M()netizing
Machine
Learning

Quickly Turn Python ML Ideas into Web
Applications on the Serverless Cloud

Manuel Amunategui
Mehdi Roopaei

ApreSS®

Monetizing Machine
Learning

Quickly Turn Python ML Ideas
into Web Applications on the
Serverless Cloud

Manuel Amunategui
Mehdi Roopaei

Apress’

Monetizing Machine Learning: Quickly Turn Python ML Ideas into Web Applications
on the Serverless Cloud

Manuel Amunategui Mehdi Roopaei
Portland, Oregon, USA Platteville, Wisconsin, USA
ISBN-13 (pbk): 978-1-4842-3872-1 ISBN-13 (electronic): 978-1-4842-3873-8

https://doi.org/10.1007/978-1-4842-3873-8
Library of Congress Control Number: 2018956745

Copyright © 2018 by Manuel Amunategui, Mehdi Roopaei

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott

Development Editor: Laura Berendson

Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484238721. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3873-8

Table of Contents

About the AUtROrS........ccusmmismmmssnmmsasmssanmsnssssssasssass s sansssassssnsssansssansssansnas xvii
About the Technical REVIEWErSccsssessssessssssssansssasssssssssssssasssssssssssssassssasssansssans Xix
AcKkNOWIEdgmMEeNTSccuuuiissmmmmmmsssnnnmmssssssnnesssssnnsesssssnnsesssssnnsessssnnnnsssssnnnnsssssnnnnssssnnns XXi
11T LT 1 Xxiii
Chapter 1: Introduction to Serverless Technologies......ccuussssemeemnnrressssssssssnnnnssesssssnns 1
A Simple Local Flask Application ..o s 2
Step 1: Basic “Hello World!” EXample.........ccccvvrenininnnnnienissinesese e e s sssssssessessens 2

Step 2: Start a Virtual Environment ... s 2

SteP 3: INSTAll FIASKcoveirircresc st 3

Step 4: Run Web Application..........ccociiinninini s s 3

StEP 5: VIEW IN BrOWSENcccieciiiccirscre sttt s ss s st sb s st s st 3

Step 6: A Slightly Faster Way ..o ses e ssenens 4

Step 7: Closing [Al DOWN.........ooiiiirecr e s s e e 5
Introducing Serverless Hosting on MiCroSOft AZUFE..........coeeerereernenenesere e 5
Step 1: Get an Account on MICrOSOft AZUFEcoevvvercirienerr e 6

Step 2: Download SOUICE FleS........ccueriiisrirern s s 6

SteP 3:INSTAll Gtccoveieircre e —————————— 7

Step 4: Open Azure Cloud SHEll ... s 8

Step 5: Create a Deployment USEN ... snes 10

Step 6: Create @ RESOUICE GrOUP.......ccuereirrierere s s sse s s snes 11

Step 7: Create an Azure Service Plan ... 11

Step 8: Create aWED APD ..o 12
Check Your Website PIAaCENOIARTc..ccvrererererreseresese s se s 13
Step 9: Pushing Qut the Web Application..........c.covvrvnininnnninrn s 14

Step 10: VIEW iN BIOWSE......ccccieiiirere ettt st 15

TABLE OF CONTENTS

Step 11: Don’t Forget to Delete Your Web Application! ..., 16
Conclusion and Additional INformation............cccoeerrerreenres e 16
Introducing Serverless Hosting on Google CIOUd...........ccvreenmrenernncnenesesesess s sessesenns 16
Step 1: Get an Account 0n GOOGIE ClOUdccovreerererrcerrere e 17
Step 2: Download SOUICE FileS........cccieviirinirern e 17
Step 3: Open Google Cloud Shell ... 19
Step 4: Upload Flask Files to Google Cloudccovvrrrinnninienssnsesese s sesesees 20
Step 5: Deploy Your Web Application on Google Cloudccceevvennnieniennsnsnesesessesennes 22
Step 6: Don’t Forget to Delete Your Web Application!ccccvivvinnnnnnnnnsnscsesssessenennns 23
Conclusion and Additional INformation.............cceeeererrrenres e 25
Introducing Serverless Hosting on AMazon AWS............oornmrnnsnesese s sessesenns 26
Step 1: Get an Account on AMazon AWS.........coininn e 26
Step 2: Download SOUICE FleS........cccieiiirvniierr e 27
Step 3: Create an Access Account for Elastic Beanstalkcccocvevvnvniennsnnnncnnsensensennns 27
Step 4: Install Elastic Beanstalk (EB)...........coouerrrererenernnererenesesesesesese e 30
Step 5: EB Command Line INterface.........cccvvreninnnnnnsssnse s sessese s snes 31
Step 6: Take if fOr @ SPiN......cccccveiiirir e ————— 32
Step 7: Don’t Forget to TUrn It Offl......c.ooiicc s 33
Conclusion and Additional INformation............cccoeeererrienres s 34
Introducing Hosting on PYthONANYWRETE.........ccoveeeeierercrreser e 34
Step 1: Get an Account on PYthONANYWNEIEccovveeerrierercnerese s 35
Step 2: Set Up Flask Web Framework ... sessese s sessessesees 35
Conclusion and Additional INformation............ccceeernrnrresnes s 37
SUMIMAIY ...ttt e s e s e s Re e e e s e e ae e e Re e s e e e ne s e EnRe e e re e nrnnn e nsnnnas 37
Chapter 2: Client-Side Intelligence Using Regression Coefficients on Azure 39
Understanding Bike Rental Demand with Regression CoeffiCients.........cccvevrevrrerserieresensersennes 41
Exploring the Bike Sharing Dataset ..o 41
Downloading the Data from the UCI Machine Learning Repository..........ccccocvvnirieriinscnnenn. 43
Working with Jupyter NOTEDOOKS ... 43
Exploring the Data.........c.ccovrciienn e s 45

iv

TABLE OF CONTENTS

A Closer Look at Our Outcome Variablecococeeererenerenmrnscsese e 47
Quantitative Features vs. Rental CoUNtScoooreernsenrenersscr s 48
Let’s Look at Categorical FEAtUIES........c.cuucererernesrnese s 50
Preparing the Data for MOdeling..........ccovecerinnneninesennse e 52
Regression MOUEIING........uccuvererinerrnesrresssese s s nr s 52
Simple Linear REgreSSION........cccuvuverrnsesrsesesssessssessssssesssssssssssesssssssssssssssssssssessssssssssssssassssnns 52
N 0] 0] L= 10 - 52
Experimenting with Feature ENgINEEriNg.........cuvvvrierirensnieniesesessesesesessesessessssessessessessssessesas 54
Modeling wWith POIYNOMIAISccccveveririenennninsere s s s sss s s s 54
Creating Dummy Features from Categorical Data.........c.ccocvvrvrrernnnnnieninn e senennens 56
Trying @ Nonlinear MOGEL.........ccccverenrinienenirsine s s ss e s sae e s e snes 58
Even More Complex Feature Engineering—Leveraging Time-Series.........cccvvuernsererenersanes 58
A Parsimonious MOGEL ... s 61
Extracting Regression Coefficients from a Simple Model—an Easy Way to
Predict Demand without Server-Side COMPULING.......cccvrevvrrininn e 61
L3011 =T o RS 62
Predicting on New Data Using Extracted Coefficients........cccccvvreervrnininenssencenie s sensensenns 63
Designing a Fun and Interactive Web Application to lllustrate Bike Rental Demand 67
Abstracting Code for Readability and Extendibilityccccvivinninnicnininnicsrss s 67
Building a Local Flask AppliCation ..o s s snes 67
Downloading and Running the Bike Sharing GitHub Code Locallycccovvinirienniensennenn 70
DEDUGGING TIPS ..ueitiiiiiiriere s s s bbb bR e e e R s 72
Microsoft Azure—Mounting a Web Application for the First Time.c.ccccvivivvnvncnnnnscnennn, 74
Git—Getting All ProjECtS in Gil.........ccccvveerniesereserese s sessenens 74
The azure-cli Command Line INterface TOOL.........ccccuvrernrernsensnienenese s ssnses 76
33 oI R 0 ToTo 11 To I o OSSOSO 77
Step 2: Create Credentials for Your Deployment USErccccovevevnnenenesnnsssessnsessssesessssesenns 78
Step 3: Create your RESOUICE GIOUDcccevrvcererenerreserissessssesessesessssesssssssssssesssssssssssessssesnns 78
Step 4: Create Your Azure App SErvice Planccccveviinnniennnsnsese e sessessesees 78
Step 5: Create YOUr WED APD ..ot 79
Step 6: Push git Code 10 AZUIEcccveeevenernsernesere s 80

TABLE OF CONTENTS

IMPortant CleanUP! ..o s e s e ne 82
TroUDIESNOOTINGcviiircr e ——————— 83

33] O30 - O 85
What'’s Going on Here? A Look at the Scripts and Technology Used in Our Web Application...... 86
10T V111) 86

LS e LT][0 PR 88
/templates/index.html folder and SCript..........cccriiiinrnnir - 88

{0 0 U 11 0 o OSSR 90
AdditioNal RESOUICESceveereeerersierreesrssesesesesss e ssssesese e s s se s se s srs s ssssnssasssesssssssssessnnes 1
Chapter 3: Real-Time Intelligence with Logistic Regression on GCP...........ccurssnnns 93
Planning our Web APPlICALIONcccccveverieriereresessere s sessese s ssssessesse e sessessessesssssssessesaesessensesaes 95
I ez 1L 2 T4 0|1 o O 95
Dealing with CategoriCal DAta..........ccccvrerererrerrerernsersere s s s s s e s saesessesnesaes 100
Creating Dummy Features from Categorical Data.........c.ccoevvvverievnrenrenienesessensesesessensessenns 104
MOGEIING ...t e e R e e e nne 106
Train/TEST SPIIL......c.coviercr s ————— 106
LOQISHIC REQIESSIONcoveiiircre it s s p e e p e e e 107
Predicting SUIVIVOISNIP ..ottt 109
Abstracting Everything in Preparation for the Cloud.........cccovcvcniniinnninisn e 110
FUNCHION STAMTUP() veveererece e s s 111
Function submit_new_profile()......ccccccrinninininrns e 111
Interactivity With HTML FOrMS ..o e 111
Creating DYNamiC IMAJEScccvrvrernrereresrsese s e e s se s se s sn s sessssenns 112
Downloading the TitaniC COUE.........ccvurmrmrmrrrrererinerrnse e 113
Google Cloud Flexible APP ENQINE.......cccvcererinnerierenesessensesesessessessessesessessessessssessessesssssssessesses 115
GOOGIE APP ENQINE....cceiieieiriere st ses st s e se s sae s s s s a e e sae s e s s sae s e e s e snees 116
Deploying on Google APP ENGINEcovveeveriererenrereressesessessessessssessessesssssssessesssssssessessessssessessens 117
Step 1: Fire Up Google Cloud Shell..........cucvvrierenerieriesessesesesesesessesessessesessessesssssssessessens 117
Step 2: Zip and Upload All Files 10 the Cloud...........ccverrevennieniernnessessesessesessessessesessessessens 118
Step 3: Create Working Directory on Google Cloud and Unzip FileSccccoevveriererensersennens 119

TABLE OF CONTENTS

Step 4: Creating Lib FOIAEN ..o nnens 120
Step 5: Deploying the Web Applicationcccovvrvnininnsncne s sennens 120
TroUDIESNOOTING ...cveeereeeriee e e ae e r e e e e nne e 121
ClOSING-UP SNOP ..ottt p e e e e 122
What’s GOING 0N HEIE?.......cccoieeieereree s s sn s s e sn s 122
1 0F= U111) SO O 122
1] I3 22 L 1 OSSO 124
appengine_config.py & lib fOlder.........ccovvvieniics e 125
FEQUIFEMENES.IXT ... ————— 125
B] 0Ll 21T RS 126
00111 11 0P 127

Chapter 4: Pretrained Intelligence with Gradient Boosting

Machine on AWS........cccouusemmmmsnnmmmsssmmmssmmssssmsssssmssssnmssssssssssnssssanssssnnssssnnssssnnssssnnss 129
Planning our Web Application: What Makes a Top-Rated Wine?..........cccccvvvivvnvniniennseniennens 131
Exploring the Wine-Quality Datasetccoceereirninnnesnesessse s s 131
Working with IMmbalanced CIaSSESccvverererrrerieressrsersesessssessesessessssessessesssssssessessesssssssesseses 135
Modeling with Gradient BooSting ClasSifierSc.ccvrerererserseriesessensersessssessessesssssssessessessssessessens 137

Evaluating the MOAELcvvrienenirrse s 139
Persisting the MOdEL............cvcrieniinr e e 143
Predicting on New Data..........cccceveriniiniinni i s sessnssnesaessens 144
Designing a Web Application to Interact and Evaluate Wine Qualitycccvrvvrrerierierenserienens 146
Introducing AJAX — Dynamic Server-Side Web Rendering..........cccvrrnvnnniennnnsnsesessnsensenens 147
Working in a Virtual Environment—a Sandbox for Experimentation, Safety and Clarity 148
Amazon Web Services (AWS) Elastic Beanstalk.............ccoouvrnnenrnnernsesnnesenesesssesessesessssessnnes 150
Create an Access Account for Elastic BeanstalKcoucvnenennnennsesnsesssesesessesessssenennes 151
EIastic BEANSIAIKccovrerierircserese s 153
EB Command Line INTErfaceccuvernrennnenmresessse s sss s sessssenennes 154
Fix the WSGIAPPICAtIONGIOUDcovevirircrerir e 156
Creating the EB..........cccovevreneresersses s s se s e e e s s sessssssnsssssnns 158
Take if TOr @ SPIN...ccuciiiicrcr s ———— 158
Don’t Forget to TUN It OffL.......cccceccccc e e 159

TABLE OF CONTENTS

STEPS RECAPceireie sttt e e e e e R e nnn 162
TroUDIESNOOTING ...cvreeereeerrecrer e e r e e e e nnnne s 163
ACCESS ThE LOGS ...eeveueerscerreerreseresese s s sesse e se e ses e sss e ssesesss e sessssessssessssesensesnsenees 163
SSH N0 YOUF INSEANCE ..ot 164

{0 e 11 0o TS 165
Chapter 5: Case Study Part 1: Supporting Both Web and Mobile Browsers 167
The Pair-Trading STrategyccccevrererirernsesrnese e sr s snsseens 168
Downloading and Preparing the Datacccovvrvriernninine s sesese s sesse s sessessessessssessesaens 169
Preparing the Data........cccvvvririerieninsere s e se s saesae e s saennes 171
Pivoting DY SYMDOL......cccoeveiriere e e s e e 172
Scaling the Price Market DAtccocvcvrerievinninienienesessese s sessessessessessssessessessssessessesssssssessesnes 173
Percent Change and Cumulative SUMcccvcvveriernnininiene s sese e sss s ssesassessessesees 173
Plotting the SPread ... e e e e 174
Serving up Trading [dEas.........ccucveriiiiinin e s 175
Finding EXIreme CaSsES........cccucreriinnnicnie s se s s sns s nnes 175
Making Recommendations..........cccccvvrirnnsnnnnnsn e 177
Calculating the Number of Shares t0 Tradeccoveeererrnnerreserese e 179
Designing a Mobile-Friendly Web Application to Offer Trading Ideas.........c.ccoeevvvnieriennieniennens 181
FIUIA CONTAINEIS......cceeeeereeerrsesese s nne e 181
Running the Local FIask VEISIONccoueerienmiinminsessnesese s sssssssssssesessssenns 183
What's GOING ON HEIE?......cvvecerierereserere s e s e ssesae s s e s s s s e e saesae e s e saesaesaesssnesassaesassesaenneses 185
Bootstrap Input Field Validation...........ccccocevvirrninnnninerssenrere s sessessessesessesseses 185
Running on PYthONANYWRETE.........cociiererrire e sn e s s sa e 186
FiXing the WSGI Fleccoueerireiirescrc sttt ettt e st st s 189
SOUMCE COURucererrrrceee e se s p e e p s e e p s ne e n s 189
WSGH CONfiGUIAtioN.c.cceiiieccriec e se s e ne e 190
Rel0AU WED SE.......c.ceeiririrircccse e 191
Troubleshooting PythOnANYWRETE..........ccoeviircnirrn e 192
{0 0 e 1 0 T 193

viil

TABLE OF CONTENTS

Chapter 6: Displaying Predictions with Google Maps on Azure 195
Planning our Web ApPPlICALIONccceviinieniennsinscne s s snens 197
Exploring the Dataset on SF Crime Heat Map on DataSF.............c.ccoviinvnnnnnnnnnnennsniennens 197
Data ClEANUP.....cccererecie et s e e b e e s s b et e bbb e e e ne 199
Rebalancing the Dataset..........ccoveriirrnsmsnesese s 199
Exploring by Day-0f-the-WEEK.........cccevrrrieriernririenere s sesse e ssssesse s ssssessesaessessssessesaens 202
Feature ENQINEEIING.......ccvvveverirreriere st s sss e s e ssessssesessessesassessesaessesessesaesaesassesaesaesssnsnsesaens 203

Creating a Month-of-the-Year FEAtUrecccvcerererrrierinnerserse s s e s s ssssessesne s 203
Creating Time SEgMENTScccvivirrrre e e a e e eae e 205
Exploring by Time SEgmEeNt ... s se s saesnes 206
Visualizing GeographiCal Data............cvcerrerrererserierersnnersessesesessessesesssssssesessessssessessesssssssessessens 208
Rounding Geocoordinates to Create Zone BUCKELSc.ccvvvervevrerensnnensenenssesseseseesessensenns 209
Using the Past t0 Predict the FULUIE ... 212
Google Maps INTrOAUCTIONcoeeereeeereeree e 216
LT 0T o T 217
Google Maps with Crime Data...........cccorrerererrnscnrreses s 218
Abstracting Our Crime ESHMAtOrcocccvvcrninrcse s 219
Designing a Web Application to Enable Viewers to Enter a Future Date
and Visualize Crime HOTSPOTS.....ccuccvererrerierieriesersere s s s sessesessessesssessesaessssessesaesaesessessesaes 220
Add YOUr GOOGIE APl KBY.....ceuereeerereruessesessessessessssessessesssssssessessesssssssessessesssssssessessensssessesaes 221
BLE LN {01 U O 222
C T (0] AT (PR 223
The azure-cli Command Line INterface TOOL...........ccoverrererenerrereresee e 225
StEP 1: LOGUING INu.eoreiiei e e e r e 226
Step 2: Create Credentials for Your Deployment USErcccovvevrvenernccrnscsenesensesesesenenns 227
Step 3: Create YOUr RESOUICE GIOUP.....c.cccveruererreerererersesersesesesesessesessssessssessssesessenessssesenns 227
Step 4: Create your Azure App Service Plancoccvrevnnscnniennnesess s sesesenns 228
Step 5: Create YoUr WED APD ..corecricrnerine e st ses s 228
Step 6: PuSh Git COOR 10 AZUIE ..o e se s e 229

ix

TABLE OF CONTENTS

TroubIESNOOTING ..o ——————— 231
Don't FOrget t0 TUIN It OffL.......oeeeee e e 234
[0 1 e 1T SRS 234
Chapter 7: Forecasting with Naive Bayes and OpenWeather on AWS............cccunu. 237
EXploring the Dataset..........ccovveviennise e 238
NAIVE BAYES .. vevreruerierirseressessssessessesssssssessessessssessessesssssssessesaessssessessesssssssessessessssessessessensnsenaens 240
SKIEarn’s GAUSSIANNB...........ccccorirerieesisi e sesn s 241
Realtime OpenWeatherMap ... s 242
Forecasts vs. Current Weather Data............cocoveeeenerneneenesesesssss s sesssssseseenens 245
Translating OpenWeatherMap to “GolflWeather Data”ccooevrincrninnninnnsnnsesenenens 246
Designing a Web Application “Will | Golf Tomorrow?” with Real Forecasted Weather Data...... 251
Download the Web Application...........ccociniinininnnnsn e 251
Running on AWS Elastic BEANSTaIKccovererermrnnerenenesese s sesss e sessesenns 254
Fix the WSGIAPPIICAtIONGIOUDcovevirircrerirsere et 254
Take [t FOr @ SPiN...cc.coicicicrr s s 255
Don’t FOrget to TUMN I OffL ... 257
[0 e 1T 0o SRS 259
Accessing OpenWeatherMap Data ... 259
70 (] 1 SRS 260
Handling User-Entered-Data...........c.ccovveernnenmnnnesssesssesesssse s sesss s ssssesessssessssessnses 260
Chapter 8: Interactive Drawing Ganvas and Digit Predictions
Using TenSorFIowW on GCPcccvisemmmsssnsmsssnsmsssnsssssnsssssnsesssssssssssssssnnssssnnssssnnssssas 263
The MNIST DAASELc.coeeeeerercrerereree e se e nne e 265
=T 150 o TSR 268
Modeling with TensorFlow and Convolutional Networksccovvrniennsnnnsesnsesesesesenenens 268
Placeholders (1f.placeROIer).........ccoveervrererserere e 269
Building MOdeling LAYErSccccvvrerenmrrnnesesesesesessssesessesesssss s sessssessssssssssssssessssssssssnsssnnes 269
LI ES T3 a1 e (] 270
Instantiating the SESSIONccecereerrrerre e 270
L 01 TSRS 271

TABLE OF CONTENTS

ACCUIACY ...vevereirerse st st s s s s d e e R b e e R e e e e e e R e A e e e e e Re e Re e R e e e e Rennn 271
RUNNING the SCHPL......eeeee e 271
Running a Saved TenSorFIoW MOGELccooeoerercreerereere e 273
SaVe That MOGEI! ... e 274
Drawing CANVASccceeemrresmrrssessssesessesessssessssessssassssssessssessssssesssssssssssssssssssassssssssssssnsssansssasssnns 274
From Canvas t0 TENSOMFIOW...........ccvieerrirerrnesirese e 275
Testing on New Handwritten DigilS......ccceveverrinierinnniriene s sese s sessessessesessesesse s 276
Designing @ Web AppliCation........cccvvvrrrirennrerrre s s s s e s sae s ssessenaens 278
Download the Web AppliCatioN...........cceccvvrrene e s se e 278
Google Cloud Flexible APp ENQINE........cccvrininnnine s se s s sssssssessesnes 281
Deploying on Google APP ENGINEcccovemrrerereeree s se s sessesenns 281
Step 1: Fire Up Google Cloud Shell ... sessessens 281
Step 2: Zip and Upload All Files t0 the Cloud............cccovvninininnnnsnnss e 282
Step 3: Create Working Directory on Google Cloud and Unzip Filesccccvvviriennieniennens 283
Step 4: Creating Lib FOIAEN ..o 284
Step 5: Deploying the Web Application ... e 284
TroUDIESNOOTING ...cveeeereeerree s ne e e nne e 286
ClOSING UP SNOP ..ottt s s e d e e et 286
0] T 111 (0] o 287
HTMLS <CaNVAS> 1AQ ... cccveiirieriiesiesiersissse s ssessse s sse s s s sse s s s s s s sse s s e ssesnesssssnssnesnessnnns 287
TENSOIFIOW ...t ————— 287
DT o R 288
Chapter 9: Case Study Part 2: Displaying Dynamic Charts..........cccermssnnnnnrnsssnnnns 289
Creating Stock Charts with Matplotlibccccvvriniincnr 291
Exploring the Pair-Trading Charts ..o e 292
Designing @ Web APpliCALioN..........ccvecerninneseree e e 295
Mobile Friendly With TADIEScccccrecernierinesirn s 297
Uploading our Web Application to PythonAnyWREreccvevrvrvenernsirsene s sesenaens 299
0] T 11T (0] o P 303

xi

TABLE OF CONTENTS

Chapter 10: Recommending with Singular Value Decomposition on GCP 305
Planning Our Web ApPPliCAtioNccovviirieniennsinse e se s snens 306
A Brief Overview of Recommender SYSIEMScccorevrrrernrererese e 307
Exploring the MovieLens Dataset..........c.cuovrerererernssnnesesesessse s 307

More from the MovieLens Dataset’s Liner NOtes.........c.ccovverrenrnnenennenenienesssesese s 307
Overview of “ratings.Csv” and “MOVIES.CSV”ccovrurmrrerernsesesessssese s e s sesss e s e ssssssenns 309
Understanding Reviews and ReVIEW CURUIEccocevvvrvnieniinnseniene s sessessessessssessesaens 313
Getting ReCOMMENAALIONS.......ccccvererirrerere e se e sae s se e s aesaese e e naennes 317
Collaborative FIltEriNGccovverrrerrererersereressesessersessessssersessessssssessessesssessessessssessessesasssssessesaes 320
Similarity/Distance Measurement TOOIS.........ccouvevrerrnrernienere s se s e ses e sens 320
EUClidean DISTANCEcccecvreererenmreseressesesese s ses e s sss s e nns 320
Cosine Similarity DISTANCEcccceervrererrererene s ses s 321
Singular Value DeCOMPOSITIONccvcevrrererinernesrsesess s s sr s sessssesenns 323
Centering User Ratings ArOUN ZEI0........ccveveerervererenessensesessssessesessesessessessessssessessesssssssessesses 323
A LOOK @t SVD i ACHION.......cccccererissccse s 324
Downloading and Running the “What to Watch Next?” Code Locallyccoceeevrvenreccrenienen. 327
What's GOING 0N HEIEY ...t e s e e s 329
1111 1) S 329
INAEXNEM ... ——————————— 332
Deploying on Google APP ENGINEccovrierenininneress s sesse s ssssessessessssessessessesssssssesaens 333

Step 1: Fire Up Google Cloud Shell..........cocvvriernnninienennninsese s sessesessssessessessessssessessens 333

Step 2: Zip and Upload All Files t0 The CloUdc.cccevenerinernsennnesersse e sesesens 334

Step 3: Create Working Directory on Google Cloud and Unzip Filescccoovevnienerenernnne. 335

Step 4: Creating Lib FOIARKcccvvceriesircse e 336

Step 5: Deploying the Web Application..........cooucvvernesnnssnesse s 336
TroUBIESNOOTINGveererere e e e e e e ae e 338
ClOSING UP SNOP ...ueiviiiiirererersersere s s sesse s sassese e sae s s e ssessesesssssesaesasssssessssaessssessssaessessssensesses 339
0] T 1T [0 o PR 340

xii

TABLE OF CONTENTS

Chapter 11: Simplifying Complex Concepts with NLP and

Visualization 0N AZUKe.......cusesssssmsssssnsssssnsssssnsssssnsssssnsssssnssnssnsssssnnssssnnssssnnssssnnnnns 341
Planning our Web Application—the Cost of Eliminating Spam..........cccccvvnininnnnniniennsnsenens 342
[L B 0] (0] LT ORI 343
[T 3o - R 344
Text-Based Feature ENQINEEIINGc.ccvcvriririnin st s s sse s s 344
Text Wrangling for TFIDF ..ot re s s sn e s s sne s s s sn e s s 347
NLP and Regular EXPreSSiONScccccuviinieniinnninsisess e ssssesse e sssssssessesssssssessessssssssssesnens 348
Using an External List of Typical Spam WOrdsc.ccccovrerrerrnscnnneseseses s 349
Feature Extraction with Sklearn’s TfidfVectOrizercccovevresrniesnnese e 350
Preparing the QutCOmMe Variablecoucvrenerinennsensesnne e 351
Modeling with Sklearn’s RandomFOoreStCIaSSIfiercuvverierrnrieriennsensenese s ssssessesaens 352

Measuring the Model’s PErfOrMANCEccvcvverernrenseneresessessessessssessessessssessessesssssssessesses 353
Interacting with the Model’s TRreSholdccocevvvrvriniennsns e 357
Interacting With WeD GraphiCS......c.ccvivvrrriererensenrererssessesessessssessessessssessessesssssssessessesssssssessens 359
Building Our Web Application—Local FIask VErsion..........cccccvvvnennneneninsennsessnsesessesesesesenns 361
Deploying t0 MiCroSOft AZUNEcccceeeicirererr st 363
T (0] L1 (T 363
The azure-cli Command Line Interface Tlccoverrerrnenreneree e 367
StEP 1: LOGUING Nt e se s e nne 367
Step 2: Create Credentials for Your Deployment USErccccvvnnininnennsnsessesessssessennens 368
Step 3: Create YOUr RESOUICE GrOUP......cccucvcererreiinsinese s s s e s s s e s e ssesssssssessesnens 368
Step 4: Create Your Azure App Service Plan ... sessesnens 369
Step 5: Create YOUr WeD APP ..ottt se e sa s e 369
Step 6: PUSh Git COOR 10 AZUIEcccvueerircrereer sttt se s e 370
IMportant ClEAnUP! ... e 371
TrOUDIESNOOTING ..cveeeereeerree s enre e r e e s e nrnne e 372
Conclusion and Additional RESOUICESccurerrrserrreserreserrssessssssssss s s ssssesssssssssssessssessnns 374

xiii

TABLE OF CONTENTS

Chapter 12: Case Study Part 3: Enriching Content with

Fundamental Financial Information............c.ccccmnnmmmmnmsmmnssmmsssmmssmmsssmsssssans 375
Accessing Listed Stocks COmMPaNY LiStS.......ccoouvvrrenmrnnmrnsmsessesesssesessessssssesssessssesessssesssssssenes 377
Pulling Company Information with the Wikipedia APccoouevninnennesnssesseses e 379
Building a Dynamic FINVIZ LINKccccoueernienmnnnennsesssessssssssse s ssssessssssssssssssnses 379
Exploring FUNAAMENTALSccooveeriererirsrere e s se s s sae s e e s snens 381
Designing @ Web AppliCatioN........cccvvvriririenrrrrene e se e se s saesae e sessesaens 382
Uploading Web Application to PythonANYWhErE..........cccevverververercerrense e se e senenns 385
{0 0 e 11 0 391
Chapter 13: Google ANAIYLICSccussemmmmmsssnnnmmssssnnnnmssssnnnnssssssnnnsssssnnnnsssssnnnnsssssnnnnss 393
Create @ Go0gle ANAlYHICS ACCOUNT..........ccorermrnserrsesese s s 393
B AT BT 0] QT T G O SS 395
Reading Your AnalyticS REPOIccccvevrrriereriererese e s s sessesse e ssssessessessesessesaessesssssnsesnees 396
Traffic SOUICEScoereiririecriri s 397
T SR 398
Conclusion and Additional RESOUICEScccocrurererererrererersese s ses e 399
Chapter 14: A/B Testing on PythonAnywhere and MySQL............ccccennnnnnnnmnnnnnnnas 401
A/B TESHING ...vrveerreerresesessesesre e srssesessesesse e s s ss s se s se s ss s e se s se s s sesse e nensssensssensanensnnes 402
TrACKING USEISeeecrercereserree s se s e sre e senss e nnsnens 404
UUID ... ettt bbb nd e 404
MYSQL .. .eteieire e b bR E e p e e 405
Command LiNE CONIIOISceeerieereeririeriee e rersessee e sesesssessessessaessesaessessesaesaesnssssesnesnennen 407
MySQL Command Line MONITOFcccoveernereresernsesesesessse s sessesessesessssessssesessssssssssssnses 408
Creating @ DAtabasec.cuccvrerrnresne s 409
Creating @ TaDIE ... 409
Creating A Database USETc.cccvvrernsesesenersnsmsesessssesesssssssssssessssssessssssssssssssssssssssssssssenes 411
Python Library: mySqLCONNECTLONcccovverrreierene e sn s sessesens 412
SELECT SQL Statementcccvvernrennesiiise s sesssse e e s s ssssesessssssssssssnns 412
INSERT SQL Statement.........ccccvveernnmnnesenese s s sssssssssssesessssssssssssans 413

UPDATE SQL Statementcccovcervnerncsinssesssesssessss s s e sessssssssssssssesssssssssssessanes 414

Xiv

TABLE OF CONTENTS

Abstracting the Code into Handy FUNCHIONS ..o 414
Designing @ Web APPlICALION..........coveerreerreere e 417
Running a LOCAI VEISION ..o s s se s s ss s 418
Setting Up MySQL on PYythonANYWREIEccvvcerrereresersesese s 418
A/B Testing on PYtNONANYWRETEccouveierriierrnesesesess s ssssesssse s ssssessssssessssssssssssssssssssssssanes 420
A/B Testing ReSults DAShDOArdccccverreririeriereninsirsesesse s sesesessssessessessessssessessessessssessessens 423
0] T 111 (0] o 424
Chapter 15: From Visitor to SubsSCriber........cccuccmmmmnmmnmmmsssnnmmmsssnnmmsssssssnnm 425
Text-Based AUTNENtICALIONccoeoereecrece e e 426
Flask-HTTPAuth—Hard-Coded ACCOUNTcoeeereeerrcreree e 426
Digest Authentication EXample...........cccvniinininnnnsn e 428
Digest Authentication Example with an External Text File.........cccovvcnvnininsncninenenccnenn, 430
Simple Subscription Plugin SYSTEMS ..o 432
11T] 0T g S 432
Create a Real Web Page to Sell @ Fake Productcccoveevrenerencrnsesesesesesesesesesseseneenes 436
Checking Your Vendor Dashboard...........ccoeerrennennensnscsse s 438
Taking Donations With PayPal.............ccccurvniinninnnsisnessssse e s sessenens 439
Making @ PUrchase With StriPe.......ccccevrrririnninire s se s s se s s ssessssessesaens 442
0] T 11T (0] o P 447

Chapter 16: Case Study Part 4: Building a Subscription Paywall

with Memberful ... 449
Upgrading Your Memberful and PythonAnywhere Pay ACCOUNTS...........ccccvveernsenesenesseserenenenns 450
Upgrading MemBbBerful...........ccovereesresre e 450
Upgrading PYthONANYWRETEcccoveeeereereserisse s se e s snsssse s sessssssnsessnnes 454

Pip INStall FIASK=-SSLIfY......ccoverrrirerenernsesesesessse s sessesesssse s sessssessssessssssessssssssssssssessnns 454
Memberful AuthentiCation...........cocccvecrncnns s —————— 455
Two-Step Process and Flask Session Mechanismc.ccovevnennnsesnsesnesesssesessesssseens 456
Authentication STEP ... ——————— 456
Authentication STEP 2........ccvviirirr e ——————— 457
Calling Memberful FUNCHONS........c.ccovrernesernesesese e ssanes 460

TABLE OF CONTENTS

Designing a Subscription Plan on Memberful.com ... 463
Uploading the Web Application to PythonAnyWhEre ... 466
Replacing Memberful and MySQL with Your Own Credentialsccccoveeernennicnenencrennes 466
What’s GOING 0N HEIE?.......cceoeeeerceree e se s s s sesssssnsnnens 467
10T U111)RS 467
WEICOMENTMI ... e e 468
131012 111 TS 468

0] T L1 OSSR 469
Chapter 17: CONCIUSION......ceuertrrrrssssssssnsssnnssssssssssssssnsssssssssssssssnnnsnssssssssssssnnnnnnnnness 471
L0 11070 N 01 1O 471
Google Cloud (APP ENQINE) .ccceveeriiveriereresissessese s ses s s ssssessessesasssssessesaesssssssessesssssssesnenes 471
Amazon Web Services (Beanstalk) ... 472
MiCroSOft AZUIE (AWS)covruiuiuiresiresssssssse e e e e s s e 474
PYthONANYWNEIE.COM.......eeirirciece et r e s 475
MEMDEITULCOM ...t 475
1T - 477

About the Authors

Manuel Amunategui is VP of Data Science at SpringML,

a Google Cloud and Salesforce preferred partner, and

holds Masters in Predictive Analytics and International
Administration. Over the past 20 years, he has implemented
hundreds of end-to-end customer solutions in the tech
industry. The experience from consulting in machine
learning, healthcare modeling, six years on Wall Street in the
financial industry, and four years at Microsoft, has opened

his eyes to the lack of applied data science educational and
training material available. To help alleviate this gap, he has
been advocating for applied data science through blogs, vlogs, and educational material.
He has grown and curated various highly focused and niche social media channels
including a YouTube channel (www.youtube.com/user/mamunate/videos) and a popular
applied data science blog: amunategui.github.io (http://amunategui.github.io).

Mehdi Roopaei (M’02-SM’12) is a Senior Member of IEEE,
AIAA, and ISA. He received a Ph.D. degree in Computer
Engineering from Shiraz University on Intelligent Control of
Dynamic Systems in 2011. He was a Postdoctoral Fellow at
the University of Texas at San Antonio, 2012-Summer 2018,
and holds the title of Assistant Professor at the University

of Wisconsin-Platteville, Fall 2018. His research interests
include AI-Driven Control Systems, Data-Driven Decision
Making, Machine Learning and Internet of Things (IoT), and
Immersive Analytics. He is Associate Editor of IEEE Access
and sits on the Editorial Board of the IoT Elsevier journal. He

was guest editor for the special issue: “IoT Analytics for Data
Streams” at IoT Elsevier and published a book Applied Cloud Deep Semantic Recognition:
Advanced Anomaly Detection (CRC Press, 2018). He was IEEE chapter chair officer for joint
communication and signal processing communities at San Antonio, Jan-July 2018. He has
more than 60 peer-reviewed technical publications, serves on the program committee at

several conferences, and is a technical reviewer in many journals.
xvii

http://www.youtube.com/user/mamunate/videos
http://amunategui.github.io/

About the Technical Reviewers

Rafal Buch is a technologist living and working in

New York as a financial systems architect. He's been doing
software engineering for two decades and spends most of
his free time hacking in coffee shops and exploring new
technologies. Blog: rafalbuch.com

Matt Katz has been working in financial technology since
2001 and still gets excited about new stuff all the time. He
lives online at www.morelightmorelight.com and he lives
offline in New York with his two strange children and one
amazing, patient wife.

Xix

https://urldefense.proofpoint.com/v2/url?u=http-3A__rafalbuch.com&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=P7ns1GPlNsXq5kw8-QaqmGnJrIhBn3jnx4fyxasNUSo&m=MTRki_zsGjYIJLRtLS5zhWXxbZvRYziI2OqAwYPYzFE&s=2tYne0AN6WIZgvNHB4ECY7FNyTZParL6z0v2cxEtF1E&e=
http://www.morelightmorelight.com/

Acknowledgments

To the friends, family, editors, and all those involved in one way or another in helping
make this project a reality—a huge thanks! Without your help, this book would have never
seen the light of day.

xxi

Introduction

A few decades ago, as a kid learning to program, I had an ASCII gaming book for my
Apple II (of which the name eludes me) that started each chapter with a picture of the
finished game. This was the teaser and the motivator in a book that was otherwise made
up of pages and pages of nothing else but computer code. This was years before GitHub
and the Internet. As if it were only yesterday, I remember the excitement of racing
through the code, copying it line-by-line, fixing typos and wiping tears just to play the
game. Today, a lot has changed, but even though the code is downloadable, we put a
screenshot of the final product at the beginning of each chapter, so you too can feel the
motivation and excitement of working through the concepts.

Low-Barrier-To-Entry and Fast-To-Market

This book will guide you through a variety of projects that explore different Python
machine learning ideas and different ways of transforming them into web applications.
Each chapter ends with a serverless web application accessible by anyone around the
world with an Internet connection. These projects are based on classic and popular
Python data science problems that increase in difficulty as you progress. A modeling
solution is studied, designed, and an interesting aspect of the approach is finally
extended into an interactive and inviting web application.

Being a data scientist is a wonderful profession, but there is a troubling gap in the
teaching material when trying to become one. Data science isn’t about statistics and
modeling; it is about fulfilling human needs and solving real problems. Not enough
material tackles the big picture. it seems that whenever you start talking about the big
picture, you have to sign a non-disclosure agreement (NDA). This is an essential area of
study and if you are like me, you need to understand why you are doing something in
order to do it right. These aren’t difficult topics, especially when you use the right tools to
tackle them.

xxiii

INTRODUCTION

We won't focus on “becoming a data scientist” as an end goal; there are plenty of
books on that topic already. Instead, we’'ll focus on getting machine learning products to
market quickly, simply, and with the user/customer in mind at all times! That’s what is
missing in this profession’s educational syllabus. If you build first and then talk to your
customer, your pipelines will be flawed and your solutions will miss their target. I have
redrawn Drew Conway’s Data Science Venn Diagram with the customer as top priority

(Figure 1).
ATA \
D ATA SKILLS ﬁ
/ms / Listening

DS d
y \. { e5,\ — |2, * ToYour
("‘3" \9 1 \ @ e (_33'\»

F
-.\\‘_“__‘_._ /

Figure 1. The classic data science Venn diagram next to my updated version

\ \ o &
.

f

Customer

'Mehdi and I worked hard on the content of this book. We took our time to develop
the concepts, making sure they were of practical use to our reader (i.e., our customer—
always keep the customer in mind at all times). I built the material and Mehdi edited
it. This is an ambitious book in terms of scope and technologies covered. Choices and
compromises had to be made to focus on the quickest ways of getting practical use out
of the material. The tools are constantly changing. Some things in this book are going
to be stale by the time you read them, and that is OK (you can go to the GitHub repo for
updates). Here, everything changes all the time, but things tend to change for the better!
So, learning new tricks often means learning better, faster, and more powerful ways to
do things. This book will not only show you how to build web applications but also point
you in the right direction to deepen your knowledge in those areas of particular interest.

'http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

XXiv

http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

INTRODUCTION

If this was a class, I'd have you sign a “compete agreement”: yes, the opposite of a
non-compete. I would have you go through this book, understand the tools, and then
copy them and make them your own. These are meant to be templates to quickly get
your platforms up and running to focus on the bigger things, to build impactful tools for
your customers and friends. When you understand this, that’s the day you graduate with
all the entitlements and privileges of being called a “data science professional.”

What is the Serverless Cloud?

Cloud providers have gone to great efforts to improve web hosting solutions and bring
costs down. The recent advent of the “serverless” option, which abstracts a large swath
of the configuring process, is available on three of the four cloud providers covered
in this book. This means you can get your projects up and running on fully managed
platforms, with automatic load-balancing, throughput scaling, fast deployments, etc.,
without having to select, configure, or worry about any of it. The level of disengagement
with these architectural and monitoring options is up to you. You can choose what you
want to control and what you want to delegate to the provider. One thing is guaranteed:
the site will automatically adjust with traffic and offer unparalleled uptime.

This allows us to focus on what is important without getting bogged down by the
trappings and support needed to get there. These so-called “trappings” are critical
and need to be taken very seriously. This is why we are looking at four reputable
cloud providers that will give us the peace of mind required to fully focus on our web
applications and not worry about the site crashing or the provider going dark. Let’s focus
on what is important and get to work!

Critical Path in Web Application Development

So many machine learning models stagnate in their original coded state: hard to
understand, with no easy way to invite others to benefit from its insights. These models
are doomed to be forgotten. Even those that manage to escape the confines of an
integrated development interface fall short of their potential when reduced to a static

INTRODUCTION

chart or a cryptic modeling score. This book aims to avoid this trap by breaking down
the process of extending a machine learning model into a universally accessible web
application. Each chapter follows these three critical steps:

1. Modeling the right way. We start at the end, by understanding
what users want to see, and by investing time and thought on the
final goal and user experience. We ensure that the appropriate
modeling approach is used in order to reach a web-application
state rapidly and without surprise (Figure 2).

Oooh, | have
a great idea!

But wait, before
| start building,
let me make
sure that
there's an
audience for it!

Figure 2. Always check that there is an audience for your idea before building
(source Lucas Amunategui)

XxVi

INTRODUCTION

2. Designing and developing a local web application. This step
requires leveraging various web front-end technologies to offer
the needed interactivity and dynamism to highlight a model's
insight and sustain a user's interest. The final product at this stage
is indistinguishable from the next one except that it is hosted on
your local machine, not the cloud.

3. Deploying onto a popular and reliable serverless cloud
provider. Each provider has unique requirements, advantages, and
disadvantages that need to be understood and addressed. This is the
final stage where the world gets to enjoy and learn from your work.

We start by tackling easy ways of offering intelligent interactivity, like leveraging a
model's coefficients or saving a trained model, then move to the complex, like using a
database to track engagement or relying on open-source pretrained models for image
recognition. A fictional case study around stock market predictions is started in the
first section, then revisited in subsequent ones. New features are added to it until it
culminates into a complex dashboard with a paywall to offer customized intelligence to
paying subscribers.

By focusing on classic, data science problems, coupled with popular, open-source
technologies like Python, Flask, Ajax, Bootstrap, JavaScript, and HTML, you should find
yourself on familiar ground and if you don’t, you'll have a drastically reduced learning
curve. We focus on simple tools and simple techniques to reliably and rapidly get
machine learning ideas out into the wild. The tools and approaches are revisited in each
chapter, so don’t worry if some aspects aren’t clear from the start; keep going and things
will keep getting clearer.

We also rotate cloud providers in each chapter, so you will get exposed to the most
popular providers. This will give you plenty of insights into which provider to select for
your future project. I recommend going through all chapters, as each will show different
ways of doing things, highlighting a provider’s strengths along with showing unique tips
and tricks to get things done quickly.

Xxvii

INTRODUCTION

You, the Reader

This book is for those interested in extending statistical models, machine learning
pipelines, data-driven projects, or any stand-alone Python script into interactive
dashboards accessible by anyone with a web browser. The Internet is the most powerful
medium with an extremely low barrier to entry—anybody can access it, and this book is
geared to those who want to leverage that.

This book assumes you have Python and programming experience. You should
have a code editor and interpreter in working order at your disposal. You should have
the ability to test and troubleshoot issues, install Python libraries, and be familiar with
popular packages such as NumPy, Pandas, and Scikit-learn. An introduction to these
basic concepts isn't covered in this book. The code presented here uses Python 3.x only
and hasn’t been tested for lower versions. Also, a basic knowledge of web-scripting
languages will come in handy.

This book is geared towards those with an entrepreneurial bent who want to get their
ideas onto the Web without breaking the bank, small companies without an IT staff,
students wanting exposure and real-world training, and for any data science professional
ready to take things to the next level.

How to Use This Book

Each chapter starts with a picture of the final web application along with a description of
what it will do. This approach serves multiple purposes:

o Itworks as a motivator to entice you to put in the work.
o Itvisually explains what the project is going to be about.

e And more importantly, it teaches how critical it is to have a clear
customer-centric understanding of the end game whenever tackling
a project.

The book will only show highlights of the source code, but complete versions are
attached in the corresponding repositories. This includes a Jupyter notebook when
covering data exploration and zipped folders for web applications.

xxviii

INTRODUCTION

The practical projects presented here are simple, clear, and can be used as templates
to jump-start many other types of applications. Whether you want to understand how
to create a web application around numerical or categorical predictions, the analysis of
text, the creation of powerful and interactive presentations, to offer access to restricted
data, or to leverage web plugins to accept subscription payments and donations, this
book will help you get your projects into the hands of the world quickly.

Note For edits/bugs, please report back at www.apress.com/9781484238721.

Tools of the Trade and Miscellaneous Tips

Here is a brief look at the tools that will transform our machine learning ideas into web
applications quickly, simply, and beautifully. This isn’t meant to be a comprehensive or
complete list, just a taste of the different technologies used and pointers for you to follow
if you want to learn more (and I hope you will).

Jupyter Notebooks

The book only shows code snippets, so you need to download and run the Jupyter
notebook for each chapter in order to run things for yourself and experiment with the
various features and different parameters. If you aren’t familiar with Jupyter notebooks,
they are web-based interactive Python interpreters great for building, tweaking, and
publishing anything that makes use of Python scripting. It attaches to a fully functioning
Python kernel (make it a Python 3.x one) and can load and run libraries and scripts just
like any other interpreter. To install Jupyter notebooks, follow the official docs at http://
jupyter.readthedocs.io/en/latest/install.html.

There are various ways to install it, including the “pip3” command; check official
documentation for the different ways of doing it if this approach doesn’t work for you
(Listing 1).

Listing 1. Install Jupyter

sudo pip3 install jupyter

XXix

http://www.apress.com/9781484238721
http://jupyter.readthedocs.io/en/latest/install.html
http://jupyter.readthedocs.io/en/latest/install.html

INTRODUCTION

To use a Jupyter notebook is both easy and powerful at the same time. You simply
need to download the notebook to your local machine (it will be the file with a *.ipynb
extension), open a command/terminal shell window, navigate to that folder, and run the
“notebook” command (Listing 2).

Listing 2. Run a Notebook (check official docs for alternative ways of starting
notebooks)

jupyter notebook

This command will open a web page showing the content of the folder from where it
was launched (Figure 3). You can navigate down a folder structure by clicking the folder

icon right above the file listings.

[] ® / ~ Home x (3 Manuel
C @ localhost:8890/tree o ¢ o :

: J u p }’te r Logout

Files Running Clusters
Select items to perform actions on them. Upload New~ £

0o ~ W/ Name ¥ Last Modified

O web-application 2 months ago

& chapter2.ipynb a month ago

Figure 3. Jupyter notebook landing page

To open a Jupyter notebook, simply click any file with the “*.ipynb” extension and
you are good to go! If you want to create a brand-new notebook, click the “new” button
at the right of the dashboard next to the refresh button.

Note For additional information, issues with Jupyter notebooks, and attaching
kernels, see: http://jupyter-notebook-beginner-guide.readthedocs.
io/en/latest/execute.html.

http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html
http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html

INTRODUCTION

Flask

Flask is a lightweight but very powerful server-side web framework. It is the brains behind
all the applications presented in this book. It is also the glue between our Python data
producing functions and web pages. That is one of the reasons I love working with Flask,
as it allows us to link stand-alone Python scripts to server-side web frameworks without
leaving the Python language; it makes passing data between objects a whole lot easier!

Flask comes with the bare minimum to get a web page published. If you need
additional support, like a database, form controls, etc., you will have to install additional
libraries and that is why it is called a lightweight, microframework. This is also what
makes it so easy to use, as you only have to learn a few more tricks; everything else uses
the tried-and-true Python libraries that we're already familiar with.

Unfortunately, we can only work in Python for so long and eventually you will need
to step into front-end web scripting. But don't let that bother you; there are so many great
examples on the Web (Stackoverflow.com, w3schools.com) and the incredible looking
GetBootstrap.com templates to get you there as quickly as possible.

Note For more information on Flask, check the official Flask documentation at
http://flask.pocoo.org/.

HTML

HTML, which means Hypertext Markup Language, needs no introduction. This is the
lowest common denominator in terms of web technologies. It has been around for years
and is used to create practically all web pages and web applications in existence.

For those wanting to brush up on this topic, the amount of free material on the Web
can be overwhelming. I recommend anything from w3schools.com. Their material is
well organized, comprehensive, and often interactive.

CSS

Cascading Style Sheets (CSS) is what makes most websites out there look great! We use
two types of CSS files here: the CSS links loaded in the “<HEAD>" section of most web
pages (the most common) and custom CSS as shown in code snippet in Listing 3.

XXXi

http://flask.pocoo.org/
http://w3schools.com/

INTRODUCTION

Listing 3. Custom CSS Script Block

<STYLE>

.btn-circle.btn-x1 {
width: 70px;
height: 70px;
padding: 10px 2px;
border-radius: 35px;
font-size: 17px;
line-height: 1.33;

}

</STYLE>

The CSS files that are hosted on outside servers cannot be customized but are
usually best-in-class. But there are times you simply need to customize a feature on your
page, and that is when you create a local CSS file or a style tag directly in the HTML page.
It is then applied to a particular tag or area using the “class” parameter (Listing 4).

Listing 4. Applying CSS Tag to an HTML Tag

<button type="button" onclick="calculateBikeDemand(this)"
id="season spring" class="btn btn-info btn-circle btn-x1">
<i class="fa fa-check">Spring</i></button>

CSS defines in great detail what size, color, font, everything and anything under the
sun, should look like. It also allows the generalization of your look-and-feel through
your web portal. You create it once and can have all your pages invoke it to inherit that
particular style.

Note For additional information and training on CSS, check out the w3schools.com.

Jinja2
Jinja2 is used to generate markup and HTML code, and works tightly with Flask

variables. It is created by Armin Ronacher, and is widely used to handle Flask-generated
data and if/then logic directly in HTML templates.

Xxxii

INTRODUCTION

In this HTML template example, a Flask-generated value called “previous_slider_

«u

value” is injected into the slider’s “value” parameter using Jinja2. Note the use of double

curly brackets (Listing 5).

Listing 5. Jinja2 Passing Data to HTML Input Control

<input type="range" min="1" max="100" value="{{previous_slider_value}}"
id="my_slider">

Note For additional information on Jinja2, check out the docs at
http://jinja.pocoo.org/docs/2.10/.

JavaScript

JavaScript is a real programming language in and of itself. It can add extremely powerful
behavior to any of your front-end controls. JavaScript brings a great level of interactivity
to a web page, and we will leverage it throughout each chapter.

Here is an interesting example where we capture the mouse-up event of an HTML
slider control to submit the form to the Flask server. The idea is that whenever a user
changes the slider value, Flask needs to do some server-side processing using the new
slider value and regenerate the web page (Listing 6).

Listing 6. JavaScript Capturing Slider “onmouseup” Event

slideri.onmouseup = function ()

{
document.getElementById("submit params").submit();

Note For additional information and training on JavaScript, check out
wa3schools.com.

xxxiii

http://jinja.pocoo.org/docs/2.10/

INTRODUCTION

jQuery

JQeury is a customized JavaScript library to facilitate the handling of complex front-end

and behavior events, and insures compatibility between different browser versions.
jQuery will facilitate things like button, drop-down dynamic behavior, even Ajax

(a critical technology used heavily in many of this book’s projects).

Note For more information on JQuery, check out the official documents at
JQuery.com.

Ajax

Ajax is a great front-end scripting technique that can add dynamic server-side behavior
to a web page. It allows sending and receiving data without rebuilding or reloading the
entire page as you would do with form submits. One area where it is commonly used is

on map web pages, such as Google Maps, which allows dragging and sliding the map
without reloading the entire page after every move.

Note For additional information and training on Ajax, check out w3schools.com.

Bootstrap

Bootstrap is a very powerful, almost magical tool for front-end web work. It is used
by almost 13% of the Web according to BuiltWith Trends.? It contains all sorts of great
looking styles and behavior for most web tags and controls. By simply linking your
web page to the latest Bootstrap, CSS will give any boring HTML page an instant and
professional looking makeover!

If you look at any of the HTML files in this book, the first thing you will notice are the
links wrapped in “LINK” and “SCRIPT” tags at the top of the page. These represent an
enormous shortcut in building a web page (Listing 7).

*https://trends.builtwith.com/docinfo/Twitter-Bootstrap

XXXiV

http://w3schools.com/
https://trends.builtwith.com/docinfo/Twitter-Bootstrap

INTRODUCTION

Listing 7. Link Tag to Inherit Bootstrap CSS Styles

<LINK rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/
bootstrap/4.0.0/css/bootstrap.min.css">

All the HTML files in this book (and more than likely any web page you will create
in the future) will use these links to download premade bootstrap and JavaScript scripts
and automatically inherit the beautiful fonts, colors, styles, and behaviors that are
prevalent all over the Internet. This allows you to immediately inherit best-in-class looks
and behavior with minimal effort.

Note For additional information and training on Bootstrap, check out the official
documents on GetBootstrap.com.

Web Plugins

Web plugins have a huge advantage: they push a large swath of hardware, data, and/or
security management onto someone else, preferably someone specialized in that area.
There is no reason to reinvent the wheel, waste valuable time, or introduce security risks.
Let others take care of that and focus on what you do best; this is what this book is all about!
Unfortunately, we only have the bandwidth to explore a few of these, but here is a list of
good ones that I've either used in the past or heard good things from others (and there are
hundreds more out there that are probably as good-look for those that offer good terms for
small businesses along with demo or test accounts to experiment before committing).

Membership Platforms

There are several platforms to note.

Memberful (www.memberful.com)

Memberful is the plugin we will work with and implement in this book. I personally
really like Memberful.com and think it is a great choice for anybody looking for an easy
way to manage a paywall section of a website. It offers credit card payment through
Stripe.com, offers user-management features, and is tightly integrated within your own
web application.

http://www.memberful.com/
http://stripe.com/

INTRODUCTION

Patreon (www.patreon.com)

Patreon is a membership platform and plugin for artists and content creators.

Wild Apricot (www.wildapricot.com)

Wild Apricot is a membership platform for small and nonprofit organizations.

Subhub (www. subhub. com)

Subhub is a membership platform designed for entrepreneurs, experts, and
organizations.

Membergate (www.membergate.com)

Membergate is a platform for corporate communications, newsletters, associations,
and restricted access sites.

Payment Platforms

There are several platforms available.

Paypal Donations (www.paypal.com/us/webapps/mpp/donation)

I've used Paypal plugins in the past and have been delighted with the ease of installation
and use. All you need is a Paypal account in good standing and the rest is a cinch.

Paypal Express (www.paypal.com/us/webapps/mpp/express-checkout)

Paypal Express is still Paypal but for quick and easy checkouts.

Stripe (http://stripe.com/)

Stripe is a payment options that easily allow websites to accept online credit card
payments. It is the payment engine behind Memberful.com that we will see in the last
chapter of this book.

Analytics

Building your own web-usage tracker requires a lot of Flask custom code on every page,
along with a database to save those interactions and an analytical engine to make sense of

it. That’s a lot of work! Instead, with Google Analytics, all we have to do is add a JavaScript
snippet of code at the top of each page. It is free for basic analysis, which is fine for our needs.

Message Boards

I have used https://disqus.comin the past to add message boards to static websites. It
creates the appearance of professional-looking message boards directly on your site, all
the while being managed elsewhere.

XXXVi

http://www.patreon.com/
http://www.wildapricot.com/
http://www.subhub.com/
http://www.membergate.com/
http://www.paypal.com/us/webapps/mpp/donation
http://www.paypal.com/us/webapps/mpp/express-checkout
http://stripe.com/
http://disqus.com/

INTRODUCTION

Mailing Lists

I have used formspree.io for many years and love it! It is trivial to add to any static web
page along with a text box and submit button. Users can add their email address on your
web page and https://formspress.io will email you the submitted information. This
is a great option if you are hosting a static site or don’t want to deal with managing your
own database.

Git

Git is a great version control tool; it allows you to store your code’s creation, changes,
updates, and any deletions happening in a repository. It is tightly integrated with GitHub,
which is critical for code safeguard and collaboration. It is also integrated on most of the
cloud providers out there. In some chapters we will use it and in others we won'’t. If you
end up working on larger applications or collaborate with others, I highly recommend
you start using it.

Most cloud providers support online code repositories like GitHub, BitBucket, and
others. These online repos work with Git, so learning the basics will give you a big leg up.
The process of deploying web applications on Microsoft Azure is tightly integrated with
Git, so please take a look at this basic primer or go online for some great tutorials such as
try.github.io*:

o gitinit: creates a local repository

o gitclone https://github.com/... clones a GitHub repository to your
local drive

o git status: list files that are changed and awaiting commit + push
to repo

o gitadd.: add all files (note period)
o gitadd ‘*.txt’: add all text files
e git commit: commit waiting files

o gitlog: see commit history

Shttps://try.github.io/

XXXVii

http://formspress.io/
https://github.com/
https://try.github.io/

INTRODUCTION

o git push (or git push azure master): push branches to remote
master

o git pull: get remote changes to local repo
o gitreset*: to undo git

o gitrm --cached <file>: stop tracking a file

Virtual Environments

Using a virtual environment offers many advantages:
o Creates an environment with no installed Python libraries

o Knows exactly which Python libraries are required for your
application to run

o Keeps the rest of your computer system safe from any Python

libraries you install in this environment
o Encourages experimentation

To start a virtual environment, use the “venv” command. If it isn't installed on your
computer, it is recommended you do so (it is available via common installers such as pip,
conda, brew, etc). For more information on installing virtual environments for your OS,
see the “venv - Creation of virtual environments” user guide: https://docs.python.
org/3/library/venv.html.

Open a command window and call the Python 3 “venv” function on the command
line to create a sandbox area (Listings 8 and 9).

Listing 8. Creating a Python Virtual Environment

$ python3 -m venv some_name

Listing 9. Activating the Environment

$ source some_name/bin/activate

Once you are done, you can deactivate your virtual environment with the command
in Listing 10.

Xxxviii

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

INTRODUCTION
Listing 10. Deactivating Virtual Environment

$ deactivate

Creating a “requirements.txt” File

The “requirements.txt” file is used by most cloud providers to list any Python libraries
needed for a hosted web application. In most cases, it is packaged alongside the web files
and sent to its “serverless” destination for setup.

You can create your own “requirements.txt” and house it in the same folder as you
main Flask Python script. Let’s see how we can use virtual environments to create a
complete “requirements.txt” file. When using a virtual environment, you are creating
a safe sandbox free of any Python libraries. This allows you to install only what you
need and run a “pip freeze” command to get a snapshot of the libraries and current
version numbers. Mind you, you don’t need to do this if you already know what libraries,
dependencies, and version numbers you need. As a matter of fact, you can use the
“requirements.txt” files packaged with this book content just as well.

Step 1
Start with a clean slate by creating a virtual environment in Python as shown in Listing 11.

Listing 11. Starting Virtual Environment

$ python3 -m venv some _env_name
$ source some_env_name/bin/activate

Step 2
Use “pip3” to install libraries needed to run a local web application, as shown in listing 12.

Listing 12. Installing Some Libraries as an Example

$ pip3 install flask
$ pip3 install pandas
$ pip3 install sklearn

XXXiX

INTRODUCTION

Step 3

Freeze the environment and pipe all installed Python libraries, including version

numbers in the “requirements.txt” file, as shown in Listing 13.

Listing 13. Installed Required Libraries

$ pip3 freeze > requirements.txt

Step 4

Finally, deactivate your virtual environment, as shown in Listing 14.

Listing 14. Deactivate out of venv
$ deactivate

There you go: you've just created a “requirements.txt” file. Check out its content by
calling “vi” (click Escape and q to exit). The contents of your “requirements.txt” may
look very different, and that’s OK (Listing 15).

Listing 15. Checking the Content of “requirements.txt” File
Input:

$ vi requirements.txt

Ouput:

click==6.7
Flask==0.12.2
itsdangerous==0.24
Jinja2==2.10
MarkupSafe==1.0
numpy==1.14.2
scikit-learn

scipy
python-dateutil==2.7.2
pytz==2018.4
six==1.11.0

x1

INTRODUCTION

Werkzeug==0.14.1
Pillow>=1.0
matplotlib
gunicorn»=19.7.1
wtforms>=2.1

)

Inside the requirements.txt file, you can require a specific version by using the “==’
sign (Listing 16)

Listing 16. Exact Assignment

Flask==0.12.2

You can also require a version equal to and larger, or equal to and smaller (Listing 17)

Listing 17. Directional Assignment
Flask >= 0.12

Or you can simply state the latest version that the installer can find (Listing 18)

Listing 18. Use Latest Version Available

Flask

Conclusion

This was only meant to be a brief introduction to the tools used in this book. Use these as
jumping off points to explore further and to deepen your knowledge in the areas that are
of particular interest to you.

xli

CHAPTER 1

Introduction to Serverless
Technologies

We're going to create a very simple Flask web application (Figure 1-1) that we will reuse
in the next four sections when we explore cloud-based services from Amazon AWS,
Google Cloud, Microsoft Azure, and Python Anywhere.

web development,
one drop at a time

Figure 1-1. Flask

Itis a good idea to start with a local version of your website working on your local
machine before venturing out onto the cloud.

Note Download the files for Chapter 1 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter1.ipynb” to follow along with this chapter’s content.

© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_1

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

A Simple Local Flask Application

The code in this section is very simple, and you can either write it from scratch or use the
files in folder “simple-local-flask-application.”

Step 1: Basic “Hello World!” Example

Let’s create a very simple Flask script straight from the official Flask help docs
(Listing 1-1).

Listing 1-1. Simple Flask Script

from flask import Flask
app = Flask(__name)

@app.route("/")
def hello():
return "Hello World!"

That’s it! Even-though this doesn’t do much, it represents the minimum of what
is needed to get a Flask website up and running; it is a real web application. Save the
script as “main.py” anywhere on your local machine (and you can name it anything
you want).

Step 2: Start a Virtual Environment

It's always a good idea to segregate your development work using virtual environments
from the rest of your machine (and this also comes in handy when building
“requirements.txt” files—see the section on “Creating a ‘requirements.txt’ File” in the

introduction). Let’s start a virtual environment (Listing 1-2).

Listing 1-2. Starting a Virtual Environment

$ python3 -m venv simple flask
$ source simple flask/bin/activate

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Step 3: Install Flask

Install Flask. This assumes you can run “pip3” to install libraries; otherwise use whatever
install tools you would normally use for Python 3.x or check the official Flask docs.! See
Listing 1-3.

Listing 1-3. Install Flask

$ pip3 install Flask

Step 4: Run Web Application

Open a command/terminal window and enter the following command on the Mac or
Windows (Listings 1-4 and 1-5).

Listing 1-4. On the Mac

$ export FLASK APP=main.py
$ flask run

Listing 1-5. On Windows

$ export FLASK_APP= main.py
$ python -m flask run

Step 5: View in Browser

You should see the following message in the command window offering a local
“HTTP” address to follow. Copy it and drop it into the address bar of your browser
(Listing 1-6).

'http://flask.pocoo.org/

http://flask.pocoo.org

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Listing 1-6. Flask Application Successfully Running on Local Machine

manuel$ export FLASK APP=main.py
manuel$ flask run
* Serving Flask app "main.py"
* Environment: production
WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.
* Debug mode: off
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Then open a browser and copy/paste (or type in) the local address listed (Figure 1-2).

® © ® [127.0.0.1:5000 x () Manuel

< C (©1270.01:5000 @ &« & 0 :

Hello World!

Figure 1-2. Local Flask application running as expected

Step 6: A Slightly Faster Way

There you have it, a real server-generated web page. There is an even easier way you can
get your Flask app up and running locally by adding the following two lines to the end

of your “main.py” script. This only works in local mode but allows the script itself to run
the instantiated Flask application and allows you to skip the exporting step (Listing 1-7).

Listing 1-7. Automatically Starting Flask Scripts in Local Mode

if name_ =="_ main_":
app.run(debug=True)

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Save the amended “main.py” script, which should look like Listing 1-8.

Listing 1-8. Full Flask Script

from flask import Flask
app = Flask(__name_)

@app.route("/")
def hello():
return "Hello World!"

if _name_=='_main_ ':
app.run(debug=True)

Go back to your command/terminal window pointing to the amended script and
enter the shorter version (Listing 1-9).

Listing 1-9. Easier Command to Start Local Flask Script

$ python3 main.py

Step 7: Closing It All Down

To stop the web application from serving the “Hello World!” page, hit “ctrl-¢” in your
terminal window.

We turned on the “debug” flag to true in the last line of the script. This will print any Flask
errors with the script directly into the browser. This is a great feature for quickly developing
and debugging scripts, but remember to turn it to false before moving it to the cloud.

Finally, terminate your virtual environment (Listing 1-10).

Listing 1-10. Closing the Virtual Environment

$ deactivate

Introducing Serverless Hosting on Microsoft Azure

The Azure Cloud offers an easy-to-use, serverless and fully managed platform for web
applications, with plenty of customizable options ranging from storage to databases,
monitoring, and analytics (Figure 1-3).

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Figure 1-3. Microsoft Azure

Let’s see how we can run our basic Flask application on Microsoft Azure’s serverless
web apps. Here, we'll keep the steps as simple as possible, as we’ll drill down deeper into
this provider in subsequent chapters.

Note Download the files for Chapter 1 by going to www.apress.com/
9781484238721 and clicking the source code button, and open the “serverless-
hosting-on-microsoft-azure” folder.

Step 1: Get an Account on Microsoft Azure

You will need an account on Microsoft Azure and at the time of this writing, Microsoft
offers a convenient $200 30-day trial on all services and 12 months access. For more
information, see: https://azure.microsoft.com/en-us/free/.

Step 2: Download Source Files

Download the files for this chapter onto your local machine and navigate to the folder
named “serverless-hosting-on-microsoft-azure.” Your local folder structure should
look like the following (notice the name of the Flask script “main.py,” the default on
Azure; Listing 1-11).

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
https://azure.microsoft.com/en-us/free/

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Listing 1-11. All Files Needed for Our Web Application on Azure

serverless-hosting-on-microsoft-azure/

F— main.py

|— ptvs virtualenv_proxy.py
— requirements.txt

L— web.3.4.config

Supporting Files

The “requirements.txt” file holds the Python library names the web application needs
and is used by the serverless cloud during the application’s deployment. You can create
your own “requirements.txt” and house it in the same folder as the Flask script “main.
py.” In this case it contains only one library and a version requirement (Listing 1-12).

Listing 1-12. All Files for our Web Application
Flask>=0.12

The “web.3.4.config” is the web server’s configuration file. We will use the Python
3.4 version and go with the defaults. If you decide to explore this cloud-provider further,
then definitely crack it open and take a look inside.

Step 3: Install Git

For this project you will need to have Git installed on your local machine (you can
find the install binaries at www.git-scm.com/downloads). As stated earlier, Gitis a
source code versioning tool and it is a fully prepared Git package that we will push out
to Microsoft Azure (see the brief primer on Git in the introduction section). In most
chapters we would create a virtual environment to run the following steps, but as this is
already a big project, we’ll keep it simple and skip it.

Open your terminal/command-line window and point it to this chapter’s
“serverless-hosting-on-microsoft-azure” folder and initialize a Git session
(Listing 1-13).

Listing 1-13. Initialize a Git Session

$ git init

https://www.git-scm.com/downloads

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Next, add all the web-application files from the “serverless-hosting-on-microsoft-
azure” folder and check its status (Listing 1-14 and Figure 1-4).

Listing 1-14. Add All Files in Folder to Git and Check Status

$ git add .
$ git status

| NN) [serverless-hosting-on-microsoft-azure — -bash — 90x14

manuels-MacBook-Pro-2:serverless-hosting-on-microsoft-azure manuel$ git add . =]
manuels-MacBook-Pro-2:serverless-hosting-on-microsoft-azure manuel$ git status]
On branch master

No commits yet

Changes to be committed:

(use "git rm --cached <file>..." to unstage)
new file: main.py
new file: ptvs_virtualenv_proxy.py
new file: requirements.txt
new file: web.3.4.config

Figure 1-4. Shows the web application files ready for commit

Do alocal Git commit and add a comment that makes sense, in case you need to
revisit your past actions in the future (Listing 1-15).

Listing 1-15. Committing Files to Git
$ git commit -am "Intro to Cloud Azure commit"

All the needed files are in the local repository. For more information on the Git
Deployment to Azure App Service, go to https://docs.microsoft.com/en-us/azure/
app-service/app-service-deploy-local-git.

Step 4: Open Azure Cloud Shell

Log into your Microsoft Azure dashboard and open the Azure Cloud Shell by clicking the
caret-underscore (Figure 1-5).

https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git
https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

,O Search resources, services and docs

Dashboard ¥ + #

- Create a resource

Figure 1-5. Starting Azure Cloud Shell

You will be prompted to create either a Linux or Power Shell window. Go with
Linux, as the commands will be similar to what you use in your local terminal window
(Figure 1-6).

Welcome to Azure Cloud Shell

Select Bash or PowerShell, You can change shells any time via the environment selector in the
Cloud Shell toolbar. The most recently used environment will be the default for your next session.

Bash (Linux) PowerShell (Windows)

Figure 1-6. Choosing between Bash (Linux) or PowerShell (Windows); go with the
Jfamiliar, Linux

It will also prompt you to create storage, which you will need in order to host the
application (Figure 1-7). If this is your first time, you may see the option “Free Trial” in
the drop-down. Either way, go with it and create storage.

You have no storage mounted

Azure Cloud Shell requires an Azure file share to persist files. Learn more
This will create a new storage account for you and this will incur a small monthly cost. View pricing

* Subscription

Pay-As-You-Go v | Show advanced settings

Figure 1-7. You need to create a storage repository

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Step 5: Create a Deployment User

You should now be in the Azure Cloud Shell. This user will have appropriate rights

for FTP and local Git use. Here I set my user name to “flaskuser11” and password to
“flask123”; come up with your own name and remember it, as you will need it later on
(Listing 1-16).

Listing 1-16. Creating a User

$ az webapp deployment user set --user-name <<REPLACE-WITH-YOUR-USER-NAME>>
--password flask123

The response from the command and most subsequent commands should look
like the following screen shot. Look closely for any errors or issues and fix accordingly
(Listing 1-17).

Listing 1-17. Response Format from Azure’s “webapp” Commands

manuel@Azure:~$ az webapp deployment user set --user-name flaskuserii
--password flask123

{
"id": null,
"kind": null,
"name": "web",
"publishingPassword": null,
"publishingPasswordHash": null,
"publishingPasswordHashSalt": null,
"publishingUserName": "flaskuser11",
"type": "Microsoft.Web/publishingUsers/web",
"userName": null

}

Your output JSON should be full of nulls; if you see “conflict,” your “user-name”
isn’t unique and if you see “bad request,” your password isn’t compliant (it should
be at least eight characters long and made up of a mix of characters, numbers, or
symbols).

10

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Step 6: Create a Resource Group

Here we create a resource group for a location close to you—in my case “West US” (for
locations, see https://azure.microsoft.com/en-us/regions/ or use the command
“az appservice list-locations --sku FREE"—see Listing 1-18).

Listing 1-18. Creating a Resource Group and Response
Input:
$ az group create --name myResourceGroup --location "West US"

Output:
manuel@Azure:~$ az group create --name myResourceGroup --location "West US"
{

"id": "/subscriptions/1e9eabde-d6b9-44a5-b319-68b0oab52c2bc/resource

Groups/myResourceGroup”,

"location": "westus",

"managedBy": null,

"name": "myResourceGroup",

"properties": {

"provisioningState": "Succeeded"

}s
"tags": null

Step 7: Create an Azure Service Plan

Create your Azure service plan. Set the name to “myAppServicePlan” (it can be
whatever you want; Listing 1-19).

Listing 1-19. Creating a Service Plan and Successful Response
Input:

$ az appservice plan create --name myAppServicePlan --resource-group
myResourceGroup --sku FREE

11

https://azure.microsoft.com/en-us/regions/

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES
Truncated Output:

manuel@Azure:~$ az appservice plan create --name myAppServicePlan
--resource-group myResourceGroup --sku FREE
{
"adminSiteName": null,
"appServicePlanName": "myAppServicePlan",
"geoRegion": "West US",
"hostingEnvironmentProfile": null,
"id": "/subscriptions/1e9eabde-d6b9-44a5-b319-68boab52c2bc/resource
Groups/myResourceGroup/providers/Microsoft.Web/serverfarms/
myAppServicePlan",
"isSpot": false,
"kind": "app",
"location": "West US",
"maximumNumberOfWorkers": 1,
“name": "myAppServicePlan",
"number0fSites": 0,
"perSiteScaling": false,
"provisioningState": "Succeeded"

Step 8: Create a Web App

Next, create a web app and set the name parameter to the name of your application (it
has to be unique). I am setting mine to “AmunateguilntroWebApp” and telling the web
app that the code will be deployed via local Git (Listing 1-20).

Listing 1-20. Creating a Web App (replace this with your app name)

$ az webapp create --resource-group myResourceGroup --plan myAppServicePlan
--name <<REPLACE-WITH-YOUR-APP-NAME>> --runtime "python|3.4" --deployment-
local-git

Check the large response string from the “az web app create” command
and copy the link after “Local git is configured with url of...” or from the
“deploymentLocalGitUrl” value-both are the same, so pick whichever is easiest. You
will need this when you push your Flask files out to Azure (Listing 1-21).

12

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Listing 1-21. Copy Your Git URL; You Will Need It Later

Local git is configured with the URL 'https://flaskuser11@
amunateguiintrowebapp.scm.azurewebsites.net/AmunateguilntrollebApp.git'

{

"availabilityState": "Normal",

"clientAffinityEnabled": true,

"clientCertEnabled": false,

"cloningInfo": null,

"containerSize": o,

"dailyMemoryTimeQuota": 0,

"defaultHostName": "amunateguiintrowebapp.azurewebsites.net",
"deploymentLocalGitUrl": "https://flaskuserii@amunateguiintrowebapp.scm.
azurewebsites.net/AmunateguilntrollebApp.git",

Extract the local Git configuration URL for your Azure project is (Listings 1-22
and 1-23).

Listing 1-22. The Extracted Git URL in My Case

https://flaskuserii@amunateguiintrowebapp.scm.azurewebsites.net/
AmunateguiIntroWebApp.git

Listing 1-23. Yours Will Look Like the Following

https://<<REPLACE-WITH-YOUR-USER-NAME>>@<<REPLACE-WITH-YOUR-APP-NAME>>.scm.
azurewebsites.net/<<REPLACE-WITH-YOUR-APP-NAME>>.git

Check Your Website Placeholder

If everything worked, you should be able to visit the placeholder website. Replace
“<<REPLACE-WITH-YOUR-APP-NAME>>" with the application name you created in
the “az webapp create” step and drop it into your browser (Listing 1-24 and Figure 1-8).

Listing 1-24. Checking Your Web Placeholder

http://<<REPLACE-WITH-YOUR-APP-NAME>>.azurewebsites.net

13

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

® ©® /[y Microsoft Azure Web Site - Wi x \[) Manuel

= C @ amunateguiintroapp.azurewebsites.net a% ¢ E 0O :

This web site is running
Python 3.4.1

There's nothing here yet, but Microsoft
Azure makes it simple to publish content
with GIT, FTP or your favorite
development tool such as Visual Studio,
Visual Studio Online or WebMatrix

Tell me more (3)

Figure 1-8. Confirming that your site’s placeholder is created and running

If this didn’t work, you need to check each step again and make sure you didn’t miss
one or if any returned an error that needs to be addressed.

Step 9: Pushing Out the Web Application

Now go back to your local terminal/command window on your local computer pointing
to the correct directory and with the initialized Git session we created earlier. Append
the URL we saved previously with the location of your GIT repository to the “add azure”
command (Listing 1-25).

Listing 1-25. Final Code Push to Azure

$ git remote add azure https://flaskuserii@amunateguiintrowebapp.scm.
azurewebsites.net/AmunateguilntrolWebApp.git

It may prompt for your password; make sure you use the one you created in the
“az. webapp deployment user” step (“flask123” in my case; Listing 1-26).

14

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES
Listing 1-26. Final Code Push to Azure

$ git push azure master

Step 10: View in Browser

That’s it! You can get back to your placeholder browser page and hit refresh (or
open a new browser page and enter http://<<REPLACE-WITH-YOUR-APP-NAME>>.
azurewebsites.net and you should see “Hello World!”; Figure 1-9)

@ @ [amunateguiintroapp.azurewe! X '\) Manuel

[
|

¢ C (@ amunateguiintroapp.azurewebsites.net @ ¥ &

Hello World!

Figure 1-9. Flask application successfully running on Amazon Azure

In case you are not seeing the “Hello World!” site, you can access the tail of the log
directly in your command window- just swap the name for the web site name (in my
case “amunateguiintroapp”) and the group (in my case “myResourceGroup”); see
Listing 1-27.

Listing 1-27. Final Code Push to Azure

$ az webapp log tail --resource-group myResourceGroup --name
amunateguiintroapp

15

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Step 11: Don’t Forget to Delete Your Web Application!

If you aren’t using your web application anymore, don’t forget to delete it. If you don’t,
the meter will keep running and eating credits or accruing cost. The easiest way to delete
everything is to log into the Azure Dashboard and enter “All resources” in the search bar
and delete everything you created (Figure 1-10).

