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FOREWORD

If you've read a book or two on computer security, you may have
encountered a common perspective on the field of cryptography.
“Cryptography,” they say, “is the strongest link in the chain.” Strong praise
indeed, but it’s also somewhat dismissive. If cryptography is in fact the
strongest part of your system, why invest time improving it when there are
so many other areas of the system that will benefit more from your
attention?

If there’s one thing that I hope you take away from this book, it’s that this
view of cryptography is idealized; it’s largely a myth. Cryptography in theory
is strong, but cryptography in practice is as prone to failure as any other
aspect of a security system. This is particularly true when cryptographic
implementations are developed by non-experts without sufficient care or
experience, as is the case with many cryptographic systems deployed today.
And it gets worse: when cryptographic implementations fail, they often do so
in uniquely spectacular ways.

But why should you care, and why this book?

When I began working in the field of applied cryptography nearly two
decades ago, the information available to software developers was often
piecemeal and outdated. Cryptographers developed algorithms and
protocols, and cryptographic engineers implemented them to create opaque,
poorly documented cryptographic libraries designed mainly for other
experts. There was—and there has been—a huge divide between those who
know and understand cryptographic algorithms and those who use them (or
ignore them at their peril). There are a few decent textbooks on the market,
but even fewer have provided useful tools for the practitioner.

The results have not been pretty. I'm talking about compromises with
labels like “CVE” and “Severity: High,” and in a few alarming cases, attacks
on slide decks marked “T'OP SECRET.” You may be familiar with some of
the more famous examples if only because they’ve affected systems that you
rely on. Many of these problems occur because cryptography is subtle and
mathematically elegant, and because cryptographic experts have failed to
share their knowledge with the engineers who actually write the software.

Thankfully, this has begun to change and this book is a symptom of that

change.



Serious Cryptography was written by one of the foremost experts in applied
cryptography, but it’s not targeted at other experts. Nor, for that matter, is it
intended as a superficial overview of the field. On the contrary, it contains a
thorough and up-to-date discussion of cryptographic engineering, designed
to help practitioners who plan to work in this field do better. In these pages,
you’ll learn not only how cryptographic algorithms work, but how to use
them in real systems.

The book begins with an exploration of many of the key cryptographic
primitives, including basic algorithms like block ciphers, public encryption
schemes, hash functions, and random number generators. Each chapter
provides working examples of how the algorithms work and what you should
or should 7ot do. Final chapters cover advanced subjects such as TLS, as well
as the future of cryptography—what to do after quantum computers arrive
to complicate our lives.

While no single book can solve all our problems, a bit of knowledge can
go a long way. This book contains plenty of knowledge. Perhaps enough to
make real, deployed cryptography live up to the high expectations that so
many have of it.

Happy reading.

Matthew D. Green
Professor
Information Security Institute

Johns Hopkins University



PREFACE

I wrote this book to be the one I wish I had when I started learning crypto.
In 2005, I was studying for my masters degree near Paris, and I eagerly
registered for the crypto class in the upcoming semester. Unfortunately, the
class was canceled because too few students had registered. “Crypto is too
hard,” the students argued, and instead, they enrolled en masse in the
computer graphics and database classes.

I’'ve heard “crypto is hard” more than a dozen times since then. But is
crypto really zhat hard? To play an instrument, master a programming
language, or put the applications of any fascinating field into practice, you
need to learn some concepts and symbols, but doing so doesn’t take a PhD. I
think the same applies to becoming a competent cryptographer. I also
believe that crypto is perceived as hard because cryptographers haven’t done
a good job of teaching it.

Another reason why I felt the need for this book is that crypto is no longer
just about crypto—it has expanded into a multidisciplinary field. To do
anything useful and relevant in crypto, you’ll need some understanding of
the concepts around crypto: how networks and computers work, what users
and systems need, and how attackers can abuse algorithms and their
implementations. In other words, you need a connection to reality.

This Book’s Approach

The initial title of this book was Crypto for Real to stress the practice-
oriented, real-world, no-nonsense approach I aimed to follow. I didn’t want
to make cryptography approachable by dumbing it down, but instead tie it to
real applications. I provide source code examples and describe real bugs and
horror stories.

Along with a clear connection to reality, other cornerstones of this book



are its simplicity and modernity. I focus on simplicity in form more than in
substance: I present many non-trivial concepts, but without the dull
mathematical formalism. Instead, I attempt to impart an understanding of
cryptography’s core ideas, which are more important than remembering a
bunch of equations. To ensure the book’s modernity, I cover the latest
developments and applications of cryptography, such as TLS 1.3 and post-
quantum cryptography. I don’t discuss the details of obsolete or insecure
algorithms such as DES or MD5. An exception to this is RC4, but it’s only
included to explain how weak it is and to show how a stream cipher of its
kind works.

Serious Cryptography isn’t a guide for crypto software, nor is it a
compendium of technical specifications—stuff that you’ll easily find online.
Instead, the foremost goal of this book is to get you excited about crypto and
to teach you its fundamental concepts along the way.

Who This Book Is For

While writing, I often imagined the reader as a developer who’d been
exposed to crypto but still felt clueless and frustrated after attempting to read
abstruse textbooks and research papers. Developers often need—and want—

a better grasp of crypto to avoid unfortunate design choices, and I hope this
book will help.

But if you aren’t a developer, don’t worry! The book doesn’t require any
coding skills, and is accessible to anyone who understands the basics of
computer science and college-level math (notions of probabilities, modular
arithmetic, and so on).

This book can nonetheless be intimidating, and despite its relative
accessibility, it requires some effort to get the most out of it. I like the
mountaineering analogy: the author paves the way, providing you with ropes
and ice axes to facilitate your work, but you make the ascent yourself.
Learning the concepts in this book will take an effort, but there will be a
reward at the end.

How This Book Is Organized

The book has fourteen chapters, loosely split into four parts. The chapters
are mostly independent from one another, except for Chapter 9, which lays
the foundations for the three subsequent chapters. I also recommend reading



the first three chapters before anything else.

Fundamentals

Chapter 1: Encryption introduces the notion of secure encryption,
from weak pen-and-paper ciphers to strong, randomized encryption.
Chapter 2: Randomness describes how a pseudorandom generator
works, what it takes for one to be secure, and how to use one securely.
Chapter 3: Cryptographic Security discusses theoretical and practical
notions of security, and compares provable security with probable
security.

Symmetric Crypto

Chapter 4: Block Ciphers deals with ciphers that process messages
block per block, focusing on the most famous one, the Advanced

Encryption Standard (AES).

Chapter 5: Stream Ciphers presents ciphers that produce a stream of
random-looking bits that are XORed with messages to be encrypted.
Chapter 6: Hash Functions is about the only algorithms that
don’t work with a secret key, which turn out to be the most ubiquitous
crypto building blocks.

Chapter 7: Keyed Hashing explains what happens if you combine a
hash function with a secret key, and how this serves to authenticate
messages.

Chapter 8: Authenticated Encryption shows how some algorithms
can both encrypt and authenticate a message with examples, such as the

standard AES-GCM.

Asymmetric Crypto

Chapter 9: Hard Problems lays out the fundamental concepts behind
public-key encryption, using notions from computational complexity.
Chapter 10: RSA leverages the factoring problem in order to build
secure encryption and signature schemes with a simple arithmetic
operation.



o Chapter 11: Diffie-Hellman extends asymmetric cryptography to the
notion of key agreement, wherein two parties establish a secret value
using only non-secret values.

o Chapter 12: Elliptic Curves provides a gentle introduction to elliptic
curve cryptography, which is the fastest kind of asymmetric

cryptography.
Applications

o Chapter 13: TLS focuses on Transport Layer Security (TLS),

arguably the most important protocol in network security.

o Chapter 14: Quantum and Post-Quantum concludes with a note of
science fiction by covering the concepts of quantum computing and
a new kind of cryptography.
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1
ENCRYPTION

Encryption is the principal application of cryptography; it makes data
incomprehensible in order to ensure its confidentiality. Encryption uses an
algorithm called a cipher and a secret value called the key; if you don’t know
the secret key, you can’t decrypt, nor can you learn any bit of information on
the encrypted message—and neither can any attacker.

This chapter will focus on symmetric encryption, which is the simplest
kind of encryption. In symmetric encryption, the key used to decrypt is the
same as the key used to encrypt (unlike asymmetric encryption, or public-key
encryption, in which the key used to decrypt is different from the key used to
encrypt). You’'ll start by learning about the weakest forms of symmetric
encryption, classical ciphers that are secure against only the most illiterate
attacker, and then move on to the strongest forms that are secure forever.

The Basics

When we’re encrypting a message, plaintext refers to the unencrypted
message and ciphertext to the encrypted message. A cipher is therefore
composed of two functions: encryption turns a plaintext into a ciphertext, and
decryption turns a ciphertext back into a plaintext. But we’ll often say “cipher”
when we actually mean “encryption.” For example, Figure 1-1 shows a
cipher, E, represented as a box taking as input a plaintext, P, and a key, K,
and producing a ciphertext, C, as output. I'll write this relation as C = E(K,
P). Similarly, when the cipher is in decryption mode, I'll write D(K, C).
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P—»| E |—»=C C—»{ D }—=F

Figure 1-1: Basic encryption and decryption

For some ciphers, the ciphertext is the same size as the plaintext; for some others,
the ciphertext is slightly longer. However, ciphertexts can never be shorter than
plaintexts.

Classical Ciphers

Classical ciphers are ciphers that predate computers and therefore work on
letters rather than on bits. They are much simpler than a modern cipher like
DES—for example, in ancient Rome or during WWI, you couldn’t use a
computer chip’s power to scramble a message, so you had to do everything
with only pen and paper. There are many classical ciphers, but the most
famous are the Caesar cipher and Vigenere cipher.

The Caesar Cipher

The Caesar cipher is so named because the Roman historian Suetonius
reported that Julius Caesar used it. It encrypts a message by shifting each of
the letters down three positions in the alphabet, wrapping back around to A
if the shift reaches Z. For example, ZOO encrypts to CRR, FDHVDU
decrypts to CAESAR, and so on, as shown in Figure 1-2. There’s nothing
special about the value 3; it’s just easier to compute in one’s head than 11 or
23.

The Caesar cipher is super easy to break: to decrypt a given ciphertext,
simply shift the letters three positions back to retrieve the plaintext. That
said, the Caesar cipher may have been strong enough during the time of
Crassus and Cicero. Because no secret key is involved (it’s always 3), users of
Caesar’s cipher only had to assume that attackers were illiterate or too
uneducated to figure it out—an assumption that’s much less realistic today.
(In fact, in 2006, the Italian police arrested a mafia boss after decrypting



messages written on small scraps of paper that were encrypted using a
variant of the Caesar cipher: ABC was encrypted to 456 instead of DEF, for

example.)
A E
' ¥

>>>3 >>>3 =>>>3 >>>3 >>>3 >33

—-— ()
—
-— >
— O

g < -

s
R

—— T -.—

<<<3 <<<3 <<<3 <<<3 <<<3 <<<3
c A E S R

Figure 1-2: The Caesar cipher

Could the Caesar cipher be made more secure? You can, for example,
imagine a version that uses a secret shift value instead of always using 3, but
that wouldn’t help much because an attacker could easily try all 25 possible
shift values until the decrypted message makes sense.

The Vigenere Cipher

It took about 1500 years to see a meaningful improvement of the Caesar
cipher in the form of the Vigenére cipher, created in the 16th century by an
Italian named Giovan Battista Bellaso. The name “Vigenere” comes from
the Frenchman Blaise de Vigenere, who invented a different cipher in the
16th century, but due to historical misattribution, Vigenere’s name stuck.
Nevertheless, the Vigenere cipher became popular and was later used during

the American Civil War by Confederate forces and during WWI by the

Swiss Army, among others.

The Vigenere cipher is similar to the Caesar cipher, except that letters
aren’t shifted by three places but rather by values defined by a key, a
collection of letters that represent numbers based on their position in the
alphabet. For example, if the key is DUH, letters in the plaintext are shifted
using the values 3, 20, 7 because D is three letters after 4, U is 20 letters
after A, and H is seven letters after A. The 3, 20, 7 pattern repeats until



you've encrypted the entire plaintext. For example, the word CRYPTO
would encrypt to FLFESNV using DUH as the key: C is shifted three
positions to F, R is shifted 20 positions to L, and so on. Figure 1-3 illustrates
this principle when encrypting the sentence THEY DRINK THE TEA.

Y D R I N K T H E T E A

D O O I O N A N

Unsw20|H~7 ||D~3 |IJU~20]|H~7 || D~3|[U~20|H~7 || D~3|JU~20||H~7||D~3 ||U~20||H~7

>5520|| 5257 || 2253 ||2>20|| 557 || 2523 ||>2220]] 5557 || 2223 ||=>220]| 2257 || >3 [|>>=20]] >>>7

B S S S S R S S S e S s B R

W B L B X Y L H R W B L W Y H
Figure 1-3: The Vigenére cipher

The Vigenere cipher is clearly more secure than the Caesar cipher, yet it’s
still fairly easy to break. The first step to breaking it is to figure out the key’s
length. For example, take the example in Figure 1-3, wherein THEY
DRINK THE TEA encrypts to WBLBXYLHRWBLWYH with the key
DUH. (Spaces are usually removed to hide word boundaries.) Notice that in
the ciphertext WBLBXYLHRWBLWYH, the group of three letters WBL
appears twice in the ciphertext at nine-letter intervals. This suggests that the
same three-letter word was encrypted using the same shift values, producing
WBL each time. A cryptanalyst can then deduce that the key’s length is
either nine or a value divisible by nine (that is, three). Furthermore, they
may guess that this repeated three-letter word is THE and therefore
determine DUH as a possible encryption key.

The second step to breaking the Vigenere cipher is to determine the
actual key using a method called frequency analysis, which exploits the uneven
distribution of letters in languages. For example, in English, E is the most
common letter, so if you find that X is the most common letter in a
ciphertext, then the most likely plaintext value at this position is E.

Despite its relative weakness, the Vigenére cipher may have been good
enough to securely encrypt messages when it was used. First, because the
attack just outlined needs messages of at least a few sentences, it wouldn’t
work if the cipher was used to encrypt only short messages. Second, most
messages needed to be secret only for short periods of time, so it didn’t
matter if ciphertexts were eventually decrypted by the enemy. (The 19th-
century cryptographer Auguste Kerckhoffs estimated that most encrypted
wartime messages required confidentiality for only three to four hours.)



How Ciphers Work

Based on simplistic ciphers like the Caesar and Vigenere ciphers, we can try
to abstract out the workings of a cipher, first by identifying its two main
components: a permutation and a mode of operation. A permutation is a
function that transforms an item (in cryptography, a letter or a group of bits)
such that each item has a unique inverse (for example, the Caesar cipher’s
three-letter shift). A mode of operation is an algorithm that uses a permutation
to process messages of arbitrary size. The mode of the Caesar cipher is
trivial: it just repeats the same permutation for each letter, but as you’ve
seen, the Vigenere cipher has a more complex mode, where letters at
different positions undergo different permutations.

In the following sections, I discuss in more detail what these are and how
they relate to a cipher’s security. I use each component to show why classical
ciphers are doomed to be insecure, unlike modern ciphers that run on high-
speed computers.

The Permutation

Most classical ciphers work by replacing each letter with another letter—in
other words, by performing a substitution. In the Caesar and Vigenere
ciphers, the substitution is a shift in the alphabet, though the alphabet or set
of symbols can vary: instead of the English alphabet, it could be the Arabic
alphabet; instead of letters, it could be words, numbers, or ideograms, for
example. The representation or encoding of information is a separate matter
that is mostly irrelevant to security. (We're just considering Latin letters
because that’s what classical ciphers use.)

A cipher’s substitution can’t be just any substitution. It should be a
permutation, which is a rearrangement of the letters 4 to Z, such that each
letter has a unique inverse. For example, a substitution that transforms the
letters A, B, C, and D, respectively to C, A, D, and B is a permutation,
because each letter maps onto another single letter. But a substitution that
transforms A, B, C, D to D, A, A, C is not a permutation, because both B and
C map onto A. With a permutation, each letter has exactly one inverse.

Still, not every permutation is secure. In order to be secure, a cipher’s
permutation should satisfy three criteria:

o The permutation should be determined by the key, so as to keep



the permutation secret as long as the key is secret. In the Vigenere
cipher, if you don’t know the key, you don’t know which of the 26
permutations was used; hence, you can’t easily decrypt.

 Different keys should result in different permutations. Otherwise,
it becomes easier to decrypt without the key: if different keys result in
identical permutations, that means there are fewer distinct keys than
distinct permutations, and therefore fewer possibilities to try when
decrypting without the key. In the Vigenere cipher, each letter from the
key determines a substitution; there are 26 distinct letters, and as many
distinct permutations.

e The permutation should look random, loosely speaking. There
should be no pattern in the ciphertext after performing a permutation,
because patterns make a permutation predictable for an attacker, and
therefore less secure. For example, the Vigenere cipher’s substitution is
pretty predictable: if you determine that A encrypts to F, you could
conclude that the shift value is 5 and you would also know that B
encrypts to G, that C encrypts to H, and so on. However, with a
randomly chosen permutation, knowing that 4 encrypts to F would
only tell you that B does not encrypt to F.

We'll call a permutation that satisfies these criteria a secure permutation.
But as you’ll see next, a secure permutation is necessary but not sufficient on
its own for building a secure cipher. A cipher will also need a mode of
operation to support messages of any length.

The Mode of Operation

Say we have a secure permutation that transforms 4 to X, B to M, and N to
L, for example. The word BANANA therefore encrypts to MXLXLX, where
each occurrence of A is replaced by an X. Using the same permutation for all
the letters in the plaintext thus reveals any duplicate letters in the plaintext.
By analyzing these duplicates, you might not learn the entire message, but
you'll learn something about the message. In the BANANA example, you
don’t need the key to guess that the plaintext has the same letter at the three
X positions and another same letter at the two L positions. So if you know,

for example, that the message is a fruit’s name, you could determine that it’s
BANANA rather than CHERRY, LYCHEE, or another six-letter fruit.

The mode of operation (or just 7zode) of a cipher mitigates the exposure of



duplicate letters in the plaintext by using different permutations for
duplicate letters. The mode of the Vigenere cipher partially addresses this: if
the key is N letters long, then N different permutations will be used for every
N consecutive letters. However, this can still result in patterns in the
ciphertext because every Nth letter of the message uses the same
permutation. That’s why frequency analysis works to break the Vigenere
cipher, as you saw earlier.

Frequency analysis can be defeated if the Vigenere cipher only encrypts
plaintexts that are of the same length as the key. But even then, there’s
another problem: reusing the same key several times exposes similarities
between plaintexts. For example, with the key KYN, the words TIE and PIE
encrypt to DGR and ZGR, respectively. Both end with the same two letters
(GR), revealing that both plaintexts share their last two letters as well.
Finding these patterns shouldn’t be possible with a secure cipher.

To build a secure cipher, you must combine a secure permutation with a
secure mode. Ideally, this combination prevents attackers from learning
anything about a message other than its length.

Why Classical Ciphers Are Insecure

Classical ciphers are doomed to be insecure because they’re limited to
operations you can do in your head or on a piece of paper. They lack the
computational power of a computer and are easily broken by simple
computer programs. Let’s see the fundamental reason why that simplicity
makes them insecure in today’s world.

Remember that a cipher’s permutation should look random in order to be
secure. Of course, the best way to look random is to be random—that is, to
select every permutation randomly from the set of all permutations. And
there are many permutations to choose from. In the case of the 26-letter
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English alphabet, there are approximately 2°° permutations:

26! = 403291461126605635584000000 ~ 258
Here, the exclamation point (!) is the factorial symbol, defined as follows:
n=nxn-1)xn-2)x...x3x2

(To see why we end up with this number, count the permutations as lists



of reordered letters: there are 26 choices for the first possible letter, then 25
possibilities for the second, 24 for the third, and so on.) This number is
huge: it’s of the same order of magnitude as the number of atoms in the
human body. But classical ciphers can only use a small fraction of those
permutations—namely, those that need only simple operations (such as
shifts) and that have a short description (like a short algorithm or a small
look-up table). The problem is that a secure permutation can’t accommodate
both of these limitations.

You can get secure permutations using simple operations by picking a
random permutation, representing it as a table of 25 letters (enough to
represent a permutation of 26 letters, with the 26th one missing), and
applying it by looking up letters in this table. But then you wouldn’t have a
short description. For example, it would take 250 letters to describe 10
different permutations, rather than just the 10 letters used in the Vigenere
cipher.

You can also produce secure permutations with a short description.
Instead of just shifting the alphabet, you could use more complex operations
such as addition, multiplication, and so on. That’s how modern ciphers
work: given a key of typically 128 or 256 bits, they perform hundreds of bit
operations to encrypt a single letter. This process is fast on a computer that
can do billions of bit operations per second, but it would take hours to do by
hand, and would still be vulnerable to frequency analysis.

Perfect Encryption: The One-Time Pad

Essentially, a classical cipher can’t be secure unless it comes with a huge key,
but encrypting with a huge key is impractical. However, the one-time pad is
such a cipher, and it is the most secure cipher. In fact, it guarantees perfect
secrecy: even if an attacker has unlimited computing power, it’s impossible to
learn anything about the plaintext except for its length.

In the next sections, I’ll show you how a one-time pad works and then
offer a sketch of its security proof.

Encrypting with the One-Time Pad

The one-time pad takes a plaintext, P, and a random key, K, that’s the same
length as P and produces a ciphertext C, defined as



C=P®K

where C, P, and K are bit strings of the same length and where @ is the
bitwise exclusive OR operation (XOR), definedas0 ® 0=0,0® 1=1,1®
0=1,1®1=0.

DIm presenting the one-time pad in its usual form, as working on bits, but it can
be adapted to other symbols. With letters, for example, you would end up with a
variant of the Caesar cipher with a shift index picked at random for each letter.

The one-time pad’s decryption is identical to encryption; it’s just an XOR:
P=C ® K. Indeed, we can verify C ® K=P ® K ® K = P because XORing K
with itself gives the all-zero string 000 ... 000. That’s it—even simpler than
the Caesar cipher.

For example, if P=01101101 and K= 10110100, then we can calculate the
following:

C=P&® K=01101101 & 10110100 =11011001

Decryption retrieves P by computing the following:

P=C® K=11011001 & 10110100 = 01101101

The important thing is that a one-time pad can only be used one time: each
key K should be used only once. If the same K is used to encrypt P; and P, to

C| and C,, then an eavesdropper can compute the following:

An eavesdropper would thus learn the XOR difference of P; and P,

information that should be kept secret. Moreover, if either plaintext message
is known, then the other message can be recovered.

Of course, the one-time pad is utterly inconvenient to use because it
requires a key as long as the plaintext and a new random key for each new
message or group of data. To encrypt a one-terabyte hard drive, you’d need
another one-terabyte drive to store the key! Nonetheless, the one-time pad



has been used throughout history. For example, it was used by the British
Special Operations Executive during WWII, by KGB spies, by the NSA, and
is still used today in specific contexts. (I've heard of Swiss bankers who
couldn’t agree on a cipher trusted by both parties and ended up using one-
time pads, but I don’t recommend doing this.)

Why Is the One-Time Pad Secure?

Although the one-time pad is not practical, it’s important to understand
what makes it secure. In the 1940s, American mathematician Claude
Shannon proved that the one-time pad’s key must be at least as long as the
message to achieve perfect secrecy. The proof’s idea is fairly simple. You
assume that the attacker has unlimited power, and thus can try all the keys.
The goal is to encrypt such that the attacker can’t rule out any possible
plaintext given some ciphertext.

The intuition behind the one-time pad’s perfect secrecy goes as follows: if
K is random, the resulting C looks as random as K to an attacker because the
XOR of a random string with any fixed string yields a random string. T'o see
this, consider the probability of getting 0 as the first bit of a random string
(namely, a probability of 1/2). What’s the probability that a random bit
XORed with the second bit is 0? Right, 1/2 again. The same argument can
be iterated over bit strings of any length. The ciphertext C' thus looks
random to an attacker that doesn’t know K| so it’s literally impossible to
learn anything about P given C, even for an attacker with unlimited time and
power. In other words, knowing the ciphertext gives no information
whatsoever about the plaintext except its length—pretty much the definition
of a secure cipher.

For example, if a ciphertext is 128 bits long (meaning the plaintext is 128

bits as well), there are 2128

2128

possible ciphertexts; therefore, there should be
possible plaintexts from the attacker’s point of view. But if there are

fewer than 2128 possible keys, the attacker can rule out some plaintexts. If the
key is only 64 bits, for example, the attacker can determine the 26* possible
plaintexts and rule out the overwhelming majority of 128-bit strings. The
attacker wouldn’t learn what the plaintext is, but they would learn what the

plaintext is not, which makes the encryption’s secrecy imperfect.

As you can see, you must have a key as long as the plaintext to achieve
perfect security, but this quickly becomes impractical for real-world use.



Next, I'll discuss the approaches taken in modern-day encryption to achieve
the best security that’s both possible and practical.

é )
PROBABILITY IN CRYPTOGRAPHY

A probability is a number that expresses the likelihood, or
chance, of some event happening. It’s expressed as a number
between 0 and 1, where 0 means “never” and 1 means
“always.” The higher the probability, the greater the chance.
You’ll find many explanations of probability, usually in terms
of white balls and red balls in a bag and the probability of
picking a ball of either color.

Cryptography often uses probabilities to measure an
attack’s chances of success, by 1) counting the number of
successful events (for example, the event “find the one correct
secret key”) and 2) counting the total number of possible

events (for example, the total number of keys is 27 if we deal
with 7-bit keys). In this example, the probability that a

randomly chosen key is the correct one is 1/2”, or the count
of successful events (1 secret key) and the count of possible

events (2” possible keys). The number 1/2” is negligibly small
for common key lengths such as 128 and 256.

The probability of an event not happening is 1 — p, if the
event’s probability is p. The probability of getting a wrong

key in our previous example is therefore 1 — 1/2”) a number
very close to 1, meaning almost certainty.

. J

Encryption Security

You've seen that classical ciphers aren’t secure and that a perfectly secure
cipher like the one-time pad is impractical. We’ll thus have to give a little in
terms of security if we want secure and usable ciphers. But what does



“secure” really mean, besides the obvious and informal “eavesdroppers can’t
decrypt secure messages”?

Intuitively, a cipher is secure if, even given a large number of plaintext—
ciphertext pairs, nothing can be learned about the cipher’s behavior when
applied to other plaintexts or ciphertexts. This opens up new questions:

o« How does an attacker come by these pairs? How large is a “large
number”? This is all defined by artack models, assumptions about what
the attacker can and cannot do.

o What could be “learned” and what “cipher’s behavior” are we talking
about? This is defined by security goals, descriptions of what is
considered a successful attack.

Attack models and security goals must go together; you can’t claim that a
system is secure without explaining against whom or from what it’s safe. A
security notion is thus the combination of some security goal with some attack
model. We’ll say that a cipher achieves a certain security notion if any
attacker working in a given model can’t achieve the security goal.

Attack Models

An attack model is a set of assumptions about how attackers might interact
with a cipher and what they can and can’t do. The goals of an attack model
are as follows:

e To set requirements for cryptographers who design ciphers, so that
they know what attackers and what kinds of attacks to protect against.

e To give guidelines to users, about whether a cipher will be safe to use in
their environment.

e To provide clues for cryptanalysts who attempt to break ciphers, so they
know whether a given attack is valid. An attack is only valid if it’s doable
in the model considered.

Attack models don’t need to match reality exactly; they’re an
approximation. As the statistician George E. P. Box put it, “all models are
wrong; the practical question is how wrong do they have to be to not be
useful.” To be useful in cryptography, attack models should at least
encompass what attackers can actually do to attack a cipher. It’s okay and a



good thing if a model overestimates attackers’ capabilities, because it helps
anticipate future attack techniques—only the paranoid cryptographers
survive. A bad model underestimates attackers and provides false confidence
in a cipher by making it seem secure in theory when it’s not secure in reality.

Kerckhoffs’s Principle

One assumption made in all models is the so-called Kerckhoffs’s principle,
which states that the security of a cipher should rely only on the secrecy of
the key and not on the secrecy of the cipher. This may sound obvious today,
when ciphers and protocols are publicly specified and used by everyone. But
historically, Dutch linguist Auguste Kerckhoffs was referring to military
encryption machines specifically designed for a given army or division.
Quoting from his 1883 essay “La Cryptographie Militaire,” where he listed
six requirements of a military encryption system: “T'he system must not
require secrecy and can be stolen by the enemy without causing trouble.”

Black-Box Models

Let’s now consider some useful attack models expressed in terms of what the
attacker can observe and what queries they can make to the cipher. A query
for our purposes is the operation that sends an input value to some function
and gets the output in return, without exposing the details of that function.

An encryption query, for example, takes a plaintext and returns a
corresponding ciphertext, without revealing the secret key.

We call these models black-box models, because the attacker only sees what
goes in and out of the cipher. For example, some smart card chips securely
protect a cipher’s internals as well as its keys, yet you're allowed to connect
to the chip and ask it to decrypt any ciphertext. The attacker would then
receive the corresponding plaintext, which may help them determine the
key. That’s a real example where decryption queries are possible.

There are several different black-box attack models. Here, I list them in
order from weakest to strongest, describing attackers’ capabilities for each
model:

o Ciphertext-only attackers (COA) observe ciphertexts but don’t know the
associated plaintexts, and don’t know how the plaintexts were selected.
Attackers in the COA model are passive and can’t perform encryption
or decryption queries.



o Known-plaintext attackers (KPA) observe ciphertexts and do know the
associated plaintexts. Attackers in the KPA model thus get a list of
plaintext—ciphertext pairs, where plaintexts are assumed to be randomly
selected. Again, KPA is a passive attacker model.

o Chosen-plaintext attackers (CPA) can perform encryption queries for
plaintexts of their choice and observe the resulting ciphertexts. This
model captures situations where attackers can choose all or part of the
plaintexts that are encrypted and then get to see the ciphertexts. Unlike
COA or KPA, which are passive models, CPA are active attackers,
because they influence the encryption processes rather than passively
eavesdropping.

o Chosen-ciphertext attackers (CCA) can both encrypt and decrypt; that is,
they get to perform encryption queries and decryption queries. The
CCA model may sound ludicrous at first—if you can decrypt, what else
do you need?—but like the CPA model, it aims to represent situations
where attackers can have some influence on the ciphertext and later get
access to the plaintext. Moreover, decrypting something is not always
enough to break a system. For example, some video-protection devices
allow attackers to perform encryption queries and decryption queries
using the device’s chip, but in that context attackers are interested in the
key in order to redistribute it; in this case, being able to decrypt “for
free” isn’t sufficient to break the system.

In the preceding models, ciphertexts that are observed as well as queried
don’t come for free. Each ciphertext comes from the computation of the

encryption function. This means that generating 2” plaintext—ciphertext
pairs through encryption queries takes about as much computation as trying

2" keys, for example. The cost of queries should be taken into account when
you’re computing the cost of an attack.

Gray-Box Models

In a gray-box model, the attacker has access to a cipher’s implementation. This
makes gray-box models more realistic than black-box models for applications
such as smart cards, embedded systems, and virtualized systems, to which
attackers often have physical access and can thus tamper with the algorithms’
internals. By the same token, gray-box models are more difficult to define
than black-box ones because they depend on physical, analog properties



rather than just on an algorithm’s input and outputs, and crypto theory will
often fail to abstract the complexity of the real world.

Side-channel attacks are a family of attacks within gray-box models. A side
channel is a source of information that depends on the implementation of
the cipher, be it in software or hardware. Side-channel attackers observe or
measure analog characteristics of a cipher’s implementation but don’t alter
its integrity; they are noninvasive. For pure software implementations, typical
side channels are the execution time and the behavior of the system that
surrounds the cipher, such as error messages, return values, branches, and so
on. In the case of implementations on smart cards, for example, typical side-
channel attackers measure power consumption, electromagnetic emanations,
or acoustic noise.

Invasive attacks are a family of attacks on cipher implementations that are
more powerful than side-channel attacks, and more expensive because they
require sophisticated equipment. You can run basic side-channel attacks with
a standard PC and an off-the-shelf oscilloscope, but invasive attacks require
tools such as a high-resolution microscopes and a chemical lab. Invasive
attacks thus consist of a whole set of techniques and procedures, from using
nitric acid to remove a chip’s packaging to microscopic imagery acquisition,
partial reverse engineering, and possible modification of the chip’s behavior
with something like laser fault injection.

Security Goals

I've informally defined the goal of security as “nothing can be learned about
the cipher’s behavior.” To turn this idea into a rigorous mathematical
definition, cryptographers define two main security goals that correspond to
different ideas of what it means to learn something about a cipher’s behavior:

Indistinguishability IND) Ciphertexts should be indistinguishable from
random strings. This is usually illustrated with this hypothetical game: if
an attacker picks two plaintexts and then receives a ciphertext of one of
the two (chosen at random), they shouldn’t be able to tell which plaintext
was encrypted, even by performing encryption queries with the two
plaintexts (and decryption queries, if the model is CCA rather than CPA).

Non-malleability (NM) Given a ciphertext C; = E(K| Py), it should be

impossible to create another ciphertext, C,, whose corresponding



plaintext, P,, is related to P; in a meaningful way (for example, to create a
P, that is equal to P; & 1 or to P; ® X for some known value X).
Surprisingly, the one-time pad is malleable: given a ciphertext C; = P; @
K, you can define C, = C; @& 1, which is a valid ciphertext of P, = P; & 1
under the same key K. Oops, so much for our perfect cipher.

Next, I'll discuss these security goals in the context of different attack
models.

Security Notions

Security goals are only useful when combined with an attack model. The
convention is to write a security notion as GOAL-MODEL. For example,
IND-CPA denotes indistinguishability against chosen-plaintext attackers,
NM-CCA denotes nonmalleability against chosen-ciphertext attackers, and
so on. Let’s start with the security goals for an attacker.

Semantic Security and Randomized Encryption: IND-CPA

The most important security notion is IND-CPA, also called semantic
security. It captures the intuition that ciphertexts shouldn’t leak any
information about plaintexts as long as the key is secret. To achieve IND-
CPA security, encryption must return different ciphertexts if called twice on
the same plaintext; otherwise, an attacker could identify duplicate plaintexts
from their ciphertexts, contradicting the definition that ciphertexts shouldn’t
reveal any information.

One way to achieve IND-CPA security is to use randomized encryption. As
the name suggests, it randomizes the encryption process and returns
different ciphertexts when the same plaintext is encrypted twice. Encryption
can then be expressed as C = E(K, R, P), where R is fresh random bits.
Decryption remains deterministic, however, because given E(K, R, P), you
should always get P, regardless of the value of R.

What if encryption isn’t randomized? In the IND game introduced in
“Security Goals” on page 12, the attacker picks two plaintexts, P; and P,
and receives a ciphertext of one of the two, but doesn’t know which plaintext
the ciphertext corresponds to. That is, they get C; = E(K, P;) and have to
guess whether 7 is 1 or 2. In the CPA model, the attacker can perform
encryption queries to determine both C; = E(K, P;) and C, = E(K, P;). If



encryption isn’t randomized, it suffices to see if C; is equal to C; or to C, in

order to determine which plaintext was encrypted and thereby win the IND
game. Therefore, randomization is key to the IND-CPA notion.

With randomized encryption, ciphertexts must be slightly longer than plaintexts
in order to allow for more than one possible ciphertext per plaintext. For
example, if there are 2% possible ciphertexts per plaintext, ciphertexts must be at
least 64 bits longer than plaintexts.

Achieving Semantically Secure Encryption

One of the simplest constructions of a semantically secure cipher uses a
deterministic random bit generator (DRBG), an algorithm that returns random-
looking bits given some secret value:

E(K, R, P) = (DRBG(K || R) ® P, R)

Here, R is a string randomly chosen for each new encryption and given to
a DRBG along with the key (K || R denotes the string consisting of K
followed by R). This approach is reminiscent of the one-time pad: instead of
picking a random key of the same length as the message, we leverage a
random bit generator to get a random-looking string.

The proof that this cipher is IND-CPA secure is simple, if we assume that
the DRBG produces random bits. The proof works ad absurdum: if you can
distinguish ciphertexts from random strings, which means that you can
distinguish DRBG(K | | R) @ P from random, then this means that you can
distinguish DRBG(K || R) from random. Remember that the CPA model
lets you get ciphertexts for chosen values of P, so you can XOR P to
DRBG(K, R) ® P and get DRBG(K, R). But now we have a contradiction,
because we started by assuming that DRBG(K, R) can’t be distinguished
from random, producing random strings. So we conclude that ciphertexts
can’t be distinguished from random strings, and therefore that the cipher is
secure.

e




As an exercise, try to determine what other security notions are satisfied by the
above cipher E(K, R, P) = (DRBG(K || R) & P, R). Is it NM-CPA? IND-
CCA? You’ll find the answers in the next section.

Comparing Security Notions

You've learned that attack models such as CPA and CCA are combined with
security goals such as NM and IND to build the security notions NM-CPA,
NM-CCA, IND-CPA, and IND-CCA. How are these notions related? Can
we prove that satisfying notion X implies satisfying notion Y?

Some relations are obvious: IND-CCA implies IND-CPA, and NM-CCA
implies NM-CPA, because anything a CPA attacker can do, a CCA attacker
can do as well. That is, if you can’t break a cipher by performing chosen-
ciphertext and chosen-plaintext queries, you can’t break it by performing
chosen-plaintext queries only.

A less obvious relation is that IND-CPA does not imply NM-CPA. To
understand this, observe that the previous IND-CPA construction
(DRBG(K || R) @ P, R) is not NM-CPA: given a ciphertext (X, R), you can
create the ciphertext (X @ 1, R), which is a valid ciphertext of P @ 1, thus
contradicting the notion of non-malleability.

But the opposite relation does hold: NM-CPA implies IND-CPA. The
intuition is that IND-CPA encryption is like putting items in a bag: you
don’t get to see them, but you can rearrange their positions in the bag by
shaking it up and down. NM-CPA is more like a safe: once inside, you can’t
interact with what you put in there. But this analogy doesn’t work for IND-
CCA and NM-CCA, which are equivalent notions that each imply the
presence of the other. I’ll spare you the proof, which is pretty technical.

( )

TWO TYPES OF ENCRYPTION APPLICATIONS

There are two main types of encryption applications. In-
transit encryption protects data sent from one machine to
another: data is encrypted before being sent and decrypted
after being received, as in encrypted connections to e-
commerce websites. At-rest encryption protects data stored on
an information system. Data is encrypted before being written




to memory and decrypted before being read. Examples
include disk encryption systems on laptops as well as virtual
machine encryption for cloud virtual instances. The security
notions we’ve seen apply to both types of applications, but the
right notion to consider may depend on the application.
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Asymmetric Encryption

So far we’ve considered only symmetric encryption, where two parties share
a key. In asymmetric encryption, there are two keys: one to encrypt and
another to decrypt. The encryption key is called a public key and is generally
considered publicly available to anyone who wants to send you encrypted
messages. The decryption key, however, must remain secret and is called a
private key.

The public key can be computed from the private key, but obviously the
private key can’t be computed from the public key. In other words, it’s easy
to compute in one direction, but not in the other—and that’s the point of
public-key cryptography, whose functions are easy to compute in one direction
but practically impossible to invert.

The attack models and security goals for asymmetric encryption are about
the same as for symmetric encryption, except that because the encryption
key is public, any attacker can make encryption queries by using the public
key to encrypt. The default model for asymmetric encryption is therefore
the chosen-plaintext attacker (CPA).

Symmetric and asymmetric encryption are the two main types of
encryption, and they are usually combined to build secure communication
systems. They’re also used to form the basis of more sophisticated schemes,
as you’ll see next.

When Ciphers Do More Than Encryption

Basic encryption turns plaintexts into ciphertexts and ciphertexts into
plaintexts, with no requirements other than security. However, some
applications often need more than that, be it extra security features or extra
functionalities. That’s why cryptographers created variants of symmetric and
asymmetric encryption. Some are well-understood, efficient, and widely



deployed, while others are experimental, hardly used, and offer poor
performance.

Authenticated Encryption

Authenticated encryption (AE) is a type of symmetric encryption that returns
an authentication tag in addition to a ciphertext. Figure 1-4 shows
authenticated encryption sets AE(K, P) = (C, T), where the authentication
tag T is a short string that’s impossible to guess without the key. Decryption
takes K, C, and T and returns the plaintext P only if it verifies that 7 is a valid
tag for that plaintext—ciphertext pair; otherwise, it aborts and returns some
error.
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Figure 1-4: Authenticated encryption

The tag ensures the integrity of the message and serves as evidence that the
ciphertext received is identical to the one sent in the first place by a
legitimate party that knows the key K. When K is shared with only one other
party, the tag also guarantees that the message was sent by that party; that is,
it implicitly authenticates the expected sender as the actual creator of the
message.

I use “creator” rather than “sender” here because an eavesdropper can record
some (C, 'T') pairs sent by party A to party B and then send them again to B,
pretending to be A. This is called a replay attack, and it can be prevented, for
example, by including a counter number in the message. When a message is
decrypted, its counter 1 is increased by one: 1 + 1. In this way, one could check the
counter to see if a message bas been sent twice, indicating that an attacker is
attempting a replay attack by resending the message. This also enables the
detection of lost messages.

Authenticated encryption with associated data (AEAD) is an extension of



authenticated encryption that takes some cleartext and unencrypted data and
uses it to generate the authentication tag AEAD(K, P, A) = (C, T). A typical
application of AEAD is used to protect protocols’ datagrams with a cleartext
header and an encrypted payload. In such cases, at least some header data has
to remain in the clear; for example, destination addresses need to be clear in
order to route network packets.

For more on authenticated encryption, jump to Chapter 8.

Format-Preserving Encryption

A basic cipher takes bits and returns bits; it doesn’t care whether bits
represents text, an image, or a PDF document. The ciphertext may in turn
be encoded as raw bytes, hexadecimal characters, base64, and other formats.
But what if you need the ciphertext to have the same format as the plaintext,
as is sometimes required by database systems that can only record data in a
prescribed format?

Format-preserving encryption (FPE) solves this problem. It can create
ciphertexts that have the same format as the plaintext. For example, FPE can
encrypt IP addresses to IP addresses (as shown in Figure 1-5), ZIP codes to
ZIP codes, credit card numbers to credit card numbers with a wvalid
checksum, and so on.

K

'

127.0.0.1—s= FPE [—=212.91.12.2

Figure 1-5: Format-preserving encryption for IP addresses

Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) is the holy grail to cryptographers: it
enables its users to replace a ciphertext, C = E(K, P), with another ciphertext,
¢ = EK, F(P)), for F(P) can be any function of P, and without ever
decrypting the initial ciphertext C. For example, P can be a text document,
and F can be the modification of part of the text. You can imagine a cloud
application that stores your encrypted data, but where the cloud provider
doesn’t know what the data is or the type of changes made when you change
that data. Sounds amazing, doesn’t it?



But there’s a flip side: this type of encryption is slow—so slow that even
the most basic operation would take an unacceptably long time. The first
FHE scheme was created in 2009, and since then more efficient variants
appeared, but it remains unclear whether FHE will ever be fast enough to be

useful.
Searchable Encryption

Searchable encryption enables searching over an encrypted database without
leaking the searched terms by encrypting the search query itself. Like fully
homomorphic encryption, searchable encryption could enhance the privacy
of many cloud-based applications by hiding your searches from your cloud
provider. Some commercial solutions claim to offer searchable encryption,
though they’re mostly based on standard cryptography with a few tricks to
enable partial searchability. As of this writing, however, searchable
encryption remains experimental within the research community.

Tweakable Encryption

Tweakable encryption (TE) is similar to basic encryption, except for an
additional parameter called the fwesk, which aims to simulate different
versions of a cipher (see Figure 1-6). The tweak might be a unique per-
customer value to ensure that a customer’s cipher can’t be cloned by other
parties using the same product, but the main application of TE is disk
encryption. However, TE is not bound to a single application and is a lower-
level type of encryption used to build other schemes, such as authentication
encryption modes.
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Figure 1-6: Tweakable encryption

In disk encryption, TE encrypts the content of storage devices such as
hard drives or solid-state drives. (Randomized encryption can’t be used



because it increases the size of the data, which is unacceptable for files on
storage media.) To make encryption unpredictable, TE uses a tweak value
that depends on the position of the data encrypted, which is usually a sector
number or a block index.

How Things Can Go Wrong

Encryption algorithms or implementations thereof can fail to protect
confidentiality in many ways. This can be due to a failure to match the
security requirements (such as “be IND-CPA secure”) or to set requirements
matching reality (if you target only IND-CPA security when attackers can
actually perform chosen-ciphertext queries). Alas, many engineers don’t even
think about cryptographic security requirements and just want to be “secure”
without understanding what that actually means. That’s usually a recipe for
disaster. Let’s look at two examples.

Weak Cipher

Our first example concerns ciphers that can be attacked using cryptanalysis
techniques, as occurred with the 2G mobile communication standard.
Encryption in 2G mobile phones used a cipher called A5/1 that turned out
to be weaker than expected, enabling the interception of calls by anyone with
the right skills and tools. Telecommunication operators had to find
workarounds to prevent the attack.

The 2G standard also defined A5/2, a cipher for areas other than the EU and
US. A572 was purposefully weaker to prevent the use of stromg encryption
everywhere.

That said, attacking AS5/1 isn’t trivial, and it took more than 10 years for
researchers to come up with an effective cryptanalysis method. Furthermore,
the attack is a time-memory trade-off (TMTO), a type of method that first runs
computations for days or weeks in order to build large look-up tables, which
are subsequently used for the actual attack. For AS/1, the precomputed
tables are more than 1'T'B. Later standards for mobile encryption, such as 3G
and LTE, specify stronger ciphers, but that doesn’t mean that their
encryption won’t be compromised; rather, it simply means that the



encryption won’t be compromised by breaking the symmetric cipher that’s
part of the system.

Wrong Model

The next example concerns an invalid attack model that overlooked some
side channels.

Many communication protocols that use encryption ensure that they use
ciphers considered secure in the CPA or CCA model. However, some
attacks don’t require encryption queries, as in the CPA model, nor do they
require decryption queries, as in the CCA model. They simply need validizy
queries to tell whether a ciphertext is valid, and these queries are usually sent
to the system responsible for decrypting ciphertexts. Padding oracle attacks are
an example of such attacks, wherein an attacker learns whether a ciphertext
conforms to the required format.

Specifically, in the case of padding oracle attacks, a ciphertext is valid only
if its plaintext has the proper padding, a sequence of bytes appended to the
plaintext to simplify encryption. Decryption fails if the padding is incorrect,
and attackers can often detect decryption failures and attempt to exploit
them. For example, the presence of the Java exception
javax.crypto.BadPaddingException would indicate that an incorrect padding was
observed.

In 2010, researchers found padding oracle attacks in several web
application servers. The validity queries consisted of sending a ciphertext to
some system and observing whether it threw an error. Thanks to these
queries, they could decrypt otherwise secure ciphertexts without knowing
the key.

Cryptographers often overlook attacks like padding oracle attacks because
they usually depend on an application’s behavior and on how users can
interact with the application. But if you don’t anticipate such attacks and fail
to include them in your model when designing and deploying cryptography,
you may have some nasty surprises.

Further Reading

We discuss encryption and its various forms in more detail throughout this
book, especially how modern, secure ciphers work. Still, we can’t cover
everything, and many fascinating topics won’t be discussed. For example, to



learn the theoretical foundations of encryption and gain a deeper
understanding of the notion of indistinguishability (IND), you should read
the 1982 paper that introduced the idea of semantic security, “Probabilistic
Encryption and How to Play Mental Poker Keeping Secret All Partial
Information” by Goldwasser and Micali. If you’re interested in physical
attacks and cryptographic hardware, the proceedings of the CHES
conference are the main reference.

There are also many more types of encryption than those presented in this
chapter, including attribute-based encryption, broadcast encryption,
functional  encryption, identity-based encryption, message-locked
encryption, and proxy re-encryption, to cite but a few. For the latest
research on those topics, you should check hetps://eprint.iacr.org/, an
electronic archive of cryptography research papers.


https://eprint.iacr.org/

2
RANDOMNESS

Randomness is found everywhere in cryptography: in the generation of
secret keys, in encryption schemes, and even in the attacks on cryptosystems.
Without randomness, cryptography would be impossible because all
operations would become predictable, and therefore insecure.

This chapter introduces you to the concept of randomness in the context
of cryptography and its applications. We discuss pseudorandom number
generators and how operating systems can produce reliable randomness, and
we conclude with real examples showing how flawed randomness can impact
security.

Random or Non-Random?

You've probably already heard the phrase “random bits,” but strictly
speaking there is no such thing as a series of random bits. What is random is
actually the algorithm or process that produces a series of random bits;
therefore, when we say “random bits,” we actually mean randomly generated
bits.

What do random bits look like? For example, to most people, the 8-bit
string 11010110 is more random than 00000000, although both have the
same chance of being generated (namely, 1/256). The value 11010110 looks
more random than 00000000 because it has the signs typical of a randomly
generated value. That is, 11010110 has no obvious pattern.

When we see the string 11010110, our brain registers that it has about as
many zeros (three) as it does ones (five), just like 55 other 8-bit strings
(11111000, 11110100, 11110010, and so on), but only one 8-bit string has
eight zeros. Because the pattern three-zeros-and-five-ones is more likely to



occur than the pattern eight-zeros, we identify 11010110 as random and
00000000 as non-random, and if a program produces the bits 11010110, you
may think that it’s random, even if it’s not. Conversely, if a randomized
program produces 00000000, you’ll probably doubt that it’s random.

This example illustrates two types of errors people often make when
identifying randomness:

Mistaking non-randomness for randomness Thinking that an object
was randomly generated simply because it Jooks random.

Mistaking randomness for non-randomness Thinking that patterns
appearing by chance are there for a reason other than chance.

The distinction between random-looking and actually random is crucial.
Indeed, in crypto, non-randomness is often synonymous with insecurity.

Randomness as a Probability Distribution

Any randomized process is characterized by a probability distribution, which
gives all there is to know about the randomness of the process. A probability
distribution, or simply distribution, lists the outcomes of a randomized
process where each outcome is assigned a probability.

A probability measures the likelihood of an event occurring. It’s expressed
as a real number between 0 and 1 where a probability 0 means impossible
and a probability of 1 means certain. For example, when tossing a two-sided
coin, each side has a probability of landing face up of 1/2, and we usually
assume that landing on the edge of the coin has probability zero.

A probability distribution must include all possible outcomes, such that
the sum of all probabilities is 1. Specifically, if there are N possible events,
there are N probabilities py, py, ..., py With p; + p; + ... + pyy= 1. In the case
of the coin toss, the distribution is 1/2 for heads and 1/2 for tails. The sum
of both probabilities is equal to 1/2 + 1/2 = 1, because the coin will fall on
one of its two faces.

A uniform distribution occurs when all probabilities in the distribution are
equal, meaning that all outcomes are equally likely to occur. If there are N
events, then each event has probability 1/N. For example, if a 128-bit key is
picked uniformly at random—that is, according to a uniform distribution—
then each of the 2128 possible keys should have a probability of 1/21%8,



In contrast, when a distribution is non-uniform, probabilities aren’t all
equal. A coin toss with a non-uniform distribution is said to be biased, and
may yield heads with probability 1/4 and tails with probability 3/4, for
example.

Entropy: A Measure of Uncertainty

Entropy is the measure of uncertainty, or disorder in a system. You might
think of entropy as the amount of surprise found in the result of a
randomized process: the higher the entropy, the less the certainty found in
the result.

We can compute the entropy of a probability distribution. If your
distribution consists of probabilities py, py, ... , pns then its entropy is the
negative sum of all probabilities multiplied by their logarithm, as shown in
this expression:

—p1 % log(py) — p, % log(py) — ... — py * log(py)

Here the function /log is the binary logarithm, or logarithm in base two.
Unlike the natural logarithm, the binary logarithm expresses the information
in bits and yields integer values when probabilities are powers of two. For
example, log(1/2) = -1, log(1/4) = -2, and more generally log(1/2") = -n.
(That’s why we actually take the megative sum, in order to end up with a
positive number.) Random 128-bit keys produced using a uniform
distribution therefore have the following entropy:

2128 x (~27128 x log(2712%)) = ~log(2"1%9) = 128 bits

If you replace 128 by any integer # you will find that the entropy of a
uniformly distributed z-bit string will be 7 bits.

Entropy is maximized when the distribution is uniform because a uniform
distribution maximizes uncertainty: no outcome is more likely than the
others. Therefore, 7-bit values can’t have more than # bits of entropy.

By the same token, when the distribution is not uniform, entropy is lower.
Consider the coin toss example. The entropy of a fair toss is the following:

~(1/2) x log (1/2) — (1/2) x log (1/2) = 1/2 + 1/2 = 1 bit



What if one side of the coin has a higher probability of landing face up
than the other? Say heads has a probability of 1/4 and tails 3/4 (remember
that the sum of all probabilities should be 1).

The entropy of such a biased toss is this:
—(3/4) x log(3/4) — (1/4) x log(1/4) ~ —(3/4) x (~0.415) — (1/4) x (-2) ~ 0.81 bit

The fact that 0.81 is less than the 1-bit entropy of a fair toss tells us that
the more biased the coin, the less uniform the distribution and the lower the
entropy. Taking this example further, if heads has a probability of 1/10, the
entropy is 0.469; if the probability drops to 1/100, the entropy drops to
0.081.

Entropy can also be viewed as a measure of information. For example, the result
of a fair coin toss gives you exactly one bit of information—hbeads or tails—and
you're unable to predict the result of the toss in advance. In the case of the unfair
coin toss, you know in advance that tails is more probable, so you can usually
predict the outcome of the toss. The result of the coin toss gives you the
information needed to predict the result with certainty.

Random Number Generators (RNGs) and Pseudorandom
Number Generators (PRNGs)

Cryptosystems need randomness to be secure and therefore need a
component from which to get their randomness. The job of this component
is to return random bits when requested to do so. How is this randomness
generation done? You’ll need two things:

e A source of uncertainty, or source of entropy, provided by random
number generators (RNGs).

e A cryptographic algorithm to produce high-quality random bits from
the source of entropy. This is found in pseudorandom number

generators (PRNGs).

Using RNGs and PRNGs is the key to making cryptography practical and
secure. Let’s briefly look at how RNGs work before exploring PRNGs in



depth.

Randomness comes from the environment, which is analog, chaotic,
uncertain, and hence unpredictable. Randomness can’t be generated by
computer-based algorithms alone. In cryptography, randomness usually
comes from random number generators (RNGs), which are software or
hardware components that leverage entropy in the analog world to produce
unpredictable bits in a digital system. For example, an RNG might directly
sample bits from measurements of temperature, acoustic noise, air
turbulence, or electrical static. Unfortunately, such analog entropy sources
aren’t always available, and their entropy is often difficult to estimate.

