and
write()	(used	to	write	on	the	remote	device).	Both	functions	are	used	to	interact
with	the	created	channel,	either	by	writing	or	reading	the	output	returned	from	it.

Also,	it's	important	to	note	that	reading	the	channel	using	read_until()	will	clear
the	buffer	and	data	won't	be	available	for	any	further	reading.	So,	if	you	read
important	data	and	you	will	process	and	work	on	it	later,	then	you	need	to	save	it
as	a	variable	before	you	continue	with	your	script.

Telnet	data	is	sent	in	clear	text	format,	so	your	credentials	and	password	may	be	captured	and
viewed	by	anyone	performing	a	man-in-the-middle	attack.	Some	service	providers	and
enterprises	still	use	it	and	integrate	it	with	VPNs	and	radius/tacacs	protocols	to	provide
lightweight	and	secure	access.

Follow	the	steps	to	understand	the	whole	script:

1.	 We	will	import	the	telnetlib	module	inside	our	Python	script	and	define	the
username	and	passwords	in	variables,	as	in	the	following	code	snippet:

import	telnetlib

username	=	"admin"

password	=	"access123"

enable_password	=	"access123"

2.	 We	will	define	a	variable	that	establishes	the	connection	with	the	remote

host.	Note	that	we	won't	provide	the	username	or	password	during
connection	establishment;	we	will	only	provide	the	IP	address	of	the	remote
host:

cnx	=	telnetlib.Telnet(host="10.10.88.110")	#here	we're	telnet	to	Gateway

3.	 Now	we	will	provide	the	username	for	the	telnet	connection	by	reading	the
returned	output	from	the	channel	and	searching	for	the	Username:	keyword.
Then	we	write	our	admin	username.	The	same	process	is	used	when	we
need	to	enter	the	telnet	password	and	enable	password:

cnx.read_until("Username:")

cnx.write(username	+	"\n")

cnx.read_until("Password:")

cnx.write(password	+	"\n")

cnx.read_until(">")

cnx.write("en"	+	"\n")

cnx.read_until("Password:")

cnx.write(enable_password	+	"\n")	

It's	important	to	provide	the	exact	keywords	that	appear	in	the	console	when	you	establish	the
telnet	connection	or	the	connection,	will	enter	an	infinite	loop.	Then	Python	script	will	be
timed	out	with	an	error.

4.	 Finally,	we	will	write	the	show	ip	interface	brief	command	on	the	channel	and
read	till	the	router	prompt	#	to	get	the	output.	This	should	get	us	the
interface	configuration	in	the	router:

cnx.read_until("#")

cnx.write("show	ip	int	b"	+	"\n")

output	=	cnx.read_until("#")

print	output

The	full	script	is:

The	script	output	is:

Notice	that	the	output	contains	the	executed	command	show	ip	int	b,	and	the
router	prompt	"R1#"	is	returned	and	printed	in	the	stdout.	We	could	use	built-in
string	functions	like	replace()	to	clean	them	from	the	output:

cleaned_output	=	output.replace("show	ip	int	b","").replace("R1#","")

print	cleaned_output

As	you	noticed,	we	provided	both	the	password	and	enable	password	as	clear
text	inside	our	script,	which	is	considered	a	security	issue.	It's	also	not	good
practice	to	hardcode	the	values	inside	your	Python	script.	Later,	in	the	next
section,	we	will	hide	the	password	and	design	a	mechanism	to	provide
credentials	during	script	runtime	only.

Also,	if	you	want	to	execute	commands	that	span	multiple	pages	in	output	like
show	running	config	then	you	will	need	to	disable	paging	first	by	sending	terminal
length	0	after	connecting	to	the	device	and	before	sending	the	command	to	it.

Push	configuration	using	telnetlib
In	previous	section,	we	looked	at	a	simplified	operation	of	telnetlib	by	executing
the	show	ip	int	brief.	Now	we	need	to	utilize	it	to	push	VLAN	configuration	to	the
four	switches	in	our	topology.	We	could	create	a	VLAN	list	using	the	python
range()	function	and	iterate	over	it	to	push	the	VLAN	ID	to	the	current	switch.
Notice	we	defined	the	switch	IP	addresses	as	an	item	inside	the	list,	and	this	list
will	be	our	outer	for	loop.	Also,	I	will	use	another	built-in	module	called	getpass
to	hide	the	password	from	the	console	and	only	provide	it	when	the	script	is
running:

#!/usr/bin/python

import	telnetlib

import	getpass

import	time

switch_ips	=	["10.10.88.111",	"10.10.88.112",	"10.10.88.113",	"10.10.88.114"]

username	=	raw_input("Please	Enter	your	username:")

password	=	getpass.getpass("Please	Enter	your	Password:")

enable_password	=	getpass.getpass("Please	Enter	your	Enable	Password:")

for	sw_ip	in	switch_ips:

	print	"\n####################	Working	on	Device	"	+	sw_ip	+	"	####################"

	connection	=	telnetlib.Telnet(host=sw_ip.strip())

	connection.read_until("Username:")

	connection.write(username	+	"\n")

	connection.read_until("Password:")

	connection.write(password	+	"\n")

	connection.read_until(">")

	connection.write("enable"	+	"\n")

	connection.read_until("Password:")

	connection.write(enable_password	+	"\n")

	connection.read_until("#")

	connection.write("config	terminal"	+	"\n")		#	now	i'm	in	config	mode

	vlans	=	range(300,400)

	for	vlan_id	in	vlans:

	print	"\n*********	Adding	VLAN	"	+	str(vlan_id)	+	"**********"

	connection.read_until("#")

	connection.write("vlan	"	+	str(vlan_id)	+	"\n")

	time.sleep(1)

	connection.write("exit"	+	"\n")

	connection.read_until("#")

	connection.close()

In	our	outermost	for	loop,	we	are	iterating	over	the	devices	and	then,	inside	each
iteration	(each	device),	we're	generating	a	vlan	range	from	300	to	400	and
pushing	them	to	the	current	device.

The	script	output	is:

Also,	you	can	check	the	output	from	the	switch	console	itself	(output	is	omitted):

Handling	IP	addresses	and	networks
with	netaddr
	

Working	and	manipulating	IP	addresses	is	one	of	the	most	important	tasks	for
network	engineers.	Python	developers	provide	an	amazing	library	that	can
understand	the	IP	addresses	and	work	on	them,	called	netaddr.	For	example,
assume	you	developed	an	application	and	part	of	it	is	to	get	the	network	and
broadcast	address	for	129.183.1.55/21.	You	can	do	that	easily	via	two	built-in
methods	inside	the	modules	called	network	and	broadcast	respectively:

net.network

129.183.0.

net.broadcast

129.183.0.0

In	general,	netaddr	provides	support	for	the	following	features:

Layer	3	addresses:

IPv4	and	IPv6	addresses,	subnets,	masks,	prefixes
Iterating,	slicing,	sorting,	summarizing,	and	classifying	IP	networks
Dealing	with	various	range	formats	(CIDR,	arbitrary	ranges	and	globs,
nmap)
Set-based	operations	(unions,	intersections,	and	so	on)	over	IP	addresses
and	subnets
Parsing	a	large	variety	of	different	formats	and	notations
Looking	up	IANA	IP	block	information
Generating	DNS	reverse	lookups
Supernetting	and	subnetting

Layer	2	addresses:

Representation	and	manipulation	MAC	addresses	and	EUI-64	identifiers
Looking	up	IEEE	organisational	information	(OUI,	IAB)
Generating	derived	IPv6	addresses

	

	

Netaddr	installation
	

The	netaddr	module	can	be	installed	using	pip,	as	shown	in	the	following
command:

pip	install	netaddr

As	a	verification	for	successfully	installing	the	module,	you	could	open
PyCharm	or	the	Python	console	and	import	the	module	after	installation.	If	there
is	no	error	produced,	then	the	module	installed	successfully:	python
>>>import	netaddr

	

	

Exploring	netaddr	methods
The	netaddr	module	provides	two	important	methods	to	define	the	IP	address	and
work	on	it.	The	first	one	is	called	IPAddress()	and	it's	used	to	define	a	single
classful	IP	address	with	the	default	subnet	mask.	The	second	method	is
IPNetwork()	and	is	used	to	define	classless	a	IP	address	with	CIDR.

Both	methods	take	the	IP	address	as	a	string	and	return	an	IP	address	or	IP
network	object	for	this	string.	There	are	many	operations	that	could	be	executed
on	the	returned	object.	For	example,	we	can	check	if	the	IP	address	is	unicast,
multicast,	loopback,	private,	public,	or	even	valid	or	not	valid.	The	output	of	the
previous	operation	is	either	True	or	False,	which	can	be	used	inside	Python	if
conditions.

Also,	the	module	supports	comparison	operations	such	as	==,	<,	and	>	to	compare
two	IP	addresses,	generating	the	subnets,	and	it	is	also	possible	to	retrieve	the	list
of	supernets	that	a	given	IP	address	or	subnet	belongs	to.	Finally,	the	netaddr
module	can	generate	a	full	list	of	valid	hosts	(excluding	the	network	IP	and
network	broadcast):

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

from	netaddr	import	IPNetwork,IPAddress

def	check_ip_address(ipaddr):

	ip_attributes	=	[]

	ipaddress	=	IPAddress(ipaddr)

	if	ipaddress.is_private():

	ip_attributes.append("IP	Address	is	Private")

	else:

	ip_attributes.append("IP	Address	is	public")

	if	ipaddress.is_unicast():

	ip_attributes.append("IP	Address	is	unicast")

	elif	ipaddress.is_multicast():

	ip_attributes.append("IP	Address	is	multicast")

	if	ipaddress.is_loopback():

	ip_attributes.append("IP	Address	is	loopback")

	return	"\n".join(ip_attributes)

def	operate_on_ip_network(ipnet):

	net_attributes	=	[]

	net	=	IPNetwork(ipnet)

	net_attributes.append("Network	IP	Address	is	"	+	str(net.network)	+	"	and	Netowrk	Mask	

is	"	+	str(net.netmask))

	net_attributes.append("The	Broadcast	is	"	+	str(net.broadcast))

	net_attributes.append("IP	Version	is	"	+	str(net.version))

	net_attributes.append("Information	known	about	this	network	is	"	+	str(net.info))

	net_attributes.append("The	IPv6	representation	is	"	+	str(net.ipv6()))

	net_attributes.append("The	Network	size	is	"	+	str(net.size))

	net_attributes.append("Generating	a	list	of	ip	addresses	inside	the	subnet")

	for	ip	in	net:

	net_attributes.append("\t"	+	str(ip))

	return	"\n".join(net_attributes)

ipaddr	=	raw_input("Please	Enter	the	IP	Address:	")

print	check_ip_address(ipaddr)

ipnet	=	raw_input("Please	Enter	the	IP	Network:	")

print	operate_on_ip_network(ipnet)

The	preceding	script	first	requests	the	IP	address	and	IP	network	from	the	user,
using	the	raw_input()	function,	then	will	call	two	user	methods,	check_ip_address()
and	operate_on_ip_network(),	and	pass	the	entered	values	to	them.	The	first	function,
check_ip_address(),	will	check	the	IP	address	entered	and	try	to	generate	a	report
about	IP	address	attributes,	such	as	whether	it	is	a	unicast	IP,	multicast,	private,
or	loopback,	and	will	return	the	output	to	the	user.

The	second	function	operate_on_ip_network()	takes	the	IP	network	and	generates	the
network	ID,	netmask,	broadcast,	version,	information	known	about	this	network,
the	IPv6	representation,	and	finally	generates	all	IP	addresses	inside	this	subnet.

It's	important	to	notice	that	net.info	will	work	and	generate	useful	information
only	for	public	IP	addresses,	not	private.

Notice	we	need	to	import	the	IP	Network	and	IP	Address	from	the	netaddr	module
before	using	them.

The	script	output	is:

Sample	use	cases
As	our	network	becomes	bigger	and	starts	to	contain	many	devices	from
different	vendors,	we	need	to	create	modular	Python	script	to	automate	various
tasks	in	it.	In	the	following	sections,	we	will	explore	three	use	cases,	which
could	be	used	to	collect	different	information	from	our	network	and	to	lower	the
time	needed	for	troubleshooting	a	problem,	or	at	least	restore	the	network
configuration	to	its	last	known	good	state.	This	will	allow	network	engineers	to
focus	more	on	getting	their	job	done	and	will	provide	an	automated	workflow
for	the	business	to	handle	network	failure	and	restoration.

	

Backup	device	configuration
	

Backup	device	configuration	is	one	of	the	most	important	tasks	for	any	network
engineer.	In	this	use	case,	we	will	design	a	sample	python	script	that	can	be	used
for	different	vendors	and	platforms	in	order	to	back	up	the	device	configuration.
We	will	leverage	the	netmiko	library	to	do	this	task.

The	result	files	should	be	formatted	with	the	device	IP	address	in	them	for	easy
access	or	referencing	later.	For	example,	the	result	file	for	the	SW1	backup
operation	should	be	dev_10.10.88.111_.cfg.

	

	

	

Building	the	python	script
We	will	start	by	defining	our	switches.	We	want	to	back	up	their	configuration	as
a	text	file	and	provide	the	credentials	and	access	details	separated	by	commas.
This	will	allow	us	to	use	the	split()	function	inside	the	python	script	to	get	the
data	and	use	it	inside	the	ConnectHandler	function.	Also,	the	file	can	be	easily
exported	and	imported	from	a	Microsoft	Excel	sheet	or	from	any	database.

The	file	structure	is:

<device_ipaddress>,<username>,<password>,<enable_password>,<vendor>

Now	we	will	start	building	our	Python	script	by	importing	the	file	inside	it,	using
the	with	open	clause.	We	use	the	readlines()	on	the	file	to	have	each	line	as	an	item
inside	a	list.	We	will	create	a	for	loop	to	iterate	over	each	line	and	use	the	split()
function	to	get	the	access	details	separated	by	commas	and	assign	them	to
variables:

from	netmiko	import	ConnectHandler

from	datetime	import	datetime

with	

open("/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter5_Using_Python_to_manage_network_devices/UC1_devices.txt"

	as	devices_file:

	devices	=	devices_file.readlines()

for	line	in	devices:

				line	=	line.strip("\n")

	ipaddr	=	line.split(",")[0]

	username	=	line.split(",")[1]

	password	=	line.split(",")[2]

	enable_password	=	line.split(",")[3]

	vendor	=	line.split(",")[4]

	if	vendor.lower()	==	"cisco":

	device_type	=	"cisco_ios"

	backup_command	=	"show	running-config"

	elif	vendor.lower()	==	"juniper":

	device_type	=	"juniper"

	backup_command	=	"show	configuration	|	display	set"

As	we	need	to	create	a	modular	and	multi-vendor	script,	we	need	to	have	the	if
clause	check	the	vendor	in	each	line	and	assign	a	correct	device_type	and
backup_command	to	the	current	device.

Moving	on,	we	are	now	ready	to	establish	the	SSH	connection	to	the	device	and
execute	the	backup	command	on	it	using	the	.send_command()	method	available
inside	the	netmiko	module:

print	str(datetime.now())	+	"	Connecting	to	device	{}"	.format(ipaddr)

net_connect	=	ConnectHandler(device_type=device_type,

	ip=ipaddr,

	username=username,

	password=password,

	secret=enable_password)

net_connect.enable()

running_config	=	net_connect.send_command(backup_command)

print	str(datetime.now())	+	"	Saving	config	from	device	{}"	.format(ipaddr)

f	=	open("dev_"	+	ipaddr	+	"_.cfg",	"w")

f.write(running_config)

f.close()

print	"=="

In	the	last	few	statements,	we	opened	a	file	for	writing	and	made	its	name
contain	the	ipaddr	variable	collected	from	our	text	file.

The	script	output	is:

Also,	notice	the	backup	configuration	files	are	created	in	the	project	home
directory,	and	its	name	contains	the	IP	address	of	each	device:

You	can	design	a	simple	cron	job	on	a	Linux	server	or	schedule	a	job	on	a	Windows	server,
which	runs	the	previous	python	script	at	a	specific	time.	For	example,	the	script	could	run	on
a	daily	basis	at	midnight	and	store	the	configuration	in	the	latest	directory	so	the	team	could
refer	to	it	later.

Creating	your	own	access	terminal
In	Python,	and	programming	in	general,	you	are	the	vendor!	You	can	create	any
code	combination	and	procedures	you	like	in	order	to	serve	your	needs.	In	the
second	use	case,	we	will	create	our	own	terminal	that	accesses	the	router	through
telnetlib.	By	writing	a	few	words	in	the	terminal,	it	will	be	translated	too	many
commands	executed	in	the	network	device	and	return	output,	which	could	be	just
printed	in	the	standard	output	or	saved	in	file:

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

import	telnetlib

connection	=	telnetlib.Telnet(host="10.10.88.110")

connection.read_until("Username:")

connection.write("admin"	+	"\n")

connection.read_until("Password:")

connection.write("access123"	+	"\n")

connection.read_until(">")

connection.write("en"	+	"\n")

connection.read_until("Password:")

connection.write("access123"	+	"\n")

connection.read_until("#")

connection.write("terminal	length	0"	+	"\n")

connection.read_until("#")

while	True:

	command	=	raw_input("#:")

	if	"health"	in	command.lower():

	commands	=	["show	ip	int	b",

	"show	ip	route",

	"show	clock",

	"show	banner	motd"

]

	elif	"discover"	in	command.lower():

	commands	=	["show	arp",

	"show	version	|	i	uptime",

	"show	inventory",

]

	else:

	commands	=	[command]

	for	cmd	in	commands:

	connection.write(cmd	+	"\n")

	output	=	connection.read_until("#")

	print	output

								print	"==================="	

First,	we	establish	a	telnet	connection	to	the	router	and	enter	the	user	access
details	till	we	reach	enable	mode.	Then	we	create	an	infinite	while	loop	that	is

always	true,	and	we	expect	a	command	from	the	user	using	the	raw_input()	built-in
function.	When	the	user	enters	any	command,	the	script	will	capture	it	and
execute	it	directly	to	the	network	device.

However,	if	the	user	enters	health	or	discover	keywords	then	our	terminal	will	be
smart	enough	to	execute	a	series	of	commands	to	reflect	the	desired	operation.
This	should	be	extremely	useful	in	case	of	network	troubleshooting,	and	you	can
extend	it	with	any	daily	operation.	Imagine	that	you	need	to	troubleshoot	OSPF
neighbourship	problems	between	two	routers.	You	just	need	to	open	your	own
terminal	python	script	that	you	already	taught	him	few	commands	needed	for
troubleshooting,	and	write	something	like	tshoot_ospf.	Once	your	script	sees	this
magic	keyword	it	will	launch	a	series	of	multiple	commands	that	print	the	OSPF
neighborship	status,	interfaces	of	MTU,	advertised	network	under	OSPF,	and	so
on	till	you	find	the	issue.

Script	output:

Try	the	first	command	in	our	script	by	writing	health	in	the	prompt:

As	you	can	see,	the	script	returns	the	output	of	multiple	commands	executed	in
the	device.

Now	try	the	second	supported	command,	discover:

This	time	the	script	returns	the	output	of	discover	commands.	In	later	chapters,
we	can	parse	the	returned	output	and	extract	the	useful	information	from	it.

Reading	data	from	an	Excel	sheet
Network	and	IT	engineers	always	use	the	excel	sheet	to	store	information	about
the	infrastructure	such	as	IP	addresses,	the	device	vendor,	and	credentials.
Python	support	reading	the	information	from	an	excel	sheet	and	processes	it	so
you	can	use	it	later	during	the	script.

In	this	use	case,	we	will	use	the	Excel	Read	(xlrd)	module	to	read	the
UC3_devices.xlsx	file	which	contains	the	hostname,	IP,	username,	password,	enable
password	and	vendor	for	our	infrastructure	and	use	this	information	to	feed	the
netmiko	module.

The	Excel	sheet	will	be	as	shown	in	the	following	screenshot:

First	we	will	need	to	install	the	xlrd	module,	using	pip	as	we	will	use	it	to	read	the
Microsoft	excel	sheet:

pip	install	xlrd

The	XLRD	module	read	the	excel	workbook	and	convert	the	row	and	columns
into	a	matrix.	For	example,	if	you	need	to	get	the	first	item	on	the	left,	then	you
will	need	to	access	row[0][0].	The	next	item	on	the	right	will	be	row[0][1]	and
so	on.

Also,	when	xlrd	reads	the	sheet,	it	will	increase	a	special	counter	called	nrows
(number	of	rows)	by	one	each	time	it	reads	a	row.	Similarly,	it	will	increase	the
ncols	(number	of	columns)	by	one	each	time	it	reads	the	columns	so	you	can

know	the	size	of	your	matrix	via	these	two	parameters:

You	can	provide	the	file	path	to	xlrd	using	the	open_workbook()	function.	Then	you
can	access	your	sheet	that	contains	the	data	either	by	using	sheet_by_index()	or
sheet_by_name()	functions.	For	our	use	case,	our	data	is	stored	in	the	first	sheet
(index=0),	and	the	file	path	is	stored	under	the	chapter	name.	Then	we	will
iterate	over	the	rows	in	the	sheet	and	use	the	row()	function	to	access	a	specific
row.	The	returned	output	is	a	list,	and	we	can	access	any	item	in	it	using	the
index.

Python	script:

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

from	netmiko	import	ConnectHandler

from	netmiko.ssh_exception	import	AuthenticationException,	NetMikoTimeoutException

import	xlrd

from	pprint	import	pprint

workbook	=	

xlrd.open_workbook(r"/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter4_Using_Python_to_manage_network_devices/UC3_devices.xlsx"

sheet	=	workbook.sheet_by_index(0)

for	index	in	range(1,	sheet.nrows):

	hostname	=	sheet.row(index)[0].value

				ipaddr	=	sheet.row(index)[1].value

				username	=	sheet.row(index)[2].value

				password	=	sheet.row(index)[3].value

				enable_password	=	sheet.row(index)[4].value

				vendor	=	sheet.row(index)[5].value

				device	=	{

	'device_type':	vendor,

	'ip':	ipaddr,

	'username':	username,

	'password':	password,

	'secret':	enable_password,

	}

	#	pprint(device)

	print	"##########	Connecting	to	Device	{0}	############".format(device['ip'])

	try:

	net_connect	=	ConnectHandler(**device)

	net_connect.enable()

	print	"*****	show	ip	configuration	of	Device	*****"

	output	=	net_connect.send_command("show	ip	int	b")

	print	output

								net_connect.disconnect()

	except	NetMikoTimeoutException:

	print	"=======SOMETHING	WRONG	HAPPEN	WITH	{0}=======".format(device['ip'])

	except	AuthenticationException:

	print	"=======Authentication	Failed	with	{0}=======".format(device['ip'])

	except	Exception	as	unknown_error:

	print	"=======SOMETHING	UNKNOWN	HAPPEN	WITH	{0}======="

More	use	cases
Netmiko	could	be	used	to	realize	many	network	automation	use	cases.	It	could
be	used	for	uploading,	downloading	files	from	remote	devices	during	upgrade,
loading	configuration	from	Jinja2	templates,	accessing	terminal	servers,
accessing	end	devices,	and	many	more.	You	can	find	a	list	of	some	useful	use
cases	at	https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples:

	

https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples

Summary
	

In	this	chapter,	we	started	our	practical	journey	into	the	network	automation
world	with	Python.	We	explored	the	different	tools	that	are	available	in	python	to
establish	a	connection	to	remote	nodes	with	telnet	and	SSH	and	executed
commands	on	them.	Also,	we	learned	how	to	handle	IP	addresses	and	network
subnets	with	the	help	of	the	netaddr	module.	Finally,	we	strengthened	our
knowledge	with	two	practical	use	cases.

In	the	next	chapter,	we	will	work	on	the	returned	output	and	start	to	extract
useful	information	from	it.

	

	

	

Extracting	Useful	Data	from	Network
Devices
	

We	have	already	seen	in	the	previous	chapter	how	to	access	a	network	device
using	different	methods	and	protocols,	then	execute	commands	on	the	remote
device	to	get	an	output	back	to	Python.	Now,	it's	time	to	extract	some	useful	data
from	this	output.

In	this	chapter,	you'll	learn	how	to	use	different	tools	and	libraries	in	Python	to
extract	useful	data	from	returned	output	and	act	on	it	using	regular	expressions.
Also,	we	will	use	a	special	library	called	CiscoConfParse	to	audit	the	configuration,
then	we	will	learn	how	to	visualize	data	to	generate	visually	appealing	graphs
and	reports	using	the	matplotlib	library.

We	will	cover	the	following	topics	in	this	chapter:

Understanding	parsers
Introduction	to	regular	expressions
Configuration	auditing	using	Ciscoconfparse
Visualizing	returned	data	with	matplotlib

	

	

Technical	requirements
The	following	tools	should	be	installed	and	available	in	your	environment:

Python	2.7.1x
PyCharm	Community	or	Pro	edition
EVE-NG	lab

You	can	find	the	full	scripts	developed	in	this	chapter	at	the	following	GitHub
URL:

https://github.com/TheNetworker/EnterpriseAutomation.git

https://github.com/TheNetworker/EnterpriseAutomation.git

Understanding	parsers
	

In	the	previous	chapter,	we	explored	different	ways	to	access	network	devices,
execute	commands,	and	return	output	to	our	terminal.	We	now	need	to	work	on
the	returned	output	and	extract	some	useful	information	from	it.	Notice	that,
from	Python's	point	of	view,	the	output	is	just	a	multiline	string	and	Python
doesn't	differentiate	between	IP	address,	interface	name,	or	node	hostname
because	they're	all	strings.	So,	the	first	step	is	to	design	and	develop	our	own
parser	using	Python	to	categorize	and	differentiate	between	items	based	on	the
important	information	in	the	returned	output.

After	that,	you	can	work	on	the	parsed	data	and	generate	graphs	that	help	to
visualize	or	even	store	them	to	persistent	and	external	storage	or	databases.

	

	

	

Introduction	to	regular	expressions
Regular	expressions	are	a	language	used	to	match	specific	occurrences	of	strings
by	following	their	pattern	across	the	whole	string.	When	a	match	is	found,	the
resulting	matched	string	will	be	returned	back	to	user	and	will	be	held	inside	a
structure	in	Python	format,	such	as	tuple,	list,	or	dictionary.	The	following	table
summarizes	the	most	common	patterns	in	regular	expressions:	

Also,	one	of	the	important	rules	in	regular	expressions	is	you	can	write	your	own
regex	and	surround	it	with	parentheses	(),	which	is	called	the	capturing	group
and	helps	you	to	hold	important	data	to	reference	it	later	using	the	capturing
group	number:

line	=	'30	acd3.b2c6.aac9	FastEthernet0/1'	

match	=	re.search('(\d+)	+([0-9a-f.]+)	+(\S+)',	line)

print	match.group(1)

print	match.group(2)

PyCharm	will	automatically	color	strings	written	as	regular	expressions	and	can	help	you	to
check	the	validity	of	a	regex	before	applying	it	to	data.	Make	sure	the	Check	RegExp	intention
is	enabled	in	the	settings,	as	shown	here:

Creating	a	regular	expression	in
Python
You	can	construct	a	regular	expression	in	Python	using	the	re	module	that	is
natively	shipped	with	the	Python	installation.	There	are	several	methods	inside
this	module,	such	as	search(),	sub(),	split(),	compile(),	and	findall(),	which	will
return	the	result	as	a	regex	object.	Here	is	a	summary	of	the	use	of	each	function:

Function	Name Usage

search() Search	and	match	the	first	occurrence	of	the	pattern.

findall()
Search	and	match	all	occurrences	of	the	pattern	and
return	the	result	as	a	list.

Finditer()
Search	and	match	all	occurrences	of	the	pattern	and
return	the	result	as	an	iterator.

compile()

Compile	the	regex	into	a	pattern	object	that	has	methods
for	various	operations,	such	as	searching	for	pattern
matches	or	performing	string	substitutions.	This	is
extremely	useful	if	you	use	the	same	regex	pattern
multiple	times	inside	your	script.

sub() Used	to	replace	matched	pattern	with	another	string.

split() Used	to	split	on	matched	pattern	and	create	a	list.

	

Regular	expressions	are	hard	to	read;	for	that	reason,	let's	start	simple	and	look
at	some	easy	regular	expressions	at	the	most	basic	level.

The	first	step	of	working	with	the	re	module	is	to	import	it	inside	your	Python
code

import	re

We	will	start	to	explore	the	most	common	function	in	the	re	module,	which	is
search(),	and	then	we	will	explore	findall().	The	search()	function	is	suitable	when
you	need	to	find	only	one	match	in	a	string	or	when	you	write	your	regex	pattern
to	match	the	entire	output	and	need	to	get	the	result	with	a	method	called
groups(),	as	we	will	see	in	the	following	examples.

The	syntax	of	the	re.search()	function	is	as	follows:

match	=	re.search('regex	pattern',	'string')

The	first	parameter,	'regex	pattern',	is	the	regular	expression	developed	in	order
to	match	a	specific	occurrence	inside	the	'string'.	When	a	match	is	found,	the
search()	function	returns	a	special	match	object,	otherwise	it	will	return	None.	Note
that	search()	will	return	the	first	occurrence	only	of	the	pattern	and	will	ignore	the
rest	of	them.	Let's	see	a	few	examples	of	using	the	re	module	in	Python:

Example	1:	Searching	for	a	specific	IP	address

import	re

intf_ip	=	'Gi0/0/0.911												10.200.101.242			YES	NVRAM		up																				up'

match	=	re.search('10.200.101.242',	intf_ip)

if	match:

	print	match.group()

In	this	example,	we	can	see	the	following:

The	re	module	is	imported	into	our	Python	script.
We	have	a	string	that	corresponds	to	interface	details	and	contains	the
name,	IP	address,	and	status.	This	string	could	be	hardcoded	in	the	script	or
generated	from	the	network	device	using	the	Netmiko	library.

We	passed	this	string	to	the	search()	function,	along	with	our	regular
expression,	which	is	just	the	IP	address.
Then,	the	script	checks	whether	there's	a	match	object	returned	from	the
previous	operation;	if	so,	it	will	print	it.

The	most	basic	method	of	testing	for	a	match	is	via	the	re.match	function,	as	we
did	in	the	previous	example.	The	match	function	takes	a	regular	expression	pattern
and	a	string	value.

Notice	we're	only	searching	for	a	specific	string	inside	the	intf_ip	parameter,	not
every	IP	address	pattern.

Example	1	output

Example	2:	Matching	the	IP	address	pattern

import	re

intf_ip	=	'''Gi0/0/0.705												10.103.17.5						YES	NVRAM		up																				

up						

Gi0/0/0.900												86.121.75.31		YES	NVRAM		up																				up						

Gi0/0/0.911												10.200.101.242			YES	NVRAM		up																				up						

Gi0/0/0.7000											unassigned						YES	unset		up																				up	'''

match	=	re.search("\d+\.\d+\.\d+\.\d+",	intf_ip)

if	match:

	print	match.group()

In	this	example,	we	can	see	the	following:

The	re	module	is	imported	into	our	Python	script.
We	have	a	multi-line	string	that	corresponds	to	the	interface	details	and
contains	the	name,	IP	address,	and	status.
We	passed	this	string	to	the	search()	function	along	with	our	regular

expression,	which	is	the	IP	address	pattern	constructed	using	both	\d+,
which	matches	one	or	more	digits,	and	\.,	which	matches	the	occurrence	of
the	dot.
Then,	the	script	checks	whether	there's	a	match	object	returned	from	a
previous	operation;	if	so,	it	will	print	it.	Otherwise,	the	None	object	is
returned.

Example	2	output

Notice	the	search()	function	returns	only	the	first	matched	occurrence	of	the
pattern,	not	all	occurrences.

Example	3:	Using	groups()	regular	expressions

If	you	have	a	long	output	and	you	need	to	extract	multiple	strings	from	it,	then
you	could	surround	the	extracted	value	with	()	and	write	your	regex	inside	it.
This	is	called	a	capturing	group	and	is	used	to	catch	a	specific	pattern	within	a
long	string,	as	shown	in	the	following	snippet:

import	re

log_msg	=	'Dec	20	12:11:47.417:	%LINK-3-UPDOWN:	Interface	GigabitEthernet0/0/4,	changed	

state	to	down'

match	=	re.search("(\w+\s\d+\s\S+):\s(\S+):	Interface	(\S+),	changed	state	to	(\S+)",	

log_msg)

if	match:

	print	match.groups()

In	this	example,	we	can	see	the	following:

The	re	module	is	imported	into	our	Python	script.
We	have	a	string	that	corresponds	to	an	event	that	occurred	in	the	router	and
is	stored	in	logging.

We	passed	this	string	to	the	search()	function	along	with	our	regular
expression.	Notice	that	we	enclosed	the	timestamp,	event	type,	interface
name,	and	the	new	state	of	the	capturing	group	and	wrote	our	regex	inside
it.
Then,	the	script	checks	whether	there's	a	match	object	returned	from	the
previous	operation;	if	so,	it	will	print	it,	but	this	time	we	used	groups()
instead	of	group(),	as	we	are	capturing	multiple	strings.

Example	3	output

Notice	the	returned	data	is	in	a	structured	format	called	a	tuple.	We	could	use
this	output	later	to	trigger	an	event	and	start,	for	example,	a	recovery	procedure
on	a	redundant	interface.

We	could	enhance	our	previous	code	and	use	a	Named	group	to	give	each	capture	group	a	name
that	could	be	referenced	later	or	used	to	create	a	dictionary.	In	this	case,	we	prefixed	our
regex	with	?P<"NAME">	as	in	the	next	example	(Example	4	in	the	GitHub	repository):

Example	4:	Named	group

Example	5-1:	Searching	for	multiple	lines	using	re.search()

Assume	we	have	multiple	lines	in	the	output	and	we	need	to	check	all	of	them
against	the	regex	pattern.	Remember	that	the	search()	function	exits	when	it	finds
the	first	pattern	match.	In	that	case,	we	have	two	solutions.	The	first	one	is	to
feed	each	line	to	the	search	function	by	splitting	the	whole	string	on	"\n",	and	the
second	solution	is	to	use	the	findall()	function.	Let's	explore	the	two	solutions:

import	re

show_ip_int_br_full	=	"""

GigabitEthernet0/0/0								110.110.110.1			YES	NVRAM		up																				up						

GigabitEthernet0/0/1								107.107.107.1			YES	NVRAM		up																				up						

GigabitEthernet0/0/2								108.108.108.1			YES	NVRAM		up																				up						

GigabitEthernet0/0/3								109.109.109.1			YES	NVRAM		up																				up						

GigabitEthernet0/0/4			unassigned						YES	NVRAM		up																				up						

GigabitEthernet0/0/5													10.131.71.1					YES	NVRAM		up																				up						

GigabitEthernet0/0/6										10.37.102.225			YES	NVRAM		up																				up						

GigabitEthernet0/1/0												unassigned						YES	unset		up																				up						

GigabitEthernet0/1/1											57.234.66.28			YES	manual	up																				up						

GigabitEthernet0/1/2											10.10.99.70			YES	manual	up																				up						

GigabitEthernet0/1/3											unassigned						YES	manual	deleted															down				

GigabitEthernet0/1/4											192.168.200.1			YES	manual	up																				up						

GigabitEthernet0/1/5			unassigned						YES	manual	down																		down				

GigabitEthernet0/1/6									10.20.20.1						YES	manual	down																		down				

GigabitEthernet0/2/0									10.30.40.1						YES	manual	down																		down				

GigabitEthernet0/2/1									57.20.20.1						YES	manual	down																		down				

"""

for	line	in	show_ip_int_br_full.split("\n"):

	match	=	re.search(r"(?P<interface>\w+\d\/\d\/\d)\s+(?P<ip>\d+.\d+.\d+.\d+)",	line)

	if	match:

	intf_ip	=	match.groupdict()

	if	intf_ip["ip"].startswith("57"):

	print	"Subnet	is	configured	on	"	+	intf_ip["interface"]	+	"	and	ip	is	"	+	

intf_ip["ip"]

The	preceding	script	will	split	the	show	ip	interface	brief	output	and	search	for	a
specific	pattern,	which	is	the	interface	name	and	the	IP	address	configured	on	it.
Based	on	the	matched	data,	the	script	will	continue	to	check	each	IP	address	and
validate	it	using	start	with	57,	then	the	script	will	print	the	corresponding
interface	and	the	full	IP	address.

Example	5-1	output

If	you're	searching	only	for	the	first	occurrence,	you	can	optimize	the	script	and	only	get	the
first	result	by	breaking	the	outer	for	loop	upon	locating	the	first	match,	but	note	that	the
second	match	won't	be	located	or	printed.

Example	5-2:	Searching	for	multiple	lines	using	re.findall()

The	findall()	function	searches	for	all	non-overlapping	matches	in	the	provided
string	and	returns	a	list	of	strings	(unlike	the	search	function,	which	returns	the
match	object)	that	matched	by	regex	pattern	if	there's	no	capturing	group.	If	you
enclosed	your	regex	with	a	capturing	group,	then	findall()	will	return	a	list	of
tuples.	In	the	following	script,	we	have	the	same	multi-line	output	and	we	will
use	the	findall()	method	to	get	all	interfaces	that	are	configured	with	an	IP
address	that	starts	with	57:

import	re

from	pprint	import	pprint

show_ip_int_br_full	=	"""

GigabitEthernet0/0/0								110.110.110.1			YES	NVRAM		up																				up						

GigabitEthernet0/0/1								107.107.107.1			YES	NVRAM		up																				up						

GigabitEthernet0/0/2								108.108.108.1			YES	NVRAM		up																				up						

GigabitEthernet0/0/3								109.109.109.1			YES	NVRAM		up																				up						

GigabitEthernet0/0/4			unassigned						YES	NVRAM		up																				up						

GigabitEthernet0/0/5													10.131.71.1					YES	NVRAM		up																				up						

GigabitEthernet0/0/6										10.37.102.225			YES	NVRAM		up																				up						

GigabitEthernet0/1/0												unassigned						YES	unset		up																				up						

GigabitEthernet0/1/1											57.234.66.28			YES	manual	up																				up						

GigabitEthernet0/1/2											10.10.99.70			YES	manual	up																				up						

GigabitEthernet0/1/3											unassigned						YES	manual	deleted															down				

GigabitEthernet0/1/4											192.168.200.1			YES	manual	up																				up						

GigabitEthernet0/1/5			unassigned						YES	manual	down																		down				

GigabitEthernet0/1/6									10.20.20.1						YES	manual	down																		down				

GigabitEthernet0/2/0									10.30.40.1						YES	manual	down																		down				

GigabitEthernet0/2/1									57.20.20.1						YES	manual	down																		down				

"""

intf_ip	=	re.findall(r"(?P<interface>\w+\d\/\d\/\d)\s+(?P<ip>57.\d+.\d+.\d+)",	

show_ip_int_br_full)

pprint(intf_ip)

Example	5-2	output:

Notice	this	time	we	didn't	have	to	write	a	for	loop	to	check	each	line	against	the
regex	pattern.	This	will	be	done	automatically	in	the	findall()	method.

Configuration	auditing	using
CiscoConfParse
Applying	regular	expressions	on	network	configuration	to	get	specific
information	from	the	output	requires	us	to	write	some	complex	expressions	to
solve	some	complex	use	cases.	In	some	cases,	you	just	need	to	retrieve	some
configuration	or	modify	an	existing	one	without	going	deeply	into	writing
regular	expressions,	and	that	was	the	reason	for	the	birth	of	the	CiscoConfParse
library	(https://github.com/mpenning/ciscoconfparse).

	

https://github.com/mpenning/ciscoconfparse

CiscoConfParse	library
As	the	official	GitHub	page	says,	the	library	examines	an	iOS-style	config	and
breaks	it	into	a	set	of	linked	parent/child	relationships.	You	can	perform	complex
queries	on	these	relationships:	

Source:	https://github.com/mpenning/ciscoconfparse

So,	the	first	line	of	the	configuration	is	considered	the	parent,	while	the
subsequent	lines	are	considered	the	children	of	the	parent.	The	CiscoConfparse
library	builds	the	relationship	between	parent	and	child	into	an	object	so	the	end
user	can	easily	retrieve	the	configuration	of	a	specific	parent	without	the	need	to
write	complex	expressions.

It's	extremely	important	that	your	configuration	file	is	well-formatted	in	order	to	build	the
correct	relationship	between	the	parent	and	child.

The	same	concept	also	applies	if	you	need	to	inject	configuration	into	the	file.
The	library	will	search	for	the	given	parent	and	will	insert	the	configuration	just
under	it	and	save	it	to	the	new	file.	This	is	helpful	in	case	you	need	to	run	a
config	audit	job	on	multiple	files	and	make	sure	they	all	have	a	consistent
configuration.

https://github.com/mpenning/ciscoconfparse

Supported	vendors
	

As	a	rule	of	thumb,	any	file	that	has	a	tab-delimited	configuration	can	be	parsed
by	CiscoConfParse	and	it	will	build	the	parent	and	child	relationship.

The	following	is	the	list	of	supported	vendors:

Cisco	IOS,	Cisco	Nexus,	Cisco	IOS-XR,	Cisco	IOS-XE,	Aironet	OS,	Cisco
ASA,	Cisco	CatOS
Arista	EOS
Brocade
HP	switches
Force10	switches
Dell	PowerConnect	switches
Extreme	Networks
Enterasys
ScreenOS

Also,	starting	from	version	1.2.4,	CiscoConfParse	can	handle	the	curly	braces
delimited	configuration,	which	means	it	can	handle	the	following	vendors:

Juniper	Network's	Junos	OS
Palo	Alto	Networks	firewall	configurations
F5	Networks	configurations

	

	

CiscoConfParse	installation
CiscoConfParse	can	be	installed	by	using	pip	on	the	Windows	command	line	or
Linux	shell:

pip	install	ciscoconfparse

Notice	that	some	additional	dependencies	are	also	installed,	such	as	ipaddr,
dnsPython,	and	colorama,	which	are	used	by	CiscoConfParse.

Working	with	CiscoConfParse
The	first	example	that	we	will	work	on	is	extracting	the	shutdown	interfaces
from	a	sample	Cisco	configuration	located	in	a	file	named	Cisco_Config.txt.

In	this	example,	we	can	see	the	following:

From	the	CiscoConfParse	module,	we	imported	the	CiscoConfParse	class.	Also,
we	imported	the	pprint	module	to	print	the	output	in	readable	format	to	fit
the	Python	console	output.
Then,	we	provided	the	config	file	full	path	to	the	CiscoConfParse	class.

The	final	step	is	to	use	one	of	the	built-in	functions	such	as
find_parents_w_child()	and	provide	two	parameters.	The	first	one	is	the	parent
specification,	which	is	searching	for	anything	starting	with	the	interface
keyword,	while	the	child	specification	has	the	shutdown	keyword.

As	you	can	see,	in	three	simple	steps,	we	were	able	to	get	all	interfaces	that	have
the	shutdown	keyword	inside	and	output	as	a	structured	list.

Example	1	output

Example	2:	Checking	the	existing	of	a	specific	feature

The	second	example	will	check	whether	the	router	keyword	exists	within	the
configuration	file	as	an	indication	of	whether	a	routing	protocol,	such	as	ospf	or
bgp	is	enabled	or	not.	If	the	module	finds	it,	then	the	result	will	be	True.
Otherwise,	it	will	be	False.	This	can	be	achieved	by	a	built-in	function	within	a
module	called	has_line_with():

This	method	can	be	used	to	design	a	condition	inside	an	if	statement,	as	we	will
see	in	the	next	and	final	example.

Example	2	output

Example	3:	Printing	specific	children	from	a	parent:

In	this	example,	we	can	see	the	following:

From	the	CiscoConfParse	module,	we	imported	the	CiscoConfParse	class.	Also,
we	imported	the	pprint	module	to	print	the	output	in	readable	format	to	fit
the	Python	console	output.
Then,	we	provided	the	config	file	full	path	to	the	CiscoConfParse	class.
We	used	one	of	the	built-in	functions,	such	as	find_all_children(),	and
provided	only	the	parent.	This	will	instruct	the	CiscoConfParse	class	to	list	all
configuration	lines	under	this	parent.
Finally,	we	iterated	over	the	returned	output	(remember,	it's	a	list)	and
checked	whether	the	network	keyword	exists	within	the	string.	If	yes,	then
it	will	append	it	to	the	network	list,	which	will	be	printed	at	the	end.

Example	3	output:

There're	many	other	functions	available	inside	the	CiscoConfParse	module	that
could	be	used	to	easily	extract	data	from	the	configuration	file	and	return	the
output	in	a	structured	format.	Here	is	a	list	of	other	functions:

find_lineage

find_lines()

find_all_children()

find_blocks()

find_parent_w_children()

find_children_w_parent()

find_parent_wo_children()

find_children_wo_parent()

Visualizing	returned	data	with
matplotLib
	

As	an	old	saying	goes,	a	picture	is	worth	a	thousand	words.	There's	a	lot	of
information	that	could	be	extracted	from	the	network,	such	as	interface	status,
interface	counters,	router	updates,	packets	dropped,	traffic	volume,	and	more.
Visualizing	this	data	and	putting	it	into	a	graph	will	help	you	to	see	the	big
picture	of	your	network.	Python	has	an	excellent	library	called	matplotlib	(https:
//matplotlib.org/)	that	is	used	to	generate	graphs	and	customize	them.

Matplotlib	is	capable	of	creating	most	kinds	of	charts,	such	as	line	graphs,
scatter	plots,	bar	charts,	pie	charts,	stack	plots,	3D	graphs,	and	geographic	map
graphs.

	

	

	

https://matplotlib.org/

Matplotlib	installation
We	will	start	by	first	installing	the	library	from	PYpI	using	pip.	Notice	some
additional	packages	will	be	installed	along	with	matplotlib,	such	as	numpy	and	six:

pip	install	matplotlib

Now,	try	to	import	matplotlib	and,	if	no	errors	are	printed,	then	the	module	is
successfully	imported:

Hands-on	with	matplotlib
We	will	start	with	simple	examples	to	explore	matplotlib's	functionality.	The	first
thing	we	do	usually	is	import	matplotlib	into	our	Python	script:

import	matplotlib.pyplot	as	plt

Notice	we	imported	pyplot	as	a	short	name,	plt,	to	be	used	inside	our	script.	Now,
we	will	use	the	plot()	method	inside	it	to	plot	our	data,	which	consists	of	two
lists.	The	first	list	represents	the	values	of	the	x-axis	while	the	second	list
represents	the	values	of	the	y-axis:

plt.plot([0,	1,	2,	3,	4],	[0,	10,	20,	30,	40])

Now,	the	values	are	dropped	into	the	plot.

The	last	step	is	to	show	that	plot	as	a	window	using	the	show()	method:

plt.show()

You	may	need	to	install	Python-tk	in	Ubuntu	in	order	to	view	the	graph.	Use	apt	install	Python-tk.

The	resulted	graph	will	show	a	line	representing	the	input	values	of	the	x	and	y
axes.	In	the	window,	you	can	do	the	following:

Move	the	graph	around	with	the	cross	icon
Resize	the	graph
Zoom	into	a	specific	area	with	the	zoom	icon
Reset	to	the	original	view	with	the	home	icon
Save	the	figure	with	the	save	icon

You	can	customize	the	generated	figure	by	adding	a	title	to	it	and	labels	to	both
axes.	Also,	add	a	legend	that	explains	the	meaning	of	each	line	in	case	there	are
multiple	lines	on	the	same	graph:

import	matplotlib.pyplot	as	plt

plt.plot([0,	1,	2,	3,	4],	[0,	10,	20,	30,	40])

plt.xlabel("numbers")

plt.ylabel("numbers	multiplied	by	ten")

plt.title("Generated	Graph\nCheck	it	out")

plt.show()

Notice	that	we	usually	don't	hardcode	the	plotted	values	inside	the	Python	script,	but	we	will
get	them	externally	from	the	network,	as	we	will	see	in	the	next	example.