A - -) &) @] = amunategui@outiook...
= o G N Ty

AMUNATEGUIOUTLOOK (DEF...

—:— Create a resource

Al services o Add S8 Editcolumns (L) Refresh & Assign

— Subscriptions: Pay-As-You-Go

All resource groups ~ | | Alllecations ~ | | No grouping ~
I8 Dashboard
3 of 3 items selected Show hidden types €
B All resources RESOURCE GROUP LOCATION SUBSCRIPTION
% Resource groups Arunajeguilntrod App Service myResourceGroup West US Pay-As-You-Go
B App Services net il Storage account cloud-shell-storage... West US Pay-As-You-Go
App Service plan myResourceGroup West US Pay-As-You-Gao

¥ Function Apps

Figure 1-10. Deleting your application to not incur additional costs

Conclusion and Additional Information

Microsoft Azure is a powerful cloud provider with a lot of offerings. It runs simple Flask
applications and deploys quickly. In order to load more complicated libraries, you will
need the support of Python wheels (https://pythonwheels.com/).

For additional information, see the excellent post titled “Create a Python web app
in Azure” on Microsoft Azure Docs, upon which this section was based: https://docs.
microsoft.com/en-us/azure/app-service/app-service-web-get-started-python

Introducing Serverless Hosting on Google Cloud

Google Cloud is a powerful platform to build, manage, and deploy web applications.
It integrates seamlessly with TensorFlow and its distributed graph mechanism
(Figure 1-11).

16

https://pythonwheels.com/
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-python
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-python

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

£Y Google Cloud

Figure 1-11. Google Cloud

Let’s see how we can run our basic Flask application on Google Cloud’s serverless
App Engine. We'll keep the steps as simple as possible, as we’ll go deeper into this
provider in subsequent chapters.

Note Download the files for Chapter 1 by going to www.apress.
com/9781484238721 and clicking the source code button and open the
“serverless-hosting-on-google-cloud” folder.

Step 1: Get an Account on Google Cloud

At the time of writing, Google is offering a convenient 12-month, $300 credit free trial to
get you started. For more information, see https://console.cloud.google.com/start.

There are two types of App Engines you can opt for: the “Standard Environment,’
which is simple but less customizable, and the “Flexible Environment,” which can
handle more-or-less anything you throw at it. We’ll stick with the simple one in this
section, the “Standard Environment.”

Step 2: Download Source Files

Download the files for this chapter onto your local machine and navigate to the folder
named “serverless-hosting-on-google-cloud” (Listing 1-28).

Listing 1-28. All Files Needed for Our Web Application on Google Cloud

serverless-hosting-on-google-cloud/
— app.yaml
— appengine_config.py
|— main.py
L— requirements.txt
17

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
https://console.cloud.google.com/start

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

“app.yaml” declares where the controlling Flask Python application (in this case
“main”) resides along with the static and templates folder locations (Listing 1-29).

Listing 1-29. A Look at app.yaml

runtime: python27
api_version: 1
threadsafe: true

handlers:
- url: /static
static_dir: static
- url: /.*
script: main.app
- url: /favicon.ico
static_files: static/images/favicon.ico
upload: static/images/favicon.ico

libraries:
- name: ssl
version: latest

The “appengine_config.py” points to the lib folder to hold additional Python
libraries during deployment (Listing 1-30).

Listing 1-30. A Look at “appengine_config.py”’

from google.appengine.ext import vendor
Add any libraries installed in the "lib" folder
vendor.add('1lib")

The “requirements.txt” holds Python library names and the version to be installed
and added to the lib folder (Listing 1-31).

Listing 1-31. Content of “requirements.txt”
Flask>=0.12

“main.py” is the brains of the Flask operations and holds all of the Python code and
directives for each HTML page (Listing 1-32).

18

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES
Listing 1-32. Content of “main.py”

from flask import Flask
app = Flask(__name_)

@app.route("/")
def hello():
return "Hello World!"

Step 3: Open Google Cloud Shell

Log into your instance of Google Cloud and select the project you want your App
Engine to live in (if you don’t have one, see Creating and Managing Projects: https://
cloud.google.com/resource-manager/docs/creating-managing-projects). Start the
cloud shell command line tool by clicking the upper-right caret button. This will open

a familiar-looking command line window in the bottom half of the GCP dashboard
(Figure 1-12).

Google Cloud Platform 3 google-sppengineyelp ~ Q
DASHBOARD ACTIVITY # CUSTOMIZE
&® Project info -®- App Engine & Goofle Cloud Platform status

Project name Untitled chart all services normal

google-app-engine-yelp

Project ID
Stmemento-193717 = Goto Cloud status dashboard

& Billing

amunateguilapt 17:-/GoogleCloudFlaskIntros

Figure 1-12. Starting the Google Cloud shell

19

https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

In the terminal section of the GCP dashboard, create a new folder called
“GoogleCloudFlaskIntro” (Listing 1-33).

Listing 1-33. Creating Directory in GCP

$ mkdir GoogleCloudFlaskIntro
$ cd GoogleCloudFlaskIntro

Step 4: Upload Flask Files to Google Cloud

There are many ways to proceed, you can upload the files one-by-one, clone a GitHub
repository, or you can zip them into one archive file and upload all of it in one go. We’ll
go with the latter. So zip the following four files only: “app.yaml,” “appengine_config.

” u

py, “main.py,” and “requirements.txt” into one archive file (Figure 1-13).

Name

[Deppyamt]
| B appengineconfigpy |
[Bmangy |
% New Folder with Selection (4 ltems) ===

Open
Open With >

Move to Trash

Get Info
Rename 4 Items...

Compress 4 Items

Figure 1-13. Zipping web application files for upload to Google Cloud

Upload it using the “Upload file” option (this is found on the top right side of the
shell window under the three vertical dots Figure 1-14).

20

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

¢’ CUSTOMIZE

Upload file

*+
¥ Downlo

(!) Restart

Enable Boost Mode

Usage Statistics

yar Usage Quota

About Cloud Shell
Help
Send Feedback

A e

2 | 2 - 2 X

Figure 1-14. Uploading files via Google Cloud shell

It will upload the file (in my case called “Archive.zip”) into the root directory, so you
will need to move it into the “GoogleCloudFlaskIntro” folder and unzip it (Listing 1-34).

Listing 1-34. Moving and Unzipping Web Application Files

$ mv ../Archive.zip Archive.zip
$ unzip Archive.zip

21

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Run the “pip install -t lib” command to install all the libraries in the “requirements.
txt” file (Listing 1-35). This will create the necessary “lib” folder holding any needed
Python libraries (you may get some complaints if you don’t use “sudo,” which gives you
root rights, but don’t abuse it!)

Listing 1-35. Filling the lib Directory with Necessary Python Libraries
$ sudo pip3 install -t lib -r requirements.txt

At this point, your folder directory in the cloud should look like the following if you
run the “Is” command (Listing 1-36).

Listing 1-36. Checking Content of the “GoogleCloudFlaskIntro” Folder on GCP
Input:

$ 1s

Output:

$ appengine config.py app.yaml Archive.zip lib main.py requirements.txt

Step 5: Deploy Your Web Application on Google Cloud

We are now ready to deploy the “Hello World” site. Call the “gcloud app

deploy command” from within the dashboard’s shell window under the
“GoogleCloudFlaskIntro” folder. It will ask you to confirm that you do indeed want to
deploy to the —and “Y”es we do (Listing 1-37).

Listing 1-37. Deploying the Web Application
Input:
$ gcloud app deploy app.yaml

Truncated Output:

File upload done.
Updating service [default]...done.
Setting traffic split for service [default]...done.

22

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES
Deployed service [default] to [https://apt-memento-192717.appspot.com]

To view your application in the web browser, run:
$ gcloud app browse

If all goes well, you can call the convenience “gcloud app browse” command to get
the full URL (Listing 1-38).

Listing 1-38. Getting Our Web Application’s URL Address
Input:

$ gcloud app browse

Output:

Did not detect your browser. Go to this link to view your app:
https://apt-memento-192717.appspot.com

Either click the link in the Google Cloud Shell or paste it in a browser (Figure 1-15).

2] ® [https:/fapt-memento-192717.: x () Manuel

C @ Secure | https://apt-memento-192717.appspot.com Q% ¢

Hello World!

Figure 1-15. Flask application successfully running on Google Cloud

Step 6: Don’t Forget to Delete Your Web Application!

If you aren’t using your web application anymore, don’t forget to delete it. If you don’t,
the meter will keep running and accrue cost. You can’t just flat out delete an App Engine
application if it is your only application (you are required to have a default application),
instead you redirect traffic to a blank application.

23

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

In the Google Cloud shell, enter the Linux text editor “vi” (Listing 1-39).

Listing 1-39. Editing the “app.yaml” File
$ vi app.yaml

This will open a small command line editor; then hit the “i” key to insert or edit the
file (Listings 1-40 and 1-41).

Listing 1-40. Scroll Down and Replace “main.app”

script: main.app

Listing 1-41. With “blank.app”
script: blank.app

Your “app.yaml” file should now have its “url” handler pointing to “blank.app.” This
stops GCP from serving anything, as “blank.app” doesn’t exist and will stop accruing
charges (Listing 1-42).

Listing 1-42. Pointing Our Yaml File to a Black Script

runtime: python27
api_version: 1
threadsafe: true

handlers:
- url: /static
static_dir: static
- url: /.*
script: blank.app
- url: /favicon.ico
static_files: static/images/favicon.ico
upload: static/images/favicon.ico

libraries:
- name: ssl
version: latest

24

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Click the escape key to get out of insert mode, and type “wq” for write and quit. Then
redeploy your web application (Listing 1-43).

Listing 1-43. Redeploying Blank Web Application
$ gcloud app deploy app.yaml

After the App Engine has had time to propagate, the URL should show an error
instead of “Hello World” (Figure 1-16).

L ® ' [500 Server Error X) Manuel

C | & Secure | https://apt: 192717. com a v &

Error: Server Error
The server encountered an error and could not complete your request.

Please try again in 30 seconds.

Figure 1-16. The error confirms your site is down

Conclusion and Additional Information

GCP has a lot of features to offer and is tightly integrated with other Google offerings (like
their great Cloud APIs at https://cloud.google.com/apis/) and TensorFlow. If you
need to use more powerful Python libraries, you can switch from standard App Engine to
Flexible.

For additional information, see the handy post titled “Quickstart for Python App
Engine Standard Environment” on the Google Cloud Docs at: https://cloud.google.
com/appengine/docs/standard/python/quickstart

By the way, if you have any issues with your Google Cloud App Engine, you can
access the logs with the following command (Listing 1-44).

Listing 1-44. Viewing Deployment Logs

$ gcloud app logs tail -s default

25

https://cloud.google.com/apis/
https://cloud.google.com/appengine/docs/standard/python/quickstart
https://cloud.google.com/appengine/docs/standard/python/quickstart

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Introducing Serverless Hosting on Amazon AWS

AWS Elastic Beanstalk is a simple yet powerful platform for deploying web applications.
It comes with all the amenities like scaling, load balancing, monitoring, etc. It only
charges for resources used (Figure 1-17).

dWsS

Figure 1-17. Amazon Web Services

Let’s see how we can run our basic Flask application on Amazon’s AWS Elastic
Beanstalk. We'll keep the steps as simple as possible, as we’ll look deeper into this
provider in subsequent chapters.

Note Download the files for Chapter 1 by going to www.apress.
com/9781484238721 and clicking the source code button, and open the
“serverless-hosting-on-amazon-aws” folder.

Step 1: Get an Account on Amazon AWS

Amazon AWS offers an “AWS Free Tier” account that allows you to try some of its
services for free. For more information on creating an account, go to: https://aws.
amazon.com/free/.

26

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
https://aws.amazon.com/free/
https://aws.amazon.com/free/

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Step 2: Download Source Files

Download the files for this chapter onto your local machine and navigate to the folder
named “serverless-hosting-on-amazon-aws.” The folder structure should look like
Listing 1-45.

Listing 1-45. All Files Needed for Our Web Application on AWS Elastic Beanstalk

serverless-hosting-on-amazon-aws/

— application.py
L— requirements.txt

Step 3: Create an Access Account for Elastic Beanstalk

Log into the AWS web console and go to the Identity and Access Management (IAM)
console. A quick way there is to simply type “IAM” in the AWS services search box on the
landing page. Select “Users” in the navigation section and click the “Add user” button
(Figure 1-18).

aﬁs Services v Resource Groups v *

Dashboard L Find users by username or access ke
Groups
User name v Groups
| Users

Figure 1-18. Adding a user through the Access Management console

27

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Select a user name-here we enter “ebuser” and check “Access type: Programmatic
access” (Figure 1-19).

aws Services ¥ Resource Groups v % L} Manuel Amunategui ~ Global ~
Add user o
Details Permissions Review Complete

Set user details

You can add multiple users at once with the same access type and permissions. Learn more

User name* ebuser

© Add another user

Select AWS accésg type
Select how these users wil ess AWS. Access keys and autogenerated passwords are provided in the last step. Learn more
Access type* ¥/ Programmatic access

Enables an access key ID and secret access key for the AWS API, CLI, SDK,
and other development tools.

Figure 1-19. Adding correct access rights to “ebuser”

Click the blue “Next: Permissions” button. This will take you to the “Set
permissions” page; click the “Add user to group” large menu button then click “Create
group.” Create a group name, “ebadmins” in this case, and assign it the policy name
“WSElasticBeanstalkFullAccess.” Then click the “Create group” button to finalize the
group (Figure 1-20).

28

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Create group x

Create a group and select tha policies to be attached 1o the group. Using groups is a bast-practice way 10 manage users' parmissions by job functions, AWS service access, of your cusiom
permissions. Learn more

Group name ebadmins

Create policy & Refresh

Filter: Policy type ~ ‘Q beanstalk Showing 8 results
Policy name ~ Type Attachments » Description
» NP AWSElasticBeanstakCustomPiatiorm., AWS managed 0 Provide the instance in your custom platform bullder environment parmission to launch ...
» 0B AWSElasticBeanstakEnhancedHealth AWS managed 1 AWS Elastic Beanstal Service policy for Health Monitoring system
| Ui AWSElasticBeanstalkFullAccess AWS managed 1 Provides full access to AWS Elastic Beanstalk and underlying services that it requires su...

stafkMulth Do... AWS o 1 Provide the instances in your multicontainer Docker envirbgment access 1o use the Ama...
» §# AwsElastic akReadOnlyAccess AWSE managed 0 Provides read only access to AWS Elastic via the ANS
» 00 AWSElasticBeanstalkSen AWS managed 1 AWS Elastic Beanstalk Service role policy which grants permissio
» i AWSElasticBeanstaliWebTier AWS managed 1 Provide the instances in your web sarver environment access to uplos
Cancel

Figure 1-20. Create group with “WSElasticBeanstalkFullAccess” access

Click the “Next: review” blue button and, on the following page, click the blue
“Create user” button (Figure 1-21).

Services ~ Resource Groups ~

Add user o

Details Permissions Review Complete

® Success
You successfully created the users shown below. You can view and download user security credentials. You can also email
users instructions for signing in § AWS Management Console. This is the last time these credentials will be available to
download. However, you ¢ eate new credentials at any time.

Users with AWS jement Console access can sign-in at: hitps-//278764566511.signin.aws.amazon.com/console

& Download .csv
User Access key 1D Sec
» & ebuser AKIAJTFLGIWEDABRYWSA T—

Figure 1-21. Download access key after successfully creating a user

29

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Once you see the “Success” message, this means you have successfully created
the “ebuser” account. Make sure you download the “.csv” file to your local machine
by clicking the “Download .csv” button. This file is important as it holds your key and
secret code. Store it in a known location on your local machine as you will need that
information to upload the web application code and to Secure Shell (SSH) into your EB
(we won’t need SSH in this section but will in subsequent ones).

Step 4: Install Elastic Beanstalk (EB)

Start by creating a virtual environment to segregate installations. This isn’t an obligation
but it will help you keeps things clean and neat by separating this environment from

the rest of your machine (if you haven’t installed it yet, see the earlier section named
“Virtual Environments”); see Listing 1-46.

Listing 1-46. Start a Virtual Environment

$ python3 -m venv amazon_aws_intro
$ source amazon_aws_intro/bin/activate

Install the “awsebcli” library to interact and manage our EB service on AWS
(Listing 1-47 and 1-48).

Listing 1-47. For Mac and Linux Users

$ pip3 install awscli
$ pip3 install awsebcli

Listing 1-48. For Windows (if it complains about the “user” parameter, try
without it)

$ pip3 install awscli --user
$ pip3 install awsebcli --user

30

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES
Step 5: EB Command Line Interface
It's time to initialize the Elastic Bean interface (Listing 1-49).

Listing 1-49. Start the Elastic Beanstalk Command Line Interface
$ eb init -i

This will ask you a series of questions and you can go with most of the defaults.
Under “Enter Application name,” enter “AWSBeanstalkIntroduction” (Figure 1-22).

[NN) serverless-hosting-on-amazon-aws — eb init -i — 80x7

Enter Application Name
(default is "serverless-hosting-on-amazon-aws2"): AWSBeanstalkIntroduction

Application AWSBeanstalkIntroduction has been created.

It appears you are using Python. Is this correct?
(v/n): |

Figure 1-22. Creating a new EB application

If this is your first time running AWS on your computer, it will ask for your
credentials. Open the “credentials.csv” that was downloaded on your machine when

you created a user and enter the two fields required (Figure 1-23).

® | ® serverless-hosting-on-amazon-aws — eb create serverless-hosting-on-amazo...

You have not yet set up your credentials or your credentials are incorrect
You must provide your credentials.

(aws-access-id): AKIAIMAYE3RBMZ4ALVAQ

(aws-secret-key): We/Ft/WBAEQYAzZVFhb6Z4n0tAhztN1w+wrueSTfY

Figure 1-23. Entering your credentials

Go with the Python defaults (it needs to be a 3.x version); ignore warnings. Say yes to
SSH (Figure 1-24).

31

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Do you want to set up SSH for your instances?
(Y/n): y

Figure 1-24. Turning on SSH settings

Create a new key pair or select an existing one and keep going with the defaults. If
you create a new key pair, it will save it in a folder and tell you the location (Figure 1-25).

| NON] [serverless-hosting-on-amazon-aws — -bash — 101x7

Type a keypair name. L]
(Default is aws-eb2): prototyping2

Generating public/private rsa key pair.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /Users/manuel/.ssh/prototyping2.

Your public key has been saved in /fUsers/manuel/.ssh/prototyping2.pub.

Figure 1-25. Create or reuse an RSA key pair
Next, you need to create your EB (this has to be a unique name). This command will

automatically zip up the data in the folder and upload it to the AWS cloud (Listings 1-50
and 1-51). This can take a few minutes, so be patient.

Listing 1-50. Create Your EB and Upload it to AWS

$ eb create <<ENTER-YOUR-EB-NAME>>>

Listing 1-51. My EB for This Example

$ eb create AWSBeanstalkIntroduction

Step 6: Take if for a Spin

It takes a few minutes, and you should get a success message if all goes well. Then you
can simply use the “eb open” command to view the web application live (Listing 1-52).

Listing 1-52. Fire Up Your Web Application
$ eb open AWSBeanstalkIntroduction

It may take a little bit of time to run the application the first time around and may
even timeout. Run the “eb open” one more time if it times out (Figure 1-26).

32

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

® © ® | [y awsbeanstalkintroduction.3w/ X 9 Manuel

I :

jo)
s
i

C (D awsbeanstalkintroduction.3whbadrgwy.us-west-2.elasticbeanstalk.com

Hello World!

Figure 1-26. Flask application successfully running on Amazon AWS

If things don’t go as planned, check out the logs for any error messages
(Listing 1-53).

Listing 1-53. Access the Logs in Case of Problems

$ eb logs

Step 7: Don’t Forget to Turn It Off!

Finally, we need to terminate the Beanstalk instance to not incur additional charges.
This is an important reminder that most of these cloud services are not free. It will ask
you to enter the name of the environment; in my case it is “AWSBeanstalkIntroduction”
(Listing 1-54).

Listing 1-54. Don'’t Forget to Terminate Your EB and Deactivate Your Virtual
Environment

$ eb terminate AWSBeanstalkIntroduction
$ deactivate

It does take a few minutes but will take the site down. It is a good idea to double-
check on your AWS dashboard that all services are indeed turned off. This is easy to do:
simply log into your AWS account at https://aws.amazon.com/ and make sure that your
EC2 and Elastic Beanstalk accounts don’t have any active services you didn’t plan on
having (Figure 1-27). In case you see an instance that seems to keep coming back to life
after each time you “terminate” it, check under EC2 “Load Balancers” and terminate
those first, then terminate the instances again.

33

https://aws.amazon.com/

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

AWS services

v Recently visited servj

{@} Elastic Beanstalk

{0} Ec2 D wm

> All services

Figure 1-27. Checking the Amazon AWS dashboard that no unwanted services
are still running

Conclusion and Additional Information

No doubt, AWS is the leader in the cloud space. It may not be the simplest or cheapest,
but it would more than likely do anything you ask it to.

For additional information, see the handy post titled “Deploying a Flask
Application to AWS Elastic Beanstalk” on the Amazon’s AWS Docs at https://
docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-
flask.html.

Introducing Hosting on PythonAnywhere

PythonAnywhere is a great way to rapidly prototype your Python interactive ideas
and models on the Internet. It is integrated and designed for anything Python!

It isn’t serverless in the classic sense, but it is a dedicated Python framework, it
doesn’t require a credit card to sign up, and it can craft a proof-of-concept in no time
(Figure 1-28).

SB F
(-

g pythonanywhere

Figure 1-28. PythonAnywhere

34

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Proofis in the pudding; no code is needed for this project as PythonAnywhere
already defaults to a “Hello World” example when you spin up an instance.

Step 1: Get an Account on PythonAnywhere

Sign up for a free account on PythonAnywhere.com and log into it (you will have to

confirm your email address).

Step 2: Set Up Flask Web Framework

Let’s create a web server on PythonAnywhere with the Flask web-serving platform. It
is super easy to do. Under the “Web” tab, click the “Add a new web app” blue button.
And accept the defaults until you get to the ‘Select a Python Web framework’ and click
“Flask” and then the latest Python framework (Figure 1-29).

© Add a new web app
_ You have no web apps

Create new web app 3

Select a Python Web framework
...or select "Manual configuration™ if you want detailed control.

» Django

» web2py

» Flask

» Bottle

» Manual configuration (including virtualenvs)

What other frameworks should we have here? Send us some feedback using the link at the
top of the page!

Figure 1-29. Adding a new web app on PythonAnywhere

35

http://pythonanywhere.com

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

You will get to the landing configuration page, hit the green “Reload your account.
pythonanywhere.com” button and take your new URL for a spin (Figure 1-30).

5B

Qb) pythonanyw here Send feedback Forums

Consoles Files Web Tasks Databases

manuelamunategui.pythonanywhere.com
© Add a new web app

Reload:

% Reload manuelamunategui.pythonanywhere.com

Best before date:

We're happy to host your free website -- and keep it free -- for as long as you want to keeg
it running, but you'll need to log in at least once every three months and click the "Run
until 3 months from today" button below. We'll send you an email a week before the site is
disabled so that you don't forget to do that. See here for more details.

This site will be disabled on Monday 26 February 2018

l J

Paying users' sites stay up forever without any need to log in to keep them running.

Figure 1-30. Accessing the website configuration under the Web tab

You should see a simple but real web page with the “Hello from Flask!” message
right out of the box (Figure 1-31).

® © ® amunateguioutiook.pythonan, x |\ S
[C (@ amunateguioutlook.pythonanywhere.com i@ & o :
Hello from Flask!

Figure 1-31. Flask application successfully running on PythonAnywhere

36

CHAPTER 1 INTRODUCTION TO SERVERLESS TECHNOLOGIES

Conclusion and Additional Information

PythonAnywhere may not be a 100% serverless cloud provider but it is free for basic
hosting. It is the easiest to work with and can be run directly from its online dashboard.
This is a great option when traveling.

For a treasure-trove of help docs and step-by-step guides, see https://help.
pythonanywhere.com/pages/.

Summary

If you made it this far, great job! We’ve covered a very simple, stand-alone web
application using Flask and deployed it on four cloud providers. Please expect some
variance in the methodology of uploading web applications onto each cloud provider,
as they do change things here and there from time to time. Keeping an eye on the
documentation is critical.

It’s time to roll up our sleeves and start tackling some more interesting and more
involved web applications!

37

https://help.pythonanywhere.com/pages/
https://help.pythonanywhere.com/pages/

CHAPTER 2

Client-Side Intelligence
Using Regression
Coefficients on Azure

Let’s build an interactive web application to understand bike rental demand using
regression coefficients on Microsoft Azure.

For our first project, we're going to model the Bike Sharing Dataset from the
Capital Bikeshare System using regression modeling and learn how variables such as
temperature, wind, and time affect bicycle rentals in the mid-Atlantic region of the
United States (Figure 2-1).

39
© Manuel Amunategui, Mehdi Roopaei 2018

M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_2

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

® © ® /[predicting Bicycle Rental Derr x) Manuel
= C (® amunateguibike.azurewebsites.net Q | ¢ @ |
Chapter 2: Predict Bicycle Rental
Demand

O Q@
@ > -_D - 0
® X AR AR @

- X9 - %9 i X
& AN AN AN

For Fall + Work + 15¢ + 23pm = 248 bikes

Figure 2-1. Our final web application for this chapter

The data is graciously made available through the UCI Machine Learning Repository
of the University of California, Irvine (https://archive.ics.uci.edu/ml/datasets/

bike+sharing+dataset).

Note Download the files for Chapter 2 by going to www.apress.
com/9781484238721 and clicking the source code button. Open Jupyter
notebook “chapter2.ipynb” to follow along with this chapter’s content.

40

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Understanding Bike Rental Demand with Regression

Coefficients

We're going to build a simple and visually intuitive way of interacting with different
environmental factors and see how they affect bike rentals. This is a great way for users
to confirm their intuitive assumptions of what would make people want to bicycle vs.
not, and in some cases, surprise them too (like seeing more riders in the winter than in
the summer-but I'll let you discover that on your own).

The “brain” behind this web application is a linear regression model. It has the
ability of finding linear relationships between an outcome variable and historical data.
We are going to leverage this skill by having it learn bike rental demand over time and
under different environmental factors, and see if it can help us predict future demand.

Whenever you extend a Python model to the Wweb, it is critical to iron out all
issues and bugs locally before adding the extra layers necessary to build it into a web
application. Get all the easy issues resolved before moving anything to the cloud!
Following this piece of advice will save you from many headaches.

Exploring the Bike Sharing Dataset

Bike sharing is very popular albeit still new and experimental. Using a mobile phone, a
rider can sign up online, download a phone application, locate bicycles, and rent one.

This model creates an entire ecosystem where nobody needs to talk or meet in person

to start enjoying this service. According to Hadi Fanaee-T of the Laboratory of Artificial
Intelligence and Decision Support (from the liner notes on the UCI Machine Learning

Repository’s Dataset Information):

Opposed to other transport services such as bus or subway, the duration of
travel, departure and arrival position is explicitly recorded in these systems.
This feature turns [a| bike sharing system into a virtual sensor network that can
be used for sensing mobility in the city. Hence, it is expected that most of the]
important events in the city could be detected via monitoring these data.'

The download contains two datasets: “hour.csv” and “day.csv.” See Table 2.1 for
feature details.?

'Hadi Fanaee-T and Joao Gama, “Event Labeling Combining Ensemble Detectors and
Background Knowledge,” Progress in Artificial Intelligence 2, no. 2-3 (2013): pp. 113-127.

*https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

41

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Table 2-1. Bike Sharing Data Legend

Feature Name Description

instant record index

dteday date

season season (1: spring, 2: summer, 3: fall, 4 winter)
yr year (0: 2011, 1:2012)

mnth month (110 12)

hr hour (0 to 23)

holiday whether day is holiday or not

weekday day of the week

workingday If day is neither weekend nor holiday it is 1, otherwise it is 0.
weathersit 1. Clear, Few clouds, Partly cloudy

2. Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist

3. Light Snow, Light Rain + Thunderstorm + Scattered clouds,
Light Rain + Scattered clouds

4. Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

temp Normalized temperature in Celsius. The values are derived via (t-t_min)/
(t_max-t_min), t_min = -8, t_max = +39 (only in hourly scale).

atemp Normalized feeling temperature in Celsius. The values are derived via
(t-t_min)/(t_max-t_min), t_min = -16, t_max = +50 (only in hourly scale).

hum Normalized humidity. The values are divided by 100 (max).

windspeed Normalized wind speed. The values are divided by 67 (max).

casual count of casual users

registered count of registered users

cnt count of total rental bikes including both casual and registered

42

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Downloading the Data from the UCI Machine Learning
Repository

The dataset can be downloaded directly from UCI’s repository using Python or manually
at: https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset). The
download contains the following three files:

e day.csv
e hour.csv
¢ Readme.txt

The daily set of bike rentals contains 731 rows and the hourly set, 17,379 records.

Working with Jupyter Notebooks

Each chapter has a corresponding Jupyter notebook. Let’s go over some of the basics

to get started with the notebook for this chapter. Download the source files, open a
terminal window, and navigate to that folder. In it, you should find two files and a folder
(Figure 2-2).

O ® | | Chapter2-downloads — -bash — 57x8
manuels-MacBook-Pro-2:Chapter2-downloads manuel$ ls 8
chapter2.ipynb web-application

requirements_jupyter.txt
manuels-MacBook-Pro-2:Chapter2-downloads manuel$ l

Figure 2-2. Terminal window

The “requirements_jupyter.txt” file contains the Python libraries necessary to run
this chapter’s Jupyter notebook. You can quickly install them by running the “pip3”
command (Listing 2-1).

43

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE
Listing 2-1. Installing the Required Files to Run the Notebook
$ pip3 install -r requirements jupyter.txt

The file named “chapter2.ipynb” is the actual Jupyter notebook for this chapter.
There are different ways of starting a notebook, but one popular way is using the
“jupyter notebook” command (Listing 2-2). If this doesn’t work for you, please refer to
the official Jupyter documentation.

Listing 2-2. Starting the Jupyter notebook for This Chapter
$ jupyter notebook

This will open a browser window with a file-explorer dashboard pointing to the
same folder where it was launched from. Go ahead and click the “chapter2.ipynb” link
(Figure 2-3).

®0® T Home * 9 Manuel
C' @ localhost:8890/tree 7 & a :
Z Jupyter Logeut
Files Running Clusters
Select items to perform actions on them, Upload New~ | &
0 -~ W/ Name Last Medified
[web-application 2 months ago

& chapter2.ipynb & 3 hours ago

Figure 2-3. Jupyter's file explorer with this chapter’s notebook link

This will open a new tab and the corresponding notebook containing all the
exploratory code needed to follow along with the chapter’s content. All code in this book
assumes Python 3.x; if you use another version you may have to tweak some parts of
the code. Once you have opened the notebook, you are ready to go. Highlight the first
box and hit the play button to run that portion of the code (Figure 2-4). If you see errors,
please address them before continuing, as each code snippet builds upon the previous
one (errors can be related to Python version compatibility issues or missing libraries that
need to be installed).

44

& chapter2

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

x 3 Manuel

C' @ localhost:8890/notebooks/chapterZ.ipynb - o

" Jupyter chapter2 Last Gheckpsint: 3 hours ago (atosaved) & Logou

File Edit

B + =

In [1]:

In [2]:

View

@B A+ MAu

Download and unzip data set from UCI

R T R QR

' o wm

Insert Cell Kemel Wid Trusted # |Python3 O

tmatplotlib inline

import pandas as pd

import numpy as np

import matpletlib.pyplot as plt
import pickle

import warnings
warnings.filterwarnings('ignore')

from sklearn.model selection import train_test split
from sklearn.metrics import mean_sgquared_error, r2_score
from math import sqgrt

from io import Bytes:{d
from urllib.request import urlopen
from zipfile import ZipFile
zipurl = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00275/Bike~-Sharing-Data:
with urlopen(zipurl) as zipresp:
with ZipFile(BytesIO(zipresp.read())) as zfile:
zfile.extractall('/tmp/Bike-8haring-Dataset’')

bikes_hour_df raw = pd.read csv('/tmp/Bike-Sharing-Dataset/hour.csv')
bikes_day df raw = pd.read csv('/tmp/Bike-Sharing-Dataset/day.csv')

Figure 2-4. Jupyter notebook with code highlighted and ready to be run

The corresponding Jupyter notebook for the chapter shows a way to download and

unzip the data directly using Python (if you are having firewall issues, please download it

manually).

Exploring the Data

The Python Pandas “head()” function offers a glimpse into the first few rows of the data

shown in Listing 2-3 and Figure 2-5.

Listing 2-3. First Rows of the Dataset

bikes hour df raw.head()

instant
0 1
1 2
2 3
3 4
4 5

dteday season yr mnth hr holiday kday workingd hersit temp atemp hum windsp casual Qi d cnt
201-01-01 10 10 0 6 0 1 024 02879 081 0.0 3 13 18
2011-01-01 10 1 1 0 6 0 1 022 02727 080 0.0 8 3z 40
201-01-01 1 0 1 2 0 6 0 1 022 02727 0.80 0.0 5 27 32
201-01-01 10 1 & 0 6 1] 1 024 02879 075 0.0 3 10 13
2011-01-01 10 1 4 0 6 0 1 024 02879 075 0.0 0 1 1

Figure 2-5. bike_df.head() output

45

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Using the “head()” function, we learn that there are dates, integers, and floats. We
also see some redundant features like date (dteday) have already been categorized
through “season,” “yr,” “mnth,” “hr,” etc. Therefore the “dteday” feature is an easy
candidate to drop (though we're going to hold on to it for a little longer for our
exploration needs). Some other features seem redundant, like “temp” and “atemp” and
may call for closer inspection. We also drop the “casual” and “registered” features, as
those won’t help us model demand from a single user’s perspective, which is the point
of our web application. This could make an interesting outcome variable to forecast
registration based on season, weather, etc. As those don’t fit in the scope of our current
needs, we will drop them.

We only keep the features that we really need, as this will remove clutter and afford
us extra clarity and understanding to reach our data science and web application goals

(Listing 2-4).

Listing 2-4. Removing Useless Features for Our Ggoals
bikes hour df = bikes hour df raw.drop(['casual', 'registered'], axis=1)

The Pandas “info()” function is also a great way of seeing the data types, quantities,
and null counts contained in the data (Listing 2-5).

Listing 2-5. Getting information about features
Input:

bikes hour df.info()

Output:

RangeIndex: 17379 entries, 0 to 17378
Data columns (total 15 columns):

instant 17379 non-null inté64
dteday 17379 non-null object
season 17379 non-null inté64
yr 17379 non-null int64
mnth 17379 non-null inté64
hr 17379 non-null int64
holiday 17379 non-null int64
weekday 17379 non-null int64

46

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

workingday 17379 non-null int64
weathersit 17379 non-null inté64

temp 17379 non-null float64
atemp 17379 non-null float64
hum 17379 non-null float64
windspeed 17379 non-null float64
cnt 17379 non-null int64

Using the “info()” function, we see that all the data currently held in memory is
either a float or an integer, and that none of them are nulls. If we did happen to find
nulls, date data types, or text data types, we would need to address them before moving
on to modeling. The majority of models in existence require numerical data and that is
what we have, so we're looking good so far.

A Closer Look at Our Qutcome Variable

Let’s look at the outcome variable that we’re going to use to train our model, “cnt,” count
of total rental bikes. Pandas “describe()” function is another go-to tool to understand
quantitative data. Let’s apply it to our outcome variable (also known as the model’s
label), as shown in Listing 2-6.

Listing 2-6. Number Summary of the Bike Rental Count “cnt” Feature

Input:

bikes hour df['cnt'].describe()

Output:

count 17379.000000
mean 189.463088
std 181.387599
min 1.000000
25% 40.000000
50% 142 .000000
75% 281.000000
max 977.000000

Name: cnt, dtype: float64

47

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

We see that feature “cnt” ranges between a minimum of 1 and maximum of 977
counts. This means that each recorded hour has seen a minimum of 1 bike rental to a
maximum of 977 bike rentals. We also see that the average rental count is 189.5.

We confirm that we are dealing with a continuous numerical variable where a linear
regression (or a linear regression-like model) is the right choice to train and predict
bicycle rental counts. Let’s plot this feature to better understand the data (Listing 2-7 and
Figure 2-6).

Listing 2-7. Number Summary of the Bike Rental Count “cnt” Feature

fig,ax = plt.subplots(1)
ax.plot(sorted(bikes hour df['cnt']), color="blue")
ax.set xlabel("Row Index", fontsize=12)
ax.set_ylabel("Sorted Rental Counts", fontsize=12)
ax.set_ylabel("Sorted Rental Counts", fontsize=12)
fig.suptitle('Outcome Variable - cnt - Rental Counts')
plt.show()

Recorded Bike Rentals Counts

1000 |

800 4

€00 -

400 -

200 -

Sorted Rental Counts

0

Figure 2-6. Sorted counts of bike rentals reveal that the majority of the rentals
happen in the 0 to 400 range; values higher than that are either rare or outliers

Quantitative Features vs. Rental Counts

Let’s create scatter plots of all our float data types. We'll plot them against rental counts
to visualize potential relationships (Figures 2-7 and 2-8).

48

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Numerical Feature: Cnt vs temp

1000 -

800 A

€00 -

400 A

Count of All Bikes Rented

200 -

00 02 04 0.6 08 10
temp

Figure 2-7. Count of all bikes rented vs. “temp” feature

Numerical Feature: Cnt vs atemp

1000 -

800 1

€00 +

400 1

200 +

Count of All Bikes Rented

0.0 02 0.4 06 038 10
atemp

Figure 2-8. Count of all bikes rented vs. “atemp” feature

We can see that there is a somewhat linear relationship between the number of
bikes rented and temperature; the warmer it is, the more bikes get rented. We also see
that both features—“temp” and “atemp” —have similar distributions and may present
redundancy and even multicollinearity. To keep things clean, we will drop feature
“atemp” (Figures 2-9 and 2-10).

49

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Numerical Feature: Cnt vs hum

1000
k=] 800 1
=
c
&
w600 |
g
2
< 400 4
o
2
=
S 200 4
o
0.0

Figure 2-9. Count of all bikes rented vs. “hum” feature

Numerical Feature: Cnt vs windspeed

1000

L]
800 1 "s? .
600 1 °,
L]
400 ‘.. .
@ "o

200 I ’. ° .

E Be o ®e

mndspeed

Count of All Bikes Rented

o

Figure 2-10. Count of all bikes rented vs. “windspeed” feature

Feature “hum” or humidity looks like a big blob though the edges do show some
sparseness. Feature “windspeed” does show an inverse linear relationship with rentals;
too much wind and bike rentals don’t seem to mix.

Let’s Look at Categorical Features

In this dataset, with the exception of bicycle rental counts “cnt,” integer data are
categorical features. Categorical data yields a lot of interesting tell-tales when viewed
through histograms (distribution charts; Figure 2-11).

50

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Counts of Bike Rentals by season Counts of Bike Rentals by weathersit
1000000
2000000
800000
1500000
€ 600000 =
2 =2
8 8
1000000
400000
200000 500000
o 5 = i £
£ £ e £ 8 S H 3
& 2 E " & p >
season - .g H
& $
m =
weathersit

Figure 2-11. Counts of bike rentals by “season” and by “weathersit”

Feature “weathersit” shows that people rent more bikes in nice weather and
“season” shows that fall is the top season to rent bikes.

And finally, feature “hr,” or rental hour, clearly shows peak office commute hours
and afternoon rides as very popular bicycling times, and 4 AM is the least popular
bicycling time (Figure 2-12).

350000

300000

250000

200000

Count

150000

100000

50000 || “
Ill..l

........

auvamwhmmggmﬁzﬂgpgﬁg

Hour

o

-y
™™™

Figure 2-12. Total bike rentals by hour

Even though we can learn a lot by eyeballing charts, more thorough and systematic
testing is required to reach conclusive decisions about features to keep and features to drop.

51

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Preparing the Data for Modeling

In most data science projects, there is a data wrangling phase where data is assessed
and cleaned in order to be “model ready.” In this case we have already dropped some
useless features, we have no nulls to deal with, and we won’t worry about correlation or
multicollinearity as we are only going to use four simple features in our final model.

Regression Modeling

In statistical analysis, a regression model attempts to predict the relationships among
variables. It will analyze how independent variables relate to dependent ones. A fitted
model can be used to predict new dependent variables.

Simple Linear Regression

A linear regression is probably the simplest modeling algorithm. It attempts to explain
the relationship between one dependent variable and one or more independent
variables. See the basic regression equation in Figure 2-13.

y =By +B1x

Figure 2-13. The basic linear regression equation

In the equation y = estimated dependent variable score, 0 = constant,
B_1 =regression coefficient, and x = score on the independent variable.

A Simple Model

Let’s start with a simple nultilinear regression model where we input all variables and get
a base root mean squared error (RMSE). RMSE expresses the error in units scaled to the
outcome variable (also known as the y label), so it is easy to see how well the model does
at learning/predicting bike rentals and the error becomes a form of confidence interval.
You want the lowest possible RMSE score, so the goal is to keep tweaking the data and
model until it stops going down. We’ll base all our modeling efforts in this chapter on

the Python scitkit-learn/sklearn library.® This is a phenomenal library that should satisfy
most of Python users’ modeling needs.

*http://scikit-learn.org/stable/
52

http://scikit-learn.org/stable/

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Even though we’re only going to run a simple linear regression, we’re going to
leverage three functions from the sklearn library: “train_test_split” to create two
random datasets from our original data and separate features from outcomes, “linear_
model” to run our model, and “mean_squared_error” to evaluate how well the model
learned (Listing 2-8).

Listing 2-8. Snippet of Code to Split the Dataset into Training and Testing
Portions

set outcome variable

outcome = 'cnt'

create feature list
features = [feat for feat in list(bike_df model ready) if feat not in
[outcome, 'instant']]

split data into train and test portions
from sklearn.model selection import train test split
X _train, X test, y train, y test = train test split(bike df model
ready[features],
bike df model ready[['cnt']],
test_size=0.3, random_state=42)

The “train_test_split()” function will split the data into two random datasets using
a seed. Setting the “random_state” seed parameter is a good idea whenever you are
testing different approaches and want to ensure that you are always using the same splits
for fair comparison. The “test_size” parameter sets the size of the test split. Here we set it
to .3, or 30%, thus it will randomize the data and assign 70% of the data to the training set
and 30% to the testing set (Listing 2-9).

Listing 2-9. Linear Regression Code

from sklearn import linear model
model lr = linear model.LinearRegression()

train the model on training portion
model lr.fit(X_train, y train)

53

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

We declare a “LinearRegression()” model then call function “fit()” to train the
model using the training data and training labels. Model “model_Ir” is now trained and
ready to predict (Listing 2-10).

Listing 2-10. Predict and Get the RMSE Score
Input:

predictions = model 1r.predict(X test)

from sklearn.metrics import mean squared error

print("Root Mean squared error: %.2f" % sqrt(mean squared error(y test,
predictions)))

Output:
Root Mean squared error: 143.08

Finally, we call function “predict()” using the 30% of the data earmarked for testing
and feed the predicted labels into function “mean_squared_error()” to get the root
mean squared error score. We get an RMSE of 143.08 and we will use that as our base
benchmark score. This is what we get with the current seeded split (the seed we applied
on the train_test_split function to make sure we always get the same split each time)
and all the features we’ve selected so far. One way to interpret the score, as it is in the
same scale as our outcome variable, is that our model predictions are off by 143 bikes.
Considering that the mean bike rental demand per hour is approximately 190, our model
does a better job than simply picking the overall mean value of bike rentals. But let’s see
if we can improve on this.

Experimenting with Feature Engineering

Let’s see if we can get a better score by experimenting with a few different techniques,
including polynomials, nonlinear modeling, and leveraging time-series.

Modeling with Polynomials

Applying polynomial transformations to a series of values can allow for better
separation during linear regression. This is very easy to do in the Python’s “sklearn”
library (Listing 2-11).

54

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Listing 2-11. Create Polynomial Features

from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(2)

X train = poly.fit transform(X train)

X test = poly.fit transform(X test)

Let’s transform all features to the 2nd degree (Listing 2-12).

Listing 2-12. 2nd-Degree Polynomials
Input:

print("Root Mean squared error with PolynomialFeatures set to 2 degrees:
%.2f" % sqrt(mean_squared error(y test, predictions)))

Output:

Root Mean squared error with PolynomialFeatures set to 2 degrees: 122.96

Now transform all features to the 3rd degree (Listing 2-13).

Listing 2-13. 3rd-Degree Polynomials
Input:

print("Root Mean squared error with PolynomialFeatures set to 3 degrees:
%.2f" % sqrt(mean_squared error(y test, predictions)))

Output:

Root Mean squared error with PolynomialFeatures set to 3 degrees: 111.65

And now transform all features to the 4th degree (Listing 2-14).

Listing 2-14. 4th-Degree Polynomials
Input:

print("Root Mean squared error with PolynomialFeatures set to 4 degrees:
%.2f" % sqrt(mean_squared error(y test, predictions)))

Output:

Root Mean squared error with PolynomialFeatures set to 4 degrees: 114.84

55

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Asyou can see, applying polynomials to a dataset is extremely easy with sklearn’s
“PolynomialFeatures()” function. The score does improve using the 2nd and 3rd degree
but then degrades beyond that point.

Creating Dummy Features from Categorical Data

Another approach worth trying is to dummify categorical data. This means creating
separate columns for each category. Take feature “weathersit”: this isn’t a continuous
variable, instead it is an arbitrary category. If you feed it into a model as such, it will
consider it as linear numerical data, and this doesn’t really make sense in this case;
adding 1 to “mist & cloud” doesn’t equal “snow.” The model will do a better job on

” u ” u

“weathersit” by creating four new columns: “clear,” “mist,” “snow,” and “rain” and
assign each a binary true/false value.
This is easy to do with the Pandas function “get_dummies().” We abstract the code

into a function that will make our web application easier to create (Listing 2-15).

Listing 2-15. Abstracting the Code to Create Dummy Data

def prepare data for model(raw_dataframe,
target columns,
drop _first = False,
make na_col = True):

dummy all categorical fields
dataframe_dummy = pd.get dummies(raw dataframe, columns=target columns,
drop _first=drop first,
dummy na=make na_col)
return (dataframe_dummy)

This will break each category out into its own column. In the code snippet below, we

ask to “dummify” the following three columns: “season,” “weekday,” and “weathersit”
(Listing 2-16).

Listing 2-16. Dummify Categorical Columns

bike df model ready = prepare data for model(bike df model ready,
target _columns = ['season', 'weekday', 'weathersit'], drop first
= True)

56

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

After applying the function to the dataset, each weather category is now in a
separate column (minus the first column, which is redundant—if it isn’t “weathershit_2,
“weathershit_3,” or “weathershit_4,” then we infer it is “weathershit_1"; Listing 2-17
and Figure 2-14).

Listing 2-17. A Look at the Dummified Weather Field

bike df model ready[['weathersit 2.0', 'weathersit 3.0',
'weathersit 4.0']].head()

weathersit_2.0 weathersit_3.0 weathersit_4.0

0 0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
q 0 0 0

Figure 2-14. A look at the dummied columns of feature “weathersit”

So, does creating dummies out of the categorical data help the model or not?
(Listing 2-18)

Listing 2-18. RMSE after Dummying the Categorical Data
Input:

print("Root Mean squared error: %.2f" % sqrt(mean squared error(y test,
predictions)))

Output:

Root Mean squared error: 139.40

This isn’t very impressive, and certainly not enough to justify all that extra work.
Llet’s move on and try other techniques.

57

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Trying a Nonlinear Model

As a final modeling experiment, let’s run our dummied data into a “Gradient Boosting
Regressor” model from sklearn. Switching from one model to another in the sklearn
package is trivial, and we only need to load the appropriate model in memory and
change two lines (Listing 2-19).

Listing 2-19. Using a GBM Model
Input:

from sklearn.ensemble import GradientBoostingRegressor

model gbr = GradientBoostingRegressor()

model gbr.fit(X train, np.ravel(y train))

predictions = model gbr.predict(X test)

print("Root Mean squared error: %.2f" % sqrt(mean_squared error(y test,
predictions)))

Output:
Root Mean squared error: 68.13

Wow, that is the lowest RMSE score we've seen yet; we've cut our error rate in two!

Even More Complex Feature Engineering—Leveraging
Time-Series

Here is one last feature engineering experiment; this idea comes from data scientists
over at Microsoft.? The data is a ledger of bike rentals over time, so it is a time-series
dataset. Whenever your dataset records events over time, you want to take that into
account as an added feature. For example, an event that happened an hour ago is
probably more important than one that happened a year ago. Time can also capture
trends, changing needs and perceptions, etc. We want to create features that capture all
those time-evolving elements!

*http://blog.revolutionanalytics.com/2016/05/bike-rental-demand.html
58

http://blog.revolutionanalytics.com/2016/05/bike-rental-demand.html

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

For each row of data, we’ll add two new features: the sum of bicycle rentals for the
previous hour, and the sum of bicycle rentals from two hours ago. The intuition here is
that if we want to understand the current bicycling mood, we can start by looking at what
happened an hour ago. If the rentals were great one hour ago, they’re probably going
to be good now. This time element can be seen as a proxy to prosperous or calamitous
times, good or bad weather, etc.

To create a sum of bicycles per date and hour, we use Pandas extremely powerful
“groupby()” function. We extract three fields, “dteday,” “hr,” and “cnt” and group the
count by date and hour (Listing 2-20 and Figure 2-15).

Listing 2-20. Looking at Rental Counts in the Previous Period

bikes hour df shift = bikes hour df[['dteday','hr','cnt']].
groupby (['dteday", "hr']).sum()
bikes hour df shift.head()

cnt

dteday hr

2011-01-01 O 16

1 40
2 32
3 13
4 1

Figure 2-15. Shifting the date to create new look-back features

This function tallies the counts by hour and date. Next, we create two new features,
one shifted forward 1 row and the other 2 rows, thus giving the current row the total bike
rentals for the past hour and the hour past that. Finally we add it all back to our main
data frame using Pandas “merge()” command (Listing 2-21).

59

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE
Listing 2-21. Playing with Time Shifts

prior hours

bikes hour df shift = bikes hour df[['dteday','hr','cnt']].
groupby (['dteday’, "hr']).sum().reset_index()

bikes hour df shift.sort values(['dteday','hr'])

shift the count of the last two hours forward so the new count can take
in consideration how the last two hours went

bikes hour df shift['sum hr shift 1'] = bikes hour df shift.cnt.shift(+1)
bikes hour df shift['sum hr shift 2'] = bikes hour df shift.cnt.shift(+2)

merge the date and hour counts back to bike df model ready

bike df model ready = pd.merge(bikes hour df, bikes hour df_
shift[['dteday', 'hr', 'sum hr shift 1', 'sum _hr shift 2']], how="inner',
on = ['dteday', 'hr'])

After we split this new data and run it into a Gradient Boosted Model (GBM) for
regression (sklearn’s GradientBoostingRegressor), we calculate the RMSE score over the
test dataset (Listing 2-22).

Listing 2-22. RMSE from Time Shifts
Input:

from sklearn.ensemble import GradientBoostingRegressor
model gbr = GradientBoostingRegressor()

model gbr.fit(X train, np.ravel(y train))

predictions = model gbr.predict(X test)

print("Root Mean squared error: %.2f" % sqrt(mean squared error(y test,
predictions)))

Output:
Root Mean squared error: 44.43

Wow, crazy, an RMSE of 44.43; even better!!!

60

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

A Parsimonious Model

Unfortunately, it isn’t always about the best score. Here, we need a simple model in
order to predict using a regression equation. This isn’t something that can easily be
done with complicated models or overly engineered features. GBM isn’t a linear model
and doesn’t give us a handy and lightweight regression equation. Also, the time shifts
we created previously require that we have total counts for the two previous hours of
prediction, something that our web visitors won’t benefit from because we don’t have
access to live data.

This is an important lesson when your goal is to create web applications: if the
most accurate prediction comes from a complicated modeling technique, it just won’t
translate well into a production pipeline.

Extracting Regression Coefficients from a Simple
Model—an Easy Way to Predict Demand without
Server-Side Computing

A linear regression model is not the most powerful model out there, nor does it advertise
itself as such, but it can distill fairly complex data down to an extremely simple and clear
linear representation. And it is this simple representation that will fuel our application.

A powerful product of regression modeling is the learned model’s coefficients. This
is even more powerful in the context of a web application where we can rely solely on
the coefficients and a simple regression equation to estimate future bike rental demand.
This can potentially enable applications to make complicated decisions entirely on the
client’s front end-lightweight, fast, and useful!

In order to end up with a small set of coefficients and a simple regression equation,
we need to train and test a regression model first. Only when we are happy with the
score, the features used, and quality of the predictions do we extract the coefficients.

We are also going to pare down the features fed into the model to the essential and
illustrative ones. Here is one of the lessons of building web applications: we have to
balance the best modeling scores with production realities. If you build a phenomenal
model but nobody can operate it or it cannot be run in a timely fashion in production, it
is a failure.

61

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

We are going to keep things simple for the sake of our web application and only use
four features: “season,” “hr,” “holiday,” and “temp.” These are features that users can
understand, are easy to acquire, and by only having four of them our model will be fast.
Let’s first model these features individually and check their R-squared score.

R-Squared

R-squared is a statistical measure of how close the data is to the fitted regression

line. It is also known as the coefficient of determination, or the coefficient of

multiple determination for multiple regression. The definition of R-squared is fairly
straightforward; it is the percentage of the response variable variation that is expected by
a linear model (Listing 2-23).

Listing 2-23. R-squared Formula
R-squared = Expected variation / Total variation

The coefficient of determination can be thought of as a percent. It gives you an
idea of how many data points fall within the results of the line formed by the regression
equation. The higher the coefficient, the more points fall within the line. If the coefficient
is 0.80, then 80% of the points should fall within the regression line.

We want to see that the R-squared is as close to 1 (or 100%) with no negative

), u

numbers. The calculation is easy to do with sklearn’s “r2_score” function (Listing 2-24).

Listing 2-24. R-squared Score Over Our Features
Input:

from sklearn.metrics import r2 score
for feat in features:
model 1r = linear model.LinearRegression()
model lr.fit(X train[[feat]], y train)
predictions = model lr.predict(X test[[feat]])
print('R*2 for %s is %f' % (feat, r2_score(y test, predictions)))

62

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Output:

R*2 for hr is 0.160161

R*2 for season is 0.034888
R*2 for holiday is -0.001098
R*2 for temp is 0.154656

Every R-squared is positive, and we see that “hr” and “temp” explain more
variance than “season” and “holiday.” Keep in mind that we are looking at each feature
separately; a good next step not covered here would be to calculate the R-squared score
of all of them together (or an adjusted R-square to handle multiple features).

As shown earlier, we will also “dummify” the “season” variable. If we rerun the
R-squared calculating loop on all features including the “dummified” ones, we get the
following scores (Listing 2-25).

Listing 2-25. R-squared Score over Dummified Features

R*2 for hr is 0.156594

R*2 for holiday is 0.001258
R"2 for temp is 0.154471

R*2 for season 1 is 0.053717
R*2 for season 2 is 0.003657
R*2 for season 3 is 0.016976
R"2 for season_4 is 0.001111

Everything is positive, so we’re looking good to use that set of features in our final
web application.

Predicting on New Data Using Extracted Coefficients

Now that we have the model’s coefficients, we can predict new rental counts using the
regression equation. The regression equation is the equation of the line-of-best-fit from
our regression model. The formula is common and can be seen in most books covering

y =Pp0+p1 x

Figure 2-16. The regression equation

statistics (Figure 2-16).

63

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

u_ . n

y” is the dependent variable, or what we’re trying to predict, in our case, the number
of bike rentals, a is the intercept, “p” is the slope of the line and “x” is the independent
variable. In the case of a multiple linear regression, you simply add more independent
variables.

One important note is that this formula and its coefficients represent the smallest
error possible from the data used in the model. So, we cannot really change all the
independent variables at once when we inject new data into it. This is an important
point to remember, though we will allow the user to play around with all sorts of
environmental settings to affect the number of bike rentals, we will also have a “reset”
button to reset all variables back to their original mean.

After we run our final model, we need to extract intercept and coefficients. This
is trivial to do with sklearn’s “linear_model” function and only requires calling the
“intercept_” and “coef_” parameters to get them (Listings 2-26 and 2-27, and
Figure 2-17).

Listing 2-26. Getting the Intercepts
Input:

from sklearn import linear model

model 1r = linear model.LinearRegression()
model lr.fit(X_train, y train)
print('Intercept: %f' % model lr.intercept)

Output:

Intercept: -121.029547

Listing 2-27. Getting the Coefficients

feature coefficients = pd.DataFrame({'coefficients':model lr.coef [0],
'features':X train.columns.values})

feature coefficients.sort values('coefficients")

64

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

coefficients features

5 -41.245562 season_3
1 -23.426176 holiday
-1.624812 season_2
3.861149 season_l

8.631624 hr

39.009224 season 4

N OO O W o

426.900259 temp

Figure 2-17. A look at the coefficients from the linear-regression model

We can then assign those constants to our web application so that it can in turn make
predictions on bike rental demand (Listing 2-28).

Listing 2-28. Creating Constants out of Extracted Coefficients

INTERCEPT = -121.029547

COEF_HOLIDAY = -23.426176 # if day is holiday or not

COEF_HOUR = 8.631624 # hour (0 to 23)

COEF_SEASON_1 = 3.861149 # 1: spring

COEF_SEASON_2 = -1.624812 # 2: summer

COEF_SEASON_3 = -41.245562 # 3: fall

COEF_SEASON_4 = 39.009224 # 4: winter

COEF_TEMP = 426.900259 # normalized temp in Celsius -8 to +39

We also need to get the mean historical values in order to build our regression
equation. If the values are categorical, then we pick the highest mean and set that to 1
and the other to 0 (as we do with holiday and season) (Listing 2-29).

65

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Listing 2-29. Setting our Feature Means

MEAN HOLIDAY = 0 # if day is holiday or not
MEAN HOUR = 11.6 # hour (0 to 23)

MEAN_SEASON 1 = 0 # 1: spring
MEAN_SEASON 2 = 0 # 2: summer
MEAN_SEASON 3 = 1 # 3: fall

MEAN_SEASON 4 = 0 # 4: winter
MEAN_TEMP = 0.4967 # normalized temp in Celsius -8 to +39

We now have all we need to predict new rental counts. Let’s see how many rentals we
get at 9 AM while all other values are held constant around their mean (Listing 2-30).

Listing 2-30. Let’'s Make a Prediction Using Our Extracted Coefficients
Input:

rental counts = INTERCEPT + (MEAN_HOLIDAY * COEF_HOLIDAY) \
+ (9 * COEF_HOUR) \
+ (MEAN_SEASON_1 * COEF_SEASON_1) + (MEAN_SEASON 2 * COEF_
SEASON_2) \
+ (MEAN_SEASON_3 * COEF_SEASON_3) + (MEAN_SEASON_4 * COEF_
SEASON_4) \
+ (MEAN_TEMP * COEF_TEMP)

print('Estimated bike rental count for selected parameters: %i' %
int(rental counts))

Output:
Estimated bike rental count for selected parameters: 171

And the result is 171 bikes rented at 9 AM (your results may vary slightly). We will
allow users to change multiple features at a time, but keep in mind that too many
changes from the original equation value may degrade the model.

66

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Designing a Fun and Interactive Web Application
to lllustrate Bike Rental Demand

Now for the fun part, let’s design our web application. We always need to have the end goal
in mind-what is it that we want to share with others and what will others want to see?

We're going to design an interactive web application that is going to allow users to
customize environmental variables (time, holiday, temperature, and season) and get
visual feedback on the numbers of bicycles rented.

This application needs to be visually compelling in order to attract users and keep
them interested as they play with it. This means that as much thought needs to be
invested into the message, UI, visuals, and interactive controls as was put into gathering
data and modeling.

Abstracting Code for Readability and Extendibility

As with most of my web applications, I try to abstract the code into logical modules. One
module would be the process of collecting the user data and another, the brains, which
would build the regression equation, run it, and return a bike rental prediction. Keeping
the code in logical units will drastically simplify your life as you build and debug a web
application. This will allow you to unit test each module to make sure everything works
accordingly or as a process of elimination when things don’t.

In the case of this chapter’s web application, most of the “brains” will reside directly
in the main HTML page. Flask is a web-serving framework and mostly used to retrieve,
analyze, and serve back customized content. In this chapter, all we need is the regression
equation to predict bicycle rental demand, so there really isn’t much of a case for going
back and forth between the user and the web server (and this is the only chapter where we
do that; in all others the brain will clearly reside on the server, not the client’s web page).

Building a Local Flask Application

Before mounting the code into the cloud, it is important to run things locally; this will
save you both headaches and time. First, let’s perform a simple Flask exercise on our
local machine. If you have never run a Flask application locally, you will need to install
the following Python libraries using “pip3 install” or whatever tool your OS and Python

versions support.

e Flask
67

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Once you have installed Flask, open a text editor, type in the following code, and save
it as “hello.py” (Listing 2-31).

Listing 2-31. Simple Flask Script

from flask import Flask
app = Flask(__name_)
@app.route('/")
def hello world():

return 'Hello, World!'

Then open a terminal/command window and enter the following command on the
Mac or Windows (Listings 2-32 and 2-33).

Listing 2-32. On the Mac

$ export FLASK APP=main.py
$ flask run

Listing 2-33. On Windows

$ export FLASK_APP= main.py
$ python -m flask run

You should see something like Figure 2-18.

. @® test — IPython: chapter-1/python-anywhere-model — flask run — 80x24

ACmanuels-MacBook-Pro-2:test manuel$ export FLASK_APP=hello.py
manuels-MacBook-Pro-2:test manuel$ flask run

* Serving Flask app "hello"

* Running on http://127.0.0.1:5008/ (Press CTRL+C to quit)

Figure 2-18. Terminal/command window displaying local URL for Flask
application

68

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Then copy the URL “http://127.0.0.1:5000/” (or whatever is stated in the terminal
window) into your browser and you should see the web application appear. Plenty more
examples and tips can be found at the source, the official Flask quick start guide:
“http://flask.pocoo.org/docs/0.12/quickstart”.

So, what just happened here? If you are new to web-serving frameworks, this may
seem a little daunting (and keep in mind that Flask is one of the simplest frameworks out
there). Let’s break down the approach step-by-step.

In the preceding “Hello world” example, everything happened on the hypothetical
web-server side (which is really just your local machine). Its job is to process commands
and spit out consumable HTML back to the requesting client’s web page.

First, we load the Flask library in memory (Listing 2-34).

Listing 2-34. Import Flask
from flask import Flask

Then we instantiate the Flask session (Listing 2-35).

Listing 2-35. Instantiate Flask
app = Flask(__name_)

Finally, we create a function to do something and we decorate it with a routing
parameter, so it knows which commands it will process from the web client. In this case, the
‘/ simply means either the root page or the root “index.html” page session (Listing 2-36).

Listing 2-36. Flask Function to Handle Traffic Coming from Root URL

@app.route('/")
def hello world():
return 'Hello, World!'

Obviously, very rarely will the function be this simple; it most likely will call a database
or a Representational State Transfer (REST) API call to gather custom information and fire
it back to the client’s web page via an HTML template. This entire process allows intelligent,
customized data to be created and then wrapped into a sophisticated looking web page. For
all intents and purposes, this will look like a handcrafted page, though it was dynamically
created by Flask. We will use Flask throughout this book and you will have a strong grasp on
this tool if you work your way through each chapter.

69

http://flask.pocoo.org/docs/0.12/quickstart

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

The final bit of code is only used in local mode (i.e., run from your local machine)
and run’s the web server code and, in this case, turns on the debug flag (Listing 2-37).

Listing 2-37. Automatically Running the Flask Application Locally

if _name_=='_ main_ ':
app.run(debug=True)

Downloading and Running the Bike Sharing GitHub Code
Locally

Download the files for this chapter if you haven’t already done so and navigate to the
“web-application” folder. Your folder should look like Listing 2-38.

Listing 2-38. Web Application Files

web-application

|—— appengine_config.py

F— main.py

|— requirements.txt

— app.yaml

— static

L— images
— bike_zero.png
— bike_one.png
— bike_four.png
— bike_nine.png
L— bike_sixteen.png

L— templates

L— index.html

Once you have downloaded and unzipped everything, open a command line
window, and change the drive into the “web-application” folder and install all the
required Python libraries by running the “pip install -r” command (Listing 2-39).

Listing 2-39. Installing Requirements
$ pip3 install -r requirements.txt

70

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Then run the same commands you ran for the “Hello World” experiment (running
“python3 main.py” will do the trick also; Figure 2-19).

[NON) Wt;b—application — python « python main.py — 80x24

Imanuels—-MacBook-Pro-2:chapter-2 manuel$ cd web-application/
[manuels—MacBook-Pro-2:web-application manuel$ python main.py
* Running on http://127.06.0.1:5000/ (Press CTRL+C to quit)

* Restarting with stat
* Debugger is active!
* Debugger PIN: 317-242-955

Figure 2-19. Starting the local web server on this chapter’s web application

It should look like the following screen shot in Figure 2-20.

Chapter 2: Predict Bicycle Rental
Demand

S0

Figure 2-20. Local rending of Flask web application for this chapter

71

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Debugging Tips

If you do not see the screen shot, then your system has an issue or it’s missing a file or
library. As with anything in this field, debugging is a big part of it. There are two easy
things you can do to help out. If this is a Flask issue and your browser looks like
Figure 2-21, do the following steps.

&« C © 127.0.0.1:5000

Internal Server Error

The server encountered an internal error and was unable to complete your request. Either the server is overloaded or there is an error in the application.

Figure 2-21. Local web site error

Turn the Flask debug flag to True in the “main.py” script (this is usually at the end of
the file). This only works when running your application locally (Listing 2-40).

Listing 2-40. Web Application Files

if _name_=="'_ main_':
app.run(debug=True)

If the issue is Flask related, the debugger will catch it and display it in the browser,
and will return a much more helpful message as seen in Figure 2-22.

= C (® 127.0.0.1:5000

werkzeug.routing.BuildError

BuildError: Could not build url for endpoint 'submit_new_profile'. Did you mean 'index' instead?

Traceback (most recent call last)

File "/Users/manuel/anaconda/lib/python2.7 /site-packages/flask/app.py”, line 1997, in __call__
return self.wsgi_app(environ, start_response)

File "/Users/manuel/anaconda/lib/python2.7 /site-packages/flask fapp.py”, line 1985, in wsgi_app
response = self.handle_exception(e)

Figure 2-22. Flask error log in web browser

72

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

And you will also see the Flask error message in the terminal/command window
regardless of the debug flag, as shown in Figure 2-23.

® 0 google-cloud-model — IPython: Users/manuel — -bash — 115x43
* Running on http://127.0.0.1:5e0@/ (Press CTRL+C to quit)
127.9.8.1 - - [24/Feb/2018 89:85:56] " " 280 -
127.9.8.1 - - [24/Feb/2018 @9:87:32] " " 200 -
127.98.8.1 - - [24/Feb/20618 89:88:17] " " 208 -
127.08.8.1 - - [24/Feb/2018 09:88:18] " " 208 -
127.0.0.1 - - [24/Feb/2018 ©9:088:39] " " 200 -

ACmanuels-MacBook-Pro-2:google-cloud-model manuel$
manuels-MacBook-Pro-2:google-cloud-model manuel$
manuels-MacBook-Pro-2:google-cloud-model manuel$ python main.py
* Running on http://127.0.8.1:5080/ (Press CTRL+C to quit)
[2018-82-24 ©9:88:52,204] ERROR in app: Exception on / [GET]
Traceback (most recent call last):
File "/Users/manuel/anaconda/lib/python2.7/site-packages/flask/app.py", line 1982, in wsgi_app
response = self.full_dispatch_request()

Figure 2-23. Flask error log in terminal/command window

After you fix all Flask issues, you may still have some front-end bugs to address. Most
browsers will offer some debugging tools. Figure 2-24 shows an example of how to get
the JavaScript debugger up and running in Chrome (you should be easily able to find the
equivalent in whatever browser brand you use).

@ Chrome File Edit History Bookmarks People Window Help

Always Show Bookmarks Bar {38
+ Always Show Toolbar in Full Screen (3F
Customize Touch Bar...

Force Reload This Page O ¥R
Enter Full Screen ~¥F
Zoom In B+ |
Zoom Out ®-
Cast...
View Source v

Developer Tools ®l
JavaScript Console ® \C38J

Figure 2-24. Accessing the JavaScript Console in Google Chrome

This will open a nifty little debugging center to the right of the web page listing any
errors or warnings. It is always a good idea to check it just in case there are warning
messages. The same goes with testing your web application in different browser brands
and formats such as computers, phones, and tablets (Figure 2-25).

73

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

“« C ©1270.0.0:5000 2 * &

Chapter 1: Predict Bicycle Rental iR : e
] & | top v | | Filer All levels ¥ Group similar £
Demand

S0

Elsments Console Sources MNetwork Perormance % A

Figure 2-25. JavaScript Console in Google Chrome in action

Microsoft Azure—Mounting a Web Application
for the First Time

We're ready to export our model to Azure. You will need an account on Microsoft Azure,
and at the time of this writing Microsoft offers a convenient $200 credit and 30-day

trial on all services and 12 months access. For more information, see https://azure.
microsoft.com/en-us/free/.

Git—Getting All Projects in Git

For this project, you will need to have Git installed on your local machine (you can find
the install binaries at https://www.git-scm.com/downloads). As stated earlier, Gitis a
source-code versioning tool and it is a fully prepared Git package that we will push out to
Microsoft Azure (see the brief primer on Git in the introduction section).

Open your terminal/command-line window and point it to this chapter’s “web-
application” folder (Listing 2-41).

Listing 2-41. Code Input
$ git init

It is a great idea to run “git status” a couple of times throughout to make sure you are
tracking the correct files (Listing 2-42).

Listing 2-42. Running “git status”
Input:

$ git status

74

https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://www.git-scm.com/downloads

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE
Output:

Untracked files:
(use "git add <file>..." to include in what will be committed)

main.py

ptvs virtualenv_proxy.py
requirements.txt

static/

templates/
web.3.4.config

Add all the web-application files from the “web-application” file and check “git
status” again (Listing 2-43).

Listing 2-43. Adding Web Application Files to Git
Input:

$ git add .
$ git status

Output:

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: main.py

new file: ptvs_virtualenv_proxy.py

new file: requirements.txt

new file: static/images/bike_four.png
new file: static/images/bike_nine.png
new file: static/images/bike_one.png

new file: static/images/bike_sixteen.png
new file: static/images/bike_zero.png
new file: templates/index.html

new file: web.3.4.config

75

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Do alocal Git commit and add a comment that makes sense, in case you need to
revisit past actions in the future (Listing 2-44 and Figure 2-26).

Listing 2-44. Git Commit

$ git commit -am "bike rental web application commit"

o O |) web-application — -bash — 72x13

[master (root-commit) ©27b837) bike rental web application commit =]
11 files changed, 467 insertions(+)

create mode 108644 __pycache__/hello.cpython-36.pyc
create mode 188644 main.py

create mode 188644 ptvs_virtualenv_proxy.py

create mode 108644 requirements.txt

create mode 100644 static/images/bike_four.png
create mode 1008644 static/images/bike_nine.png
create mode 100644 static/images/bike_one.png
create mode 100644 static/images/bike_sixteen.png
create mode 188644 static/images/bike_zero.png
create mode 100644 templates/index.html

create mode 188644 web.3.4.config

Figure 2-26. Committed data ready for Azure upload

For more information on the Git Deployment to Azure App Service, see https://
docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git.

The azure-cli Command Line Interface Tool

We will rely on the “azure-cli” tool to get us up and running, as it is a convenient way to

start and control web instances (for more information on setting this up, see the official

docs at https://docs.microsoft.com/en-us/cli/azure/get-started-with-azure-cli).
For Mac:

$ brew update &&% brew install azure-cli

For all other Operating Systems, refer to the official documentation: https://docs.
microsoft.com/en-us/cli/azure/install-azure-cli.

76

https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git
https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git
https://docs.microsoft.com/en-us/cli/azure/get-started-with-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Step 1: Logging In

After installing the “azure-cli” command-line tool (or using the Azure Cloud Shell
directly if the local command-line tool is giving you trouble), create an “az” session
(Listing 2-45).

Listing 2-45. Logging into Azure from azure-cli

Input:

az login

Output:

To sign in, use a web browser to open the page https://microsoft.com/
devicelogin and enter the code BTIMDCR34 to authenticate.

Follow the instructions, point a browser to the givenURL address, and enter the code
accordingly (Figure 2-27).

Device Login

S:Ell".l‘.cm'.".mm rom e aopcation cn your
L

Code

Figure 2-27. Authenticating session

If all goes well (i.e., you have an Azure account in good standing), it will connect the
azure-cli terminal to the cloud server automatically. Also, once you are authorized, you
can safely close the browser window. Make sure your command-line tool is pointing to
this chapter’s “web-application” folder.

77

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Step 2: Create Credentials for Your Deployment User

This user will have appropriate rights for FTP and local Git use. Here I set the user-name
to “flaskuser11” and password to “flask123” You should only have to do this once, then
you can reuse the same account. In case it gives you trouble, simply create a different
user name (or add a number at the end of the user name and keep incrementing it like I
do (Listing 2-46).

Listing 2-46. Creating a User

$ az webapp deployment user set --user-name <<REPLACE-WITH-YOUR-USER-NAME>>
--password flask123

As you proceed through each “azure-cli” step, you will get back JSON replies
confirming your settings. In the case of the “az webapp deployment,” most should
have a null value and no error messages. If you have an error message, then you have
a permission issue that needs to be addressed (“conflict” means that name is already
taken so try another, and “bad requests” means the password is too weak).

Step 3: Create your Resource Group

This is going to be your logical container. Here you need to enter the region closest

to your location (see https://azure.microsoft.com/en-us/regions/). Going with
“West US” for this example isn’t a big deal even if you're worlds away, but it will make a
difference in a production setting where you want the server to be as close as possible to
your viewership for best performance (Listing 2-47).

Listing 2-47. Creating a Resource Group and Response

$ az group create --name myResourceGroup --location "West US"

Step 4: Create Your Azure App Service Plan

Here I set the name to “myAppServicePlan” and select a free instance (sku; Listing 2-48).

Listing 2-48. Creating a Service Plan and Successful Response

$ az appservice plan create --name myAppServicePlan --resource-group
myResourceGroup --sku FREE

78

https://azure.microsoft.com/en-us/regions

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Step 5: Create Your Web App

Your “webapp” name needs to be unique, and make sure that you “resource-group”
and “plan” names are the same as what you set in the earlier steps. In this case [am
going with “amunateguibike” (Listing 2-49).

Listing 2-49. Creating a Web App

$ az webapp create --resource-group myResourceGroup --plan myAppServicePlan
--name amunateguibike --runtime "python|3.4" --deployment-local-git

For a full list of supported runtimes, see Listing 2-50.

Listing 2-50. List of Supported runtimes
$ az webapp list-runtimes

The output of “az webapp create” will contain an important piece of information
that you will need for subsequent steps. Look for the line “deploymentLocalGitUrl”
(Figure 2-28).

@ @ || web-application — -bash — 102x11

Local git is configured with url of 'https://flaskuserX@amunateguibike.scm.azurewebsites.net/amunategu B
ibike.git'
I
"availabilityState": “"Normal",
“clientAffinityEnabled": true,
"clientCertEnabled": false,
"cloningInfo": null,
"containerSize": @,
"dailyMemoryTimeQuota": @,

'deploymentLocalGitUrl”: "https://flaskuserX@amunateguibike.scm.azurewebsites.net/amunateguibike.git l

Figure 2-28. Truncated output of Git URL from “deploymentLocalGitUrl”

For extracting the local Git configuration URL for your Azure project instance, see
Listings 2-51 and 2-52.

79

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Listing 2-51. The Extracted Git URL in My Case

https://flaskuseri1i@amunateguibike.scm.azurewebsites.net/amunateguibike.git

Listing 2-52. Yours Will Look Like the Following

https://<<REPLACE-WITH-YOUR-USER-NAME>>@<<REPLACE-WITH-YOUR-APP-NAME>>.scm.
azurewebsites.net/<<REPLACE-WITH-YOUR-APP-NAME>>.git

Step 6: Push git Code to Azure

Append the URL we saved previously with the location of your GIT repository to the “add
azure” command (Listing 2-53).

Listing 2-53. Final Code Push to Azure

if git remote already exits, run 'git remote remove azure'
$ git remote add azure https://flaskuserii@amunateguibike.scm.
azurewebsites.net/amunateguibike.git

It may prompt for your password; make sure you use the one you created in the
“az. webapp deployment user” step (“flask123” in my case; Listing 2-54).

Listing 2-54. Final Code Push to Azure
$ git push azure master

That'’s it! You can get back to your placeholder browser page and hit refresh or open a
new browser page and enter http://amunateguibike.azurewebsites.net

(or in your case http://<<REPLACE-WITH-YOUR-APP-NAME>>.azurewebsites.net)
and you should see “Predict Bicycle Rental Demand” (Figure 2-29).

80

http://amunateguibike.azurewebsites.net

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

® © ® /[predicting Bicycle Rental Derr x \| 3 Manuel

&~ C (® amunateguibike.azurewebsites.net aQ w ¢ D

Chapter 2: Predict Bicycle Rental
Demand

i~
-2 -_J -2
@ A A AN @

- X9 - %9 i X
& AN AN AN

For Fall + Work + 15¢ + 23pm = 248 bikes

Figure 2-29. Enjoy the fruits of your hard work—The “Predict Bicycle Rental
Demand” web application!

On the other hand, if the azure-cli returns error messages, you will have to address
them (see the troubleshooting section). Anytime you update your code and want to
redeploy it, send a “push” command (Listing 2-55).

81

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE
Listing 2-55. To Update Code

$ git commit -am "updated output”
$ git push azure master

You can also manage your application directly on Azure’s web dashboard. Log into
Azure and go to App Services (Figure 2-30).

amunategui@outiook... S
AMUNATEGUIOUTLOOK (DEF... WP
App Servites # X

amunateguioutiook (Defauk Clrectory)

re App Services

+ 4de =2 coumns) Refresh

Dashboard Subseriptions: Free Tnal
_ Filter by nare. | Allvesource groups v | Allcations v || Nogrouging v
2 All resgl Ces
T items
| Jrce groups | mame STAT.. APP APP S LOCATI.. susse RESOU..
& App senvices I 2 amunateguihamspa-- Running Web asp myAppServ.. West US Free Trial myResourc... *** I

Figure 2-30. Microsoft Azure dashboard

Important Cleanup!

This is a critical step; you should never leave an application running in the cloud that
you don’t need, as it does incur charges (or use up your free credits if you are on the trial
program). If you don’t need it anymore, take it down (Listing 2-56 and Figure 2-31).

Listing 2-56. Don'’t Forget to Delete Your Azure Instance When Done!