RNGs can also harvest the entropy in a running operating system by
drawing from attached sensors, I/O devices, network or disk activity, system
logs, running processes, and user activities such as key presses and mouse
movement. Such system- and human-generated activities can be a good
source of entropy, but they can be fragile and manipulated by an attacker.
Also, they’re slow to yield random bits.

Quantum random number generators (QRNGs) are a type of RNG that relies
on the randomness arising from quantum mechanical phenomena such as
radioactive decay, vacuum fluctuations, and observing photons’ polarization.
These can provide 7es/ randomness, rather than just apparent randomness.
However, in practice, QRINGs may be biased and don’t produce bits quickly;
like the previously cited entropy sources, they need an additional component
to produce reliably at high speed.

Pseudorandom number generators (PRNGs) address the challenge we face in
generating randomness by reliably producing many artificial random bits
from a few true random bits. For example, an RNG that translates mouse
movements to random bits would stop working if you stop moving the
mouse, whereas a PRNG always returns pseudorandom bits when requested
to do so.

PRNGs rely on RNGs but behave differently: RNGs produce true
random bits relatively slowly from analog sources, in a nondeterministic way,
and with no guarantee of high entropy. In contrast, PRNGs produce
random-looking bits quickly from digital sources, in a deterministic way, and
with maximum entropy. Essentially, PRNGs transform a few unreliable
random bits into a long stream of reliable pseudorandom bits suitable for
crypto applications, as shown in Figure 2-1.
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Figure 2-1: RNGs produce few unreliable bits from analog sources, whereas PRNGs expand those
bits to a long stream of reliable bits.

How PRNGs Work

A PRNG receives random bits from an RNG at regular intervals and uses
them to update the contents of a large memory buffer, called the entropy pool.
The entropy pool is the PRNG’s source of entropy, just like the physical
environment is to an RNG. When the PRNG updates the entropy pool, it
mixes the pool’s bits together to help remove any statistical bias.

In order to generate pseudorandom bits, the PRNG runs a deterministic
random bit generator (DRBG) algorithm that expands some bits from the
entropy pool into a much longer sequence. As its name suggests, a DRBG is
deterministic, not randomized: given one input you will always get the same
output. The PRNG ensures that its DRBG never receives the same input
twice, in order to generate unique pseudorandom sequences.

In the course of its work, the PRNG performs three operations, as
follows:

init() Initializes the entropy pool and the internal state of the PRNG

refresh(R) Updates the entropy pool using some data, R, usually sourced
from an RNG

next(N) Returns N pseudorandom bits and updates the entropy pool

The init operation resets the PRNG to a fresh state, reinitializes the
entropy pool to some default value, and initializes any variables or memory
buffers used by the PRNG to carry out the refresh and next operations.

The refresh operation is often called reseeding, and its argument R is called
a seed. When no RNG is available, seeds may be unique values hardcoded in
a system. The refresh operation is typically called by the operating system,
whereas next is typically called or requested by applications. The next
operation runs the DRBG and modifies the entropy pool to ensure that the
next call will yield different pseudorandom bits.

Security Concerns
Let’s talk briefly about the way that PRNGs address some high-level



security concerns. Specifically, PRNGs should guarantee backtracking
resistance and prediction resistance. Backtracking resistance (also called forward
secrecy) means that previously generated bits are impossible to recover,
whereas prediction resistance (backward secrecy) means that future bits should
be impossible to predict.

In order to achieve backtracking resistance, the PRNG should ensure that
the transformations performed when updating the state through the refresh
and next operations are irreversible so that if an attacker compromises the
system and obtains the entropy pool’s value, they can’t determine the
previous values of the pool or the previously generated bits. To achieve
prediction resistance, the PRNG should call refresh regularly with R values
that are unknown to an attacker and that are difficult to guess, thus
preventing an attacker from determining future values of the entropy pool,
even if the whole pool is compromised. (Even if the list of R values used were
known, you’d need to know the order in which refresh and next calls were
made in order to reconstruct the pool.)

The PRNG Fortuna

Fortuna is a PRNG construction used in Windows originally designed in
2003 by Niels Ferguson and Bruce Schneier. Fortuna superseded Yarrow, a
1998 design by Kelsey and Schneier now used in the macOS and iOS
operating systems. I won’t provide the Fortuna specification here or show
you how to implement it, but I will try to explain how it works. You’ll find a
complete description of Fortuna in Chapter 9 of Cryptography Engineering by
Ferguson, Schneier, and Kohno (Wiley, 2010).

Fortuna’s internal memory includes the following:

o Thirty-two entropy pools, P, P, ... , Ps,, such that P; is used every 2
reseeds.

e A key, K, and a counter, C (both 16 bytes). These form the internal state
of Fortuna’s DRBG.

In simplest terms, Fortuna works like this:

o nit() sets K and C to zero and empties the 32 entropy pools P;, where i =
l...32.



o refresh(R) appends the data, R, to one of the entropy pools. The system
chooses the RNGs used to produce R values, and it should call refresh
regularly.

o next(N) updates K using data from one or more entropy pools, where
the choice of the entropy pools depends mainly on how many updates
of K have already been done. The N bits requested are then produced
by encrypting C using K as a key. If encrypting C is not enough,
Fortuna encrypts C + 1, then C + 2, and so on, to get enough bits.

Although Fortuna’s operations look fairly simple, implementing them
correctly is hard. For one thing, you need to get all the details of the
algorithm right—namely, how entropy pools are chosen, the type of cipher
to be used in next, how to behave when no entropy is received, and so on.
Although the specs define most of the details, they don’t include a
comprehensive test suite to check that an implementation is correct, which
makes it difficult to ensure that your implementation of Fortuna will behave
as expected.

Even if Fortuna is correctly implemented, security failures may occur for
reasons other than the use of an incorrect algorithm. For example, Fortuna
might not notice if the RNGs fail to produce enough random bits, and as a
result Fortuna will produce lower-quality pseudorandom bits, or it may stop
delivering pseudorandom bits altogether.

Another risk inherent in Fortuna implementations lies in the possibility of
exposing associated seed files to attackers. The data in Fortuna seed files is
used to feed entropy to Fortuna through refresh calls when an RNG is not
immediately available, such as immediately after a system reboot and before
the system’s RNGs have recorded any unpredictable events. However, if an
identical seed file is used twice, then Fortuna will produce the same bit
sequence twice. Seed files should therefore be erased after being used to
ensure that they aren’t reused.

Finally, if two Fortuna instances are in the same state because they are
sharing a seed file (meaning they are sharing the same data in the entropy
pools, including the same C and K), then the next operation will return the
same bits in both instances.

Cryptographic vs. Non-Cryptographic PRNGs



There are both cryptographic and non-cryptographic PRNGs. Non-crypto
PRNGs are designed to produce uniform distributions for applications such
as scientific simulations or video games. However, you should never use
non-crypto PRNGs in crypto applications, because they’re insecure—they’re
only concerned with the quality of the bits’ probability distribution and not
with their predictability. Crypto PRNGs, on the other hand, are
unpredictable, because they’re also concerned with the strength of the
underlying operations used to deliver well-distributed bits.

Unfortunately, most PRNGs exposed by programming languages, such as
libc’s rand and drand48, PHP’s rand and mt_rand, Python’s random module, Ruby’s
Random class, and so on, are non-cryptographic. Defaulting to a non-crypto
PRING is a recipe for disaster because it often ends up being used in crypto
applications, so be sure to use only crypto PRNGs in crypto applications.

A Popular Non-Crypto PRNG: Mersenne Twister

The Mersenne Twister (MT) algorithm is a non-cryptographic PRNG used
(at the time of this writing) in PHP, Python, R, Ruby, and many other
systems. MT will generate uniformly distributed random bits without
statistical bias, but it’s predictable: given a few bits produced by M'T, it’s easy
enough to tell which bits will follow.

Let’s look under the hood to see what makes the Mersenne Twister
insecure. The M'T algorithm is much simpler than that of crypto PRNGs: its
internal state is an array, S, consisting of 624 32-bit words. This array is
initially set to Sy, S5, ..., Sgr4 and evolves to S5, ..., S5, then S3, ..., S,

and so on, according to this equation:
Sk 1624 — Sk + 1397 @ A((Sk A OXBOOOOOOO) Vv (Sk +1 A 0X7fffffff))

Here, ® denotes the bitwise XOR (» in the C programming language), A
denotes the bitwise AND (& in C), V denotes the bitwise OR (| in C), and A
is a function that transforms some 32-bit word, x, to (x >> 1), if &’s most
significant bit is 0, or to (x >> 1) ® 0x9908b0df otherwise.

Notice in this equation that bits of § interact with each other only through
XORs. The operators A and V never combine two bits of S together, but
just bits of S with bits from the constants 0x80000000 and Ox7fffftff. This
way, any bit from S¢,s can be expressed as an XOR of bits from S3¢g, S}, and



S;, and any bit from any future state can be expressed as an XOR
combination of bits from the initial state Sy, ... , Sg4. (When you express,
say, Syg , 624 = Sgs2 as a function of Sg,5, Syog, and Sy59, you can in turn
replace Sg,5 by its expression in terms of S3og, Sy, and S5.)

Because there are exactly 624 x 32 = 19,968 bits in the initial state (or 624
32-bit words), any output bit can be expressed as an equation with at most
19,969 terms (19,968 bits plus one constant bit). That’s just about 2.5
kilobytes of data. The converse is also true: bits from the initial state can be
expressed as an XOR of output bits.

Linearity Insecurity

We call an XOR combination of bits a linear combination. For example, if X
Y, and Z are bits, then the expression X @ V" @ Z is a linear combination,
whereas (X A ¥) ® Z is not because there’s an AND (A). If you flip a bit of X
in X ® ¥ ® Z, then the result changes as well, regardless of the value of the
Y and Z. In contrast, if you flip a bit of X in (X A ¥) @ Z, the result changes
only if Y’s bit at the same position is 1. The upshot is that linear
combinations are predictable, because you don’t need to know the value of
the bits in order to predict how a change in their value will affect the result.

For comparison, if the M'T algorithm were cryptographically strong, its
equations would be nonlinear and would involve not only single bits but also
AND-combinations  (products) of  bits, such as 555550 or

S1757565757535454985601- Although linear combinations of those bits include

at most 624 variables, nonlinear combinations allow for up to 262* variables.
It would be impossible to solve, let alone write down the whole of these

equations. (Note that 2’9 a much smaller number, is the estimated
information capacity of the observable universe.)

The key here is that linear transformations lead to short equations
(comparable in size to the number of variables), which are easy to solve,
whereas nonlinear transformations give rise to equations of exponential size,
which are practically unsolvable. The game of cryptographers is thus to
design PRNG algorithms that emulate such complex nonlinear
transformations using only a small number of simple operations.




Linearity is just one of many security criteria. Although necessary, nonlinearity
alone does not make a PRNG cryptographically secure.

The Uselessness of Statistical Tests

Statistical test suites like TestU0O1, Diehard, or the National Institute of
Standards and Technology (NIST) test suite are one way to test the quality
of pseudorandom bits. These tests take a sample of pseudorandom bits
produced by a PRNG (say, one megabyte worth), compute some statistics on
the distribution of certain patterns in the bits, and compare the results with
the typical results obtained for a perfect, uniform distribution. For example,
some tests count the number of 1 bits versus the number of 0 bits, or the
distribution of 8-bit patterns. But statistical tests are largely irrelevant to
cryptographic security, and it’s possible to design a cryptographically weak
PRING that will fool any statistical test.

When you run statistical tests on randomly generated data, you will
usually see a bunch of statistical indicators as a result. These are typically p-
values, a common statistical indicator. These results aren’t always easy to
interpret, because they’re rarely as simple as passed or failed. If your first
results seem abnormal, don’t worry: they may be the result of some
accidental deviation, or you may be testing too few samples. To ensure that
the results you see are normal, compare them with those obtained for some
reliable sample of identical size; for example, one generated with the
OpenSSL toolkit using the following command:

$ openssl rand <number of bytes> -out <output file>

Real-World PRNGs

Let’s turn our attention to how to implement PRNGs in the real world.
You’ll find crypto PRNGs in the operating systems (OSs) of most platforms,
from desktops and laptops to embedded systems such as routers and set-top
boxes, as well as virtual machines, mobile phones, and so on. Most of these
PRINGs are software based, but some are pure hardware. Those PRNGs are
used by applications running on the OS, and sometimes other PRNGs
running on top of cryptographic libraries or applications.

Next we’ll look at the most widely deployed PRNGs: the one for Linux,
Android, and many other Unix-based systems; the one in Windows; and the



one in recent Intel microprocessors, which is hardware based.

Generating Random Bits in Unix-Based Systems

The device file /dev/urandom is the userland interface to the crypto PRNG
of common *nix systems, and it’s what you will typically use to generate
reliable random bits. Because it’s a device file, requesting random bits from
/dev/urandom is done by reading it as a file. For example, the following
command uses /dev/urandom to write 10MB of random bits to a file:

$ dd if=/dev/urandom of=<output file> bs=1M count=10

The Wrong Way to Use /dev/urandom

You could write a naive and insecure C program like the one shown in

Listing 2-1 to read random bits, and hope for the best, but that would be a
bad idea.

int random_bytes_1insecure(void *buf, size_t len)

{
int fd = open("/dev/urandom", O _RDONLY);
read(fd, buf, len);
close(fd);
return 0;
}

Listing 2-1: Insecure use of /dev/urandom

'This code is insecure; it doesn’t even check the return values of open() and
read(), which means your expected random buffer could end up filled with
zeroes, or left unchanged.

A Safer Way to Use /dev/urandom

Listing 2-2, copied from LibreSSL, shows a safer way to use /dev/urandom.

int random_bytes_safer(void *buf, size_t len)

{

struct stat st;

size_t 1;

int fd, cnt, flags;

int save_errno = errno;
start:

flags = O_RDONLY;
#ifdef O_NOFOLLOW
flags |= O_NOFOLLOW;



#endif
#ifdef O_CLOEXEC
flags |= O_CLOEXEC;
#endif
fd = @open("/dev/urandom", flags, 0);
if (fd == -1) {
if (errno == EINTR)
goto start;
goto nodevrandom;
}
#ifndef O_CLOEXEC
fentl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);
#endif
/* Lightly verify that the device node looks sane */
if (fstat(fd, &st) == -1 || !S_ISCHR(st.st_mode)) {
close(fd);
goto nodevrandom;

}
if (Loctl(fd, RNDGETENTCNT, &cnt) == -1) {
close(fd);
goto nodevrandom;
}
for (1 =0; 1 < len; ) {
size_t wanted = len - 1;
ssize_t ret = @read(fd, (char *)buf + i1, wanted);
if (ret == -1) {
if (errno == EAGAIN || errno == EINTR)
continue;
close(fd);
goto nodevrandom;

}

i += ret;

}
close(fd);
if (gotdata(buf, len) == 0) {
errno = save_errno;
return 0; /* satisfied */
}
nodevrandom:
errno = EIO;
return -1;

}

Listing 2-2: Safe use of /dev/urandom

Unlike Listing 2-1, Listing 2-2 makes several sanity checks. Compare, for

example, the call to open() at @ and the call to read() at ® with those in
Listing 2-1: you’ll notice that the safer code checks the return values of those
functions, and upon failure closes the file descriptor and returns —1.

Differences Between /dev/urandom and /dev/random on Linux



Different Unix versions use different PRNGs. The Linux PRNG, defined in
drivers/char/random.c in the Linux kernel, mainly uses the hash function
SHA-1 to turn raw entropy bits into reliable pseudorandom bits. The
PRNG harvests entropy from various sources (including the keyboard,
mouse, disk, and interrupt timings) and has a primary entropy pool of 512
bytes, as well as a non-blocking pool for /dev/urandom and a blocking pool
for /dev/random.

What’s the difference between /dev/urandom and /dev/random? The short
story is that /dev/random attempts to estimate the amount of entropy and
refuses to return bits if the level of entropy is too low. Although this may
sound like a good idea, it’s not. For one thing, entropy estimators are
notoriously unreliable and can be fooled by attackers (which is one reason
why Fortuna ditched Yarrow’s entropy estimation). Furthermore,
/dev/random runs out of estimated entropy pretty quickly, which can produce
a denial-of-service condition, slowing applications that are forced to wait for
more entropy. The upshot is that in practice, /dev/random is no better than
/dev/urandom and creates more problems than it solves.

Estimating the Entropy of /dev/random

You can observe how /dev/random’s entropy estimate evolves by reading its
current value in bits in /proc/sys/kernel/random/entropy_avail on Linux. For
example, the shell script shown in Listing 2-3 first minimizes the entropy
estimate by reading 4KB from /dev/random, waits until it reaches an estimate
of 128 bits, reads 64 bits from /dev/random, and then shows the new estimate.
When running the script, notice how user activity accelerates entropy
recovery (bytes read are printed to stdout encoded in base64).

#!/bin/sh
ESTIMATE=/proc/sys/kernel/random/entropy_avail
timeout 3s dd if=/dev/random bs=4k count=1 2> /dev/null | base64
ent="cat SESTIMATE®
while [ $Sent -1t 128 ]
do

sleep 3

ent="cat SESTIMATE®

echo $ent
done
dd if=/dev/random bs=8 count=1 2> /dev/null | base64
cat SESTIMATE

Listing 2-3: A script showing the evolution of /dev/urandom’s entropy estimate



A sample run of Listing 2-3 gave the output shown in Listing 2-4. (Guess
when I started randomly moving the mouse and hitting the keyboard to
gather entropy.)

XFNX/f2R87/zrrNJ6Ibr5R1L913t1+F4GNzKb60BC+qQnHQCyA==
2

18

19

27

28

72

124

193
jq8XWCt8
129

Listing 2-4: A sample execution of the entropy estimate evolution script in Listing 2-3

As you can see in Listing 2-4, we have 193 - 64 = 129 bits of entropy left
in the pool, as per /dev/random’s estimator. Does it make sense to consider a
PRING as having N less entropy bits just because N bits were just read from
the PRNG? (Spoiler: it does not.)

Like /dev/random, Linux’s getrandom () system call blocks if it hasn’t gathered
enough initial entropy. However, unlike /dev/random, it won’t attempt to
estimate the entropy in the system and will never block after its initialization
stage. And that’s fine. (You can force getrandom() to use /dev/random and to
block by tweaking its flags, but I don’t see why you’d want to do that.)

The CryptGenRandom() Function in Windows

In Windows, the legacy userland interface to the system’s PRNG is the
CryptGenRandon() function from the Cryptography application programming
interface (API). The cryptGenrandom() function has been replaced in recent
Windows versions with the BcryptGenRandom() function in the Cryptography
APIL: Next Generation (CNG) APIL. The Windows PRNG takes entropy
from the kernel mode driver cng.sys (formerly ksecdd.sys), whose entropy
collector is loosely based on Fortuna. As is usually the case in Windows, the
process is complicated.

Listing 2-5 shows a typical C++ invocation of cryptGenRandom() with the



required checks.

int random_bytes(unsigned char *out, size_t outlen)

{
static HCRYPTPROV handle = 0; /* only freed when the program ends */
if('handle) {
if(!CryptAcquireContext(&handle, 0, 0, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT | CRYPT_SILENT)) {
return -1;
}
}
while(outlen > 0) {
const DWORD len = outlen > 1048576UL ? 1048576UL : outlen;
if(!CryptGenRandom(handle, len, out)) {
return -2;
}
out += len;
outlen -= len;
}
return 0;
}

Listing 2-5: Using the Windows CryptGenRandom() PRNG interface

Notice in Listing 2-5 that prior to calling the actual PRNG, you need to
declare a cryptographic service provider (HcrypTPROV) and then acquire a
cryptographic context with cryptacquirecontext(), which increases the chances of
things going wrong. For instance, the final version of the TrueCrypt
encryption software was found to call cryptAcquirecontext() in a way that could
silently fail, leading to suboptimal randomness without notifying the user.
Fortunately, the newer BcryptGenRandom() interface for Windows is much
simpler and doesn’t require the code to explicitly open a handle (or at least
makes it much easier to use without a handle).

A  Hardware-Based PRNG: RDRAND in Intel
Microprocessors

We've discussed only software PRNGs so far, so let’s have a look at a
hardware one. The Intel Digital Random Number Generator is a hardware
PRNG introduced in 2012 in Intel’s Ivy Bridge microarchitecture, and it’s
based on NIST’s SP 800-90 guidelines with the Advanced Encryption
Standard (AES) in CTR_DRBG mode. Intel’s PRNG is accessed through
the rRoranD assembly instruction, which offers an interface independent of the
operating system and is in principle faster than software PRNGs.

Whereas software PRNGs try to collect entropy from unpredictable



sources, RORAND has a single entropy source that provides a serial stream of
entropy data as zeroes and ones. In hardware engineering terms, this entropy
source is a dual differential jamb latch with feedback; essentially, a small
hardware circuit that jumps between two states (0 or 1) depending on
thermal noise fluctuations, at a frequency of 800 MHz. This kind of thing is
usually pretty reliable.

The roranp assembly instruction takes as an argument a register of 16, 32,
or 64 bits and then writes a random value. When invoked, roranp sets the
carry flag to 1 if the data set in the destination register is a valid random
value, and to 0 otherwise, which means you should be sure to check the cr
flag if you write assembly code directly. Note that the C intrinsics available
in common compilers don’t check the cr flag but do return its value.

Intel’s PRNG framework provides an assembly instruction other than
RDRAND: the RDSEED assembly instruction returns random bits directly
from the entropy source, after some conditioning or cryptographic processing. It’s
intended to be able to seed other PRNGs.

Intel’s PRNG is only partially documented, but it’s built on known
standards, and has been audited by the well-regarded company
Cryptography Research (see their report titled “Analysis of Intel’s Ivy Bridge
Digital Random Number Generator”). Nonetheless, there have been some
concerns about its security, especially following Snowden’s revelations about
cryptographic backdoors, and PRNGs are indeed the perfect target for
sabotage. If you're concerned but still wish to use rRoraND or RDSEED, just mix
them with other entropy sources. Doing so will prevent effective exploitation
of a hypothetical backdoor in Intel’s hardware or in the associated microcode
in all but the most far-fetched scenarios.

How Things Can Go Wrong

To conclude, I'll present a few examples of randomness failures. There are
countless examples to choose from, but I've chosen four that are simple
enough to understand and illustrate different problems.

Poor Entropy Sources



In 1996, the SSL implementation of the Netscape browser was computing
128-bit PRNG seeds according to the pseudocode shown in Listing 2-6,
copied from Goldberg and Wagner’s page at
bttp://www.cs.berkeley.edu/~daw/papers/ddj-netscape. btml.

global variable seed;

RNG_CreateContext()
(seconds, microseconds) = time of day; /* Time elapsed since 1970 */
pid = process ID; ppid = parent process ID;
a = mklcpr(microseconds);
@ b = mklcpr(pid + seconds + (ppid << 12));
seed = MD5(a, b); /* Derivation of a 128-bit value using the hash MD5 */

mklcpr(x) /* not cryptographically significant; shown for completeness */
return ((OxDEECE66D * x + Ox2BBB62DC) >> 1);

MD5() /* a very good standard mixing function, source omitted */

Listing 2-6: Pseudocode of the Netscape browser’s generation of 128-bit PRNG seeds

The problem here is that the PIDs and microseconds are guessable values.
Assuming that you can guess the value of seconds, microseconds has only 109

possible values and thus an entropy of log(109), or about 20 bits. The process
ID (PID) and parent process ID (PPID) are 15-bit values, so you’d expect 15

+ 15 = 30 additional entropy bits. But if you look at how b is computed at @,
you’ll see that the overlap of three bits yields an entropy of only about 15 +
12 = 27 bits, for a total entropy of only 47 bits, whereas a 128-bit seed should
have 128 bits of entropy.

Insufficient Entropy at Boot Time

In 2012, researchers scanned the whole internet and harvested public keys
from TLS certificates and SSH hosts. They found that a handful of systems
had identical public keys, and in some cases very similar keys (namely, RSA
keys with shared prime factors): in short, two numbers, 7 = pg and 7" = p'q’,
with p = p’, whereas normally all ps and ¢s should be different in distinct
modulus values.

After further investigation, it turned out that many devices generated their
public key early, at first boot, before having collected enough entropy,
despite using an otherwise decent PRNG (typically /dev/urandom). PRNGs

in different systems ended up producing identical random bits due to a same
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base entropy source (for example, a hardcoded seed).

At a high level, the presence of identical keys is due to key-generation
schemes like the following, in pseudocode:

prng.seed(seed)

p = prng.generate_random_prime()
q = prng.generate_random_prime()
n = p*q

If two systems run this code given an identical seed, they’ll produce the
same p, the same ¢, and therefore the same 7.

The presence of shared primes in different keys is due to key-generation
schemes where additional entropy is injected during the process, as shown
here:

prng.seed(seed)

p = prng.generate_random_prime()
prng.add_entropy()

q = prng.generate_random_prime()
n = p*q

If two systems run this code with the same seed, they’ll produce the same
p, but the injection of entropy through prng.add_entropy() will ensure distinct
gs.

The problem with shared prime factors is that given 7z = pg and 7" = pq’, it’s
trivial to recover the shared p by computing the greatest common divisor
(GCD) of 7 and 7. For the details, see the paper “Mining Your Ps and Qs”
by Heninger, Durumeric, Wustrow, and Halderman, available at
https://factorable.net/.

Non-cryptographic PRNG

Earlier we discussed the difference between crypto and non-crypto PRNGs
and why the latter should never be used for crypto applications. Alas, many
systems overlook that detail, so I thought I should give you at least one such
example.

The popular MediaWiki application runs on Wikipedia and many other
wikis. It uses randomness to generate things like security tokens and
temporary passwords, which of course should be unpredictable.
Unfortunately, a now obsolete version of MediaWiki used a non-crypto
PRNG, the Mersenne Twister, to generate these tokens and passwords.


https://factorable.net/

Here’s a snippet from the vulnerable MediaWiki source code. Look for the
function called to get a random bit, and be sure to read the comments.

/**
* Generate a hex-y looking random token for various uses.
* Could be made more cryptographically sure if someone cares.
* @return string
*/
function generateToken( $salt = '' ) {
Stoken = dechex(mt_rand()).dechex(mt_rand());
return md5( $token . $salt );

Did you notice nt_rand() in the preceding code? Here, mt stands for
Mersenne Twister, the non-crypto PRNG discussed earlier. In 2012,
researchers showed how to exploit the predictability of Mersenne T'wister to
predict future tokens and temporary passwords, given a couple of security

tokens. MediaWiki was patched in order to use a crypto PRNG.

Sampling Bug with Strong Randomness

The next bug shows how even a strong crypto PRNG with sufficient
entropy can produce a biased distribution. The chat program Cryptocat was
designed to offer secure communication. It used a function that attempted to
create a uniformly distributed string of decimal digits—namely, numbers in
the range 0 through 9. However, just taking random bytes modulo 10
doesn’t yield a uniform distribution, because when taking all numbers
between 0 and 255 and reducing them modulo 10, you don’t get an equal
number of values in 0 to 9.

Cryptocat did the following to address that problem and obtain a uniform
distribution:

Cryptocat.random = function() {
var x, o= ""';
while (o.length < 16) {
X = state.getBytes(1);
if (x[0] <= 250) {
o += x[0] % 10;
}
}

return parsefFloat('0.' + o)

And that was almost perfect. By taking only the numbers up to a multiple
of 10 and discarding others, you’d expect a uniform distribution of the digits



0 through 9. Unfortunately, there was an off-by-one error in the if
condition. I’ll leave the details to you as an exercise. You should find that the
values generated had an entropy of 45 instead of approximately 53 bits (hint:
<= should have been < instead).

Further Reading

I’ve just scratched the surface of randomness in cryptography in this chapter.
There is much more to learn about the theory of randomness, including
topics such as different entropy notions, randomness extractors, and even the
power of randomization and derandomization in complexity theory. To
learn more about PRNGs and their security, read the classic 1998 paper
“Cryptanalytic Attacks on Pseudorandom Number Generators” by Kelsey,
Schneier, Wagner, and Hall. Then look at the implementation of PRNGs in
your favorite applications and try to find their weaknesses. (Search online for
“random generator bug” to find plenty of examples.)

We’re not done with randomness, though. We’ll encounter it again and
again throughout this book, and you’ll discover the many ways it helps to
construct secure systems.



3
CRYPTOGRAPHIC SECURITY

Cryptographic definitions of security are not the same as those that apply to
general computer security. The main difference between software security
and cryptographic security is that the latter can be quantified. Unlike in the
software world, where applications are usually seen as either secure or
insecure, in the cryptographic world it’s often possible to calculate the
amount of effort required to break a cryptographic algorithm. Also, whereas
software security focuses on preventing attackers from abusing a program’s
code, the goal of cryptographic security is to make well-defined problems
impossible to solve.

Cryptographic problems involve mathematical notions, but not complex
math—or at least not in this book. This chapter walks you through some of
these security notions and how they’re applied to solve real-world problems.
In the following sections, I discuss how to quantify crypto security in ways
that are both theoretically sound and practically relevant. I discuss the
notions of informational versus computational security, bit security versus
full attack cost, provable versus heuristic security, and symmetric versus
asymmetric key generation. I conclude the chapter with actual examples of
failures in seemingly strong cryptography.

Defining the Impossible

In Chapter 1, I described a cipher’s security relative to an attacker’s
capabilities and goals, and deemed a cipher secure if it was impossible to
reach these goals given an attacker’s known capabilities. But what does
impossible mean in this context?

Two notions define the concept of impossible in cryptography:
informational security and computational security. Roughly speaking,



informational security is about theoretical impossibility whereas computational
security 1s about practical impossibility. Informational security doesn’t
quantify security because it views a cipher as either secure or insecure, with
no middle ground; it’s therefore useless in practice, although it plays an
important role in theoretical cryptography. Computational security is the
more relevant and practical measure of the strength of a cipher.

Security in Theory: Informational Security

Informational security is based not on how hard it is to break a cipher, but
whether it’s conceivable to break it at all. A cipher is informationally secure
only if, even given unlimited computation time and memory, it cannot be
broken. Even if a successful attack on a cipher would take trillions of years,
such a cipher is informationally /nsecure.

For example, the one-time pad introduced in Chapter 1 is informationally
secure. Recall that the one-time pad encrypts a plaintext, P, to a ciphertext,
C = P ® K, where K is a random bit string that is unique to each plaintext.
The cipher is informationally secure because given a ciphertext and
unlimited time to try all possible keys, K, and compute the corresponding
plaintext, P, you would still be unable to identify the right K because there
are as many possible Ps as there are Ks.

Security in Practice: Computational Security

Unlike informational security, computational security views a cipher as
secure if it cannot be broken within a reasonable amount of time, and with
reasonable resources such as memory, hardware, budget, energy, and so on.
Computational security is a way to quantify the security of a cipher or any
crypto algorithm.

For example, consider a cipher, E, for which you know a plaintext—
ciphertext pair (P, C) but not the 128-bit key, K, that served to compute C =
E(K, P). This cipher is not informationally secure because you could break it
after trying the 2!28 possible 128-bit Ks until you find the one that satisfies
E(K, P) = C. But in practice, even testing 100 billion keys per second, it
would take more than 100,000,000,000,000,000,000 years. In other words,
reasonably speaking, this cipher is computationally secure because it’s
practically impossible to break.

Computational security is sometimes expressed in terms of two values:



o t, which is a limit on the number of operations that an attacker will
carry out

o € (called “epsilon”), which is a limit on the probability of success of an
attack

We then say that a cryptographic scheme is (¢, €)-secure if an attacker
performing at most ¢ operations—whatever those operations are—has a
probability of success that is no higher than €, where € is at least 0 and at
most 1. Computational security gives a limit on how hard it is to break a
cryptographic algorithm.

Here it’s important to know that 7 and € are just limits: if a cipher is (z, €)-
secure, then no attacker performing fewer than ¢ operations will succeed (with
probability €). But that doesn’t imply that an attacker doing exactly #
operations will succeed, and it doesn’t tell you how many operations are
needed, which may be much larger than z. We say that ¢ is a lower bound on
the computation effort needed, because you’d need at least ¢ operations to
compromise security.

We sometimes know precisely how much effort it takes to break a cipher;
in such cases we say that a (¢, €)-security gives us a tight bound when an attack
exists that breaks the cipher with probability € and exactly ¢ operations.

For example, consider a symmetric cipher with a 128-bit key. Ideally, this
cipher should be (¢, #/2128)-secure for any value of ¢ between 1 and 21?8, The
best attack should be brute force (trying all keys until you find the correct
one). Any better attack would have to exploit some imperfection in the
cipher, so we strive to create ciphers where brute force is the best possible
attack.

Given the statement (¢, t/2'2%)-secure, let’s examine the probability of
success of three possible attacks:

o In the first case, # = 1, an attacker tries one key and succeeds with a
probability of € = 1/21%8,

e In the second case, t = , an attacker tries all 2128 keys and one
succeeds. Thus, the probability € = 1 (if the attacker tries all keys,
obviously the right one must be one of them).

2128

« In the third case, an attacker tries only 7 = 2% keys, and succeeds with a
probability of € = 264/2128 = 2-6* ‘When an attacker only tries a fraction



of all keys, the success probability is proportional to the number of keys
tried.

We can conclude that a cipher with a key of 7 bits is at best (¢, #/2")-secure,

for any # between 1 and 2”, because no matter how strong the cipher, a
brute-force attack against it will always succeed. The key thus needs be long
enough to blunt brute-force attacks in practice.

In this example, we are counting the number of evaluations of the cipher, not the
absolute time or number of processor clock cycles. Computational security is
technology agnostic, which is good: a cipher that is (t, €)-secure today will be (t,
€)-secure tormorrow, but what’s considered secure in practice today might not be
considered secure tomorrow.

Quantifying Security

When an attack is found, the first thing you want to know is how efficient it
is in theory, and how practical it is, if at all. Likewise, given a cipher that’s
allegedly secure, you want to know what amount of work it can withstand.
To address those questions, I'll explain how cryptographic security can be
measured in bits (the theoretical view) and what factors affect the actual cost
of an attack.

Measuring Security in Bits

When speaking of computational security, we say that a cipher is t-secure
when a successful attack needs at least 7 operations. We thus avoid the
unintuitive (¢, €) notation by assuming a success probability of € close to 1,
or what we care about in practice. We then express security in bits, where
“n-bit security” means that about 2” operations are needed to compromise
some particular security notion.

If you know approximately how many operations it takes to break a cipher,
you can determine its security level in bits by taking the binary logarithm of
the number of operations: if it takes 1000000 operations, the security level is
log,(1000000), or about 20 bits (that is, 1000000 is approximately equal to

229). Recall that an #-bit key will give at most z-bit security because a brute-



force attack with all 2” possible keys will always succeed. But the key size
doesn’t always match the security level—it just gives an wupper bound, or the
highest possible security level.

A security level may be smaller than the key size for one of two reasons:

o An attack broke the cipher in fewer operations than expected—for

example, using a method that recovers the key by trying not all 2” keys,
but only a subset of those.

o The cipher’s security level intentionally differs from its key size, as with
most public key algorithms. For example, the RSA algorithm with a
2048-bit secret key provides less than 100-bit security.

Bit security proves useful when comparing ciphers’ security levels but
doesn’t provide enough information on the actual cost of an attack. It is
sometimes too simple an abstraction because it just assumes that an z-bit-
secure cipher takes 2” operations to break, whatever these operations are.
Two ciphers with the same bit security level can therefore have vastly
different real-world security levels when you factor in the actual cost of an
attack to a real attacker.

Say we have two ciphers, each with a 128-bit key and 128-bit security.
Each must be evaluated 2!?® times in order to be broken, except that the
second cipher is 100 times slower than the first. Evaluating the second
cipher 21?8 times thus takes the same time as 100 x 2128 ~ 213%6% eyaluations
of the first. If we count in terms of the first, fast cipher, then breaking the

213464 operations. If we count in terms of the second, slow
2128

slower one takes

cipher, it only takes operations. Should we then say that the second
cipher is stronger than the first? In principle, yes, but we rarely see such a
hundred-fold performance difference between commonly used ciphers.

The inconsistent definition of an operation raises more difficulties when

comparing the efficiency of attacks. Some attacks claim to reduce a cipher’s

security because they perform 2120

2128 evaluations of the cipher, but the speed of each type of attack is left out
2128

evaluations of some operation rather than

of the analysis. The 2!29-operation attack won’t always be faster than a
brute-force attack.

Nevertheless, bit security remains a useful notion as long as the operation



is reasonably defined—meaning about as fast as an evaluation of the cipher.
After all, in real life, all it takes to determine whether a security level is
sufficient is an order of magnitude.

Full Attack Cost

Bit security expresses the cost of the fastest attack against a cipher by
estimating the order of magnitude of the number of operations it needs to
succeed. But other factors affect the cost of an attack, and these must be
taken into account when estimating the actual security level. I'll explain the
four main ones: parallelism, memory, precomputation, and the number of
targets.

Parallelism

The first factor to consider is computational parallelism. For example,

consider two attacks of 2°6 operations each. The difference between the two
is that the second attack can be parallelized but not the first: the first attack

256

performs 2°° sequentially dependent operations, such as x; , | = fi(x;) for some x;

and some functions f; (with 7 from 1 to 2°6), whereas the second performs 2°

independent operations, such as x; = fi(x) for some x and 7 from 1 to 2°6, which
can be executed in parallel. Parallel processing can be orders of magnitude

faster than sequential processing. For example, if you had 2 = 65536
processors available, you could divide the workload of the parallel attacks
into 2% independent tasks, each performing 2°¢ / 216 = 249 operations. The
first attack, however, cannot benefit from having multiple cores available
because each operation relies on the previous operation’s result. Therefore,
the parallel attack will complete 65536 times faster than the sequential one,

even though they perform the same number of operations.

Algorithms that become N times faster to attack when N cores are available are
called embarrassingly parallel, and we say that their execution times scale
linearly with respect to the number of computing cores.

Memory



The second factor when determining the cost of an attack is memory.
Cryptanalytic attacks should be evaluated with respect to their use of time
and space: how many operations do they perform over time, how much
memory or space do they consume, how do they use the space they consume,
and what’s the speed of the available memory? Unfortunately, bit security is
concerned only with the time it takes to perform an attack.

Concerning the way space is used, it’s important to consider how many
memory lookups are required as part of an attack, the speed of memory
accesses (which may differ between reads and writes), the size of the data
accessed, the access pattern (contiguous or random memory addresses), and
how data is structured in memory. For example, on one of today’s general-
purpose CPUs, reading from a register takes one cycle, whereas reading
from the CPU’s cache memory takes around 20 cycles (for the L3 cache),
and reading from DRAM usually takes at least 100 cycles. A factor of 100
can make the difference between one day and three months.

Precomputation

Precomputation operations are those that need to be performed only once
and can be reused over subsequent executions of the attack. Precomputation
is sometimes called the offline stage of an attack.

For example, consider the time-memory trade-off attack. When
performing this kind of attack, the attacker performs one huge computation
that produces large lookup tables that are then stored and reused to perform
the actual attack. For example, one attack on 2G mobile encryption took two
months to build two terabytes’ worth of tables, which were then used to
break the encryption in 2G and recover a secret session key in only a few
seconds.

Number of Targets

Finally, we come to the number of targets of the attack. The greater the
number of targets, the greater the attack surface, and the more attackers can
learn about the keys they’re after.

For example, consider a brute-force key search: if you target a single 7-bit

key, it will take 2” attempts to find the correct key with certainty. But if you
target multiple #z-bit keys—say, a number M—and if for a single P you have
M distinct ciphertexts, where C = E(K, P) for each of the M keys (K) that



you're after, it will again take 2” attempts to find each key. But if you’re only
interested in at Jeast one of the M keys and not in every one, it would take on

average 2" / M attempts to succeed. For example, to break one 128-bit key of

216 = 65536 target keys, it will take on average 2128 - 16 = 2112 evaluations of
the cipher. That is, the cost (and speed) of the attack decreases as the
number of targets increases.

Choosing and Evaluating Security Levels

Choosing a security level often involves selecting between 128-bit and 256-
bit security because most standard crypto algorithms and implementations
are available in one of these two security levels. Below 128 bits you’ll find
schemes with 64- or 80-bit security, but these are generally not secure
enough for real-world use.

At a high level, 128-bit security means that you’d need to carry out

approximately 2128 operations to break that crypto system. To give you a

sense of what this number means, consider the fact that the universe is
approximately 288 nanoseconds old (there’s a billion nanoseconds in a
second). Since testing a key with today’s technology takes no less than a

nanosecond, you’d need several times the age of the universe for an attack to

succeed (20 times to be precise) if it takes exactly one nanosecond to test a
key.

But can’t parallelism and multiple targets dramatically reduce the time it
takes to complete a successful attack? Not exactly. Say you’re interested in
breaking any of a million targets, and that you have a million parallel cores

available. That brings the search time down from 2128 to (2128 7 220) 7 220 =

288 which is equivalent to only one universe lifetime.

Another thing to consider when evaluating security levels is the evolution
of technology. Moore’s law posits that computing efficiency doubles roughly
every two years. We can think of this as a loss of one bit of security every
two years: if today a $1000 budget allows you to break, say, a 40-bit key in
one hour, then Moore’s law says that two years later, you could break a 41-
bit key in one hour for the same $1000 budget (I'm simplifying). We can
extrapolate from this to say that, according to Moore’s law, we’ll have 40
fewer bits of security in 80 years compared to today. In other words, in 80

years doing 21?8 operations may cost as much as doing 288 operations today.



Accounting for parallelism and multiple targets, as discussed earlier, we’re
down to 2*® nanoseconds of computation, or about three days. But this
extrapolation is highly inaccurate, because Moore’s law won’t and can’t scale
that much. Still, you get the idea: what looks infeasible today may be realistic
in a century.

There will be times when a security level lower than 128 bits is justified.
For example, when you need security for only a short time period and when
the costs of implementing a higher security level will negatively impact the
cost or usability of a system. A real-world example is that of pay TV systems,
wherein encryption keys are either 48 or 64 bits. This sounds ridiculously
low, but that’s a sufficient security level because the key is refreshed every 5
or 10 seconds.

Nevertheless, to ensure long-term security, you should choose 256-bit
security or a bit less. Even in a worst-case scenario—the existence of
quantum computers, see Chapter 14—a 256-bit secure scheme is unlikely to
be broken in the foreseeable future. More than 256 bits of security is
practically unnecessary, except as a marketing device.

As NIST cryptographer John Kelsey once put it, “The difference between
80 bits and 128 bits of key search is like the difference between a mission to
Mars and a mission to Alpha Centauri. As far as I can see, there is no
meaningful difference between 192-bit and 256-bit keys in terms of practical
brute-force attacks; impossible is impossible.”

Achieving Security

Once you’ve chosen a security level, it’s important to guarantee that your
cryptographic schemes will stick to it. In other words, you want confidence,
not just hope and uncertainty, that things will work as planned, all the time.

When building confidence in the security of a crypto algorithm, you can
rely on mathematical proofs, an approach called provable security, or on
evidence of failed attempts to break the algorithm, which I'll call heuristic
security (though it’'s sometimes called probable security). These two
approaches are complementary and neither is better than the other, as you’ll
see.

Provable Security

Provable security is about proving that breaking your crypto scheme is at



least as hard as solving another problem known to be hard. Such a securizy
proof guarantees that the crypto remains safe as long as the hard problem
remains hard. This type of proof is called a reduction, and it comes from the
field of complexity theory. We say that breaking some cipher is reducible to
problem X if any method to solve problem X also yields a method to break
the cipher.

Security proofs come in two flavors, depending on the type of presumably
hard problem used: proofs relative to a mathematical problem and proofs
relative to a cryptographic problem.

Proofs Relative to a Mathematical Problem

Many security proofs (such as those for public-key crypto) show that
breaking a crypto scheme is at least as hard as solving some hard
mathematical problem. We’re talking of problems for which a solution is
known to exist, and is easy to verify once it’s known, but is computationally

hard to find.

There’s no real proof that seemingly hard math problems are actually bard. In
fact, proving this for a specific class of problems is one of the greatest challenges in
the field of complexity theory, and as I write this there is a $1,000,000 bounty
for anmyone who can solve it, awarded by the Clay Mathematics Institute. This is
discussed in more detail in Chapter 9.

For example, consider the challenge of solving the factoring problem, which
is the best-known math problem in crypto: given a number that you know is
the product of two prime numbers (z = pg), find the said primes. For
example, if 7 = 15, the answer is 3 and 5. That’s easy for a small number, but
it becomes exponentially harder as the size of the number grows. For
example, if a number, 7, is 3000 bits long (about 900 decimal digits) or more,
factoring is believed to be practically infeasible.

RSA is the most famous crypto scheme to rely on the factoring problem:
RSA encrypts a plaintext, P, seen as a large number, by computing C = P*
mod 7, where the number e and » = pg are the public key. Decryption
recovers a plaintext from a ciphertext by computing P = C? mod #, where 4 is
the private key associated to ¢ and #. If we can factor #, then we can break



RSA (by recovering the private key from the public key), and if we can
obtain the private key, then we can factor #; in other words, recovering an
RSA private key and factoring # are equivalently hard problems. That’s the
kind of reduction we’re looking for in provable security. However, there is
no guarantee that recovering an RSA plaintext is as hard as factoring 7, since
the knowledge of a plaintext doesn’t reveal the private key.

Proofs Relative to Another Crypto Problem

Instead of comparing a crypto scheme to a math problem, you can compare
it to another crypto scheme and prove that you can only break the second if
you can break the first. Security proofs for symmetric ciphers usually follow
this approach.

For example, if all you have is a single permutation algorithm, then you
can build symmetric ciphers, random bit generators, and other crypto
objects such as hash functions by combining calls to the permutations with
various types of inputs (as you’ll see in Chapter 6). Proofs then show that the
newly created schemes are secure if the permutation is secure. In other
words, we know for sure that the newly created algorithm is not weaker than
the original one. Such proofs usually work by crafting an attack on the
smaller component given an attack on the larger one—that is, by showing a
reduction.

When you’re proving that a crypto algorithm is no weaker than another,
the main benefit is that of a reduced attack surface: instead of analyzing both
the core algorithm and the combination, you can simply look at the new
cipher’s core algorithm. Specifically, if you write a cipher that uses a newly
developed permutation and a new combination, you may prove that the
combination doesn’t weaken security compared to the core algorithm.
Therefore, to break the combination, you need to break the new
permutation.

Caveats

Cryptography researchers rely heavily on security proofs, whether with
respect to math problem schemes or to other crypto schemes. But the
existence of a security proof does not guarantee that a cryptographic scheme
is perfect, nor is it an excuse for neglecting the more practical aspects of
implementation. After all, as cryptographer Lars Knudsen once said, “If it’s
provably secure, it’s probably not,” meaning that a security proof shouldn’t



be taken as an absolute guarantee of security. Worse, there are multiple
reasons why a “provably secure” scheme may lead to a security failure.

One issue is with the phrase “proof of security” itself. In mathematics, a
proof is the demonstration of an absolute truth, but in crypto, a proof is only
the demonstration of a relative truth. For example, a proof that your cipher is
as hard to break as it is to compute discrete logarithms—finding the number

x given g and g* mod n—guarantees that if your cipher fails, a whole lot of
other ciphers will fail as well, and nobody will blame you if the worst
happens.

Another caveat is that security proofs are usually proven with respect to a
single notion of security. For example, you might prove that recovering the
private key of a cipher is as hard as the factoring problem. But if you can
recover plaintexts from ciphertext without the key, you’ll bypass the proof,
and recovering the key hardly matters.

Then again, proofs are not always correct, and it may be easier to break an
algorithm than originally thought.

Unfortunately, few researchers carefully check security proofs, which commonly
span dozens of pages, thus complicating quality control. That said, demonstrating
that a proof is incorvect doesn’t mecessarily imply that the proof’s goal is
completely wrong; if the result is correct, the proof may be salvaged by correcting
ILS errors.

Another important consideration is that hard math problems sometimes
turn out to be easier to solve than expected. For example, certain weak
parameters make breaking RSA easy. Or the math problem may be hard in
certain cases, but not on average, as often happens when the reference
problem is new and not well understood. That’s what happened when the
1978 knapsack encryption scheme by Merkle and Hellman was later totally
broken using lattice reduction techniques.

Finally, although the proof of an algorithm’s security may be fine, the
implementation of the algorithm can be weak. For example, attackers may
exploit side-channel information such as power consumption or execution
time to learn about an algorithm’s internal operations in order to break it,
thus bypassing the proof. Or implementers may misuse the crypto scheme: if



the algorithm is too complicated with too many knobs to configure, chances
are higher that the user or developer will get a configuration wrong, which
may render the algorithm completely insecure.

Heuristic Security

Provable security is a great tool to gain confidence in a crypto scheme, but it
doesn’t apply to all kinds of algorithms. In fact, most symmetric ciphers
don’t have a security proof. For example, every day we rely on the Advanced
Encryption Standard (AES) to securely communicate using our mobile
phones, laptops, and desktop computers, but AES is not provably secure;
there’s no proof that it’s as hard to break as some well-known problem. AES
can’t be related to a math problem or to another algorithm because it is the

hard problem itself.

In cases where provable security doesn’t apply, the only reason to trust a
cipher is because many skilled people tried to break it and failed. This is
sometimes called heuristic security.

When can we be sure that a cipher is secure then? We can never be sure,
but we can be pretty confident that an algorithm won’t be broken when
hundreds of experienced cryptanalysts have each spent hundreds of hours
trying to break it and published their findings—usually by attempting attacks
on simplified versions of a cipher (often versions with fewer operations, or
fewer rounds, which are short series of operations that ciphers iterate in order
to mix bits together).

When analyzing a new cipher, cryptanalysts first try to break one round,
then two, three, or as many as they can. The security margin is then the
difference between the total number of rounds and the number of rounds
that were successfully attacked. When after years of study a cipher’s security
margin is still high, we become confident that it’s (probably) secure.

Generating Keys

If you plan to encrypt something, you’ll have to generate keys, whether they
are temporary “session keys” (like the ones generated when browsing an
HTTPS site) or long-term public keys. Recall from Chapter 2 that secret
keys are the crux of cryptographic security and should be randomly
generated so that they are unpredictable and secret.

For example, when you browse an HT'I'PS website, your browser receives



the site’s public key and uses it to establish a symmetric key that’s only valid
for the current session, and that site’s public key and its associated private
key may be valid for years. Therefore, it’d better be hard to find for an
attacker. But generating a secret key isn’t always as simple as dumping
enough pseudorandom bits. Cryptographic keys may be generated in one of
three ways:

o Randomly, using a pseudorandom number generator (PRNGQG) and, when
needed, a key-generation algorithm

o From a password, using a key derivation function (KDF), which
transforms the user-supplied password into a key

o Through a key agreement protocol, which is a series of message exchanges
between two or more parties that ends with the establishment of a
shared key

For now, I'll explain the simplest method: randomized generation.

Generating Symmetric Keys

Symmetric keys are secret keys shared by two parties, and they are the

simplest to generate. They are usually the same length as the security level

they provide: a 128-bit key provides 128-bit security, and any of the 2!%8

possible keys is a valid one that can do the job as well as any other key.

To generate a symmetric key of 7 bits using a cryptographic PRNG, you
simply ask it for z pseudorandom bits and use those bits as the key. That’s it.
You can, for example, use the OpenSSL toolkit to generate a random
symmetric key by dumping pseudorandom bytes, as in the following
command (obviously, your result will differ from mine):

$ openssl rand 16 -hex
65a4400ea649d282b855bd2e246812c6

Generating Asymmetric Keys

Unlike symmetric keys, asymmetric keys are usually longer than the security
level they provide. But that’s not the main problem. Asymmetric keys are
trickier to generate than symmetric ones because you can’t just dump 7 bits
from your PRNG and get away with the result. Asymmetric keys aren’t just
raw bit sequences; instead, they represent a specific type of object, such as a



large number with specific properties (in RSA, a product of two primes). A
random bit string value (and thus a random number) is unlikely to have the
specific properties needed, and therefore won’t be a valid key.

To generate an asymmetric key, you send pseudorandom bits as a seed to
a key-generation algorithm. This key-generation algorithm takes as input a
seed value that’s at least as long as the intended security level and then
constructs from it a private key and its respective public key, ensuring that
both satisfy all the necessary criteria. For example, a naive key-generation
algorithm for RSA would generate a number, z = pg, by using an algorithm
to generate two random primes of about the same length. That algorithm
would pick random numbers until one happens to be prime—so you’d also
need an algorithm to test whether a number is prime.

To save yourself the burden of manually implementing the key-generation

algorithm, you can use OpenSSL to generate a 4096-bit RSA private key,
like this:

$ openssl genrsa 4096
Generating RSA private key, 4096 bit long modulus

e i1s 65537 (0x10001)

----- BEGIN RSA PRIVATE KEY-----
MIIJKQIBAAKCAGEA3Qgm60;iMy61YVstaGawk22A9LyMXhiQUUANSF5QZXEef2Piq
VTtAIA1hzpK2AJsv16INpNkYcT jNmechAJOxHraft06cp2pZFP85dvknsMfUoe8u
btKXZ1YvIwpS0fQQ4tz1DtH45Gj8SMHCWFXTO3HSIXOXVOowfITLMzZbSE3TDIN+
JdW8d9Xd5UVB+09gUCI8tSfnOjF2dHILN1Oh1f T4WORT+G35USIyUIZt0QODh8M+
--snip--

z0/dbYtqRkMT8Ubb/0Q1IWOq8eOWnFetzkwPzAI jwZGXTOkWIu3RYj10XbTYDr2c
XBRVC/ujoDL603NagPxkWY5HIVmkyKIE5pCO4RFNyaQ8+04APyobabPMy1Qq5Vo5
N5L2c4mhy1/0H8fvKBRDuvCk20ZinjdoKUo8ZA5D0a4pdvIQfR+b4/4]jsx4
----- END RSA PRIVATE KEY-----

Notice that the key comes in a specific format—namely, base64-encoded
data between the BEGIN RsA PRIVATE Key and END RsA PRIVATE KEY markers. That’s a
standard encoding format supported by most systems, which then convert
this representation to raw bytes of data. The dot sequences at the beginning
are a kind of progress bar, and e is 65537 (ex10001) indicates the parameter to

use when encrypting (remember that RSA encrypts by computing C = P*
mod 7).

Protecting Keys



Once you have a secret key, you need to keep it secret, yet available when
you need it. There are three ways to address this problem.

Key wrapping (encrypting the key using a second key)

The problem with this approach is that the second key must be available
when you need to decrypt the protected key. In practice, this second key
is often generated from a password supplied by the user when he needs to
use the protected key. That’s how private keys for the Secure Shell (SSH)
protocol are usually protected.