Also,	you	can	plot	multiple	datasets	on	the	same	figure.	You	can	add	another	list
that	represents	data	to	the	previous	figure	and	matplotlib	will	draw	it.	Also,	you
can	add	labels	to	differentiate	between	the	datasets	on	the	graph.	The	legend	for
these	labels	will	be	printed	on	the	graph	using	the	legend()	function:

import	matplotlib.pyplot	as	plt

plt.plot([0,	1,	2,	3,	4],	[0,	10,	20,	30,	40],	label="First	Line")

plt.plot([5,	6,	7,	8,	9],	[50,	60,	70,	80,	90],	label="Second	Line")

plt.xlabel("numbers")

plt.ylabel("numbers	multiplied	by	ten")

plt.title("Generated	Graph\nCheck	it	out")

plt.legend()

plt.show()

Visualizing	SNMP	using	matplotlib
In	this	use	case,	we	will	utilize	the	pysnmp	module	to	send	SNMP	GET	requests	to
our	router,	retrieve	the	input	and	output	traffic	rates	for	a	specific	interface,	and
visualize	the	output	using	the	matplotlib	library.	The	OIDs	used	are
.1.3.6.1.4.1.9.2.2.1.1.6	and	.1.3.6.1.4.1.9.2.2.1.1.8,	which	represent	the	input	and
output	rates	respectively:

from	pysnmp.entity.rfc3413.oneliner	import	cmdgen

import	time

import	matplotlib.pyplot	as	plt

cmdGen	=	cmdgen.CommandGenerator()

snmp_community	=	cmdgen.CommunityData('public')

snmp_ip	=		cmdgen.UdpTransportTarget(('10.10.88.110',	161))

snmp_oids	=	[".1.3.6.1.4.1.9.2.2.1.1.6.3",".1.3.6.1.4.1.9.2.2.1.1.8.3"]

slots	=	0

input_rates	=	[]

output_rates	=	[]

while	slots	<=	50:

	errorIndication,	errorStatus,	errorIndex,	varBinds	=	cmdGen.getCmd(snmp_community,	

snmp_ip,	*snmp_oids)

	input_rate	=	str(varBinds[0]).split("=")[1].strip()

	output_rate	=	str(varBinds[1]).split("=")[1].strip()

	input_rates.append(input_rate)

	output_rates.append(output_rate)

	time.sleep(6)

	slots	=	slots	+	1

	print	slots

time_range	=	range(0,	slots)

print	input_rates

print	output_rates

#	plt.figure()

plt.plot(time_range,	input_rates,	label="input	rate")

plt.plot(time_range,	output_rates,	label="output	rate")

plt.xlabel("time	slot")

plt.ylabel("Traffic	Measured	in	bps")

plt.title("Interface	gig0/0/2	Traffic")

plt.legend()

plt.show()

In	this	example,	we	can	see	the	following:

We	imported	cmdgen	from	the	pysnmp	module,	which	was	used	to	create	SNMP

GET	commands	for	the	router.	We	also	imported	the	matplotlib	module.
Then,	we	used	cmdgen	to	define	the	transport	channel	properties	between
Python	and	the	router	and	provide	the	SNMP	community.
pysnmp	will	start	to	send	the	SNMP	GET	requests	with	the	provided	OIDs
and	return	the	output	and	errors	(if	any)	to	errorIndication,	errorStatus,
errorIndex,	and	varBinds.	We	are	interested	in	varBinds	as	it	holds	the	actual
values	for	the	input	and	output	traffic	rate.
Note	that	varBinds	will	be	in	the	form	of	<oid>	=	<value>,	so	we	extracted	only
the	value	and	added	it	to	the	corresponding	list	we	created	before.
This	operation	will	be	repeated	100	times	at	6-second	intervals	to	collect
useful	data.
Finally,	we	provided	the	collected	data	to	the	plt	imported	from	matplotlib
and	customized	the	graph	by	providing	the	xlabel,	ylabel,	title,	and	legends:

Script	output:

Summary
In	this	chapter,	we	learned	how	to	use	different	tools	and	techniques	inside
Python	to	extract	useful	data	from	returned	output	and	act	upon	it.	Also,	we	used
a	special	library	called	CiscoConfParse	to	audit	the	configuration	and	learned	how
to	visualize	data	to	generate	appealing	graphs	and	reports.

In	the	next	chapter,	we	will	learn	how	to	write	a	template	and	use	it	to	generate
configurations	with	a	Jinja2	templating	language.

	

Configuration	Generator	with	Python
and	Jinja2
	

This	chapter	introduces	you	to	the	YAML	format	for	representing	data	and
generating	a	configuration	from	the	golden	templates	created	by	the	Jinja2
language.	We	will	use	these	two	concepts	in	both	Ansible	and	Python	to	create	a
data	model	store	for	our	configuration.

We	will	cover	the	following	topics	in	this	chapter:

What	is	YAML?
Building	golden	configuration	templates	with	Jinja2

	

	

What	is	YAML?
	

YAML	Ain’t	Markup	Language	(YAML)	is	often	called	a	data	serialization
language.	It	was	intended	to	be	human-readable	and	organize	data	into	a
structured	format.	Programming	languages	can	understand	the	content	of	YAML
files	(which	usually	have	a	.yml	or	.yaml	extension)	and	map	them	to	built-in	data
types.	For	example,	when	you	consume	a	.yaml	file	in	your	Python	script,	it	will
automatically	convert	the	content	into	either	a	dictionary	{}	or	list	[],	so	you	can
work	and	iterate	over	it.

YAML	rules	help	to	construct	a	readable	file	so	it's	important	to	understand	them
in	order	to	write	a	valid	and	well	formatted	YAML	file.

	

	

	

YAML	file	formatting
There're	a	few	rules	to	follow	while	developing	YAML	files.	YAML	uses
indentation	(like	Python),	which	builds	the	relationship	of	items	with	one
another:

1.	 So,	the	first	rule	when	writing	a	YAML	file	is	to	make	your	indentation
consistent,	using	either	whitespace	or	tabs,	and	don't	mix	them.

2.	 The	second	rule	is	to	use	a	colon	:	when	creating	a	dictionary	with	a	key
and	value	(sometimes	they're	called	associative	arrays	in	yaml).	The	item	to
the	left	of	the	colon	is	the	key,	while	the	item	to	the	right	of	the	colon	is	the
value.

3.	 The	third	rule	is	to	use	dashes	"-"	when	grouping	items	inside	a	list.	You
can	mix	dictionaries	and	lists	inside	the	YAML	file	in	order	to	effectively
describe	your	data.	The	left-hand	side	serves	as	a	dictionary	key,	while	the
right-hand	side	serves	as	a	dictionary	value.	You	can	create	any	number	of
levels	to	have	structured	data:

Let's	take	an	example	and	apply	these	rules	to	it:

There	are	a	number	of	things	to	look	at	it.	Firstly,	the	file	has	one	top	level,
my_datacenter,	which	serves	as	a	top-level	key	and	its	values	consists	of	all	the
indented	lines	after	it,	which	are	GW,	switch1,	and	switch2.	Those	items	also	serve	as
keys	and	have	values	inside	them,	which	are	eve_port,	device_template,	hostname,
mgmt_int,	mgmt_ip,	and	mgmt_subnet	and	which	serve	as	Level	3	keys	and	Level	2
values	at	the	same	time.

The	other	thing	to	notice	is	enabled_ports,	which	is	a	key	but	has	a	value	that
serves	as	a	lists.	We	know	this	because	the	next	level	of	indentation	is	a	dash.

Notice	that	all	interfaces	are	sibling	elements	because	they	have	the	same	level	of	indentation.

Finally,	it's	not	required	to	have	a	single	or	double	quotation	around	strings.
Python	will	do	that	automatically	when	we	load	the	file	into	it	and	it	will	also
determine	the	data	type	and	location	of	each	item	based	on	indentation.

Now,	let's	develop	a	Python	script	that	reads	this	YAML	file	and	converts	it	into
dictionaries	and	lists	using	the	yaml	module:

In	this	example,	we	can	see	the	following:

We	imported	the	yaml	module	inside	our	Python	script	in	order	to	handle	the
YAML	files.	Also,	we	imported	the	pprint	function	to	show	the	hierarchy	of
nested	dictionaries	and	lists.
Then,	we	opened	the	yaml_example.yml	file	using	the	with	clause	and	the	open()
function	as	a	yaml_file.
Finally,	we	use	the	load()	function	to	load	the	file	into	the	yaml_data	variable.
At	this	stage,	the	Python	interpreter	will	analyze	the	yaml	file's	content	and
build	the	relationships	between	items,	then	convert	them	to	the	standard
data	type.	The	output	can	be	shown	at	the	console	using	the	pprint()
function.

Script	output

It's	now	fairly	easy	to	access	any	information	using	standard	Python	methods.
For	example,	you	can	access	the	switch1	config	by	using	my_datacenter	followed	by
the	switch1	keys,	as	in	the	following	code	snippet:

pprint(yaml_data['my_datacenter']['switch1'])

{'device_template':	'vIOSL2_Template',

	'eve_port':	32769,

	'hostname':	'SW1',

	'mgmt_intf':	'gig0/0',

	'mgmt_ip':	'10.10.88.111',

	'mgmt_subnet':	'255.255.255.0'}				

Also,	you	can	iterate	over	the	keys	with	a	simple	for	loop	and	print	the	values	of
any	level:

for	device	in	yaml_data['my_datacenter']:

				print	device

	

GW

switch2

switch1

As	a	best	practice,	it's	recommended	you	keep	the	key	names	consistent	and	change	only	the
values	while	you	describe	your	data.	For	example,	the	hostname,	mgmt_intf,	and	mgmt_ip	items	exist
on	all	devices	with	the	same	name,	while	they	have	different	values	in	the	.yaml	file.

Text	editor	tips
Correct	indentation	is	very	important	for	YAML	data.	It's	recommended	to	use
an	advanced	text	editor	such	as,	Sublime	Text	or	Notepad++,	as	they	have
options	that	convert	the	tabs	to	a	specific	number	of	whitespaces.	At	the	same
time,	you	can	choose	the	specific	tab	indentation	size	to	be	2	or	4.	So,	your
editor	will	convert	the	tab	to	a	static	number	of	whitespaces	whenever	you	click
on	the	Tab	button.	Finally,	you	can	choose	to	display	vertical	lines	at	each
indentation	to	ensure	that	lines	are	indented	the	same	amount.

Please	note	that	Microsoft	Windows	Notepad	doesn't	have	that	option	and	this	may	result	in	a
formatting	error	in	your	YAML	file.

The	following	is	an	example	of	an	advanced	editor	called	Sublime	Text	that	can
be	configured	with	the	aforementioned	options:

The	screenshot	shows	the	vertical	line	guides	that	ensure	that	the	sibling	items
are	at	the	same	indentation	level	and	number	of	spaces	when	you	click	on	Tab.

Building	a	golden	configuration	with
Jinja2
Most	network	engineers	have	a	text	file	that	serves	as	a	template	for	a	specific
device	configuration.	This	file	contains	sections	of	network	configuration	with
many	values.	When	the	network	engineer	wants	to	provision	a	new	device	or
change	its	configuration,	they	will	basically	replace	specific	values	from	this	file
with	another	one	to	generate	a	new	configuration.

Using	Python	and	Ansible,	later	in	this	book	we	will	automate	this	process
efficiently	using	the	Jinja2	template	language	(http://jinja.pocoo.org).	The	core
concept	of	and	driver	for	developing	Jinja2	is	to	have	a	unified	syntax	across	all
template	files	for	specific	network/system	configurations	and	to	separate	the	data
from	the	actual	configuration.	This	allows	us	to	use	the	same	template	multiple
times	but	with	a	different	set	of	data.	Also,	as	shown	on	the	Jinja2	web	page,	it
has	some	unique	features	that	make	it	stand	out	from	the	other	template
languages.

The	following	are	some	of	the	features	mentioned	on	the	official	website:

Powerful	automatic	HTML	escaping	system	for	cross-site	scripting
prevention.
High	performance	with	just-in-time	compilation	to	Python	bytecode.	Jinja2
will	translate	your	template	sources	on	first	load	into	Python	bytecode	for
the	best	runtime	performance.
Optional	ahead-of-time	compilation.
Easy	to	debug	with	a	debug	system	that	integrates	template	compile	and
runtime	errors	into	the	standard	Python	traceback	system.
Configurable	syntax:	For	instance,	you	can	reconfigure	Jinja2	to	better	fit
output	formats,	such	as	LaTeX	or	JavaScript.
Template	designer	helpers:	Jinja2	ships	with	a	wide	range	of	useful	little
helpers	that	help	solve	common	tasks	in	templates,	such	as	breaking	up
sequences	of	items	into	multiple	columns.

Another	important	Jinja	feature	is	template	inheritance,	with	which	we	can

http://jinja.pocoo.org

create	a	base/parent	template	that	defines	a	basic	structure	for	our	system	or	the
Day	0	initial	configuration	for	all	devices.	This	initial	configuration	will	be	the
base	configuration	and	contains	the	common	pieces	such	as	usernames,
management	subnet,	default	routes,	and	SNMP	communities.	The	other	child
templates	extend	the	base	template	and	inherit	it.

The	terms	Jinja	and	Jinja2	are	used	interchangeably	throughout	this	chapter.

Let's	take	a	few	examples	of	building	templates	before	we	deep	dive	into	more
features	provided	by	the	Jinja2	language:

1.	 First,	we	need	to	make	sure	that	Jinja2	is	installed	in	your	system	by	using
the	following	command:

pip	install	jinja2	

The	package	will	be	downloaded	from	PyPi	and	then	will	be	installed	on
the	site	packages.

2.	 Now,	open	your	favorite	text	editor	and	write	the	following	template,	which
represents	a	simple	Day	0	(initial)	configuration	for	a	Layer	2	switch	that
configures	the	device	hostname,	some	aaa	parameters,	default	VLANs	that
should	exist	on	each	switch,	and	the	management	of	IP	addresses:

hostname	{{	hostname	}}

aaa	new-model

aaa	session-id	unique

aaa	authentication	login	default	local

aaa	authorization	exec	default	local	none

vtp	mode	transparent

vlan	10,20,30,40,50,60,70,80,90,100,200

int	{{	mgmt_intf	}}

no	switchport

no	shut

ip	address	{{	mgmt_ip	}}	{{	mgmt_subnet	}}

Some	text	editors	(such	as	Sublime	Text	and	Notepad++)	provide	support	for	Jinja2	and	can
do	syntax	highlighting	and	auto-completion	for	you,	either	by	natively	supporting	it	or
through	extension.

Notice	that	in	the	previous	template,	the	variables	were	written	in	double	curly
braces	{{	}}.	So,	when	the	Python	script	loads	the	template,	it	will	replace	those
variables	with	the	desired	values:	#!/usr/bin/python

from	jinja2	import	Template
template	=	Template('''
hostname	{{hostname}}

aaa	new-model
aaa	session-id	unique
aaa	authentication	login	default	local
aaa	authorization	exec	default	local	none
vtp	mode	transparent
vlan	10,20,30,40,50,60,70,80,90,100,200

int	{{mgmt_intf}}
no	switchport
no	shut
ip	address	{{mgmt_ip}}	{{mgmt_subnet}}
''')

sw1	=	{'hostname':	'switch1',	'mgmt_intf':	'gig0/0',	'mgmt_ip':	'10.10.88.111',
'mgmt_subnet':	'255.255.255.0'}
print(template.render(sw1))

In	this	example,	we	can	see	the	following:

The	first	thing	is	we	imported	the	Template	class	from	the	jinja2	module.	This
class	will	validate	and	parse	the	Jinja2	file.
Then,	we	defined	a	variable,	sw1,	as	a	dictionary	with	keys	that	have	names
equal	to	variables	inside	the	template.	The	dictionary	values	will	be	the	data
that	renders	the	template.
Finally,	we	used	the	render()	method	inside	the	template	which	takes	sw1	as
an	input	to	connect	the	Jinja2	template	with	the	rendered	values	and	prints
the	configuration.

Script	output

Now,	let's	enhance	our	script	and	use	YAML	to	render	the	template	instead	of
hard-coding	the	values	inside	dictionaries.	The	concept	is	simple:	we	will	model
the	day0	configuration	for	our	lab	inside	the	YAML	file,	then	load	this	file	into
our	Python	script	using	yaml.load()	and	use	the	output	to	feed	the	Jinja2	template,
which	will	result	in	generating	the	day0	configuration	files	for	each	device:	

First,	we	will	extend	the	YAML	file	that	we	developed	last	time	and	add	other
devices	to	it	while	keeping	the	hierarchy	for	each	node	the	same:	---
dc1:
GW:

eve_port:	32773
device_template:	vIOSL3_Template
hostname:	R1
mgmt_intf:	gig0/0
mgmt_ip:	10.10.88.110
mgmt_subnet:	255.255.255.0

switch1:
eve_port:	32769
device_template:	vIOSL2_Template
hostname:	SW1
mgmt_intf:	gig0/0
mgmt_ip:	10.10.88.111
mgmt_subnet:	255.255.255.0

switch2:
eve_port:	32770
device_template:	vIOSL2_Template
hostname:	SW2
mgmt_intf:	gig0/0
mgmt_ip:	10.10.88.112
mgmt_subnet:	255.255.255.0

switch3:
eve_port:	32769
device_template:	vIOSL2_Template
hostname:	SW3
mgmt_intf:	gig0/0
mgmt_ip:	10.10.88.113
mgmt_subnet:	255.255.255.0

switch4:
eve_port:	32770
device_template:	vIOSL2_Template
hostname:	SW4
mgmt_intf:	gig0/0

mgmt_ip:	10.10.88.114
mgmt_subnet:	255.255.255.0

Following	is	the	Python	script:

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

import	yaml

from	jinja2	import	Template

with	

open('/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter6_Configuration_generator_with_python_and_jinja2/network_dc.yml'

	'r')	as	yaml_file:

	yaml_data	=	yaml.load(yaml_file)

router_day0_template	=	Template("""

hostname	{{hostname}}

int	{{mgmt_intf}}

		no	shutdown

		ip	add	{{mgmt_ip}}	{{mgmt_subnet}}

lldp	run

ip	domain-name	EnterpriseAutomation.net

ip	ssh	version	2

ip	scp	server	enable

crypto	key	generate	rsa	general-keys	modulus	1024

snmp-server	community	public	RW

snmp-server	trap	link	ietf

snmp-server	enable	traps	snmp	linkdown	linkup

snmp-server	enable	traps	syslog

snmp-server	manager

logging	history	debugging

logging	snmp-trap	emergencies

logging	snmp-trap	alerts

logging	snmp-trap	critical

logging	snmp-trap	errors

logging	snmp-trap	warnings

logging	snmp-trap	notifications

logging	snmp-trap	informational

logging	snmp-trap	debugging

""")

switch_day0_template	=	Template("""

hostname	{{hostname}}

aaa	new-model

aaa	session-id	unique

aaa	authentication	login	default	local

aaa	authorization	exec	default	local	none

vtp	mode	transparent

vlan	10,20,30,40,50,60,70,80,90,100,200

int	{{mgmt_intf}}

	no	switchport

	no	shut

	ip	address	{{mgmt_ip}}	{{mgmt_subnet}}

snmp-server	community	public	RW

snmp-server	trap	link	ietf

snmp-server	enable	traps	snmp	linkdown	linkup

snmp-server	enable	traps	syslog

snmp-server	manager

logging	history	debugging

logging	snmp-trap	emergencies

logging	snmp-trap	alerts

logging	snmp-trap	critical

logging	snmp-trap	errors

logging	snmp-trap	warnings

logging	snmp-trap	notifications

logging	snmp-trap	informational

logging	snmp-trap	debugging

""")

for	device,config	in	yaml_data['dc1'].iteritems():

	if	config['device_template']	==	"vIOSL2_Template":

	device_template	=	switch_day0_template

				elif	config['device_template']	==	"vIOSL3_Template":

	device_template	=	router_day0_template

				print("rendering	now	device	{0}"	.format(device))

	Day0_device_config	=	device_template.render(config)

	print	Day0_device_config

				print	"="	*	30

In	this	example,	we	can	see	the	following:

We	imported	the	yaml	and	Jinja2	modules	as	usual
Then,	we	instructed	the	script	to	load	the	yaml	file	into	the	yaml_data	variable,
which	will	convert	it	into	a	series	of	dictionaries	and	lists
Two	templates	for	router	and	switch	configuration	are	defined	as
router_day0_template	and	switch_day0_template	respectively
The	for	loop	will	iterate	over	devices	of	dc1	and	check	the	device_template,
then	will	render	configuration	for	each	device

Script	output

Following	is	the	router	configuration	(output	omitted):	

Following	is	the	switch	1	configuration	(output	omitted):	

Reading	templates	from	the
filesystem
A	common	approach	for	Python	developers	is	to	move	the	static,	hard-coded
values	and	templates	outside	the	Python	script	and	keep	only	the	logic	inside	the
script.	This	approach	keeps	your	program	clean	and	scalable,	while	allowing
other	team	members	who	don't	have	much	knowledge	of	Python	to	get	the
desired	output	by	changing	the	input,	and	Jinja2	is	no	exception	to	this	approach.
You	can	use	the	FileSystemLoader()	class	inside	the	Jinja2	module	to	load	the
template	from	the	operating	system	directories.	We	will	modify	our	code	and
move	both	the	router_day0_template	and	switch_day0_template	contents	from	the	script
to	text	files,	then	load	them	into	our	script.

Python	code

import	yaml

from	jinja2	import	FileSystemLoader,	Environment

with	

open('/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter6_Configuration_generator_with_python_and_jinja2/network_dc.yml'

	'r')	as	yaml_file:

	yaml_data	=	yaml.load(yaml_file)

template_dir	=	

"/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter6_Configuration_generator_with_python_and_jinja2"

template_env	=	Environment(loader=FileSystemLoader(template_dir),

	trim_blocks=True,

	lstrip_blocks=	True

)

for	device,config	in	yaml_data['dc1'].iteritems():

	if	config['device_template']	==	"vIOSL2_Template":

	device_template	=	template_env.get_template("switch_day1_template.j2")

	elif	config['device_template']	==	"vIOSL3_Template":

	device_template	=	template_env.get_template("router_day1_template.j2")

	print("rendering	now	device	{0}"	.format(device))

	Day0_device_config	=	device_template.render(config)

	print	Day0_device_config

				print	"="	*	30

In	this	example,	instead	of	loading	the	Template()	class	from	the	Jinja2	module	as

we	did	before,	we	will	import	Environment()	and	FileSystemLoader(),	which	are	used
to	read	the	Jinja2	file	from	the	specific	operating	system	directory	by	providing
them	with	template_dir	where	our	templates	are	stored.	Then,	we	will	use	the
created	template_env	object,	along	with	the	get_template()	method,	to	get	the
template	name	and	render	it	with	the	configuration.

Make	sure	your	template	file	has	a	.j2	extension	at	the	end.	This	will	make	PyCharm
recognize	the	text	inside	the	file	as	a	Jinja2	template	and	hence	provide	syntax	highlighting
and	better	code	completion.

Using	Jinja2	loops	and	conditions
Loops	and	conditions	in	Jinja2	are	used	to	enhance	our	template	and	add	more
functionality	to	it.	We	will	start	by	understanding	how	to	add	the	for	loop	inside
the	template	in	order	to	iterate	over	passed	values	from	YAML.	For	example,	we
may	need	to	add	a	switch	configuration	under	each	interface,	such	as	using	the
switchport	mode	and	configure	the	VLAN	ID	which	will	be	configured	under
the	access	port,	or	configure	the	allowed	VLANs	range	in	the	case	of	the	trunk
ports.

On	the	other	hand,	we	may	need	to	enable	some	interfaces	in	the	router	and	add
custom	configurations	to	it,	such	as	MTU,	speed,	and	duplex.	So,	we	will	use	the
for	loop.

Notice	that	part	of	our	script	logic	will	now	be	moved	from	Python	to	the	Jinja2
template.	The	Python	script	will	just	read	the	template,	either	externally	from	the
operating	system	or	through	the	Template()	class	inside	the	script,	then	render	the
template	with	the	parsed	values	from	the	YAML	file.

The	basic	structure	of	for	loops	inside	Jinja2	is	as	follows:

{%	for	key,	value	in	var1.iteritems()	%}

configuration	snippets

{%	endfor	%}

Notice	the	use	of	{%	%}	to	define	logic	inside	the	Jinja2	file.

Also,	iteritems()	has	the	same	function	as	iterating	over	the	Python	dictionary,
which	is	iterating	over	the	key	and	value	pairs.	The	loop	will	return	both	the	key
and	value	for	each	element	inside	the	var1	dictionary.

Also,	we	can	have	an	if	condition	that	validates	a	specific	condition	and,	if	it's
true,	then	the	configuration	snippets	will	be	added	to	the	rendered	file.	The	basic
if	structure	will	be	as	shown	in	the	following	snippet:

{%	if	enabled_ports	%}

configuration	snippet	goes	here	and	added	to	template	if	the	condition	is	true

{%	endif	%}

Now,	we	will	modify	our	.yaml	file	which	describes	the	data	center	devices,	and
add	the	interface	configuration	and	enabled	ports	for	each	device:

dc1:

		GW:

				eve_port:	32773

	device_template:	vIOSL3_Template

	hostname:	R1

	mgmt_intf:	gig0/0

	mgmt_ip:	10.10.88.110

	mgmt_subnet:	255.255.255.0

	enabled_ports:

	-	gig0/0

	-	gig0/1

	-	gig0/2

	switch1:

				eve_port:	32769

	device_template:	vIOSL2_Template

	hostname:	SW1

	mgmt_intf:	gig0/0

	mgmt_ip:	10.10.88.111

	mgmt_subnet:	255.255.255.0

	interfaces:

						gig0/1:

								vlan:	[1,10,20,200]

	description:	TO_DSW2_1

	mode:	trunk

	gig0/2:

								vlan:	[1,10,20,200]

	description:	TO_DSW2_2

	mode:	trunk

	gig0/3:

								vlan:	[1,10,20,200]

	description:	TO_ASW3

	mode:	trunk

	gig1/0:

								vlan:	[1,10,20,200]

	description:	TO_ASW4

	mode:	trunk

	enabled_ports:

	-	gig0/0

	-	gig1/1

	switch2:

				eve_port:	32770

	device_template:	vIOSL2_Template

	hostname:	SW2

	mgmt_intf:	gig0/0

	mgmt_ip:	10.10.88.112

	mgmt_subnet:	255.255.255.0

	interfaces:

						gig0/1:

								vlan:	[1,10,20,200]

	description:	TO_DSW1_1

	mode:	trunk

	gig0/2:

								vlan:	[1,10,20,200]

	description:	TO_DSW1_2

	mode:	trunk

	gig0/3:

								vlan:	[1,10,20,200]

	description:	TO_ASW3

	mode:	trunk

	gig1/0:

								vlan:	[1,10,20,200]

	description:	TO_ASW4

	mode:	trunk

	enabled_ports:

	-	gig0/0

	-	gig1/1

	switch3:

				eve_port:	32769

	device_template:	vIOSL2_Template

	hostname:	SW3

	mgmt_intf:	gig0/0

	mgmt_ip:	10.10.88.113

	mgmt_subnet:	255.255.255.0

	interfaces:

						gig0/1:

								vlan:	[1,10,20,200]

	description:	TO_DSW1

	mode:	trunk

	gig0/2:

								vlan:	[1,10,20,200]

	description:	TO_DSW2

	mode:	trunk

	gig1/0:

								vlan:	10

	description:	TO_Client1

	mode:	access

	gig1/1:

								vlan:	20

	description:	TO_Client2

	mode:	access

	enabled_ports:

	-	gig0/0

	switch4:

				eve_port:	32770

	device_template:	vIOSL2_Template

	hostname:	SW4

	mgmt_intf:	gig0/0

	mgmt_ip:	10.10.88.114

	mgmt_subnet:	255.255.255.0

	interfaces:

						gig0/1:

								vlan:	[1,10,20,200]

	description:	TO_DSW2

	mode:	trunk

	gig0/2:

								vlan:	[1,10,20,200]

	description:	TO_DSW1

	mode:	trunk

	gig1/0:

								vlan:	10

	description:	TO_Client1

	mode:	access

	gig1/1:

								vlan:	20

	description:	TO_Client2

	mode:	access

	enabled_ports:

	-	gig0/0

Notice,	that	we	categorized	the	switch	ports	to	either	trunk	port	or	access	port,	and	also
added	the	vlans	for	each	one.

According	to	the	yaml	file,	the	incoming	packets	to	the	interface	with	switchport
access	mode	will	be	tagged	with	the	VLAN.	In	case	of	the	switchport	mode
trunk,	the	incoming	packets	be	allowed	if	it	has	a	vlan	ID	belong	to	the
configured	list.

Now,	we	will	create	two	additional	templates	for	devices	Day	1	(operational)
configuration.	The	first	template	will	be	router_day1_template	and	the	second	will
be	switch_day1_template,	and	both	of	them	will	inherit	from	the	corresponding	day0
template	that	we	developed	before:

router_day1_template:

{%	include	'router_day0_template.j2'	%}

{%	if	enabled_ports	%}

				{%	for	port	in	enabled_ports	%}

interface	{{	port	}}

				no	switchport

				no	shutdown

				mtu	1520

				duplex	auto

				speed	auto

	{%	endfor	%}

{%	endif	%}

switch_day1_template:

{%	include	'switch_day0_template.j2'	%}

{%	if	enabled_ports	%}

				{%	for	port	in	enabled_ports	%}

interface	{{	port	}}

				no	switchport

				no	shutdown

				mtu	1520

				duplex	auto

				speed	auto

	{%	endfor	%}

{%	endif	%}

{%	if	interfaces	%}

				{%	for	intf,intf_config	in	interfaces.items()	%}

interface	{{	intf	}}

	description	"{{intf_config['description']}}"

	no	shutdown

	duplex	full

	{%	if	intf_config['mode']	%}

	{%	if	intf_config['mode']	==	"access"	%}

	switchport	mode	{{intf_config['mode']}}

	switchport	access	vlan	{{intf_config['vlan']}}

	{%	elif	intf_config['mode']	==	"trunk"	%}

	switchport	{{intf_config['mode']}}	encapsulation	dot1q

	switchport	mode	trunk

	switchport	trunk	allowed	vlan	{{intf_config['vlan']|join(',')}}

	{%	endif	%}

								{%	endif	%}

				{%	endfor	%}

{%	endif	%}

Notice	the	use	of	the	{%	include	<template_name.j2>	%}	tag,	which	refers	to	the	day0	template	of	the
device.

This	template	will	be	rendered	first	and	filled	with	passed	values	from	YAML,
then	the	next	parts	will	be	filled.

The	Jinja2	language	inherits	many	writing	styles	and	features	from	the	Python	language.
Although	it's	not	mandatory	to	follow	the	indentation	rule	when	developing	the	template	and
inserting	the	tags,	the	author	prefers	to	have	it	in	a	readable	Jinja2	template.

Script	output:

rendering	now	device	GW

hostname	R1

int	gig0/0

		no	shutdown

		ip	add	10.10.88.110	255.255.255.0

lldp	run

ip	domain-name	EnterpriseAutomation.net

ip	ssh	version	2

ip	scp	server	enable

crypto	key	generate	rsa	general-keys	modulus	1024

snmp-server	community	public	RW

snmp-server	trap	link	ietf

snmp-server	enable	traps	snmp	linkdown	linkup

snmp-server	enable	traps	syslog

snmp-server	manager

logging	history	debugging

logging	snmp-trap	emergencies

logging	snmp-trap	alerts

logging	snmp-trap	critical

logging	snmp-trap	errors

logging	snmp-trap	warnings

logging	snmp-trap	notifications

logging	snmp-trap	informational

logging	snmp-trap	debugging

interface	gig0/0

				no	switchport

				no	shutdown

				mtu	1520

				duplex	auto

				speed	auto

interface	gig0/1

				no	switchport

				no	shutdown

				mtu	1520

				duplex	auto

				speed	auto

interface	gig0/2

				no	switchport

				no	shutdown

				mtu	1520

				duplex	auto

				speed	auto

==============================

rendering	now	device	switch1

hostname	SW1

aaa	new-model

aaa	session-id	unique

aaa	authentication	login	default	local

aaa	authorization	exec	default	local	none

vtp	mode	transparent

vlan	10,20,30,40,50,60,70,80,90,100,200

int	gig0/0

	no	switchport

	no	shut

	ip	address	10.10.88.111	255.255.255.0

snmp-server	community	public	RW

snmp-server	trap	link	ietf

snmp-server	enable	traps	snmp	linkdown	linkup

snmp-server	enable	traps	syslog

snmp-server	manager

logging	history	debugging

logging	snmp-trap	emergencies

logging	snmp-trap	alerts

logging	snmp-trap	critical

logging	snmp-trap	errors

logging	snmp-trap	warnings

logging	snmp-trap	notifications

logging	snmp-trap	informational

logging	snmp-trap	debugging

interface	gig0/0

				no	switchport

				no	shutdown

				mtu	1520

				duplex	auto

				speed	auto

interface	gig1/1

				no	switchport

				no	shutdown

				mtu	1520

				duplex	auto

				speed	auto

interface	gig0/2

	description	"TO_DSW2_2"

	no	shutdown

	duplex	full

	switchport	trunk	encapsulation	dot1q

	switchport	mode	trunk

	switchport	trunk	allowed	vlan	1,10,20,200

interface	gig0/3

	description	"TO_ASW3"

	no	shutdown

	duplex	full

	switchport	trunk	encapsulation	dot1q

	switchport	mode	trunk

	switchport	trunk	allowed	vlan	1,10,20,200

interface	gig0/1

	description	"TO_DSW2_1"

	no	shutdown

	duplex	full

	switchport	trunk	encapsulation	dot1q

	switchport	mode	trunk

	switchport	trunk	allowed	vlan	1,10,20,200

interface	gig1/0

	description	"TO_ASW4"

	no	shutdown

	duplex	full

	switchport	trunk	encapsulation	dot1q

	switchport	mode	trunk

	switchport	trunk	allowed	vlan	1,10,20,200

==============================

<switch2	output	omitted>

==============================

rendering	now	device	switch3

hostname	SW3

aaa	new-model

aaa	session-id	unique

aaa	authentication	login	default	local

aaa	authorization	exec	default	local	none

vtp	mode	transparent

vlan	10,20,30,40,50,60,70,80,90,100,200

int	gig0/0

	no	switchport

	no	shut

	ip	address	10.10.88.113	255.255.255.0

snmp-server	community	public	RW

snmp-server	trap	link	ietf

snmp-server	enable	traps	snmp	linkdown	linkup

snmp-server	enable	traps	syslog

snmp-server	manager

logging	history	debugging

logging	snmp-trap	emergencies

logging	snmp-trap	alerts

logging	snmp-trap	critical

logging	snmp-trap	errors

logging	snmp-trap	warnings

logging	snmp-trap	notifications

logging	snmp-trap	informational

logging	snmp-trap	debugging

interface	gig0/0

				no	switchport

				no	shutdown

				mtu	1520

				duplex	auto

				speed	auto

interface	gig0/2

	description	"TO_DSW2"

	no	shutdown

	duplex	full

	switchport	trunk	encapsulation	dot1q

	switchport	mode	trunk

	switchport	trunk	allowed	vlan	1,10,20,200

interface	gig1/1

	description	"TO_Client2"

	no	shutdown

	duplex	full

	switchport	mode	access

	switchport	access	vlan	20

interface	gig1/0

	description	"TO_Client1"

	no	shutdown

	duplex	full

	switchport	mode	access

	switchport	access	vlan	10

interface	gig0/1

	description	"TO_DSW1"

	no	shutdown

	duplex	full

	switchport	trunk	encapsulation	dot1q

	switchport	mode	trunk

	switchport	trunk	allowed	vlan	1,10,20,200

==============================

<switch4	output	omitted>

Summary
	

In	this	chapter,	we	learned	about	YAML	and	its	formatting	and	how	to	work	with
text	editors.	We	also	learned	about	Jinja2	and	its	configuration.	Then,	we
explored	the	ways	in	which	we	can	use	loops	and	conditions	in	Jinja2.

In	the	next	chapter,	we	will	learn	how	to	instantiate	and	execute	Python	code	in
parallel	using	multiprocessing.

	

	

	

Parallel	Execution	of	Python	Script
	

Python	has	become	the	de	facto	standard	for	network	automation.	Many	network
engineers	already	use	it	on	a	daily	basis	to	automate	networking	tasks,	from
configuration,	to	operation,	to	troubleshooting	network	problems.	In	this	chapter,
we	will	visit	one	of	the	advanced	topics	in	Python:	scratching	the	surface	of
Python's	multiprocessing	nature	and	learning	how	to	use	it	to	accelerate	script
execution	time.

We	will	cover	the	following	topics	in	this	chapter:

How	Python	code	is	executed	in	an	OS
The	Python	multiprocessing	library

	

	

How	a	computer	executes	your
Python	script
This	is	how	your	computer's	operating	system	executes	Python	script:

1.	 When	you	type	python	<your_awesome_automation_script>.py	in	the	shell,	Python
(which	runs	as	a	process)	instructs	your	computer	processor	to	schedule	a
thread	(which	is	the	smallest	unit	of	processing):

2.	 The	allocated	thread	will	start	to	execute	your	script,	line	by	line.	A	thread
can	do	anything,	including	interacting	with	I/O	devices,	connecting	to
routers,	printing	output,	performing	mathematical	equations,	and	more.

3.	 Once	the	script	hits	the	End	of	File	(EOF),	the	thread	will	be	terminated
and	returned	to	the	free	pool,	to	be	used	by	other	processes.	Then,	the	script
is	terminated.

In	Linux,	you	can	use	#strace	–p	<pid>	to	trace	a	specific	thread	execution.

The	more	threads	that	you	assign	to	your	script	(and	that	are	permitted	by	your
processor	or	OS),	the	faster	your	script	will	run.	Actually,	threads	are	sometimes
called	workers	or	slaves.

I	have	a	feeling	that	you	have	this	little	idea	in	your	head:	Why	wouldn't	we
assign	a	lot	of	threads,	from	all	cores,	to	Python	script,	in	order	to	get	the	job
done	quickly?

The	problem	with	assigning	a	lot	of	threads	to	one	process	without	special
handling	is	the	race	condition.	The	operating	systems	will	allocate	memory	to

your	process	(in	this	case,	it's	the	Python	process),	to	be	used	at	runtime	and
accessed	by	all	threads—all	of	them	at	the	same	time.	Now,	imagine	that	one	of
those	threads	reads	some	data	before	it's	actually	written	by	another	thread!	You
don't	know	the	order	in	which	the	threads	will	attempt	to	access	the	shared	data;
this	is	the	race	condition:

One	available	solution	is	to	make	the	thread	acquire	a	lock.	In	fact,	Python,	by
default,	is	optimized	to	run	as	a	single-threaded	process,	and	has	something
called	Global	Interpreter	Lock	(GIL).	GIL	does	not	allow	multiple	threads	to
execute	Python	code	at	the	same	time,	in	order	to	prevent	conflicts	between
threads.

But,	rather	than	having	multiple	threads,	why	don't	we	have	multiple	processes?

The	beauty	of	multiple	processes,	as	compared	to	multiple	threads,	is	that	you
don't	have	to	be	afraid	of	data	corruption	due	to	shared	data.	Each	spawned
process	will	have	its	own	allocated	memory,	which	won't	be	accessed	by	other
Python	processes.	This	allows	us	to	execute	parallel	tasks	at	the	same	time:

Also,	from	Python's	point	of	view,	each	process	has	its	own	GIL.	So,	there's	no
resource	conflict	or	race	condition	here.

Python	multiprocessing	library
The	multiprocessing	module	is	Python's	standard	library	that	is	shipped	with
Python	binaries,	and	it	is	available	from	Python	2.6.	There's	also	the	threading
module,	which	allows	you	to	spawn	multiple	threads,	but	they	all	share	the	same
memory	space.	Multiprocessing	comes	with	more	advantages	than	threading.
One	of	them	is	isolated	memory	space	for	each	process,	and	it	can	take
advantage	of	multiple	CPUs	and	cores.

	

Getting	started	with	multiprocessing
First,	you	need	to	import	the	module	for	your	Python	script:

import	multiprocessing	as	mp

Then,	wrap	your	code	with	a	Python	function;	this	will	allow	the	process	to
target	this	function	and	mark	it	as	a	parallel	execution.

Let's	suppose	that	we	have	code	that	connects	to	the	router	and	executes
commands	on	it	using	the	netmiko	library,	and	we	want	to	connect	to	all	of	the
devices	in	parallel.	This	is	a	sample	serial	code	that	will	connect	to	each	device
and	execute	the	passed	command,	and	then	continue	with	the	second	device,	and
so	on:

from	netmiko	import	ConnectHandler

from	devices	import	R1,	SW1,	SW2,	SW3,	SW4

nodes	=	[R1,	SW1,	SW2,	SW3,	SW4]

for	device	in	nodes:

	net_connect	=	ConnectHandler(**device)

	output	=	net_connect.send_command("show	run")

	print	output

The	Python	file	devices.py	is	created	on	the	same	directory	as	our	script,	and	it
contains	the	login	details	and	credentials	for	each	device	in	a	dictionary	format:

R1	=	{"device_type":	"cisco_ios_ssh",

						"ip":	"10.10.88.110",

						"port":	22,

						"username":	"admin",

						"password":	"access123",

						}

SW1	=	{"device_type":	"cisco_ios_ssh",

							"ip":	"10.10.88.111",

							"port":	22,

							"username":	"admin",

							"password":	"access123",

							}

SW2	=	{"device_type":	"cisco_ios_ssh",

							"ip":	"10.10.88.112",

							"port":	22,

							"username":	"admin",

							"password":	"access123",

							}

SW3	=	{"device_type":	"cisco_ios_ssh",

							"ip":	"10.10.88.113",

							"port":	22,

							"username":	"admin",

							"password":	"access123",

							}

SW4	=	{"device_type":	"cisco_ios_ssh",

							"ip":	"10.10.88.114",

							"port":	22,

							"username":	"admin",

							"password":	"access123",

							}

Now,	if	we	want	to	use	the	multiprocessing	module	instead,	we	need	to	redesign
the	script	and	move	the	code	to	be	under	a	function;	then,	we	will	assign	a
number	of	processes	equal	to	the	number	of	devices	(one	process	will	connect	to
one	device	and	execute	the	command)	and	set	the	target	of	the	process	to	execute
this	function:

from	netmiko	import	ConnectHandler

from	devices	import	R1,	SW1,	SW2,	SW3,	SW4

import	multiprocessing	as	mp

from	datetime	import	datetime

nodes	=	[R1,	SW1,	SW2,	SW3,	SW4]

def	connect_to_dev(device):

	net_connect	=	ConnectHandler(**device)

	output	=	net_connect.send_command("show	run")

	print	output

processes	=	[]

start_time	=	datetime.now()

for	device	in	nodes:

	print("Adding	Process	to	the	list")

	processes.append(mp.Process(target=connect_to_dev,	args=[device]))

print("Spawning	the	Process")

for	p	in	processes:

	p.start()

print("Joining	the	finished	process	to	the	main	truck")

for	p	in	processes:

	p.join()

end_time	=	datetime.now()

print("Script	Execution	tooks	{}".format(end_time	-	start_time))

	

In	the	preceding	example,	the	following	applies:

We	imported	a	multiprocess	module	as	mp.	One	of	the	most	important

classes	available	inside	the	module	is	Process,	which	takes	our	netmiko	connect
function	as	a	target	argument.	Also,	it	accepts	passing	an	argument	to	the
target	function.
Then,	we	iterated	over	our	nodes	and	created	a	process	for	each	device	and
appended	that	process	to	the	processes	list.
The	start()	method,	which	is	available	in	the	module,	is	used	to	spawn	and
then	it	starts	the	process	execution.
Finally,	the	script	execution	time	is	calculated	by	subtracting	the	script	start
time	from	the	script	end	time.

Behind	the	scenes,	the	main	thread	that	executes	the	main	script	will	start	to	fork
a	number	of	processes	equal	to	the	number	of	devices.	Each	of	them	targets	one
function	that	executes	show	run	on	all	devices	at	the	same	time	and	stores	the
output	in	a	variable,	without	affecting	each	other.

This	is	a	sample	view	of	the	processes	inside	Python:

Now,	when	you	execute	the	full	code,	one	final	thing	needs	to	be	done.	You	need
to	join	the	forked	process	to	the	main	thread/truck,	in	order	to	smoothly	finish
the	program's	execution:

for	p	in	processes:

	p.join()

The	join()	method	used	in	the	preceding	example	has	nothing	to	do	with	the	original	join(),
available	as	a	string	method;	it's	only	used	to	join	the	process	to	the	main	thread.

Intercommunication	between
processes
	

Sometimes,	you	will	have	a	process	that	needs	to	pass	or	exchange	information
with	other	processes	during	runtime.	The	multiprocessing	module	has	a	Queue
class	that	implements	a	special	list,	within	which	a	process	can	insert	and
consume	data.	There	are	two	methods	available	inside	of	this	class:	get()	and
put().	The	put()	method	is	used	to	add	data	to	the	Queue,	whereas	getting	data	from
the	queue	is	done	via	the	get()	method.	In	the	next	example,	we	will	use	Queue	to
pass	data	from	a	subprocess	to	a	parent	process:

import	multiprocessing

from	netmiko	import	ConnectHandler

from	devices	import	R1,	SW1,	SW2,	SW3,	SW4

from	pprint	import	pprint

nodes	=	[R1,	SW1,	SW2,	SW3,	SW4]

def	connect_to_dev(device,	mp_queue):

	dev_id	=	device['ip']

	return_data	=	{}

	net_connect	=	ConnectHandler(**device)

	output	=	net_connect.send_command("show	run")

	return_data[dev_id]	=	output

				print("Adding	the	result	to	the	multiprocess	queue")

	mp_queue.put(return_data)

mp_queue	=	multiprocessing.Queue()

processes	=	[]

for	device	in	nodes:

	p	=	multiprocessing.Process(target=connect_to_dev,	args=[device,	mp_queue])

	print("Adding	Process	to	the	list")

	processes.append(p)

	p.start()

for	p	in	processes:

	print("Joining	the	finished	process	to	the	main	truck")

	p.join()

results	=	[]

for	p	in	processes:

	print("Moving	the	result	from	the	queue	to	the	results	list")

	results.append(mp_queue.get())

pprint(results)

In	the	preceding	example,	the	following	applies:

We	imported	another	class,	called	Queue(),	from	the	multiprocess	module,	and
instantiated	it	into	the	mp_queue	variable.
Then,	during	the	process	creation,	we	appended	this	queue	as	an	argument
side-by-side	with	the	device,	so	every	process	will	have	access	to	the	same
queue	and	be	able	to	write	data	to	it.
The	connect_to_dev()	function	connects	to	each	device	and	executes	the	show
run	command	on	the	Terminal,	then	writes	the	output	to	the	shared	queue.

Note	that	we	formatted	the	output	as	dictionary	items,	{ip:<command_output>},	before	adding	it	to
the	shared	queue	using	mp_queue.put().

After	the	processes	finished	execution	and	joined	the	main	(parent)	process,
we	used	mp_queue.get()	to	retrieve	the	queue	items	in	a	results	list,	then	used
pprint	to	prettyprint	the	output.

	

	

Summary
In	this	chapter,	we	learned	about	the	Python	multiprocessing	library	and	how	to
instantiate	and	execute	Python	code	in	parallel.

In	the	next	chapter,	we	will	learn	how	to	prepare	a	lab	environment	and	explore
automation	options	to	speed	up	server	deployment.