$ az group delete --name myResourceGroup

@ @ web-application — Python - az group delete --name myResourceGroup — 113x7
To https://amunateguibike.scm.azurewebsites.net/amunateguibike.git 8
[new branch) master -> master

manuels-MacBook-Pro-2:web-application manuel$

manuels-MacBook-Pro-2:web-application manuel$

manuels-MacBook-Pro-2:web-application manuel$ az group delete --name myResourceGroup
Are you sure you want to perform this operation? (y/n): y

- Running ..

Figure 2-31. Deleting the web application from the Azure cloud

Or delete it using Azure’s web dashboard under “App Services.”

82

CHAPTER 2

Troubleshooting

It can get convoluted to debug web application errors. One thing to do is to turn on

CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

logging through Azure’s dashboard (Figure 2-32).

+ sdd

22 Columns

iTher by name...

1 of 1 items selectec

MNAME

L;C' amunateguihamspam 51 wee

teguihamspam51

1 Resource explorer

2 Testirg ir procuction

[T exensiens

MOBILE
T Facy tak e
o Zasy APs

& Dama connections

AM
APl definiicn

Gy CORS

MONITORING

@ applicatan Insights
 Alerts
Diagrastics logs
B iegeream

S oo pap oo

Diagnastics logs

Hswe X !

Application Logging (Filesystem) @
Off O

Level

Error

Applicadon Logging (3lob) &

ot !_ur_ ‘

Level

Error

Storage Settings
Storage not configured

[renenrenca e

1

Web server l2gging ©

Off Storage File System #_

Quota (ME) &
35

Retent 24 Period (Cays) O
1

Detailed emror messeges @
of | or ‘
Failed reques: tracing ©
o [or

Figure 2-32. Turning on Azure’s diagnostics logs

83

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Then you turn the logging stream on to start capturing activity (Figure 2-33).

Web server logs

AP| definition

) CORS 2018-02-12701:44:31 Welcome, you are now connected to log-streaming service.

MONITORING
@ Application Insights
W Alerts
Diagnostics logs
Log stream

= Process explorer

Figure 2-33. Capturing log information

You can also check your file structure using the handy Console tool built into the
Azure dashboard (Figure 2-34).

Search (Ctri+/)

DEVELOPMENT TOOLS

s Clone app
M Console
k Advanced Tools D:\ home\ 81 te\wwwroot
App Service Editor (Preview) > 1s

D:\hona\site\wwwroot

-
&3 Performance test anv

hostingstart-python.html

=} Resource explorer)
hostingstart-python.py

Testing in production main.py
ptvs_virtualenv_proxy.py

7T Extensions requirements.txt
static
templates
MOBILE)
web.2.7.config
| Easy tables web.3.4.c

web.config

Figure 2-34. Azure’s built-in command line tool

84

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

You can even check if your “requirement.txt” file works by using the install
command (Listing 2-57).
Listing 2-57. Running Commands in the Azure Console

> env\scripts\pip install -r requirements.txt

Steps Recap

1. Point your terminal/command window to the right directory
with the chapter’s web application files (and confirm that it runs
locally).

$ cd chapter-2/web-application
2. Git commit all files.
$ git init
$ git add .
$ git commit -am "bike rental commit"

3. Loginto the Azure command line interface and authenticate the

session.
$ az login
4. Prepare the Azure web application.

$ az webapp deployment user set --user-name flaskuserii
--password flaski123

$ az group create --name myResourceGroup --location
"West US"

$ az appservice plan create --name myAppServicePlan
--resource-group myResourceGroup --sku FREE

$ az webapp create --resource-group myResourceGroup
--plan myAppServicePlan --name amunateguibike --runtime
"python|3.4" --deployment-local-git

85

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE
5. Push the web application to the Azure cloud.

$ git remote add azure https://flaskuserii@amunateguibike.scm.
azurewebsites.net/amunateguibike.git

$ git push azure master

6. Open the URL in a browser window and enjoy!

http://<<WEBAPP NAME>>.azurewebsites.net

7. Terminate instance!

$ az group delete --name myResourceGroup

What’s Going on Here? A Look at the Scripts
and Technology Used in Our Web Application

Let’s do a brief flyover of our web application’s code. There are two important files:
“main.py,” which is the web-serving controlling script and the template file “index.
html,” which is the face of our web application. As most of the processing happens
directly in “index.html,” we’ll spend most of our time there looking at the HTML and
JavaScript running this web application.

main.py

Under normal circumstances, this would be the brains behind the operation. It can

do about anything a standalone Python script can, with the addition of being able to
generate content for web pages. In this chapter, there really isn’t much going on here
except for passing average feature values and the model’s intercept and coefficients

to the template. In this book, we will use both “main.py” and “application.py.” There
isn’t a right or wrong way of naming the controlling Python web-serving file-the only
exception being some reserved words. If you do opt for a custom name, you will need to
update the YAML file and/or the Web Server Gateway Interface configuration file. Also,
some cloud providers default to different application names; Google Cloud defaults to
“main” and Azure defaults to “application.” But in either case, it is possible to customize
and change.

86

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

The one interesting thing that “main.py” is doing here is transmitting starting values
for the intercept, coefficients, and mean values.

The decorator “@app.route” will route any traffic calling the root URL or with the
file name “index.html.” It then simply passes all the default values to the “index.html”
template (Listing 2-58).

Listing 2-58. Routing to the “index.html”

@app.route("/", methods=['POST", 'GET'])
def index():
on load set form with defaults
return render template('index.html’,
mean_holiday = MEAN_HOLIDAY,
mean_hour = MEAN_HOUR,
MEAN SEASON 1,
MEAN_SEASON 2,
MEAN_SEASON_3,
mean_sesaon4 = MEAN_SEASON 4,
mean_temp = MEAN_TEMP,
model_intercept = INTERCEPT,
model holiday = COEF_HOLIDAY,
model hour = COEF_HOUR,
model season1 = COEF_SEASON 1,
COEF_SEASON 2,
model season3 = COEF_SEASON 3,
model season4 = COEF_SEASON 4,
model temp = COEF_TEMP)

mean_sesaonl
mean_sesaon2
mean_sesaon3

model season2

Flask uses a technology called “Jinja2” to inject those variables directly into the
HTML template form. If you look at the return statement, it calls Flask’s “render_
template” function and passes the intended variables to “index.html”

All a template needs to do to receive those variables is use the double curly bracket
command. To see all of this, refer to the web-application “index.htm” full script
(Listing 2-59).

87

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

Listing 2-59. Using Jinja2 to Set Python Variables into JavaScript

<SCRIPT>
var HOLIDAY = {{mean_holiday}} // day is holiday or not
var HOUR = {{mean_hour}} // hour (0 to 23)
var HOUR = {{mean_hour}} // hour (0 to 23)

var SEASON_1 = {{mean_sesaoni}} // 1:spring

var SEASON 2 ={{mean_sesaon2}} // 2:summer

var SEASON 3 = {{mean_sesaon3}} // 3:fall

var SEASON 4 = {{mean_sesaon4}} // 4:winter

var TEMP = {{mean temp}} // norm temp in Celsius -8 to +39
var INTERCEPT = {{model intercept}}

var COEF_HOLIDAY = {{model_holiday}} // day is holiday or not

var COEF_HOUR = {{model hour}} // hour (0 to 23)

var COEF_SEASON 1 = {{model season1}} // 1:spring

var COEF_SEASON 2 = {{model season2}} // 2:summer

var COEF_SEASON 3 = {{model season3}} // 3:fall

var COEF_SEASON 4 = {{model season4}} // 4:winter

var COEF TEMP = {{model temp}} // norm temp in Celsius -8 to +39

/static/ folder

The static folder, as its name implies, holds static, nonchanging files. This is where you
store images, files, and other shareable data for our web application.

[templates/index.html folder and script

The templates folder holds all the templates required for our web application. In the
subsequent chapters there are usually two html files, an “index.html” and a response
html file. It is better to break these files apart instead of trying to cram everything into a
single html file with complex “if then” forks.

Most of the action in this chapter happens inside “index.html,” so let’s take a deeper
look. Open the full “index.html” file in your editor to follow along. As mentioned earlier,
the “brains” of this chapter aren’t Flask but the “index.html” front-end page—and mostly
all inside of the JavaScript snippet at the end of the page. JavaScript brings a great level of
interactivity to a web page.

88

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

In the case of this web application, it listens for button click events and recalculates
bike rental demand by running the regression equation with the selected features. It
doesn’t end there; once it gets a new demand estimate, it will weigh that number and
decide which bicycle picture collage to show—if it’s a small estimate it returns a single
bicycle, if it’s a huge one, all sixteen.

First the user clicks a feature button to get a new bike rental estimate using that
particular feature (Listing 2-60).

Listing 2-60. Calling for Predictions Using the HTML “<button>" event.

<button type="button" onclick="calculateBikeDemand(this)" id="season_
spring" class="btn btn-info btn-circle btn-x1"><i class="fa fa-
check">Spring</i></button>

The “onclick()” function inside the “<button>" tag will send the Id “season_spring”
to the main JavaScript function “calculateBikeDemand().” This is telling the function
that the user wants to recalculate the regression equation with the season’s variable set
as seen in Listing 2-61.

Listing 2-61. The “calculateBikeDemand()” Modeling JavaScript Function
function calculateBikeDemand(elem) {

// apply new value to stored variables

// recalculate the regression equation
rental counts = INTERCEPT + (HOLIDAY * COEF_HOLIDAY)

+ (HOUR * COEF_HOUR)

+ (SEASON 1 * COEF SEASON 1) + (SEASON 2 * COEF SEASON 2)
+ (SEASON_3 * COEF_SEASON 3) + (SEASON 4 * COEF_SEASON 4)
+ (TEMP * COEF_TEMP)if (rental counts < 0)

// figure out which image to show
if (rental counts < 0) {
bike out = 'static/images/bike_sixteen.png'
if (rental counts < 0) {
bike out = 'static/images/bike_zero.png'
} else if (rental counts < 100) {

89

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

bike out = 'static/images/bike_one.png'
} else if (rental counts < 200) {

bike out = 'static/images/bike_four.png'
} else if (rental counts < 300) {

bike out = 'static/images/bike nine.png'}

// build a new string that is readable with variables select by user
// and new bike rental estimate

output = 'For ' + season + ' + ' + holiday + ' + ' + temp + ' +
"+ hour + ', demand = ' + Math.round(rental counts) + ' bikes';

// inject new value and image source directly into the HTML tag
document.getElementById("query").innerHTML = output;
document.getElementById('bike out').src = bike out

Conclusion

That'’s it for our first project! Though this was a simple one with little back and forth
between the web-client and web-server, it fulfills the definition of a real web application.
In this chapter we introduced the concept of extending standalone scripts into
interactive web applications by using Flask and web controls. We also saw how easy
Python and Python libraries can communicate with the Flask web framework, making
the leap into web computing almost seamless.

The process started by planning what our web application should be and what would
be of interest to the viewer. This step can’t be emphasized enough: if it isn’t of interest to
anybody, then there is no need to bother building it. Too often we start by modeling and
then attempt to retrofit it to make it work around a web application story.

We then explored the Bike Sharing Dataset from Capital Bikeshare System,®
experimented with different modeling approaches to predict rental demand under
environmental factors and chose the final features and model coefficients to use in our

web application.

*https://www.capitalbikeshare.com/system-data

90

https://www.capitalbikeshare.com/system-data

CHAPTER 2 CLIENT-SIDE INTELLIGENCE USING REGRESSION COEFFICIENTS ON AZURE

We ran a local version of the Flask application and finally deployed it to the Microsoft

Azure cloud. If you follow these steps in this order, you should be fine. Always start by

designing the web application story, build and run as much of it as you can locally, and

only then deploy to the cloud.

Additional Resources

If you want to learn more about Flask, Google it; there’s so much material on this topic.

For more information on:

Flask: Go to the source, the official portal: http://flask.pocoo.org/

CSS: See the tutorial on the great w3schools site (CSS and everything
else web related): www.w3schools.com/css/

Bootstrap: See the portal: https://getbootstrap.com/
JQuery: Check out their portal: https://jquery.com/
YAML: Check out their streamlined portal: http://yaml.org/

Jinja2: See the official documentation: http://jinja.pocoo.org/
docs/

91

http://flask.pocoo.org/
http://www.w3schools.com/css
https://getbootstrap.com/
https://jquery.com/
http://yaml.org/
http://jinja.pocoo.org/docs/
http://jinja.pocoo.org/docs/

CHAPTER 3

Real-Time Intelligence
with Logistic Regression
on GCP

Let’s understand who survived the Titanic shipwreck by building an interactive
passenger profile builder on Google Cloud.

In this chapter, we revisit the classic and dramatic Titanic dataset, favored by
modeling text books and educational blogs all over the world. We will analyze the
passenger manifest and attempt to understand why some did, and others didn't, survive
this tragic accident. We will explore the dataset, prepare it for modeling, and extend it
into an interactive web application that will allow users to create a fictional passenger,
tweak parameters, and visualize how well he or she fared on the voyage (Figure 3-1).

93
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_3

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

® © ® [Titanic Journey Simulation x 3 Manuel
< ' & Secure | https://apt 192717, com e % & (# I
T i g .
| \ i Cabin and Port
Cha.p ter 3 /A l ‘ ‘ 1 ' of Embarcation
Design Your BV D=) oW, S Details
Titanic Traveler

Port of Southampton *
Embarcation How Did Your Fictional Traveler Do?
79.18% of Surviving!
Fare 100
33
Age 40 %
80 4
Gender Female +
Tithe Mrs. E 50
= 1
. 2
Class Third % g
Y
]
Cabi > |
n c s a0
&
Number of L]
Siblings/Spouses
204
Number of 0%
Parents/Children
o T
Average Survival Rate Fictional Traveler
All Aboard!

Figure 3-1. The final web application for this chapter

The Vanderbilt University Department of Biostatistics' is graciously hosting the data
(along with many other interesting datasets) and can be conveniently downloaded using
a direct call from the Pandas Python library.

Note Download the files for Chapter 3 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter3.ipynb” to follow along with this chapter’s content.

'http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets

94

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Planning our Web Application

Our first step is to get our Titanic concept fully thought out and working as a web
application on our local machine.

The brain behind our application is a simple logistic regression model from the
“sklearn Python library.”? After we prepare the data by removing nonpredictive
features, creating dummy columns for categorical data, and applying basic natural-
language processing on text fields, we train the model to identify the common patterns
around those who survived the trip and those who didn’t.

We verify the accuracy of our model by following the standard modeling procedure
of splitting the data into chunks, one to train the model and the other to validate it. Once
we are satisfied with the model’s abilities, we have it predict the probability of survival on
a fictional passenger. This probability, a number between 0 and 1, represents the chance
for the fictional passenger to make it out alive from the shipwreck-the closer to 1, the
better the chances of surviving.

Finally, we will abstract and generalize this entire process to run in the constructor
of our web application. This means that the entire process of ingesting, preparing, and
modeling data will only happen once during deployment of the model (and whenever
the web server is rebooted). This ensures that when a user wants to interact with the web
application, it quickly yields a prediction from the trained model because it is already
loaded in memory. But we’re jumping the gun here; let’s first finish the local version of
the project.

Data Wrangling

As this is a classic data science exercise and a famously recorded event, we already know
(or have an intuition of) which features are of interest in understanding who survived the
voyage (see the Vanderbilt Biostat for additional information®). Go ahead and download
the files for this chapter into a folder called “chapter-3.” Open up the Jupyter notebook
to follow along. Let’s look at the data legend from the host (Table 3-1).

*http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html

Shttp://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/Ctitanic3.html

95

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/Ctitanic3.html

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Table 3-1. Dataset Legend

Feature Description

pclass Ticket class comprised of 3 levels
sex Gender

age Age

sibsp Number of siblings/spouses aboard
parch Number of parents/children aboard
fare Passenger fare

cabi Cabin number

embarked Point of embarkation

name Passenger name

A first pass at exploring data can be done programmatically using the Pandas

“head()” function that will return the top five rows (Listing 3-1 and Figure 3-2). You can

also use the “tail()” function to see the bottom five.

Listing 3-1. Quick Look at the Top Five Rows

titanic_df.head()

pclass survived

0 1
1 1
2 .
3 1
a 1

Figure 3-2.

96

1

o

name sex age sibsp parch ticket fare cabin embarked

Allen, Miss.

Elisabeth female 28.00 0 0 24160 2113375 B5
Walton

Allison,

Master, c22
Tideoe male 092 1 2 113781 151.5500 C26
Trevor

Allison, c22

Miss. Helen female 2.00 1 2 113781 151.5500 c26
Loraine

Allison, Mr.

Hudson c22
ohia male 30.00 1 2 113781 151.5500 C26

Creighton

Allison, Mrs.

Hudson J C c22
(Bessie female 25.00 1 2 113781 151.5500 C26
Waldo
Daniels)

The first five rows of the raw data

NaN

NaN

NaN

body

NaN

NaN

NaN

135.0

NaN

home.dest

St Louis,
MO

Montreal,
PQ/
Chesterville,
ON

Montreal,
PQ/f
Chesterville,
ON

Montreal,
PQf
Chesterville,
ON

Montreal,
PQ/f
Chesterville,
ON

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

The data does conform to Vanderbilt Biostat’s data legend. Things that should jump
out at you are the missing values in the “body” column, a lot of text data in the “name”
and “home.dest” columns, and some mix content in the “cabin” column.

Functions “info(),” “describe(),” and “isnull()” are also key for quick data
exploration. It is highly recommended to run these whenever facing a new dataset or
after any data transformation work.

The Pandas “info()” function tells you the data types and non-null counts contained
in the dataset (Listing 3-2).

Listing 3-2. Quick Look Feature Data Types
Input:

titanic_df.info()

Output:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 1 columns):

pclass 1309 non-null inté64
survived 1309 non-null int64
name 1309 non-null object
sex 1309 non-null object
age 1046 non-null float64
sibsp 1309 non-null int64
parch 1309 non-null int64
ticket 1309 non-null object
fare 1308 non-null float64
cabin 295 non-null object
embarked 1307 non-null object
boat 486 non-null object
body 121 non-null float64

home.dest 745 non-null object
dtypes: float64(3), int64(4), object(7)
memory usage: 143.2+ KB

97

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Data labeled as “non-null object” from the “info()” function output can be
considered as text based, and we need to figure out what type of text it is. This is a bit of a
subjective art, as there are various ways to approach this (more on this shortly).

The Pandas “describe()” function gives you an aggregate summary of all
quantitative fields. Right off the bat, we can see that the “survived” feature has a mean of
0.38. This means that only 38% of the passengers survived and, as we will use that feature
as our outcome label to train the model, that the dataset is skewed toward nonsurvivors

(i.e., most passengers did not survive the voyage; Listing 3-3 and Figure 3-3).

Listing 3-3. Summary of Quantitative Data

titanic_df.describe()

pclass survived age sibsp parch fare body
count [1309.000000 | 1309.000000 | 1046.000000 | 1309.000000 | 1309.000000 | 1308.000000 | 121.000000
mean |2.294882 0.381971 290.881138 |0.498854 0.385027 33.295479 | 160.809917
std |0.837836 0.486055 14.413493 [1.041658 0.865560 51.758668 |97.696922
min |1.000000 0.000000 0.170000 0.000000 0.000000 0.000000 1.000000
25% |2.000000 0.000000 21.000000 |0.000000 0.000000 7.895800 72.000000
50% |3.000000 0.000000 28.000000 |0.000000 0.000000 14.454200 |155.000000
75% |3.000000 1.000000 39.000000 |1.000000 0.000000 31.275000 |256.000000
max |3.000000 1.000000 80.000000 |8.000000 9.000000 512.329200 |328.000000

Figure 3-3. Description output of the titanic data frame

The “isnull()” function can be wrapped into a counter to find out how many missing

values we are dealing with. Books have been written on the topic of imputation and how

best to deal with missing data in modeling scenarios. Here we will drop a few features

and impute others (Listing 3-4 and Figure 3-4).

Listing 3-4. Analyzing Missing Data

titanic_missing count = titanic_df.isnull().sum().sort_

values(ascending=False)
pd.DataFrame({'Percent Missing':titanic_missing count/len(titanic_df)})

98

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Percent Missing
body 0.907563
cabin 0.774637
boat 0.628724
home.dest | 0.430863
age 0.200917
embarked |0.001528
fare 0.000764
ticket 0.000000
parch 0.000000
sibsp 0.000000
sex 0.000000
name 0.000000
survived |0.000000
pclass 0.000000

Figure 3-4. Percent missing data per feature in the titanic data frame

Upon analyzing the function outputs, we gather that the data includes numerical,
categorical, and text-based features. The dataset contains a total of 1,309 rows. We also
see that 90% of the entries in feature “body” are missing; this makes for an easy feature to
drop. There are other features that we will ignore, as they are either hard to work with or
of little help to model survivorship (such as the passenger’s last name).

99

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Dealing with Categorical Data

Working with categorical data is an important topic, and some aspects are subjective
while others aren’t. A good rule of thumb is to find out how many values for a particular
text-based column are unique or repeated. Checking the frequency is a good place to
start. Let’s combine Pandas “groupby()” and “count()” functions call on feature “cabin.”
This will tell if values are shared among passengers and thus should be considered

categories or free-form text entries (Listing 3-5 and Figure 3-5).

Listing 3-5. Counting Repeats in the “cabin” Feature

titanic_feature count = titanic_df.groupby('cabin')['cabin"'].count().reset_
index(name = "Group Count")
titanic_feature count.sort values('Group Count', ascending=False).head(20)

cabin Group_Count

80 C23 C25 C27 6
184 G6 5
47 B57 B59 B63 B66 5
60 BO6 BO8 4
183 F4 4
181 F33 4
180 F2 4
79 C22 C26 4
17 D 4
102 C78 4

Figure 3-5. Cabins are concatenated and can benefit from being decoupled

100

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

The resulting output confirms that these values are categories, as they are often
repeated (this follows the intuition that there can be more than one passenger per
cabin). Let’s run the same experiment on another text-based column, the “name”
feature (and we already know how many repeats we’ll see; Listing 3-6 and Figure 3-6).

Listing 3-6. Counting Repeats in the “name” Feature

titanic_feature count = titanic_df.groupby('name')['name'].count().reset
index(name = "Group Count")
titanic_feature count.sort values('Group Count', ascending=False).head(10)

name Group_Count

261 Connolly, Miss. Kate 2
638 Kelly, Mr. James 2

0 Abbing, Mr. Anthony 1
879 O'Brien, Mrs. Thomas (Johanna "Hannah" Godfrey) 1
877 O'Brien, Mr. Thomas 1
876 Nysveen, Mr. Johan Hansen 1
875 Nysten, Miss. Anna Sofia 1
874 Nye, Mrs. (Elizabeth Ramell) 1
873 Novel, Mr. Mansouer 1
872 Nourney, Mr. Alfred ("Baron von Drachstedt") 1

Figure 3-6. How many times is a name repeated?

As intuition would have it, the majority of names are unique. This just isn’t a good
column to be considered categorical nor is it a good column for modeling in general
(you need repeating data to find patterns, and unique text entries don’t serve that
purpose in their raw state).

Categories can be found in both Integer and Text data types; therefore, it is important
to consider each feature individually and determine how best to model. For example,
the feature “sex” is categorical and binary, so fractions of that data won’t help us. We
will change it to a single column named “isFemale.” The feature “cabin” does repeat as
shown before, but we can get it to repeat much more with a little help (Listing 3-7).

101

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Listing 3-7. “Head()” of Cabin Features
Input:
titanic _df['cabin'].head()

Output:

0 B5
1 C22 C26
2 C22 C26
3 C22 C26
4 C22 C26

Name: cabin, dtype: object

By extracting a sample of that feature, we notice a commonality with the data: each
number is preceded by a letter representing the ship deck level (Figure 3-7).

""IIT" nG
I—?‘J.Ih'-'m_ 2

Figure 3-7. Cutout of the Titanic with labels representing the cabin levels
(Illustration by Lucas Amunategui)

102

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

So, one way to leverage that data is to take the first letter and drop the number. This
gives us an interesting feature to work with: what floor was the passenger on and was
there a relationship between the distance from the floor and the lifeboats on the top deck
regarding survivorship? Maybe there is, and you can find out by using the application we
are about to build (Listing 3-8).

Listing 3-8. Using Only the First Character from Each Cabin Name

Input:

titanic_df['cabin'].replace(np.NaN, 'U")
[In[0] for 1n in titanic_df['cabin'].values]
titanic_df['cabin'].replace('U", 'Unknown")
.head()

titanic_df['cabin
titanic_df['cabin']
titanic_df['cabin']

[]

titanic_df['cabin

Output:

O N N N @

0
1
2
3
4

Name: cabin, dtype: object

And let’s do a “groupby()” and “count()” as we did previously to count frequency
(Listing 3-9 and Figure 3-8).

Listing 3-9. Counting Each Cabin First Letter Groups

titanic_feature count = titanic_df.groupby('cabin')['cabin"'].count().reset
index(name = "Group Count")
titanic_feature count.sort values('Group Count', ascending=False).head(10)

103

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

cabin Group_Count

8 Unknown 1014
2 C 94
1 B 65
3 D 46
4 E 41
0 A 22
5 F 21
6 G 5
7 T 1

Figure 3-8. Total counts of our new “cabin” feature

Wow, there are a lot more repeats than previously observed. This should be more
useful as a feature than in its previous format. We will do the same to the passenger’s
“name” feature and extract only the title: “Mrs.” or “Mr.’, etc. and drop the other parts
(see the Jupyter notebook for more details).

This isn’t to say that raw, free-form text (the nonrepeating kind) can’t be useful
for modeling. On the contrary, most data in the world is unstructured and very rich
in potential-think doctor notes, or store reviews! This can be modeld but requires
more advanced approaches such as natural language processing, singular vector
decomposition, word vectoring, etc. We will see some of these techniques in later
chapters of the book.

Creating Dummy Features from Categorical Data

Once we have identified our categorical features and transformed those that needed
transformation, we still need to turn them into a numerical form so our models can use
them. One great function from the Pandas library is “get_dummies().” This will break

each category out into its own column.

104

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Here is an example of using the “get_dummies()” function and its output
(Listing 3-10 and Figure 3-9).

Listing 3-10. Creating Dummies out of the “cabin” Feature

pd.get dummies(titanic_df['cabin'], columns=['cabin'], drop first=False).
head(10)

>
vy
0
o
m
m
@

T Unknown

0O 017 000 0O OO 0
10 017 00 0 0O 0
2 0 01 00O0 OO 0
3 00 10 0O0 OO 0
4 0 01 00 0 OO 0
5 00 0O0O 170 0O 0
6 0 001700 OO 0
7 1.0 0 0 00O OO 0
8 0017 000 OO 0
9 00 0O0OOO0O OO 1

Figure 3-9. The cabin feature transformed into binary data (dummified)

It takes a feature and breaks out each unique value into a separate column and drops
the original. Keep in mind that not all noncontinuous numbers should be made into
dummy fields. Think about zip codes in the United States; if you dummify them, you
will be adding an additional 43,000 features of extremely sparse data to your dataset—not
always a good idea. In the case of zip codes, a better approach may be larger categorical
groupings like modeling at the town or state level.

105

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Modeling

Keeping things simple for our second project will allow us to focus on the big picture and
spend equal time on each piece involved in building a web application. We will use the
Logistic Regression model from the “sklearn” library. If you recall from the last chapter,
we used a linear regression, which attempts to predict a continuous variable. A logistic
regression, on the other hand, attempts to predict a binary outcome such as true or

false, happy or sad, etc. These are both extremely common models, but you need to use
the correct one depending on the type of outcome variable you are trying to model and
predict.

Train/Test Split

We leverage the “train_test_split()” function from sklearn that will split the data into
two random datasets with seed. Setting the “random_state” parameter is a good idea
whenever you are testing different approaches and want to ensure that you are always
using the same splits for fair comparison. The “test_size” parameter sets the size of the
test split. Here we set it to .5, or 50%, thus it will randomize the data and split it in half
between training and testing. We’ll use the training portion to model the data, and the
testing portion to evaluate how well our model performed. It is easy to use (Listing 3-11
and Figure 3-10).

Listing 3-11. Splitting the Data into Train and Test portions

from sklearn.model selection import train test split

features = [feat forfeat in list(titanic_ready df) if feat != 'survived']
X _train, X test, y train, y test = train test split(titanic_ready
df[features],

titanic_ready df[['survived']], test size=0.5, random state=42)
print(X_train.head(3))

106

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

age sibsp parch fare disfemale pclass_Second pclass_Third \
455 63.0 1 0 26.000 (0] 1 0]
83 64.0 1 1l 26.550 1 [¢] 0]
1228 31.0 0]] 7.925 (0] [¢] 1
pclass_nan cabin_B cabin_C cae embarked_S embarked_Unknown \
455 0 0] 0] 1 0
83 0 1 (0] 1 0
1228 0] (0] 0] 1 0]

embarked_nan title_Master. title_Miss. title_Mr. title_Mrs. \

455 (0] 0] 0] 1 0
83 0 0] 0] 0] 1
1228 0 0] 0] 1 o}

title_Rev. title_Unknown title_nan

455 0] 0] 0
83 0] 0] 0
1228 0] 0] 0

[3 rows x 28 columns]
Figure 3-10. Training split of the titanic data frame ready for modeling
It splits out the outcome variables into “y_train” and “y_test”; the model will only
have access to “y_train” (Listing 3-12).
Listing 3-12. Top Outcome Values from Training Dataset
Input:

print(y_train.head(3))

Output:
survived
455 0
83 1
1228 1

Logistic Regression

Itis time to decide on what model to use and set it up. As we are predicting a binary
outcome, whether a passenger survived the voyage or not, a logistic regression is a
good and lightweight choice—perfect for a web application. It is always good to keep the
endgame in mind (Listing 3-13).

107

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Listing 3-13. Sklearn’s Logistic Regression Model

from sklearn.linear model import LogisticRegression
1r model = LogisticRegression()

ravel() simply creates a flattened array

1r model.fit(X train, y train.values.ravel())

The data is fairly straightforward, and the patterns of survivorship are well known
and can stand out with most modeling algorithms. The Sklearn Logistic Regression
model makes it very easy to peek into the model’s resulting coefficients to help us
interpret which features are deemed important for surviving the Titanic trip
(Listing 3-14).

Listing 3-14. Extracting Our Model’s Coefficients

coefs = pd.DataFrame({'Feature':features, 'Coef':1lr model.coef [0]})
coefs.sort values('Coef', ascending=False)

Figure 3-11 shows the top-positive and bottom-negative influencers in predicting
survivorship. Clearly, on this particular trip, you were better off being female and rich
than male and poor (see the notebook for the full list of coefficients).

Positive Features Negative Features
Coef Feature Coef Feature
4 1.863107 isfemale 7 -0.414656 pclass_Third
22 1.617701 title_Master. 27 -0.487802 title_Unknown
8 0.955656 cabin_A 18 -0.559317 embarked_Q
25 0.947049 title_Mrs. 1 -0.562287 sibsp
11 0.770398 cabin_D 10 -0.660546 cabin_C
17 0.732904 embarked C 24 -0.943036 title_Mr.
5 0.535326 pclass_First 16 -1.074717 cabin_Unknown

Figure 3-11. Top-positive and bottom-negative feature influencers

108

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Predicting Survivorship

Once we have a trained model, we can validate its accuracy by using the testing portion
of the data we earmarked earlier to validate the model (using the “train_test_split()”
function mentioned). This data should never be used in the training phase! It therefore
guaranties a fresh look at the model and an objective way of getting a performance score
(Listing 3-15).

Listing 3-15. Predict Using the Testing Portion of the Dataset
Input:

y pred = 1r model.predict(X test)
print('Accuracy of logistic regression classifier on test set: {:.2f}%'
.format(lr modl.score(X test, y test)*100))

Output:
Accuracy of logistic regression classifier on test set: 79.35%

The model with the validation dataset scored almost an 80% accuracy rate in
predicting who did survive the trip. This isn’t a bad score, considering we are using a
simple model and a small dataset.

We're almost done with the Python script; we just need to make sure we can predict
using fictional data. This is an important step, as we want our users to be able to come up
with their own data and run it through the trained model. OK, so let’s try a 50-year old
male in third class score (Listing 3-16).

Listing 3-16. Setting Up a Custom Prediction by Creating a Fictional Passenger

x_predict _pclass = 'Third'
x_predict is female=0
x_predict_age=50
x_predict_sibsp=3
x_predict parch = 0
x_predict fare = 200
x_predict _cabin = 'A’

x_predict embarked = 'Q
x_predict title = 'Mr.'

109

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

If you are familiar with this dataset and historic event, you know that our fictional
passenger won't fare well. After we run it through the model, we present the results using
a simple comparative chart that shows the average survival rate next to our fictional
passenger. Being male and in third class is a bad combination (Figure 3-12).

How Did Your Fictional Traveler Do?
4.25% Chance of Surviving!
100

80 A
z
% 60 -
£
e
(=9
S
2 401
=
w

20 1

0 , I
Average Survival Rate Fictional Traveler

Figure 3-12. Average survival rate vs. our fictional traveler

Abstracting Everything in Preparation for the Cloud

Now that we have confirmed that our model works, that we can create fictional
passengers and predict their probability of survivorship, we can package the code into
two functions for our web application. Keeping things clean and neat will reduce the
complexities and debugging headaches in the process of moving from a stand-alone
scripting project and into a cloud-based environment.

110

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Function startup()

We create a “startup()” function that will take care of loading the data in memory,
perform all the feature engineering, create dummy columns, and train the model. This
function only gets called once when the web server is brought online and whenever it is
rebooted. Preloading as much of the work as possible into memory will offer a faster and

more responsive experience with the users interacting with the web application.

Function submit_new_profile()

The second function is called “submit_new_profile().” This function handles the new
fictional passenger profile, formats the data into the same shape as the real training
data, creates the needed dummy columns, and asks the model to predict and yield a
probability of survivorship.

That'’s it; most of the brain processing that we need will be handled by those two
functions. All the rest of the code is used for communicating between the web server and
the HTML page, displaying results, and making the whole thing look professional. But
we're jumping ahead of ourselves; let’'s now get more acquainted with Flask.

A great reason for using Flask is that it allows us to link stand-alone Python scripts
functions to server-side web controls without leaving the Python language. This makes
passing data between a model and the web a whole lot easier!

Interactivity with HTML Forms

Besides Flask, a critical front-end web technology is the “HTML Form.”* Though this

is basic stuff, it is the critical link between a user and our application. The HTML Form
allows the user to interact with information on the web page, then hit the submit button
to send that customized data back to the Flask web server (Listing 3-17).

Listing 3-17. Interacting with Users

<FORM id="submit params' method="POST" action="{{ url for('submit new_
profile') }}">

*https://www.w3schools.com/html/html_forms.asp

111

https://www.w3schools.com/html/html_forms.asp

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

<SELECT class="selectpicker" name="selected embarked">
<option value="{{selected embarked}}" selected>{{selected
embarked}}</option>
<option>Cherbourg</option>
<option>Queenstown</option>
</SELECT>

<BUTTON type="submit>Submit</BUTTON>
</FORM>

Creating Dynamic Images

Here we use an important technique to translate images created on the fly in Python into
strings, so they can be dynamically fed and understood by an HTML interpreter. This is
offered through the “base64” Python module:

This module provides data encoding and decoding as specified in RFC
3548. This standard defines the Basel6, Base32, and Base64 algorithms for
encoding and decoding arbitrary binary strings into text strings that can be
safely sent by email, used as parts of URLs, or included as part of an HTTP
POST request. The encoding algorithm is not the same as the uuencode
program.®

In the following simplified code snippet, we create an image in Python using the
“matplotlib.pyplot” library (Listing 3-18).

Listing 3-18. Creating Dynamic Images

import matplotlib.pyplot as plt

fig = plt.figure()

plt.bar(y pos, performance, align="center', color = colors, alpha=0.5)
img = io.BytesIO()

plt.savefig(img, format="png")

img.seek(0)

plot url = base64.b64encode(img.getvalue()).decode()

*https://docs.python.org/2/library/base64.html
112

https://docs.python.org/2/library/base64.html

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Then the variable “plot_url” can be injected into the HTML code using Flask Jinja2
template notation as such (Listing 3-19).

Listing 3-19. Plotting the Dynamic Image from Flask to Jinja2

model plot = Markup('".format(plot url))

<div>{{model plot}}</div>

And if you look at the HTML source output, you will see that the HTML image
tag is made up of long string of characters (drastically truncated in the image shown).
The interpreter will know how to translate that into an image (Figure 3-13).

<img src="
/DLeeustINfX46uvvkISUhJsbGyQnJlzcKe2h]@9
wcDDWr12rwtfyebaltf3J9T+MOh4mIyMjnDt3T1
n0zc3F22+/jW+++UZZ17V v2o0Hfv3hg/
fjwGDBiAXMRE3Lhxgz2CEluzZg3Cw8Mxbdo@90/
ARERERJJhACQiIiKSDAMgERERKWT+B5qsMwW4gCB
jA4AAAAAETFTkSuQmCC">

Figure 3-13. Image transformed into string of characters

Downloading the Titanic Code

Let’s download the files for Chapter 3 and save them on your local machine if you
haven’t already done so. Once you have downloaded, open a command line window,
and change drive to the “web-application” folder. The folder structure should look like
Listing 3-20.

113

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Listing 3-20. Web Application Files

web-application/

F— main.py
F— static/
L— images/
— small cabin location.png
L— small titanic.jpg
— templates/
L— index.html

— titanic3.csv
— requirements.txt

— app.yaml

L— appengine_config.py

Once you have downloaded and unzipped everything, open a command line
window, change drive into the “web-application” folder, and install all the required
Python libraries by running the “pip install -r” command (Listing 3-21).
Listing 3-21. Installing Requirements

$ pip3 install -r requirements.txt

As with the previous local Flask applications, run the “Python3 main.py” command.
It should look like the following screen shot in Figure 3-14.

. @ python-anywhere-model — python main.py — 80x24

manuels-MacBook-Pro-2:python-anywhere-model manuel$ python main.py
/Users/manuel/anaconda/lib/python2.7/site-packages/sklearn/cross_validation.py:4
1: DeprecationWarning: This module was deprecated in version ©.18 in favor of th
e model_selection module into which all the refactored classes and functions are
moved. Also note that the interface of the new CV iterators are different from
that of this module. This module will be removed in ©.20.
"This module will be removed in ©.20.", DeprecationWarning)
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Figure 3-14. Command/terminal window output stating URL address of local
Flask web page

114

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Then copy the URL “http://127.0.0.1:5000/” (or whatever is stated in the terminal
window) into your browser and you should see the Titanic web application appear. If it
doesn’t, open “main.py” in your favorite code editor (sublime on the Mac or notepad++
on Windows are my favorites) and switch the Boolean flag on the last line to “True.”
Rerun it and address whatever issues the logger complains about.

See the local version of the web application in Figure 3-15.

® © ® [y Titanic Journey Simulation X tubeot
e C @ 127.0.0.:5000 Q | & g ®:
Chapter 3 cacin et
M)
Design Your ,lw‘ ‘.._.l AR Details
Titanic Traveler

Port of Southampton ¥
Embarcation How Did Your Fictional Traveler Do? g
56 83.42% of Surviving! i,
Fare a3
Age 20
80 4

Gender Female

g
Title Mrs. i: 60

2

-]

Class Second ¥ &

B

>
Cabin G s 401

&
Number of L
Siblings/Spouses 20
Number of o
Parents/Children

] T
Average Survival Rate Fictional Traveler
All Aboara!

Figure 3-15. Local version of our web application

Google Cloud Flexible App Engine

Now, this is the other fun part, getting our application into the serverless cloud for the
world to see! In the introduction chapter we looked at the Standard App Engine, this
time around we’ll have to use the Flexible App Engine in order to run more sophisticated
Python libraries.

115

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Google App Engine

The Google App Engine is serverless, so you don’t have to think about any of the

hardware behind your web application. You don’t have to know what OS your

application is running under, it will scale accordingly, Google will take care of security

patches, and you only pay for what you consume.

There are two types of App Engines you can opt for: one is very simple but less

customizable, while the other isn’t. We used the Standard Environment in Chapter 1;
here we’ll need to use the Flexible Environment due to the need of certain Python libraries

(Figure 3-16).

Standard environment

Lightweight Python 2.7 runtime is

optimized to scale nearly
instantaneously to handle huge
traffic spikes.

Does not allow native code,

filesystem access or arbitrary
network connections. Learn more

Uses proprietary APls to simplify

common tasks like database
access, queuing and in-memory
caching.

Most cost-effective for

applications that have significant
periods where they are not serving
traffic.

Python 2.7

VIEW DOCS

Choose your preferred environment

Flexible environment

Full open source language
runtimes

Use any framework, library or
binary of your choice.

Code is portable to anywhere that
supports Docker containers.

Most cost-effective for

applications that serve traffic
continuously.

Python 2.7, 3.6

VIEW DOCS

Figure 3-16. Differences between App Engine’s Standard and Flexible
environments (may have changed by the time you read this)

116

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Deploying on Google App Engine

There are multiple ways of deploying a web application on the Google App Engine.

In this chapter we’ll use the built-in shell terminal on the dashboard itself. This is
something you use for quick jobs; for longer ones, you will need to open a terminal
session from your local computer and initiate a connection to your Google Cloud
account with the appropriate authentication. The other ways include linking a GitHub
(or BitBucket) directly into your Google Cloud account, using a terminal session directly
off your local machine, and there is also an experimental code editor directly in the
dashboard (see https://cloudplatform.googleblog.com/2016/10/introducing-
Google-Cloud-Shels-new-code-editor.html).

If you don’t already have an account on Google Cloud, you can go to Google Cloud
Getting Started (https://console.cloud.google.com/getting-started) and set one
up. At the time of this writing, Google is offering a 12 month and $300 credit to get you
started (Figure 3-17).

Get Started with
Google Cloud Platform

12 month, $300 free trial to get you started.
Always Free products to keep you going

TRY FOR FREE

Figure 3-17. Google Cloud Platform special offerings

Step 1: Fire Up Google Cloud Shell

Log into your instance of Google Cloud and create or select the project you want your
App Engine to reside in. Start the cloud shell command line tool by clicking on the
upper-right caret button. This will open a familiar-looking command line window in the
bottom half of the GCP dashboard (Figure 3-18).

117

https://cloudplatform.googleblog.com/2016/10/introducing-Google-Cloud-Shels-new-code-editor.html
https://cloudplatform.googleblog.com/2016/10/introducing-Google-Cloud-Shels-new-code-editor.html
https://console.cloud.google.com/getting-started

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

= Google Cloud Platform 3 Test Project ~ Q

%® Project info RPI APIs & Google Cloud Platform
status

Proiect name Requests (requests/sec)

a3 + ”~z

Figure 3-18. Accessing the Google Cloud shell

Step 2: Zip and Upload All Files to the Cloud

There are many ways to proceed: you can upload the files one by one, clone a GitHub
repository, or you can zip them into one archive file and upload the zip. We'll go with the
latter. So, zip the 11 files in the “web-application” folder (Figure 3-19).

Name ~ Date Modified Size Kind

_| app.yaml Today at 9:17 PM 487 bytes YAML
ﬁ appengine_config.py Feb 24, 2018 at 11:07 AM 108 bytes Python Script
B main.py Today at 10:32 PM 7 KB Python Script
. requirements.txt Today at 10:13 PM 227 bytes Plain Text
New Folder with Selection (11 Items) A% ZREY -- Folder
at 8:37 PM -- Folder

_] Open at 6:40 PM 713 KB PNG image

Open With 1 6:22 PM 192KB JPEG image

v [l templat Move to Trash at 5:03 PM -- Folder
B indd R:47 PM 6KB HTML

1 Ricnis] Get Info PM 68 KB Comm...et (.csv

Rename 11 Iltems...

Compress 11 ltems

Duplicate
Figure 3-19. Zipping web application files for upload to Google Cloud

Upload it using the “Upload file” option (this is found on the top right side of the
shell window under the three vertical dots; Figure 3-20).

118

CHAPTER 3

status

* About Cloud Shell

=
4

O

Enable Boost Mode

REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

o

Upload file

Download

Restart

Usage Statistics

Help
Send Feedback

P

=

-
.
.

e :

2" CUSTOMIZE

Figure 3-20. Uploading files via Google Cloud shell

Step 3: Create Working Directory on Google Cloud

and Unzip Files

Once the file is successfully uploaded, create a new directory called “chapter-3” for
example, then move the compressed files into it and unzip them (Listing 3-22).

Listing 3-22. Getting the GCP Directory Ready for Deployment

$ mkdir chapter-3
$ cd chapter-3/

$ mv ../Archive.zip Archive.zip

$ unzip Archive.zip

119

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Step 4: Creating Lib Folder

We're almost there. If you look in the requirements.txt file, you will see one or more
Python libraries that are required to run the application. When you build your own
application, this is where you list all the libraries needed; you then run the script to
actually install them the lib folder. A word of caution, the Standard Environment version
of the Google App Engine only supports a minimal set of libraries; for anything more
complicated, you will need to use the Flexible Environment (this is because it needs to
be closer to the Python interpreter). So, run the following command to install all the
needed additional libraries to the lib folder. When you deploy your web app, the lib
folder will travel along with the needed libraries (Listing 3-23).

Listing 3-23. Loading All Required Python Libraries into the “lib” Folder

$ pip install -t lib -r requirements.txt

Step 5: Deploying the Web Application

Finally, deploy it to the world using the deploy command. It will prompt a confirmation
screen in order to proceed (Listing 3-24).

Listing 3-24. Deploying the Web Application to the Cloud
$ gcloud app deploy app.yaml

That is it! Sit back and let the serverless tool deploy our site. This is the Flexible
App Engine, so it can take up to 20 minutes to be fully deployed. Once it is done setting
everything, it will offer a clickable link to jump directly to the deployed web application
or you can get there with the “browse” command (Listing 3-25).

Listing 3-25. Getting the Location URL of Our Web Application
$ gcloud app browse

Enjoy the fruits of your labor, and make sure to experiment with the web application
by designing different passengers (Figure 3-21).

120

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

< @ Secure | https://apt-memento-192717.appspot.com T & o
Cabin and Port
Gha_pter 3 of Embarcation
Design Your Details
Titanic Traveler

Port of Southampton ¥
Embarcation How Did Your Fictional Traveler Do?
83.42% of Surviving!
Fare as 100
Age D
B0
Gender Female
Title Mrs £
LL 3 =
: 3 60
=
Class Second $ 2
"
=
Cabin [+] 5 4w
3
w
Number of o3
Siblings/Spouses 204
Number of o3
Parents/Children
o -
Average Survival Rate Fictional Traveler
All Aboard!

Figure 3-21. Our web application on Google Cloud

Troubleshooting

There will be cases where you will have issues and the Google Cloud logs will be your
best friends. You can easily reach them either directly in the Google Cloud dashboard or
with the logs URL (Listing 3-26).

Listing 3-26. GCP Log Page
https://console.cloud.google.com/logs

Or you can stream the log’s tail by calling the “app logs tail” command in the cloud
shell (Listing 3-27).

Listing 3-27. Following Deployment Logs

$ gcloud app logs tail -s default

121

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Closing-Up Shop

One last thing: before we are done with our web application: don’t forget to stop or
delete your App Engine Cloud instance. Even if you are using free credits, the meter is
still running and there is no need to waste money or credits.

Things are a little different with the Flexible App Engine over the Standard one, as
the Flexible costs more money. So, it is important to stop it if you aren’t using it. Also, this
can all be conveniently done via the Google Cloud dashboard.

Navigate to App Engine, then Versions. Click on your active version and stop it
(Figure 3-22). If you have multiple versions, you can delete the old ones; you won’t be
able to delete the default one, but stopping it should be enough (if you really don’t want
any trace of it, just delete the entire project).

= Google Cloud Platform s google-app-engine-yelp ~

-©- Versions C REFRESH W STOP

"= Filter versions

Status Traffic Allocation Instances

M 20180416t230733 [7 Serving oEEEEEEEE 100% 1

Figure 3-22. Stopping and,/or deleting your App Engine version

What’s Going on Here?

Let’s take a brief look at some noteworthy pieces in the code.

main.py

The “main.py” file is a bit different than the Jupyter notebook we tackled for the chapter.
It is always better to not rely too much on processing when running a web application.
That is why we did away with any Pandas code, opting instead to use NumPy arrays
(Listing 3-28).

122

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Listing 3-28. Creating a Matrix Array from a CSV File

from numpy import genfromtxt
titanic_array = genfromtxt('titanic3.csv', delimiter=',")

For example, when a user designs a new passenger profile, those values are simply
added to the list (in the correct order) and fed into the logistic regression model directly.
The fields aren’t being dummified, instead they are created in a dummy state from the
start (basically, we are dummying them manually; Listing 3-29).

Listing 3-29. Dummying Categories Manually

if (selected cabin=="B'):

cabin B =1

if (selected cabin=="C"):
cabin C =1

if (selected cabin=="D"):
cabin D =1

if (selected cabin=="E'):
cabin E =1

if (selected cabin=="F'):
cabin F =1
if (selected cabin=="G"):

cabin G =1
if (selected cabin=="T"):
cabin T =1

if (selected cabin=="Unknown'):
cabin_Unknown = 1

user designe passenger = [[age, sibsp, parch, fare, isfemale, pclass_
Second, pclass Third, pclass nan, cabin B, cabin C, cabin D, cabin E,
cabin F, cabin G, cabin_ T, cabin_Unknown, cabin nan, embarked O,
embarked S, embarked Unknown, embarked nan, title Master, title Miss,
title Mr, title Mrs, title Rev, title Unknown, title nan]]

123

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

In this snippet of code, the “cabin” feature is stored directly as an integer. This saves
us a few processing steps, such as avoiding the call to the Pandas “get_dummies()”
function.

app.yaml

YAML is a serialization language relied upon by many frameworks to configure and store
program settings. The “app.yaml” file holds configuration settings such as setting the
App Engine environment to “flex,” the name of the Python starter script to “main,” and
information on hardware needed (Listing 3-30).

Listing 3-30. A Look Inside the App Engine Flexible “app.yaml” File

runtime: python
env: flex
entrypoint: gunicorn -b :$PORT main:app

runtime config:
python version: 3

This sample incurs costs to run on the App Engine flexible environment.
The settings below are to reduce costs during testing and are not
appropriate
for production use. For more information, see:
https://cloud.google.com/appengine/docs/flexible/python/configuring-your-
app-with-app-yaml
manual_scaling:
instances: 1
resources:
cpu: 1
memory gb: 0.5
disk _size gb: 10

The App Engine Flexible requires a disk size with a minimum of 10GB of space.
For more information on the “yaml” file for App Engines, see https://cloud.google.
com/appengine/docs/flexible/python/configuring-your-app-with-app-yaml

124

https://cloud.google.com/appengine/docs/flexible/python/configuring-your-app-with-app-yaml
https://cloud.google.com/appengine/docs/flexible/python/configuring-your-app-with-app-yaml

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

appengine_config.py & lib folder

The “appengine_config.py” file and the “lib” folder work together to handle all extra
Python libraries needed to get the web application running (Listing 3-31).

Listing 3-31. A Look Inside the “appengine_config.py” Script
from google.appengine.ext import vendor

Add any libraries installed in the "lib" folder
vendor.add('1lib")

The “lib” folder is populated with needed Python libraries by calling “pip install”
(Listing 3-32).

Listing 3-32. Populating the “lib” Folder
pip install -t 1lib -r requirements.txt

If you look inside the “lib” folder after running this command, you will see all sorts of
Python libraries deployed and ready to serve. This folder will get deployed with all your
web application files to get them to function properly. The “appengine_config.py” does
a whole lot more than what was shown here for the Google App Engine; see the official
docs for more details.

Note For more information on the appengine_config.py, see the Google docs
at: https://cloud.google.com/appengine/docs/standard/python/
tools/appengineconfig.

requirements.txt

Here is a look at all the Python libraries needed to get the Titanic web application up and
running (your version numbers will vary; Listing 3-33).

125

https://cloud.google.com/appengine/docs/standard/python/tools/appengineconfig
https://cloud.google.com/appengine/docs/standard/python/tools/appengineconfig

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP

Listing 3-33. Python Libraries Needed to Run Our Web Application

click==6.7
Flask==0.12.2
itsdangerous==0.24
Jinja2==2.10
MarkupSafe==1.0
numpy==1.14.2
scikit-learn

scipy
python-dateutil==2.7.2
pytz==2018.4
six==1.11.0
Werkzeug==0.14.1
Pillow>=1.0
matplotlib
gunicorn>=19.7.1

Steps Recap

Let’s power through the steps needed to get the Titanic web application deployed on
Google Cloud.

1. Check that the web application runs locally, zip up all the web
application files, create destination folder on the Google Cloud,
and unzip the files:

$ mkdir chapter-3

$ cd chapter-3/

$ mv ../Archive.zip Archive.zip
$ unzip Archive.zip

2. Create “lib” folder:
pip install -t 1lib -r requirements.txt
3. Deploy the web application:

gcloud app deploy app.yaml
126

CHAPTER 3 REAL-TIME INTELLIGENCE WITH LOGISTIC REGRESSION ON GCP
4. Getthe URL to your web application:
gcloud app browse

Close up shop, go to your GCP dashboard into App Engine, and terminate any
running version.

Conclusion

Regarding the Titanic dataset, we learned that being rich and female gave you the best
odds of survival while poor and male, the worst.

Even though this project was fairly straightforward, this chapter introduced a lot of
concepts and new technologies. The first takeaway is to always think a couple of steps
ahead whenever you are developing local Python ideas and models, to foresee ways
to extended to the cloud. This includes keeping things simple, working on intuitive
concepts, and keeping the code clean and efficient.

127

CHAPTER 4

Pretrained Intelligence
with Gradient Boosting
Machine on AWS

What makes a top-rated wine? Find out with a hard-to-resist real-time web dashboard
on Amazon Web Services.

In this chapter, we are going to learn about wine quality with the help of the powerful
“Gradient Boosting Classifier”! algorithm from the “sklearn” library. It can classify
data into multiple classes, and that is what we’ll use to group our wines into “quality”
buckets. We will highlight that power in our web dashboard with the help of real-time

sliders (Figure 4-1).

'http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
GradientBoostingClassifier.html

129
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_4

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

® O ® [wine Quality Designer x o

C @ newwine.zi3gtsmzvb.us-west-2.elasticbeanstalk.com w4 0@

Chapter 4: Wine Quality Designer

Customize your wine parameters and get real-time quality predictions!

White or Red: 1 . X Free Sulfur Dioxide: 31
Estimated quality score: 9

Fixed Acidity: 15 Total Sulfur Dioxide: 420

Volatile Acidity: 0.08 Density: 1.04

Citric Acid: 0 pH: 3.7

Residual Sugar: 64 Sulphates: 0.3

Chlorides: 0.61 Alcohol: 10.5

Figure 4-1. The final web application for this chapter

This will invite visitors to interact with the model in a fun, responsive, and
educational way. The data was collected for a paper called “Modeling wine preferences
by data mining from physicochemical properties.”? It is graciously made available
through the UCI Machine Learning Repository of the University of California, Irvine.?

Note Download the files for Chapter 4 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter4.ipynb” to follow along with this chapter’s content.

2P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling Wine Preferences by Data
Mining from Physicochemical Properties,” Decision Support Systems 47, no. 4 (2009): 547-553.

Shttps://archive.ics.uci.edu/ml/index.php

130

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
https://archive.ics.uci.edu/ml/index.php

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

Planning our Web Application: What Makes a
Top-Rated Wine?

As is the case with any web application, it is critical to get the simple issues figured
out first before extending it out onto the web. We will start by exploring the data,
experimenting with the modeling, building a local Flask application, and only once
everything is in working order will we then extend it to Amazon Web Services (AWS)
Elastic Beanstalk.*

Exploring the Wine-Quality Dataset

The Wine-Quality dataset can be downloaded directly from the UCI Machine Learning
Repository using the Python “Pandas” library. It is made up of two datasets, 1,599
instances of red wine and 4,898 instances of white wine. The data represents chemical
readings “related to red and white variants of the Portuguese “Vinho Verde” wine.”> Go
ahead and download the files for this chapter into a folder called “chapter-4.” Fire up the
Jupyter notebook to follow along.

According to UCI’s data description, there are 11 attributes based on
physicochemical tests and one output column based on sensory data:

e Input
o fixed acidity
o volatile acidity
e citricacid
o residual sugar
e chlorides
o free sulfur dioxide
o total sulfur dioxide

e density

*https://aws.amazon.com/elasticbeanstalk/

*https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/
winequality.names

131

https://aws.amazon.com/elasticbeanstalk
https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality.names
https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality.names

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS
« pH
¢ sulphates
¢ alcohol
e Output
e quality (score between 0 and 10)

We will create a new feature called “color” to describe whether the wine is white or
red, and concatenate both datasets into a single one. Being good web citizens, we also
save a local copy of the finished and combined dataset for our web application, so we
don’t hit the servers every time a user interacts with it (Listing 4-1).

Listing 4-1. Create a New Wine Color Feature and Concatenate White and Red
Together

white['color'] = 0
red['color'] = 1
wine df = pd.concat([white, red], ignore index=True)

Now that we have our dataset ready to go, let’s dig into it and see what we have
(Listing 4-2).
Listing 4-2. Alook at the Feature Data Types
Input:
wine df.info()
Output:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6497 entries, 0 to 6496
Data columns (total 13 columns):

fixed acidity 6497 non-null float64
volatile acidity 6497 non-null float64
citric acid 6497 non-null float64
residual sugar 6497 non-null float64
chlorides 6497 non-null float64

free sulfur dioxide 6497 non-null float64

132

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

total sulfur dioxide 6497 non-null float64

density 6497 non-null float64
pH 6497 non-null float64
sulphates 6497 non-null float64
alcohol 6497 non-null float64
quality 6497 non-null int64
color 6497 non-null int64

dtypes: float64(11), int64(2)
memory usage: 659.9 KB

The “info()” function tells us a lot about the data. We see that we have 13 columns,
all floats except for two integers, “quality” and “color.” The “color” feature is the one we
added and keeps track of whether the wine is red or white. The “quality” feature is the
outcome label and represents the quality level of a particular wine. This is an important
feature, as it clusters the data by quality and is what our model will attempt to learn
(Listing 4-3).

Listing 4-3. Total Rating Counts of Wine Quality in Wine Data Frame
Input:

wine df['quality'].value counts()

Output:

2836
2138
1079
216
193
30
5
Name: quality, dtype: int64

O W 0 &~ J U1 O

The “value_counts()” function counts the frequency of values for a particular
categorical feature. In the case of “quality,” we see that there are 7 different quality types
and that most are of quality “6.” This feature could potentially be used as a continuous
variable, meaning we are assuming some form of linearity between the lowest and

highest quality. As this quality is based on a vote, we just can’t assume it is a continuous

133

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

numerical scale, along with the fact that some numbers are missing (the official data
description states that quality is between 0 and 10, but we only see numbers between
3and?9).

We'll play it safe and assume it is a categorical variable and use a multiclassification
model instead of a regression model.

Another great way of visualizing a categorical variable is to use a histogram plot. This
can easily be done within the Pandas library learn (Listing 4-4 and Figure 4-2).

Listing 4-4. Histogram of Wine Quality Ratings by Groups and Votes

wine df['quality'].hist()
plt.suptitle('Historgram of Wine Quality')
plt.xlabel('Quality Groups')
plt.ylabel('Number of Votes')

plt.show()

Number of Votes
&
(=]
[=]

et
L=]
o
o

s
=)

ol — I

3 4 5 6 7
Quality Groups

Figure 4-2. Histogram of wine quality ratings in wine data frame

It's the same information as “value_counts()” but in an easier way to digest. We see
a normal distribution in the middle ranges, which is intuitive as most wines are average
and few are either very bad or very good.

According to the “info()” function, there are no null values nor text or text-based
categorical data. The two integer features, “quality” and “color,” are numerical
categories and should be treated as such during modeling.

134

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

Working with Imbalanced Classes

Referring to the wine quality histogram, we see that most of the quality resides within
buckets 5, 6, and 7. This will make predicting edge quality buckets more challenging,

as the model won'’t benefit from sufficient cases to learn from. For critical modeling
projects, you would either balance the dataset by removing some of the middle classes
or get more edge cases. In the Jupyter notebook for this chapter you see the rebalancing
process.

Another approach is to remove weaker features. In some cases weak features can
confuse the model, and by removing them you not only improve the score but make
the model run faster. This can easily be done with tree-based models that return some
form of variable importance. You get the list of features sorted in descending value of
importance and try the model with only the best feature. You keep adding features until
the score doesn’t improve anymore and you end up with a good set of features to work
with (this is known as forward-feature selection).

Let’s see what would happen if we capped all classes to a maximum of 500 rows of
data (Listing 4-5 and Figure 4-3).

Listing 4-5. Numerical Distribution of Capped Wine Quality
Input:

wine balanced df['quality'].value counts()

Output:

500
500
500
216
193
30
5
Name: quality, dtype: int64

O W 0 H~ U1 OO

135

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

500 A

400 A

300 4

200

Number of Votes

100 A

5 6
Quality Groups

Figure 4-3. Histogram of capped wine quality

It does flatten out around the center classes, but the edges are still extremely
imbalanced. A much better way to proceed is to reclassify the quality class. We will group
them down into only three quality groupings. Quality classes 3, 4, 5 will now belong
to group 3, quality 6 will stay with 6, and quality classes 7, 8, 9 will belong to class 9
(Figure 4-4).

Old Quality | New Quality

3,45 3
6 6
7,89 9

Figure 4-4. Simplified wine quality super-groups

In essence, we are creating three super groups: “bad,” “average,” and “good.” After
applying these new groupings, we get a much more balanced distribution (Listing 4-6
and Figure 4-5).

136

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS
Listing 4-6. Aggregating Wine Quality Down to Three Groups
Input:

wine df['quality'].value counts()

Output:

6 2836
3 2384
9 1277

Name: quality, dtype: int64

2500 1

g 8

Number of Votes
[=
o
[=]
[=]

=
=)

3 < 5 6 7 8 9
Quality Groups

Figure 4-5. Histogram distribution of wine quality in smaller set of buckets

When we plot the quality groupings in a histogram chart, the classes are much better

balanced, ranging from 1,200 to 2,800.

Modeling with Gradient Boosting Classifiers

Another way to improve working with an unbalanced dataset is to use models that can
deal with them. A very popular one is sklearn’s “Gradient Boosting Classifier,” which
is a powerful tree-based boosted model. It creates groups of trees and optimizes them

according to their predictive strengths.

137

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

To use the sklearn GradientBoostingClassifier algorithm, you will need to install
“scikit-learn” and “scipy” if you have never used them before (use the installation tool
appropriate to your OS and software). To make things easier, you can simply run the
“requirements_jupyter.txt” file containing all the necessary Python libraries for this
chapter. You can quickly install them by running the “pip3” command (Listing 4-7).

Listing 4-7. Installing the Required Files to Run the Notebook
$ pip3 install -r requirements jupyter.txt

We cast the “quality” feature as a categorical type the Pandas “Categorical()”
function. This will allow us to use the “cat.codes” of that feature instead of the actual
values. We do this because the real quality categories are 3-6-9, and by using the “cat.
codes” we shift the range down between 0 and 2. We then use the sklearn “train_test_
split” functions (like we did in the previous chapter) to randomly split the data into a
training chunk and a testing/validation chunk. If you look at the code, we set “test_size”
to 0.2, meaning we are allocating 20% of the data for testing, and we set a seed using
“random_state” to guarantee that our splits are always the same (Listing 4-8).

Listing 4-8. Preparing Our Training and Testing Datasets

from sklearn.model selection import train test split

wine_df['quality'] = pd.Categorical(wine_df['quality'])wine df['quality
class'] = wine df['quality'].cat.codes

outcome = 'quality class'

outcome_buckets = len(set(wine df['quality class']))

X _train, X test, y train, y test = train test split(wine df[features],
wine df[outcome], test size=0.2, random state=42)

And now we can feed that training data into the “GradientBoostingClassifier” for
modeling (Listing 4-9).

Listing 4-9. Modeling with GBM

from sklearn.ensemble import GradientBoostingClassifier

gbm model = GradientBoostingClassifier(random state=10, learning rate=0.1,
max_depth=10)

gbm model.fit(X train[features], y train)

138

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

Asyou can see from the snippet, “GradientBoostingClassifier” takes various
parameters, and playing around with them is important and referred to as hyper-
parameter tuning.

Here are some of the critical parameters to tune the GBM model (for more detailed
information, see the scikit-learn help®)

o learning rate: The learning rate determines the contribution
of each tree.

e n_estimators: The number of boosting stages to perform

o max_depth: Maximum depth of the regression estimators
o max_features: Number of features to consider in each split
o random_state: The seed to use for reproducibility

The best way to train a “GradientBoostingClassifier” model is to run it multiple
times with different parameter settings. See if adding the “n_estimators” parameter
increases accuracy or not, and how a larger or smaller “learning rate” or “max_depth”
affects accuracy. For those who want to delve deeper into model tuning, there are many
additional tools to help, such as cross-validation, hyper-parameter tuners, etc. One of
my favorite aspects of the GradientBoostingClassifier is that it is very fast and can handle
fairly large datasets, so you can easily write your own looping mechanism to try all sorts
of variations and compare accuracy.

See the documentation for more granular details on Python API Reference.”

Evaluating the Model

If you refer to the Jupyter notebook for this chapter, you will see that after we run the
model, we evaluate it by asking it to predict wine quality on the out-of-sample data—our
20% chunk of test data (Listing 4-10). This is an important concept to remember: the
model never gets to see the testing data, and this allows us to evaluate the model’s
performance with a fresh set of data.

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
GradientBoostingClassifier.html

"http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
GradientBoostingClassifier.html

139

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS
Listing 4-10. Predicting Using the Testing Data Split
preds = gbm model.predict proba(X test)

The “preds” variable contains a list of three probabilities for every row, describing
the probability of belonging to each of the wine quality classes (that’s a mouthful).
The probability of each row sums up to 1. For example, let’s look at the predicted
probabilities for the first row (Listing 4-11).

Listing 4-11. Looking at One Wine’s Prediction
Input:

preds[0]

Output:

array([0.50623207, 0.48718144, 0.00658649])

For the data at row 0 (i.e., the chemical readings for that particular wine), the model
predicted the highest probability around index number 0 at 0.56, so quality bucket “3.

This can be easily done using NumPy’s “argmax” to get the index of the largest number
in that list and then using that index position to get the bucket number (Listing 4-12).

) u

Listing 4-12. Using NumPy’s “argmax()” Function to Get the Largest Number in
the Array

Input:

print('Argmax: %i' % np.argmax(preds[0]))
print('Quality class: %i' % list(wine df['quality'].cat.categories)
[np.argmax(preds[0])])

Output:

Argmax: O
Quality class: 3

We can do the same for every wine in the test data and compare it with the actual
“ground truth” classes using the sklearn.metrics “precision_score()” function. This will
return a number between 0 and 1, where 0 is the worst score and 1, the best. Precision
is better than accuracy in this case because we aren’t talking about a simple binary

140

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

prediction of a well-balanced dataset. Instead we want to know how well the model
chooses between three quality classes for a particular wine on an imbalanced dataset—
no easy feat! (Listing 4-13)

The precision is the ratio tp / (tp + fp) where tp is the number of true posi-

tives and fp the number of false positives. The precision is intuitively the
ability of the classifier not to label as positive a sample that is negative.®

Listing 4-13. Get the Highest Probability for Each Predicted Quality Class
Input:

from sklearn.metrics import precision_score

best preds = np.asarray([np.argmax(line) for line in preds])

print ("Precision_score: %0.2f" % precision score(y test, best preds,
average='macro'))

Output:
Precision_score: 0.74

Another useful way of looking at the big picture with multiclass models is by using
a confusion matrix. This will plot a large square matrix that shows the model’s best
predictions against the ground truth (Listing 4-14 and Figure 4-6). Using a graphical
confusion matrix instead of a printed one comes in handy when dealing with large
amounts of data. The code to produce these graphical matrices comes directly from
scikit-learn.org help files on confusion matrices.’

Listing 4-14. Wine-Quality Predictions Shown on a Confusion Matrix

from sklearn.metrics import confusion matrix

cnf matrix = confusion matrix(y test, best preds)

plt.figure()

plot confusion matrix(cnf matrix, classes=set(wine df['quality']),
title="Confusion matrix, without normalization')

plt.show()

8http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html

Shttp://scikit-learn.org/stable/auto_examples/model selection/plot_confusion_
matrix.html

141

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

Confusion matrix, without normalization

; 400
300
!
L a3
v
- 200
- 8 156 e
N © o

Predicted label

Figure 4-6. Predictions vs. actual confusion matrix

It is worth spending a little time analyzing this chart. The y-axis represents
the ground truth and the x-axis represents the best predictions from the
GradientBoostingClassifier model.

In an ideal situation, all numbers would be 0 except for a single diagonal line

going from the chart’s top left all the way to the bottom right. That would mean all the
predictions are correct (see the fabricated chart in Figure 4-7).

142

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

Confusion matrix, without normalization

0 500

400
2

L 0 300
w
=
&

- 200

94 0 0 247 - 100

T T T —-0
% © B

Predicted label

Figure 4-7. What a perfect confusion matrix looks like (if you see this level of
perfection for a real model, be suspicious, as modeling is never perfect)

Our model’s confusion matrix tells us a few interesting things about our data. First,
it is doing a pretty good job, as the diagonal line going from top left to bottom right does
contain the biggest numbers. Where the data falls away from the diagonal line (i.e.,
incorrect predictions), it still stays close to its group. This is why the edges, where the
model predicted 3 and it actually was 9 or the model predicted 9 and it was actually 3,
are very small. This can be seen as a small consolation: whenever the prediction is
wrong, it probably isn’t that far off and the incorrect prediction is only as far as the
adjacent bucket.

Persisting the Model

In Chapter 3, the constructor of our web application trained the model (whenever the
web server is restarted, it trains it). Here we're going to pretrain it, pickle it, and use that
as our modeling engine. It isn’t often that you have a dataset and model that are small
enough that it’s OK to train it directly in the cloud and on the web server. Most models
are big and take a long time to train, or even take special hardware. By saving a copy

of the fully trained model, we can then move it wherever we need it and in a ready-to-
predict state. “Pickling,” if you are not familiar with that Python term, is a tool to save

143

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

an object in its current state to file.® Just like a comma delimited file (CSV) is used
to move data around, a pickled file is used to move a Python object around. You can
pickle anything you want, including a trained model. A note on Python versions, AWS
Beanstalk defaults to Python 3.x, and pickle has compatibility issues between Python 2.x
and 3.x versions so please stick to Python 3.x for this chapter.

This is called model persistence and it should be used in most production scenarios,
and we will also use this approach in most chapters of this book!! (Listing 4-15).

Listing 4-15. Pickling Our Trained GBM Model

with open('gbm model dump.p', 'wb') as f:
pickle.dump(gbm model, f, 2)

Predicting on New Data

Just like we did in the previous chapter, we need to make sure we can run our model and
extract predictions on new data. This is an important step in building an interactive web
application where the goal of the application is to offer new predictions based on user-
inputted data.

To get us started, we calculate the mean values for each feature and use those values
to predict the quality of the wine (Listing 4-16).

Listing 4-16. Get Mean Values of Each Feature and Store in Data Frame

fixed_acidity = 7.215307

volatile acidity = 0.339666
citric_acid = 0.318633

residual sugar = 5.443235
chlorides = 0.056034

free sulfur dioxide = 30.525319
total sulfur dioxide = 115.744574
density = 0.994697

pH = 3.218501

sulphates = 0.531268

Yhttps://wiki.python.org/moin/UsingPickle
http://scikit-learn.org/stable/modules/model persistence.html

144

https://wiki.python.org/moin/UsingPickle
http://scikit-learn.org/stable/modules/model_persistence.html

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

alcohol = 10.491801
color = 0

create data set of new data
x_test tmp = pd.DataFrame([[fixed acidity,
volatile acidity,
citric_acid,
residual sugar,
chlorides,
free sulfur dioxide,
total sulfur dioxide,
density,
pHJ
sulphates,
alcohol,
color]], columns = X test.columns.values)

After creating a new data frame to store the customized wine chemical readings, we
pass it to the model’s “predict” function. We can add any outcome variable, as the model
will ignore it when it makes a prediction (Listing 4-17).

Listing 4-17. Predict the Quality of a Wine Based on Our Mean Values
preds = gbm model.predict proba(x_test tmp)

Because we used mean values as our new wine, the predicted quality value should
be close to the ground truth/actual wine quality—we basically created a boring wine,
neither good nor bad (Listing 4-18).

Listing 4-18. Get Wine-Quality Prediction
Input:

print(('Predicted wine quality: %i') % list(wine_df['quality'].cat.
categories)[np.argmax(preds)])

print(('Actual mean wine quaity: %0.2f') % np.mean(wine df['quality'].
values))

145

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

Output:

Predicted wine quality: 6
Actual mean wine quality: 5.49

Not bad! The model predicted group 6 and the mean is 5.49. Keep in mind that this
model will do better predicting average wines vs. edge ones. So, it shouldn’t be a surprise
that it nailed this. If we look at the prediction array, we see that the model struggled a
tiny bit with putting this wine in quality 3 or quality 6 (35% 3, and 64% 6) but that quality
group 6 won out (Listing 4-19).

Listing 4-19. Predicted Probabilities of Our Average Wine

array([[0.34124871, 0.63933304, 0.01941825]])

Designing a Web Application to Interact
and Evaluate Wine Quality

Building a fully functioning Flask version on our local model is a common theme and a
proper next step throughout all chapters in this book. With enough practice you may skip
this step but, in the meantime, it will save you plenty of time and headaches to iron out
issues locally than on the cloud.
A good first step is to generalize the code into a big function. This will allow us to
pass it new values and get a nice prediction in return with as little hassle as possible.
Once you have downloaded all the files for this chapter, open a command line
window, and change the drive to the “web-application” folder. Your folder should
look like Listing 4-20. Here we are showing the hidden folder “.ebextensions”
needed for AWS EB. You can either use it as-is or create your own in the “Fix the
WSGIApplicationGroup” section (don’t worry about this when running the local
version of the site, as it isn’t affected by this fix).

146

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

Listing 4-20. Web Application Files

web-application

|— application.py

|— requirements.txt

F— static \

L— images

— quality wine_logo.jpg
— wine_red 9.jpg
— wine_white 9.jpg
— wine_red 3.jpg
— wine_white_3.jpg
— wine_red 6.jpg
L— wine_white 6.7pg

F— pickles

L—templates

L— gbm model dump.p

L— index.html
L .ebextensions <-- hidden folder
L— wsgi fix.config

Of note here, in some chapters we call our main Flask Python file “main.py” but here
we use “application.py”—this is Amazon’s Elastic Beanstalk default naming convention
(there are always ways around this, but it requires editing the configuration file). From
here on we’ll work in a virtual environment.

Introducing AJAX — Dynamic Server-Side
Web Rendering

In this chapter, we're going to start using Ajax, a really cool technology that will allow us
to update web content without rebuilding the entire page. This works great for highly
interactive web applications that perform a lot of micro-updates. Ajax is also very easy
to use and consists of two pieces, a front-end script function calling “$.ajax” and a
back-end Flask function to catch and process the calls. We will dive a little deeper into
Ajax in Chapter 10.

147

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

Working in a Virtual Environment—a Sandbox
for Experimentation, Safety and Clarity

Using a virtual environment offers many advantages:
o Creates an environment with no installed Python libraries

e Knows exactly which Python libraries are required for your
application to run

o Keeps the rest of your computer system safe from any Python
libraries you install in this environment

o Encourages experimentation

To start a virtual environment, you use the “venv’ command. If it isn’t installed on
your computer, it is recommended you do so (it is available through installs with pip3,
conda, brew, etc). For more information on installing virtual environments for your OS,
see the “venv - Creation of virtual environments” user guide: https://docs.python.
org/3/library/venv.html

In the command line window, navigate to the “web-application” folder if you
aren’t already there. Call the Python 3 “venv” function on the command line to create
a sandbox area in Python 3 for our development work and a folder called “wineenv”
(Listing 4-21).

Listing 4-21. Starting a Virtual Environment

$ python3 -m venv wineenv
$ source wineenv/bin/activate

You are now ready to work in your virtual environment. Let’s see if we can run the
web application locally by calling “python3” (or use the commands that work for your
OS; Listing 4-22).

Listing 4-22. Run a local version of the web application

$ python3 application.py

148

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

It won’t work, as we are in a clean virtual environment with no specialized Python
libraries loaded. You will need to install all the libraries it is complaining about
(substitute with the appropriate installation commands for your OS and software). The
easiest is to “pip3 install” the included “requirements.txt” file (Listing 4-23).

Listing 4-23. Installing Requirements
$ pip3 install -r requirements.txt

We have a comprehensive requirements.txt file containing all the Python libraries
needed to run our web application. This really isn’t of use for this local version of our web
application but will be required for our cloud-based version.'> Whenever you deploy your
application, whether on Amazon, Google, or Microsoft’s cloud, it uses the requirements
file to install all the needed Python libraries wherever it runs your web application from.

Getting back to our local version experiment, run the same commands you ran for
our previous Flask experiments (Listing 4-24).

Listing 4-24. Run a Local Version of the Web Application
$ python3 application.py

Then copy the URL: “http://127.0.0.1:5000/” (or whatever is stated in the terminal
window) into your browser and you should see the web Wine Quality Designer
application appear (Figure 4-8). Hopefully it worked; if not, read the output errors and
address them accordingly (remember that this chapter requires Python 3.x).

2https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/python-configuration-
requirements.html

149

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/python-configuration-requirements.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/python-configuration-requirements.html

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

® © ® |/ [y wine Quality Designer X L

C @® 127.0.01 Q v ¢ - RCHE

Chapter 4: Wine Quality Designer

Customize your wine parameters and get real-time quality predictions!

White or Red: 1 : : Free Sulfur Dioxide: 31
Estimated quality score: 6

Fixed Acidity: 7.5 Total Sulfur Dioxide: 115

Volatile Acidity: 0.4 Density: 0.99

Citric Acid: 0.3 pH: 3.2

Residual Sugar: 5.5 6 Sulphates: 0.5

Chlorides: 0.05 Alcohol: 10.5

Figure 4-8. Web application running on local server

Amazon Web Services (AWS) Elastic Beanstalk

For our cloud-based portion of this chapter, we are going to host our application on
Amazon'’s Elastic Beanstalk. It’s a convenient hosting solution that packages your

site, deploys, scales, and balances it automatically. It offers logging, traffic and health
monitoring stats in a convenient web-based dashboard to keep you informed on what
is going on. This should allow you to focus on your application and forget about site
administration almost entirely.

You will need an Amazon Web Service account and setup security credentials. If you
already have an Amazon.com account, you should be able to transfer it with little trouble
to AWS. If you are new to this service, you can create a free-tier account that will give you
access to basic Beanstalk features. Go to AWS Free Tier (https://portal.aws.amazon.
com/gp/aws/developer/registration/index.html).

150

https://portal.aws.amazon.com/gp/aws/developer/registration/index.html
https://portal.aws.amazon.com/gp/aws/developer/registration/index.html

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

Create an Access Account for Elastic Beanstalk

Once you have your AWS account, it is time to setup your security credentials in order

to interact with AWS Elastic Beanstalk from your computer. A great guide to step

you through that permission process is Amazon'’s Getting Started tutorial (https://
aws.amazon.com/getting-started/tutorials/set-up-command-line-elastic-

beanstalk/).