On-the-fly generation from a password

Here, no encrypted file needs to be stored because the key comes straight
out from the password. Modern systems like minilLock use this method.
Although this method is more direct than key wrapping, it’s less
widespread, in part because it’s more vulnerable to weak passwords. Say,
for example, that an attacker captured some encrypted message: if key
wrapping was used, the attacker first needs to get the protected key file,
which is usually stored locally on the user’s file system and therefore not
easy to access. But if on-the-fly generation was used, the attacker can
directly search for the correct password by attempting to decrypt the
encrypted message with candidate passwords. And if the password is weak,
the key is compromised.

Storing the key on a hardware token (smart card or USB dongle)

In this approach, the key is stored in secure memory and remains safe
even if the computer is compromised. This is the safest approach to key
storage, but also the costliest and least convenient because it requires you
to carry the hardware token with you and run the risk of losing it. Smart
cards and USB dongles usually require you to enter a password to unlock
the key from the secure memory.

Whatever method you use, make sure not to mistake the private key for the
public one when exchanging keys, and don’t accidentally publish the private key
through email or source code. (I've actually found private keys on GitHub.)

To test key wrapping, run the OpenSSL command shown here with the
argument -aes128 to tell OpenSSL to encrypt the key with the cipher AES-



128 (AES with a 128-bit key):

$ openssl genrsa -aes128 4096
Generating RSA private key, 4096 bit long modulus

e i1s 65537 (0x10001)
Enter pass phrase:

The passphrase requested will be used to encrypt the newly created key.

How Things Can Go Wrong

Cryptographic security can go wrong in many ways. The biggest risk is when
we have a false sense of security thanks to security proofs or to well-studied
protocols, as illustrated by the following two examples.

Incorrect Security Proof

Even proofs of security by renowned researchers may be wrong. One of the
most striking examples of a proof gone terribly wrong is that of Optimal
Asymmetric Encryption Padding (OAEP), a method of secure encryption that
used RSA and was implemented in many applications. Yet, an incorrect
proof of OAEP’s security against chosen-ciphertext attackers was accepted as
valid for seven years, until a researcher found the flaw in 2001. Not only was
the proof wrong, the result was wrong as well. A new proof later showed that
OAEP is only almost secure against chosen-ciphertext attackers. We now
have to trust the new proof and hope that it’s flawless. (For further details,
see the 2001 paper “OAEP Reconsidered” by Victor Shoup.)

Short Keys for Legacy Support

In 2015, researchers found that some HTTPS sites and SSH servers
supported public-key cryptography with shorter keys than expected: namely,
512 bits instead of at least 2048 bits. Remember, with public-key schemes,
the security level isn’t equal to the key size, and in the case of HT'TPS, keys
of 512 bits offer a security level of approximately 60 bits. These keys could
be broken after only about two weeks of computation using a cluster of 72
processors. Many websites were affected, including the FBI’s. Although the
software was ultimately fixed (thanks to patches for OpenSSL and for other
software), the problem was quite an unpleasant surprise.



Further Reading

To learn more about provable security for symmetric ciphers, read the
sponge functions documentation  (bttp://sponge.noekeon.org/).  Sponge
functions introduced the permutation-based approach in symmetric crypto,
which describes how to construct a bunch of different cryptographic
functions using only one permutation.

Some must-reads on the real cost of attacks include Bernstein’s 2005 paper
“Understanding Brute Force” and Wiener’s 2004 paper “The Full Cost of
Cryptanalytic Attacks,” both available online for free.

To determine the security level for a given key size, wvisit
http://www.keylength.com/. This site also offers an explanation on how private
keys are protected in common cryptographic utilities, such as SSH,

OpenSSL, GnuPG, and so on.

Finally, as an exercise, pick an application (such as a secure messaging
application) and identify its crypto schemes, key length, and respective
security levels. You’'ll often find surprising inconsistencies, such as a first
scheme providing a 256-bit security level but a second scheme providing
only 100-bit security. The security of the whole system is often only as
strong as that of its weakest component.


http://sponge.noekeon.org/
http://www.keylength.com/

4
BLOCK CIPHERS

During the Cold War, the US and Soviets developed their own ciphers. The
US government created the Data Encryption Standard (DES), which was
adopted as a federal standard from 1979 to 2005, while the KGB developed
GOST 28147-89, an algorithm kept secret until 1990 and still used today. In
2000, the US-based National Institute of Standards and Technology (NIST)
selected the successor to DES, called the Advanced Encryption Standard
(AES), an algorithm developed in Belgium and now found in most electronic
devices. AES, DES, and GOST 28147-89 have something in common:
they’re all block ciphers, a type of cipher that combines a core algorithm
working on blocks of data with a mode of operation, or a technique to
process sequences of data blocks.

This chapter reviews the core algorithms that underlie block ciphers,
discusses their modes of operation, and explains how they all work together.
It also discusses how AES works and concludes with coverage of a classic
attack tool from the 1970s, the meet-in-the-middle attack, and a favorite
attack technique of the 2000s—padding oracles.

What Is a Block Cipher?

A block cipher consists of an encryption algorithm and a decryption
algorithm:

o The encryption algorithm (E) takes a key, K, and a plaintext block, P, and
produces a ciphertext block, C. We write an encryption operation as C =
E(K, P).

o The decryption algorithm (D) is the inverse of the encryption algorithm
and decrypts a message to the original plaintext, P. This operation is



written as P = D(K, C).

Since they’re the inverse of each other, the encryption and decryption
algorithms usually involve similar operations.

Security Goals

If you've followed earlier discussions about encryption, randomness, and
indistinguishability, the definition of a secure block cipher will come as no
surprise. Again, we’ll define security as random-lookingness, so to speak.

In order for a block cipher to be secure, it should be a pseudorandom
permutation (PRP), meaning that as long as the key is secret, an attacker
shouldn’t be able to compute an output of the block cipher from any input.
That is, as long as K is secret and random from an attacker’s perspective,
they should have no clue about what E(K, P) looks like, for any given P.

More generally, attackers should be unable to discover any pattern in the
input/output values of a block cipher. In other words, it should be impossible
to tell a block cipher from a truly random permutation, given black-box
access to the encryption and decryption functions for some fixed and
unknown key. By the same token, they should be unable to recover a secure
block cipher’s secret key; otherwise, they would be able to use that key to tell
the block cipher from a random permutation. Of course that also implies
that attackers can’t predict the plaintext that corresponds to a given
ciphertext produced by the block cipher.

Block Size

Two values characterize a block cipher: the block size and the key size.
Security depends on both values. Most block ciphers have either 64-bit or

128-bit blocks—DES’s blocks have 64 (2°) bits, and AES’s blocks have 128

(27) bits. In computing, lengths that are powers of two simplify data

processing, storage, and addressing. But why 26 and 27 and not 2% or 216

bits?

For one thing, it’s important that blocks are not too large in order to
minimize both the length of ciphertext and the memory footprint. With
regard to the length of the ciphertext, block ciphers process blocks, not bits.
This means that in order to encrypt a 16-bit message when blocks are 128
bits, you’ll first need to convert the message into a 128-bit block, and only



then will the block cipher process it and return a 128-bit ciphertext. The
wider the blocks, the longer this overhead. As for the memory footprint, in
order to process a 128-bit block, you need at least 128 bits of memory. This
is small enough to fit in the registers of most CPUs or to be implemented
using dedicated hardware circuits. Blocks of 64, 128, or even 512 bits are
short enough to allow for efficient implementations in most cases. But larger
blocks (for example, several kilobytes long) can have a noticeable impact on
the cost and performance of implementations.

When ciphertexts’ length or memory footprint is critical, you may have to
use 64-bit blocks, because these will produce shorter ciphertexts and
consume less memory. Otherwise, 128-bit or larger blocks are better, mainly
because 128-bit blocks can be processed more efficiently than 64-bit ones on
modern CPUs and are also more secure. In particular, CPUs can leverage
special CPU instructions in order to efficiently process one or more 128-bit
blocks in parallel—for example, the Advanced Vector Extensions (AVX)
family of instructions in Intel CPUs.

The Codebook Attack

While blocks shouldn’t be too large, they also shouldn’t be too small;
otherwise, they may be susceptible to codebook attacks, which are attacks
against block ciphers that are only efficient when smaller blocks are used.

The codebook attack works like this with 16-bit blocks:

1. Get the 65536 (29) ciphertexts corresponding to each 16-bit plaintext
block.

2. Build a lookup table—the codebook—mapping each ciphertext block to
its corresponding plaintext block.

3. To decrypt an unknown ciphertext block, look up its corresponding
plaintext block in the table.

When 16-bit blocks are used, the lookup table needs only 216 x 16 = 220
bits of memory, or 128 kilobytes. With 32-bit blocks, memory needs grow to
16 gigabytes, which is still manageable. But with 64-bit blocks, you’d have to
store 270 bits (a zetabit, or 128 exabytes), so forget about it. Codebook
attacks won’t be an issue for larger blocks.



How to Construct Block Ciphers

There are hundreds of block ciphers but only a handful of techniques to
construct one. First, a block cipher used in practice isn’t a gigantic algorithm
but a repetition of rounds, a short sequence of operations that is weak on its
own but strong in number. Second, there are two main techniques to
construct a round: substitution—permutation networks (as in AES) and
Feistel schemes (as in DES). In this section, we look at how these work, after
viewing an attack that works when all rounds are identical to each other.

A Block Cipher’s Rounds

Computing a block cipher boils down to computing a sequence of rounds. In
a block cipher, a round is a basic transformation that is simple to specify and
to implement, and which is iterated several times to form the block cipher’s
algorithm. This construction, consisting of a small component repeated
many times, is simpler to implement and to analyze than a construction that
would consist of a single huge algorithm.

For example, a block cipher with three rounds encrypts a plaintext by
computing C = R;(R,(R(P))), where the rounds are R;, R,, and R; and P is
a plaintext. Each round should also have an inverse in order to make it
possible for a recipient to compute back to plaintext. Specifically, P =

iR, (iR,(iR;(())), where iR, is the inverse of Ry, and so on.
The round functions—R, R,, and so on—are usually identical algorithms,

but they are parameterized by a value called the round key. Two round
functions with two distinct round keys will behave differently, and therefore
will produce distinct outputs if fed with the same input.

Round keys are keys derived from the main key, K, using an algorithm
called a key schedule. For example, R, takes the round key K, R, takes the
round key K5, and so on.

Round keys should always be different from each other in every round.
For that matter, not all round keys should be equal to the key K. Otherwise,
all the rounds would be identical and the block cipher would be less secure,
as described next.

The Slide Attack and Round Keys

In a block cipher, no round should be identical to another round in order to



avold a slide attack. Slide attacks look for two plaintext/ciphertext pairs (P,
C)) and (P,, C,), where P, = R(P)) if R is the cipher’s round (see Figure 4-1).
When rounds are identical, the relation between the two plaintexts, P, =
R(P,), implies the relation C, = R(C) between their respective ciphertexts.
Figure 4-1 shows three rounds, but the relation €, = R(C;) will hold no
matter the number of rounds, be it 3, 10, or 100. The problem is that
knowing the input and output of a single round often helps recover the key.
(For details, read the 1999 paper by Biryukov and Wagner called “Advanced

Slide Attacks,” available at
https://www.iacr.org/archive/eurocrypt2000/1807/18070595-new.pdf)

The use of different round keys as parameters ensures that the rounds will
behave differently and thus foil slide attacks.

P
PbP—a| R —»| R || R |—C

RP)=P,— R |—» R |—»| R |—»C,

Figure 4-1: The principle of the slide attack, against block ciphers with identical rounds

One potential byproduct and benefit of using round keys is protection against
side-channel attacks, or attacks that exploit information leaked from the
implementation of a cipher (for example, electromagnetic emanations). If the
transformation from the main key, K, to a round key, K,, is not invertible, then
if an attacker finds K, they can’t use that key to find K. Unfortunately, few
block ciphers have a one-way key schedule. The key schedule of AES allows
attackers to compute K from any round key, K;, for example.

Substitution—Permutation Networks

If you've read textbooks about cryptography, you’ll undoubtedly have read
about confusion and diffusion. Confusion means that the input (plaintext and
encryption key) undergoes complex transformations, and diffusion means
that these transformations depend equally on all bits of the input. At a high


https://www.iacr.org/archive/eurocrypt2000/1807/18070595-new.pdf

level, confusion is about depth whereas diffusion is about breadth. In the
design of a block cipher, confusion and diffusion take the form of
substitution and permutation operations, which are combined within
substitution—permutation networks (SPNs).

Substitution often appears in the form of S-boxes, or substitution boxes,
which are small lookup tables that transform chunks of 4 or 8 bits. For
example, the first of the eight S-boxes of the block cipher Serpent is
composed of the 16 elements 3 8f1a 6 5bed42709 c), where each
element represents a 4-bit nibble. This particular S-box maps the 4-bit
nibble 0000 to 3 (0011), the 4-bit nibble 0101 (5 in decimal) to 6 (0110), and

SO on.

S-boxes must be carefully chosen to be cryptographically strong: they should be as
nonlinear as possible (inputs and outputs should be related with complex
equations) and bave no statistical bias (meaning, for example, that flipping an
input bit should potentially affect any of the output bits).

The permutation in a substitution—permutation network can be as simple
as changing the order of the bits, which is easy to implement but doesn’t mix
up the bits very much. Instead of a reordering of the bits, some ciphers use
basic linear algebra and matrix multiplications to mix up the bits: they
perform a series of multiplication operations with fixed values (the matrix’s
coefficients) and then add the results. Such linear algebra operations can
quickly create dependencies between all the bits within a cipher and thus
ensure strong diffusion. For example, the block cipher FOX transforms a 4-
byte vector (a, b, ¢, d) to (&, V', ¢, d'), defined as follows:

d=a+b+c+(2xd)

:’J'=ﬁ+{253><f;)+(2>< (')+(|"
¢ =(253xa)+(2xb)+c+d
d'=(2xa)+b+(253xc)+d

In the above equations, the numbers 2 and 253 are interpreted as binary
polynomials rather than integers; hence, additions and multiplications are
defined a bit differently than what we’re used to. For example, instead of
having 2 + 2 = 4, we have 2 + 2 = 0. Regardless, the point is that each byte in



the initial state affects all 4 bytes in the final state.

Feistel Schemes

In the 1970s, IBM engineer Horst Feistel designed a block cipher called
Lucifer that works as follows:

1. Split the 64-bit block into two 32-bit halves, L and R.

2. Set L to L @ F(R), where F is a substitution—-permutation round.
3. Swap the values of L and R.

4. Go to step 2 and repeat 15 times.

5. Merge L and R into the 64-bit output block.

This construction became known as a Feistel scheme, as shown in Figure 4-
2. The left side is the scheme as just described; the right side is a functionally

equivalent representation where, instead of swapping L and R, rounds
alternate the operations L = L ® F(R) and R = R ® F(L).

Figure 4-2: The Feistel scheme block cipher construction in two equivalent forms

I’'ve omitted the keys from Figure 4-2 to simplify the diagrams, but note
that the first F takes a first round key, K;, and the second F takes another
round key, K,. In DES, the F functions take a 48-bit round key, which is
derived from the 56-bit key, K.

In a Feistel scheme, the F function can be either a pseudorandom
permutation (PRP) or a pseudorandom function (PRF). A PRP yields
distinct outputs for any two distinct inputs, whereas a PRF will have values X
and Y for which F(X) = F(Y). But in a Feistel scheme, that difference doesn’t
matter as long as F is cryptographically strong.



How many rounds should there be in a Feistel scheme? Well, DES
performs 16 rounds, whereas GOST 28147-89 performs 32 rounds. If the F
function is as strong as possible, four rounds are in theory sufficient, but real
ciphers use more rounds to defend against potential weaknesses in F.

The Advanced Encryption Standard (AES)

AES is the most-used cipher in the universe. Prior to the adoption of AES,
the standard cipher in use was DES, with its ridiculous 56-bit security, as
well as the upgraded version of DES known as Triple DES, or 3DES.

Although 3DES provides a higher level of security (112-bit security), it’s
inefficient because the key needs to be 168 bits long in order to get 112-bit
security, and it’s slow in software (DES was created to be fast in integrated
circuits, not on mainstream CPUs). AES fixes both issues.

NIST standardized AES in 2000 as a replacement for DES, at which point
it became the world’s de facto encryption standard. Most commercial
encryption products today support AES, and the NSA has approved it for
protecting top-secret information. (Some countries do prefer to use their
own cipher, largely because they don’t want to use a US standard, but AES is
actually more Belgian than it is American.)

AES used to be called Rijndael (a portmantean for its inventors’ names, Rijmen
and Daemen, pronounced like “rain-dull”) when it was one of the 15 candidates
in the AES competition, the process held by NIST from 1997 to 2000 to specify
“an unclassified, publicly disclosed encryption algorithm capable of protecting
sensitive government information well into the next century,” as stated in the
1997 announcement of the competition in the Federal Register. The AES
competition was kind of a “Got Talent” competition for cryptographers, where
anyone could participate by submitting a cipher or breaking other contestants’
ciphers.

AES Internals

AES processes blocks of 128 bits using a secret key of 128, 192, or 256 bits,
with the 128-bit key being the most common because it makes encryption
slightly faster and because the difference between 128- and 256-bit security



is meaningless for most applications.

S0 54 Sg 512
5 S5 5o 513
5y S 510 514
5y v sl 515

Figure 4-3: The internal state of AES viewed as a 4 x 4 array of 16 bytes

Whereas some ciphers work with individual bits or 64-bit words, AES
manipulates bytes. It views a 16-byte plaintext as a two-dimensional array of
bytes (s = 5g, 51, --- , 515), as shown in Figure 4-3. (The letter s is used because
this array is called the internal state, or just state.) AES transforms the bytes,
columns, and rows of this array to produce a final value that is the ciphertext.

In order to transform its state, AES uses an SPN structure like the one
shown in Figure 4-4, with 10 rounds for 128-bit keys, 12 for 192-bit keys,
and 14 for 256-bit keys.
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Figure 4-4: The internal operations of AES
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Figure 4-4 shows the four building blocks of an AES round (note that all

but the last round are a sequence of SubBytes, ShiftRows, MixColumns, and
AddRoundKey):

AddRoundKey XORs a round key to the internal state.

SubBytes Replaces each byte (s, s, ... , 5;5) with another byte according
to an S-box. In this example, the S-box is a lookup table of 256 elements.
ShiftRows Shifts the 7/th row of 7 positions, for 7 ranging from 0 to 3 (see
Figure 4-5).

MixColumns Applies the same linear transformation to each of the four

columns of the state (that is, each group of cells with the same shade of

gray, as shown on the left side of Figure 4-5).

Remember that in an SPN, the S stands for substitution and the P for
permutation. Here, the substitution layer is SubBytes and the permutation



layer is the combination of ShiftRows and MixColumns.
The key schedule function KeyExpansion, shown in Figure 4-4, is the AES

key schedule algorithm. This expansion creates 11 round keys (K,, K, ...

)

Kip) of 16 bytes each from the 16-byte key, using the same S-box as
SubBytes and a combination of XORs. One important property of
KeyExpansion is that given any round key, K;, an attacker can determine all
other round keys as well as the main key, K, by reversing the algorithm. The
ability to get the key from any round key is usually seen as an imperfect
defense against side-channel attacks, where an attacker may easily recover a

round key.
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Figure 4-5: ShiftRows rotates bytes within each row of the internal state.

Without these operations, AES would be totally insecure. Each operation
contributes to AES’s security in a specific way:

Without KeyExpansion, all rounds would use the same key, K, and AES
would be vulnerable to slide attacks.

Without AddRoundKey, encryption wouldn’t depend on the key;
hence, anyone could decrypt any ciphertext without the key.

SubBytes brings nonlinear operations, which add cryptographic
strength. Without it, AES would just be a large system of linear
equations that is solvable using high-school algebra.

Without ShiftRows, changes in a given column would never affect the
other columns, meaning you could break AES by building four 232-
element codebooks for each column. (Remember that in a secure block
cipher, flipping a bit in the input should affect all the output bits.)
Without MixColumns, changes in a byte would not affect any other



bytes of the state. A chosen-plaintext attacker could then decrypt any
ciphertext after storing 16 lookup tables of 256 bytes each that hold the
encrypted values of each possible value of a byte.

Notice in Figure 4-4 that the last round of AES doesn’t include the
MixColumns operation. That operation is omitted in order to save useless
computation: because MixColumns is linear (meaning, predictable), you
could cancel its effect in the very last round by combining bits in a way that
doesn’t depend on their value or the key. SubBytes, however, can’t be
inverted without the state’s value being known prior to AddRoundKey.

To decrypt a ciphertext, AES unwinds each operation by taking its inverse
function: the inverse lookup table of SubBytes reverses the SubBytes
transformation, ShiftRow shifts in the opposite direction, MixColumns’s
inverse is applied (as in the matrix inverse of the matrix encoding its
operation), and AddRoundKey’s XOR is unchanged because the inverse of
an XOR is another XOR.

AES in Action

To try encrypting and decrypting with AES, you can use Python’s crypto-
graphy library, as in Listing 4-1.

#!/usr/bin/env python

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend

from binascii import hexlify as hexa

from os import urandom

# pick a random 16-byte key using Python's crypto PRNG

k = urandom(16)

print "k = %s" % hexa(k)

# create an instance of AES-128 to encrypt a single block

cipher = Cipher(algorithms.AES(k), modes.ECB(), backend = default_backend())
aes_encrypt = cipher.encryptor()

# set plaintext block p to the all-zero string

p = '"\x00'*16

# encrypt plaintext p to ciphertext c

c = aes_encrypt.update(p) + aes_encrypt.finalize()
print "enc(%s) = %s" % (hexa(p), hexa(c))

# decrypt ciphertext c to plaintext p

aes_decrypt = cipher.decryptor()

p = aes_decrypt.update(c) + aes_decrypt.finalize()
print "dec(%s) = %s" % (hexa(c), hexa(p))




Listing 4-1: Trying AES with Python’s cryptography library

Running this script produces something like the following output:

$ ./aes_block.py

k = 2c6202f9a582668aa96d511862d8a279
enc(00000000000000000000000000000000)
dec(12b620bb5eddcde9a07523e59292a6d7)

12b620bb5eddcde9a07523e59292a6d7
00000000000000000000000000000000

You’ll get different results because the key is randomized at every new
execution.

Implementing AES

Real AES software works differently than the algorithm shown in Figure 4-
4. You won’t find production-level AES code calling a subBytes() function,
then a shiftrows() function, and then a Mixcolumns() function because that
would be inefficient. Instead, fast AES software uses special techniques called
table-based implementations and native instructions.

Table-Based Implementations

Table-based implementations of AES replace the sequence SubBytes-
ShiftRows-MixColumns with a combination of XORs and lookups in tables
hardcoded into the program and loaded in memory at execution time. This
is possible because MixColumns is equivalent to XORing four 32-bit values,
where each depends on a single byte from the state and on SubBytes. Thus,
you can build four tables with 256 entries each, one for each byte value, and
implement the sequence SubBytes-MixColumns by looking up four 32-bit
values and XORing them together.

For example, the table-based C implementation in the OpenSSL toolkit
looks like Listing 4-2.

/* round 1: */

t0 = TeO[sO >> 24] » Tel[(sl >> 16) & Oxff] ~ Te2[(s2 >> 8) & Oxff] ~ Te3[s3 &
oxff] ~ rk[ 4];

t1l = TeO[s1 >> 24] ~ Tel[(s2 >> 16) & Oxff] ~ Te2[(s3 >> 8) & Oxff] ~ Te3[sO &
oxff] » rk[ 5];

t2 = TeO[s2 >> 24] ~ Tel[(s3 >> 16) & Oxff] ~ Te2[(sO >> 8) & Oxff] ~ Te3[s1 &
oxff] ~ rk[ 6];

t3 = TeO[s3 >> 24] » Tel[(sO >> 16) & Oxff] » Te2[(s1l >> 8) & Oxff] ~ Te3[s2 &
oxff] » rk[ 7];

/* round 2: */

sO = TeO[tO >> 24] » Tel[(tl >> 16) & Oxff] ~ Te2[(t2 >> 8) & Oxff] ~ Te3[t3 &
oxff] » rk[ 8];



s1 = TeO[t1 >> 24] ~ Tel[(t2 >> 16) & Oxff] ~ Te2[(t3 >> 8) & Oxff] ~ Te3[t0 &
oxff] ~ rk[ 9];

s2 = TeO[t2 >> 24] ~ Tel[(t3 >> 16) & Oxff] ~ Te2[(t0 >> 8) & Oxff] ~ Te3[t1l &
oxff] ~ rk[10];

s3 = TeO[t3 >> 24] » Tel[(t0 >> 16) & Oxff] ~ Te2[(tl1l >> 8) & Oxff] ~ Te3[t2 &
oxff] ~ rk[11];
--snip--

Listing 4-2: The table-based C implementation of AES in OpenSSL

A basic table-based implementation of AES encryption needs four
kilobytes’ worth of tables because each table stores 256 32-bit values, which
occupy 256 x 32 = 8192 bits, or one kilobyte. Decryption requires another
four tables, and thus four more kilobytes. But there are tricks to reduce the
storage from four kilobytes to one, or even fewer.

Alas, table-based implementations are vulnerable to cache-timing attacks,
which exploit timing variations when a program reads or writes elements in
cache memory. Depending on the relative position in cache memory of the
elements accessed, access time varies. Timings thus leak information about
which element was accessed, which in turn leaks information on the secrets
involved.

Cache-timing attacks are difficult to avoid. One obvious solution would be
to ditch lookup tables altogether by writing a program whose execution time
doesn’t depend on its inputs, but that’s almost impossible to do and still
retain the same speed, so chip manufacturers have opted for a radical
solution: instead of relying on potentially vulnerable software, they rely on
hardware.

Native Instructions

AES native instructions (AES-NI) solve the problem of cache-timing attacks
on AES software implementations. To understand how AES-NI works, you
need to think about the way software runs on hardware: to run a program, a
microprocessor translates binary code into a series of instructions executed
by integrated circuit components. For example, a mL assembly instruction
between two 32-bit values will activate the transistors implementing a 32-bit
multiplier in the microprocessor. To implement a crypto algorithm, we
usually just express a combination of such basic operations—additions,
multiplications, XORs, and so on—and the microprocessor activates its
adders, multipliers, and XOR circuits in the prescribed order.

AES native instructions take this to a whole new level by providing



developers with dedicated assembly instructions that compute AES. Instead
of coding an AES round as a sequence of assembly instructions, when using
AES-NI, you just call the instruction Aesenc and the chip will compute the
round for you. Native instructions allow you to just tell the processor to run
an AES round instead of requiring you to program rounds as a combination
of basic operations.

A typical assembly implementation of AES using native instructions looks
like Listing 4-3.

PXOR %xmm5,  %xmmO
AESENC %Xmm6,  %xmmO
AESENC %xmm7,  %xmmO
AESENC %Xmm8,  %xmmO
AESENC %xmm9,  %xmmO
AESENC %xXmm10, %xmmO
AESENC %xmm1l, %xmmO
AESENC %xmm12, %xmmO
AESENC %xmm13, %xmmO
AESENC %xmmi4, %xmmO

AESENCLAST %xmm15, %xmmO

Listing 4-3: AES native instructions

This code encrypts the 128-bit plaintext initially in the register xmmo,
assuming that registers xmm5 to xmm15 hold the precomputed round keys, with
each instruction writing its result into xmne. The initial pxor instruction XORs
the first round key prior to computing the first round, and the final AesencLasT
instruction performs the last round slightly different from the others
(MixColumns is omitted).

AES is about ten times faster on platforms that implement native instructions,
which as 1 write this, are virtually all laptop, desktop, and server
microprocessors, as well as most mobile phones and tablets. In fact, on the latest
Intel microarchitecture the ALSENC instruction bas a latency of four cycles with
a reciprocal throughput of one cycle, meaning that a call to AESENC takes four
cycles to complete and that a new call can be made every cycle. To encrypt a series
of blocks comsecutively it thus takes 4 x 10 = 40 cycles to complete the 10 rounds
or 40 / 16 = 2.5 cycles per byte. At 2 GHz (2 x 10 7 cycles per second), that
gives a throughput of about 736 megabytes per second. If the blocks to encrypt or
decrypt are independent of each other, as certain modes of operation allow, then




four blocks can be processed in parallel to take full advantage of the AESENC
circuit in ovder to veach a latency of 10 cycles per block instead of 40, or about 3
gigabytes per second.

Is AES Secure?

AES is as secure as a block cipher can be, and it will never be broken.
Fundamentally, AES is secure because all output bits depend on all input bits
in some complex, pseudorandom way. T'o achieve this, the designers of AES
carefully chose each component for a particular reason—MixColumns for its
maximal diffusion properties and SubBytes for its optimal non-linearity—
and they have shown that this composition protects AES against whole
classes of cryptanalytic attacks.

But there’s no proof that AES is immune to all possible attacks. For one
thing, we don’t know what all possible attacks are, and we don’t always know
how to prove that a cipher is secure against a given attack. The only way to
really gain confidence in the security of AES is to crowdsource attacks: have
many skilled people attempt to break AES and, hopefully, fail to do so.

After more than 15 years and hundreds of research publications, the
theoretical security of AES has only been scratched. In 2011 cryptanalysts

found a way to recover an AES-128 key by performing about 2126 operations

2128

instead of , a speed-up of a factor four. But this “attack” requires an

insane amount of plaintext—ciphertext pairs—about 288 bits worth. In other
words, it’s a nice finding but not one you need to worry about.

The upshot is that you should care about a million things when
implementing and deploying crypto, but AES security is not one of those.
The biggest threat to block ciphers isn’t in their core algorithms but in their
modes of operation. When an incorrect mode is chosen, or when the right
one is misused, even a strong cipher like AES won’t save you.

Modes of Operation

In Chapter 1, I explained how encryption schemes combine a permutation
with a mode of operation to handle messages of any length. In this section,
I'll cover the main modes of operations used by block ciphers, their security
and function properties, and how (not) to use them. I’ll begin with the
dumbest one: electronic codebook.



The Electronic Codebook (ECB) Mode
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Figure 4-6: The ECB mode

The simplest of the block cipher encryption modes is electronic codebook
(ECB), which is barely a mode of operation at all. ECB takes plaintext blocks
Py, P, ..., Py and processes each independently by computing C; = E(K,
P)), C; = E(K, P,), and so on, as shown in Figure 4-6. It’s a simple operation
but also an insecure one. I repeat: ECB is insecure and you should not use it!

Marsh Ray, a cryptographer at Microsoft, once said, “Everybody knows
ECB mode is bad because we can see the penguin.” He was referring to a
famous illustration of ECB’s insecurity that uses an image of Linux’s mascot,
Tux, as shown in Figure 4-7. You can see the original image of Tux on the
left, and the image encrypted in ECB mode using AES (though the
underlying cipher doesn’t matter) on the right. It’s easy to see the penguin’s
shape in the encrypted version because all the blocks of one shade of gray in
the original image are encrypted to the same new shade of gray in the new
image; in other words, ECB encryption just gives you the same image but
with different colors.



Figure 4-7: The original image (left) and the ECB-encrypted image (right)

The Python program in Listing 4-4 also shows ECB’s insecurity. It picks a
pseudorandom key and encrypts a 32-byte message p containing two blocks
of null bytes. Notice that encryption yields two identical blocks and that
repeating encryption with the same key and the same plaintext yields the
same two blocks again.

#!/usr/bin/env python

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend

from binascii import hexlify as hexa

from os import urandom

BLOCKLEN = 16

def blocks(data):
split = [hexa(data[i:1+BLOCKLEN]) for i1 in range(0®, len(data), BLOCKLEN)]
return ' '.join(split)

k = urandom(16)
print 'k = %s' % hexa(k)

# create an instance of AES-128 to encrypt and decrypt

cipher = Cipher(algorithms.AES(k), modes.ECB(), backend=default_backend())
aes_encrypt = cipher.encryptor()

# set plaintext block p to the all-zero string

p = "\x00'*BLOCKLEN*2



# encrypt plaintext p to ciphertext c
c = aes_encrypt.update(p) + aes_encrypt.finalize()
print 'enc(%s) = %s' % (blocks(p), blocks(c))

Listing 4-4: Using AES in ECB mode in Python

Running this script gives ciphertext blocks like this, for example:

$ ./aes_ecb.py

k = 50a0ebeff8001250e87d31d72a86e46d
enc(00000000000000000000000000000000 OEEEAAOENEEAAANENEEAAANENEENANN) =
S5eb4b7af094ef7acad72bbd3cd72fled 5eb4b7af094ef7acad72bbd3cd72f1ed

As you can see, when the ECB mode is used, identical ciphertext blocks
reveal identical plaintext blocks to an attacker, whether those are blocks
within a single ciphertext or across different ciphertexts. This shows that
block ciphers in ECB mode aren’t semantically secure.

Another problem with ECB is that it only takes complete blocks of data,
so if blocks were 16 bytes, as in AES, you could only encrypt chunks of 16
bytes, 32 bytes, 48 bytes, or any other multiple of 16 bytes. There are a few
ways to deal with this, as you’ll see with the next mode, CBC. (I won’t tell
you how these tricks work with ECB because you shouldn’t be using ECB in
the first place.)

The Cipher Block Chaining (CBC) Mode

Cipher block chaining (CBC) is like ECB but with a small twist that makes a
big difference: instead of encrypting the 7th block, P;, as C; = E(K, P;), CBC
sets C; = E(K, P; ® C; _ ), where C; _ | is the previous ciphertext block—
thereby chaining the blocks C; _ | and C;. When encrypting the first block, Py,
there is no previous ciphertext block to use, so CBC takes a random initial
value (IV), as shown in Figure 4-8.
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Figure 4-8: The CBC mode



The CBC mode makes each ciphertext block dependent on all the
previous blocks, and ensures that identical plaintext blocks won’t be identical
ciphertext blocks. The random initial value guarantees that two identical
plaintexts will encrypt to distinct ciphertexts when calling the cipher twice
with two distinct initial values.

Listing 4-5 illustrates these two benefits. This program takes an all-zero,
32-byte message (like the one in Listing 4-4), encrypts it twice with CBC,
and shows the two ciphertexts. The line iv = urandon(16), shown in bold, picks
a new random IV for each new encryption.

#!/usr/bin/env python

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend

from binascii import hexlify as hexa

from os import urandom

BLOCKLEN = 16

# the blocks() function splits a data string into space-separated blocks

def blocks(data):
split = [hexa(data[1:1+BLOCKLEN]) for 1 in range(0, len(data), BLOCKLEN)]
return ' '.join(split)

k = urandom(16)

print 'k = %s' % hexa(k)

# pick a random IV

iv = urandom(16)

print 'iv = %s' % hexa(iv)

# pick an instance of AES in CBC mode

aes = Cipher(algorithms.AES(k), modes.CBC(iv), backend=default_backend()).encryptor()

p = '\x00'*BLOCKLEN*2

c = aes.update(p) + aes.finalize()

print 'enc(%s) = %s' % (blocks(p), blocks(c))

# now with a different IV and the same key

iv = urandom(16)

print 'iv = %s' % hexa(iv)

aes = Cipher(algorithms.AES(k), modes.CBC(iv), backend=default_backend()).encryptor()
c = aes.update(p) + aes.finalize()

print 'enc(%s) = %s' % (blocks(p), blocks(c))

Listing 4-5: Using AES in CBC mode

The two plaintexts are the same (two all-zero blocks), but the encrypted
blocks should be distinct, as in this example execution:

$ ./aes_cbc.py

k = 9cf0d31ad2df24f3cbbefc1e6933c872

iv = 0a75c4283b4539c094fc262affod17af
enc(000000000000000000000000OCEEENNO CEOANNOEEEENNONOEEEENNOOEAEANNOER) =



370404dcab6e9ecbc3d24ca5573d2920 3b9e5d70e597db225609541f6ae9804a

iv = a6016a6698c3996be13e8739d9e793e2
enc(00000000000000000000000000000000 VEEAOEOAOEOAOEEAOEENOEENNEENNERO) =
655e1bb3e74ee8cf9ec1540afd8b2204 b59db5ac28de43b25612dfd6f031087a

Alas, CBC is often used with a constant IV instead of a random one, which
exposes identical plaintexts and plaintexts that start with identical blocks. For
example, say the two-block plaintext P; || P, is encrypted in CBC mode to

the two-block ciphertext C; |1 C,. If Py || P, is encrypted with the same
IV, where P," is some block distinct from P,, then the ciphertext will look
like C; I'l Cy, with C," different from C, but with the same first block Cj.

Thus, an attacker can guess that the first block is the same for both
plaintexts, even though they only see the ciphertexts.

In CBC mode, decryption needs to know the IV used to encrypt, so the IV is sent
along with the ciphertext, in the clear.

With CBC, decryption can be much faster than encryption due to
parallelism. While encryption of a new block, P, needs to wait for the
previous block, C; _ {, decryption of a block computes P; = D(K, C)) ® C; _,
where there’s no need for the previous plaintext block, P; _ ;. This means

that all blocks can be decrypted in parallel simultaneously, as long as you also
know the previous ciphertext block, which you usually do.

How to Encrypt Any Message in CBC Mode

Let’s circle back to the block termination issue and look at how to process a
plaintext whose length is not a multiple of the block length. For example,
how would we encrypt an 18-byte plaintext with AES-CBC when blocks are
16 bytes? What do we do with the two bytes left? We’ll look at two widely
used techniques to deal with this problem. The first one, padding, makes the
ciphertext a bit longer than the plaintext, while the second one, ciphertext
stealing, produces a ciphertext of the same length as the plaintext.

Padding a Message

Padding is a technique that allows you to encrypt a message of any length,
even one smaller than a single block. Padding for block ciphers is specified in



the PKCS#7 standard and in RFC 5652, and is used almost everywhere CBC
is used, such as in some HTTPS connections.

Padding is used to expand a message to fill a complete block by adding
extra bytes to the plaintext. Here are the rules for padding 16-byte blocks:

o If there’s one byte left—for example, if the plaintext is 1 byte, 17 bytes,
or 33 bytes long—pad the message with 15 bytes Of (15 in decimal).

o If there are two bytes left, pad the message with 14 bytes Oe (14 in
decimal).

o If there are three bytes left, pad the message with 13 bytes 0d (13 in
decimal).

If there are 15 plaintext bytes and a single byte missing to fill a block,
padding adds a single 01 byte. If the plaintext is already a multiple of 16, the
block length, add 16 bytes 10 (16 in decimal). You get the idea. The trick
generalizes to any block length up to 255 bytes (for larger blocks, a byte is
too small to encode values greater than 255).

Decryption of a padded message works like this:

1. Decrypt all the blocks as with unpadded CBC.

2. Make sure that the last bytes of the last block conform to the padding
rule: that they finish with at least one 01 byte, at least two 02 bytes, or
at least three 03 bytes, and so on. If the padding isn’t valid—for
example, if the last bytes are 01 02 03—the message is rejected.
Otherwise, decryption strips the padding bytes and returns the plaintext
bytes left.

One downside of padding is that it makes ciphertext longer by at least one
byte and at most a block.

Ciphertext Stealing

Ciphertext stealing is another trick used to encrypt a message whose length
isn’t a multiple of the block size. Ciphertext stealing is more complex and
less popular than padding, but it offers at least three benefits:

o Plaintexts can be of any bit length, not just bytes. You can, for example,
encrypt a message of 131 bits.



o Ciphertexts are exactly the same length as plaintexts.

o Ciphertext stealing is not vulnerable to padding oracle attacks, powerful
attacks that sometimes work against CBC with padding (as we’ll see in
“Padding Oracle Attacks” on page 74).

In CBC mode, ciphertext stealing extends the last incomplete plaintext
block with bits from the previous ciphertext block, and then encrypts the
resulting block. The last, incomplete ciphertext block is made up of the first
blocks from the previous ciphertext block; that is, the bits that have not been
appended to the last plaintext block.
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In Figure 4-9, we have three blocks, where the last block, Ps, is incomplete
(represented by a zero). P; is XORed with the last bits from the previous
ciphertext block, and the encrypted result is returned as C,. The last
ciphertext block, Cj, then consists of the first bits from the previous
ciphertext block. Decryption is simply the inverse of this operation.

There aren’t any major problems with ciphertext stealing, but it’s
inelegant and hard to get right, especially when NIST’s standard specifies
three different ways to implement it (see Special Publication 800-38A).

The Counter (CTR) Mode

To avoid the troubles and retain the benefits of ciphertext stealing, you
should use counter mode (CTR). CTR is hardly a block cipher mode: it
turns a block cipher into a stream cipher that just takes bits in and spits bits
out and doesn’t embarrass itself with the notion of blocks. (I'll discuss stream



ciphers in detail in Chapter 5.)
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Figure 4-10: The CTR mode

In CTR mode (see Figure 4-10), the block cipher algorithm won’t
transform plaintext data. Instead, it will encrypt blocks composed of a counter
and a nonce. A counter is an integer that is incremented for each block. No
two blocks should use the same counter within a message, but different
messages can use the same sequence of counter values (1, 2, 3, ...). A nonce
is a number used only once. It is the same for all blocks in a single message,
but no two messages should use the same nonce.

As shown in Figure 4-10, in CTR mode, encryption XORs the plaintext
and the stream taken from “encrypting” the nonce, N, and counter, Cir.
Decryption is the same, so you only need the encryption algorithm for both
encryption and decryption. The Python script in Listing 4-6 gives you a
hands-on example.

#!/usr/bin/env python

from Crypto.Cipher import AES

from Crypto.Util import Counter

from binascii import hexlify as hexa
from os import urandom

from struct import unpack

k = urandom(16)
print 'k = %s' % hexa(k)

# pick a starting value for the counter
nonce = unpack('<Q', urandom(8))[0]

# instantiate a counter function

ctr = Counter.new(128, initial_value=nonce)

# pick an instance of AES in CTR mode, using ctr as counter
aes = AES.new(k, AES.MODE_CTR, counter=ctr)

# no need for an entire block with CTR



p = '"\x00\x01\x02\x03"

# encrypt p

c = aes.encrypt(p)

print 'enc(%s) = %s' % (hexa(p), hexa(c))

# decrypt using the encrypt function

ctr = Counter.new(128, initial_value=nonce)
aes = AES.new(k, AES.MODE_CTR, counter=ctr)
p = aes.encrypt(c)

print 'enc(%s) = %s' % (hexa(c), hexa(p))

Listing 4-6: Using AES in CTR mode

The example execution encrypts a 4-byte plaintext and gets a 4-byte
ciphertext. It then decrypts that ciphertext using the encryption function:

$ .[aes_ctr.py

k = 130alaa77fa58335272156421cb2a3ea
enc(00010203) = b23d284e
enc(b23d284e) = 00010203

As with the initial value in CBC; CTR’s nonce is supplied by the encrypter
and sent with the ciphertext in the clear. But unlike CBC’s initial value,
CTR’s nonce doesn’t need to be random, it simply needs to be unique. A
nonce should be unique for the same reason that a one-time pad shouldn’t
be reused: when calling the pseudorandom stream, S, if you encrypt P; to C;
=P; ® Sand P, to C, = P, ® S using the same nonce, then C; & C, reveals
P, ® P;.

A random nonce will do the trick only if it’s long enough; for example, if
the nonce is 7 bits, chances are that after 2’V 2 encryptions and as many
nonces you’ll run into duplicates. Sixty-four bits are therefore insufficient for
a random nonce, since you can expect a repetition after approximately 232
nonces, which is an unacceptably low number.

The counter is guaranteed unique if it’s incremented for every new
plaintext, and if it’s long enough; for example, a 64-bit counter.

One particular benefit to CTR is that it can be faster than in any other
mode. Not only is it parallelizable, but you can also start encrypting even
before knowing the message by picking a nonce and computing the stream
that you’ll later XOR with the plaintext.

How Things Can Go Wrong



There are two must-know attacks on block ciphers: meet-in-the-middle
attacks, a technique discovered in the 1970s but still used in many
cryptanalytic attacks (not to be confused with man-in-the-middle attacks),
and padding oracle attacks, a class of attacks discovered in 2002 by academic
cryptographers, then mostly ignored, and finally rediscovered a decade later
along with several vulnerable applications.

Meet-in-the-Middle Attacks

The 3DES block cipher is an upgraded version of the 1970s standard DES
that takes a key of 56 x 3 = 168 bits (an improvement on DES’s 56-bit key).
But the security level of 3DES is 112 bits instead of 168 bits, because of the
meet-in-the-middle (MitM) attack.

As you can see in Figure 4-11, 3DES encrypts a block using the DES
encryption and decryption functions: first encryption with a key, K|, then

decryption with a key, K5, and finally encryption with another key, K;. If K;
= K, the first two calls cancel themselves out and 3DES boils down to a
single DES with key K;. 3DES does encrypt-decrypt-encrypt rather than

encrypting thrice to allow systems to emulate DES when necessary using the
new 3DES interface.

K, K, K
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Figure 4-11: The 3DES block cipher construction

Why use triple DES and not just double DES; that is, E(K;, E(K,, P))? It

turns out that the MitM attack makes double DES only as secure as single
DES. Figure 4-12 shows the MitM attack in action.
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Figure 4-12: The meet-in-the-middle attack

The meet-in-the-middle attack works as follows to attack double DES:

1. Say you have P and C = E(K,, E(K|, P)) with two unknown 56-bit keys,
K; and K;. (DES takes 56-bit keys, so double DES takes 112 key bits in

total.) You build a key—value table with 2°¢ entries of E(K;, P), where E
is the DES encryption function and Kj is the value stored.

2. For all 2°6 values of K,, compute D(K,, C) and check whether the

resulting value appears in the table as an index (thus as a middle value,
represented by a question mark in Figure 4-12).

3. If a middle value is found as an index of the table, you fetch the
corresponding K; from the table and verify that the (Kj, K;) found is the
right one by using other pairs of P and C. Encrypt P using K| and K,
and then check that the ciphertext obtained is the given C.

This method recovers K; and K, by performing about 2°7 instead of 2112

operations: step 1 encrypts 2°¢ blocks and then step 2 decrypts at most 2°
blocks, for 2°6 + 2°6 = 237 operations in total. You also need to store 2°
elements of 15 bytes each, or about 128 petabytes. That’s a lot, but there’s a
trick that allows you to run the same attack with only negligible memory (as
you’ll see in Chapter 6).

As you can see, you can apply the MitM attack to 3DES in almost the

same way you would to double DES, except that the third stage will go
through all 2!12 values of K, and K;. The whole attack thus succeeds after

performing about 2!'!2 operations, meaning that 3DES gets only 112-bit
security despite having 168 bits of key material.

Padding Oracle Attacks

Let’s conclude this chapter with one of the simplest and yet most devastating
attacks of the 2000s: the padding oracle attack. Remember that padding fills
the plaintext with extra bytes in order to fill a block. A plaintext of 111 bytes,
for example, is a sequence of six 16-byte blocks followed by 15 bytes. To
form a complete block, padding adds a 01 byte. For a 110-byte plaintext,
padding adds two 02 bytes, and so on.



A padding oracle is a system that behaves differently depending on whether
the padding in a CBC-encrypted ciphertext is valid. You can see it as a black
box or an API that returns either a success or an error value. A padding oracle
can be found in a service on a remote host sending error messages when it
receives malformed ciphertexts. Given a padding oracle, padding oracle
attacks record which inputs have a valid padding and which don’t, and
exploit this information to decrypt chosen ciphertext values.
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Figure 4-13: Padding oracle attacks recover X by choosing Cj and checking the validity of
padding.

Say you want to decrypt ciphertext block C,. I'll call X the value you’re
looking for, namely D(K, C,), and P, the block obtained after decrypting in
CBC mode (see Figure 4-13). If you pick a random block C; and send the
two-block ciphertext C; || C, to the oracle, decryption will only succeed if
C; ® P, = X ends with valid padding—a single 01 byte, two 02 bytes, or
three 03 bytes, and so on.

Based on this observation, padding oracle attacks on CBC encryption can
decrypt a block C, like this (bytes are denoted in array notation: C;[0] is Cy’s

first byte, C[1] its second byte, and so on up to C;[15], C,’s last byte):

1. Pick a random block C; and vary its last byte until the padding oracle
accepts the ciphertext as valid. Usually, in a valid ciphertext, C;[15] &
X[15] = 01, so you'll find X[15] after trying around 128 values of C;[15].

2. Find the value X[14] by setting C;[15] to X[15] & 02 and searching for
the C;[14] that gives correct padding. When the oracle accepts the
ciphertext as valid, it means you have found C;[14] such that C|[14] &
X[14] = 02.



3. Repeat steps 1 and 2 for all 16 bytes.

The attack needs on average 128 queries to the oracle for each of the 16
bytes, which is about 2000 queries in total. (Note that each query must use
the same initial value.)

In practice, implementing a padding oracle attack is a bit more complicated than
what I've described, because you bave to deal with wrong guesses at step 1. A
ciphertext may have valid padding not because P, ends with a single 01 but

because it ends with two 02 bytes or three 03 bytes. But that’s easily managed by
testing the validity of cipbertexts where more bytes are modified.

Further Reading

There’s a lot to say about block ciphers, be it in how algorithms work or in
how they can be attacked. For instance, Feistel networks and SPNs aren’t
the only ways to build a block cipher. The block ciphers IDEA and FOX use
the Lai—-Massey construction, and Threefish uses ARX networks, a
combination of addition, word rotations, and XORs.

There are also many more modes than just ECB, CBC, and CTR. Some
modes are folklore techniques that nobody uses, like CFB and OFB, while
others are for specific applications, like XTS for tweakable encryption or
GCM for authenticated encryption.

I've discussed Rijndael, the AES winner, but there were 14 other
algorithms in the race: CAST-256, CRYPTON, DEAL, DFC, E2, FROG,
HPC, LOKI97, Magenta, MARS, RC6, SAFER+, Serpent, and Twofish. I
recommend that you look them up to see how they work, how they were
designed, how they have been attacked, and how fast they are. It’s also worth
checking out the NSA’s designs (Skipjack, and more recently, SIMON and
SPECK) and more recent “lightweight” block ciphers such as KATAN,
PRESENT, or PRINCE.



5]
STREAM CIPHERS

Symmetric ciphers can be either block ciphers or stream ciphers. Recall from
Chapter 4 that block ciphers mix chunks of plaintext bits together with key
bits to produce chunks of ciphertext of the same size, usually 64 or 128 bits.
Stream ciphers, on the other hand, don’t mix plaintext and key bits; instead,
they generate pseudorandom bits from the key and encrypt the plaintext by
XORing it with the pseudorandom bits, in the same fashion as the one-time

pad explained in Chapter 1.

Stream ciphers are sometimes shunned because historically they’ve been
more fragile than block ciphers and are more often broken—both the
experimental ones designed by amateurs and the ciphers deployed in systems
used by millions, including mobile phones, Wi-Fi, and public transport
smart cards. But that’s all history. Fortunately, although it has taken 20
years, we now know how to design secure stream ciphers, and we trust them
to protect things like Bluetooth connections, mobile 4G communications,
TLS connections, and more.

This chapter first presents how stream ciphers work and discusses the two
main classes of stream ciphers: stateful and counter-based ciphers. We'll
then study hardware- and software-oriented stream ciphers and look at some
insecure ciphers (such as A5/1 in GSM mobile communications and RC4 in

TLS) and some secure, state-of-the-art ones (such as Grain-128a for
hardware and Salsa20 for software).

How Stream Ciphers Work

Stream ciphers are more akin to deterministic random bit generators
(DRBGs) than they are to full-fledged pseudorandom number generators
(PRNGs) because, like DRBGs, stream ciphers are deterministic. Stream



ciphers’ determinism allows you to decrypt by regenerating the
pseudorandom bits used to encrypt. With a PRNG, you could encrypt but
never decrypt—which is secure, but useless.

What sets stream ciphers apart from DRBGs is that DRBGs take a single
input value whereas stream ciphers take two values: a key and a nonce. The
key should be secret and is usually 128 or 256 bits. The nonce doesn’t have

to be secret, but it should be unique for each key and is usually between 64
and 128 bits.
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Figure 5-1: How stream ciphers encrypt, taking a secret key, K, and a public nonce, N

Stream ciphers produce a pseudorandom stream of bits called the
keystream. The keystream is XORed to a plaintext to encrypt it and then
XORed again to the ciphertext to decrypt it. Figure 5-1 shows the basic
stream cipher encryption operation, where SC is the stream cipher
algorithm, KS the keystream, P the plaintext, and C the ciphertext.

A stream cipher computes KS = SC(K, N), encrypts as C = P & KS, and
decrypts as P = C @ KS. The encryption and decryption functions are the
same because both do the same thing—namely, XOR bits with the
keystream. That’s why, for example, certain cryptographic libraries provide a
single encrypt function that’s used for both encryption and decryption.

Stream ciphers allow you to encrypt a message with key K; and nonce N;
and then encrypt another message with key K; and nonce N, that is different
from Ny, or with key K,, which is different from K; and nonce N;. However,
you should never again encrypt with K; and N;, because you would then use
twice the same keystream KS. You would then have a first ciphertext C; = P,
® KS, a second ciphertext C, = P, ® KS, and if you know P;, then you could
determine P, = C; ® C, ® P;.

The name nonce is actually short for number used only once. In the context
of stream ciphers, it’s sometimes called the IV, for initial value.




Stateful and Counter-Based Stream Ciphers

From a high-level perspective, there are two types of stream ciphers: stateful
and counter based. Stateful stream ciphers have a secret internal state that
evolves throughout keystream generation. The cipher initializes the state
from the key and the nonce and then calls an update function to update the
state value and produce one or more keystream bits from the state, as shown
in Figure 5-2. For example, the famous RC4 is a stateful cipher.
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Figure 5-2: The stateful stream cipher

Counter-based stream ciphers produce chunks of keystream from a key, a
nonce, and a counter value, as shown in Figure 5-3. Unlike stateful stream
ciphers, such as Salsa20, no secret state is memorized during keystream

generation.
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Figure 5-3: The counter-based stream cipher

These two approaches define the high-level architecture of the stream
cipher, regardless of how the core algorithms work. The internals of the
stream cipher also fall into two categories, depending on the target platform
of the cipher: hardware oriented and software oriented.



Hardware-Oriented Stream Ciphers

When cryptographers talk about hardware, they mean application-specific
integrated circuits (ASICs), programmable logic devices (PLDs), and field-
programmable gate arrays (FPGAs). A cipher’s hardware implementation is
an electronic circuit that implements the cryptographic algorithm at the bit
level and that can’t be used for anything else; in other words, the circuit is
dedicated hardware. On the other hand, software implementations of
cryptographic algorithms simply tell a microprocessor what instructions to
execute in order to run the algorithm. These instructions operate on bytes or
words and then call pieces of electronic circuit that implement general-
purpose operations such as addition and multiplication. Software deals with
bytes or words of 32 or 64 bits, whereas hardware deals with bits. The first
stream ciphers worked with bits in order to save complex word-wise
operations and thus be more efficient in hardware, their target platform at
the time.