	

Preparing	a	Lab	Environment
	

In	this	chapter,	we	will	set	a	lab	up	by	using	two	popular	Linux	distributions:
CentOS	and	Ubuntu.	CentOS	is	a	community-driven	Linux	operating	system
that	targets	enterprise	servers,	and	it's	known	for	its	compatibility	with	Red	Hat
Enterprise	Linux	(RHEL).	Ubuntu	is	another	Linux	distribution	that	is	based
on	the	famous	Debian	operating	system;	it's	currently	developed	by	Canonical
Ltd.,	which	provides	it	with	commercial	support.

We	will	also	learn	how	to	install	both	Linux	distributions	with	a	free	and	open
software	called	Cobbler,	which	will	automatically	boot	the	server	with	a	Linux
image	and	customize	it	using	the	kickstart	for	CentOS	and	Anaconda	for	Debian-
based	system.

The	following	topics	will	be	covered	in	this	chapter:

Getting	the	Linux	operating	system
Creating	an	automation	machine	on	a	hypervisor
Getting	started	with	Cobbler

	

	

Getting	the	Linux	operating	system
In	the	next	sections,	we	are	going	to	create	two	Linux	machines,	CentOS	and
Ubuntu,	on	different	hypervisors.	The	machines	will	serve	as	the	automation
server	in	our	environment.

Downloading	CentOS
CentOS	binaries	can	be	downloaded	through	multiple	methods.	You	can
download	them	directly	from	multiple	FTP	servers	around	the	world,	or	you	can
download	them	as	torrents,	from	people	who	seed	them.	Also,	CentOS	is
available	in	two	flavors:

Minimal	ISO:	Provides	the	basic	server,	with	essential	packages
Everything	ISO:	Provides	the	server	and	all	available	packages	from	the
main	repositories

First,	head	to	the	CentOS	project	link	(https://www.centos.org/)	and	click	on	the	Get
CentOS	Now	button,	as	shown	in	the	following	screenshot:	

Then,	choose	the	minimal	ISO	image,	and	download	it	from	any	available
download	site.

CentOS	is	available	for	multiple	cloud	providers,	such	as	Google,	Amazon,	Azure,	and	Oracle
Cloud.	You	can	find	all	of	the	cloud	images	at	https://cloud.centos.org/centos/7/images/.

https://www.centos.org/
https://cloud.centos.org/centos/7/images/

Downloading	Ubuntu
	

Ubuntu	is	widely	known	for	providing	a	good	desktop	experience	to	end	users.
Canonical	(the	Ubuntu	developers)	work	with	many	server	vendors	to	certify
Ubuntu	on	different	hardware.	Canonical	also	provide	a	server	version	for
Ubuntu,	which	offers	as	many	features	as	in	16.04,	such	as:

Support	from	Canonical	until	2021
Ability	to	run	on	all	major	architectures—x86,	x86-64,	ARM	v7,	ARM64,
POWER8,	and	IBM	s390x	(LinuxONE)
Support	for	ZFS,	a	next	generation	volume	management	filesystem	ideal
for	servers	and	containers
LXD	Linux	container	hypervisor	enhancements,	including	QoS	and
resource	controls	(CPU,	memory,	block	I/O,	and	storage	quota)
Installation	snaps,	for	simple	application	installation	and	release
management.
First	production	release	of	DPDK—line	speed	kernel	networking
Linux	4.4	kernel	and	systemd	service	manager
Certification	as	a	guest	on	AWS,	Microsoft	Azure,	Joyent,	IBM,	Google
Cloud	Platform,	and	Rackspace
Updates	for	Tomcat	(v8),	PostgreSQL	(v9.5),	Docker	v	(1.10),	Puppet
(v3.8.5),	QEMU	(v2.5),	Libvirt	(v1.3.1),	LXC	(v2.0),	MySQL	(v5.6),	and
more

You	can	download	the	Ubuntu	LTS	by	browsing	to	https://www.ubuntu.com/download/s
erver	and	choosing	Ubuntu	16.04	LTS:

https://www.ubuntu.com/download/server

	

	

	

Creating	an	automation	machine	on	a
hypervisor
After	downloading	the	ISO	files,	we	will	create	a	Linux	machine	over	VMware
ESXi	and	KVM	hypervisors.

Creating	a	Linux	machine	over
VMware	ESXi
We	will	use	the	VMware	vSphere	client	to	create	a	virtual	machine.	Log	in	to
one	of	the	available	ESXi	servers	using	root	credentials.	First,	you	will	need	to
upload	either	the	Ubuntu	or	CentOS	ISO	to	the	VMware	data	store.	Then,	follow
these	steps	to	create	the	machine:

1.	 Right-click	on	the	server	name	and	choose	New	Virtual	Machine:

2.	 Choose	a	Custom	installation,	so	that	you	will	have	more	options	during	the
installation:

3.	 Provide	a	name	for	the	VM:	AutomationServer.
4.	 Choose	the	machine	version:	8.
5.	 Choose	the	data	store	on	which	the	machine	will	be	created.

6.	 Choose	the	guest	operating	system:	either	Ubuntu	Linux	(64-bit)	or	Red
Hat	version	6/7:

7.	 The	VM	specification	shouldn't	have	less	than	2	vCPU	and	4	GB	RAM,	in
order	to	have	efficient	performance.	Select	them	in	the	CPU	and	Memory
tabs	respectively.

8.	 In	the	Network	tab,	select	two	interfaces	with	E1000	adapters.	One	of	these
interfaces	will	connect	to	the	internet,	and	the	second	interface	will	manage
the	clients:

9.	 Choose	the	default	SCSI	controller	for	the	system.	In	my	case,	it	will	be
LSI	logical	parallel.

10.	 Select	a	Create	a	new	virtual	disk	and	provide	20	GB	as	the	disk	size	for	the
VM.

11.	 Now	the	virtual	machine	is	ready,	and	you	can	start	the	Linux	OS
installation.	Associate	the	uploaded	image	to	the	CD/DVD	drive,	and	make
sure	that	the	Connect	at	power	on	option	is	selected:

Once	it	starts	running,	you	will	be	asked	to	choose	a	language:

Complete	the	CentOS/Ubuntu	installation	steps	as	usual.

Creating	a	Linux	machine	over	KVM
We	will	use	the	virt-manager	utility,	available	in	KVM,	to	launch	the	desktop
administration	for	KVM.	We	will	then	create	a	new	VM:

1.	 Here,	we	will	choose	the	installation	method	as	Local	install	media	(ISO
image	or	CDROM):

2.	 Then,	we	will	click	on	Browse	and	choose	the	previously	downloaded
image	(CentOS	or	Ubuntu).	You	will	notice	that	the	KVM	successfully
detects	the	OS	type	and	version:

3.	 Then,	we	will	choose	the	machine	specifications	in	terms	of	CPUs,
memory,	and	storage:

4.	 Choose	the	appropriate	storage	space	for	your	machine:

5.	 The	final	step	is	to	choose	a	name,	and	then	click	on	the	Customize
Configuration	before	install	option,	in	order	to	add	an	additional	network
interface	to	the	automation	server.	Then,	click	on	Finish:

Another	window	is	open,	which	contains	all	of	the	specs	for	the	machine.	Click
on	Add	Hardware,	then	choose	the	Network:	

We	will	add	another	network	interface	to	communicate	with	the	clients.	The	first
network	interface	is	using	NAT	to	connect	to	the	internet	through	the	physical

wireless	NIC:	

Finally,	click	on	Begin	Installation	on	the	main	window	so	that	the	KVM	will
start	allocating	the	hard	disk	and	attaching	the	ISO	image	to	the	virtual	machine:	

Once	it	has	finished,	you	will	see	the	following	screen:	

Complete	the	CentOS/Ubuntu	installation	steps	as	usual.

Getting	started	with	Cobbler
	

Cobbler	is	a	piece	of	open	source	software,	used	for	unattended	network-based
installation.	It	leverages	multiple	tools,	such	as	DHCP,	FTP,	PXE,	and	other
open	source	tools	(we	will	explain	them	later),	so	that	you	will	have	a	one-stop
shop	for	automating	the	OS	installation.	The	target	machine	(bare	metal	or	a
virtual	machine)	has	to	support	booting	from	a	network	on	its	network	interface
card	(NIC).	This	function	enables	the	machine	to	send	a	DHCP	request	that	hits
the	Cobbler	server,	which	will	take	care	of	the	rest.

You	can	read	more	about	the	project	on	its	GitHub	page	(https://github.com/cobbler
/cobbler).

	

	

	

https://github.com/cobbler/cobbler

Understanding	how	Cobbler	works
Cobbler	depends	on	multiple	tools	to	provide	the	Preboot	eXecution
Environment	(PXE)	functionality	to	clients.	First,	it	depends	on	the	DHCP
service	that	receives	the	DHCP	broadcast	message	from	the	client	upon
powering	on;	then,	it	replies	with	an	IP	address,	a	subnet	mask,	the	next	server
(TFTP),	and	finally,	the	pxeLinux.0,	which	is	the	loader	filename	that	the	client	is
requesting	when	it	initially	sends	the	DHCP	message	to	the	server.

The	second	tool	is	the	TFTP	server	that	hosts	pxeLinux.0	and	different	distribution
images.

The	third	tool	is	the	template	rendering	utility.	Cobbler	uses	cheetah,	which	is	an
open	source	template	engine	developed	in	Python	and	has	its	own	DSL	(domain
specific	language)	format.	We	will	use	it	to	generate	the	kickstart	files.

Kickstart	files	are	used	to	automate	the	installation	of	Red	Hat	based
distributions,	like	CentOS,	Red	Hat,	and	Fedora.	It	also	has	limited	support	for
rendering	the	Anaconda	files	used	for	installing	Debian-based	systems.

There	are	also	additional	tools.	reposync	is	used	to	mirror	an	online	repository
from	the	internet	to	a	local	directory	inside	of	Cobbler,	making	it	available	to	the
client.	ipmitools	remotely	manages	powering	different	server	hardware	on	and	off:

In	the	following	topology,	Cobbler	is	hosted	on	the	automation	server	installed
previously,	and	will	connect	to	a	couple	of	servers.	We	will	install	Ubuntu	and
Red	Hat	on	them,	through	Cobbler.	The	automation	server	has	another	interface
that	connects	directly	to	the	internet,	in	order	to	download	some	additional
packages	that	are	required	by	Cobbler,	as	we	will	see	in	the	next	section:

Server IP	Address

Automation	Server	(with	cobbler
installed)

10.10.10.130

Server1	(CentOS	Machine) IP	from	range	10.10.10.5-10.10.10.10

Server	2	(Ubuntu	Machine) IP	from	range	10.10.10.5-10.10.10.10

Installing	Cobbler	on	an	automation
server
We	will	start	by	installing	some	essential	packages,	such	as	vim,	tcpudump	,	wget,
and	net-tools,	on	our	automation	server	(either	CentOS	or	Ubuntu).	Then,	we	will
install	the	cobbler	package	from	the	epel	repository.	Please	note	that	these
packages	are	not	required	for	Cobbler,	but	we	will	use	them	to	understand	how
Cobbler	really	works.

For	CentOS,	use	the	following	command:

yum	install	vim	vim-enhanced	tcpdump	net-tools	wget	git	-y

For	Ubuntu,	use	the	following	command:

sudo	apt	install	vim	tcpdump	net-tools	wget	git	-y

Then,	we	need	to	disable	the	firewall.	Cobbler	doesn't	play	well	with	SELinux
policies,	and	it's	recommended	to	disable	it,	especially	if	you	are	unfamiliar	with
them.	Also,	we	will	disable	iptables	and	firewalld,	since	we	are	in	a	lab,	not
production.

For	CentOS,	use	the	following	command:

#	Disable	firewalld	service

systemctl	disable	firewalld

systemctl	stop	firewalld

#	Disable	IPTables	service

systemctl	disable	iptables.service

systemctl	stop	iptables.service

#	Set	SELinux	to	permissive	instead	of	enforcing

sed	-i	s/^SELinux=.*$/SELinux=permissive/	/etc/seLinux/config

setenforce	0

For	Ubuntu,	use	the	following	command:

#	Disable	ufw	service

sudo	ufw	disable

#	Disable	IPTables	service				

sudo	iptables-save	>	$HOME/BeforeCobbler.txt	

sudo	iptables	-X	

sudo	iptables	-t	nat	-F	

sudo	iptables	-t	nat	-X	

sudo	iptables	-t	mangle	-F	

sudo	iptables	-t	mangle	-X	

sudo	iptables	-P	INPUT	ACCEPT	

sudo	iptables	-P	FORWARD	ACCEPT	

sudo	iptables	-P	OUTPUT	ACCEPT

#	Set	SELinux	to	permissive	instead	of	enforcing

sed	-i	s/^SELinux=.*$/SELinux=permissive/	/etc/seLinux/config

setenforce	0

Finally,	reboot	the	automation	server	machine	for	the	changes	to	take	effect:

reboot

Now,	we	will	install	the	cobbler	package.	The	software	is	available	in	the	epel
repository	(but	we	need	to	install	it	first)	in	the	case	of	CentOS.	Ubuntu	doesn't
have	the	software	available	in	upstream	repositories,	so	we	will	download	the
source	code	and	compile	it	on	the	platform.

For	CentOS,	use	the	following	command:

#	Download	and	Install	EPEL	Repo

yum	install	epel-release	-y

#	Install	Cobbler

yum	install	cobbler	-y

#Install	cobbler	Web	UI	and	other	dependencies

yum	install	cobbler-web	dnsmasq	fence-agents	bind	xinetd	pykickstart	-y

The	current	version	of	Cobbler,	at	the	time	of	writing	this	book,	is	2.8.2,	which
was	released	on	September	16,	2017.	For	Ubuntu,	we	will	clone	the	latest
package	from	the	GIT	repository	and	build	it	from	the	source:

#install	the	dependencies	as	stated	in	(http://cobbler.github.io/manuals/2.8.0/2/1_-

_Prerequisites.html)

sudo	apt-get	install	createrepo	apache2	mkisofs	libapache2-mod-wsgi	mod_ssl	python-

cheetah	python-netaddr	python-simplejson	python-urlgrabber	python-yaml	rsync	sysLinux	

atftpd	yum-utils	make	python-dev	python-setuptools	python-django	-y

#Clone	the	cobbler	2.8	from	the	github	to	your	server	(require	internet)

git	clone	https://github.com/cobbler/cobbler.git

cd	cobbler

#Checkout	the	release28	(latest	as	the	developing	of	this	book)

git	checkout	release28

#Build	the	cobbler	core	package

make	install

#Build	cobbler	web

make	webtest

After	successfully	installing	Cobbler	on	our	machine,	we	will	need	to	customize
it	to	change	the	default	settings	to	adapt	to	our	network	environment.	We	will
need	to	change	the	following:

Choose	either	the	bind	or	dnsmasq	module	to	manage	DNS	queries
Choose	either	the	isc	or	dnsmaasq	module	to	serve	incoming	DHCP	requests
from	clients
Configure	the	TFTP	Cobbler	IP	address	(it	will	usually	be	a	static	address	in
Linux).
Provide	the	DHCP	range	that	serves	the	clients
Restart	the	services	to	apply	the	configuration

Let's	take	a	step-by-step	look	at	the	configuration:

1.	 Choose	dnsmasq	as	the	DNS	server:

vim	/etc/cobbler/modules.conf

[dns]

module	=	manage_dnsmasq

vim	/etc/cobbler/settings

manage_dns:	1

restart_dns:	1

2.	 Choose	dnsmasq	for	managing	the	DHCP	service:

vim	/etc/cobbler/modules.conf

[dhcp]

module	=	manage_dnsmasq

vim	/etc/cobbler/settings

manage_dhcp:	1

restart_dhcp:	1

3.	 Configure	the	Cobbler	IP	address	as	the	TFTP	server:

vim	/etc/cobbler/settings

server:	10.10.10.130

next_server:	10.10.10.130

vim	/etc/xinetd.d/tftp

	disable																	=	no

Also,	enable	PXE	boot	loop	prevention	by	setting	the	pxe_just_once	to	0:

pxe_just_once:	0

4.	 Add	the	client	dhcp-range	in	the	dnsmasq	service	template:

vim	/etc/cobbler/dnsmasq.template

dhcp-range=10.10.10.5,10.10.10.10,255.255.255.0

Note	the	line	that	says	dhcp-option=66,$next_server.	This	means	that	Cobbler
will	pass	next_server,	previously	configured	in	the	settings	as	the	TFTP
boot	server,	to	any	clients	requesting	an	IP	address	through	the	DHCP
service	provided	by	dnsmasq.

5.	 Enable	and	restart	the	services:

systemctl	enable	cobblerd

systemctl	enable	httpd

systemctl	enable	dnsmasq

systemctl	start	cobblerd

systemctl	start	httpd

systemctl	start	dnsmasq

Provisioning	servers	through	Cobbler
We	are	now	a	few	steps	away	from	having	our	first	server	up	and	running
through	Cobbler.	Basically,	we	need	to	tell	Cobbler	our	clients'	MAC	addresses
and	which	operating	systems	they	have:

1.	 Import	the	Linux	ISO.	Cobbler	will	automatically	analyze	the	image	and
create	a	profile	for	it:

cobbler	import	--arch=x86_64	--path=/mnt/cobbler_images	--name=CentOS-7-x86_64-

Minimal-1708

task	started:	2018-03-28_132623_import

task	started	(id=Media	import,	time=Wed	Mar	28	13:26:23	2018)

Found	a	candidate	signature:	breed=redhat,	version=rhel6

Found	a	candidate	signature:	breed=redhat,	version=rhel7

Found	a	matching	signature:	breed=redhat,	version=rhel7

Adding	distros	from	path	/var/www/cobbler/ks_mirror/CentOS-7-x86_64-Minimal-

1708-x86_64:

creating	new	distro:	CentOS-7-Minimal-1708-x86_64

trying	symlink:	/var/www/cobbler/ks_mirror/CentOS-7-x86_64-Minimal-1708-x86_64	

->	/var/www/cobbler/links/CentOS-7-Minimal-1708-x86_64

creating	new	profile:	CentOS-7-Minimal-1708-x86_64

associating	repos

checking	for	rsync	repo(s)

checking	for	rhn	repo(s)

checking	for	yum	repo(s)

starting	descent	into	/var/www/cobbler/ks_mirror/CentOS-7-x86_64-Minimal-1708-

x86_64	for	CentOS-7-Minimal-1708-x86_64

processing	repo	at	:	/var/www/cobbler/ks_mirror/CentOS-7-x86_64-Minimal-1708-

x86_64

need	to	process	repo/comps:	/var/www/cobbler/ks_mirror/CentOS-7-x86_64-Minimal-

1708-x86_64

looking	for	/var/www/cobbler/ks_mirror/CentOS-7-x86_64-Minimal-1708-

x86_64/repodata/*comps*.xml

Keeping	repodata	as-is	:/var/www/cobbler/ks_mirror/CentOS-7-x86_64-Minimal-

1708-x86_64/repodata

***	TASK	COMPLETE	***

You	may	need	to	mount	the	Linux	ISO	image	before	importing	it	to	a	mount	point,	by	using
mount	-O	loop	/root/<image_iso>	/mnt/cobbler_images/.

You	can	run	the	cobbler	profile	report	command	to	check	the	created
profile:

cobbler	profile	report

Name																											:	CentOS-7-Minimal-1708-x86_64

TFTP	Boot	Files																:	{}

Comment																								:	

DHCP	Tag																							:	default

Distribution																			:	CentOS-7-Minimal-1708-x86_64

Enable	gPXE?																			:	0

Enable	PXE	Menu?															:	1

Fetchable	Files																:	{}

Kernel	Options																	:	{}

Kernel	Options	(Post	Install)		:	{}

Kickstart																						:	/var/lib/cobbler/kickstarts/sample_end.ks

Kickstart	Metadata													:	{}

Management	Classes													:	[]

Management	Parameters										:	<<inherit>>

Name	Servers																			:	[]

Name	Servers	Search	Path							:	[]

Owners																									:	['admin']

Parent	Profile																	:	

Internal	proxy																	:	

Red	Hat	Management	Key									:	<<inherit>>

Red	Hat	Management	Server						:	<<inherit>>

Repos																										:	[]

Server	Override																:	<<inherit>>

Template	Files																	:	{}

Virt	Auto	Boot																	:	1

Virt	Bridge																				:	xenbr0

Virt	CPUs																						:	1

Virt	Disk	Driver	Type										:	raw

Virt	File	Size(GB)													:	5

Virt	Path																						:	

Virt	RAM	(MB)																		:	512

Virt	Type																						:	kvm

You	can	see	that	the	import	command	filled	many	fields	automatically,
such	as	Kickstart,	RAM,	operating	system,	and	the	initrd/kernel	file	locations.

2.	 Add	any	additional	repositories	to	the	profile	(optional):

cobbler	repo	add	--mirror=https://dl.fedoraproject.org/pub/epel/7/x86_64/	--

name=epel-local	--priority=50	--arch=x86_64	--breed=yum

cobbler	reposync	

Now,	edit	the	profile,	and	add	the	created	repository	to	the	list	of
available	repositories:

cobbler	profile	edit	--name=CentOS-7-Minimal-1708-x86_64	--repos="epel-local"

3.	 Add	a	client	MAC	address	and	link	it	to	the	created	profile:

cobbler	system	add	--name=centos_client	--profile=CentOS-7-Minimal-1708-x86_64		

--mac=00:0c:29:4c:71:7c	--ip-address=10.10.10.5	--subnet=255.255.255.0	--

static=1	--hostname=centos-client		--gateway=10.10.10.1	--name-servers=8.8.8.8	

--interface=eth0

The	--hostname	field	corresponds	to	the	local	system	name	and	configures	the
client	networking	using	the	--ip-address,	--subnet,	and	--gateway	options.	This	will
make	Cobbler	generate	a	kickstart	file	with	these	options.

If	you	need	to	customize	the	server	and	add	additional	packages,	configure
firewall,	ntp,	and	configure	partitions	and	hard	disk	layout	then	you	can	add
these	settings	to	the	kickstart	file.	Cobbler	provide	sample	file	under
/var/lib/cobbler/kickstarts/sample.ks,	which	you	can	copy	to	another	folder	and
provide	in	the	--kickstart	parameter	in	the	previous	command.

You	can	integrate	Ansible	inside	the	kickstart	file	by	running	Ansible	in	pull	mode	(instead	the
default	push	mode).	Ansible	will	download	the	playbook	from	an	online	GIT	repository	(such
as	GitHub	or	GitLab)	and	will	execute	it	after	that.

4.	 Instruct	Cobbler	to	generate	the	configuration	files	required	to	serve	our
client	and	to	update	the	internal	database	with	the	new	information	by	using
the	following	commands:

#cobbler	sync

task	started:	2018-03-28_141922_sync

task	started	(id=Sync,	time=Wed	Mar	28	14:19:22	2018)

running	pre-sync	triggers

cleaning	trees

removing:	/var/www/cobbler/images/CentOS-7-Minimal-1708-x86_64

removing:	/var/www/cobbler/images/Ubuntu_Server-x86_64

removing:	/var/www/cobbler/images/Ubuntu_Server-hwe-x86_64

removing:	/var/lib/tftpboot/pxeLinux.cfg/default

removing:	/var/lib/tftpboot/pxeLinux.cfg/01-00-0c-29-4c-71-7c

removing:	/var/lib/tftpboot/grub/01-00-0C-29-4C-71-7C

removing:	/var/lib/tftpboot/grub/efidefault

removing:	/var/lib/tftpboot/grub/grub-x86_64.efi

removing:	/var/lib/tftpboot/grub/images

removing:	/var/lib/tftpboot/grub/grub-x86.efi

removing:	/var/lib/tftpboot/images/CentOS-7-Minimal-1708-x86_64

removing:	/var/lib/tftpboot/images/Ubuntu_Server-x86_64

removing:	/var/lib/tftpboot/images/Ubuntu_Server-hwe-x86_64

removing:	/var/lib/tftpboot/s390x/profile_list

copying	bootloaders

trying	hardlink	/var/lib/cobbler/loaders/grub-x86_64.efi	->	

/var/lib/tftpboot/grub/grub-x86_64.efi

trying	hardlink	/var/lib/cobbler/loaders/grub-x86.efi	->	

/var/lib/tftpboot/grub/grub-x86.efi

copying	distros	to	tftpboot

copying	files	for	distro:	Ubuntu_Server-x86_64

trying	hardlink	/var/www/cobbler/ks_mirror/Ubuntu_Server-

x86_64/install/netboot/ubuntu-installer/amd64/Linux	->	

/var/lib/tftpboot/images/Ubuntu_Server-x86_64/Linux

trying	hardlink	/var/www/cobbler/ks_mirror/Ubuntu_Server-

x86_64/install/netboot/ubuntu-installer/amd64/initrd.gz	->	

/var/lib/tftpboot/images/Ubuntu_Server-x86_64/initrd.gz

copying	files	for	distro:	Ubuntu_Server-hwe-x86_64

trying	hardlink	/var/www/cobbler/ks_mirror/Ubuntu_Server-x86_64/install/hwe-

netboot/ubuntu-installer/amd64/Linux	->	/var/lib/tftpboot/images/Ubuntu_Server-

hwe-x86_64/Linux

trying	hardlink	/var/www/cobbler/ks_mirror/Ubuntu_Server-x86_64/install/hwe-

netboot/ubuntu-installer/amd64/initrd.gz	->	

/var/lib/tftpboot/images/Ubuntu_Server-hwe-x86_64/initrd.gz

copying	files	for	distro:	CentOS-7-Minimal-1708-x86_64

trying	hardlink	/var/www/cobbler/ks_mirror/CentOS-7-x86_64-Minimal-1708-

x86_64/images/pxeboot/vmlinuz	->	/var/lib/tftpboot/images/CentOS-7-Minimal-

1708-x86_64/vmlinuz

trying	hardlink	/var/www/cobbler/ks_mirror/CentOS-7-x86_64-Minimal-1708-

x86_64/images/pxeboot/initrd.img	->	/var/lib/tftpboot/images/CentOS-7-Minimal-

1708-x86_64/initrd.img

copying	images

generating	PXE	configuration	files

generating:	/var/lib/tftpboot/pxeLinux.cfg/01-00-0c-29-4c-71-7c

generating:	/var/lib/tftpboot/grub/01-00-0C-29-4C-71-7C

generating	PXE	menu	structure

copying	files	for	distro:	Ubuntu_Server-x86_64

trying	hardlink	/var/www/cobbler/ks_mirror/Ubuntu_Server-

x86_64/install/netboot/ubuntu-installer/amd64/Linux	->	

/var/www/cobbler/images/Ubuntu_Server-x86_64/Linux

trying	hardlink	/var/www/cobbler/ks_mirror/Ubuntu_Server-

x86_64/install/netboot/ubuntu-installer/amd64/initrd.gz	->	

/var/www/cobbler/images/Ubuntu_Server-x86_64/initrd.gz

Writing	template	files	for	Ubuntu_Server-x86_64

copying	files	for	distro:	Ubuntu_Server-hwe-x86_64

trying	hardlink	/var/www/cobbler/ks_mirror/Ubuntu_Server-x86_64/install/hwe-

netboot/ubuntu-installer/amd64/Linux	->	/var/www/cobbler/images/Ubuntu_Server-

hwe-x86_64/Linux

trying	hardlink	/var/www/cobbler/ks_mirror/Ubuntu_Server-x86_64/install/hwe-

netboot/ubuntu-installer/amd64/initrd.gz	->	

/var/www/cobbler/images/Ubuntu_Server-hwe-x86_64/initrd.gz

Writing	template	files	for	Ubuntu_Server-hwe-x86_64

copying	files	for	distro:	CentOS-7-Minimal-1708-x86_64

trying	hardlink	/var/www/cobbler/ks_mirror/CentOS-7-x86_64-Minimal-1708-

x86_64/images/pxeboot/vmlinuz	->	/var/www/cobbler/images/CentOS-7-Minimal-1708-

x86_64/vmlinuz

trying	hardlink	/var/www/cobbler/ks_mirror/CentOS-7-x86_64-Minimal-1708-

x86_64/images/pxeboot/initrd.img	->	/var/www/cobbler/images/CentOS-7-Minimal-

1708-x86_64/initrd.img

Writing	template	files	for	CentOS-7-Minimal-1708-x86_64

rendering	DHCP	files

rendering	DNS	files

rendering	TFTPD	files

generating	/etc/xinetd.d/tftp

processing	boot_files	for	distro:	Ubuntu_Server-x86_64

processing	boot_files	for	distro:	Ubuntu_Server-hwe-x86_64

processing	boot_files	for	distro:	CentOS-7-Minimal-1708-x86_64

cleaning	link	caches

running	post-sync	triggers

running	python	triggers	from	/var/lib/cobbler/triggers/sync/post/*

running	python	trigger	cobbler.modules.sync_post_restart_services

running:	service	dnsmasq	restart

received	on	stdout:	

received	on	stderr:	Redirecting	to	/bin/systemctl	restart	dnsmasq.service

running	shell	triggers	from	/var/lib/cobbler/triggers/sync/post/*

running	python	triggers	from	/var/lib/cobbler/triggers/change/*

running	python	trigger	cobbler.modules.scm_track

running	shell	triggers	from	/var/lib/cobbler/triggers/change/*

***	TASK	COMPLETE	***

Once	you	have	started	the	CentOS	client,	you	will	notice	that	it	goes	to	the	PXE
process	and	sends	a	DHCP	message	over	PXE_Network.	Cobbler	will	respond	with
an	IP	address,	a	PXELinux0	file,	and	the	required	image	assigned	to	that	MAC
address:

After	Cobbler	finishes	the	CentOS	installation,	you	will	see	the	hostname
correctly	configured	in	the	machine:

You	can	go	through	the	same	steps	for	an	Ubuntu	machine.

Summary
In	this	chapter,	you	learned	how	to	prepare	a	lab	environment	by	installing	two
Linux	machines	(CentOS	and	Ubuntu)	over	a	hypervisor.	We	then	explored
automation	options,	and	sped	up	server	deployment	by	installing	Cobbler.

In	the	next	chapter,	you	will	learn	how	to	send	commands	from	a	Python	script
directly	to	an	operating	system	shell	and	investigate	the	output	returned.

	

Using	the	Subprocess	Module
	

Running	and	spawning	a	new	system	process	can	be	useful	to	system
administrators	who	want	to	automate	specific	operating	system	tasks	or	execute
a	few	commands	within	their	scripts.	Python	provides	many	libraries	to	call
external	system	utilities,	and	it	interacts	with	the	data	produced.	The	first	library
that	was	created	is	the	OS	module,	which	provides	some	useful	tools	to	invoke
external	processes,	such	as	os.system,	os.spwan,	and	os.popen*.	It	lacks	some	essential
functions,	however,	so	Python	developers	have	introduced	a	new	library,
subprocess,	which	can	spawn	new	processes,	send	and	receive	from	the	processes,
and	handle	error	and	return	codes.	Currently,	the	official	Python	documentation
recommends	the	subprocess	module	for	accessing	system	commands,	and	Python
actually	intends	to	replace	the	older	modules	with	it.

The	following	topics	will	be	covered	in	this	chapter:

The	Popen()	Subprocess
Reading	stdin,	stdout,	and	stderr
The	subprocess	call	suite

	

	

The	popen()	subprocess
The	subprocess	module	implements	only	one	class:	popen().	The	primary	use	of	this
class	is	to	spawn	a	new	process	on	the	system.	This	class	can	accept	additional
arguments	for	the	running	process,	along	with	additional	arguments	for	popen()
itself:

Arguments Meaning
args A	string,	or	a	sequence	of	program	arguments.

bufsize

It	is	supplied	as	the	buffering	argument	to	the	open()
function	when	creating	the	stdin/stdout/stderr	pipe	file
objects.

executable A	replacement	program	to	execute.

stdin,	stdout,
stderr

These	specify	the	executed	program's	standard	input,
standard	output,	and	standard	error	file	handles,
respectively.

shell

If	True,	the	command	will	be	executed	through	the	shell
(the	default	is	False).	In	Linux,	this	means	calling	the
/bin/sh	before	running	the	child	process.

cwd Sets	the	current	directory	before	the	child	is	executed.
env Defines	the	environmental	variables	for	the	new	process.

	

Now,	let	us	focus	on	args.	The	popen()	command	can	take	a	Python	list	as	an
input,	with	the	first	element	treated	as	the	command	and	the	subsequent	elements
as	the	command	args,	as	shown	in	the	following	code	snippet:

import	subprocess

print(subprocess.Popen("ifconfig"))

Script	output

The	output	returned	from	the	command	is	printed	directly	to	your	Python
Terminal.

The	ifconfig	is	a	Linux	utility	used	to	return	the	network	interface	information.	For	Windows
users,	you	can	get	similar	output	by	using	the	ipconfig	command	on	cmd.

We	can	rewrite	the	preceding	code	and	use	a	list	instead	of	a	string,	as	seen	in
the	following	code	snippet:

print(subprocess.Popen(["ifconfig"]))

Using	this	approach	allows	you	to	add	additional	arguments	to	the	main
command	as	list	items:

print(subprocess.Popen(["sudo",	"ifconfig",	"enp60s0:0",	"10.10.10.2",	"netmask",	

"255.255.255.0",	"up"]))

enp60s0:0:	flags=4099<UP,BROADCAST,MULTICAST>		mtu	1500

								inet	10.10.10.2		netmask	255.255.255.0		broadcast	10.10.10.255

								ether	d4:81:d7:cb:b7:1e		txqueuelen	1000		(Ethernet)

								device	interrupt	16		

Note	that	if	you	provide	the	previous	command	as	a	string	not	as	a	list,	as	we	did	in	the	first
example,	the	command	will	fail	as	shown	in	below	screenshot.	The	subprocess	Popen()	expects
an	executable	name	in	each	list	element	and	not	any	other	arguments.

On	the	other	hand,	if	you	want	to	use	the	string	method	instead	of	a	list,	you	can
set	the	shell	argument	to	True.	This	will	instruct	Popen()	to	append	/bin/sh	before
the	command;	hence,	the	command	will	be	executed	with	all	of	the	arguments
after	it:

print(subprocess.Popen("sudo	ifconfig	enp60s0:0	10.10.10.2	netmask	255.255.255.0	up",	

shell=True))

You	can	think	about	shell=True	as	you	spawn	a	shell	process	and	pass	the
command	with	an	argument	to	it.	This	could	save	you	a	few	lines	of	code
through	using	split(),	in	case	you	receive	the	command	from	an	external	system
and	want	to	run	it	directly.

The	default	shell	used	by	subprocess	is	/bin/sh.	If	you're	using	other	shells,	like	tch	or	csh,	you
can	define	them	in	the	executable	argument.	Also	notice	running	the	command	as	a	shell	can	be
a	security	issue	and	allow	security	injection.	A	user	who	instructs	your	code	to	run	the	script
can	add	";	rm	-rf	/"	and	cause	terrible	things	to	happen.

Also,	you	can	change	the	directory	to	a	specific	one	before	running	the
command	by	using	the	cwd	argument.	This	is	useful	when	you	need	to	list	the
contents	of	the	directory	before	operating	on	it:

import	subprocess

print(subprocess.Popen(["cat",	"interfaces"],	cwd="/etc/network"))

Ansible	has	a	similar	flag	called	chdir:.	This	argument	will	be	used	inside	a	playbook	task	to
change	a	directory	before	the	execution.

Reading	stdin,	stdout,	and	stderr
The	spawned	processes	can	communicate	with	the	operating	system	in	three
channels:

1.	 Standard	input	(stdin)
2.	 Standard	output	(stdout)
3.	 Standard	error	(stderr)

In	subprocess,	Popen()	can	interact	with	the	three	channels	and	redirect	each
stream	to	an	external	file,	or	to	a	special	value	called	PIPE.	An	additional	method,
called	communicate(),	is	used	to	read	from	the	stdout	and	write	on	the	stdin.	The
communicate()	method	can	take	input	from	the	user	and	return	both	the	standard
output	and	the	standard	error,	as	shown	in	the	following	code	snippet:

import	subprocess

p	=	subprocess.Popen(["ping",	"8.8.8.8",	"-c",	"3"],	stdin=subprocess.PIPE,	

stdout=subprocess.PIPE)

stdout,	stderr	=	p.communicate()

print("""==========The	Standard	Output	is==========	

{}""".format(stdout))

print("""==========The	Standard	Error	is==========	

{}""".format(stderr))

Similarly,	you	can	send	data	and	write	to	the	process	using	the	input	argument
inside	communicate():

import	subprocess

p	=	subprocess.Popen(["grep",	"subprocess"],	stdout=subprocess.PIPE,	

stdin=subprocess.PIPE)

stdout,stderr	=	p.communicate(input=b"welcome	to	subprocess	module\nthis	line	is	a	new	

line	and	doesnot	contain	the	require	string")

print("""==========The	Standard	Output	is==========	

{}""".format(stdout))

print("""==========The	Standard	Error	is==========	

{}""".format(stderr))

In	the	script,	we	used	the	input	argument	inside	communicate(),which	will	send	the
data	to	the	other	child	process,	which	will	search	for	the	subprocess	keyword
using	the	grep	command.	The	returned	output	will	be	stored	inside	the	stdout
variable:

Another	approach	to	validate	the	successful	execution	of	the	process	is	to	use	the
return	code.	When	the	command	has	successfully	executed	without	errors,	the
return	code	will	be	0;	otherwise,	it	will	be	an	integer	value	larger	than	0:

import	subprocess

def	ping_destination(ip):

	p	=	subprocess.Popen(['ping',	'-c',	'3'],

	stdout=subprocess.PIPE,

	stderr=subprocess.PIPE)

	stdout,	stderr	=	p.communicate(input=ip)

	if	p.returncode	==	0:

	print("Host	is	alive")

	return	True,	stdout

				else:

	print("Host	is	down")

	return	False,	stderr

while	True:

				print(ping_destination(raw_input("Please	enter	the	host:")))

The	script	will	ask	the	user	to	enter	an	IP	address,	and	will	then	call	the
ping_destination()	function,	which	will	execute	the	ping	command	against	the	IP
address.	The	result	of	the	ping	command	(either	success	or	failed)	will	return	in	the

standard	output,	and	the	communicate()	function	will	populate	the	return	code	with
the	result:

First,	we	tested	the	Google	DNS	IP	address.	The	host	is	alive,	and	the	command
will	be	successfully	executed	with	the	return	code	=0.	The	function	will	return
True	and	print	Host	is	alive.	Second,	we	tested	with	the	HostNotExist	string.	The
function	will	return	False	to	the	main	program	and	print	Host	is	down.	Also,	it	will
print	the	command	standard	output	returned	to	subprocess	which	is	(Name	or
service	not	known).

You	can	use	echo	$?	to	check	the	return	code	(sometimes	called	the	exit	code)	of	the	previously
executed	command.

The	subprocess	call	suite
The	subprocess	module	provides	another	function	that	makes	process	spawning
a	safer	operation	than	using	Popen().	The	subprocess	call()	function	waits	for	the
called	command/program	to	finish	reading	the	output.	It	supports	the	same
arguments	as	the	Popen()	constructor,	such	as	shell,	executable,	and	cwd,	but	this
time,	your	script	will	wait	for	the	program	to	complete	and	populate	the	return
code	without	the	need	to	communicate().

If	you	inspect	the	call()	function,	you	will	see	that	it's	actually	a	wrapper	around
the	Popen()	class,	but	with	a	wait()	function	that	waits	until	the	end	of	the
command	before	returning	the	output:

import	subprocess

subprocess.call(["ifconfig",	"docker0"],	stdout=subprocess.PIPE,	stderr=None,	

shell=False)

If	you	want	more	protection	for	your	code,	you	can	use	the	check_call()	function.
It's	the	same	as	call(),	but	adds	another	check	to	the	return	code.	If	it	is	equal	to	0
(meaning	that	the	command	has	successfully	executed),	then	the	output	will	be
returned.	Otherwise,	it	will	raise	an	exception	with	the	returned	exit	code.	This
will	allow	you	to	handle	the	exception	in	your	program	flow:

import	subprocess

try:

	result	=	subprocess.check_call(["ping",	"HostNotExist",	"-c",	"3"])

except	subprocess.CalledProcessError:

	print("Host	is	not	found")

A	downside	of	using	the	call()	function	is	that	you	can't	use	communicate()	to	send	the	data	to
process,	like	we	did	with	Popen().

Summary
In	this	chapter,	we	learned	how	to	run	and	spawn	new	processes	in	the	system,
and	we	learned	about	how	these	spawned	processes	communicate	with	the
operating	system.	We	also	discussed	the	subprocess	module	and	the	subprocess
call.

In	the	next	chapter,	we	will	see	how	to	run	and	execute	commands	on	remote
hosts.

	

Running	System	Administration
Tasks	with	Fabric
	

In	the	previous	chapter,	we	used	the	subprocess	module	to	run	and	spawn	a	system
process	inside	the	machine	that	hosted	our	Python	script,	and	to	return	the	output
back	to	the	Terminal.	However,	many	automation	tasks	require	access	to	remote
servers	to	execute	commands,	which	is	not	easy	to	do	using	a	sub-process.	This
becomes	a	piece	of	cake	with	the	use	of	another	Python	module:	Fabric.	The
library	makes	connections	to	remote	hosts	and	executes	different	tasks,	such	as
uploading	and	downloading	files,	running	commands	with	specific	user	IDs,	and
prompting	users	for	input.	The	Fabric	Python	module	is	a	robust	tool	for
administrating	dozens	of	Linux	machines	from	a	central	point.

The	following	topics	will	be	covered	in	this	chapter:

What	is	Fabric?
Executing	your	first	Fabric	file
Other	useful	Fabric	features

	

	

Technical	requirements
	

The	following	tools	should	be	installed	and	available	in	your	environment:

Python	2.7.1x.
PyCharm	Community	or	Pro	Edition.
EVE-NG	topology.	Please	refer	to	Chapter	8,	Preparing	a	Lab
Environment,	for	how	to	install	and	configure	system	servers.

You	can	find	the	full	scripts	developed	in	this	chapter	at	the	following	GitHub
URL:	https://github.com/TheNetworker/EnterpriseAutomation.git.

	

	

	

https://github.com/TheNetworker/EnterpriseAutomation.git

What	is	Fabric?
Fabric	(http://www.fabfile.org/)	is	a	high-level	Python	library	that	is	used	to
connect	to	remote	servers	(through	the	paramiko	library)	and	execute	predefined
tasks	on	them.	It	runs	a	tool	called	fab	on	the	machine	that	hosts	the	fabric
module.	This	tool	will	look	for	a	fabfile.py	file,	located	in	the	same	directory	that
you	run	the	tool	in.	The	fabfile.py	file	contains	your	tasks,	defined	as	a	Python
function	that	is	called	from	the	command	line	to	start	the	execution	on	the
servers.	The	Fabric	tasks	themselves	are	just	normal	Python	functions,	but	they
contain	special	methods	that	are	used	to	execute	commands	on	remote	servers.
Also,	at	the	beginning	of	fabfile.py,	you	need	to	define	some	environmental
variables,	such	as	the	remote	hosts,	username,	password,	and	any	other	variables
needed	during	execution:

	

http://www.fabfile.org/

Installation
Fabric	requires	Python	2.5	to	2.7.	You	can	install	Fabric	and	all	of	its
dependencies	using	pip,	or	you	can	use	a	system	package	manager,	such	as	yum	or
apt.	In	both	cases,	you	will	have	the	fab	utility	ready	and	executable	from	your
operating	system.

To	install	fabric	using	pip,	run	the	following	command	on	your	automation
server:

pip	install	fabric

Notice	that	Fabric	requires	paramiko,	which	is	a	popular	Python	library	that	is	used
for	establishing	SSH	connections.

You	can	validate	the	Fabric	installation	with	two	steps.	First,	make	sure	that	you
have	the	fab	command	available	in	your	system:	[root@AutomationServer	~]#
which	fab
/usr/bin/fab

The	second	step	for	verification	is	to	open	Python	and	try	to	import	the	fabric
library.	If	there's	no	error	thrown,	then	Fabric	has	successfully	installed:
[root@AutomationServer	~]#	python
Python	2.7.5	(default,	Aug	4	2017,	00:39:18)	

[GCC	4.8.5	20150623	(Red	Hat	4.8.5-16)]	on	linux2
Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.
>>>	from	fabric.api	import	*
>>>

Fabric	operations
There	are	many	operations	available	in	the	fabric	tool.	These	operations	act	as	a
functions	inside	the	tasks	in	fabfile	(there	will	be	more	about	tasks	later),	but	the
following	is	a	summary	of	the	most	important	operations	inside	the	fabric	library.

Using	run	operation
The	syntax	for	the	run	operation	in	Fabric	is	as	follows:

run(command,	shell=True,	pty=True,	combine_stderr=True,	quiet=False,	warn_only=False,	

stdout=None,	stderr=None)

This	will	execute	the	command	on	a	remote	host,	while	the	shell	argument
controls	whether	a	shell	(such	as	/bin/sh)	should	be	created	before	execution	(the
same	parameter	also	exists	in	the	sub-process).

After	the	command	execution,	Fabric	will	populate	.succeeded	or	.failed,
depending	on	the	command	output.	You	can	check	whether	the	command
succeeded	or	failed	by	calling	the	following:

def	run_ops():

	output	=	run("hostname")

Using	get	operation
	

The	syntax	for	the	Fabric	get	operation	is	as	follows:

get(remote_path,	local_path)

This	will	download	the	files	from	the	remote	host	to	the	machine	running	the
fabfile,	using	either	rsync	or	scp	.	This	is	commonly	used	when	you	need	to	gather
log	files	to	the	server,	for	example:

def	get_ops():

	try:

	get("/var/log/messages","/root/")

	except:

	pass

	

	

Using	put	operation
	

The	syntax	for	the	Fabric	put	operation	is	as	follows:

put(local_path,	remote_path,	use_sudo=False,	mirror_local_mode=False,	mode=None)

This	operation	will	upload	the	file	from	the	machine	running	the	fabfile	(local)	to
the	remote	host.	Using	use_sudo	will	solve	the	permissions	issue	when	you	upload
to	the	root	directory.	Also,	you	can	keep	the	current	file	permissions	on	both	the
local	and	remote	server,	or	you	can	set	new	permissions:

def	put_ops():

	try:

	put("/root/VeryImportantFile.txt","/root/")

	except:

	pass

	

	

Using	sudo	operation
	

The	syntax	for	the	Fabric	sudo	operation	is	as	follows:

sudo(command,	shell=True,	pty=True,	combine_stderr=True,	user=None,	quiet=False,	

warn_only=False,	stdout=None,	stderr=None,	group=None)

This	operation	can	be	considered	another	wrapper	around	the	run()	command.
However,	the	sudo	operation	will	run	the	command	with	the	root	username	by
default	regardless	of	the	username	used	to	execute	the	fabfile.	Also	it	contains	a
user	argument	which	could	be	used	to	run	the	command	with	a	different
username.	Also,	the	user	argument	executes	the	command	with	a	specific	UID,
while	the	group	argument	defines	the	GID:

def	sudo_ops():

	sudo("whoami")	#it	should	print	the	root	even	if	you	use	another	account

	

	

Using	prompt	operation
	

The	syntax	for	the	Fabric	prompt	operation	is	as	follows:

prompt(text,	key=None,	default='',	validate=None)

The	user	can	provide	a	specific	value	for	the	task	by	using	the	prompt	operation,
and	the	input	will	be	stored	inside	of	a	variable	and	used	by	tasks.	Please	note
that	you	will	be	prompted	for	each	host	inside	of	the	fabfile:

def	prompt_ops():

	prompt("please	supply	release	name",	default="7.4.1708")

	

	

Using	reboot	operation
The	syntax	for	the	Fabric	reboot	operation	is	as	follows:

reboot(wait=120)

This	is	a	simple	operation	that	reboots	the	host	by	default.	Fabric	will	wait	for
120	seconds	before	attempting	to	reconnect,	but	you	can	change	this	value	to
another	one	by	using	the	wait	argument:

def	reboot_ops():

	reboot(wait=60,	use_sudo=True)

For	a	full	list	of	other	supported	operations,	please	check	http://docs.fabfile.org/en
/1.14/api/core/operations.html.	You	can	also	check	them	directly	from	PyCharm,	by
looking	at	all	of	the	autocomplete	functions	that	pop	up	when	you	type	Ctrl	+
spacebar.	From	fabric.operations	import	<ctrl+space>	under	fabric.operations:

http://docs.fabfile.org/en/1.14/api/core/operations.html

Executing	your	first	Fabric	file
We	now	know	how	the	operation	works,	so	we	will	put	it	inside	fabfile	and
create	a	full	automation	script	that	can	work	with	remote	machines.	The	first	step
for	fabfile	is	to	import	the	required	classes.	Most	of	them	are	located	in	fabric.api,
so	we	will	globally	import	all	of	them	to	our	Python	script:

from	fabric.api	import	*

The	next	part	is	to	define	the	remote	machine	IP	addresses,	usernames,	and
passwords.	In	the	case	of	our	environment,	we	have	two	machines	(besides	the
automation	server)	that	run	Ubuntu	16.04	and	CentOS	7.4,	respectively,	with	the
following	details:

Machine
Type IP	Address Username Password

Ubuntu
16.04

10.10.10.140 root access123

CentOS	7.4 10.10.10.193 root access123

	

We	will	include	them	inside	the	Python	script,	as	shown	in	the	following	snippet:

env.hosts	=	[

	'10.10.10.140',		#	ubuntu	machine

	'10.10.10.193',		#	CentOS	machine

]

env.user	=	"root"

env.password	=	"access123"

Notice	that	we	use	the	variable	called	env,	which	is	inherited	from	the
_AttributeDict	class.	Inside	of	this	variable,	we	can	set	the	username	and	password
from	the	SSH	connection.	You	can	also	use	the	SSH	keys	stored	in	your	.ssh
directory	by	setting	env.use_ssh_config=True;	Fabric	will	use	the	keys	to	authenticate
the	connection.