Log into the AWS web console and go to the Identity and Access Management (IAM)

console. A quick way there is to simply type “IAM” in the AWS services search box on the

landing page. Select “Users” in the navigation section and click the “Add user” button

(Figure 4-9).

aws Services v Resource Groups v
4
Dashboard
Groups
User name ~
I Users

L Find users by username or access ke

Groups

*

Figure 4-9. Creating a user in AWS

Select a user name-here we enter “ebuser” and check “Access type: Programmatic

access” (Figure 4-10).

151

https://aws.amazon.com/getting-started/tutorials/set-up-command-line-elastic-beanstalk
https://aws.amazon.com/getting-started/tutorials/set-up-command-line-elastic-beanstalk
https://aws.amazon.com/getting-started/tutorials/set-up-command-line-elastic-beanstalk

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

Services

Set user details

Resource Groups v *

Details

You can add multiple users at once with the same access type and permissions. Learn more

[\ Manuel Amunategui ~ Global ~

Permissions Review Complete

User name*

ebuser

Select AWS accésg type

Access type*

© Add another user

Select how these users wil AWS. Access keys and autogenerated passwords are provided in the last step. Learn more

Programmatic access

Enables an access key ID and secret access key for the AWS API, CLI, SDK,
and other development tools.

Figure 4-10. Assigning programmatic access to our new user

Click the blue “Next: Permissions” button. This will take you to the “Set

permissions” page; click the “Add user to group” large menu button, then click “Create

group” (Figure 4-11).

Create group

permissions. Learn more

Create a group and select tha policies to be attached 1o the group. Using groups is a bast-practice way 10 manage users' parmissions by job functions, AWS service access, of your cusiom

Group name ebadmins

Create policy & Refresh

Filter: Policy type ~ ‘Q beanstalk

Policy name = Type
» B8 AwSElsticBeanstaikCustomPiatiormd... AWS managed
» U1 AWSElasticBeansta’kEnhancedHealth AWS managed
= ¥ AWSElasticBeanstalkFullAccess AWS managed
st kMt Do, AWS 1
v B8 AWSElastic] aikReadOnlyAccess AWS managed
» BB AWSElasticBeanstalkSent AWS managed
» Wi AWSElasticBeanstalkWebTier AWS managed

Showing 8 results

Description

Provide the instance in your custom platform bulider anvironment permission to launch ...
AWS Elastic Beanstalk Service policy for Health Monitodng system

Provides full access to AWS Elastic Beanstalk and underlying services that it requires su...
Provide the instances in your multicontainer Docker envinbgment access fo use the Ama...
Provides read only access to AWS Elastic Beanstalik via the AWS Management Console.
AWS Elastic Beanstalk Service role policy which grants permissiofiylo create & manage

Provide the instances in your web server environment access to uploaliieq files to Ama...

Figure 4-11. Giving WSElasticBeanstalkFullAccess to new user

152

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

Create a group name, “ebadmins” in this case, and assign it the policy name
“WSElasticBeanstalkFullAccess.” Then click the “Create group” button to finalize the
group. Click the “Next: review” blue button and, on the following page, click the blue
“Create user” button (Figure 4-12).

a_“_f'_s Services ~ Resource Groups ~ * Al Manuel Amunategui ~ Global ~ Support ~
Add user o
Details Permissions Review Complete

® Success
You successfully created the users shown below. You can view and download user security credentials. You can also email
users instructions for signing in tg4fie AWS Management Console. This is the last time these credentials will be available to
download. However, you reate new credentials at any time.

Users with AWS ement Console access can sign-in at: https://278764566511.signin.aws.amazon.com/console

& Download .csv

User Access key ID Sec

» & ebuser AKIAJTFLGIWEDABRYWSA

Close

Figure 4-12. Download access key after successfully creating a user

Once you see the “Success” message, this means you have successfully created the
“ebuser” account. Make sure you download the “.csv” file to your local machine by
clicking on the “Download .csv” button. This file is important, as it holds your key and
secret code. Store it in a known location on your local machine, as you will need that
information to connect and Secure Shell (SSH) into your EB.

Elastic Beanstalk

We'll refer to the Elastic Beanstalk as EB going forward. We need to install the “awsebcli”
library to interact and manage our EB service on AWS.

For Mac and Linux users (if it complains about the “user” parameter, try without it).
See Listing 4-25.

153

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

Listing 4-25. Installing “awsebcli”

$ pip install awscli
$ pip install awsebcli

For windows (if it complains about the “user” parameter, try without it).
See Listing 4-26.

Listing 4-26. Installing “awsebcli” on Windows

$ pip install awscli --user
$ pip install awsebcli --user

For more information on installing and troubleshooting the “awsebcli” library,
refer to Amazon’s help document: https://docs.aws.amazon.com/elasticbeanstalk/
latest/dg/eb-cli3-install.html.

EB Command Line Interface

From the AWS help files:

EB is a command line interface (CLI) tool that asks you a series of questions
and uses your answers to deploy and manage Elastic Beanstalk applica-
tions. This section provides an end-to-end walkthrough using EB to launch
a sample application, view it, update it, and then delete it."®

This is a handy command-line set to commands to initialize, push, control, and

terminate our EB instance.
e ebinit: initializes the EB service'
o ebcreate: creates a new EB instance
e ebopen: opens a web page pointing to your EB instance
o eb deploy: deploys any changes to code or configuration

¢ eb config: opens EB instance configuration file for reading and
editing

Bhttps://docs.aws.amazon.com/elasticbeanstalk/latest/dg/command-reference-get-
started.html

“https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb3-init.html

154

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3-install.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3-install.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/command-reference-get-started.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/command-reference-get-started.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb3-init.html

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

o eblogs: pulls various log files for the open EB instance

o ebterminate: kills the EB instance (always terminate if you don’t
want to keep accruing charges)

For more complete information on EB commands, see https://docs.aws.amazon.
com/elasticbeanstalk/latest/dg/eb-cli3-getting-started.html.

We waited until now to install the “awsebcli” library, as we didn’t want any of it to
make it into our requirements.txt file (Listing 4-27).

Listing 4-27. Initializing “awsebcli”
$ eb init -i

This will ask you a series of questions and you can go with most of the defaults.
Under “Enter Application name” enter “winetest” (Figure 4-13).

(env) manuels-MacBook-Pro-2:amazon-wine manuel$ eb init -i

Select a default region

1) us-east-1 : US East (N. Virginia)

2) us-west-1 : US West (N. California)

3) us-west-2 : US West (Oregon)

4) eu-west-1 : EU (Ireland)

5) eu-central-1 : EU (Frankfurt)

6) ap-south-1 : Asia Pacific (Mumbai)

7) ap-southeast-1 : Asia Pacific (Singapore)
8) ap-southeast-2 : Asia Pacific (Sydney)
9) ap-northeast-1 : Asia Pacific (Tokyo)
10) ap-northeast-2 : Asia Pacific (Seoul)
11) sa-east-1 : South America (Sao Paulo)
12) cn-north-1 : China (Beijing)

13) us-east-2 : US East (Ohio)

14) ca-central-1 : Canada (Central)

15) eu-west-2 : EU (London)

(default is 3):

Enter Application Name
(default is "amazon-wine"): winetest]]

Figure 4-13. Creating an application name

If this is your first time running AWS on your computer, it will ask for your
credentials. Open the “credentials.csv” that was downloaded on your machine when
you created a user and enter the two fields required (Figure 4-14).

155

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3-getting-started.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3-getting-started.html

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

® ® serverless-hosting-on-amazon-aws — eb create serverless-hosting-on-amazo...

You have not yet set up your credentials or your credentials are incorrect
You must provide your credentials.

(aws-access-id): AKIAIMAYE3RBMZ4ALVAQ

(aws-secret-key): We/Ft/WBAEQYAzVFhb6Z4n0tAhztN1lw+wrueSffy

Figure 4-14. Entering your credentials

Go with the Python defaults (it needs to be a 3.x version) but say yes setting up SSH
(Figure 4-15).

Do you want to set up SSH for your instances?
(Y/n): y

Figure 4-15. Creating an SSH key

Go with the default settings for all the other questions it may ask. Before we create
the web application, you need to customize the WSGI configuration file to inform it that
you will be requiring the Python sub-interpreter mode.

Fix the WSGIApplicationGroup

When using Python libraries like NumPy, Pandas, or any other Python-heavy libraries,
you need to tell the WSGI to enter a special Python sub-interpreter mode. This is done
because these libraries are more complicated to load and require more threading, etc,
thus are turned off by default (for more information see Python Simplified GIL State
API'¥). The switch entails adding the variable in Listing 4-28 to the configuration file (this
is from a Stackoverflow solution'®). A copy of the file is included in the downloads or

you can use the one provided in the folder (this is a hidden folder that you may or may
not be able to see—if you aren’t sure, try creating the folder as per instructions and if it
complains, that means you already have it).

Bhttp://modwsgi.readthedocs.io/en/develop/user-guides/application-issues.
html#python-simplified-gil-state-api

%https://stackoverflow.com/questions/41812497/aws-elastic-beanstalk-script-
timed-out-before-returning-headers-application-p

156

http://modwsgi.readthedocs.io/en/develop/user-guides/application-issues.html#python-simplified-gil-state-api
http://modwsgi.readthedocs.io/en/develop/user-guides/application-issues.html#python-simplified-gil-state-api
https://stackoverflow.com/questions/41812497/aws-elastic-beanstalk-script-timed-out-before-returning-headers-application-p
https://stackoverflow.com/questions/41812497/aws-elastic-beanstalk-script-timed-out-before-returning-headers-application-p

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS
Listing 4-28. Adding the ‘WSGIApplicationGroup’ Variable
"WSGIApplicationGroup %{GLOBAL}"

To turn this on, you need to create a new folder under the “web-application”
folder called “.ebextensions.” Enter the command in Listing 4-29 in your local terminal
window.

Listing 4-29. Creating the “wsgi_fix” File
$ mkdir .ebextensions

This will create a new folder called “.ebextensions” and open a “vi” window, which
is a simple text editor. Hit the

ws»
1

key to switch from read-only to “insert” mode and
paste the following line at the end of the document (a text file of this fix is also included
in the folder with the documents for this chapter). The process reading this file is very
finicky; if there are added spaces or tabs, it will fail. Keep a close eye for any errors during
the deployment process relating to the file and address accordingly.

Open “vi” from your local terminal window (Listing 4-30).

wsn»
1

Listing 4-30. Open a “vi” Session and Hit “i” to Enter Insert Mode

$ vi .ebextensions/wsgi fix.config

Paste the following code into it (the code can be copied from file “ebextensions_fix.
txt” in the downloads for this chapter). This is very finicky; a misplaced tab will break
this process, so I recommend getting the content from the downloads or using the
default file already provided (Listing 4-31).

Listing 4-31. Paste the Following Code into Your “vi” Session

#add the following to wsgi fix.config
files:
"/etc/httpd/conf.d/wsgi custom.conf":

mode: "000644"

owner: root

group: root

content: |

WSGIApplicationGroup %{GLOBAL}

157

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

Now hit “escape” to exit “insert” mode and enter read-only mode, and type “:wq” to
write and quit “vi” (Listing 4-32).

Listing 4-32. Save and Quit “vi” Session

wq

Next you need to create your EB.

Creating the EB

Now we are ready to create our web application. Run the “eb create” command with the
name of the application created earlier (Listing 4-33).

Listing 4-33. Initializing “awsebcli”
$ eb create winetest

This will take a few minutes, and you should get a success message if all goes well.
Then you can simply use the “eb open” command to view the web application live.

Take if for a Spin

It may take a little bit of time to run the application the first time around and it may
even timeout. If that is the case, try the “eb open” command one more time (Listing 4-34
and Figure 4-16).

Listing 4-34. Open Web Site with the Following Command

$ eb open

158

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

® O ® [wine Quality Designer x o

C @ newwine.zi3gtsmzvb.us-west-2.elasticbeanstalk.com w4 0@

Chapter 4: Wine Quality Designer

Customize your wine parameters and get real-time quality predictions!

White or Red: 0 . X Free Sulfur Dioxide: 31
Estimated quality score: 9

Fixed Acidity: 15 Total Sulfur Dioxide: 420

Volatile Acidity: 0.08 Density: 1.04

Citric Acid: 0 pH: 3.7

Residual Sugar: 64 9 Sulphates: 0.3

Chlorides: 0.61 Alcohol: 10.5

Figure 4-16. The Wine quality designer running on AWS elastic beanstalk

Don’t Forget to Turn It Off!

Finally, we need to terminate the Beanstalk instance so as not to incur additional
charges. This is an important reminder that most of these cloud services are not free
(Listing 4-35).

Listing 4-35. Terminate Your Instance
$ eb terminate winetest

It does take a few minutes but will take the site down. It is a good idea to double-
check on your AWS dashboard that all services are indeed turned off. This is easy to do:
simply log into your AWS account at https://aws.amazon.com/ and make sure that your
EC2 and Elastic Beanstalk accounts don’t have any active services you didn’t plan on
having. In case you see an instance that seems to keep coming back to life after each time
you “terminate” it, check under EC2 “Load Balancers” and terminate those first, then

159

https://aws.amazon.com/

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

terminate the instances again. Once you are done, you can also deactivate your virtual
session (Listing 4-36).

Listing 4-36. Deactivate Your Virtual Environment
$ deactivate

It is always a good idea (essential idea really) to log into your account in the cloud
and make sure everything is turned off (be warned: if you don’t, you may get an ugly
surprise at the end of the billing cycle). Log into your AWS account and make sure that
your EC2 and Elastic Beanstalk accounts don’t have any active services you didn’t plan
on having (Figures 4-17 and 4-18).

® o ¥ AWS Management Console X tubeof

& C | @ Secure | https://us-we... o Q | & g O :

AWS services

v Recently visit es
{OF Elastic Beanstalk {OF Ec2 D 1am

> All services

Figure 4-17. Checking for any active and unwanted instances on the AWS
dashboard

160

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

® O ® | Elastic Beanstalk Applications % tubeof
&« C | @ Secure | https://us-west-2.console.aws.amazon.com)/e! k/home?regio € "'El ®
Manuel Amunategul - Oregon = Support ~
,r Blastic Beanstalk a - AWSBeanstalkintroduction - new_wine - newwing v testingnew willigolf ~ Create New Application
Learn More « All Applications Fiter Oy Appiication Nama:
Get started using Elastic Beanstalk 9 Actions ~

Modify the coda
Create and connect to a database

Add a custom domain No environments currently exist for this application. Create one now.

Featured

Create your own custom platform

AWSBeanstalkintroduction Actions -

Command Line Interface (v3)

Create environment
Installing the AWS EB CLI

EB CLI Command Reference
View apphcation versions

If you want to use a command line to Environmaent tier: Web Server

View saved configurations
create, manage, and scale your Elastic Platiorm: Python 3.6 running on 4bit Amazon
e Restore terminated environment
Beanstalk applications, please use the Uni2 6.6 g S
[Elastic Beanstalk Command Line Interface Running versions: Sample Aoplication
(EB CLJ). \Lost modified: 2018-04-15 14:58:57 UTC-07T00
Get Started |
| hittps:{fus-west-2.console.aws.amazon.com/elastic <f gl 2

Figure 4-18. Locate the instance you want to terminate or delete and select your
choice using the “Actions” dropdown button

In case you see an instance that seems to keep coming back to life after each time
you “Delete application,” check under EC2 “Load Balancers” and terminate those first,
then go back and terminate the rogue instance again (Figure 4-19).

161

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

o0 e EC2 Management Console X tubeof
&~ C | @ Secure | https://us-west-2.console.aws.amazon.com/ec2/v2/ho... @ Yr & Ho:
Q Manuel Amunategui ~ Oregon ~
AMis Create Load Balancer V.1 (.1t R
‘ o & 0
Bundle Tasks
.h* Filter by tags and attributes or search by keyword None found
Velumes Name ~ DNS name - State - VPCID
Snapshots

You do not have any load balancers in this region
Security Groups
Elastic IPs
Placement Groups
Key Pairs
load balancer _B =]

Network Interfaces

Load Balancers

Target Groups

@ Feedback (@ English (US)

Figure 4-19. “Load Balancers” can prevent an application from terminating;
this can kick in if you inadvertently start multiple instances with the same name

Steps Recap

Let’s power through the steps to get the Wine Quality Designer web application deployed
on Amazon Web Services.

Step 1: Start virtual environment

$ python3 -m venv wineenv
$ source wineenv/bin/activate

Step 2: Install Python libraries
$ pip3 install -r requirements.txt
Step 3: Test web application locally

$ python3 application.py

162

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS
Step 4: Create the wsgi_fix.config file

$ mkdir .ebextensions
$ vi .ebextensions/wsgi fix.config

#add the following to wsgi fix.config
files:
"/etc/httpd/conf.d/wsgi custom.conf":

mode: "000644"

owner: root

group: root

content: |

WSGIApplicationGroup %{GLOBAL}

Step 5: Elastic Beanstalk

$ eb init -1
$ eb create winetest
$ eb open

Step 6: Terminate web application
$ eb terminate
Step 7: Exit virtual environment

$ deactivate

Troubleshooting

There are all sorts of things that can go wrong between your working local web
application and a working one in the cloud. The first stop if you are not seeing what you
were expecting is the logs!

Access the Logs

If you are having issues, check the logs and look for any errors. Logs can be accessed
directly in the terminal window with the following command in Listing 4-37.

163

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS
Listing 4-37. Accessing the Logs
$ eb logs

Logs also can be accessed on the Amazon Elastic Beanstalk dashboard page
(Figure 4-20).

All AppllcaHOﬂS > winetest > Winetest (eavironment I0: e-fmiintyppd. URL: winstest sicinhvmuse us-west-2 slasticbeanstal. com)
| Dashboard B
Configuration
Health Running Version
- Q " PR
Monitoring Causes Upload and Deploy
Alarms

Figure 4-20. Accessing the logs

Select the last 100 lines of logs (Figure 4-21).

Dashboard Logs — foqust Logs ~ | T Retresh
Configuration
Chick Request Logs o retrieve ™ last 100 ines of logs or the entire st of logs from sach Lant 100 Lines

Logs Full Logs

file Time £C2 instance Type
Health o

a Dowrload 2018-02-04 1225425 UTC-0800 1-0od 1 1 S6acabaTiE0 Last 100 Lires

Monitoring

Figure 4-21. Requesting the last 100 lines

SSH into your Instance

If you want to SSH directly into your new instance, see Listing 4-38 and Figure 4-22.

Listing 4-38. SSH into Your Instance
$ eb ssh

164

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

INFO: Attempting to open port 22.

INFO: SSH port 22 open.

INFO: Running ssh =i /Users/manuel/.ssh/flask_test ec2-user@54.188.179.155
Are you sure you want to continue connecting (yes/no)? y

Please type 'yes' or 'no': yes

Figure 4-22. SSH'ing directly into your Elastic Beanstalk instance

It will ask you if you want to SSH into your instance; type “yes” (Figure 4-23).
You're in! This is the AWS Beanstalk instance that you just created with the

“eb create” command.

Warning: Permanently added '54.188.179.155' (ECDSA) to the list of known hosts.

(LI —/ CH NN T
Amazon Linux AMI

) e B
I/ 1| Nl LNE S YN | T |
| |
| |

This EC2 instance is managed by AWS Elastic Beanstalk. Changes made via SSH

WILL BE LOST if the instance is replaced by auto-scaling. For more information

on customizing your Elastic Beanstalk environment, see our documentation here:
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers-ec2.html
[ec2-user@ip-10-36-21-84 ~]$

Figure 4-23. Instance ready

Conclusion

In this chapter we created a web application around wine quality using colorful images
and inviting sliders (who can resist a slider?). The backend processing relied on real-time
processing using Ajax for instant feedback without having to refresh the whole
page—pretty cool.

There is plenty of great free material on the web regarding AWS Elastic Beanstalk and
EB with Flask.

o Getting started with EB: https://docs.aws.amazon.com/
elasticbeanstalk/latest/dg/command-reference-get-started.html

165

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/command-reference-get-started.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/command-reference-get-started.html

CHAPTER 4 PRETRAINED INTELLIGENCE WITH GRADIENT BOOSTING MACHINE ON AWS

o Deploying a Flask Application to AWS Elastic Beanstalk: simple
Flask example on AWS Beanstalk: https://docs.aws.amazon.com/
elasticbeanstalk/latest/dg/create-deploy-python-flask.
html#python-flask-

e Managing Elastic Beanstalk Environments with the EB CLI:
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/
eb-cli3-getting-started.html

Amazon Web Services is the leader in the cloud space today. It has over a decade
of market dominance and that is one of its strengths. Some reasons users may look
elsewhere are for diversity, redundancy, and cost savings.

166

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html#python-flask-
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html#python-flask-
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html#python-flask-
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3-getting-started.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3-getting-started.html

CHAPTER 5

Case Study Part 1:
Supporting Both Web
and Mobile Browsers

Predicting the stock market with web and mobile platforms support on
PythonAnywhere.com.

For the first part of our case study, we are going to create a simple trade alerting
system. The tool will scan a number of stocks and alert the viewer of any interesting
trade setups. The design will be kept simple to work well on both regular and mobile web

pages (Figure 5-1).

tubeol

@® :

® ® [Pair Trading Booth x

W

(@ amunateguioutiook.pythonanywhere.com

J'N| PAIR TRADING BOOTH P\

Figure 5-1. The final web application for this chapter

167
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_5

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

Machine learning and quantitative trading go hand in hand. This shouldn’t come
as a surprise, as the premise of machine learning is about unearthing patterns, and who
doesn’t want to find patterns in the stock market? In this chapter we start working on the
book’s case study, where we develop the core trading signal strategy and dissemination
application (keep in mind that this isn’t a real trading system, just another interesting
applied example of a web application). We will continue to improve this application in
subsequent chapters. We'll base our fictional trading system on a popular pair-trading
approach.

Note Download the files for Chapter 5 by going to www.apress.
com/9781484238721 and clicking the source code button. Open Jupyter
notebook “chapter5.ipynb” to follow along with this chapter’s content.

The Pair-Trading Strategy

The idea behind pair trading is that related stocks tend to move together, so when we
find stocks behaving abnormally by moving away from each other, we short the highest
and buy the lowest in hopes that they revert to the mean. Another advantage to pairs
trading is that you are removing the market’s volatility by being both long and short in
the market at the same time. Obviously, a real pair-trading strategy would have a lot
more checks and safeguards before considering a trade, and there is never any guarantee
that two values will move in the intended direction. For example, if the company is being
investigated for fraud or a particular business model just doesn’t make sense anymore,
then buying it in hope that it increases in value may be a wishful proposition.

In our case and in a nutshell, we will use the last 90 trading periods to track an
index-member stock against the index itself. Then we will consider the stock with the
widest positive spread for a “short” trade. This is when we borrow a stock and sell it on
the market. If it goes down, we repurchase it, return it to its original owner, and pocket
the difference. Of course, the borrowed stock can rise and you will lose money when you
have to repurchase it to return it to its owner.

168

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

And we will consider the stock with the widest negative spread as a “long” trade.
Let’s take a look at an example where Boeing Co (“BA”) is strong and above the Dow
Jones Index (“ADJI”) and 3M Co (“MMM”) is weak and below the Dow Jones Index
(“ADJT”). So the trade would be to buy “MMM” and short “BA” (Figure 5-2).

Above: BA, Below: MMM, Index:~DJI

0.35 1
—— go long MMM
0.30 1 go short BA
0.25 1 —— index bench ~DJI
0.20 1
0.15 1
0.10 - ey
005 { v/ M
0.00
vV
-0.05 1
9
\yﬂ 0
AV B

Figure 5-2. An example of a spread between BA, MMM, and the Dow Jones Index

Downloading and Preparing the Data

We will compare a subset of stocks that are part of the Dow Jones Industrial Average
Index (ADJI) against the index itself, and buy the lowest stock and short the highest one.
The DJ]J, is an index based on 30 large publicly traded stocks in the US. The weighting is
calculated on the sum price of the share of each company.

For our case study, we are going to keep things simple by focusing only on the top
ten, highest weighted stocks contained in the Dow Jones Industrial Average Index,
shown in Table 5-1. Go ahead and download the files for this chapter into a folder called
“chapter-5." Open up the Jupyter notebook to follow along.

169

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

Table 5-1. Top 10 Highest Weighted Stocks Contained
in the Dow Jones Industrial Average Index

Company Name Stock Symbol
Boeing BA
Goldman Sachs GS
UnitedHealth Group UNH
3M MMM
Home Depot HD
Apple AAPL
McDonalds MCD
IBM IBM
Caterpillar CAT
Travelers TRV

You can access a snapshot of this data in the repository for this chapter. And if you
want to access current data, you can manually download the files from Yahoo Finance.
For example, if you wanted to get the latest historical prices for Apple, simply enter the
following link:

https://finance.yahoo.com/quote/AAPL/history?p=AAPL.

Select the “Time Period” desired (one year’s worth should do the trick), click
“Apply,” and finally, click the “Download Data” link. This will download a CSV file onto
your machine with the requested data. This is a great free service currently offered by
Yahoo Finance. You can also use other financial data services if this one doesn’t work for
you, as stock data is pretty much universal.

Let’s take a look at one the CSV files included for this project. We’ll load “ADJI,”
which is the Dow Jones index and the benchmark we’ll use to understand the movement
of our ten stocks (Listing 5-1 and Figure 5-3).

Listing 5-1. Top Rows of the DJI CSV

DJI = pd.read csv('~DII.csv")
DJI.head()

170

https://finance.yahoo.com/quote/AAPL/history?p=AAPL

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

Date Open High Low Close Adj Close Volume

[=]

2017-04-05 20745.060547 20887.500000 20639.550781 20648.150391 20648.150391 284980000

-

2017-04-06 20653.769531 20746.460938 20612169922 20662.949219 20662.949219 251720000
2 2017-04-07 20647.810547 20726.070313 20606.949219 20656.099609 20656.099609 219730000
3 2017-04-10 20668.220703 20750.330078 20614.859375 20658.019531 20658.019531 230480000
4 2017-04-11 20644.320313 20660.029297 20512.560547 20651.300781 20651.300781 255120000

Figure 5-3. First five rows from the DJI CSV

Preparing the Data

We automate the loading of all stocks and index CSV files. This should allow you to add
and remove stock files with ease (Listing 5-2).

Listing 5-2. Loop Through Each CSV and Create on Data Frame

stock data list = []
for stock in index_symbol + stock symbols:
tmp = pd.read csv(stock + '.csv')
tmp['Symbol'] = stock
tmp = tmp[['Symbol', 'Date', 'Adj Close']]
stock data list.append(tmp)

stock data = pd.concat(stock data list)

The code snippet loops through each stock “CSV” file, pulls the data into a Pandas
dataframe, adds a new column to hold the stock-symbol name, and appends it to the
“stock_data_list” list. Once it has collected all the files, it uses the Pandas “concat()”
function to create a single data frame containing all ten stocks and the index (Listing 5-3
and Figure 5-4).

Listing 5-3. Top Rows of the “stock_data” Data Frame

stock data.head()

171

CHAPTER 5

3

4

Symbol
~DJI
~DJI
~DJI
~DJI

~DJI

Pivoting by Symbol

Date
2017-04-05
2017-04-06
2017-04-07
2017-04-10

2017-04-1

CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

Adj Close

20648.150391

20662.949219

20656.099609

20658.019531

20651.300781
Figure 5-4. Concatenated data frame with symbol feature added

To make working with multiple stocks a bit easier, we are going to drop all fields except
for “Date” and “Adj Close.” We'll then pivot them all into one big table (see the Jupyter

notebook for this chapter for more details on this process). This approach scales well,

as I've successfully concatenated over 3,000 stocks with ten years of data for analysis
(Listing 5-4 and Figure 5-5).

Listing 5-4. Pivot and Make Symbol Column Header and Date Row Index

stock data =
stock_data.columns
stock_data.head()

Symbol
Date
2017-04-05
2017-04-06
2017-04-07
2017-04-10

2017-04-11

AAPL

141.777161
141.422775
141107742
140.940399
139.424393

BA

172.806151
173.188293
174633438
173.373825
174.360031

CAT

GS HD IBM

91.817474 224.784516 143.392029 166.105453
93356865 225752121 143978745 165.692307
93.064575 225001724 143871185 165394455

94642937 2250998962 144927246 164.491302

94603958 224863480 144917465 163.805584

stock data.pivot('Date’,'Symbol")
stock _data.columns.droplevel()

MCD

127.264833
127.010887
126.825478
126.844994

128.035568

MMM

186.288541
185.646362

185.744141
185.470398
185.822357

TRV

118.215958
17854195
117.472685
118.4114891

118.488716

UNH

162.976671
162.945999
163.616150
163.083954
163.428804

*DJi

20648150391
206562.949219
20656.099608
20658.019531
20651.300781

Figure 5-5. Final stock data frame with each stock pivoted into its own column

172

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

This is going to make working with this data and comparing each symbol against the
index a lot easier to automate.

Scaling the Price Market Data

In order to compare moves between differently priced assets, we need to normalize the
data. In essence, we are going to rescale all the prices into a common scale. There are
many ways of achieving this, and in this web application we will use the percent change
and cumulative sum.

Percent Change and Cumulative Sum

A very simple way to do this is to transform our price data into percentage changes and
apply a rolling sum, known as a cumulative sum (Listing 5-5 and Figure 5-6).

Listing 5-5. Applying Percent Change and Cumulative Sum to APPL

pd.DataFrame({"Price":stock data['AAPL'], "PercentChange":stock
data["AAPL'].pct_change().cumsum()}).head()

PercentChange PercentChangeCumSum Price
Date

2017-11-22 NaN NaN 174.249573
2017-11-24 0.000057 0.000057 174.259521
2017-11-27 -0.005029 -0.004972 173.383087
2017-11-28 -0.005859 -0.010831 172.367249
2017-11-29 -0.020743 -0.031574 168.791809
2017-11-30 0.013984 -0.017590 171.152191
2017-12-01 -0.004655 -0.022246 170.355438
2017-12-04 -0.007308 -0.029553 169.110519
2017-12-05 -0.000942 -0.030496 168.951172
2017-12-06 -0.003714 -0.034210 168.323715

Figure 5-6. Price, percentage change, and percent change cumulative sum

173

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

The first price in the transformation at date “2017-11-22" is lost to a non-number
value, or “NaN,” as we have nothing prior to it to compare against. The second price
of 174.259521 has a positive percentage change, as it is up from the previous price of
174.249573. The cumulative change column sums all these changes in temporal order.
The “PercentChangeCumSum” column becomes a series of data that we can compare
against any other stock series, regardless of their values and ranges—a very useful
transformation for comparative analysis.

Plotting the Spread

Now that we have the percentage change cumulative sum, we can easily plot the
difference between the index and one of its stocks.

We'll start with the cumulative sum percentage difference between the “DJI” and
“BA” (Boeing) and the “DJI” and “AAPL” (Apple). “BA” is showing a lot of positive
strength against the “DJI” index for the period tracked (90 trading days between
11/22/1017 and 4/4/2018). The way to read the chart is to think of the green “0” line as
the stabilized index and the blue squiggly line as the difference in the stock member
(Figure 5-7).

Cumulative Spread Difference: ~DJI & BA

0.25 -

0.20 1

0.15 1

0.10 1

0.05 1

0.00 +—d¥

LS, I I O B O N N B N N R A I N B O N NN N B N I

1
A

) B
. 1'_1.‘1 'Qh.()
P

e e

Figure 5-7. Cumulative spread between the Dow Jones Index and Boeing, where
the stock is showing a lot of strength compared with the index

174

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

The opposite is happening for “AAPL”; it is showing strong negative weakness
compared with the “DJI” index for the same period (Figure 5-8).

Cumulative Spread Difference: “DJI & AAPL

0.000

=0.025 1

-0.050 1

-0.075 1

-0.100 -

-0.125 1

-0.150 1

||

Figure 5-8. Cumulative spread between the Dow Jones Index and Apple, where
the stock is showing weakness compared with the index

And now let’s imagine a fictional trade. What if we went short on “BA” around
12/29/2017 and went long on “AAPL” around the same time. Obviously this is picking stocks
in hindsight, but you would have lost money on “BA” and made a lot more on “AAPL’,
making this pair trade profitable. Of course, you will have to make sure you are invested in
equivalent dollar quantities on both sides for this to work (more on this shortly).

Serving up Trading Ideas

Now that we have a basic idea of the type of trades we're after, let’s find some active
setups to offer to our readers.

Finding Extreme Cases

Let’s assume that the financial data we’re holding is up to date. In order to find the
strongest positive and strongest negative stocks against the “DJI,” we simply need to
create a data frame to hold all our stocks for the desired 90 day look-back period, apply
percentage and cumulative sum to all of them, then look for the largest and smallest last-
day trading price. Let’s walk through this in more detail.

175

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

Let’s apply this to all of our stocks. As we will track differences only over the last 90
trading days (this can be adjusted for experimentation), we will drop older data
(Listing 5-6).

Listing 5-6. Only Using the Last 90 Trading Days of Data
stock _data = stock data.tail(90)

Let’s loop through each symbol and compare the last percentage change cumulative
sum against the DJI and store them for comparison in the dictionary “last_distance_
from_index” (Listing 5-7).

Listing 5-7. Getting the Distance Between Stocks and the Index

stock1 = "~DJI'
last_distance_from index = {}
temp_seriesl = stock data[stock1].pct change().cumsum()
for stock2 in list(stock data):
no need to process itself
if (stock2 != stock1):
temp series2 = stock data[stock2].pct change().cumsum()
we subtract the stock minus the index, if stock is strong
compared
to index, it will show a positive value
diff = list(temp series2 - temp seriesil)
last distance from index[stock2] = diff[-1]

Let’s see what we caught in our dictionary (Listing 5-8).

Listing 5-8. Analyzing the Distances Between Our Stocks and the Index
Input:

print(last distance from_ index)

176

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

Output:

{"AAPL': -0.042309986580456815,
'BA': 0.1960194615751124,
"CAT': 0.03379845694757866,
'GS': 0.047454711281622486,
'HD': 0.014178592951754165,
'IBM': -0.003376107031365594,
'MCD': -0.06239853566933862,
'MMM': -0.08366228603707737,
'"TRV': 0.04601871807501723,
"UNH': 0.060732956928879145}

Just by looking at the dictionary, we see that “BA” has the highest value and that
“MMM” has the lowest.

Making Recommendations

We need to pull these values programmatically if we want to automate the process or
scale this up to thousands of stocks. Let’s use the convenient lambda functions. This is a
style of function that can easily be nested into dictionaries and apply transformations or,
in our case, finding the minimum and maximum values in a dictionary (Listings 5-9

and 5-10).

Listing 5-9. Applying a Lambda Function to Find the Minimum Value in Our
Dictionary

Input:

weakest symbol = min(last distance from_index.items(), key=lambda x: x[1])
print('Weakest symbol: %s' % weakest symbol[0])

Output:

Weakest symbol: MMM

177

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

Listing 5-10. Applying a Lambda Function to Find the Maximum Value in Our
Dictionary

Input:

strongest symbol = max(last distance from index.items(), key=lambda x: x[1])
print('Strongest symbol: %s' % strongest symbol[0])

Output:
Strongest symbol: BA
Let’s visualize the two extreme cases: “BA” and “MMM” (Figures 5-9 and 5-10).

Cumulative Spread Difference: ~DJI & BA

0.05 1

0.00 Y

p o
3 Wi .
')

Figure 5-9. The strongest stock of the set vs. the Dow Jones Index

Cumulative Spread Difference: “DJI & MMM

0.02 1

0.00 T

-0.02 A

||

Figure 5-10. The weakest stock of the set vs. the Dow Jones Index
178

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

We now have our two recommendations and what they look like plotted on a graph
(Figure 5-11).

1. Buy“MMM”
2. Short “BA”
Above: BA, Below: MMM, Index:~DJI
0.35 A
—— go long MMM
0.30 1 go short BA
0.25 1 —— index bench ~DJI
0.20 1
0.15 1
0.10 - ¥ i i
00s{ p/ M
0.00
V \/\/v
-0.05
ar o
“"\;‘» %_qu
o> e

Figure 5-11. Recommendation from our algorithm: short BA, buy MMM

Calculating the Number of Shares to Trade

You want to get into the market with equal dollar amounts on your long and short
positions. In other words, you want to be dollar neutral (granted this is harder with
smaller budgets or stocks that trade at big values).

You need to set a budget value, the total number of dollars that you are willing to
use for the trade (though I refer to dollars for this use-case, any other currency can be
substituted). For this example, we’ll go with $10,000 (Listing 5-11).

Listing 5-11. Setting Our Trading Budget
trading budget = 10000

As we are dealing with dollar amounts, we need to use the actual stock price, not our
percent change and cumulative sums. We will continue working with “BA” and “MMM”
(Listing 5-12).

179

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

Listing 5-12. Getting the Last Trading Price for Both Recommended Stocks
Input:

short _symbol = strongest symbol[0]

short last close = stock data[strongest symbol[0]][-1]
print('Strongest symbol %s, last price: $%f' % (strongest symbol[0],
short last close))

long symbol = weakest symbol[0]

long last close = stock data[weakest symbol[0]][-1]
print('Weakest symbol %s, last price: $%f' % (weakest symbol[0],
long last close))

Output:

Strongest symbol BA, last price: $327.440002
Weakest symbol MMM, last price: $217.559998

Let’s apply the trading budget and figure out how many shares of each we can trade.
The formula is simply to divide half the budget against the price of the stock (Listing 5-13
and Listing 5-14).

Listing 5-13. Getting the Last Trading Price for the First Recommended Stock
Input:

print('For %s, at $%f, you need to short %i shares' %
(short_symbol, short last close, (trading budget * 0.5) /
short last close))

Output:

For BA, at $327.440002, you need to short 15 shares

Listing 5-14. Getting the Last Trading Price for the Second Recommended Stock
Input:

print('For %s, at $%f, you need to buy %i shares' %
(long_symbol, long last close, (trading budget * 0.5) /
long last clse))

180

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS
Output:
For MMM, at $217.559998, you need to buy 22 shares

So, in order to make a dollar-neutral pair trade, we need to short 15 shares of “BA”
and buy 22 shares of “MMM.” This should make sense, as 327 times 15 is a around
$5,000, and 217 times 22 is around $5,000 as well.

Designing a Mobile-Friendly Web Application
to Offer Trading Ideas

Let’s get to work and build our local Flask application that will offer trading
recommendations. As usual, we have to ask ourselves what is it that we want our end
users to experience.

This is going to be a simple application. In the first part of our case study, we’'ll
simply offer up trading ideas based on the strategy in a visually pleasant manner using
large colored arrows and clear instructions. The user will be able to input their total
budget for the trade and the application will calculate the quantity of shares to buy and
sell in order to remain dollar neutral.

Fluid Containers

The application also needs to be mobile friendly. This means it needs to make use of
“responsive fluid containers” from Bootstrap. Bootstrap 3 is mobile friendly out of the
box' but we can enhance and control specific behavior by using the right tagging.

Most scripts in this book follow some of the “responsive” behavior recommended,
such as offering proper page rendering and touch zooming that you will see in each
project’s headers (Listing 5-15).

'https://getbootstrap.com/docs/3.3/css/

181

https://getbootstrap.com/docs/3.3/css/

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS
Listing 5-15. Handling Different Web Viewing Devices
<meta name="viewport" content="width=device-width, initial-scale=1">

We will add fluid containers to create smart rendering, depending on the device
or size of web page used to view the site. In normal mode, we see the wide version
where the green and red arrows are drawn on the right and left sides of the page
(Figure 5-12).

'\ PAIR TRADING BOOTH P\§

A #1110

Budget Limit:
1
Buy: 22.98 shares Short: 15.27 shares
Symoo: MMM Symo: 84

At: $217.56 At: $327.44

Figure 5-12. Web application in wide mode for computers and tablets

And when the application is viewed on a mobile or narrow page, we see a version
where the green and red arrows render above and below the “Budget Limit:” text box
(Figure 5-13).

182

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

A2

F'N! PAIR TRADING BOOTH Al

A 7110

%

Buy: 22.98 shares
Symbol: MMM
At: $217.56

Get Trade

Short: 15.27 shares
Symbol: BA
At: $327.44

Figure 5-13. Web application in narrow mode for mobile devices

This ensures that the application is always easy to use no matter the format. For more
on this topic, see “Bootstrap Grid Examples” on w3schools at https://www.w3schools.
com/bootstrap/bootstrap grid examples.asp.

Running the Local Flask Version

Download the files for Chapter 5 to your local machine if you haven’t done so already.
In a command/terminal window, enter the “web-application” folder. Your file structure
should look like Listing 5-16.

183

https://www.w3schools.com/bootstrap/bootstrap_grid_examples.asp
https://www.w3schools.com/bootstrap/bootstrap_grid_examples.asp

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

Listing 5-16. Our Web Application’s File Structure

web-application

F— ~DII.csv

F— AAPL.csv

F— BA.csv

F— CAT.csv

|— GS.csv

F— HD.csv

F— IBM.csv

|— main.py

F— MCD.csv

F— MMM. csv

|— TRV.csv

F— UNH.csv

F— static
— images:
— down-arrow.png
— ticker-title.png
L— up-arrow.png

L— templates:
L— index.html

You can install all the required Python libraries by running the “pip3 install -r”
command (Listing 5-17).

Listing 5-17. Installing Requirements

$ pip3 install -r requirements.txt

Go ahead and take if for a spin by typing the “python3 main.py” command in your
terminal window (Listing 5-18).

Listing 5-18. Our Local Web Application
$ python3 main.py

You should see the “Pair Trading Booth” web application (Figure 5-14).

184

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

® O ® /[pair Trading Booth X 3 Manuel

< C ® 127.0.0.1:5000

Him

Figure 5-14. Local rendering of the web application

What’s Going on Here?

Compared with the other sites we've built so far, this chapter is fairly straightforward. We
did implement some mobile-friendly tags that were discussed earlier, and here are two
more things worthy of mention.

Bootstrap Input Field Validation

Bootstrap has great form-validation features that are trivial to implement. By just telling
Bootstrap what the data type of an input field is, it can handle it automatically for you
and save you a lot of coding and form processing headaches (Listing 5-19).

Listing 5-19. Bootstrap Field Validation

<input type="number" class="form-control" value="" name=...>

To see it in action, try entering a non-numeric character in the “Budget Limit” input
box and you will see the front end pop up a message box stating that you can only enter
numbers. This is a phenomenal feature to leverage, especially in this day-and-age of text
injection attacks (Figure 5-15).

185

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

Please enter a number.

View Charts

Figure 5-15. Form-validation in action and rejecting a non-numeric character

For more information on these form validators, check out the Bootstrap
documentation at: https://getbootstrap.com/docs/4.0/components/forms/.

We will keep building out the “Pair Trading Booth” web application in the next
sections, so keep the code handy.

Running on PythonAnywhere

Log into your PythonAnywhere account you used in Chapter 1. Navigate to the “Files”
button on the top right of the dashboard. Create a new folder on PythonAnywhere called
“pair-trading-booth.” Click on the “Files” link in the top menu bar, then enter “pair-
trading-booth” in the directories text box and hit “New Directory” (Figure 5-16).

ﬁ‘\}:f/’ J nanywhere Dashboard Consoles Files Web Tasks Databases
L

me/ manuelamunategui Open Bash console here 58% fulgﬁ—?? 6 MB of your 512.0 MB quota
\

Directories y/

pair-trading-booth M \m'

Figure 5-16. Creating our site’s root directory

186

https://getbootstrap.com/docs/4.0/components/forms

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

Enter the “pair-trading-booth” folder and create two more folders under it: “static”
and “templates.”

Right under the “pair-trading-booth” directory, hit the “Upload a file” button
and upload all “CSV” files and the “main.py” file under the “web-application” folder
for this chapter. Unfortunately you will need to do this once for every file, so 12 times
(Figure 5-17).

[:m) < S E web-application b+ o]
Name Date Last Cpened
o TRV.csv 19 KB
0. CAT.csv 19 KB
o IBM.csv 19 KB
@ MCD.csv 19 KB
0 HD.esv 19 KB
a. MMM.csv h— 19 KB
@ UNH.csv 19 KB
@ GS.csv 19 KB
a’ *Ddlcsv 22 KB
o BAcsv - 18 KB
. AAPL.csv Apr 4, 2018 at 8:24 PM 19 KB
static
templates

= main.py KB
Optians Cancel

B UNH.csv

B *DJLesv

& main Py

Figure 5-17. Uploading files manually to the cloud

Your folder structure should look like Listing 5-20.
Listing 5-20. File Structure on PythonAnywhere

~DJI.csv
AAPL.csv
BA.csv

CAT.csv
GS.csv

HD.csv

IBM.csv
main.py
MCD.csv
MMM. csv

TRV.csv
187

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

UNH.csv

F— static

L— templates

Next, enter the “static” folder and create an “images” folder. Enter the “images”
folder and upload all the “PNG” files. Your folder should look like Listing 5-21.

Listing 5-21. File Structure on PythonAnywhere

L— static:
L— images:
— down-arrow.png
F— ticker-title.png
L— up-arrow.png

Backtrack to the “templates” folder and enter it and upload; you guessed it, the
“index.html” file. The final full structure should look like Listing 5-22.

Listing 5-22. File Structure on PythonAnywhere

ADJI.csv

AAPL.csv

BA.csv

CAT.csv

GS.csv

HD.csv

IBM.csv

main.py

MCD.csv

MMM. csv

TRV.csv

UNH. csv

L— static:

L— images:

— down-arrow.png
F— ticker-title.png
L up-arrow.png

L templates:
L— index.html
188

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

The file structure is exactly the way we want it. Now we need to work on the web
settings to tell PythonAnywhere what to serve and how. Click the “Web” tab.

Fixing the WSGI File

We need to set up the Web Server Gateway Interface file (WSGI). The WSGI file is a
common interface between different web frameworks and the Python programming

language.

Source Code
Click on the “Web” menu button on PythonAnywhere (Figure 5-18).

Send fesdback Forums Help Blog Accoumt Logout

5{;‘0’: honanywhere Dashboard Consoles Files Web Tasks Databases
manuelamur Ategul.pythonanywhere.corn
© Add a new web app

Figure 5-18. Enter the Web tab on PythonAnywhere

Scroll down to the “Code” section and change the “Source code” path to end with
“pair-trading-booth” (Listing 5-23).

Listing 5-23. Find the “mysite” Source Code Link
Source code: /home/<YOUR-ACCOUNT-NAME>/mysite

Change “mysite” to “pair-trading-booth” (Listing 5-24).

Listing 5-24. Update the Source Code Link with Our Web Application Path
Source code: /home/<YOUR-ACCOUNT-NAME>/pair-trading-booth

This way, PythonAnywhere knows where to find the source code (Figure 5-19).

189

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

Code:

What your site is running. \
. - 5 = - i
Source code: i nd e gt |) Go to directory

Figure 5-19. You should end up with the correct application name in the source
code text box

WSGI Configuration

Next, and in the same section, update the “WSGI configuration file.” Click on the link
shown in Figure 5-20.

Code:
What your site is running.
Source codely /home/manuelamunategui/pair-trading-booth AGo to directory
Working directory: /home/manuelamunategui/ #Go to directory
WSGI configuration file: [var/www/manuelamunategui_pythonanywhere_com_wsgi.py.

Figure 5-20. Click on the “WSGI configuration file” link to update the
configuration file

There are two edits to perform on this file. Update the “project_home” variable to
include your account name (which it should do automatically), and change the folder
name to “pair-trading-booth.” This informs the web server that the “pair-trading-
booth” folder is where it will find all the files needed to serve the web application. Next,
update the last line of the script to import from “main” (short for main.py) as shown in
Listing 5-25.

Listing 5-25. Updating the WSGI Configuration File

This file contains the WSGI configuration required to serve up your

web application at http://<your-username>.pythonanywhere.com/

It works by setting the variable 'application' to a WSGI handler of some
description.

#

The below has been auto-generated for your Flask project

190

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS
import sys

add your project directory to the sys.path
project_home = u'/home/<YOUR-ACCOUNT-NAME>/pair-trading-booth’
if project _home not in sys.path:
sys.path = [project _home] + sys.path
import flask app but need to call it "application" for WSGI to work
from main import app as application

After editing the file, hit the green “Save” button in the upper right corner and click
on the “Web” tab again (Figure 5-21).

Keyboard shortcuts: Normal 4 @ @ @
our
y Dashboard
er of some Consoles

Flles
Web
Tasks

Databases

Figure 5-21. Saving the WSGI configuration file

Reload Web Site

There’s only one more thing to do and that is the to hit the big green “Reload <<YOUR
ACCOUNT>>.pythonanywhere .com” button. Click on your website URL and you
should see the “Pair Trading Booth” web application (Figure 5-22).

Configuration for
manuelamunategui.p@anywhere.com

Reload:

2 Reload manuelamunategui.pythonanywhere..u.n

Figure 5-22. The big green reload button to update the web server after any changes
191

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

Go ahead, change the “Budget Limit” size and get trades. Also resize the web site’s
window to see the wide vs. mobile display change (Figure 5-23).

@ O ® | [pair Trading Booth x) Manuel

€ C | @ Secure htipsy/manuelamunategui.pythonanywhere.com | &

Figure 5-23. The pair trading booth web application is live!

Troubleshooting PythonAnywhere

If you see the “Something went wrong :-(” page (Figure 5-24) instead of the web
application, click on the error log. This will help you pinpoint what went wrong and how
to fix it. Anytime you make a change to server-side scripts, you will need to hit the big
green “Reload <<YOUR ACCOUNT>>.pythonanywhere .com” button.

192

CHAPTER 5 CASE STUDY PART 1: SUPPORTING BOTH WEB AND MOBILE BROWSERS

L el [PythonAnywhere: something = X tubeof
C @ amunateguioutlook.pythonanywhere.com a w ¢ 1@
BBl
Q:L(j. ith anywhere

Something went wrong :~(

This website is hosted by PythonAnywhere, an onling hosting environment.
Somaething went wrong while trying to load it; please try again later.

There was an error loading your PytnonAnywhere-hosted site. There may be a
bug in your code.

Error code: Unhandled Exception

Debugging tips

The first place to 100K is at your web app page to ensure that th
errors indicated there,
« Next, check your site's server and error logs for any m
can view them here:
e amunateguioutiook. pythonanywhere.com.error.log
e amunateguioutiook.pythonanywhere.com.server.log
« You can find helpful tips on the PythonAnywhere help site:
¢ There's an ImportEmor in the logs
o "403 Forbidden" emror or *Connection Refused® error in logs
e Database connection errors
o There are many more helpful guides on our Help pages
If you get completely stuck, then drop us a line at
support@pythonanywhere.com, in the forums, or using the *Send feedback"
link on the site, with the relevant lines from your logs.

Figure 5-24. Link to the error and server log files in case something isn't right

Conclusion

PythonAnywhere.com is not only extremely simple to use, it is intuitive and, in some
instances, free! This makes it a strong contender to extend simple Python ideas on the
World Wide Web and reach anybody with access to the Internet!

One more thing: because we are only using a free instance on PythonAnywhere,
there is no urgency to terminate the service whenever not in use. You can let this run and
show your friends and family. This won't be the case for some of the bigger providers—if
you leave your page up and running on some of them, you will incur charges.

And I'll relentlessly keep reminding you to turn the services off after each chapter.

193

http://pythonanywhere.com

CHAPTER 6

Displaying Predictions
with Google Maps
on Azure

Where will crime happen next in San Francisco? Let’s build an interactive predictive
mapping dashboard using Google Maps and Microsoft Azure.

We step up our game once more by displaying information using the powerful
Google Maps API. We will build a web dashboard to predict, map, and visualize
crime in San Francisco (Figure 6-1). We will use a dataset from “DataSF | San
Francisco Open Data” derived from the real and regularly updated SFPD Crime
Incident Reporting System. With minimal work, we can benefit from the world’s

most popular mapping framework.

© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_6

195

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

® ® /' 3 crime In San Franciso X () Manuel

c)

- C @ Secure | https://amunateguicrime.azurewebsites.net W

Chapter 6:
Predicting Crime
In San Francisco

Select crime horizon: 06/20/2018

Figure 6-1. The final web application for this chapter

Note Download the files for Chapter 6 by going to www.apress.com/
9781484238721 and clicking the source code button. Open the Jupyter notebook
“chapter6.ipynb” to follow along with this chapter’s content.

196

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Planning our Web Application

This is an ambitious project, as we’re going to build an application that will predict and
visualize where crime will happen in the future. Not only does it require a modeling
layer around crime data and time, but also a visualization layer that needs to be intuitive,
inviting, and appealing.

Exploring the Dataset on SF Crime Heat Map
on DataSF

If you want to access some up-to-date crime data for a big city, look no further than DataSE!
It actually offers a lot more than just crime data; as of the last time I checked, it had over 462
published datasets available on a variety of topics around the city of San Francisco.

We will be using the SF Crime Heat Map; it has fairly current data, usually updated
at the end of each month. The DataSF also has a dashboard where you can visualize the
data on a map—cool stuff (see it at https://data.sfgov.org/Public-Safety/SF-Crime-
Heat-Map/qb6gg-sa2p/data). Go ahead and download the files for this chapter into a
folder called “chapter-6” and open up the Jupyter notebook to follow along.

This is a fairly large dataset (over 250 MB); so let’'s download the data only once
and run off a local copy during subsequent runs. In the Jupyter notebook, run the data-
downloading code and then turn the flag “already_have_the_data” to “True” once the
code has been successfully downloaded and saved locally. This will ensure that any
subsequent run of the notebook will pull the data from your local machine.

The dataset may be different when you download it, as they keep adding data to it.
We use the Pandas “read_csv()” to download it and save it locally. From a cursory look
at the data, we see that it contains 14 columns and over 1.7 million rows (Listing 6-1).

Listing 6-1. Get Dataset Shape
Input:

crime_df.shape

Output:

(2192062, 12)

'https://datasf.org/about/
197

https://data.sfgov.org/Public-Safety/SF-Crime-Heat-Map/q6gg-sa2p/data
https://data.sfgov.org/Public-Safety/SF-Crime-Heat-Map/q6gg-sa2p/data
https://datasf.org/about

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

We see that we have data from 2003 to 2018 (Listing 6-2).

Listing 6-2. Years Covered by Data
Input:

years = [int(dte.split("/")[2]) for dte in crime df['Date']]
print('Max year %i, min year %i' % (max(years), min(years)))

Output:
Max year 2018, min year 2003

We also notice that it contains both interesting and not-so-interesting fields
(Listing 6-3).

Listing 6-3. Feature Names (before any cleanup)
Input:

list(crime df)

Output:

['IncidntNum',
'Category’,
'‘Descript’,
'‘DayOfheek",
'Date’,
"Time',
'"PdDistrict’,
'Resolution’,
"Address’,
X
v
"Location']

198

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Data Cleanup

To make the data easier to work with and more intuitive, we’ll only keep “Category,’
“DayOfWeek,” “Date,” “Time,” “X,” “Y,” and we will rename the “X” and “Y” to
“Longitude” and “Latitude” (Listing 6-4 and Figure 6-2).

Listing 6-4. Drop Unwanted Features and Rename Columns

crime_df = crime df[['Category', 'DayOfWeek', 'Date’', 'Time', 'X', 'Y']]
crime_df.columns = ['Category', 'DayOfWeek', 'Date', 'Time', 'Latitude’,
"Longitude’]

crime_df.head()

Category DayOfWeek Date Time Longitude Latitude
0 NON-CRIMINAL Monday 01/19/2015 14:00 -122.421582 37.761701
1 ROBBERY Sunday 02/01/2015 15:45 -122.414406 37.784191
2 ASSAULT Sunday 02/01/2015 15:45 -122.414406 37.784191
3 SECONDARY CODES Sunday 02/01/2015 15:45 -122.414406 37.784191
4 VANDALISM Tuesday 01/27/2015 19:00 -122.431119 37.800469

Figure 6-2. Keeping only useful features with better column header names

Rebalancing the Dataset

Let’s take an exploratory detour and learn more about this data. We'll start by looking at
the categories and how many reports each contains (Listing 6-5).

Listing 6-5. Categories in Dataset
Input:

crime df['Category'].value counts()

199

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Output:

LARCENY/THEFT 473842
OTHER OFFENSES 306575
NON-CRIMINAL 235669
ASSAULT 192459
VEHICLE THEFT 125983
DRUG/NARCOTIC 118911
VANDALISM 114688
WARRANTS 100512
BURGLARY 90495
SUSPICIOUS OcCC 79618
MISSING PERSON 64332
ROBBERY 55332
FRAUD 41104
SECONDARY CODES 25495
FORGERY/COUNTERFEITING 22938
WEAPON LAWS 21991
TRESPASS 19195
PROSTITUTION 16669
STOLEN PROPERTY 11771
SEX OFFENSES, FORCIBLE 11554
DISORDERLY CONDUCT 9988
DRUNKENNESS 9781
RECOVERED VEHICLE 8716
DRIVING UNDER THE INFLUENCE 5629
KIDNAPPING 5307
RUNAWAY 4403
LIQUOR LAWS 4078
ARSON 3887
EMBEZZLEMENT 2961
LOITERING 2420
SUICIDE 1285
FAMILY OFFENSES 1177
BAD CHECKS 921
BRIBERY 804

200

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

EXTORTION 733
SEX OFFENSES, NON FORCIBLE 425
GAMBLING 343
PORNOGRAPHY/0OBSCENE MAT 57
TREA 14

Beyond the fact that these are scary categories, you will also notice that the top ones
have the majority of counts. We may need to reorder things into new categories, smaller
and more balanced categories. This is easy to do with Python Pandas. Let’s create the
following logical groups (at least they made sense to me; Listing 6-6).

Listing 6-6. Higher Level Groupings

THEFT = ["LARCENY/THEFT", "VEHICLE THEFT", "BURGLARY", "ROBBERY", "STOLEN
PROPERTY"]

IMPAIRED = ["DRUNKENNESS", "DRIVING UNDER THE INFLUENCE", "LIQUOR LAWS",
"DISORDERLY CONDUCT", "DRUG/NARCOTIC", "LOITERING"]

VIOLENCE = ["ASSAULT", "VANDALISM", "SUSPICIOUS OCC", "TRESPASS",
"SEX OFFENSES,
FORCIBLE" , "SEX OFFENSES, NON FORCIBLE"]

OTHER = ["OTHER OFFENSES", "NON-CRIMINAL"]

Using NumPy’s handy “select()” function, we can create new super categories
(Listing 6-7).

), U

Listing 6-7. Using NumPy’s “select()” Feature to Create New Categories

selections = [
(crime_df['Category'].isin(THEFT)),
(crime_df['Category'].isin(IMPAIRED)),
(crime df['Category'].isin(VIOLENCE)),
(crime_df['Category'].isin(OTHER))]

new categories = ['THEFT', 'IMPAIRED', 'VIOLENCE', 'OTHER']
crime df['CAT'] = np.select(selections, new categories, default='OTHER")

If we look at our categories by counts, we see that we have a somewhat better
balanced, and more importantly, much shorter set to deal with (Listing 6-8).

201

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE
Listing 6-8. Counts of New Categories

Input:

crime df tmp['CAT'].value_ counts()

Output:
OTHER 865893
THEFT 757423

VIOLENCE 417939
IMPAIRED 150807

Exploring by Day-of-the-Week

Let’s break down some of these categories by day-of-the-week. Theft happens most
prevalently on Fridays, followed by Saturdays (Listing 6-9 and Figure 6-3).

Listing 6-9. Theft by Day-of-the-Week

crime _df tmp = crime df[crime df['CAT'] == 'THEFT']
crime df tmp['DayOfWeek'].value counts().plot(kind="bar")
plt.suptitle('Category: THEFT')

Category: THEFT

120000 -

100000 -

80000 A

60000

40000

20000 1

0

Friday
Saturday
Thursday

Tuesday

Sunday

Monday

Wednesday

Figure 6-3. Theft by day-of-the-week

202

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Let’s break down some of these categories by day-of-the-week. Being “Impaired”

surprisingly happens the most on week days (Figure 6-4).

Category: IMPAIRED

25000 1

20000 A

15000 1

10000 4

5000

Tuesday
Thursday
Monday
Friday
Saturday
Sunday

Wednesday

Figure 6-4. Impaired by day-of-the-week

Feature Engineering

Let’s transform some of this data into simpler groups that will help us model this in a

more generalizable way.

Creating a Month-of-the-Year Feature

We'll start with an easy one and create a month-of-the-year feature. We aren’t interested
in the year, just the month; we're making the assumption that most Januarys over the
years are similar. This simply entails pulling the first two digits from the date field. Had
it not been in such a clean format, we would have had to cast it as a date field and use

some specialized function (Listing 6-10 and Figure 6-5).

Listing 6-10. Aggregating by Months

crime_df["Month of year"] = [int(dte.split("/")[0]) for dte in crime_
df['Date']]
crime df["Month of year"].value counts()

203

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Month_of year

e

197255
173798
193254
180322
184082
174736
181810
187368

© 0O N O O & W N

183389

ey
o

190431

—
—

174967
12 170650

Figure 6-5. Month-of-the-year total reported crime counts table

As expected, we have 12 groups. Let’s plot them and see what month has the most
reported crime (Listing 6-11 and Figure 6-6).

Listing 6-11. Reported Crime Counts by Month

plt.barh(crime_by month.index, crime by month['Month of year'],
align="center', alpha=0.5)

objects = ['Jan','Feb', 'Mar', 'Apr', 'Ma', 'Jun','Jul’, 'Aug', 'Sept', 'Oct’,
"Nov', 'Dec']

plt.yticks(crime by month.index, objects)

plt.xlabel('Crime Reports')

plt.title('Total Crime By Month")

plt.show()

204

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Total Crime By Month

0 25000 50000 75000 100000 125000 150000 175000 200000
Crime Reports
Figure 6-6. Month-of-the-year total reported crime counts
We can dig deeper by segmenting the data by crime category (Figure 6-7).

IMPAIRED By Month

Nov
Sept
Jul
Jun
Ma

Mar
Feb

0 2000 4000 6000 8000 10000 12000 14000
Crime Reports

Figure 6-7. Month-of-the-year reported crime counts for category “IMPAIRED”

Creating Time Segments

To simplify our time data, we're going to segment it into three categories:
e Morning
e Afternoon

° nght
205

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

We'll reuse our “np.select()” function but there are plenty of other ways of
achieving the same results, like using “np.where()” or comprehensions. We first create
anew feature called “Hour” that extracts the hour of the reported crime from the full
timestamp. We then simply create three time zones on a 24-hour timeline and filter out
which hour fits into which time segment. We end up with three categories that are fairly
well balanced, with a slight skew toward non-am reported crimes (Listing 6-12).

Listing 6-12. Transform Time Using Categories “AM,” “AFT,” and “NT”
Input:

create AM, AFT, NT
crime df["Hour"] = [int(hr.split(":")[0]) for hr in crime df['Time']]
crime_df["Hour"]

create new groups

selections = [
(crime_df['Hour'] > 5) & (crime df['Hour'] <=13),
(crime df['Hour'] > 13) & (crime df['Hour'] <= 19),
(crime df['Hour'] > 18) & (crime df['Hour'] <= 5)]

new categories = [0, 1, 2] # ['AM', 'AFT', 'NIT']
crime_df['Day_Segment'] = np.select(selections, choices, default=2)
crime df['Day_Segment'].value counts()

Output:

2 683804
1 674292
0 620236

Exploring by Time Segment

Reported “IMPAIRED” crimes seem to be more prevalent in the afternoons, while
reported “VIOLENCE” crime seem more prevalent at night (Figures 6-8 and 6-9).

206

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

IMPAIRED By Day_Segment

0 10000 20000 30000 40000 50000
Crime Reports

Figure 6-8. Breakdown of “IMPAIRED” Reported Crimes by Time Segment

VIOLENCE By Day_Segment

0 20000 40000 60000 80000 100000 120000 140000
Crime Reports

Figure 6-9. Breakdown of “VIOLENCE” Reported Crimes by Time Segment

Note Refer to the Jupyter notebook for this chapter for more graphs.

207

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Visualizing Geographical Data

A great feature of the dataset is that it includes the latitude and longitude of the location
where the crime was reported. This is great for creating location-based models but also
great for visualization. As a matter of fact, you can simply plot the latitude and longitude
in Matplotlib as x and y and get a decent visual representation of the data. Let’s try it
(Listing 6-13 and Figure 6-10).

Listing 6-13. Plotting Crime by Longitude and Latitude

plt.plot(crime_df['Longitude'].head(50000),
crime df['Latitude'].head(50000),
linestyle="none', marker='.")
plt.show()

Reported Crime By Longitude And Latitude

37.80 1

37.78

37.76 1

Latitude

37.74 1

37.72 4

-12250 -122.48 -122.46 -122.44 -12242 -122.40
Longitude

Figure 6-10. Raw plotting of the longitude and latitude of where the crime was
reported

As you can see from the plot, we can easily make out the Golden Gate Park, Presidio,
and Lake Merced Park by looking at the space areas (Figure 6-11).

208

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Figure 6-11. Comparative satellite plot for the same area from Google Maps
(source Google Maps)

Rounding Geocoordinates to Create Zone Buckets

A trick to working with geocoordinates is that you can round them easily and they
will create a comprehensive grid—for a tighter grid, round less, for a looser one, round
more. We create a simple “rounding factor” variable to help us better find the proper
perspective needed. Let’s take a look (Listings 6-14 and 6-15; Figures 6-12 and 6-13).

Listing 6-14. Rounding Geocoordinates

rounding_factor = 4

plt.plot(np.round(crime_df['Longitude'].head(10000),rounding factor),
np.round(crime df['Latitude'].head(10000),rounding factor),
linestyle="none', marker='.")

209

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Reported Crime With Rounded Longitude And Latitude

37.80 1

37.78 4

37.76 A

Latitude

37.74 1

37.72 4

-12250 -122.48 -122.46 -122.44 -12242 -122.40
Longitude

Figure 6-12. Rounding the longitude and latitude to four numbers after the
decimal point

Listing 6-15. Rounding Geocoordinates

rounding factor = 2

plt.plot(np.round(crime_df['Longitude'].head(10000),rounding factor),
np.round(crime_df['Latitude'].head(10000),rounding factor),
linestyle="none', marker='.")

Reported Crime Rounded by Longitude And Latitude

37.80 4 * = ® 8 " 8 @

3778{ ¢ e e @ ® & & @ & e ® © @®

37761 = L] L] L] L] L] L L L] L] L . L

Latitude

37744 = L] L] 3 e o .

o: % % @ i@ e e el wa e e

37.72 A . . . ° . . . ° . . ° °

. I T r—

-12250 -122.48 -122.46 -12244 -12242 -122.40
Longitude

Figure 6-13. Rounding the longitude and latitude to two numbers after the
decimal point

210

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

We will go with the last case, rounding the number down to only two numbers after
the decimal point. As you can see from the corresponding figure, it forms a clean and
evenly spaced grid perfect for a generalized perspective of reported crime activities.

As a final Matplotlib experiment, we can create a heat map of crime (Listing 6-16 and
Figure 6-14).

Listing 6-16. Experimenting with Heatmaps

from matplotlib.colors import LogNorm

x = np.round(crime df['Longitude'].head(10000),rounding factor)
y = np.round(crime_df['Latitude'].head(10000),rounding factor)
fig = plt.figure()

plt.suptitle('Reported Crime Heatmap')

plt.xlabel('Latitude")

plt.ylabel('Longitude")

H, xedges, yedges, img = plt.hist2d(x, y, norm=LogNorm())
extent = [yedges[0], yedges[-1], xedges[0], xedges[-1]]

Reported Crime Heatmap

37.80
37.79
37.78
37.77

§ 37.76

23775
37.74
37.73
37.72

37.71

-122.50 -122.48 -12246 -12244 -12242 -12240
Latitude

Figure 6-14. Heat map of reported crime; clearly, the brightest area is in the
north-east of San Francisco

211

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Using the Past to Predict the Future

We are going to aggregate the essential features we've created so far into a generalized,
time-based representation. Let’s take a look (Listing 6-17 and Figure 6-15).

Listing 6-17. Capping the Data Down to Only Essential Features

crime_df = crime df[['CAT', 'Day_of month','Month of year', 'Day Segment',
"Longitude’, 'Latitude']]
crime_df.head()

CAT Day_of_month Month_of year Day_Segment Longitude Latitude

0 OTHER 19 1 1 -122.422 37.762
1 THEFT 1 2 1 -122.414 37.784
2 VIOLENCE 1 2 1 -122.414 37.784
5 OTHER 1 2 1 -122.452 37.787
8 THEFT 3 1 1 -122.407 37.788

Figure 6-15. A look at the data that we will feed into our web application

The data holds a generalized location portion with the longitude and latitude, and a
generalized time-based portion with the month-of-year, day-of-month, day-segment. We
need to aggregate this information down to the time and location level. This will allow
us to sum up reports and build intensity maps depending on quantity of reports for a
period.

We start by adding a “Count” feature and apply the handy Pandas “groupby()”
function (Listing 6-18 and Figure 6-16).

Listing 6-18. Aggregating Information by Time and Location

crime df['Count'] = 0

crime_df agg = crime df.groupby(['CAT', 'Day of month', 'Month of
year', 'Day Segment', 'Longitude', 'Latitude',]).count().reset index()
crime_df agg.tail()

212

1257202
1257203
1257204
1257205

1257206

CAT Day_of_month Month_of year

VIOLENCE
VIOLENCE
VIOLENCE
VIOLENCE

VIOLENCE

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

kY
K}
Ky
3

31

12
12
12
12

12

Day_Segment

2

2
2
2
'+

Longitude Latitude Count

-122.392
-122.392
-122.392
-122.392

-122.391

37.730
37.732
37.758
37.789

37.719

Figure 6-16. Information aggregated down to time and location level

Now we can ask for a particular date signature and get all the reported crimes per

location (Listing 6-19 and Figure 6-17).

Listing 6-19. Information Aggregated by Date Signature

Day of month =1

Month _of year =
Day Segment = 1

crime df agg tmp = crime_df agg[(crime df agg['Day of month']

Day of month) &

crime df agg tmp.head()

16463
16464
16465
16466
16467

1

CAT Day_of_month

IMPAIRED
IMPAIRED
IMPAIRED
IMPAIRED
IMPAIRED

6

o o o o

(crime_df agg['Month _of year']

Month of year) &

(crime_df _agg['Day_Segment']

Day Segment)]

Month_of year Day Segment

6

6
6
6
6

0

0
0
0
0

Figure 6-17. Information aggregated by date signature

Longitude
-122.508
-122.505
-122.503
-122.501
-122.466

1

1

1

Latitude Count

37.754
37.745
37.747
37.777
37773

213

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

And we can plot this information as well (Figure 6-18).

Crime Estimates For January 1 NIT

37.80 1

37.78 4

37.76 A

Latitude

37.74 1

37.72 4

-122.52 -12250 -12248 -12246 -122.44 -122.42 -122.40
Longitude

Figure 6-18. Crime estimates for January 1st at night by longitude and latitude

This chart doesn’t discriminate on count intensity; let’s fix that. We’ll switch from
Matplotlib’s “plot()” to “scatter()” and use the “s” or size parameter (Listing 6-20 and
Figure 6-19).

Listing 6-20. Scatter Plot of Crime Data Using Dot Sizing

plt.scatter(crime df agg tmp['Longitude'],
crime df agg tmp['Latitude'], s=crime_df agg tmp['Count'])
plt.suptitle(title)
plt.xlabel('Longitude")
plt.ylabel('Latitude")
plt.show()

214

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Crime Estimates For January 1 NIT

37.80 4

37.78 1

37.76 1

Latitude

37.74 A

37.72 1

37.70 4, : : : T T ;
=122.52 -122.50 -122.48 -122.46 -122.44 -122.42 -12240
Longitude

Figure 6-19. Plotting with Matplotlib’s Scatter function and passing the “Count
feature to adjust dot size for January 1s' at night

And for good measure, let’s dial up a completely different time (Figure 6-20).

Crime Estimates For June 6 AM

37.80 1
JIR] < kel e

37.76 1

Latitude

37.74 1 . e

37.72 1 S, At e Y Rt

-122.50 -122.48 -122.46 -122.44 -122.42 -122.40
Longitude

Figure 6-20. Looking at reported crime aggregates for June 6th in the morning

To conclude our quick estimates, there is more reported crime on January 1st at

night than June 6th in the morning.

”

215

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Google Maps Introduction

If there is one great and easily customizable visualization tool, it’s got to be Google Maps!
Let’s change gears and try our data using Google Maps instead of plain old Matplotlib.
For this part and to get the web application working, you will need to create a free Google
Maps API Key at https://developers.google.com/maps/documentation/javascript/
get-api-key.

In the past you could get Google Maps to work without it, but these days you need it,
and for moderate use you can get away with the free tier.

So, get that key and try this simple example where you input an address and API
key in order to get all sorts of corollary information regarding that location. Enter the
following address and URL link into your browser: “1600 Amphitheatre Parkway,
Mountain View, CA” (Listing 6-21).

Listing 6-21. 1f Your API Key Is Valid and the URL Is Well Formed, You Should
See a Long XML Response with Similar Data

Input:

https://maps.googleapis.com/maps/api/geocode/xml?address=1600+Amphitheatre+
Parkway,+Mountain+View,+CA&key=<<ADD YOUR GOOGLE MAP API KEY>>

Output:

<GeocodeResponse>

<status>OK</status>

<result>

<type>premise</type>

<formatted address>

Google Building 41, 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA
</formatted address>

<geometry>

<location>
<lat>37.4224082</1at>
<lng>-122.0856086</1ng>
</location>

216

https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Heatmap Layer

A heatmap is a way of visualizing information by intensity. This is a very useful tool to
overlay on top of maps, as it can relay where things are happening a lot vs. happening
only a little—great for reporting crime!

For a great example of creating heatmaps on Google Maps (Figure 6-21), check out
the Google Maps API example from Google’s documentation at: https://developers.
google.com/maps/documentation/javascript/examples/layer-heatmap.

Map Satellite

Figure 6-21. Example script from Google Maps API; you will need an API key for
this

217

https://developers.google.com/maps/documentation/javascript/examples/layer-heatmap
https://developers.google.com/maps/documentation/javascript/examples/layer-heatmap

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Google Maps with Crime Data

Let’s inject our crime data into a Google Map. First, we need to understand the format
expected by the Google Maps “LatLng” function in JavaScript on an HTML page
(Listing 6-22).

Listing 6-22. The “getPoints()” JavaScript Function

<script>
function getPoints() {
return [
new google.maps.LatlLng(37.782551, -122.445368),
new google.maps.LatlLng(37.782745, -122.444586),

15}

</script>

Therefore, we need to extract our latitudes and longitudes from our “crime_df
agg tmp” and format them into the correct format expected by Google Maps. We then
concatenate each into a long string that we can pass using Flask into the HTML script
(Listing 6-23).

Listing 6-23. Creating New Google Maps “LatLng()” Objects in a Loop

LatLngString = "
for index, row in crime df agg tmp.iterrows():

LatLngString += "new google.maps.LatLng(" + str(row['Latitude']) + ",
+ str(row['Longitude']) + "),"

As an example, I manually pasted the “LatLngString” output into a sample HTML
page and this is the result (Figure 6-22).

218

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Map Satellite

Figure 6-22. Some San Francisco crime data plotted into Google Maps

Abstracting Our Crime Estimator

As usual, we need to organize our web application’s engine in a clean and
simple manner, so we can drop it into our main Flask script. We'll create the
“GetCrimeEstimates()” function that will take in a date and “time_segment”
(whether it is in the morning, afternoon, or night; Listing 6-24).

Listing 6-24. The “GetCrimeEstimates()” Function

def GetCrimeEstimates(horizon date, horizon time segment):
Day of month = int(horizon date.split('/")[1])
Month of year = int(horizon date.split('/")[0])
Day Segment = int(horizon time segment) # 0,1,2

crime_horizon df tmp = crime horizon df[
(crime_horizon_df['Day of month'] == Day of _month) &

(crime_horizon df['Month_of year'] == Month of year) &

(crime_horizon df['Day Segment'] == Day Segment)]

219

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

build latlng string for google maps
LatLngString = "
for index, row in crime horizon df tmp.iterrows():
LatLngString += "new google.maps.LatLng(" + str(row['Latitude'])

+"," + str(row['Longitude']) + "),"
return (LatLngString)

The “GetCrimeEstimates()” is the brains of the application. It takes in a date that the
user selects via the slider on the web application along with a time segment, and returns
all the aggregated crime for that date.

For example, when calling the “GetCrimeEstimates(),” we get back a string of
concatenated “google.maps.LatLng” coordinates ready to be fed into Google Maps
(Listing 6-25).

Listing 6-25. Calling “GetCrimeEstimates()”
Input:

GetCrime('10/10/2018"', 0)

Output:

new google.maps.LatLng(37.764,-122.508),
new google.maps.lLatlLng(37.781,-122.49),
new google.maps.LlatlLng(37.711,-122.469),
new google.maps.LatLng(37.764,-122.46700000000001),
new google.maps.LatLng(37.763000000000005,-122.464),

Designing a Web Application to Enable Viewers
to Enter a Future Date and Visualize Crime Hotspots

Go ahead and download the code for the web application for this chapter. Open a
command line window and change the drive to the “web-application” folder. It should
contain the following files (Listing 6-26).

220

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Listing 6-26. Web Application Files

web-application

— main.py

|— ptvs virtualenv_proxy.py
— requirements.txt

|— web.3.4.config

|— static

— sf-crime-horizon.csv
L— images
[— cop.jpg
— thief.jpg
— morning.jpg
— afternoon. jpg
L— night.jpg

L— templates
L— index.html

As usual, we'll start a virtual environment to segregate our Python library installs
(Listing 6-27).

Listing 6-27. Starting a Virtual Environment

$ python3 -m venv predictingcrimeinsanfrancisco
$ source predictingcrimeinsanfrancisco/bin/activate

Then install all the required Python libraries by running the “pip3 install -r”
command (Listing 6-28).

Listing 6-28. Code Input

$ pip3 install -r requirements.txt

Add Your Google API Key

In an editor, open up the file “index.html” and add in your own API key where it says
“ADD_YOUR_API_KEY_ HERE’" You will need to update the code in order to see Google
Maps, otherwise you will get an error message.

221

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Take It for a Spin

As usual, take the site for a spin on a local Flask instance (Listing 6-29).

Listing 6-29. Code Input
$ python3 main.py

You should see the web application with a working Google Map if all went well. Go
ahead and take it for a spin and look at crime predictions for future dates (Figure 6-23).

® © ® /' [y crime In San Franciso X () Manuel

< C | ® 127.0.0.1:5000 Q *

K

Chapter 6:
Predicting Crime
In San Francisco

A

Select crime horizon: 07/20/2018

Figure 6-23. Running the local version of our web application

222

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Git for Azure

Initialize a Git session (Listing 6-30).

Listing 6-30. Initialize Git
$ git init

It is a great idea to run “git status” a couple times throughout to make sure you are
tracking the correct files (Listing 6-31).