The main reason why stream ciphers were commonly used for hardware
implementations is that they were cheaper than block ciphers. Stream
ciphers needed less memory and fewer logical gates than block ciphers, and
therefore occupied a smaller area on an integrated circuit, which reduced
fabrication costs. For example, counting in gate-equivalents, the standard
area metric for integrated circuits, you could find stream ciphers taking less
than 1000 gate-equivalents; by contrast, typical software-oriented block
ciphers needed at least 10000 gate-equivalents, making crypto an order of
magnitude more expensive than with stream ciphers.

Today, however, block ciphers are no longer more expensive than stream
ciphers—first, because there are now hardware-friendly block ciphers about
as small as stream ciphers, and second, because the cost of hardware has
plunged. Yet stream ciphers are often associated with hardware because they
used to be the best option.

In the next section, I'll explain the basic mechanism behind hardware
stream ciphers, called feedback shift registers (FSRs). Almost all hardware
stream ciphers rely on FSRs in some way, whether that’s the A5/1 cipher
used in 2G mobile phones or the more recent cipher Grain-128a.

NOTE
The first standard block cipher, the Data Encryption Standard (DES), was




optimized for hardware rather than for software. When the US government
standardized DES in the 1970s, most target applications were hardware
implementations. It’s therefore no surprise that the S-boxes in DES are small
and fast to compute when implemented as a logical circuit in bardware but
inefficient in software. Unlike DES, the current Advanced Encryption Standard
(AES) deals with bytes and is therefore more efficient in software than DES.

Feedback Shift Registers

Countless stream ciphers have used FSRs because they’re simple and well
understood. An FSR is simply an array of bits equipped with an update
feedback function, which I'll denote as f. The FSR’s state is stored in the array,
or register, and each update of the FSR uses the feedback function to change
the state’s value and to produce one output bit.

In practice, an FSR works like this: if R is the initial value of the FSR, the
next state, Ry, is defined as R left-shifted by 1 bit, where the bit leaving the
register is returned as output, and where the empty position is filled with
f(Ry).

The same rule is repeated to compute the subsequent state values R,, R,
and so on. That is, given R,, the FSR’s state at time #, the next state, R, , 1, is
the following:

R; 1= (R <<1)[f(R)

In this equation, | is the logical OR operator and << is the shift operator,
as used in the C language. For example, given the 8-bit string 00001111, we
have this:

00001111 << 1=00011110
00011110 << 1= 00111100
00111100 << 1= 01111000

The bit shift moves the bits to the left, losing the leftmost bit in order to
retain the state’s bit length, and zeroing the rightmost bit. The update
operation of an FSR is identical, except that instead of being set to 0, the
rightmost bit is set to f(R,)).

Consider, for example, a 4-bit FSR whose feedback function f XORs all 4



bits together. Initialize the state to the following:

1100

Now shift the bits to the left, where 1 is output and the rightmost bit is set
to the following:

f(1100)=1©1©0®0=0
Now the state becomes this:

1000

The next update outputs 1, left-shifts the state, and sets the rightmost bit
to the following:

£(1000)=1©0® 0 ®0 =1
Now the state is this:

0001

The next three updates return three 0 bits and give the following state
values:

0011
0110
1100

We thus return to our initial state of 1100 after five iterations, and we can
see that updating the state five times from any of the values observed
throughout this cycle will return us to this initial value. We say that 5 is the
period of the FSR given any one of the values 1100, 1000, 0001, 0011, or
0110. Because the period of this FSR is 5, clocking the register 10 times will
yield twice the same 5-bit sequence. Likewise, if you clock the register 20
times, starting from 1100, the output bits will be 11000110001100011000,
or four times the same 5-bit sequence of 11000. Intuitively, such repeating
patterns should be avoided, and a longer period is better for security.

e




If you plan to use an FSR in a stream cipher, avoid using one with short periods,
which make the output more predictable. Some types of FSRs make it easy to
figure out their period, but it’s almost impossible to do so with others.

Figure 5-4 shows the structure of this cycle, along with the other cycles of
that FSR, with each cycle shown as a circle whose dots represent a state of
the register.

1100 0100
0110 1000 1010 1001
0011 0001 0101 0010
1111
0111 1110 0000
o
1011 1101

Figure 5-4: Cycles of the FSR whose feedback function XORs the 4 bits together

Indeed, this particular FSR has two other period-5 cycles—namely, {0100,
1001, 0010, 0101, 1010} and {1111, 1110, 1101, 1011, 0111}. Note that any
given state can belong to only one cycle of states. Here, we have three cycles

of five states each, covering 15 of all the 2% = 16 possible values of our 4-bit
register. The 16th possible value is 0000, which, as Figure 5-4 shows, is a
period-1 cycle because the FSR will transform 0000 to 0000.

You’ve seen that an FSR is essentially a register of bits, where each update
of the register outputs a bit (the leftmost bit of the register) and where a
function computes the new rightmost bit of the register. (All other bits are
left-shifted.) The period of an FSR, from some initial state, is the number of
updates needed until the FSR enters the same state again. If it takes N
updates to do so, the FSR will produce the same N bits again and again.

Linear Feedback Shift Registers
Linear feedback shift registers (LFSRs) are FSRs with a /inear feedback



function—namely, a function that’s the XOR of some bits of the state, such
as the example of a 4-bit FSR in the previous section and its feedback
function returning the XOR of the register’s 4 bits. Recall that in
cryptography, linearity is synonymous with predictability and suggestive of a
simple underlying mathematical structure. And, as you might expect, thanks
to this linearity, LFSRs can be analyzed using notions like linear complexity,
finite fields, and primitive polynomials—but I'll skip the math details and
just give you the essential facts.

The choice of which bits are XORed together is crucial for the period of
the LFSR and thus for its cryptographic value. The good news is that we
know how to select the position of the bits in order to guarantee a maximal
period, of 2” — 1. Specifically, we take the indices of the bits, from 1 for the
rightmost to 7 for the leftmost, and write the polynomial expression 1 + X +
X? + ... + X", where the term X' is only included if the ith bit is one of the
bits XORed in the feedback function. The period is maximal if and only if
that polynomial is primitive. To be primitive, the polynomial must have the
following qualities:

o The polynomial must be irreducible, meaning that it can’t be factorized,;
that is, written as a product of smaller polynomials. For example, X + X
is not irreducible because it’s equal to (1 + X)(X + X?):

1+X)X+X)=X+X+X+ X =X+X

o The polynomial must satisfy certain other mathematical properties that
cannot be easily explained without nontrivial mathematical notions but
are easy to test.

The maximal period of an n-bit LFESR is 2" — 1, not 2", because the all-zero
state always loops on itself infinitely. Because the XOR of any number of zeros is
zero, new bits entering the state from the feedback functions will always be zero;
hence, the all-zero state is doomed to stay all zeros.

For example, Figure 5-5 shows a 4-bit LFSR with the feedback
polynomial 1 + X + X + X* in which the bits at positions 1, 3, and 4 are



XORed together to compute the new bit set to L. However, this polynomial

isn’t primitive because it can be factorized into (1 + X?)(1 + X).
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Figure 5-5: An LFSR with the feedback polynomial 1 + X + X3 + X#

Indeed, the period of the LFSR shown in Figure 5-5 isn’t maximal. To
prove that, start from the state 0001.

0001

Now left-shift by 1 bit and set the new bitto 0 + 0 + 1 = 1:

0011

Repeating the operation four times gives the following state values:

0111
1100
1000
0001

And as you can see, the state after five updates is the same as the initial
one, demonstrating that we’re in a period-5 cycle and proving that the
LFSR’s period isn’t the maximal value of 15.

Now, by way of contrast, consider the LFSR shown in Figure 5-6.
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Figure 5-6: An LFSR with the feedback polynomial 1 + 4 x4 , @ primitive polynomial, ensuring a
maximal period

This feedback polynomial is a primitive polynomial described by 1 + X° +

X% and you can verify that its period is indeed maximal (namely 15).
Specifically, from an initial value, the state evolves as follows:



0001, 0011, 0101 1110
0010] 0110 | 1011 1100
0100 1101 | 0111 1000
1001 1010 " 1111 ° 0001

The state spans all possible values except 0000 with no repetition until it
eventually loops. This demonstrates that the period is maximal and proves
that the feedback polynomial is primitive.

Alas, using an LFSR as a stream cipher is insecure. If 7 is the LFSR’s bit
length, an attacker needs only 7 output bits to recover the LFSR’s initial
state, allowing them to determine all previous bits and predict all future bits.
This attack is possible because the Berlekamp—Massey algorithm can be used
to solve the equations defined by the LFSR’s mathematical structure to find
not only the LFSR’s initial state but also its feedback polynomial. In fact,
you don’t even need to know the exact length of the LFSR to succeed; you
can repeat the Berlekamp—Massey algorithm for all possible values of 7 until
you hit the right one.

The upshot is that LFSRs are cryptographically weak because they’re
linear. Output bits and initial state bits are related by simple and short
equations that can be easily solved with high-school linear algebra
techniques.

To strengthen LFSRs, let’s thus add a pinch of nonlinearity.
Filtered LFSRs
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Figure 5-7: A filtered LFSR

To mitigate the insecurity of LFSRs, you can hide their linearity by passing
their output bits through a nonlinear function before returning them to
produce what is called a filtered LFSR (see Figure 5-7).



The g function in Figure 5-7 must be a nonlinear function—one that both
XORs bits together and combines them with logical AND or OR operations.
For example, L;L, + L3L4 is a nonlinear function (I've omitted the multiply

sign, so L{L, means L x L,, or L; & L, using C syntax).

You can write feedback functions either directly in terms of an FSR’s bits, like
L,L, + L;Ly, or using the equivalent polynomial notation 1 + XX? + X3X*,
The direct notation is easier to grasp, but the polynomial notation better serves
the mathematical analysis of an FSR’s properties. We'll now stick to the direct
notation unless we care about the mathematical properties.

Filtered LFSRs are stronger than plain LFSRs because their nonlinear
function thwarts straightforward attacks. Still, more complex attacks such as
the following will break the system:

o Algebraic attacks will solve the nonlinear equation systems deduced from
the output bits, where unknowns in the equations are bits from the
LFSR state.

o Cube attacks will compute derivatives of the nonlinear equations in order
to reduce the degree of the system down to one and then solve it
efficiently like a linear system.

o Fast correlation attacks will exploit filtering functions that, despite their
nonlinearity, tend to behave like linear functions.

The lesson here, as we’ve seen in previous examples, is that Band-Aids
don’t fix bullet holes. Patching a broken algorithm with a slightly stronger
layer won’t make the whole thing secure. The problem has to be fixed at the
core.

Nonlinear FSRs

Nonlinear FSRs (NFSRs) are like LFSRs but with a nonlinear feedback
function instead of a linear one. That is, instead of just bitwise XORs, the
feedback function can include bitwise AND and OR operations—a feature
with both pros and cons.

One benefit of the addition of nonlinear feedback functions is that they



make NFSRs cryptographically stronger than LFSRs because the output bits
depend on the initial secret state in a complex fashion, according to
equations of exponential size. The LFSRs’ linear function keeps the relations
simple, with at most 7 terms (N, N, ... , N,, if the Ns are the NFSR’s state

bits). For example, a 4-bit NFSR with an initial secret state (N}, N,, N3, Ny)
and a feedback function (N; + N, + NN, + N3N,) will produce a first output
bit equal to the following:

N, + N, + N;N, + N3N,

The second iteration replaces the N; value with that new bit. Expressing

the second output bit in terms of the initial state, we get the following
equation:

(N,N, + N,N, + N, + N,)+ N, +(N,N, + N,N, + N, + N,) N, + N,N,
= N,N,N, + NN, + N,N, + N;N, + N, + N,

This new equation has algebraic degree 3 (the highest number of bits
multiplied together, here in N{N3;N,) rather than degree 2 of the feedback

function, and it has six terms instead of four. As a result, iterating the
nonlinear function quickly yields unmanageable equations because the size
of the output grows exponentially. Although you’ll never compute those
equations when running the NFSR, an attacker would have to solve them in
order to break the system.

One downside to NFSRs is that there’s no efficient way to determine an
NFSR’s period, or simply to know whether its period is maximal. For an
NFSR of 7 bits, you’d need to run close to 2” trials to verify that its period is
maximal. This calculation is impossible for large NFSRs of 80 bits or more.

Fortunately, there’s a trick to using an NFSR without worrying about
short periods: you can combine LFSRs and NFSRs to get both a guaranteed
maximal period and the cryptographic strength—and that’s exactly how
Grain-128a works.

Grain-128a

Remember the AES competition discussed in Chapter 4, in the context of
the AES block cipher? The stream cipher Grain is the offspring of a similar



project called the eSTREAM competition. This competition closed in 2008
with a shortlist of recommended stream ciphers, which included four
hardware-oriented ciphers and four software-oriented ones. Grain is one of
these hardware ciphers, and Grain-128a is an upgraded version from the

original authors of Grain. Figure 5-8 shows the action mechanism of Grain-
128a.
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Figure 5-8: The mechanism of Grain-128a, with a 128-bit NFSR and a 128-bit LFSR

As you can see in Figure 5-8, Grain-128a is about as simple as a stream
cipher can be, combining a 128-bit LFSR, a 128-bit NFSR, and a filter

function, h. The LFSR has a maximal period of 21?8 — 1, which ensures that

the period of the whole system is at least 21?8 — 1 to protect against potential

short cycles in the NFSR. At the same time, the NFSR and the nonlinear
filter function h add cryptographic strength.

Grain-128a takes a 128-bit key and a 96-bit nonce. It copies the 128 key
bits into the NFSR’s 128 bits and copies the 96 nonce bits into the first 96
LFSR bits, filling the 32 bits left with ones and a single zero bit at the end.
The initialization phase updates the whole system 256 times before
returning the first keystream bit. During initialization, the bit returned by
the h function is thus not output as a keystream, but instead goes into the
LFSR to ensure that its subsequent state depends on both the key and the
nonce.

Grain-128a’s LFSR feedback function is
f(L) = L3y + Ly7 + Lsg + Lgg + Lyp; + Lyog

where L, L, ... , Lj,g are the bits of the LFSR. This feedback function



takes only 6 bits from the 128-bit LFSR, but that’s enough to get a primitive
polynomial that guarantees a maximal period. The small number of bits
minimizes the cost of a hardware implementation.

Here is the feedback polynomial of Grain-128a’s NFSR (N, ..., Nj,g):

g(N) =Ny + Ny + Ny + Nygg + Npgg + Ny Ny + Ny Npog + NggNgy + Noo Ny
+ NSGPVSS + iwllﬂ‘wlll +N . N...+ }\"4&1\’5[’?@58 + P\-'wgf\' f\-rmﬁ + _N3317\'351V%N4ﬂ

1154 Y117 104

"This function was carefully chosen to maximize its cryptographic strength
while minimizing its implementation cost. It has an algebraic degree of 4
because its term with the most variables has four variables (namely,
N33N35N34N40). Moreover, g can’t be approximated by a linear function
because it is highly nonlinear. Also, in addition to g, Grain-128a XORs the
bit coming out from the LFSRs to feed the result back as the NFSR’s new,
rightmost bit.

The filter function h is another nonlinear function; it takes 9 bits from the
NFSR and 7 bits from the LFSR and combines them in a way that ensures
good cryptographic properties.

As I write this, there is no known attack on Grain-128a, and I’'m confident
that it will remain secure. Grain-128a is used in some low-end embedded
systems that need a compact and fast stream cipher—typically industrial
proprietary systems—which is why Grain-128a is little known in the open-
source software community.

A5/1

AS5/1 is a stream cipher that was used to encrypt voice communications in
the 2G mobile standard. The A5/1 standard was created in 1987 but only
published in the late 1990s after it was reverse engineered. Attacks appeared
in the early 2000s, and A5/1 was eventually broken in a way that allows
actual (rather than theoretical) decryption of encrypted communications.
Let’s see why and how.

A5/1’s Mechanism

AS5/1 relies on three LFSRs and uses a trick that looks clever at first glance
but actually fails to be secure (see Figure 5-9).
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Figure 5-9: The A5/1 cipher

As you can see in Figure 5-9, A5/1 uses LFSRs of 19, 22, and 23 bits, with
the polynomials for each as follows:

1+ X%+ X"+ X%+ X"
1+ X" + X*
14 X7 X X X
How could this be seen as secure with only LFSRs and no NFSR? The
trick lies in A5/1’s update mechanism. Instead of updating all three LEFSRs at

each clock cycle, the designers of A5/1 added a clocking rule that does the
following:

1. Checks the value of the ninth bit of LFSR 1, the 11th bit of LFSR 2,
and the 11th bit of LFSR 3, called the clocking bits. Of those three bits,
either all have the same value (1 or 0) or exactly two have the same
value.

2. Clocks the registers whose clocking bits are equal to the majority value,
0 or 1. Either two or three LFSRs are clocked at each update.

Without this simple rule, A5/1 would provide no security whatsoever, and



bypassing this rule is enough to break the cipher. However, that is easier said
than done, as you'll see.

In A5/1’s irvegular clocking rule, each register is clocked with a probability of
3/4 at any update. Namely, the probability that at least one other register bas
the same bit value is 1 — (1/2)°, where (1/2)? is the chance that both of the other
two registers have a different bit value.

2G communications use A5/1 with a key of 64 bits and a 22-bit nonce,
which is changed for every new data frame. Attacks on AS5/1 recover the 64-
bit initial state of the system (the 19 + 22 + 23 LFSR initial value), thus in
turn revealing the nonce (if it was not already known) and the key, by
unwinding the initialization mechanism. The attacks are referred to as
known-plaintext attacks (KPAs) because part of the encrypted data is known,
which allows attackers to determine the corresponding keystream parts by
XORing the ciphertext with the known plaintext chunks.

There are two main types of attacks on A5/1:

Subtle attacks Exploit the internal linearity of AS/1 and its simple
irregular clocking system

Brutal attacks Only exploit the short key of A5/1 and the invertibility of
the frame number injection

Let’s see how these attacks work.

Subtle Attacks

In a subtle attack called a guess-and-determine attack, an attacker guesses
certain secret values of the state in order to determine others. In
cryptanalysis, “guessing” means brute-forcing: for each possible value of
LFSRs 1 and 2, and all possible values of LFESR 3’s clocking bit during the
first 11 clocks, the attack reconstructs LFSR 3’s bits by solving equations
that depend on the bits guessed. When the guess is correct, the attacker gets
the right value for LFSR 3.

The attack’s pseudocode looks like this:

For all 219 values of LFSR 1's initial state



For all 222 values of LFSR 2's initial state

For all 211 values of LFSR 3's clocking bit during the first 11 clocks
Reconstruct LFSR 3's initial state
Test whether guess is correct; if yes, return; else continue

How efficient is this attack compared to the 26*-trial brute-force search

discussed in Chapter 3? This attack makes at most 217 x 222 x 211 = 232
operations in the worst case, when the algorithm only succeeds at the very

last test. That’s 212 (or about 4000) times faster than in the brute-force
search, assuming that the last two operations in the above pseudocode
require about as much computation as testing a 64-bit key in a brute-force
search. But is this assumption correct?

Recall our discussion of the full attack cost in Chapter 3. When evaluating
the cost of an attack, we need to consider not only the amount of
computation required to perform the attack but also parallelism and memory
consumption. Neither are issues here: as with any brute-force attack, the
guess-and-determine attack is embarrassingly parallel (or N times faster
when run on N cores) and doesn’t need more memory than just running the
cipher itself.

Our 2°? attack cost estimate is inaccurate for another reason. In fact, each

of the 2°? operations (testing a key candidate) takes about four times as many
clock cycles as does testing a key in a brute-force attack. The upshot is that
the real cost of this particular attack is closer to 4 x 2°2 = 2°4

when compared to a brute-force attack.

operations,

The guess-and-determine attack on A5/1 can decrypt encrypted mobile
communications, but it takes a couple of hours to recover the key when run
on a cluster of dedicated hardware devices. In other words, it’s nowhere near
real-time decryption. For that, we have another type of attack.

Brutal Attacks

The time-memory trade-oftf (I'MTO) attack is the brutal attack on AS/1.
This attack doesn’t care about A5/1’s internals; it cares only that its state is
64 bits long. The TMTO attack sees A5/1 as a black box that takes in a 64-
bit value (the state) and spits out a 64-bit value (the first 64 keystream bits).

The idea behind the attack is to reduce the cost of a brute-force search in

exchange for using lots of memory. The simplest type of TMTO is the



codebook attack. In a codebook attack, you precompute a table of 26
elements containing a combination of key and value pairs (key:value), and
store the output value for each of the 2% possible keys. To use this
precomputed table for the attack, you simply collect the output of an A5/1
instance and then look up in the table which key corresponds to that output.
The attack itself is fast—taking only the amount of time necessary to look up

264

a value in memory—but the creation of the table takes 2°7 computations of

A5/1. Worse, codebook attacks require an insane amount of memory: 2% x

(64 + 64) bits, which is 268 bytes or 256 exabytes. That’s dozens of data
centers, so we can forget about it.

TMTO attacks reduce the memory required by a codebook attack at the
price of increased computation during the online phase of the attack; the
smaller the table, the more computations required to crack a key. Regardless,
it will still cost about 26*
done only once.

operations to prepare the table, but that needs to be

In 2010, researchers took about two months to generate two terabytes’
worth of tables, using graphics processing units (GPUs) and running 100000
instances of A5/1 in parallel. With the help of such large tables, calls
encrypted with AS/1 could be decrypted almost in real time.
Telecommunication operators have implemented workarounds to mitigate
the attack, but a real solution came with the later 3G and 4G mobile
telephony standards, which ditched A5/1 altogether.

Software-Oriented Stream Ciphers

Software stream ciphers work with bytes or 32- or 64-bit words instead of
individual bits, which proves to be more efficient on modern CPUs where
instructions can perform arithmetic operations on a word in the same
amount of time as on a bit. Software stream ciphers are therefore better
suited than hardware ciphers for servers or browsers running on personal
computers, where powerful general-purpose processors run the cipher as
native software.

Today, there is considerable interest in software stream ciphers for a few
reasons. First, because many devices embed powerful CPUs and hardware
has become cheaper, there’s less of a need for small bit-oriented ciphers. For
example, the two stream ciphers in the mobile communications standard 4G



(the European SNOW3G and the Chinese ZUC) work with 32-bit words
and not bits, unlike the older A5/1.

Second, stream ciphers have gained popularity in software at the expense
of block ciphers, notably following the fiasco of the padding oracle attack
against block ciphers in CBC mode. In addition, stream ciphers are easier to
specify and to implement than block ciphers: instead of mixing message and
key bits together, stream ciphers just ingest key bits as a secret. In fact, one
of the most popular stream ciphers is actually a block cipher in disguise: AES
in counter mode (CTR).

One software stream cipher design, used by SNOW3G and ZUC, copies
hardware ciphers and their FSRs, replacing bits with bytes or words. But
these aren’t the most interesting designs for a cryptographer. As of this
writing, the two designs of most interest are RC4 and Salsa20, which are
used in numerous systems, despite the fact that one is completely broken.

RC4

Designed in 1987 by Ron Rivest of RSA Security, then reverse engineered
and leaked in 1994, RC4 has long been the most widely used stream cipher.
RC#4 has been used in countless applications, most famously in the first Wi-
Fi encryption standard Wireless Equivalent Privacy (WEP) and in the
Transport Layer Security (TLS) protocol used to establish HTTPS
connections. Unfortunately, RC4 isn’t secure enough for most applications,
including WEP and 'TLS. To understand why, let’s see how RC4 works.

How RC4 Works

RC4 is among the simplest ciphers ever created. It doesn’t perform any
crypto-like operations, and it has no XORs, no multiplications, no S-boxes
... nada. It simply swaps bytes. RC4’s internal state is an array, S, of 256
bytes, first set to S[0] = 0, S[1] = 1, S[2] = 2, ..., S[255] = 255, and then
initialized from an n-byte K using its key scheduling algorithm (KSA), which
works as shown in the Python code in Listing 5-1.

j=0
# set S to the array S[0] = 0, S[1] =1, ... , S[255] = 255
S = range(256)
# iterate over i1 from 0 to 255
for 1 in range(256):
# compute the sum of v
j=(j+ S[i] + K[1 % n]) % 256



# swap S[i] and S[j]
S[i], s[3] = s[3jl, S[i]

Listing 5-1: The key scheduling algorithm of RC4

Once this algorithm completes, array S still contains all the byte values
from 0 to 255, but now in a random-looking order. For example, with the
all-zero 128-bit key, the state S (from S[0] to S[255]) becomes this:

0, 35, 3,43,9, 11, 65, 229, (...), 233, 169, 117, 184, 31, 39

However, if I flip the first key bit and run the KSA again, I get a totally
different, apparently random state:

32, 116, 131, 134, 138, 143, 149, (...), 152, 235, 111, 48, 80, 12

Given the initial state S, RC4 generates a keystream, KS, of the same
length as the plaintext, P, in order to compute a ciphertext: C = P ® KS. The
bytes of the keystream KS are computed from S according to the Python
code in Listing 5-2, if P is m bytes long.

n range(m):

i+ 1) % 256

j + S[i]) % 256

(1], s[3] = s[3il, S[i]

KS[b] = S[(S[i] + S[j]) % 256]

0
0
for b i1
i=(
i=(
S[1

Listing 5-2: The keystream generation of RC4, where S is the state initialized in Listing 5-1

In Listing 5-2, each iteration of the for loop modifies up to 2 bytes of
RC#4’s internal state S: the S[7] and S[j] whose values are swapped. That is, if
i =0andj =4, and if S[0] = 56 and S[4] = 78, then the swap operation sets
S[0] to 78 and S[4] to 56. If j equals 7, then S[z] isn’t modified.

"This looks too simple to be secure, yet it took 20 years for cryptanalysts to
find exploitable flaws. Before the flaws were revealed, we only knew RC4’s
weaknesses in specific implementations, as in the first Wi-Fi encryption

standard, WEP.
RC4 in WEP

WEP, the first generation Wi-Fi security protocol, is now completely



broken due to weaknesses in the protocol’s design and in RC4.

In its WEP implementation, RC4 encrypts payload data of 802.11 frames,
the datagrams (or packets) that transport data over the wireless network. All
payloads delivered in the same session use the same secret key of 40 or 104
bits but have what is a supposedly unique 3-byte nonce encoded in the frame
header (the part of the frame that encodes metadata and comes before the
actual payload). See the problem?

The problem is that RC4 doesn’t support a nonce, at least not in its
official specification, and a stream cipher can’t be used without a nonce. The
WEP designers addressed this limitation with a workaround: they included a
24-bit nonce in the wireless frame’s header and prepended it to the WEP
key to be used as RC4’s secret key. That is, if the nonce is the bytes N[0],
N[1], N[2] and the WEP key is K[0], K[1], K[2], K[3], K[4], the actual RC4
key is N[0], N[1], N[2], K[0], K[1], K[2], K[3], K[4]. The net effect is to have
40-bit secret keys yield 64-bit effective keys, and 104-bit keys yield 128-bit
effective keys. The result? The advertised 128-bit WEP protocol actually
offers only 104-bit security, at best.

But here are the real problems with WEP’s nonce trick:

o The nonces are too small at only 24 bits. This means that if a nonce
is chosen randomly for each new message, you’ll have to wait about
22%2 = 212 packets, or a few megabytes’ worth of traffic, until you can

find two packets encrypted with the same nonce, and thus the same

keystream. Even if the nonce is a counter running from 0 to 2°* — 1, it
will take a few gigabytes’ worth of data until a rollover, when the
repeated nonce can allow the attacker to decrypt packets. But there’s a
bigger problem.

o Combining the nonce and key in this fashion helps recover the
key. WEP’s three non-secret nonce bytes let an attacker determine the
value of S after three iterations of the key scheduling algorithm.
Because of this, cryptanalysts found that the first keystream byte
strongly depends on the first secret key byte—the fourth byte ingested
by the KSA—and that this bias can be exploited to recover the secret
key.

Exploiting those weaknesses requires access to both ciphertexts and the
keystream; that is, known or chosen plaintexts. But that’s easy enough:



known plaintexts occur when the Wi-Fi frames encapsulate data with a
known header, and chosen plaintexts occur when the attacker injects known
plaintext encrypted with the target key. The upshot is that the attacks work
in practice, not just on paper.

Following the appearance of the first attacks on WEP in 2001, researchers
found faster attacks that required fewer ciphertexts. Today, you can even
find tools such as aircrack-ng that implement the entire attack, from network
sniffing to cryptanalysis.

WEP’s insecurity is due to both weaknesses in RC4, which takes a single
one-use key instead of a key and nonce (as in any decent stream cipher), and
weaknesses in the WEP design itself.

Now let’s look at the second biggest failure of RC4.
RC4 in TLS

TLS is the single most important security protocol used on the internet. It is
best known for underlying HT'TPS connections, but it’s also used to protect
some virtual private network (VPN) connections, as well as email servers,
mobile applications, and many others. And sadly, TLS has long supported
RCA4.

Unlike WEP, the TLS implementation doesn’t make the same blatant
mistake of tweaking the RC4 specs in order to use a public nonce. Instead,

TLS just feeds RC4 a unique 128-bit session key, which means it’s a bit less
broken than WEP.

The weakness in TLS is due only to RC4 and its inexcusable flaws:
statistical biases, or non-randomness, which we know is a total deal breaker
for a stream cipher. For example, the second keystream byte produced by
RC4 is zero, with a probability of 1/128, whereas it should be 1/256 ideally.
(Recall that a byte can take 256 values from 0 to 255; hence, a truly random
byte is zero with a chance of 1/256.) Crazier still is the fact that most experts
continued to trust RC4 as late as 2013, even though its statistical biases have
been known since 2001.

RC#4’s known statistical biases should have been enough to ditch the
cipher altogether, even if we didn’t know how to exploit the biases to
compromise actual applications. In TLS, RC4’s flaws weren’t publicly
exploited until 2011, but the NSA allegedly managed to exploit RC4’s
weaknesses to compromise TLS’s RC4 connections well before then.



As it turned out, not only was RC4’s second keystream byte biased, but all
of the first 256 bytes were biased as well. In 2011, researchers found that the

probability that one of those bytes comes to zero equals 1/256 + ¢/2567, for
some constant, ¢, taking values between 0.24 and 1.34. It’s not just for the
byte zero but for other byte values as well. The amazing thing about RC4 is
that it fails where even many noncryptographic PRNGs succeed—namely, at
producing uniformly distributed pseudorandom bytes (that is, where each of
the 256 bytes has a chance of 1/256 of showing up).

Even the weakest attack model can be used to exploit RC4’s flawed TLS
implementation: basically, you collect ciphertexts and look for the plaintext,
not the key. But there’s a caveat: you’ll need many ciphertexts, encrypting
the same plaintext several times using different secret keys. This attack model
is sometimes called the broadcast model, because it’s akin to broadcasting the
same message to multiple recipients.

For example, say you want to decrypt the plaintext byte P; given many
ciphertext bytes obtained by intercepting the different ciphertexts of the
same message. The first four ciphertext bytes will therefore look like this:

G!=R @ KS;
G=P @K
¢! =P ®KS*

Because of RC4’s bias, keystream bytes KS’ are more likely to be zero
than any other byte value. Therefore, C, bytes are more likely to be equal to

P, than to any other value. In order to determine P; given the C;’ bytes, you

simply count the number of occurrences of each byte value and return the
most frequent one as P;. However, because the statistical bias is very small,

you’ll need millions of values to get it right with any certainty.

The attack generalizes to recover more than one plaintext byte and to
exploit more than one biased value (zero here). The algorithm just becomes
a bit more complicated. However, this attack is hard to put into practice
because it needs to collect many ciphertexts encrypting the same plaintext
but using different keys. For example, the attack can’t break all TLS-
protected connections that use RC4 because you need to trick the server into
encrypting the same plaintext to many different recipients, or many times to



the same recipient with different keys.

Salsa20

Salsa20 is a simple, software-oriented cipher optimized for modern CPUs
that has been implemented in numerous protocols and libraries, along with
its variant, ChaCha. Its designer, respected cryptographer Daniel ]J.
Bernstein, submitted Salsa20 to the eSTREAM competition in 2005 and
won a place in eSTREAM’s software portfolio. Salsa20’s simplicity and
speed have made it popular among developers.
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Figure 5-10: Salsa20'’s encryption scheme for a 512-bit plaintext block

Salsa20 is a counter-based stream cipher—it generates its keystream by
repeatedly processing a counter incremented for each block. As you can see
in Figure 5-10, the Salsa20 core algorithm transforms a 512-bit block using a
key (K), a nonce (N), and a counter value (C#r). Salsa20 then adds the result
to the original value of the block to produce a keystream block. (If the
algorithm were to return the core’s permutation directly as an output,
Salsa20 would be totally insecure, because it could be inverted. The final
addition of the initial secret state K | | N || Ctr makes the transform key-to-
keystream-block non-invertible.)

The Quarter-Round Function

Salsa2(0’s core permutation uses a function called quarter-round (QR) to
transform four 32-bit words (4, b, ¢, and d), as shown here:



b=b®|(a+d)<<< 7]
c=c®[(b+a)<<<9]
d=d®[(c+b)<<<13]
a=a®|(d+c)<<<18]

These four lines are computed from top to bottom, meaning that the new
value of # depends on # and d, the new value of ¢ depends on # and on the
new value of 4 (and thus d as well), and so on.

The operation <<< is wordwise left-rotation by the specified number of
bits, which can be any value between 1 and 31 (for 32-bit words). For
example, <<< 8 rotates a word’s bits of eight positions toward the left, as
shown in these examples:

0x01234567 <<< 8 = 0x23456701
0x01234567 <<< 16 = 0x45670123
0x01234567 <<< 22 = 0x59c048d1

Transforming Salsa20’s 512-hit State

Salsa20’s core permutation transforms a 512-bit internal state viewed as a 4 x
4 array of 32-bit words. Figure 5-11 shows the initial state, using a key of
eight words (256 bits), a nonce of two words (64 bits), a counter of two
words (64 bits), and four fixed constant words (128 bits) that are identical for
each encryption/decryption and all blocks.

To transform the initial 512-bit state, Salsa20 first applies the QR
transform to all four columns independently (known as the colummn-round)
and then to all four rows independently (the row-round), as shown in Figure
5-12. The sequence column-round/row-round is called a double-round.
Salsa20 repeats 10 double-rounds, for 20 rounds in total, thus the 20 in
Salsa20.
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Figure 5-11: The initialization of Salsa”?0’s state
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Figure 5-12: Columns and rows transformed by Salsa20’s quarter-round (@R) function

The column-round transforms the four columns like so:

QR(*‘:W Xy Xgy x,)
QR(x;, Xg, %, X,)
QR( %9, %y, %5, %)
QR(x'IS’ %125 %135 xu)

The row-round transforms the rows by doing the following:

QR(*‘:W Xy Xgy x,)
QR(x;, Xg, %, X,)
QR( %9, %y, %5, %)
QR(x'IS’ %125 %135 xu)

Notice that in a column-round, each QR takes x; arguments ordered from

the top to the bottom line, whereas a row-round’s QR takes as a first
argument the words on the diagonal (as shown in the array on the right in



Figure 5-12) rather than words from the first column.

Evaluating Salsa20

Listing 5-3 shows Salsa2(’s initial states for the first and second blocks when
initialized with an all-zero key (ee bytes) and an all-one nonce (ff bytes).
These two states differ in only one bit, in the counter, as shown in bold:

specifically, O for the first block and 1 for the second.

61707865 00000000 00000000 00GA0A0O
00000000 3320646e FFFFFFFf FFFFFFFF
00000000 00000000 79622d32 00000000
00000000 00000000 000A0B0O 6b206574

61707865 00000000 000A0000 BOOEOA0O
00000000 3320646e FFFFFFFf FFFFFFFF
00000001 00000000 79622d32 000A0G00
00000000 00000000 B0OA0O0 6b206574

Listing 5-3: Salsa20’s initial states for the first two blocks with an all-zero key and an all-one

nonce

Yet, despite only a one-bit difference, the respective internal states after
10 double-rounds are totally different from each other, as Listing 5-4 shows.

€98680bc f730ba7a 38663ce® 5f376d93
85683b75 a56ca873 26501592 64144b6d
6dcb46fd 5817893 8cf54cfe cfdc27d7
68bbe0@9%e 17b403a1 38aalf27 54323fel

1ba4d492 c14270c3 9fb05306 ff808c64
b49a4100 f5d8fbbd 61423420 e20663d1
12ele116 6a61bc8f 86f01bcb 2efead4a
77775313 d17b99d5 eb773f5b 2c3a5e7d

Listing 5-4: The states from Listing 5-3 after 10 Salsa20 double-rounds

But remember, even though word values in the keystream block may look
random, we’ve seen that it’s far from a guarantee of security. RC4’s output
looks random, but it has blatant biases. Fortunately, Salsa20 is much more
secure than RC4 and doesn’t have statistical biases.

Differential Cryptanalysis

To demonstrate why Salsa20 is more secure than RC4, let’s have a look at
the basics of differential cryptanalysis, the study of the differences between
states rather than their actual values. For example, the two initial states in
Figure 5-13 differ by one bit in the counter, or by the word «g in the Salsa20
state array. The bitwise difference between these two states is thus shown in
this array:



00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000001 00000000 00000000 00000000
00000000 00000000 00000000 00000000

The difference between the two states is actually the XOR of these states.
The 1 bit shown in bold corresponds to a 1-bit difference between the two
states. In the XOR of the two states, any nonzero bits indicate differences.

To see how fast changes propagate in the initial state as a result of
Salsa20’s core algorithm, let’s look at the difference between two states
throughout the rounds iteration. After one round, the difference propagates
across the first column to two of the three other words in that column:

80040003 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000001 00000000 00000000 00000000
00002000 00000000 00000000 00000000

After two rounds, differences further propagate across the rows that
already include a difference, which is all but the second row. At this point
the differences between the states are rather sparse; not many bits have
changed within a word as shown here:

g9ed7eb7f 060002c0 18028b0c 57caB3co
00000000 00000000 00000000 00000000
00000001 0000e000 801c0006 00000000
00002000 00400000 04000008 00601300

After three rounds, the differences between the states become more dense,
though the many zero nibbles indicate that many bit positions are still not
affected by the initial difference:

3ab3c25d 9f40a5c9 10070e30 07bd03cO
dblee2ce 43ee9401 21a702c3 48fd800c
403c1e72 00034003 4dc843be 700b8857
5625b75b 09c00e00 06000348 23f712d4

After four rounds, differences look random to a human observer, and they
are also almost random statistically as well, as shown here:



d93bedéd a267bf47 760c2fof 4a41d54b
0e03d792 7340e010 119e6a00 e90186af
7fag9617e bbaca0d7 4f6e9ada 564b34fd
98be796d 64908d32 4897f7ca a684a2df

So after only four rounds, a single difference propagates to most of the
bits in the 512-bit state. In cryptography, this is called full diffusion.

We’ve seen that differences propagate quickly throughout Salsa20 rounds.
But not only do differences propagate across all states, they also do so
according to complex equations that make future differences hard to predict
because highly nonlinear relations drive the state’s evolution, thanks to the
mix of XOR, addition, and rotation. If only XORs were used, we’d still have
many differences propagating, but the process would be linear and therefore
insecure.

Attacking Salsa20/8

Salsa20 makes 20 rounds by default, but it’s sometimes used with only 12
rounds, in a version called Salsa20/12, to make it faster. Although Salsa20/12
uses eight fewer rounds than Salsa20, it’s still significantly stronger than the
weaker Salsa20/8, another version with eight rounds, which is more rarely
used.

Breaking Salsa20 should ideally take 22°¢ operations, thanks to its use of a

256-bit key. If the key can be recovered by performing any fewer than 226

operations, the cipher is in theory broken. That’s exactly the case with
Salsa20/8.

The attack on Salsa20/8 (published in the 2008 paper New Features of
Latin Dances: Analysis of Salsa, ChaCha, and Rumba, of which I'm a co-author,
and for which we won a cryptanalysis prize from Daniel J. Bernstein) exploits
a statistical bias in Salsa’s core algorithm after four rounds to recover the key
of eight-round Salsa20. In reality, this is mostly a theoretical attack: we
estimate its complexity at 22°! operations of the core function—impossible,
but less so than breaking the expected 22°6 complexity.

The attack exploits not only a bias over the first four rounds of Salsa20/8,
but also a property of the last four rounds: knowing the nonce, N, and the
counter, Czr (refer back to Figure 5-10), the only value needed to invert the
computation from the keystream back to the initial state is the key, K. But as
shown in Figure 5-13, if you only know some part of K, you can partially



invert the computation up until the fourth round and observe some bits of
that intermediate state—including the biased bit! You'll only observe the
bias if you have the correct guess of the partial key; hence, the bias serves as
an indicator that you’ve got the correct key.

KINI Ctr Bias here?
Ji If yes, the guess was correct
4 rounds o :
; inverse
Bias here ------ -] e
4 rounds
Guess
part of K
S S

Figure 5-13: The principle of the attack on Salsa20/8

In the actual attack on Salsa20/8, in order to determine the correct guess,
we need to guess 220 bits of the key, and we need 23! pairs of keystream
blocks, all with the same specific difference in the nonce. Once we've singled
out the correct 220 bits, we simply need to brute-force 36 bits. The brute-
forcing takes 2°¢ operations, a computation that dwarfs the unrealistic 2220 x

231 = 2231 trials needed to find the 220 bits to complete the first part of the
attack.

How Things Can Go Wrong

Alas, many things can go wrong with stream ciphers, from brittle, insecure
designs to strong algorithms incorrectly implemented. I'll explore each
category of potential problems in the following sections.

Nonce Reuse

The most common failure seen with stream ciphers is an amateur mistake: it
occurs when a nonce is reused more than once with the same key. This
produces identical keystreams, allowing you to break the encryption by
XORing two ciphertexts together. The keystream then vanishes, and you’re
left with the XOR of the two plaintexts.

For example, older versions of Microsoft Word and Excel used a unique



nonce for each document, but the nonce wasn’t changed once the document
was modified. As a result, the clear and encrypted text of an older version of
a document could be used to decrypt later encrypted versions. If even
Microsoft made this kind of blunder, you can imagine how large the
problem might be.

Certain stream ciphers designed in the 2010s tried to mitigate the risk of
nonce reuse by building “misuse-resistant” constructions, or ciphers that
remain secure even if a nonce is used twice. However, achieving this level of
security comes with a performance penalty, as we’ll see in Chapter 8 with the

SIV mode.

Broken RC4 Implementation

Though it’s already weak, RC4 can become even weaker if you blindly
optimize its implementation. For example, consider the following entry in
the 2007 Underhanded C Contest, an informal competition where
programmers write benign-looking code that actually includes a malicious
function.

Here’s how it works. The naive way to implement the line swap(s[i1, S[31)
in RC4’s algorithm is to do the following, as expressed in this Python code:

buf = S[1]
S[i] = S[j]
S[j] = buf

This way of swapping two variables obviously works, but you need to
create a new variable, buf. To avoid this, programmers often use the XOR-
swap trick, shown here, to swap the values of the variables x and y:

X

y
X

TR
X X X
(CHCHC)
< <<

'This trick works because the second line setsy to x @ y ® y = x, and the
third line sets x to x ® y ® x ® y ® y = y. Using this trick to implement RC4
gives the implementation shown in Listing 5-5 (adapted from Wagner and
Biondi’s program submitted to the Underhanded C Contest, and online at
http://www.underbanded-c.org/_page_id_16.html).

# define TOBYTE(x) (x) & 255
# define SWAP(x,y) do { x~=y; y*=x; x*=y; } while (0)


http://www.underhanded-c.org/_page_id_16.html

static unsigned char S[256];
static int 1=0, j=0;

void init(char *passphrase) {
int passlen = strlen(passphrase);
for (1=0; 1<256; i++)
S[i] = 1i;
for (1=0; 1<256; 1++) {
j = TOBYTE(j + S[TOBYTE(i)] + passphrase[j % passlen]);
SWAP(S[TOBYTE(1)]1, S[i1);

e
1
(o]
e
.
1
(o]
.

}

unsigned char encrypt_one_byte(unsigned char c) {
int k;
i = TOBYTE(i+1);
j = TOBYTE(j + S[i]);
SWAP(S[i], S[3i]);
k = TOBYTE(S[i] + S[J1);
return c ~ S[k];

}

Listing 5-5: Incorrect C implementation of RC4, due to its use of an XOR swap

Now stop reading, and try to spot the problem with the XOR swap in
Listing 5-5.

Things will go south when 1 = j. Instead of leaving the state unchanged,
the XOR swap will set s[i] to s[i] ® s[i] = e. In effect, a byte of the state will
be set to zero each time i equals j in the key schedule or during encryption,
ultimately leading to an all-zero state and thus to an all-zero keystream. For
example, after 68KB of data have been processed, most of the bytes in the
256-byte state are zero, and the output keystream looks like this:

00 00 00 00 00 00 00 53 53 00 00 00 00 00 00 00 00 00 00 00 13 13 00 5c 00 a5
0000 ...

The lesson here is to refrain from over-optimizing your crypto
implementations. Clarity and confidence always trump performance in

cryptography.
Weak Ciphers Baked Into Hardware

When a cryptosystem fails to be secure, some systems can quickly respond
by silently updating the affected software remotely (as with some pay-TV
systems) or by releasing a new version and prompting the users to upgrade



(as with mobile applications). Some other systems are not so lucky and need
to stick to the compromised cryptosystem for a while before upgrading to a
secure version, as is the case with certain satellite phones.

In the early 2000s, US and European telecommunication standardization
institutes (TTA and E'TSI) jointly developed two standards for satellite phone
(satphone) communications. Satphones are like mobile phones, except that
their signal goes through satellites rather than terrestrial stations. The
advantage is that you can use them pretty much everywhere in the world.
Their downsides are the price, quality, latency, and, as it turns out, security.

GMR-1 and GMR-2 are the two satphone standards adopted by most
commercial vendors, such as Thuraya and Inmarsat. Both include stream
ciphers to encrypt voice communications. GMR-1’s cipher is hardware
oriented, with a combination of four LFSRs, similar to A5/2, the deliberately
insecure cipher in the 2G mobile standard aimed at non-Western countries.
GMR-2’s cipher is software oriented, with an 8-byte state and the use of S-
boxes. Both stream ciphers are insecure, and will only protect users against
amateurs, not against state agencies.

This story should remind us that stream ciphers used to be easier to break
than block ciphers and that they’re easier to sabotage. Why? Well, if you
design a weak stream cipher on purpose, when the flaw is found, you can still
blame it on the weakness of stream ciphers and deny any malicious intent.

Further Reading

To learn more about stream ciphers, begin with the archives of the
eSTREAM competition at http://www.ecrypt.eu.org/stream/project.btml, where
you’ll find hundreds of papers on stream ciphers, including details of more
than 30 candidates and many attacks. Some of the most interesting attacks
are the correlation attacks, algebraic attacks, and cube attacks. See in
particular the work of Courtois and Meier for the first two attack types and
that of Dinur and Shamir for cube attacks.

For more information on RC4, see the work of Paterson and his team at
http:/fwww.isg.rbul.ac.uk/tls/ on the security of RC4 as used in TLS and
WPA. Also see Spritz, the RC4-like cipher created in 2014 by Rivest, who
designed RC4 in the 1980s.

Salsa20’s legacy deserves your attention, too. The stream cipher ChaCha
is similar to Salsa20, but with a slightly different core permutation that was


http://www.ecrypt.eu.org/stream/project.html
http://www.isg.rhul.ac.uk/tls/

later used in the hash function BLAKE, as you’ll see in Chapter 6. These
algorithms all leverage Salsa2(’s software implementation techniques using
parallelized instructions, as discussed at https://cr.yp.to/snuffle.btml.


https://cr.yp.to/snuffle.html

6
HASH FUNCTIONS

Hash functions—such as MD5, SHA-1, SHA-256, SHA-3, and BLAKE2—
comprise the cryptographer’s Swiss Army Knife: they are used in digital
signatures, public-key  encryption, integrity verification, message
authentication, password protection, key agreement protocols, and many
other cryptographic protocols. Whether you’re encrypting an email, sending
a message on your mobile phone, connecting to an HTTPS website, or
connecting to a remote machine through IPSec or SSH, there’s a hash
function somewhere under the hood.

Hash functions are by far the most versatile and ubiquitous of all crypto
algorithms. There are many examples of their use in the real world: cloud
storage systems use them to identify identical files and to detect modified
files; the Git revision control system uses them to identify files in a
repository; host-based intrusion detection systems (HIDS) use them to
detect modified files; network-based intrusion detection systems (NIDS) use
hashes to detect known-malicious data going through a network; forensic
analysts use hash values to prove that digital artifacts have not been
modified; Bitcoin uses a hash function in its proof-of-work systems—and
there are many more.

M —=| Hash = H

Any length Short, fixed length:
usually 256 or 512 bits

Figure 6-1: A hash function’s input and output

Unlike stream ciphers, which create a long output from a short one, hash
functions take a long input and produce a short output, called a hash value or
digest (see Figure 6-1).



"This chapter revolves around two main topics. First, security: what does it
mean for a hash function to be secure? To that end, I introduce two essential
notions—namely, collision resistance and preimage resistance. The second
big topic revolves around hash functions construction. We look at the high-
level techniques used by modern hash functions and then review the
internals of the most common hash functions: SHA-1, SHA-2, SHA-3, and
BLAKE?2. Lastly, we see how secure hash functions can behave insecurely if
misused.

Do mnot confuse cryptographic hash functions with noncryptographic ones.
Noncryptographic hash functions are used in data structures such as bash tables
or to detect accidental ervors, and they provide mo security whatsoever. For
example, cyclic redundancy checks (CRCs) are noncryptographic hashes used to
detect accidental modifications of a file.

Secure Hash Functions
SK

'

M — Hash |—»| Sign [—» S

Figure 6-2: A hash function in a digital signature scheme. The hash acts as a proxy for the
message.

The notion of security for hash functions is different from what we’ve seen
thus far. Whereas ciphers protect data confidentiality in an effort to
guarantee that data sent in the clear can’t be read, hash functions protect
data integrity in an effort to guarantee that data—whether sent in the clear
or encrypted—hasn’t been modified. If a hash function is secure, two distinct
pieces of data should always have different hashes. A file’s hash can thus
serve as its identifier.

Consider the most common application of a hash function: digital
signatures, or just signatures. When digital signatures are used, applications
process the hash of the message to be signed rather than the message itself,
as shown in Figure 6-2. The hash acts as an identifier for the message. If
even a single bit is changed in the message, the hash of the message will be



totally different. The hash function thus helps ensure that the message has
not been modified. Signing a message’s hash is as secure as signing the
message itself, and signing a short hash of, say, 256 bits is much faster than
signing a message that may be very large. In fact, most signature algorithms
can only work on short inputs such as hash values.

Unpredictability Again

All of the cryptographic strength of hash functions stems from the
unpredictability of their outputs. Take the 256-bit hexadecimal values shown
next; these hashes are computed using the NIST standard hash function
SHA-256 with the ASCII letters a, b, and c as inputs. As you can see, though
the values a, b, and ¢ differ by only one or two bits (a is the bit sequence
01100001, b is 01100010, and ¢ is 01100011), their hash values are
completely different.

SHA-256("a") = 87428fc522803d31065e7bce3cf03fe475096631e5e07bbd7a0fde60cdcf25cT
SHA-256("b") = a63d8014dba891345b30174df2b2a57efbb65b4f9f09b98f245d1b3192277ece
SHA-256("c") = edeaaff3f1774ad2888673770c6d64097e391bc362d7d6Tb34982ddf0efd18ch

Given only these three hashes, it would be impossible to predict the value
of the SHA-256 hash of d or any of its bits. Why? Because hash values of a
secure hash function are unpredictable. A secure hash function should be like
a black box that returns a random string each time it receives an input.

The general, theoretical definition of a secure hash function is that it
behaves like a truly random function (sometimes called a random oracle).
Specifically, a secure hash function shouldn’t have any property or pattern
that a random function wouldn’t have. This definition is helpful for
theoreticians, but in practice we need more specific notions: namely,
preimage resistance and collision resistance.

Preimage Resistance

A preimage of a given hash value, H, is any message, M, such that Hash(M) =
H. Preimage resistance describes the security guarantee that given a random
hash value, an attacker will never find a preimage of that hash value. Indeed,
hash functions are sometimes called one-way functions because you can go
from the message to its hash, but not the other way.

First, note that a hash function can’t be inverted, even given unlimited



computing power. For example, suppose that I hash some message using the
SHA-256 hash function and get this 256-bit hash value:

f67a58184cef99d6dfc3045f08645e844f2837ee4bfcc6c949c9f7674367adfd

Even given unlimited computing power, you would never be able to
determine zhe message that I picked to produce this particular hash, since
there are many messages hashing to the same value. You would therefore
find some messages that produce this hash value (possibly including the one I
picked), but would be unable to determine the message that I used.

For example, there are 2%°6 possible values of a 256-bit hash (a typical

length with hash functions used in practice), but there are many more values

21024

of, say, 1024-bit messages (namely, possible values). Therefore, it

follows that, on average, each possible 256-bit hash value will have 21024 /
2256 = 21024-256 _ 2768 hreimages of 1024 bits each.

In practice, we must be sure that it is practically impossible to find any
message that maps to a given hash value, not just the message that was used,
which is what preimage resistance actually stands for. Specifically, we speak
of first-preimage and second-preimage resistance. First-preimage resistance (or
just preimage resistance) describes cases where it is practically impossible to
find a message that hashes to a given value. Second-preimage resistance, on the
other hand, describes the case that when given a message, M;, it’s practically

impossible to find another message, M,, that hashes to the same value that
M does.

The Cost of Preimages

Given a hash function and a hash value, you can search for first preimages by
trying different messages until one hits the target hash. You would do this
using an algorithm similar to find-preimage() in Listing 6-1.

find-preimage(H) {
repeat {
M = random_message()
if Hash(M) == H then return M
}
}

Listing 6-1: The optimal preimage search algorithm for a secure hash function



In Listing 6-1, randon_message() generates a random message (say, a random
1024-bit value). Obviously, find-preimage() will never complete if the hash’s
bit length, #, is large enough, because it will take on average 2” attempts

before finding a preimage. That’s a hopeless situation when working with 7
= 256, as in modern hashes like SHA-256 and BLAKE?2.

Why Second-Preimage Resistance Is Weaker

I claim that if you can find first preimages, you can find second preimages as
well (for the same hash function). As proof, if the algorithm solve-preinage()
returns a preimage of a given hash value, you can use the algorithm in
Listing 6-2 to find a second preimage of some message, M.

solve-second-preimage(M) {
H = Hash(M)
return solve-preimage(H)

}

Listing 6-2: How to find second preimages if you can find first preimages

That is, you'll find the second preimage by seeing it as a preimage
problem and applying the preimage attack. It follows that any second-
preimage resistant hash function is also preimage resistant. (Were it not, it
wouldn’t be second preimage resistant either, per the preceding solve-second-
preimage algorithm.) In other words, the best attack we can use to find second
preimages is almost identical to the best attack we can use to find first
preimages (unless the hash function has some defect that allows for more
efficient attacks). Also note that a preimage search attack is essentially the
same as a key recovery attack on a block cipher or stream cipher—namely, a
brute-force search for a single magic value.