The	last	step	is	to	define	your	tasks	as	a	Python	function.	Tasks	can	use	the
preceding	operations	to	execute	commands.

The	following	is	the	full	script:

from	fabric.api	import	*

env.hosts	=	[

	'10.10.10.140',		#	ubuntu	machine

	'10.10.10.193',		#	CentOS	machine

]

env.user	=	"root"

env.password	=	"access123"

def	detect_host_type():

	output	=	run("uname	-s")

	if	output.failed:

	print("something	wrong	happen,	please	check	the	logs")

	elif	output.succeeded:

	print("command	executed	successfully")

def	list_all_files_in_directory():

	directory	=	prompt("please	enter	full	path	to	the	directory	to	list",	default="/root")

	sudo("cd	{0}	;	ls	-htlr".format(directory))

def	main_tasks():

	detect_host_type()

	list_all_files_in_directory()

In	the	preceding	example,	the	following	applies:

We	defined	two	tasks.	The	first	one	will	execute	the	uname	-s	command	and
return	the	output,	then	verify	whether	the	command	executed	successfully
or	not.	The	task	uses	the	run()	operation	to	accomplish	it.
The	second	task	will	use	two	operations:	prompt()	and	sudo().	The	first
operation	will	ask	the	user	to	enter	the	full	path	to	the	directory,	while	the
second	operation	will	list	all	of	the	content	in	the	directory.
The	final	task,	main_tasks(),	will	actually	group	the	preceding	two	methods
into	one	task,	so	that	we	can	call	it	from	the	command	line.

In	order	to	run	the	script,	we	will	upload	the	file	to	the	automation	server	and	use
the	fab	utility	to	run	it:

fab	-f	</full/path/to/fabfile>.py	<task_name>

The	-f	switch	in	the	previous	command	is	not	mandatory	if	your	filename	is	fabfile.py.	If	it	is
not,	you	will	need	to	provide	the	name	to	the	fab	utility.	Also,	fabfile	should	be	in	the	current
directory;	otherwise,	you	will	need	to	provide	the	full	path.

Now	we	will	run	the	fabfile	by	executing	the	following	command:

fab	-f	fabfile_first.py	main_tasks

The	first	task	will	be	executed,	and	will	return	the	output	to	the	Terminal:

[10.10.10.140]	Executing	task	'main_tasks'

[10.10.10.140]	run:	uname	-s

[10.10.10.140]	out:	Linux

[10.10.10.140]	out:	

command	executed	successfully

Now,	we	will	enter	/var/log/	to	list	the	contents:

please	enter	full	path	to	the	directory	to	list	[/root]	/var/log/

[10.10.10.140]	sudo:	cd	/var/log/	;	ls	-htlr

[10.10.10.140]	out:	total	1.7M

[10.10.10.140]	out:	drwxr-xr-x	2	root			root	4.0K	Dec		7	23:54	lxd

[10.10.10.140]	out:	drwxr-xr-x	2	root			root	4.0K	Dec	11	15:47	sysstat

[10.10.10.140]	out:	drwxr-xr-x	2	root			root	4.0K	Feb	22	18:24	dist-upgrade

[10.10.10.140]	out:	-rw-------	1	root			utmp				0	Feb	28	20:23	btmp

[10.10.10.140]	out:	-rw-r-----	1	root			adm				31	Feb	28	20:24	dmesg

[10.10.10.140]	out:	-rw-r--r--	1	root			root		57K	Feb	28	20:24	bootstrap.log

[10.10.10.140]	out:	drwxr-xr-x	2	root			root	4.0K	Apr		4	08:00	fsck

[10.10.10.140]	out:	drwxr-xr-x	2	root			root	4.0K	Apr		4	08:01	apt

[10.10.10.140]	out:	-rw-r--r--	1	root			root		32K	Apr		4	08:09	faillog

[10.10.10.140]	out:	drwxr-xr-x	3	root			root	4.0K	Apr		4	08:09	installer

command	executed	successfully

The	same	applies	if	you	need	to	list	the	configuration	files	under	the	network-
scripts	directory	in	the	CentOS	machine:

please	enter	full	path	to	the	directory	to	list	[/root]	/etc/sysconfig/network-scripts/														

[10.10.10.193]	sudo:	cd	/etc/sysconfig/network-scripts/	;	ls	-htlr

[10.10.10.193]	out:	total	232K

[10.10.10.193]	out:	-rwxr-xr-x.	1	root	root	1.9K	Apr	15		2016	ifup-TeamPort

[10.10.10.193]	out:	-rwxr-xr-x.	1	root	root	1.8K	Apr	15		2016	ifup-Team

[10.10.10.193]	out:	-rwxr-xr-x.	1	root	root	1.6K	Apr	15		2016	ifdown-TeamPort

[10.10.10.193]	out:	-rw-r--r--.	1	root	root		31K	May		3		2017	network-functions-ipv6

[10.10.10.193]	out:	-rw-r--r--.	1	root	root		19K	May		3		2017	network-functions

[10.10.10.193]	out:	-rwxr-xr-x.	1	root	root	5.3K	May		3		2017	init.ipv6-global

[10.10.10.193]	out:	-rwxr-xr-x.	1	root	root	1.8K	May		3		2017	ifup-wireless

[10.10.10.193]	out:	-rwxr-xr-x.	1	root	root	2.7K	May		3		2017	ifup-tunnel

[10.10.10.193]	out:	-rwxr-xr-x.	1	root	root	3.3K	May		3		2017	ifup-sit

[10.10.10.193]	out:	-rwxr-xr-x.	1	root	root	2.0K	May		3		2017	ifup-routes

[10.10.10.193]	out:	-rwxr-xr-x.	1	root	root	4.1K	May		3		2017	ifup-ppp

[10.10.10.193]	out:	-rwxr-xr-x.	1	root	root	3.4K	May		3		2017	ifup-post

[10.10.10.193]	out:	-rwxr-xr-x.	1	root	root	1.1K	May		3		2017	ifup-plusb

<output	omitted	for	brevity>

Finally,	Fabric	will	disconnect	from	the	two	machines:

[10.10.10.193]	out:	

Done.

Disconnecting	from	10.10.10.140...	done.

Disconnecting	from	10.10.10.193...	done.

More	about	the	fab	tool
The	fab	tool	itself	supports	many	operations.	It	can	be	used	to	list	the	different
tasks	inside	fabfile.	It	can	also	set	the	fab	environment	during	execution.	For
example,	you	can	define	the	host	that	will	run	the	commands	on	it	by	using	the	-
H	or	--hosts	switches,	without	the	need	to	specify	it	inside	fabfile.	This	actually
sets	the	env.hosts	variable	inside	fabfile	during	execution:	fab	-H	srv1,srv2

On	the	other	hand,	you	can	define	the	command	that	you	want	to	run	by	using
the	fab	tool.	This	is	something	like	Ansible	ad	hoc	mode	(we	will	discuss	this	in
detail	in	Chapter	13,	Ansible	for	System	Administration):	fab	-H	srv1,srv2	--
ifconfig	-a

If	you	don't	want	to	store	the	password	in	clear	text	inside	of	the	fabfile	script,
then	you	have	two	options.	The	first	one	is	to	use	the	SSH	identity	file	(private-
key)	with	the	-i	option,	which	loads	the	file	during	connection.

The	other	option	is	to	force	Fabric	to	prompt	you	for	the	session	password	before
connecting	to	the	remote	machine	by	using	the	-I	option.

Note	that	this	option	will	overwrite	the	env.password	parameter,	if	specified	inside	fabfile.

The	-D	switch	will	disable	the	known	hosts	and	force	Fabric	not	to	load	the
known_hosts	file	from	the	.ssh	directory.	You	can	make	Fabric	reject	connections	to
the	hosts	not	defined	in	the	known_hosts	file	with	the	-r	or	--reject-unknown-hosts
options.

Also,	you	can	list	all	of	the	supported	tasks	inside	of	the	fabfile	by	using	-l	or	--
list,	providing	the	fabfile	name	to	the	fab	tool.	For	example,	applying	that	to	the
previous	script	will	generate	the	following	output:	#	fab	-f	fabfile_first.py	-l
Available	commands:

detect_host_type
list_all_files_in_directory
main_tasks

You	can	see	all	of	the	available	options	and	arguments	for	the	fab	command	line	with	the	-h
switch,	or	at	http://docs.fabfile.org/en/1.14/usage/fab.html.

http://docs.fabfile.org/en/1.14/usage/fab.html

Discover	system	health	using	Fabric
In	this	use	case,	we	will	utilize	Fabric	to	develop	a	script	that	executes	multiple
commands	on	remote	machines.	The	goal	of	the	script	is	to	gather	two	types	of
output:	the	discovery	command	and	the	health	command.	The	discovery	command
gathers	the	uptime,	hostname,	kernel	release,	and	both	private	and	public	IP
addresses,	while	the	health	command	gathers	the	used	memory,	CPU	utilization,
number	of	spawned	processes,	and	disk	usage.	We	will	design	fabfile	so	that	we
can	scale	our	script	and	add	more	commands	to	it:

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

from	fabric.api	import	*

from	fabric.context_managers	import	*

from	pprint	import	pprint

env.hosts	=	[

	'10.10.10.140',		#	Ubuntu	Machine

	'10.10.10.193',		#	CentOS	Machine

]

env.user	=	"root"

env.password	=	"access123"

def	get_system_health():

	discovery_commands	=	{

	"uptime":	"uptime	|	awk	'{print	$3,$4}'",

	"hostname":	"hostname",

	"kernel_release":	"uname	-r",

	"architecture":	"uname	-m",

	"internal_ip":	"hostname	-I",

	"external_ip":	"curl	-s	ipecho.net/plain;echo",

	}

	health_commands	=	{

	"used_memory":	"free		|	awk	'{print	$3}'	|	grep	-v	free	|	head	-n1",

	"free_memory":	"free		|	awk	'{print	$4}'	|	grep	-v	shared	|	head	-n1",

	"cpu_usr_percentage":	"mpstat	|	grep	-A	1	'%usr'	|	tail	-n1	|	awk	'{print	$4}'",

	"number_of_process":	"ps	-A	--no-headers	|	wc	-l",

	"logged_users":	"who",

	"top_load_average":	"top	-n	1	-b	|	grep	'load	average:'	|	awk	'{print	$10	$11	$12}'",

	"disk_usage":	"df	-h|	egrep	'Filesystem|/dev/sda*|nvme*'"

	}

	tasks	=	[discovery_commands,health_commands]

	for	task	in	tasks:

	for	operation,command	in	task.iteritems():

	print("=============================

{0}=============================".format(operation))

	output	=	run(command)

Notice	that	we	created	two	dictionaries:	discover_commands	and	health_commands.	Each
one	of	them	contains	the	Linux	commands	as	a	key-value	pair.	The	key
represents	the	operation,	while	the	value	represents	the	actual	Linux	command.
Then,	we	created	a	tasks	list	to	group	both	dictionaries.

Finally,	we	created	a	nested	for	loop.	The	outer	loop	is	used	to	iterate	over	the
list	items.	The	inner	for	loop	is	to	iterate	over	the	key-value	pairs.	Use	the	Fabric
run()	operation	to	send	the	command	to	the	remote	hosts:

#	fab	-f	fabfile_discoveryAndHealth.py	get_system_health

[10.10.10.140]	Executing	task	'get_system_health'

=============================uptime=============================

[10.10.10.140]	run:	uptime	|	awk	'{print	$3,$4}'

[10.10.10.140]	out:	3:26,	2

[10.10.10.140]	out:	

=============================kernel_release=============================

[10.10.10.140]	run:	uname	-r

[10.10.10.140]	out:	4.4.0-116-generic

[10.10.10.140]	out:	

=============================external_ip=============================

[10.10.10.140]	run:	curl	-s	ipecho.net/plain;echo

[10.10.10.140]	out:	<Author_Masked_The_Output_For_Privacy>

[10.10.10.140]	out:	

=============================hostname=============================

[10.10.10.140]	run:	hostname

[10.10.10.140]	out:	ubuntu-machine

[10.10.10.140]	out:	

=============================internal_ip=============================

[10.10.10.140]	run:	hostname	-I

[10.10.10.140]	out:	10.10.10.140	

[10.10.10.140]	out:	

=============================architecture=============================

[10.10.10.140]	run:	uname	-m

[10.10.10.140]	out:	x86_64

[10.10.10.140]	out:	

=============================disk_usage=============================

[10.10.10.140]	run:	df	-h|	egrep	'Filesystem|/dev/sda*|nvme*'

[10.10.10.140]	out:	Filesystem																												Size		Used	Avail	Use%	Mounted	

on

[10.10.10.140]	out:	/dev/sda1																													472M			58M		390M		13%	/boot

[10.10.10.140]	out:	

=============================used_memory=============================

[10.10.10.140]	run:	free		|	awk	'{print	$3}'	|	grep	-v	free	|	head	-n1

[10.10.10.140]	out:	75416

[10.10.10.140]	out:	

=============================logged_users=============================

[10.10.10.140]	run:	who

[10.10.10.140]	out:	root					pts/0								2018-04-08	23:36	(10.10.10.130)

[10.10.10.140]	out:	root					pts/1								2018-04-08	21:23	(10.10.10.1)

[10.10.10.140]	out:	

=============================top_load_average=============================

[10.10.10.140]	run:	top	-n	1	-b	|	grep	'load	average:'	|	awk	'{print	$10	$11	$12}'

[10.10.10.140]	out:	0.16,0.03,0.01

[10.10.10.140]	out:	

=============================cpu_usr_percentage=============================

[10.10.10.140]	run:	mpstat	|	grep	-A	1	'%usr'	|	tail	-n1	|	awk	'{print	$4}'

[10.10.10.140]	out:	0.02

[10.10.10.140]	out:	

=============================number_of_process=============================

[10.10.10.140]	run:	ps	-A	--no-headers	|	wc	-l

[10.10.10.140]	out:	131

[10.10.10.140]	out:	

=============================free_memory=============================

[10.10.10.140]	run:	free		|	awk	'{print	$4}'	|	grep	-v	shared	|	head	-n1

[10.10.10.140]	out:	5869268

[10.10.10.140]	out:	

The	same	task	(get_system_health)	will	also	be	executed	on	the	second	server,	and
will	return	the	output	to	the	Terminal:

[10.10.10.193]	Executing	task	'get_system_health'

=============================uptime=============================

[10.10.10.193]	run:	uptime	|	awk	'{print	$3,$4}'

[10.10.10.193]	out:	3:26,	2

[10.10.10.193]	out:	

=============================kernel_release=============================

[10.10.10.193]	run:	uname	-r

[10.10.10.193]	out:	3.10.0-693.el7.x86_64

[10.10.10.193]	out:	

=============================external_ip=============================

[10.10.10.193]	run:	curl	-s	ipecho.net/plain;echo

[10.10.10.193]	out:	<Author_Masked_The_Output_For_Privacy>

[10.10.10.193]	out:	

=============================hostname=============================

[10.10.10.193]	run:	hostname

[10.10.10.193]	out:	controller329

[10.10.10.193]	out:	

=============================internal_ip=============================

[10.10.10.193]	run:	hostname	-I

[10.10.10.193]	out:	10.10.10.193	

[10.10.10.193]	out:	

=============================architecture=============================

[10.10.10.193]	run:	uname	-m

[10.10.10.193]	out:	x86_64

[10.10.10.193]	out:	

=============================disk_usage=============================

[10.10.10.193]	run:	df	-h|	egrep	'Filesystem|/dev/sda*|nvme*'

[10.10.10.193]	out:	Filesystem															Size		Used	Avail	Use%	Mounted	on

[10.10.10.193]	out:	/dev/sda1																488M			93M		360M		21%	/boot

[10.10.10.193]	out:	

=============================used_memory=============================

[10.10.10.193]	run:	free		|	awk	'{print	$3}'	|	grep	-v	free	|	head	-n1

[10.10.10.193]	out:	287048

[10.10.10.193]	out:	

=============================logged_users=============================

[10.10.10.193]	run:	who

[10.10.10.193]	out:	root					pts/0								2018-04-08	23:36	(10.10.10.130)

[10.10.10.193]	out:	root					pts/1								2018-04-08	21:23	(10.10.10.1)

[10.10.10.193]	out:	

=============================top_load_average=============================

[10.10.10.193]	run:	top	-n	1	-b	|	grep	'load	average:'	|	awk	'{print	$10	$11	$12}'

[10.10.10.193]	out:	0.00,0.01,0.02

[10.10.10.193]	out:	

=============================cpu_usr_percentage=============================

[10.10.10.193]	run:	mpstat	|	grep	-A	1	'%usr'	|	tail	-n1	|	awk	'{print	$4}'

[10.10.10.193]	out:	0.00

[10.10.10.193]	out:	

=============================number_of_process=============================

[10.10.10.193]	run:	ps	-A	--no-headers	|	wc	-l

[10.10.10.193]	out:	190

[10.10.10.193]	out:	

=============================free_memory=============================

[10.10.10.193]	run:	free		|	awk	'{print	$4}'	|	grep	-v	shared	|	head	-n1

[10.10.10.193]	out:	32524912

[10.10.10.193]	out:	

Finally,	the	fabric	module	will	terminate	the	established	SSH	session	and
disconnect	from	the	two	machines	after	executing	all	of	the	tasks:

Disconnecting	from	10.10.10.140...	done.

Disconnecting	from	10.10.10.193...	done.

Note	that	we	could	redesign	the	previous	script	and	make	the	discovery_commands
and	health_commands	a	Fabric	task,	then	include	them	within	get_system_health().
When	we	execute	the	fab	command,	we	will	call	get_system_health(),	which	will
execute	the	other	two	functions;	we	will	get	the	same	output	as	before.	The
following	is	a	modified	sample	script:

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

from	fabric.api	import	*

from	fabric.context_managers	import	*

from	pprint	import	pprint

env.hosts	=	[

	'10.10.10.140',		#	Ubuntu	Machine

	'10.10.10.193',		#	CentOS	Machine

]

env.user	=	"root"

env.password	=	"access123"

def	discovery_commands():

	discovery_commands	=	{

	"uptime":	"uptime	|	awk	'{print	$3,$4}'",

	"hostname":	"hostname",

	"kernel_release":	"uname	-r",

	"architecture":	"uname	-m",

	"internal_ip":	"hostname	-I",

	"external_ip":	"curl	-s	ipecho.net/plain;echo",

	}

	for	operation,	command	in	discovery_commands.iteritems():

	print("=============================

{0}=============================".format(operation))

	output	=	run(command)

def	health_commands():

	health_commands	=	{

	"used_memory":	"free		|	awk	'{print	$3}'	|	grep	-v	free	|	head	-n1",

	"free_memory":	"free		|	awk	'{print	$4}'	|	grep	-v	shared	|	head	-n1",

	"cpu_usr_percentage":	"mpstat	|	grep	-A	1	'%usr'	|	tail	-n1	|	awk	'{print	$4}'",

	"number_of_process":	"ps	-A	--no-headers	|	wc	-l",

	"logged_users":	"who",

	"top_load_average":	"top	-n	1	-b	|	grep	'load	average:'	|	awk	'{print	$10	$11	$12}'",

	"disk_usage":	"df	-h|	egrep	'Filesystem|/dev/sda*|nvme*'"

	}

	for	operation,	command	in	health_commands.iteritems():

	print("=============================

{0}=============================".format(operation))

	output	=	run(command)

def	get_system_health():

	discovery_commands()

	health_commands()

Other	useful	features	in	Fabric
Fabric	has	other	useful	features,	such	as	roles	and	context	managers.

Fabric	roles
	

Fabric	can	define	roles	for	hosts,	and	run	only	the	tasks	to	role	members.	For
example,	we	might	have	a	bunch	of	database	servers	on	which	we	need	to
validate	whether	the	MySql	service	is	up,	and	other	web	servers	on	which	we
need	to	validate	whether	the	Apache	service	is	up.	We	can	group	these	hosts	into
roles,	and	execute	functions	based	on	those	roles:

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

from	fabric.api	import	*

env.hosts	=	[

	'10.10.10.140',		#	ubuntu	machine

	'10.10.10.193',		#	CentOS	machine

	'10.10.10.130',		

]

env.roledefs	=	{

	'webapps':	['10.10.10.140','10.10.10.193'],

	'databases':	['10.10.10.130'],

}

env.user	=	"root"

env.password	=	"access123"

@roles('databases')

def	validate_mysql():

	output	=	run("systemctl	status	mariadb")

@roles('webapps')

def	validate_apache():

	output	=	run("systemctl	status	httpd")

In	the	preceding	example,	we	used	the	Fabric	decorator	roles	(imported	from
fabric.api)	when	setting	env.roledef.	Then,	we	will	assign	either	webapp	or
databases	roles	to	each	server	(think	of	the	role	assignment	as	tagging	a	server).
This	will	give	us	flexibility	to	execute	the	validate_mysql	function	on	servers	with
database	role	only:

#	fab	-f	fabfile_roles.py	validate_mysql:roles=databases

[10.10.10.130]	Executing	task	'validate_mysql'

[10.10.10.130]	run:	systemctl	status	mariadb

[10.10.10.130]	out:	●	mariadb.service	-	MariaDB	database	server

[10.10.10.130]	out:				Loaded:	loaded	(/usr/lib/systemd/system/mariadb.service;	

enabled;	vendor	preset:	disabled)

[10.10.10.130]	out:				Active:	active	(running)	since	Sat	2018-04-07	19:47:35	EET;	1	

day	2h	ago

<output	omitted>

	

	

Fabric	context	managers
In	our	first	Fabric	script,	fabfile_first.py,	we	have	a	task	that	prompts	the	user	for
the	directory,	then	switches	to	it	and	prints	its	content.	This	is	done	by	using	;,
which	appends	two	Linux	commands	together.	However,	running	the	same	won't
always	work	on	other	operating	systems.	That's	where	the	Fabric	context
manager	comes	into	the	picture.

The	context	manager	maintains	the	directory	state	when	executing	commands.	It
usually	runs	with	Python	by	using	with-statement,	and,	inside	the	block,	you	can
write	any	of	the	previous	Fabric	operations.	Let's	look	at	an	example	to	explain
the	idea:

from	fabric.api	import	*

from	fabric.context_managers	import	*

env.hosts	=	[

	'10.10.10.140',		#	ubuntu	machine

	'10.10.10.193',		#	CentOS	machine

]

env.user	=	"root"

env.password	=	"access123"

def	list_directory():

	with	cd("/var/log"):

	run("ls")

In	the	preceding	example,	first,	we	globally	imported	everything	inside
fabric.context_managers;	then,	we	used	the	cd	context	manager	to	switch	to	the
specific	directory.	We	used	the	Fabric	run()	operation	to	execute	the	ls	on	that
directory.	This	is	the	same	as	writing	cd	/var/log	;	ls	on	the	SSH	session,	but	it
provides	a	more	Pythonic	way	to	develop	your	code.

The	with	statement	can	be	nested.	For	example,	we	can	rewrite	the	preceding
code	with	the	following:

def	list_directory_nested():

	with	cd("/var/"):

	with	cd("log"):

	run("ls")

Another	useful	context	manager	is	the	local	change	directory	(LCD).	This	is

the	same	as	the	cd	context	manager	in	the	previous	example,	but	it	works	on	the
local	machine	that	runs	fabfile.	We	can	use	it	to	change	the	context	to	a	specific
directory	(for	example,	to	upload	or	download	a	file	to/from	the	remote	machine,
then	change	back	to	the	execution	directory	automatically):

def	uploading_file():

	with	lcd("/root/"):

	put("VeryImportantFile.txt")

The	prefix	context	manager	will	accept	a	command	as	input	and	execute	it	before
any	other	commands,	inside	the	with	block.	For	example,	you	can	source	a	file	or
a	Python	virtual	env	wrapper	script	before	running	each	command	to	set	up	your
virtual	environment:

def	prefixing_commands():

	with	prefix("source	~/env/bin/activate"):

	sudo('pip	install	wheel')

	sudo("pip	install	-r	requirements.txt")

	sudo("python	manage.py	migrate")

This	is	actually	equivalent	to	writing	the	following	command	in	the	Linux	shell:

source	~/env/bin/activate	&&	pip	install	wheel

source	~/env/bin/activate	&&	pip	install	-r	requirements.txt

source	~/env/bin/activate	&&	python	manage.py	migrate

The	final	context	manager	is	shell_env(new_path,	behavior='append'),	which	can	alter
the	shell	environmental	variables	for	wrapped	commands;	so,	any	calls	inside	of
that	block	will	take	the	modified	path	into	consideration:

def	change_shell_env():

	with	shell_env(test1='val1',	test2='val2',	test3='val3'):

	run("echo	$test1")	#This	command	run	on	remote	host

	run("echo	$test2")

	run("echo	$test3")

								local("echo	$test1")	#This	command	run	on	local	host

Note	that	after	the	operation	is	done,	Fabric	will	restore	the	old	environments	back	to	the
original	one.

Summary
Fabric	is	a	fantastic	and	powerful	tool	that	automates	tasks,	usually	in	remote
machines.	It	integrates	well	with	Python	scripts,	providing	easy	access	to	the
SSH	suite.	You	can	develop	many	fab	files	for	different	tasks	and	integrate	them
together	to	create	an	automation	workflow	that	includes	deploying,	restarting,
and	stopping	servers	or	processes.

In	the	next	chapter,	we	will	learn	about	collecting	data	and	generating	recurring
reports	for	system	monitoring.

	

Generating	System	Reports	and
System	Monitoring
	

Collecting	data	and	generating	recurring	system	reports	are	essential	tasks	for
any	system	administrator,	and	automating	these	tasks	can	help	us	to	discover
issues	early	on,	in	order	to	provide	solutions	for	them.	In	this	chapter,	we	will
see	some	proven	methods	for	automating	data	collection	from	servers	and
generating	that	data	into	formal	reports.	We	will	learn	how	to	manage	new	and
existing	users,	using	Python	and	Ansible.	Also,	we	will	dive	into	log	analysis
and	monitoring	the	system	Key	Performance	Indicators	(KPIs).	You	can
schedule	the	monitoring	scripts	to	run	on	a	regular	basis.

The	following	topics	will	be	covered	in	this	chapter:

Collecting	data	from	Linux
Managing	users	in	Ansible

	

	

Collecting	data	from	Linux
Native	Linux	commands	provide	useful	data	about	the	current	system	status	and
health.	However,	each	one	of	those	Linux	commands	and	utilities	are	focused	on
getting	data	from	only	one	aspect	of	the	system.	We	need	to	leverage	Python
modules	to	get	those	details	back	to	the	administrator	and	generate	useful	system
reports.

We	will	divide	the	reports	into	two	parts.	The	first	one	is	getting	general
information	about	the	system	by	using	the	platform	module,	while	the	second	part
is	exploring	the	hardware	resources	in	terms	of	the	CPU	and	memory.

We	will	start	by	leveraging	the	platform	module,	which	is	a	built-in	library	inside
of	Python.	The	platform	module	contains	many	methods	that	can	be	used	to	get
details	about	the	system	that	Python	operates	on:

import	platform

system	=	platform.system()

print(system)

Running	the	same	script	on	a	Windows	machine	will	result	in	different	outputs,
reflecting	the	current	system.	So,	when	we	run	it	on	a	Windows	PC,	we	will	get
Windows	as	the	output	from	the	script:

Another	useful	function	is	uname(),	which	does	the	same	job	as	the	Linux
command	(uname	-a):	retrieving	the	machine's	hostname,	architecture,	and	kernel,
but	in	a	structured	format,	so	that	you	can	match	any	value	by	referring	to	its
index:

import	platform

from	pprint	import	pprint

uname	=	platform.uname()

pprint(uname)

The	first	value	is	the	system	type,	which	we	get	using	the	system()	method,	and
the	second	value	is	the	hostname	of	the	current	machine.

You	can	explore	and	list	all	of	the	available	functions	inside	the	platform	module
by	using	autocomplete	in	PyCharm;	you	can	check	the	documentation	for	each
function	by	pressing	CTRL	+	Q:

The	second	part	of	designing	our	script	is	using	the	information	made	available
by	the	Linux	files	to	explore	the	hardware	configuration	in	the	Linux	machine.
Remember	that	the	CPU,	memory,	and	network	information	could	be	accessible
from	under	/proc/;	we	will	read	this	information	and	access	it	using	standard
open()	function	in	Python.	You	can	get	more	information	about	the	available
resources	by	reading	and	exploring	/proc/.

Script:

This	is	the	first	step	for	importing	the	platform	module.	It's	needed	only	for	this
task:

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

import	platform

This	snippet	contains	the	functions	used	in	this	exercise;	we	will	design	two
functions	-	check_feature()	and	get_value_from_string():

def	check_feature(feature,string):

	if	feature	in	string.lower():

	return	True

	else:

	return	False

def	get_value_from_string(key,string):

	value	=	"NONE"

	for	line	in	string.split("\n"):

	if	key	in	line:

	value	=	line.split(":")[1].strip()

	return	value

Finally,	the	following	is	the	main	body	of	the	Python	script,	which	contains	the
Python	logic	to	get	the	required	information:

cpu_features	=	[]

with	open('/proc/cpuinfo')	as	cpus:

	cpu_data	=	cpus.read()

	num_of_cpus	=	cpu_data.count("processor")

	cpu_features.append("Number	of	Processors:	{0}".format(num_of_cpus))

	one_processor_data	=	cpu_data.split("processor")[1]

				print	one_processor_data

				if	check_feature("vmx",one_processor_data):

	cpu_features.append("CPU	Virtualization:	enabled")

	if	check_feature("cpu_meltdown",one_processor_data):

	cpu_features.append("Known	Bugs:	CPU	Metldown	")

	model_name	=	get_value_from_string("model	name	",one_processor_data)

	cpu_features.append("Model	Name:	{0}".format(model_name))

	cpu_mhz	=	get_value_from_string("cpu	MHz",one_processor_data)

	cpu_features.append("CPU	MHz:	{0}".format((cpu_mhz)))

memory_features	=	[]

with	open('/proc/meminfo')	as	memory:

	memory_data	=	memory.read()

	total_memory	=	get_value_from_string("MemTotal",memory_data).replace("	kB","")

	free_memory	=	get_value_from_string("MemFree",memory_data).replace("	kB","")

	swap_memory	=	get_value_from_string("SwapTotal",memory_data).replace("	kB","")

	total_memory_in_gb	=	"Total	Memory	in	GB:	{0}".format(int(total_memory)/1024)

	free_memory_in_gb	=	"Free	Memory	in	GB:	{0}".format(int(free_memory)/1024)

	swap_memory_in_gb	=	"SWAP	Memory	in	GB:	{0}".format(int(swap_memory)/1024)

	memory_features	=	[total_memory_in_gb,free_memory_in_gb,swap_memory_in_gb]

This	part	is	used	to	print	the	information	obtained	from	the	previous	section:

print("============System	Information============")

print("""

System	Type:	{0}

Hostname:	{1}

Kernel	Version:	{2}

System	Version:	{3}

Machine	Architecture:	{4}

Python	version:	{5}

""".format(platform.system(),

	platform.uname()[1],

	platform.uname()[2],

	platform.version(),

	platform.machine(),

	platform.python_version()))

print("============CPU	Information============")

print("\n".join(cpu_features))

print("============Memory	Information============")

print("\n".join(memory_features))

In	the	preceding	example,	the	following	steps	were	performed:

1.	 First,	we	opened	/proc/cpuinfo	and	read	its	contents,	then	stored	the	result	in
cpu_data.

2.	 The	number	of	processors	inside	the	file	could	be	found	by	counting	the
keyword	processor	using	the	count()	String	function.

3.	 Then,	we	needed	to	get	the	options	and	features	available	for	each
processor.	For	that,	we	got	only	one	processor	entry	(since	they're	usually
identical	to	each	other)	and	passed	it	the	check_feature()	function.	This
method	accepts	the	feature	that	we	want	to	search	in	one	argument,	and	the
other	is	the	processor	data,	which	will	return	True	if	the	feature	is	available
in	the	processor	data.

4.	 The	processor	data	is	available	in	key-value	pairs.	So,	we	designed	the
get_value_from_string()	method,	which	accepts	the	key	name	and	will	search
for	its	corresponding	value	by	iterating	over	the	processor	data;	then,	we
will	split	on	the	:	delimiter	for	every	returned	key	value	pair	to	get	the	value
only.

5.	 All	of	these	values	are	added	to	the	cpu_feature	list	using	the	append()	method.
6.	 We	then	repeated	the	same	operation	with	the	memory	information	to	get

the	total,	free,	and	swap	memory.
7.	 Next,	we	used	the	platform's	built-in	methods,	such	as	system(),	uname(),	and

python_version(),	to	get	information	about	the	system.
8.	 At	the	end,	we	printed	the	report	that	contains	the	preceding	information.

The	script	output	can	be	seen	in	the	following	screenshot:

Another	way	to	represent	the	generated	data	is	to	leverage	the	matplotlib	library	that	we	used
in	Chapter	5,	Extracting	Useful	Data	for	Network	Devices,	to	visualize	data	over	time.

Sending	generated	data	through
email
The	report	generated	in	the	previous	section	provides	a	good	overview	of	the
resources	currently	on	the	system.	However,	we	can	tweak	the	script	and	extend
its	functionality	to	send	us	an	email	with	all	of	the	details.	This	is	very	useful	for
a	Network	Operation	Center	(NoC)	team,	which	can	receive	emails	from	a
monitored	system	based	on	specific	incidents	(HDD	failure,	high	CPU,	or
dropped	packets).	Python	has	a	built-in	library	called	smtplib,	where	it	leverages
the	Simple	Mail	Transfer	Protocol	(SMTP)	that	is	responsible	for	sending	and
receiving	emails	from	mail	servers.

This	requires	that	you	have	local	email	servers	on	your	machine,	or	that	you	use
one	of	the	free	online	email	services,	such	as	Gmail	or	Outlook.	For	this
example,	we	will	log	in	to	http://www.gmail.com	using	the	SMTP	and	send	email
with	our	data.

Without	further	ado,	we	will	modify	our	script	and	add	the	SMTP	support	to	it.

We	will	import	the	required	modules	into	Python.	Again,	smtplib	and	platform	are
needed	for	this	task:

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

import	smtplib

imp								ort	platform

This	is	the	part	of	the	function	that	contains	both	the	check_feature()	and
get_value_from_string()	functions:

def	check_feature(feature,string):

	if	feature	in	string.lower():

	return	True

	else:

	return	False

def	get_value_from_string(key,string):

	value	=	"NONE"

	for	line	in	string.split("\n"):

http://www.gmail.com

	if	key	in	line:

	value	=	line.split(":")[1].strip()

	return	value

Finally,	the	main	body	of	the	Python	script	is	as	follows,	containing	the	Python
logic	to	get	the	required	information:

cpu_features	=	[]

with	open('/proc/cpuinfo')	as	cpus:

	cpu_data	=	cpus.read()

	num_of_cpus	=	cpu_data.count("processor")

	cpu_features.append("Number	of	Processors:	{0}".format(num_of_cpus))

	one_processor_data	=	cpu_data.split("processor")[1]

				if	check_feature("vmx",one_processor_data):

	cpu_features.append("CPU	Virtualization:	enabled")

	if	check_feature("cpu_meltdown",one_processor_data):

	cpu_features.append("Known	Bugs:	CPU	Metldown	")

	model_name	=	get_value_from_string("model	name	",one_processor_data)

	cpu_features.append("Model	Name:	{0}".format(model_name))

	cpu_mhz	=	get_value_from_string("cpu	MHz",one_processor_data)

	cpu_features.append("CPU	MHz:	{0}".format((cpu_mhz)))

memory_features	=	[]

with	open('/proc/meminfo')	as	memory:

	memory_data	=	memory.read()

	total_memory	=	get_value_from_string("MemTotal",memory_data).replace("	kB","")

	free_memory	=	get_value_from_string("MemFree",memory_data).replace("	kB","")

	swap_memory	=	get_value_from_string("SwapTotal",memory_data).replace("	kB","")

	total_memory_in_gb	=	"Total	Memory	in	GB:	{0}".format(int(total_memory)/1024)

	free_memory_in_gb	=	"Free	Memory	in	GB:	{0}".format(int(free_memory)/1024)

	swap_memory_in_gb	=	"SWAP	Memory	in	GB:	{0}".format(int(swap_memory)/1024)

	memory_features	=	[total_memory_in_gb,free_memory_in_gb,swap_memory_in_gb]

Data_Sent_in_Email	=	""

Header	=	"""From:	PythonEnterpriseAutomationBot	<basim.alyy@gmail.com>

To:	To	Administrator	<basim.alyy@gmail.com>

Subject:	Monitoring	System	Report

"""

Data_Sent_in_Email	+=	Header

Data_Sent_in_Email	+="============System	Information============"

Data_Sent_in_Email	+="""

System	Type:	{0}

Hostname:	{1}

Kernel	Version:	{2}

System	Version:	{3}

Machine	Architecture:	{4}

Python	version:	{5}

""".format(platform.system(),

	platform.uname()[1],

	platform.uname()[2],

	platform.version(),

	platform.machine(),

	platform.python_version())

Data_Sent_in_Email	+="============CPU	Information============\n"

Data_Sent_in_Email	+="\n".join(cpu_features)

Data_Sent_in_Email	+="\n============Memory	Information============\n"

Data_Sent_in_Email	+="\n".join(memory_features)

At	the	end,	we	need	to	populate	the	variables	with	some	values	to	properly
connect	to	the	gmail	server:

fromaddr	=	'yyyyyyyyyyy@gmail.com'

toaddrs		=	'basim.alyy@gmail.com'

username	=	'yyyyyyyyyyy@gmail.com'

password	=	'xxxxxxxxxx'

server	=	smtplib.SMTP('smtp.gmail.com:587')

server.ehlo()

server.starttls()

server.login(username,password)

server.sendmail(fromaddr,	toaddrs,	Data_Sent_in_Email)

server.quit()

In	the	preceding	example,	the	following	applies:

1.	 The	first	part	is	the	same	as	the	original	example,	but	instead	of	printing	the
data	to	the	terminal,	we	add	it	to	the	Data_Sent_in_Email	variable.

2.	 The	Header	variable	represents	the	email	header	containing	the	sender's
address,	the	recipient's	address,	and	the	email's	subject.

3.	 We	use	the	SMTP()	class	inside	of	the	smtplib	module	to	connect	to	the	public
Gmail	SMTP	server	and	negotiate	the	TTLS	connection.	This	is	the	default
method	when	connecting	to	Gmail	servers.	We	hold	the	SMTP	connection
in	the	server	variable.

4.	 Now,	we	log	in	to	the	server	by	using	the	login()	method,	and	finally,	we	use
the	sendmail()	function	to	send	the	email.	sendmail()	accepts	three	arguments:
the	sender,	the	recipient,	and	the	email	body.

5.	 Finally,	we	close	the	connection	with	the	server:

Script	output

Using	the	time	and	date	modules
Great;	so	far,	we	have	been	able	to	send	custom	data	generated	from	our	servers
through	email.	However,	there	might	be	a	difference	in	time	between	the
generated	data	and	the	email's	delivery	time,	due	to	network	congestion	or	a
failure	in	the	mail	system,	or	any	other	reason.	So,	we	can't	depend	on	the	email
to	correlate	the	delivery	time	with	the	actual	event	time.

For	that	reason,	we	will	use	the	Python	datetime	module	to	follow	the	current	time
on	the	monitored	system.	This	module	can	format	the	time	in	many	attributes,
such	as	year,	month,	day,	hour,	and	minute.

Aside	from	that,	the	datetime	instance	from	the	datetime	module	is	actually	a
standalone	object	in	Python	(like	int,	string,	boolean,	and	so	on);	hence,	it	has	its
own	attributes	inside	of	Python.

To	convert	the	datetime	object	to	a	string,	you	can	use	the	strftime()	method,
which	is	available	as	an	attribute	inside	of	the	created	object.	Also,	it	provides	a
method	for	formatting	the	time	by	using	the	following	directives:

Directive Meaning

%Y Returns	the	year,	from	0001	to	9999

%m Returns	the	month	number

%d Returns	the	day	of	the	month

%H Returns	the	hour	number,	0-23

%M Returns	the	minutes,	0-59

%S Returns	the	seconds,0-59

	

So,	we	will	tweak	our	script	and	add	the	following	snippet	to	the	code:	from
datetime	import	datetime
time_now	=	datetime.now()
time_now_string	=	time_now.strftime("%Y-%m-%d	%H:%M:%S")
Data_Sent_in_Email	+=	"====Time	Now	is
{0}====\n".format(time_now_string)	

First,	we	imported	the	datetime	class	from	the	datetime	module.	Then,	we	created
the	time_now	object	using	the	datetime	class	and	the	now()	function,	which	returns	the
current	time	on	the	running	system.	Finally,	we	used	strftime(),	with	a	directive,
to	format	the	time	in	a	specific	format	and	convert	it	to	a	string	for	printing
(remember,	the	object	has	a	datetime	object).

The	script's	output	is	as	follows:	

Running	the	script	on	a	regular	basis
A	final	step	in	the	script	is	to	schedule	the	script	to	run	at	a	time	interval.	This
can	be	daily,	weekly,	hourly,	or	at	a	specific	time.	This	can	be	done	using	the	cron
job	on	Linux	systems.	cron	is	used	to	schedule	a	repeated	event,	such	as	cleaning
up	directories,	backing	up	databases,	rotating	logs,	or	anything	else	you	can
think	of.

To	view	the	current	jobs	scheduled,	use	the	following	command:	crontab	-l

To	edit	crontab,	use	the	-e	switch.	If	this	is	the	first	time	you	are	running	cron,	you
will	be	prompted	to	use	your	favorite	editor	(nano	or	vi).

A	typical	crontab	consists	of	five	stars,	each	one	representing	a	time	entry:

Field Values

Minutes 0-59

Hours 0-23

Day	of	the	month 1-31

Month 1-12

Day	of	the	week 0-6	(Sunday	-	Saturday)

	

For	example,	if	you	need	to	schedule	a	job	to	run	every	Friday	at	9:00	P.M.	you
will	use	the	following	entry:	0	21	*	*	5	/path/to/command

If	you	need	to	have	a	command	every	day	at	12:00	A.M.	(a	backup,	for
example),	use	the	following	cron	job:	0	0	*	*	*	/path/to/command

Also,	you	can	schedule	the	cron	to	run	at	every	specific	interval.	For	example,	if
you	need	to	run	a	job	every	5	minutes,	use	this	cron	job:	*/5	*	*	*	*
/path/to/command

Back	to	our	script;	we	can	schedule	it	to	run	every	day	at	7:30	AM:	30	7	*	*	*
/usr/bin/python	/root/Send_Email.py

Finally,	remember	to	save	the	cron	job	before	exiting.

It's	better	to	provide	a	full	command	path	to	Linux,	rather	than	a	relative	path,	to	avoid	any
potential	issues.

Managing	users	in	Ansible
Now,	we	will	discuss	how	to	manage	users	in	different	systems.

Linux	systems
Ansible	provides	powerful	user	management	modules	to	manage	different	tasks
on	a	system.	We	have	a	chapter	dedicated	to	discussing	Ansible	(Chapter	13,
Ansible	for	System	Administration),	but	in	this	chapter,	we	will	explore	its	power
for	managing	user	accounts	across	a	company's	infrastructure.

Sometimes,	companies	allow	root	access	to	all	users,	to	get	rid	of	the	headache
of	user	management;	this	is	not	a	good	solution	in	terms	of	security	and	auditing.
It's	the	best	practice	to	give	the	right	permissions	to	the	right	users,	and	to	revoke
them	once	users	leave	the	company.

Ansible	provides	an	unmatched	way	to	manage	users	across	multiple	servers,
through	either	password	or	password-less	(SSH	key)	access.

There	are	a	few	other	things	that	need	to	be	taken	into	consideration	when
creating	users	in	a	Linux	system.	The	user	must	have	a	shell	(such	as	Bash,	CSH,
ZSH,	and	so	on)	in	order	to	log	in	to	the	server.	Also,	the	user	should	have	a
home	directory	(usually	under	/home).	Finally,	the	user	must	be	in	a	group	that
determines	its	privileges	and	permissions.

Our	first	example	will	be	creating	a	user	with	an	SSH	key	in	the	remote	server,
using	the	ad	hoc	command.	The	key	source	is	at	the	ansible	tower,	while	we
execute	the	command	on	all	servers:

ansible	all	-m	copy	-a	"src=~/id_rsa	dest=~/.ssh/id_rsa	mode=0600"

The	second	example	is	creating	a	user	using	the	Playbook:

-	hosts:	localhost

		tasks:

				-	name:	create	a	username

						user:

								name:	bassem

								password:	"$crypted_value$"

								groups:

										-	root

								state:	present

								shell:	/bin/bash

								createhome:	yes

	home:	/home/bassem

Let's	look	at	the	task's	parameters:

In	our	tasks,	we	use	a	user	module	that	contains	several	parameters,	such	as
name,	that	set	the	username	for	the	user.
The	second	parameter	is	password,	where	we	set	the	user's	password,	but	in	a
crypted	format.	You	need	to	use	the	mkpasswd	command,	which	prompts	you
for	the	password	and	will	generate	the	hash	value.
groups	is	a	list	of	groups	that	the	user	belongs	to;	hence,	the	user	will	inherit
the	permissions.	You	can	use	comma-separated	values	in	this	field.
state	is	used	to	tell	Ansible	whether	the	user	will	be	created	or	deleted.
You	can	define	the	user	shell	used	for	remote	access	in	the	shell	parameter.
createhome	and	home	are	parameters	used	to	specify	the	user's	home	location.

Another	parameter	is	ssh_key_file,	which	specifies	the	SSH	filename.	Also,	the
ssh_key_passphrase	will	specify	the	passphrase	for	the	SSH	key.