Listing 6-31. Running “git status”
Input:

$ git status

Output:

Untracked files:
(use "git add <file>..." to include in what will be committed)

main.py
predictingcrimeinsanfrancisco/
ptvs virtualenv_proxy.py
requirements.txt
st-crime-horizon.csv

static/

templates/

web.3.4.config

Add all the web-application files from the “web-application” file using the
“gitadd .” command and check “git status” again (Listing 6-32).

Listing 6-32. Adding to Git
Input:

$ git add .
$ git status

223

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE
Output:

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: main.py

new file: predictingcrimeinsanfrancisco/bin/activate

new file: predictingcrimeinsanfrancisco/bin/activate.csh

new file: predictingcrimeinsanfrancisco/bin/activate.fish
new file: predictingcrimeinsanfrancisco/bin/easy_install

new file: predictingcrimeinsanfrancisco/bin/easy install-3.6

You may have noticed that we have added a lot of files to our “git add .” command.
As per instructions from “git status,” it tells us how to remove files that we don’t want to
commit to Git with the “rm” command. Let’s remove all files and folders from the virtual
environment “predictingcrimeinsanfrancisco” that aren’t needed for the project
(Listing 6-33).

Listing 6-33. Removing “predictingcrimeinsanfrancisco” from Git
Input:

$ git rm -r --cached predictingcrimeinsanfrancisco
$ git status

Output:

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: main.py

new file: ptvs virtualenv_proxy.py
new file: requirements.txt

new file: sf-crime-horizon.csv

new file: static/images/afternoon.jpg
new file: static/images/cop.jpg

new file: static/images/morning.jpg
new file: static/images/night.jpg

new file: static/images/thief.jpg

224

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

new file: templates/index.html
new file: web.3.4.config

We now only have the files we need. So, do a local “git commit” and add a comment
that makes sense in case you need to revisit past actions in the future (Listing 6-34).

Listing 6-34. Git Commit

Input:

$ git commit -am 'where crime happens'
Output:

[master (root-commit) 1b87606] where will crime happen next
11 files changed, 120065 insertions(+)

create mode 100644 main.py

create mode 100644 ptvs_virtualenv_proxy.py
create mode 100644 requirements.txt

create mode 100644 sf-crime-horizon.csv

create mode 100644 static/images/afternoon.jpg
create mode 100644 static/images/cop.jpg
create mode 100644 static/images/morning.jpg
create mode 100644 static/images/night.jpg
create mode 100644 static/images/thief.jpg
create mode 100644 templates/index.html

create mode 100644 web.3.4.config

For more information on the Git Deployment to Azure App Service, see https://
docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git.

The azure-cli Command Line Interface Tool

We will use the “azure-cli” tool to deploy our web application on Microsoft Azure (if you
don’t already have it installed, refer back to Chapter 2).

225

https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git
https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE
Step 1: Logging In

Create an “az” session (Listing 6-35 and Figure 6-24).
Listing 6-35. Code Input

$ az login

Imanuels-MacBook-Pro-2:web-application manuel$ az login
To sign in, use a web browser to open the page https://microsoft.com/devicelogin
and enter the code B54YSXKF2 to authenticate.

Figure 6-24. Logging into Azure from azure-cli

Follow the instructions, point a browser to the given URL address, and enter the code
accordingly (Figure 6-25).

Device Login

Entariha coce thal you racelved sm D€ asp cation on your
iy

Code I

Figure 6-25. Authenticating session

If all goes well (i.e., you have an Azure account in good standing), it will connect the
azure-cli terminal to the cloud server. Also, once you are authorized, you can safely close
the browser window.

Make sure your command-line tool is pointing inside this chapter’s “web-application”
folder.

226

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Step 2: Create Credentials for Your Deployment User

This user will have appropriate rights for FTP and local Git use. Here I set the user-name
to “flaskuser10” and password to “flask123.” You should only have to do this once, then
you can reuse the same account. In case it gives you trouble, simply create a different
user name (or add a number at the end of the user name and keep incrementing it like I
usually do; Listing 6-36).

Listing 6-36. Code Input
$ az webapp deployment user set --user-name flaskuser10 --password flaski123

As you proceed through each “azure-cli” steps, you will get back JSON replies
confirming your settings. In the case of the “az webapp deployment” most should
have a null value and no error messages. If you have an error message, then you have
a permission issue that needs to be addressed (“conflict” means that name is already
taken so try another, and “bad requests” means the password is too weak).

Step 3: Create Your Resource Group

This is going to be your logical container. Here you need to enter the region closest
to your location (see https://azure.microsoft.com/en-us/regions/). Going with
“West US” for this example isn’t a big deal even if you're worlds away, but it will make a
difference in a production setting where you want the server to be as close as possible to
your viewership for best performance.

Here I set the name to “myResourceGroup” (Listing 6-37).

Listing 6-37. Code Input

$ az group create --name myResourceGroup --location "West US"

227

https://azure.microsoft.com/en-us/regions

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Step 4: Create your Azure App Service Plan

Here I set the name to “myAppServicePlan” and select a free instance (sku)
(Listing 6-38).

Listing 6-38. Code Input

$ az appservice plan create --name myAppServicePlan --resource-group
myResourceGroup --sku FREE

Step 5: Create your Web App

Your “webapp” name needs to be unique, and make sure your “resource-group” and
“plan” names are the same as what you set in the earlier steps. In this case I am going
with “amunateguicrime.” For a full list of supported runtimes, run the “list-runtimes”
command (Listing 6-39).

Listing 6-39. Code Input
$ az webapp list-runtimes

To create the web application, use the “create” command (Listing 6-40).

Listing 6-40. Code Input

$ az webapp create --resource-group myResourceGroup --plan myAppServicePlan
--name amunateguicrime --runtime "python|3.4" --deployment-local-git

The output of “az webapp create” will contain an important piece of information
that you will need for subsequent steps. Look for the line “deploymentLocalGitUrl”
(Figure 6-26).

228

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

11 git is configured with url of ‘https://flaskuserl@@amunateguicrime.scm.azurewebsites.net/amunateguicrime.git

“"availabilityState": "Normal",
"clientAffinityEnabled”: true,
“clientCertEnabled": false,
"cloningInfo": null,
"containerSize": 9,
"dailyMemoryTimeQuota": @,

"defaultHostName": “"amun iced i :
“deploymentlLocalGitUrl*: "https://flaskuserl)ateguicrime.scm.azurewebsites.net/amunateguicrime.git”, |

“"enabled": true,
“enabledHostNames": [
"amunateguicrime.azurewebsites.net",

"amunateguicrime.scm.azurewebsites.net"

1,

Figure 6-26. “webapp create” command and resulting “deployment
LocalGitUrl” value

Step 6: Push Git Code to Azure

Now that you have a placeholder web site, you need to push out your Git code to Azure
(Listing 6-41).

Listing 6-41. Code Input

if git remote is say already exits, run 'git remote remove azure'
$ git remote add azure https://flaskuseri0@amunateguicrime.scm.
azurewebsites.net/amunateguicrime.git

Finally, push it out to Azure (Listing 6-42).

Listing 6-42. Code Input
$ git push azure master

It will prompt you for the “webapp deployment user” password you set up
earlier. If all goes well, you should be able to enjoy the fruits of your labor. Open a web
browser and enter your new URL that is made of your “webapp” name followed by
“.azurewebsites.net” (Figure 6-27).

229

http://azurewebsites.net

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

® © ® / [y crime In San Franciso X

- C @ Secure | https://amunateguicrime.azurewebsites.net

Chapter 6:
Predicting Crime
In San Francisco

Map Satellite

Select crime horizon: 06/20/2018

Figure 6-27. Enjoy the fruits of your hard work!

230

c)

(3 Manuel

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

On the other hand, if the Azure-cli returns error messages, you will have to address
them (see the troubleshooting section).
Anytime you update your code and want to redeploy it, see Listing 6-43.

Listing 6-43. For Code Updates

$ git commit -am "updated output"”
$ git push azure master

You can also manage your application directly on Azure’s web dashboard. Log into
Azure and go to App Services (Figure 6-28).

amunategui@outiook... S8
AMUNATEGUIOUTLOOK (DEF...

o X

© 0

| Dashboard Subscriptions: Free Tnal

- Filter by name, | All resource greups v Al lations v || Nogrowig hd
2 All resgfCes
T items
[/ rce groups
Jrce group NAME STAT.. APP . APP 5. LOCATI... suasc... RESOU...
. App Services l " amunateguihamspa Running Web aop myAppSen . West US Free Trial myResourc... *** I

Figure 6-28. Microsoft Azure dashboard

Troubleshooting

It can get convoluted to debug web application errors. One thing to do is to turn on
logging through Azure’s dashboard (Figure 6-29).

231

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

A X E ateguihamspam51 - Diagnostics logs
(Default Dirsctory)

F 40 =2 Columns sa Mot 2 Search Ctri=/)

Ther By name.. Application Logging (Filesystem) @

i . Zesource explorer of | on

1 of 1 items selectec

MAME 2 Teslirg ir procuction Level

Error ~
amunategui hamspam 51 - T erlensiens

Applicadon Logging (3lob) &

Mo E = = k

1 Facy tak e

o Zasy AP s

. | Storage Settings ‘
& Deaa connections | p
| Storage not confligured

A
Hetent o n Fenod (Lays) @
AP definicn L
G) CORS | Web server logging @
Oft Storage File Systam #_
MONTIREE Quota (ME) ©
@ agplicatisn Insights b
V' Alerls i Retent 29 Penod (Cavs) @
] 1
* 3 Disgrostics logs |
| Detailed error messeges @
) STTEAM | ot iy
T T Failed reques: tracing ©

Ofl Or

Figure 6-29. Turning on Azure’s Ddiagnostics logs

Then you turn the logging stream on to start capturing activity (Figure 6-30).

Web server logs

AP| definition

&) CORS 2018-02-12701:44:31 Welcome, you are now connected to log-stremming service.

MONITORING
@ Application Insights
W Alerts

Bl Diagnostics logs

Log stream

= Process explorer

Figure 6-30. Capturing log information
232

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

You can also check your file structure using the handy Console tool built into the
Azure dashboard (Figure 6-31).

DEVELOPMENT TOOLS

s Clone app

Search (Ctri+/)

Console

Advanced Tools

App Service Editor (Preview)

Performance test

Resource explorer

Testing in production

D:\ home\ si te\wwwroot

> 1s
D:\hona\site\wwwroot
env
hostingstart-python.html
hostingstart-python.py

main.py

ptvs_virtualenv_proxy.py

Extensions requirements.txt
static
templates
MOBILE)
web.2.7.config
| Easy tables web.3.4.config

web.config

Figure 6-31. Azure’s built-in command line tool

You can also access the tail of the log in your command window (Listing 6-44).

Listing 6-44. Code Input

$ az webapp log tail --resource-group myResourceGroup --name
amunateguicrime

You can even check if your “requirement.txt” file works by calling the “env\scripts\
pip” function (Listing 6-45).

Listing 6-45. Code Input

$ env\scripts\pip install -r requirements.txt

233

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Don’t Forget to Turn It Off!

As usual, stop and delete anything that you don’t need anymore. Go to “All
resources’ in the Azure dashboard and check anything you don’t need, and delete

away (Figure 6-32).

Delete Resources
Dealeti RS

Do you want to delete all the selected resources?
o= Add EZ Edit columns T Refresh ® hssignTags [Delete

Subscriptions: Pay-As-You-Go ‘Warning! Deleting the selected resources is irreversible. This
4 will permanently delete the selected resources, their related
All resource groups i All types i 1 resources and contents. If you are not sure about the
| selected resource dependencies, please go to individual
f3i | ' resource type blade to perform the delete operation,
3 of 3items selected Show hidden types & This action cannot be undone. Do you want to continue?
' NAME TYPE RESOURCE Gl
v T_e.‘_" amunateguicrime App Service myResourey Confirm delete @
— yes v
cs41e9eabdedbbIxd4a5xb31 Storage account cloud-shell:
v AppServicePlan i
r__ mMyApp. App Service plan myResourci SElEC‘tEd resources
:?ﬁ amunateguicrime (App Service) X
B cs41e9eabdedbboxadasub3l (Storage account) X
'\ myAppServicePlan (App Service plan) X

Figure 6-32. Turning everything off once finished

And finally, deactivate your virtual environment (Listing 6-46).

Listing 6-46. Code Input

$ deactivate predictingcrimeinsanfrancisco

Conclusion

This chapter introduces an obvious great piece of technology, Google Maps. There is so
much that can be done with this front-end dashboard. You can get user’s location (with
their consent), you can visualize geographical data in many different ways from satellite
to street views, and the list keeps going on. The best part is that very little is required in
terms of programming. The Google Maps API is mature and abstracts a lot of the heavy
lifting for you. If you end up building a high-traffic site using Google Maps, you will most
likely need a paid account.

234

CHAPTER 6 DISPLAYING PREDICTIONS WITH GOOGLE MAPS ON AZURE

Those with a sharp eye may have noticed that the Jupyter code uses data frames to
analyze the crime data, while the Flask application uses a NumPy array. This isn’t the
only time we will use this trick. The Panda library is such a large and complex library that
it is sometimes hard to get it to play nice with serverless instances that don’t like libraries
with deep tentacles into the OS and file system. As a rule of thumb, the least amount of
imports you need to declare at the top of your Flask application, the better.

235

CHAPTER 7

Forecasting with Naive
Bayes and OpenWeather
on AWS

Will I golf tomorrow? Find out using naive Bayes and real-time weather forecasts on
Amazon Web Services.

In this chapter, we will take a look at the famed “Golf|Weather Dataset” from
Gerardnico’s blog.! I say “famed” because it seems that whenever somebody does an
introductory piece on the Bayes, they use this dataset. It makes sense, as it is a very
simple and intuitive collection of environmental readings, and whether or not a player
ends up playing golf. It is to the point and very amiable to modeling with the Bayes
Theorem without a computer or even a calculator. But don’t fear, we’ll be using the
sklearn library as usual. We will model what it takes to go golfing, incorporating the
OpenWeatherMap? to pull real forecast based on user-selected locations (Figure 7-1).

'https://gerardnico.com/data_mining/weather
*https://openweathermap.org/
237

© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_7

https://gerardnico.com/data_mining/weather
https://openweathermap.org/

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

@ ® [willI Golf Tomorrow? X (3 Manuel

« C' @ willigolftomorrow.kzkae3f9pw.us-west-2.elasticbeanstalk.com w ¢

Chapter 7:
Will | Golf Tomorrow?

Enter City: Time:

There's a 100.0% chance you will golf tomorrow in Madrid
between 12PM-3PM, go prep those clubsl!!

Tomorrow's Forecast
2018-06-07
Outlook Overcast
Temperature | 68.24F, Cool
Humidity 679%, Normal

Windy False

Figure 7-1. The final web application for this chapter

Note Download the files for Chapter 7 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter7.ipynb” to follow along with this chapter’s content.

Exploring the Dataset

Go ahead and download the files for this chapter into a folder called “chapter-7.” Open
up the Jupyter notebook to follow along.

238

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

As itis a very small dataset, there is nothing to download and we will recreate it
manually in Python. It contains only 14 rows (Listing 7-1 and Figure 7-2).

Listing 7-1. Let’s Load Our Dataset into a Pandas Data Frame, Create Column
Names and Cast the Boolean Fields into Integers

golf data header = ['Outlook', 'Temperature Numeric', 'Temperature
Nominal', 'Humidity Numeric', 'Humidity Nominal', ‘Windy', 'Play']

golf data set = [['overcast',83,'hot',86, high',False,True],
'overcast',64, 'cool',65, 'normal"',True,True],

overcast',72,'mild',90, "high',True,True],

overcast',81, "hot',75, 'normal’,False,True],

rainy',70, 'mild',96, 'high',False,True],
rainy',68, 'cool’,80, 'normal’,False,True],
rainy',65, 'cool’,70, 'normal’,True,False],

rainy',71,'mild",91, 'high',True,False],
"sunny',85, 'hot"',85, "high',False,False],
"sunny', 80, 'hot',90, "high',True,False],
‘sunny',72,'mild',95, "high',False,False],
sunny',69, 'cool’,70, 'normal’,False,True],

sunny',75,'mild",70, "normal’,True,True]]

[
[
[
[
[
[
['rainy',75,'mild',80, 'normal’,False,True],
[
[
[
[
[
[

golf df = pd.DataFrame(golf data set, columns=golf data header)
golf df[['Windy','Play']] = golf df[['Windy','Play']].astype(int)

golf df.head()

Outlook Temperature_Numeric Temperature_Nominal Humidity_Numeric Humidity Nominal Windy Play

0 overcast 83 hot 86 high 0
1 overcast 64 cool 65 normal 1
2 overcast 72 mild 90 high

3 overcast 81 hot 75 normal 0
4 rainy 70 mild 96 high 0

Figure 7-2. First few rows of the “Golf|Weather” Dataset

239

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

The “Outlook” field is an overall take on the weather, like a super category. It is made
up of three values: “Overcast,” “Rainy,” and “Sunny.” The temperature reading comes in
two flavors: “Temperature_Numeric,” which is the numeric temperature in Fahrenheit,
and “Temperature_Nominal,” which is a categorical representation broken into three
values: “hot,” “mild,” and “cold.” Humidity also comes in two flavors: “Humidity_
Numeric,” which is the percent humidity reading, and “Humidity_Nominal,” which
is a categorical variable with two values: “high” and “normal’” “Windy” is a Boolean
variable that states whether it is windy or not. Finally, “Play” is the outcome variable and

the resulting truth whether the player did or didn’t play golf according to said conditions.

Naive Bayes

Naive Bayes is a group of algorithms based on Bayes Theorem and conditional
probabilities (Figure 7-3). It considers predictors independently to determine the
probability of an outcome. It is called “naive” because it assumes independence
between the predictors, but short of each predictor happening on a different planet, it is
hard to know for sure. That said, such assumption simplifies the model tremendously;
it makes the model simple, fast, and transparent. It is perfect for working with large
datasets in distributed environments.

P(B|A)P(A)

P(A| B) = =" pm

where A and B are events and P(B) # 0

Figure 7-3. Bayesian probabilistic formula

In very simple terms, Naive Bayes classification creates a frequency table cataloging
every possible value combination from some historical dataset, including both positive
and negative outcomes. Its simpler to visualize by thinking of simple categorical
features, but it can handle any data type. The Bayes theorem can then use the collected
frequencies to yield new probabilities.

240

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

Which states that:

o P(A]B) is the probability of the outcome happening given certain
equal values

o P(B|A) is the probability for those values for that outcome multiplied

e P(A) is the the probability for that outcome regardless of the values
divided

o P(B) is the probability for those values regardless of the outcome

o Ifthisisn’t clear, check out a brief and funny video from the

good folks at RapidMiner at https://www.youtube.com/
watch?v=I1VINQDk4o08.

Sklearn’s GaussianNB

As mentioned in the introduction to this chapter, we're going to use the “sklearn.
naive_bayes” “GaussianNB” library. This is a simple model that does offer a few tunable
parameters: see http://scikit-learn.org/stable/modules/generated/sklearn.
naive_bayes.GaussianNB.html for more information.

It is straightforward to use, and here is an example on calling the Naive Bayes model
for classification and how to extract probabilities and predictions. The “predict()”
function returns a true/false prediction based on what it trained on. A “1” means the
model predicts that golfing will happen (Listing 7-2).

Listing 7-2. Calling predict() on the GaussianNB Model
Input:

from sklearn.naive bayes import GaussianNB
naive bayes = GaussianNB()

naive bayes.fit(X train[features], y train))
print(naive bayes.predict(X test))

Output:

[001000 1]

241

https://www.youtube.com/watch?v=IlVINQDk4o8
https://www.youtube.com/watch?v=IlVINQDk4o8
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

The “predict_proba()” function returns a pair of values. The first value represents
the probability of being false, while the second value is the probability of being true
(Listing 7-3).

Listing 7-3. Getting Probabilities out of the GaussianNB Model
Input:

print(naive bayes.predict proba(X test))

Output:

array([[9.99994910e-01, 5.09005696e-06],
.99968916e-01, 3.10842486e-05],
.00000000e+00, 1.00000000e+00],
.84570501e-01, 1.15429499e-01],
.00907988e-01, 1.99092012e-01],
.99932094e-01, 6.79055800e-05]

1]

.00000000e+00, .00000000e+00

L B e B e Y e B e B e |
O W 0 0w O Vv v

)
Obviously, you can use either value; just remember which means what. In our case

we'll use the second value, as we aren’t that interested in the probability of not golfing vs.
the probability of golfing. Both numbers add up to 1.

Realtime OpenWeatherMap

We're going use real weather forecasts into our “Will I Golf Tomorrow” web application.
Go ahead and sign up for an API from openweathermap.org; it’s free (Figure 7-4)! A big
thanks to the folks over at Open Weather—love the service!

242

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

Sign Up

Create New Account

amunategui

amunategui@gmail.com

| agree to the Terms of Service and Privacy Policy

| agree to receive emails regarding news, updates and offers

™
" I'mnota robot :

Figure 7-4. OpenWeatherMap.org sign up screen

They will send you an email confirmation containing your API key, along with an
example. It states that it can take up to ten minutes to authorize the new key. For me, it
took more like 30 minutes. Then run the example with your new key to double-check
that your account is working (Listing 7-4).

Listing 7-4. URL for Weather—Add Your API Key

http://api.openweathermap.org/data/2.5/weather?q=London, uk8APPID=<<YOU
R_API KEY>>

It does indeed take a little while to propagate on their system, but it does work,
and the example returns the following JSON string (of course yours will have different
weather data; Listing 7-5).

243

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS
Listing 7-5. Raw JSON String

{"coord":{"lon":-0.13,"lat":51.51}, "weather":[{"id":803, "main":"Clouds",

"description":"broken clouds","icon":"04n"}],"base":"stations", "main":{"temp":
284.37,"pressure”:1014, "humidity":76, "temp min":283.15,"temp max":285.15},
"visibility":10000, "wind":{"speed":6.7,"deg":240},"clouds":{"all":75},"dt":

1524531000, "sys" :{"type":1,"id" :5091, "message" :0.0065, "country":"GB", "sunrise":
1524545173, "sunset":1524597131},"id":2643743, "name" : "London", "cod" : 200}

But a better way to access REST API JSON data is to do it all in Python. This allows
you to make the call to the API and process the return data in a fully programmatic
manner. Let’s take a look (Listing 7-6).

Listing 7-6. Bringing in Real Weather Data Using “api.openweathermap.org”’

from urllib.request import urlopen
weather _json = json.load(urlopen("http://api.openweathermap.org/data/2.5/
weather?q=Barcelona8appid=<<YOUR_API_KEY>>"))

In return, we get a JSON object that can be easily accessed via key pair calls
(Listing 7-7).

Listing 7-7. JSON Content
Input:

print(weather json)
Output:

{'base': 'stations',
"clouds': {'all': o},
'cod': 200,
"coord': {'lat': 41.38, 'lon': 2.18},
"dt': 1524538800,
'id': 3128760,
‘main’: {"humidity': 72,
'pressure’: 1018,
"temp': 287.15,
"temp max': 288.15,

244

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

"temp_min': 286.15},

"name': 'Barcelona’,
'sys': {'country': 'ES',
'id': 5470,

‘message’: 0.0034,
'sunrise': 1524545894,
"sunset': 1524595276,
"type': 1},
'visibility': 10000,
‘weather': [{'description': 'clear sky',
'icon': 'oin',
"id': 800,
'main': 'Clear'}],
'wind': {'deg': 330, 'speed': 2.6}}

Individual elements can easily be access by appending key names, just like you
would with a Pandas object (Listing 7-8).

Listing 7-8. JSON “main” Content
Input:

weather json['main']

Output:

{"humidity': 72,
'pressure’: 1018,
"temp': 287.15,
"temp max': 288.15,
"temp_min': 286.15}

Forecasts vs. Current Weather Data

We want to use forecasts for the following day, and “OpenWeatherMap” does offer a
five-day forecast API service. It returns data in three-hour increments. Let’s see how this
works (Listing 7-9).

245

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

Listing 7-9. URL for Forecast-Add Your API Key. This Will Return a Large Amount
of Text with Five-Days’ Worth of Three-Hour Increment Weather Forecasts

Input:

http://api.openweathermap.org/data/2.5/forecast?q=Barcelona8APPID=<<YOUR
API KEY>>

Output:

{“dt":1524679200, "main":{"temp":293.08, "temp _min":291.228,"temp max":293.08
, pressure"”:1021.76,"sea level":1030.11,"grnd level":1021.76,"humidity":83,
“temp kf":1.85},"weather":[{"id":802,"main":"Clouds","description":"scatter
ed clouds","icon":"03d"}],"clouds":{"all":48},"wind":{"speed":0.98,"deg":31

.502},"sys":{"pod":"d"},"dt_txt":"2018-04-25 18:00:00"}

The key pair “dt_txt” is the start time for the contained weather forecast. So, in this
example, for April the 24th in Barcelona between 6 PM and 9 pwMm, there will be scattered
clouds. Being able to access three-hour forecasts offers a great level of granularity for
our golfing predictions. See the corresponding Jupyter notebook for ways of pulling
specific dates.

Translating OpenWeatherMap to “GolflWeather Data”

There are a couple of data transformations needed to get the “OpenWeatherMap” data
into the correct “Golf|[Weather Dataset” format. Let’s go ahead, change some scales, and
fix some categorical data.

Outlook

The “outlook” categorical feature in the golf set has three possible values:

“Overcast,” “Rainy,” and “Sunny.” A close equivalent in the “OpenWeatherMap” is the
“weather.main,” variable, which offers nine possible values:?

e Clear Sky
o Few Clouds

e Scattered Clouds

Shttps://openweathermap.org/weather-conditions

246

https://openweathermap.org/weather-conditions

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

e Broken Clouds
o Shower Rain

e Rain

¢ Thunderstorm
e Snow

o Mist

Though this a subjective endeavor, we need to make a decision as to what goes
where. Let’s group these and build a function to handle equivalencies (and please
change them around if you don’t like mine).

Sunny
e Clear Sky
e Few Clouds
Overcast
e Scattered Clouds
e Broken Clouds
e Mist
Rainy
e Shower Rain
e Rain
e Thunderstorm
e Snow

We package our groupings into a clean function that can handle the equivalencies
between “OpenWeatherMap” and “Golf|Weather Data” (Listing 7-10). We also leverage
a neat offering by “OpenWeatherMap” to supply graphic icons of the weather that we
will display on our web application (see the complete list of icons at
https://openweathermap.org/weather-conditions).

247

https://openweathermap.org/weather-­conditions

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

Listing 7-10. Function “GetWeatherOutlookAndWeatherIcon”

def GetWeatherOutlookAndWeatherIcon(main_weather icon):

truncate third char - day or night not needed

main weather icon = main weather icon[0:2]

return "Golf|Weather Data" variable and daytime icon

if (main_weather icon in ["01", "02"]):
return("sunny", main_weather_icon + "d.png")

elif (main weather icon in ["03", "04", 50]):
return("overcast”, main_weather icon + "d.png")

else:
return("rain", main_weather_icon + "d.png")

Numeric Temperature

You may have noticed that temperature isn’t in Fahrenheit or Celsius but in Kelvins.
So, we need to filter it through the following formula for Fahrenheit (though you can
have the API do this for you, we will do it ourselves):

Fahrenheit = T x 1.8 - 459.67
And for Celsius:

Celsius = K - 273.15
Nominal Temperature

Nominal temperature is a categorical variable made up of three values “cool,” “mild,”
and “hot.” As these are subjective groupings, we're going to infer the ranges so we can
create new ones based on the live forecast from “OpenWeatherMap” (Listing 7-11).

Listing 7-11. Nominal Temperatures

Input:

golf df[['Temperature Numeric', 'Temperature Nominal']].

groupby (' Temperature Nominal').agg({'Temperature Numeric' : [np.min,
np.max]})

248

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

Output:
Temperature Numeric
amin amax
Temperature_Nominal
cool 64 69
hot 80 85
mild 70 75

“Cool” ranges from 64 to 69 degrees Fahrenheit while “mild” ranges from 70 to 75.
This is easy, as there is no gap between both values. “Hot,” on the other hand, starts at 80.
So, we have a gap between 75 and 80 to account for. To keep things simple, we’ll extend
the “mild” range to 80. And we end up with the following function (Listing 7-12).

Listing 7-12. Nominal Temperatures

def GetNominalTemparature(temp_fahrenheit):
if (temp _fahrenheit < 70):
return "cool”
elif (temp fahrenheit < 80):
return "mild"
else:
return "hot"

Humidity Numeric

Humidity is given in percentages on “OpenWeatherMap” so we’ll use it in its exact
numerical form.*

Humidity Nominal

Just like we did with the categorical nominal temperature, we will have to apply the
same logic on the nominal humidity. There are definitely different ways to slice this one,
but a choice has to be made to translate a percentage into a category that exists in the
current “Golf|[Weather Data” dataset (Listing 7-13).

*https://openweathermap.org/current

249

https://openweathermap.org/current

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS
Listing 7-13. Humidity
Input:

golf df[['Humidity Numeric', 'Humidity Nominal']].groupby('Humidity
Nominal').agg({'Humidity Numeric' : [np.min, np.max]})

Output:

Humidity Numeric

amin amax
Humidity Nominal
high 85 96
normal 65 80

According to our historical data, we only have two choices: “normal” or “high.” We'll
take the easy route and consider 81% and higher as high, and everything else as normal
(Listing 7-14).

Listing 7-14. Function “GetNominalHumidity”

def GetNominalHumidity(humidity percent):
if (humidity percent > 80):
return "high"
else:
return "normal”

Windy

“OpenWeatherMap” states that wind speeds are in meters per second.’ We'll use the
Beaufort scale, a scale that relates wind speeds to different land and sea conditions, and
its definition of a “strong breeze” category to determine what is and what isn’t windy
(Figure 7-5) and abstract a function (Listing 7-15). The midpoint of the scale is at wind
speeds above 10.8 meters per second, considered “strong breeze.”

*https://openweathermap.org/current

250

https://openweathermap.org/current

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

Listing 7-15. Function “GetWindyBoolean”

def GetWindyBoolean(wind meter second):
if (wind meter second > 10.8):

return(True)
else:
return(False)
Beaufort Wind Scale
o | 1 2 s . s s 7 s o o [N
Caim | LightAr LightBreeze Gentie Broeze Moderate Broeze Fresh Broeze Stong Breeze = Near Gale Gale SwongGale Storm Violent Storm Hurricane Force
Light Winds High Winds Gale-force Storm-force Hurricane-‘orce

<imph | 1-3mpn 47 mph 8-12 mpn 13-18 mph 18-24 mph 25-31 mph N-38mph | 3946 moh 4754 mpn 55-63 moh 8472 moh ar3mgn

<1 kot 1-3 ots 45 knots. 7-10 wnots. 11=-16 nots 17-21 nots 22-27 wnots. 28-33 hnots. 3440 knots. 4147 nots 4855 knots. 663 unots. 263 wots

DIms 03-15ms 1.6-33ms 34-55ms 55-79ms 8.0-10.7 mvs 108-138ms | 138171 | 172-207ms 208-244mE M5284ms 85-R26ms 827 ms

Figure 7-5. Beaufort wind scale (source Wikipedia)

Designing a Web Application “Will | Golf
Tomorrow?” with Real Forecasted Weather Data

As usual, we want our application to be intuitive, visual, and fun. This will be the go-to
application for all golfers around the world (yeah right!). It is also a powerful application
that will use real weather forecasts from anywhere around the world while remaining
extremely simple to build. This is the beauty of a Bayesian model: it is simple and fast
and makes for a great real-time and scalable modeling option for web applications.

Our web page only needs two input boxes so the user can enter his or her location
and tomorrow’s time they wish to golf. The application will attempt to find a weather
forecast for the location and time, translate the “OpenWeatherMap” JSON data into
the required “Golf|[Weather Dataset” format, and return a “yes” or “no” to the question
“will I golf tomorrow.” Pretty straightforward, right?

Download the Web Application

Go ahead and download the code for this chapter, open a command line window,
and change the drive to the “web-application” folder. It should contain the same
files as in Listing 7-16. Here we are showing the hidden folder “.ebextensions”
needed for AWS EB. You can either use it as-is or create your own in the “Fix the
WSGIApplicationGroup” section (don’t worry about this when running the local
version of the site, as it isn’t affected by this fix).

251

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS
Listing 7-16. Web Application Files

web-application

|— application.py
|— requirements.txt

— static
L— images
[— go-golf.jpg
L— no-golf.jpg

L— templates
L— index.html

L .ebextensions « hidden folder
L— wsgi fix.config

You should run this application in Python 3.x and, even better, in a virtual
environment so you can isolate exactly what is needed to run the web application from
what you already have installed on your machine.

Make sure your command window is pointing to the “web-application” folder for
this chapter and start a virtual environment. Start a virtual environment name “willigolf-
tomorrow” to insure we're in Python 3 and to install all required libraries (Listing 7-17).

Listing 7-17. Starting a Virtual Environment

$ python3 -m venv willigolftomorrow
$ source willigolftomorrow/bin/activate

Then install all the required Python libraries by running the “pip install -r”
command (Listing 7-18).

Listing 7-18. Install Requirements

$ pip3 install -r requirements.txt

Next you have to open “application.py” and add your “OpenWeatherMap” API key.
Look for “<<YOUR_API_KEY>>" in the PlayGolf() function (Listing 7-19).

Listing 7-19. Adding Your “OpenWeatherMap” API Key

openweathermap_url = "http://api.openweathermap.org/data/2.5/forecast?q=" +
selected location + "&mode=json&APPID=<<YOUR_API KEY>>"

252

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

Once you have added your API key, you should be ready to run your local web
application as per usual (Listing 7-20).

Listing 7-20. Take It for a Spin
$ python3 application.py

You should see something along the lines of Figure 7-6 (bummer, no golfing
tomorrow at the North Pole).

[will | Golf Tomorrow? X (!5 Manuel

Hm

& C ® 127.0.0.1:5000 Q

Chapter 7:
Will | Golf Tomorrow?

Enter City: Time:

Sorry, No Golf...

Unfortunately, there's only a 24.26% chance for golf
tomorrow in North pole between 3PM-6PM

Tomorrow's Forecast
2018-06-07

Temperature | 55.45F, Cool
569%, Normal
False

Figure 7-6. Running the Flask application locally

253

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

After you have confirmed that the web application is correctly running on your local
machine, “ctrl-¢” out of it but stay in the virtual environment session.

Running on AWS Elastic Beanstalk

Still in the “willigolftomorrow” virtual environment session, install the latest “awsebcli”
(Listing 7-21). We are skipping a few steps, as you should already have all the security
layers set up by now (if not, refer back to Chapters 1 and 4).

Listing 7-21. Pip3 Command (you may not need the upgrade command because
you are in a virtual environment, but it won’t hurt anything)

$ pip3 install awscli --upgrade
$ pip3 install awsebcli --upgrade

Initializes the EB service and go with your usual settings as per previous AWS
projects (Listing 7-22).
Listing 7-22. EB Initialize Command
$ eb init -i

Create a project with the “willigolftomorrow” name, say yes to “SSH,” and go with
defaults or whatever you liked during the AWS EB runs we did in the previous chapters
(Listing 7-23).
Listing 7-23. EB Create Command

$ eb create willigolftomorrow

Fix the WSGIApplicationGroup

Just like we did in the Top-Rated Wine, you need to create a new folder under the “web-
application” folder (Listing 7-24) or you can use the one provided (this is a hidden folder
that you may or may not be able to see—if you aren’t sure, try creating the folder as per
instructions and if it complains, that means you already have it).

254

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS
Listing 7-24. Create wsgi_fix File

$ mkdir .ebextensions
$ vi .ebextensions/wsgi_ fix.config

This will create a new folder called “.ebextensions” and open a VI window (known
in Unix speak as visual instrument), which is a simple text editor. Hit the “i” key to switch
from read-only to “insert” mode and paste the following line at the end of the document
(a text file of this fix is also included in the folder with the documents for this chapter).
The process reading this file is very finicky; if there are added spaces or tabs, it will fail.
Keep a close eye for any errors during the deployment process relating to the file and
address accordingly (Listing 7-25).

Listing 7-25. Add Fix

#add the following to wsgi fix.config
files:
"/etc/httpd/conf.d/wsgi custom.conf":
mode: "000644"

owner: root
group: root
content: |

WSGIApplicationGroup %{GLOBAL}

Now hit “escape” to exit “insert” mode and enter read-only mode, and type “:wq” to
write and quit “vi” (Listing 7-26).

Listing 7-26. Quit “vi”

Wq

Take It for a Spin

Open web site with the “open” command (Listing 7-27).

Listing 7-27. Taking the Cloud Version of the Web Application for a Spin

$ eb open willigolftomorrow

255

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS
It may take a little bit of time to run the application the first time around and may

even timeout. If that is the case, try “eb open” one more time (see Figure 7-7).

[Wwill | Golf Tomorrow? X (3 Manuel

<« C' @ willigolftomorrow.kzkae3f9pw.us-west-2.elasticbeanstalk.com w &

Chapter 7:
Will | Golf Tomorrow?

Enter City: Time:

There's a 100.0% chance you will golf tomorrow in Madrid
between 12PM-3PM, go prep those clubs!l!

Tomorrow's Forecast
2018-06-07
Outlook Overcast
Temperature | 68.24F, Cool
Humidity 679%, Normal
Windy False

Figure 7-7. The “Will I Golf Tomorrow?” web application running on Elastic
Beanstalk

256

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

Don’t Forget to Turn It Off!

Finally, we need to terminate the Beanstalk instance as not to incur additional
charges. This is an important reminder that most of these cloud services are not
free (if it states that names do not match, try it again). It will ask you to confirm your
decision (Listing 7-28).

Listing 7-28. Terminate EB
$ eb terminate willigolftomorrow

In case you need to do any edits to the code, you simply perform them in your local
directory and call the “eb deploy” function (Listing 7-29).

Listing 7-29. To Deploy Fixes or Updates
$ eb deploy willigolftomorrow

Finally, once you've confirmed that your instance is terminated, you can get out of
your virtual environment by calling the command (Listing 7-30).

Listing 7-30. Kill the Virtual Environment
$ deactivate

It is always a good idea (essential idea really) to log into your account in the cloud
and make sure everything is turned off (be warned: if you don’t, you may get an ugly
surprise at the end of the billing cycle). Log into your AWS account and make sure that
your EC2 and Elastic Beanstalk accounts don’t have any active services you didn’t plan
on having (Figures 7-8 and 7-9).

257

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

© © £ AWS Management Console X tubeof

& C | @ Secure | https://us-we.. o Q | & g O :

AWS services

v Recently visit
{___E Elastic Beanstalk {:} EC2 rI‘J IAM

> All services

Figure 7-8. Checking for any active and unwanted instances on the AWS dashboard

In case you see an instance that seems to keep coming back to life after each time
you “Delete application,” check under EC2 “Load Balancers” and terminate those first,

then go back and terminate the rogue instance again (Figure 7-10).

® © @ | i elastic Beanstalk Applications % tubeof
&« C | & Secure | hitps://us-west-2.console.aws.amazon.com/elasticbeanstalk/home?region=us-west-2#/app a % & Hhe®:
Manuel Amunategul - Oregon - Support -
,r Elastic Beanstalk - B AWSBeanstalkintroduction ~ new_wing - Rlrwwing ¥ testingnew ~ willigotf ~ Create New Application

Learn More . All Appllcatrons Fiter by Abpllcation Neme:

Get started using Elastic Beanstalk 9 Actions =
Modity the code

Create and connect 1o a database

SRS Lo S— No environments currently exist for this application. Create one now.

Featured

Create your own custom platform

AWSBeanstalkintroduction

Actions =

Command Line Interface (v3)

Create emvironment
Installing the AWS EB CL

EB CLI Command Reference
View application versions.

Environment ther: Web Server

Platform: Python 3.6 running on 45t Amazon
Lirun28.5

Running versions: Sample Apgication

Last modified: 2018-04-15 14;58:57 UTC-0T00

URL: introuse. 3whbadrgwy us-west-2. slastiche. .

If you want to use a command line to View saved configurations

create, manage, and scale your Elastic
Beanstalk appiications, please use the
Elastic Beanstalk Command Line Interface
(EB CLI).

Restore terminated environment

Get Started
| https:/jus-west-2.console.aws.amazon, i gi t-2

Figure 7-9. Locate the instance you want to terminate or delete, and select your
choice using the “Actions” dropdown button

258

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

(&) ® EC2 Management Console X tubeof
= C | & Secure | https://us-west-2.console.aws.amazon.com/ec2/v2/ho.. & ¢ & IE; @ :
£\ Manuel Amunategui ~ Oregon ~ Support ~
AMIs Create Load Balancer J.T-117 T4
‘ o & 0
Bundle Tasks
Q) Filter by tags and attributes or search by keyword None found
Volumes Name ~ DNS name ~ State = VPCID

Snapshots
You do not have any load balancers in this region
Security Groups
Elastic IPs
Placement Groups
Key Pairs
load balancer _B =]

Network Interfaces

Load Balancers

Target Groups

Figure 7-10. “Load Balancers” can prevent an application from terminating;
this can kick in if you inadvertently start multiple instances with the same name

Conclusion

On the surface, this may seem like a slight variation from what we’ve built in the past,
with the exception of the dataset and model, but that really isn’t the case. Let’s take a
look at some of the highlights.

Accessing OpenWeatherMap Data

Unlike how we called the REST API service in Jupyter using urllib.request’s “urlopen,” in
Flask we use the “requests” library (Listings 7-31 and 7-32).

Listing 7-31. Instead of

from urllib.request import urlopen
import json
weather json = json.load(urlopen(openweathermap url))

259

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

Listing 7-32. We call it This Way

import requests
weather json = requests.get(openweathermap url).json()

This is a slightly more popular way of calling REST APIs and has the advantage of
having JSON built inside of it, thus bringing us down to one function call instead of two.

Try/Catch

We also use a try/catch (or in this case a try/error) to capture missing locations. It is
critical that the application not crash on a user, and it is also important that an issue,
whether an error or not, is handled properly. If you pass an unknown location to
“OpenWeatherMap,” it will return an error. This is easy to catch, leverage, and return an
informative message to the user to try something else (Listing 7-33).

Listing 7-33. Try/Catch to Handle Missing Locations

try:

weather json = requests.get(openweathermap url).json()
except:

couldn't find location

e = sys.exc_info()[0]

message = "Cannot find that location, please try again"

“ ”

Even though we capture the error message through the exception variable “e,” we
aren’t doing anything with it here. I am leaving it in so you know how to access it, so you
can extend it into your own applications via logging or smart displaying.

Handling User-Entered-Data

This is an important topic that isn’t really addressed in this book. Depending on the
type of application you are building, you need to make sure that user-entered data won't
harm your application, your data, or your hardware. Things like “SQL injection”® where
a user can transit a system command through a text box to delete all files come to mind.

https://en.wikipedia.org/wiki/SQL_injection

260

https://en.wikipedia.org/wiki/SQL_injection

CHAPTER 7 FORECASTING WITH NAIVE BAYES AND OPENWEATHER ON AWS

Instead, here we are making sure that the user-entered text will work with
“OpenWeatherMap.” If you take the raw http string and add spaces into it, it will fail to
work (Listing 7-34).

Listing 7-34. Handling Spaces in URLs
http://api.openweathermap.org/data/2.5/weather?q=New York City&appid...

One easy way of handling these issues is to use the “quote_plus()” function from the
urllib.parse library. It will take any text input and render it HTML friendly so that it can
be added to URLs without interfering with HTML commands. Let’s look at an example
(Listing 7-35).

Listing 7-35. Handling Spaces in URLs

import urllib.parse
urllib.parse.quote plus('New York City!")

"New+York+City%21'

This is easily extended to our Flask script by adding right after the “request.form”
call and filtering the user data through it before proceeding further (Listing 7-36).

Listing 7-36. Handling Spaces in URLs

request.form['selected location']
urllib.parse.quote plus(selected location)

selected location

selected location

261

CHAPTER 8

Interactive Drawing
Canvas and Digit
Predictions Using
TensorFlow on GCP

Let’s build an interactive drawing canvas to enable visitors to draw and predict digits
using TensorFlow image classification on Google Cloud.

Be forewarned, this is such a fun and interactive chapter that I ended up wasting too
much time playing with the final product (Figure 8-1). This is one of the inherent risks of
creating web applications using machine learning!

263
© Manuel Amunategui, Mehdi Roopaei 2018

M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_8

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

] ® [Guess My Number X 9 Manuel

C @ Secure https://apt-memento-192717.appspot.com aQ v ¢ 0

Draw a digit between 0 and 9 and
click 'Predict' to have the model divine it!

Predict = clear Brush Size:| 30 %

Figure 8-1. The final web application for this chapter

Here, we're going to leverage the awesome power of TensorFlow' to model the
famous MNIST database. Unless you've been living under a rock, you've most likely
heard of both (and if you haven’t, don’t worry, you will by the end of this chapter). The
final web application will have a canvas to allow visitors to draw a digit between 0 and 9
with their mouse or finger and have our trained TensorFlow model predict it.

thttps://www.tensorflow.org/
264

https://www.tensorflow.org/

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

Note Download the files for Chapter 8 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter8.ipynb” to follow along with this chapter’s content.

The MNIST Dataset

The MNIST database contains 60,000 training images and 10,000 testing images. It’s
the “Hello World” of image recognition classification. It is made up of single digits
between “0” and “9” written by both high school students and employees from the US
Census Bureau. The best way to understand the data is to take a look at a few examples.
Download the files for this chapter into a directory called “chapter-8” and open the
Jupyter notebook to follow along. When you install Tensorflow, you will have the

ability to download the MNIST directly from the “input_data()” function within the
“tensorflow.examples.tutorials.mnist” library. This will make training our model that
much easier, as they have already split the data into training and testing sets. Let’s load
MNIST in memory and pull out a few samples (Listing 8-1).

Listing 8-1. Loading MNIST

Input:

mnist = input data.read data sets("MNIST data/", one_hot=True)
Output:

Extracting MNIST data/train-images-idx3-ubyte.gz
Extracting MNIST data/train-labels-idx1-ubyte.gz
Extracting MNIST data/t10k-images-idx3-ubyte.gz
Extracting MNIST data/t10k-labels-idx1-ubyte.gz

This will automatically download and unpack four files: two sets of images and
two sets of corresponding labels. Let’s open a couple of digits and labels. We'll start by
looking at the very first image in the training dataset and pull the corresponding label
(Listing 8-2 and Figure 8-2).

265

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP
Listing 8-2. Viewing Digit

import matplotlib.pyplot as plt
first digit

mnist.train.images[0]

first digit
first_digit

np.array(first image, dtype='float"')
first digit.reshape((28, 28))
plt.imshow(sample digit)

plt.show()

0 5 10 15 20 25
Figure 8-2. A Matplotlib visual render of one of the digits in MNIST

We can also see the corresponding label; the format is an array of 1ten0 digits that
each represents a value from 0 to 9 (Listing 8-3).

Listing 8-3. Viewing Digit
Input:
mnist.train.labels[0]
Output:

array([0., o., o., 0., 1., 0., 0., 0., 0., 0.])

266

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

By using an “argmax()” function, we can get the index of the largest value and,
as they are conveniently sorted in ascending order, we automatically get the digit in
question (Listing 8-4).

Listing 8-4. Listing Digit

Input:
np.argmax(mnist.train.labels[0])
Output:

4

And just for kicks, we'll use another way of sifting through the data by using the built-
in “next_batch()” function that we will rely on later to feed the data into our TensorFlow
model for training (Listing 8-5 and Figure 8-3).

Listing 8-5. Viewing Digit

batch = mnist.train.next batch(1)

sample digit = batch[0]

sample digit = sample digit.reshape(28, 28)
plt.imshow(sample digit)

plt.show()

0 5 10 15 20 25
Figure 8-3. A Matplotlib visual render of one of the digits in MNIST

267

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

The digits are in gray scale and are all 28 by 28 pixels; there really isn’t much more to
say about the data, as it is self-explanatory.

TensorFlow

TensorFlow is an open-source library made available by the kind folks at Google and
is designed for high-performance numerical computation. It uses a data flow graph
to represent mathematical operations that can then easily be computed on local or
distributed devices. It has plenty of functionality for computation, number crunching,
and normal to deep modeling. It was released under the Apache 2.0 Open Source
License in November of 2015.

There is so much material out there on this topic that I will not rehash the subject but
instead dive right into our task at hand: modeling handwritten digits! So, go ahead and
download the files for this chapter into a folder called “chapter-8” if you haven’t already
done so. Open up the Jupyter notebook to follow along.

Modeling with TensorFlow and Convolutional
Networks

The MNIST dataset has probably been modeled with every single model on earth,? but
a powerful and relatively easy one to use is convolutional networks known as “CNN”s or
“Covnets.” This is an extremely powerful approach that can be as easy or as complicated
as you want it to be. They were originally designed to model images but have proved to
be very useful in many other areas such as natural language processing and time-series
modeling. We'll leverage the code from TensorFlow’s suite of tutorials entitled: “Deep
MNIST for Experts.”? It isn’t the simplest model that they offer, but it is still considered
an introductory level approach.

The model gets an incredible 99% accuracy at classifying handwritten digits. This
is even more interesting when we contrast it to Yann LeCun'’s journey with this dataset.
He is one of the fathers of vision modeling and convolutional neural networks and the
Director of Al research at Facebook. He benchmarked this data over a few decades and

*http://yann.lecun.com/exdb/mnist/
Shttps://tensorflow.org/versions/r1.1/get started/mnist/pros

268

http://yann.lecun.com/exdb/mnist
http://tensorflow.org/versions/r1.1/get_started/mnist/pros

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

worked closely at increasing the modeling recognition accuracy from 12% all the way
up to a tiny fraction of a percent. Even more incredible is that today we can open up a
tutorial on this topic and get this incredible score with fewer than 50 lines of code.
Let’s take a brief look at the model we will use for this web application. Here are
some of the highlights from the tutorial (see the full tutorial for more details, at
https://www.tensorflow.org/versions/r1.1/get started/mnist/pros).

Placeholders (tf.placeholder)

These are conduits for our image and label data streams. This is an important concept in
TensorFlow, where you build a functioning graph before you feed any actual data into it
(Listing 8-6).

Listing 8-6. Code Input

x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])

Variables (tf.Variable)

Variables are made to hold values and you can initialize them with actual values
(Listing 8-7).

Listing 8-7. Function “weight_variable()”

def weight variable(shape):
initial = tf.truncated normal(shape, stddev=0.1)
return tf.Variable(initial)

Building Modeling Layers

We can define our specialized network layers as functions and be able to reuse them
however many times we want, depending on the complexity of the neural network
(Listing 8-8).

269

https://www.tensorflow.org/versions/r1.1/get_started/mnist/pros

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

Listing 8-8. Abstracting Functions “conv2d()” and “max_pool_2x2()".

def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME")

def max_pool 2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding="SAME")

We then can create as many layers as needed by calling the conv2d() and max_
pool_2x2() (Listing 8-9).

Listing 8-9. Creating Layers

tf.nn.relu(conv2d(x_image, W_convl) + b_conv1)
max_pool 2x2(h _conv1)

h_convi
h_pool1l

Loss Function

The original tutorial model uses the “tf.nn.softmax_cross_entroy with_logits()”
function, which is a mouth full. Softmax returns a probability over n classes that sumsto 1,
and cross entropy handles data from different distributions (Listing 8-10).

Listing 8-10. Getting the Cross Entropy

cross_entropy = tf.reduce mean(tf.nn.softmax cross entropy with
logits(labels=y , logits=y))

The documentation states that it will be deprecated in a later version (and get used
to that—it happens in TensorFlow and most libraries in Python), so we’ll use a similar
approach that is more generic (see the Jupyter notebook for details).

Instantiating the Session

Once we are ready to run our model, we instantiate the session with the “sess.run”

command. This turns on all the graphs we set up earlier (Listing 8-11).
Listing 8-11. Firing-Up the Session
sess.run(tf.global variables initializer())

270

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

Training

We set an arbitrary number of loops, in this case 1,000, and feed the data as batches into
our model (Listing 8-12).

Listing 8-12. Setting Model Iterations

for _ in range(1000):
batch = mnist.train.next_batch(100)
train step.run(feed dict={x: batch[0], y : batch[1]})

Accuracy

In order to not fly blind, we add an accuracy measure to monitor how well our model is
training that will print out the progress every 100 steps (Listing 8-13).

Listing 8-13. Accessing the Accuracy During Training

print(step, sess.run(accuracy, feed dict={x: mnist.test.images, y : mnist.
test.labels, keep prob: 1.0}))

There’s plenty more going on in this script, so please go over to the actual
TensorFlow Tutorial, as it’s well worth it if you're interested in deep learning
(https://www.tensorflow.org/versions/r1.2/get started/mnist/pros).

Running the Script

Running it 2,000 times gives us a decent score but leaves plenty of room for improvement
(Listing 8-14).

Listing 8-14. Accuracy Output During 2,000 Iterations

0 0.0997
100 0.8445
200 0.905
300 0.9264
400 0.9399
500 0.9492

271

https://www.tensorflow.org/versions/r1.2/get_started/mnist/pros

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

600 0.9509

700 0.9587

800 0.9596

900 0.9623

1000 0.9668
1100 0.9688
1200 0.9706
1300 0.9719
1400 0.9683
1500 0.9708
1600 0.9754
1700 0.9751
1800 0.9753
1900 0.9738
2000 0.9776

If you keep modeling over 20,000 steps like the tutorial suggests, you can achieve
that elusive 99.2%! But this can take up to 30 minutes depending on your machine (if you
have a GPU, you will zip right through it; Listing 8-15).

Listing 8-15. Accuracy Output During 20,000 Iterations

-9935

19300 O
19400 0.9928
19500 0.9926
19600 0.9923
19700 0.9932
19800 0.993
19900 0.9926
20000 0.9927

Once the model has finished training, we save it to file so we can run predictions at a
later time (and more importantly in our web application; Listing 8-16).

272

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

Listing 8-16. Saving the Trained Weights

saver = tf.train.Saver()
save _path = saver.save(sess, save file)
, save_path)

print ("Model saved in file:

Running a Saved TensorFlow Model

This ability of instantiating trained models is an important aspect of applied modeling
and building commercial pipelines. The model we are developing here doesn’t take that
long to train (2 to 30 minutes depending on the number of steps you use), but no user
would be willing to wait that long on a web page if you had to train it on each request.
The good news is that it is easy to save and reload a trained model. The key is to call the
“save()” function of “tf.train.Saver” before exiting the TensorFlow session (Listing 8-17).

Listing 8-17. Saving Model
Input:

saver = tf.train.Saver()
save path = saver.save(sess, save file)

print ("Model saved in file: ", save path)

Output:
Model saved in file: /Users/manuel/apress-book-repository/chapter-8/model.ckpt

Next time you want to run the trained model, all you have to do is set up all your
graph variables and call the “restore()” function of “tf.train.Saver” in a TensorFlow
session (Listing 8-18).

Listing 8-18. Restoring a Saved Model
Input:

saver = tf.train.Saver()

with tf.Session() as sess:
sess.run(tf.global variables initializer())
saver.restore(sess, save file)
print("Model restored.")

273

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

Output:

INFO:tensorflow:Restoring parameters from /Users/manuel/apress-book-
repository/chapter-8/model.ckpt
Model restored.

Save That Model!

You will find an already trained model ready to go in the downloads for this chapter.

If you want to use your own, see the Jupyter notebook and save the trained weight files
(that’s how I did it). You will end up with three files that represent the saved mode and
that are needed in order to load the model. TensorFlow is smart enough to load the latest
version from the files you give (you could store multiple checkpoint files for example and
it will use the latest one; Listing 8-19).

Listing 8-19. Pretrained Model Files in Downloads for This Chapter if You Don’t
Want to Train It Yourself

checkpoint
model.ckpt.data-00000-0f-00001
model.ckpt.index

Drawing Canvas

The canvas is a critical part of the application, as it will allow anybody to get a taste, and
a fun one at that, in understanding MNSIT, character-recognition, and convolutional
modeling. These are usually difficult concepts associated with advanced classes and
industrial modeling tools, but they can be fun too! The canvas is part of HTMLS5 (for
more information on this cool feature, see https://www.w3schools.com/html/html5_
canvas.asp) and allows the creation of a space where a user can interact and create
drawings on a web page (Figure 8-4).

274

https://www.w3schools.com/html/html5_canvas.asp
https://www.w3schools.com/html/html5_canvas.asp

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

< C ® 127.0.0.1:5000

Figure 8-4. Finger painting with HTML5 and the <canvas> tag

Using this approach, we can take the content the user drew on the canvas and
translate it into an image that our TensorFlow model can ingest and attempt to predict.

From Canvas to TensorFlow

This part isn’t complicated but requires a few transformations, so hang on. When the
visitor hits the “Predict” button, it calls the “toDataURL()” function of the canvas
HTMLS5 control. This translates whatever data is contained within the canvas tags into
text representation of the image in PNG format.

This is a concept we've seen before and will see again in this book. Remember
Chapter 3? We relied on image data in text representation to easily pass it from server a
client. In this case, we're doing it the other way around—client to server (Figure 8-5).

275

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

<img src="
/DLeeustINTX46uvvkISUhIsbGyQnJlzcKe2hJ@9
wcDDWr12rWtfyebaltf3J9T+MOh4mIyMjnDt3T1L
n0zc3F22+/jW+++UZZ17V v2oHfv3hg/
fjwGDBiAXMRE3Lhxgz2CEluzZg3Cw8Mxbdo@90/
ARERERJJhACQiIiKSDAMgERERKWT+B5qsMW4gCB
j4AAAAAELFTKSuQmCC">

Figure 8-5. Image data represented as text

Note Code partially based on a great snippet found at https://
stackoverflow.com/questions/2368784/draw-on-html5-canvas-
using-a-mouse. Whenever you have questions about coding or problems and
need a solution, StackOverflow.com should be your first stop!

Testing on New Handwritten Digits

This is a critical part of our pipeline (and web application). We need to be able to pass
new handwritten digits to the model for prediction.

Processing a Real Image

The difference between testing using the MNIST dataset and a real image is that the
MNIST data has already been processed for us. We therefore need to apply the same
processing on the new image, so it can be compatible with our trained model’s. Imagine
you create an image file with a digit; this is how you would pass it to the model. We
leverage the PIL and NumPy Python libraries to perform most of the image processing
(Listing 8-20).

Listing 8-20. Importing an Image

from PIL import Image
img = Image.open('my-own-4.png")

276

https://stackoverflow.com/questions/2368784/draw-on-html5-canvas-using-a-mouse
https://stackoverflow.com/questions/2368784/draw-on-html5-canvas-using-a-mouse
https://stackoverflow.com/questions/2368784/draw-on-html5-canvas-using-a-mouse

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

We resize it to the official 28 by 28 required pixel size. As we will be working with
transparent images (only the number will show, not the background), we need to add a
white background to comply with the trained MNIST data (Listing 8-21).

Listing 8-21. Processing New Image

img = img.resize([28,28])

add white background

corrected img = Image.new("RGBA", (28, 28), "white")
paste both images together

corrected img.paste(img, (0,0), img)

Next, we cast the image into arrays, remove the extra color dimensions that we won't
need here as we are working with black and white images, and finally invert the whole
thing so that the empty pixels are zeros (Listing 8-22).

Listing 8-22. Processing New Image

remove color dimensions

corrected img = np.asarray(corrected img)
remove color layers

corrected img = corrected img[:, :, 0]

invert colors

corrected img = np.invert(corrected img)

Finally, we flatten the image from a matrix of 28 by 28 to a flat vector of size 784 and
center the data between 0 and 1 instead of 0 and 255. That’s it; it is now ready to be fed
into our TensorFlow model for prediction (Listing 8-23 and Figure 8-6).

Listing 8-23. Flattening the Data

corrected img = corrected img.reshape([784])
center around 0-1
img = np.asarray(corrected_img, dtype=np.float32) / 255.

277

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

array([@. , 0. , 0. , 0. , 0. ,
Q. , 0. , 0. , 0. , 9.]
Q. , 0. , 0. , 0. , 9. .
0. , 0. , 0. , 0. , 0. ;
Q. , 0. , 0. , 9. , 9. p
Q. , 9. , 8. , 9. , 9. p
0. , 0. , 1. , 1. A ;
1. , 0.99607843, 0. , 0. , 9. .
Q. , 0.38431373, 1. , 1. , 1. ,
1. , 0. , 0. , 0. , 9. p
Q. , 0. , 0. , 0. ; 9. '
0. , 0. , 0. , 0. , 0. ;

Figure 8-6. Partial final output of the transformed image data ready for modeling

Designing a Web Application

We are now at the fun part of the chapter; we get to design our web application! We are
going to keep things extremely simple. This is meant to be fun and intuitive, and by
keeping the buttons and options to a minimum, will allow our visitor to immediately
understand and interact with the tool. We’ll add a central canvas in the middle, so the
visitor can draw a digit between “0” and “9’, and two buttons: one to predict the number
and the other to clear the canvas. Finally, we’ll also add a drop-down menu to control
the thickness of the paint brush—that’s it!

On the graphical end of things, we are using a large picture that we cut up into
different sections: a top portion that contains the head of the fortune teller and two side
portions that contain the arms. It is cut up in order to accommodate the drawing canvas
in the center of the web application.

Download the Web Application

Go ahead and download the code for this chapter if you haven’t already done so, open a
command line window, and change the drive to the “web-application” folder. It should
contain the usual files along with our saved checkpoint files (Listing 8-24).

278

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

Listing 8-24. Web Application Files

web-application
— app.yaml
|— appengine_config.py
F— main.py
— requirements.txt
— checkpoint
— model. ckpt.data-00000-0f-00001
— model.ckpt.index
|— static
L— images
— left.png
— right.png

L— top.png

L— templates
L— index.html

First, you will need to install TensorFlow on your Python 3.x instance (or install the
requirements file in the next step). As usual, we'll start a virtual environment to segregate
our Python library installs (Listing 8-25).

Listing 8-25. Starting Virtual Environment and Install TensorFlow

$ python3 -m venv whatsmynumber
$ source whatsmynumber/bin/activate
$ pip3 install tensorflow

Then install all the required Python libraries by running the “pip install -r”
command (Listing 8-26).

Listing 8-26. Installing Requirements and Running Local Version

$ pip3 install -r requirements.txt
$ python3

279

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

Run the web application the usual way, and you should see the fortune teller appear.
This can take a while to get started, depending on your computing muscle. Go ahead
and take it for a spin, and make sure his predictions are worth his salt! (Figure 8-7)

@0 @ [Guess My Number X () Manuel

< C ® 127.0.0.1:5000 Q % ¢ 0

Draw a digit between 0 and 9 and
click 'Predict' to have the model divine it!

Predict = clear Brush Size: [30%

Figure 8-7. Blank canvas of the “What’s my Number” web application

280

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

Google Cloud Flexible App Engine

We'll use the Flexible App Engine in order to run the more demanding Python Libraries
like TensorFlow and PIL. We will need to use a slightly more powerful instance in order
to handle TensorFlow and our saved model. If you take a peek into the “app.yaml” file
under the “web-application” folder for this chapter, you will see that we upped the
memory and disk size (Listings 8-27 and 8-28).

Listing 8-27. Now We're Using the Larger Setup

resources:
cpu: 1
memory gb: 3
disk size gb: 20

Listing 8-28. Previously We Ran with Fewer Resource Settings

resources:
cpu: 1
memory gb: 0.5
disk size gb: 10

A word to the wise: the bigger the machine you provision, the bigger the charge.
So, make sure you terminate your instance after you're done with it!

Deploying on Google App Engine

By now you should have some experience with the Google Flexible App Engine, so this
will be a quick guide to get this web application up and running.

Step 1: Fire Up Google Cloud Shell

Log into your instance of Google Cloud and create or select the project in which you
want your App Engine to reside (if you don’t have one, you will be prompted to create
one-see Creating and Managing Projects*). Start the cloud shell command line tool by
clicking on the upper right caret button. This will open a familiar-looking command line
window in the bottom half of the GCP dashboard (Figure 8-8).

*https://cloud.google.com/resource-manager/docs/creating-managing-projects
281

https://cloud.google.com/resource-manager/docs/creating-managing-projects

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

ACTIVITY

DASHBOARD

& Google Cloud Platform

%® Project info RPI APIs
status

Proiect name Requests (requests/sec)

a3 +

Figure 8-8. Accessing the Google Cloud shell

Step 2: Zip and Upload All Files to the Cloud

Zip the files in the “web-application” folder but don’t zip the virtual environment folder

“whatsmynumber” as it’s not needed (Figure 8-9).

‘en e web-application
<] = [N S e a
Back/Forward View Arrange Action Share Add Tags Search
Favorites Name ~ Date Modified Size Kind
0 Downloads app.yami Apr 16, 2018 at 9:17 PM 487 bytes YAML
5 Deskto Ci appengine_config.py Feb 24, 2018 at 11:07 AM 108 bytes Python Script
checkpoint May 1, 2018 at 2:29 PM 105 bytes TextEdit
P = :
£ Recents B main.py Today at 6:39 PM 5EKB Python Script
:,A\- Applications . model.ckpt....0-of-00001 May 1, 2018 at 2:29 PM Document
@ AirDrop New Folder with Selection (9 Items)
(% Documents > mstatic WSl
1 amunategui.github.io M Open With
e > whatsmynumber Move to Trash Folder
Ll
(©) Remote Disc Get Info
Rename 9 Items...
|_| PhotoSync Y
= Compress 9 Items
Shared Duplicate
W Is-wvlad6 Make Alias
Quick Look 9 Items
Tags Share >

Figure 8-9. Zipping web application files for upload to Google Cloud

282

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

Upload it using the “Upload file” option (this is found on the top right side of the
shell window under the three vertical dots; Figure 8-10).

Enable Boost Mode

US| Usage Statistics

Usage Quota

About Cloud Shell
Help
Send Feedback

g

2 B || -

Figure 8-10. Uploading files via Google Cloud shell

Step 3: Create Working Directory on Google Cloud
and Unzip Files

Once the file is successfully uploaded, create a new directory named “chapter-8
(Listing 8-29).

”

Listing 8-29. Creating the Cloud Directory

$ mkdir chapter-8
$ cd chapter-8

Transfer all of the zip Archive into the new folder and unzip it (Listing 8-30).

283

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

Listing 8-30. Moving and Unzipping Web Application Files

$ mv ../Archive.zip Archive.zip
$ unzip Archive.zip

Your folder on Google Cloud should look something like Listing 8-31.
Listing 8-31. Confirming That All Files Are Correctly Uploaded by Running the
‘I’ Command
Input:
amunategui@cloudshell:~/chapter-8 (apt-memento-192717)$ 1s

Output:

appengine_config.py main.py static
app.yaml model.ckpt.data-00000-0f-00001 templates
Archive.zip model.ckpt.index

checkpoint requirements.txt

Step 4: Creating Lib Folder

So, run the following command to install all the needed additional libraries to the lib
folder. When you deploy your web app, the lib folder will travel along with the needed
libraries (Listing 8-32).

Listing 8-32. Installing All Needed Python Libraries into the “lib” Folder

$ sudo pip3 install -t lib -r requirements.txt

Step 5: Deploying the Web Application

Finally, deploy it to the world with the “gcloud app deploy” command (Listing 8-33).

Listing 8-33. Deploying Web Application
$ gcloud app deploy app.yaml

That'’s it! Sit back and let the tool deploy the web site. This is the Flexible App
Engine, so it can take up to 30 minutes to be fully deployed. Once it is done setting

everything up, it will offer a clickable link to jump directly to the deployed web
application (Listing 8-34).

284

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP
Listing 8-34. You Can Also Get There with the Following Command
$ gcloud app browse
Enjoy the fruits of your labor, and make sure to experiment with it by drawing

recognizable and nonrecognizable digits (Figure 8-11).

] ® [Guess My Number X 9 Manuel

C @ Secure https://apt-memento-192717.appspot.com aQ v ¢ 0

Draw a digit between 0 and 9 and
click 'Predict' to have the model divine it!

Predict = clear Brush Size:| 30 %

Figure 8-11. The web application on Google Cloud

285

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

Troubleshooting

There will be cases where you will have issues and the Google Cloud logs will be your
best friends. You can easily reach them either directly in the Google Cloud dashboard or
by calling the logs URL (Listing 8-35).

Listing 8-35. Logs URL
https://console.cloud.google.com/logs

Or you can stream the log’s tail by entering in the cloud shell the following command
in Listing 8-36.

Listing 8-36. Viewing Logs in Terminal Window

$ gcloud app logs tail -s default

Closing Up Shop

One last thing before we conclude this chapter: don’t forget to stop or delete your App
Engine Cloud instance. Even if you are using free credits, the meter is still running and
there is no need to waste money or credits.

Things are a little different with the Flexible App Engine over the Standard one, as
the Flexible costs more money. So, it is important to stop it if you aren’t using it. Also, this
can all be conveniently done via the Google Cloud dashboard.

Navigate to App Engine, then Versions. Click on your active version and stop it
(Figure 8-12). If you have multiple versions, you can delete the old ones; you won'’t be
able to delete the default one, but stopping it should be enough (if you really don’t want
any trace of it, just delete the entire project).

286

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

= Google Cloud Platform 8 google-app-engine-yelp ~

1O Versions C REFRESH W STOP

i

}. = Filter versions

@l v Status Traffic Allocation Instances
& M 20180416t230733 [7 Serving o 100% 1

Figure 8-12. Stopping and,/or deleting your App Engine version

That’s it! Don'’t forget to deactivate the virtual environment if you are all done
(Listing 8-37).

Listing 8-37. Deactivating the vVirtual Environment

$ deactivate

Conclusion

In this chapter, we got to try out some new and old technology.

HTML5 <canvas> tag

The new “canvas” tag in HTMLS5 is a lot of fun and opens all sorts of new ways of
inputting data to devices and into Flask.

TensorFlow

Working with TensorFlow and having the ability of loading pretrained models into Flask
is big. Training these models takes a lot of processing and time, so being able to leverage
already trained models allows implementing deep models into web application in a
heartbeat. One word of caution here is that you will need a machine commiserate to

287

CHAPTER 8 INTERACTIVE DRAWING CANVAS AND DIGIT PREDICTIONS USING TENSORFLOW ON GCP

your TensorFlow needs, the basic simple setup we used in previous chapters won’t do
the trick (see the app.yaml files for required settings).

Design

Splitting background image into four sections is a fun an easy way of interlacing large
images with input controls, such as the canvas in our case (Figure 8-13).

Draw a digit between 0 and 9 and
click 'Predict' to have the model divine it!

Figure 8-13. Adding extra “cellpadding” in the front-end design to see the splits
needed to accommodate the drawing canvas

288

CHAPTER 9

Case Study Part 2:
Displaying Dynamic
Charts

Displaying dynamic stock charts on PythonAnywhere.

Let’s add a few more features to the original case study web application (make sure
you are familiar with “Running on PythonAnywhere” in Chapter 5). The idiom “a
picture is worth a thousand words” is absolutely applicable here and by offering visual
chart support of the price action surrounding the recommended pair trade, will go a
long way to help the user evaluate things. We will add three charts (Figure 9-1), a chart
for each stock in play and the differential showing the percent-change, cumulative sum
subtraction between the strong stock minus the weak stock.

289
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_9

CHAPTER 9 CASE STUDY PART 2: DISPLAYING DYNAMIC CHARTS

® © @ /[pair Trading Booth x A

i C | & Secure | https://manuelamunategul.pythonany.. & ¥ &

Figure 9-1. The final web application for this chapter

The charts are created dynamically in Flask and transformed into PNG files for
viewing. This is the same technique we used to build the Titanic web application that
allows you to conveniently build dynamic plots using the Matplotlib library and translate
them from binary to text for web publishing. This allows the creation of dynamic images
at will without having to save anything to file.

290

CHAPTER9 CASE STUDY PART 2: DISPLAYING DYNAMIC CHARTS

Note Download the files for Chapter 9 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter9.ipynb” to follow along with this chapter’s content.

Creating Stock Charts with Matplotlib

Let’s get started; download the files for this chapter into a folder called “chapter-9” and
open up the Jupyter notebook to follow along. This is a method we’ve used in previous
chapters and that we will continue to use. This approach allows us to create images
using Matplotlib then translate them into strings, so they can be dynamically fed and
understood by an HTML interpreter.

In the following simplified code snippet, we create an image in Python using the
“matplotlib.pyplot” library (Listing 9-1).

Listing 9-1. Creating Encoded String Images

import matplotlib.pyplot as plt

fig = plt.figure()

plt.bar(y pos, performance, align='center', color = colors, alpha=0.5)
img = io.BytesIO()

plt.savefig(img, format='png")

img.seek(0)

plot url = base64.b64encode(img.getvalue()).decode()

Then the variable “plot_url” can be injected into the HTML code using Flask Jinja2
template notation as such (Listing 9-2).

Listing 9-2. Injecting Dynamic Images Using Flask and Jinja2

model plot = Markup('".format(plot url))

<div>{{model plot}}</div>

291

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

CHAPTER9 CASE STUDY PART 2: DISPLAYING DYNAMIC CHARTS

And if you look at the HTML source output, you will see that the HTML image tag
is made of an enormous string output (drastically truncated here) that the interpreter
knows to translate into an image (Figure 9-2).

<img src="data:image/

png; base64,6BCOHDnyk+pt7/tycHD4Scd5UC+/
/DLeeustINfX46uvvkISUhJsbGyQnJzcKe2hJ@9
wcDDWr12rwtfyebaltf3J9T+MOh4mIyMjnDt3TL
n0zc3F22+/jW+++UZZ17V v20Hfv3hg/
fjwGDBiAXMRE3Lhxgz2CEluzZg3Cw8Mxbdo@90/
ARERERJJhACQiIiKSDAMgERERKWT+B5qsMwW4gCB
j4AAAAAETFTKSuQmCC">

Figure 9-2. Image transformed into string of characters

Exploring the Pair-Trading Charts

Go ahead and download the files for this chapter into a folder called “chapter-9.” Open
up the Jupyter notebook to follow along. You will see a lot of repeated code in this
notebook in order to load and process all the financial data needed to get to the charting
part.

We're going to offer our visitors three charts, a chart for each stock in play and the
differential showing the percent-change, cumulative sum subtraction between the strong
stock minus the weak stock. The first half of the Jupyter notebook is a repeat of Chapter 9.
We need to keep repeating the code, as we're building these charts onto the previous
foundation. Scroll down to “Part 2.

Let’s run one chart through the different steps needed to get it into a textual format
to be properly served from a web server to a web client. We build it just like we would
build any chart in Matplotlib. We create the subplots to initiate a plot object, pass it our
financial data, create a title, and rotate the x-axis date field (Listing 9-3 and Figure 9-3).

Listing 9-3. Plotting Price Difference

fig, ax = plt.subplots()
ax.plot(temp seriesi.index , long trade df)
plt.suptitle('Overly Bearish - Buy: ' + weakest symbol[0])

292

CHAPTER9 CASE STUDY PART 2: DISPLAYING DYNAMIC CHARTS

rotate dates

myLocator = mticker.Multiplelocator(2)
ax.xaxis.set major locator(myLocator)
fig.autofmt xdate()

Overly Bearish - Buy: MMM

0.100
0.075 1
0.050 1
0.025 1
0.000 1
-0.025

-0.050 1

Figure 9-3. Raw plot with x-axis rotated but still unreadable

We also do a little extra work to properly format labels on the x-axis. The rotation
does help, but we need to prune out some of the dates. There are many ways of
approaching this, but we will remove all dates except the first and last ones (to be
specific, we are going to keep the second date and the second-to-last date only;
Listing 9-4).

Listing 9-4. Fixing Label to Only Show First and Last Date
Input:

labels = [" for item in ax.get xticklabels()]
labels[1] = temp seriesi.index[0]

labels[-2] = temp seriesi.index[-1]

labels = [" for item in ax.get xticklabels()]
labels[1] = temp seriesi.index[0]

labels[-2] = temp seriesi.index[-1]

ax.set xticklabels(labels)

293

CHAPTER9 CASE STUDY PART 2: DISPLAYING DYNAMIC CHARTS

Output:

[Text(0,0,"),
Text(0,0,'2017-11-22"),
Text(0,0,"),
Text(0,0,"),
Text(0,0,"),
Text(0,0,"),
Text(0,0,"),

Text(0,0,"),
Text(0,0,"),
Text(0,0,"),
Text(0,0,"),
Text(0,0,"),
Text(0,0,"),
Text(0,0,"),
Text(0,0,"),
Text(0,0,"),
Text(0,0, '2018-04-04"),
Text(0,0,")]

This yields a much more readable and breezy chart showing only two titled dates, the

second and second-to-last (Figure 9-4).

Overly Bearish - Buy: MMM

0.100 1
0.075 1
0.050 1
0.025 1
0.000 1
-0.025 1

=0.050 1

=0.075 1

1
W A
»

uuuuuuuuuuu

Figure 9-4. A more readable chart showing only the extreme dates

294

CHAPTER9 CASE STUDY PART 2: DISPLAYING DYNAMIC CHARTS

Finally, we translate the image date into text using the “BytesIO()” function from the
io library. We call the “savefig()” function from Matplotlib to specify the output format
(though this isn’t being saved to file) and finally call the “b64encode()” function of the
base64 library. At this point, our “plot_url” variable holds a textual representation of
our image that we can easily pass using Flask to a web client. This is a very clever way of
creating dynamic images in a scalable and session-free manner (Listing 9-5).

Listing 9-5. Sampling Encoded Output
Input:

img = io.BytesIO()

plt.savefig(img, format="png")

img.seek(0)

plot_url = base64.b64encode(img.getvalue()).decode()
plot_url

Output:

" 1VBORWOKGgoAAAANSUhEUgAAADAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAALW
SF1zAAALEgAACXIBOt1+/AAAADIORVhOU29mdHdhcmUABWFOCGxvdGxpYiB2ZXJzalW9u
IDIuMi4yLCBodHRwOi8vbWFOcGxvdGxpYi5vemecvhp/UCWAATIABIREFUeJzs3X1410XV+PHvIIP
Jvu9MA1kmhBCWAIMAK7JFUWMVyiaCVqValWivfWrGtYtVX5bWtb1+r/hS1EhSNiEoQZ
ccFRIEgwWUBYEkgg+77vs/...

Designing a Web Application

Go ahead and download the code for this chapter if you haven’t already done so; open a
command line window and change the drive to the “web-application” folder. It should
contain the following files as shown in Listing 9-6.

295

CHAPTER9 CASE STUDY PART 2: DISPLAYING DYNAMIC CHARTS

Listing 9-6. Web Application Files

web-application

— main.py

|— requirements.txt
— static
L— images
— ticker-title.png
F— up-arrow.png
L— down-arrow.png

— templates

|— charts.html
L— index.html

— ~DJI.csv
— AAPL.csv
— BA.csv

— CAT.csv
|— GS.csv

— HD.csv

— 1BM.csv
— McD.csv
F— MMM.csv
F— TRV.csv
— UNH.csv

|— requirements.txt
L— main.py

As usual, we'll start a virtual environment to segregate our Python library installs and
create the “requirements.txt” file if needed (Listing 9-7).

Listing 9-7. Starting Virtual Environment

$ python3 -m venv pairtrading
$ source pairtrading/bin/activate

Then install all the required Python libraries by running the “pip3 install -r”
command (Listing 9-8).