Collision Resistance

Whatever hash function you choose to use, collisions will inevitably exist due
to the pigeonhole principle, which states that if you have 7 holes and » pigeons
to put into those holes, and if 7 is greater than 7z, at least one hole must
contain more than one pigeon.

This can be generalized to other items and containers as well. For example, any




27-word sequence in the US Constitution includes at least two words that start
with the same letter. In the world of hash functions, holes are the hash values,
and pigeons are the messages. Because we know that there arve many more
possible messages than hash values, collisions must exist.

However, despite the inevitable, collisions should be as hard to find as the
original message in order for a hash function to be considered collision
resistant—in other words, attackers shouldn’t be able to find two distinct
messages that hash to the same value.

The notion of collision resistance is related to the notion of second-
preimage resistance: if you can find second preimages for a hash function,
you can also find collisions, as shown in Listing 6-3.

solve-collision() {
M = random_message()
return (M, solve-second-preimage(M))

}

Listing 6-3: The naive collision search algorithm

That is, any collision-resistant hash is also second preimage resistant. If
this were not the case, there would be an efficient solve-second-preimage
algorithm that could be used to break collision resistance.

Finding Collisions
It’s faster to find collisions than it is to find preimages, on the order of about

22 operations instead of 2”, thanks to the birthday attack, whose key idea is
the following: given N messages and as many hash values, you can produce a
total of N x (N — 1) / 2 potential collisions by considering each pair of two
hash values (a number of the same order of magnitude as N?). It’s called
birthday attack because it’s usually illustrated using the so-called birthday
paradox, or the fact that a group of only 23 persons will include two persons
having the same birth date with probability 1/2.

N x (N = 1) / 2 is the count of pairs of two distinct messages, where we divide
by 2 because we view (My, M,) and (M,, My) as a same pair. In other words,

we don’t care about the ordering.



For the sake of comparison, in the case of a preimage search, N messages
only get you N candidate preimages, whereas the same N messages give
approximately N? potential collisions, as just discussed. With N? instead of
N, we say that there are quadratically more chances to find a solution. The

complexity of the search is in turn quadratically lower: in order to find a
collision, you’ll need to use the square root of 2” messages; that is, 2/

instead of 2”.

The Naive Birthday Attack

Here’s the simplest way to carry out the birthday attack in order to find
collisions:

1. Compute 22 hashes of 22 arbitrarily chosen messages and store all
the message/hash pairs in a list.

2. Sort the list with respect to the hash value to move any identical hash
values next to each other.

3. Search the sorted list to find two consecutive entries with the same hash
value.

Unfortunately, this method requires a lot of memory (enough to store 22

message/hash pairs), and sorting lots of elements slows down the search,

requiring about #2” basic operations on average using even the quicksort
algorithm.

Low-Memory Collision Search: The Rho Method

The Rho method is an algorithm for finding collisions that, unlike the naive
birthday attack, requires only a small amount of memory. It works like this:

1. Given a hash function with z-bit hash values, pick some random hash
value (H,), and define H; = H;.

2. Compute H, = Hash(H,;), and H, = Hash(Hash(/,)); that is, in the
first case we apply the hash function once, while in the second case we
apply it twice.

3. Iterate the process and compute H; , ; = Hash(H), H; , | =
Hash(Hash(H"))), until you reach i such that H; , ; = H'; ;.



Figure 6-3 will help you to visualize the attack, where an arrow from, say,
H, to H, means H, = Hash(H,). Observe that the sequence of H;s eventually
enters a loop, also called a cycle, which resembles the Greek letter rho (p) in
shape. The cycle starts at H; and is characterized by the collision Hash(H,)
= Hash(H,;) = Hs. The key observation here is that in order to find a
collision, you simply need to find such a cycle. The algorithm above allows
an attacker to detect the position of the cycle, and therefore to find the
collision.
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Figure 6-3: The structure of the Rho hash function. Each arrow represents an evaluation of the
hash function. The cycle beginning at Hg corresponds to a collision, Hash(Hg4) = Hash(H10) = Hs.

Advanced collision-finding techniques work by first detecting the start of
the cycle and then finding the collision, without storing numerous values in
memory and without needing to sort a long list. The Rho method takes

about 2”/? operations to succeed. Indeed, Figure 6-3 has many fewer hash
values than would an actual function with digests of 256 bits or more. On
average, the cycle and the tail (the part that extends from H; to Hs in Figure

6-3) each include about 22 hash values, where 7 is the bit length of the hash

values. Therefore, you’ll need at least 2/2 + 2%/2 evaluations of the hash to
find a collision.

Building Hash Functions

In the 1980s, cryptographers realized that the simplest way to hash a
message is to split it into chunks and process each chunk consecutively using
a similar algorithm. This strategy is called iterative hashing, and it comes in



two main forms:

o Iterative hashing using a compression function that transforms an input to
a smaller output, as shown in Figure 6-4. This technique is also known as

the Merkle—Damgird construction (named after the cryptographers
Ralph Merkle and Ivan Damgard).

o Iterative hashing using a function that transforms an input to an output
of the same size, such that any two different inputs give two different
outputs (that is, a permutation), as shown in Figure 6-7. Such functions
are called sponge functions.

We’ll now discuss how these constructions actually work and how
compression functions look in practice.

Compression-Based Hash Functions: The Merkle-
Damgard Construction

All hash functions developed from the 1980s through the 2010s are based on
the Merkle-Damgard (M-D) construction: MD4, MD5, SHA-1, and the
SHA-2 family, as well as the lesser-known RIPEMD and Whirlpool hash
functions. The M-D construction isn’t perfect, but it is simple and has
proven to be secure enough for many applications.

In MD4, MDS5, and RIPEMD, the MD stands for message digest, not
Merkle-Damgiard.

To hash a message, the M-D construction splits the message into blocks
of identical size and mixes these blocks with an internal state using a
compression function, as shown in Figure 6-4. Here, H;, is the initial value
(denoted IV) of the internal state, the values H;, H,, ... are called the
chaining values, and the final value of the internal state is the message’s hash
value.
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Figure 6-4: The Merkle-Damgéard construction using a compression function called Compress

The message blocks are usually 512 or 1024 bits, but they can, in
principle, be of any size. However, the block length is fixed for a given hash
function. For example, SHA-256 works with 512-bit blocks and SHA-512
works with 1024-bit blocks.

Padding Blocks

What happens if you want to hash a message that can’t be split into a
sequence of complete blocks? For example, if blocks are 512 bits, then a 520-
bit message will consist of one 512-bit block plus 8 bits. In such a case, the
M-D construction forms the last block as follows: take the chunk of bits left
(8 in our example), append 1 bit, then append 0 bits, and finally append the
length of the original message, encoded on a fixed number of bits. This
padding trick guarantees that any two distinct messages will give a distinct
sequence of blocks, and thus a distinct hash value.

For example, if you hash the 8-bit string 10101010 using SHA-256, which
is a hash function with 512-bit message blocks, the first and only block will
appear, in bits, as follows:

10101010 1000000000000000 ( ) 0000000000001000

Here, the message bits are the first eight bits (10101010), and the padding
bits are all the subsequent bits (shown in italic). The 1000 at the end of the
block (underlined) is the message’s length, or 8 encoded in binary. The
padding thus produces a 512-bit message composed of a single 512-bit
block, ready to be processed by SHA-256’s compression function.

Security Guarantees

The Merkle-Damgérd construction is essentially a way to turn a secure
compression function that takes small, fixed-length inputs into a secure hash
function that takes inputs of arbitrary lengths. If a compression function is
preimage and collision resistant, then a hash function built on it using the



M-D construction will also be preimage and collision resistant. This is true
because any successful preimage attack for the M-D hash could be turned
into a successful preimage attack for the compression function, as Merkle
and Damgird both demonstrated in their 1989 papers (see “Further
Reading” on page 126). The same is true for collisions: an attacker can’t
break the hash’s collision resistance without breaking the underlying
compression function’s collision resistance; hence, the security of the latter
guarantees the security of the hash.

Note that the converse argument is wrong, because a collision for the
compression function doesn’t necessarily give a collision for the hash. A
collision, Compress(X, M;) = Compress(Y, M,), for chaining values X and
Y, both distinct from H|;,, won’t get you a collision for the hash because you
can’t plug the collision into the iterative chain of hashes—except if one of
the chaining values happens to be X and the other ¥, but that’s unlikely to
happen.

Finding Multicollisions

A multicollision occurs when a set of three or more messages hash to the same
value. For example, the triplet (X, Y, Z), such that Hash(X) = Hash(}) =
Hash(Z) is called a 3-collision. 1deally, multicollisions should be much harder
to find than collisions, but there is a simple trick for finding them at almost
the same cost as that of a single collision. Here’s how it works:

1. Find a first collision: Compress(H,,, M, ;) = Compress(H,, M, ,) = H;.
Now you have a 2-collision, or two messages hashing to the same value.

2. Find a second collision with H; as a starting chaining value:
Compress(H;, M, ;) = Compress(H;, M, ,) = H,. Now you have a 4-
collision, with four messages hashing to the same value H,: M, Il
My, Myy VM, My V1 My, and My LM 5.

3. Repeat and find N times a collision, and you’ll have 2V N-block
messages hashing to the same value, or a 2N-collision, at the cost of
“only” about N2~ hash computations.

In practice, this trick isn’t all that practical because it requires you to find a
basic 2-collision in the first place.



Building Compression Functions: The Davies—Meyer Construction
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Figure 6-5: The Davies—Meyer construction. The dark triangle shows where the block cipher's key is
input.

All compression functions used in real hash functions such as SHA-256 and
BLAKE?2 are based on block ciphers, because that is the simplest way to
build a compression function. Figure 6-5 shows the most common of the
block cipher-based compression functions, the Davies—Meyer construction.

Given a message block, M;, and the previous chaining value H; _ |, the
Davies—Meyer compression function uses a block cipher, E, to compute the
new chaining value as

H;=EM;, H;_1) ® H;

The message block M; acts as the block cipher key, and the chaining value
H; _ acts as its plaintext block. As long as the block cipher is secure, the
resulting compression function is secure as well as collision and preimage
resistant. Without the XOR of the preceding chaining value (& H; _ ),
Davies—Meyer would be insecure because you could invert it, going from the

new chaining value to the previous one using the block cipher’s decryption
function.

The Davies—Meyer construction has a surprising property: you can find fixed
points, or chaining values, that are unchanged after applying the compression
function with a given message block. It suffices to take H; _ | = D(M,, 0) as a
chaining value, where D is the decryption function corvesponding to E. The new
chaining value H, is therefore equal to the original H; _ q:




H,=E(M, H,_,)®H,_, = E(M,, D(M,, 0))®D(M,, 0)
=0®D(M,, 0)=D(M,, 0)=H,_,

I =

We get H; = H; _ | because plugging the decryption of zero into the encryption
function yields zero—the term E(NM;, D(M;, 0))—leaving only the ® H; _
part of the equation in the expression of the compression function’s output. You
can then find fixed points for the compression functions of the SHA-2 functions,
as with the standards MD5 and SHA-1, which are also based on the Davies—
Meyer construction. Fortunately, fixed points aren’t a security risk.

There are many block cipher-based compression functions other than
Davies—Meyer, such as those shown in Figure 6-6, but they are less popular
because they’re more complex or require the message block to be the same
length as the chaining value.
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Figure 6-6: Other secure block cipher—based compression function constructions

Permutation-Based Hash Functions: Sponge Functions

After decades of research, cryptographers know everything there is to know
about block cipher—based hashing techniques. Still, shouldn’t there be a
simpler way to hash? Why bother with a block cipher, an algorithm that
takes a secret key, when hash functions don’t take a secret key? Why not
build hash functions with a fixed-key block cipher, a single permutation
algorithm?

Those simpler hash functions are called sponge functions, and they use a
single permutation instead of a compression function and a block cipher (see
Figure 6-7). Instead of using a block cipher to mix message bits with the
internal state, sponge functions just do an XOR operation. Sponge functions
are not only simpler than Merkle-Damgard functions, they’re also more
versatile. You will find them used as hash functions and also as deterministic
random bit generators, stream ciphers, pseudorandom functions (see



Chapter 7), and authenticated ciphers (see Chapter 8). The most famous
sponge function is Keccak, also known as SHA-3.
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Figure 6-7: The sponge construction

A sponge function works as follows:

1. It XORs the first message block, M, to H,, a predefined initial value of

the internal state (for example, the all-zero string). Message blocks are
all the same size and smaller than the internal state.

2. A permutation, P, transforms the internal state to another value of the
same size.

3. It XORs block M, and applies P again, and then repeats this for the
message blocks M3, My, and so on. This is called the absorbing phase.

4. After injecting all the message blocks, it applies P again and extracts a
block of bits from the state to form the hash. (If you need a longer hash,
apply P again and extract a block.) This is called the squeezing phase.

The security of a sponge function depends on the length of its internal
state and the length of the blocks. If message blocks are 7-bit long and the
internal state is w-bit long, then there are ¢ = w — 7 bits of the internal state
that can’t be modified by message blocks. The value of ¢ is called a sponge’s
capacity, and the security level guaranteed by the sponge function is ¢/2. For
example, to reach 256-bit security with 64-bit message blocks, the internal
state should be w = 2 x 256 + 64 = 576 bits. Of course, the security level also
depends on the length, 7, of the hash value. The complexity of a collision

attack is therefore the smallest value between 272 and 22, while the

complexity of a second preimage attack is the smallest value between 2” and
¢/



To be secure, the permutation P should behave like a random
permutation, without statistical bias and without a mathematical structure
that would allow an attacker to predict outputs. As in compression function—
based hashes, sponge functions also pad messages, but the padding is simpler
because it doesn’t need to include the message’s length. The last message bit
is simply followed by a 1 bit and as many zeroes as necessary.

The SHA Family of Hash Functions

The Secure Hash Algorithm (SHA) hash functions are standards defined by
NIST for use by non-military federal government agencies in the US. They
are considered worldwide standards, and only certain non-US governments
opt for their own hash algorithms (such as China’s SM3, Russia’s Streebog,
and Ukraine’s Kupyna) for reasons of sovereignty rather than a lack of trust
in SHA’s security. The US SHAs have been more extensively reviewed by
cryptanalysts than the non-US ones.

Message Digest 5 (MD5) was the most popular hash function from 1992 until
it was broken around 2005, and many applications then switched to one of the
SHA bash functions. MD5 processes 512-bit block messages and updates a 128-
bit internal state to produce a 128-bit hash, thus providing at best 128-bit
preimage security and 64-bit collision security. In 1996, cryptanalysts warned of
a collision for MD5’s compression function, but their warning went unhbeeded
until 2005 when a team of Chinese cryptanalysts discovered how to compute
collisions for the full MD5 hash. As I write this, it takes only seconds to find a
collision for MD5, yet many systems still use or support MDS5, often for reasons
of backward compatibility.

SHA-1

The SHA-1 standard arose from a failure in the NSA’s original SHA-0 hash
function. In 1993, NIST standardized the NSA’s SHA-0 hash algorithm, but
in 1995 the NSA released SHA-1 to fix an unidentified security issue in
SHA-0. The reason for the tweak became clear when in 1998 two

researchers discovered how to find collisions for SHA-0 in about 26
operations instead of the 23 expected for 160-bit hash functions such as



SHA-0 and SHA-1. Later attacks reduced the complexity to around 233
operations, leading to actual collisions in less than an hour for SHA-0.

SHA-1 Internals

SHA-1 combines a Merkle-Damgird hash function with a Davies—Meyer
compression function based on a specially crafted block cipher, sometimes
called SHACAL. That is, SHA-1 works by iterating the following operation
over 512-bit message blocks (M):

H=EWM, H)+H

Here, the use of a plus sign (+) rather than ® (XOR) is intentional. E(M,
H) and H are viewed as arrays of 32-bit integers, and each two words at a
same position are added together: the first 32-bit word of E(M, H) with the
first 32-bit word of H, and so on. The initial value of H is constant for any
message, then H is modified as per the above equation, and the final value of
H after processing all blocks is returned as the hash of the message.

Once the block cipher is run using the message block as a key and the
current 160-bit chaining value as a plaintext block, the 160-bit result is seen
as an array of five 32-bit words, each of which is added to its 32-bit
counterpart in the initial H value.

Listing 6-4 shows SHA-1’s compression function, sHA1-compress():

SHA1-compress(H, M) {
(a0, bO, cO, do, ed) = H // parsing H as five 32-bit big endian words
(a, b, c, d, e) = SHA1-blockcipher(a®, b0, c0O, do, ed, M)
return (a + a0, b + b0, c + cO, d + dO, e + e0)

}

Listing 6-4: SHA-1's compression function

SHA-1’s block cipher sHa1-blockcipher(), shown in bold in Listing 6-5, takes
a 512-bit message block, M, as a key and transforms the five 32-bit words (s,
b, ¢, d, and e) by iterating 80 steps of a short sequence of operations to replace
the word a with a combination of all five words. It then shifts the other
words in the array, as in a shift register.

SHA1-blockcipher(a, b, c, d, e, M) {
W = expand(M)
for 1 =0 to 79 {
new = (a <<< 5) + f(i, b, c, d) + e + K[1] + W[i]



(a, b, c, d, e) = (new, a, b >>> 2, ¢, d)
}

return (a, b, c, d, e)

}

Listing 6-5: SHA-1's block cipher

The expand() function shown in Listing 6-6 creates an array of eighty 32-
bit words, I, from the 16-word message block by setting 1#”s first 16 words
to M and the subsequent ones to an XOR combination of previous words,
rotated one bit to the left.

expand(M) {

// the 512-bit M is seen as an array of sixteen 32-bit words
W = empty array of eighty 32-bit words
for 1 =0 to 79 {

if 1 < 16 then W[1] = M[1]

else

W[i] = (W[ - 3] ® W[i - 8] ® W[i - 14] ® W[i - 16]) <<< 1

}

return W

}

Listing 6-6: SHA-1's expand() function

The <<< 1 operation in Listing 6-6 is the only difference between the
SHA-1 and SHA-0 functions.

Finally, the f() function (see Listing 6-7) in SHA1-blockcipher() is a sequence
of basic bitwise logical operations (a Boolean function) that depends on the
round number.

f(i, b, ¢, d) {
if 1 < 20 then return ((b & c) ® (~b & d))
if 1 < 40 then return (b ® ¢ ® d)
if 1 < 60 then return ((b & c) ® (b & d) ® (c & d))
if 1 < 80 then return (b ® ¢ ® d)

}

Listing 6-7: SHA-1's () function.

The second and fourth Boolean functions in Listing 6-7 simply XOR the
three input words together, which is a linear operation. In contrast, the first
and third functions use the non-linear & operator (logical AND) to protect
against differential cryptanalysis, which as you recall, exploits the predictable
propagation of bitwise difference. Without the & operator (in other words,
if f() were always b @ ¢ @ d, for example), SHA-1 would be easy to break by



tracing patterns within its internal state.

Attacks on SHA-1

Though more secure than SHA-0, SHA-1 is still insecure, which is why the
Chrome browser marks websites using SHA-1 in their HI'T'PS connection
as insecure. Although its 160-bit hash should grant it 80-bit collision
resistance, in 2005 researchers found weaknesses in SHA-1 and estimated

that finding a collision would take approximately 26® calculations. (That

number would be 280 if the algorithm were flawless.) A real SHA-1 collision
only came twelve years later when after years of cryptanalysis, Marc Stevens
and other researchers presented two colliding PDF documents through a
joint work with Google researchers (see hitps://shattered.io/).

The upshot is that you should not use SHA-1. As mentioned, internet
browsers now mark SHA-1 as insecure, and SHA-1 is no longer
recommended by NIST. Use SHA-2 hash functions instead, or BLAKE?2 or
SHA-3.

SHA-2

SHA-2, the successor to SHA-1, was designed by the NSA and standardized
by NIST. SHA-2 is a family of four hash functions: SHA-224, SHA-256,
SHA-384, and SHA-512, of which SHA-256 and SHA-512 are the two main
algorithms. The three-digit numbers represent the bit lengths of each hash.

SHA-256

The initial motivation behind the development of SHA-2 was to generate
longer hashes and thus deliver higher security levels than SHA-1. For
example, whereas SHA-1 has 160-bit chaining values, SHA-256 has 256-bit
chaining values or eight 32-bit words. Both SHA-1 and SHA-256 have 512-
bit message blocks; however, whereas SHA-1 makes 80 rounds, SHA-256
makes 64 rounds, expanding the 16-word message block to a 64-word
message block using the expand2s6() function shown in Listing 6-8.

expand256(M) {
// the 512-bit M is seen as an array of sixteen 32-bit words
W = empty array of sixty-four 32-bit words
for 1 =0 to 63 {
if 1 < 16 then W[1] = M[1]
else {
// the ">>" shifts instead of a ">>>" rotates and is not a typo


https://shattered.io/

sO = (W[i1 - 15] >>> 7) @ (W[1 - 15] >>> 18) @ (W[i1 - 15] >> 3)
s1 = (W[1 - 2] >>> 17) & (W[1 - 2] >>> 19) @ (W[1 - 2] >> 10)
W[i] = W[1 - 16] + sO + W[1 - 7] + s1
}
}
return W

}
Listing 6-8: SHA-256's expand256() function

Note how SHA-2’s expand256() message expansion is more complex than
SHA-1’s expand(), shown previously in Listing 6-6, which in contrast simply
performs XORs and a 1-bit rotation. The main loop of SHA-256’s
compression function is also more complex than that of SHA-1, performing
26 arithmetic operations per iteration compared to 11 for SHA-1. Again,
these operations are XORs, logical ANDs, and word rotations.

Other SHA-2 Algorithms

The SHA-2 family includes SHA-224, which is algorithmically identical to
SHA-256 except that its initial value is a different set of eight 32-bit words,
and its hash value length is 224 bits, instead of 256 bits, and is taken as the
first 224 bits of the final chaining value.

The SHA-2 family also includes the algorithms SHA-512 and SHA-384.
SHA-512 is similar to SHA-256 except that it works with 64-bit words
instead of 32-bit words. As a result, it uses 512-bit chaining values (eight 64-
bit words) and ingests 1024-bit message blocks (sixteen 64-bit words), and it
makes 80 rounds instead of 64. The compression function is otherwise
almost the same as that of SHA-256, though with different rotation distances
to cope with the wider word size. (For example, SHA-512 includes the
operation a >>> 34, which wouldn’t make sense with SHA-256’s 32-bit
words.) SHA-384 is to SHA-512 what SHA-224 is to SHA-256—namely,
the same algorithm but with a different initial value and a final hash
truncated to 384 bits.

Security-wise, all four SHA-2 versions have lived up to their promises so
far: SHA-256 guarantees 256-bit preimage resistance, SHA-512 guarantees
about 256-bit collision resistance, and so on. Still, there is no genuine proof
that SHA-2 functions are secure; we're talking about probable security.

That said, after practical attacks on MD5 and on SHA-1, researchers and
NIST grew concerned about SHA-2’s long-term security due to its
similarity to SHA-1, and many believed that attacks on SHA-2 were just a



matter of time. As I write this, though, we have yet to see a successful attack

on SHA-2. Regardless, NIST developed a backup plan: SHA-3.

The SHA-3 Competition

Announced in 2007, the NIST Hash Function Competition (the official
name of the SHA-3 competition) began with a call for submissions and some

basic requirements: hash submissions were to be at least as secure and as fast

as SHA-2, and they should be able to do at least as much as SHA-2. SHA-3
candidates also shouldn’t look too much like SHA-1 and SHA-2 in order to
be immune to attacks that would break SHA-1 and potentially SHA-2. By
2008, NIST had received 64 submissions from around the world, including
from universities and large corporations (BT, IBM, Microsoft, Qualcomm,
and Sony, to name a few). Of these 64 submissions, 51 matched the
requirements and entered the first round of the competition.

During the first weeks of the competition, cryptanalysts mercilessly
attacked the submissions. In July 2009, NIST announced 14 second-round
candidates. After spending 15 months analyzing and evaluating the
performance of these candidates, NIST chose five finalists:

BLAKE An enhanced Merkle-Damgard hash whose compression
function is based on a block cipher, which is in turn based on the core
function of the stream cipher ChaCha, a chain of additions, XORs, and
word rotations. BLAKE was designed by a team of academic researchers
based in Switzerland and the UK, including myself.

Grostl An enhanced Merkle-Damgérd hash whose compression function
uses two permutations (or fixed-key block ciphers) based on the core
function of the AES block cipher. Grostl was designed by a team of seven
academic researchers from Denmark and Austria.

JH A tweaked sponge function construction wherein message blocks are
injected before and after the permutation rather than just before. The
permutation also performs operations similar to a substitution—
permutation block cipher (as discussed in Chapter 4). JH was designed by
a cryptographer from a university in Singapore.

Keccak A sponge function whose permutation performs only bitwise
operations. Keccak was designed by a team of four cryptographers
working for a semiconductor company based in Belgium and Italy, and



included one of the two designers of AES.

Skein A hash function based on a different mode of operation than
Merkle-Damgérd, and whose compression function is based on a novel
block cipher that uses only integer addition, XOR, and word rotation.
Skein was designed by a team of eight cryptographers from academia and
industry, all but one of whom is based in the US, including the renowned
Bruce Schneier.

After extensive analysis of the five finalists, NIST announced a winner:
Keccak. NIST’s report rewarded Keccak for its “elegant design, large
security margin, good general performance, excellent efficiency in hardware,
and its flexibility.” Let’s see how Keccak works.

Keccak (SHA-3)

One of the reasons that NIST chose Keccak is that it’s completely different
from SHA-1 and SHA-2. For one thing, it’s a sponge function. Keccak’s
core algorithm is a permutation of a 1600-bit state that ingests blocks of
1152, 1088, 832, or 576 bits, producing hash values of 224, 256, 384, or 512
bits, respectively—the same four lengths produced by SHA-2 hash functions.
But unlike SHA-2, SHA-3 uses a single core algorithm rather than two
algorithms for all four hash lengths.

Another reason is that Keccak is more than just a hash. The SHA-3
standard document FIPS 202 defines four hashes—SHA3-224, SHA3-256,
SHA3-384, and SHA3-512—and two algorithms called SHAKE128 and
SHAKE256. (The name SHAKE stands for Secure Hash Algorithm with
Keccak.) These two algorithms are extendable-output functions (XOFs), or hash
functions that can produce hashes of variable length, even very long ones.
The numbers 128 and 256 represent the security level of each algorithm.

The FIPS 202 standard itself is lengthy and hard to parse, but you’ll find
open-source implementations that are reasonably fast and make the
algorithm easier to understand than the specifications. For example, the
MIT-licensed tiny_sha3  (hetps://github.com/mjosaarinen/tiny_sha3/) by
Markku-Juhani O. Saarinen, explains Keccak’s core algorithm in 19 lines of
C, as partially reproduced in Listing 6-9.

static voild sha3_keccakf(uint64_t st[25], int rounds)

{
(®)


https://github.com/mjosaarinen/tiny_sha3/

for (r = 0; r < rounds; r++) {

® // Theta
for (1 =0; 1 < 5; 1++)
bc[1] = st[i] » st[1 + 5] ~ st[i1 + 10] ~ st[i1 + 15] ~ st[i + 20];

for (1 =0; 1 <5; 1++) {
t = bc[(1 + 4) % 5] ~ ROTL64(bc[(1 + 1) % 5], 1);
for (j =0; j <25; j +=5)
st[j + 1] *= t;

}
® // Rho Pi
t = st[1];

for (1 = 0; 1 < 24; i++) {
j = keccakf_piln[i];
bc[0] = st[j];
st[j] = ROTL64(t, keccakf_rotc[i]);
t = bc[0];
}

® // Chi
for (j =0; j<25; j +=5) {
for (1 =0; 1 < 5; 1++)
bc[i] = st[j + i];
for (1 =0; 1 < 5; 1++)
st[j + 1] #= (~bc[(1 + 1) % 5]) & bc[(1i + 2) % 5];
}

® // Iota
st[0] ~= keccakf_rndc[r];
}
(®)
}

Listing 6-9: The tiny_sha3 implementation

The tiny_sha3 program implements the permutation, P, of Keccak, an
invertible transformation of a 1600-bit state viewed as an array of twenty-
five 64-bit words. As you review the code, notice that it iterates a series of

rounds, where each round consists of four main steps (as marked by @, @, &,

and @):

e The first step, Theta @, includes XORs between 64-bit words or a 1-bit
rotated value of the words (the roTL64(w, 1) operation left-rotates a word

wof 1 blt)
e The second step, rho Pt @, includes rotations of 64-bit words by



constants hardcoded in the keccakf_rotc[] array.

o The third step, chi ®, includes more XORs, but also logical ANDs (the
& operator) between 64-bit words. These ANDs are the only nonlinear
operations in Keccak, and they bring with them cryptographic strength.

o The fourth step, 1ota @, includes a XOR with a 64-bit constant,
hardcoded in the keccakf_rndc[].

These operations provide SHA-3 with a strong permutation algorithm
free of any bias or exploitable structure. SHA-3 is the product of more than a
decade of research, and hundreds of skilled cryptanalysts have failed to break
it. It’s unlikely to be broken anytime soon.

The BLAKE2 Hash Function

Security may matter most, but speed comes second. I've seen many cases
where a developer wouldn’t switch from MD5 to SHA-1 simply because
MD5 is faster, or from SHA-1 to SHA-2 because SHA-2 is noticeably slower
than SHA-1. Unfortunately, SHA-3 isn’t faster than SHA-2, and because
SHA-2 is still secure, there are few incentives to upgrade to SHA-3. So how
to hash faster than SHA-1 and SHA-2 and be even more secure? The answer
lies in the hash function BLAKE2, released after the SHA-3 competition.

Full disclosure: I'm a designer of BLAKE?, together with Samuel Neves, Zooko
Wilcox-O’Hearn, and Christian Winnerlein.

BLAKE?2 was designed with the following ideas in mind:

e It should be least as secure as SHA-3, if not stronger.

e It should be faster than all previous hash standards, including MDS5.

e It should be suited for use in modern applications, and able to hash
large amounts of data either as a few large messages or many small ones,
with or without a secret key.

e It should be suited for use on modern CPUs supporting parallel

computing on multicore systems as well as instruction-level parallelism
within a single core.



The outcome of the engineering process is a pair of main hash functions:

o BLAKE2D (or just BLAKE?), optimized for 64-bit platforms, produces
digests ranging from 1 to 64 bytes.

o BLAKE2s, optimized for 8- to 32-bit platforms, can produce digests
ranging from 1 to 32 bytes.

Each function has a parallel variant that can leverage multiple CPU cores.
The parallel counterpart of BLAKE2b, BLAKE2bp, runs on four cores,
whereas BLAKE2sp runs on eight cores. The former is the fastest on
modern server and laptop CPUs and can hash at close to 2 Gbps on a laptop
CPU. In fact, BLAKE?2 is the fastest secure hash available today, and its
speed and features have made it the most popular non-NIST-standard hash.
BLAKE?2 is used in countless software applications and has been integrated
into major cryptography libraries such as OpenSSL and Sodium.

You can find BLAKE2s specifications and reference code at
https://blake2.net/, and you can download optimized code and libraries from
https://github.com/BLAKE2/. The reference code also provides BLAKE2X,
an extension of BLAKE? that can produce hash values of arbitrary length.

M

Parameters E
Hr' -1 %’Hl

Figure 6-8: BLAKEZ2’s compression function. The two halves of the state are XORed together after
the block cipher.

BLAKE?2’s compression function, shown in Figure 6-8, is a variant of the
Davies—Meyer construction that takes parameters as additional input—
namely, a counter (which ensures that each compression function behaves like
a different function) and a flag (which indicates whether the compression
function is processing the last message block, for increased security).

The block cipher in BLAKE2’s compression function is based on the
stream cipher ChaCha, itself a variant of the Salsa20 stream cipher discussed
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in Chapter 5. Within this block cipher, BLAKE2b’s core operation is
composed of the following chain of operations, which transforms a state of
four 64-bit words using two message words, M, and M;:

a=a+b+ M,

d=((d® a)>>>32)

c=c¢c+d

b=((b®c)>>>24)

a=a+b+ M,

d= ((n’.@ a) >>> 1[‘1)

c=c+d

b=((b®c)>>>63)

BLAKE2s’s core operation is similar but works with 32-bit instead of 64-
bit words (and thus uses different rotation values).

How Things Can Go Wrong

Despite their apparent simplicity, hash functions can cause major security
troubles when used at the wrong place or in the wrong way—for example,
when weak checksum algorithms like CRCs are used instead of a crypto hash
to check file integrity in applications transmitting data over a network.
However, this weakness pales in comparison to some others, which can cause
total compromise in seemingly secure hash functions. We'll see two
examples of failures: the first one applies to SHA-1 and SHA-2, but not to
BLAKE2 or SHA-3, whereas the second one applies to all of these four
functions.

The Length-Extension Attack

The length-extension attack, shown in Figure 6-9, is the main threat to the
Merkle-Damgiérd construction.



MB
M, M, = Hash(M, || M, | M,)

Figure 6-9: The length-extension attack

Basically, if you know Hash(M) for some unknown message, M, composed
of blocks M| and M, (after padding), you can determine Hash(M; || M, ||

M) for any block, Mj. Because the hash of M || M, is the chaining value
that follows immediately after M,, you can add another block, Mj, to the

hashed message, even though you don’t know the data that was hashed.
What’s more, this trick generalizes to any number of blocks in the unknown
message (M; || M, here) or in the suffix (Mj).

The length-extension attack won’t affect most applications of hash
functions, but it can compromise security if the hash is used a bit too
creatively. Unfortunately, SHA-2 hash functions are vulnerable to the
length-extension attack, even though the NSA designed the functions and
NIST standardized them while both were well aware of the flaw. This flaw
could have been avoided simply by making the last compression function call

different from all others (for example, by taking a 1 bit as an extra parameter
while the previous calls take a 0 bit). And that is in fact what BLAKE2 does.

Fooling Proof-of-Storage Protocols

Cloud computing applications have used hash functions within proof-of-
storage protocols—that is, protocols where a server (the cloud provider)
proves to a client (a user of a cloud storage service) that the server does in
fact store the files that it’s supposed to store on behalf of the client.

In 2007, the paper “SafeStore: A Durable and Practical Storage System”
(bttps://www.cs.utexas.edu/~lorenzo/papers/p129-kotla.pdf) by  Ramakrishna
Kotla, Lorenzo Alvisi, and Mike Dahlin proposed a proof-of-storage
protocol to verify the storage of some file, M, as follows:

1. The client picks a random value, C, as a challenge.
2. The server computes Hash(M | | C) as a response and sends the result to
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the client.

3. The client also computes Hash(M || C) and checks that it matches the
value received from the server.

The premise of the paper is that the server shouldn’t be able to fool the
client because if the server doesn’t know M, it can’t guess Hash(M || C).
But there’s a catch: in reality, Hash will be an iterated hash that processes its
input block by block, computing intermediate chaining values between each
block. For example, if Hash is SHA-256 and M is 512 bits long (the size of a
block in SHA-256), the server can cheat. How? The first time the server
receives M, it computes H; = Compress(H,, M;), the chaining value

obtained from SHA-256’s initial value, Hy, and from the 512-bit M. It then
records H; in memory and discards M, at which point it no longer stores M.

Now when the client sends a random value, C, the server computes

Compress(H;, C), after adding the padding to C to fill a complete block,

and returns the result as Hash(M |1 C). The client then believes that,
because the server returned the correct value of Hash(M || C), it holds the
complete message—except that it may not, as you’ve seen.

"This trick will work for SHA-1, SHA-2, as well as SHA-3 and BLAKE2.
The solution is simple: ask for Hash(C' | | M) instead of Hash(M | | C).

Further Reading

To learn more about hash functions, read the classics from the 1980s and
90s: research articles like Ralph Merkle’s “One Way Hash Functions and
DES” and Ivan Damgéird’s “A Design Principle for Hash Functions.” Also
read the first thorough study of block cipher-based hashing, “Hash
Functions Based on Block Ciphers: A Synthetic Approach” by Preneel,
Govaerts, and Vandewalle.

For more on collision search, read the 1997 paper “Parallel Collision
Search with Cryptanalytic Applications” by van Oorschot and Wiener. To
learn more about the theoretical security notions that underpin preimage
resistance and collision resistance, as well as length-extension attacks, search
tor indifferentiability.

For more recent research on hash functions, see the archives of the SHA-3
competition, which include all the different algorithms and how they were
broken. You'll find many references on the SHA-3 Zoo at



http://ebash.iaik.tugraz.at/wiki/The_SHA-3_Zoo, and on NIST’s page,
bttp://csre.nist.gov/groups/ST/bash/sha-3/.

For more on the SHA-3 winner Keccak and sponge functions, see
http://keccak.noekeon.org/ and http://sponge.noekeon.org/, the official pages of
the Keccak designers.

Last but not least, research these two real exploitations of weak hash
functions:

e The nation-state malware Flame exploited an MD5 collision to make a
counterfeit certificate and appear to be a legitimate piece of software.
o The Xbox game console used a weak block cipher (called TEA) to build

a hash function, which was exploited to hack the console and run
arbitrary code on it.
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7
KEYED HASHING

The hash functions discussed in Chapter 6 take a message and return its hash
value—typically a short string of 256 or 512 bits. Anyone can compute the
hash value of a message and verify that a particular message hashes to a
particular value because there’s no secret value involved, but sometimes you
don’t want to let just anyone do that. That’s where keyed hash functions
come in, or hashing with secret keys.

Keyed hashing forms the basis of two types of important cryptographic
algorithms: message authentication codes (MACs), which authenticate a message
and protect its integrity, and pseudorandom functions (PRFs), which produce
random-looking hash-sized values. We’ll look at how and why MACs and
PRFs are similar in the first section of this chapter; then we’ll review how
real MACs and PRFs work. Some MACs and PRFs are based on hash
functions, some are based on block ciphers, and still others are original
designs. Finally, we’ll review examples of attacks on otherwise secure MACs.

Message Authentication Codes (MACSs)

A MAC protects a message’s integrity and authenticity by creating a value 7
= MAC(K, M), called the authentication tag of the message, M (often
confusingly called the MAC of M). Just as you can decrypt a message if you
know a cipher’s key, you can validate that a message has not been modified if

you know a MAC'’s key.

For example, say Alex and Bill share a key, K, and Alex sends a message,
M, to Bill along with its authentication tag, 7= MAC(K, M). Upon receiving
the message and its authentication tag, Bill recomputes MAC(K, M) and
checks that it is equal to the authentication tag received. Because only Alex
could have computed this value, Bill knows that the message wasn’t



corrupted in transit (confirming integrity), whether accidentally or
maliciously, and that Alex sent that message (confirming authenticity).

MACs in Secure Communication

Secure communication systems often combine a cipher and a MAC to
protect a message’s confidentiality, integrity, and authenticity. For example,
the protocols in Internet Protocol Security (IPSec), Secure Shell (SSH), and
Transport Layer Security (I'LS) generate a MAC for each network packet
transmitted.

Not all communication systems use MACs. Sometimes an authentication
tag can add unacceptable overhead to each packet, typically in the range of
64 to 128 bits. For example, the 3G and 4G mobile telephony standards
encrypt packets encoding voice calls but they don’t authenticate them. An
attacker can modify the encrypted audio signal and the recipient wouldn’t
notice. Thus, if an attacker damages an encrypted voice packet, it will
decrypt to noise, which would sound like static.

Forgery and Chosen-Message Attacks

What does it mean for a MAC to be secure? First of all, as with a cipher, the
secret key should remain secret. If a MAC is secure, an attacker shouldn’t be
able to create a tag of some message if they don’t know the key. Such a
made-up message/tag pair is called a forgery, and recovering a key is just a
specific case of a more general class of attacks called forgery attacks. The
security notion that posits that forgeries should be impossible to find is
called unforgeability. Obviously, it should be impossible to recover the secret
key from a list of tags; otherwise, attackers could forge tags using the key.

What can an attacker do to break a MAC? In other words, what’s the
attack model? The most basic model is the known-message attack, which
passively collects messages and their associated tags (for example, by
eavesdropping on a network). But real attackers often launch more powerful
attacks because they can often choose the messages to be authenticated, and
therefore get the MAC of the message they want. The standard model is
therefore that of chosen-message attacks, wherein attackers get tags for
messages of their choice.

Replay Attacks



MAC:s aren’t safe from attacks involving replays of tags. For example, if you
were to eavesdrop on Alex and Bill’s communications, you could capture a
message and its tag sent by Alex to Bill, and later send them again to Bill
pretending to be Alex. To prevent such replay attacks, protocols include a
message number in each message. This number is incremented for each new
message and authenticated along with the message. The receiving party gets
messages numbered 1, 2, 3, 4, and so on. Thus, if an attacker tries to send
message number 1 again, the receiver will notice that this message is out of
order and that it’s a potential replay of the earlier message number 1.

Pseudorandom Functions (PRFs)

A PREF is a function that uses a secret key to return PRF(K, M), such that the
output looks random. Because the key is secret, the output values are
unpredictable to an attacker.

Unlike MACs, PRFs are not meant to be used on their own but as part of
a cryptographic algorithm or protocol. For example, PRFs can be used to
create block ciphers within the Feistel construction discussed in “How to
Construct Block Ciphers” on page 55. Key derivation schemes use PRFs to
generate cryptographic keys from a master key or a password, and
identification schemes use PRFs to generate a response from a random
challenge. (Basically, a server sends a random challenge message, M, and the
client returns PRF(K, M) in its response to prove that it knows K.) The 4G
telephony standard uses a PRF to authenticate a SIM card and its service
provider, and a similar PRF also serves to generate the encryption key and
MAC key to be used during a phone call. The TLS protocol uses a PRF to
generate key material from a master secret as well as session-specific random
values. There’s even a PRF in the noncryptographic hash() function built into
the Python language to compare objects.

PRF Security

In order to be secure, a pseudorandom function should have no pattern that
sets its outputs apart from truly random values. An attacker who doesn’t
know the key, K, shouldn’t be able to distinguish the outputs of PRF(K, M)
from random values. Viewed differently, an attacker shouldn’t have any
means of knowing whether they’re talking to a PRF algorithm or to a
random function. The erudite phrase for that security notion is



indistinguishability from a vandom function. (To learn more about the
theoretical foundations of PRFs, see Volume 1, Section 3.6 of Goldreich’s
Foundations of Cryptography.)

Why PRFs Are Stronger Than MACs

PRFs and MACs are both keyed hashes, but PRFs are fundamentally
stronger than MAGCs, largely because MACs have weaker security
requirements. Whereas a MAC is considered secure if tags can’t be forged—
that is, if the MAC’s outputs can’t be guessed—a PRF is only secure if its
outputs are indistinguishable random strings, which is a stronger
requirement. If a PRF’s outputs can’t be distinguished from random strings,
the implication is that their values can’t be guessed; in other words, any

secure PRF is also a secure MAC.

The converse is not true, however: a secure MAC isn’t necessarily a secure
PRF. For example, say you start with a secure PRF, PRF1, and you want to
build a second PRF, PRF2, from it, like this:

PRF2(K, M) = PRF1(K, M) || 0

Because PRF2’s output is defined as PRF1’s output followed by one 0 bit,
it doesn’t look as random as a true random string, and you can distinguish its
outputs by that last 0 bit. Hence, PRF2 is not a secure PRF. However,
because PRF1 is secure, PRF2 would still make a secure MAC. Why?
Because if you were able to forge a tag, T = PRF2(K, M), for some M, then
you’d also be able to forge a tag for PRF1, which we know to be impossible
in the first place because PRF1 is a secure MAC. Thus, PRF?2 is a keyed hash
that’s a secure MAC but not a secure PRF.

But don’t worry: you won’t find such MAC constructions in real
applications. In fact, many of the MACs deployed or standardized are also
secure PRFs and are often used as either. For example, TLS uses the

algorithm HMAC-SHA-256 both as a MAC and as a PRF.

Creating Keyed Hashes from Unkeyed Hashes
Throughout the history of cryptography, MACs and PRFs have rarely been

designed from scratch but rather have been built from existing algorithms,
usually hash functions of block ciphers. One seemingly obvious way to



produce a keyed hash function would be to feed an (unkeyed) hash function a
key and a message, but that’s easier said than done, as I discuss next.

The Secret-Prefix Construction

The first technique we’ll examine, called the secret-prefix construction, turns a
normal hash function into a keyed hash one by prepending the key to the
message and returning Hash(K | | M). Although this approach is not always
wrong, it can be insecure when the hash function is vulnerable to length-
extension attacks (as discussed in “The Length-Extension Attack” on page
125) and when the hash supports keys of different lengths.

Insecurity Against Length-Extension Attacks

Recall from Chapter 6 that hash functions of the SHA-2 family allow
attackers to compute the hash of a partially unknown message when given a
hash of a shorter version of that message. In formal terms, the /length-
extension attack allows attackers to compute Hash(K || M; || M,) given

only Hash(K | | M) and neither M| nor K. These functions allow attackers

to forge valid MAC tags for free because they’re not supposed to be able to
guess the MAC of M; || M, given only the MAC of M. This fact makes the

secret-prefix construction as insecure as a MAC and PRF when, for example,
it’s used with SHA-256 or SHA-512. It is a weakness of Merkle-Damgard to
allow length-extension attacks, and none of the SHA-3 finalists do. The
ability to thwart length-extension attacks was mandatory for SHA-3
submissions.

Insecurity with Different Key Lengths

The secret-prefix construction is also insecure when it allows the use of keys
of different lengths. For example, if the key K is the 24-bit hexadecimal
string 123abc and M is def00, then Hash() will process the value K || M =
123abedef00. If K is instead the 16-bit string 123a and M is bedef000, then

Hash() will process K || M = 123abcdef00, too. Therefore, the result of the
secret-prefix construction Hash(K | | M) will be the same for both keys.

This problem is independent of the underlying hash and can be fixed by
hashing the key’s length along with the key and the message, for example, by
encoding the key’s bit length as a 16-bit integer, L, and then hashing
Hash(L |l K |l M). But you shouldn’t have to do this. Modern hash



functions such as BLAKE2 and SHA-3 include a keyed mode that avoids
those pitfalls and yields a secure PRF, and thus a secure MAC as well.

The Secret-Suffix Construction

Instead of hashing the key before the message as in the secret-prefix

construction, we can hash it after. And that’s exactly how the secret-suffix
construction works: by building a PRF from a hash function as Hash(M | | K).

Putting the key at the end makes quite a difference. For one thing, the
length-extension attack that works against secret-prefix MACs won’t work

against the secret suffix. Applying length extension to a secret-suffix MAC,
you’d get Hash(M, || K || M,) from Hash(M; || K), but that wouldn’t be

a valid attack because Hash(M; || K || M,) isn’t a valid secret-suffix MAC;
the key needs to be at the end.

However, the secret-suffix construction is weaker against another type of
attack. Say you’ve got a collision for the hash Hash(M;) = Hash(}/,), where

M and M, are two distinct messages, possibly of different sizes. In the case
of a hash function such as SHA-256, this implies that Hash(M; || K) and
Hash(M, || K) will be equal too, because internally K will be processed
based on the data hashed previously, namely Hash(}), equal to Hash(M,).
Hence, you’d get the same hash value whether you hash K after M, or after
M,, regardless of the value of K.

To exploit this property, an attacker would:

1. Find two colliding messages, M; and M,
2. Request the MAC tag of M; Hash(M; | | K)

3. Guess that Hash(M, || K) is the same, thereby forging a valid tag and
breaking the MAC’s security

The HMAC Construction
The hash-based MAC (HMAC) construction allows us to build a MAC from

a hash function, which is more secure than either secret prefix or secret
suffix. HMAC yields a secure PRF as long as the underlying hash is collision
resistant, but even if that’s not the case, HMAC will still yield a secure PRF
if the hash’s compression function is a PRF. The secure communication



protocols IPSec, SSH, and TLS have all used HMAC. (You’ll find HMAC
specifications in NIST’s FIPS 198-1 standard and in RFC 2104.)

HMAC uses a hash function, Hash, to compute a MAC tag, as shown in
Figure 7-1 and according to the following expression:

Hash((K & opad) Hash((K & ipad) M))

The term opad (outer padding) is a string (5¢ic5c¢ ... 5¢) that is as long as
Hash’s block size. The key, K, is usually shorter than one block that is filled
with 00 bytes and XORed with opad. For example, if K is the 1-byte string
00, then K @ opad = opad. (The same is true if K is the all-zero string of any
length up to a block’s length.) K @ opad is the first block processed by the
outer call to Hash—namely, the leftmost Hash in the preceding equation,
or the bottom hash in Figure 7-1.

The term ipad (inner padding) is a string (363636 ... 36) that is as long as
the Hash’s block size and that is also completed with 00 bytes. The resulting
block is the first block processed by the inner call to Hash—namely, the
rightmost Hash in the equation, or the top hash in Figure 7-1.

K @ ipad M
H, o Compress
K & opad
H, H, HMAC-H(K, M)

Figure 7-1: The HMAC hash-based MAC construction

The envelope method is an even more secure construction than secret prefix and
secret suffix. It’s expressed as Hash(K | | M || K), something called a sandwich
MAC, but it’s theoretically less secure than HMAC.

If SHA-256 is the hash function used as Hash, then we call the HMAC



instance HMAC-SHA-256. More generally, we call HMAC-Hash an HMAC
instance using the hash function Hash. That means if someone asks you to

use HMAC, you should always ask, “Which hash function?”
A Generic Attack Against Hash-Based MACs

There is one attack that works against all MACs based on an iterated hash
function. Recall the attack in “The Secret-Suffix Construction” on page 131
where we used a hash collision to get a collision of MACs. You can use the
same strategy to attack a secret-prefix MAC or HMAC, though the
consequences are less devastating.

To illustrate the attack, consider the secret-prefix MAC Hash(K | | M), as
shown in Figure 7-2. If the digest is 7 bits, you can find two messages, M,

and M,, such that Hash(K || M,;) = Hash(K || M,), by requesting

approximately 22 MAC tags to the system holding the key. (Recall the
birthday attack from Chapter 6.) If the hash lends itself to length extension,
as SHA-256 does, you can then use M; and M, to forge MACs by choosing

some arbitrary data, M3, and then querying the MAC oracle for Hash(K | |
M 'l My), which is the MAC of message M; || Mj. As it turns out, this is
also the MAC of message M, || Mj, because the hash’s internal state of M,
and M5 and M, and Mj is the same, and you’ve successfully forged a MAC
tag. (The effort becomes infeasible as z grows beyond, say, 128 bits.)

M, {{:-ne or more blocks)

MAC(K, M, I M,)
= MAC(K, M, lIM,)

Collision

K M,
HDH ]EZI Compress

Figure 7-2: The principle of the generic forgery attack on hash-based MACs

This attack will work even if the hash function is not vulnerable to length
extension, and it will work for HMAC, too. The cost of the attack depends
on both the size of the chaining value and the MAC’s length: if a MAC’s



chaining value is 512 bits and its tags are 128 bits, a 2% computation would

find a MAC collision but probably not a collision in the internal state, since

2512/2 _ 9256

finding such a collision would require operations on average.

Creating Keyed Hashes from Block Ciphers: CMAC

Recall from Chapter 6 that the compression functions in many hash
functions are built on block ciphers. For example, HMAC-SHA-256 PRF is
a series of calls to SHA-256’s compression function, which itself is a block
cipher that repeats a sequence of rounds. In other words, HMAC-SHA-256
is a block cipher inside a compression function inside a hash inside the
HMAC construction. So why not use a block cipher directly rather than
build such a layered construction?

CMAC (which stands for cipher-based MAC) is such a construction: it
creates a MAC given only a block cipher, such as AES. Though less popular
than HMAC, CMAC is deployed in many systems, including the Internet
Key Exchange (IKE) protocol, which is part of the IPSec suite. IKE, for
example, generates key material using a construction called AES-CMAC-
PRF-128 as a core algorithm (or CMAC based on AES with 128-bit output).
CMAC is specified in RFC 4493.

Breaking CBC-MAC

CMAC was designed in 2005 as an improved version of CBC-MAC, a
simpler block cipher-based MAC derived from the cipher block chaining
(CBC) block cipher mode of operation (see “Modes of Operation” on page
65).

CBC-MAC, the ancestor of CMAC, is simple: to compute the tag of a
message, M, given a block cipher, E, you encrypt M in CBC mode with an
all-zero initial value (IV) and discard all but the last ciphertext block. That is,
you compute C; = E(K, M,), C, = E(K, M, & C)), C; = E(K, M5 ® (C,), and
so on for each of M’s blocks and keep only the last C;, your CBC-MAC tag
for M—simple, and simple to attack.

To understand why CBC-MAC is insecure, consider the CBC-MAC tag,
T, = E(K, M,), of a single-block message, M, and the tag, T, = E(K, M,), of
another single-block message, M,. Given these two pairs, (M;, T;) and (M,,
T5), you can deduce that 75 is also the tag of the two-block message M ||



(M, @ T)). Indeed, if you apply CBC-MAC to M; Il (M, & T}) and
Compute CI = E(K, Ml) = Tl followed by C2 = E(K, (MZ @ Tl) @ Tl) = E(K,
M,) = T5, you can create a third message/tag pair from two message/tag pairs

without knowing the key. That is, you can forge CBC-MAC tags, thereby
breaking CBC-MAC’s security.

Fixing CBC-MAC
CMAC fixes CBC-MAC by processing the last block using a different key
from the preceding blocks. To do this, CMAC first derives two keys, K; and
K5, from the main key, K, such that K, K;, and K, will be distinct. In CMAC,
the last block is processed using either K; or K,, while the preceding blocks
use K.

To determine K; and K,, CMAC first computes a temporary value, L =

E(0, K), where 0 acts as the key of the block cipher and K acts as the plaintext
block. Then CMAC sets the value of K; equal to (L << 1) if L’s most

significant bit (MSB) is 0, or equal to (L << 1) ® 87 if L’s MSB is 1. (The
number 87 is carefully chosen for its mathematical properties when data
blocks are 128 bits; a value other than 87 is needed when blocks aren’t 128
bits.)

The value of K, is set equal to (K; << 1) if K;’s MSB 15 0, or K, = (K| << 1)
® 87 otherwise.

Given K| and K,, CMAC works like CBC-MAC, except for the last block.
If the final message chunk M, is exactly the size of a block, CMAC returns
the value E(K, My ® C, _; ® Kj) as a tag, as shown in Figure 7-3. But if My

has fewer bits than a block, CMAC pads it with a 1 bit and zeros, and returns
the value E(K, M, ® C, _ | ® K,) as a tag, as shown in Figure 7-4. Notice

that the first case uses only K; and the second only K, but both use only the
main key K to process the message chunks that precede the final one.
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Figure 7-3: The CMAC block cipher-based MAC construction when the message is a sequence of
integral blocks

M, M,  MI100...00
J —»? —»?4—":2
E¢ Ex E¢

T

Figure 7-4: The CMAC block cipher-based MAC construction when the last block of the message
has to be padded with a 1 bit and zeros to fill a block

Note that unlike the CBC encryption mode, CMAC does not take an IV
as a parameter and is deterministic: CMAC will always return the same tag
for a given message, M, because the computation of CMAC(M) is not
randomized—and that’s fine, because unlike encryption, MAC computation
doesn’t have to be randomized to be secure, which eliminates the burden of
having to choose random IV.