Microsoft	Windows
Ansible	provides	the	win_user	module	to	manage	local	Windows	user	accounts.
This	is	very	useful	when	creating	users	on	active	directory	domains	or	Microsoft
SQL	databases	(mssql),	or	when	creating	default	accounts	on	normal	PCs.	The
following	example	will	create	a	user	called	bassem	and	give	it	the	password
access123.	The	difference	here	is	that	the	password	is	given	in	plain	text	and	not	in
the	crypted	value,	as	in	the	Unix-based	system:

-	hosts:	localhost

		tasks:

				-	name:	create	user	on	windows	machine

						win_user:

								name:	bassem

								password:	'access123'

	password_never_expires:	true

	account_disabled:	no

	account_locked:	no

	password_expired:	no

	state:	present

								groups:

										-	Administrators

										-	Users

The	password_never_expires	parameter	will	prevent	Windows	from	expiring	the
password	after	a	specific	time;	this	is	useful	when	creating	admin	and	default
accounts.	On	the	other	hand,	password_expired,	if	set	to	yes,	will	require	the	user	to
enter	a	new	password	and	change	it	upon	first	login.

The	groups	parameter	will	add	the	user	from	a	listed	value	or	comma-separated
list	of	groups.	This	will	depend	on	the	groups_action	parameter,	and	could	be	add,
replace,	or	remove.

Finally,	the	state	will	tell	Ansible	what	should	be	done	to	the	user.	This
parameter	could	be	present,	absent,	or	query.

Summary
In	this	chapter,	we	learned	about	collecting	data	and	reports	from	Linux
machines	and	alerting	through	email	using	time	and	date	modules.	We	also
learned	how	to	manage	users	in	Ansible.

In	the	next	chapter,	we	will	learn	how	to	interact	with	DBMS	using	Python
connectors.

Interacting	with	the	Database
	

In	previous	chapters,	we	generated	several	different	reports,	using	many	Python
utilities	and	tools.	In	this	chapter,	we	will	utilize	Python	libraries	to	connect	to
external	databases	and	submit	the	data	we	have	generated.	This	data	can	then	be
accessed	by	external	applications	to	get	information.

Python	provides	a	wide	range	of	libraries	and	modules	that	cover	managing	and
working	on	popular	Database	Management	Systems	(DBMSes),	such	as
MySQL,	PostgreSQL,	and	Oracle.	In	this	chapter,	we	will	learn	how	to	interact
with	a	DBMS	and	fill	it	with	our	own	data.

The	following	topics	will	be	covered	in	this	chapter:

Installing	MySQL	on	an	automation	server
Accessing	the	MySQL	database	from	Python

	

	

Installing	MySQL	on	an	automation
server
	

The	first	thing	that	we	need	to	do	is	set	up	a	database.	In	the	following	steps,	we
will	cover	how	to	install	the	MySQL	database	on	our	automation	server,	which
we	created	in	Chapter	8,	Preparing	a	Lab	Environment.	Basically,	you	will	need	a
Linux-based	machine	(CentOS	or	Ubuntu)	with	an	internet	connection	to
download	the	SQL	packages.	MySQL	is	an	open	source	DBMS	that	uses	a
relational	database	and	the	SQL	language	to	interact	with	data.	In	CentOS	7,
MySQL	is	replaced	with	another,	forked	version,	called	MariaDB;	both	have	the
same	source	code,	with	some	enhancements	in	MariaDB.

Follow	these	steps	to	install	MariaDB:

1.	 Use	the	yum	package	manager	(or	apt,	in	the	case	of	Debian-based	systems)
to	download	the	mariadb-server	package,	as	shown	in	the	following	snippet:

yum	install	mariadb-server	-y

2.	 Once	the	installation	has	completed	successfully,	start	the	mariadb	daemon.
Also,	we	need	to	enable	it	at	the	operating	system	startup	using	the	systemd
command:

systemctl	enable	mariadb	;	systemctl	start	mariadb

Created	symlink	from	/etc/systemd/system/multi-

user.target.wants/mariadb.service	to	/usr/lib/systemd/system/mariadb.service.

3.	 Validate	the	database	status	by	running	the	following	command,	and	make
sure	that	the	output	contains	Active:active	(running):

systemctl	status	mariadb

●	mariadb.service	-	MariaDB	database	server

			Loaded:	loaded	(/usr/lib/systemd/system/mariadb.service;	enabled;	vendor	

preset:	disabled)

			Active:	active	(running)	since	Sat	2018-04-07	19:47:35	EET;	1min	34s	ago

	

	

Securing	the	installation
The	next,	logical	step	after	installation	is	securing	it.	MariaDB	includes	a
security	script	that	changes	the	options	inside	the	MySQL	configuration	files,
like	creating	the	root	password	for	accessing	the	database	and	allowing	remote
access.	Run	the	following	commands	to	launch	the	script:

mysql_secure_installation

The	first	prompt	asks	you	to	provide	the	root	password.	This	root	password	is
not	the	Linux	root	username,	but	the	root	password	for	the	MySQL	database;
since	this	is	a	fresh	installation,	we	have	not	set	it	yet,	so	we	will	simply	press
Enter	to	go	to	the	next	step:

Enter	current	password	for	root	(enter	for	none):	<PRESS_ENTER>

The	script	will	suggest	setting	the	password	for	the	root.	We	will	accept	the
suggestion	by	pressing	Y	and	entering	the	new	password:

Set	root	password?	[Y/n]	Y

New	password:EnterpriseAutomation

Re-enter	new	password:EnterpriseAutomation

Password	updated	successfully!

Reloading	privilege	tables..

	...	Success!

The	following	prompts	will	suggest	removing	the	anonymous	users	from
administrating	and	accessing	the	database,	which	is	highly	recommended:

Remove	anonymous	users?	[Y/n]	y

	...	Success!

You	can	run	SQL	commands	from	a	remote	machine	to	the	database	hosted	in
your	automation	servers;	this	requires	you	to	give	a	special	privilege	to	root
users,	so	they	can	access	the	database	remotely:

Disallow	root	login	remotely?	[Y/n]	n

	...	skipping.

Finally,	we	will	remove	the	testing	database,	which	anyone	can	access,	and
reload	the	privileges	tables	to	ensure	that	all	changes	will	take	effect

immediately:

Remove	test	database	and	access	to	it?	[Y/n]	y

	-	Dropping	test	database...

	...	Success!

	-	Removing	privileges	on	test	database...

	...	Success!

Reload	privilege	tables	now?	[Y/n]	y

	...	Success!

Cleaning	up...

All	done!		If	you've	completed	all	of	the	above	steps,	your	MariaDB

installation	should	now	be	secure.

Thanks	for	using	MariaDB!

We	have	finished	securing	the	installation;	now,	let's	validate	it.

Verifying	the	database	installation
The	first	step	after	MySQL	installation	is	to	validate	it.	We	need	to	verify	that
the	mysqld	daemon	has	started	and	is	listening	to	port	3306.	We	will	do	that	by
running	the	netstat	command	and	grep	on	the	listening	port:

netstat	-antup	|	grep	-i	3306

tcp			0			0	0.0.0.0:3306						0.0.0.0:*									LISTEN						3094/mysqld

This	means	that	the	mysqld	service	can	accept	incoming	connections	from	any	IP
over	the	port	3306.

If	you	have	iptables	running	on	your	machine,	you	need	to	add	a	rule	to	INPUT	a	chain,	in	order
to	allow	remote	hosts	to	connect	to	the	MySQL	database.	Also,	validate	that	SELINUX	has	the
proper	policies.

The	second	verification	is	through	connecting	to	the	database	using	the	mysqladmin
utility.	This	tool	is	included	in	MySQL	clients	and	allows	you	to	execute
commands	remotely	(or	locally)	on	the	MySQL	database:

mysqladmin	-u	root	-p	ping

Enter	password:EnterpriseAutomation

mysqld	is	alive

Switch	Name Meaning
-u Specifies	the	username.

-p
Makes	MySQL	prompt	you	with	the	username's
password.

ping
Operation	name	to	validate	whether	the	MySQL
database	is	alive	or	not.

	

The	output	indicates	that	the	MySQL	installation	has	completed	successfully,
and	we're	ready	to	move	to	the	next	step.

Accessing	the	MySQL	database	from
Python
The	Python	developer	creates	the	MySQLdb	module,	which	provides	a	utility	to
interact	and	manage	the	database	from	a	Python	script.	This	module	can	be
installed	using	Python's	pip,	or	with	an	operating	system	package	manager,	such
as	yum	or	apt.

To	install	the	package,	use	the	following	command:

yum	install	MySQL-python

Verify	the	installation	as	follows:

[root@AutomationServer	~]#	python

Python	2.7.5	(default,	Aug		4	2017,	00:39:18)	

[GCC	4.8.5	20150623	(Red	Hat	4.8.5-16)]	on	linux2

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>	import	MySQLdb

>>>	

Since	the	module	has	imported	without	any	errors,	we	know	that	the	Python
module	has	successfully	installed.

We	will	now	access	the	database	through	the	console	and	create	a	simple
database	called	TestingPython,	with	one	table	inside	it.	We	will	then	connect	to	it
from	Python:

[root@AutomationServer	~]#	mysql	-u	root	-p

Enter	password:	EnterpriseAutomation

Welcome	to	the	MariaDB	monitor.		Commands	end	with	;	or	\g.

Your	MariaDB	connection	id	is	12

Server	version:	5.5.56-MariaDB	MariaDB	Server

Copyright	(c)	2000,	2017,	Oracle,	MariaDB	Corporation	Ab	and	others.

Type	'help;'	or	'\h'	for	help.	Type	'\c'	to	clear	the	current	input	statement.

MariaDB	[(none)]>	CREATE	DATABASE	TestingPython;

Query	OK,	1	row	affected	(0.00	sec)

In	the	preceding	statements,	we	connected	to	the	database	using	the	MySQL
utility,	then	used	the	SQL	CREATE	command	to	create	a	blank,	new	database.

You	can	verify	the	newly	created	database	by	using	the	following	commands:

MariaDB	[(none)]>	SHOW	DATABASES;

+--------------------+

|	Database											|

+--------------------+

|	information_schema	|

|	TestingPython						|

|	mysql														|

|	performance_schema	|

+--------------------+

4	rows	in	set	(0.00	sec)

It's	not	mandatory	to	write	SQL	commands	in	uppercase;	however,	it's	a	best	practice,	in
order	to	differentiate	them	from	variables	and	other	operations.

We	need	to	switch	to	the	new	database:

MariaDB	[(none)]>	use	TestingPython;

Database	changed

Now,	execute	the	following	command	to	create	a	new	table	inside	the	database:

MariaDB	[TestingPython]>	CREATE	TABLE	TestTable	(id	INT	PRIMARY	KEY,	fName	VARCHAR(30),	

lname	VARCHAR(20),	Title	VARCHAR(10));

Query	OK,	0	rows	affected	(0.00	sec)

When	you're	creating	a	table,	you	should	specify	the	column	type.	For	example,
fname	is	a	string	with	a	maximum	of	30	characters,	while	id	is	an	integer.

Verify	the	table	creation	as	follows:

MariaDB	[TestingPython]>	SHOW	TABLES;

+-------------------------+

|	Tables_in_TestingPython	|

+-------------------------+

|	TestTable															|

+-------------------------+

1	row	in	set	(0.00	sec)

MariaDB	[TestingPython]>	describe	TestTable;

+-------+-------------+------+-----+---------+-------+

|	Field	|	Type								|	Null	|	Key	|	Default	|	Extra	|

+-------+-------------+------+-----+---------+-------+

|	id				|	int(11)					|	NO			|	PRI	|	NULL				|							|

|	fName	|	varchar(30)	|	YES		|					|	NULL				|							|

|	lname	|	varchar(20)	|	YES		|					|	NULL				|							|

|	Title	|	varchar(10)	|	YES		|					|	NULL				|							|

+-------+-------------+------+-----+---------+-------+

4	rows	in	set	(0.00	sec)

Querying	the	database
At	this	point,	our	database	is	ready	for	some	Python	script.	Let's	create	a	new
Python	file	and	provide	database	parameters:

import	MySQLdb

SQL_IP	="10.10.10.130"

SQL_USERNAME="root"

SQL_PASSWORD="EnterpriseAutomation"

SQL_DB="TestingPython"

sql_connection	=	MySQLdb.connect(SQL_IP,SQL_USERNAME,SQL_PASSWORD,SQL_DB)

print	sql_connection

The	parameters	provided	(SQL_IP,	SQL_USERNAME,	SQL_PASSWORD,	and	SQL_DB)	are	needed
to	establish	the	connection	and	authenticate	against	the	database	on	port	3306.

The	following	table	mentions	the	parameters	and	their	meaning:

Parameter Meaning

host
The	server	IP	address	that	has	the	mysql
installation.

user
The	username	with	administrative	privileges
over	the	connected	database.

passwd
The	password	created	using	the
mysql_secure_installation	script.

db The	database	name.

	

The	output	will	be	as	follows:

<_mysql.connection	open	to	'10.10.10.130'	at	1cfd430>

The	returned	object	indicates	that	the	connection	has	successfully	opened	to	the
database.	Let's	use	this	object	to	create	the	SQL	cursor	that	is	used	to	execute	the
actual	commands:

cursor	=	sql_connection.cursor()

cursor.execute("show	tables")

You	can	have	many	cursors	associated	with	a	single	connection,	and	any	change
in	one	cursor	will	be	immediately	reported	to	other	ones,	as	you	have	the	same
connection	opened.

The	cursor	has	two	main	methods:	execute()	and	fetch*().

The	execute()	method	is	used	to	send	commands	to	the	database	and	return	the
query	results,	while	the	fetch*()	method	has	three	flavors:

Method	Name Description

fetchone()
Fetches	only	one	record	from	the	output,
regardless	of	the	number	of	returned	rows.

fetchmany(num)
Returns	the	number	of	records	specified
inside	the	method.

fetchall() Returns	all	records.

	

Since	fetchall()	is	a	generic	method	that	fetches	either	one	record	or	all	records,
we	will	use	it:

output	=	cursor.fetchall()

print(output)

#	python	mysql_simple.py

(('TestTable',),)

Inserting	records	into	the	database
The	MySQLdb	module	allows	us	to	insert	records	into	the	database	using	the	same
cursor	operation.	Remember	that	the	execute()	method	can	be	used	for	both
insertion	and	query.	Without	further	ado,	we	will	change	our	script	a	bit	and
provide	the	following	insert	commands:

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

import	MySQLdb

SQL_IP	="10.10.10.130"

SQL_USERNAME="root"

SQL_PASSWORD="EnterpriseAutomation"

SQL_DB="TestingPython"

sql_connection	=	MySQLdb.connect(SQL_IP,SQL_USERNAME,SQL_PASSWORD,SQL_DB)

employee1	=	{

	"id":	1,

	"fname":	"Bassim",

	"lname":	"Aly",

	"Title":	"NW_ENG"

}

employee2	=	{

	"id":	2,

	"fname":	"Ahmed",

	"lname":	"Hany",

	"Title":	"DEVELOPER"

}

employee3	=	{

	"id":	3,

	"fname":	"Sara",

	"lname":	"Mosaad",

	"Title":	"QA_ENG"

}

employee4	=	{

	"id":	4,

	"fname":	"Aly",

	"lname":	"Mohamed",

	"Title":	"PILOT"

}

employees	=	[employee1,employee2,employee3,employee4]

cursor	=	sql_connection.cursor()

for	record	in	employees:

	SQL_COMMAND	=	"""INSERT	INTO	TestTable(id,fname,lname,Title)	VALUES	

({0},'{1}','{2}','{3}')""".format(record['id'],record['fname'],record['lname'],record['Title'

	print	SQL_COMMAND

				try:

	cursor.execute(SQL_COMMAND)

	sql_connection.commit()

	except:

	sql_connection.rollback()

sql_connection.close()

In	the	preceding	example,	the	following	applies:

We	defined	four	employee	records	as	a	dictionary.	Each	one	has	an	id,	fname,
lname,	and	title,	in	keys,	with	different	values	for	each.
Then,	we	grouped	them	using	employees,	which	is	a	variable	of	the	list	type.

A	for	loop	was	created	to	iterate	over	the	employees	list	and,	inside	the	loop,
we	formatted	the	insert	SQL	command	and	used	the	execute()	method	to
push	the	data	to	the	SQL	database.	Notice	that	it's	not	required	to	add	a
semicolon	(;)	after	the	command	inside	the	execute	function,	as	it	will	be
added	automatically.
After	each	successful	execution	of	the	SQL	command,	the	commit()	operation
will	be	used	to	force	the	database	engine	to	commit	the	data;	otherwise,	the
connection	will	be	rolled	back.
Finally,	use	the	close()	function	to	terminate	the	established	SQL
connection.

Closing	the	database	connection	means	that	all	the	cursors	are	sent	to	Python	garbage
collectors	and	will	be	unusable.	Also,	note	that	when	you	close	the	connection	without
committing	the	changes,	it	will	make	the	database	engine	immediately	roll	back	all
transactions.

The	script's	output	is	as	follows:

#	python	mysql_insert.py

INSERT	INTO	TestTable(id,fname,lname,Title)	VALUES	(1,'Bassim','Aly','NW_ENG')

INSERT	INTO	TestTable(id,fname,lname,Title)	VALUES	(2,'Ahmed','Hany','DEVELOPER')

INSERT	INTO	TestTable(id,fname,lname,Title)	VALUES	(3,'Sara','Mosad','QA_ENG')

INSERT	INTO	TestTable(id,fname,lname,Title)	VALUES	(4,'Aly','Mohamed','PILOT')

You	can	query	the	database	through	the	MySQL	console	to	verify	that	the	data
has	been	submitted	to	the	database:

MariaDB	[TestingPython]>	select	*	from	TestTable;

+----+--------+---------+-----------+

|	id	|	fName		|	lname			|	Title					|

+----+--------+---------+-----------+

|		1	|	Bassim	|	Aly					|	NW_ENG				|

|		2	|	Ahmed		|	Hany				|	DEVELOPER	|

|		3	|	Sara			|	Mosaad		|	QA_ENG				|

|		4	|	Aly				|	Mohamed	|	PILOT					|

+----+--------+---------+-----------+

Now,	returning	to	our	Python	code,	we	can	use	the	execute()	function	again;	this
time,	we	use	it	to	select	all	the	data	that	we	inserted	inside	the	TestTable:

import	MySQLdb

SQL_IP	="10.10.10.130"

SQL_USERNAME="root"

SQL_PASSWORD="EnterpriseAutomation"

SQL_DB="TestingPython"

sql_connection	=	MySQLdb.connect(SQL_IP,SQL_USERNAME,SQL_PASSWORD,SQL_DB)

#	print	sql_connection

cursor	=	sql_connection.cursor()

cursor.execute("select	*	from	TestTable")

output	=	cursor.fetchall()

print(output)

The	script's	output	is	as	follows:

python	mysql_show_all.py	

((1L,	'Bassim',	'Aly',	'NW_ENG'),	(2L,	'Ahmed',	'Hany',	'DEVELOPER'),	(3L,	'Sara',	

'Mosaa				d',	'QA_ENG'),	(4L,	'Aly',	'Mohamed',	'PILOT'))

The	L	character	after	the	id	value	in	the	previous	example	can	be	resolved	by	converting	the
data	to	integer	again	(in	Python),	using	the	int()	function.

Another	useful	attribute	inside	of	the	cursor	is	.rowcount.	This	attribute	will
indicate	how	many	rows	are	returned	as	a	result	of	the	last	.execute()	method.

Summary
In	this	chapter,	we	learned	how	to	interact	with	a	DBMS	using	Python
connectors.	We	installed	a	MySQL	database	on	our	automation	server,	and	then
verified	it.	Then,	we	accessed	the	MySQL	DB	using	a	Python	script,	and
performed	operations	on	it.

In	the	next	chapter,	we	will	learn	how	to	use	Ansible	for	system	administration.

	

Ansible	for	System	Administration
In	this	chapter,	we	will	explore	one	of	the	popular	automation	frameworks	used
by	thousands	of	network	and	system	engineers	called	Ansible,	Ansible	is	used	to
administrate	servers	and	network	devices	over	multiple	transport	protocols	such
as	SSH,	Netconf,	and	API	in	order	to	deliver	a	reliable	infrastructure.

We	will	start	first	by	learning	the	terminologies	used	in	ansible,	how	to	construct
an	inventory	file	that	contains	the	infrastructure	access	details,	Building	a	robust
Ansible	playbook	using	features	like	conditions,	loops,	and	template	rendering.

Ansible	belongs	to	the	configuration	management	class	of	software;	it	is	used	to
manage	the	configuration	life	cycle	on	multiple	different	devices	and	servers,
making	sure	that	the	same	steps	are	applied	on	all	of	them	and	help	to	create
Infrastructure	as	a	code	(IaaC)	environment.

The	following	topics	will	be	covered	in	this	chapter:

Ansible	and	its	terminology
Installing	Ansible	on	Linux
Using	Ansible	in	ad	hoc	mode
Create	your	first	playbook
Understanding	Ansible	conditions,	handlers,	and	loops
Working	with	Ansible	facts
Working	with	the	Ansible	template

Ansible	terminology
Ansible	is	an	automation	tool	and	a	complete	framework	that	provides	an
abstraction	layer	based	on	Python	tools.	Originally,	it	was	designed	to	handle
task	automation.	This	task	might	be	executed	on	a	single	server	or	on	thousands
of	servers	and	ansible	will	handle	them	without	any	problem;	later,	Ansible's
scope	extended	to	network	devices	and	cloud	providers.	Ansible	follows	the
concept	of	idempotency,	wherein	Ansible	instructions	can	run	the	same	task
multiple	times	and	always	give	the	same	configuration	on	all	devices	at	the	end,
reaching	a	desired	state	with	minimal	changes.	For	example,	if	we	run	Ansible	to
upload	a	file	to	a	specific	group	of	servers,	then	run	it	again,	Ansible	will	first
validate	if	the	file	already	exist	in	the	remote	destination	as	a	result	a	previous
execution	or	not.	if	it	exist,	then	the	ansible	won't	upload	it	again.	This	feature
called	idempotency.

Another	aspect	of	Ansible	is	that	it	is	agentless.	Ansible	doesn't	require	any
agents	to	be	installed	in	the	servers	before	it	runs	tasks.	It	leverages	the	SSH
connection	and	Python	standard	libraries	to	execute	tasks	on	remote	servers	and
return	the	output	to	the	Ansible	server.	Also,	it	doesn't	create	a	database	to	store
remote	machine	information,	but	depends	on	a	flat	text	file	called	inventory	to
store	all	required	server	information,	such	as	IP	addresses,	credentials,	and
infrastructure	categorization.	The	following	is	an	example	of	a	simple	inventory
file:	[all:children]
web-servers
db-servers

[web-servers]
web01	Ansible_ssh_host=192.168.10.10

[db-servers]
db01	Ansible_ssh_host=192.168.10.11
db02	Ansible_ssh_host=192.168.10.12

[all:vars]

Ansible_ssh_user=root
Ansible_ssh_pass=access123

[db-servers:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=access123

[local]

127.0.0.1	Ansible_connection=local	Ansible_python_interpreter="/usr/bin/python"

Notice	that	we	group	together	servers	that	perform	the	same	functions	in	our
infrastructure	(such	as	database	servers,	in	a	group	called	[db-servers];	the	same
goes	for	[web-servers]).	Then,	we	define	a	special	group,	called	[all],	that
combines	both	groups,	in	case	we	have	a	task	targeted	to	all	of	our	servers.

The	keyword	children,	in	[all:children],	means	that	the	entries	inside	the	group	are
also	groups	that	contain	hosts.

Ansible's	ad	hoc	mode	allows	users	to	execute	tasks	directly	from	the	Terminal,
towards	the	remote	servers.	Let's	suppose	that	you	want	to	update	specific
packages	on	specific	types	of	servers,	such	as	databases	or	web	backend	servers,
to	resolve	a	new	bug.	At	the	same	time,	you	don't	want	to	go	all	the	way	to
developing	a	complex	playbook	to	execute	a	simple	task.	By	leveraging	the	ad
hoc	mode	in	Ansible,	you	can	execute	any	command	on	the	remote	servers	by
typing	it	on	the	Ansible	host	Terminal.	Even	some	modules	can	be	executed	in
the	Terminal;	we	will	see	that	in	the	Using	Ansible	in	ad	hoc	mode	section.

Installing	Ansible	on	Linux
The	Ansible	package	is	available	on	all	major	Linux	distributions.	In	this
section,	we	will	install	it	onto	both	Ubuntu	and	CentOS	machines.	The	Ansible
2.5	release	was	used	at	the	time	of	developing	this	book,	and	it	provides	support
for	both	Python	2.6	and	Python	2.7.	Also,	starting	from	version	2.2,	Ansible
provides	a	tech	preview	for	Python	3.5+.

	

On	RHEL	and	CentOS
You	will	need	to	have	the	EPEL	repository	installed	and	enabled	before
installing	Ansible.	To	do	so,	use	the	following	command:

sudo	yum	install	epel-release

Then,	proceed	with	the	Ansible	package	installation,	as	shown	in	the	following
command:

sudo	yum	install	Ansible

Ubuntu
First,	make	sure	that	your	system	is	up	to	date,	and	add	the	Ansible	channel.
Finally,	install	the	Ansible	package	itself,	as	shown	in	the	following	snippet:	$
sudo	apt-get	update	$	sudo	apt-get	install	software-properties-common	$
sudo	apt-add-repository	ppa:Ansible/Ansible	$	sudo	apt-get	update	$	sudo
apt-get	install	Ansible

For	more	installation	flavors,	you	can	check	the	official	Ansible	website	(http://d
ocs.Ansible.com/Ansible/latest/installation_guide/intro_installation.html?#installing-the-

control-machine).

You	can	validate	your	installation	by	running	Ansible	--version	to	check	the

installed	version:	

The	Ansible	configuration	files	are	usually	stored	in	/etc/Ansible,	with	the	filename	Ansible.cfg.

http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine

Using	Ansible	in	ad	hoc	mode
Ansible	ad	hoc	mode	is	used	when	you	need	to	execute	simple	operations	on
remote	machines,	without	creating	complex	and	persistent	tasks.	This	is	where	a
user	usually	starts	when	they	first	work	on	Ansible,	before	performing	advanced
tasks	in	a	playbook.

Executing	the	ad-hoc	command	requires	two	things.	First,	you	will	need	the	host
or	group	from	the	inventory	file;	secondly,	you	will	need	the	Ansible	module
that	you	want	to	execute	towards	the	target	machine:

1.	 First,	let's	define	our	hosts	and	add	the	CentOS	and	Ubuntu	machines	in	a
separate	group:

[all:children]

centos-servers

ubuntu-servers

[centos-servers]

centos-machine01	Ansible_ssh_host=10.10.10.193

[ubuntu-servers]

ubuntu-machine01	Ansible_ssh_host=10.10.10.140

[all:vars]

Ansible_ssh_user=root

Ansible_ssh_pass=access123

[centos-servers:vars]

Ansible_ssh_user=root

Ansible_ssh_pass=access123

[ubuntu-servers:vars]

Ansible_ssh_user=root

Ansible_ssh_pass=access123

[routers]

gateway	ansible_ssh_host	=	10.10.88.110	ansible_ssh_user=cisco	

ansible_ssh_pass=cisco

[local]

127.0.0.1	Ansible_connection=local	Ansible_python_interpreter="/usr/bin/python"

2.	 Save	this	file	as	hosts,	under	/root/	or	your	home	directory	in	the
AutomationServer.

3.	 Then,	run	the	Ansible	command	with	the	ping	module:

#	Ansible	-i	hosts	all	-m	ping

The	-i	argument	will	accept	the	inventory	file	that	we	added,	while	the	-m
argument	will	specify	the	name	of	the	Ansible	module.

After	running	the	command,	you	will	get	the	following	output,	indicating	a
failure	in	connecting	to	the	remote	machine:	ubuntu-machine01	|	FAILED!	=>
{
"msg":	"Using	a	SSH	password	instead	of	a	key	is	not	possible	because
Host	Key	checking	is	enabled	and	sshpass	does	not	support	this.	Please	add
this	host's	fingerprint	to	your	known_hosts	file	to	manage	this	host."
}
centos-machine01	|	FAILED!	=>	{
"msg":	"Using	a	SSH	password	instead	of	a	key	is	not	possible	because
Host	Key	checking	is	enabled	and	sshpass	does	not	support	this.	Please	add
this	host's	fingerprint	to	your	known_hosts	file	to	manage	this	host."
}

This	happened	because	the	remote	machines	are	not	inside	of	the	known_hosts	of
the	Ansible	server;	it	can	be	solved	through	two	methods.

The	first	method	is	SSHing	to	them	manually,	which	will	add	the	host	fingerprint
to	the	server.	Or,	you	can	completely	disable	host	key	checking	in	the	Ansible
configuration,	as	shown	in	the	following	snippet:	sed	-i	-e
's/#host_key_checking	=	False/host_key_checking	=	False/g'
/etc/Ansible/Ansible.cfg

sed	-i	-e	's/#	StrictHostKeyChecking	ask/	StrictHostKeyChecking	no/g'
/etc/ssh/ssh_config

Rerun	the	Ansible	command,	and	you	should	get	successful	output	from	the	three
machines:	127.0.0.1	|	SUCCESS	=>	{
"changed":	false,	
"ping":	"pong"
}
ubuntu-machine01	|	SUCCESS	=>	{
"changed":	false,	
"ping":	"pong"
}
centos-machine01	|	SUCCESS	=>	{

"changed":	false,	
"ping":	"pong"
}

The	ping	module	in	Ansible	does	not	perform	the	ICMP	operation	against	the	device.	It
actually	tries	to	log	in	to	the	device	by	using	the	SSH	with	provided	credentials;	if	the	login
succeeds,	it	will	return	the	pong	keyword	to	the	Ansible	host.

Another	useful	module	is	apt,	or	yum,	which	is	used	to	manage	the	package	on
either	an	Ubuntu	or	CentOS	server.	The	following	example	will	install	the	apache2
package	on	the	Ubuntu	machines:	#	Ansible	-i	hosts	ubuntu-servers	-m	apt	-a
"name=apache2	state=present"

The	state	in	the	apt	module	can	have	the	following	values:

State Action

absent Removes	the	package	from	the	system.

present Makes	sure	that	the	package	is	installed	on	the	system.

latest Ensures	that	the	package	is	in	the	latest	version.

	

You	can	access	the	Ansible	module	documentation	by	running	Ansible-doc
<module_name>;	you	will	see	the	full	options,	with	examples,	for	the	module.

The	service	module	is	used	to	manage	operation	and	current	status	of	the	service.
You	can	change	the	service	status	to	either	started,	restarted	or	stopped	in	the	state
option	and	ansible	will	run	the	appropriate	command	to	change	the	status.	In	the
meantime,	you	can	configure	whether	service	is	enabled	at	boot	time	or	disabled
by	configuring	the	enabled	.

#Ansible	-i	hosts	centos-servers	-m	service	-a	"name=httpd	state=stopped,	enabled=no"

Also,	you	can	restart	the	service	by	providing	the	service	name,	with	the	state	set
as	restarted:	#Ansible	-i	hosts	centos-servers	-m	service	-a	"name=mariadb
state=restarted"

The	other	way	to	run	Ansible	in	ad	hoc	mode	is	to	pass	the	command	directly	to
Ansible,	using	not	the	built-in	modules	but	the	-a	argument:	#Ansible	-i	hosts	all
-a	"ifconfig"

You	can	even	reboot	the	servers	by	running	the	reboot	command;	but	this	time,
we	will	only	run	it	against	the	CentOS	servers:	#Ansible	-i	hosts	centos-servers
-a	"reboot"

Sometimes,	you	will	need	to	run	the	command	(or	the	module)	using	a	different
user.	This	will	be	useful	when	you	run	a	script	on	a	remote	server	with	specific
permissions	assigned	to	a	user	different	than	the	SSH	user.	In	that	case,	we	will
add	the	-u,	--become,	and	--ask-become-pass	(-K)	switches.	This	will	make	Ansible	run
the	command	with	the	provided	username	and	prompt	you	for	the	user's
password:	#Ansible	-i	hosts	ubuntu-servers	--become-user	bassim	--ask-
become-pass	-a	"cat	/etc/sudoers"

How	Ansible	actually	works
Ansible	is	basically	written	in	Python,	However	it	use	it's	own	DSL	(Domain
Specific	Language).	You	can	write	using	this	DSL	and	ansible	will	convert	it	to
Python	on	remote	machines	to	execute	tasks.	So,	it	first	validates	the	task	syntax
and	copies	the	module	from	the	Ansible	host	to	the	remote	server,	and	then
executes	it	on	the	machine	itself	over	SSH.

The	result	from	the	execution	is	returned	back	to	the	Ansible	host	in	a	json
format,	so	you	can	match	any	returned	values	by	knowing	its	key:

In	the	case	of	network	devices	where	Python	is	installed	on	the	Network
Operating	System	(NOS),	Ansible	uses	either	an	API	or	netconf,	if	the	network
device	supports	it	(such	as	Juniper	and	Cisco	Nexus);	or,	it	just	executes
commands	using	the	paramiko	exec_command()	function,	and	returns	the	output	to
the	Ansible	host.	This	can	be	done	by	using	the	raw	module,	as	shown	in	the
following	snippet:

#	Ansible	-i	hosts	routers	-m	raw	-a	"show	arp"					

gateway	|	SUCCESS	|	rc=0	>>

Sat	Apr	21	01:33:58.391	CAIRO

Address									Age								Hardware	Addr			State						Type		Interface

85.54.41.9									-										45ea.2258.d0a9		Interface		ARPA		TenGigE0/2/0/0

10.88.18.1						-										d0b7.428b.2814		Satellite		ARPA		TenGigE0/2/0/0

192.168.100.1			-										00a7.5a3b.4193		Interface		ARPA		GigabitEthernet100/0/0/9

192.168.100.2			02:08:03			fc5b.3937.0b00		Dynamic				ARPA		\

Creating	your	first	playbook
Now	the	magic	party	can	begin.	An	Ansible	playbook	is	a	set	of	commands
(called	tasks)	that	need	to	be	executed	in	order,	and	it	describes	the	desired	state
of	the	hosts	after	execution	finishes.	Think	of	a	playbook	as	a	manual	that
contains	a	set	of	instructions	for	how	to	change	the	state	of	an	infrastructure;
each	instruction	depends	on	many	built-in	Ansible	modules	to	perform	the	tasks.
For	example,	you	may	have	a	playbook	that	is	used	to	build	web	applications
that	consist	of	SQL	servers,	to	act	as	backend	databases	and	nginx	web	servers.
The	playbook	will	have	a	list	of	tasks	to	perform	against	each	group	of	servers,
to	change	their	states	from	No-Exist	to	Present,	or	to	Restarted	or	Absent,	if	you	want
to	delete	the	web	app.

The	power	of	having	the	playbook,	over	the	ad	hoc	commands	is	that	you	can
use	it	to	configure	and	set	up	your	infrastructure	everywhere.	The	same
procedure	used	to	create	the	dev	environment	will	be	used	in	the	production
environment.	A	playbook	is	used	to	create	the	automation	workflow	that	runs	on
your	infrastructure:

Playbooks	are	written	with	YAML,	which	we	discussed	in	Chapter	6,
Configuration	Generator	with	Python	and	Jinja2.	A	playbook	consists	of
multiple	plays,	executed	against	a	set	of	hosts	that	are	defined	in	the	inventory

file.	The	hosts	will	be	converted	to	a	Python	list,	and	each	item	inside	the	list
will	be	called	a	play.	In	the	preceding	example,	the	db-servers	tasks	are	some	of
the	plays,	and	are	executed	against	the	db-servers	only.	During	playbook
execution,	you	can	decide	to	run	all	of	the	plays	in	the	file,	only	a	specific	play,
or	tasks	with	specific	tags,	regardless	of	which	play	they	belong	to.

Now,	let's	look	at	our	first	playbook,	to	get	the	look	and	feel	of	it:

-	hosts:	centos-servers

		remote_user:	root

		tasks:

				-	name:	Install	openssh

						yum:	pkg=openssh-server	state=installed

				-	name:	Start	the	openssh

						service:	name=sshd	state=started	enabled=yes

This	is	a	simple	playbook,	with	a	single	play	that	contains	two	tasks:

1.	 Install	openssh-server.
2.	 Start	the	sshd	service	after	installation,	and	make	sure	that	it's	available	at

the	boot	time.

Now,	we	need	to	apply	this	to	a	specific	host	(or	a	group	of	hosts).	So,	we	set	the
hosts	to	be	CentOS-servers,	defined	previously	in	the	inventory	file,	and	we	also	set
the	remote_user	to	be	the	root,	to	ensure	that	the	tasks	after	it	will	be	executed	with
root	permissions.

The	tasks	will	consist	of	the	names	and	the	Ansible	modules.	The	name	is	used
to	describe	the	task.	It's	not	mandatory	to	provide	names	for	your	tasks,	but	it's
recommended,	in	case	you	need	to	start	the	execution	from	a	specific	task.

The	second	part	is	the	Ansible	module,	which	is	mandatory.	In	our	example,	we
used	the	core	module	yum	to	install	the	openssh-server	package	onto	the	target
servers.	The	second	task	has	the	same	structure,	but	this	time,	we	will	use
another	core	module,	called	service,	to	start	and	enable	the	sshd	daemon.

A	final	note	is	to	watch	the	indentation	for	different	components	inside	of
Ansible.	For	example,	the	names	of	the	tasks	should	be	on	the	same	level,	while
the	tasks	should	align	with	the	hosts	on	the	same	line.

Let's	run	the	playbook	in	our	automation	server	and	check	the	output:

#Ansible-playbook	-i	hosts	first_playbook.yaml	

PLAY	[centos-servers]	

**

TASK	[Gathering	Facts]	

ok:	[centos-machine01]

TASK	[Install	openssh]	

ok:	[centos-machine01]

TASK	[Start	the	openssh]	

ok:	[centos-machine01]

PLAY	RECAP	

centos-machine01											:	ok=3				changed=0				unreachable=0				failed=0			

You	can	see	that	the	playbook	is	executed	on	centos-machine01,	and	the	tasks	are
executed	sequentially,	as	defined	in	the	playbook.

YAML	requires	that	you	preserve	the	indentation	level	and	don't	mix	between	the	tabs	and
spaces;	otherwise,	it	will	give	an	error.	Many	text	editors	and	IDEs	will	convert	the	tab	to	a
set	of	white	spaces.	An	example	of	that	option	is	shown	in	the	following	screenshot,	in	the
notepad++	editor	preferences:

Understanding	Ansible	conditions,
handlers,	and	loops
In	this	part	of	the	chapter,	we	will	look	at	some	of	the	advanced	features	in	the
Ansible	playbook.

Designing	conditions
An	Ansible	playbook	can	execute	tasks	(or	skip	them)	based	on	the	results	of
specific	conditions	inside	the	task—for	example,	when	you	want	to	install
packages	on	a	specific	family	of	operating	systems	(Debian	or	CentOS),	or	when
the	operating	system	is	a	particular	version,	or	even	when	the	remote	hosts	are
virtual,	not	bare	metal.	This	can	be	done	by	using	the	when	clause	inside	of	the
task.

Let's	enhance	the	previous	playbook	and	limit	the	openssh-server	installation	to
only	CentOS	based	systems,	so	that	it	does	not	give	an	error	when	it	hits	an
Ubuntu	server	that	uses	the	apt	module,	not	yum.

First,	we	will	add	the	following	two	sections	to	our	inventory	file,	to	group	the
CentOS	and	Ubuntu	machines	in	the	infra	section:

[infra:children]

centos-servers

ubuntu-servers

[infra:vars]

Ansible_ssh_user=root

Ansible_ssh_pass=access123

Then,	we	will	redesign	the	tasks	inside	of	the	playbook	to	have	the	when	clause,
which	limits	task	execution	to	only	CentOS	based	machines.	This	should	read	as
if	the	remote	machine	is	CentOS	based,	then	I	will	execute	the	task;	otherwise,	skip:

-	hosts:	infra

		remote_user:	root

		tasks:

				-	name:	Install	openssh

						yum:	pkg=openssh-server	state=installed

						when:	Ansible_distribution	==	"CentOS"

				-	name:	Start	the	openssh

						service:	name=sshd	state=started	enabled=yes

	when:	Ansible_distribution	==	"CentOS"

Let's	run	the	playbook:

#	Ansible-playbook	-i	hosts	using_when.yaml	

PLAY	[infra]	

TASK	[Gathering	Facts]	

ok:	[centos-machine01]

ok:	[ubuntu-machine01]

TASK	[Install	openssh]	

skipping:	[ubuntu-machine01]

ok:	[centos-machine01]

TASK	[Start	the	openssh]	

skipping:	[ubuntu-machine01]

ok:	[centos-machine01]

PLAY	RECAP	

centos-machine01											:	ok=3				changed=0				unreachable=0				failed=0		

ubuntu-machine01											:	ok=1				changed=0				unreachable=0				failed=0		

Notice	that	the	playbook	first	gathers	the	facts	about	the	remote	machines	(we
will	discuss	that	later	in	this	chapter),	and	then	checks	the	operating	system.	The
task	will	be	skipped	when	it	hits	an	ubuntu-machine01,	and	it	will	run	normally	on
the	CentOS.

You	can	also	have	multiple	conditions	that	need	to	be	true	in	order	to	run	the
task.	For	example,	you	can	have	the	following	playbook,	which	validates	two
things—first,	that	the	machine	is	based	on	Debian,	and	second,	that	it	is	a	virtual
machine,	not	a	baremetal:

-	hosts:	infra

		remote_user:	root

		tasks:

				-	name:	Install	openssh

						apt:	pkg=open-vm-tools	state=installed

						when:

								-	Ansible_distribution	==	"Debian"

								-	Ansible_system_vendor	==	"VMware,	Inc."

Running	this	playbook	will	result	in	the	following	output:

#	Ansible-playbook	-i	hosts	using_when_1.yaml	

PLAY	[infra]	

TASK	[Gathering	Facts]	

ok:	[centos-machine01]

ok:	[ubuntu-machine01]

TASK	[Install	openssh]	

skipping:	[centos-machine01]

ok:	[ubuntu-machine01]

PLAY	RECAP	

centos-machine01											:	ok=1				changed=0				unreachable=0				failed=0

ubuntu-machine01											:	ok=2				changed=0				unreachable=0				failed=0	

The	Ansible	when	clause	also	accepts	expressions.	For	example,	you	can	check
whether	a	specific	keyword	exists	in	the	returned	output	(that	you	saved	using
the	register	flag),	and,	based	on	that,	execute	the	task.

The	following	playbook	will	validate	the	OSPF	neighbor	status.	The	first	task
will	execute	show	ip	ospf	neighbor	on	the	routers	and	register	the	output	in	a
variable	called	neighbors.	The	next	task	will	check	for	EXSTART	or	EXCHANGE	in	the
returned	output;	if	found,	it	will	print	a	message	back	to	the	console:

hosts:	routers

tasks:

		-	name:	"show	the	ospf	neighbor	status"

				raw:	show	ip	ospf	neighbor

				register:	neighbors

		-	name:	"Validate	the	Neighbors"

				debug:

						msg:	"OSPF	neighbors	stuck"

				when:	('EXSTART'	in	neighbors.stdout)	or	('EXCHANGE'	in	neigbnors.stdout)

You	can	check	the	facts	commonly	used	in	the	when	clause	at	http://docs.Ansible.com
/Ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts.

http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts

Creating	loops	in	ansible
Ansible	provides	many	ways	to	repeat	the	same	task	inside	a	play,	but	with	a
different	value	each	time.	For	example,	when	you	want	to	install	multiple
packages	on	a	server,	you	don't	need	to	create	a	task	for	each	package.	Rather,
you	can	create	a	task	that	installs	a	package	and	provides	a	list	of	package	names
to	the	task,	and	Ansible	will	iterate	over	them	until	it	finishes	the	installation.	To
accomplish	this,	we	will	need	the	with_items	flag	inside	of	the	task	that	contains	a
list,	and	the	variable	{{	item	}},	which	serves	as	a	placeholder	for	the	items	in	the
list.	The	playbook	will	leverage	the	with_items	flag	to	iterate	over	a	set	of
packages	and	provide	them	to	the	yum	module,	which	requires	the	name	and	state
of	the	package:

-	hosts:	infra

		remote_user:	root

		tasks:

				-	name:	"Modifying	Packages"

	yum:	name={{	item.name	}}	state={{	item.state	}}

	with_items:

								-	{	name:	python-keyring-5.0-1.el7.noarch,	state:	absent	}

	-	{	name:	python-django,	state:	absent	}

	-	{	name:	python-django-bash-completion,	state:	absent	}

	-	{	name:	httpd,	state:	present	}

	-	{	name:	httpd-tools,	state:	present	}

	-	{	name:	python-qpid,	state:	present	}

	when:	Ansible_distribution	==	"CentOS"

You	can	hardcode	the	value	of	the	state	to	be	present;	in	that	case,	all	of	the
packages	will	be	installed.	However,	in	the	previous	case,	with_items	will	provide
the	two	elements	to	the	yum	module.

The	playbook's	output	is	as	follows:

Trigger	tasks	with	handlers
Okay;	you	have	installed	and	removed	a	series	of	packages	in	your	system.	You
have	copied	files	to/from	your	server.	And	you	have	changed	many	things	in	the
server	by	using	an	Ansible	playbook.	Now,	you	need	to	restart	a	few	other
services,	or	add	some	lines	to	the	files,	to	complete	the	configuration	of	the
service.	So,	you	should	add	a	new	task,	right?	Yes,	that's	correct.	However,
Ansible	provides	another	great	option,	called	handlers,	which	will	not
automatically	execute	when	it	hits	(unlike	tasks),	but	will	rather	be	executed
only	when	it	is	called.	This	provides	you	with	the	flexibility	to	call	them	upon
the	execution	of	tasks	inside	the	play.

Handlers	have	the	same	alignment	as	the	hosts	and	tasks,	and	are	located	at	the
bottom	of	each	play.	When	you	need	to	call	a	handler,	you	use	the	notify	flag
inside	of	the	original	task,	to	determine	which	handler	will	be	executed;	Ansible
will	link	them	together.

Let's	look	at	an	example.	We	will	write	a	playbook	that	installs	and	configures
the	KVM	on	the	CentOS	servers.	The	KVM	requires	a	few	changes	after
installation,	such	as	loading	the	sysctl,	enabling	the	kvm	and	802.1q	modules,	and
loading	the	kvm	at	boot:

-	hosts:	centos-servers

		remote_user:	root

		tasks:

				-	name:	"Install	KVM"

	yum:	name={{	item.name	}}	state={{	item.state	}}

	with_items:

								-	{	name:	qemu-kvm,	state:	installed	}

	-	{	name:	libvirt,	state:	installed	}

	-	{	name:	virt-install,	state:	installed	}

	-	{	name:	bridge-utils,	state:	installed	}

	notify:

								-	load	sysctl

								-	load	kvm	at	boot

								-	enable	kvm

		handlers:

				-	name:	load	sysctl

						command:	sysctl	-p

				-	name:	enable	kvm

						command:	"{{	item.name	}}"

						with_items:

								-	{name:	modprobe	-a	kvm}

	-	{name:	modprobe	8021q}

	-	{name:	udevadm	trigger}

	-	name:	load	kvm	at	boot

						lineinfile:	dest=/etc/modules	state=present	create=True	line={{	item.name	}}

	with_items:

								-	{name:	kvm}

Notice	the	usage	of	notify	after	the	installation	task.	When	the	task	runs,	it	will
notify	three	handlers	in	sequence,	so	that	they	will	execute.	The	handlers	will
run	after	the	task	has	successfully	executed.	That	means	that	if	the	task	has	failed
to	run	(for	example,	the	kvm	package	was	not	found,	or	there's	no	internet
connection	to	download	it),	there	will	be	no	changes	to	your	system,	and	kvm	will
not	be	enabled.