296

CHAPTER9 CASE STUDY PART 2: DISPLAYING DYNAMIC CHARTS

Listing 9-8. Installing Requirements and Run a Local Version of the Web
Application

$ pip3 install -r requirements.txt
$ python3 main.py

Run the web application in the usual manner and make sure it works as advertised.
This may be a little slow the first time running but should get more nimble thereafter.
Also try the various options on the page to make sure everything works as it should.

Mobile Friendly with Tables

We are keeping the web application mobile friendly by plotting the charts in table cells to
ensure that they resize properly regardless of the screen size. We use percentage sizes in
the width and height parameters of the “" tag (you can cap the height if you want,
but we need the width to be a percentage if we want it to adjust automatically) and wrap
each image in a “<td>" cell (Listing 9-9).

Listing 9-9. Friendly Tables
Input:

chart1_plot = Markup('<img style="padding:1px; border:1px solid #021a40;
width: 80%; height: 300px" src="data:image/png;base64,{}">".format(plot url))

Output:

<table>

<tr>
<td align="center">
{{chart1 plot}}
</td>
</tr>
<tr>
<td align="center">
{{chart2_plot}}

297

CHAPTER 9 CASE STUDY PART 2: DISPLAYING DYNAMIC CHARTS

</td>
</tr>
<tr>
<td align="center">
{{chart_diff plot}}
</td>
</tr>

</table>
This is an easy way of leveraging the flexibility of images in HTML to resize according

its holding frame (Figure 9-5).

ece " Falr Trading Booth x 7} Manual

G | @ 127001 a x| §

A211

F'| PAIR TRADING BOOTH P\

A 7110

Figure 9-5. The narrow view of the stock chart automatically resizes according to
the client’s web page size

298

CHAPTER9 CASE STUDY PART 2: DISPLAYING DYNAMIC CHARTS

Uploading our Web Application to PythonAnywhere

Let’s upload our updated code to PythonAnywhere. This chapter’s project is a
continuation of Chapter 5-please tackle the case studies in that order, as we are going
to build upon our previous PythonAnywhere work. Log in to your PythonAnywhere
account and find the folder “pair-trading-booth” that we created previously. Click
on the “Files” link in the top menu bar and enter the “pair-trading-booth” directory
(Figure 9-6).

® © ® | pair-trading-booth : ome/m: X 9 Manuel
i C | @ Secure | https://www.pythonanywhere.com/user/manuelamunateguiffiles/home/manuelamunategui/pair-trading-booth IR o :
Send feedback Forums Help Blog Account Logout
5{, </ pythonanywhere Dashboard Consoles Files Web Tasks Databases
/home/manuelamunategui/ & pairtrading-booth [Fl Open Bash console here 30% full -~ 307.6 MB of your 1.0 GB quota
Directories Files
Enter new directory name New dire Y Enter new file name
pycache_/ 1] ki AAPLcsv LG @ 18.4
static/ 1] K BAcsv . 82
templates/] B CAT.cav & 81
K GS.csv & 82
K HD.csv & B2
K IBM.csv L2 1
& MCD.csv &
B MMM .csv &
K TRV.csy k3
b UNH.csv &
K *DJl.csv -
I main.py L

100MIB maximum size

Figure 9-6. Our pair trading application on PythonAnywhere

All the financial CSV files needed should already be there (if not, run through
Chapter 5 again), and all we need to do is update the “main.py” and “index.html” files
and add a new “charts.html” file to display our stock and derived charts. The best way to
proceed is to simply open those files in a local editor and copy and paste the content into
PythonAnywhere.

299

CHAPTER9 CASE STUDY PART 2: DISPLAYING DYNAMIC CHARTS

For example, let’s update “main.py’, open the file in your local editor and open the
file in PythonAnywhere, then copy and paste the new version into your “main.py” file on
PythonAnywhere. Don’t forget to click the green “Save” button before moving on to the
other files (Figure 9-7).

® © ® /) mainpy: fome/manuelamun x |1\) Manuel

L3 C | & Secure | https://www.pythonanywhere.com/user/manuelamunategui/files/home/manuelamunategui/pair-trading-booth/main.p... ¥ | & (v |

‘Sé?fj /home/manuelamunategui/pair-trading-booth/main.py Keyboard shorteuts: | Normal & | &P Share 'n-_ Save as _m-

|1 7usr/bin/env python

from flask import Flask, render_template, request, jsonify, Markup
added code to avoid Tkinter errors

import matplotlib

matplotlib.use('agg')

import matplotlib.pyplot as plt

import matplotlib.ticker as mticker

import io, baseb4, os

import pandas as pd

| 3]

WO N B W

10

11 # default traveler constants

12 DEFAULT_BUDGET = 10008

13 TRADING_DAYS_LOOP_BACK = 9@

14 INDEX_SYMBOL = ['ADJI']

15 STOCK_SYMBOLS = ["BA',"'GS",'UNH','MMM',"HD",'AAPL','MCD",'IBM',"CAT",'TRV']
16 BASE_DIR = os.path.dirname(os.path.abspath(__file__))

17

18 # global variables

19 stock_data_df = None

20

21 app = Flask(__name__)

22

23 - def prepare_pivot_market_data_frame():
24 # prep data

25 -

Figure 9-7. Updating the “main.py” code base on PythonAnywhere to handle the
creation of dynamic charts

300

CHAPTER9 CASE STUDY PART 2: DISPLAYING DYNAMIC CHARTS

Proceed in the same way in the templates folder for file “index.html” and also create
anew HTML file called “charts.html” (Figure 9-8).

® © ® /) charts.himl : fhomefmanuelar x |1\ 3 Manuel
<« C | & Secure | https://www.pythonanywhere.com/user/manuelamunategui/files/home/manuelamunategui/pair-trading-boothftempla... ¥ | & (v |
‘S@ﬁ /home/manuelamunategui/pair-trading-booth/templates/charts.html Keyboard shortcuts: Normal 4| (&2 Share \.:' / Save as / ' 4] \': |

1 k!DOCTYPE html>

2~ <html>

3- <head>

4 <meta name="viewport” content="width=device-width, initial-scale=1">

= <meta charset="UTF=8">

[<title>Pair Trading Booth</title>

7 </head>

8

9 <script src="//ajax.googleapis.com/ajax/1ibs/jquery/1.9.1/jquery.min.js"></script>

10 <link rel="stylesheet" href="//netdna.bootstrapcdn.com/bootstrap/3.0.3/css/bootstrap-theme.min.css">

11 <link rel="stylesheet" href="//netdna.bootstrapcdn.com/bootstrap/3.0.3/css/bootstrap.min.css">

12 <script src="//netdna.bootstrapcdn.com/bootstrap/3.@.3/js/bootstrap.min. js"></script>

13

14 - <body>

15

16~ «div class="container">

17

18- <table style="background-color:black;" border = @ cellpadding="5">

19- <tr>

20- <TD>

21- <p style="text-align:center">

22 <img src="static/images/ticker-title.png" alt="trading booth" style='padding:@px; border:@

23 </p>

24 </TD>

25

Figure 9-8. Creating a new file called “charts.html” on PythonAnywhere to
handle the creation of dynamic charts

301

CHAPTER 9 CASE STUDY PART 2: DISPLAYING DYNAMIC CHARTS

Now you are ready to refresh your web service and fire up the web application.
Click on the “Web” menu tab and hit the big, green button to reload the application
(Figure 9-9).

58 pythonan ywhere Dashboard Consoles Files Web Tasks Databases
<L Z
manuelamunategui.pythonanywhere.com
© Add a new web app

Configuration for manuelamunategui.pythonanywhere.com .#

Reload:

" £ Reload manuelamunategui.pythonanywhere.com |

Figure 9-9. Hit the “Reload” button to update your web server

If you enter the URL of your PythonAnywhere site into your browser, you should see
the new “Pair Trading Booth” site in all its glory. Go ahead and take it through its paces
by clicking on the “Get Trade” and “View Charts” buttons (Figure 9-10).

® © @ /[y pair Trading Booth X (3 Manuel

& C @& Secure | https://manuelamunategui.pythonanywhere.com Q% ¢

Get Trade

View Charts

Figure 9-10. The new “Pair Trading Booth” site enhanced with charts

302

CHAPTER9 CASE STUDY PART 2: DISPLAYING DYNAMIC CHARTS

Conclusion

In this chapter, we took a second pass at the “Pair Trading Booth” web application

and enhanced it with charting capabilities. Though we haven’t introduced any new
technology, we successfully enhanced it with extra features while preserving its mobile
viewing capabilities. We used table and dynamic image sizing using percentages instead
of fixed sizes; sometimes it is the simple things that are the most powerful.

303

CHAPTER 10

Recommending
with Singular Value
Decomposition on GCP

What to watch next? Let’s recommend movie options using SVD and the Wikipedia API
on Google Cloud.

In this chapter, we’re going to build a movie recommender web application
(Figure 10-1) using the MovieLens datasets containing, “100,000 ratings and 1,300
tag applications applied to 9,000 movies by 700 users.”' We will explore different
similarity-measurement techniques and design a recommender application using
singular value decomposition (SVD) and collaborative filtering to make great movie
recommendations.

'https://grouplens.org/datasets/movielens/

305
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_10

https://grouplens.org/datasets/movielens

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOSITION ON GCP

® O ® /[y wnattowatch Next?

x

[C | @ Secure | https://apt-memento-192717.appspot.com

Chapter 10

What to Watch Next?

(3 Manuel

Maovie Genre

Comedy v

Maovie Choice 1
102 Dalmatians (2000)

Movie Choice 2
Baby's Day Out (1994)

Movie Choice 3
Bubble Boy (2001)

Get Recommendations!

a

Top Recommendation:

Ferris Bueller's Day Off (1986)

Also recommended:

Movie Description:

Ferris Bueller's Day Off is a 1986 American teen comedy film written, co-
produced, and directed by John Hughes, and co-produced by Tom
Jacobson. The film stars Matthew Broderick as Ferris Bueller, a high-
school slacker who spends a day off from school, with Mia Sara and Alan
Ruck. Feris regularly "breaks the fourth wall” to explain techniques and
inner thoughts. Hughes wrote the screenplay in less than a week. Filming
began in September 1985 and finished in November. Featuring many
landmarks, including the then Sears Tower and the Art Institute of
Chicago, the film was Hughes' love letter to Chicago: "I really wanted to
capture as much of Chicago as | could. Not just in the architecture and
landscape, but the spirit.” Released by Paramount Pictures on June 11,
1986, the film became one of the top-grossing films of the year, receiving
S70.1 million over a $5.8 million budget, and was enthusiastically
acclaimed by critics and audiences alike. In 2014, the film was selected
for preservation in the National Film Registry by the Library of Congress,
being deemed “culturalty, hist By, or aesthetically significant.” In
2016, Paramount, r Classic Movies, and Fathom Events re-released
the film and Pretty in Pink to celebrate their 30th anniversary.

Figure 10-1. The final web application for this chapter

Note Download the files for Chapter 10 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook

“chapter10.ipynb” to follow along with this chapter’s content.

Planning Our Web Application

We will be focusing on collaborative filtering using movie ratings found in the

MovieLens dataset.? This is probably the most popular dataset to learn about this topic.

We're basically going to leverage the wisdom of the crowds to come up with movie

recommendations. We'll build a web application where a user can select a couple of

*https://grouplens.org/datasets/movielens/

306

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
https://grouplens.org/datasets/movielens

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

movies and the application will return a related movies recommendations. And to make
it even more informative and fun, we will also pull related information and images from
Wikipedia regarding top movie recommendations.

A Brief Overview of Recommender Systems

Recommender systems are a big deal on the web and in e-commerce. Anytime a
site makes a recommendation based on something you are looking at or on your
preferences, it is using some form of recommender model. The types of recommender
systems vary widely depending on the tool used and the availability of customized and
intelligent data. Two popular areas are “content based” and “collaborative filtering.’
In this chapter, we will focus on collaborative filtering instead of content-based
filtering. The data from MovieLens contains user ratings for various movies. The
reasoning behind applying CF using this data is if you and a reviewer liked the same
movie, then there is a good chance you'll like other movies reviewed by that person.

Exploring the MovieLens Dataset

Let’s take a look at the MovieLens data. According to MovieLens liner notes® on the ml-
latest-small dataset, the dataset contains 100,004 ratings across 9,125 movies and was
created by 671 users between 1995 and 2016.

More from the MovieLens Dataset’s Liner Notes

Ratings Data File Structure (“ratings.csv”):

o Allratings are contained in the file “ratings.csv.” Each line of this file
after the header row represents one rating of one movie by one user,
and has the following format: userld, movield, rating, timestamp.

o The lines within this file are ordered first by userld, then, within user,
by movield.

o Ratings are made on a 5-star scale, with half-star increments
(0.5 stars-5.0 stars).

°F. Maxwell Harper and Joseph A. Konstan, 2016. “The MovieLens Datasets: History and Context,”
ACM Transactions on Interactive Intelligent Systems (TiiS) 5 no. 4, Article 19 (January 2016), 19
pages. DOI = https://doi.org/10.1145/2827872

307

https://doi.org/10.1145/2827872

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

308

Timestamps represent seconds since midnight Coordinated
Universal Time (UTC) of January 1, 1970.

Movies Data File Structure (“movies.csv”):

Movie information is contained in the file “movies.csv.” Each line
of this file after the header row represents one movie, and has the
following format: movield, title, genres.

Movie titles are entered manually or imported from https://www.
themoviedb.org/ and include the year of release in parentheses.
Errors and inconsistencies may exist in these titles.

Genres are a pipe-separated list, and are selected from the following:
e Action

e Adventure

e Animation

e Children’s

e Comedy

e Crime

e Documentary

e Drama

o Fantasy

¢ Film-Noir

e Horror
e Musical
o Mystery

¢ Romance

o Sci-Fi
e Thriller
e War

¢ Western

e (no genres listed)

https://www.themoviedb.org/
https://www.themoviedb.org/

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOSITION ON GCP

Go ahead and download the files for this chapter into a folder called “chapter-10."
Download the “ml-latest-small.zip” dataset (http://files.grouplens.org/datasets/
movielens/ml-latest-small.zip) and unzip it into your “chapter-10” folder. We will
only use “ratings.csv”’ and “movies.csv” datasets. You should have everything you need
to follow along in the Jupyter notebook for this chapter.

Overview of “ratings.csv” and “movies.csv”

Take a quick look at the Pandas “shape” and “tail()” functions of “ratings.csv.’

It is a narrow and long table and its timestamp is in Unix time, which is an integer
representation of time in the form of seconds from January 1st, 1970 UTC. We're going
to fix that. Here we have the CSV files in a folder called “ml-latest-small”; adjust yours
accordingly (Listing 10-1 and Figure 10-2).

Listing 10-1. Alook at “ratings.csv”’
Input:

pd.read_csv('ml-latest-small/ratings.csv')
print('Shape:', ratings df.shape)
print('Tail:", ratings df.tail())

Output:

Shape: (100004, 4)

userld movield rating timestamp

99999 671 6268 2.5 1065579370

100000 671 6269 4.0 1065149201
100001 671 6365 4.0 1070940363
100002 671 6385 2.5 1070979663

100003 671 6565 3.5 1074784724

Figure 10-2. Raw output of “ratings.csv”

309

http://files.grouplens.org/datasets/movielens/ml-latest-small.zip
http://files.grouplens.org/datasets/movielens/ml-latest-small.zip

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

We'll use the datetime’s “fromtimestamp()” function to cast Unix time into actual
and readable timestamp. Using the “describe()” we can confirm the change and see that
the ratings range from January 1995 to October 2016 (Listing 10-2).

Listing 10-2. A Look at Timestamps
Input:

import datetime

ratings df['timestamp'] = [datetime.datetime.fromtimestamp(dt) for dt in
ratings df['timestamp'].values]

ratings df['timestamp'].describe()

Output:

count 100004
unique 78141
top 2016-07-23 05:54:42
freq 87
first 1995-01-09 03:46:49
last 2016-10-16 10:57:24

Name: timestamp, dtype: object

When we run Pandas’ “describe()” on the “ratings.csv,” we see that the minimum
rating is 0.5 and the maximum is 5, with an average of 4 (Listing 10-3 and Figure 10-3).

Listing 10-3. Function “describe()” on “ratings_df”

ratings_df.describe()

310

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOSITION ON GCP

userld movield rating

count 100004.000000 100004.000000 100004.000000

mean 347.011310 12548.664363 3.543608
std 195.163838 26369.198969 1.058064
min 1.000000 1.000000 0.500000

25% 182.000000 1028.000000 3.000000
50% 367.000000 2406.500000 4.000000
75% 520.000000 5418.000000 4.000000
max 671.000000 163949.000000 5.000000

Figure 10-3. “Describe()” Output of Data Frame “ratings_df”’

For our needs, it doesn’t really matter how many movies are in the movies data frame;
we care about how many movies have been rated in the ratings data (Listing 10-4).

Listing 10-4. Count of Unique Movies

Input:

print('Unique number of rated movies: %i' % len(set(ratings df['movieId'])))
Output:

Unique number of rated movies: 9066

So, we really only have 9,066 movies to work with, not 9,125 as the liner notes
mention. And the number of unique reviews is 671 (Listing 10-5).

Listing 10-5. Unique User Count with Ratings

Input:

print('Unique user count with ratings: %i' % len(set(ratings df['userId'])))
Output:

Unique user count with ratings: 671

311

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

Let’s take a look at “movies.csv.” Feature “title” is straightforward and “genres” is an
interesting category that we will explore further (Listing 10-6 and Figure 10-4).

Listing 10-6. A Look at “movies.csv’
Input:

movies df = pd.read csv('ml-latest-small/movies.csv"')
print('Shape:', movies df.shape)
movies df.tail()

Output:

Shape: (9125, 3)

movield title genres
9120 162672 Mohenjo Daro (2016) Adventure|Drama|Romance
9121 163056 Shin Godzilla (2016) Action|Adventure|Fantasy|Sci-Fi
9122 163949 The Beatles: Eight Days a Week - The Touring Y... Documentary
9123 164977 The Gay Desperado (1936) Comedy
9124 164979 Women of '69, Unboxed Documentary

Figure 10-4. Raw Output of “movies.csv”

When we run “describe(),” we notice that feature “movield” doesn’t match the data
frame’s index. The maximum movield is 164,979, and there are only 9,124 rows. It is most
likely a universal MovieLens identifier. This is something we’ll need to adjust, to ensure
that the movield follows the table’s index; it will make our lives a lot easier once we move
from data frames to matrices (Listing 10-7 and Figure 10-5).

Listing 10-7. Running Function “describe()” on “movies_df”

movies df.describe()

312

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOSITION ON GCP
movield
count 9125.000000
mean 31123.291836
std 40782.633604
min 1.000000
25% 2850.000000
50% 6290.000000
75% 56274.000000
max 164979.000000

Figure 10-5. The “describe()” output

Understanding Reviews and Review Culture

Now that we have a basic understanding of the two data frames, we're going to focus on
what they contain. Let’s start with the number of reviews per user Ids (Listing 10-8 and
Figure 10-6).

Listing 10-8. Plot Reviews per Users

plt.plot(sorted(ratings df['userId’].value counts(normalize=False)),
marker="o0")

plt.suptitle('Number of Reviews per UserId', fontsize=16)
plt.xlabel('Reviewer User ID', fontsize=14)

plt.ylabel('Number of Reviews', fontsize=14)

plt.grid()

plt.show()

313

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

Number of Reviews per Userld

]
8

&
8

1000 1

Number of Reviews

=
S

100 200 300 400 500 600 700
Reviewer User ID

o

Figure 10-6. Total number of reviews per user ID

We see that the majority of the reviewers have fewer than 200 reviews, but one reviewer
has almost 2,500! Let’s look at the distribution of actual ratings (Listing 10-9 and Figure 10-7).

Listing 10-9. Count of Unique Movies

ratings df['rating'].plot.hist()
plt.suptitle('Rating Histogram', fontsize=16)
plt.xlabel('Rating Category', fontsize=14)
plt.ylabel('Rating Frequency', fontsize=14)

plt.grid()
plt.show()
Rating Histogram
30000 1
25000 1
0
S 20000 -
= |
o
& 15000 -
('S
o
.S 10000
o
o
5000
0

2 3
Rating Category

Figure 10-7. Histogram of total ratings per category
314

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOSITION ON GCP

This chart is important, as it shows the type of ratings our reviewers like to use. On a
scale of 1 to 5, you would think that an even distribution would make a rating of “3” the
most used. We clearly see that isn’t the case and that a rating of “4” is the favorite rating,
followed by “3” and “5.” Taking some time to think about this is critical. We are about to
build models around user ratings and we need to be able to compare each reviewer on
equal footing. How can we generalize each user’s ratings to be comparable to all others?
One technique is to center each user’s reviews around the mean of that user’s ratings.
This creates a central “0” point that will align with all other reviewers’ central points—the
neutral review level. Of course, this system won’t work if a reviewer only has one review.

The categorical “genres” field of the movie dataset is interesting to get a quick idea
of the type of movies the dataset contains. Drama and comedy seem to be the biggest
categories (Figure 10-8).

Overall Top Movie Genres

1200

Number of Occurrences

Figure 10-8. Overall top movie genres

We can also look at the breakdown of movie “genres” over the years they were
reviewed, by joining both the ratings and movie data frames. This is easily done with
Pandas “merge()” function. We join on the common index field “movield” and then
pull the year from the “timestamp” feature (Listing 10-10).

Listing 10-10. Merging Movies and Reviews by Year

reviews by genres = pd.merge(movies df, ratings df, how = "inner', on
="movield")
reviews by genres['year'] = reviews by genres['timestamp'].dt.year

315

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

Now we can plot data made up of features from both tables broken down by year,
such as the most popular “genres” reviewed each year. We have to perform a slightly
more involved “groupby()” function call to get a “genres” total count by year
(Listing 10-11 and Figure 10-9).

Listing 10-11. Top Genres by Year Reviewed

def top_category count(x, n=1):
return x.value counts().head(n)

reviews by genres = reviews by genres.groupby(['year']).genres.apply(top_
category count).reset index()

plt.figure(figsize=(20,5))

g = sns.barplot(reviews by genres['year'], reviews by genres['genres'],
alpha=0.8)

plt.title('Top Genres Count by Year Reviewed')

plt.ylabel('Number of Occurrences', fontsize=12)

plt.xlabel('Genres', fontsize=12)

plt.xticks(rotation=45)

for index, row in reviews by genres.iterrows():
g.text(row.name, row.genres, row.level 1, ha="center", rotation=45,
color="blue', verticalalignment="bottom', fontsize=10)

plt.show()
W Top Genres Count by Year Reviewed

1400 =

00
Emm
E 800
k]
g PR
E 00 @‘ﬁ "“f’ " 4 ‘f‘h

o
= — J ¢ ‘9 4 & @"\“
{1 g

PRI N N N A N N A

Genres

Figure 10-9. Top genres count by year reviewed

316

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOSITION ON GCP

It shouldn’t come as a surprise that “Drama” is the most common, with some

pockets of “Comedy.” Year 2000 seems to have been a good year for “Drama” movies.

Getting Recommendations

By now you should have a clear understanding of the data we are using, and this should
make the following sections on modeling that much more approachable.

In order to streamline our filtering process, we are going to create a “matrix” made
with only three fields from the ratings data frame: “userId,” “movield,” and “ratings”
(Listing 10-12).

Listing 10-12. Creating User by Movie Ratings Matrix
Input:

ratings df.set _index(['userId', 'movield'], inplace=True)

ratings matrix = sps.csr matrix((ratings df.rating,
(ratings_df.index.labels[0], ratings df.index.
labels[1]))).todense()

print('shape ratings matrix:', ratings matrix.shape)

Output:

shape ratings matrix: (671, 9066)

This is done by setting the index to be both “userld” and “movield,” then creating
a matrix out of it using one index for rows and the other for columns. Because a lot of
the ratings will be zeros, we use the “scipy.sparse.csr_matrix()” function to create an
efficient sparse matrix (for more information, see the official docs at https://docs.scipy.
org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csr_matrix.html).
The matrix will look like Figure 10-10.

317

https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csr_matrix.html
https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csr_matrix.html

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

Moviel
matrix(((@., O., 0., ..., 9., 0., 0.])
- .: RB” s O a‘.. :
B atings
g fed s tub
- 5 L 0.: ' L ., 91

Figure 10-10. The very important “Users” by “Rated Movies” matrix

Using this matrix will make our querying, measuring similarities, and final SVD
model run much faster.

We also need to create a movie list with consecutive indexing sorted in the same
order as the original movie Ids from the movies data frame. This can easily be done
by dropping the original “movield” field and replacing it with the row index. Then we
merge it to the ratings table and adopt the new Id for both ratings and movies (Listing 10-13
and Figure 10-11).

Listing 10-13. Fixing Movie Ids

movies df raw = pd.read csv('ml-latest-small/movies.csv')
movies df raw['movield new'] = movies df raw.index
movies df raw.tail()

title genres | movield_new

9061 161944 The Last Brickmaker in America (2001) Drama 9061
9062 162376 Stranger Things Drama 9062
9063 162542 Rustom (2016) Romance|Thriller 9063
9064 162672 Mohenjo Daro (2016) Adventure|DramalRomance 9064
9065 163949 The Beatles: Eight Days a Week - The Touring ... Documentary 9065

Figure 10-11. The old spotty “movield” versus the new incremental
“movield_new”

We'll rely on this row indexing to pull similarities. By looking at the tail, we confirm
that there is a total of 9,066 unique movies. We need to apply this new movie Id to both the

ratings and movies data frames and rename it “movield” for consistency (Listing 10-14).

318

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOSITION ON GCP
Listing 10-14. Applying Fixed Movie Id

ratings df raw = ratings df raw.merge(movies df raw[['movieId', 'movield_
new']], on="movieId', how="inner")

ratings df raw = ratings df raw[['userId', ‘'movield new', 'rating']]
ratings df raw.columns = ['userId', ‘'movield', 'rating']

movies df raw = movies df raw[['movield new', 'title', 'genres']]
movies df raw.columns = ['movield', 'title', 'genres']

One last thing we need to do before diving into similarity metrics is to pull a base
movie that we will use in all subsequent similarity algorithms. We’ll put the ratings data
from the ratings table at index “0”; this represents all the ratings for the original Toy Story
movie (Listing 10-15).

Listing 10-15. Basing Reviews on Toy Story
Input:

movie toy story = (mat[:,0])
movie toy story[0:20]

Output:

M])
]J
])
])

matrix([[

])
])
]J
])
]J
])
1,
]J
])
]J

N O LT O O O & O W O O O O O O

L T e T e T e T e T e B e T e e B e s T e T e B ey |

319

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

[0.],
[0.1,
[o. 1,
[3. 1,
[3.5]])

Collaborative Filtering

Collaborative filtering is a popular type of recommendation system based on leveraging
the taste of other users who share similarities.

Similarity/Distance Measurement Tools

There is a whole slew of distance measuring formulas to measure the similarity or
dissimilarity between two lists of numbers. This can be extremely handy when you
want to compare various sets of numbers against others. Here we will compare movies
by using user recommendations with the Euclidean distance and cosine similarity
measures.

We will once again leverage the great Scipy library and use its distance computations
“scipy.spatial.distance()” function for most of our needs in this chapter.

Euclidean Distance

Simply put, the Euclidean distance is the distance between two points and probably
the most popular distance algorithm. Here we will use Scipy’s “spatial.distance.
euclidean()” function to calculate the Euclidean distance from our seed row of Toy Story

against all other rows (Listing 10-16 and Figure 10-12).

Listing 10-16. Getting Similar Movies

distances to movie = []

for other movies in mat.T:
distances to movie.append(scipy.spatial.distance.euclidean(movie toy
story, other movies.tolist()))

320

create dataframe
distances to movie

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOSITION ON GCP

of movie and distance scores to Toy Story

= pd.DataFrame({ 'movie’ :movies df['title'], 'distance’:

distances to movie})

sort by ascending distance (i.e. closest to movie toy story)

distances_to_movie
distances to movie

0
2506
1866
1019
644
3803
4604
5611
3419
866

Figure 10-12. Movies with shortest Euclidean distance to Toy Story (1995)

= distances_to movie.sort values('distance')

.head(10)
distance movie
0.000000 Toy Story (1995)
50.882217 Toy Story 2 (1999)
53.849327 Bug's Life, A (1998)
54.904462 Groundhog Day (1993)
55.009080 Independence Day (a.k.a. ID4) (1996)
55.056789 Monsters, Inc. (2001)
55.522518 Finding Nemo (2003)
55.709066 Incredibles, The (2004)
56.333826 Shrek (2001)

56.643623 Willy Wonka & the Chocolate Factory (1971)

Euclidean distance does a good job linking Toy Story with “Toy Story 2” and “A Bug’s

Life”; intuitively, it makes sense.

Cosine Similarity Distance

The cosine similarity measures the cosine angle between two vectors.* This is a more

sophisticated form of measurement over the Euclidian distance and one we will be using

throughout this chapter.

*http://mines.humanoriented.com/classes/2010/fall/csci568/portfolio_exports/

sphilip/cos.html

321

http://mines.humanoriented.com/classes/2010/fall/csci568/portfolio_exports/sphilip/cos.html
http://mines.humanoriented.com/classes/2010/fall/csci568/portfolio_exports/sphilip/cos.html

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

Let’s repeat the previous exercise using Scipy’s “spatial.distance.cosine()” function
to calculate the cosine distance from our seed row of Toy Story against all other rows
(Listing 10-17 and Figure 10-13).

Listing 10-17. Getting Similar mMovies

distances to movie = []

for other movies in mat.T:
distances to movie.append(scipy.spatial.distance.cosine(movie toy
story, other movies.tolist()))

create dataframe of movie and distance scores to Toy Story
distances to movie = pd.DataFrame({'movie':movies df['title'], 'distance’:di
stances_to movie})

sort by ascending distance (i.e. closest to movie toy story)
distances to movie = distances to movie.sort values('distance')
distances_to movie.head(10)

distance movie

0 -2.220446e-16 Toy Story (1995)
2506 4.052902e-01 Toy Story 2 (1999)
232 4.238122e-01 Star Wars: Episode IV - A New Hope (1977)
321 4.3546617e-01 Forrest Gump (1994)
644 4.370544e-01 Independence Day (a.k.a. ID4) (1996)
1019 4.519770e-01 Groundhog Day (1993)
1024 4.632997e-01 Back to the Future (1985)
427 4.648029e-01 Jurassic Park (1993)
3419 4.673149e-01 Shrek (2001)

966 4.706660e-01 Star Wars: Episode VI - Return of the Jedi (1983)

Figure 10-13. Movies with shortest cosine distance to Toy Story (1995)

Cosine distance links Toy Story with “Toy Story 2” along with other family movies. It
is interesting that cosine distance comes up with a different list than Euclidean distance.

322

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

Singular Value Decomposition

You could easily build a system with collaborative filtering using any of the distance
approaches covered, but it won’t scale to larger datasets, handle sparse data, or know
what to do in cases of cold starts (where there is little or no intersecting user/movie
data). A model like SVD is designed to alleviate some of those problems by using lower
rank approximation and has the ability of estimating matches on compressed data.®

This is definitely not simple stuff, but in a nutshell, it attempts to reduce the data
and make the important themes and connections bubble up and lets the noise or
the outliers drop to the bottom. It will remove the noisy and irregular information to
build a clearer map of what fits where, and what is close and what is far away. SVD will
decompose our matrix of movie ratings arranged by genres and users into three parts,
a matrix of users, a matrix of movies, and a vector of relationship between both. We can
then use the relationship vector to match different users and reviews that are close to
each other and collect the surrounding information as potential recommendations.
SVD returns a matrix representing the feature space of users and another representing
the feature space of movies. We then apply the dot product to find similarities and
recommendations.

Also, this isn’t meant to be a course on SVD specifics, as it can get complicated. PhDs
have been written on this topic and hundreds of tutorials are available on the web for
those with a desire to dig deeper. I also recommend the blog post on which this code
is based (https://beckernick.github.io/matrix-factorization-recommender/),
and for a clear and simple example of SVDs in action, Recommendation Engines for
Dummies (http://zwmiller.com/projects/simple_recommender.html).

Centering User Ratings Around Zero

As this dataset has been studied for quite a few years now, some interesting tricks have
been proved useful and we will apply them here as well. We will subtract each user’s
recommendations against their mean recommendation. This ensures that all users are
scaled accordingly and around zero. If a user’s max rating is a 5 and minimum rating is
a 3, while other users rate using the whole range, taking each mean and subtracting it
against its recommendation will allow both to be comparable (Listing 10-18).

Shttp://web.mit.edu/be.400/www/SVD/Singular Value Decomposition.htm
323

https://beckernick.github.io/matrix-factorization-recommender/
http://zwmiller.com/projects/simple_recommender.html
http://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

Listing 10-18. Centering All Reviews Around Mean

user ratings mean = np.mean(ratings mat, axis = 1)
ratings mat _centered = ratings mat - user ratings mean.reshape(-1, 1)

A Look at SVD in Action

Let’s finish analyzing the SVD code found in the Jupyter notebook (to follow along,
refer to e section “Singular Value Decomposition”). This is an important piece, as it
represents the brains behind our recommender engine.

The first thing we do is build a matrix of users versus rated movies (Figure 10-14). In
our case it entails cleaning up a few things like rebuilding the movie Ids to start at zero,
making them sequential with no gaps, and resetting the rating Ids to also start at zero.

Moviel

matrix({(0., 0., 0., ..., o., 0., 0.)
[@ Oii aomiic B 0.5 0.
o o -~ ¥+ - 9.)

= alings
8 0., 0., ..., 0NF0., 0.]
4 0. s aanp 8., 0., 9.)
- Doy iy 05, sais 0., 0., 0.)

Figure 10-14. The very important “Users” by “Rated Movies” matrix

One way to make our recommender work on new data is to add our visitor’s
movie taste as a new “Userld” to the matrix. We then rebuild the matrix using the
“Compressed Sparse Row matrix” function “sps.csr_matrix(),” which will transform
the matrix into an SVD-friendly format taking into account the information from our
new visitor (Listing 10-19).

Listing 10-19. Getting Recommendations for our New User

create a new user id - add 1 to current largest
new_user id = np.max(ratings df cp['userId']) + 1

add movie preference to matrix and assign 5-star votes
to all of them
new_user movie ids = user_history movie ids

324

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOQSITION ON GCP
new_user ratings = [5] * len(new_user movie ids)

fix index to be multilevel with userId and movield
ratings df cp.set_index(['userId', 'movield'], inplace=True)

add new movie rating as a pandas series and insert new row
at end of ratings df cp
for idx in range(len(new_user movie ids)):
row_to_append = pd.Series([new_user ratings[idx]])
cols = ['rating']
ratings_df cp.loc[(new_user_id, new user movie ids[idx]), cols]
= row_to _append.values

create new ratings matrix
ratings matrix plus = sps.csr matrix((ratings df cp.rating,
(ratings_df cp.index.labels[0], ratings df cp.index.labels[1]))).todense()

We then send our matrix to the “GetSparseSVD” function that performs the matrix
decomposition, and return the three matrices needed to get the dot product for our new
user and other users with similar interests. This uses the Sparse linear algebra SVDS
library “scipy.sparse.linalg.svds,” which does a great job handling large matrices with
lots of zeros (most folks have only seen a handful of movies, so when you build a matrix
of users to movies, most cells are blanks; Listing 10-20).

Listing 10-20. Getting the SVD

Ua, sigma, Vt = GetSparseSVD(ratings matrix centered, K=50)
all user predicted ratings = np.dot(np.dot(Ua, sigma), Vt) + user ratings
mean.reshape(-1, 1)

We run the dot product on the returned matrices (Ua and sigma in our case) and
package everything into a data frame called “predictions_df” This data leverages SVD’s
magic to organize the users and their interests into various dimensions (Listing 10-21
and Figure 10-15).

Listing 10-21. Viewing “head()” of Dot Matrix

predictions df = pd.DataFrame(all user predicted ratings, columns = movies
df.index)
predictions df.head()

325

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

0] 1 2 3 4 5 6 \
-0.054240 0.045128 -0.004833 -0.019825 -0.011278 0.041374 -0.007828
0.419849 1.406419 -0.188829 0.156646 0.268030 0.414696 0.052150
1.345667 0.266465 -0.012022 0.012361 0.079403 0.090967 -0.122086
1.133440 1.047020 0.141292 0.081937 -0.339729 -1.484643 -0.263005
1.389618 1.466398 0.605475 -0.029601 0.729323 -0.118494 -0.026019

bW NREO

7 8 9 9056 9057 9058 \
-0.017190 0.012238 0.037665 -0.005258 -0.005453 0.012368
0.044731 -0.020230 2.220210 -0.005910 -0.003974 -0.012557
0.031366 -0.017969 0.141100 -0.002644 -0.002358 -0.010145
-0.169730 -0.021727 1.611773 0.020811 0.000414 0.056051
0.065617 -0.156665 0.307791 -0.007421 -0.011804 0.006647

BWN RO

9059 9060 9061 9062 9063 9064 9065
-0.004991 -0.004639 -0.019052 0.021401 -0.006365 -0.006098 -0.004819
-0.003555 -0.002712 -0.071607 -0.016215 0.001046 -0.001469 -0.006579

0.000278 -0.000116 -0.018086 -0.015750 0.010617 0.006797 -0.006354
-0.002815 -0.000765 0.159109 0.087533 -0.030847 -0.021274 0.048537
-0.005158 -0.001249 -0.034653 0.016460 0.001714 -0.004163 -0.001864

B wN =

[5 rows x 9066 columns]

Figure 10-15. The dot matrix output organizing our users by similarities on
multiple dimensions

I certainly won'’t pretend to understand the logic behind these groupings but it
works, so I'll trust SVD and I'd recommend you do the same.

The last phase of getting the recommendations for our new user is to extract the
SVD'’s dot product data from “predictons_df” for that user only, then append the movie
information, and simply pick a handful of new movies that the user hasn’t already seen.
For example, let’s pretend that our new user really likes the following three drama/war
movies (Figure 10-16).

movield title genres
188 188 Before the Rain (Pred dozhdot) (1994) Drama|War
301 301 Walking Dead, The (1995) Drama|War
472 472 Schindler's List (1993) Drama|War

Figure 10-16. Our user’s preferences

326

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOSITION ON GCP

We pass this new user’s choices as a new user in our “Users” by “Rated Movies”
matrix and add those three choices with high ratings. We then run SVD and pull the
predictions for this new user (Figure 10-17).

movield predictions title genres

0 472 0.683026 Schindler's List (1993) Dramal|War
1 an 0.323625 Forrest Gump (1994) Comedy|DramalRomance|War
2 1590 0.311840 Saving Private Ryan (1998) Action|Drama|War
3 284 0.303248 Shawshank Redemption, The (1994) Crime|Drama
4 525 0.278348 Silence of the Lambs, The (1991) Crime|Horror|Thriller
5 100 0.276620 Braveheart (1995) Action|Drama|War
6 522 0.214850 Terminator 2: Judgment Day (1991) Action|Sci-Fi
7 2062 0.211868 Matrix, The (1999) Action|Sci-Fi| Thriller
8 266 0.190663 Pulp Fiction (1994) Comedy|Crime|Drama|Thriller
] 2288 0.181298 American Beauty (1999) Drama|Romance
10 1359 0177232 Titanic (1997) Drama|Romance

Figure 10-17. The sorted recommendations for our new user

Obviously, we will not recommend “Schindler’s List” to this user as it is one they
have already seen’ instead, we recommend “Forest Gump,” “Saving Private Ryan,” and
“The Shawshank Redemption.” Okay, enough on the code; let’s build this thing!

Downloading and Running the “What to Watch
Next?” Code Locally

Let’s download the files for Chapter 10 and unzip them on your local machine if you
haven’t already done so. You will need to copy the CSV files “movies.csv” and “ratings.
csv” created earlier to the root directory of the web application files—in the same folder
as main.py. Your “web-application” folder should contain the following files as shown
in Listing 10-22.

327

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

Listing 10-22. Web Application Files

web-application
— appengine_config.py
— app.yaml
F— main.py
— requirements.txt
|— movies.csv
— ratings.csv
— static
L—images
— curtain-left.png
L— curtain-right.png
L—templates
L— index.html

As is customary, we'll start a virtual environment to segregate our Python library
installs (Listing 10-23).

Listing 10-23. Starting Virtual Environment

$ python3 -m venv whattowatchnext
$ source whattowatchnext/bin/activate

Then install all the required Python libraries by running the “pip install -r”
command (Listing 10-24).

Listing 10-24. Install Requirements and Take the Site for a Local Spin

$ pip3 install -r requirements.txt
$ python3 main.py

You can run the application on your local machine just like we did in the previous
exercises. Open a command line window, change the drive into the “web-application”
folder, and run the same commands you ran previous times (such as running “python3
main.py”). It should look like the following screen shot in Figure 10-18.

328

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOSITION ON GCP

® © ® [wnat to Watch Next?

< C |® 127.0.0.1:5000

Chapter 10

at to Watch Next?

€3 Manuel

Movie Genre

Animation ¥

Movie Choice 1
Adventures of Tintin, The (2011)

Movie Choice 2
Alvin and the Chipmunks: The Squeakguel (2009)

Mavie Choice 3
Aladdin and the King of Thieves (1996)

Get Recommendations!

Top Recommendation:
Little Mermaid, The (1989)

Also recommended:

AIB) (1997
o M

Movie Description:

The Littis Mermaid is a 1989 American animated musical fantasy film
produced by Walt Disney Feature Animation and released by Walt Disney
Pictures. Based on the Danish fairy tale of the same name by Hans
Christian Andersen, The Little Mermaid tells the story of a Ariel, a
mermaid princess who dreams of becoming human, Written, produced,
and directed by Ron Clements and John Musker, with music by Alan

Carroll, Samuel E. Wright, Jason Marin, Kenneth Mars, Buddy Hackett,
and René Auberjonois. The 28th Disney animated feature film, The Little
Mermaid was released to theaters on November 17, 1989 to largely
positive reviews, gamering $84 million he domestic box office during
ts initial release, and $211 milion in ime gross worldwide. After
the success of the 1988 Disney/Amblin film Who Framed Roger Rabbit,
The Litthe Mermaid is given credit for breathing life back into the art of
Disney animated feature films after a string of critical or commercial
failures produced by Disney that dated back to the early 1970s. It also
marked the start of the era known as the Disney Renaissance. A stage
adaptation of the film with a book by Doug Wright and additional songs
by Alan Menken and new lyricist Glenn Slater opened in Denver in July
2007 and began performances on Broadway January 10, 2008 starring
Sierra Boggess. In May 2016, Disney announced that a live-action film
adaptation of The Littie Mermaid is currently in the works.

Figure 10-18. “What to Watch Next?” running locally

What’s Going on Here?

Let’s take a closer look at some of the interesting things going on in our Flask web

application.

main.py

Litthe Mermaid, The (1989)

Let’s go over “main.py.” The movie genres that were extracted during data exploration

are copied and hard-coded as a constant list in the script. There is no real value in

calculating it dynamically from the data each time, as it tied to the historical data and

won’t change (Listing 10-25).

329

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

Listing 10-25. Hardcoding Movie Genres

MOVIE_GENRES = ["Action", "Adventure", "Animation", "Children", "Comedy",
"Crime",
"Documentary"”, "Drama", "Fantasy", "Film-Noir", "Horror",
"IMAX", "Musical", "Mystery", "Romance", "Sci-Fi",
"Thriller",
"War", "Western"]

This list of genres is used to populate the first drop-down box of the web application.
That drop-down box is the only prepopulated field on the page and whenever a user
changes it, it automatically populates the other drop downs with movie titles for that genre.
This helps focus the application and drastically reduce the number of available choices.

The script contains four convenience functions that are called at different times

during a visitor’s interaction with the site.
e GetMoviesByGenres (movies_df, genre)

e Isthe function that will return a list of all movies and movie IDs
for a particular genre. It is called whenever a user changes the
“Movie Genre” drop-down box.

o GetSparseSVD (ratings_centered_matrix, K)

o Isthe SVD algorithm we looked at earlier. It takes a ratings/
movieids matrix and “K,” the number of singular values to
compute, and returns a matrix of users, a vector of relationship
between both (a diagonal matrix), and a matrix of movies.

e GetRecommendedMovies (ratings_df, movies_df, user_history_
movie_ids)

o This s a critical function that will take the ratings and movies
data frames, the history of movies the user has watched and liked
(the movies selected by the user in the three drop-down boxes). It
will append a few new rows on the ratings data frame consisting
of the movies our visitor has selected along with a top rating (we
assume the user really liked). It will call the “GetSparseSVD”
function and get an SVD decomposition using the original data

330

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOSITION ON GCP

along with the append new movies from our visitor. Now that
we know the user’s movie taste, we can find similar movies from
SVD using dot products. The function will return the top three

recommended movies.

e GetWikipediaData (title_name)

This function takes a movie title, will pass it on to the Wikipedia
API, and return the first paragraph about the movie along with
the first image associated with that movie (usually the movie’s
poster).

The script also contains three Flask specific functions:

o startup()

The “startup()” function is called whenever the flask server is
started—in other words it is a constructor function. This is done by
adding the decorator “@app.before_first_request.” It loads both
datasets: “movies.csv” and “ratings.csv.” It then cleans them

just like we did in the exploration Jupyter notebook by removing
unused “movield” and resets all indexes to start at zero.

o ready()

The “ready()” function is called whenever the page is first
loaded, refreshed, or when a movie genre is changed. This
function sets variable defaults for the “index.html” page
whenever called for the first time. If it isn’t the first time (i.e. it
is a form submit via a genre value change and the “if” function
for “request.method == ‘POST’” returns true), the function
will preserve any value set by a user and get a fresh list of
movies choices via the “GetMoviesByGenres()” function

call. It also checks that the user has at least selected one

movie from the three drop downs and passes those Ids to the
“GetRecommendedMovies()” function. This will return three
new movie recommendations. The top movie recommendation
is passed to the “GetWikipediaData()” function for a description
snippet and poster image of said movie.

331

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

e background_process()

e This function is tied to the front-end AJAX function in “index.
html.” This is called whenever the user clicks one of the three
recommended movie links. It takes the name of the movie and
passes it to the “GetWikipediaData()” function just like the
“ready()” function does. This gets a description snippet and
poster image for the movie in focus.

index.html

Let’s take a look at some of the interesting things going on in the front-end side in the
“index.html” script (Listing 10-26).

Listing 10-26. On the JavaScript Side
<script>

$(document).on("click", "a", function(){
var move_title = this.innerHTML;
$(this).text(move title);
document.getElementById("movie poster").innerHTML = move title;
fetchdata(move title);

1);
function fetchdata(move title)
{
$.ajax({
type : "GET",
url:"{{ url for('background process') }}',
data:{ 'movie title': move title},
success: function(data){
update dashboard(data.wiki movie description, data.wiki movie
poster);
}
1;
}

332

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOSITION ON GCP

function update_dashboard(wiki movie description, wiki movie poster){
document.getElementById('movie description').innerHTML = wiki movie_
description;
document.getElementById('image poster').src = wiki_movie poster;

}

</script>

We have three functions:
¢ $(document).on(“click’, “a”..)

o This function listens to anchor tags and, when clicked, takes the
inner text and passes it to function “fetchdata().”

o fetchdata(move._title)

o This function uses AJAX to pass a GET post to the server to get a
movie description from Wikipedia and a movie poster, and passes
the results to function “update_dashboard().”

o update_dashboard(wiki_movie_description, wiki_movie_poster)

e This function gets results from function “fecthdata()” and
replaces the HTML content description text and the movie poster

with whatever is returned.

Deploying on Google App Engine

By now, you should have some experience with the Google Flexible App Engine, so this
will be a quick guide to get this web application up and running.

Step 1: Fire Up Google Cloud Shell

Log into your instance of Google Cloud and create or select the project in which you
want your App Engine to reside (if you don’t have one, you will be prompted to create
one—see Creating and Managing Projects®). Start the cloud shell command line tool by
clicking the upper right caret button. This will open a familiar-looking command line
window in the bottom half of the GCP dashboard (Figure 10-19).

https://cloud.google.com/resource-manager/docs/creating-managing-projects

333

https://cloud.google.com/resource-manager/docs/creating-managing-projects

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

Google Cloud Platform & Test Project ~ Q 3 0 © a

DASHBOARD

& Google Cloud Platform
status

%® Project info RPI APIs

Proiect name Requests (requests/sec)

a3 +

»+ Connecling: F

Figure 10-19. Accessing the Google Cloud shell

Step 2: Zip and Upload All Files to The Cloud

Zip the files in the “web-application” folder but don’t zip the virtual environment folder
“whattowatchnext” as it’s not needed (Figure 10-20).

@e0e web-application
{ I:E: o R - B] = o)
Back/Forward View Arrange Action Share Add Tags Search
Favorites Name ~ Date Modified Size Kind
o Downloads

[Desktop
D Recents
2 Applications

ﬁ AirDrop

[Documents > BB wmplates B Move to Trash

B amunategui.github.io © whattowatchnest Get Info
Divices Rename 8 Items...

2 : Compress 8 ltems

) Remote Disc Duplicate
Shared Make Alias

@ Al Quick Look 8 Items

Share >

Tags

: Copy 8 Items

Show View Options

Tags...
@ LN N N

Add to Evernote
Open URL in BibDesk Web Group

Figure 10-20. Zipping web application files for upload to Google Cloud
334

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOSITION ON GCP

Upload it using the “Upload file” option (this is found on the top right side of the
shell window under the three vertical dots; Figure 10-21).

¢]|
S
=
5

(l) Restart
Enable Boost Mode

US| Usage Statistics

Usage Quota

About Cloud Shell
Help
Send Feedback

72 | B || —

Figure 10-21. Uploading files via Google Cloud shell

Step 3: Create Working Directory on Google Cloud and
Unzip Files

Once the file is successfully uploaded, create a new directory, like “chapter-10” for

example (Listing 10-27).

Listing 10-27. Creating Folder on Cloud

$ mkdir chapter-10
$ cd chapter-10

335

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

Transfer all the zip Archive into the new folder and unzip it (Listing 10-28).

Listing 10-28. Loading Needed Files

$ mv ../Archive.zip Archive.zip
$ unzip Archive.zip

Your folder on Google Cloud should look something like Listing 10-29.

Listing 10-29. Checking Unzipped Content
Input:

$ 1s

Output:

appengine_config.py app.yaml Archive.zip 1ib main.py movies.csv ratings.csv
requirements.txt static templates

Step 4: Creating Lib Folder

Run the following command to install all the needed additional libraries to the lib folder.
When you deploy your web app, the lib folder will travel along with the needed libraries
(Listing 10-30).

Listing 10-30. Installing Required Libraries

$ sudo pip3 install -t lib -r requirements.txt

Step 5: Deploying the Web Application

Finally, deploy it to the world with the “gcloud app deploy” command (Listing 10-31).

336

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOSITION ON GCP

Listing 10-31. Deploying Web Application and Confirming We Want to Deploy
Our Application (yes, please)

Input:

$ gcloud app deploy app.yaml

Output:
Services to deploy:

descriptor: [/home/amunategui/chapter-10/app.yaml]

source: [/home/amunategui/chapter-10]

target project: [apt-memento-192717]target service: [default]
target version: [20180702t150114]

target url: [https://apt-memento-192717.appspot.com]

Do you want to continue (Y/n)?

That’s it! Sit back and let the tool deploy the web site. This is the Flexible App Engine,
so it can take up to 30 minutes to be fully deployed. Once it is done setting everything
up, it will offer a clickable link to jump directly to the deployed web application
(Listing 10-32).

Listing 10-32. You Can Also Get There with the Following Command:
$ gcloud app browse

Enjoy the fruits of your labor, and make sure to experiment with it by asking for some
movie recommendations! (Figure 10-22).

337

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOSITION ON GCP

® ' ® [what to Watch Next? *® 3 Manuel

L5 C | @ Secure | https://apt-memento-192717.appspot.com aw ¢

Chapter 10

What to Watch Next?

Mavie Genre Top Recommendation:

Comedy Ferris Bueller's Day Off (1986)
Mavie Choice 1

102 Dalmatians (2000) v Also recommended:

Movie Choice 2
Baby's Day Out (1994) *' Movie Description:

Movie Choice 3 Ferris Bueller's Day Off is a 1986 American teen comedy film written, co-
Bubble Boy (2001) produced, and directed by John Hughes, and co-produced by Tom

Jacobson. The film stars Matthew Broderick as Ferris Bueller, a high-
school slacker who spends a day off from school, with Mia Sara and Alan
Ruck. Femis regularly "breaks the fourth wall” to explain techniques and
inner thoughts. Hughes wrote the screenplay in less than a week. Filming
began in September 1985 and finished in November, Feat
landmarks, including the then Sears Tower and 1
Chicago, the film was Hughes' love letter to go: "l
capiure as much of Chicago as | could. Not J in the architecture and
landscape, but the spirit.” Released by Paramount Pictures on June 11,
1986, the film became one of the top-grossing films of the year, receiving
S70.1 million cver a $5.8 million budget, and was enthusiastically
acclaimed by critics and audiences alike. In 2014, the fim was selected
for preservation in the National Film Registry by the Library of Congress,
being deemed "culturally, historically, or aesthetically significant.” In
2016, Paramount, Turner Classic Movies, and Fathom Events re-releasad
the film and Pretty in Pink to celebrate their 30th anniversary.

a

Get Recommendations!

Figure 10-22. The web application on Google Cloud

Troubleshooting

There will be cases where you will have issues and the Google Cloud logs will be your
best friends. You can easily reach them either directly in the Google Cloud dashboard or
by calling the logs URL (Listing 10-33).

Listing 10-33. Logs URL

https://console.cloud.google.com/logs

Or you can stream the log’s tail by entering in the cloud shell the following command
in Listing 10-34.

338

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPOSITION ON GCP
Listing 10-34. Viewing Logs in Terminal Window

$ gcloud app logs tail -s default

Closing Up Shop

One last thing before we conclude this chapter: don’t forget to stop or delete your App
Engine Cloud instance. Even if you are using free credits, the meter is still running and
there is no need to waste money or credits.

Things are a little different with the Flexible App Engine over the Standard one, as
the Flexible costs more money. So, it is important to stop it if you aren’t using it. Also, this
can all be conveniently done via the Google Cloud dashboard.

Navigate to App Engine, then Versions. Click your active version and stop it
(Figure 10-23). If you have multiple versions, you can delete the old ones; you won’t be
able to delete the default one, but stopping it should be enough (if you really don’t want
any trace of it just delete the entire project).

= Google Cloud Platform 8 google-app-engine-yelp ~

“©- Versions C REFRESH W STOP
{1
}. = Filter versions

Status Traffic Allocation Instances

M 20180416t230733 [7 Serving oEEEEEEEE 100% 1

Figure 10-23. Stopping and/or deleting your App Engine version

That'’s it! Don’t forget to deactivate the virtual environment if you are all done
(Listing 10-35).

339

CHAPTER 10 RECOMMENDING WITH SINGULAR VALUE DECOMPQSITION ON GCP

Listing 10-35. Deactivating the virtual environment

$ deactivate

Conclusion

Collaborative filtering for recommender systems are great and really popular in many
commercial applications. This was definitely not an easy chapter, as the inner workings
of SDVs are rather murky, but the point here is we can build a web application with some
serious modeling muscle behind it.

Though SVDs have been around for a while and are still actively in use, interesting
advances have been made using convolutional neural networks (CNN).”

"https://medium.com/@libreai/a-glimpse-into-deep-learning-for-recommender-systems-
d66ae0681775

340

https://medium.com/@libreai/a-glimpse-into-deep-learning-for-recommender-systems-d66ae0681775
https://medium.com/@libreai/a-glimpse-into-deep-learning-for-recommender-systems-d66ae0681775

CHAPTER 11

Simplifying Complex
Concepts with NLP and
Visualization on Azure

Let's build a simple interactive dashboard to understand the cost of eliminating spam
messages using natural language processing on Microsoft Azure.

In this chapter, we will use natural language processing (NLP) on the classic SMS
Spam Collection Dataset. We will classify text messages as either ham or spam (i.e.,
intended messages vs. advertisements) using feature engineering, term frequency-
inverse document frequency (TFIDF) and random forests (RF). But the key takeaway will
be building a web application to illustrate and learn how to tune a prediction-probability
threshold in order to achieve a variety of predictive goals beyond the traditional 0.5
cutoff (Figure 11-1).

341
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_11

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

® @ [spaminyour Ham %

&« ' @ Secure https://amunateguihamspam.azurewebsites.net a w &

—— Chapter 11: How Much Spam in
m Your Ham?

Click along the ROC curve and customize the amount of spam that makes it
into your email box

Receiver Operating Characteristic Curve Confusion Matrix

ROC Curve - AUC 0.93

o8

s Spam as Ham Spam as Spam

% 7.46%

s m—Spam Model ROC Curve (AUC = 0.93)

ao T -
oo 0z o4 o6 as 10
Faise Positive Rate

Custom threshold selected: 0.5

Figure 11-1. The final web application for this chapter

Note Download the files for Chapter 11 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter11-ipynb” to follow along with this chapter’s content.

Planning our Web Application—the Cost
of Eliminating Spam

Our web application will include an interactive receiver operating characteristic (ROC)
chart where the visitor can click on different thresholds and visualize how many ham
and spam messages get correctly classified. This will help visualize the compromise
between catching all spam messages and the amount of ham messages that get

342

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

mislabeled as spam in the process. It will highlight the importance of finding the right
threshold to satisfy a particular business requirement. For example, in healthcare, if
resources are limited, they may prefer to identify only high-probability patients and
accept that lower risk patients may fall through the cracks. While in a ham/spam
example, users would rather have some spam and never lose any ham messages. The
tolerance for mislabeled predictions needs to be understood through business-domain
expertise, but also through modeling know-how and visuals like our web application for
this chapter.

Data Exploration

The classic SMS Spam Collection Dataset is graciously hosted by the University of
California’s UCI Machine Learning Repository.! Go ahead and download the files for this
chapter into a folder called “chapter-11" Open up the Jupyter notebook to follow along.
According to the UCI Dataset Description, this is a collection of 425 SMS spam messages
from the Grumbletext web site and 322 spam messages from the SMS Spam Corpus v.01.
Another 4,827 SMS messages from various sources were added as ham messages.?

If we call the Pandas “groupby()” function on the outcome variable (whether the
message is ham or spam), we can understand how balanced the dataset is (Listing 11-1
and Figure 11-2).

Listing 11-1. Function “groupby()” on the Outcome Variable

sms_df.groupby('outcome').describe()

count unique top freq

outcome
ham 4827 4518 Sorry, I'll call later 30
spam 747 653 Please call our customer service representativ... 4

Figure 11-2. The “groupby()” output for variable “outcome”

'https://archive.ics.uci.edu/ml/datasets/sms+spam+collection
*https://archive.ics.uci.edu/ml/datasets/sms+spam+collection

343

https://archive.ics.uci.edu/ml/datasets/sms+spam+collection
https://archive.ics.uci.edu/ml/datasets/sms+spam+collection

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

This simple command reveals a whole lot of information. We learn that the dataset
is comprised of 4,827 ham and 747 spam messages. Some of them are duplicates and
will need to be removed. It also shows that data is skewed, with 85% of the messages
being ham. This skewness makes sense in the real world but makes modeling more
challenging.

Cleaning Text

Our first step is easy and obvious: we need to remove the duplicate rows identified
previously. This can efficiently be done with the Pandas “drop_duplicates()” function.
By setting the “keep” parameter to “first’, we keep the first occurrence and delete all
other subsequent repeats (Listing 11-2).

Listing 11-2. Removing Duplicate Rows
Input:

print('Duplicates found before clean-up: %i ' % sum(sms_df.duplicated()))
sms_df = sms_df.drop_duplicates(keep='first")
print('Duplicates found after clean-up: %i ' % sum(sms_df.duplicated()))

Output:

Duplicates found before clean-up: 403
Duplicates found after clean-up: 0

Text-Based Feature Engineering

It is important to remember that the majority of models out there, including NLP
models, can only work with quantitative data. This means that we need to transform

this textual SMS data into numbers. We are going to use various known tricks such as
counting words and characters.

Let’s start by counting the number of words in each SMS text message. We can use a
simple “comprehension,” which is a fancy Python term for a one-liner loop. We then use
those counts as a new feature in our SMS data frame called “word_count” (Listing 11-3
and Figure 11-3).

344

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

Listing 11-3. Plot Word-Count per SMS

sms_df['word count'] = [len(x.split()) for x in sms_df['sms']]
sms_df['word count'].hist().plot()

2000
500

000

1
0 F-] 50 S 00 125 150 175

Figure 11-3. Histogram output of word counts in dataset

Panda has a handy “hist().plot” function that plots the histogram of a data frame
series; here we apply it to our new “word_count” feature to get a quick feel of the
word-count distribution in the dataset. It is clear that the majority of messages contain
between 0 and 20 words.

Why would we want to use a word count as a feature? Well, we are hoping that there
is an apparent pattern between real messages and spam messages. Maybe real messages
range between 5 and 30 words, while spam messages only range between 10 and 20
words. Whatever the case, any differentiating pattern will help our model. Let’s find out
(Listing 11-4 and Figure 11-4).

Listing 11-4. Differences Between Real and Spam Messages

sms_df[['outcome', 'word count']].groupby('outcome"').describe()

345

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

word count
count mean std min 25% 50% 75% max

outcome

ham 4518.0 14233289 11.161623 1.0 7.0 11.0 18.0 171.0
spam 653.0 23.739663 5.931064 2.0 22.0 25.0 280 35.0

Figure 11-4. Summary counts of “outcome” variable using “describe()”
function

So, there it is; a spam message, according to the data, never exceeds 35 words! Right
off the bat, any message exceeding 35 words can be labeled as ham—an easy win for the
good guys!

We can continue measuring the text data in this manner; for example, instead of
counting the number of words, let’s count characters. Same idea: Maybe spam messages
tend to use words within a certain character count range (Listing 11-5 and Figure 11-5).

Listing 11-5. Character cCounts per SMS

sms_df['character count'] = [len(x) for x in sms df['sms']]
sms_df['character count'].hist().plot()

3500

000

200

]
0 200 “00 @0 N0

Figure 11-5. Character count range histogram

346

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

Here we see that most messages are less than 100 characters long. And how does this
break down between ham and spam messages? (Figure 11-6)

character_count
count mean std min 25% 50% 75% max

outcome

ham 4518.0 70.894865 56.590179 20 340 53.0 91.0 9100
spam 653.0 137.710567 29.818940 13.0 132.0 148.0 157.0 223.0

Figure 11-6. The “character_count” summary of “outcome” variable

Interestingly, spam messages, according to our historical data, are never shorter than
13 characters—kind of hard selling something when using fewer than 13 characters...

See the corresponding Jupyter notebook for more measurements applied to the
SMS data, such as counting punctuation and capital letters. If we can keep highlighting
differentiating behavior between both types of messages, our model will keep getting
better.

Text Wrangling for TFIDF

A popular and powerful technique for modeling text is term frequency-inverse
document frequency (TFIDF). This is a calculation of the frequency of a word within a
document and also within all documents in the corpus. In our case, TFIDF will count
the frequency of words in each SMS message and rank them by importance, but will also
penalize that importance if it finds that the word is overall too common and not useful in
pattern discovery. Before being able to feed our data into TFIDF, we need to wrangle (i.e.,
prepare) the data a bit more.

A question we need to ask ourselves, and this is relevant to any NLP project, is
how much data wrangling is required. When you have a lot of text data and use word
vectorization tools such as word2vec,? it is recommended to not do any cleaning at all.
This is because the model will learn more using raw data than any watered-down version
weakened by human assumptions. In those cases, the model will learn best by having

Shttps://radimrehurek.com/gensim/models/word2vec.html

347

https://radimrehurek.com/gensim/models/word2vec.html

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

access to misspellings or considering words starting with a capital letter and one without
as being different, etc. Unfortunately, in order for such approach to be successful, you
need lots and lots of data; think Wikipedia-size.

In the case of the SMS dataset, we just don’t have enough of it and need to squeeze
as much mileage out of it as possible. Take the words “Won,” “won,” and “won!”;
computationally, these are different, but in the hunt for spam, they are the same.
Therefore, if we flatten everything down to lower case and remove anything that isn’t
one of the 26 words of the alphabet (i.e., special characters, numbers, punctuation, etc.),
we help the model understand them better by seeing more instances of that word in

different situations.

NLP and Regular Expressions

There are many ways of reducing text data but a popular one is RegEx or Regular
expressions. RegEx is a language all unto itself but has been incorporated into many
other languages including Python. It uses clever character expression groups to find
matches in bodies of text.

Here we will use the Pandas “str.replace” function with the regular expression
pattern “[A\w\s],” which translates to find any (‘[) non (‘A”) word character (‘\w’)
followed by a space character (‘\s’) and replace them with (“"”) nothing. This finds
anything that isn’t a word and removes it. Pretty simple and efficient (for more on this,
see JavaScript RegExp Reference on w3schools.com*). Then we use the Pandas “str.
lower()” function to force all the remaining words to lower case (Listing 11-6).

Listing 11-6. Remove All Special Characters, Numbers, Punctuation and Force
to Lower Case

Input:

sms_df["sms_clean"] = sms_df['sms'].str.replace('[*\w\s]',")
sms_df["sms_clean"] = sms_df['sms _clean'].str.lower()
sms_df["sms_clean"].head()

*https://www.w3schools.com/jsref/jsref obj_regexp.asp

348

https://www.w3schools.com/jsref/jsref_obj_regexp.asp

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

Output:

0 go until jurong point crazy available only in ...
1 ok lar joking wif u oni
2 free entry in 2 a wkly comp to win fa cup fina...
3 u dun say so early hor u c already then say
4 nah i dont think he goes to usf he lives aroun...
Name: sms_clean, dtype: object

We end up with funny looking sentences that aren’t very easy to read, at least not for
humans.

The list of additional things we could do in the wrangling department is long. Even
though we won’t use them here, good next steps are “stemming” and “lemmatization”
to reduce words even further down to a common root. For example, if you feed it the
words “organize,” “organizes,” and “organizing,” it will reduce them all down to
“organi.’® We are getting close to feeding our cleaned data into TFIDF and RE, but there

is one easier win for us to claim before modeling.

Using an External List of Typical Spam Words

Spam has been around for a long time and examples are plentiful. Many services and
amateurs collect and curate lists of words, sentences, and even full messages deemed as
spam-like. I have curated a simple list of my own, containing words such as baldness,
cash, cure, guaranteed, lifetime, opportunity, wealth, winning, etc.

Iincluded this simple list in this chapter’s downloads, and we will use it to compare
against each SMS message and tally how many spam words are contained in them. The
idea is that most normal, everyday messages won’t contain words such as winning or
cash, but many spam messages do. And, as with most of our feature engineering, we’ll
end up with a numerical feature that is what we need for our models.

The comprehension we use here to count the intersecting words between an SMS
message and the external spam word list is long. But what it does is simple, loop through
and create a list of words for each SMS message, then intersect it with the spam list and
count occurrences (Listing 11-7).

*https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.
html

349

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

Listing 11-7. Create Counts of Spam Words

sms_df["external spam word count"] = [len([(x) for x in sent.split() if x
in spam list]) for sent in sms_df["sms clean"].values]

And is it going to help our model? (Listing 11-8 and Figure 11-7)

Listing 11-8. Does It Help Predicting Spam?

sms_df[["outcome"”, "external spam word count"]].groupby('outcome").describe()

external spam_word_count
count mean std min 25% 50% 75% max

outcome

ham 4518.0 1.283311 1482788 00 00 1.0 20 140
spam 653.0 3.762634 1962145 00 20 40 50 110

Figure 11-7. Spam word counts by “outcome” variable

Yes, it will! If you look at the mean count of ham vs. spam words, spam has more than
twice the amount of external spam words than ham does.

Feature Extraction with Sklearn’s TfidfVectorizer

At this point we have gathered enough quantitative features. Let’s run the TFIDF
vectorizer, which is like one massive feature engineering calculation of every word in our
dataset against every other (Listing 11-9 and Figure 11-8).

Listing 11-9. Vectorizing the Data

vectorizer = TfidfVectorizer()

vectors = vectorizer.fit transform(sms_df['sms clean'])
vectorized df = pd.DataFrame(vectors.toarray())
vectorized df.head()

350

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

0 1 2 3 4 5 6 7 8 9 .. 09536 9537 9538 9539 9540 9541 9542 09543 9544 9545

0 00 00 00 00 00 00 00 00 0O OO .. 0O 0O 00 ©O00 OO0 ©00 ©0O 00 00 00
1 00 00 00 00 00 00 00 00 0O OO .. 00O 00 00 0O 00 OO O00 00 00 00
2 00 00 00 00 00 00 00 00 00 0O .. 00 0O 00 00 OO0 00 00 00 00 00
3 00 00 00 OO 00 00 0O 0O 0O OO .. 0O 0O 0O ©00O OO ©O00 OO o000 OO0 00O
4 00 00 00 00 00 00 00 00 00 OO .. 0O 0O 00 00 00 ©00 ©0O0 ©00 00 00

5 rows x 9546 columns

Figure 11-8. TfidfVectorizer output

Wow! “TfidfVectorizer” created 9,546 new features and did it pretty quickly! There
are a few things to remember here: “TfidfVectorizer” is a powerful feature engineering
tool, as it considers not only every word but the entire context as well. It results in a very
sparse matrix, so this may be a problem for very large corpuses, but it will work just fine
in our case. If that is a problem, it can also limit the number of words it will consider in
its vectors by feeding it a limited set of vocabulary words.

Now we just need to join these new features to the previous features we created earlier.

Preparing the Outcome Variable

With all supervised models, we need to be clear on what we are trying to predict. Here
we want to predict whether a message is ham or not ham. So, ham messages need to be
labeled as 1, while spam messages need to be labeled as 0. This can easily be done using
the Pandas “Categorical()” function (Listing 11-10).

Listing 11-10. Removing Duplicate Rows
Input:

print(all df[outcome].head())

all df[outcome] = pd.Categorical(all df[outcome],
categories=["spam","ham"])

all df[outcome] = all df[outcome].cat.codes
print(all df[outcome].head())

351

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

Output:

0 ham
1 ham
2 spam
3 ham
4 ham

Name: outcome, dtype: object

0
1
2
3
4

R PO R R

Name: outcome, dtype: int8

By printing a before and after transformation of our outcome feature, we confirm
that hams use the digit “1” and spams use “0.”

Modeling with Sklearn’s RandomForestClassifier

We have now collected all the quantitative features needed to start running our random
forest classifier. Random forest, as its name implies, will create many sets of random
feature-trees and train and predict using those trees against the outcome variable. It
then will bring all those predictions back together (i.e., ensemble them back), with the
assumption that it will catch many more nuances than a single model would. In essence,
arandom forest isn’t really “a” single model but a collection of many, with differing
views and understanding of the data.

The “sklearn.ensemble” library has an efficient and easy-to-use random forest
classifier, aptly named RandomForestClassifier. Here we ask it to run two parallel jobs,
as most computers today have at least two CPUs and the model will run much faster,
and 100 decision tree classifiers (the official documentation lists plenty more powerful
options to explore®). See listing 11-11.

Shttp://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

352

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

Listing 11-11. Running the Random Classifier Model

rf model = RandomForestClassifier(n jobs=2, random state=0, n_estimators=100)
rf model.fit(X train, y train)

Once we have the “rf_model” trained, we can run predictions on the test set to
measure the model’s performance. The model offers predictions in both class and
probability formats (Listings 11-12 and 11-13).

Listing 11-12. Predicting Spam vs. Ham

Input:

prediction classes = rf model.predict(X test)
Output:

[111...111]

Listing 11-13. Getting Probabilities for Spam vs. Ham
Input:

prediction probas = rf model.predict proba(X test)
Output:

[[0.08 0.92]
[0.14 0.86]
[0. 1.]

£<.):o1 0.99]
]
1]

~m
o o
[ENEN

Measuring the Model’s Performance

The sklearn.metrics library has a large amount of functions to help us measure how well
a model is performing. We'll start with the “classification_report” (Listing 11-14).

353

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE
Listing 11-14. Getting Model Metrics
Input:

sklearn.metrics import classification report
print(classification report(y test, prediction classes))

Output:
precision recall fi-score support
0 0.92 0.40 0.56 302
1 0.92 0.99 0.96 2108
avg / total 0.92 0.92 0.91 2410

We see that our model does a great job predicting ham messages (second row) and
does really well on “precision” (how well you did among what you labeled) for spam
messages. The model struggles a bit on “recall” (how well you did among the full test
set) and “f1-score” (score between 1 and 0 based on precision and recall) for spam
messages. This is to be expected because the data is skewed, and we don't have as many
spam messages to train on.

The “confusion matrix” is another powerful tool to visualize how well a model
performs. It is related to the precision and recall but uses a different terminology: true
positive, false positive, true negative, and false negative (Figure 11-9).

Predicted
TP || FN
Actual
FP | TN

Figure 11-9. How to read a confusion matrix

354

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

The sklearn.metrics “confusion_matrix” function takes the ground truth outcome
labels, the predicted classes, and the label order. It is important to state you want the
positive label first (i.e., is ham). It makes interpreting the confusion matrix much easier
(Listing 11-15).

Listing 11-15. Getting Confusion Matrix Metrics
Input:

from sklearn.metrics import confusion_matrix

cm = confusion matrix(y test, prediction classes, [1,0])
print('Total length of test set: %i' % len(y test))
print('total hams in test set: %i' % sum(y test==1))
print('total spams in test set: %i' % sum(y_test==0))cm

Output:

Total length of test set: 2410
total hams in test set: 2108
total spams in test set: 302

array([[2097, 11],
[180, 122]])

In the upper left corner of the array, we see that the model succeeded in correctly
predicting 2,097 ham messages out of 2,108 (2,097 + 11) and succeeded in predicting
122 spam messages out of 302 (180 + 122). Those are the “TP” and “TN.” TP means true
positive where it’s succeeded in predicting a message is ham (ham = 1), and TN means
true negative where it succeeded in predicting that a message isn’t ham (ham = 0).

Digging deeper, “FN” is when the model labels a message a spam when it is in fact
ham (ham = 0 but really ham =1). In the array, the ham row is the top one, and the model
predicted 11 messages as ham when they were in fact spam messages. In the context
of ham vs. spam, this number is the one that hurts a lot, as it's when a user’s personal
messages get dumped into the spam folder.

“FP” is when the model labels a message as ham when it is in fact spam (setting ham
=1 when in reality ham = 0). In the first cell of the ham array, array at the bottom, the
model predicted 180 messages as ham when they were in fact spam.

The concept of the confusion matrix is very important, as a model will give you
additional flexibility beyond the base accuracy at a probability threshold of 0.5, where

355

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

anything below is 0 and anything above is 1. By playing around with this threshold, you
can squeeze more use out of it depending on whether more FN or more FP is better for
your business needs than a middle-of-the-road threshold. After all, this is what our web
application dashboard is all about.

The ROC chart is a great tool to understand the value of a binary classifier and how
we can vary the threshold for different effects (Figure 11-10).

Let’s consider the ROC curve for our model. Overall, its doing really well with an area
under the curve (AUC) score of 0.93. The AUC score ranges between 0.5 and 1, where 0.5

ROC Curve - AUC 0.93

10
,/
7
,/
8
0 ,/
//
5 06 //
g ’
& /
£ P
04 p
rd
rd
,
02 /"
,/
, = Spam Model ROC Curve (AUC = 0.93)
s 02 04 06 08 10

False Positive Rate

Figure 11-10. The ROC curve of our ham vs. spam model

israndom and 1 is perfect. So, an ideal AUC of 1 would make the green line in the chart
go from the bottom left at 0 straight up to 1, then straight across from left to right (in
other words, it covers the entire upper left triangle).

The AUC represents an area where the score is constant but, by sliding up or down
the outer edge of the curve, you can play with the “true positive rate” and “false

356

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

positive rate.” This may seem like a strange concept that you have flexibility with a
model without affecting its AUC score. At a high level, part of the reason for this flexibility
is that it really isn’t a “flexibility” as much as a “compromise.” The higher up the

curve you go (higher up the green line), the more your predicted positive outcomes are
accurate but the fewer of them you end up with, as those you've traveled over switch
from positive to negative outcomes.

This goes back to our earlier example that an emergency room with limited
resources may rather have higher precision predictions and fewer of them, thus sliding
up the green AUC line. While in our case with ham vs. spam, an email user wouldn’t
tolerate having good messages disappear in the spam box, thus sliding down the AUC
line would be preferable (knowing that more negative messages would be relabeled as
positive, therefore accepting that more real spam messages would end up in the inbox).

Interacting with the Model’s Threshold

Let’s take a look at how our dashboard will illustrate the flexibility of the probability
threshold. If we take a standard probability cutoff of 0.5 (i.e., in our case anything above
0.5 is ham and below is spam). See Listing 11-16 and Figure 11-11.

Listing 11-16. Confusion Matrix with 0.5 Cutoff

prediction_tmp = [1 if x >= 0.5 else 0 for x in prediction_probas[:, 1]]

357

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

Confusion Matrix

Ham

True labels

Spam

Ham Spam

Predicted labels
Figure 11-11. A Confusion Matrix with a Simple 0.5 Cutoff

We get the following graphical confusion matrix, and we read that the model
correctly identified 2,097 as ham and 120 as spam but mislabeled 11 ham messages as
spam—not good! Now if we lower our threshold to 0.3, let’s see how many ham messages

get labeled as spam. See Listing 11-17 and Figure 11-12.

Listing 11-17. Confusion Matrix with 0.3 Cutoff

prediction tmp = [1 if x >= 0.3 else 0 for x in prediction probas[:, 1]]

358

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

Confusion Matrix

Ham

True labels

Spam

Sp'am

Ham
Predicted labels

Figure 11-12. A confusion Matrix with a Custom Cutoff of 0.3

With a threshold cutoff of 0.3, the model didn’t mislabel any ham messages as spam!
But the cost is that we went from only mislabeling 182 spam messages as ham up to 284
(i.e., advertisements making it into the user’s inbox). And the spam folder only received
ten correctly labeled spam messages instead of 120. There you have it; that is the cost. In
situations like ham vs. spam, that cost is trivial because nobody wants to lose any personal
messages and they are willing to tolerate a lot of spam in order to achieve that goal.

Interacting with Web Graphics

A nice feature we are going to implement here is to allow the users to click on the AUC

image to experiment with the model’s threshold. This is a very intuitive way of getting your
users to interact with the web page and the concepts surrounding this chapter. Capturing a
user’s click event is easily done using JavaScript and capturing “event offsets” (code based

359

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

on Emanuele Feronato post;, see http://www.emanueleferonato.com/2006/09/02/
click-image-and-get-coordinates-with-javascript/ for more information on this
approach) and passing it back to Flask for processing (Listing 11-18).

Listing 11-18. JavaScript Code to Capture a User’s Clicks on AUC Chart

function point it(event)

{
cur_x_coord = event.offsetX?(event.offsetX):event.pageX-document.
getElementById("pointer div").offsetlLeft;
cur_y coord = event.offsetY?(event.offsetY):event.pageY-document.
getElementById("pointer div").offsetTop;
<!-- send coordinates back to Flask application -->
fetchdata(cur_x coord, cur y coord)

}

And this is translated in Flask to a new threshold using a series of if/then statements
(Listing 11-19).