Dedicated MAC Designs

You've seen how to recycle hash functions and block ciphers to build PRFs
that are secure as long as their underlying hash or cipher is secure. Schemes
such as HMAC and CMAC simply combine available hash functions or
block ciphers to yield a secure PRF or MAC. Reusing available algorithms is
convenient, but is it the most efficient approach?

Intuitively, PRFs and MACs should require less work than unkeyed hash
functions in order to be secure—their use of a secret key prevents attackers
from playing with the algorithm because they don’t have the key. Also, PRFs
and MACs only expose a short tag to attackers, unlike block ciphers, which
expose a ciphertext that is as long as the message. Hence, PRFs and MACs



should not need the whole power of hash functions or block ciphers, which
is the point of dedicated design—that is, algorithms created solely to serve as

PRFs and/or MAC:s.

The sections that follow focus on two such algorithms that are widely
used: Poly1305 and SipHash. I'll explain their design principles and why
they are likely secure.

Poly1305

The Poly1305 algorithm (pronounced poly-thirteen-o-five) was designed in
2005 by Daniel J. Bernstein (creator of the Salsa20 stream cipher discussed
in Chapter 5 and the ChaCha cipher that inspired the BLAKE and BLAKE?
hash functions discussed in Chapter 6). Poly1305 is optimized to be super
fast on modern CPUs, and as I write this, it is used by Google to secure
HTTPS (HI'TP over TLS) connections and by OpenSSH, among many
other applications. Unlike Salsa20, the design of Polyl305 is built on
techniques dating back to the 1970s—namely, universal hash functions and
the Wegman—Carter construction.

Universal Hash Functions

The Poly1305 MAC uses a universal hash function internally that is much
weaker than a cryptographic hash function, but also much faster. Universal
hash functions don’t have to be collision resistant, for example. That means
less work is required to achieve their security goals.

Like a PRF, a universal hash is parameterized by a secret key: given a
message, M, and key, K, we write UH(K, M), which is the computation of
the output of a universal hash function, denoted UH. A universal hash
function has only one security requirement: for any two messages, M; and
M,, the probability that UH(K, M) = UH(K, M,) must be negligible for a
random key, K. Unlike a PRF, a universal hash doesn’t need to be
pseudorandom; there simply should be no pair (M;, M,) that gives the same
hash for many different keys. Because their security requirements are easier
to satisfy, fewer operations are required and therefore universal hash
functions are considerably faster than PRFs.

You can use a universal hash as a MAC to authenticate no more than one
message, however. For example, consider the universal hash used in
Poly1305, called a polynomial-evaluation hash. (See the seminal 1974 article



“Codes Which Detect Deception” by Gilbert, MacWilliams, and Sloane for
more on this notion.) This kind of polynomial-evaluation hash is
parameterized by a prime number, p, and takes as input a key consisting of
two numbers, R and K, in the range [1, p] and a message, M, consisting of #
blocks (M;, M5, ..., M,). The output of the universal hash is then computed

as the following:
UH(R, K, M) =R + MK + M3K? + M3K3 + ... + M, K" mod p

The plus sign (+) denotes the addition of positive integers, K’ is the
number K raised to the power 7, and “mod p” denotes the reduction modulo
p of the result (that is, the remainder of the division of the result by p; for
example, 12 mod 10 = 2, 10 mod 10 = 0, 8 mod 10 = 8, and so on).

Because we want the hash to be as fast as possible, universal hash-based
MAC:s often work with message blocks of 128 bits and with a prime number,

p, that is slightly larger than 2128, such as 21?8 + 51. The 128-bit width allows
for very fast implementations by efficiently using the 32- and 64-bit
arithmetic units of common CPU.

Potential Vulnerabhilities

Universal hashes have one weakness: because a universal hash is only able to
securely authenticate one message, an attacker could break the preceding
polynomial-evaluation MAC by requesting the tags of only two messages.
Specifically, they could request the tags for a message where M; =M, = ... =
0 (that is, whose tag is UH(R, K, 0) = R) and then use the tags to find the
secret value R. Alternatively, they could request the tags for a message where
M =1 and where M, = M5 = ... = 0 (that is, whose tag is T'= R + K), which
would allow them to find K by subtracting R from 7. Now the attacker
knows the whole key (R, K) and they can forge MACs for any message.

Fortunately, there’s a way to go from single-message security to multi-
message Security.

Wegman-Carter MACs

The trick to authenticating multiple messages using a universal hash
function arrived thanks to IBM researchers Wegman and Carter and their
1981 paper “New Hash Functions and Their Use in Authentication and Set



Equality.” The so-called Wegman—Carter construction builds a MAC from
a universal hash function and a PRF, using two keys, K; and K,, and it

returns
MAC(KIJ KZ’ N’ M) = UH(KI’ M) + PRF(KZ’ N)

where N is a nonce that should be unique for each key, K;, and where PRF’s

output is as large as that of the universal hash function UH. By adding these
two values, PRF’s strong pseudorandom output masks the cryptographic
weakness of UH. You can see this as the encryption of the universal hash’s
result, where the PRF acts as a stream cipher and prevents the preceding
attack by making it possible to authenticate multiple messages with the same
key, K;.

To recap, the Wegman—Carter construction UH(K;, M) + PRF(K,, N)

gives a secure MAC if we assume the following:

o UH is a secure universal hash.
e PRF is a secure PRF.
o Each nonce N is used only once for each key K,.

The output values of UH and PRF are long enough to ensure high
enough security.

Now let’s see how Poly1305 leverages the Wegman—Carter construction
to build a secure and fast MAC.

Poly1305-AES

Poly1305 was initially proposed as Poly1305-AES, combining the Poly1305
universal hash with the AES block cipher. Poly1305-AES is much faster than
HMAC-based MACs, or even than CMAC s, since it only computes one
block of AES and processes the message in parallel through a series of simple
arithmetic operations.

Given a 128-bit Kj, K,, and N, and message, M, Polyl1305-AES returns

the following:

Poly 1305(K,, M) + AES(K,, N) mod 21?8



The mod 2!?8 reduction ensures that the result fits in 128 bits. The
message M is parsed as a sequence of 128-bit blocks (M;, M,, ..., M,), and a
129th bit is appended to each block’s most significant bit to make all blocks
129 bits long. (If the last block is smaller than 16 bytes, it’s padded with a 1
bit followed by 0 bits before the final 129th bit.) Next, Poly1305 evaluates
the polynomial to compute the following:

Poly 1305(K;, M) = M;K;' + M,K,;" '+ ... +M,K,; mod 2130 - 5

The result of this expression is an integer that is at most 129-bits long.

When added to the 128-bit value AES(K;, N), the result is reduced modulo
2128 to produce a 128-bit MAC.

AES isn’t a PRF; instead, it’s a pseudorandom permutation (PRP). However,
that doesn’t matter much here because the Wegman—Carter construction works
with a PRP as well as with a PRF. This is because if you’re given a function
that is either a PRF of a PRP, it’s hard to determine whether it’s a PRE of a
PRP just by looking at the function’s output values.

The security analysis of Polyl305-AES (see “The Polyl305-AES
Message-Authentication Code” at http://cr.yp.to/mac/poly1305-20050329.pdf)
shows that Poly1305-AES is 128-bit secure as long as AES is a secure block
cipher—and, of course, as long as everything is implemented correctly, as
with any cryptographic algorithm.

The Poly1305 universal hash can be combined with algorithms other than
AES. For example, Poly1305 was used with the stream cipher ChaCha (see
RFC 7539, “ChaCha20 and Poly1305 for IETF Protocols”). There’s no
doubt that Poly1305 will keep being used wherever a fast MAC is needed.

SipHash

Although Poly1305 is fast and secure, it has several downsides. For one, its
polynomial evaluation is difficult to implement efficiently, especially in the
hands of many who are unfamiliar with the associated mathematical notions.
(See examples at hrtps://github.com/floodyberry/poly1305-donna/). Second, on
its own, it’s secure for only one message unless you use the Wegman—Carter
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construction. But in that case, it requires a nonce, and if the nonce is
repeated, the algorithm becomes insecure. Finally, Poly1305 is optimized for
long messages, but it’s overkill if you process only small messages (say, fewer
than 128 bytes). In such cases, SipHash is the solution.

I designed SipHash in 2012 with Dan Bernstein initially to address a
noncryptographic problem: denial-of-service attacks on hash tables. Hash
tables are data structures used to efficiently store elements in programming
languages. Prior to the advent of SipHash, hash tables relied on
noncryptographic keyed hash functions for which collisions were easy to
find, and it was easy to exploit a remote system using a hash table by slowing
it down with a denial-of-service attack. We determined that a PRF would
address this problem and thus set out to design SipHash, a PRF suitable for
hash tables. Because hash tables process mostly short inputs, SipHash is
optimized for short messages. However, SipHash can be used for more than
hash tables: it’s a full-blown PRF and MAC that shines where most inputs
are short.

How SipHash Works

SipHash uses a trick that makes it more secure than basic sponge functions:
instead of XORing message blocks only once before the permutation,
SipHash XORs them before and after the permutation, as shown in Figure
7-5. The 128-bit key of SipHash is seen as two 64-bit words, K; and K,,

XORed to a 256-bit fixed initial state that is seen as four 64-bit words. Next,
the keys are discarded, and computing SipHash boils down to iterating
through a core function called SipRound and then XORing message chunks
to modify the four-word internal state. Finally, SipHash returns a 64-bit tag
by XORing the four-state words together.
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Figure 7-5: SipHash-2-4 processing a 15-byte message (a block, M1, of 8 bytes and a block, Mo,
of 7 bytes, plus 1 byte of padding)

The SipRound function uses a bunch of XORs together with additions
and word rotations to make the function secure. SipRound transforms a state
of four 64-bit words (4, b, ¢, d) by performing the following operations, top
to bottom. The operations on the left and right are independent and can be
carried out in parallel:

a+=>b c+=d
e =13 d<<<=16
bP=a g =l

o HE L <t e

c+=0b a+=d
howee= 17 e 3]
hP=c D=
Gies =5

Here, 2 += b is shorthand for 2 = 2 + b, and b <<< = 13 is shorthand for b = b
<<< 13 (the 64-bit word 4 left-rotated 13 bits.)

These simple operations on 64-bit words are almost all you need to
implement in order to compute SipHash—although you won’t have to
implement it yourself. You can find readily available implementations in
most languages, including C, Go, Java, JavaScript, and Python.

o




We write SipHash-x-y as the SipHash version, meaning it makes x SipRounds
between each message block injection and then y rounds. More rounds require
more operations, which slows down operations but also increases security. The
default version is SipHash-2-4 (simply noted as SipHash), and it has so far
resisted cryptanalysis. However, you may want to be conservative and opt for
SipHash-4-8 instead, which makes twice as many rounds and is therefore twice
as slow.

How Things Can Go Wrong

Like ciphers and unkeyed hash functions, MACs and PRFs that are secure
on paper can be vulnerable to attacks when used in a real setting, against
realistic attackers. Let’s see two examples.

Timing Attacks on MAC Verification

Side-channel attacks target the implementation of a cryptographic algorithm
rather than the algorithm itself. In particular, timing attacks use an
algorithm’s execution time to determine secret information, such as keys,
plaintext, and secret random values. As you might imagine, variable-time
string comparison induces vulnerabilities not only in MAC verification, but
also in many other cryptographic and security functionalities.

MAC:s can be vulnerable to timing attacks when a remote system verifies
tags in a period of time that depends on the tag’s value, thereby allowing an
attacker to determine the correct message tag by trying many incorrect ones
to determine the one that takes the longest amount of time to complete. The
problem occurs when a server compares the correct tag with an incorrect
one by comparing the two strings byte per byte, in order, until the bytes
differ. For example, the Python code in Listing 7-1 compares two strings
byte per byte, in variable time: if the first bytes differ, the function will
return after only one comparison; if the strings x and y are identical, the
function will make n comparisons against the length of the strings.

def compare_mac(x, y, n):
for 1 in range(n):
if x[1] !'= y[i]:
return False
return True

Listing 7-1: Comparison of two n-byte strings, taking variable time



To demonstrate the vulnerability of the verify_mac() function, let’s write a
program that measures the execution time of 100000 calls to verify_mac(), first
with identical 10-byte x and y values and then with x and y values that differ
in their third byte. We should expect the latter comparison to take
noticeably less time than the former because verify_mac() will compare fewer
bytes than the identical x and y would, as shown in Listing 7-2.

from time import time

MAC1 '0123456789%abcdef’
MAC2 '01X3456789%abcdef’
TRIALS = 100000

# each call to verify_mac() will look at all eight bytes
start = time()
for 1 in range(TRIALS):
compare_mac(MAC1, MAC1, len(MAC1))
end = time()
print('%0.5f"' % (end-start))

# each call to verify_mac() will look at three bytes
start = time()
for 1 in range(TRIALS):
compare_mac(MAC1, MAC2, len(MAC1))
end = time()
print('%0.5f"' % (end-start))

Listing 7-2: Measuring timing differences when executing compare_mac() from Listing 7-1

In my test environment, typical execution of the program in Listing 7-2
prints execution times of around 0.215 and 0.095 seconds, respectively. That
difference is significant enough for you to identify what’s happening within
the algorithm. Now move the difference to other offsets in the string, and
you’ll observe different execution times for different offsets. If mac1 is the
correct MAC tag and mac2 is the one tried by the attacker, you can easily
identify the position of the first difference, which is the number of correctly
guessed bytes.

Of course, if execution time doesn’t depend on a secret timing, timing
attacks won’t work, which is why implementers strive to write constant-time
implementations—that is, code that takes exactly the same time to complete
for any secret input value. For example, the C function in Listing 7-3
compares two buffers of size bytes in constant time: the temporary variable
result will be nonzero if and only if there’s a difference somewhere in the two

buffers.




int cmp_const(const void *a, const void *b, const size_t size)
const unsigned char *_a
const unsigned char *_b
unsigned char result = 0;
size_t 1;

(const unsigned char *) a;
(const unsigned char *) b;

for (1 = 0; 1 < size; i++) {
result |= _a[i] ~ _b[i];
}

return result; /* returns 0 if *a and *b are equal, nonzero otherwise */

}

Listing 7-3: Constant-time comparison of two buffers, for safer MAC verification

When Sponges Leak

Permutation-based algorithms like SHA-3 and SipHash are simple, easy to
implement, and come with compact implementations, but they’re fragile in
the face of side-channel attacks that recover a snapshot of the system’s state.
For example, if a process can read the RAM and registers’ values at any time,
or read a core dump of the memory, an attacker can determine the internal
state of SHA-3 in MAC mode, or the internal state of SipHash, and then
compute the reverse of the permutation to recover the initial secret state.
They can then forge tags for any message, breaking the MAC’s security.

Fortunately, this attack will not work against compression function—based
MACs such as HMAC-SHA-256 and keyed BLAKE?2 because the attacker
would need a snapshot of memory at the exact time when the key is used.
The upshot is that if you're in an environment where parts of a process’s
memory may leak, you can use a MAC based on a noninvertible transform
compression function rather than a permutation.

Further Reading

The venerable HMAC deserves more attention than I have space for here,
and even more for the train of thought that led to its wide adoption, and
eventually to its demise when combined with a weak hash function. I
recommend the 1996 paper “Keying Hash Functions for Message
Authentication” by Bellare, Canetti, and Krawczyk, which introduced
HMAC and its cousin NMAC, and the 2006 follow-up paper by Bellare
called “New Proofs for NMAC and HMAC: Security Without Collision-

Resistance,” which proves that HMAC doesn’t need a collision-resistant



hash, but only a hash with a compression function that is a PRF. On the
offensive side, the 2007 paper “Full Key-Recovery Attacks on
HMAC/NMAC-MD4 and NMAC-MD5” by Fouque, Leurent, and Nguyen
shows how to attack HMAC and NMAC when they’re built on top of a
brittle hash function such as MD4 or MD5. (By the way, HMAC-MDS5 and
HMAC-SHA-1 aren’t totally broken, but the risk is high enough.)

The Wegman—Carter MACs are also worth more attention, both for their
practical interest and underlying theory. The seminal papers by Wegman
and Carter are available at htep://cr.yp.to/bib/entries.btml. Other state-of-the-
art designs include UMAC and VMAC, which are among the fastest MACs

on long messages.

One type of MAC not discussed in this chapter is Pelican, which uses the
AES block cipher reduced to four rounds (down from 10 in the full block
cipher) to authenticate chunks of messages within a simplistic construction,
as described in bttps://eprint.iacr.org/2005/088/. Pelican is more of a curiosity,
though, and it’s rarely used in practice.

Last but not least, if you’re interested in finding vulnerabilities in
cryptographic software, look for uses of CBC-MAC, or for weaknesses
caused by HMAC handling keys of arbitrary sizes—taking Hash(K) as the
key rather than K if K is too long, thus making K and Hash(K) equivalent
keys. Or just look for systems than don’t use MAC when they should—a
frequent occurrence.

In Chapter 8, we’ll look at how to combine MACs with ciphers to protect
a message’s authenticity, integrity, #nd confidentiality. We'll also look at
how to do it without MACs, thanks to authenticated ciphers, which are
ciphers that combine the functionality of a basic cipher with that of a MAC
by returning a tag along with each ciphertext.
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8
AUTHENTICATED ENCRYPTION

This chapter is about a type of algorithm that protects not only a message’s
confidentiality but also its authenticity. Recall from Chapter 7 that message
authentication codes (MACs) are algorithms that protect a message’s
authenticity by creating a tag, which is a kind of signature. Like MAC:s, the
authenticated encryption (AE) algorithms we’ll discuss in this chapter
produce an authentication tag, but they also encrypt the message. In other
words, a single AE algorithm offers the features of both a normal cipher and

a MAC.

Combining a cipher and a MAC can achieve varying levels of
authenticated encryption, as you’ll learn throughout this chapter. I’ll review
several possible ways to combine MACs with ciphers, explain which methods
are the most secure, and introduce you to ciphers that produce both a
ciphertext and an authentication tag. We’ll then look at four important
authenticated ciphers: three block cipher—based constructions, with a focus
on the popular Advanced Encryption Standard in Galois Counter Mode
(AES-GCM), and a cipher that uses only a permutation algorithm.

Authenticated Encryption Using MACs

As shown in Figure 8-1, MACs and ciphers can be combined in one of three
ways to both encrypt and authenticate a plaintext: encrypt-and-MAC, MAC-
then-encrypt, and encrypt-then-MAC.
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The three combinations differ in the order in which encryption is applied
and the authentication tag is generated. However, the choice of a specific
MAC or cipher algorithm is unimportant as long as each is secure in its own
right, and the MAC and cipher use distinct keys.

As you can see in Figure 8-1, in the encrypt-and-MAC composition, the
plaintext is encrypted and an authentication tag is generated from the
plaintext directly, such that the two operations (encryption and
authentication) are independent of each other and can therefore be
computed in parallel. In the MAC-then-encrypt scheme, the tag is generated
from the plaintext first, and then the plaintext and MAC are encrypted
together. In contrast, in the case of the encrypt-then-MAC method, the
plaintext is encrypted first, and then the tag is generated from the ciphertext.

All three approaches are about equally resource intensive. Let’s see which
method is likely to be the most secure.

Encrypt-and-MAC

The encrypt-and-MAC approach computes a ciphertext and a MAC tag
separately. Given a plaintext (P), the sender computes a ciphertext C = E(K],
P), where E is an encryption algorithm and C'is the resulting ciphertext. The
authentication tag (7) is calculated from the plaintext as T = MAC(K,, P).
You can compute C and 7 first or in parallel.

Once the ciphertext and authentication tag have been generated, the
sender transmits both to the intended recipient. When the recipient receives
C and 7, they decrypt C to obtain the plaintext P by computing P = D(K|,



C). Next, they compute MAC(K,, P) using the decrypted plaintext and

compare the result to the 7 received. This verification will fail if either C or
T was corrupted, and the message will be deemed invalid.

At least in theory, encrypt-and-MAC is the least secure MAC and cipher
composition because even a secure MAC could leak information on P, which
would make P easier to recover. Because the goal of using MACs is simply to
make tags unforgeable, and because tags aren’t necessarily random looking,
the authentication tag (7) of a plaintext (P) could still leak information even

though the MAC is considered secure! (Of course, if the MAC is a

pseudorandom function, the tag won’t leak anything on P.)

Still, despite its relative weakness, encrypt-and-MAC continues to be
supported by many systems, including the secure transport layer protocol
SSH, wherein each encrypted packet C is followed by the tag 7'= MAC(K, N
| | P) sent in the unencrypted plaintext packet P. N in this equation is a 32-
bit sequence number that is incremented for each sent packet, in order to
help ensure that the received packets are processed in the right order. In
practice, encrypt-and-MAC has proven good enough for use with SSH,
thanks to the use of strong MAC algorithms like HMAC-SHA-256 that

don’t leak information on P.

MAC-then-Encrypt

The MAC-then-encrypt composition protects a message, P, by first
computing the authentication tag T = MAC(K,, P). Next, it creates the
ciphertext by encrypting the plaintext and tag together, according to C =
EK;, P11 T).

Once these steps have been completed, the sender transmits only C, which
contains both the encrypted plaintext and tag. Upon receipt, the recipient
decrypts C by computing P || T = D(K], C) to obtain the plaintext and tag

T. Next, the recipient verifies the received tag T by computing a tag directly
from the plaintext according to MAC(K,, P) in order to confirm that the
computed tag is equal to the tag T.

As with encrypt-and-MAC, when MAC-then-encrypt is used, the
recipient must decrypt C before they can determine whether they are
receiving corrupted packets—a process that exposes potentially corrupted
plaintexts to the receiver. Nevertheless, MAC-then-encrypt is more secure
than encrypt-and-MAC because it hides the plaintext’s authentication tag,



thus preventing the tag from leaking information on the plaintext.

MAC-then-encrypt has been used in the TLS protocol for years, but TLS

1.3 replaced MAC-then-encrypt with authenticated ciphers (see Chapter 13
for more on TLS 1.3).

Encrypt-then-MAC

The encrypt-then-MAC composition sends two values to the recipient: the
ciphertext produced by C = E(K;, P) and a tag based on the ciphertext, T =

MAC(K,, C). The receiver computes the tag using MAC(Kj, C) and verifies

that it equals the 7 received. If the values are equal, the plaintext is
computed as P = D(K;, C); if they are not equal, the plaintext is discarded.

One advantage with this method is that the receiver only needs to
compute a MAC in order to detect corrupt messages, meaning that there is
no need to decrypt a corrupt ciphertext. Another advantage is that attackers
can’t send pairs of C and 7T to the receiver to decrypt unless they have broken
the MAC, which makes it harder for attackers to transmit malicious data to
the recipient.

This combination of features makes encrypt-then-MAC stronger than the
encrypt-and-MAC and MAC-then-encrypt approaches. This is one reason
why the widely used IPSec secure communications protocol suite uses it to
protect packets (for example, within VPN tunnels).

But then why don’t SSH and TLS use encrypt-then-MAC? The simple
answer is that when SSH and TLS were created, other approaches appeared
adequate—not because theoretical weaknesses didn’t exist but because
theoretical weaknesses don’t necessarily become actual vulnerabilities.

Authenticated Ciphers

Authenticated ciphers are an alternative to the cipher and MAC combinations.
They are like normal ciphers except that they return an authentication tag
together with the ciphertext.

The authenticated cipher encryption is represented as AE(K, P) = (C, T).
The term AE stands for authenticated encryption, which as you can see from
this equation is based on a key (K) and a plaintext (P) and returns a ciphertext
(C) and a generated authentication tag pair (7). In other words, a single
authenticated cipher algorithm does the same job as a cipher and MAC



combination, making it simpler, faster, and often more secure.

Authenticated cipher decryption is represented by AD(K, C, T) = P. Here,
AD stands for authenticated decryption, which returns a plainte (P) given a
ciphertext (C), tag (7), and key (K). If either or both C and T are invalid, AD
will return an error to prevent the recipient from processing a plaintext that
may have been forged. By the same token, if AD returns a plaintext, you can
be sure that it has been encrypted by someone or something that knows the
secret key.

The basic security requirements of an authenticated cipher are simple: its
authentication should be as strong as a MAC’s, meaning that it should be
impossible to forge a ciphertext and tag pair (C, 7T) that the decryption
function AD will accept and decrypt.

As far as confidentiality is concerned, an authenticated cipher is
fundamentally stronger than a basic cipher because systems holding the
secret key will only decrypt a ciphertext if the authentication tag is valid. If
the tag is invalid, the plaintext will be discarded. This characteristic prevents
attackers from performing chosen-ciphertext queries, an attack where they
create ciphertexts and ask for the corresponding plaintext.

Authenticated Encryption with Associated Data

Cryptographers define associated data as any data processed by an
authenticated cipher such that the data is authenticated (thanks to the
authentication tag) but not encrypted. Indeed, by default, all plaintext data
fed to an authenticated cipher is encrypted #nd authenticated.

But what if you simply want to authenticate all of a message, including its
unencrypted parts, but not encrypt the entire message? That is, you want to
authenticate and transmit data in addition to an encrypted message. For
example, if a cipher processes a network packet composed of a header
followed by a payload, you might choose to encrypt the payload to hide the
actual data transmitted, but not encrypt the header since it contains
information required to deliver the packet to its final recipient. At the same
time, you might still like to authenticate the header’s data to make sure that
it is received from the expected sender.

In order to accomplish these goals, cryptographers have created the notion
of authenticated encryption with associated data (AEAD). An AEAD
algorithm allows you to attach cleartext data to a ciphertext in such a way



that if the cleartext data is corrupted, the authentication tag will not validate
and the ciphertext will not be decrypted.

We can write an AEAD operation as AEAD(K, P, A) = (C, A, T). Given a
key (K), plaintext (P), and associated data (4), AEAD returns the ciphertext,
the unencrypted associated data A, and an authentication tag. AEAD leaves
the unencrypted associated data unchanged, and the ciphertext is the
encryption of plaintext. The authentication tag depends on both P and A,
and will only be verified as valid if neither C nor A4 has been modified.

Because the authenticated tag depends on A, decryption with associated
data is computed by ADAD(K, C, A, T) = (P, A). Decryption requires the
key, ciphertext, associated data, and tag in order to compute the plaintext
and associated data, and it will fail if either C or 4 has been corrupted.

One thing to note when using AEAD is that you can leave A or P empty.
If the associated data A is empty, AEAD becomes a normal authenticated
cipher; if P is empty, it’s just a MAC.

As of this writing, AEAD is the current norm for authenticated encryption.
Because nearly all authenticated ciphers in use today support associated data,
when referring to authenticated ciphers throughout this book, I am referring to
AEAD unless stated otherwise. When discussing AEAD operations of encryption
and decryption, Ull vefer to them as AE and AD, respectively.

Avoiding Predictability with Nonces

Recall from Chapter 1 that in order to be secure, encryption schemes must
be unpredictable and return different ciphertexts when called repeatedly to
encrypt the same plaintext—otherwise, an attacker can determine whether
the same plaintext was encrypted twice. In order to be unpredictable, block
ciphers and stream ciphers feed the cipher an extra parameter: the initial
value (IV) or nonce—a number that can be used only once. Authenticated
ciphers use the same trick. Thus, authenticated encryption can be expressed
as AE(K, P, A, N), where N is a nonce. It’s up to the encryption operation to
pick a nonce that has never been used before with the same key.

As with block and stream ciphers, decryption with an authenticated cipher
requires the nonce used for encryption in order to perform correctly. We



can thus express decryption as AD(K, C, A, T, N) = (P, A), where N is the

nonce used to create C and 7.

What Makes a Good Authenticated Cipher?

Researchers have been struggling since the early 2000s to define what makes
a good authenticated cipher, and as I write this, the answer is still elusive.
Because of AEAD’s many inputs that play different roles, it’s harder to
define a notion of security than it is for basic ciphers that only encrypt a
message. Nevertheless, in this section, I'll summarize the most important
criteria to consider when evaluating the security, performance, and
functionality of an authenticated cipher.

Security Criteria

The most important criteria used to measure the strength of an
authenticated cipher are its ability to protect the confidentiality of data (that
is, the secrecy of the plaintext) and the authenticity and integrity of the
communication (as with the MAC’s ability to detect corrupted messages). An
authenticated cipher must compete in both leagues: its confidentiality must
be as strong as that of the strongest cipher, and its authenticity as strong as
that of the best MAC. In other words, if you remove the authentication part
in an AEAD, you should get a secure cipher, and if you remove the
encryption part, you should get a strong MAC.

Another measure of the strength of an authenticated cipher’s security is
based on something a bit more subtle—namely, its fragility when faced with
repeated nonces. For example, if a nonce is reused, can an attacker decrypt
ciphertexts or learn the difference between plaintexts?

Researchers call this notion of robustness mzisuse resistance, and have
designed misuse-resistant authenticated ciphers to weigh the impact of a
repeated nonce and attempt to determine whether confidentiality,
authenticity, or both would be compromised in the face of such an attack, as
well as what information about the encrypted data would likely be leaked.

Performance Criteria

As with every cryptographic algorithm, the throughput of an authenticated
cipher can be measured in bits processed per second. This speed depends on
the number of operations performed by the cipher’s algorithm and on the



extra cost of the authentication functionality. As you might imagine, the
extra security features of authenticated ciphers come with a performance hit.
However, the measure of a cipher’s performance isn’t just about pure speed.
It’s also about parallelizability, structure, and whether the cipher is
streamable. Let’s examine these notions more closely.

A cipher’s parallelizability is a measure of its ability to process multiple data
blocks simultaneously without waiting for the previous block’s processing to
complete. Block cipher-based designs can be easily parallelizable when each
block can be processed independently of the other blocks. For example, the
CTR block cipher mode discussed in Chapter 4 is parallelizable, whereas the

CBC encryption mode is not, because blocks are chained.

The internal structure of an authenticated cipher is another important
performance criteria. There are two main types of structure: one-layer and
two-layer. In a two-layer structure (for example, in the widely used AES-
GCM), one algorithm processes the plaintext and then a second algorithm
processes the result. Typically, the first layer is the encryption layer and the
second is the authentication layer. But as you might expect, a two-layer
structure complicates implementation and tends to slow down computations.

An authenticated cipher is streamable (also called an online cipher) when it
can process a message block-by-block and discard any already-processed
blocks. In contrast, nonstreamable ciphers must store the entire message,
typically because they need to make two consecutive passes over the data:
one from the start to the end, and the other from the end to the start of the
data obtained from the first pass.

Due to potentially high memory requirements, some applications won’t
work with nonstreamable ciphers. For example, a router could receive an
encrypted block of data, decrypt it, and then return the plaintext block
before moving on to decrypt the subsequent block of the message, though
the recipient of the decrypted message would still have to verify the
authentication tag sent at the end of the decrypted data stream.

Functional Criteria

Functional criteria are the features of a cipher or its implementation that
don’t directly relate to either security or performance. For example, some
authenticated ciphers only allow associated data to precede the data to be
encrypted (because they need access to it in order to start encryption).



Others require associated data to follow the data to be encrypted or support
the inclusion of associated data anywhere—even between chunks of
plaintext. This last case is the best, because it enables users to protect their
data in any possible situation, but it’s also the hardest to design securely: as
always, more features often bring more complexity—and more potential
vulnerabilities.

Another piece of functional criteria to consider relates to whether you can
use the same core algorithm for both encryption and decryption. For
example, many authenticated ciphers are based on the AES block cipher,
which specifies the use of two similar algorithms for encrypting and
decrypting a block. As discussed in Chapter 4, the CBC block cipher mode
requires both algorithms, but the CTR mode requires only the encryption
algorithm. Likewise, authenticated ciphers may not need both algorithms.
Although the extra cost of implementing both encryption and decryption
algorithms won’t impact most software, it’s often noticeable on low-cost
dedicated hardware, where implementation cost is measured in terms of
logic gates, or the silicon area occupied by the cryptography.

AES-GCM: The Authenticated Cipher Standard

AES-GCM is the most widely used authenticated cipher. AES-GCM is, of
course, based on the AES algorithm, and the Galois counter mode (GCM)
of operation is essentially a tweak of the CTR mode that incorporates a
small and efficient component to compute an authentication tag. As I write
this, AES-GCM is the only authenticated cipher that is a NIST standard (SP
800-38D). AES-GCM is also part of NSA’s Suite B and of the Internet
Engineering Task Force (IETF) for the secure network protocols IPSec,
SSH, and TLS 1.2.

Although GCM works with any block cipher, youw’ll probably only see it used
with AES. Some people don’t want to use AES because it’s American, but they
won’t use GCM either, for the same reason. Therefore, GCM is rarely paired
with other ciphers.

GCM Internals: CTR and GHASH
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Figure 8-2: The AES-GCM mode, applied to one associated data block, A1, and two plaintext
blocks, P1 and Po. The circled multiplication sign represents polynomial multiplication by H, the
authentication key derived from K.

Figure 8-2 shows how AES-GCM works: AES instances parameterized by a
secret key (K) transform a block composed of the nonce (N) concatenated
with a counter (starting here at 1, then incremented to 2, 3, and so on) and
then XOR the result with a plaintext block to obtain a ciphertext block. So
far, that’s nothing new compared to the CTR mode.

Next, the ciphertext blocks are mixed using a combination of XORs and
multiplications (as you’ll see next). You can see AES-GCM as doing 1) an
encryption in CTR mode and 2) a MAC over the ciphertext blocks.
Therefore, AES-GCM is essentially an encrypt-then-MAC construction,
where AES-CTR encrypts using a 128-bit key (K) and a 96-bit nonce (N),
with the minor difference that the counter starts from 1, not 0, as in normal
CTR mode (which doesn’t matter, as far as security is concerned).

To authenticate the ciphertext, GCM uses a Wegman—Carter MAC (see
Chapter 7) to authenticate the ciphertext, which XORs the value AES(K, N
| I 0) with the output of a universal hash function called GHASH. In Figure
8-2, GHASH corresponds to the series of operations “®y;” followed by the

XOR with len(4) Il len(C), or the bit length of A (the associated data)



followed by the bit length of C (the ciphertext).

We can thus express the authentication tag’s value as T'= GHASH(H, C)
® AES(K, N Il 0), where C is the ciphertext and H is the hash key, or
authentication key. This key is determined as H = AES(K, 0), which is the
encryption of the block equal to a sequence of null bytes (this step does not
appear in Figure 8-2, for clarity).

In GCM, GHASH doesn’t use K directly in order to ensure that if GHASH’s
key is compromised, the master key K remains secret. Given K, you can get H by

computing AES(K, 0), but you can’t recover K from that value since K acts
here as AES’s key.

As Figure 8-2 shows, GHASH wuses polynomial notation to multiply each
ciphertext block with the authentication key H. This use of polynomial
multiplication makes GHASH fast in hardware as well as in software, thanks
to a special polynomial multiplication instruction available in many common
microprocessors (cLMuL, for carry-less multiplication).

Alas, GHASH is far from ideal. For one thing, its speed is suboptimal.
Even when the cimuL instruction is used, the AES-CTR layer that encrypts
the plaintext remains faster than the GHASH MAC. Second, GHASH is
painful to implement correctly. In fact, even the experienced developers of
the OpenSSL project, by far the most-used cryptographic piece of software
in the world, got AES-GCM’s GHASH wrong. One commit had a bug in a
function called gem_ghash_cimutl that allowed attackers to forge valid MACs for
the AES-GCM. (Fortunately, the error was spotted by Intel engineers before
the bug entered the next OpenSSL release.)

( )

POLYNOMIAL MULTIPLICATION
While clearly more complicated for us than classic integer
arithmetic, polynomial multiplication 1is simpler for
computers because there are no carries. For example, say we

want to compute the product of the polynomials (1 + X + X2)
and (X + X?). We first multiply the two polynomials (1 + X +




X?) and (X + X?) as though we were doing normal polynomial

multiplication, thus giving us the following (the two terms X°
cancel each other out):

A+X+X)0X+X)=X+X+X+X*+X+X°=X+X2+X*+X°

We now apply modulo reduction, reducing X + X% + X% +
X° modulo 1 + X3 +X* to give us X2, because X + X2 + X* +
X canbe written as X + X2 + X1+ X0 =X ® (1 + X° + X +

X2. In more general terms, A + BC modulo B is equal to A, by
definition of modular reduction.

. J

GCM Security

AES-GCM’s biggest weakness is its fragility in the face of nonce repetition.
If the same nonce N is used twice in an AES-GCM implementation, an
attacker can get the authentication key H and use it to forge tags for any
ciphertext, associated data, or combination thereof.

A look at the basic algebra behind AES-GCM'’s computations (as shown in

Figure 8-2) will help make this fragility clear. Specifically, a tag (7) is
computed as T'= GHASH(H, 4, C) ® AES(K, N || 0), where GHASH is a

universal hash function with linearly related inputs and outputs.

Now what happens if you get two tags, T and 75, computed with the
same nonce N ? Right, the AES part will vanish. If we have two tags, T} =
GHASH(H, A, C;) ® AES(K, N |1 0) and T, = GHASH(H, 4,, C)) &
AES(K, N || 0), then XORing them together gives the following:

GHASH(H, A,, C,)® AES(K, N || 0)® GHASH(H, A,, C,)® AES(K, N || 0)
= GHASH(H, A, C,)® GHASH(H, A,, C,)® (AES(K, N || 0) ® AES(K, N || 0))
= GHASH (11, A,, C,)® GHASH(H, A,, C,)

If the same nonce is used twice, an attacker can thus recover the value
GHASH(H, A4, C;) ® GHASH(H, A,, C,) for some known A, C, A5, and
(5. The linearity of GHASH then allows an attacker to easily determine H.



(It would have been worse if GHASH had used the same key K as the
encryption part, but because H = AES(K, 0), there’s no way to find K from
H.)

As recently as 2016, researchers scanned the internet for instances of AES-
GCM exposed through HT'TPS servers, in search of systems with repeating
nonces (see https://eprint.iacr.org/2016/475/). They found 184 servers with
repeating nonces, including 23 that always used the all-zero string as a
nonce.

GCM Efficiency

One advantage of GCM mode is that both GCM encryption and decryption
are parallelizable, allowing you to encrypt or decrypt different plaintext
blocks independently. However, the AES-GCM MAC computation isn’t
parallelizable, because it must be computed from the beginning to the end of
the ciphertext once GHASH has processed any associated data. This lack of
parallelizability means that any system that receives the plaintext first and
then the associated data will have to wait until all associated data is read and
hashed before hashing the first ciphertext block.

Nevertheless, GCM is streamable: since the computations in its two layers
can be pipelined, there’s no need to store all ciphertext blocks before
computing GHASH because GHASH will process each block as it’s
encrypted. In other words, P; is encrypted to C}, then GHASH processes C|

while P, is encrypted to C5, then P; and C; are no longer needed, and so on.

OCB: An Authenticated Cipher Faster than GCM

The acronym OCB stands for offset codebook (though its designer, Phil
Rogaway, prefers to simply call it OCB). First developed in 2001, OCB
predates GCM, and like GCM it produces an authenticated cipher from a
block cipher, though it does so faster and more simply. Then why hasn’t
OCB seen wider adoption? Unfortunately, until 2013, all uses of OCB
required a license from the inventor. Fortunately, as I write this, Rogaway
grants free licenses for nonmilitary software implementations (see
http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm). Therefore, although OCB
is not yet a formal standard, perhaps we will begin to see wider adoption.

Unlike GCM, OCB blends encryption and authentication into one
processing layer that uses only one key. There’s no separate authentication
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component, so OCB gets you authentication mostly for free and performs
almost as many block cipher calls as a non-authenticated cipher. Actually,
OCB is almost as simple as the ECB mode (see Chapter 4), except that it’s

secure.

OCB Internals

Figure 8-3 shows how OCB works: OCB encrypts each plaintext block P to a
ciphertext block C = E(K, P @ O) & O, where E is a block cipher encryption
function. Here, O (called the offset) is a value that depends on the key and the
nonce incremented for each new block processed.

To produce the authentication tag, OCB first XORs the plaintext blocks
together to compute S=P; ® P, ® P; ® ... (that is, the XOR of all plaintext

blocks). The authentication tag is then T = E(K, S ® O’), where O is an
offset value computed from the offset of the last plaintext block processed.
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Figure 8-3: The OCB encrypt/on process when run on two plaintext blocks, with no associated data

Like AES-GCM, OCB also supports associated data as a series of blocks,
Ay, A, and so on. When an OCB encrypted message contains associated

data, the authentication tag is calculated according to the formula
T=EK,S®O0)®EK A ®0)®EK,A S0, ...

where OCB specifies offset values that are different from those used to
encrypt P.

Unlike GCM and encrypt-then-MAC, which create an authentication tag
by combining ciphertext, OCB calculates the authentication tag by
combining plaintext data. There’s nothing wrong with this approach, and

OCB is backed by solid security proofs.



For more on how to implement OCB corrvectly, see either RFC 7253 or the 2011
paper “The Software Performance of Authenticated-Encryption Modes” by
Krovetz and Rogaway, which covers the latest and best version of OCB, OCB3.
For  further  details  on  OCB, see the OCB FAQ at

http://web.cs.ucdavis.edu/~rogaway/ocb/ocb-faq.htm.

OCB Security

OCB is a bit less fragile than GCM against repeated nonces. For example, if
a nonce is used twice, an attacker that sees the two ciphertexts will notice
that, say, the third plaintext block of the first message is identical to the third
plaintext block of the second message. With GCM, attackers can find not
only duplicates but also XOR differences between blocks at the same
position. The impact of repeated nonces is therefore worse with GCM than

it is with OCB.

As with GCM, repeated nonces can break the authenticity of OCB,
though less effectively. For example, an attacker could combine blocks from
two messages authenticated with OCB to create another encrypted message
with the same checksum and tag as one of the original two messages, but the
attacker would not be able to recover a secret key as with GCM.

OCB Efficiency

OCB and GCM are about equally fast. Like GCM, OCB is parallelizable
and streamable. In terms of raw efficiency, GCM and OCB will make about
as many calls to the underlying block cipher (usually AES), but OCB is
slightly more efficient than GCM because it simply XORs the plaintext
rather than performing something like the relatively expensive GHASH
computation. (In earlier generations of Intel microprocessors, AES-GCM
used to be more than three times slower than AES-OCB because AES and
GHASH instructions had to compete for CPU resources and couldn’t be
run in parallel.)

One important difference between OCB and GCM implementations is
that OCB needs both the block cipher’s encryption and decryption functions
in order to encrypt and decrypt, which increases the cost of hardware
implementations when only limited silicon is available for crypto


http://web.cs.ucdavis.edu/~rogaway/ocb/ocb-faq.htm

components. In contrast, GCM uses only the encryption function for both
encryption and decryption.

SIV: The Safest Authenticated Cipher?

Synthetic 1V, also known as SIV, is an authenticated cipher mode typically
used with AES. Unlike GCM and OCB, SIV is secure even if you use the
same nonce twice: if an attacker gets two ciphertexts encrypted using the
same nonce, they’ll only be able to learn whether the same plaintext was
encrypted twice. Unlike with messages encrypted with GCM or OCB, the
attacker would be unable to tell whether the first block of the two messages
is the same because the nonce used to encrypt is first computed as a
combination of the given nonce and the plaintext.

The SIV construction specification is more general than that of GCM.
Instead of specifying detailed internals as with GCM’s GHASH, SIV simply
tells you how to combine a cipher (E) and a pseudorandom function (PRF)
to get an authenticated cipher. Specifically, you compute the tag T =
PRF(K;, N || P) and then compute the ciphertext C = E(K,, T, P), where T

acts as the nonce of E. Thus, SIV needs two keys (K; and K,) and a nonce

).

The major problem with SIV is that it’s not streamable: after computing
T, it must keep the entire plaintext P in memory. In other words, in order to
encrypt a 100GB plaintext with SIV, you must first store the 100GB of
plaintext so that SIV encryption can read it.

The document RFC 5297, based on the 2006 paper “Deterministic
Authenticated-Encryption” by Rogaway and Shrimpton, specifies SIV as
using CMAC-AES (a MAC construction using AES) as a PRF and AES-
CTR as a cipher. In 2015, a more efficient version of SIV was proposed,
called GCM-SIV, that combines GCM’s fast GHASH function and SIV’s
mode and is nearly as fast as GCM. Like the original SIV, however, GCM-
SIV isn’t streamable. (For more information, see
bttps://eprint.iacr.org/2015/102/.)

Permutation-Based AEAD

Now for a totally different approach to building an authenticated cipher:
instead of building a mode of operation around a block cipher like AES,
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we’ll look at a cipher that builds a mode around a permutation. A
permutation simply transforms an input to an output of the same size,
reversibly, without using a key, that’s the simplest component imaginable.
Better still, the resulting AEAD is fast, provably secure, and more resistant

to nonce reuse than GCM and OCB.

Figure 8-4 shows how a permutation-based AEAD works: from some fixed
initial state H, you XOR the key K followed by the nonce N to the internal
state, to obtain a new value of the internal state that is the same size as the
original. You then transform the new state with P and get another new value
of the state. Now you XOR the first plaintext block P; to the current state
and take the resulting value as the first ciphertext block C}, where P, and C;
are equal in size but smaller than the state.

To encrypt a second block, you transform the state with P, XOR the next
plaintext block P, to the current state, and take the resulting value as C,. You
then iterate over all plaintext blocks and, following the last call to P, take bits
from the internal state as the authentication tag 7, as shown at the right of
Figure 8-4.
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Figure 8-4: Permutation-based authenticated cipher

The mode shown in Figure §-4 can be adapted to support associated data, but the
process is a bit more complicated, so we’ll skip its description.

Designing permutation-based authenticated ciphers has certain
requirements in order to ensure security. For one thing, note that you only
XOR input values to a part of the state: the larger this part, the more control
a successful attacker has on the internal state, and thus the lower the cipher’s
security. Indeed, all security relies on the secrecy of the internal state.

Also, blocks must be padded properly with extra bits, in a way that ensures



that any two different messages will yield different results. As a
counterexample, if the last plaintext block is shorter than a complete block, it
should not just be padded with zeroes; otherwise, a plaintext block of, say,
two bytes (0000) would result in a complete plaintext block (0000 ... 0000),
as would a block of three bytes (000000). As a result, you'd get the same tag
for both messages, although they differ in size.

What if a nonce is reused in such a permutation-based cipher? The good
news is that the impact isn’t as bad as with GCM or OCB—the strength of
the authentication tag won’t be compromised. If a nonce is repeated, a
successful attacker would only be able to learn whether the two encrypted
messages begin with the same value, as well as the length of this common
value, or prefix. For example, although encrypting the two six-block
messages ABCXYZ and ABCDYZ (each letter symbolizing a block here) with
the same nonce might yield the two ciphertexts 7KLTUV and 7KLMNO,
which have identical prefixes, attackers would not be able to learn that the
two plaintexts shared the same final two blocks (YZ).

In terms of performance, permutation-based ciphers offer the benefits of a
single layer of operations, streamable processing, and the use of a single core
algorithm for encryption and decryption. However, they are not
parallelizable like GCM or OCB because new calls to P need to wait for the
previous call to complete.

If you’re tempted to pick your favorite permutation and make up your own
authenticated cipber, don’t. You're likely to get the details wrong and end up
with an insecure cipher. Read the specifications written by experienced
cryptographers for algorithms such as Keyak (an algorithm derived from Keccak)
and NORX (designed by Philipp Jovanovic, Samuel Neves, and myself), and

you’ll see that permutation-based ciphers are way more complex than they may

first appear.

How Things Can Go Wrong

Authenticated ciphers have a larger attack surface than hash functions or
block ciphers because they aim to achieve both confidentiality and
authenticity. They take several different input values, and must remain



secure regardless of the input—whether that contains only associated data
and no encrypted data, extremely large plaintexts, or different key sizes.
They must also be secure for all nonce values against attackers who collect
numerous message/tag pairs and, to some extent, against accidental
repetition of nonces.

That’s a lot to ask, and as you’ll see next, even AES-GCM has several
imperfections.

AES-GCM and Weak Hash Keys

One of AES-GCM’s weaknesses is found in its authentication algorithm
GHASH: certain values of the hash key H greatly simplify attacks against
GCM'’s authentication mechanism. Specifically, if the value H belongs to
some specific, mathematically defined subgroups of all 128-bit strings,
attackers might be able to guess a valid authentication tag for some message
simply by shuffling the blocks of a previous message.

In order to understand this weakness, let’s look at how GHASH works.

GHASH Internals

As you saw in Figure 8-2, GHASH starts with a 128-bit value, H, initially set
to AES(K, 0), and then repeatedly computes

Xi=X;-1®C)®H

starting from X, = 0 and processing ciphertext blocks Cy, C,, and so on. The
final X is returned by GHASH to compute the final tag.

Now say for the sake of simplicity that all C; values are equal to 1, so that
for any 7 we have this:

C.®=1®H=H
Next, from the GHASH equation
Xi=X;-1®C)®H
we derive



substituting X, with 0 and C; with 1, to yield the following:
0®1)=1
Thanks to the distributive property of ® over ®, we substitute X with H
and C, with 1 and then compute the next value X, as

X=X, ®X,)® H=(H®1)®H=H>® H

where H? is H squared, or H ® H.
Now we derive X3 by substituting X, for its derivation, and obtain the
following:

X;=X,®C;)®H=(H*’®H® 1)@ H=H®@H*’® H

Next, we derive X, tobe X, =H*® H?> ® H? ® H, and so on, and
eventually the last X is this:

X,=H'eH 'eH" ’®..0H*®H

Remember that we set all blocks C; equal to 1. If instead those values were
arbitrary values, we would end up with the following:

X,=CioH'®C,dH" '@ C;H" ?’®...6C,_H*’®C,®H

GHASH then would XOR the message’s length to this last X, multiply

the result by H, and then XOR this value with AES(K, N || 0) to create the
final authentication tag, 7.

Where Things Break

What can go wrong from here? Let’s look first at the two simplest cases:

o If H=0, then X, = 0 regardless of the C; values, and thus regardless of
the message. That is, all messages will have the same authentication tag
if His 0.

o If H = 1, then the tag is just an XOR of the ciphertext blocks, and



reordering the ciphertext blocks will give the same authentication tag.

2128

Of course, 0 and 1 are only two values of possible values of H, so

there is only a 2/2128 = 1/2127 chance of these occurring. But there are other
weak values as well—namely, all values of H that belong to a short cycle when

raised to ith  powers. For example, the wvalue H =
10d04d25193556e69158ce2£8d035a4 belongs to a cycle of length five, as it

satisfies H ° = H, and therefore H® = H for any e that is a multiple of five (the
very definition of cycle with respect to fifth powers). Consequently, in the
preceding expression of the final GHASH value X),, swapping the blocks C,

(multiplied to H) and the block C, _ , (multiplied to H °) will leave the

authentication tag unchanged, which amounts to a forgery. An attacker may
exploit this property to construct a new message and its valid tag without
knowing the key, which should be impossible for a secure authenticated
cipher.

The preceding example is based on a cycle of length five, but there are
many cycles of greater length and therefore many values of H that are
weaker than they should be. The upshot is that, in the unlikely case that H
belongs to a short cycle of values and attackers can forge as many
authentication tags as they want, unless they know H or K, they cannot
determine H’s cycle length. So although this vulnerability can’t be exploited,
it could have been avoided by more carefully choosing the polynomial used
for modulo reductions.

For further details on this attack, read “Cycling Attacks on GCM, GHASH
and Other Polynomial MACs and Hashes” by Markku-fubani O. Saarinen,
available at https://eprint.iacr.org/2011/202/.

AES-GCM and Small Tags

In practice, AES-GCM usually returns 128-bit tags, but it can produce tags
of any length. Unfortunately, when shorter tags are used, the probability of
forgery increases significantly.

When a 128-bit tag is used, an attacker who attempts a forgery should
succeed with a probability of 1/21?8 because there are 2'%% possible 128-bit
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tags. (Generally, with an #-bit tag, the probability of success should be 1/27,
where 2” is the number of possible values of an #-bit tag.) But when shorter
tags are used, the probability of forgery is much higher than 1/2” due to
weaknesses in the structure of GCM that are beyond the scope of this
discussion. For example, a 32-bit tag will allow an attacker who knows the
authentication tag of some 2MB message to succeed with a chance of 1/21

instead of 1/232.

Generally, with z-bit tags, the probability of forgery isn’t 1/2” but rather
2m/2" where 2™ is the number of blocks of the longest message for which a
successful attacker observed the tag. For example, if you use 48-bit tags and
process messages of 4GB (or 228 blocks of 16 bytes each), the probability of a
forgery will be 228/2%8 = 1/229 or about one chance in a million. That’s a
relatively high chance as far as cryptography is concerned. (For more
information on this attack, see the 2005 paper “Authentication Weaknesses

in GCM” by Niels Ferguson.)

Further Reading

To learn more about authenticated ciphers, visit the home page of CAESAR,
the Competition for Authenticated Encryption: Security, Applicability, and
Robustness (http://competitions.cr.yp.to/caesar.btml). Begun in 2012, CAESAR
is a crypto competition in the style of the AES and SHA-3 competitions,
though it isn’t organized by NIST.

The CAESAR competition has attracted an impressive number of
innovative designs: from OCB-like modes to permutation-based modes, as
well as new core algorithms. Examples include the previously mentioned
NORX and Keyak permutation-based authenticated ciphers; AEZ (as in
AEasy), which is built on a nonstreamable two-layer mode that makes it
misuse resistant; AEGIS, a beautifully simple authenticated cipher that
leverages AES’s round function.

In this chapter, I've focused on GCM, but a handful of other modes are
used in real applications as well. Specifically, the counter with CBC-MAC
(CCM) and EAX modes competed with GCM for standardization in the
early 2000s, and although GCM was selected, the two competitors are used
in a few applications. For example, CCM is used in the WPA2 Wi-Fi
encryption protocol. You may want to read these ciphers’ specifications and
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review their relative security and performance merits.

This concludes our discussion of symmetric-key cryptography! You've
seen block ciphers, stream ciphers, (keyed) hash functions, and now
authenticated ciphers—or all the main cryptography components that work
with a symmetric key, or no key at all. Before we move to asymmetric
cryptography, Chapter 9 will focus more on computer science and math, to
provide background for asymmetric schemes such as RSA (Chapter 10) and
Diffie-Hellman (Chapter 11).



9
HARD PROBLEMS

Hard computational problems are the cornerstone of modern cryptography.
They’re problems that are simple to describe yet practically impossible to
solve. These are problems for which even the best algorithm wouldn’t find a
solution before the sun burns out.