Another	awesome	feature	of	the	handler	is	that	it's	only	run	when	there's	a
change	in	the	task.	For	example,	if	you	rerun	the	task,	Ansible	won't	install	the
kvm	package	since	it's	already	installed;	it	won't	call	any	handlers,	as	it	doesn't
detect	any	changes	in	the	system.

We	will	add	a	final	note	about	two	modules:	lineinfile	and	command.	The	first
module	is	actually	inserting	or	deleting	lines	from	configuration	files	by	using
regular	expressions;	we	used	it	in	order	to	insert	the	kvm	into	/etc/modules,	to
automatically	boot	the	KVM	when	the	machine	starts.	The	second	module,
command,	is	used	to	execute	a	shell	command	directly	on	the	device	and	return	the
output	to	the	Ansible	host.

Working	with	Ansible	facts
Ansible	is	not	only	used	to	deploy	and	configure	remote	hosts.	It	can	be	used	to
gather	all	kinds	of	information	and	facts	about	them.	The	facts	collection	can
take	significant	amount	of	time	to	collect	everything	from	a	busy	system,	but
will	provide	a	full	view	of	the	target	machine.

The	facts	that	are	gathered	can	be	used	inside	the	playbook	later,	to	design	a	task
condition.	For	example,	we	used	the	when	clause	to	limit	the	openssh	installation	to
only	CentOS-based	systems:

when:	Ansible_distribution	==	"CentOS"

You	can	enable/disable	fact	gathering	in	the	Ansible	plays	by	configuring
gather_facts	on	the	same	level	as	hosts	and	tasks:

-	hosts:	centos-servers

		gather_facts:	yes

		tasks:

				<your	tasks	go	here>

Another	way	to	gather	facts	and	print	them	in	Ansible	is	to	use	the	setup	module
in	the	ad	hoc	mode.	The	returned	results	are	in	the	form	of	nested	dictionaries
and	lists,	to	describe	the	remote	target	facts,	such	as	the	server	architecture,
memory,	networking	settings,	OS	version,	and	so	on:

#Ansible	-i	hosts	ubuntu-servers	-m	setup	|	less

You	can	get	to	a	specific	value	from	the	facts	by	using	either	a	dot	notation	or
square	brackets.	For	example,	to	get	the	IPv4	address	for	eth0,	you	can	use	either
Ansible_eth0["ipv4"]["address"]	or	Ansible_eth0.ipv4.address.

Working	with	the	Ansible	template
The	last	piece	of	working	with	Ansible	is	understanding	how	it	handles	the
template.	Ansible	uses	the	Jinja2	template,	which	we	discussed	in	Chapter	6,
Configuration	Generator	with	Python	and	Jinja2.	It	fills	the	parameters	with
either	Ansible	facts	or	the	static	values	provided	in	the	vars	section,	or	even	with
the	result	of	a	task	stored	using	the	register	flag.

In	the	following	example,	we	will	build	an	Ansible	playbook	that	gathers	the
previous	three	cases.	First,	we	define	a	variable	called	Header	in	the	vars	section,
holding	a	welcome	message	as	a	static	value.	Then,	we	enable	the	gather_facts
flag,	to	get	all	possible	information	from	the	target	machine.	Finally,	we	execute
the	date	command,	to	get	the	current	date	in	the	server	and	store	the	output	in	the
date_now	variable:

-	hosts:	centos-servers

		vars:

				-	Header:	"Welcome	to	Server	facts	page	generated	from	Ansible	playbook"

		gather_facts:	yes

	tasks:

				-	name:	Getting	the	current	date

						command:	date

						register:	date_now

				-	name:	Setup	webserver

						yum:	pkg=nginx	state=installed

						when:	Ansible_distribution	==	"CentOS"

						notify:

								-	enable	the	service

								-	start	the	service

				-	name:	Copying	the	index	page

						template:	src=index.j2	dest=/usr/share/nginx/html/index.html

		handlers:

				-	name:	enable	the	service

						service:	name=nginx	enabled=yes

	-	name:	start	the	service

						service:	name=nginx	state=started

The	template	module	that	was	used	in	the	preceding	playbook	will	accept	a
Jinja2	file	named	index.j2,	located	in	the	same	directory	of	the	playbook;	it	will
then	provide	all	of	the	values	for	the	jinj2	variables	from	the	three	sources	we
discussed	previously.	Then,	the	rendered	file	will	be	stored	in	a	path	provided	by
the	dest	option,	inside	the	template	module.

The	content	of	index.j2	will	be	as	follows.	It	will	be	a	simple	HTML	page	that
leverages	the	jinja2	language	to	generate	a	final	HTML	page:

<html>

<head><title>Hello	world</title></head>

<body>

{{	Header	}}

Facts	about	the	server

Date	Now	is:	{{	date_now.stdout	}}

				IPv4	Address:	{{	Ansible_default_ipv4['address']	}}

				IPv4	gateway:	{{	Ansible_default_ipv4['gateway']	}}

				Hostname:	{{	Ansible_hostname	}}

				Total	Memory:	{{	Ansible_memtotal_mb	}}

				Operating	System	Family:	{{	Ansible_os_family	}}

				System	Vendor:	{{	Ansible_system_vendor	}}

</body>

</html>

Running	this	playbook	will	result	in	installing	the	nginx	web	server	on	the
CentOS	machine,	and	adding	an	index.html	page	to	it.	You	can	access	the	page	by
using	the	browser:

You	can	also	utilize	the	template	module	to	generate	network	device
configurations.	The	jinja2	templates	used	in	Chapter	6,	Configuration	Generator
with	Python	and	Jinja2,	which	generated	the	day0	and	day1	configurations	for	the
router,	can	be	reused	inside	of	the	Ansible	playbook.

https://cdp.packtpub.com/hands_on_enterprise_automation_with_python/wp-admin/post.php?post=322&action=edit#post_33

Summary
Ansible	is	a	very	powerful	tool,	used	to	automate	IT	infrastructure.	It	contains
many	modules	and	libraries	that	cover	almost	everything	in	system	and	network
automation,	making	software	deployment,	package	management,	and
configuration	management	very	easy.	While	Ansible	can	execute	a	single
module	in	ad	hoc	mode,	the	real	power	of	Ansible	is	in	writing	and	developing
playbooks.

	

Creating	and	Managing	VMware
Virtual	Machines
	

For	a	long	long	time,	virtualization	has	been	an	important	technology	in	the	IT
industry	as	it	provides	an	efficient	way	for	hardware	resources	and	allows	us	to
easily	manage	application	life	cycle	inside	the	Virtual	Machine	(VM).	In	2001,
VMware	released	the	first	version	of	the	ESXi	that	could	run	directly	over	the
commodity	off	the	shelf	(COTS)	server	while	converting	it	to	a	resource	that
could	be	consumed	by	multiple	separate	virtual	machines.	In	this	chapter,	we
will	explore	many	options	available	to	automate	the	building	of	virtual	machine
thanks	to	Python	and	Ansible.

The	following	topics	will	be	covered	in	this	chapter:

Setting	up	the	lab	environment
Generating	a	VMX	file	using	Jinja2
VMware	Python	clients
Using	Ansible	playbooks	to	manage	instances

	

	

Setting	up	the	environment
For	this	chapter,	we	will	have	VMware	ESXi	version	5.5	installed	over	a	Cisco
UCS	server	and	host	a	few	virtual	machines.	We	need	to	enable	a	few	things	in
our	ESXi	server	in	order	to	expose	some	external	ports	to	the	outside	world:

1.	 The	first	thing	is	to	enable	both	Shell	and	SSH	access	to	the	ESXi	console.
Basically,	ESXi	allows	you	to	manage	it	using	the	vSphere	client	(based	on
C#	for	the	versions	before	5.5.x	and	based	on	HTML	for	version	6	and	up).
Once	we	enable	the	Shell	and	SSH	access,	this	will	give	us	the	ability	to	use
the	CLI	to	manage	virtual	infrastructure	and	to	perform	tasks	such	as
creating,	deleting,	and	customizing	the	virtual	machine.

2.	 Access	the	ESXi	vSphere	client	and	go	to	Configuration,	then	choose
Security	Profiles	from	the	left	tab,	and	finally	click	on	Properties:

A	pop-up	window	will	be	opened	that	contains	a	list	of	services,	statuses,
and	various	options	that	can	be	applied:

3.	 Select	SSH	service	and	then	click	on	Option.	Another	pop-up	window	will
be	opened.

4.	 Choose	the	first	option	that	reads	Start	automatically	if	any	ports	are	open,
and	stop	when	all	ports	are	closed	under	the	Startup	Policy.

5.	 Also,	click	on	Start	under	Service	Commands	and	hit	OK:

Repeat	the	same	steps	again	for	the	ESXi	Shell	service.	This	will	ensure	that
both	services	will	be	started	once	the	ESXi	server	has	started	and	will	be	opened
and	ready	to	accept	the	connection.	You	can	test	both	services,	SSH	to	the	ESXi
IP	address	and	provide	the	root	credentials	as	with	SSH	connection:

Generating	a	VMX	file	using	Jinja2
The	basic	unit	for	a	virtual	machine	(sometimes	called	a	guest	machine)	is	the
VMX	file.	This	file	contains	all	the	settings	needed	to	build	the	virtual	machine
in	terms	of	compute	resources,	allocated	memory,	HDD,	and	networking.	Also,
it	defines	the	operating	system	that	runs	over	the	machine	so	the	VMware	can
install	some	tools	to	manage	the	VM	powering.

An	additional	file	is	needed:	VMDK.	This	file	stores	the	actual	contents	of	the
VM	and	acts	as	the	hard	disk	for	the	VM	partitions:

These	files	(VMX	and	VMDK)	should	be	stored	under	the	/vmfs/volumes/datastore1
directory	in	the	ESXi	Shell	and	should	be	inside	a	directory	with	the	name	of	the
virtual	machine.

Building	the	VMX	template
We	are	now	going	to	create	the	template	file	that	we	will	use	to	build	our	virtual
machine	in	Python.	Here's	an	example	of	the	final	running	VMX	file	that	we
need	to	generate	with	the	help	of	Python	and	Jinja2:	.encoding	=	"UTF-8"
vhv.enable	=	"TRUE"
config.version	=	"8"
virtualHW.version	=	"8"

vmci0.present	=	"TRUE"
hpet0.present	=	"TRUE"
displayName	=	"test_jinja2"

#	Specs
memSize	=	"4096"
numvcpus	=	"1"
cpuid.coresPerSocket	=	"1"

#	HDD
scsi0.present	=	"TRUE"
scsi0.virtualDev	=	"lsilogic"
scsi0:0.deviceType	=	"scsi-hardDisk"
scsi0:0.fileName	=	"test_jinja2.vmdk"
scsi0:0.present	=	"TRUE"

#	Floppy
floppy0.present	=	"false"

#	CDRom
ide1:0.present	=	"TRUE"
ide1:0.deviceType	=	"cdrom-image"
ide1:0.fileName	=	"/vmfs/volumes/datastore1/ISO	Room/CentOS-7-x86_64-
Minimal-1708.iso"

#	Networking
ethernet0.virtualDev	=	"e1000"
ethernet0.networkName	=	"network1"
ethernet0.addressType	=	"generated"
ethernet0.present	=	"TRUE"

#	VM	Type
guestOS	=	"ubuntu-64"

#	VMware	Tools
toolScripts.afterPowerOn	=	"TRUE"
toolScripts.afterResume	=	"TRUE"
toolScripts.beforeSuspend	=	"TRUE"
toolScripts.beforePowerOff	=	"TRUE"
tools.remindInstall	=	"TRUE"
tools.syncTime	=	"FALSE"

I	added	some	comments	inside	the	file	to	illustrate	the	functionality	of	each	block.	However,	in
the	actual	file,	you	won't	see	these	comments.

Let's	analyze	the	file	and	understand	the	meaning	of	some	fields:

vhv.enable:	When	set	to	True,	the	ESXi	server	will	expose	the	CPU	host	flags
to	the	guest	CPU	that	allows	the	running	of	the	VM	inside	the	guest
machine	(called	nested	virtualization).
displayName:	The	name	that	will	be	registered	in	the	ESXi	and	shown	in	the
vSphere	client.
memsize:	This	defines	the	allocated	RAM	to	the	VM	and	should	be	provided
in	megabytes.
numvcpus:	This	defines	the	number	of	physical	CPUs	allocated	to	the	VM.
This	flag	is	used	with	cpuid.coresPerSocket	so	it	can	define	the	total	number	of
vCPU	allocated.
scsi0.virtualDev:	The	type	of	SCSI	controller	for	the	virtual	hard	drive.	It	can
be	one	of	four	values:	BusLogic,	LSI	Logic	parallel,	LSI	Logic	SAS,	or
VMware	paravirtual.
scsi0:0.fileName:	This	defines	the	name	of	the	vmdk	(in	the	same	directory)	that
will	store	the	actual	virtual	machine	settings.
ide1:0.fileName:	The	image	path	that	contains	the	installation	binaries
packaged	in	ISO	format.	This	will	make	the	ESXi	connect	the	ISO	image	in

the	image	CD-ROM	(IDE	device).
ethernet0.networkName:	This	is	the	name	of	the	virtual	switch	in	ESXi	that
should	connect	to	VM	NIC.	You	can	add	additional	instances	of	this
parameter	to	reflect	additional	network	interfaces.

Now	we	will	build	the	Jinja2	template;	you	can	review	Chapter	6,	Configuration
Generator	with	Python	and	Jinja2,	for	the	basics	of	templating	using	the	Jinja2
language:	.encoding	=	"UTF-8"
vhv.enable	=	"TRUE"
config.version	=	"8"
virtualHW.version	=	"8"

vmci0.present	=	"TRUE"
hpet0.present	=	"TRUE"
displayName	=	"{{vm_name}}"

#	Specs
memSize	=	"{{	vm_memory_size	}}"
numvcpus	=	"{{	vm_cpu	}}"
cpuid.coresPerSocket	=	"{{cpu_per_socket}}"

#	HDD
scsi0.present	=	"TRUE"
scsi0.virtualDev	=	"lsilogic"
scsi0:0.deviceType	=	"scsi-hardDisk"
scsi0:0.fileName	=	"{{vm_name}}.vmdk"
scsi0:0.present	=	"TRUE"

#	Floppy
floppy0.present	=	"false"

#	CDRom
ide1:0.present	=	"TRUE"
ide1:0.deviceType	=	"cdrom-image"
ide1:0.fileName	=	"/vmfs/volumes/datastore1/ISO	Room/{{vm_image}}"

#	Networking
ethernet0.virtualDev	=	"e1000"
ethernet0.networkName	=	"{{vm_network1}}"
ethernet0.addressType	=	"generated"
ethernet0.present	=	"TRUE"

#	VM	Type
guestOS	=	"{{vm_guest_os}}"	#centos-64	or	ubuntu-64

#	VMware	Tools
toolScripts.afterPowerOn	=	"TRUE"
toolScripts.afterResume	=	"TRUE"
toolScripts.beforeSuspend	=	"TRUE"
toolScripts.beforePowerOff	=	"TRUE"
tools.remindInstall	=	"TRUE"
tools.syncTime	=	"FALSE"

Notice	that	we	removed	the	static	values	for	the	relevant	fields,	such	as
diplayName,	memsize,	and	so	on,	and	replaced	them	with	double	curly	braces	with
variable	names	inside	them.	During	template	rendering	from	Python,	these	fields
will	be	replaced	with	actual	values	to	construct	a	valid	VMX	file.

Now,	let's	build	the	Python	script	that	will	render	the	file.	Usually,	we	use	the
YAML	data	serialization	in	conjunction	with	Jinja2	to	fill	in	the	data	of	the
template.	But	since	we	already	explain	the	YAML	concept	in	Chapter	6,
Configuration	Generator	with	Python	and	Jinja2,	we	will	get	our	data	from
another	data	source,	Microsoft	Excel:	

https://cdp.packtpub.com/hands_on_enterprise_automation_with_python/wp-admin/post.php?post=295&action=edit#post_33

Handling	Microsoft	Excel	data
Python	has	some	excellent	libraries	that	can	handle	the	data	written	in	an	Excel
sheet.	We	already	used	the	Excel	sheet	in	Chapter	4,	Using	Python	to	Manage
Network	Devices,	when	we	needed	to	automate	the	netmiko	configuration	and	read
the	data	that	described	the	infrastructure	of	the	Excel	file.	Now,	we	will	start	by
installing	the	Python	xlrd	library	inside	the	Automation	Server.

Use	the	following	command	to	install	xlrd:

pip	install	xlrd

Follow	the	steps	given	below:

1.	 The	XLRD	module	can	open	the	Microsoft	workbook	and	parse	the
contents	using	the	open_workbook()	method.

2.	 Then	you	can	select	the	sheet	that	contains	your	data	either	by	providing	the
sheet	index	or	the	sheet	name	to	the	sheet_by_index()	or	sheet_by_name()
methods	respectively.

3.	 Finally,	you	can	access	the	row	data	by	providing	the	row	number	to	the
row()	function	which	converts	the	row	data	into	a	Python	list:

Notice	that	nrows	and	ncols	are	special	variables	which	will	be	populated	once	you
open	the	sheet	that	counts	the	number	of	rows	and	number	of	columns	inside	the
sheet.	You	can	iterate	over	with	the	for	loop.	The	number	always	start	from

Back	to	the	virtual	machine	example.	We	will	have	the	following	data	in	the
Excel	sheet,	which	reflects	the	virtual	machine	settings:

To	read	the	data	into	Python,	we	will	use	the	following	script:

import	xlrd

workbook	=	

xlrd.open_workbook(r"/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter14_Creating_and_managing_VMware_virtual_machines/vm_inventory.xlsx"

sheet	=	workbook.sheet_by_index(0)

print(sheet.nrows)

print(sheet.ncols)

print(int(sheet.row(1)[1].value))

for	row	in	range(1,sheet.nrows):

	vm_name	=	sheet.row(row)[0].value

				vm_memory_size	=	int(sheet.row(row)[1].value)

	vm_cpu	=	int(sheet.row(row)[2].value)

	cpu_per_socket	=	int(sheet.row(row)[3].value)

	vm_hdd_size	=	int(sheet.row(row)[4].value)

	vm_guest_os	=	sheet.row(row)[5].value

				vm_network1	=	sheet.row(row)[6].value

In	the	previous	script,	we	did	the	following:

1.	 We	imported	the	xlrd	module	and	provided	the	Excel	file	to	the
open_workbook()	method	to	read	the	Excel	sheet	and	save	that	to	the	workbook
variable.

2.	 Then,	we	accessed	the	first	sheet	using	the	sheet_by_index()	method	and	saved
the	reference	to	the	sheet	variable.

3.	 Now	we	will	iterate	over	the	opened	sheet	and	get	each	field	using	the	row()
method.	This	will	allow	us	to	convert	the	row	to	a	Python	list.	Since	we
need	only	one	value	inside	the	row,	we	will	use	the	list	slice	to	access	the
index.	Remember	that	the	list	index	always	starts	with	zero.	We	will	store
that	value	into	the	variable	and	we	will	use	this	variable	to	populate	the
Jinja2	template	in	the	next	section.

Generating	VMX	files
The	last	part	is	to	generate	the	VMX	files	from	the	Jinja2	template.	We	will	read
the	data	from	the	Excel	sheet	and	add	it	to	the	empty	dictionary,	vmx_data.	This
dictionary	will	be	passed	later	to	the	render()	function	inside	the	Jinja2	template.
The	Python	dictionary	key	will	be	the	template	variable	name	while	the	value
will	be	the	substituted	values	that	should	be	in	the	file.	The	final	part	in	the	script
is	to	open	a	file	in	writing	mode	inside	the	vmx_files	directory	and	write	the	data
into	it	for	each	VMX	file:

from	jinja2	import	FileSystemLoader,	Environment

import	os

import	xlrd

print("The	script	working	directory	is	{}"	.format(os.path.dirname(__file__)))

script_dir	=	os.path.dirname(__file__)

vmx_env	=	Environment(

	loader=FileSystemLoader(script_dir),

	trim_blocks=True,

	lstrip_blocks=	True

)

workbook	=	xlrd.open_workbook(os.path.join(script_dir,"vm_inventory.xlsx"))

sheet	=	workbook.sheet_by_index(0)

print("The	number	of	rows	inside	the	Excel	sheet	is	{}"	.format(sheet.nrows))

print("The	number	of	columns	inside	the	Excel	sheet	is	{}"	.format(sheet.ncols))

vmx_data	=	{}

for	row	in	range(1,sheet.nrows):

	vm_name	=	sheet.row(row)[0].value

				vm_memory_size	=	int(sheet.row(row)[1].value)

	vm_cpu	=	int(sheet.row(row)[2].value)

	cpu_per_socket	=	int(sheet.row(row)[3].value)

	vm_hdd_size	=	int(sheet.row(row)[4].value)

	vm_guest_os	=	sheet.row(row)[5].value

				vm_network1	=	sheet.row(row)[6].value

				vmx_data["vm_name"]	=	vm_name

				vmx_data["vm_memory_size"]	=	vm_memory_size

				vmx_data["vm_cpu"]	=	vm_cpu

				vmx_data["cpu_per_socket"]	=	cpu_per_socket

				vmx_data["vm_hdd_size"]	=	vm_hdd_size

				vmx_data["vm_guest_os"]	=	vm_guest_os

				if	vm_guest_os	==	"ubuntu-64":

	vmx_data["vm_image"]	=	"ubuntu-16.04.4-server-amd64.iso"

	elif	vm_guest_os	==	"centos-64":

	vmx_data["vm_image"]	=	"CentOS-7-x86_64-Minimal-1708.iso"

	elif	vm_guest_os	==	"windows7-64":

	vmx_data["vm_image"]	=	"windows_7_ultimate_sp1_	x86-x64_bg-en_IE10_	April_2013.iso"

	vmx_data["vm_network1"]	=	vm_network1

				vmx_data	=	vmx_env.get_template("vmx_template.j2").render(vmx_data)

	with	open(os.path.join(script_dir,"vmx_files/{}.vmx".format(vm_name)),	"w")	as	f:

	print("Writing	Data	of	{}	into	directory".format(vm_name))

	f.write(vmx_data)

	vmx_data	=	{}

The	script	output	is	as	follows:

The	files	are	stored	under	vmx_files	and	each	one	contains	specific	information	for
the	virtual	machine	as	configured	in	the	excel	sheet:

Now,	we	will	use	both	paramiko	and	scp	libraries	to	connect	to	the	ESXi	Shell	and
upload	these	files	under	/vmfs/volumes/datastore1.	To	achieve	that,	we	will	first
create	a	function	named	upload_and_create_directory()	that	accepts	vm	name,	hard	disk
size,	and	VMX	source	file.	paramiko	will	connect	to	the	ESXi	server	and	execute
the	required	commands	which	will	create	both	the	directory	and	VMDK	under
/vmfs/volumes/datastore1.	Finally,	we	will	use	SCPClient	from	the	scp	module	to

upload	the	source	files	to	the	previously	created	directory	and	run	the	registry
command	to	add	the	machine	to	the	vSphere	client:

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

import	paramiko

from	scp	import	SCPClient

import	time

def	upload_and_create_directory(vm_name,	hdd_size,	source_file):

	commands	=	["mkdir	/vmfs/volumes/datastore1/{0}".format(vm_name),

	"vmkfstools	-c	{0}g	-a	lsilogic	-d	zeroedthick	

/vmfs/volumes/datastore1/{1}/{1}.vmdk".format(hdd_size,

	vm_name),]

	register_command	=	"vim-cmd	solo/registervm	

/vmfs/volumes/datastore1/{0}/{0}.vmx".format(vm_name)

				

	ipaddr	=	"10.10.10.115"

	username	=	"root"

	password	=	"access123"

	ssh	=	paramiko.SSHClient()

	ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

	ssh.connect(ipaddr,	username=username,	password=password,	look_for_keys=False,	

allow_agent=False)

	for	cmd	in	commands:

	try:

	stdin,	stdout,	stderr	=	ssh.exec_command(cmd)

	print	"	DEBUG:	...	Executing	the	command	on	ESXi	

server".format(str(stdout.readlines()))

	except	Exception	as	e:

	print	e

												pass

												print	"	DEBUG:	**ERR....unable	to	execute	command"

	time.sleep(2)

	with	SCPClient(ssh.get_transport())	as	scp:

	scp.put(source_file,	remote_path='/vmfs/volumes/datastore1/{0}'.format(vm_name))

	ssh.exec_command(register_command)

								

	ssh.close()

We	need	to	define	this	function	before	we	run	theJinja2	template	and	generate
the	VMX	and	call	the	function	after	we	save	the	file	to	the	vmx_files	directory	and
pass	the	required	arguments	to	it.

The	final	code	should	be	as	follows:

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

import	paramiko

from	scp	import	SCPClient

import	time

from	jinja2	import	FileSystemLoader,	Environment

import	os

import	xlrd

def	upload_and_create_directory(vm_name,	hdd_size,	source_file):

	commands	=	["mkdir	/vmfs/volumes/datastore1/{0}".format(vm_name),

	"vmkfstools	-c	{0}g	-a	lsilogic	-d	zeroedthick	

/vmfs/volumes/datastore1/{1}/{1}.vmdk".format(hdd_size,

	vm_name),]

	register_command	=	"vim-cmd	solo/registervm	

/vmfs/volumes/datastore1/{0}/{0}.vmx".format(vm_name)

	ipaddr	=	"10.10.10.115"

	username	=	"root"

	password	=	"access123"

	ssh	=	paramiko.SSHClient()

	ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

	ssh.connect(ipaddr,	username=username,	password=password,	look_for_keys=False,	

allow_agent=False)

	for	cmd	in	commands:

	try:

	stdin,	stdout,	stderr	=	ssh.exec_command(cmd)

	print	"	DEBUG:	...	Executing	the	command	on	ESXi	

server".format(str(stdout.readlines()))

	except	Exception	as	e:

	print	e

												pass

												print	"	DEBUG:	**ERR....unable	to	execute	command"

	time.sleep(2)

	with	SCPClient(ssh.get_transport())	as	scp:

	print("	DEBUG:	...	Uploading	file	to	the	datastore")

	scp.put(source_file,	remote_path='/vmfs/volumes/datastore1/{0}'.format(vm_name))

	print("	DEBUG:	...	Register	the	virtual	machine	{}".format(vm_name))

	ssh.exec_command(register_command)

	ssh.close()

print("The	script	working	directory	is	{}"	.format(os.path.dirname(__file__)))

script_dir	=	os.path.dirname(__file__)

vmx_env	=	Environment(

	loader=FileSystemLoader(script_dir),

	trim_blocks=True,

	lstrip_blocks=	True

)

workbook	=	xlrd.open_workbook(os.path.join(script_dir,"vm_inventory.xlsx"))

sheet	=	workbook.sheet_by_index(0)

print("The	number	of	rows	inside	the	Excel	sheet	is	{}"	.format(sheet.nrows))

print("The	number	of	columns	inside	the	Excel	sheet	is	{}"	.format(sheet.ncols))

vmx_data	=	{}

for	row	in	range(1,sheet.nrows):

	vm_name	=	sheet.row(row)[0].value

				vm_memory_size	=	int(sheet.row(row)[1].value)

	vm_cpu	=	int(sheet.row(row)[2].value)

	cpu_per_socket	=	int(sheet.row(row)[3].value)

	vm_hdd_size	=	int(sheet.row(row)[4].value)

	vm_guest_os	=	sheet.row(row)[5].value

				vm_network1	=	sheet.row(row)[6].value

				vmx_data["vm_name"]	=	vm_name

				vmx_data["vm_memory_size"]	=	vm_memory_size

				vmx_data["vm_cpu"]	=	vm_cpu

				vmx_data["cpu_per_socket"]	=	cpu_per_socket

				vmx_data["vm_hdd_size"]	=	vm_hdd_size

				vmx_data["vm_guest_os"]	=	vm_guest_os

				if	vm_guest_os	==	"ubuntu-64":

	vmx_data["vm_image"]	=	"ubuntu-16.04.4-server-amd64.iso"

	elif	vm_guest_os	==	"centos-64":

	vmx_data["vm_image"]	=	"CentOS-7-x86_64-Minimal-1708.iso"

	elif	vm_guest_os	==	"windows7-64":

	vmx_data["vm_image"]	=	"windows_7_ultimate_sp1_	x86-x64_bg-en_IE10_	April_2013.iso"

	vmx_data["vm_network1"]	=	vm_network1

				vmx_data	=	vmx_env.get_template("vmx_template.j2").render(vmx_data)

	with	open(os.path.join(script_dir,"vmx_files/{}.vmx".format(vm_name)),	"w")	as	f:

	print("Writing	Data	of	{}	into	directory".format(vm_name))

	f.write(vmx_data)

	print("	DEBUG:Communicating	with	ESXi	server	to	upload	and	register	the	VM")

	upload_and_create_directory(vm_name,

	vm_hdd_size,

	os.path.join(script_dir,"vmx_files","{}.vmx".format(vm_name)))

	vmx_data	=	{}

The	script	output	is	as	follows:

If	you	check	the	vSphere	client	after	you	run	the	script,	you	will	find	four
machines	have	been	created	with	the	name	provided	in	the	Excel	sheet:

Also,	you	will	find	the	virtual	machine	customized	with	settings	such	as	CPUs,
Memory,	and	connected	ISO	room:

You	can	complete	your	automation	workflow	in	VMware	by	connecting	the	created	virtual
machine	to	Cobbler.	We	covered	it	in	Chapter	8,	Preparing	the	System	Lab	Environment.
Cobbler	will	automate	the	operating	system	installation	and	customization	either	Windows,
CentOS,	or	Ubuntu.	After	that,	you	can	use	Ansible,	which	we	covered	in	Chapter	13,	Ansible	for
System	Administration,	to	prepare	the	system	in	terms	of	security,	configuration,	and	installed
packages,	then	deploy	your	application	after	that.	This	is	a	full-stack	automation	that	covers

things	such	as	virtual	machine	creation	and	getting	your	application	up	and	running.

VMware	Python	clients
VMware	products	(ESXi	and	vCenter,	which	used	to	manage	ESXi)	support
receiving	external	API	requests	through	the	web	service.	You	can	execute	the
same	administration	tasks	you	do	on	the	vSphere	client,	such	as	creating	a	new
virtual	machine,	creating	a	new	vSwitch,	or	even	controlling	the	vm	status,	but
this	time	through	the	supported	API	that	has	bindings	for	many	languages,	such
as	Python,	Ruby,	and	Go.

vSphere	has	a	special	model	for	the	inventory	and	everything	inside	it	is	an
object	with	specific	values.	You	can	access	this	model	and	see	the	actual	values
for	your	infrastructure	through	the	Managed	Object	Browser	(MoB)	which
gives	you	access	to	all	object	details.	We	will	use	the	official	Python	bindings
from	VMware	(pyvmomi)	to	interact	with	this	model	and	alter	the	values	(or	create
them)	inside	the	inventory.

It's	worth	noting	that	the	MoB	can	be	accessed	through	the	web	browser	by
going	to	http://<ESXi_server_ip_or_domain>/mob,which	will	ask	you	to	provide	the	root
username	and	password:

You	can	click	on	any	of	the	hyperlinks	to	see	more	details	and	access	each	leaf
inside	each	tree	or	context.	For	example,	click	on	Content.about	to	see	full

details	about	your	server	such	as	the	exact	version,	build,	and	full	name:

Notice	how	the	table	is	structured.	The	first	column	contains	the	property	name,
the	second	column	is	the	data	type	of	that	property,	and,	finally,	the	third	column
is	the	actual	running	value.

Installing	PyVmomi
PyVmomi	is	available	to	download	either	though	Python	pip	or	as	a	system
package	from	different	repos.

For	Python	installation,	use	the	following	command:	pip	install	-U	pyvmomi

Notice	the	version	downloaded	from	pip	is	6.5.2017.5-1,	which	correlates	with	the
vSphere	release	VMware	vSphere	6.5,	but	this	doesn't	mean	it	won't	work	with
older	releases	of	ESXi.	For	example,	I	have	VMware	vSphere	5.5,	which	works
flawlessly	with	the	latest	pyvmomi	version.

For	system	installation:	yum	install	pyvmomi	-y

The	Pyvmomi	library	uses	dynamic	types	which	means	features	such	as	Intelli-Sense	and
autocomplete	features	in	IDE	do	not	work	with	it.	You	have	to	rely	on	documentation	and
MoB	to	discover	what	classes	or	methods	are	needed	to	get	the	job	done	but,	once	you
discover	the	way	it	works,	it	will	be	pretty	easy	to	work	with.

First	steps	with	pyvmomi
The	first	thing	is	you	need	to	do	is	connect	to	ESXi	MoB	by	providing	the
username,	password,	and	host	IP,	and	start	to	navigate	to	the	MoB	to	get	the
required	data.	This	can	be	done	by	using	the	SmartConnectNoSSL()	method:

from	pyVim.connect	import	SmartConnect,	Disconnect,SmartConnectNoSSL

ESXi_connection	=	SmartConnectNoSSL(host="10.10.10.115",	user="root",	pwd='access123')

Note	that	there's	another	method	called	SmartConnect()	and	you	must	provide	the
SSL	context	to	it	when	establishing	a	connection,	otherwise	the	connection	will
fail.	However,	you	can	use	the	following	code	snippet	to	request	that	the	SSL
does	not	verify	the	certificate	and	to	pass	this	context	to	SmartConnect()	in	the
sslCContext	argument:

import	ssl

import	requests

certificate	=	ssl.SSLContext(ssl.PROTOCOL_TLSv1)

certificate.verify_mode	=	ssl.CERT_NONE

requests.packages.urllib3.disable_warnings()

For	the	sake	of	beverity	and	to	keep	our	code	short,	we	will	use	the	built-in
SmartConnectNoSSL().

Next,	we	will	start	exploring	the	MoB	and	get	the	full	name	and	version	of	our
server	in	the	about	object.	Remember,	it's	located	under	the	content	object,	so	we
need	to	access	that	too:

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

from	pyVim.connect	import	SmartConnect,	Disconnect,SmartConnectNoSSL

ESXi_connection	=	SmartConnectNoSSL(host="10.10.10.115",	user="root",	pwd='access123')

full_name	=	ESXi_connection.content.about.fullName

version	=	ESXi_connection.content.about.version

print("Server	Full	name	is	{}".format(full_name))

print("ESXi	version	is	{}".format(version))

Disconnect(ESXi_connection)

The	output	is	as	follows:

Great.	Now	we	understand	how	the	API	works.	Let's	get	into	some	serious
scripts	and	retrieve	some	details	about	the	deployed	virtual	machine	in	our	ESXi.

The	script	is	as	follows:

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

from	pyVim.connect	import	SmartConnect,	Disconnect,SmartConnectNoSSL

ESXi_connection	=	SmartConnectNoSSL(host="10.10.10.115",	user="root",	pwd='access123')

datacenter	=	ESXi_connection.content.rootFolder.childEntity[0]	#First	Datacenter	in	the	

ESXi\

virtual_machines	=	datacenter.vmFolder.childEntity	#Access	the	child	inside	the	

vmFolder

print	virtual_machines

for	machine	in	virtual_machines:

	print(machine.name)

	try:

	guest_vcpu	=	machine.summary.config.numCpu

								print("		The	Guest	vCPU	is	{}"	.format(guest_vcpu))

	guest_os	=	machine.summary.config.guestFullName

								print("		The	Guest	Operating	System	is	{}"	.format(guest_os))

	guest_mem	=	machine.summary.config.memorySizeMB

								print("		The	Guest	Memory	is	{}"	.format(guest_mem))

	ipadd	=	machine.summary.guest.ipAddress

								print("		The	Guest	IP	Address	is	{}"	.format(ipadd))

	print	"================================="

	except:

	print("		Can't	get	the	summary")

In	the	previous	example,	we	did	the	following:

1.	 We	established	the	API	connection	again	to	MoB	by	providing	the
ESXi/vCenter	credentials	to	the	SmartConnectNoSSL	method.

2.	 Then,	we	accessed	the	data	center	object	by	accessing	the	content	then
rootFolder	objects	and	finally	childEntity.	The	returned	object	was	an	iterable

so	we	accessed	the	first	element	(the	first	data	center)	since	we	had	only
one	ESXi	in	the	lab.	You	could	iterate	over	all	data	centers	to	get	a	list	of	all
virtual	machines	in	all	registered	data	centers.

3.	 The	virtual	machines	can	be	accessed	via	the	vmFolder	and	the	childEntity.
Again,	remember	the	returned	output	is	iteratable	and	represents	the	virtual
machine	list	stored	inside	the	virtual_machines	variable:

4.	 We	iterated	over	the	virtual_machines	object	and	we	query	the	CPU,	Memory,
Full	name,	and	IP	address	of	each	element	(for	each	virtual	machine).	These
elements	are	located	under	each	virtual	machine	tree	in	the	summary	and	config
leafs.	Here	is	an	example	of	our	AutomationServer	settings:

The	script	output	is	as	follows:

Note	that	the	python-vm	machines	that	we	created	early	at	the	beginning	of	the	chapter	are
printed	in	the	last	screenshot.	You	can	use	PyVmomi	as	a	validation	tool	that	integrates	with
your	automation	workflow	to	validate	whether	machines	are	up	and	running	and	to	make
decisions	based	on	the	returned	output.

Changing	the	virtual	machine	state
This	time	we	will	use	the	pyvmomi	bindings	to	change	the	virtual	machine	state.
This	will	be	done	by	checking	the	virtual	machine	name	as	we	did	before;	then,
we	will	navigate	to	another	tree	in	MoB	and	get	the	runtime	status.	Finally,	we
will	apply	either	the	PowerOn()	or	PowerOff()	function	on	the	machine	depending	on
its	current	status.	This	will	switch	the	machine	state	from	On	to	Off	and	vice	versa.

The	script	is	as	follows:

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

from	pyVim.connect	import	SmartConnect,	Disconnect,SmartConnectNoSSL

ESXi_connection	=	SmartConnectNoSSL(host="10.10.10.115",	user="root",	pwd='access123')

datacenter	=	ESXi_connection.content.rootFolder.childEntity[0]	#First	Datacenter	in	the	

ESXi\

virtual_machines	=	datacenter.vmFolder.childEntity	#Access	the	child	inside	the	

vmFolder

for	machine	in	virtual_machines:

	try:

	powerstate	=	machine.summary.runtime.powerState

								if	"python-vm"	in	machine.name	and	powerstate	==	"poweredOff":

	print(machine.name)

	print("					The	Guest	Power	state	is	{}".format(powerstate))

	machine.PowerOn()

	print("**Powered	On	the	virtual	machine**")

	elif	"python-vm"	in	machine.name	and	powerstate	==	"poweredOn":

	print(machine.name)

	print("					The	Guest	Power	state	is	{}".format(powerstate))

	machine.PowerOff()

	print("**Powered	Off	the	virtual	machine**")

	except:

	print("		Can't	execute	the	task")

Disconnect(ESXi_connection)

The	script	output	is	as	follows:

Also,	you	can	validate	the	virtual	machine	statue	from	the	vSphere	client	and
check	the	hosts	that	start	with	python-vm*,	changing	their	power	state	from
poweredOff	to	poweredOn:

There's	more
You	can	find	many	useful	scripts	based	on	the	pyvmomi	bindings	(in	different
languages)	in	the	official	VMware	repository	at	GitHub	(https://github.com/vmware/
pyvmomi-community-samples/tree/master/samples).	The	scripts	are	provided	by	numerous
contributors	who	use	the	tools	and	test	them	on	a	daily	basis.	Most	of	the	scripts
provide	room	to	enter	your	configuration	(such	as	ESXi	IP	address	and
credentials)	without	modifying	the	script	source	code	by	providing	it	as
arguments.

	

https://github.com/vmware/pyvmomi-community-samples/tree/master/samples

Using	Ansible	playbook	to	manage
instances
In	the	last	part	of	VMware	automation,	we	will	utilize	the	Ansible	tool	to
administrate	the	VMware	infrastructure.	Ansible	ships	with	more	than	20
VMware	modules	(http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules
.html#vmware),	which	can	execute	many	tasks	such	as	managing	data	centers,
clusters,	and	virtual	machines.	In	older	Ansible	versions,	Ansible	used	the
pysphere	module	(which	is	not	official;	the	author	of	the	module	has	not
maintained	it	since	2013)	to	automate	the	tasks.	However,	the	newer	version	now
supports	the	pyvmomi	bindings.

Ansible	also	supports	the	VMware	SDN	product	(NSX).	Ansible	Tower	can	be	accessed	from
VMware	vRealize	Automation	(vRA),	which	allows	for	complete	workflow	integration
between	different	tools.

The	following	is	the	Ansible	Playbook:	-	name:	Provision	New	VM
hosts:	localhost
connection:	local
vars:
-	VM_NAME:	DevOps
-	ESXi_HOST:	10.10.10.115
-	USERNAME:	root
-	PASSWORD:	access123
tasks:
-	name:	current	time
command:	date	+%D
register:	current_time

-	name:	Check	for	vSphere	access	parameters
fail:	msg="Must	set	vsphere_login	and	vsphere_password	in	a	Vault"
when:	(USERNAME	is	not	defined)	or	(PASSWORD	is	not	defined)

-	name:	debug	vCenter	hostname
debug:	msg="vcenter_hostname	=	'{{	ESXi_HOST	}}'"

http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware

-	name:	debug	the	time
debug:	msg="Time	is	=	'{{	current_time	}}'"

-	name:	"Provision	the	VM"
vmware_guest:
hostname:	"{{	ESXi_HOST	}}"
username:	"{{	USERNAME	}}"
password:	"{{	PASSWORD	}}"
datacenter:	ha-datacenter
validate_certs:	False
name:	"{{	VM_NAME	}}"
folder:	/
guest_id:	centos64Guest
state:	poweredon
force:	yes
disk:
-	size_gb:	100
type:	thin
datastore:	datastore1

networks:
-	name:	network1
device_type:	e1000
#	mac:	ba:ba:ba:ba:01:02
#	wake_on_lan:	True

-	name:	network2
device_type:	e1000

hardware:
memory_mb:	4096
num_cpus:	4
num_cpu_cores_per_socket:	2
hotadd_cpu:	True
hotremove_cpu:	True

hotadd_memory:	True
scsi:	lsilogic

cdrom:
type:	"iso"
iso_path:	"[datastore1]	ISO	Room/CentOS-7-x86_64-Minimal-1708.iso"
register:	result

In	the	previous	playbook,	we	can	see	the	following:

The	first	part	of	the	playbook	was	to	define	the	ESXi	host	IP	and	credentials
in	the	vars	section	and	to	use	them	later	in	tasks.
Then	we	wrote	a	simple	validation	to	fail	the	playbook	if	the	username	or
password	was	not	provided.

Then,	we	used	the	vmware_guest	module	provided	by	ansible	(https://docs.ansib
le.com/ansible/2.4/vmware_guest_module.html)	to	provision	the	virtual	machine.
Inside	this	task,	we	provided	the	required	information,	such	as	disk	size	and
hardware	in	term	of	CPU	and	memory.	Notice	that	we	defined	the	state	of
the	virtual	machine	as	poweredon	so	ansible	will	power	on	the	virtual	machine
after	creating	it.
Disks,	networks,	hardware,	and	CD-ROMs	are	all	keys	inside	the
vmware_guest	module	used	to	describe	the	virtualized	hardware	specs	needed
for	spawning	the	new	VM	over	the	VMware	ESXi.

Run	the	playbook	using	the	following	command:	#	ansible-playbook
esxi_create_vm.yml	-vv

The	following	is	the	screenshot	of	the	Playbook	output:	

https://docs.ansible.com/ansible/2.4/vmware_guest_module.html

You	can	validate	the	virtual	machine	creation	and	binding	with	the	CentOS	ISO
file	in	the	vSphere	client:	

You	can	also	change	the	state	of	the	existing	virtual	machine	and	choose	from
poweredon,	poweredoff,	restarted,	absent,	suspended,	shutdownguest,	and	rebootguest	by
changing	the	value	in	state	inside	the	playbook.

Summary
VMware	products	are	used	widely	inside	IT	infrastructure	to	provide	virtualized
environments	for	running	applications	and	workloads.	At	the	same	time,
VMware	also	provides	API	bindings	in	many	languages	that	can	be	used	to
automate	administration	tasks.	In	the	next	chapter,	we	will	explore	another
virtualization	framework	called	OpenStack	that	relies	on	the	KVM	hypervisor
from	Red	Hat.

	

Interacting	with	the	OpenStack	API
For	a	long	time,	IT	infrastructure	depended	on	commercial	software	(from
vendors	such	as	VMWare,	Microsoft,	and	Citrix)	to	provide	virtual	environments
for	running	workloads	and	managing	resources	(such	as	computing,	storage,	and
networking).	However,	IT	industry	is	moving	to	cloud	era	and	engineers	are
migrating	workloads	and	applications	to	the	cloud	(either	public	or	private),	and
that	requires	a	new	framework	that	is	able	to	manage	all	application	resources,
providing	an	open	and	robust	API	interface	to	interact	with	external	calls	from
other	applications.

OpenStack	provides	an	open	access	and	integration	to	manage	all	of	your
computing,	storage,	and	networking	resources,	avoiding	a	vendor	lock-in	when
you're	building	your	cloud.	It	can	control	a	large	pool	of	compute	nodes,	storage
arrays,	and	networking	devices,	regardless	of	the	vendor	for	each	resource	and
provide	a	seamless	integration	between	all	resources.	The	core	idea	of
OpenStack	is	to	abstract	all	configuration	applied	on	the	underlay	infrastructure
into	a	project	which	is	responsible	for	managing	the	resource.	so	you	will	find	a
project	that	manage	the	compute	resources	(called	Nova)	,	another	project	that
provide	networking	to	the	instances	(neutron)	and	a	projects	to	interact	with
different	storage	type	(Swift	and	Cinder).

You	can	find	a	full	list	of	the	current	OpenStack	projects	in	this	link

https://www.OpenStack.org/software/project-navigator/

Also	OpenStack	provide	unified	API	access	to	the	application	developer	and
system	administrators	to	orchestrate	the	resource	creation.

In	this	chapter,	we	will	explore	the	new	and	open	world	of	OpenStack,	and	will
learn	how	we	can	leverage	Python	and	Ansible	to	interact	with	it.

The	following	topics	will	be	covered	in	this	chapter:

Understanding	RESTful	web	services
Setting	up	the	environment

https://www.openstack.org/software/project-navigator/

Sending	requests	to	OpenStack
Creating	workloads	from	Python
Managing	OpenStack	instances	using	Ansible

Understanding	RESTful	web	services
Representational	State	Transfer	(REST)	depends	on	HTTP	protocol	to
transfer	messages	between	the	client	and	server.	HTTP	was	originally	designed
to	deliver	HTML	pages	from	web	servers	(servers)	to	browsers	(clients),	when
requested.	The	pages	represent	a	set	of	resources	that	the	user	wants	to	access,
and	are	requested	by	Universal	Resource	Identifiers	(URIs).

An	HTTP	request	typically	contains	a	method	that	indicates	the	type	of	operation
that	needs	to	be	executed	on	the	resource.	For	example,	when	visiting	a	website
from	your	browser,	you	can	see	(in	the	following	screenshot)	that	the	method	is

GET:	

The	following	are	the	most	common	HTTP	methods,	and	their	usage:

HTTP	Method Action

GET The	client	will	ask	the	server	to	retrieve	the	resource.

POST The	client	will	instruct	the	server	to	create	a	new	resource.

PUT The	client	will	ask	the	server	to	modify/update	the	resource.

DELETE The	client	will	ask	the	server	to	delete	the	resource.