Listing 11-19. Translating User Clicks into Cutoff Thresholds

x_image coord = int(request.args.get('new x coord'))
y_image coord = int(request.args.get('new_y coord'))

new_thres = 0.0

translate coordinates to threshold

if (y_image coord >= 360 and y image coord < 390):
new_thres = 0.1

elif (y_image coord >= 340 and y_image coord < 360):
new_thres = 0.2

elif (y_image coord >= 290 and y image coord < 340):
new_thres = 0.3

elif (y_image coord >= 260 and y image coord < 290):
new_thres = 0.4

elif (y_image coord >= 220 and y image coord < 260):
new_thres = 0.5

360

http://www.emanueleferonato.com/2006/09/02/click-image-and-get-coordinates-with-javascript/
http://www.emanueleferonato.com/2006/09/02/click-image-and-get-coordinates-with-javascript/

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

elif (y_image coord >= 185 and y_image coord < 220):
new_thres = 0.6

elif (y_image coord >= 150 and y image coord < 185):
new_thres = 0.7

elif (y_image coord >= 115 and y image coord < 150):
new_thres = 0.8

elif (y_image_coord >= 75 and y_image coord < 115):
new_thres = 0.9

elif (y_image coord < 75):
new_thres = 1

Building Our Web Application—Local Flask Version

We thought through our model and dashboard concept, so now it is time to build it. Let’s
start by building a local Flask version.

Let’s download the files for Chapter 11 onto your local machine. Once you have
downloaded and unzipped everything, open a command line window, and change the
drive into the “web-application” folder. Your “web-application” folder should contain
the following files as shown in Listing 11-20.

Listing 11-20. Web aApplication Files

web-application

|— main.py
— ptvs_virtualenv_proxy.py
— requirements.txt

|— static:
L— images:
F——— 00.png
— o1.png
— 02.png
F——— 04.png
|— 06.png
|— 08.png
F——— 10.png
F— 12.png

361

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

|— 14.png
|— 16.png
— 18.png
F— ham.png
— roc-chart.png
L—spam.png

F— pickles:

L—spam model output.p

— templates:

L—index.html
L—web.3.4.config

Start a virtual environment (see Listing 11-21).

Listing 11-21. Starting Up the Virtual Environment

$ python3 -m venv hamspamenv
$ source hamspamenv/bin/activate

Then install all the required Python libraries by running the “pip3 install -r”
command (Listing 11-22).

Listing 11-22. Installing Required Libraries
$ pip3 install -r requirements.txt

And run the web application on your local machine (Listing 11-23 and Figure 11-13).

Listing 11-23. Taking the Web Application for a Spin

$ python3 main.py

362

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

® @ [spamin your Ham x 0 Manuel

€ C ©®127001:5000 x| & —_

w Chapter 11: How Much Spam in Your
Ham?

Click along the ROC curve and customize the amount of spam that makes it
into your email box

Receiver Operating Characteristic Curve Confusion Matrix

ROC Curve - AUC 0.93

Ham as Ham

87.01%

10

08

o
o

True Positive Rate

o
=

Spam as Ham Spam as Spam

7.46%

(:F}

7 == Spam Model ROC Curve [AUC = 0.93)

ao T T T
a0 oz o4 06 08 10
False Positive Rate

Custom threshold selected: 0.5

Figure 11-13. Local version of our web application

Deploying to Microsoft Azure

It’s time to deploy our web application to the cloud. We'll do a very brief fly-by, as we've
seen these steps a bunch of times already.

Git for Azure

Initialize a Git session (Listing 11-24).
Listing 11-24. Initializing Git

$ git init

363

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

It is a great idea to run “git status” a couple times throughout to make sure you are
tracking the correct files (Listing 11-25).

Listing 11-25. Running “git status”
Input:

$ git status

Output:

On branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

hamspamenv/

main.py

ptvs virtualenv_proxy.py
requirements.txt

static/

templates/
web.3.4.config

Add all the web-application files from the “web-application” file using the “git add,’
command and check “git status” again (Listing 11-26).

Listing 11-26. Adding to Git
Input:

$ git add .
$ git status

Output:

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

364

new file:
new file:
new file:
new file:
new file:
new file:

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

hamspamenv/1ib/python3.6/site-packages/werkzeug/urls.py
hamspamenv/1ib/python3.6/site-packages/werkzeug/useragents.py
hamspamenv/1ib/python3.6/site-packages/werkzeug/utils.py
hamspamenv/1ib/python3.6/site-packages/werkzeug/websocket.py
hamspamenv/1ib/python3.6/site-packages/werkzeug/wrappers.py
hamspamenv/1ib/python3.6/site-packages/werkzeug/wsgi.py

You may have noticed that we have added a lot of files to our “git add.” command.

As per instructions from “git status,” it tells us how to remove files that we don’t want to

commit to Git with the “rm” command. Let’s remove all files and folder from the virtual

environment “hamspamenv” that aren’t needed for the project (Listing 11-27).

Listing 11-27. Removing “hamspamenv” from Git

Input:

$ git rm -r --cached hamspamenv

$ git status

Output:

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file:
new file:
new file:
new file:
new file:
new file:
new file:
new file:
new file:
new file:
new file:
new file:
new file:
new file:

main.py

ptvs virtualenv_proxy.py
requirements.txt
static/images/00.png
static/images/01.png
static/images/02.png
static/images/04.png
static/images/06.png
static/images/08.png
static/images/10.png
static/images/12.png
static/images/14.png
static/images/16.png
static/images/18.png

365

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

new file: static/images/ham.png

new file: static/images/roc-chart.png

new file: static/images/spam.png

new file: static/pickles/spam_model output.p
new file: templates/index.html

new file: web.3.4.config

Untracked files:
(use "git add <file>..." to include in what will be committed)

hamspamenv/

We now have only the files we need. So, do a local “git commit” and add a comment
that makes sense in case you need to revisit past actions in the future (Listing 11-28).

Listing 11-28. Git Commit

Input:

$ git commit -am 'hamspamenv deployment on Azure’
Output:

[master (root-commit) 8c03a49] hamspamenv deployment on Azure
20 files changed, 450 insertions(+)

create mode 100644 main.py

create mode 100644 ptvs virtualenv proxy.py
create mode 100644 requirements.txt

create mode 100644 static/images/00.png
create mode 100644 static/images/01.png
create mode 100644 static/images/02.png
create mode 100644 static/images/04.png
create mode 100644 static/images/06.png
create mode 100644 static/images/08.png
create mode 100644 static/images/10.png
create mode 100644 static/images/12.png
create mode 100644 static/images/14.png
create mode 100644 static/images/16.png
create mode 100644 static/images/18.png
create mode 100644 static/images/ham.png

366

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

create mode 100644 static/images/roc-chart.png

create mode 100644 static/images/spam.png

create mode 100644 static/pickles/spam_model output.p
create mode 100644 templates/index.html

create mode 100644 web.3.4.config

For more information on the Git Deployment to Azure App Service, see https://
docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git.

The azure-cli Command Line Interface Tool
Step 1: Logging In

Create an “az” session (Listing 11-29 and Figure 11-14).

Listing 11-29. Logging into “az”

$ az login

Imanuels-MacBook-Pro-2:web-application manuel$ az login
To sign in, use a web browser to open the page https://microsoft.com/devicelogin
and enter the code BB4YSXKF2 to authenticate.

Figure 11-14. Logging into Azure from azure-cli

Follow the instructions, point a browser to the given URL address, and enter the code
accordingly (Figure 11-15).

Device Login

[Entar 1hd ¢06 Thal yOu retelved om DE &2p Cation on your
davics

Code

Figure 11-15. Authenticating session
367

https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git
https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

If all goes well (i.e., you have an Azure account in good standing), it will connect the
azure-cli terminal to the cloud server. Also, once you are authorized, you can safely close
the browser window.

Make sure your command-line tool is pointing to this chapter’s “web-application”
folder.

Step 2: Create Credentials for Your Deployment User

This user will have appropriate rights for FTP and local Git use. Here I set the user-name
to “flaskuserXX” and password to “flask123” You should only have to do this once; then
you can reuse the same account. In case it gives you trouble, simply create a different
user name (or add a number at the end of the user name and keep incrementing it like I
do; Listing 11-30).

Listing 11-30. Setting Deployment User
$ az webapp deployment user set --user-name flaskuser30 --password flaski23

As you proceed through each “azure-cli” step, you will get back JSON replies
confirming your settings. In the case of the “az webapp deployment,” most should
have a null value and no error messages. If you have an error message, then you have
a permission issue that needs to be addressed (“conflict” means that name is already
taken so try another, and “bad requests” means the password is too weak).

Step 3: Create Your Resource Group

This is going to be your logical container. Here you need to enter the region closest
to your location (see https://azure.microsoft.com/en-us/regions/). Going with
“West US” for this example isn’t a big deal even if you're worlds away, but it will make a
difference in a production setting where you want the server to be as close as possible to
your viewership for best performance.

Here I set the name to https://azure.microsoft.com/en-us/regions/
myResourceGroup (Listing 11-31).

Listing 11-31. Creating Group

$ az group create --name myResourceGroup --location "West US"

368

https://azure.microsoft.com/en-us/regions
https://azure.microsoft.com/en-us/regions/myResourceGroup
https://azure.microsoft.com/en-us/regions/myResourceGroup

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

Step 4: Create Your Azure App Service Plan

Here I set the name to “myAppServicePlan” and select a free instance (sku) (Listing 11-32).

Listing 11-32. Creating Service Plan

$ az appservice plan create --name myAppServicePlan --resource-group
myResourceGroup --sku FREE

Step 5: Create Your Web App

Your “webapp” name needs to be unique, and make sure your “resource-group”
and “plan” names are the same as what you set in the earlier steps. In this case [am
going with “amunateguihamspam.” For a full list of supported runtimes, run the
“list-runtimes” command (Listing 11-33).

Listing 11-33. Supported Runtimes
$ az webapp list-runtimes

To create the web application, use the “create” command (Listing 11-34).

Listing 11-34. Creating the Webapp

$ az webapp create --resource-group myResourceGroup --plan myAppServicePlan
--name amunateguihamspam --runtime "python|3.4" --deployment-local-git

The output of “az webapp create” will contain an important piece of information
that you will need for subsequent steps. Look for the line “deploymentLocalGitUrl”
(Figure 11-16).

369

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

@ @ web-application — -bash — 75x17

(hamspamenv) manuels-MacBook-Pro-3:web-application manuelamunategui$ az web
app create --resource-group myResourceGroup --plan myAppServicePlan --name

amunateguihamspam —-runtime "python|3.4" --deployment-local-git
Local git is configured with url of 'https://flaskuser3@@amunateguihamspanm.
scm.azurewebsites.net/amunateguihamspam.git
{
"availabilityState": "Normal",

"clientAffinityEnabled": true,

"clientCertEnabled": false,

"cloningInfo": null,

"containerSize": 0,

"dailyMemoryTimeQuota": @,

" . M i ebsites,net",

"deploymentLocalGitUrl": "https://flaskuser3@@amunateguihamspam.scm.azure
websites.net/amunateguihamspam.git",
~"énabled': true,

"enabledHostNames": [

Figure 11-16. Output of “az webapp create”; note your deployment Git URL

Start “Git” if you haven'’t already (and install it if you never used it before at https://
git-scm.com/book/en/v2/Getting-Started-Installing-Git).

Step 6: Push Git Code to Azure

Now that you have a placeholder web site, you need to push out your Git code to Azure
(Listing 11-35).
Listing 11-35. Adding Remote User

if git remote is say already exits, run 'git remote remove azure'
$ git remote add azure "https://flaskuser3o@amunateguihamspam.scm.
azurewebsites.net/amunateguihamspam.git"

Finally, push it out to Azure (Listing 11-36).

Listing 11-36. Push It Out (enter the “webapp deployment user” password
when prompted)

$ git push azure master

370

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

It will prompt you for your “webapp deployment user” password you set up earlier.
This may take a while, as we have to upload a bunch of corollary files like images and
dataset. If all goes well, you should be able to enjoy the fruits of your labor. Open a web
browser and enter your new URL that is made of your “webapp” name followed by
“.azurewebsites.net” (http://amunateguihamspam.azurewebsites.net).

On the other hand, if the azure-cli returns error messages, you will have to address
them (see the “Troubleshooting” section). Anytime you update your code and want to
redeploy it, see Listing 11-37.

Listing 11-37. Committing and Pushing Out

$ git commit -am "updated output”
$ git push azure master

You can also manage your application directly on Azure’s web dashboard. Log into

Azure and go to App Services (Figure 11-17).

) fo} \‘) ,:-3:, amunategui@outiock... [

Mic re App Services
MICro ure App senvices AMUNATEGUIOUTLOOK (DEF...

= App Se A X
B o]

- New + 4de == coumns) Refresh

Dashboard Subscriptions: Free Tral
—_ l Filter by narme. | All resource groups e All locations e Ko grouging e
2 All resgf Ces
Tilems
! urce groups 1
NAME STAT... APP . APPS... LOCATI... SUBSC... RESOUL..
& App services I D amunsteguihamspa-- Running Web asp miyAppServ.. West S Free Tiial myResourc.. ==* I

Figure 11-17. Managing your application directly in the Microsoft Azure
dashboard

Important Cleanup!

This is a critical step; you should never leave an application running in the cloud that
you don’t need, as it does incur charges (or use up your free credits if you are on the trial
program). If you don’t need it anymore, take it down (Listing 11-38).

Listing 11-38. Tear-Down Time (you will be asked to confirm this action)

$ az group delete --name myResourceGroup

371

http://azurewebsites.net
http://amunateguihamspam.azurewebsites.net

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

Or delete it using Azure’s web dashboard under “App Services.” And finally,

deactivate your virtual environment (Listing 11-39).

Listing 11-39. End Your Virtual Session if You Didn’t Do So Earlier

$ deactivate hamspamenv

Troubleshooting

It can get convoluted to debug web application errors. One thing to do is to turn on

logging through Azure’s dashboard (Figure 11-18).

o+ 4dd =2 Columns === More
iiher by name...

10f 1 items selectec

MAME

'1;@ amunateguihamspam$1

teguihamspam51

D Search (Ciri=f)

) Resource explorer

= Testirg ir procuction

[F swteranns

KOBILE

& ODem connections

AP
APl definiicn
%) CORS
MONITORING
@ Application Insights
Alerts

Jiagrostics logs

(1N - R4

£ Sream

H

S TR

Diagnastics logs

H X
Application Logging (Filesystem) @
Off On
Level
Error

Application Logging (3lob) &

Off On ‘

Level

Error

Storage Settings
Storage not configured

@tent on Pen ays)
1

Web server lagging ©

Off Storage _F'Iiisyﬂil"l.l %

CQuota (ME) B
5

Retentsn =¢r5 ICa)i_'s

Detailed srror messages ©

ofr O

Failed reques:
Oft

ing ®

Figure 11-18. Turning on Azure’s Diagnostics logs

372

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

Then you turn the logging stream on to start capturing activity (Figure 11-19).

Web server logs

AP definition
CORS 018-02-12T01:44:31 Welcome, yon are now connected to log-streaming service.
MONITORING
@ Application Insights
o Alerts

Diagnastics logs

Log stream

=& Process explorer

Figure 11-19. Capturing log information

You can also check your file structure using the handy Console tool built into the
Azure dashboard (Figure 11-20).

Search (Ctri+/)

DEVELOPMENT TOOLS

= Clone app
Console
I Advanced Tools D:\home\site\wmwroot
App Service Editor (Preview) > 1s

D:\homa\sita\wwwrocot
& Performance test env

hostingstart-python.html
Resource explorer

hostingstart-python.py
= Testing in production main.py
ptvs_virtualenv_proxy.py

T Extensions requirements.txt
static
templates

MOBILE)
web.2.7.conflg

1 Easy tables web.3.4.config

web.config

Figure 11-20. Azure’s built-in command line tool

373

CHAPTER 11 SIMPLIFYING COMPLEX CONCEPTS WITH NLP AND VISUALIZATION ON AZURE

You can also access the tail of the log in your command window (Listing 11-40).

Listing 11-40. Access the Log

$ az webapp log tail --resource-group myResourceGroup --name
amunateguihamspam

You can even check if your “requirement.txt” file works by calling the “env\scripts\
pip” function (Listing 11-41).

Listing 11-41. Checking That You Can Install Your Python Libraries

$ env\scripts\pip install -r requirements.txt

Conclusion and Additional Resources

Azure is one of the top three web hosting platforms currently available and thus a great
choice for enterprise and machine learning solutions.

For additional information on the Azure deployment process, see the detailed and
clear Azure document “Create a Python web ap in Azure.””

"https://docs.microsoft.com/en-us/azure/app-service/
app-service-web-get-started-python

374

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-python
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-python

CHAPTER 12

Case Study Part 3:
Enriching Content
with Fundamental
Financial Information

Predicting the stock market with fundamental financial data aggregation on
PythonAnywhere.

We're going to keep adding features to our “Pair Trading Booth” web application
(Figure 12-1).

375
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_12

CHAPTER 12 CASE STUDY PART 3: ENRICHING CONTENT WITH FUNDAMENTAL FINANCIAL INFORMATION

[Pair Trading Booth x () Manuel

A

&« C @ Secure https://manuelamunategui.pythonan.. ©. ¥r &

'\ PAIR TRADING BOOTH P\

A 7110

Back
Going Short: BA
Company Name: Boeing Company (The)
Sector: Capital Goods
Industry: Asrospace
MarketCap: $194.838
FinViz: pe/fir

Tha Boeing Company () Is an American multinational corporation that designs,
manufactures, and sells airplanes, rotorcraft, rockets, satellites, and missiles
worldwide. The company also provides leasing and product support services.
Boelng Is among the largest global alrcraft manufacturers; it Is the second-largest
defense contractor in the world based on 2015 revenue, and s the largest axporter
In the United States by dollar value. Boeing stock Is a component of the Dow
Jones Industrial Average.

Going Long: MMM
Company Name: 3M Company

Sector: Health Cara

Industry: Medical/Dental Instruments
MarketCap: $118.368

FinViz: r

The 3M Compary, formerly known as the Minnesota Mining and Manufacturing
Company, is an American multinational conglomerate corporation based in
Mapiewood, Minnesota, a suburb of St. Paul.

Figure 12-1. The final web application for this chapter

So far, we told our visitors about the best pair trade to make, showed them the related
financial charts, and now we’re going to give them critical fundamental details about the
companies behind the stocks mentioned.

o Full name of the company
e Shortintroduction of the company from Wikipedia.com

e Market capitalization

376

CHAPTER 12 CASE STUDY PART 3: ENRICHING CONTENT WITH FUNDAMENTAL FINANCIAL INFORMATION

e Market sector
e Market industry

e Dynamic link to financial site: Finviz.com

Note Download the files for Chapter 12 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter12.ipynb” to follow along with this chapter’s content.

Accessing Listed Stocks Company Lists

A stock symbol is short and vague and can mean different things if you drop it into a web
browser for Internet searches. We need to tie it to its full company name to guarantee

its uniqueness. The Nasdaq website' offers a great series of CSV files for us to use that
matches the symbol to additional corollary information including the full company
name. Point your browser to

https://www.nasdaq.com/screening/company-1list.aspx.

Download all three files to your local machine. Make sure to rename them in the
following format, otherwise they will all be called “companylist.csv”:

o companylist NASDAQ.csv
e companylist AMEX.csv
e companylist NYSE.csv

Let’s find matches between our ten stock symbols and their location in the
downloaded files. This is easily done by using the list of the ten symbols we are interested
in and looping through each symbol in the company lists (Listing 12-1). Because these
stocks are very well known, you will find a match for each one of them (this may not be
the case for smaller cap companies).

'https://www.nasdaq.com/

377

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
https://www.nasdaq.com/screening/company-list.aspx
https://www.nasdaq.com/

CHAPTER 12 CASE STUDY PART 3: ENRICHING CONTENT WITH FUNDAMENTAL FINANCIAL INFORMATION

Listing 12-1. Checking Stock Symbols in “companylist”
Input:
stock_symbols = ['BA',"'GS', UNH', 'MMM','HD','AAPL','MCD', IBM', 'CAT', TRV']

print('Symbols found in the Nasdaq list:')
list(set(stock symbols) & set(list(stock company info nasdaq['Symbol'])))

Output:

Symbols found in the Nasdaq list:
['AAPL']

We found out that the “companylist NASDAQ.csv” list contains one symbol,
“AAPL” We can now pull that row out of the company list “CSV” file and save it. We
proceed in the same manner for the other symbols in the other two company lists
(Listing 12-2 and Figure 12-2).

Listing 12-2. Querying “companylist”

stock_company info nasdaq[stock company info nasdaq['Symbol'] == 'AAPL']

Symbol Name LastSale MarketCap IPOyear Sector industry

196 AAPL Apple Inc. 183.83 $932.76B 1980.0 Technology Computer Manufacturing

Figure 12-2. The extra intelligence we extract from the Nasdaq company list

We now know that “AAPL” equates to “Apple Inc.” and we can also get the market
cap, IPO year, sector, and industry for that stock symbol. All this information is of great
use to our users. Also, we now have the exact spelling of the company name, which we
can use to pull additional information about this company from www.wikipedia.org.

As mentioned before, some of these symbol names are too simple and won’t necessarily
return the correct information from a web search, but if we combine a symbol name with
the actual company name, we have a much better chance of pulling exactly what we're
looking for. (Keep in mind you may still find edge cases where you will pull something
unrelated.)

378

http://www.wikipedia.org

CHAPTER 12 CASE STUDY PART 3: ENRICHING CONTENT WITH FUNDAMENTAL FINANCIAL INFORMATION

Pulling Company Information with the
Wikipedia API

Wikipedia has a great and easy to use API in Python that we will leverage to add to depth
to our application. We will pull the introductory paragraph for each company that we
are recommending (the introductory paragraph is simply the first paragraph returned;
Listing 12-3).

Listing 12-3. Wikipedia Query
Input:

import wikipedia

description = wikipedia.page("Apple Inc.").content
description = description.split('\n")[0]
description

Output:

"Apple Inc. is an American multinational technology company headquartered
in Cupertino, California, that designs, develops, and sells consumer
electronics, computer software, and online services. The company's hardware
products include the iPhone smartphone, the iPad tablet computer, the

Mac personal computer, the iPod portable media player, the Apple Watch
smartwatch, the Apple TV digital media player, and the HomePod smart
speaker. Apple's software includes the macOS and iOS operating systems,
the iTunes media player, the Safari web browser, and the ilLife and iWork
creativity and productivity suites, as well as professional applications
like Final Cut Pro, Logic Pro, and Xcode. Its online services include

the iTunes Store, the i0S App Store and Mac App Store, Apple Music, and
iCloud."

Building a Dynamic FinViz Link

FinViz.comis a treasure trove of financial fundamental data. We are not going to scrape
from them; instead we're going to build dynamic links so that our users can opt to go

there for the additional information. This ensures we’re not stealing information from

379

CHAPTER 12 CASE STUDY PART 3: ENRICHING CONTENT WITH FUNDAMENTAL FINANCIAL INFORMATION

others. It is my recommendation to always open a link in a new page; this ensures
that the user still has an easy way for getting back to your property (Listing 12-4 and
Figure 12-3).

Listing 12-4. Finviz Link Making
Input:

predictions df = pd.DataFrame(all user predicted ratings, columns = movies
df.index)

symbol = "AAPL'

url = r'http://finviz.com/quote.ashx?t={}".format(symbol.lower())

url

Output:

http://finviz.com/quote.ashx?t=aapl

® © @ () AaPL Apple Inc. Stock Quote %) Manuel
= Q. https:fifin viz.com/guote.ashx?t=aapl 4 o :
finvi
“‘le oinnounce
Search ticke TRary o ofile Al Wew Pricing

Sum JUN 102018 12:36 AM EST @ Help Login llﬂlr

TUP: Ungrae 1o FINVIZ Elite to pet real-time quotes, intraday charts, and advanced charting tooks.
publisn chart | save to portfolio | create alert Type: candie | line | adwanced | interactive | perf Timeframes intraday | daily | weeidy | monthly — Settings ¥
AAPL ur 04 AT HASZOD LABKTT G Vok25.54M 1.76 (0.91%)
.5 1
Faige!

el R |'

A & Il Pﬂ‘.l ll'l‘*'}' i

| |‘ |\W "JLH Ir ;' M‘ﬂ
Mo .l i

- ' L ™ |

AAPL [NASD]

Appla Inc.
Consumer Goeds | Electronic Equipmens | USA
cial highlignts | st
Index DIIA SEPS00 BE 17.66 EPS (tim) 10.85 Insider Own 0.06% Shs Cutstand 5,028 Perf Week 0.77%
Masket Cap 963.278 Forward P/E 14.45 EFS nest ¥ 1325 Insider Trans =B8.34% Shs Float 4.918 Ferf Month 32%
Tacewm: s5.028 PEG 131 EPS noxt 218 Taes Own 61.00% Shoet Flaat 0040 Poef Quarter 6.510%
Sales 247.420 B EX) PS5 this Y 10.80% Inst Trans - Short Ratio 1.53 Pert Half ¥ 13.43%
Baakfsn 2538 e 7.59 EPS next ¥ 15.37% ROA 14.30% Target Price 197.02 Port Year 23.69%
Cash/sh 17.50 RC 10.95 EPS next 5Y 13.45% ROE 40.00% 52W Range 142.20 - 194.20 Perf ¥ID 13.28%
Dividersd 283 BYFCF 20.50 EPS past 5Y 7.00% Rer 18.30% 53W High -1.20% Bata 1.27
Dividerd % 1.52% Quick Rati 1.40 Sales past 5Y 7.90% Gross Margin 30.30% S2W Low 4010 ATR 282
Employees 123000 Curent Ratio 1.50 Sales G/ 15.60% Oper. Margin 26.70% RSI (14) 2.58 Volatsty 1.03% 1.14%
Optionable Yes Debt/Eq 0.96 EPS Q/Q 30.10% Profic Margin 21.50% Rl Velume .87 Prew Close 193.46
Shortatie Yaos LT Debt/Eq 0.80 Earrings May 01 AMC Payout 24.20% Avg Volume 30.37M Price 1s1.70
Recom o0 SMAZ0 1.44%, SMASO 7.15% SMAZOD 12.47% Valume 26,540,108 Change ~0.91%

Figure 12-3. Finviz output link for Apple, Inc

380

CHAPTER 12 CASE STUDY PART 3: ENRICHING CONTENT WITH FUNDAMENTAL FINANCIAL INFORMATION

Exploring Fundamentals

Go ahead and download the files for this chapter into a folder called “chapter-12.” Open
up the Jupyter notebook to follow along.

Let’s abstract our three fundamental offerings into three clean and simple-to-use
functions that can be easily integrated into our web application. We'll start with the
“GetCorollaryCompanylnfo()” function. This function will pull the company name,
the sector, the industry, and the market capitalization of both the long and short stock
symbols in our trade (Listing 12-5).

Listing 12-5. Abstracting by Creating the “GetCorollaryCompanyInfor()”
Function

def GetCorollaryCompanyInfo(symbol):
CompanyName = "No company name"
Sector = "No sector”
Industry = "No industry"
MarketCap = "No market cap"

if (symbol in list(stock company info nasdaq['Symbol'])):
data_row = stock company info nasdaq[stock company info
nasdaq['Symbol'] == symbol]
CompanyName = data_row['‘Name'].values[0]
Sector = data_row['Sector'].values[0]
Industry = data_row['industry'].values[0]
MarketCap = data row['MarketCap'].values[0]

elif (symbol in list(stock company info_amex['Symbol'])):
data_row = stock company info amex[stock company info
amex['Symbol'] == symbol]
CompanyName = data_row['Name'].values[O]
Sector = data_row['Sector'].values[0]
Industry = data_row['industry'].values[0]
MarketCap = data row['MarketCap'].values[0]

381

CHAPTER 12 CASE STUDY PART 3: ENRICHING CONTENT WITH FUNDAMENTAL FINANCIAL INFORMATION

elif (symbol in list(stock_company info_nyse['Symbol'])):
data_row = stock company info nyse[stock company info
amex['Symbol'] == symbol]
CompanyName = data_row['Name'].values[O]
Sector = data_row['Sector'].values[0]
Industry = data_row['industry'].values[0]
MarketCap = data_row['MarketCap'].values[O]

return (CompanyName, Sector, Industry, MarketCap)

We'll also build a function to handle the pulling of Wikipedia information using the
company we got out of the “GetCorollaryCompanylInfo()” function. This function will
return the first paragraph of the entry found (Listing 12-6).

Listing 12-6. Abstracting by Creating the “GetWikipediaIntro()” Function

def GetWikipediaIntro(symbol):
description = wikipedia.page("Apple Inc.").content
return(description.split('\n")[0])

Finally, we’ll build a function to create a link to the Finviz. com financial website.
This function doesn’t do much but append the stock symbol to the end of the link
(Listing 12-7).

Listing 12-7. Abstracting by Creating the “GetFinVizLink()” function

def GetFinVizLink(symbol):
return(r'http://finviz.com/quote.ashx?t={}".format(symbol.lower()))

Designing a Web Application

Go ahead and download the code for this chapter if you haven'’t already done so; open
a command line window and change the drive to the “web-application” folder. Your
“web-application” folder should contain the following files as shown in Listing 12-8.

382

http://finviz.com

CHAPTER 12 CASE STUDY PART 3: ENRICHING CONTENT WITH FUNDAMENTAL FINANCIAL INFORMATION

Listing 12-8. Web Application Files

web-application

F— main.py

|— requirements.txt

— companylist AMEX.csv

— companylist NASDAQ.csv

— companylist NYSE.csv

— static

L— images

— ticker-title.png
— up-arrow.png
L— down-arrow.png

— templates

|— charts.html
— fundamentals.html
L— index.html

|— "DJI.csv
F— AAPL.csv
— BA.csv

|— CAT.csv
— GS.csv

F— HD.csv

— IBM.csv
|— MCD.csv
F— MMM.csv
— TRV.csv
|— UNH.csv

— requirements.txt
L— main.py

As usual, we'll start a virtual environment to segregate our Python library installs and
create the “requirements.txt” file if needed (Listing 12-9).

383

CHAPTER 12 CASE STUDY PART 3: ENRICHING CONTENT WITH FUNDAMENTAL FINANCIAL INFORMATION
Listing 12-9. Starting the Virtual Environment

$ python3 -m venv pairtrading
$ source pairtrading/bin/activate

Then install all the required Python libraries by running the “pip install -r” command
(Listing 12-10).

Listing 12-10. Installing Requirements and Taking the Web Application for a
Local Spin

$ pip3 install -r requirements.txt
$ python3 main.py

Run the web application, as per usual, and make sure it works. Also, try the various
options on the page to make sure everything works as advertised, especially the “Access
Fundamentals” button (Figure 12-4).

® © @ /Y Ppair Trading Booth X tubeof

= C @ 127001 Q W & g @ :

Figure 12-4. The local version of the pair-trading application

Deactivate out of your virtual environment when finished (Listing 12-11).

Listing 12-11. Deactivating Virtual Environment

deactivate pairtrading

384

CHAPTER 12 CASE STUDY PART 3: ENRICHING CONTENT WITH FUNDAMENTAL FINANCIAL INFORMATION

Uploading Web Application to PythonAnywhere

Let’s upload our updated code to PythonAnywhere. Log in to your PythonAnywhere
account and find the folder “pair-trading-booth” that we created previously. Click
the “Files” link in the top menu bar and enter the “pair-trading-booth” directory
(Figure 12-5).

® @ ! pair-trading-booth : fhomefm x £ Manuel
&« ' & Secure https://www.pythonanywhere com/user/manuelamunateguiffiles/home/manuelamunategui/pair-trading-booth 4 \!r a :
Send feedback Forums Help Blog Account Logout
6@3; pythonanywhere Dashboard Consoles Files Web Tasks Databases
/homefmanuelamunategui/ & pair-trading-booth [F Open Bash console here 30% full - 308.5 MB of your 1.0 GB quota
Directories Files
Enter new directory name | Mew dire ¥ Enter new file name
__pycache_/ i] B AAPLcsv LG
static/ [i] B BA.csv LGE
templates/] B CAT.csv LG
i GS.csv LGE
K HD.csv LG
K IBM.csv LG
k MCD.csv LG
B MMM.csv FAc
E TRV.csv LGE
B UNH.cov LG E
K *DJl.csv LG
B companylist. AMEX.csv LG T
K companylist NASDAQ.csv LG T
ki companylist NYSEcsv LG T
B main.py FACE:
()
L 4

T00MIB maximum size

Copyright @ 2011-2018 PythonAnywhere LLP — Terms — Privacy & Cookies

Figure 12-5. Our pair-trading application on PythonAnywhere

All the stock financial CSV files needed should already be there (if not, run through
Chapter 5 again). You will need to upload the Nasdaq, Amex, and NYSE company files
under the main “pair-trading-booth” directory, along with the ten-stock CSV files
already there.

e companylist AMEX.csv
o companylist NASDAQ.csv

e companylist NYSE.csv

385

CHAPTER 12 CASE STUDY PART 3: ENRICHING CONTENT WITH FUNDAMENTAL FINANCIAL INFORMATION

You will also need to update the “main.py” and “index.html” files and upload
the new “fundamentals.html” file to display our stock and derived charts (or create
it as a new file on PythonAnywhere and copy/paste the code into it). The best way to
proceed is to simply open those files in a local editor and copy and paste the content into
PythonAnywhere.

For example, let’s update “main.py,” open the file in your local editor and open the
file in PythonAnywhere, then copy and paste the new version into your “main.py” file on
PythonAnywhere. Don’t forget to click the green “Save” button before moving on to the
other files (Figure 12-6).

L [] 7§ main.py : fhome/manuelamun: x 3 Manuel

« C' & Secure https://www.pythonanywhere.com/user/manuelamunateguiffiles/fhome/manuelamunategui/pair-trading-booth/mai... ¥ \!: 0o :

5](%’; fhome/manuelamunategui/pair-trading-booth/main.py Keyboard shortcuts: Normal & \ ¢ Share .’ Save as... o) =
#1/usr/bin/env python

from flask import Flask, render_template, request, Markup

added code to avoid Tkinter errors

import matplotlib

matplotlib.use('agg')

import matplotlib.pyplot as plt

import matplotlib.ticker as mticker

import io, baset4, os

import pandas as pd

Woe U Wi

11 # default traveler constants

12 DEFAULT_BUDGET = 1@0@d

13 TRADING_DAYS_LOOP_BACK = 9@

14 INDEX_SYMBOL = ['~DJI']

15 STOCK_SYMBOLS = ['BA','GS',"UNH', 'MMM',"HD', "AAPL'",'MCD", "IBM", "CAT","TRV"]
16 BASE_DIR = os.path.dirname(os.path.abspath(__file__))

18 # global variables
19 stock_data_df = None

20

21 app = Flask(__name__}

22

23 - def prepare_pivot_market_data_frame():

24 # prep data

25 # loop through each stock and load csv

26 stock_data_list = []

27~ for stock in INDEX_SYMBOL + STOCK_SYMBOLS:

28 src = os.path.join(BASE_DIR, stock + '.csv')
29 tmp = pd.read_csv(src)

30 tmp['Symbol'] = stock

31 tmp = tmp[['Symbol', 'Date’', 'Adj Close']]
32 stock_data_list.append(tmp)

Figure 12-6. Updating the “main.py” code base on PythonAnywhere to handle
the creation of dynamic charts

386

CHAPTER 12 CASE STUDY PART 3: ENRICHING CONTENT WITH FUNDAMENTAL FINANCIAL INFORMATION

Proceed in the same way in the templates folder for file “index.html” and also create
anew HTML file called “fundamentals.html” (Figure 12-7).

® @ . tundamentals.html : fhome/m: x 3 Manuel

. C' @ Secure | https://www.pythonanywhere.com/user/manuelamunateguiffiles/home/manuelamunateguifpair-trading-boothftem... ¥ & 0o :
- /home/manuelamunategui/pair-trading-booth/temp| ates/fundamentals.html

§EE3 p p N
L~ Keyboard shortcuts: | Normal & :\@’Share ‘@' Saveas.. || C/:
1 <!DOCTYPE html>))) -

2 - <html>

3 - <head>

4 <meta name="viewport" content="width=device-width, initial-scale=1">

5 <meta charset="UTF=8">

6 <title>Pair Trading Booth</titles>

7 </head>

8

9 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>

10 <link rel="stylesheet" href="//netdna.bootstrapcdn.com/bootstrap/3.0.3/css/bootstrap-theme .min.css">
11 <link rel="stylesheet" href="//netdna.bootstrapcdn.com/bootstrap/3.8.3/css/bootstrap.min.css">
12 <script src="//netdna.bootstrapcdn. com/bootstrap/3.8.3/js/bootstrap.min. js"></script>

13

14 - <body>

15

16 - <div class="container"s>

17

18- <table style="background-color:black;" border = @ cellpadding="5">

190~ <tr>

20 - <TD=>

21~ <p style="text-align:center">

22 <img src="static/images/ticker-title.png" alt="trading booth" style='padding:@px; border:!
23 </p>

24 </TD>

25 </tr>

26 - <tr>

27 - <td align="center">

28 - <form action="{{ url_for('get_pair_trade')}}">

29 <button class="btn btn-default"” type="submit" name="submit" style="width: 5@%; height: 3@px;"
30 </form>

31 </td>

32 </tr>

Figure 12-7. Creating a new file called “fundamentals.html” on
PythonAnywhere to handle the creation of dynamic charts

Next you need to “pip3” install Wikipedia as it isn’t included in the base Python 3
build on PythonAnywhere (Figure 12-8).

387

CHAPTER 12 CASE STUDY PART 3: ENRICHING CONTENT WITH FUNDAMENTAL FINANCIAL INFORMATION

59 puthonanywhere Dashboard Censoles Files Web Tasks Databases
CPU Usage: 0% used - 0.005 Os. Resets in 23 hours, 46 minutes ((TIE0Y

Start a new console:

Python: 3.6/3.5/34/33/27 |Python: 3.6/35/34/33/27 PyPy. 2.7
Other: Bash | MySQL
Custom: ©

Your conscies:

MySQL: manuelamurlyteguiScomments %

Consoles shared with you

No-one has shared any consoles with you (

Running processes

I Y
| < Fetch process list)
\ .

Figure 12-8. Opening a bash console to pip install libraries not included in the
original Python build

Once the bash console is open you are ready to pip install any needed libraries.
Go ahead and install the Wikipedia library with the following command (you need to
add two dashes and user to override permission denied messages; Listing 12-12 and
Figure 12-9).

Listing 12-12. Installing Requirements

$ pip3 install wikipedia --user

388

CHAPTER 12 CASE STUDY PART 3: ENRICHING CONTENT WITH FUNDAMENTAL FINANCIAL INFORMATION

® © ® () Bash console 9463823 : man X tubeof
- C | & Secure | https:/... ¢ & @&
55¢) Bash console + Share with others) =

Figure 12-9. Installing Wikipedia library on PythonAnywere

Close your bash console by using the “exit” command. You can also kill the console
completely if you don’t need it anymore by going back to the console page in the

PythonAnywhere dashboard and clicking the “x” under the bash console you opened
(Figure 12-10).

5@9’ puthonanywhere Dashboard Consoles Files Web Tasks Databases
CPU Usage: 0% used - 1 2,000s. Resets in 23 hours, 3 minutes m

Start a new console:

Python: 3.6/3.5/34/33/27 IPython: 3.6/35/34/33/27 PyPy. 2.7
Other: Bash | MySQL
Custom: ©

Your consoles:

MySQL: manuelamunateguiScomments %
Bash console 9132345 b 4

Figure 12-10. Closing the bash control if you don’t need it anymore

389

CHAPTER 12 CASE STUDY PART 3: ENRICHING CONTENT WITH FUNDAMENTAL FINANCIAL INFORMATION

Now you are ready to refresh your web service and fire up the web application. Click
the “Web” menu tab and hit the big, green button to reload the application. That is very
easy to do; click on the “Consoles” button and open a bash console (Figure 12-11).

55*@* pythor ongwhere Dashboard Consoles Files Web Tasks Databases
manuelamunategui.pythonanywhere.com
© Add a new web app

Configuration for manuelamunategui.pythonanywhere.com #'

Reload:

Figure 12-11. Hit the “Reload” button to update your web server

If you enter the URL of your PythonAnywhere site into your browser, you should see
the new “Pair Trading Booth” site in all its glory. Go ahead and take it through its paces
(Figure 12-12).

® [pair Trading Booth X) Manuel

@ Secure https://manuelamunategui.pythonanywhere.com a v &

Get Trade

Craris

Access Fundamentals

Figure 12-12. The new “Pair Trading Booth” site enhanced with charts

390

CHAPTER 12 CASE STUDY PART 3: ENRICHING CONTENT WITH FUNDAMENTAL FINANCIAL INFORMATION

Conclusion

In this chapter, we took a third pass at the “Pair Trading Booth” web application and
enhanced it with collateral fundamental information. We joined the current data with
additional external data from Nasdaq. We plugged into the Wikipedia API to extract a
high-level description of each company. We also created dynamic links for even more

information if the user chooses.

391

CHAPTER 13

Google Analytics

Advanced intelligence for free.
Let’s look at a simple tool to better understand how our users interact with our
web applications. This is a huge boon to web application developers. Building our own
analytic tracker would require adding a lot of custom Flask code to every page to track
users, along with a database to save those interactions and an analytical engine to make
sense of it. That’s a lot of work! Instead, with Google Analytics, all we have to do is add
a JavaScript snippet of code at the top of each page. That’s it; add a few generic lines to
every page, no editing required, and Google Analytics will handle everything else.
Google Analytics will tell us where users came from, how much time they spend on
the site and on each page, the paths they take, etc. This is a must tool to not only better
understand users, but also to refactor and create new content. There is a free version and
a costly premium version—we’ll focus on the free one here. The free version gives you
plenty of insight for small web applications like the one we're building here.

Note There are no downloads for this chapter.

Create a Google Analytics Account

Navigate to Google Analytics to create a free account at https://analytics.google.com/
analytics/web/provision.

This will show a simple graphic of the process of tracking a web page and the
“Sign up” button (Figure 13-1).

393
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_13

https://analytics.google.com/analytics/web/provision
https://analytics.google.com/analytics/web/provision

CHAPTER 13 GOOGLE ANALYTICS

Start analyzing your site's traffic in 3 steps

o Sign up for Google Analytics 9 Add tracking code a Learn about your audience Start using Google Analytics

“ L
\/ & s i

Sill have questions? Help Centes
All we need is some basic info about what site You'll get a tracking code to paste onto your pages In a few hours you'll be able 10 start seeing data
you'd like 10 manitor. 50 Google knows when your site is visited. about your site.

Figure 13-1. The Google Analytics process and sign up

Where it asks for a website name, enter you PythonAnywhere.com account (the Pair
Trading one; don’t worry you can track up to 100 accounts). It will ask you a few basic
questions and you can go with the defaults (Figure 13-2).

Setting up your account

Account Name required

Accounts can contain more than one tracking 1D,

amunategui_testing

Setting up your property
Website Name required

manuelamunategui

Website URL required

http:f ~ http://manuelamunategui.pythonanywhere.cc

Industry Category

Other ~

Reporting Time Zone

United States ~ (GMT-07:00) Pacific Time

Figure 13-2. My answers on Google Analytics

Finally, click the blue button at the bottom of the page “Get Tracking ID” and accept
the terms of service.

394

http://pythonanywere.com

CHAPTER 13 GOOGLE ANALYTICS

JavaScript Tracker

The first page you will see once you log into your Google Analytics dashboard is the
“Admin” tab with the key snippet of JavaScript needed to track a web page (Listing 13-1).
This is the heart of the tracking system. You just need to add your API key where it says
“<<ADD-YOUR-GOOGLE-ANALYTICS-TRACKING-ID>>" and drop this on all your

pages.
Listing 13-1. The JavaScript Tracking Snippet

<!-- Google Analytics -->

<script>

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].g=i[r].q||[]).push(arguments)},i[r].1=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(0)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
}) (window,document, 'script", "https://www.google-analytics.com/analytics.
js','ga");

ga('create', '<<ADD-YOUR-GOOGLE-ANALYTICS-TRACKING-ID>>', 'auto');
ga('send', 'pageview');

</script>

<!-- End Google Analytics -->

Copy it and drop it in the “<head>" section of any website you own and want to
track. The head of every HTML template for the Pair Trading Booth should look like
Listing 13-2 (make sure you enter yours, as this one will collect traffic analytics for my
account).

Listing 13-2. This is Mine

<head>
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta charset="UTF=8">
<title>Pair Trading Booth</title>

<!-- Google Analytics -->
<script>

395

CHAPTER 13 GOOGLE ANALYTICS

(function(i,s,o0,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]]|
function(){

(i[r].9=i[r].q||[]).push(arguments)},i[r].1=1*new Date();a=s.create
Element (o),
m=s.getElementsByTagName(0)[0];a.async=1;a.src=g;m.parentNode.insert
Before(a,m)

}) (window, document, 'script', "https://www.google-analytics.com/
analytics.js','ga');

ga('create', 'UA-118908159-1", ‘auto');
ga('send', 'pageview');
</script>
<!-- End Google Analytics -->
</script>

</head>

Reading Your Analytics Report

After adding your Google Analytics tracking code to your site, save it and propagate the
“Pair Trading Booth.” Point a browser to your site, view the source to make sure the new
code is there, then refresh your Google Analytics Dashboard. You should see that one
active user is on the site—that is you (Figure 13-3).

Q, Search reports and help Google Analytics Home {8} INTELLIGENCE

A HOME Users Sessions Bounce Rate Session Duration
27 CUSTOMIZATION 0 0 0 0
Reports

(© FREALTIME

& AUDIENCE
e ACOUISITION

B senaion

W CONVERSIONS

Last 7 days = AUDIENCE OVERVIEW) REAL-TIME REPORT >

Figure 13-3. Google Analytics home showing 1 active user

396

CHAPTER 13 GOOGLE ANALYTICS

If you click on the “REAL-TIME” tab in the left-hand pane, you will even get to see
where that active user is located. I was in Spain when I took the screenshot—pretty cool,
right? (Figure 13-4)

Pageviews

Right now Per minute P
active users on site = = |&
 DESKTOR
= i
Top Referral Top Active Pages:
Source Active Users + Active Page Active Users 4
There is no data for this view. 1. findex.html 1 100.00%
Top Social Traffic: Top L
Saurce Active Users +
There ks no data for this view.
Top Keywords: .
Keyword Active Users +

There i no data for this view

Figure 13-4. My real-time, active user—-me in Spain!

Obviously, you will have to run your web application for many days and have actual
traffic to start looking for interesting patterns. You will also need to add your tracking
code for the “Pair Trading Booth” on all HTML template pages to start seeing who goes
where and for how long.

Traffic Sources

Once you have collected traffic patterns, you can find out where you users came from.
There is a great training course from the Google Analytics training team: https://
analytics.google.com/analytics/academy/ (screen shot from the demo account
provided by the Google Analytics training team; Figure 13-5).

397

https://analytics.google.com/analytics/academy/
https://analytics.google.com/analytics/academy/

CHAPTER 13 GOOGLE ANALYTICS

Traffic Sources Sy Shoriour S
1 keywords

" Pageviews
ng ht now Per minute Per second

13

active users on site
-
W REFERRAL B ORGANIC M DIRECT =
W SOCIAL 2o - — — - =
?3’.‘.; m | S z -— i ? I | | | | || | | |
26 e - " . A o i .

Viewing: Active Users Pagoviews
-

Metric Total- 13 Q
Medium Source Active Users

1. Organic google 4 30.77%

2. (none) (direct) 3 23.08%

3. Referral mall.googleplex.com 2 15.38%

4. Referral 172.24.32.111 1 7.69%

5. Referral gatewaycdi.com 1 7.69%

6. Referral phandroid.com 1 7.69%

7. Social YouTube 1 769%

Figure 13-5. Screen shot from the Google Analytics course that shows multiple
active users and where they came from

Pages

Once you have collected traffic patterns, you can find out when users visited a particular
page, the total hit counts, and how much time they spent (from the demo account
provided in the Google Analytics training; Figure 13-6).

398

CHAPTER 13 GOOGLE ANALYTICS

Pages @ B ST & DPORT < SHARE (3 INTELLGENCE
ALL » PAGE: fhome - Feb 1, 2016 - Feb 29, 2016
" AllUsers I
Explorer Navigation Sumemary
Pagriews = | V8. Selectametic Day Wesk Mo | 24 %

Page Pagaviews & Unigue Pageviews My, Time on Page Emtrances Bounce Rate LBt Page Valee

24,085 20,133 00:00:48 19,493 57.19% 57.43% $1.03

1. /fhome : 24,085/100.00 0,133 000048 19493700 00%) 5T19% 57.43% 51.03

Shewrows | 10 % Gowr (1 1-Tell € 3

Figure 13-6. Page view information

Conclusion and Additional Resources

As a quick recap, you need the Google Analytics JavaScript tracker on all HTML pages
you want to track. Google Analytics will collect a wide range of behaviors such as traffic
source, language, browser type, etc. It considers one session to be any activity followed
by 30 minutes of inactivity. You can customize all sorts of aspects and the information
you access is always anonymous. This is a highly recommended tool for anyone who
wants to understand the value of a particular page in comparison witho others, to get
ideas of what your users like and don’t like, and to gauge interest and upsell potentials.

For additional information on customizing your Google Analytics data, I highly
recommend Google’s Google Analytics Academy free course at https://analytics.
google.com/analytics/academy/.

399

https://analytics.google.com/analytics/academy/
https://analytics.google.com/analytics/academy/

CHAPTER 14

A/B Testing on
PythonAnywhere
and MySQL

This is an ambitious chapter, so we’ll limit the scope in order to distill the essence of this
rich topic without going overboard. We'll start by building a simple MySQL database
and table to track whether a visitor liked or didn’t like the art work on the landing page.
Because this is A/B Testing, we're going to create two landing pages and switch them
randomly when users visit the site (Figure 14-1).

® O ® [y aB Testing - Do You Like Me? x

< C D= m T &

Chapter 14: Do You Like Me?

Thanks
for
voting!

Figure 14-1. The final web application for this chapter

401
© Manuel Amunategui, Mehdi Roopaei 2018

M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_14

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

Note Download the files for Chapter 14 by going to www.apress.com/
9781484238721 and clicking the source code button. You will need to install
MySQL on your local machine in order to follow along with the Jupyter notebook
“chapter14.ipynb.”

In analytics, A/B testing means using two different versions of something and
measuring how people react to each. This is commonly used in websites to try out
new designs, products, sales, etc. In our case, we're going to expose our visitors to two
different versions of our landing page. The versions are going to be assigned randomly
and the visitor will be offered the opportunity to give the page a thumbs-up if they liked
it. In the background, we’re going to be tracking this traffic and whether or not a user
gives a thumbs-up. If the user doesn’t give the thumbs-up, we’ll assume that it was a
down vote.

This is an important topic and can yield valuable knowledge about your business
and your users. There is a famous anecdote where Marisa Meyer, while at Google, ran an
A/B test to determine which shade of blue, out of 40, the users preferred.! Obviously, one
can go overboard with these types of tests.

A/B Testing

The goal of A/B testing is to expose different products to the public and measure their
reactions. In our web application, we're going to show a web page with two different
images: an angry face and a friendly one. We will add a simple label to the page asking
the visitor to give the image a thumbs-up if they liked it. In the background we’re going
to count each visit and count each thumbs-up. To keep things simple, we’ll count an
initial visit as a thumbs-down and update it to a thumbs-up if the visitor clicks the voting
button. See Figures 14-2 and 14-3 for a version of each image.

'https://iterativepath.wordpress.com/2012/10/29/testing-40-shades-of-blue-ab-testing/

402

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
https://iterativepath.wordpress.com/2012/10/29/testing-40-shades-of-blue-ab-testing/

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

Figure 14-2. Image one

Figure 14-3. Image two
403

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

Tracking Users

There are various ways of tracking anonymous visitors. Popular methods include the
usage of cookies and databases. Each has its advantage and purpose. A cookie offers the
advantage of tracking a user over longer periods regardless of whether they closed their
browser or turned their computer off. A web page can easily check the visitor’s computer
for previous cookies and compare it with their database to determine if this is a repeat
visitor or not.

We won't need to use cookies, as we will only consider single visits. Instead, we’ll
keep track of users using an HTML hidden tag and send that tag back using a post
request. When a visitor first visits the page, we’ll insert a row in the database with the
page background image, a timestamp, and a unique identifier (a very long string that is
unique to that user; the odds of creating two of the same are infinitesimal) referred to as a
UUID. As mentioned, we assume that a first page visit is a thumbs-down and write it to the
database. As we build the page, we insert a hidden HTML tag containing the UUID so that
if the user interacts with the page by clicking the thumbs-up button, we’ll pass the UUID
back to the web server, so we can update the row previously entered in the database. This
approach allows us to serve many visitors at the same time without worrying about who
has what page. There are many ways you can tweak and improve this process depending
on your needs. You can even pass that UUID from client to server and back as many times
as you want and always know which session and user you are dealing with.

UuiD

The Universally Unique Identifier (UUID) is 128 bits long strong, and is guaranteed
to be unique. We'll use the handy “uuid” Python library to automatically generate a
guaranteed unique identifier (Listing 14-1).

Listing 14-1. The “uuid” Kibrary
Input:

import uuid
str(uuid.uuid4())

Output:

'e7b1b80e-1eca-43a7-90a3-f01927ace7c9’

404

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

In the “uuid” library, the “uuid4()” function generates a new random ID without
relying on your computer’s identifier, so it is unique and private. Check out the docs
for additional UUID details and options at https://docs.python.org/3/1library/
uuid.html.

MySQL

We're going to use the MySQL Community Server, which is a great and popular free
database. It is perfect to support our A/B testing needs. It is an open-source relational
database that can support a wide range of needs and is being used by big players
including WordPress, and large media companies like Google and Facebook.

Go ahead and download the version of MySQL Community Server for your OS at
https://dev.mysql.com/downloads. You will also find the installation instruction for
your OS if you have any questions or issues. We won’t use any front end, though there are
quite a few of them available in case you want to use one (Figure 14-4).

® @ R MysaL : Download MySQL C: x 9 Manuel
< = C & Secure https://dev.mysgl.com/downloads/mysqgl/8.0.htmi % & 0
oSt popL o dotabase Contact MySQL | Login | Register
MySQI_ i MYSQLCOM DOWNLOADS DOCUMENTATION DEVELOPER ZOME

Enterprise Community Yum Repository APT Repository SUSE Repository Windows Archives

MySQL on Windows H
Download MySQL Community Server
MySQL Yum Repository
MySGQL APT Repository MysQL Community Edition is a freely downloadable version of MySQL open source soltware
the world's most popular open source database that is L
= 5 is provided under the GPL
MySQL SUSE Repository supported by an active community of open source developers e
and enthusiasts.
MySQL Community Server OEMSs, ISVs and VARS can
MySQL Cluster Community Edition is available as a separate purchase commercial licenses.
MySQL Cluster download. The reason for this change is so that MySQL Cluster
can provide more frequent updates and support using the latest
MySQL Router sources of MySQL Cluster Carrier Grade Edition.

Figure 14-4. Find and download the correct version for your operating system

405

https://docs.python.org/3/library/uuid.html
https://docs.python.org/3/library/uuid.html
https://dev.mysql.com/downloads

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

You will be prompted with a series of questions including setting up root password
and password encryption type (Figure 14-5).

O « Install MySQL 8.0.11-community

Configure MySQL Server

Introduction Use Strong Password Encryption

License MySQL 8 supports a new, stronger authentication method
. based on SHA256. All new installations of MySQL Server
Destination Select .
should use this method.

» Installation Type

Connectors and clients that don't support this method will
be unable to connect to MySQL Server. Currently,
» Configuration connectors and community drivers that use libmysqglclient

8.0 support the new method.

Installation

Summary

© Use Legacy Password Encryption

The legacy authentication method should only be used
when compatibility with MySQL 5.x connectors or clients is
required and a client upgrade is not feasible.

Next
Figure 14-5. Keeping it simple and using the legacy password system

You can also start and stop your database through the control center for your
operating system (this can also be done through the command line; Figure 14-6).

406

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

@ < e MySQL Q

Instances

Configuration

s 8.0.11

: . M)’SQL 3'_0‘11 Jusrilocal/mysql-8.0.11-maces10.13-x86_64

Stop MySQL Server

Start MySQL when your computer starts up

Initialize Database

Uninstall

MySOL

Figure 14-6. Setting MySQL server to start automatically when the computer
starts

Command Line Controls

To start and stop MySQL (in most cases it should start automatically after your install

it and restart your machine). Check out the docs for other operating systems, changes
since this book was published, and additional commands at https://dev.mysql.com/doc/.
Let’s see how to start MySQL (Listings 14-2 and 14-3, and Figure 14-7).

Listing 14-2. Starting MySQL on the Mac

$ sudo /usr/local/mysql/support-files/mysql.server start

Listing 14-3. Starting MySQL on Windows

C:\> "C:\Program Files\MySQL\MySOL Server 8.0\bin\mysqld"

407

https://dev.mysql.com/doc/

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

® 0 chapter-14 — sleep « sudo — 80x5

manuels-MacBook-Pro-2:chapter-14 manuel$ sudo /usr/local/mysql/support-files/mys
gl.server start

Password:

Starting MySQL

Figure 14-7. Starting MySQL using the command line

Let’s see how to stop MySQL (Listings 14-4 and 14-5).

Listing 14-4. Stopping MySQL on the Mac

$ sudo /usr/local/mysql/support-files/mysql.server stop

Listing 14-5. Stopping MySQL on Windows

C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqladmin" -u root
shutdown

MySQL Command Line Monitor

The command-line monitor is a handy tool that allows you to manage users and
permissions, create databases and tables, and much more (see the docs for other
operating systems and additional commands at https://dev.mysql.com/doc/).

To enter the monitor, change the drive to your MySQL directory or export a path,
then enter the “mysql -u root -p” command and you will be prompted for your
password that you created during the installation process (Listing 14-6 and Figure 14-8).

Listing 14-6. Code Input

$ export PATH=$PATH:/usr/local/mysql/bin
$ mysql -u root -p

408

https://dev.mysql.com/doc/

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

‘. @] chapter-14 — mysql -u root -p — 80x18

/manuels-MacBook-Pro-2:chapter-14 manuel$ mysql -u root -p
[Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 12

Server version: 8.0.11 MySQL Community Server - GPL

Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> J

Figure 14-8. Running the MySQL Command Line Monitor

You will know that you entered the monitor once your prompt changes to “mysql>."
Let’s create a user, a database, and a table for our A/B testing.

Creating a Database

Let’s create a database named “ABTesting” (Listing 14-7).

Listing 14-7. Creating a Database

mysql> CREATE DATABASE ABTesting;

Creating a Table

Let’s create a new table using the “CREATE TABLE” statement. Whenever you are
creating a new table, it is a good idea to drop it first, otherwise you will get an error

(but make sure that you really do want to drop it as you will lose all data contained
therein). We will create a table called “tblFrontPageOptions” that will have a unique
identifier field called “uuid,” a Boolean flag called “liked” to hold whether or not the user
clicked the thumbs up, a page_id to mark whether this was an “A” or “B” page, and an
automated timestamp field (Listing 14-8).

409

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL
Listing 14-8. Creating a Table

mysql> DROP TABLE ABTesting.tblFrontPageOptions;
mysql> CREATE TABLE ABTesting.tblFrontPageOptions (
uuid VARCHAR(40) NOT NULL,
liked BOOLEAN NOT NULL DEFAULT o,
pageid INT NOT NULL,
time stamp TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP);

You can easily test that your table is working by inserting some data into it using an
“INSERT INTO” statement (Listing 14-9).

Listing 14-9. Inserting Data

mysql> INSERT INTO ABTesting.tblFrontPageOptions (uuid, liked, pageid)
VALUES(9999) 1, 2);

To check that the data did indeed make it into the table, we use a “SELECT *”
statement (Listing 14-10).
Listing 14-10. Querying Data
Input:
mysql> SELECT * FROM ABTesting.tblFrontPageOptions;
Output:

+------ ommmm - tommmmmm - mmmmm e +

| uuid | liked | page id | time_stamp

1 row in set (0.00 sec)

We're looking good; the table now has a new row in it. If you want to start with a
clean state, you can drop and re-create the table with the previous code. There are plenty
of great primers on SQL syntax on the Internet, but a great place to start is the w3schools
athttps://www.w3schools.com/sql. Exit out of the “mysql>" prompt and open up the
Jupyter notebook for the chapter to practice inserting data into our table and reading it
out through the “mysql.connector” Python library.

410

https://www.w3schools.com/sql

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

Creating A Database User

We are going to create a user dedicated to our A/B testing web application. It is a bad
idea to use your root password in your Flask code. Our user will be called “webuser” and
its password will be “thesecre” (Listing 14-11).

Listing 14-11. Creating a user
mysql> CREATE USER 'webuser'@'localhost' IDENTIFIED BY 'thesecret';

Next, we will grant this user all privileges, and once you are more comfortable with
MySQL (no, not my SQL, the MySQL product... you know they’re probably joking like
that all day long over at the MySQL headquarters...), you can tone this down to just read/
write permissions for specific tables). See Listing 14-12.

Listing 14-12. Granting Rights

mysql> GRANT ALL PRIVILEGES ON ABTesting.* TO 'webuser'@'localhost' WITH
GRANT OPTION;

Finally, you can check that the “webuser” user was successfully added with the
following handy command (Listing 14-13).

Listing 14-13. Checking Users

mysql> SELECT User FROM mysql.user;

O EECEEEEEP R +
| User |
R EET R +
| mysql.infoschema |
| mysql.session |
| mysql.sys |
| root |
| webuser |
R EET R +

5 rows in set (0.00 sec)

You can exit out of the MySQL command line tool by simply entering the “exit”
command.

411

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

Python Library: mysql.connector

Most of the interaction with our database will be done through Python and Flask using
the handy “mysql.connector” library. Here you can refer to the corresponding Jupyter
notebook for Chapter 14 to follow along (please install the “requirements_jupyter.txt”
file to get the libraries needed). Keep in mind that in this chapter we will not create a
local Flask version, so get familiar with the commands using the notebook, then we’ll
jump directly to the cloud.

We will program three types of functions using the “SELECT,” “INSERT,” and
“UPDATE” SQL functions. If you are not familiar with these classic SQL functions,
check out the great primer from w3schools (I know, I keep pushing that site; it’s that
good and I swear that [have no relations with them whatsoever) at https://www.
w3schools.com/sql.

SELECT SQL Statement

“SELECT” is the most common SQL command and is used to read data from a table.
This is easily done using the “mysql.connector” library. You first create a connection to
the database by calling the “connect()” function and passing permissioned credentials
for a database. The connection returns a cursor to communicate and send orders to
the database. This is done using a query string holding the “SELECT” statement. We
will use this approach for all our SQL statements. The difference with this statement
versus “INSERT” and “UPDATE” is that we are expecting to receive data back from the
database. After executing our query string through the “execute()” function, we can
access the returned data through a loop. Each loop represents one row of data. Notice
that an open cursor and connection are both closed at the end of the call, as we don’t
want to hold onto resources longer than we need to (Listing 14-14).

Listing 14-14. “select” Statement with Cursor
Input:

cnx = mysql.connector.connect(user="webuser', password='thesecret',
database="ABTesting")

cursor = cnx.cursor()

query = "SELECT * FROM ABTesting.tblFrontPageOptions"
cursor.execute(query)

412

https://www.w3schools.com/sql
https://www.w3schools.com/sql

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

for (uuid, liked, pageid, time stamp) in cursor:
print("uuid: {} liked:{} pageid: {} on {:%m/%d/%Y %H:%M:%S}".format(
uuid, liked, pageid, time stamp))

cursor.close()

cnx.close()

Output (example, your output will only contain what's in the table so far):

uuid: 704a44d0-29f4-4a2d-bcba-fe679017f7e9 liked:1 pageid: 2 on 05/19/2018
17:03:29

INSERT SQL Statement

The “INSERT” statement allows us to insert data into the ABTesting table of our
database. The first time a visitor hits the web page, we insert a row containing the
following fields, a “UUID,” a “liked” flag turned to false, the “pageid” representing which
of the two background images the user is viewing, and a “timestamp.” As done in the
“SELECT” statement, we first open a connection to the database, then create a cursor
and pass it our query statement. In this case, our query statement isn’t a “SELECT” but
an “INSERT.” We also use the handy “%s” statement as a variable placeholder to then be
filled by whatever value is held in the “args” tuple. Here we are inserting a new unique
ID, with “liked” set to false (or thumbs down), and the page ID viewed.

Also, whenever you are inserting or updating a table, don’t forget to call the
“commit()” function to commit your inserts before closing the connection. If you don’t
commit, your changes will get ignored (Listing 14-15).

Listing 14-15. SQL “INSERT” Statement with Cursor

cnx = mysql.connector.connect(user="webuser', password='thesecret',
database="ABTesting")

cursor = cnx.cursor()

query = "INSERT INTO ABTesting.tblFrontPageOptions (uuid, liked, pageid)
VALUES (%s, %s, %s);"

args = ("704a44d0-29f4-4a2d-bcba-fe679017f7€9", 0, 1)
cursor.execute(query, args)

cursor.close()

cnx.commit()

cnx.close()

413

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

UPDATE SQL Statement

The “UPDATE” statement is similar to the “INSERT” statement, but instead of adding
anew row at the end of the table, you are updating an existing row. In order to update a
specific row, you have to be able to find the correct row before updating it. In this case,
as we have the handy “UUID” that is guaranteed unique, we can easily find that specific
row and not have to worry about updating another in error. In order to properly build
the “UPDATE” statement, we have to pass it two values, the “UUID” of “704a44d0-29f4-
4a2d-bcb6a-fe679017f7e9” and the “liked” flag set to true (Listing 14-16).

Listing 14-16. SQL “update” Statement with Cursor

cnx = mysql.connector.connect(user="webuser', password='thesecret',
database="ABTesting")

cursor = cnx.cursor()

query = "UPDATE ABTesting.tblFrontPageOptions SET liked = %s WHERE uuid = %s;"
args = (1, "704a44d0-29f4-4a2d-bc6a-fe679017F7e9")

cursor.execute(query, args)

cursor.close()

cnx.commit()

cnx.close()

Again, don’t forget to call the “commit()” function to commit your changes before
closing the connection (if you don'’t, your changes will get ignored).

Abstracting the Code into Handy Functions

We need to abstract all our SQL code into simple to use functions. We start by creating
two global variables to hold the MySQL user account and password. This enables us to
only have to set it once and not worry about it during subsequent SQL calls. It also comes
in handy whenever you need to change user accounts (Listing 14-17).

Listing 14-17. Abstracting Account Data

mysql account = 'webuser’
mysql_password = 'thesecret’
mysql database = 'ABTesting'
mysql host = 'localhost'’

414

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

We also can abstract the Uuid-generating code to keep things clean and simple
(Listing 14-18).

Listing 14-18. Abstracting “GetUUID()” function

def GetUUID():
return (str(uuid.uuid4()))

Next, we create a function to insert new visits into the database. This function will
get a new UUID from “GetUUID(),” set the “liked” to false as we assume all new visits
don’tlike or don’t want to interact with the site, the “pageid” representing the image that
was randomly selected for them, and the timestamp that is automatically generated by
MySQL (Listing 14-19).

Listing 14-19. Abstracting “InsertInitialVisit()” Function

def InsertInitialVisit(uuid , pageid):

try:
cnx = mysql.connector.connect(user=mysql account, password=mysql
password, database=mysql database, host=mysql host)
cursor = cnx.cursor()
query = "INSERT INTO ABTesting.tblFrontPageOptions (uuid, liked,
pageid) VALUES (%s,%s,%s);"
args = (uuid , 0, pageid)
cursor.execute(query, args)
cursor.close()
cnx.commit()
cnx.close()

except mysql.connector.Error as err:
app.logger.error("Something went wrong: {}".format(err))

When a user interacts with the page and clicks the thumbs-up button, Flask uses the
“UpdateVisitWithLike()” function to update the row using the unique identifier for the
session and turns the “liked” flag to true (Listing 14-20).

415

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

Listing 14-20. Abstracting “UpdateVisitWithLike()” Function

def UpdateVisitWithLike(uuid):

try:

cnx = mysql.connector.connect(user=mysql account, password=mysql
password, database=mysql database, host=mysql host)

cursor = cnx.cursor()

query = "UPDATE ABTesting.tblFrontPageOptions SET liked = %s WHERE
uuid = %s;"

args = (1, uuid)

cursor.execute(query, args)

cursor.close()

cnx.commit()

cnx.close()

except mysql.connector.Error as err:

app.logger.error("Something went wrong: {}".format(err))

Finally, we create the administrative dashboard to view how the A/B testing is going

by offering total visit counts, total thumbs up and down, and how many thumbs up for

each image. We also offer a log view where we dump all the content from the ABTesting
table (Listing 14-21).

Listing 14-21. Abstracting “GetVoteResults()” Function

def GetVoteResults():

416

results =

total _votes = 0
total up votes = 0

total up votes page 1
total _up votes page 2
try:

1
o O

cnx = mysql.connector.connect(user=mysql account, password=mysql
password, database=mysql database, host=mysql host)

cursor = cnx.cursor()

query = "SELECT * FROM ABTesting.tblFrontPageOptions"
cursor.execute(query)

for (uuid , liked, pageid, time stamp) in cursor:

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

total votes += 1
if liked==1 and pageid==1:
total up votes page 1 += 1
if liked==1 and pageid==2:
total up votes page 2 += 1
if liked == 1:
total up_votes += 1
results += ("uuid: {} liked:{} pageid: {} on {:%m/%d/%Y
%H:%M:%S}" . format(uuid_, liked, pageid, time stamp)) + "
"
cursor.close()
cnx.close()
except mysql.connector.Error as err:
app.logger.error("Something went wrong: {}".format(err))

return (results, total votes, total up votes, total up votes page 1,
total up_votes page 2)

Designing a Web Application

Let’s download the files for Chapter 14 and unzip them on your local machine if you
haven’t already done so. Your “web-application” folder should contain the following

files as shown in Listing 14-22.

Listing 14-22. Web Application Files

web-application

F— main.py
— static
L—images
— background1. jpg
— background2. jpg
L templates

— admin.html

L— index.html

417

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

Running a Local Version

Sorry folks, there’s no local version this time. Instead, we’ll use the PythonAnywhere
wizard to create a MySQL instance in the cloud and upload all the needed data, file by
file, as we've done previously.

Setting Up MySQL on PythonAnywhere

It is really easy to set up MySQL on PythonAnywhere using the built-in wizard. Click the
“Databases” link in the upper right hand of the dashboard and proceed through the
setup just like we did earlier on the local version (Figure 14-9).

Send feedback Forums Help Blog Account Logout

55 pythonanywhere Dashboard Consoles Files Web Tasks Databases
s Y

Postgres

Initialize MySQL

Let's get started! The first thing to do is to initialize

server:

Enter a new password in the form below, and n :you'll need it to access the databases once you've

created them. You will only need to do this

New password:

Confirm password:

Initialize MySQL

This should be different to your main PythonAnywhere password, because it is likely to appear in plain text in
any web applications you write.

Figure 14-9. Setting up MySQL on PythonAnywhere

418

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

After you initialize MySQL, you will be able to create a database and get into
the MySQL console to create the “tblFrontPageOptions.” There are two caveats
you will have to contend with. First, PythonAnywhere appends your account
name in front of the database name. In my case, database “ABTesting” becomes
“amunateguioutloo$ABTesting.” This isn’t a big deal, but we will have to update any
code that talks to the database. The second issue is that the user it creates for you is the
one you will have to add to your script, as it won’t let you create additional users using
the “CREATE USER” command (Figure 14-10).

MySQL settings

Connecting:
Use these settings in your web applications.
Database host address: amunateguioutlook.mysql.pythonanywhere-services.com
Username: amunateguioutloo
Your databases:

Click a database's name to start a MySQL console logged in to it.

Start a console on: amunateguioutloo$ABTesting

Start a console on: amunateguioutlooS$defa

Create a database

Your database names always start with your username + "$". There's no need
prefix in below, though: PythonAnyw will automatically add it.

type that

Database name:

‘ ABTesting

Figure 14-10. Creating the ABTesting database and clicking the console link to set
things up

419

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

Click the console link for the “...$ABTesting” database and create the
“tblFrontPageOptions” table and “webuser” account. Make sure to update the database
to reflect your database name (Listing 14-23).

Listing 14-23. Create Table Command and PythonAnywhere Confirming That
the Table “tblFrontPageOptions” was Successfully Created

Input:

CREATE TABLE amunateguioutloo$ABTesting.tblFrontPageOptions (
uuid VARCHAR(40) NOT NULL,
liked BOOLEAN NOT NULL DEFAULT o,
pageid INT NOT NULL,
time stamp TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP);

Output:

mysql> CREATE TABLE amunateguioutloo$ABTesting.tblFrontPageOptions (
-> uuid VARCHAR(40) NOT NULL,
-> liked BOOLEAN NOT NULL DEFAULT o,
-> pageid INT NOT NULL,
-> time_stamp TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP);
Query OK, 0 rows affected (0.03 sec)

That is all we need to do in the console; everything else will be done through Python.

A/B Testing on PythonAnywhere

Let’s upload and update all the code to work with our new database on
PythonAnywhere. Under “Files” create a new folder called “ABTesting” (Figure 14-11).
sy pythonanywhere

/home/ & amunateguioutiook

Directories

ABTesting| New directory |

nysile

Figure 14-11. Creating the new folder to host our ABTesting site

420

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

Next, we need to upload all the files, one-by-one, up to the site just like we did with
the other PythonAnywhere projects we already did (Figures 14-12 through 14-14).

/home/amunateguioutiook/ = ABTesting [Z] Open Bash console here 0% full - 316.0 KB of your 512.0 MB quota

Directories Files

Enter new directory name Enter new file name, eg hello.py

pycache/ il & main.py & G [207805210441 41KB
static/ i
templates/ @ (

- o

100MiB maximum size

Figure 14-12. Upload “main.py” under the “ABTesting” folder

/home/amunateguioutlook/ABTesting/static/ = images [E1 Open Bash console here 0% full - 316.0 KB of your 512.0 MB quota

Directories Files

Enter new directory name Enter new file name, eg hello.py

[background1.jpg A T 20180521 04:43 685K
[background2.jpg & [20180521 04:43 646K

- .

L
L

100MIiB maximum size

Figure 14-13. Upload both images under “ABTesting/static/”

/home/amunateguicutlook/ABTesting/ & templates [E Open Bash console here 0% full - 316.0 KB of your 512.0 MB quota

Directories Files

Enter new directory name Enter new file name, eg hello.py

& admin.html

& 104:42 14KB
& index.html &

0442 1.5KB

b

100MiB maximum size

Figure 14-14. Upload both HTML files under “ABTesting/templates/”

Once you have uploaded all files, you need to go into “main.py” and update
the database account and all table references. You will need to update the following
variables with the ones assigned to you by PythonAnywhere. Click “Databases” in the

upper right corner of your PythonAnywhere dashboard to access the variables
(Listing 14-24).

421

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

Listing 14-24. Assigned account data

mysql_account="<<ENTER-YOUR-DATABASE-USERNAME>>"

mysql password="'thesecret'

mysql database='<<ENTER-YOUR-DATABASE-USERNAME>>$ABTesting'
mysql_host="<<ENTER-YOUR-DATABASE-USERNAME>>.mysql.pythonanywhere-services.com"

Make sure to replace in the “main.py” code all the “<<ENTER-YOUR-DATABASE-
USERNAME>>" with your database user name, otherwise it will not work.

Hit the big green button on the web tab and take the web application for a spin.
Go ahead and vote away (then check the administrative page; Figure 14-15).

® ® [A/B Testing - Do You Like Me? x 7 Manuel

¢ (U amunateguioutiook.pythonanywhere.com L]

Chapter 14: Do You Like Me?

Thanks
for

voting!

VA SN

Figure 14-15. The “Do You Like Me?” web application running on
PythonAnywhere

422

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

A/B Testing Results Dashboard

In order to view the results of our A/B testing operation, we need to create a dashboard.
Though this isn’t essential, and you could just as well query the results directly through
MySQL using SQL statements, a dashboard will allow anybody to look at the results
throughout your testing without needing SQL knowledge or querying permissions to the
ABTesting table (Figure 14-16).

® © ® [aB Testing - Do You Like Me? x 9 Manuel

o :

-

< (@ amunateguioutlook.pythonanywhere.com/admin/ 1r
Chapter 14: Do You Like Me?
A/B Testing Dashboard

Summary:

Total Votes |12
Up Votes |3
Down Votes|9

Up votes for Image 1 Up votes for Image 2

I ;:;"_. ﬁ:

e

0 3

Full Log:

uuid: bbbeda0f-6874-4814-91ee-f6289be0661b liked:0 pageid: 2 on 05/21/2018 05:54:55
uuid: 9a2fe684-5e3e-4924-9a0d-78d92de03aa7 liked:0 pageid: 1 on 05/21/2018 05:54:58
uuid: ab91e510-43ae-4d43-b7e7-fa82f297da13 liked:0 pageid: 2 on 05/21/2018 05:55:04
uuid: f2ccf858-82be-4e7d-9cd3-111629179bf7 liked:0 pageid: 2 on 05/21/2018 05:56:57
uuid: ff38f9fd-7e84-42eb-8926-069afd80bca8 liked:0 pageid: 2 on 05/21/2018 05:56:59
uuid: 07addd88-356b-423a-adcc-0ed34a2adled liked:0 pageid: 1 on 05/21/2018 05:58:56
uuid: 52064b3b-9¢71-4c92-b3a2-bcbf961e3f7c liked:1 pageid: 2 on 05/21/2018 05:58:57
uuid: 32953042-828e-4536-ab92-72c460c64831 liked:1 pageid: 2 on 05/21/2018 05:59:16
uuid: bBae17ad-951d-40a9-9588-256c99f8ab14 liked:0 pageid: 1 on 06/02/2018 23:53:44
uuid: f7050f40-858f-45b0-8323-f2dd0e3b4508 liked:0 pageid: 2 on 06/10/2018 20:38:16
uuid: 478aa639-eb83-49de-81e1-5f752e8c5f47 liked:0 pageid: 1 on 06/10/2018 20:38:19
uuid: d0B0a07b-f110-4bf5-ab10-0c5f431d3624 liked:1 pageid: 2 on 06/10/2018 20:38:21

Figure 14-16. A simple dashboard with the latest results of our A/B test

We will keep things simple here and offer the total votes, the total up and down votes,
the up votes per image, and the full log of all participants.

423

CHAPTER 14 A/B TESTING ON PYTHONANYWHERE AND MYSQL

Conclusion

A/B testing is one of the popular tools to better understand your users. It is also a loaded
science with many ways to approach it. Here, we made the assumption that any new visit
doesn’t like the site, thus defaults with a thumbs-down. This doesn’t necessarily mean
they thought the page was bad, as it could also mean they didn’t have time to read the
question. So, in this scenario, I would look closer at the number of up votes per image
rather than worry about the down votes; in either case you can extract which image was
favored by the majority.

Another tool we introduced here is MySQL; it is a great open-source and free
relational database that is widely used and supported.