In the 1970s, the rigorous study of hard problems gave rise to a new field
of science called computational complexity theory, which would dramatically
impact cryptography and many other fields, including economics, physics,
and biology. In this chapter, I'll give you the conceptual tools from
complexity theory necessary to understand the foundations of cryptographic
security, and I’ll introduce the hard problems behind public-key schemes
such as RSA encryption and Diffie-Hellman key agreement. We’ll touch on
some deep concepts, but I'll minimize the technical details and only scratch
the surface. Still, I hope you’ll see the beauty in the way cryptography
leverages computational complexity theory to maximize security.

Computational Hardness

A computational problem is a question that can be answered by doing
enough computation, for example, “Is 2017 a prime number?” or “How
many 7 letters are there in incomprebensibilities?” Computational hardness is the
property of computational problems for which there is no algorithm that will
run in a reasonable amount of time. Such problems are also called intractable
problems and are often practically impossible to solve.

Surprisingly, computational hardness is independent of the type of
computing device used, be it a general-purpose CPU, an integrated circuit,
or a mechanical Turing machine. Indeed, one of the first findings of
computational complexity theory is that all computing models are



equivalent. If a problem can be solved efficiently with one computing device,
it can be solved efficiently on any other device by porting the algorithm to
the other device’s language—an exception is quantum computers, but these
do not exist (yet). The upshot is that we won’t need to specify the underlying
computing device or hardware when discussing computational hardness;
instead, we’ll just discuss algorithms.

To evaluate hardness, we’ll first find a way to measure the complexity of
an algorithm, or its running time. We’ll then categorize running times as
hard or easy.

Measuring Running Time

Most developers are familiar with computational complexity, or the
approximate number of operations done by an algorithm as a function of its
input size. The size is counted in bits or in the number of elements taken as
input. For example, take the algorithm shown in Listing 9-1, written in
pseudocode. It searches for a value, x, within an array of 7 elements and then
returns its index position.

search(x, array, n):
for 1 from 1 to n {
if (array[i] == x) {
return i;
}
}

return 0;

}

Listing 9-1: A simple search algorithm, written in pseudocode, of complexity linear with respect to
the array length n. The algorithm returns the index where the value x is found in [1, n], or O if x
isn’t found in the array.

In this algorithm, we use a for loop to find a specific value, x, by iterating
through an array. On each iteration, we assign the variable / a number
starting with 1. Then we check whether the value of position 7 in array is
equal to the value of w. If it is, we return the position i. Otherwise, we
increment 7 and try the next position until we reach 7, the length of the
array, at which point we return 0.

For this kind of algorithm, we count complexity as the number of
iterations of the for loop: 1 in the best case (if x is equal to array[1]), 7 in the
worst case (if « is equal to array[n] or if & is not in found in array), and 7/2 on
average if x is randomly distributed in one of the 7 cells of the array. With an



array 10 times as large, the algorithm will be 10 times as slow. Complexity is
therefore proportional to 7z, or “linear” in n. A complexity linear in 7 is
considered fast, as opposed to complexities exponential in 7. Although
processing larger input values will be slower, it will make a difference of at
most just seconds for most practical uses.

But many useful algorithms are slower than that and have a complexity
higher than linear. The textbook example is sorting algorithms: given a list
of n values in a random order, you’ll need on average n x log n basic
operations to sort the list, which is sometimes called linearithmic complexity.
Since 7 x log n grows faster than », sorting speed will slow down faster than
proportionally to 7. Yet such sorting algorithms will remain in the realm of
practical computation, or computation that can be carried out in a reasonable
amount of time.

At some point, we’ll hit the ceiling of what’s feasible even for relatively
small input lengths. Take the simplest example from cryptanalysis: the
brute-force search for a secret key. Recall from Chapter 1 that given a

plaintext P and a ciphertext C = E(K, P), it takes at most 2” attempts to

recover an z-bit symmetric key because there are 2” possible keys—an
example of a complexity that grows exponentially. For complexity theorists,
exponential complexity means a problem that is practically impossible to solve,
because as 7 grows, the effort very rapidly becomes infeasible.

You may object that we’re comparing oranges and apples here: in the
search() function in Listing 9-1, we counted the number of if (array[i] == x)
operations, whereas key recovery counts the number of encryptions, each
thousands of times slower than a single == comparison. This inconsistency
can make a difference if you compare two algorithms with very similar
complexities, but most of the time it won’t matter because the number of
operations will have a greater impact than the cost of an individual
operation. Also, complexity estimates ignore constant factors: when we say
that an algorithm takes time in the order of #* operations (which is quadratic
complexity), it may actually take 41 x #* operations, or 12345 x #® operations
—but again, as z grows, the constant factors lose significance to the point
that we can ignore them. Complexity analysis is about theoretical hardness as
a function of the input size; it doesn’t care about the exact number of CPU
cycles it will take on your computer.

You’ll often find the O() notation (“big O”) used to express complexities.



For example, O(»*) means that complexity grows no faster than »*, ignoring
potential constant factors. O() denotes the wupper bound of an algorithm’s
complexity. The notation O(1) means that an algorithm runs in constant time
—that is, the running time doesn’t depend on the input length! For example,
the algorithm that determines an integer’s parity by looking at its least
significant bit (LSB) and returning “even” if it’s zero and “odd” otherwise
will do the same thing at the same cost whatever the integer’s length.

To see the difference between linear, quadratic, and exponential time
complexities, look at how complexity grows for O(n) (linear) versus O(x?)
(quadratic) versus O(2”) (exponential) in Figure 9-1.
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Figure 9-1: Growth of exponential, quadratic, and linear complexities, from the fastest to the
slowest growing

Exponential complexity means the problem is practically impossible to
solve, and linear complexity means the solution is feasible, whereas quadratic
complexity is somewhere between the two.



Polynomial vs. Superpolynomial Time

The O(n?) complexity discussed in the last section (the middle curve in
Figure 9-1) is a special case of the broader class of polynomial complexities,
or O(n*), where k is some fixed number such as 3, 2.373, 7/10, or the square
root of 17. Polynomial-time algorithms are eminently important in
complexity theory and in crypto because they’re the very definition of
practically feasible. When an algorithm runs in polynomial time, or polytime
for short, it will complete in a decent amount of time even if the input is
large. That’s why polynomial time is synonymous with “efficient” for
complexity theorists and cryptographers.

In contrast, algorithms running in superpolynomial time—that is, in O(f(n)),
where f(n) is any function that grows faster than any polynomial—are viewed
as impractical. ’'m saying superpolynomial, and not just exponential, because
there are complexities in between polynomial and the well-known

exponential complexity O(2”), such as O(#'°8®), as Figure 9-2 shows.
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Figure 9-2: Growth of the 2", n!%8) and n2 functions, from the fastest to the slowest growing

Exponential complexity O(2") is not the worst you can get. Some complexities
grow even faster and thus characterize algorithms even slower to compute—for

example, the complexity O(n™) or the exponential factorial O™ = D), where

for any x, the function f is here recursively defined as £(x) = X' =D, In practice,

you’ll never encounter algorithms with such preposterous complexities.

Om?) or O(n*) may be efficient, but O#?"79999%%) obviously isn’t. In
other words, polytime is fast as long as the exponent isn’t too large.
Fortunately, all polynomial-time algorithms found to solve actual problems
do have small exponents. For example, O(z!#6%) is the time for multiplying
two n-bit integers, or O(n?>-373) for multiplying two # x # matrices. The 2002
breakthrough polytime algorithm for identifying prime numbers initially had
a complexity O(n!?), but it was later improved to O(%). Polynomial time
thus may not be the perfect definition of a practical time for an algorithm,
but it’s the best we have.

By extension, a problem that can’t be solved by a polynomial-time
algorithm is considered impractical, or hard. For example, for a
straightforward key search, there’s no way to beat the O(2”) complexity
unless the cipher is somehow broken.

We know for sure that there’s no way to beat the O(2”) complexity of a
brute-force key search (as long as the cipher is secure), but we don’t always
know what the fastest way to solve a problem is. A large portion of the
research in complexity theory is about proving complexity bounds on the
running time of algorithms solving a given problem. To make their job
easier, complexity theorists have categorized computational problems in
different groups, or classes, according to the effort needed to solve them.

Complexity Classes

In mathematics, a class is a group of objects with some similar attribute. For
example, all computational problems solvable in time O(#?), which
complexity theorists simply denote TIME(n?), are one class. Likewise,



TIME(#?) is the class of problems solvable in time O(z®), TIME(_2") is the

class of problems solvable in time O(2”), and so on. For the same reason that
a supercomputer can compute whatever a laptop can compute, any problem
solvable in O(#?) is also solvable in O(#?). Hence, any problem in the class
TIME(#?) also belongs to the class TIME(%?), which both also belong to
the class TIME(z*), and so on. The union of all these classes of problems,
TIME(#*), where k is a constant, is called P, which stands for polynomial
time.

If you've ever programmed a computer, you’ll know that seemingly fast
algorithms may still crash your system by eating all its memory resources.
When selecting an algorithm, you should not only consider its time
complexity but also how much memory it uses, or its space complexity. This is
especially important because a single memory access is usually orders of
magnitudes slower than a basic arithmetic operation in a CPU.

Formally, you can define an algorithm’s memory consumption as a
function of its input length, 7, in the same way we defined time complexity.

The class of problems solvable using f{z) bits of memory is SPACE(f(n)).

For example, SPACE(#?) is the class of problems solvable using of the order
of n® bits of memory. Just as we had P as the union of all TIME(#*), the
union of all SPACE(#¥) problems is called PSPACE.

Obviously, the lower the memory the better, but a polynomial amount of
memory doesn’t necessarily imply that an algorithm is practical. Why? Well,
take for example a brute-force key search: again, it takes only negligible
memory but is slow as hell. More generally, an algorithm can take forever,
even if it uses just a few bytes of memory.

Any problem solvable in time fiz) needs at most f{#z) memory, so
TIME(f(n)) is included in SPACE(f(n)). In time f{(n), you can only write up
to f{n) bits, and no more, because writing (or reading) 1 bit is assumed to
take one unit of time; therefore, any problem in TIME(f(z)) can’t use more
than f{(n) space. As a consequence, P is a subset of PSPACE.

Nondeterministic Polynomial Time

NP is the second most important complexity class, after the class P of all
polynomial-time algorithms. No, NP doesn’t stand for non-polynomial
time, but for nondeterministic polynomial time. What does that mean?



NP is the class of problems for which a solution can be verified in
polynomial time—that is, efficiently—even though the solution may be hard
to find. By verified, I mean that given a potential solution, you can run some
polynomial-time algorithm that will verify whether you’ve found an actual
solution. For example, the problem of recovering a secret key with a known
plaintext is in NP, because given P, C = E(K, P), and some candidate key K,

you can check that K|, is the correct key by verifying that E(K,, P) equals C.

The process of finding a potential key (the solution) can’t be done in
polynomial time, but checking whether the key is correct is done using a
polynomial-time algorithm.

Now for a counterexample: what about known-ciphertext attacks? This
time, you only get some E(K, P) values for random unknown plaintext Ps. If
you don’t know what the Ps are, then there’s no way to verify whether a
potential key, K, is the right one. In other words, the key-recovery problem

under known-ciphertext attacks is not in NP (let alone in P).

Another example of a problem not in NP is that of verifying the absence of
a solution to a problem. Verifying that a solution is correct boils down to
computing some algorithm with the candidate solution as an input and then
checking the return value. However, to verify that no solution exists, you
may need to go through all possible inputs. And if there’s an exponential
number of inputs, you won’t be able to efficiently prove that no solution
exists. The absence of a solution is hard to show for the hardest problems in
the class NP—the so-called NP-complete problems, which we’ll discuss
next.

NP-Complete Problems

The hardest problems in the class NP are called NP-complete; we don’t
know how to solve these problems in polynomial time. And as complexity
theorists discovered in the 1970s when they developed the theory of NP-
completeness, NP’s hardest problems are all equally hard. This was proven
by showing that any efficient solution to any of the NP-complete problems
can be turned into an efficient solution for any of the other NP-complete
problems. In other words, if you can solve any NP-complete problem
efficiently, you can solve all of them, as well as all problems in NP. How can
this be?

NP-complete problems come in different disguises, but they're



fundamentally similar from a mathematical perspective. In fact, you can
reduce any NP-complete problem to any other NP-complete problem such
that solving the first one depends on solving the second.

Here are some examples of NP-complete problems:

The traveling salesman problem Given a set of points on a map (cities,
addresses, or other geographic locations) and the distances between each
point from each other point, find a path that visits every point such that
the total distance is smaller than a given distance of «.

The clique problem Given a number, x, and a graph (a set of nodes
connected by edges, as in Figure 9-3), determine if there’s a set of x points
or less such that all points are connected to each other.

The knapsack problem Given two numbers, x and y, and a set of items,
each of a known value and weight, can we pick a group of items such that
the total value is at least .« and the total weight at most y?

Figure 9-3: A graph containing a clique of four points. The general problem of finding a clique (set
of nodes all connected to each other) of given size in a graph is NP-complete.

Such NP-complete problems are found everywhere, from scheduling
problems (given jobs of some priority and duration, and one or more
processors, assign jobs to the processors by respecting the priority while
minimizing total execution time) to constraint-satisfaction problems



(determine values that satisfy a set of mathematical constraints, such as
logical equations). Even the task of winning in certain video games can
sometimes be proven to be NP-complete (for famous games including Tezris,
Super Mario Bros., Pokémon, and Candy Crush Saga). For example, the article
“Classic ~ Nintendo Games  Are (Computationally) ~ Hard”
(https://arxiv.org/abs/1203.1895) considers “the decision problem of
reachability” to determine the possibility of reaching the goal point from a
particular starting point.

Some of these video game problems are actually even harder than NP-
complete and are called NP-hard. We say that a problem is NP-hard when
it’s at least as hard as NP-complete problems. More formally, a problem is
NP-hard if what it takes to solve it can be proven to also solve NP-complete
problems.

I have to mention an important caveat. Not all instances of NP-complete
problems are actually hard to solve. Some specific instances, because they’re
small or because they have a specific structure, may be solved efficiently.
Take, for example, the graph in Figure 9-3. By just looking at it for a few
seconds you’ll spot the clique, which is the top four connected nodes—even
though the aforementioned clique problem is NP-hard, there’s nothing hard
here. So being NP-complete doesn’t mean that all instances of a given
problem are hard, but that as the problem size grows, many of them are.

The P vs. NP Problem

If you could solve the hardest NP problems in polynomial time, then you
could solve #// NP problems in polynomial time, and therefore NP would
equal P. That sounds preposterous; isn’t it obvious that there are problems
for which a solution is easy to verify but hard to find? For example, isn’t it
obvious that exponential-time brute force is the fastest way to recover the
key of a symmetric cipher, and therefore that the problem can’t be in P? It
turns out that, as crazy as it sounds, no one has proved that P is different
from NP, despite a bounty of literally one million dollars.

The Clay Mathematics Institute will award this bounty to anyone who
proves that either P # NP or P = NP. This problem, known as P vs. NP, was
called “one of the deepest questions that human beings have ever asked” by
renowned complexity theorist Scott Aaronson. Think about it: if P were
equal to NP, then any easily checked solution would also be easy to find. All
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cryptography used in practice would be insecure, because you could recover
symmetric keys and invert hash functions efficiently.

NP

Factoring @
NP-complete

Figure 9-4: The classes NP, P, and the set of NP-complete problems

But don’t panic: most complexity theorists believe P isn’t equal to NP,
and therefore that P is instead a strict subset of NP, as Figure 9-4 shows,
where NP-complete problems are another subset of NP not overlapping
with P. In other words, problems that look hard actually are hard. It’s just
difficult to prove this mathematically. While proving that P = NP would
only need a polynomial-time algorithm for an NP-complete problem,
proving the nonexistence of such an algorithm is fundamentally harder. But
this didn’t stop wacky mathematicians from coming up with simple proofs
that, while usually obviously wrong, often make for funny reads; for an
example, see “The P-versus-NP page” (bttps://www.win.tue.nl/~gwoegi/P-
versus-INP.htm).

Now if we’re almost sure that hard problems do exist, what about
leveraging them to build strong, provably secure crypto? Imagine a proof
that breaking some cipher is NP-complete, and therefore that the cipher is
unbreakable as long as P isn’t equal to NP. But reality is disappointing: NP-
complete problems have proved difficult to use for crypto purposes because
the very structure that makes them hard in general can make them easy in
specific cases—cases that sometimes occur in crypto. Instead, cryptography
often relies on problems that are probably not NP-hard.

The Factoring Problem

The factoring problem consists of finding the prime numbers p and ¢ given a
large number, N = p x ¢. The widely used RSA algorithms are based on the
fact that factoring a number is difficult. In fact, the hardness of the factoring
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problem is what makes RSA encryption and signature schemes secure. But
before we see how RSA leverages the factoring problem in Chapter 10, I'd
like to convince you that this problem is indeed hard, yet probably not NP-
complete.

First, some kindergarten math. A prime number is a number that isn’t
divisible by any other number but itself and 1. For example, the numbers 3,
7,and 11 are prime; the numbers 4 =2 x 2,6 =2 x 3,and 12 =2 x 2 x 3 are
not prime. A fundamental theorem of number theory says that any integer
number can be uniquely written as a product of primes, a representation
called the factorization of that number. For example, the factorization of

123456 is 26 x 3 x 643; the factorization of 1234567 is = 127 x 9721; and so
on. Any integer has a unique factorization, or a unique way to write it as a
product of prime numbers. But how do we know that a given factorization
contains only prime numbers or that a given number is prime? The answer is
found through polynomial-time primality testing algorithms, which allow us
to efficiently test whether a given number is prime. Getting from a number
to its prime factors, however, is another matter.

Factoring Large Numbers in Practice

So how do we go from a number to its factorization—namely, its
decomposition as a product of prime numbers? The most basic way to factor
a number, N, is to try dividing it by all the numbers lower than it until you
find a number, «x, that divides N. Then attempt to divide N with the next
number, x + 1, and so on. You’ll end up with a list of factors of N. What'’s
the time complexity of this? First, remember that we express complexities as
a function of the input’s Jength. The bit length of the number N is # = log,

N. By the basic definition of logarithm, this means that N = 2”. Because all
the numbers less than N/2 are reasonable guesses for possible factors of N,
there are about N/2 = 27/2 values to try. The complexity of our naive

factoring algorithm is therefore O(2”), ignoring the 1/2 coefficient in the O()
notation.

Of course, many numbers are easy to factor by first finding any small
factors (2, 3, 5, and so on) and then iteratively factoring any other nonprime
factors. But here we’re interested in numbers of the form N = p x ¢, where p
and ¢ are large, as found in cryptography.

Let’s be a bit smarter. We don’t need to test all numbers lower than N/2,



but rather only the prime numbers, and we can start by trying only those
smaller than the square root of N. Indeed, if N is not a prime number, then it
has to have at least one factor lower than its square root YN. This is because
if both of N's factors p and ¢ are greater than YN, then their product would
be greater than VN x VN = N, which is impossible. For example, if we say N =
100, then its factors p and ¢ can’t both be greater than 10 because that would
result in a product greater than 100. Either p or ¢ has to be smaller than yN.
So what’s the complexity of testing only the primes less than YN? The
prime number theorem states that there are approximately N/log N primes less
than N. Hence, there are approximately YN/log YN primes less than \N.
Expressing this value, we get approximately 2/?/n possible prime factors and

therefore a complexity of O(2"/?/n), since YN = 22 and 1/log\N = 1/(n/2) =
2n. 'This is faster than testing all prime numbers, but it’s still painfully slow
—on the order of 2120 operations for a 256-bit number. That’s quite an
impractical computational effort.

The fastest factoring algorithm is the general number field sieve (GNFS),
which I won’t describe here because it requires the introduction of several
advanced mathematical concepts. A rough estimate of GNFS’s complexity is
exp(1.91 x n'”3 (log n)*?), where exp(...) is just a different notation for the
exponential function ¢*, with e the exponential constant approximately equal
to 2.718. However, it’s difficult to get an accurate estimate of GNFS’s actual
complexity for a given number size. Therefore, we have to rely on heuristical
complexity estimates, which show how security increases with a longer 7.
For example:

« Factoring a 1024-bit number, which would have two prime factors of
approximately 500 bits each, will take on the order of 27% basic
operations.

o Factoring a 2048-bit number, which would have two prime factors of
approximately 1000 bits each, will take on the order of 2?0 basic
operations, which is about a million times slower than for a 1024-bit
number.

And we estimate that at least 4096 bits are needed to reach 128-bit
security. Note that these values should be taken with a grain of salt, and
researchers don’t always agree on these estimates. Take a look at these



experimental results to see the actual cost of factoring:

e In 2005, after about 18 months of computation—and thanks to the
power of a cluster of 80 processors, with a total effort equivalent to 75

years of computation on a single processor—a group of researchers
factored a 663-bit (200-decimal digit) number.

e In 2009, after about two years and using several hundred processors,
with a total effort equivalent to about 2,000 years of computation on a
single processor, another group of researchers factored a 768-bit (232-
decimal digit) number.

As you can see, the numbers actually factored by academic researchers are
shorter than those in real applications, which are at least 1024-bit and often
more than 2048-bit. As I write this, no one has reported the factoring of a
1024-bit number, but many speculate that well-funded organizations such as

the NSA can do it.

In sum, 1024-bit RSA should be viewed as insecure, and RSA should be
used with at least a 2048-bit value—and preferably a 4096-bit one to ensure
higher security.

Is Factoring NP-Complete?

We don’t know how to factor large numbers efficiently, which suggests that
the factoring problem doesn’t belong to P. However, factoring is clearly in
NP, because given a factorization, we can verify the solution by checking
that all factors are prime numbers, thanks to the aforementioned primality
testing algorithm, and that when multiplied together, the factors do give the
expected number. For example, to check that 3 x 5 is the factorization of 15,
you’ll check that both 3 and 5 are prime and that 3 times 5 equals 15.

So we have a problem that is in NP and that looks hard, but is it as hard as
the hardest NP problems? In other words, is factoring INP-complete?
Spoiler alert: probably not.

There’s no mathematical proof that factoring isn’t NP-complete, but we
have a few pieces of soft evidence. First, all known NP-complete problems
can have one solution, but can also have more than one solution, or no
solution at all. In contrast, factoring always has exactly one solution. Also,
the factoring problem has a mathematical structure that allows for the
GNEFS algorithm to significantly outperform a naive algorithm, a structure



that NP-complete problems don’t have. Factoring would be easy if we had a
quantum computer, a computing model that exploits quantum mechanical
phenomena to run different kinds of algorithms and that would have the
capability to factor large numbers efficiently (not because it’d run the
algorithm faster, but because it could run a quantum algorithm dedicated to
factoring large numbers). A quantum computer doesn’t exist yet, though—
and might never exist. Regardless, a quantum computer would be useless in
tackling NP-complete problems because it’d be no faster than a classical one
(see Chapter 14).

Factoring may then be slightly easier than NP-complete in theory, but as
far as cryptography is concerned, it’s hard enough, and even more reliable
than NP-complete problems. Indeed, it’s easier to build cryptosystems on
top of the factoring problem than NP-complete problems, because it’s hard
to know exactly how hard it is to break a cryptosystem based on some INP-
complete problems—in other words, how many bits of security you’d get.

The factoring problem is just one of several problems used in
cryptography as a hardness assumption, which is an assumption that some
problem is computationally hard. This assumption is used when proving that
breaking a cryptosystem’s security is at least as hard as solving said problem.
Another problem used as a hardness assumption, the discrete logarithm
problem (DLP), is actually a family of problems, which we’ll discuss next.

The Discrete Logarithm Problem

The DLP predates the factoring problem in the official history of
cryptography. Whereas RSA appeared in 1977, a second cryptographic
breakthrough, the Diffie-Hellman key agreement (covered in Chapter 11),
came about a year earlier, grounding its security on the hardness of the
DLP. Like the factoring problem, the DLP deals with large numbers, but
it’s a bit less straightforward—it will take you a few minutes rather than a
few seconds to get it and requires a bit more math than factoring. So let me
introduce the mathematical notion of a group in the context of discrete
logarithms.

What Is a Group?

In mathematical context, a group is a set of elements (typically, numbers) that
are related to each other according to certain well-defined rules. An example



of a group is the set of nonzero integers (between 1 and p — 1) modulo some
prime number p, which we write Zp*. For p = 5, we get the group Zs =
{1,2,3,4}. In the group Z; , operations are carried out modulo 5; hence, we
don’t have 3 x 4 = 12 but instead have 3 x 4 = 2, because 12 mod 5 = 2. We
nonetheless use the same sign (x) that we use for normal integer

multiplication. Likewise, we also use the exponent notation to denote a
group element’s multiplication with itself mod p, a common operation in

cryptography. For example, in the context of Z', 2% = 2 x 2 x 2 = 3 rather
than 8, because 8 mod 5 is equal to 3.

To be a group, a mathematical set should have the following
characteristics, called group axioms:

Closure For any two x and y in the group, x x y is in the group too. In
Z: 2 x3 =1 (because 6 = 1 mod 5), 2 x 4 = 3, and so on.

Associativity For any «, y, z in the group, (x x y) x z = x x (y x 2). In Zs ,
2x3)x4=1x4=2x(Bx4)=2x2=4.

Identity existence There’s an element e such that e x x = x x ¢ = x. In any
Zp*, the identity element is 1.

Inverse existence For any « in the group, there’s a y such thatx x y =y x
x =e. In Z;', the inverse of 2 is 3, and the inverse of 3 is 2, while 4 is its
own inverse because 4 x4 =16 = 1 mod 5.

In addition, a group is called commutative if x x y = y x x for any group
elements x and y. That’s also true for any multiplicative group of integers

Zp*. In particular, Z; is commutative: 3 x4 =4 x 3,2 x 3 =3 x 2, and so on.

A group is called cyclic if there’s at least one element g such that its powers
(¢!, g%, ¢°, and so on) mod p span all distinct group elements. The element g
is then called a generator of the group. Zs  is cyclic and has two generators, 2
and 3, because 21 =2,22=4,2°=3,2%=1,and 31 =3,32=4,3%=2,3%=1.

Note that I'm using multiplication as a group operator, but you can also
get groups from other operators. For example, the most straightforward
group is the set of all integers, positive and negative, with addition as a group
operation. Let’s check that the group axioms hold with addition, in the
preceding order: clearly, the number x + y is an integer if x and y are integers



(closure); (x + ) + 2z = x + (y + 2) for any «, y, and z (associativity); zero is the
identity element; and the inverse of any number « in the group is —x because
x + (—x) = 0 for any integer x. A big difference, though, is that this group of
integers is of infinite size, whereas in crypto we’ll only deal with finite groups,
or groups with a finite number of elements. Typically, we’ll use groups Z,,

where p is thousands of bits long (that is, groups that contain on the order of
27 numbers).

The Hard Thing

The DLP consists of finding the y for which ¢’ = x, given a base number g
within some group Zp*, where p is a prime number, and given a group
element x. The DLP is called discrete because we’re dealing with integers as
opposed to real numbers (continuous), and it’s called a logarithm because
we’re looking for the logarithm of x in base g. (For example, the logarithm of
256 in base 2 is 8 because 28 = 256.)

People often ask me whether factoring or a discrete logarithm is more
secure—or in other words, which problem is the hardest? My answer is that
they’re about equally hard. In fact, algorithms to solve DLP bear similarities
with those factoring integers, and you get about the same security level with
n-bit hard-to-factor numbers as with discrete logarithms in an z-bit group.
And for the same reason as factoring, DLP isn’t NP-complete. (Note that
there are certain groups where the DLP is easier to solve, but here I'm only
referring to the case of DLP groups consisting of a number modulo a
prime.)

How Things Can Go Wrong

More than 40 years later, we still don’t know how to efficiently factor large
numbers or solve discrete logarithms. Amateurs may argue that someone
may eventually break factoring—and we have no proof that it’ll never be
broken—but we also don’t have proof that P # NP. Likewise, you can
speculate that P may be equal to NP; however, according to experts, that
surprise is unlikely. So there’s no need to worry. And indeed all the public-
key crypto deployed today relies on either factoring (RSA) or DLP (Diffie-
Hellman, ElGamal, elliptic curve cryptography). However, although math
may not fail us, real-world concerns and human error can sneak in.



When Factoring Is Easy

Factoring large numbers isn’t always hard. For example, take the 1024-bit
number N, which is equal to the following:

179769313486231590772930519078902473361797697894230657273430081157739343819933

842986982557174198257278917258638193709265819186026626180659730665062710995556

578639447715608415186895652841691982921107202317165369124890481512388558039053
427125099290315449262324709315263256083132540461407052872832790915388014592

For 1024-bit numbers used in RSA encryption or signature schemes
where N = pg, we expect the best factoring algorithms to need around 27°
operations, as we discussed earlier. But you can factor this sample number in
seconds using SageMath, a piece of Python-based mathematical software.
Using SageMath’s factor() function on my 2015 MacBook, it took less than
five seconds to find the following factorization:

2% x 641 x 6700417 x 167773885276849215533569
x 37414057161322375957408148834323969

Right, I cheated. This number isn’t of the form N = pg because it doesn’t
have just two large prime factors but rather five, including very small ones,

which makes it easy to factor. First, you’ll identify the 2890 x 641 x 6700417
part by trying small primes from a precomputed list of prime numbers,
which leaves you with a 192-bit number that’s much easier to factor than a
1024-bit number with two large factors.

But factoring can be easy not only when 7 has small prime factors, but also
when N or its factors p and ¢ have particular forms—for example, when N =
pq with p and ¢ both close to some 2¢, when N = pg and some bits of p or ¢
are known, or when N is of the form N = p’¢' and 7 is greater than log p.
However, detailing the reasons for these weaknesses is way too technical for
this book.

The upshot here is that the RSA encryption and signature algorithms
(covered in Chapter 10) will need to work with a value of N = pg, where p
and ¢ are carefully chosen, to avoid easy factorization of N, which can result
in security disaster.

Small Hard Problems Aren’t Hard



Computationally hard problems become easy when they’re small enough,
and even exponential-time algorithms become practical as the problem size
shrinks. A symmetric cipher may be secure in the sense that there’s no faster
attack than the 2”-time brute force, but if the key length is z = 32, you’ll
break the cipher in minutes. This sounds obvious, and you’d think that no
one would be naive enough to use small keys, but in reality there are plenty
of reasons why this could happen. The following are two true stories.

Say you’re a developer who knows nothing about crypto but has some API
to encrypt with RSA and has been told to encrypt with 128-bit security.
What RSA key size would you pick? I've seen real cases of 128-bit RSA, or
RSA based on a 128-bit number N = pg. However, although factoring is
impractically hard for an N thousands of bits long, factoring a 128-bit
number is easy. Using the SageMath software, the commands shown in
Listing 9-2 complete instantaneously.

sage: p = random_prime(2**64)

sage: q = random_prime(2**64)

sage: factor(p*q)

6822485253121677229 * 17596998848870549923

Listing 9-2: Generating an RSA modulus by picking two random prime numbers and factoring it
instantaneously

Listing 9-2 shows that a 128-bit number taken randomly as the product of
two 64-bit prime numbers can be easily factored on a typical laptop.
However, if I chose 1024-bit prime numbers instead by using p =
randon_prime(2**1024), the command factor(p*q) would never complete, at least
not in my lifetime.

To be fair, the tools available don’t help prevent the naive use of
insecurely short parameters. For example, the OpenSSL toolkit lets you
generate RSA keys as short as 31 bits without any warning; obviously, such
short keys are totally insecure, as shown in Listing 9-3.

$ openssl genrsa 31

Generating RSA private key, 31 bit long modulus

R o o o ok b ok o o o ok b b o o o ok b o o ob b b o o o ok o

R o o o ok b ok o o o ok b b o o o ok b o o ob b b o o o ok o

e 1s 65537 (0x10001)

----- BEGIN RSA PRIVATE KEY-----
MCsCAQACBHHgFUUCAWEAAQIEP6zEJQIDANATAgMAFCcCAWCSBWICTGsCAhpp
----- END RSA PRIVATE KEY-----




Listing 9-3: Generating an insecure RSA private key using the OpenSSL toolkit

When reviewing cryptography, you should not only check the type of
algorithms used, but also their parameters and the length of their secret
values. However, as you’ll see in the following story, what’s secure enough
today may be insecure tomorrow.

In 2015, researchers discovered that many HTTPS servers and email
servers still supported an older, insecure version of the Diffie-Hellman key
agreement protocol. Namely, the underlying TLS implementation

supported Diffie-Hellman within a group, Zp*, defined by a prime number,

p, of only 512 bits, where the discrete logarithm problem was no longer
practically impossible to compute.

Not only did servers support a weak algorithm, but attackers could force a
benign client to use that algorithm by injecting malicious traffic within the
client’s session. Even better for attackers, the largest part of the attack could
be carried out once and recycled to attack multiple clients. After about a

week of computations to attack a specific group, Zp*, it took only 70 seconds
to break individual sessions of different users.

A secure protocol is worthless if it’s undermined by a weakened algorithm,
and a reliable algorithm is useless if sabotaged by weak parameters. In
cryptography, you should always read the fine print.

For more details about this story, check the research article “Imperfect
Forward  Secrecy: =~ How  Diffie-Hellman  Fails in  Practice”
(bttps://weakdh.org/imperfect-forward-secrecy-ces1 5. pdf).

Further Reading

I encourage you to look deeper into the foundational aspects of computation
in the context of computability (what functions can be computed?) and
complexity (at what cost?), and how they relate to cryptography. I've mostly
talked about the classes P and NP, but there are many more classes and
points of interest for cryptographers. I highly recommend the book
Quantum  Computing Since Democritus by Scott Aaronson (Cambridge
University Press, 2013). It’s in large part about quantum computing, but its
first chapters brilliantly introduce complexity theory and cryptography.

In the cryptography research literature you’ll also find other hard
computational problems. I'll mention them in later chapters, but here are


https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf

some examples that illustrate the diversity of problems leveraged by

cryptographers:

The Diftie-Hellman problem (given g* and ¢, find g¥) is a variant of
the discrete logarithm problem, and is widely used in key agreement
protocols.

Lattice problems, such as the shortest vector problem (SVP) and the
learning with errors (LWE) problem, are the only examples of NP-hard
problems successfully used in cryptography.

Coding problems rely on the hardness of decoding error-correcting

codes with insufficient information, and have been studied since the late
1970s.

Multivariate problems are about solving nonlinear systems of equations
and are potentially NP-hard, but they've failed to provide reliable
cryptosystems because hard versions are too big and slow, and practical
versions were found to be insecure.

In Chapter 10, we’ll keep talking about hard problems, especially factoring
and its main variant, the RSA problem.



10
RSA

The  Rivest-Shamir-Adleman  (RSA) cryptosystem  revolutionized
cryptography when it emerged in 1977 as the first public-key encryption
scheme; whereas classical, symmetric-key encryption schemes use the same
secret key to encrypt and decrypt messages, public-key encryption (also
called asymmetric encryption) uses two keys: one is your public key, which
can be used by anyone who wants to encrypt messages for you, and the other
is your private key, which is required in order to decrypt messages encrypted
using the public key. This magic is the reason why RSA came as a real
breakthrough, and 40 years later, it’s still the paragon of public-key
encryption and a workhorse of internet security. (One year prior to RSA,
Diffie and Hellman had introduced the concept of public-key cryptography,
but their scheme was unable to perform public-key encryption.)

RSA is above all an arithmetic trick. It works by creating a mathematical
object called a #rapdoor permutation, a function that transforms a number x to
a number y in the same range, such that computing y from x is easy using the
public key, but computing «x from y is practically impossible unless you know
the private key—the #rapdoor. (Think of x as a plaintext and y as a ciphertext.)

In addition to encryption, RSA is also used to build digital signatures,
wherein the owner of the private key is the only one able to sign a message,
and the public key enables anyone to verify the signature’s validity.

In this chapter, I explain how the RSA trapdoor permutation works,
discuss RSA’s security relative to the factoring problem (discussed in
Chapter 9), and then explain why the RSA trapdoor permutation alone isn’t
enough to build secure encryption and signatures. I also discuss ways to
implement RSA and demonstrate how to attack it.

We begin with an explanation of the basic mathematical notions behind



RSA.

The Math Behind RSA

When encrypting a message, RSA sees the message as a big number, and
encryption consists essentially of multiplications of big numbers. Therefore,
in order to understand how RSA works, we need to know what kind of big
numbers it manipulates and how multiplication works on those numbers.

RSA sees the plaintext that it’s encrypting as a positive integer between 1
and n — 1, where # is a large number called the modulus. More precisely, RSA
works on the numbers less than 7 that are co-prime with 7 and therefore that
have no common prime factor with z. Such numbers, when multiplied
together, yield another number that satisfies these criteria. We say that these

numbers form a group, denoted Z,/, and call the multiplicative group of
integers modulo 7. (See the mathematical definition of a group in “What Is a
Group?” on page 174.)

For example, consider the group Z, of integers modulo 4. Recall from

Chapter 9 that a group must include an identity element (that is, 1) and that
each number « in the group must have an inverse, a number y such that x x y

= 1. How do we determine that set that makes up Z,? Based on our

definitions, we know that 0 is not in the group Z, because multiplying any
number by 0 can never give 1, so 0 has no inverse. By the same token, the
number 1 belongs to Z, because 1 x 1 = 1, so 1 is its own inverse. However,
the number 2 does not belong in this group because we can’t obtain 1 by
multiplying 2 with another element of Z, (the reason is that 2 isn’t co-prime
with 4, because 4 and 2 share the factor of 2.) The number 3 belongs in the
group Z, because it is its own inverse within Z, . Thus, we have Z, = {1, 3}.

Now consider Z;', the multiplicative group of integers modulo 5. What
numbers does this set contain? The number 5 is prime, and 1, 2, 3, and 4 are
all co-prime with 5, so the set of Zs is {1, 2, 3, 4}. Let’s verify this: 2 x 3
mod 5 = 1, therefore, 2 is 3’s inverse, and 3 is 2’s inverse; note that 4 is its
own inverse because 4 x 4 mod 5 = 1; finally, 1 is again its own inverse in the
group.

In order to find the number of elements in a group Z,” when 7 isn’t prime,
we use Euler’s totient function, which is written as @(n), with @ representing



the Greek letter phi. This function gives the number of elements co-prime
with #, which is the number of elements in Z,,". As a rule, if  is a product of
prime numbers 7 = p; x p; x ... x p,,, the number of elements in the group

Z

. is the following:

o) =1~ D> (P~ D> ... x (P = 1)

RSA only deals with numbers 7 that are the product of two large primes,
usually noted as z = pg. The associated group Z,; will then contain @(z) = (p
— 1)(g — 1) elements. By expanding this expression, we get the equivalent
definition @(n) =n—p — g+ 1, or @(n) = (n + 1) — (p + ¢), which expresses
more intuitively the value of @(n) relative to n. In other words, all but (p + ¢)
numbers between 1 and # — 1 belong to Z,; and are “valid numbers” in RSA
operations.

The RSA Trapdoor Permutation

The RSA trapdoor permutation is the core algorithm behind RSA-based
encryption and signatures. Given a modulus # and number e, called the public
exponent, the RSA trapdoor permutation transforms a number x from the set
Zn
equal to » multiplied by itself ¢ times modulo 7z and then returns the result.
When we use the RSA trapdoor permutation to encrypt, the modulus 7 and
the exponent ¢ make up the RSA public key.

" into a number y = 4° mod #. In other words, it calculates the value that’s

In order to get x back from y, we use another number, denoted d, to
compute the following:

y¥mod n = (x*) mod n = x** mod n = x

Because 4 is the trapdoor that allows us to decrypt, it is part of the private
key in an RSA key pair, and, unlike the public key, it should always be kept

secret. The number 4 is also called the secrer exponent.

Obviously, 4 isn’t just any number; it’s the number such that e multiplied
by d is equivalent to 1, and therefore such that %/ mod z = x for any x. More
precisely, we must have ed = 1 mod @(z) in order to get ¥/ = x! = x and to

decrypt the message correctly. Note that we compute modulo @(z) and not



modulo 7 here because exponents behave like the indexes of elements of Z,~

rather than as the elements themselves. Because Z, has ¢(#) elements, the
index must be less than @(z).

The number @(z) is crucial to RSA’s security. In fact, finding @(#) for an
RSA modulus 7 is equivalent to breaking RSA, because the secret exponent 4
can easily be derived from @(7) and e, by computing ¢’s inverse. Hence p and
g should also be secret, since knowing p or ¢ gives @(n) by computing (p — 1)

(¢-1) =M.

©(n) is also called the order of the group Z.'; the order is an important

characteristic of a group, which is also essential to other public-key systems such
as Diffie—Hellman and elliptic curve cryptography.

RSA Key Generation and Security

Key generation is the process by which an RSA key pair is created, namely a
public key (modulus #» and public exponent ¢) and its private key (secret
exponent d). The numbers p and ¢ (such that » = pg) and the order ¢@(n)
should also be secret, so they’re often seen as part of the private key.

In order to generate an RSA key pair, we first pick two random prime
numbers, p and ¢, and then compute @(n) from these, and we compute d as
the inverse of e. To show how this works, Listing 10-1 uses SageMath
(http://www.sagemath.org/), an open-source Python-like environment that
includes many mathematical packages.

@ sage: p = random_prime(2+32); p
1103222539

® sage: q = random_prime(2/+32); q

17870599

sage: n = p*q; n

19715247602230861

sage: phi = (p-1)*(q-1); phi

36567230045260644

sage: e = random_prime(phi); e

13771927877214701

sage: d = xgcd(e, phi)[1]; d

15417970063428857

@ © o ©o


http://www.sagemath.org/

© sage: mod(d*e, phi)
1

Listing 10-1: Generating RSA parameters using SageMath

In order to avoid multiple pages of output, I've used a 64-bit modulus n in
Listing 10-1, but in practice an RSA modulus should be at least 2048 bits.

We use the random_prime() function to pick random primes p @ and q @,
which are lower than a given argument. Next, we multiply p and q to get the

modulus n @ and @(n), which is the variable phi @. We then generate a

random public exponent, e ®, by picking a random prime less than pht in
order to ensure that e will have an inverse modulo phi. We then generate the
associated private exponent d by using the xgcd() function from Sage ®. This
function computes the numbers s and # given two numbers, 2 and b, with the
extended Euclidean algorithm such that as + b = GCD(a, b). Finally, we
check that ed mod @(#) = 1 @, to ensure that d will work correctly to invert
the RSA permutation.
Now we can apply the trapdoor permutation, as shown in Listing 10-2.

1234567

@ sage: y = power_mod(x, e, n); y
19048323055755904

® sage: power_mod(y, d, n)
1234567

O sage: x

Listing 10-2: Computing the RSA trapdoor permutation back and forth

We assign the integer 1234567 to x @ and then use the function
power_mod(x, e, n), the exponentiation modulo 7, or ¥ mod 7 in equation
form, to calculate y ®. Having computed y = &° mod 7, we compute y¢ mod #
® with the trapdoor 4 to return the original x.

But how hard is it to find x without the trapdoor 4? An attacker who can
factor big numbers can break RSA by recovering p and ¢ and then @(z) in
order to compute d from e. But that’s not the only risk. Another risk to RSA

lies in an attacker’s ability to compute &« from x° mod 7, or e th roots modulo



n, without necessarily factoring z. Both risks seem closely connected, though
we don’t know for sure whether they are equivalent.

Assuming that factoring is indeed hard and that finding e th roots is about
as hard, RSA’s security level depends on three factors: the size of #, the
choice of p and ¢, and how the trapdoor permutation is used. If » is too
small, it could be factored in a realistic amount of time, revealing the private
key. To be safe, #z should at least be 2048 bits long (a security level of about
90 bits, requiring a computational effort of about 20 operations), but
preferably 4096 bits long (a security level of approximately 128 bits). The
values p and ¢ should be unrelated random prime numbers of similar size. If
they are too small, or too close together, it becomes easier to determine their
value from z. Finally, the RSA trapdoor permutation should not be used

directly for encryption or signing, as I’ll discuss shortly.

Encrypting with RSA

Typically, RSA is used in combination with a symmetric encryption scheme,
where RSA is used to encrypt a symmetric key that is then used to encrypt a
message with a cipher such as the Advanced Encryption Standard (AES). But
encrypting a message or symmetric key with RSA is more complicated than
simply converting the target to a number x and computing x° mod 7.

In the following subsections, I explain why a naive application of the RSA
trapdoor permutation is insecure, and how strong RSA-based encryption
works.

Breaking Textbook RSA Encryption’s Malleability

Textbook RSA encryption is the phrase used to describe the simplistic RSA
encryption scheme wherein the plaintext contains only the message you want
to encrypt. For example, to encrypt the string RSA, we would first convert it
to a number by concatenating the ASCII encodings of each of the three
letters as a byte: R (byte 52), S (byte 53), and A (byte 41). The resulting byte
string 525341 is equal to 5395265 when converted to decimal, which we might
then encrypt by computing 5395265° mod n. Without knowing the secret
key, there would be no way to decrypt the message.

However, textbook RSA encryption is deterministic: if you encrypt the
same plaintext twice, you’ll get the same ciphertext twice. That’s one
problem, but there’s a bigger problem—given two textbook RSA ciphertexts



y1 = x;° mod 7 and y, = x,° mod 7, you can derive the ciphertext of x; x x, by
multiplying these two ciphertexts together, like this:

Y1 Xy, mod n =x;° X x,* mod n = (x; X x)® mod n

The result is (x; x x,)° mod 7, the ciphertext of the message x; x x; mod #.
Thus an attacker could create a new valid ciphertext from two RSA
ciphertexts, allowing them to compromise the security of your encryption by
letting them deduce information about the original message. We say that
this weakness makes textbook RSA encryption malleable. (Of course, if you
know x; and x,, you can compute (x; x x,)° mod 7, too, but if you only know
y; and y,, you should not be able to multiply ciphertexts and get a ciphertext
of the multiplied plaintexts.)

Strong RSA Encryption: OAEP

In order to make RSA ciphertexts nonmalleable, the ciphertext should
consist of the message data and some additional data called padding, as shown
in Figure 10-1. The standard way to encrypt with RSA in this fashion is to
use Optimal Asymmetric Encryption Padding (OAEP), commonly referred
to as RSA-OAEP. This scheme involves creating a bit string as large as the
modulus by padding the message with extra data and randomness before

applying the RSA function.
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Figure 10-1: Encrypting a symmetric key, K, with RSA using (n, €) as a public key

OAEP is referred to as RSAES-OAEP in official documents such as the
PKCS#1 standard by the RSA company and NIST’s Special Publication §00-
56B. OAEP improves on the earlier method now called PKCS#1 vl.5, which is
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one of the first in a series of Public-Key Cryptography Standards (PKCS)
created by RSA. It is markedly less secure than OAEP, yet is still used in many
systems.

OAEP’s Security

OAEP wuses a pseudorandom number generator (PRNG) to ensure the
indistinguishability and nonmalleability of ciphertexts by making the
encryption probabilistic. It has been proven secure as long as the RSA
function and the PRNG are secure and, to a lesser extent, as long as the hash
functions aren’t too weak. You should use OAEP whenever you need to

encrypt with RSA.

How OAEP Encryption Works

In order to encrypt with RSA in OAEP mode, you need a message (typically
a symmetric key, K), a PRNG, and two hash functions. To create the
ciphertext, you use a given modulus 7 long of 7 bytes (that is, 8~ bits, and
therefore an # lower than 287). To encrypt K, the encoded message is formed
asM=H1100...00 Il 01 Il K, where H is an h-byte constant defined by
the OAEP scheme, followed by as many 00 bytes as needed and a 01 byte.
This encoded message, M, is then processed as described next and as
depicted in Figure 10-2.

I R 1 | HI000000...0001 1K |

I'_!_'1 S N — f—— ' ________ |
| | I |
,_-_Es__T ________ [ _______ :
P=1 00| I |

Figure 10-2: Encrypting a symmetric key, K, with RSA-OAEP, where H is a fixed parameter and R



is random bits

Next, you generate an h-byte random string R and set M = M &
Hash1(R), where Hashl(R) is as long as M. You then set R = R &
Hash2 (M), where Hash2(M) is as long as R. Now you use these new values
of M and R to form an m-byte string P =00 || M || R, which is as long as
the modulus # and which can be converted to an integer number less than #.
The result of this conversion is the number «x, which is then used to compute

the RSA function x° mod 7 to get the ciphertext.

To decrypt a ciphertext y, you would first compute x = ¢ mod # and, from
this, recover the final values of M and R. Next, you would retrieve M’s initial
value by computing M ® Hash1(R & Hash2(})). Finally, you would verify
that M is of the form H || 00 ... 00 I'| 01 Il K, with an A-byte H and 00
bytes followed by a 01 byte.

In practice, the parameters 7z and b (the length of the modulus and the
length of Hash2’s output, respectively) are typically 7z = 256 bytes (for 2048-
bit RSA) and 4 = 32 (using SHA-256 as Hash2). This leaves mz — h — 1 = 223
bytes for M, of which up to 7 — 2h — 2 = 190 bytes are available for K (the “-
27 is due to the separator 01 byte in M). The Hashl hash value is then
composed of 7 — b — 1 = 223 bytes, which is longer than the hash value of
any common hash function.

In order to build a hash with such an unusual output length, the RSA standard
documents specify the use of the mask generating function technique to create
hash functions that return arbitrarily large hash values from any bhash function.

Signing with RSA

Digital signatures can prove that the holder of the private key tied to a
particular digital signature signed some message and that the signature is
authentic. Because no one other than the private key holder knows the

private exponent 4, no one can compute a signature y = x4 mod # from some

value x, but everyone can verify y* mod z = x given the public exponent e.
That verified signature can be used in a court of law to demonstrate that the
private-key holder did sign some particular message—a property of



undeniability called nonrepudiation.

It’s tempting to see RSA signatures as the converse of encryption, but they
are not. Signing with RSA is not the same as encrypting with the private key.
Encryption provides confidentiality whereas a digital signature is used to
prevent forgeries. The most salient example of this difference is that it’s okay
for a signature scheme to leak information on the message signed, because
the message is not secret. For example, a scheme that reveals parts of the
messages could be a secure signature scheme but not a secure encryption
scheme.

Due to the processing overhead required, public-key encryption can only
process short messages, which are usually secret keys rather than actual
messages. A signature scheme, however, can process messages of arbitrary
sizes by using their hash values Hash()M) as a proxy, and it can be
deterministic yet secure. Like RSA-OAEP, RSA-based signature schemes
can use a padding scheme, but they can also use the maximal message space
allowed by the RSA modulus.

Breaking Texthook RSA Signatures

What we call a textbook RSA signature is the method that signs a message, x,
by directly computing y = #¢ mod 7, where & can be any number between 0
and n — 1. Like textbook encryption, textbook RSA signing is simple to
specify and implement but also insecure in the face of several attacks. One
such attack involves a trivial forgery: upon noticing that 0 mod » = 0, 14
mod z = 1, and (z — 1) mod » = n — 1, regardless of the value of the private
key d, an attacker can forge signatures of 0, 1, or z — 1 without knowing 4.

More worrying is the blinding attack. For example, say you want to get a
third party’s signature on some incriminating message, M, that you know
they would never knowingly sign. To launch this attack, you could first find
some value, R, such that R°M mod 7 is a message that your victim would
knowingly sign. Next, you would convince them to sign that message and to
show you their signature, which is equal to S = (R°M)? mod n, or the message
raised to the power 4. Now, given that signature, you can derive the
signature of M, namely M¢ with the aid of some straightforward
computations.

Here’s how this works: because S can be written as (REM)? = R“M?, and



because R = R is equal to R* = R (by definition), we have S = (R°M)? = RM.
To obtain M, we simply divide S by R, as follows, to obtain the signature:

S/R = RMY/R = M*
As you can see, this is a practical and powerful attack.

The PSS Signature Standard

The RSA Probabilistic Signature Scheme (PSS) is to RSA signatures what
OAEDP is to RSA encryption. It was designed to make message signing more
secure, thanks to the addition of padding data.

As shown in Figure 10-3, PSS combines a message narrower than the
modulus with some random and fixed bits before RSAing the results of this
padding process.
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Figure 10-3: Signing a message, M, with RSA and with the PSS standard, where (n, d) is the
private key

Like all public-key signature schemes, PSS works on a message’s hash
rather than on the message itself. Signing Hash(M) is secure as long as the
hash function is collision resistant. One particular benefit of PSS is that you
can use it to sign messages of any length, because after hashing a message,
you’ll obtain a hash value of the same length regardless of the message’s
original length. The hash’s length is typically 256 bits, with the hash
function SHA-256.

Why not sign by just running OAEP on Hash(M)? Unfortunately, you
can’t. Although similar to PSS, OAEP has only been proven secure for
encryption, not for signature.

Like OAEP, PSS also requires a PRNG and two hash functions. One,
Hashl, is a typical hash with A-byte hash values such as SHA-256. The



other, Hash2, is a wide-output hash like OAEP’s Hash2.

The PSS signing procedure for message M works as follows (where 4 is
Hash1’s output length):

1. Pick an r-byte random string R using the PRNG.

2. Form an encoded message M = 0000000000000000 || Hash1(M) || R,
long of b + 7 + 8 bytes (with eight zero bytes at the beginning).

3. Compute the h-byte string H = Hash1(M).

4. Set L=00...00 Il 01 I'l R, or asequence of 00 bytes followed by a 01
byte and then R, with a number of 00 bytes such that L is long of m — b
— 1 bytes (the byte width 2 of the modulus minus the hash length 4
minus 1).

5. Set L = L ® Hash2(H), thus replacing the previous value of L with a
new value.

6. Convert the m-byte string P=L || H || BC to a number, x, lower than
n. Here, the byte BC is a fixed value appended after H.

7. Given the value of x just obtained, compute the RSA function x? mod #
to obtain the signature.

To verify a signature given a message, M, you compute Hash1(M) and use
the public exponent e to retrieve L and H and then M’ from the signature,
checking the padding’s correctness at each step.

In practice, the random string R (called a sa/t in the RSA-PSS standard) is
usually as long as the hash value. For example, if you use #z = 2048 bits and
SHA-256 as the hash, the value L islong of m —bh -1 =256 -32-1=223
bytes, and the random string R would typically be 32 bytes.

Like OAEP, PSS is provably secure, standardized, and widely deployed.
Also like OAEP, it looks needlessly complex and is prone to implementation
errors and mishandled corner cases. But unlike RSA encryption, there’s a
way to get around this extra complexity with a signature scheme that doesn’t
even need a PRNG, thus reducing the risk of insecure RSA signatures
caused by an insecure PRNG, as discussed next.

Full Domain Hash Signatures

Full Domain Hash (FDH) is the simplest signature scheme you can imagine.
To implement it, you simply convert the byte string Hash()M) to a number,



x, and create the signature y = 7 mod #, as shown in Figure 10-4.
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Figure 10-4: Signing a message with RSA using the Full Domain Hash technique

Signature verification is straightforward, too. Given a signature that is a

number y, you compute x = y* mod # and compare the result with Hash(M).
It’s boringly simple, deterministic, yet secure. So why bother with the
complexity of PSS?