	

The	application	developer	can	expose	certain	resources	of	his	application,	to	be
consumed	by	the	clients	in	the	outside	world.	The	transport	protocol	that	carries
the	requests	from	the	clients	to	servers	and	returns	the	responses	back	is	HTTP.
It	is	responsible	for	securing	the	communication	and	encoding	the	packet	with
the	appropriate	data	encoding	mechanism	that	is	accepted	by	the	server,	and	it	is
a	stateless	communication	across	both	of	them.

On	the	other	hand,	the	packet	payloads	are	usually	encoded	in	either	XML	or
JSON,	to	represent	the	structure	of	the	request	handled	by	the	server	and	how	the
client	prefers	the	response	back.

There	are	many	companies	around	the	world	that	provide	public	access	to	their
data	for	developers,	in	real	time.	For	example,	the	Twitter	API	(https://developer.t
witter.com/)	provides	a	data	fetch	in	real	time,	allowing	other	developers	to
consume	the	data	in	third-party	applications	like	ads,	searches,	and	marketing.
The	same	goes	for	big	names	like	Google	(https://developers.google.com/apis-explore
r/#p/discovery/v1/),	LinkedIn	(https://developer.linkedin.com/),	and	Facebook	(https:/
/developers.facebook.com/).

Public	access	to	APIs	is	usually	limited	to	a	specific	number	of	requests,	either	per	hour	of
per	day,	for	a	single	application,	in	order	to	not	overwhelm	the	public	resources.

Python	provides	a	large	set	of	tools	and	libraries	to	consume	the	APIs,	encode
the	messages,	and	parse	the	responses.	For	example,	Python	has	a	requests
package	that	can	format	and	send	HTTP	requests	to	external	resources.	Also,	it
has	tools	to	parse	the	responses	in	a	JSON	format	and	convert	them	to	the
standard	dictionary	in	Python.

Python	also	has	many	frameworks	that	can	expose	your	resources	to	the	external
world.	Django	and	Flask	are	among	the	best,	serving	as	full	stack	frameworks.

https://developer.twitter.com/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developer.linkedin.com/
https://developers.facebook.com/

Setting	up	the	environment
OpenStack	is	a	free	and	open	source	project,	used	with	Infrastructure	as	a
Service	(IaaS),	that	can	control	your	hardware	resources	in	terms	of	CPU,
memory,	and	storage	and	provide	an	open	framework	for	many	vendors	to	build
and	integrate	plugins.

To	set	up	our	lab,	I	will	use	the	latest	OpenStack-rdo	release	(at	the	time	of	writing),
Queens,	and	install	it	onto	CentOS	7.4.1708.	The	installation	steps	are	pretty
straightforward,	and	can	be	found	at	https://www.rdoproject.org/install/packstack/.

Our	environment	consists	of	a	machine	that	has	100	GB	storage,	12	vCPU,	and
32	GB	of	RAM,	This	server	will	contains	the	OpenStack	controller,	the	compute
and	neutron	roles	on	the	same	server.	The	OpenStack	server	is	connected	to	the
same	switch	that	has	our	automation	server	and	in	same	subnet.	Note	that	this	is
not	always	the	case	in	a	production	environment,	but	you	need	to	make	sure	that
your	server	that	runs	Python	code	can	reach	the	OpenStack.

The	lab	topology	is	as	follows:	

https://www.rdoproject.org/install/packstack/

Installing	rdo-OpenStack	package
The	steps	for	installing	rdo-OpenStack	on	RHEL	7.4	and	CentOS	are	as	follows:

On	RHEL	7.4
	

First,	make	sure	that	your	system	is	up	to	date,	and	then	install	the	rdo-release.rpm
from	the	website	to	get	the	latest	version.	Finally,	install	the	OpenStack-packstack
package	that	will	automate	the	OpenStack	installation,	as	shown	in	the	following
snippet:

$	sudo	yum	install	-y	https://www.rdoproject.org/repos/rdo-release.rpm

$	sudo	yum	update	-y

$	sudo	yum	install	-y	OpenStack-packstack

	

	

	

On	CentOS	7.4
	

First,	make	sure	that	your	system	is	up	to	date,	and	then	install	the	rdoproject	to
get	the	latest	version.	Finally,	install	the	centos-release-OpenStack-queens	package
that	will	automate	the	OpenStack	installation,	as	shown	in	the	following	snippet:

$	sudo	yum	install	-y	centos-release-OpenStack-queens	$	sudo	yum	update	-y

$	sudo	yum	install	-y	OpenStack-packstack

	

	

	

Generating	answer	file
Now,	you	will	need	to	generate	the	answer	file	that	contains	the	deployment
parameters.	Most	of	these	parameters	are	fine	on	their	defaults,	but	we	will
change	a	few	things:

#	packstack	--gen-answer-file=/root/EnterpriseAutomation

Editing	answer	file
Edit	the	EnterpriseAutomtion	file	with	your	favorite	editor,	and	change	the
following:

CONFIG_DEFAULT_PASSWORD=access123

CONFIG_CEILOMETER_INSTALL=n

CONFIG_AODH_INSTALL=n

CONFIG_KEYSTONE_ADMIN_PW=access123

CONFIG_PROVISION_DEMO=n

The	CELIOMETER	and	AODH	are	an	optional	projects	within	OpenStack	ecosystem	and
could	be	ignored	in	lab	environment.

Also	we	setup	a	KEYSTONE	password	that	used	to	generate	temp	token	for	accessing
the	resource	using	API	and	used	also	to	access	the	OpenStack	GUI

Run	the	packstack
	

Save	the	file	and	run	the	installation	through	the	packstack:

#	packstack	answer-file=EnterpriseAutomation

This	command	will	download	the	packages	from	the	Queens	repository	and
install	the	OpenStack	services,	then	start	them.	After	the	installation	has
completed	successfully,	the	following	message	will	be	printed	on	the	console:

****	Installation	completed	successfully	******

Additional	information:

	*	Time	synchronization	installation	was	skipped.	Please	note	that	unsynchronized	time	

on	server	instances	might	be	problem	for	some	OpenStack	components.

	*	File	/root/keystonerc_admin	has	been	created	on	OpenStack	client	host	10.10.10.150.	

To	use	the	command	line	tools	you	need	to	source	the	file.

	*	To	access	the	OpenStack	Dashboard	browse	to	http://10.10.10.150/dashboard	.

Please,	find	your	login	credentials	stored	in	the	keystonerc_admin	in	your	home	

directory.

	*	The	installation	log	file	is	available	at:	/var/tmp/packstack/20180410-155124-

CMpsKR/OpenStack-setup.log

	*	The	generated	manifests	are	available	at:	/var/tmp/packstack/20180410-155124-

CMpsKR/manifests

	

	

Access	the	OpenStack	GUI
You	can	now	access	the	OpenStack	GUI	using	http://<server_ip_address>/dashboard.
The	credentials	will	be	admin	and	access123	(depending	on	what	you	wrote	in
CONFIG_KEYSTONE_ADMIN_PW	in	the	previous	steps):

Our	cloud	is	now	up	and	running,	ready	to	receive	requests.

Sending	requests	to	the	OpenStack
keystone
OpenStack	contains	collections	of	services	that	work	together	to	manage	the
virtual	machine	create,	read,	update,	and	delete	(CRUD)	operations.	Each
service	can	expose	its	resources	to	be	consumed	by	external	requests.	For
example,	the	nova	service	is	responsible	for	spawning	the	virtual	machine	and
acts	as	a	hypervisor	layer	(though	it's	not	a	hypervisor	itself,	it	can	control	other
hypervisors,	like	KVM	and	vSphere).	Another	service	is	glance,	responsible	for
hosting	the	instance	images	in	either	an	ISO	or	qcow2	format.	The	neutron	service
is	responsible	for	providing	networking	services	to	spawned	instances	and
ensures	that	the	instances	located	on	different	tenants	(projects)	are	isolated	from
each	other,	while	instances	on	the	same	tenants	can	reach	each	others	through	an
overlays	network	(VxLAN	or	GRE).

In	order	to	access	the	APIs	of	each	of	the	preceding	services,	you	will	need	to
have	an	authenticated	token	that	is	used	for	a	specific	period	of	time.	That's	the
role	of	the	keystone,	which	provides	an	identity	service	and	manages	the	roles	and
permissions	of	each	user.

First,	we	need	to	install	the	Python	bindings	on	our	automation	server.	These
bindings	contain	python	code	used	to	access	each	service	and	authenticate	the
request	with	the	token	generated	from	KEYSTONE.	Also	bindings	contains
supported	operation	for	each	project	(like	create/delete/update/list):

yum	install	-y	gcc	openssl-devel	python-pip	python-wheel

pip	install	python-novaclient

pip	install	python-neutronclient

pip	install	python-keystoneclient

pip	install	python-glanceclient

pip	install	python-cinderclient

pip	install	python-heatclient

pip	install	python-OpenStackclient

Note	that	the	Python	client	name	is	python-<service_name>client

You	can	download	into	your	site's	global	packages	or	the	Python	virtualenv
environment.	Then,	you	will	need	OpenStack	admin	privileges,	which	can	be

found	in	the	following	path,	inside	the	OpenStack	server:

cat	/root/keystonerc_admin

unset	OS_SERVICE_TOKEN

export	OS_USERNAME=admin

export	OS_PASSWORD='access123'

export	OS_AUTH_URL=http://10.10.10.150:5000/v3

export	PS1='[\u@\h	\W(keystone_admin)]\$	'

				

export	OS_PROJECT_NAME=admin

export	OS_USER_DOMAIN_NAME=Default

export	OS_PROJECT_DOMAIN_NAME=Default

export	OS_IDENTITY_API_VERSION=3

Notice	that	we	will	use	the	keystone	version	3	in	both	the	OS_AUTH_URL	and
OS_IDENTITY_API_VERSION	parameters	when	we	communicate	with	the	OpenStack
keystone	service.	Most	of	the	Python	clients	are	compatible	with	older	versions,
but	require	you	to	change	your	script	a	little	bit.	Other	parameters	are	also
required	during	token	generation,	so	make	sure	that	you	have	access	to	the
keystonerc_admin	file.	Also	the	access	credentials	can	be	found	in	OS_USERNAME	and
OS_PASSWORD	in	the	same	file

our	Python	script	will	be	as	follows:

from	keystoneauth1.identity	import	v3

from	keystoneauth1	import	session

auth	=	v3.Password(auth_url="http://10.10.10.150:5000/v3",

	username="admin",

	password="access123",

	project_name="admin",

	user_domain_name="Default",

	project_domain_name="Default")

sess	=	session.Session(auth=auth,	verify=False)

print(sess)

In	the	preceding	example,	the	following	applies:

python-keystoneclient	made	a	request	to	the	keystone	API	using	the	v3	class
(which	reflects	the	keystone	API	version).	This	class	is	available	inside	of
keystoneayth1.identity.
Then,	we	supplied	the	full	credentials	taken	from	the	keystonerc_admin	file	to
the	auth	variable.
Finally,	we	established	the	session,	using	the	session	manager	inside	of	the
keystone	client.	Notice	that	we	set	verify	to	False,	since	we	don't	use	the
certificate	to	generate	the	token.	Otherwise,	you	can	supply	the	certificate
path.
The	token	generated	can	be	used	with	any	service,	and	it	will	last	for	one

hour,	then	expire.	Also,	if	you	change	the	user	role,	the	token	will	expire
immediately,	without	waiting	for	an	hour.

OpenStack	administrators	can	configure	the	admin_token	field	inside	the
/etc/keystone/keystone.conf	file,	which	never	expires.	However,	this	is	not	recommended	in	a
production	environment,	for	security	reasons.

If	you	don't	want	to	store	the	credentials	inside	the	Python	script,	you	can	store
them	in	the	ini	file	and	load	them	using	the	configparser	module.	First,	create	a
creds.ini	file	in	the	automation	server,	and	give	it	appropriate	Linux	permissions,
so	it	can	only	be	opened	with	your	own	account:

#vim	/root/creds.ini

[os_creds]

auth_url="http://10.10.10.150:5000/v3"

username="admin"

password="access123"

project_name="admin"

user_domain_name="Default"

project_domain_name="Default"

The	modified	script	is	as	follows:

from	keystoneauth1.identity	import	v3

from	keystoneauth1	import	session

import	ConfigParser

config	=	ConfigParser.ConfigParser()

config.read("/root/creds.ini")

auth	=	v3.Password(auth_url=config.get("os_creds","auth_url"),

	username=config.get("os_creds","username"),

	password=config.get("os_creds","password"),

	project_name=config.get("os_creds","project_name"),

	user_domain_name=config.get("os_creds","user_domain_name"),

	project_domain_name=config.get("os_creds","project_domain_name"))

sess	=	session.Session(auth=auth,	verify=False)

print(sess)

The	configparser	module	will	parse	the	creds.ini	file	and	look	at	the	os_creds	section
inside	the	file.	Then,	it	will	get	the	value	in	front	of	each	parameter	by	using	the
get()	method.

The	config.get()	method	will	accept	two	arguments.	The	first	argument	is	the
section	name	inside	the	.ini	file,	and	the	second	is	the	parameter	name.	The
method	will	return	the	value	associated	with	the	parameter.

This	method	should	provide	additional	security	to	your	cloud	credentials.

Another	valid	method	to	secure	your	file	is	to	load	the	keystonerc_admin	file	into
the	environmental	variables	using	the	Linux	source	command,	and	read	the
credentials	using	the	environ()	method	inside	of	the	os	module.

Creating	instances	from	Python
To	get	instance	up	and	running,	OpenStack	instances	require	three	components.
The	boot	image,	which	is	provided	by	glance,	the	network	ports,	which	provided
by	neutron,	and	finally,	the	compute	flavor	that	defines	the	number	of	CPUs,
amount	of	RAM	that	will	be	allocated	to	the	instance	and	disk	size.	The	flavor	is
provided	by	nova	project.

	

Creating	the	image
We	will	start	by	downloading	a	cirros	image	to	the	automation	server.	cirros	is	a
lightweight,	Linux-based	image,	used	by	many	OpenStack	developers	and
testers	around	the	world	to	validate	the	functionality	of	OpenStack	services:

#cd	/root/	;	wget	http://download.cirros-cloud.net/0.4.0/cirros-0.4.0-x86_64-disk.img

Then,	we	will	upload	the	image	to	the	OpenStack	image	repository	using
glanceclient.	Notice	that	we	need	to	have	the	keystone	token	and	the	session
parameter	first,	in	order	to	communicate	with	glance,	otherwise,	glance	won't
accept	any	API	requests	from	us.

The	script	will	be	as	follows:

from	keystoneauth1.identity	import	v3

from	keystoneauth1	import	session

from	glanceclient	import	client	as	gclient

from	pprint	import	pprint

auth	=	v3.Password(auth_url="http://10.10.10.150:5000/v3",

	username="admin",

	password="access123",

	project_name="admin",

	user_domain_name="Default",

	project_domain_name="Default")

sess	=	session.Session(auth=auth,	verify=False)

#Upload	the	image	to	the	Glance

glance	=	gclient.Client('2',	session=sess)

image	=	glance.images.create(name="CirrosImage",

	container_format='bare',

	disk_format='qcow2',

)

glance.images.upload(image.id,	open('/root/cirros-0.4.0-x86_64-disk.img',	'rb'))

In	the	preceding	example,	the	following	applies:

Since	we	are	communicating	with	glance	(the	image	hosting	project),	we
will	import	the	client	from	the	installed	glanceclient	module.
The	same	keystone	scripts	used	to	generate	the	sess	that	holds	the	keystone

token.
We	created	the	glance	parameter	that	initializes	the	client	manager	with
glance	and	provide	the	version	(version	2)	and	the	generated	token.
You	can	see	all	supported	API	versions	by	accessing	the	OpenStack	GUI	|
API	Access	tab	as	in	below	screenshot.	notice	also	the	supported	version
for	each	project.

The	glance	client	manager	is	designed	to	operate	on	the	glance	OpenStack
service.	the	manager	is	instructed	to	create	an	image	with	a	name	CirrosImage
and	disk	type	is	in	qcow2	format.

Finally,	we	will	open	the	downloaded	image	as	a	binary,	using	the	'rb'	flag,
and	will	upload	it	to	the	created	image.	Now,	glance	will	import	the	image	to
the	newly	created	file	in	the	image	repository.

You	can	validate	that	the	operation	was	successful	in	two	ways:

1.	 If	no	error	is	printed	back	after	executing	glance.images.upload(),	it	means	that
the	request	is	correctly	formatted	and	has	been	accepted	by	the	OpenStack
glance	API.

2.	 Run	the	glance.images.list()	.	The	returned	output	will	be	a	generate	which
you	can	iterate	over	it	to	see	more	details	about	the	uploaded	image:

print("==========================Image	Details==========================")

for	image	in	glance.images.list(name="CirrosImage"):

	pprint(image)

{u'checksum':	u'443b7623e27ecf03dc9e01ee93f67afe',

	u'container_format':	u'bare',

	u'created_at':	u'2018-04-11T03:11:58Z',

	u'disk_format':	u'qcow2',

	u'file':	u'/v2/images/3c2614b0-e53c-4be1-b99d-bbd9ce14b287/file',

	u'id':	u'3c2614b0-e53c-4be1-b99d-bbd9ce14b287',

	u'min_disk':	0,

	u'min_ram':	0,

	u'name':	u'CirrosImage',

	u'owner':	u'8922dc52984041af8fe22061aaedcd13',

	u'protected':	False,

	u'schema':	u'/v2/schemas/image',

	u'size':	12716032,

	u'status':	u'active',

	u'tags':	[],

	u'updated_at':	u'2018-04-11T03:11:58Z',

	u'virtual_size':	None,

	u'visibility':	u'shared'}

Assigning	a	flavor
Flavors	are	used	to	determine	the	CPU,	memory,	and	storage	size	of	the	instance.
OpenStack	comes	with	a	predefined	set	of	flavors,	with	different	sizes	that	range
from	tiny	to	extra	large.	For	the	cirros	image,	we	will	use	the	small	flavor,	which
has	2	GB	RAM,	1	vCPU,	and	20	GB	storage.	Access	to	flavors	doesn't	have	a
standalone	API	client;	rather,	it's	a	part	of	the	nova	client.

You	can	see	all	available	built-in	flavors	at	OpenStack	GUI	|	Admin	|	Flavors:

The	script	will	be	as	follows:

from	keystoneauth1.identity	import	v3

from	keystoneauth1	import	session

from	novaclient	import	client	as	nclient

from	pprint	import	pprint

auth	=	v3.Password(auth_url="http://10.10.10.150:5000/v3",

	username="admin",

	password="access123",

	project_name="admin",

	user_domain_name="Default",

	project_domain_name="Default")

sess	=	session.Session(auth=auth,	verify=False)

nova	=	nclient.Client(2.1,	session=sess)

instance_flavor	=	nova.flavors.find(name="m1.small")

print("==========================Flavor	Details==========================")

pprint(instance_flavor)

In	the	preceding	script,	the	following	applies:

Since	we	will	communicate	with	nova	(the	compute	service)	to	retrieve	the
flavor,	we	will	import	the	novaclient	module	as	nclient.
The	same	keystone	script	is	used	to	generate	the	sess	that	holds	the	keystone
token.

We	created	the	nova	parameter	that	initialized	the	client	manager	with	the
nova	and	provide	the	version	to	the	client	(version	2.1)	and	the	generated
token.
Finally,	we	used	the	nova.flavors.find()	method	to	locate	the	desired	flavor,
which	is	m1.small.	The	name	has	to	match	the	name	in	OpenStack	exactly,
otherwise	it	will	throw	an	error.

Creating	the	network	and	subnet
Creating	the	network	for	the	instance	requires	two	things:	the	network	itself,	and
associating	subnet	with	it.	First,	we	need	to	supply	the	network	properties,	such
as	the	ML2	driver	(Flat,	VLAN,	VxLAN,	and	so	on),	the	segmentation	ID	that
differentiates	between	the	networks	running	on	the	same	interface,	the	MTU,	and
the	physical	interface,	if	the	instance	traffic	needs	to	traverse	external	networks.
Second,	we	need	to	provide	the	subnet	properties,	such	as	the	network	CIDR,	the
gateway	IP,	The	IPAM	parameters	(DHCP/DNS	server	if	defined),	and	which
network	ID	is	associated	with	the	subnet	as	in	below	screenshot:

Now	we	will	develop	a	Python	script	to	interact	with	the	neutron	project	and
create	a	network	with	a	subnet

from	keystoneauth1.identity	import	v3

from	keystoneauth1	import	session

import	neutronclient.neutron.client	as	neuclient

auth	=	v3.Password(auth_url="http://10.10.10.150:5000/v3",

	username="admin",

	password="access123",

	project_name="admin",

	user_domain_name="Default",

	project_domain_name="Default")

sess	=	session.Session(auth=auth,	verify=False)

neutron	=	neuclient.Client(2,	session=sess)

#	Create	Network

body_network	=	{'name':	'python_network',

	'admin_state_up':	True,

																#'port_security_enabled':	False,

	'shared':	True,

	#	'provider:network_type':	'vlan|vxlan',

																#	'provider:segmentation_id':	29

																#	'provider:physical_network':	None,

																#	'mtu':	1450,

	}

neutron.create_network({'network':body_network})

network_id	=	neutron.list_networks(name="python_network")["networks"][0]["id"]

#	Create	Subnet

body_subnet	=	{

	"subnets":[

	{

	"name":"python_network_subnet",

	"network_id":network_id,

	"enable_dhcp":True,

	"cidr":	"172.16.128.0/24",

	"gateway_ip":	"172.16.128.1",

	"allocation_pools":[

	{

	"start":	"172.16.128.10",

	"end":	"172.16.128.100"

	}

],

	"ip_version":	4,

	}

]

	}

neutron.create_subnet(body=body_subnet)

In	the	preceding	script,	the	following	applies:

Since	we	will	communicate	with	neutron	(the	network	service)	to	create	both
the	network	and	associated	subnet,	we	will	import	the	neutronclient	module
as	the	neuclient.
The	same	keystone	script	is	used	to	generate	the	sess	that	holds	the	keystone
token	used	later	to	access	neutron	resource.
We	will	create	the	neutron	parameter	that	initializes	the	client	manager	with
neutron	and	provide	the	version	to	it	(version	2)	and	the	generated	token.
Then,	we	created	two	Python	dictionaries,	body_network	and	body_subnet	which
hold	the	message	bodies	for	the	network	and	subnet	respectively.	Note	that
the	dictionary	keys	are	static	and	can't	be	changed,	while	the	values	could
be	changed	and	usually	provided	from	external	portal	system	or	Excel
sheet,	depending	on	your	deployment.	Also,	I	commented	on	the	parts	that

are	not	necessary	during	network	creation,	such	as	provider:physical_network
and	provider:network_type,	since	our	cirros	image	won't	communicate	with	the
provider	network	(networks	defined	outside	OpenStack	domains)	but
provided	here	for	reference.
Finally	the	subnet	and	the	network	associated	together	by	getting	first	the
network_id	through	the	list_networks()	method	and	access	the	id	and	providing
it	as	a	value	to	network_id	key	inside	the	body_subnet	variable.

Launching	the	instance
The	final	part	is	to	glue	everything	together.	We	have	the	boot	image,	the
instance	flavor,	and	the	network	that	connects	the	machine	with	the	other
instances.	We're	ready	to	launch	the	instance	using	the	nova	client	(remember	that
nova	is	responsible	for	the	virtual	machine	life	cycle	and	the	CRUD	operations	on
the	VM):

print("=================Launch	The	Instance=================")

image_name	=	glance.images.get(image.id)

network1	=	neutron.list_networks(name="python_network")

instance_nics	=	[{'net-id':	network1["networks"][0]["id"]}]

server	=	nova.servers.create(name	=	"python-instance",

	image	=	image_name.id,

	flavor	=	instance_flavor.id,

	nics	=	instance_nics,)

status	=	server.status

while	status	==	'BUILD':

	print("Sleeping	5	seconds	till	the	server	status	is	changed")

	time.sleep(5)

	instance	=	nova.servers.get(server.id)

	status	=	instance.status

				print(status)

print("Current	Status	is:	{0}".format(status))

In	the	preceding	script,	we	used	the	nova.servers.create()	method	and	passed	all	of
the	information	required	to	spawn	the	instance(instance	name,	operating	system,
flavor	and	networks).	Additionally,	we	implemented	a	polling	mechanism	that
polls	the	nova	service	for	the	server	current	status.	If	the	server	is	still	in	BUILD
phase,	then	the	script	will	sleeps	for	five	seconds	then	poll	again.	The	loop	will
exit	when	the	server	status	is	changes	to	either	ACTIVE	or	FAILURE	and	will	prints	the
server	status	at	the	end.

The	script's	output	is	as	follows:

Sleeping	5	seconds	till	the	server	status	is	changed

Sleeping	5	seconds	till	the	server	status	is	changed

Sleeping	5	seconds	till	the	server	status	is	changed

Current	Status	is:	ACTIVE

Also,	you	can	check	the	instance	from	the	OpenStack	GUI	|	Compute	|	Instances:

Managing	OpenStack	instances	from
Ansible
Ansible	provides	modules	that	can	manage	the	OpenStack	instance	life	cycle,
just	like	we	did	using	APIs.	You	can	find	the	full	list	of	supported	modules	at	htt
p://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#OpenStack.

All	OpenStack	modules	rely	on	the	Python	library	called	shade	(https://pypi.python
.org/pypi/shade),	which	provides	a	wrapper	around	OpenStack	clients.

Once	you	have	installed	shade	on	the	automation	server,	you	will	have	access	to
the	os-*	modules	that	can	manipulate	the	OpenStack	configuration,	such	as
os_image	(to	handle	OpenStack	images),	os_network	(to	create	the	network),	os_subnet
(to	create	and	associate	the	subnet	with	the	created	network),	os_nova_flavor	(to
create	flavors,	given	the	RAM,	CPU,	and	disk),	and	finally,	the	os_server	module
(to	bring	up	the	OpenStack	instance).

http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
https://pypi.python.org/pypi/shade

Shade	and	Ansible	installation
In	the	automation	server,	use	the	Python	pip	to	download	and	install	shade,	with
all	dependencies:	pip	install	shade

After	installation,	you	will	have	shade	under	the	normal	site-packages	in	Python,
but	we	will	use	Ansible	instead.

Also,	you	will	need	to	install	Ansible	in	the	automation	server,	if	you	haven't
done	it	in	previous	chapters:	#	yum	install	ansible	-y

Verify	that	Ansible	has	installed	successfully	by	querying	the	Ansible	version
from	the	command	line:

[root@AutomationServer	~]#	ansible	--version

ansible	2.5.0

		config	file	=	/etc/ansible/ansible.cfg

		configured	module	search	path	=	[u'/root/.ansible/plugins/modules',	

u'/usr/share/ansible/plugins/modules']

		ansible	python	module	location	=	/usr/lib/python2.7/site-packages/ansible

		executable	location	=	/usr/bin/ansible

		python	version	=	2.7.5	(default,	Aug		4	2017,	00:39:18)	[GCC	4.8.5	20150623	(Red	Hat	

4.8.5-16)]

Building	the	Ansible	playbook
As	we	saw	in	Chapter	13,	Ansible	for	Administration,	depends	on	a	YAML	file	to
contain	everything	you	will	need	to	execute	against	hosts	in	the	inventory.	In	this
case,	we	will	instruct	the	playbook	to	establish	a	local	connection	to	the	shade
library	on	the	automation	server,	and	provide	the	playbook	with	the
keystonerc_admin	credentials	that	help	shade	to	send	requests	to	our	OpenStack
server.

The	playbook	script	is	as	follows:	---
-	hosts:	localhost
vars:
os_server:	'10.10.10.150'
gather_facts:	yes
connection:	local
environment:
OS_USERNAME:	admin
OS_PASSWORD:	access123
OS_AUTH_URL:	http://{{	os_server	}}:5000/v3
OS_TENANT_NAME:	admin
OS_REGION_NAME:	RegionOne
OS_USER_DOMAIN_NAME:	Default
OS_PROJECT_DOMAIN_NAME:	Default

tasks:
-	name:	"Upload	the	Cirros	Image"
os_image:
name:	Cirros_Image
container_format:	bare
disk_format:	qcow2
state:	present
filename:	/root/cirros-0.4.0-x86_64-disk.img
ignore_errors:	yes

-	name:	"CREATE	CIRROS_FLAVOR"

os_nova_flavor:
state:	present
name:	CIRROS_FLAVOR
ram:	2048
vcpus:	4
disk:	35
ignore_errors:	yes

-	name:	"Create	the	Cirros	Network"
os_network:
state:	present
name:	Cirros_network
external:	True
shared:	True
register:	Cirros_network
ignore_errors:	yes

-	name:	"Create	Subnet	for	The	network	Cirros_network"
os_subnet:
state:	present
network_name:	"{{	Cirros_network.id	}}"
name:	Cirros_network_subnet
ip_version:	4
cidr:	10.10.128.0/18
gateway_ip:	10.10.128.1
enable_dhcp:	yes
dns_nameservers:
-	8.8.8.8
register:	Cirros_network_subnet
ignore_errors:	yes

-	name:	"Create	Cirros	Machine	on	Compute"
os_server:
state:	present
name:	ansible_instance

image:	Cirros_Image
flavor:	CIRROS_FLAVOR
security_groups:	default
nics:
-	net-name:	Cirros_network
ignore_errors:	yes

In	the	playbook,	we	make	use	of	the	os_*	modules	to	upload	the	image	to	the
OpenStack	glance	server,	create	a	new	flavor	(and	not	using	this	built-in),	and
create	the	network	with	the	subnet	associated;	then,	we	glue	everything	together
in	os_server,	which	communicates	with	the	nova	server	to	spawn	the	machine.

Please	note	that	the	hosts	will	be	the	localhost	(or	the	machine	name	that	hosts
the	shade	library),	while	we	added	the	OpenStack	keystone	credentials	in	the
environmental	variables.

Running	the	playbook
Upload	the	playbook	to	the	automation	server	and	execute	the	following
command	to	run	it:

ansible-playbook	os_playbook.yml

The	playbook's	output	will	be	as	follows:

	[WARNING]:	No	inventory	was	parsed,	only	implicit	localhost	is	available

	[WARNING]:	provided	hosts	list	is	empty,	only	localhost	is	available.	Note	that	the	

implicit	localhost	does	not	match	'all'

PLAY	[localhost]	

**

TASK	[Gathering	Facts]	

**

ok:	[localhost]

TASK	[Upload	the	Cirros	Image]	

**

changed:	[localhost]

TASK	[CREATE	CIRROS_FLAVOR]	

ok:	[localhost]

TASK	[Create	the	Cirros	Network]	

**

changed:	[localhost]

TASK	[Create	Subnet	for	The	network	Cirros_network]	

changed:	[localhost]

TASK	[Create	Cirros	Machine	on	Compute]	

changed:	[localhost]

PLAY	RECAP	

**

localhost																		:	ok=6				changed=4				unreachable=0				failed=0			

You	can	access	the	OpenStack	GUI	to	validate	that	the	instance	was	created
from	the	Ansible	playbook:

Summary
	

Nowadays,	the	IT	industry	is	trying	to	avoid	vendor	lock-in	by	moving	to	the
open	source	world	whenever	possible.	OpenStack	provides	a	window	into	this
world;	many	large	organizations	and	telecom	operators	are	considering	moving
their	workloads	to	OpenStack,	to	build	their	private	clouds	in	its	data	center.
They	can	then	build	their	own	tools	to	interact	with	the	open	source	APIs
provided	by	OpenStack.

In	the	next	chapter,	we	will	explore	another	(paid)	public	Amazon	cloud,	and
will	learn	how	we	can	leverage	Python	to	automate	instance	creation.

	

	

	

Automating	AWS	with	Boto3
	

In	previous	chapters,	we	explored	how	to	automate	the	OpenStack	and	VMware
private	clouds	using	Python.	We	will	continue	on	our	cloud	automation	journey
by	automating	one	of	the	most	popular	public	clouds:	Amazon	Web	Services
(AWS).	In	this	chapter,	we	will	explore	how	to	create	Amazon	Elastic	Compute
Cloud	(EC2)	and	Amazon	Simple	Storage	Systems	(S3)	using	Python	script.

We	will	cover	the	following	topics	in	this	chapter:

AWS	Python	modules
Managing	AWS	instances
Automating	AWS	S3	services

	

	

AWS	Python	modules
Amazon	EC2	is	a	scalable	computing	system	that	is	used	to	provide
virtualization	layers	for	hosting	different	virtual	machines	(such	as	the	nova-
compute	project	in	the	OpenStack	ecosystem).	It	can	communicate	with	other
services,	such	as	S3,	Route	53,	and	AMI,	in	order	to	instantiate	instances.
Basically,	you	can	think	of	EC2	as	an	abstraction	layer	above	other	hypervisors
that	are	set	over	the	virtual	infrastructure	manager	(such	as	KVM	and	VMware).
EC2	will	receive	the	incoming	API	calls	then	will	translate	them	into	suitable
calls	for	each	hypervisor.

The	Amazon	Machine	Image	(AMI)	is	a	packaged	image	system	that	contains
the	operating	system	and	packages	needed	to	start	a	virtual	machine	(like	Glance
in	OpenStack).	You	can	create	your	own	AMI	from	existing	virtual	machines
and	use	it	when	you	need	to	replicate	those	machines	on	other	infrastructures,	or
you	can	simply	choose	from	publicly	available	AMIs	on	the	internet	or	on	the
Amazon	Marketplace.	We	will	need	to	get	the	AMI	ID	from	the	Amazon	web
console	and	add	it	to	our	Python	script.

AWS	designed	an	SDK	called	Boto3	(https://github.com/boto/boto3)	that	allows
Python	developers	to	have	scripts	and	software	that	interact	and	consume	the
APIs	of	different	services,	like	Amazon	EC2	and	Amazon	S3.	The	library	was
written	to	provide	native	support	for	Python	2.6.5,	2.7+,	and	3.3.

The	major	Boto3	features	are	described	in	the	official	documentation	at	https://bo
to3.readthedocs.io/en/latest/guide/new.html,	and	below	are	some	important	features:

Resources:	A	high-level,	object-oriented	interface.
Collections:	A	tool	to	iterate	and	manipulate	groups	of	resources.
Clients:	A	low-level	service	connection.
Paginators:	Automatic	paging	of	responses.
Waiters:	A	way	to	suspend	execution	until	a	certain	state	has	been	reached
or	a	failure	occurs.	Each	AWS	resource	has	a	waiter	name	that	could	be
accessed	using	<resource_name>.waiter_names.

https://github.com/boto/boto3
https://boto3.readthedocs.io/en/latest/guide/new.html

Boto3	installation
A	few	things	are	needed	before	connecting	to	AWS:

1.	 First,	you	will	need	an	Amazon	admin	account	that	has	privileges	to	create,
modify,	and	delete	from	the	infrastructure.

2.	 Secondly,	install	the	boto3	Python	modules	that	are	used	to	interact	with
AWS.	You	can	create	a	user	dedicated	to	sending	API	requests	by	going	to
the	AWS	Identity	and	Access	Management	(IAM)	console	and	adding	a
new	user.	You	should	see	the	Programmatic	access	option,	available	under
the	Access	Type	section.

3.	 Now,	you	will	need	to	assign	a	policy	that	allows	full	access	across	the
Amazon	services,	such	as	EC2	and	S3.	Do	that	by	clicking	on	Attach
existing	policy	to	user	and	attaching	AmazonEC2FullAccess	and
AmazonS3FullAccess	policies	to	the	username.

4.	 At	the	end,	click	on	Create	user	to	add	the	user	with	the	configured	options
and	policies.

You	can	sign	up	for	a	free	tier	account	on	AWS,	which	will	give	you	access	to	many	services
offered	by	Amazon	for	up	to	12	months.	Free	access	can	be	acquired	at
https://aws.amazon.com/free/.

When	using	Python	script	to	manage	AWS,	the	access	key	ID	is	used	to	send
API	requests	and	get	the	responses	back	from	the	API	server.	We	won't	use	the
username	or	the	password	for	sending	requests,	as	they're	easily	captured	by
others.	This	information	is	obtained	by	downloading	the	text	file	that	appears
after	creating	the	username.	It's	important	to	keep	this	file	in	a	safe	place	and
provide	a	proper	Linux	permission	for	it,	for	opening	and	reading	file	content.

Another	method	is	to	create	a	.aws	directory	under	your	home	user	directory	and
place	two	files	under	it:	credentials	and	config.	The	first	file	will	have	both	the
access	key	ID	and	the	secret	access	ID.

~/.aws/credentials	appears	as	follows:

[default]

aws_access_key_id=AKIAIOSFODNN7EXAMPLE

aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

https://aws.amazon.com/free/

The	second	file	will	hold	user-specific	configurations,	such	as	the	preferred	data
center	(zone)	that	will	host	the	created	virtual	machines.	(This	is	like	the
availability	zone	option	in	OpenStack.)	In	the	following	example,	we	are
specifying	that	we	want	to	host	our	machines	in	the	us-west-2	data	center.

The	config	file,	~/.aws/config,	looks	like	the	following:

[default]

region=us-west-2

Now,	installing	boto3	requires	using	the	usual	pip	command	to	get	the	latest	boto3
version:

pip	install	boto3

To	verify	that	the	module	has	successfully	installed,	import	boto3	in	the	Python
console,	and	you	shouldn't	see	any	import	errors	reported:

Managing	AWS	instances
Now,	we're	ready	to	create	our	first	virtual	machine	using	boto3.	As	we	have
discussed,	we	need	the	AMI	that	we	will	instantiate	an	instance	from.	Think	of
an	AMI	as	a	Python	class;	creating	an	instance	will	create	an	object	from	it.	We
will	use	the	Amazon	Linux	AMI,	which	is	a	special	Linux	operating	system
maintained	by	Amazon	and	used	for	deploying	Linux	machines	without	any
extra	charges.	You	can	find	a	full	AMI	ID,	per	region,	at	https://aws.amazon.com/amaz
on-linux-ami/:

import	boto3

ec2	=	boto3.resource('ec2')

instance	=	ec2.create_instances(ImageId='ami-824c4ee2',	MinCount=1,	MaxCount=1,	

InstanceType='m5.xlarge',

	Placement={'AvailabilityZone':	'us-west-2'},

)

print(instance[0])

In	the	preceding	example,	the	following	applies:

1.	 We	imported	the	boto3	module	that	we	installed	previously.
2.	 Then,	we	specified	a	resource	type	that	we	wanted	to	interact	with,	which	is

https://aws.amazon.com/amazon-linux-ami/

EC2,	and	assigned	that	to	the	ec2	object.

3.	 Now,	we	are	eligible	to	use	the	create_instance()	method	and	provide	it	with
instance	parameters,	such	as	ImageID	and	InstanceType	(like	flavor	in
OpenStack,	which	determines	the	instance	specs	in	terms	of	computing	and
memory),	and	where	we	should	create	this	instance	in	the	AvailabilityZone.

4.	 MinCount	and	MaxCount	determine	how	far	EC2	can	go	when	scaling	our
instances.	For	example,	when	a	high	CPU	has	occurred	on	one	of	the
instances,	EC2	will	deploy	another	instance	automatically,	to	share	the
loads	and	keep	the	service	in	a	healthy	state.

5.	 Finally,	we	printed	the	instance	ID	to	be	used	in	the	next	script.

The	output	is	as	follows:

You	can	check	all	valid	Amazon	EC2	instance	types	at	the	following	link;	please	read	them
carefully,	in	order	to	not	be	overcharged	from	choosing	the	wrong	type:	https://aws.amazon.com/ec2/i
nstance-types/

https://aws.amazon.com/ec2/instance-types/

Instance	termination
The	printed	ID	is	used	in	CRUD	operations	to	manage	or	terminate	the	instance
later.	For	example,	we	can	terminate	the	instance	by	using	the	terminate()	method
also	provided	to	the	ec2	resource	created	earlier:

import	boto3

ec2	=	boto3.resource('ec2')

instance_id	=	"i-0a81k3ndl29175220"

instance	=	ec2.Instance(instance_id)

instance.terminate()

Notice	that	we	hardcoded	instance_id	in	the	preceding	code	(which	is	not	always
the	case	when	you	need	to	create	a	dynamic	Python	script	that	can	be	used	in
different	environments).	We	can	use	other	input	methods	that	are	available	in
Python,	such	as	raw_input(),	to	take	the	input	from	the	user	or	query	the	available
instances	in	our	accounts	and	make	Python	prompt	us	on	which	instances	need
to	be	terminated.	Another	use	case	is	to	create	a	Python	script	that	checks	the	last
login	time	or	the	resource	consumption	in	our	instance;	if	they	exceed	a	specific
value,	we	will	terminate	the	instance.	This	is	useful	in	a	lab	environment,	where
you	don't	want	to	be	charged	for	consuming	additional	resources	with	a
malicious	or	a	poorly	designed	software.

Automating	AWS	S3	services
The	AWS	Simple	Storage	Systems	(S3)	provides	a	safe	and	highly	scalable
object	storage	service.	You	can	use	this	service	to	store	any	amount	of	data	and
restore	it	from	anywhere.	The	system	provides	you	with	a	versioning	option,	so
you	can	roll	back	to	any	previous	version	of	the	files.	Additionally,	it	provides
the	REST	web	services	API,	so	you	can	access	it	from	external	applications.

When	data	comes	to	S3,	S3	will	create	an	object	for	it,	and	these	objects	will	be
stored	inside	Buckets	(think	of	them	like	folders).	You	can	provide	a	sophisticated
user	permission	for	each	created	bucket,	and	can	also	control	its	visibility
(public,	shared,	or	private).	The	bucket	access	can	be	either	a	policy	or	an
Access	Control	List	(ACL).

The	bucket	is	also	stored	with	metadata	that	describes	the	object	in	key-value
pairs,	which	you	can	create	and	set	by	HTTP	POST	methods.	Metadata	can	include
the	object's	name,	size,	and	date,	or	any	other	customized	key-values	that	you
want.	The	user	account	has	a	limit	of	100	buckets,	but	there's	no	limit	on	the	size
of	the	object	hosted	inside	each	bucket.

Creating	buckets
	

The	first	logical	thing	to	do,	when	interacting	with	an	AWS	S3	service,	is	create
a	bucket	that	can	be	used	to	store	files.	In	that	case,	we	will	provide	the	S3	to	the
boto3.resource()	.	That	will	tell	the	boto3	to	start	the	initialization	process	and	will
load	required	commands	to	interact	with	the	S3	API	system:

import	boto3

s3_resource	=	boto3.resource("s3")

bucket	=	s3_resource.create_bucket(Bucket="my_first_bucket",	CreateBucketConfiguration=

{

	'LocationConstraint':	'us-west-2'})

print(bucket)

In	the	preceding	example,	the	following	applies:

1.	 We	imported	the	boto3	module	that	we	installed	previously.
2.	 Then,	we	specified	a	resource	type	that	we	wanted	to	interact	with,	which	is

s3,	and	assigned	that	to	the	s3_resource	object.
3.	 Now,	we	can	use	the	create_bucket()	method	inside	the	resource	and	provide

it	with	the	required	parameter	to	create	buckets,	such	as	Bucket,	where	we
can	specify	its	name.	Remember,	the	bucket	name	must	be	unique	and
cannot	have	been	used	previously.	The	second	parameter	is	the
CreateBucketConfiguration	dictionary,	where	we	set	the	data	center	location	for
the	created	bucket.

	

	

Uploading	a	file	to	a	bucket
	

Now,	we	need	to	make	use	of	the	created	bucket	and	upload	a	file	to	it.
Remember,	the	file	representation	inside	the	bucket	is	an	object.	So,	boto3
provides	some	methods	that	contain	the	object	as	a	part	of	it.	We	will	start	by
using	put_object().	This	method	will	upload	a	file	to	the	created	bucket	and	store
it	as	an	object:

import	boto3

s3_resource	=	boto3.resource("s3")

bucket	=	s3_resource.Bucket("my_first_bucket")

with	open('~/test_file.txt',	'rb')	as	uploaded_data:

	bucket.put_object(Body=uploaded_data)

In	the	preceding	example,	the	following	applies:

1.	 We	imported	the	boto3	module	that	we	installed	previously.
2.	 Then,	we	specified	a	resource	type	that	we	wanted	to	interact	with,	which	is

s3,	and	assigned	that	to	the	s3_resource	object.
3.	 We	accessed	my_first_bucket	through	the	Bucket()	method	and	assigned	the

returned	value	to	the	bucket	variable.
4.	 Then,	we	opened	a	file	using	the	with	clause	and	named	it	uploaded_data.

Notice	that	we	opened	the	file	as	a	binary	data,	using	the	rb	flag.
5.	 Finally,	we	uploaded	the	binary	data	to	our	bucket	using	the	put_object()

method	provided	within	the	bucket	space.

	

	

Deleting	a	bucket
	

To	complete	the	CRUD	operation	for	the	bucket,	the	last	thing	we	need	to	do	is
remove	the	bucket.	This	happens	through	calling	the	delete()	method	on	our
bucket	variable,	given	that	it	already	exists	and	we	are	referencing	it	by	name,	in
the	same	manner	that	we	created	it	and	uploaded	data	to	it.	However,	delete()
may	fail	when	the	bucket	is	not	empty.	So,	we	will	use	the
bucket_objects.all().delete()	method	to	get	all	of	the	objects	inside	the	bucket,	then
apply	the	delete()	operation	on	them,	and	finally,	delete	the	bucket:

import	boto3

s3_resource	=	boto3.resource("s3")

bucket	=	s3_resource.Bucket("my_first_bucket")

bucket.objects.all().delete()

bucket.delete()

	

	

Summary
	

In	this	chapter,	we	learned	how	to	install	the	Amazon	Elastic	Compute	Cloud
(EC2),	and	we	learned	about	Boto3	and	its	installation.	We	also	learned	how	to
automate	AWS	S3	services.

In	the	next	chapter,	we	will	learn	about	the	SCAPY	framework,	which	is	a
powerful	Python	tool	used	to	build	and	craft	packets	and	send	them	on	the	wire.

	

	

	

Using	the	Scapy	Framework
	

Scapy	is	powerful	Python	tool	used	to	build	and	craft	the	packets	then	send	them
on	the	wire.	You	can	build	any	type	of	network	stream	and	send	it	on	the	wire.	It
can	help	you	to	test	your	network	using	different	packet	streams	and	manipulate
the	response	returned	from	the	source.

We	will	cover	the	following	topics	in	this	chapter:

Understanding	the	Scapy	framework
Installing	Scapy
Generating	packets	and	network	streams	using	Scapy
Capturing	and	replaying	packets

	

	

Understanding	Scapy
	

Scapy	(https://scapy.net)	is	one	of	the	powerful	Python	tools	that	is	used	to
capture,	sniff,	analyze,	and	manipulate	network	packets.	It	can	also	build	a
packet	structure	of	layered	protocols	and	inject	a	wiuthib	stream	into	the
network.	You	can	use	it	to	build	a	wide	number	of	protocols	on	top	of	each	other
and	set	the	details	of	each	field	inside	the	protocol,	or,	better,	let	Scapy	do	its
magic	and	choose	the	appropriate	values	so	that	each	one	can	have	a	valid	frame.
Scapy	will	try	to	use	the	default	values	for	packets	if	not	overridden	by	users.
The	following	values	will	be	set	automatically	for	each	stream:

The	IP	source	is	chosen	according	to	the	destination	and	routing	table
The	checksum	is	automatically	computed
The	source	Mac	is	chosen	according	to	the	output	interface
The	Ethernet	type	and	IP	protocol	are	determined	by	the	upper	layer

Scapy	can	be	programmed	to	inject	a	frame	into	a	stream	and	to	resend	it.	You
can,	for	example,	inject	a	802.1q	VLAN	ID	into	a	stream	and	resend	it	to
execute	attacks	or	analysis	on	the	network.	Also,	you	can	visualize	the
conversation	between	two	endpoints	and	graph	it	using	Graphviz	and	ImageMagick
modules.