424

CHAPTER 15

From Visitor to Subscriber

A look at some simple authentication schemes.

In this chapter, we're going to briefly look at different ways to handle subscribers.
We'll look at a simple login mechanisms but quickly move on to plugins. The gist of this
book s to quickly get your ideas up and running, so having to build your own subscriber
mechanisms goes against the book’s core philosophy. If you have the time, knowledge,
and/or staff to do it, then you'll probably save some money but it is not an easy task.
Whenever you are dealing with other people’s personal and financial data, a whole new
layer of responsibility is required. I prefer and recommend pushing this out to those that
do it well and lease it out in the form of plugins. They are easy to use and allow you to
focus on the important stuff-your business ideas!

We'll look at different ways of getting payments from visitors using a very simple site
model.

o Text-based authentication (a concept to extend using a database for a
home rolled solution—not recommended)

e Memberful-simple subscription or product purchase; unlocks access
to videos in sites like vimeo

o Paypal donations
o Stripe payments

In the next chapter, we'll look at an example of a more robust style of paywall for
subscribers using our pair-trading web application along with Memberful.com.

425
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_15

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

Note Download the files for Chapter 15 by going to www.apress.
com/9781484238721 and clicking the source code button. There is no Jupyter
notebook for this chapter, but there are a series of HTML and Flask files to
experiment with.

Text-Based Authentication

One way of monetizing an online presence is to convert visitors into subscribers. If your
content is exclusive and/or is frequently updated, then visitors may be willing to pay to
access this on a regular basis and at a deeper level. This can be done in different ways
and at different levels. At a high level, you need to separate your free content from your
paid content by employing an authentication process to restrict access to certain areas.

The simplest approach is to hard-code a universal account/password into Flask
Directly, or use a text file to handle multiple accounts.

Warning This approach is only suitable for demos and/or short-term projects
where security isn’t an issue. You should never use such an approach to store
anything private, valuable, and certainly nothing having anything remotely to do
with money—nhold on to those ideas until next chapter.

Flask-HTTPAuth—Hard-Coded Account

We'll start with the base Flask-HTTPAuth example from the documentation®
(Listing 15-1).

Listing 15-1. Simple Authentication

from flask import Flask
from flask httpauth import HTTPBasicAuth

app = Flask(__name)
auth = HTTPBasicAuth()

'https://flask-httpauth.readthedocs.io/en/latest/
426

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
https://flask-httpauth.readthedocs.io/en/latest/

CHAPTER 15

users = {
"john": "hello",
"Susan": "byell

}

@auth.get password
def get pw(username):
if username in users:
return users.get(username)
return None

@app.route('/")
@auth.login required
def index():
return "Hello, %s!" % auth.username()

if name_ =="_ main_"':

app.run()

FROM VISITOR TO SUBSCRIBER

It doesn’t get much simpler than this. Save the code into a Python script (or

download the files for this chapter and run the Flask script “authentication-simple.py”).

If you are missing Python libraries, pip3 install via the associated “authentication_

requirements.txt” file as we’ve done in previous chapters).

Enter either account “john” with password “hello” or “susan” with password “bye’

(Listing 15-2 and Figure 15-1).

U

Listing 15-2. Running Local Flask Script “authentication-simple.py”

$ python3 authentication-simple.py

427

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

® 1270015000 x ¢ Manuel
C © 127.0.0.1:5000 * & o :
Signin

http://127.0.0.1:5000
Username

Password

Cancel m

Figure 15-1. Username and password required to proceed

Digest Authentication Example

In order to get a session authenticated (i.e., offer the user the ability to move between
pages within your domain without having to sign in on each page), you need to use a
form of authenticated cookie. Once the user for a session is authenticated, you simple
pass the “@auth.login_required” before any Flask function and it will only let the
session proceed if the visitor is authenticated; otherwise it will pop-up the login box. The
code can be found under script “authentication-digest.py” (Listing 15-3).

Listing 15-3. Digest Authentication

from flask import Flask
from flask_httpauth import HTTPDigestAuth

app = Flask(__name_)
app.config['SECRET KEY'] = 'secret key here'
auth = HTTPDigestAuth()

users = {
"john": "hello",
Ilsusan": llbyell

}

@auth.get password
def get pw(username):
if username in users:

428

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

return users.get(username)
return None

@app.route('/")
@auth.login required
def index():
return "Hello, %s!" % auth.username()

@app.route('/paywall")
@auth.login required
def paywall():
return "%s, you are on page 2!" % auth.username()

if name_ ==" main_"':

app.run()

Give it a whirl and run Flask script “authentication-digest.py” and enter account
“john” with password “hello” or “susan” with password “bye” (Listing 15-4).

Listing 15-4. Digest Authentication
$ python3 authentication-digest.py

Once you are authenticated, add to the end of the URL, “/paywall.” This will show
you that you are now using and authenticated session where a subscriber only has to
login once (Figure 15-2).

® ® [1270.0.1:5000/paywall x) Manuel

mn :

<« C ® 127.0.0.1:5000/paywal @ v &

susan, you are on page 2!

Figure 15-2. Navigating through the site while authenticated

429

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

Digest Authentication Example with an External Text File

This is very much the same concept as before, but now we read the data from an external
text file instead of a dictionary inside the Flask script. This will allow an administrator
(or you) to add and remove names and passwords without having to affect the source

or restart the web server, as the file is ready at each authentication. Keep in mind the
username/passwords are written in the text file without quotes or comas, and one per
line. The code can be found under script “authentication-digest-external.py”

(Listing 15-5).

Listing 15-5. Digest Authentication with External File

from flask import Flask
from flask httpauth import HTTPDigestAuth

app = Flask(__name)
app.config['SECRET KEY'] = 'secret key here’
auth = HTTPDigestAuth()

@auth.get password
def get pw(username):
for user in open("users-file.txt","r").readlines():
if username in user:
user={user.split(':")[0]:user.split(":")[1].rstrip()}
return user.get(username)
return None

@app.route('/")
@auth.login required
def index():
return "Hello, %s!" % auth.username()

@app.route('/paywall")
@auth.login required
def paywall():
return "%s, you are on page 2!" % auth.username()

if name_ ==" main_"':

app.run()

430

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

Give it a whirl and run Flask script “authentication-digest-external.py” and
enter either account “john” with password “hello” or “susan” with password “bye”
(Listing 15-6).

Listing 15-6. Digest Authentication with External File
$ python3 authentication-digest-external.py

Once you are authenticated, add to the end of the URL, “/paywall.” This will show
you that you are now using an authenticated session where a subscriber only has to log
in once (Figure 15-3)

® ® [1270.01:5000/paywall x) Manuel

rn :

ol
b8
W

<« C ® 127.0.0.1:5000/paywal

susan, you are on page 2!

Figure 15-3. Navigating through the site while authenticated from text file

Note The code seen so far in this chapter should be used carefully, as it doesn’t
use security features to adequately store user credentials. This should only be used
for prototypes, one-offs, or internal presentations on secure intranets. The next
section will show a much more robust and recommended approach.

431

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

Simple Subscription Plugin Systems

Using a professional and externally managed plugin is the approach I recommend when
building commercial-grade paywalls or subscription-only pages. Let the professionals
deal with encryption, security, storing sensitive information, credit-card payment, etc.,
so you can focus on building great content and services! This is the way to go for us

“weekend warriors.”

Memberful

Memberful is the plugin we will work with and implement. I personally like Memberful?
and think it is a great choice for anybody looking for an easy way to manage a

paywall section of a website. It offers credit card payment through Stripe,® offers user-
management features, and is discreet. Memberful has a series of educational videos

to help you better understand how things work on their end, as this could become an
important tool toward your web monetization goals.

Let’s look at a simple example of purchasing something from Memberful. Here we
will only look at buying items; we’ll worry about subscriptions and paywalls in the next
chapter. To set up a product for purchase, you simply go to your Memberful dashboard
and set up an item for sale there and they will give you a simple URL to put on your page.
When a visitor goes through the purchasing process, they will see a pop-up box appear
inside your site. This is the beauty of Memberful: your visitors never feel like they're
leaving the site to do the purchase. Big A+.

So, go ahead and sign up for a free account at Memberful. You will not need to use a
credit card in this chapter (Figure 15-4).

*https://membexrful.com/
Shttp://stripe.com/

432

https://memberful.com/
http://stripe.com/

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

® © ® /' © NewMemberful account X £ Manuel

& C | @& Secure | https://signup.memb... o ¢ & 0 :

@ Memberful

Get started for free today.

No credit card required.
Full name
Company or organization
Account URL
.memberful.com
Email

Password

| agree to the Terms of Service & Privacy Policy.

Create my account

Figure 15-4. Signing up for a free Memberful account-no credit card required in
this chapter

433

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

When you create a free account, they will set you up with a test URL to simulate
the process of asking for membership without having to use a real credit card. This will
show you how the tool works by putting you in the shoes of a subscriber. Sign up for
an account and, when it asks you whether you are using WordPress, select “I’'m using
something else” (Figure 15-5).

Account created! Let's get setup.

Memberful works with your existing website. Let's get the basics
configured so you can try it.

If you've got a testing site or a local development environment, that works too.

I'm using WordPress

I'm using something else

Figure 15-5. Sign up for an account and select “I'm using something else” when
asked if you are using WordPress

Next, you will see a page with some code and a video. I would highly recommend
watching the video, as it explains things well. Enter you PythonAnywhere website
address and copy the HTML JavaScript code. The JavaScript creates the popup window,
so the user never leaves your site (Figure 15-6).

434

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

1. Enter your website address: = manuelamunategui.pythonanywhere.com

2. Paste the code below into the <head> section of your master template.

<script t&ge="text/ja\;ascr‘ipt“? A
window.MemberfulOptions = {site: "https://manuelamunategui.memberful

(function() éo)
var s = document.createElement('script');
s.type = 'text/javascript';
s.async = true;
s.src = 'https://d35xxde4fgg@cx.cloudfront.net/assets/embedded. j

setup = function() { window.MemberfulEmbedded.setup(); }
s.addEventListener("load”, setup, false);
E document . getElementsByTagName('head')[@] || document.getElements

</script>

| added the code. Let's go!

Figure 15-6. Enter you PythonAnywhere URL and copy the HTML code

In return, you will get a “Purchase link HTML code” (Listing 15-7).

Listing 15-7. Fake Product Purchase Link

<a href="https://<<ADD-YOUR-ACCOUNT>>.memberful.com/
checkout?plan=30287">Buy Sample Plan for $25/month.

Let’s create a very simple test web page (no Flask required) to house our purchase
link. Once done, click on it and make that fake purchase. You can use any of the fake test
credit card numbers listed in the help docs, or simply use “4242 4242 4242 4242

435

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

Create a Real Web Page to Sell a Fake Product

Build the simple HTML shown in Listing 15-8 and make sure to replace the purchase link
with yours (i.e., with a valid account). You can find the base script in the directory for this
chapter called “memberful-purchase.html.” Do the edit and run it and you should see a
page like Figure 15-7.

Listing 15-8. Purchase a product script

<html>
<script type="text/javascript">
window.MemberfulOptions = {site: "https://manuelamunategui.memberful.com"};

(function() {

var s = document.createElement('script');

s.type = "text/javascript';

s.async = true;

s.src = 'https://d35xxde4fggocx.cloudfront.net/assets/embedded.js";

setup = function() { window.MemberfulEmbedded.setup(); }
s.addEventListener("load", setup, false);

(document.getElementsByTagName(head')[0] || document.getElementsBy
TagName('body')[0]).appendChild(s);
HO;

</script>

<body>

<h1>Membership</h1>

<p><a href="https://<<ADD-YOUR-ACCOUNT>>.memberful.com/
checkout?plan=30287">Buy Sample Plan for $25/month.</p>
</body>

</html>

436

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

@ ® [memberful-purchase.html x (3 Manuel

C @ file:/Users/manuel/Documents/book-prototype/apress-book-repository/... v & @ |

Test payment mode

Complete your order
Sample Plan: $25.00

Already have an account? Sign in
Name
Email address

Choose a password

Secure Payment VISA & h-

Card number MM [YY

Zip or Postal code cveC

Place your order: $25.00

ed by Memberful

Figure 15-7. Memberful pop-up on your site; go ahead make the order using the
fake credit card number

437

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

Checking Your Vendor Dashboard

After the fake purchase, log into your Memberful account and click the “Dashboard”

button on the top navigation bar. There is our order! Yeah! We'll leave Memberful alone

until the next chapter. Obviously, if you were selling real products, you would create

many of these purchasing links with your own product descriptions and pictures.

It is also in the Dashboard where you would manage users, products, refunds, etc.

(Figures 15-8 and 15-9).

® © ® /@ pashboard x

¢ Manuel

&« C @ Secure | https://amunategui.memberful.com/admin?chart_period=all_time Sl 0 :

Dashboard Members

Settings Account Sign out

You're In test mode and can only place orders with test credit cards. Ready for real charges? Turn them on!

QUICK LOOK TODAY 1active member

7 days 30 days 90 days 1year All time

REVENUE

$25.00

MEMBER LIFETIME VALUE (LTV)

$0.00

Figure 15-8. Viewing order activities

438

0 new orders 0 renewals

MONTHLY RECURRING REVENUE

$25.00

MRR PER MEMBER

$25.00

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

@ @ /O Activity * ("3 Manuel

& = (C | @& Secure | https://amunategui.memberful.com/admin/activities Tr

Hm

Dashboard Members

You're In test mode and can only place orders with test credit cards. Ready for real charges? Turn them on!

Activities: 1 Expon

Activity Al ™

Manuel Purchased Pair Trading Booth for $25.00

Figure 15-9. Managing orders

Taking Donations with PayPal

Setting up a donation button from PayPal is one of the easiest things you can do to raise
funds for personal and nonprofit efforts (read the disclaimers or find another type of
PayPal option www.paypal.com/buttons). Obviously, you need an account in good
standing, and all you need to do is drop the HTML forms code into your web page and it
will take care of everything else—it will even display the button for you. This is a painless
option where you don’t even need Flask, as this payment option just requires HTML~
nothing else (Listing 15-9).

Listing 15-9. Paypal Donation Code

<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="amunategui@gmail.com">
<input type="hidden" name="cmd" value="_donations">
<input type="hidden" name="item name" value="Donate to support these
great blog posts!">
<input type="hidden" name="item_number" value="Support">

439

http://www.paypal.com/buttons

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

<input type="hidden" name="currency code" value="USD">
<input type="image" name="submit"

src="https://www.paypalobjects.com/en_US/i/btn/btn_donate LG.gif"
alt="Donate">

<img a1t="" Width="1" height:"l"

src="https://www.paypalobjects.com/en_US/i/scr/pixel.gif">
</form>

Once you have the code inside your web page, you will see the yellow “Donate”
button. When you click on it using a valid PayPal account, it will take you to PayPal and
ask the donator a series of questions to get the financial donation completed
(Figures 15-10 and 15-11).

® ® [3 payPal Donantion X (3 Manuel

C @ file://{Users/manuel/Documents/book-prototype/apress-bo... 7r &

Welcome! Thanks for supporting us!!

Click on the PayPal button below to donate
to the site.

Donate

Figure 15-10. PayPal donation button on your site

440

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

@ @ P Donate X) Manuel
& C & PayPal, Inc. [US] https://www.paypal... v & 0
. PayPal

Donate to

amunategui@gmail.com

Purpose: Donate to support these great blog posts!
Support

“100.00

Make this a monthly donation @

Donate with PayPal

or

(Donate with a Debit or Credit Card)

Help & Contact Security

Figure 15-11. PayPal donation dashboard with your site and email
information

441

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

You can view an example of this code in the downloads for this chapter under the
name “paypal.html,” you will need to have an account and get your own code if you
want to use this type of method for your own fundraising needs.

Making a Purchase with Stripe

Stripe is a simple, powerful, and widely used payment platform with a lot of Flask
support. It is also widely trusted, which is important if you want visitors to give you
money. We will follow a simple example from the official docs (https://stripe.com/
docs/checkout/flask).

First sign up for a free account and it won'’t require any payment information if you
only want to test it out using the developer tools.

Sign up for a free Stripe account, navigate to the “Developers” section and click on
“API Keys” (Figure 15-12).

® © @ [[Test] Dashboard x {3 Manuel
L3 C @ Stripe, Inc [US] https://dashboard.stripe.com/account/apikeys ov vr & Q
#= Unnamed account ~ } S [e
Add a name
 Home APl keys Learn more about APl authentication =
~/ Activate your account
£} Viewing test APl keys. Toggle to view live keys Viewing test
® Payments
4 Balance
Standard AP keys
 Customers
NAME TOKEN LAST USED CREATED
o Radar
® Billing Publishahle key pk_test_DZaNViUK1VaxTolgFlYiTYab B May25 2018 May 25 2018
® Connect
Secret ke Reveal test key token May 25, 2018 May 25, 2018
== Orders ¥ @ ¥ T a8 2
B Developers Restricted API keys + Create restricted key
API keys
Webhooks MAME TOKEN LAST USED CREATED
Events .
No restricted keys
Logs
wing test data
-

Business settings

Figure 15-12. The developer section showing the publishable and secret keys

442

https://stripe.com/docs/checkout/flask
https://stripe.com/docs/checkout/flask

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

The code to get a test purchase is very simple and we will follow along with their
example (https://stripe.com/docs/checkout/flask). They recommend taking the
“Publishable key” and “Secret key” and creating OS variables out of them so you
don’t hardcode them (a great practice). Use the “export” command in your terminal
on the MAC, the control panel on Windows, or add the variables directly into Flask
(Listing 15-10).

Listing 15-10. Exporting Your API Keys

$ export SECRET_KEY="<<YOUR-SECRET-KEY>>"
$ export PUBLISHABLE KEY="<<YOUR-PUBLISHABLE-KEY>>”

You also need to pip3 install Stripe and Flask (Listing 15-11).

Listing 15-11. Installing Needed Libraries

$ sudo pip3 install --upgrade stripe
$ sudo pip3 install flask

The “main.py,” our Flask controller, imports Stripe, sets the secret and publishable
keys, and offers two pages—the “index.html” page where you would put your items for
sale, and the “charge.html” where you process the purchase for items using the “stripe.
Charge.create()” function—and offers a confirmation page. This is fairly straightforward
and therein lies its effectiveness (Listing 15-12).

Listing 15-12. A Look at “Main.py”

import os
from flask import Flask, render template, request
import stripe

stripe keys = {
'secret_key': os.environ['SECRET KEY'],
'publishable key': os.environ['PUBLISHABLE KEY']

}

443

https://stripe.com/docs/checkout/flask

CHAPTER 15 FROM VISITOR TO SUBSCRIBER
stripe.api_key = stripe keys['secret key']
app = Flask(__name_)

@app.route('/")
def index():
return render template('index.html', key=stripe keys['publishable key'])

@app.route('/charge’, methods=["'POST'])
def charge():

Amount in cents

amount = 500

customer = stripe.Customer.create(
email="customer@example.com',
source=request.form['stripeToken']

)

charge = stripe.Charge.create(
customer=customer.id,
amount=amount,
currency="usd’,
description="Flask Charge'

)

return render template('charge.html', amount=amount)

if _name_ == "' main_ ':
app.run(debug=True)

The templates also use a neat trick of using a layout file (“layout.html”). This
allows you to create a skeleton HTML page that you can reuse throughout your site. For
example, you only need to create branding and drop-down links once, and have every
page inherit it.

You then leverage the Jinja2 tags “{% block content %}{% endblock %}” in the
HTML to ingest new code (Listing 15-13).

444

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

Listing 15-13. Using a Template HTML Page—“layout.html”

<!DOCTYPE html>
<html>
<head>
<title>Stripe</title>
<style type="text/css" media="screen">
form article label {
display: block;
margin: 5px;

}

form .submit {
margin: 15px O;
}
</style>
</head>
<body>
{% block content %}{% endblock %}
</body>
</html>

And any code that wants to be housed in the layout file uses the Jinja2 tag
“{% extends “layout.html” %}” (Listing 15-14).

Listing 15-14. Jinja2 Tag for “layout.html” and Variable “key”

{% extends "layout.html" %}
{% block content %}
<form action="/charge" method="post">
<article>
<label>
Amount is $5.00
</label>
</article>

<script src="https://checkout.stripe.com/checkout.js" class="stripe-
button"

445

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

data-key="{{ key }}"
data-description="A Flask Charge"
data-amount="500"
data-locale="auto"></script>
</form>
{% endblock %}

Create a free account on Stripe.comand export your API keys as shown previously.
Then run the sample code (you can find it in the downloads for this chapter under
formerly named “stripe-payments”). Go ahead and run the code locally (Listing 15-15
and Figure 15-13).

Listing 15-15. Running the Stripe Flask Sample

$ python3 main.py

® ® [stripe x 3 Manuel

¢ C | ® 127.0.0.1:5000 Q * & m :

Amount is $5.00

Pay with Card

Figure 15-13. Your own Stripe.com purchase button

If you go through the sample purchase (you should be able to enter any fake credit
card number) and then log into your Stripe.com dashboard, you should see the order
(Figure 15-14).

446

http://stripe.com
http://stripe.com

CHAPTER 15 FROM VISITOR TO SUBSCRIBER

@ ® [mest) Dashboard x 4 Manusl
€ C' @ Stripe, Inc [US] | https://dashboard.stripe.com/test/payments - o:
& Unnamed account ~ 1 [O

Add a name

& Home T Filter + Mew A Export

" Activate your account

AMOUNT DESCRIPTION CUSTOMER DATE
& Payments -) _
4500 USD Flask Charge - ch_1CVqgBJdQRIvST94KK Tykebh Jlecom 2018/05/25 17:54:40
Disputes
Settings $500 USD Flask Charge - ch_1CVgTkJAQRIvsT94WGMBGPCZ customer@examplecom 20718/05/25 17:41:52
Apple Pay
% Balance 2 results

0 Customers

& Radar

Figure 15-14. Your own Stripe.com purchase button

Conclusion

This chapter provided a very brief introduction to some of the authentication, donation,
and purchase plugins that can be used with your web application. I will reiterate that any
of the “roll-your-on” solutions presented here are not for any serious use and certainly
not for anything remotely commercial. In Chapters 16 and 17, we will look at a real
solution you can tailor for your paywall and subscription needs.

447

CHAPTER 16

Case Study Part 4:
Building a Subscription
Paywall with Memberful

Let’s finalize our case study with a subscription-based paywall using Memberful and
credit card payments on PythonAnywhere.

In this chapter, we will hide all trading content behind a paid-only subscription
paywall (Figure 16-1). This is our last project, let’s make it a special one! Let’s extend our
pair-trading site with a real paywall subscription system using Memberful.com. This is
more involved than what we’ve seen in the previous chapter. Earlier we saw how to sell
products or charge for subscriptions. These are one-step processes. Instead, we want a
way of allowing paying customers to navigate the entire site, including content behind
the paywall, and only have to log in once during each session.

Figure 16-1. The final web application for this chapter

449
© Manuel Amunategui, Mehdi Roopaei 2018

M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_16

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

We're assuming here that the pretend trading advice is valuable enough to get
people to pay for it. These are the tools needed to pull that off. Also, because this chapter
is a paywall and it requires tying up a specific address to Memberful, we will not be
able to run this locally. The Pair Trading Booth code we are going to use is the same as
in the previous sections; all we will do here is add an additional landing page and the
Memberful paywall features. In simple terms, no Jupyter or local Flask code is used in
this chapter.

Note Download the files for Chapter 16 by going to www.apress.com/
9781484238721 and clicking the source code button.

Upgrading Your Memberful and PythonAnywhere
Pay Accounts

In order to build this paywall, you will need to use paid accounts. You need to upgrade
your Memberful.com account to the “Pro plan,” which requires a valid credit card
number and costs $25 a month. This is required so that you can access the API and
webhooks, which are disabled on the free account. You will also need to upgrade your
PythonAnywhere account to the lowest paid level-at the time of writing it is referred to
“Hacker $5/month.” This is required because the authentication needs to use custom
ports and it is only allowed on paid accounts. I recommend turning it on for a few days
to try it out, and if you don’t think it is useful, downgrade back to free accounts before
incurring the second month charges.

In a nutshell, we want to offer members the ability to buy subscriptions using
Memberful (so we don’t have to deal with any user or payment data), have them log into
their account only once during a session, then allow them to peruse the site freely until
they log out.

Upgrading Memberful

Let’s upgrade our account in order to get a handle on the OAuth state and custom
ports. This will allow our application to let visitors log in and access the pages behind
the paywall. Go to the Memberful website, then to “Account” and “Plans and billing”
(Figure 16-2).

450

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

Upgrade to use custom applications and
integrate with your website.

Custom applications aren't available with the Starter plan. Upgrade to Pro and add as many
custom applications as you like.

Upgrade to the Pro plan and start enjoying the benefits:

v Reduced transaction fees v Newsletter integrations
+ Unlimited plans v Discourse integration

v Coupon codes v’ Enable free member tier
v Staff accounts v Build custom applications

Try the Pro plan for free

Figure 16-2. Accessing the “Pro plan”

Go ahead and upgrade to the “Pro plan.” In the “Application Details” pane, check
all the checkboxes and add a landing membership page. This is critical, as it is where
Memberful will redirect visitors once they’'ve signed up or signed in (Listings 16-1 and
16-2, and Figure 16-3).

Listing 16-1. You Application Name in Memberful is Your PyhonAnywhere.com
account. It Should Look Like

http://<<YOUR PYTHON ANYWHERE SITE>>.pythonanywhere.com/

Listing 16-2. Your “OAuth Redirect URL” Should Look Like

https://<<YOUR PYTHON ANYWHERE SITE>>.pythonanywhere.com/member

451

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

SETTINGS
Application Details
Integrate
Members Application name http://manuelamunategui.pythonanywhere.
Plans
Include an API key with this application
Payment
Include OAuth tokens with this application
Coupons
. QAuth Redirect URL
Email
amunategui.pythonanywhere.com/member |
Staff

Create Custom Application

Figure 16-3. Settings for the paywall of our web application

Next copy your OAuth “Identifier” and “Secret” keys. These are the keys we will use
in the Flask portion of the web application (Figure 16-4).

SETTINGS
http://manuelamunategul.pythonanywhere.com/

Integrate

Members Open AP Explorer =

Plans ARt kay

Payment ysz7ksF5vzsVxgaEiseS

Coupons Oauth

Emall Identifier ba2acf87b@9fbbc8776e759b3d@43d6d
Secret d84aelb8268c4a4cc30718f0649cald?2

Staff

Redirect URL .
http://manuelamunategui.pythonanywhere.com/member

Delete Application TS RaTE 0B s

Figure 16-4. What your page should look like after creating a custom
application

452

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

Under the “Custom Apps” tab, set your “Login application” to the site in the drop

down (it should already contain your PythonAnywhere account you added earlier in the

“Custom Application” automatic login application; Figure 16-5).

SETTINGS

Integrate

Members

Plans

Payment

Coupons

Email

Staff

Figure 16-5. Select your “Login application” to reflect your PythonAnywhere

account

Your Website Services Custom Apps Webhooks

Add a new Custom Application and develop your own Integration with Memberful.
You'll get an APl Key and OAuth credentials.

Add a new Custom Application

Your Custom Applications

APl Key, OAuth

Open AP Explorer —

Automatic login

We can automatically login members to a single OAuth enabled Custom Application.
This login triggers whenever a new purchase Is made or a8 member signs in. Please
choose one of your OAuth enabled applications below to use this feature.

Legin application: http://mar i.pythonanywhere.com/ B

Save Changes

453

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

Upgrading PythonAnywhere

Under your account tab in PythonAnywhere, opt for the first paid plan (i.e., cheapest),
the “Hacker” plan (Figure 16-6).

Send feedbeck Forums Help Blog Account Logout

1 Dashboard Consoles Files Web Tasks Databases

5&9 puthonanywhere

Upgrade/Downgrade Account Update payment details Security Email Invoices Referrals Teacher APl Token

Hacker $5/month Web dev $12/month Startup $99/month Custom $5 to $500/month
Run your Python code in the cloud from If you want to host small Python-based Start a business and don't worry about 'Want a combination that's not on the
one web app and the console websites for you or for your clients having to scale to handle traffic spikes list? Create your own! All custom plans
have:
A Python IDE in your browser with A Python IDE in your browser with A Python IDE in your browser with
limited Python/b] limited Python/bash consol fimited Python/bash consol A Python IDE in your browser with

One web app on a custom domain or
your-username.
pythonanywhere.com

Enough power to run a typical 100,000
hit/day website.
{moreinfo)

2.000 CPU-seconds per day for
consoles and scheduled tasks
(more info)

IPython/Jupyter notebook support

1GB disk space

Customize your plan

Up to 2 web apps on custom domains
or

your-username.
pythonanywhere.com

[Enough power to run a typical 150,000
hit/day website on each web app.
(more info)

4,000 CPU-seconds per day for
consoles and scheduled tasks
{more info)

IPython/Jupyter notebook support

5GB disk space

Up to 3 web apps on custom domains
or
your-username.
pythonanywherse.com

Enough power 1o run a typical
1,000,000 hit/day website on each
web app.

(more info)

10,000 CPU-seconds per day for
consoles and scheduled tasks
{more info)

IPython/Jupyter notebook support

5S0GB disk space

unlimited Python/bash consoles
Up to 20 web apps, on custom
domains or
your-users. ame.,

pythonanywhere.com

As many web workers as you need 1o
scale your site's capacity.
{more info)

Up to 100,000 CPUseconds per day
for consoles and scheduled tasks
(more info)

IPython/Jupyter notebook support

As much disk space as you choose

Figure 16-6. Choices of paid PythonAnywhere accounts; the cheapest paid
account will allow you to follow along with this chapter’s project

Pip Install Flask-SSLify

We need to install “Flask-SSLify” because it isn’t part of the Python 3 build on
PythonAnywhere. Flask-SSLify will force all pages to use “HTTPS” and give you
enhanced security. You already used “pip3 install” earlier with Wikipedia’s API. Click
on the “Consoles” link at the top of the PythonAnywhere account and access a bash
console (Figure 16-7).

454

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

1‘5}?@’ pythonanywhere Dashboard Consoles Files Web Tasks Databases

CPU Usage: 0% used - 0.005 Os. Resets in 23 hours, 46 minutes ((TIE0Y

Start a new console:

Python: 3.6/3.5/3.4/33/27 |Python: 3.6/35/34/33/27 PyPy. 2.7
Other: Bash | MySQL
Custom: ©

MySQL: manuelamurlgtegui$comments X%

Consoles shared with you

No-one has shared any consoles with you (

Running processes

g B
| S Fetch process list)
N J

Figure 16-7. Opening a bash console to pip install libraries not included in the
original Python build

Once the bash console is open, you are ready to pip install needed libraries. Go
ahead and install the Flask-SSLify library with the following command (you need to add
two dashes and “user” to override permission denied messages; Listing 16-3).

Listing 16-3. Installing Additional Libraries

$ pip3 install Flask-SSLify --user

Memberful Authentication

Memberful supports the OAuth 2.0 protocol for authentication but because it requires
you to tie your application directly to your Memberful account, creating a paywall is
much easier than if you rolled your own. For more information, please refer to the
official Memberful docs at https://memberful.com/help/integrate/advanced/
memberful-api/.

455

https://memberful.com/help/integrate/advanced/memberful-api
https://memberful.com/help/integrate/advanced/memberful-api

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

Two-Step Process and Flask Session Mechanism

The Flask session is a data holding object that can maintain state between pages using
cookies. When you think about it, there are times when you want to remember what a
user is doing, what is in their shopping cart, or who they are even if they jump from page
to page. You could pass data back and forth using form variables, but that would get
messy and confusing quickly (and not very secure). The Flask session remedies that by
storing data on the client’s computer using cookies. For this to work, cookies have to be
enabled.

The system we will create to authenticate a user is easy to implement thanks to
Memberful’'s powerful membership functions and integrated UL. When a visitor enters a
page that is behind the paywall, our Flask application will check that the user is indeed
a paying customer. We only need to check that once during a session, then rely on the
session variable to remember that s/he has a right to see pages behind the paywall.

Authentication Step 1

The first step is to get the authentication “code” from the Memberful site. This code is a
temporary key that allows you to ask for a user’s information. The code is automatically
returned whenever a user clicks on the web application’s Memberful authentication
“sign_in" link (Listing 16-4).

Listing 16-4. Authentication Sign-in Link

<a href="https://<<YOUR-ACCOUNT>>.memberful.com/auth/sign_in">Log in

Once Memberful recognizes the querying URL as a valid Memberful client site, it
returns a code attached to the redirect URL (Listing 16-5).

Listing 16-5. Authentication Code

https://manuelamunategui.pythonanywhere.com/member/?code=483294e65b5dd2e65
862e3c1bag54deedredirect to=http%3A%2F%2Fmanuelamunategui.pythonanywhere.
com%2Fmember%2F

Our application reads the code “code=483294e65b5dd2e65862e3clba454dee” as a
“GET” variable and holds on to it to build the second authentication step.

456

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

Authentication Step 2

Our custom “IsSubscriberLoggedIn()” function does most of the authentication work.
It first builds the “access_token_req” dictionary that holds the temporary “code” from
the previous step, the application’s Memberful Id and secret keys, and the redirect URL
(all these can be found in your Memberful account under “Settings” » “Integrate” »
“Custom Apps”).

It then passes the access token dictionary as a “POST” to the “oauth/token” URL
(Listing 16-6).

Listing 16-6. The auth/token URL
https://<<YOUR-ACCOUNT>>.memberful.com/oauth/token

If all is correct, it will return the “access_token”; this is the real key that will unlock
our visitor’s personal data, like whether or not they are an actual member of our web
application and whether or not their subscription is currently active (Listing 16-7).

Listing 16-7. This Data Can Be Queried Using the Following URL

https://<<YOUR-ACCOUNT>>.memberful.com/api/graphql/member?access_
token=999999999

Everything in step 2 of the authentication process is done via form “POST” so as not
to show sensitive information as a readable URL. This type of work is easily abstracted in
our function “IsSubscriberLoggedIn(),” which will enable our web application to easily
check each visitor's member status (Listing 16-8).

Listing 16-8. The Function “IsSubscriberLoggedIn()”
def IsSubscriberLoggedIn(code):

build the access token dictionary
access_token req = {

"code": code,

"client id": MEMBERFUL KEY,

"client secret": MEMBERFUL_SECRET,

"redirect uri": redirect uri,

"grant_type": "authorization code" }

457

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

build the oauth/token to access visitor's data
content_length=len(urlencode(access token_req))
access_token req['content-length'] = str(content length)

r = requests.post(MEMBERFUL SITE + '/oauth/token', data=access token req)
data = json.loads(r.text)

build the graphql query to query specific values needed

r = requests.get(MEMBERFUL_SITE + '/api/graphql/
member?access_token="' + data['access_token'] +
"&query={%20currentMember%20{%20fullName%20subscriptions%20{%20
active%20expiresAt%20}%20}%20}")

An area worth mentioning is graphQL (see the “Queries and Mutations” section of

the Memberful API docs for more details at https://memberful.com/help/integrate/

advanced/memberful-api/#queries-and-mutations). This tool, after a successful

authentication, allows for the querying of specific subscriber information (Listing 16-9).

Listing 16-9. From the Official Help Docs

Input:

query {
member (id: 1) {

458

id
fullName
email
subscriptions {
id
plan {
id
name

https://memberful.com/help/integrate/advanced/memberful-api/#queries-and-mutations
https://memberful.com/help/integrate/advanced/memberful-api/#queries-and-mutations

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

Output:
{
"data": {
"member": {
Ilid": "1",

"fullName": "John Doe",
"email": "john.doe@example.com",
"subscriptions": [

{
"id": "1",
"plan": {
"id": "1",
"name": "Monthly"
}
}

In our case, we are only interested with two pieces of information: what is the user’s
name and whether their subscription is active (Listing 16-10).

Listing 16-10. We Append the Following Variables to Our “GET” URL

query={%20currentMember%20{%20fullName%20subscriptions%20{%20active%20
expiresAt%20}%20}%20}

This translates to: give us the full name of this member along with whether their
subscription is active and when it expires. Here we only use whether or not the
subscription is active, but you could easily extend this by checking the expiration date
and reminding the member to renew soon (Listing 16-11).

Listing 16-11. 1If We Run It and Peek At Our graphQL Response, We Get

{"data":{"currentMember":{"fullName": "Manuel", "subscriptions":[{"active":true,
"expiresAt":1529879538}]}}}

459

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

Calling Memberful Functions

This is the beauty of Memberful, it is trivial to use and they do all the hard work for us by
storing user data and managing payments, refunds, renewals, etc. There are four URLs
offered by Memberful that can be embedded on your website.

To sign in:

https://<<YOUR-ACCOUNT>>.memberful.com/auth/sign_in

To buy a subscription (plan number will vary):
https://<<YOUR-ACCOUNT>>.memberful.com/checkout?plan=29504

To log out:
https://<<YOUR-ACCOUNT>>.memberful.com/auth/sign_out

To manage your account:
https://<<YOUR-ACCOUNT>>.memberful.com/account

By adding a simple JavaScript snippet at the beginning of each page along with login/
signup/purchase links, you'll automatically inherit the customer pop-up management
system. This is extremely powerful, as the visitor feels that it is all built inside our web
application (Listing 16-12).

Listing 16-12. Memberful JavaScript Code to Manage the In-site Pop-ups

<script type="text/javascript">
window.MemberfulOptions = {site: "https://amunategui.memberful.com"};

(function() {
var s = document.createElement('script');

s.type "text/javascript’;
true;

"https://d35xxde4fggocx.cloudfront.net/assets/embedded.js";

s.async

S.SIC

setup = function() { window.MemberfulEmbedded.setup(); }

460

s.addEventListener("load", setup, false);

(document.getElementsByTagName('head')[0] || document.getElements
ByTagName('body')[0]).appendChild(s);

HO;

</script>

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

You can find the JavaScript snippet on the Memberful site by clicking on the settings
button on the top right corner, and then the ‘Your Website” tab (Figure 16-8).

SETTINGS

Integrate

Members

Plans

Payment

Coupons

Email

Staff

Your Website Services Custom Apps Webhooks

Paste the code below into the <head> section of your master template (every
page) to start using the Memberful Overlay on your website.

Any links to purchase Memberful plans you insert on your website will
automatically be recognized and the overlay will be applied. You can also insert

your member account / sign in link or sign out link anywhere on your website and

the overlay will automatically be applied.

<script tﬁper“text/jcvascript“>

window.MemberfulOptions = {site: "https://amunategui.memberfL
(function() {

var s = document,createElement('script');

s.type = "text/javascript';

s.async =

true;
"https://d35xxded4fgg@cx. cloudfront.net/assets/emk
setup = function() { window.MemberfulEmbedded.setup(); }

S.SrcC

s.addEventListener("load", setup, false);
. E)document.getElementsByTagNarne('head')[@J || document.getk

4
</'5Cr'i[3t>

Figure 16-8. Accessing the “MemberfulOptions” JavaScript Snippet

461

CHAPTER 16~ CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

When the user accesses the web application and clicks on “Log in,” they get that
professional and integrated pop-up box that we all have come to expect on serious web
sites (the fact that we aren’t managing or storing any of the user data or financial data is
our own little dirty secret; Figure 16-9).

® [Pair Trading Booth * @) Manuel
« @ Secure https://manuelamunategui.pythonanywhere.com w &

Test payment mode

Signin

Powered by Memberful

Figure 16-9. Signing in like a pro!

462

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

Designing a Subscription Plan on Memberful.com

In order to create a membership, a visitor has to come to the site and click on “Sign up.”
When they do so, they will see a subscription window. This can be customized in many
ways, including different prices, tiers, and subscription lengths. We’ll go with the defaults
offered by the demo account (Figure 16-10).

® ® [Pair Trading Booth x @) Manuel

B 3

C' @ Secure https://manuelamunategui.pythonanywhere.com h*¢

Test payment mode

Complete your order
Pair Trading Booth: $25.00

Already have an account? Sign in

Place your order: $25.00

Powered by Memberful

Figure 16-10. A new visitor creating a membership to the Pair Trading Booth site;
yes!!!

463

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

A membership plan can easily be created on the Memberful dashboard. Log in to
your account and navigate to Plans » Sample Plan » Plan settings, copy the generated
URL plan purchase link, and paste it in your sign-up button (Figure 16-11).

Sample Plan 1active subscriber View report —

Plan purchase link

https://amunategui .memberful . com/checkout?plan=29504

Gift purchase link

https://omunategui .memberful . com/gift?plan=29504

Name Pair Trading Booth

$ 25.00

This Is a standard plan that renews every month. geta rengwsal price

Auto-renew starts On B member can toggle auto-renew later
Free trial Disabled B

Flan group Neone B Manage grouns

Redirect URL https://amunategui.memberful.com/thanks

~| Require a malling address (checkout will be 2 steps).

@ Available for purchase (existing subscribers will not be affected by this setting).
Save Changes Delete Sample Plan

Slug for integrating with services and custom applications

29504 -sample-plan

Figure 16-11. Creating a sample plan; here we go with the defaults

464

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

If you take the “Plan purchase link” and drop it into a browser, you will see what it
offers (of course, we won'’t access it that way normally because we want it to appear as
a pop-up inside our own web application). It is live, and you can create a test account
using one of the fake credit card numbers supplied (Figure 16-12).

® ° ® @ Pair Trading Booth x (7 Manuel
C @ Secure https;//amunate... vr & o :

Test payment mode

Pair Trading Booth

Complete your order
Pair Trading Booth: $25.00

Already have an account? Sign in

re Payment visa 82 =

Place your order: $25.00

Figure 16-12. Don't forget to use a testing credit card number!

Use any of the following fake credit card numbers (from the official docs at
https://memberful.com/help/general/using-test-credit-cards/).

o Visa: 4242 4242 4242 4242
e Mastercard: 5555 5555 5555 4444

o American Express: 3782 822463 10005

465

https://memberful.com/help/general/using-test-credit-cards/

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

Uploading the Web Application to PythonAnywhere

As there is no local Flask version to run in this chapter, let’s get it up to PythonAnywhere
without further ado. If you have been following along with the previous “Pair Trading
Booth” case studies, you will only need to update the following files:

e main.py

e index.html

e charts.html

o fundamentals.html

And you will need to add the new landing page that hides all trading information
from all the nonmembers and those not logged in:

¢ welcome.html

Log into your PythonAnywhere account and replace the five files with the new
versions found in the downloads for this chapter.

Replacing Memberful and MySQL with Your Own
Credentials

You will need to replace a few things in “main.py” before you can run the web
application. There are three Memberful constants and one PythonAnywhere constant to
set (Listing 16-13).

Listing 16-13. Change the Following Constants in “main.py” on
PythonAnywhere with Your Credentials

MEMBERFUL_KEY="'<<ENTER-YOUR-MEMBERFUL-KEY-HERE>>"
MEMBERFUL_SECRET="'<<ENTER-YOUR-MEMBERFUL-SECRET-HERE>>"
MEMBERFUL_SITE='<<ENTER-YOUR-MEMBERFUL-SITE-HERE>>"
PYTHONANYWHERE_SITE = '<<ENTER-YOUR-PYTHON-ANYWHERE-SITE-HERE>>'

Once everything is up, hit the big, green button to refresh the web application and
take it for a spin. You will need to go through the sign-up process once with the fake
credit card numbers; then you will be able to log in with those credentials (Figure 16-13).

466

CHAPTER 16 CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

r%fj pythonanywhere Dashboard Consoles Files Web Tasks Databases

manuelamunategui.pythonanywhere.com

© Add a new web app

Configuration for manuelamunategui.pythonanywhere.com #

Reload:

2 Reload manuelamunategui.pythonanywhere.com

Figure 16-13. Last step in the process before turning our paywall live

What’s Going on Here?

Let’s take a high-level look at some of the interesting elements going on in our paywall.

main.py

This is the brains behind our web application; thus it will take the brunt of the
Memberful additions. We need to add a handler to handle the landing page “welcome.
html” where users go before logging in. Once they have logged in, they are directed
to the “/member/” path where they can be directed through the following three
authentication paths:

Did the member request a logout?

Check the “request.args.get(‘action’)” variable and look for the “logout” value. If
that is the case, log them out by clearing that member’s session variable.

Is the member already logged in?

Check the session variable to see if there is a user name in it; if so, there’s no need to
authenticate again. Let them keep browsing behind the paywall.

Did this visitor just arrive and is trying to log in?

Get the “request.args.get(‘code’)” and pass it to the “IsSubscriberLoggedIn()”
function to make sure they have an active subscription. If they do, add their user name to
the session object and they’re good to browse behind the paywall.

467

CHAPTER 16~ CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

The rest of the code in “main.py” is the same as the previous case studies.
It has code to look for the most extreme stocks in our list of ten Dow 30 stocks, code
to create dynamic price charts, and the ability to pull corollary information on the
companies in play.

welcome.html

The “welcome.html” page is the new landing page (Figure 16-14).

® [pair Trading Booth x 3 Manuel

- C' | & Secure https://manuelamunategui.pythonanywhere.com/member/?action=logout&redirect_to=http%3A%2F%2Fmanu... 1 &

Figure 16-14. The new landing page

It is a simple HTML page that follows the look and feel of the “Pair Trading Booth”
web site. It offers two buttons: one to log in and the other to sign up.

index.html

The “index.html” page gets two new buttons: one to log out and another to manage the
user’s account (Figure 16-15).

468

CHAPTER 16~ CASE STUDY PART 4: BUILDING A SUBSCRIPTION PAYWALL WITH MEMBERFUL

[Pair Trading Booth x 7 Manuel

L @& Secure

snategul ywhere,com,/mer ode 34TBT 2L E819062b41079bBEE S

A2
'\ PAIR TRADING BOOTH P\

A-7110

Budget Limit:

Get Trade Short: 0 shares
Symbaol: None
View Charts A $0

Access Fundamentals

Figure 16-15. Two new buttons: one to log out and one to access account info

Conclusion

There you have it: all the tools you need to create your own paywall to monetize your
machine learning ideas. Being able to push out the management of subscribers and
credit card payments in such an integrated manner is simply amazing. This is something
that would have been a whole lot harder to achieve just a few years ago. You now can
focus fully on your machine learning ideas, and let the membership pros, do the rest.

469

CHAPTER 17

Conclusion

The coverage in this book is ambitious and sacrifices had to be made, sections had
to be omitted. What it may lack in technology introductions is hopefully made up for
by quickly getting you up and running, and providing pointers on where to look for
additional information. We only briefly covered databases and didn’t cover custom
domain names; thankfully plenty of others have written about that already.

I hope you found these chapters inspiring and that the gears in your head are
spinning when thinking about all the things you could do with the Memberful paywall
implementation.

Remember that “compete agreement”? Yes, the opposite of a non-compete
agreement that I mentioned in the introduction of the book. So, its time to take anything
you need from the book and take it on the road with you! We can’t wait to see what you
come up with!

Turning It Off!

Let’s quickly review how to turn off cloud instances as well as Memberful and
PythonAnywhere accounts. Recall that in many cases you can turn instances off using
command-line commands, but it is always a good idea (essential idea, really) to log into
your account in the cloud and make sure everything is turned off. (Be warned: if you
don’t, you may get an ugly surprise at the end of the billing cycle.)

Google Cloud (App Engine)

Navigate to your GCP account, to the “App Engine” dashboard, and to “Versions.” Click
your active version and stop it (Figure 17-1). If you have multiple versions, you can
delete the old ones; you won’t be able to delete the default one, but stopping it should be
enough (if you really don’t want any trace of it, just delete the entire project).

471
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_17

CHAPTER 17 CONCLUSION

® © @ | & appEngine Versions - google X Y tubeof

&« C | @ Secure | https://console.cloud.google.com/appengine /versions?authuser=1&project=apt-memento-192717... 1t & I"]@ i

Google Cloud Platform 8 google-app-engine-yelp + Q

«@- App Engine Versions REFRESH | < SHOW INFO PANEL

Ij! Dashboard

A Services =
@ Versions = Status Traffic Allocation Instances Runtime Environment
07021143953 Serving A 10] python Flexible

B Instances L

Figure 17-1. Stopping and/or deleting your App Engine version

Amazon Web Services (Beanstalk)

Log into your AWS account and make sure that your EC2 and Elastic Beanstalk accounts
don’t have any active services you didn’t plan on having (Figures 17-2 and 17-3).

® © ® @ Aws Management Console X tubeof

& C | @ Secure | https://us-we... o Q Y| & g O :

AWS services

v Recenitly visit es
Elastic Beanstalk [OF ec2 D am

> All services

Figure 17-2. Checking for any active and unwanted instances on the AWS
dashboard

472

CHAPTER 17 CONCLUSION

® O ® | Elastic Beanstalk Applications % tubeof
&« C | @ Secure | https://us-west-2.cansole.aws.amazon.com/ela ome J.'é ®
Manuel Amunategul - Oregon = Support ~
,r Blastic Beanstalk a - AWSBeanstalkintroduction - new_wine - newwing v testingnew willigolf ~ Create New Application
Learn More « All Applications Fiec.y-Apphcation Nerms:
Get started using Elastic Beanstalk 9 Actions »

Modify the coda
Create and connect to a database

Add a custom domain No environments currently exist for this application. Create one now.

Featured

Create your own custom platform

AWSBeanstalkintroduction Actions -

Command Line Interface (v3)

Create environment
Installing the AWS EB CLI

EB CLI Command Reference
View apphcation versions

It you want to use a command line to Environmant tier: Web Server View saved configurations
create, manage, and scale your Elastic Platiorm: Python 3.6 running on 4bit Amazon

e Restore terminated environment
Beanstalk applications, please use the Lirmen2.6.5 I i
[Elastic Beanstalk Command Line imerface ‘Running vorsions: Sarmole Aogicaton
(EB CLJ). Lost modified: 2018-04-15 14:58:57 UTC-0700

Get Started URL: introuse Swhbadrgey.us-west-2. elastiche. ..

| https:jfus-west-2.console. aws.amazon.com/elastic <f gl 2

Figure 17-3. Locate the instance you want to terminate or delete, and select your
choice using the “Actions” dropdown button

In case you see an instance that seems to keep coming back to life after each time
you “Delete application,” check under EC2 “Load Balancers” and terminate those first,
then go back and terminate the rogue instance again (Figure 17-4).

473

CHAPTER 17 CONCLUSION

] €] EC2 Management Console * tubeof

& C | & Secure | https://us-west-2.console.aws.amazon.com/ec2/v2/ho.. & ¢ & 2‘6 (G

£l Manuel Amunategul ~ Oregon ~ Support ~

M . v
AMis Create Load Balancer J¥.T-111,13 - I)

Bundle Tasks
tes or search by keyword None found

Volumes Name ~ DNS name - State *~ VPCID
Snapshots
You do not have any load balancers in this region
Security Groups
Elastic IPs
Placement Groups
Key Pairs

load balancer |_ NN
Network Interfaces

Load Balancers

Target Groups

Figure 17-4. “Load Balancers” can prevent an application from terminating;
this can kick in if you inadvertently start multiple instances with the same name.

Microsoft Azure (AWS)

Log into the Azure Dashboard, enter “All resources” in the search bar, and delete

everything you created (Figure 17-5).

amunategui@outiock.. (I8
AMUNATEGUICUTLOOK (DEF... -

Create a resource

Al services o Add S8 Editcolumns (L) Refresh & Assign

Subscriptions: Pay-As-You-Go

TES

All resource groups ~ | | Alllecations ~ | | No grouping w
Dashboard
3 of 3 items selected Show hidden types @
£ All resources RESCURKE GROUP LOCATION SUBSCRIPTION
Resource groups = a iintrod App Service myResourceGroup West US Pay-As-You-Go
App Services pdedGband4asxb3l Storage account cloud-shell-storage... West US Pay-As-You-Go
gy AppServicePlan App Service plan myResourceGroup ‘West US Pay-As-You-Go

Function Apps

Figure 17-5. Deleting unwanted resources under the “All resources” view

474

CHAPTER 17 CONCLUSION

PythonAnywhere.com

If you have opted for a paid account and want to downgrade back to a free account,
simply log into your PythonAnywhere dashboard and click the “Account” tab in the
upper-right corner. This is where you can upgrade and downgrade your account
depending on your needs. Click the “Downgrade to a free account” and your’e back
into the free tier (Figure 17-6).

L ®) Account : manuelamunategu X tubeol
“ C | @ Secure | https //www.pythonanywhere.com t Q | & @ :
Beginner: Free! Education accounts

A limited account with one web app 3t yourusername. pytionanywaere . con, festricted outbound Ing access from your Ase you a teacher looking for a

apps, low CPU/Bandwidth, no IPython/Jupyter notebook suppogd place your students can code

Python? You're not alone. Click
through 10 find out more about our

Figure 17-6. Downgrading to a free account on PythonAnywhere

Memberful.com

If you have gone through Chapter 16 and set up the paywall but would like to not incur
additional charges, you can easily downgrade back into the free tier. Log into your
Memberful account and click the “Account” button in the top-right corner, then choose
the “Plans and billing” tab. On this page you will find an option to “Downgrade to
Starter” link; click it and follow the instructions (Figure 17-7).

475

CHAPTER 17 CONCLUSION

® O ® @ manage your account ® tubeof

&« C | @ Secure | https://amunategui.memberful.com/admin/account/plan r & o @ :

Dashboard Members Plans Activity Settings Account Sign out

You're in test mode and can only place orders with test credit cards. Ready for real charges? Turn therg

Manage your account

Plans and billing

You're currently on the Pro plan. pewngrage to Staner

Thanks for helping to support our business. We appreciate it!

You're not accepting real payments yet, so we aren't charging you. We'll

automatically start your monthly charges when you turn on real payments.

Update your credit card

Figure 17-7. Downgrading to a starter account on Memberful

That’s it! And a huge thanks for reading this book!

476

Index

A

A/B testing, 401-424
Ajax, xxvii, xxxiv, 165, 332, 333
Alerting system, 167
Amazon Web Service (AWS)
deploying, 26, 34, 166
Eb commands, 154-156
Elastic Beanstalk, 26-34, 131, 150-159,
165-166, 254, 472
WSGI, 156-158
Analytics, xxxvi, 5, 393-399, 402
Analytics report, 396-397
Azure-cli, 76-82, 225-231, 367-371
Azure dashboard, 8-9, 16, 82, 84, 231, 233,
234,371,373, 474

B

Balancing data, 199-202

Beaufort scale, 250, 251

Bike Sharing Dataset, 39-42

Bootstrap, xxvii, xxxiv-xxxv, 91, 181, 183,
185-186

C

Cascading Style Sheets (CSS), xxxi-xxxii,
XXXivV, XXXV, 91

Categorical features, 50-51, 104, 133,
240, 246

© Manuel Amunategui, Mehdi Roopaei 2018

Cloud-based services
Amazon AWS, 1, 26-34
Google Cloud, 1, 16-25, 86, 93,
115-127, 263, 281-287, 305,
333-340, 471-472
Microsoft Azure, xxxvii, 1, 5-16, 39, 74,
82,91, 195, 225, 231, 341, 363-367,
371,474
PythonAnywhere, 1, 34-37, 186-189,
192-193, 289, 299-302, 375,
385-390, 401-423, 434-435,
449-455, 466, 475
Collaborative filtering
centering, 323-324
cosine similarity distance, 321-322
Euclidean distance, 320-321
similarity/distance measurement
tools, 320
Compressed Sparse Row matrix, 324

D

DataSF 195, 197-198
Data wrangling
categorical data
count(), 100, 103
groupby(), 100, 103
describe(), 97, 98
dummy feature
get_dummies(), 56, 104-105

477

M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8

https://doi.org/10.1007/978-1-4842-3873-8

INDEX

Data wrangling (cont.)
head(), 96

info(), 97, 98

isnull(), 97, 98

missing data, 98-99

tail(), 96
describe(), 47, 97, 98, 310-313, 346
Dow Jones Index (DJI), 169-171, 174-176
drop_duplicates(), 344

E

External spam datasets, 349-350

F

Feature engineering
np.select(), 206
np.where(), 206
time segments, 205-206
FinViz, 379-380
Flask, xxvii, xxxi-xxxiii, xxxvi, xxxix, 1-7,
12, 15-18, 20-23, 26, 33, 35-36,
67-73,87,88,91, 111,113, 114,
131, 146, 147, 149, 165, 166, 181,
183-185, 218, 219, 222, 235, 253,
259, 261, 287, 290, 291, 295,
331-332, 360-363, 393, 411, 412,
415, 426-431, 439, 442, 443, 446,
450, 452, 454-459, 466
fromtimestamp(), 310

G

Geocoordinates
rounding, 209-211
Git, xxxvii-xxxviii, 7-8, 10, 12-14, 74-76,
78-80, 85, 223-225, 227, 229-231,
363-368, 370-371

478

Git for Azure
azlogin, 77, 85, 226, 367
azure-cli, 71-82, 225-234, 367-374
git add, 223-224, 364-366
git commit, 8, 76, 85, 225, 366-367
git push, 15, 80, 82, 86, 229, 231,
370,371
git status, 74-75, 223-224, 364-365
Golf|Weather Data Set, 237-261
Google Analytics, xxxvi, 393-399
Google App Engine
Google Cloud shell, 19-20, 117-118,
281-282,333-334
Google Cloud
Flexible App Engine, 115-127, 281-287,
333-340
Google Cloud shell, 19-20, 117-118,
281-282,333-334
Google Cloud Flexible App Engine
appengine_config.py, 18, 20, 125
app.yaml, 18, 20, 24, 124, 281
GCP cloud shell, 117-118, 281-282
lib folder, 18, 120, 125, 126, 284, 336
main.py, 122-124
Google Map API
Google API key, 221
heatmap layer, 217
Graphical data, 208-209, 234
groupby(), 59, 100, 103, 212, 316, 343

H

head(), 45, 46, 96, 102, 325

Histogram, 50, 134-137, 314, 345, 346

HTML, xxvii, xxxi-xxxv, 18, 67, 69, 86, 87,
89, 111-113, 218, 261, 291, 292,
298, 301, 333, 387, 395, 397, 399,
404, 421, 426, 434-436, 439, 444,
445, 468

HTMLS5 Canvas, 274-276, 287
HTML forms
dynamic images, 112-113

Imbalanced classes, 135-137

info(), 46, 97, 132

Interactive web application
flask, 90

io.BytesIO(), 112, 291, 295

J, K

JavaScript, xxvii, xxxiii-xxxvi, 73, 74, 86,
88-90, 218, 332, 348, 393, 434,
460-461

JavaScript events, 359-360

JavaScript tracker, 395-396, 399

Jinja2, xxxii-xxxiii, 87-88, 91, 113, 291,
444-446

JQuery, xxxiv, 91

Jupyter notebooks, xxviii-xxx, 43-45, 95,
104, 122, 131, 135, 139, 169, 172,
197, 238, 246, 265, 268, 270, 274,
291, 292, 309, 324, 331, 343, 347,
381,410, 412

L

Lemmatization, 349

Machine learning, xxiii-xxix, 40, 41, 43,
130, 131, 168, 263, 343, 374, 469
Mailing lists, xxxvii, 35

INDEX

main.py, 2, 4-7, 18-20, 71, 72, 86-87, 114,
115, 122-124, 147, 184, 187, 190,
299, 300, 327-332, 386, 421, 422,
443, 466-468
Matplotlib, 112, 208, 211, 214-216, 266,
267,290-292, 295
Memberful, xxxv, xxxvi, 425, 432-438,
449-469, 471, 475-476
Memberful authentication
/account, 460
/auth/sign_in, 456, 460
/auth/sign_out, 460
/checkout, 435, 436, 460
flask session mechanism, 456
graphql, 457-459
Membership platforms, xxxv-xxxvi, 463-464
Message boards, xxxvi, 30, 32, 36, 153, 158
Microsoft Azure, xxxvii, 1, 5-8, 16, 39,
74-86, 91, 195, 225, 231, 341, 363,
371,474
Azure-cli, 76-82, 225-231, 367-371
MNIST dataset, 265-268, 276
Mobile web application
Bootstrap, 181, 183
fluid container, 181-183
form-validation, 185, 186
Modeling
cross-validation, 109, 139
gradient boosting, 58, 129-166
linear regression, 41, 48, 52-54, 61, 64,
65, 106
linear_regression(), 54
logistic regression, 93-127
model’s coefficient, 61, 63, 108
nonlinear regression, 54, 58
PolynomialFeatures(), 56
polynomial regression, 54-56
predictive survivorship, 108-110

479

INDEX

Modeling (cont.)
RMSE, 52, 54, 57, 58, 60
sklearn, 52-54, 56, 58, 60, 62, 64, 95,
106, 108, 129, 137, 138, 140, 237,
241-242, 350-357
time-series, 54, 58-60, 268
train_test_split(), 53, 106-107
Modeling with gradient boosting
confusion matrix, 141-143
evaluating the model, 139-143
gradient boosting classifier, 137-139
ground truth, 140-142, 145
learning rate, 139
persisting the model, 143-144
precision score, 140
predicting on new data, 144-146
Model’s performance
area under the curve, 356-357
confusion matrix, 354-355
f1-score, 354
model’s threshold, 357-359
precision, 354
recall, 106, 354
receiving operating characteristic,
342, 356
Movie genres, 315, 329-331
MovieLens dataset
movield, 307, 308, 312, 315, 317-319,
330, 331
ratings, 307-315, 317-319, 323-327,
330, 331
userld, 307, 317-320, 324
MySQL
command line monitor, 408-409
create database, 409
create table, 409-410
create user, 411
drop table, 410

480

mysql.connector
connect(), 412
INSERT, 412, 413
SELECT, 412-413
UPDATE, 412, 414

N

Naive Bayes
sklearn’s GaussianNB, 241-242
Nasdaq’s company list, 377-378
Nasdaq website, 377-378, 385
Natural language processing (NLP), 95,
104, 268, 341-374

O

OpenWeatherMap, 237, 242-252, 259-261
OpenWeatherMap API, 252

P

Pair trading, 168-169, 175, 184, 186-187,
189-192, 292-295, 299, 302, 375-
376, 384, 385, 390, 394-397, 425,
449, 450, 463, 466, 468
Parsimonious model, 61-66
Payment platform, xxxvi, 442
PayPal, xxxvi, 439-442
pd.Categorical(), 138, 351
Plots, 48, 113, 134, 137, 141, 174-175, 179,
204, 208, 209, 214, 219, 290, 293,
297,313, 316, 345
Preparing the data
concat(), 171
cumulative sum, 173-174
percent change, 173-174
pivot(), 172
scaling the data, 173

PythonAnywhere
bash pip install, 388, 455
Flask-SSLity, 454-455
PythonAnywhere MySQL settings,
418-420, 466-467
WSGI, 189-192
WSGI configuration, 190-191

Q

Quantitative features, 48-50, 350, 352
Quantitative trading
pair trading strategy, 168-169
stock behavior, 168

R

Random forest classifier, 352-353

Rating Category, 314

Rating Frequency, 314

Rating Histogram, 314

readlines(), 430

Recommender systems, 307, 340

Recommending movies, 305-307

Regression coefficients, 39-91

Regular expression, 348-349

requirements.txt, xxxix-xli, 2, 7, 18, 20, 22,
149, 296, 383, 427

Review culture, 313-317

R-squared, 62-63

S

Secure Shell (SSH), 30-32, 153, 156,
164-165, 254

Serverless cloud, xxv, xxvii, 7, 37, 115

Serverless technologies, 1-37

SF Crime Heat Map, 197-198

INDEX

Singular value decomposition (SVD),
305-340
SMS Spam Collection Data Set, 341, 343
Static, xxv, xxxvi, xxxvii, 18, 88, 187, 188
Stemming, 349
Stock charts, 289, 291-292, 298
Stripe, xxxv, xxxvi, 425, 432, 442-447
Subscriber
@auth.login_required, 428
Flask-HTTPAuth, 426-428
HTTPBasicAuth, 426
HTTPDigestAuth, 428, 430
subscribing system, 432
text-based authentication, 425, 426
Subscription paywall, 449-469

T

templates/index.html, 88-90
TensorFlow
accuracy, 271
checkpoint, 274, 278
conv2d(), 270
convolutional neural
network, 268
cross entropy, 270
loss function, 270
max_pool(), 270
modelling layers, 269-270
Saver(), 273
softmax, 270
tf.nn, 270
tf session, 273
Term frequency-inverse
document frequency
(TFIDF), 341, 347-350
Text wrangling, 347-348
TfidfVectorizer, 350-351

481

INDEX

Titanic dataset, 93
Tracking ID, 394, 395
Tracking users, 404
Trading ideas, 175-183
Traffic sources, 397-398

U

Universally Unique Identifier (UUID),
404-405, 413-415
User reviews, 315

\"

Virtual environments, xxxviii-xl, 2, 5, 7,
30, 33, 148-150, 221, 224, 234,
252,254, 257, 279, 282, 287, 296,
328, 334, 339, 340, 362, 365, 372,
383, 384

Visualizing, 134, 208-209, 217

482

W, XY Z
Weather forecasts, 237, 242, 246, 251
Web application
awscli, 254
awsebcli, 254
eb, 254, 255
eb open, 255, 256
Elastic Beanstalk, 254, 257
HTML Tables, 297-298
Sandbox, xxxviii, xxxix, 148-150
virtual environment, Xxxviii-xxxix,
148-150
WSGIApplicationGroup, 254-255
Web plugins, xxix, xxxv, 447
Wikipedia API, 305, 331, 379, 391
Wine-quality dataset
info(), 133, 134
value_counts(), 133, 134
Word count, 344, 345, 350

	Table of Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Serverless Technologies
	A Simple Local Flask Application
	Step 1: Basic “Hello World!” Example
	Step 2: Start a Virtual Environment
	Step 3: Install Flask
	Step 4: Run Web Application
	Step 5: View in Browser
	Step 6: A Slightly Faster Way
	Step 7: Closing It All Down

	Introducing Serverless Hosting on Microsoft Azure
	Step 1: Get an Account on Microsoft Azure
	Step 2: Download Source Files
	Supporting Files

	Step 3: Install Git
	Step 4: Open Azure Cloud Shell
	Step 5: Create a Deployment User
	Step 6: Create a Resource Group
	Step 7: Create an Azure Service Plan
	Step 8: Create a Web App

	Check Your Website Placeholder
	Step 9: Pushing Out the Web Application
	Step 10: View in Browser
	Step 11: Don’t Forget to Delete Your Web Application!
	Conclusion and Additional Information

	Introducing Serverless Hosting on Google Cloud
	Step 1: Get an Account on Google Cloud
	Step 2: Download Source Files
	Step 3: Open Google Cloud Shell
	Step 4: Upload Flask Files to Google Cloud
	Step 5: Deploy Your Web Application on Google Cloud
	Step 6: Don’t Forget to Delete Your Web Application!
	Conclusion and Additional Information

	Introducing Serverless Hosting on Amazon AWS
	Step 1: Get an Account on Amazon AWS
	Step 2: Download Source Files
	Step 3: Create an Access Account for Elastic Beanstalk
	Step 4: Install Elastic Beanstalk (EB)
	Step 5: EB Command Line Interface
	Step 6: Take if for a Spin
	Step 7: Don’t Forget to Turn It Off!
	Conclusion and Additional Information

	Introducing Hosting on PythonAnywhere
	Step 1: Get an Account on PythonAnywhere
	Step 2: Set Up Flask Web Framework
	Conclusion and Additional Information

	Summary

	Chapter 2: Client-Side Intelligence Using Regression Coefficients on Azure
	Understanding Bike Rental Demand with Regression Coefficients
	Exploring the Bike Sharing Dataset
	Downloading the Data from the UCI Machine Learning Repository
	Working with Jupyter Notebooks
	Exploring the Data

	A Closer Look at Our Outcome Variable
	Quantitative Features vs. Rental Counts
	Let’s Look at Categorical Features
	Preparing the Data for Modeling
	Regression Modeling
	Simple Linear Regression
	A Simple Model

	Experimenting with Feature Engineering
	Modeling with Polynomials
	Creating Dummy Features from Categorical Data
	Trying a Nonlinear Model
	Even More Complex Feature Engineering—Leveraging Time-Series

	A Parsimonious Model
	Extracting Regression Coefficients from a Simple Model—an Easy Way to Predict Demand without Server-Side Computing
	R-Squared
	Predicting on New Data Using Extracted Coefficients

	Designing a Fun and Interactive Web Application to Illustrate Bike Rental Demand
	Abstracting Code for Readability and Extendibility
	Building a Local Flask Application
	Downloading and Running the Bike Sharing GitHub Code Locally
	Debugging Tips

	Microsoft Azure—Mounting a Web Application for the First Time
	Git—Getting All Projects in Git
	The azure-cli Command Line Interface Tool
	Step 1: Logging In
	Step 2: Create Credentials for Your Deployment User
	Step 3: Create your Resource Group
	Step 4: Create Your Azure App Service Plan
	Step 5: Create Your Web App
	Step 6: Push git Code to Azure
	Important Cleanup!
	Troubleshooting
	Steps Recap

	What’s Going on Here? A Look at the Scripts and Technology Used in Our Web Application
	main.py
	/static/ folder
	/templates/index.html folder and script

	Conclusion
	Additional Resources

	Chapter 3: Real-Time Intelligence with Logistic Regression on GCP
	Planning our Web Application
	Data Wrangling
	Dealing with Categorical Data
	Creating Dummy Features from Categorical Data

	Modeling
	Train/Test Split
	Logistic Regression
	Predicting Survivorship

	Abstracting Everything in Preparation for the Cloud
	Function startup()
	Function submit_new_profile()

	Interactivity with HTML Forms
	Creating Dynamic Images
	Downloading the Titanic Code
	Google Cloud Flexible App Engine
	Google App Engine

	Deploying on Google App Engine
	Step 1: Fire Up Google Cloud Shell
	Step 2: Zip and Upload All Files to the Cloud
	Step 3: Create Working Directory on Google Cloud and Unzip Files
	Step 4: Creating Lib Folder
	Step 5: Deploying the Web Application

	Troubleshooting
	Closing-Up Shop
	What’s Going on Here?
	main.py
	app.yaml
	appengine_config.py & lib folder
	requirements.txt

	Steps Recap
	Conclusion

	Chapter 4: Pretrained Intelligence with Gradient Boosting Machine on AWS
	Planning our Web Application: What Makes a Top-Rated Wine?
	Exploring the Wine-Quality Dataset
	Working with Imbalanced Classes
	Modeling with Gradient Boosting Classifiers
	Evaluating the Model
	Persisting the Model
	Predicting on New Data

	Designing a Web Application to Interact and Evaluate Wine Quality
	Introducing AJAX – Dynamic Server-Side Web Rendering
	Working in a Virtual Environment—a Sandbox for Experimentation, Safety and Clarity
	Amazon Web Services (AWS) Elastic Beanstalk
	Create an Access Account for Elastic Beanstalk
	Elastic Beanstalk
	EB Command Line Interface
	Fix the WSGIApplicationGroup
	Creating the EB
	Take if for a Spin

	Don’t Forget to Turn It Off!
	Steps Recap
	Troubleshooting
	Access the Logs
	SSH into your Instance

	Conclusion

	Chapter 5: Case Study Part 1: Supporting Both Web and Mobile Browsers
	The Pair-Trading Strategy
	Downloading and Preparing the Data
	Preparing the Data
	Pivoting by Symbol

	Scaling the Price Market Data
	Percent Change and Cumulative Sum

	Plotting the Spread
	Serving up Trading Ideas
	Finding Extreme Cases
	Making Recommendations

	Calculating the Number of Shares to Trade
	Designing a Mobile-Friendly Web Application to Offer Trading Ideas
	Fluid Containers

	Running the Local Flask Version
	What’s Going on Here?
	Bootstrap Input Field Validation

	Running on PythonAnywhere
	Fixing the WSGI File
	Source Code
	WSGI Configuration
	Reload Web Site

	Troubleshooting PythonAnywhere
	Conclusion

	Chapter 6: Displaying Predictions with Google Maps on Azure
	Planning our Web Application
	Exploring the Dataset on SF Crime Heat Map on DataSF
	Data Cleanup
	Rebalancing the Dataset
	Exploring by Day-of-the-Week
	Feature Engineering
	Creating a Month-of-the-Year Feature
	Creating Time Segments
	Exploring by Time Segment

	Visualizing Geographical Data
	Rounding Geocoordinates to Create Zone Buckets

	Using the Past to Predict the Future
	Google Maps Introduction
	Heatmap Layer

	Google Maps with Crime Data
	Abstracting Our Crime Estimator
	Designing a Web Application to Enable Viewers to Enter a Future Date and Visualize Crime Hotspots
	Add Your Google API Key
	Take It for a Spin

	Git for Azure
	The azure-cli Command Line Interface Tool
	Step 1: Logging In
	Step 2: Create Credentials for Your Deployment User
	Step 3: Create Your Resource Group
	Step 4: Create your Azure App Service Plan
	Step 5: Create your Web App
	Step 6: Push Git Code to Azure

	Troubleshooting
	Don’t Forget to Turn It Off!
	Conclusion

	Chapter 7: Forecasting with Naive Bayes and OpenWeather on AWS
	Exploring the Dataset
	Naive Bayes
	Sklearn’s GaussianNB
	Realtime OpenWeatherMap
	Forecasts vs. Current Weather Data
	Translating OpenWeatherMap to “Golf|Weather Data”

	Designing a Web Application “Will I Golf Tomorrow?” with Real Forecasted Weather Data
	Download the Web Application

	Running on AWS Elastic Beanstalk
	Fix the WSGIApplicationGroup
	Take It for a Spin
	Don’t Forget to Turn It Off!

	Conclusion
	Accessing OpenWeatherMap Data
	Try/Catch
	Handling User-Entered-Data

	Chapter 8: Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP
	The MNIST Dataset
	TensorFlow
	Modeling with TensorFlow and Convolutional Networks
	Placeholders (tf.placeholder)
	Building Modeling Layers
	Loss Function
	Instantiating the Session
	Training
	Accuracy
	Running the Script

	Running a Saved TensorFlow Model
	Save That Model!
	Drawing Canvas
	From Canvas to TensorFlow

	Testing on New Handwritten Digits
	Designing a Web Application
	Download the Web Application
	Google Cloud Flexible App Engine
	Deploying on Google App Engine
	Step 1: Fire Up Google Cloud Shell
	Step 2: Zip and Upload All Files to the Cloud
	Step 3: Create Working Directory on Google Cloud and Unzip Files
	Step 4: Creating Lib Folder
	Step 5: Deploying the Web Application

	Troubleshooting
	Closing Up Shop
	Conclusion
	HTML5 <canvas> tag
	TensorFlow
	Design

	Chapter 9: Case Study Part 2: Displaying Dynamic Charts
	Creating Stock Charts with Matplotlib
	Exploring the Pair-Trading Charts
	Designing a Web Application
	Mobile Friendly with Tables
	Uploading our Web Application to PythonAnywhere
	Conclusion

	Chapter 10: Recommending with Singular Value Decomposition on GCP
	Planning Our Web Application
	A Brief Overview of Recommender Systems
	Exploring the MovieLens Dataset
	More from the MovieLens Dataset’s Liner Notes

	Overview of “ratings.csv” and “movies.csv”
	Understanding Reviews and Review Culture
	Getting Recommendations
	Collaborative Filtering
	Similarity/Distance Measurement Tools
	Euclidean Distance
	Cosine Similarity Distance
	Singular Value Decomposition
	Centering User Ratings Around Zero
	A Look at SVD in Action
	Downloading and Running the “What to Watch Next?” Code Locally
	What’s Going on Here?
	main.py
	index.html
	Deploying on Google App Engine
	Step 1: Fire Up Google Cloud Shell
	Step 2: Zip and Upload All Files to The Cloud
	Step 3: Create Working Directory on Google Cloud and Unzip Files
	Step 4: Creating Lib Folder
	Step 5: Deploying the Web Application

	Troubleshooting
	Closing Up Shop
	Conclusion

	Chapter 11: Simplifying Complex Concepts with NLP and Visualization on Azure
	Planning our Web Application—the Cost of Eliminating Spam
	Data Exploration
	Cleaning Text
	Text-Based Feature Engineering
	Text Wrangling for TFIDF
	NLP and Regular Expressions
	Using an External List of Typical Spam Words
	Feature Extraction with Sklearn’s TfidfVectorizer
	Preparing the Outcome Variable
	Modeling with Sklearn’s RandomForestClassifier
	Measuring the Model’s Performance
	Interacting with the Model’s Threshold

	Interacting with Web Graphics
	Building Our Web Application—Local Flask Version
	Deploying to Microsoft Azure
	Git for Azure
	The azure-cli Command Line Interface Tool
	Step 1: Logging In
	Step 2: Create Credentials for Your Deployment User
	Step 3: Create Your Resource Group
	Step 4: Create Your Azure App Service Plan
	Step 5: Create Your Web App
	Step 6: Push Git Code to Azure

	Important Cleanup!
	Troubleshooting
	Conclusion and Additional Resources

	Chapter 12: Case Study Part 3: Enriching Content with Fundamental Financial Information
	Accessing Listed Stocks Company Lists
	Pulling Company Information with the Wikipedia API
	Building a Dynamic FinViz Link

	Exploring Fundamentals
	Designing a Web Application
	Uploading Web Application to PythonAnywhere
	Conclusion

	Chapter 13: Google Analytics
	Create a Google Analytics Account
	JavaScript Tracker
	Reading Your Analytics Report
	Traffic Sources
	Pages
	Conclusion and Additional Resources

	Chapter 14: A/B Testing on PythonAnywhere and MySQL
	A/B Testing
	Tracking Users
	UUID

	MySQL
	Command Line Controls
	MySQL Command Line Monitor
	Creating a Database
	Creating a Table
	Creating A Database User

	Python Library: mysql.connector
	SELECT SQL Statement
	INSERT SQL Statement
	UPDATE SQL Statement

	Abstracting the Code into Handy Functions
	Designing a Web Application
	Running a Local Version

	Setting Up MySQL on PythonAnywhere
	A/B Testing on PythonAnywhere
	A/B Testing Results Dashboard
	Conclusion

	Chapter 15: From Visitor to Subscriber
	Text-Based Authentication
	Flask-HTTPAuth—Hard-Coded Account
	Digest Authentication Example
	Digest Authentication Example with an External Text File

	Simple Subscription Plugin Systems
	Memberful
	Create a Real Web Page to Sell a Fake Product
	Checking Your Vendor Dashboard

	Taking Donations with PayPal
	Making a Purchase with Stripe
	Conclusion

	Chapter 16: Case Study Part 4: Building a Subscription Paywall with Memberful
	Upgrading Your Memberful and PythonAnywhere Pay Accounts
	Upgrading Memberful
	Upgrading PythonAnywhere
	Pip Install Flask-SSLify

	Memberful Authentication
	Two-Step Process and Flask Session Mechanism
	Authentication Step 1
	Authentication Step 2
	Calling Memberful Functions

	Designing a Subscription Plan on Memberful.com
	Uploading the Web Application to PythonAnywhere
	Replacing Memberful and MySQL with Your Own Credentials

	What’s Going on Here?
	main.py
	welcome.html
	index.html

	Conclusion

	Chapter 17: Conclusion
	Turning It Off!
	Google Cloud (App Engine)
	Amazon Web Services (Beanstalk)
	Microsoft Azure (AWS)
	PythonAnywhere.com
	Memberful.com

	Index