Scapy	has	its	own	Domain-Specific	Language	(DSL)	that	enables	the	user	to
describe	the	packet	that	he	wants	to	build	or	manipulate	and	to	receive	the
answer	in	the	same	structure.	This	works	and	integrates	very	well	with	Python
built-in	data	types,	such	as	lists	and	dictionaries.	We	will	see	in	examples	that
the	received	packets	from	the	network	are	actually	a	Python	list,	and	we	can
iterate	the	normal	list	functions	over	them.

	

	

	

https://scapy.net

Installing	Scapy
	

Scapy	supports	both	Python	2.7.x	and	3.4+,	starting	from	Scapy	version	2.x.
However,	for	versions	lower	than	2.3.3,	Scapy	needs	Python	2.5	and	2.7,	or	3.4+
for	versions	after	that.	Since	we	already	installed	that	latest	Python	version,	it
should	be	fine	to	run	the	latest	version	of	Scapy	without	a	problem.

Also,	Scapy	has	an	older	version	(1.x),	which	is	deprecated	and	doesn't	provide
support	for	Python	3	and	works	only	on	Python	2.4.

	

	

	

Unix-based	systems
To	get	the	latest	and	greatest	version,	you	need	to	use	python	pip:

pip	install	scapy

The	output	should	look	something	like	the	following	screenshot:

To	verify	that	Scapy	is	installed	successfully,	access	the	Python	console	and	try
to	import	the	scapy	module	into	it.	If	no	import	error	is	reported	back	to	the
console	then	the	installation	completed	successfully:

Some	additional	packages	are	required	to	visualize	the	conversation	and	to
capture	the	packets.	Use	the	following	commands	depending	on	your	platform	to
install	the	additional	packages:

Installing	in	Debian	and	Ubuntu
Run	the	following	command	to	install	additional	packages:

sudo	apt-get	install	tcpdump	graphviz	imagemagick	python-gnuplot	python-

cryptography	python-pyx

Installing	in	Red	Hat/CentOS
	

Run	the	following	command	to	install	additional	packages:

yum	install	tcpdump	graphviz	imagemagick	python-gnuplot	python-crypto	python-

pyx	-y

You	may	need	to	install	epel	repository	on	a	CentOS-based	system	and	update	the	system	if
you	don't	find	any	of	the	preceding	packages	available	in	the	main	repository.

	

	

	

Windows	and	macOS	X	Support
	

Scapy	is	built	and	design	to	run	on	linux-based	system.	However	it	also	can	run
on	other	operating	systems.	You	can	install	and	port	it	on	both	windows	ported
on	both	Windows	and	macOS,	with	some	limitations	on	each	platform.	For	a
Windows-based	system,	you	basically	need	to	remove	the	WinPcap	driver	and
use	the	Npcap	driver	instead	(don't	install	both	versions	at	the	same	time	to	avoid
any	conflict	issues).	You	can	read	more	about	Windows	installation	at	http://scapy
.readthedocs.io/en/latest/installation.html#windows.

For	macOS	X,	you	will	need	to	install	some	python	bindings	and	use	the	libdnet
and	libpcap	libraries.	Full	installation	steps	are	available	at	http://scapy.readthedocs
.io/en/latest/installation.html#mac-os-x.

	

	

	

http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x

Generating	packets	and	network
streams	using	Scapy
As	we	mentioned	before,	Scapy	has	its	own	DSL	language,	which	is	integrated
with	python.	Also,	you	can	access	the	Scapy	console	directly	and	start	to	send
and	receive	packets	directly	from	the	Linux	shell:

sudo	scapy

The	output	of	the	preceding	command	is	as	follows:

Notice	there	are	a	couple	of	warning	messages	about	some	missing	optional
packages,	such	as	matplotlib	and	PyX,	but	this	should	be	fine	and	won't	affect	the
Scapy	core	functions.

We	can	start	first	by	checking	the	supported	protocols	inside	scapy.	Run	the	ls()
function	to	list	all	supported	protocols:

>>>	ls()

The	output	is	quite	lengthy	and	will	span	multiple	pages	if	posted	here,	so	you
can	take	a	quick	look	on	the	Terminal	instead	to	check	it.

Now	let's	develop	hello	world	application	and	run	it	using	SCAPY.	The	program
will	send	a	simple	ICMP	packet	to	server's	gateway.	I	installed	a	Wireshark	and

configured	it	to	listen	to	a	network	interface	that	will	receive	a	stream	from	the
automation	server	(which	hosts	Scapy).

Now,	on	the	Scapy	terminal,	execute	the	following	code:

>>>	send(IP(dst="10.10.10.1")/ICMP()/"Welcome	to	Enterprise	Automation	Course")	

Return	to	Wireshark,	and	you	should	see	the	communication:

Let's	analyze	the	command	that	Scapy	executes:

Send:	This	is	a	built-in	function	in	Scapy	Domain	Specific	Language
(DSL)	that	instructs	Scapy	to	send	a	single	packet	(and	doesn't	listen	for
any	response	back;	it	just	sends	one	packet	and	exits).
IP:	Now,	inside	this	class,	we	will	start	building	packet	layers.	Starting	with
the	IP	layer,	we	need	to	specify	the	destination	host	that	will	receive	the
packet	(in	that	case,	we	use	the	dst	argument	to	specify	the	destination).
Note	also	that	we	can	specify	the	source	IP	in	the	src	argument;	however,
Scapy	will	consult	the	host	routing	table	and	find	the	suitable	source	IP	and
put	it	in	the	packet.	You	can	provide	additional	parameters,	such	as	time	to

live	(TTL),	and	Scapy	will	override	the	default	one.

/	:	Although	it	looks	like	the	normal	division	operator	used	in	Python,	it's
used	in	Scapy	DSL	to	differentiate	between	packet	layers	and	stack	them
over	each	other.
ICMP():	A	built-in	class	used	to	create	an	ICMP	packet	with	a	default
value.	One	of	the	values	that	could	be	provided	to	the	function	is	the	ICMP
type,	which	determines	the	message	type:	echo,	echo	reply,	unreachable,	and	so
on.
Welcome	to	Enterprise	Automation	Course:	If	a	string	is	injected	into
the	ICMP	payload.	Scapy	will	automatically	convert	it	to	a	suitable	format.

Note	that	we	didn't	specify	the	Ethernet	layer	in	the	stack	and	didn't	provide	any
mac	addresses	(either	source	or	destination).	This	is	again	filled	by	default	in
scapy	to	create	a	valid	frame.	It	will	automatically	check	the	host	ARP	table	and
find	the	mac	address	for	the	source	interface	(and	destination	also,	if	it	exists),
them	format	then	into	an	Ethernet	frame.

A	final	thing	to	note	before	moving	on	to	the	next	example	is	that	you	can	use
the	same	ls()	function	we	used	before	to	list	all	supported	protocols	to	get	the
default	values	for	each	protocol,	then	set	it	to	any	other	value	when	we	call	the
protocol:

Let's	now	do	something	more	complex	(and	evil!).	Assume	we	have	two	routers
that	form	VRRP	relationships	between	each	other,	and	we	need	to	to	break	this
relationship	to	become	the	new	master,	or	at	least	create	a	flapping	issue	in	the
network,	as	in	the	following	topology:

Recall	that	routers	configured	to	run	VRRP	join	to	multicast	address	(255.0.0.18)
in	order	to	receive	the	advertisements	from	other	routers.	The	destination	MAC
address	for	the	VRRP	packet	should	contain	the	VRRP	group	number	in	last	two
numbers.	Also	it	contains	the	router	priority	used	in	election	process	between
routers.	We	will	build	a	Scapy	script	that	sends	a	VRRP	announcement	with	a
higher	priority	than	is	configured	in	the	network.	This	will	cause	our	Scapy
server	to	be	elected	as	the	new	master:

from	scapy.layers.inet	import	*

from	scapy.layers.vrrp	import	VRRP

vrrp_packet	=	

Ether(src="00:00:5e:00:01:01",dst="01:00:5e:00:00:30")/IP(src="10.10.10.130",	

dst="224.0.0.18")/VRRP(priority=254,	addrlist=["10.10.10.1"])

sendp(vrrp_packet,	inter=2,	loop=1)

In	this	example:

First	we	imported	some	needed	layers	that	we	stacked	over	each	other	from
the	scapy.layers	module.	For	example,	the	inet	module	contains	the	layers
IP()	,	Ether(),	ARP(),	ICMP(),	and	so	on.
Also,	we	will	need	the	VRRP	layers,	which	could	be	imported	from
scapy.layers.vrrp.

Second,	we	will	build	a	VRRP	packet	and	store	it	in	the	vrrp_packet	variable.
This	packet	contains	the	VRRP	group	number	in	the	mac	address	inside
ethernet	frame	.	The	multicast	address	will	be	inside	the	IP	layer.	Also	we
will	configure	a	higher	priority	number	inside	the	VRRP	layer.	That	way	we

will	have	a	valid	VRRP	announcement	and	router	will	accept	it.	We
provided	each	layer	with	information	such	as	the	destination	mac	address
(VRRP	MAC	+	Group	number)	and	the	multicast	IP	(225.0.0.18).
Finally,	we	used	the	sendp()	function	and	provided	it	with	a	crafted
vrrp_packet.	The	sendp()	function	will	send	a	packet	at	layer	2,	unlike	the
send()	function,	which	we	used	in	the	previous	example	to	send	packets,	but
at	layer	3.	The	sendp()	function	won't	try	to	resolve	the	hostname	like	the
send()	function	and	will	only	operate	at	layer	2.	Also,	since	we	need	to	send
this	announcement	continuously,	we	configured	both	loop	and	inter
arguments	to	send	announcements	every	2	seconds.

The	script	output	is:

You	can	combine	this	attack	with	ARP	poisoning	and	VLAN	hopping	attacks	so	you	can
change	the	mac	address	in	the	layer	2,	switch	to	the	Scapy	server	MAC	address,	and	perform
a	man	in	the	middle	(MITM)	attack.

Scapy	also	contains	some	classes	that	perform	scan.	For	example,	you	can
execute	an	ARP	scan	on	the	network	range	by	using	arping()	and	specifying	the
IP	address	in	regex	format	inside	it.	Scapy	will	send	an	ARP	request	to	all	hosts
on	these	subnets	and	inspect	the	reply:

from	scapy.layers.inet	import	*

arping("10.10.10.*")

The	script	output	is:

According	to	received	packets,	only	one	host	is	responding	back	to	SCAPY
meaning	it's	only	host	on	the	scanned	subnet.	The	host	mac	and	IP	addresses	are

listed	in	the	reply	also

Capturing	and	replaying	packets
Scapy	has	the	ability	to	listen	to	the	network	interface	and	capture	all	incoming
packets	on	it.	It	can	write	it	on	a	pcap	file	in	the	same	way	that	tcpdump	works,	but
Scapy	provides	additional	functions	that	can	read	and	replay	a	pcap	file,	in	the
network	again.

Starting	with	a	simple	packet	replay,	we	will	instruct	Scapy	to	read	a	normal	pcap
file	captured	from	the	network	(either	using	tcpdump	or	Scapy	itself)	and	send	it
again	to	the	network.	This	is	very	useful	if	we	need	to	test	the	behavior	of	the
network	if	a	specific	traffic	pattern	travels	through	it.	For	example,	we	may	have
a	network	firewall	configured	to	block	FTP	communication.	We	can	test	the
functionality	of	the	firewall	by	hitting	it	with	FTP	data	replayed	from	Scapy.

In	this	example,	we	have	the	FTP	captured	pcap	file	and	we	need	to	replay	it	to
the	network:

from	scapy.layers.inet	import	*

from	pprint	import	pprint

pkts	=	PcapReader("/root/ftp_data.pcap")	#should	be	in	wireshark-tcpdump	format

for	pkt	in	pkts:

	pprint(pkt.show())

The	PcapReader()	will	take	the	pcap	file	as	an	input	and	analyze	it	to	get	each	packet
alone	and	add	it	as	an	item	inside	the	pkts	list.	Now	we	can	iterate	over	the	list
and	show	each	packet	content.

The	script	output	is:

Also,	you	can	get	specific	layer	information	via	the	get_layer()	function	that
accesses	packet	layers.	For	example,	if	we	were	interested	in	getting	the	raw	data
without	the	header	so	we	can	build	the	transmitted	file,	we	could	use	the
following	script	to	get	the	required	data	in	hex	then	convert	it	to	ASCII	later:

from	scapy.layers.inet	import	*

from	pprint	import	pprint

pkts	=	PcapReader("/root/ftp_data.pcap")	#should	be	in	wireshark-tcpdump	format

ftp_data	=	b""

for	pkt	in	pkts:

	try:

	ftp_data	+=	pkt.get_layer(Raw).load

				except:

	pass

Notice	that	we	have	to	surround	the	get_layer()	method	with	a	try-except	clause
as	some	layers	don't	contain	the	raw	data	(such	as	FTP	control	messages).	Scapy
will	throw	the	error	and	the	script	will	exit.	Also,	we	can	rewrite	the	script	as	an
if	clause	that	will	add	content	to	ftp_data	only	if	the	packet	has	the	raw	layer	in	it.

To	avoid	any	errors	while	reading	the	pcap	file,	make	sure	you	save	(or	export)	your	pcap	file	as
Wireshark/tcpdump	format,	as	shown	here,	and	not	the	default	format:

Injecting	data	inside	packets
We	can	manipulate	the	packet	and	change	its	contents	before	replaying	it	back	to
the	network.	Since	our	packets	are	actually	stored	as	items	inside	the	list,	we	can
iterate	over	those	items	and	replace	specific	information.	For	example,	we	can
change	mac	addresses,	IP	addresses,	or	add	additional	layers	to	each	packet	or
for	specific	packets	matching	a	condition.	However,	we	should	note	that
manipulating	packets	in	specific	layers	such	as	the	IP	and	TCP	and	changing	the
content	will	result	in	an	invalid	checksum	for	the	whole	layer	and	the	receiver
may	drop	the	packet	for	that	reason.

Scapy	has	an	amazing	feature	(yes	I	know,	I	keep	saying	amazing	many	times
but	Scapy	really	is	an	awesome	tool).	It	will	automatically	calculate	the
checksum	for	us	based	on	the	new	content	if	we	delete	the	original	one	in	the
pcap	file.

So,	we	will	modify	the	previous	script	and	change	a	few	packet	parameters,	then
rebuild	the	checksum	before	sending	the	packets	to	the	network:

from	scapy.layers.inet	import	*

from	pprint	import	pprint

pkts	=	PcapReader("/root/ftp_data.pcap")	#should	be	in	wireshark-tcpdump	format

p_out	=	[]

for	pkt	in	pkts:

	new_pkt	=	pkt.payload

				try:

	new_pkt[IP].src	=	"10.10.88.100"

	new_pkt[IP].dst	=	"10.10.88.1"

	del	(new_pkt[IP].chksum)

	del	(new_pkt[TCP].chksum)

	except:

	pass

	pprint(new_pkt.show())

	p_out.append(new_pkt)

send(PacketList(p_out),	iface="eth0")

In	the	previous	script:

We	used	the	PcapReader()	class	to	read	the	content	of	the	FTP	pcap	file	and

store	the	packets	in	a	pkts	variable.
Then	we	iterated	over	the	packet	and	assigned	the	payload	tonew_pkt	so	we
could	manipulate	the	content.
Remember,	the	packet	itself	is	considered	as	an	object	from	the	class.	We
can	access	the	src	and	dst	members	and	set	them	to	any	desired	values.
Here,	we	set	the	destination	to	the	gateway	and	the	source	to	a	different
value	than	the	original	packet.
Setting	a	new	IP	value	will	invalidate	the	checksum,	so	we	deleted	both	the
IP	and	TCP	checksum	using	the	del	keyword.	Scapy	will	recalculate	them
again	based	on	the	new	packet	contents.
Finally,	we	appended	the	new_pkt	to	the	empty	p_out	list	and	sent	it	using	the
send()	function.	Notice	that	we	can	specify	the	exit	interface	in	the	send
function	or	just	leave	it	and	Scapy	will	consult	the	host	routing	table;	it	will
get	the	correct	exit	interface	per	packet.

The	script	output	is:

Also,	if	we	still	run	the	Wireshark	in	the	gateway,	we	will	notice	that	Wireshark
captures	the	ftp	packet	stream	with	the	checksum	value	set	after	recalculation:

Packet	sniffing
Scapy	has	a	built-in	packet	capture	function	called	sniff().	By	default,	it	will
monitor	all	interfaces	and	capture	all	packets	if	you	don't	specify	any	filters	or	a
certain	interface:

from	scapy.all	import	*

from	pprint	import	pprint

print("Begin	capturing	all	packets	from	all	interfaces.	send	ctrl+c	to	terminate	and	

print	summary")

pkts	=	sniff()

pprint(pkts.summary())

The	script	output	is:

You	can	of	course	provide	filters	and	specific	interfaces	to	monitor	whether	the
condition	is	matched.	For	example,	in	the	preceding	output	we	can	see	a	mix	of
ICMP,	TCP,	SSH,	and	DHCP	traffic	hitting	all	interfaces.	If	we're	interested	only
in	getting	ICMP	traffic	on	eth0,	then	we	can	provide	the	filter	and	iface
arguments	to	sniff	the	function,	and	it	will	only	filter	all	traffic	and	record	only
the	ICMP:

from	scapy.all	import	*

from	pprint	import	pprint

print("Begin	capturing	all	packets	from	all	interfaces.	send	ctrl+c	to	terminate	and	

print	summary")

pkts	=	sniff(iface="eth0",	filter="icmp")

pprint(pkts.summary())

The	script	output	is:

Notice	how	we	capture	only	the	ICMP	communications	on	eth0	interfaces,	and
all	other	packets	are	discarded	due	to	the	filter	applied	on	them.	The	iface	value
accepts	a	single	interface	that	we	used	in	the	script	or	a	list	of	interfaces	to
monitor	them.

One	of	the	advanced	features	of	sniff	is	stop_filter,	which	is	a	Python	function
applied	to	each	packet	to	determine	if	we	have	to	stop	the	capture	after	that
packet.	For	example,	if	we	set	stop_filter	=	lambda	x:	x.haslayer(TCP)	then	we	will
stop	the	capture	once	we	hit	a	packet	with	a	TCP	layer.	Also,	the	store	option
allows	us	to	store	the	packets	in	the	memory	(which	is	by	default	enabled)	or
discard	them	after	applying	a	specific	function	on	each	packet.	This	is	a	great
feature	if	you're	getting	real-time	traffic	from	the	wire	to	SCAPY	and	don't	want
to	write	them	to	memory,	if	you	set	the	store	argument	to	false	inside	the	sniff
function,	then	SCAPY	will	apply	any	custom	function	you	developed	before	(to
get	some	information	from	packet	for	example	or	re-send	them	to	different
destination..etc)	then	won't	store	the	original	packet	in	the	memory	and	will
discard	it.	This	will	save	some	memory	resources	during	sniffing.

Writing	the	packets	to	pcap
	

Finally,	we	can	write	our	sniffed	packets	to	a	standard	pcap	file	and	open	it	with
Wireshark	as	usual.	This	happens	via	a	simple	wrpcap()	function	that	writes	the
list	of	packets	to	a	pcap	file.	The	wrpcap()	function	accepts	two	arguments—the
first	one	is	the	full	path	to	a	file	location,	and	the	second	is	the	packet	list
captured	before	using	the	sniff()	function:

from	scapy.all	import	*

print("Begin	capturing	all	packets	from	all	interfaces.	send	ctrl+c	to	terminate	and	

print	summary")

pkts	=	sniff(iface="eth0",	filter="icmp")

wrpcap("/root/icmp_packets_eth0.pcap",pkts)

	

	

Summary
In	this	chapter,	we	learned	how	to	leverage	the	Scapy	framework	to	build	any
type	of	packet	containing	any	network	layer	and	populated	it	with	our	values.
Also,	we	saw	how	to	capture	packets	on	the	interface	and	replay	them.

Building	a	Network	Scanner	Using
Python
	

In	this	chapter,	we	will	build	a	network	scanner	that	can	identify	the	live	hosts	on
the	network	and	we	will	also	expand	it	to	include	guessing	the	running	operating
system	on	each	host	and	opened/closed	ports.	Usually,	gathering	this	information
requires	multiple	tools	and	some	Linux	ninja	skills	to	get	the	required
information	but,	using	Python,	we	can	build	our	own	network	scanner	code	that
includes	any	tools	and	we	can	get	a	customized	output.

The	following	topics	will	be	covered	in	this	chapter:

Understanding	the	network	scanner
Building	a	network	scanner	with	Python
Sharing	your	code	on	GitHub

	

	

Understanding	the	network	scanner
A	network	scanner	is	used	to	scan	a	provided	range	of	network	IDs	in	both	layer
2	and	layer	3.	It	can	send	requests	and	analyze	responses	for	hundreds	of
thousands	of	computers.	Also,	you	can	expand	its	functionality	to	show	some
shared	resources,	via	Samba	and	NetBIOS	protocols,	and	the	content	of
unprotected	data	on	servers	running	sharing	protocols.	Another	usage	for	the
network	scanner	in	penetration	testing	is	when	a	white	hat	hacker	tries	to
simulate	an	attack	on	network	resources	to	find	vulnerabilities	and	to	evaluate
company	security.	The	final	goal	of	the	penetration	test	is	to	generate	a	report
with	all	of	the	weaknesses	in	the	target	system	so	the	origin	point	can	reinforce
and	enhance	security	policies	against	the	potential	real	attack.

	

Building	a	network	scanner	with
Python
Python	tools	provide	many	native	modules	and	support	for	working	with	sockets
and	TCP/IP	in	general.	Additionally,	Python	can	use	the	existing	third-party
commands	available	on	the	system	to	initiate	the	required	scan	and	return	the
result.	This	can	be	done	using	the	subprocess	module	that	we	discussed	before,	in	C
hapter	9,	Using	the	Subprocess	Module.	A	simple	example	is	using	Nmap	to	scan
a	subnet,	as	in	the	following	code:

import	subprocess

from	netaddr	import	IPNetwork

network	=	"192.168.1.0/24"

p	=	subprocess.Popen(["sudo",	"nmap",	"-sP",	network],	stdout=subprocess.PIPE)

for	line	in	p.stdout:

	print(line)

In	this	example,	we	can	see	the	following:

At	the	beginning,	we	imported	the	subprocess	module	to	be	used	in	our	script.
Then,	we	defined	the	network	that	we	want	to	scan	with	the	network
parameter.	Notice	that	we	used	the	CIDR	notation,	but	we	could	use	the
subnet	mask	instead	and	convert	that	to	CIDR	notation	using	the	Python
netaddr	module.
The	Popen()	class	inside	subprocess	is	used	to	create	an	object	that	will	send	a
regular	Nmap	command	and	scan	the	network.	Notice	that	we	added	some
flags,	-sP,	to	tweak	the	Nmap	operation	and	redirected	the	output	to	a
special	pipe	created	by	subprocess.PIPE.
Finally,	we	iterated	over	the	created	pipe	and	printed	each	line.

The	script	output	is	as	follows:

Access	to	network	ports	on	Linux	requires	root	access,	or	your	account	must	belong	to	a
sudoers	group	in	order	to	avoid	any	problems	in	the	script.	Also,	the	nmap	package	should	be
installed	on	the	system	prior	to	running	the	Python	code.

This	is	a	simple	Python	script	and	we	can	use	the	Nmap	tool	directly	instead	of
using	it	inside	Python.	However,	wrapping	the	Nmap	(or	any	other	system
command)	with	Python	code	gives	us	the	flexibility	of	tailoring	the	output	and
customizing	it	in	any	way.	In	the	next	section,	we	will	enhance	our	script	and
add	more	functionality	to	it.

Enhancing	the	code
Although	the	output	of	Nmap	gives	us	an	overview	of	the	live	hosts	on	the
scanned	network,	we	can	enhance	it	and	have	a	better	output	view.	For	example,
I	need	to	know	the	total	number	of	hosts	at	the	beginning	of	the	output,	then	the
IP	address,	MAC	address,	and	MAC	vendor	for	each	one,	but	in	tabular	form,	so
I	can	easily	locate	any	host	and	all	of	the	information	associated	with	it.

For	that	reason,	I	will	design	a	function	and	name	it	nmap_report().	This	function
will	take	the	standard	output	generated	from	the	subprocess	pipe	and	will	extract
the	required	information	and	format	it	in	table	format:

def	nmap_report(data):

	mac_flag	=	""

	ip_flag	=	""

	Host_Table	=	PrettyTable(["IP",	"MAC",	"Vendor"])

	number_of_hosts	=	data.count("Host	is	up	")

	for	line	in	data.split("\n"):

	if	"MAC	Address:"	in	line:

	mac	=	line.split("(")[0].replace("MAC	Address:	",	"")

	vendor	=	line.split("(")[1].replace(")",	"")

	mac_flag	=	"ready"

	elif	"Nmap	scan	report	for"	in	line:

	ip	=	re.search(r"Nmap	scan	report	for	(.*)",	line).groups()[0]

	ip_flag	=	"ready"

	if	mac_flag	==	"ready"	and	ip_flag	==	"ready":

	Host_Table.add_row([ip,	mac,	vendor])

	mac_flag	=	""

	ip_flag	=	""

	print("Number	of	Live	Hosts	is	{}".format(number_of_hosts))

	print	Host_Table

Starting	with	the	easiest	part,	we	can	get	the	number	of	live	hosts	by	counting
the	Host	is	up	occurrences	in	the	passed	output	and	assigning	this	to	the
number_of_hosts	parameter.

Secondly,	Python	has	a	nice	module	called	PrettyTable	which	can	create	a	text
table	and	handle	the	cell	sizing	according	to	data	inside	it.	The	module	accepts
the	table	headers	as	a	list	and	uses	the	add_row()	function	to	add	rows	to	the
created	table.	So,	the	first	thing	is	to	import	this	module	(after	installing	it,	if	it's
not	already	installed).	In	our	example,	we	will	pass	a	list	of	three	items	(IP,	MAC,

Vendor)	to	the	PrettyTable	class	(imported	from	the	PrettyTable	module)	to	create	the
table	headers.

Now,	to	fill	up	this	table,	we	will	split	the	output	on	\n	(carriage	return).	The	split
result	will	be	a	list,	that	we	can	iterate	over	to	grab	specific	information	such	as
MAC	address	and	IP	address.	We	used	a	few	splitting	and	replace	hacks	to
extract	the	MAC	address	alone.	Also,	we	used	the	regular	expression	search
function	to	get	the	IP	address	portion	(or	the	hostname	if	DNS	is	enabled)	from
the	output.

Finally,	we	added	this	information	to	the	created	Host_Table	and	continued	to
iterate	over	the	next	line.

Following	is	the	full	script:

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

import	subprocess

from	netaddr	import	IPNetwork,	AddrFormatError

from	prettytable	import	PrettyTable

import	re

def	nmap_report(data):

	mac_flag	=	""

	ip_flag	=	""

	Host_Table	=	PrettyTable(["IP",	"MAC",	"Vendor"])

	number_of_hosts	=	data.count("Host	is	up	")

	for	line	in	data.split("\n"):

	if	"MAC	Address:"	in	line:

	mac	=	line.split("(")[0].replace("MAC	Address:	",	"")

	vendor	=	line.split("(")[1].replace(")",	"")

	mac_flag	=	"ready"

	elif	"Nmap	scan	report	for"	in	line:

	ip	=	re.search(r"Nmap	scan	report	for	(.*)",	line).groups()[0]

	ip_flag	=	"ready"

	if	mac_flag	==	"ready"	and	ip_flag	==	"ready":

	Host_Table.add_row([ip,	mac,	vendor])

	mac_flag	=	""

	ip_flag	=	""

	print("Number	of	Live	Hosts	is	{}".format(number_of_hosts))

	print	Host_Table

network	=	"192.168.1.0/24"

try:

	IPNetwork(network)	

	p	=	subprocess.Popen(["sudo",	"nmap",	"-sP",	network],	stdout=subprocess.PIPE)

	nmap_report(p.stdout.read())

except	AddrFormatError:

	print("Please	Enter	a	valid	network	IP	address	in	x.x.x.x/y	format")

Notice	we	also	added	a	pre-check	to	the	subprocess	command	using	the
netaddr.IPNetwork()	class.	This	class	will	validate	whether	the	network	is	correctly
formatted	before	executing	the	subprocess	command,	otherwise	the	class	will	raise
an	exception	which	should	be	handled	by	the	AddrFormatError	exception	class	and
will	print	a	customized	error	message	to	user.

The	script	output	is:

Now,	if	we	change	the	network	to	an	incorrect	value	(either	the	subnet	mask	is
wrong	or	the	network	ID	is	not	valid),	the	IPNetwork()	class	will	throw	an
exception	and	this	error	message	will	be	printed:

network	=	"192.168.300.0/24"

Scanning	the	services
Running	services	on	a	host	machine	typically	open	a	port	in	the	operating	system
and	start	listening	to	it	in	order	to	accept	incoming	TCP	communication	and	start
the	three-way	handshake.	In	Nmap,	you	can	send	an	SYN	packet	on	a	specific
port	and,	if	the	host	responds	with	SYN-ACK,	then	the	service	is	running	and
listening	to	the	port.

Let's	test	the	HTTP	port,	for	example	in	google.com,	using	nmap:

nmap	-p	80	www.google.com

We	can	use	the	same	concept	to	discover	the	running	services	on	the	router.	For
example,	the	router	that	runs	the	BGP	daemon	will	listen	to	port	179	for
open/update/keep	alive/notification	messages.	If	you	want	to	monitor	the	router,
then	the	SNMP	service	should	be	enabled	and	should	listen	to	incoming	SNMP
get/set	messages.	The	MPLS	LDP	will	usually	listen	to	646	for	establishing	a
relationship	with	other	neighbors.	Here	is	a	list	of	common	services	running	on
the	router	and	their	listening	ports:

Service Listening	port

FTP 21

SSH 22

https://www.google.com/

TELNET 23

SMTP 25

HTTP 80

HTTPS 443

SNMP 161

BGP 179

LDP 646

RPCBIND 111

NETCONF 830

XNM-CLEAR-TEXT 3221

	

We	can	create	a	dictionary	with	all	of	these	ports	and	scan	them	using	subprocess
and	Nmap.	Then	we	use	the	returned	output	to	create	our	table,	which	lists	the

open	and	closed	ports	for	each	scan.	Also,	with	some	additional	logic,	we	can	try
to	correlate	information	to	guess	the	operating	system	type	of	the	device
function.	For	example,	if	the	device	is	listening	to	port	179	(BGP	port),	then	the
device	is	most	likely	a	network	gateway	and,	if	it	listens	to	389	or	636,	then	the
device	is	running	an	LDAP	application	and	could	be	the	company	active
directory.	This	will	help	us	to	create	the	proper	attack	against	the	device	during
the	pen	testing.

Without	further	ado,	let's	quickly	put	our	idea	and	notes	in	the	following	script:

#!/usr/bin/python

__author__	=	"Bassim	Aly"

__EMAIL__	=	"basim.alyy@gmail.com"

from	prettytable	import	PrettyTable

import	subprocess

import	re

def	get_port_status(port,	data):

	port_status	=	re.findall(r"{0}/tcp	(\S+)	.*".format(port),	data)[0]

				return	port_status

Router_Table	=	PrettyTable(["IP	Address",	"Opened	Services"])

router_ports	=	{"FTP":	21,

	"SSH":	22,

	"TELNET":	23,

	"SMTP":	25,

	"HTTP":	80,

	"HTTPS":	443,

	"SNMP":	161,

	"BGP":	179,

	"LDP":	646,

	"RPCBIND":	111,

	"NETCONF":	830,

	"XNM-CLEAR-TEXT":	3221}

live_hosts	=	["10.10.10.1",	"10.10.10.2",	"10.10.10.65"]

services_status	=	{}

for	ip	in	live_hosts:

	for	service,	port	in	router_ports.iteritems():

	p	=	subprocess.Popen(["sudo",	"nmap",	"-p",	str(port),	ip],	stdout=subprocess.PIPE)

	port_status	=	get_port_status(port,	p.stdout.read())

	services_status[service]	=	port_status

				services_status_joined	=	"\n".join("{}	:	{}".format(key,	value)	for	key,	value	in	

services_status.iteritems())

	Router_Table.add_row([ip,	services_status_joined])

print	Router_Table

In	this	example,	we	can	see	the	following:

We	developed	a	function	named	get_port_status()	to	take	the	Nmap	port
scanning	result	and	to	search	for	the	port	status	(open,	closed,	filtered,	and
so	on)	using	the	regular	expression	inside	the	findall()	function.	It	returns
the	port	status	result.

Then,	we	added	services	ports	mapped	to	the	service	name	inside	the
router_ports	dictionary,	so	we	could	access	any	port	value	using	the
corresponding	service	name	(dictionary	key).	Also,	we	defined	the	router
hosts'	IP	addresses	inside	the	live_hosts	list.	Note	that	we	can	use	the	nmap
with	the	-sP	flag	to	get	the	live	hosts,	as	we	did	before	in	a	previous	script.
Now,	we	can	iterate	over	each	IP	address	in	the	live_hosts	list	and	execute
the	Nmap	to	scan	each	port	in	the	router_ports	dictionary.	This	requires	a
nested	for	loop,	so	for	each	device	we	iterate	over	a	list	of	ports	and	so	on.
The	result	will	be	added	to	the	services_status	dictionary—the	service	name
is	a	dictionary	key	while	the	port	status	is	the	dictionary	value.
Finally,	we	will	add	the	result	to	Router_Table	created	using	the	prettytable
module	to	get	a	nice-looking	table.

The	script	output	is	as	follows:

Sharing	your	code	on	GitHub
	

GitHub	is	a	place	where	you	can	share	your	code	and	collaborate	with	others	on
a	common	project	using	Git.	Git	is	a	source	version	control	platform	invented
and	created	by	Linus	Trovalds,	who	started	Linux	but	had	a	problem	maintaining
Linux	development	with	a	large	number	of	developers	contributing	to	it.	He
created	a	de-centralized	version	control	where	anyone	could	get	the	entire	code
(called	cloning	or	forking),	make	changes,	then	push	them	back	to	the	central
repository	to	be	merged	with	other	developers'	code.	Git	became	the	preferred
method	for	many	developers	to	work	together	on	projects.	You	can	learn	how	to
code	in	Git	interactively	with	this	15-minute	course	offered	by	GitHub:	https://tr
y.github.io.

GitHub	is	the	website	that	hosts	those	projects,	which	is	versioned	using	Git.	It's
like	a	developer	social	media	platform,	where	you	can	track	the	code
development,	write	a	wiki,	or	raise	an	issue/bug	report	and	get	developer
feedback	on	it.	People	on	the	same	project	can	discuss	the	project	progress	and
share	code	together	to	build	a	better	and	faster	software.	Also,	some	companies
consider	your	code	and	repositories—shared	in	your	account	at	GitHub—as	an
online	resume	that	measures	your	skills	and	how	you	code	in	languages	of
interest.

	

	

	

https://try.github.io

Creating	an	account	on	GitHub
The	first	thing	to	do	before	sharing	your	code	or	downloading	other	codes	is	to
create	your	account.

Head	to	https://github.com/join?source=header-home	and	choose	a	username,
password,	and	email	address,	then	click	on	the	green	Create	an	account	button.

The	second	thing	to	do	is	to	choose	your	plan.	By	default,	the	free	plan	is	fine	as
it	gives	you	unlimited	public	repositories	and	you	can	push	any	code	developed
in	any	languages	you	like.	However,	the	free	plan	doesn't	make	your	repository
private	and	allows	others	to	search	for	and	download	it.	It's	not	a	deal	breaker	if
you're	not	working	on	secret	or	commercial	projects	in	your	company,	however
you	need	to	make	sure	that	you	don't	share	any	sensitive	information,	such	as
passwords,	tokens,	or	public	IP	addresses	in	the	code.

https://github.com/join?source=header-home

Creating	and	pushing	your	code
Now	we're	ready	to	share	the	code	with	others.	The	first	thing	after	creating	your
GitHub	account	is	to	create	a	repository	to	host	your	files.	Usually,	you	create
one	repository	per	project	(not	per	file)	and	it	contains	project	assets	and	files
related	to	each	other.

Click	on	the	+	icon	in	the	top-right,	just	beside	your	profile	picture,	to	create	a
new	repository:

You	will	be	redirected	to	a	new	page	where	you	can	enter	your	repository	name.
Notice	that	you	can	choose	any	you	like,	but	it	shouldn't	conflict	with	other
repository	in	your	profile.	Also,	you	will	be	give	a	unique	URL	for	this	repo	so
anyone	can	access	it.	You	can	set	the	repo	settings,	such	as	whether	it	is	public	or
private	(only	for	paid	plans),	and	if	you	want	to	initialize	it	with	a	README
file.	This	file	is	written	using	markdown	text	formatting	that	includes
information	about	your	project,	and	steps	for	other	developers	to	follow	if	they
use	your	project.

Finally,	you	will	have	an	option	to	add	a	.gitignore	file	where	you	tell	Git	to
ignore	tracking	a	certain	type	of	file	in	your	directory,	such	as	logs,	pyc,	compiled
files,	video,	and	so	on:

In	the	end,	your	repo	is	created	and	you	will	be	given	a	unique	URL	for	it.	Note
this	URL	down	as	we	will	use	it	later	when	pushing	files	to	it:

Now	it's	time	to	share	your	code.	I	will	use	the	integrated	Git	functionality	inside
PyCharm	to	do	the	job	although	you	can	do	the	same	steps	in	CLI.	Also,	there
are	many	other	GUI	tools	available	(including	one	from	GitHub	itself)	that	can
manage	your	GIT	repo.	I	highly	recommend	that	you	do	the	Git	training
provided	by	GitHub	(https://try.github.io)	before	following	these	steps:

1.	 Go	to	VCS	|	Import	into	Version	Control	|	Create	Git	Repository:

https://try.github.io/

2.	 Choose	the	folder	where	your	project	files	are	stored	locally:

This	will	create	a	local	Git	repo	in	the	folder.

3.	 Highlight	all	files	that	need	to	be	tracked	in	the	sidebar	and	right-click	on
them,	then	choose	Git	|	Add:

PyCharm	uses	file	color	code	to	indicate	the	type	of	file	tracked	in	Git.	When	the	files	are	not
tracked,	it	will	color	them	red	and	when	the	files	are	added	to	Git,	it	will	color	them	green.
This	allows	you	to	easily	know	file	status	without	running	commands.

4.	 Define	the	remote	repository	in	GitHub	that	will	be	mapped	to	the	local
repository	by	going	to	VCS	|	Git	|	Remotes:

5.	 Enter	the	repo	name	and	the	URL	you	noted	down	when	we	created	the
repo;	click	OK	twice	to	exit	the	window:

6.	 The	final	step	is	to	commit	your	code.	Go	to	VCS	|	Git	|	Commit	and	from
the	opened	popup	window,	select	your	tracked	files,	enter	a	descriptive
message	in	the	Commit	Message	section,	and	instead	of	hitting	Commit,

click	on	the	small	arrow	beside	it	and	choose	Commit	and	Push.	A	dialog
box	might	be	opened	telling	you	that	your	Git	user	Name	Is	Not	Defined.
Just	enter	your	name	and	email	and	make	sure	the	Set	properties	globally
box	is	ticked	and	hit	Set	and	Commit:

The	PyCharm	gives	you	an	option	to	push	to	Gerrit	for	code	review.	If
you	have	one,	you	can	also	share	your	files	in	it.	Otherwise,	click	on
Push.

A	notification	message	will	appear	telling	you	the	push	completed
successfully:

You	can	refresh	your	GitHub	repo	URL	from	the	browser	and	you	will
see	all	your	files	stored	in	it:

Now,	whenever	you	make	any	change	in	the	code	inside	the	tracked	files	and
commit,	the	changes	will	be	tracked	and	added	to	the	versioning	system	and	will
be	available	in	GitHub	for	other	users	to	download	and	comment	on.

Summary
In	this	chapter,	we	built	our	network	scanner,	which	can	be	used	during
authorized	penetration	testing,	and	learned	how	to	scan	different	services	and
applications	running	on	the	device	to	detect	their	type.	Also,	we	shared	our	code
to	GitHub	so	that	we	could	keep	different	versions	of	our	code	and	also	allow
other	developers	to	use	our	shared	code	and	enhance	it,	then	share	it	again	with
others.

	

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:	

Mastering	Python	Networking
Eric	Chou

ISBN:	978-1-784397-00-5

Review	all	the	fundamentals	of	Python	and	the	TCP/IP	suite
Use	Python	to	execute	commands	when	the	device	does	not	support	the	API
or	programmatic	interaction	with	the	device
Implement	automation	techniques	by	integrating	Python	with	Cisco,
Juniper,	and	Arista	eAPI
Integrate	Ansible	using	Python	to	control	Cisco,	Juniper,	and	Arista
networks
Achieve	network	security	with	Python
Build	Flask-based	web-service	APIs	with	Python
Construct	a	Python-based	migration	plan	from	a	legacy	to	scalable	SDN-
based	network.

	

https://www.packtpub.com/networking-and-servers/mastering-python-networking

Practical	Network	Automation
Abhishek	Ratan

ISBN:	978-1-78829-946-6

Get	the	detailed	analysis	of	Network	automation
Trigger	automations	through	available	data	factors
Improve	data	center	robustness	and	security	through	specific	access	and
data	digging
Get	an	Access	to	APIs	from	Excel	for	dynamic	reporting
Set	up	a	communication	with	SSH-based	devices	using	netmiko
Make	full	use	of	practical	use	cases	and	best	practices	to	get	accustomed
with	the	various	aspects	of	network	automation

https://www.packtpub.com/networking-and-servers/practical-network-automation

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	

	Title Page
	Copyright and Credits
	Hands-On Enterprise Automation with Python

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Setting Up Our Python Environment
	An introduction to Python
	Python versions
	Why are there two active versions?
	Should you only learn Python 3?
	Does this mean I can't write code that runs on both Python 2 and Python 3?

	Python installation

	Installing the PyCharm IDE
	Setting up a Python project inside PyCharm

	Exploring some nifty PyCharm features
	Code debugging
	Code refactoring
	Installing packages from the GUI

	Summary

	Common Libraries Used in Automation
	Understanding Python packages
	Package search paths

	Common Python libraries
	Network Python Libraries
	System and cloud Python libraries

	Accessing module source code
	Visualizing Python code

	Summary

	Setting Up the Network Lab Environment
	Technical requirements
	When and why to automate the network
	Why do we need automation?

	Screen scraping versus API automation
	Why use Python for network automation?
	The future of network automation
	Network lab setup
	Getting ready – installing EVE-NG
	Installation on VMware Workstation
	Installation over VMware ESXi
	Installation over Red Hat KVM
	Accessing EVE-NG
	Installing EVE-NG client pack
	Loading network images into EVE-NG

	Building an enterprise network topology
	Adding new nodes
	Connecting nodes together

	Summary

	Using Python to Manage Network Devices
	Technical requirements
	Python and SSH
	Paramiko module
	Module installation
	SSH to the network device

	Netmiko module
	Vendor support
	Installation and verification
	Using netmiko for SSH
	Configuring devices using netmiko
	Exception handling in netmiko
	Device auto detect

	Using the telnet protocol in Python
	Push configuration using telnetlib

	Handling IP addresses and networks with netaddr
	Netaddr installation
	Exploring netaddr methods

	Sample use cases
	Backup device configuration
	Building the python script

	Creating your own access terminal
	Reading data from an Excel sheet
	More use cases

	Summary

	Extracting Useful Data from Network Devices
	Technical requirements
	Understanding parsers
	Introduction to regular expressions
	Creating a regular expression in Python

	Configuration auditing using CiscoConfParse
	CiscoConfParse library
	Supported vendors
	CiscoConfParse installation
	Working with CiscoConfParse

	Visualizing returned data with matplotLib
	Matplotlib installation
	Hands-on with matplotlib
	Visualizing SNMP using matplotlib

	Summary

	Configuration Generator with Python and Jinja2
	What is YAML?
	YAML file formatting
	Text editor tips

	Building a golden configuration with Jinja2
	Reading templates from the filesystem
	Using Jinja2 loops and conditions

	Summary

	Parallel Execution of Python Script
	How a computer executes your Python script
	Python multiprocessing library
	Getting started with multiprocessing
	Intercommunication between processes

	Summary

	Preparing a Lab Environment
	Getting the Linux operating system
	Downloading CentOS
	Downloading Ubuntu

	Creating an automation machine on a hypervisor
	Creating a Linux machine over VMware ESXi
	Creating a Linux machine over KVM

	Getting started with Cobbler
	Understanding how Cobbler works
	Installing Cobbler on an automation server
	Provisioning servers through Cobbler

	Summary

	Using the Subprocess Module
	The popen() subprocess
	Reading stdin, stdout, and stderr
	The subprocess call suite
	Summary

	Running System Administration Tasks with Fabric
	Technical requirements
	What is Fabric?
	Installation
	Fabric operations
	Using run operation
	Using get operation
	Using put operation
	Using sudo operation
	Using prompt operation
	Using reboot operation

	Executing your first Fabric file
	More about the fab tool
	Discover system health using Fabric

	Other useful features in Fabric
	Fabric roles
	Fabric context managers

	Summary

	Generating System Reports and System Monitoring
	Collecting data from Linux
	Sending generated data through email
	Using the time and date modules
	Running the script on a regular basis

	Managing users in Ansible
	Linux systems
	Microsoft Windows

	Summary

	Interacting with the Database
	Installing MySQL on an automation server
	Securing the installation
	Verifying the database installation

	Accessing the MySQL database from Python
	Querying the database
	Inserting records into the database

	Summary

	Ansible for System Administration
	Ansible terminology
	Installing Ansible on Linux
	On RHEL and CentOS
	Ubuntu

	Using Ansible in ad hoc mode
	How Ansible actually works

	Creating your first playbook
	Understanding Ansible conditions, handlers, and loops
	Designing conditions
	Creating loops in ansible
	Trigger tasks with handlers

	Working with Ansible facts
	Working with the Ansible template
	Summary

	Creating and Managing VMware Virtual Machines
	Setting up the environment
	Generating a VMX file using Jinja2
	Building the VMX template
	Handling Microsoft Excel data
	Generating VMX files

	VMware Python clients
	Installing PyVmomi
	First steps with pyvmomi
	Changing the virtual machine state
	There's more

	Using Ansible playbook to manage instances
	Summary

	Interacting with the OpenStack API
	Understanding RESTful web services
	Setting up the environment
	Installing rdo-OpenStack package
	On RHEL 7.4
	On CentOS 7.4

	Generating answer file
	Editing answer file
	Run the packstack
	Access the OpenStack GUI

	Sending requests to the OpenStack keystone
	Creating instances from Python
	Creating the image
	Assigning a flavor
	Creating the network and subnet
	Launching the instance

	Managing OpenStack instances from Ansible
	Shade and Ansible installation
	Building the Ansible playbook
	Running the playbook

	Summary

	Automating AWS with Boto3
	AWS Python modules
	Boto3 installation

	Managing AWS instances
	Instance termination

	Automating AWS S3 services
	Creating buckets
	Uploading a file to a bucket
	Deleting a bucket

	Summary

	Using the Scapy Framework
	Understanding Scapy
	Installing Scapy
	Unix-based systems
	Installing in Debian and Ubuntu
	Installing in Red Hat/CentOS

	Windows and macOS X Support

	Generating packets and network streams using Scapy
	Capturing and replaying packets
	Injecting data inside packets
	Packet sniffing
	Writing the packets to pcap

	Summary

	Building a Network Scanner Using Python
	Understanding the network scanner
	Building a network scanner with Python
	Enhancing the code
	Scanning the services

	Sharing your code on GitHub
	Creating an account on GitHub
	Creating and pushing your code

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