The main reason is that PSS was released after FDH, in 1996, and it has a
security proof that inspires more confidence than FDH. Specifically, its
proof offers slightly higher security guarantees than the proof of FDH, and
its use of randomness helped strengthen that proof.

These stronger theoretical guarantees are the main reason cryptographers
prefer PSS over FDH, but most applications using PSS today could switch
to FDH with no meaningful security loss. In some contexts, however, a
viable reason to use PSS instead of FDH is that PSS’s randomness protects it
from some attacks on its implementation, such as the fault attacks we’ll
discuss in “How Things Can Go Wrong” on page 196.

RSA Implementations

I sincerely hope you’ll never have to implement RSA from scratch. If you’re
asked to, run as fast as you can and question the sanity of the person who
asked you to do so. It took decades for cryptographers and engineers to
develop RSA implementations that are fast, sufficiently secure, and hopefully
free of debilitating bugs, so you really don’t want to reinvent RSA. Even
with all the documentation available, it would take months to complete this
daunting task.

Typically, when implementing RSA, you’ll use a library or API that
provides the necessary functions to carry out RSA operations. For example,
the Go language has the following function in its crypto package (from



https://www.golang.org/src/crypto/rsa/rsa.go):

func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte,
label []byte) (out []byte, err error)

The function encryptoaer() takes a hash value, a PRNG, a public key, a
message, and a label (an optional parameter of OAEP), and returns a
signature and an error code. When you call encryptoaer(), it calls encrypt() to
compute the RSA function given the padded data, as shown in Listing 10-3.

func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
e := big.NewInt(int64(pub.E))
c.Exp(m, e, pub.N)
return c

}

Listing 10-3: Implementing the core RSA encryption function from the Go language cryptography
library

The main operation shown in Listing 10-3 is c.Exp(m, e, pub.N), which
raises a message, m, to the power e modulo pub.N, and assigns the result to the
variable c.

If you choose to implement RSA instead of using a readily available library
function, be sure to rely on an existing big-number library, which is a set of
functions and types that allow you to define and compute arithmetic
operations on large numbers thousands of bits long. For example, you might
use the GNU Multiple Precision (GMP) arithmetic library in C, or Go’s big
package. (Believe me, you don’t want to implement big-number arithmetic
yourself.)

Even if you just use a library function when implementing RSA, be sure
that you understand how the internals work in order to measure the risks.

Fast Exponentiation Algorithm: Square-and-Multiply

The operation of raising x to the power e, when computing x° mod #, is
called exponentiation. When we’re working with big numbers, as with RSA,
this operation can be extremely slow if naively implemented. But how do we
do this efficiently?

The naive way to compute x* mod 7 takes ¢ — 1 multiplications, as shown
in the pseudocode algorithm in Listing 10-4.
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expModNaive(x, e, n) {
y =X
fori=1toe-1{
y=y *x modn
}

return y

}

Listing 10-4: A naive exponentiation algorithm in pseudocode

This algorithm is simple but highly inefficient. One way to get the same
result exponentially faster is to square rather than multiply exponents until
the correct value is reached. This family of methods is called square-and-
multiply, or exponentiation by squaring or binary exponentiation.

For example, say that we want to compute 3%°37 mod
36567232109354321. (The number 65537 is the public exponent used in
most RSA implementations.) We could multiply the number 3 by itself
65536 times, or we could approach this problem with the understanding that
65537 can be written as 2!6 + 1 and use a series of squaring operations.
Essentially, we do the following:

Initialize a variable, y = 3, and then compute the following squaring (y%)
operations:

Set y = y> mod 7 (now y = 3% mod 7).

Set y = y> mod 7 (now y = (3%)” mod # = 3* mod n).
Set y =y?> mod 7 (now y = 3%)? = 3% mod »).
2
2

Set y = y*> mod n (now y = (3%)? = 316 mod n).

vt AW N

. Sety = y> mod # (now y = (316)%= 332 mod »).

And so on until y = 39736 by performing 16 squarings.

To get the final result, we return 3 x y mod z» = 3% mod n =
26652909283612267. In other words, we compute the result with only 17
multiplications rather than 65536 with the naive method.

More generally, a square-and-multiply method works by scanning the
exponent’s bits one by one, from left to right, computing the square for each
exponent’s bit to double the exponent’s value, and multiplying by the
original number for each bit with a value of 1 encountered. In the preceding
example, the exponent 65537 is 10000000000000001 in binary, and we



squared y for each new bit and multiplied by the original number 3 only for
the very first and last bits.

Listing 10-5 shows how this would work as a general algorithm in
pseudocode to compute x° mod 7 when the exponent e consists of bits e, _
1€ — 2 --- €160, Where ¢ is the least significant bit.

expMod(x, e, n) {
y = X
for i=m-1to0 {
y=y*y modn
if eg == 1 then
y=y *x modn

}

return y

}

Listing 10-5: A fast exponentiation algorithm in pseudocode

The expMod() algorithm shown in Listing 10-5 runs in time O(mz), whereas

the naive algorithm runs in time O(2”), where = is the bit length of the
exponent. Here, O() is the asymptotic complexity notation introduced in

Chapter 9.

Real systems often implement variants of this simplest square-and-
multiply method. One such variant is the sliding window method, which
considers blocks of bits rather than individual bits to perform a given
multiplication operation. For example, see the function expnw() of the Go
language, whose source code is available at
https://golang.org/src/math/big/nat.go.

How secure are these square-and-multiply exponentiation algorithms?
Unfortunately, the tricks to speed the process up often result in increased
vulnerability against some attacks. Let’s see what can go wrong.

The weakness in these algorithms is due to the fact that the
exponentiation operations are heavily dependent on the exponent’s value.
The if operation shown in Listing 10-5 takes a different branch based on
whether an exponent’s bit is 0 or 1. If a bit is 1, an iteration of the for loop
will be slower than it will be for 0, and attackers who monitor the execution
time of the RSA operation can exploit this time difference to recover a
private exponent. This is called a timing attack. Attacks on hardware can
distinguish 1 bit from 0 bits by monitoring the device’s power consumption
and observing which iterations perform an extra multiplication to reveal
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which bits of the private exponent are 1.

Only a minority of cryptographic libraries implement effective defenses
against timing attacks, let alone against such power-analysis attacks.

Small Exponents for Faster Public-Key Operations

Because an RSA computation is essentially the computation of an
exponentiation, its performance depends on the value of the exponents used.
Smaller exponents require fewer multiplications and therefore can make the
exponentiation computation much faster.

The public exponent e can in principle be any value between 3 and ¢(n) —
1, as long as e and @(n) are co-prime. But in practice you’ll only find small
values of ¢, and most of the time e = 65537 due to concerns with encryption
and signature verification speed. For example, the Microsoft Windows
CryptoAPI only supports public exponents that fit in a 32-bit integer. The
larger the e, the slower it is to compute x¢ mod 7.

Unlike the size of the public exponent, the private exponent d will be
about as large as 7, making decryption much slower than encryption, and
signing much slower than verification. Indeed, because 4 is secret, it must be
unpredictable and therefore can’t be restricted to a small value. For example,
if e is fixed to 65537, the corresponding 4 will usually be of the same order of
magnitude as the modulus 7, which would be close to 2294 if » is 2048 bits
long.

As discussed in “Fast Exponentiation Algorithm: Square-and-Multiply” on
page 192, raising a number to the power 65537 will only take 17
multiplications, whereas raising a number to the power of some 2048-bit
number will take on the order of 3000 multiplications.

One way to determine the actual speed of RSA is to use the OpenSSL
toolkit. For example, Listing 10-6 shows the results of 512-, 1024-, 2048-,
and 4096-bit RSA operations on my MacBook, which is equipped with an
Intel Core 15-5257U clocked at 2.7 GHz.

$ openssl speed rsa512 rsal024 rsa2048 rsa4096

Doing 512 bit private rsa's for 10s: 161476 512 bit private RSA's in 9.59s
Doing 512 bit public rsa's for 10s: 1875805 512 bit public RSA's in 9.68s
Doing 1024 bit private rsa's for 10s: 51500 1024 bit private RSA's in 8.97s
Doing 1024 bit public rsa's for 10s: 715835 1024 bit public RSA's in 8.45s
Doing 2048 bit private rsa's for 10s: 13111 2048 bit private RSA's in 9.65s
Doing 2048 bit public rsa's for 10s: 288772 2048 bit public RSA's in 9.68s
Doing 4096 bit private rsa's for 10s: 1273 4096 bit private RSA's in 9.71s



Doing 4096 bit public rsa's for 10s: 63987 4096 bit public RSA's in 8.50s
OpenSSL 1.0.2g 1 Mar 2016
--snip--
sign verify sign/s verify/s
rsa 512 bits 0.000059s 0.000005s 16838.0 193781.5
rsa 1024 bits 0.000174s 0.000012s 5741.4 84714.2
rsa 2048 bits 0.000736s 0.000034s  1358.7 29831.8
rsa 4096 bits 0.007628s 0.000133s 131.1 7527.9

Listing 10-6: Benchmarks of RSA operations using the OpenSSL toolkit

How much slower is verification compared to signature generation? To
get an idea, we can compute the ratio of the verification time over signature
time. The benchmarks in Listing 10-6 show that I've got verification-over-
signature speed ratios of approximately 11.51, 14.75, 21.96, and 57.42 for
512-, 1024-, 2048-, and 4096-bit moduli sizes, respectively. The gap grows
with the modulus size because the number of multiplications for e operations
will remain constant with respect to the modulus size (for example, 17 when
e = 65537), while private-key operations will always need more
multiplications for a greater modulus because d will grow accordingly.

But if small exponents are so nice, why use 65537 and not something like
37 It would actually be fine (and faster) to use 3 as an exponent when
implementing RSA with a secure scheme such as OAEP, PSS, or FDH.
Cryptographers avoid doing so, however, because when ¢ = 3, less secure
schemes make certain types of mathematical attacks possible. The number
65537 is large enough to avoid such low-exponent attacks, and it has just one
instance in which a bit is 1, thanks to its low Hamming weight, which
decreases the computational time. 65537 is also special for mathematicians:
it’s the fourth Fermat number, or a number of the form

2 + 1

because it’s equal to 21¢ + 1, where 16 = 2%, but that’s just a curiosity mostly
irrelevant for cryptographic engineers.

The Chinese Remainder Theorem

The most common trick to speed up decryption and signature verification

(that is, the computation of y¢ mod #) is the Chinese remainder theorem (CRT).
It makes RSA about four times faster.

The Chinese remainder theorem allows for faster decryption by



computing two exponentiations, modulo p and modulo ¢, rather than simply
modulo 7. Because p and ¢ are much smaller than #, it’s faster to perform
two “small” exponentiations than a single “big” one.

The Chinese remainder theorem isn’t specific to RSA. It’s a general
arithmetic result that, in its simplest form, states that if # = 77,75 ... , where

the n;s are pairwise co-prime (that is, GCD(;, 7)) = 1 for any distinct 7 and y),
then the value x mod 7 can be computed from the values x mod 7, ¥ mod #,,
x mod 73, ... . For example, say we have » = 1155, which we write as the

product of prime factors 3 x 5 x 7 x 11. We want to determine the number x
that satisfiesx mod 3 =2, xmod 5 = 1, x mod 7 = 6, and x mod 11 = 8. (I’ve
chosen 2, 1, 6, and 8 arbitrarily.)

To find x using the Chinese remainder theorem, we can compute the sum
P(ny) + P(ny) + ... , where P(n,) is defined as follows:

P(n)) = (xmod n;) X n/n; x (1/(n/n;) mod n;) mod n

Note that the second term, #/n;, is equal to the product of all other factors
than this #;.
To apply this formula to our example and recover our ¥ mod 1155, we

take the arbitrary values 2, 1, 6, and 8; we compute P(3), P(5), P(7), and P(8);
and then we add them together to get the following expression:

2:><385:><(1/3851110(13)+1><231><(1/231mod5)+6 5
mod n
x 165 x (1/165 mod 7) + 8 x 106 x (1/105 moclll)

Here, I've just applied the preceding definition of P(,). (The math behind
the way each number was found is straightforward, but I won’t detail it
here.) This expression can then be reduced to [770 + 231 + 1980 + 1680]
mod 7 = 41, and indeed 41 is the number I had picked for this example, so
we’ve got the correct result.

Applying the CRT to RSA is simpler than the previous example, because
there are only two factors for each 7 (namely p and ¢). Given a ciphertext y to

decrypt, instead of computing y* mod 7, you use the CRT to compute Xy =y

mod p, where 5 = d mod (p - 1) and x, = y' mod ¢, where ¢ = d mod (¢ - 1).
You now combine these two expressions and compute « to be the following:



X =X, % q % (1/q mod p) + x, x p x (1/p mod q) mod n

And that’s it. This is faster than square-and-multiply because the
multiplication-heavy operations are carried out on modulo p and ¢, numbers
that are twice as small as 7.

In the final operation, the two numbers q x (1/q mod p) and p x (1/p mod q)
can be computed in advance, which means only two multiplications and an
addition of modulo n need to be computed to find x.

Unfortunately, there’s a security caveat attached to these techniques, as I’ll
discuss next.

How Things Can Go Wrong

Even more beautiful than the RSA scheme itself is the range of attacks that
work either because the implementation leaks (or can be made to leak)
information on its internals or because RSA is used insecurely. I discuss two
classic examples of these types of attacks in the sections that follow.

The Bellcore Attack on RSA-CRT

The Bellcore attack on RSA is one of the most important attacks in the
history of RSA. When first discovered in 1996, it stood out because it
exploited RSA’s vulnerability to fault injections—attacks that force a part of
the algorithm to misbehave and thus yield incorrect results. For example,
hardware circuits or embedded systems can be temporarily perturbed by
suddenly altering their voltage supply or by beaming a laser pulse to a
carefully chosen part of a chip. Attackers can then exploit the resulting faults
in an algorithm’s internal operation by observing the impact on the final
result. For example, comparing the correct result with a faulty one can
provide information on the algorithm’s internal values, including secret
values.

The Bellcore attack is such a fault attack. It works on RSA signature
schemes that use the Chinese remainder theorem and that are deterministic
—meaning that it works on FDH, but not on PSS, which is probabilistic.



To understand how the Bellcore attack works, recall from the previous
section that with CRT, the result that is equal to ¢ mod # is obtained by
computing the following, where x, = ' mod p and x, = y’ mod ¢:

X =X, % q % (1/q mod p) + x, x p x (1/p mod q) mod n

Now assume that an attacker induces a fault in the computation of x, so
that you end up with some incorrect value, which differs from the actual «,.

Let’s call this incorrect value xq' and call the final result obtained x". The

attacker can then subtract the incorrect signature x° from the correct
signature x to factor », which results in the following:

X =X = (x4~ x4) * p* (1/p mod q) mod n

The value v — x” is therefore a multiple of p, so p is a divisor of x — «".
Because p is also a divisor of 7, the greatest common divisor of 7 and x — &
yields p, GCD(x — «", ) = p. We can then compute ¢ = n/p and d, resulting in
a total break of RSA signatures.

A variant of this attack works when you don’t know the correct signature
but only know the message is signed. There’s also a similar fault attack on
the modulus value, rather than on the CRT values computation, but I won'’t
go into detail on that here.

Sharing Private Exponents or Moduli

Now I’ll show you why your public key shouldn’t have the same modulus 7
as that of someone else.

Different private keys belonging to different systems or persons should
obviously have different private exponents, d, even if the keys use different
moduli, or you could try your own value of d to decrypt messages encrypted
for other entities, until you hit one that shares the same d. By the same
token, different key pairs should have different » values, even if they have
different ds, because p and ¢ are usually part of the private key. Hence, if we
share the same 7 and thus the same p and ¢, I can compute your private key
from your public key ¢ using p and g.

What if my private key is simply the pair (n, d;), and your private key is (z,
d,) and your public key is (n, e;)? Say that I know 7 but not p and ¢, so I can’t



directly compute your private exponent 4, from your public exponent e,.

How would you compute p and ¢ from a private exponent d only? The
solution is a bit technical, but elegant.

Remember that d and e satisty ed = k@(n) + 1, where @(n) is secret and
could give us p and ¢ directly. We don’t know # or @(n), but we can compute
kQ(n) = ed — 1.

What can we do with this value k@Q(z)? A first observation is that,
according to Euler’s theorem, we know that for any number 4 co-prime with
n, a®® = 1 mod n. Therefore, modulo # we have the following:

ko) = (qoyk = 1k = 1

A second observation is that, because £Q(#) is an even number, we can
write it as 2°¢ for some numbers s and 7. That is, we’ll be able to write #¥9® =
1 mod » under the form x> = 1 mod » for some « easily computed from
k@(7). Such an «x is called a root of unity.

The key observation is that > = 1 mod # is equivalent to saying that the

value ¥2 — 1 = (x — 1)(x + 1) divides . In other words, x — 1 or x + 1 must have
a common factor with 7, which can give us the factorization of #.

Listing 10-7 shows a Python implementation of this method where, in
order to find the factors p and ¢ from 7 and 4, we use small, 64-bit numbers

for the sake of simplicity.

from math import gcd

36567232109354321
13771927877214701
15417970063428857

n

e
d

O kphi = d*e - 1
t = kphti

A while t % 2 == 0:
t = divmod(t, 2)[0]

®a=2
while a < 100:
Ok-=-t

while k < kphi:
x = pow(a, k, n)

® if x ! =1and x ! = (n - 1) and pow(x, 2, n) == 1:



® p = gcd(x - 1, n)

break
k = k*2
a=a+2
qa=n//p
@ assert (p*q) == n
pr?nt(’p ="', p)
print('q ="', q)

Listing 10-7: A python program that computes the prime factors p and q from the private exponent
d

This program determines k() from e and d ® by finding the number ¢
such that kQ(z) = 2°, for some s ®. Then it looks for # and % such that (#%)? =
1 mod n @, using  as a starting point for ¥ @. When this condition is
satisfied ®, we’ve found a solution. It then determines the factor p @ and

verifies @ that the value of pg equals the value of n. It then prints the
resulting values of p and ¢:

2046223079
17870599

p
q

The program correctly returns the two factors.

Further Reading

RSA deserves a book by itself. I had to omit many important and interesting
topics, such as Bleichenbacher’s padding oracle attack on OAEP’s
predecessor (the standard PKCS#1 v1.5), an attack similar in spirit to the
padding oracle attack on block ciphers seen in Chapter 4. There’s also
Wiener’s attack on RSA with low private exponents, and attacks using
Coppersmith’s method on RSA with small exponents that potentially also
have insecure padding.

To see research results related to side-channel attacks and defenses, view
the CHES workshop proceedings that have run since 1999 at
http://www.chesworkshop.org/. One of the most useful references while writing
this chapter was Boneh’s “Twenty Years of Attacks on the RSA
Cryptosystem,” a survey that reviews and explains the most important
attacks on RSA. For reference specifically on timing attacks, the paper
“Remote Timing Attacks Are Practical” by Brumley and Boneh, is a must-
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read, both for its analytical and experimental contributions. To learn more
about fault attacks, read the full version of the Bellcore attack paper “On the
Importance of Eliminating Errors in Cryptographic Computations” by
Boneh, DeMillo, and Lipton.

The best way to learn how RSA implementations work, though sometimes
painful and frustrating, is to review the source code of widely used
implementations. For example, see RSA and its underlying big-number
arithmetic implementations in OpenSSL, in NSS (the library used by the
Morzilla Firefox browser), in Crypto++, or in other popular software, and
examine their implementations of arithmetic operations as well as their
defenses against timing and fault attacks.



11
DIFFIE-HELLMAN

In November 1976, Stanford researchers Whitfield Diffie and Martin
Hellman published a research paper titled “New Directions in
Cryptography” that revolutionized cryptography forever. In their paper,
they introduced the notion of public-key encryption and signatures, though
they didn’t actually have any of those schemes; they simply had what they
termed a public-key distribution scheme, a protocol that allows two parties to
establish a shared secret by exchanging information visible to an
eavesdropper. This protocol is now known as the Diffie—Hellman (DH)
protocol.

Prior to Diffie-Hellman, establishing a shared secret required performing
tedious procedures such as manually exchanging sealed envelopes. Once
communicating parties have established a shared secret value with the DH
protocol, that secret can be used to establish a secure channel by turning the
secret into one or more symmetric keys that are then used to encrypt and
authenticate subsequent communication. The DH protocol—and its variants
—are therefore called key agreement protocols.

In the first part of this chapter, I review the mathematical foundations of
the Diffie-Hellman protocol, including the computational problems that
DH relies on to perform its magic. I then describe different versions of the
Diffie-Hellman protocol used to create secure channels in the second part of
this chapter. Finally, because Diffie-Hellman schemes are only secure when
their parameters are well chosen, I conclude the chapter by examining
scenarios where Diffie-Hellman can fail.

NOTE
Diffie and Hellman received the prestigious Turing Award in 2015 for their




invention of public-key cryptography and digital signatures, but others deserve
credit as well. In 1974, two years before the seminal Diffie—Hellman paper,
computer scientist Ralph Merkle introduced the idea of public-key cryptography
with what are now called Merkle’s puzzles. Around that same year, researchers
at GCHQ (Government Communications Headquarters), the British
equivalent of the NSA, had also discovered the principles bebind RSA and
Diffie—Hellman key agreement, though that fact would only be declassified
decades later.

The Diffie—Hellman Function

In order to understand DH key agreement protocols, you must first
understand their core operation, the DH function. The DH function will
usually work with groups denoted Zp*. Recall from Chapter 9 that these
groups are formed of nonzero integer numbers modulo a prime number,
denoted p. Another public parameter is the base number, g. All arithmetic
operations are performed modulo p.

The DH function involves two private values chosen randomly by the two
communicating parties from the group Zp*, denoted # and 4. A private value

 has a public value associated with A = g¢# mod p, or g raised to the power #
modulo p. This value is sent to the other party through a message that is
visible to eavesdroppers. The public value associated with & is B = g’ mod p,
or g raised to the power # modulo p, which is sent to the owner of # through
a publicly readable message.

DH works its magic by combining either public value with the other
private value, such that the result is the same in both cases: A% = (¢%)! = g*
and B “ = (g)* = gﬁ” = g”b. The resulting value, g, is the shared secret; it is
then passed to a key derivation function (KDF) in order to generate one or
more shared symmetric keys. A KDF is a kind of hash function that will
return a random-looking string the size of the desired key length.

And that’s it. Like many great scientific discoveries (gravity, relativity,
quantum computing, or RSA), the Diffie-Hellman trick is terribly simple in
hindsight.

Diffie-Hellman’s simplicity can be deceiving, however. For one thing, it
won’t work with just any prime p or base number g. For example, some



values of g will restrict the shared secrets g’ to a small subset of possible
values, whereas you’d expect to have about as many possible values as
elements in Zp*, and therefore as many possible values for the shared secret.

To ensure the highest security, safe DH parameters should work with a
prime p such that (p — 1) / 2 is also prime. Such a safe prime guarantees that
the group doesn’t have small subgroups that would make DH easier to
break. With a safe prime, DH can notably work with g = 2, which makes
computations slightly faster. But generating a safe prime p takes more time
than generating a totally random prime.

For example, the dhparam command of the OpenSSL toolkit will only
generate safe DH parameters, but the extra checks built into the algorithm
result increase the execution time considerably, as shown in Listing 11-1.

$ time openssl dhparam 2048

Generating DH parameters, 2048 bit long safe prime, generator 2
This is going to take a long time

--snip--

----- BEGIN DH PARAMETERS-----
MIIBCAKCAQEA0SIbyA9e844q7V89rcoEV8vd/12svwhIIjGIEPWWWr7FkfYhYkU9
fRNttmi11GCTfxc9EDf+4dzw+AbRBc600L9gxUoPn0d1/G/YDYgyplF5M3xeswqea
SD+B7628pWTaCZGKZham7vmiN8azGeaYAucckTkjVWceHVIVXe5fvU74k7+C2wKk
11yMFm8th2zm9W/shiKNV2+SsHtD6r372C2/hfu7Xd0I41T61se83YicU/cRaDmK6
zgBKn3S1CjwL4M3+m1J+VhOUFz /nWTJ1IWAVC+aolLK8upgRgApOgHkVqzP /CgwBw
XAOE8NncQqroJlOmUSB5eLqfpAvyBWpkrwQwIBAg==

----- END DH PARAMETERS-----

openssl dhparam 2048 154.53s user 0.86s system 99% cpu 2:36.85 total

Listing 11-1: Measuring the execution time of generating 2048-bit Diffie-Hellman parameters with
the OpenSSL toolkit

As you can see in Listing 11-1, it took 154.53 seconds to generate the DH
parameters using the OpenSSL toolkit. Now, for the sake of comparison,
Listing 11-2 shows how long it takes on the same system to generate RSA

parameters of the same size (that is, two prime numbers, p and ¢, each halt
the size of the p used for DH).

$ time openssl genrsa 2048
Generating RSA private key, 2048 bit long modulus

e i1s 65537 (0x10001)

----- BEGIN RSA PRIVATE KEY-----

--snip--

----- END RSA PRIVATE KEY-----

openssl genrsa 2048 0.16s user 0.01s system 95% cpu 0.171 total




Listing 11-2: Generating 2048-bit RSA parameters while measuring the execution time

Generating DH parameters took about 1000 times longer than generating
RSA parameters of the same security level, mainly due to the extra constraint
imposed on the prime generated to create DH parameters.

The Diffie—Hellman Problems

The security of DH protocols relies on the hardness of computational
problems, especially on that of the discrete logarithm problem (DLP)
introduced in Chapter 9. Clearly, DH can be broken by recovering the
private value # from its public value g, which boils down to solving a DLP
instance. But we don’t care only about the discrete logarithm problem when
using DH to compute shared secrets. We also care about two DH-specific
problems, as explained next.

The Computational Diffie—Hellman Problem

The computational Diffie—Hellman (CDH) problem is that of computing the

shared secret g given only the public values ¢ and ¢, and not any of the
secret values # or b. The motivation is obviously to ensure that even if an
eavesdropper captures g and g%, they should not be able to determine the
shared secret g

If you can solve DLP, then you can also solve CDH; to put it simply, if
you can solve DLP, then given g” and g”, you’ll be able to derive # and & to
compute g”. In other words, DLP is at least as hard as CDH. But we don’t
know for sure whether CDH is at least as hard as DLP, which would make
the problems equally hard. In other words, DLP is to CDH what the
factoring problem is to the RSA problem. (Recall that factoring allows you
to solve the RSA problem, but not necessarily the converse.)

Diffie-Hellman shares another similarity with RSA in that DH will deliver
the same security level as RSA for a given modulus size. For example, the
DH protocol with a 2048-bit prime p will get you about the same security
that RSA with a 2048-bit modulus 7 offers, which is about 90 bits. Indeed,
the fastest way we know to break CDH is to solve DLP using an algorithm
called the number field sieve, a method similar but not identical to the fastest
one that breaks RSA by factoring its modulus: the general number field sieve

(GNFS).



The Decisional Diffie—Hellman Problem

Sometimes we need something stronger than CDH’s hardness assumption.
For example, imagine that an attacker can compute the first 32 bits of g

given the 2048-bit values of g% and g%, but that they can’t compute all 2048
bits. Although CDH would still be unbroken because 32 bits aren’t enough

to completely recover g”, the attacker would still have learned something
about the shared secret, which might still allow them to compromise an
application’s security.

To ensure that an attacker can’t learn anything about the shared secret g,
this value needs only to be indistinguishable from a random group element,
just as an encryption scheme is secure when ciphertexts are indistinguishable
from random strings. The computational problem formalizing this intuition

is called the decisional Diffie~Hellman (DDH) problem. Given g“, ¢/, and a

value that is either g? or g* for some random ¢ (each of the two with a chance
of 1/2), the DDH problem consists of determining whether g’ (the shared
secret corresponding to g” and g’) was chosen. The assumption that no
attacker can solve DDH efficiently is called the decisional Diffie—Hellman
assumption.

If DDH is hard, then CDH is also hard, and you can’t learn anything
about g”. But if you can solve CDH, you can also solve DDH: given a triplet

(g”, &, ¢, you would be able to derive g’ from g and g” and check whether

the result is equal to the given g The bottom line is that DDH is
fundamentally less hard than CDH, yet DDH hardness is a prime
assumption in cryptography, and one of the most studied. We can be

confident that both CDH and DDH are hard when Diffie-Hellman
parameters are well chosen.

More Diffie-Hellman Problems

Sometimes cryptographers devise new schemes and prove that they are at
least as hard to break as it is to solve some problem related to CDH or DDH
but not identical to either of these. Ideally, we’d like to demonstrate that
breaking a cryptosystem is as hard as solving CDH or DDH, but this isn’t
always possible with advanced cryptographic mechanisms, typically because
such schemes involve more complex operations than basic Diffie-Hellman
protocols.



For example, in one DH-like problem, given g, an attacker would attempt

1/a

to compute g%, where 1/4 is the inverse of # in the group (typically Zp* for

some prime p). In another, an attacker might distinguish the pairs (g”, g’)
from the pairs (g, g'’%) for random # and 4. Finally, in what is called the twin
Diffie—Hellman problem, given g, g]’, and g, an attacker would attempt to

compute the two values g” and g“. Sometimes such DH variants turn out to
be as hard as CDH or DDH, and sometimes they’re fundamentally easier—
and therefore provide lower security guarantees. As an exercise, try to find
connections between the hardness of these problems and that of CDH and
DDH. (T'win Diffie-Hellman is actually as hard as CDH, but that isn’t easy

to prove!)

Key Agreement Protocols

The Diffie-Hellman problem is designed to build secure key agreement
protocols—protocols designed to secure communication between two or
more parties communicating over a network with the aid of a shared secret.
This secret is turned into one or more session keys—symmetric keys used to
encrypt and authenticate the information exchanged for the duration of the
session. But before studying actual DH protocols, you should know what
makes a key agreement protocol secure or insecure, and how simpler
protocols work. We’ll begin our discussion with a widely used key
agreement protocol that doesn’t rely on DH.

An Example of Non-DH Key Agreement

To give you a sense of how a key agreement protocol works and what it
means for it to be secure, let’s look at the protocol used in the 3G and 4G
telecommunications standards to establish communication between a SIM
card and a telecom operator. The protocol is often referred to as AKA, for
authenticated key agreement. It doesn’t use the Diffie—-Hellman function, but
instead uses only symmetric-key operations. The details are a bit boring, but
essentially the protocol works as shown in Figure 11-1.



Operator Messages visible SIM card
(knows the SIM’s key, K) to an attacker (holds a secret key, K)

Pick a random value, R.

'

Compute the two values: :
Using R, compute SK = PRFO (K, R)
5K = PRFO K, R Send Rand V.. .
o {[K’ R]] —~| SendRand Vi [ "ond verify that V, = PRF1 (K, R).

Y

Verify that V,, = PRF2 (K, R). f«¢—— Send V. |««———— Compute V, = PRF2 (K, R).

'

Enable communications
using keys SK.

Figure 11-1: The authenticated key agreement protocol in 3G and 4G telecommunication

In this implementation of the protocol, the SIM card has a secret key, K,
that the operator knows. The operator begins the session by selecting a
random value, R, and then computes two values, SK and }/}, based on two
pseudorandom functions, PRF0 and PRF1. Next, the operator sends a
message to the SIM card containing the values R and 1/}, which are visible to
attackers. Once the SIM card has R, it has what it needs in order to compute
SK with PRFO, and it does so. The two parties in this session end up with a
shared key, SK, that attackers are unable to determine by simply looking at
the messages exchanged between the parties, or even by modifying them or
injecting new ones. The SIM card verifies that it’s talking to the operator by
recomputing V; with PRF1, K, and R, and then checking to make sure that
the calculated /| matches the V| sent by the operator. The SIM card then
computes a verification value, V5, with a new function, PRF2, with K and R
as input, and sends V; to the operator. The operator verifies that the SIM
card knows K by computing V), and checking that the computed value
matches the 1, it received.

But this protocol is not immune to all kinds of attacks: in principle there’s
a way to fool the SIM card with a replay attack. Essentially, if an attacker
captures a pair (R, V}), they may send it to the SIM card and trick the SIM

into believing that the pair came from a legitimate operator that knows K.
To prevent this attack, the protocol includes additional checks to ensure that



the same R isn’t reused.

Problems can also arise if K is compromised. For example, an attacker who
compromises K can perform a man-in-the-middle attack and listen to all
cleartext communication. Such an attacker could send messages between the
two parties while pretending to be both the legitimate SIM card operator
and the SIM card. The greater risk is that an attacker can record
communications and any messages exchanged during the key agreement, and
later decrypt those communications by using the captured R values. An
attacker could then determine the past session keys and use them to decrypt
the recorded traffic.

Attack Models for Key Agreement Protocols

There is no single definition of security for key agreement protocols, and
you can never say that a key protocol is completely secure without context
and without considering the attack model and the security goals. You can,
for example, argue that the previous 3G/4G protocol is secure because a
passive attacker won’t find the session keys, but you could also argue that it’s
insecure because once the key K leaks, then all previous and future
communications are compromised.

There are different notions of security in key agreement protocols as well
as three main attack models that depend on the information the protocol
leaks. From weakest to strongest, these are the eazvesdropper, the data leak, and
the breach:

The eavesdropper This attacker observes the messages exchanged
between the two legitimate parties running a key agreement protocol and
can record, modify, drop, or inject messages. To protect against an
eavesdropper, a key agreement protocol must not leak any information on
the shared secret established.

The data leak In this model, the attacker acquires the session key and all
temporary secrets (such as SK in the telecom protocol example discussed
previously) from one or more executions of the protocol, but not the
long-term secrets (like K in that same protocol).

The breach (or corruption) In this model, the attacker learns the long-
term key of one or more of the parties. Once a breach occurs, security is
no longer attainable because the attacker can impersonate one or both



parties in subsequent sessions of the protocol. Nonetheless, the attacker
shouldn’t be able to recover secrets from sessions executed before
gathering the key.

Now that we’ve looked at the attack models and seen what an attacker can
do, let’s explore the security goals—that is, the security guarantees that the
protocol should offer. A key agreement protocol can be designed to satisfy
several security goals. The four most relevant ones are described here, in
order from simplest to most sophisticated.

Authentication Each party should be able to authenticate the other party.
That is, the protocol should allow for mutual authentication. Authenticated
key agreement (AKA) occurs when a protocol authenticates both parties.

Key control Neither party should be able to choose the final shared
secret or coerce it to be in a specific subset. The 3G/4G key agreement
protocol discussed earlier lacks this property because the operator chooses
the value for R that entirely determines the final shared key.

Forward secrecy This is the assurance that even if all long-term secrets
are exposed, shared secrets from previous executions of the protocol won’t
be able to be computed, even if an attacker records all previous executions
or is able to inject or modify messages from previous executions. A
forward-secret protocol guarantees that even if you have to deliver your
devices and their secrets to some authority or other, they won’t be able to
decrypt your prior encrypted communications. (The 3G/4G key
agreement protocol doesn’t provide forward secrecy.)

Resistance to key-compromise impersonation (KCI) KCI occurs
when an attacker compromises a party’s long-term key and is able to use it
to impersonate another party. For example, the 3G/4G key agreement
protocol allows trivial key-compromise impersonation because both
parties share the same key K. A key agreement protocol should ideally
prevent this kind of attack.

Performance

To be useful, a key agreement protocol should be not only secure but also
efficient. Several factors should be taken into account when considering a
key agreement protocol’s efficiency, including the number of messages
exchanged, the length and number of messages, the computational effort to



implement the protocol, and whether precomputations can be made to save
time. A protocol is generally more efficient if fewer, shorter messages are
exchanged, and it’s best if interactivity is kept minimal so that neither party
has to wait to receive a message before sending the next one. A common
measure of a protocol’s efficiency is its duration in terms of round trips, or
the time it takes to send a message and receive a response.

Round-trip time is usually the main cause of latency in protocols, but the
amount of computation to be carried out also counts; the fewer the
computations required the better, and the more precomputations that can be
done in advance, the better.

For example, the 3G/4G key agreement protocol discussed earlier
exchanges two messages of a few hundred bits each, which must be sent in a
certain order. Pre-computation can be used with this protocol to save time
since the operator can pick many values of R in advance; precompute the
matching values of SK, V|, and V; and store them all in a database. In this

case, precomputation has the advantage of reducing the exposure of the
long-term key.

Diffie—Hellman Protocols

The Diffie-Hellman function is the core of most of the deployed public-key
agreement protocols. However, there is no single Diffie-Hellman protocol,
but rather a variety of ways to use the DH function in order to establish a
shared secret. We’ll review three of those protocols in the sections that
follow. In each discussion, I’ll stick to the usual crypto placeholder names
and call the two parties Alice and Bob, and the attacker Eve. I'll write g as
the basis of the group used for arithmetic operations, a value fixed and
known in advance to Alice and Bob.

Anonymous Diffie-Hellman

Anonymous Diffie—Hellman is the simplest of the Diffie-Hellman protocols.
It’s called anonymous because it’s not authenticated; the participants have no
identity that can be verified by either party, and neither party holds a long-
term key. Alice can’t prove to Bob that she’s Alice, and vice versa.

In anonymous Diffie-Hellman, each party picks a random value (2 for
Alice and 4 for Bob) to use as a private key, and sends the corresponding
public key to the other peer. Figure 11-2 shows the process in a bit more



detail.

Alice

Pick a random
exponent a.

'

Messages visible
to an attacker

Set A = g°.

o

Send A.

Bob

Pick a random
exponent b.

Compute B° = [gb)]° = g = g°b.

-

Send B.

Figure 11-2: The anonymous Diffie-Hellman protocol

|

Compute AP = [g°ff = g=t.

-——1 SetB =g

'

As you can see, Alice uses her exponent # and the group basis g to compute
A = g, which she sends to Bob. Bob receives A4 and computes A%, which is

equal to (¢?)’. Bob now obtains the value g”’ and computes B from his
random exponent b and the value g. He then sends B to Alice and she uses it
to compute g”. Alice and Bob end up with the same value, g, after
performing similar operations, which involve raising both g and the value
received to their private exponent’s power. Pure, simple, but only secure
against the laziest of attackers.

Anonymous DH can be taken down with a man-in-the-middle attack. An
eavesdropper simply needs to intercept messages and pretend to be Bob (to
Alice) and pretend to be Alice (to Bob), as shown in Figure 11-3.



Alice Attacker Eve Bob

Pick a random Pick a random
exponent a. exponent b.
Set A = g°. > Drop A.
Pick a random Believes he received
exponent c. —- C from Alice.
Send C = g° fo Bob. Compute C? = [g¢)b = gt=.

Drop B. +
Compute Bc = gt*, SetB=g".

'

Pick a random

td.
Conpoe 0= FF =1+ compue ke

Send D = g to Alice.

Figure 11-3: A man-in-the-middle attack on the anonymous Diffie-Hellman protocol

As in the previous exchange, Alice and Bob pick random exponents, # and
b. Alice now computes and sends A, but Eve intercepts and drops the

message. Eve then picks a random exponent, ¢, and computes C = g° to send
to Bob. Because this protocol has no authentication, Bob believes he is

receiving C from Alice and goes on to compute g”*. Bob then computes B
and sends that value to Alice, but Eve intercepts and drops the message

again. Eve now computes g, picks a new exponent, d, computes g%,
computes D from g, and sends D to Alice. Alice then computes g as well.

As a result of this attack, the attacker Eve ends up sharing a secret with
Alice (g“%) and another secret with Bob (¢%), though Alice and Bob believe
that they’re sharing a single secret with each other. After completing the
protocol execution, Alice will derive symmetric keys from g in order to
encrypt data sent to Bob, but Eve will intercept the encrypted messages,
decrypt them, and re-encrypt them to Bob using another set of keys derived
from g?—after potentially modifying the cleartext. All of this happens with
Alice and Bob unaware. That is, they’re doomed.



To foil this attack, you need a way to authenticate the parties so that Alice
can prove that she’s the real Alice and Bob can prove that he’s the real Bob.
Fortunately, there is a way to do so.

Authenticated Diffie—Hellman

Authenticated Diffie—Hellman was developed to address the sort of man-in-
the-middle attacks that can affect anonymous DH. Authenticated DH equips
the two parties with both a private and a public key, thereby allowing Alice
and Bob to sign their messages in order to stop Eve from sending messages
on their behalf. Here, the signatures aren’t computed with a DH function,
but a public-key signature scheme such as RSA-PSS. As a result, in order to
successfully send messages on behalf of Alice, an attacker would need to
forge a valid signature, which is impossible with a secure signature scheme.

Figure 11-4 shows how authenticated DH works.

Alice (priv,, pub,) Messages visible Bob (priv,, pub,)
Pick @ random feikve Pick a random
exponent a. exponent b.
Sef A+= 7 Verify sig, vsing pub,.

ooy o i ——={ Send A and sig,. || Abort if the signature is invalid.
Set sig, = sign(priv,, A). Compute A = (g7 = g*.

'

Verify sig, using pub,. Set B = g*
Abort if the signature is invalid. |a— Send B and sig,. |-e— Set siq. = si _n { s B
Compute B = (gt)° = g = g*. G =P 7

Figure 11-4: The authenticated Diffie-Hellman protocol

The Alice (priv,, pubp) label on the first line means that Alice holds her
own private key, priv 4, as well as Bob’s public key, pubp. This sort of priv/pub

key pair is called a Jong-term key because it’s fixed in advance and remains
constant through consecutive runs of the protocol. Of course, these long-
term private keys should be kept secret, while the public keys are considered
to be known to an attacker.

Alice and Bob begin by picking random exponents, # and b, as in
anonymous DH. Alice then calculates 4 and a signature sig, based on a

combination of her signing function sign, her private key priv4, and 4. Now



Alice sends A and sig, to Bob, who verifies sig, with her public key pub 4. If
the signature is invalid, Bob knows that the message didn’t come from Alice,

and he discards A.

If the signature is correct, Bob will compute g’ from 4 and his random
exponent 4. He would then compute B and his own signature from a
combination of the sign function, his private key privg, and B. Now he sends

B and sigp to Alice, who attempts to verify sigp with Bob’s public key pubp.
Alice will only compute g” if Bob’s signature is successfully verified.

Security Against Eavesdroppers

Authenticated DH is secure against eavesdroppers because attackers can’t
learn any bit of information on the shared secret g since they ignore the
DH exponents. Authenticated DH also provides forward secrecy: even if an
attacker corrupts any of the parties at some point, as in the breach attack
model discussed earlier, they would learn the private signing keys but not
any of the ephemeral DH exponents; hence, they’d be unable to learn the
value of any previously shared secrets.

Authenticated DH also prevents any party from controlling the value of
the shared secret. Alice can’t craft a special value of # in order to predict the
value of g because she doesn’t control 4, which influences g’ as much as #
does. (One exception would be if Alice were to choose # = 0, in which case
we’d have g = 1 for any 4. But 0 isn’t an authorized value and should be
rejected by the protocol.)

That said, authenticated DH isn’t secure against all types of attack. For
one thing, Eve can record previous values of A and sig4 and replay them later
to Bob, in order to pretend to be Alice. Bob will then believe that he’s
sharing a secret with Alice when he isn’t, even though Eve would not be able
to learn that secret. This risk is eliminated in practice by adding a procedure
called key confirmation, wherein Alice and Bob prove to each other that they
own the shared secret. For example, Alice and Bob may perform key

confirmation by sending respectively Hash(pub 4 | | pubp, g"*) and Hash(puby
|| pub 4, ¢°) for some hash function Hash; when Bob receives Hash(pub | |

pubg, ¢"") and Alice receives Hash(puby |1 pub,, g*), both can verify the
correctness of these hash values using pub,, pubp, and g”. The different



order of public keys (pub, || pubp and puby || pub,) ensures that Alice and

Bob will send different values, and that an attacker can’t pretend to be Alice
by copying Bob’s hash value.

Security Against Data Leaks

Authenticated DH’s vulnerability to data leak attackers is of greater concern.
In this type of attack, the attacker learns the value of ephemeral, short-term
secrets (namely, the exponents # and /) and uses that information to
impersonate one of the communicating parties. If Eve is able to learn the
value of an exponent # along with the matching values of A and sig, sent to
Bob, she could initiate a new execution of the protocol and impersonate
Alice, as shown in Figure 11-5.

Attacker Eve (a, A, sig,, pub,) Bob (priv,, pub,)
Pick a random

exponent b.

Verify sig, using pub,.
—=| Send A and sig,. |- Abort if the signature is invalid.
Compute AP = (g°)b = g**.

|

L e o SO o Set B= g"
Abort if the signature is invalid. |-— Sen and sig,. |-a— Set sig, = sign(priv, B).

Compute B° = [gP) = gt = g*.

Figure 11-5: An impersonation attack on the authenticated Diffie—Hellman protocol

In this attack scenario, Eve learns the value of an # and replays the
corresponding A and its signature sig 4, pretending to be Alice. Bob verifies

the signature and computes g’ from A4 and sends B and sigg, which Eve then
uses to compute g”, using the stolen #. This results in the two having a
shared secret. Bob now believes he is talking to Alice.

One way to make authenticated DH secure against the leak of ephemeral
secrets is to integrate the long-term keys into the shared secret computation
so that the shared secret can’t be determined without knowing the long-term
secret.

Menezes—Qu-Vanstone (MQV)



The Menezes—Qu—Vanstone (MQV) protocol is a milestone in the history of
DH-based protocols. Designed in 1998, MQV had been approved to protect
most critical assets when the NSA included it in its Suite B, a portfolio of
algorithms designed to protect classified information. (NSA eventually
dropped MQV, allegedly because it wasn’t used. I’ll discuss the reasons why
in a bit.)

MQV is Diffie-Hellman on steroids. It’s more secure than authenticated
DH, and it improves on authenticated DH’s performance properties. In
particular, MQV allows users to send only two messages, independently of
each other, in arbitrary order. Other benefits are that users can send shorter
messages than they would be able to with authenticated DH, and they don’t
need to send explicit signature or verification messages. In other words, you
don’t need to use a signature scheme in addition to the Diffie-Hellman
function.

As with authenticated DH, in MQV Alice and Bob each hold a long-term
private key as well as the long-term public key of the other party. The
difference is that the MQV keys aren’t signing keys: the keys used in MQV

are composed of a private exponent, x, and a public value, g*. Figure 11-6
shows the operation of the MQV protocol.

Alice (x, Y = gv) Messages visible Bob [y, X = g
Pick a random o Pick a random
exponent a. exponent b.

Set A = g°. |————{ Send A. >( Set B = g*.
Compute (B x YB)o+x4, |-¢—— Send B. Compute [A x YA)b+y8,

Figure 11-6: The MQV protocol

The x and y in Figure 11-6 are Alice and Bob’s respective long-term
private keys, and X and " are their public keys. Bob and Alice start out with
their own private keys and each other’s public keys, which are g to the power
of a private key. Each chooses a random exponent, and then Alice calculates
A and sends it to Bob. Bob then calculates B and sends it to Alice. Once Alice
gets Bob’s ephemeral public key B, she combines it with her long-term



private key x, her ephemeral private key #, and Bob’s long-term public key ¥

by calculating the result of (B x Y?)@ *+ *0) a5 defined in Figure 11-6.
Developing this expression, we obtain the following:

(B x YB)(G +xA) = (gb X (gy)B)(a +xA) = (gb +yB)(a +xA) = g(b +yB)(a + xA)

Meanwhile, Bob calculates the result of (4 x X?)¢ *¥B and we can verify
that it’s equal to the value calculated by Alice:

(A x XA YB) = (g x (g*)A)b+YB) = (ga+ XA)b +yB) = gla+xA)b+yB) = g(b-+yB)(a+
xA)

As you can see, we get the same value for both Alice and Bob, namely g@ +
yB)@+x4) This tells us that Alice and Bob share the same secret.

Unlike authenticated DH, MQV can’t be broken by a mere leak of the
ephemeral secrets. Knowledge of # or b won’t let an attacker determine the
final shared secret because they would need the long-term private keys to
compute it.

What happens in the strongest attack model, the breach model, where a
long-term key is compromised? If Eve compromises Alice’s long-term
private key x, the previously established shared secrets are safe because their
computation also involved Alice’s ephemeral private keys.

However, MQV doesn’t provide perfect forward secrecy because of the
following attack. Say, for example, that Eve intercepts Alice’s A message and
replaces it with her A4 = g” for some # that Eve has chosen. In the meantime,
Bob sends B to Alice (and Eve records B’s value) and computes the shared
key. If Eve later compromises Alice’s long-term private key x, she can
determine the key that Bob had computed during this session. This breaks
forward secrecy, since Eve has now recovered the shared secret of a previous
execution of the protocol. In practice, however, the risk can be eliminated by
a key-confirmation step that would have Alice and Bob realize that they
don’t share the same key, and they would therefore abort the protocol before
deriving any session keys.

Despite its elegance and security, MQV is rarely used in practice. One
reason is because it used to be encumbered by patents, which hampered its
widespread adoption. Another reason is that it’s harder than it looks to get
MQV right in practice. In fact, when weighed against its increased



complexity, MQV’s security benefits are often perceived as low in
comparison to the simpler authenticated DH.

How Things Can Go Wrong

Diffie-Hellman protocols can fail spectacularly in a variety of ways. I
highlight some of the most common ones in the next sections.

Not Hashing the Shared Secret

I’ve alluded to the fact that the shared secret that concludes a DH session
exchange (g in our examples) is taken as input to derive session keys but is
not a key itself. And it shouldn’t be. A symmetric key should look random,
and each bit should either be 0 or 1 with the same probability. But g? is not
a random string; it’s a random element within some mathematical group
whose bits may be biased toward 0 or 1. And a random group element is
different from a random string of bits.

Imagine, for example, that we’re working within the multiplicative group
Z,; ={1,2,3, ..., 12} using g = 2 as a generator of the group, meaning that
g’ spans all values of Z;3 foriin 1,2, ... 12: g =2, ¢> =4, ¢* =8, ¢* = 13, and
so on. If ¢’s exponent is random, you’ll get a random element of Z,3, but the
encoding of a Z3 element as a 4-bit string won’t be uniformly random: not

all bits will have the same probability of being a 0 or a 1. In Z;3, seven

values have 0 as their most significant bit (the numbers from 1 to 7 in the
group), but only five have 1 as their most significant bit (from 8 to 12). That
is, this bit is 0 with probability 7 / 12 = 0.58, whereas, ideally, a random bit

should be 0 with probability 0.5. Moreover, the 4-bit sequences 1101, 1110,
and 1111 will never appear.

To avoid such biases in the session keys derived from a DH shared secret,
you should use a cryptographic hash function such as BLAKE2 or SHA-3—
or, better yet, a key derivation function (KDF). An example of KDF
construction is HKDF, or HMAC-based KDF (as specified in RFC 5869),
but today BLAKE2 and SHA-3 feature dedicated modes to behave as KDFs.

Legacy Diffie-Hellman in TLS
The TLS protocol is the security behind HTTPS secure websites as well as



the secure mail transfer protocol (SMTP). TLS takes several parameters,
including the type of Diffie-Hellman protocol it will use, though most 'TLS
implementations still support anonymous DH for legacy reasons, despite its
insecurity.

Unsafe Group Parameters

In January 2016, the maintainers of the OpenSSL toolkit fixed a high-
severity vulnerability (CVE-2016-0701) that allowed an attacker to exploit
unsafe Diffie-Hellman parameters. The root cause of the vulnerability was
that OpenSSL allowed users to work with unsafe DH group parameters
(namely, an unsafe prime p) instead of throwing an error and aborting the
protocol altogether before performing any arithmetic operation.

Essentially, OpenSSL accepted a prime number p whose multiplicative
group Zp* (where all DH operations happen) contained small subgroups. As
you learned at the beginning of this chapter, the existence of small
subgroups within a larger group in a cryptographic protocol is bad because it
confines shared secrets to a much smaller set of possible values than if it were
to use the whole group Zp*. Worse still, an attacker can craft a DH exponent

x that, when combined with the victim’s public key g, will reveal
information on the private key y and eventually its entirety.

Although the actual vulnerability is from 2016, the principle the attack
used dates back to the 1997 paper “A Key Recovery Attack on Discrete Log-
based Schemes Using a Prime Order Subgroup” by Lim and Lee. The fix for
the vulnerability is simple: when accepting a prime p as group modulus, the
protocol must check that p is a safe prime by verifying that (p — 1) / 2 is
prime as well in order to ensure that the group Zp* won’t have small
subgroups, and that an attack on this vulnerability will fail.

Further Reading

Here’s a rundown of some things that I didn’t cover in this chapter but are
useful to learn about.

You can dig deeper into the DH key agreement protocols by reading a
number of standards and official publications, including ANSI X9.42, RFC
2631 and RFC 5114, IEEE 1363, and NIST SP 800-56A. These serve as

references to ensure interoperability, and to provide recommendations for



group parameters.

To learn more about advanced DH protocols (such as MQV and its
cousins HMQV and OAKE, among others) and their security notions (such
as unknown-key share attacks and group representation attacks), read the
2005 article “HMQV: A High-Performance Secure Diffie-Hellman
Protocol” by Hugo Krawczyk (bttps://eprint.iacr.org/2005/176/) and the 2011
article “A New Family of Implicitly Authenticated Diffie-Hellman
Protocols” by by Andrew C. Yao and Yunlei Zhao
(https://eprint.iacr.org/2011/035/). You’ll notice in these articles that Diffie—
Hellman operations are expressed differently than in this chapter. For

example, instead of g% you’ll find the shared secret represented as «xP.
Generally, you’ll find multiplication replaced with addition and
exponentiation replaced with multiplication. The reason is that those
protocols are usually not defined over groups of integers, but over elliptic
curves, as discussed in Chapter 12.
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12
ELLIPTIC CURVES

The introduction of elliptic curve cryprography (ECC) in 1985 revolutionized
the way we do public-key cryptography. ECC is more powerful and efficient

than alternatives like RSA and classical Diffie-Hellman (ECC with a 256-bit
key is stronger than RSA with a 4096-bit key), but it’s also more complex.

Like RSA, ECC multiplies large numbers, but unlike RSA it does so in
order to combine points on a mathematical curve, called an elliptic curve
(which has nothing to do with an ellipse, by the way). To complicate
matters, there are many different types of elliptic curves—simple and
sophisticated ones, efficient and inefficient ones, and secure and insecure
ones.

Although first introduced in 1985, ECC wasn’t adopted by standardization
bodies until the early 2000s, and it wasn’t seen in major toolkits until much
later: OpenSSL added ECC in 2005, and the OpenSSH secure connectivity
tool waited until 2011. But modern systems have few reasons not to use
ECC, and you’ll find it used in Bitcoin and many security components in
Apple devices. Indeed, elliptic curves allow you to perform common public-
key cryptography operations such as encryption, signature, and key
agreement faster than their classical counterparts. Most cryptographic
applications that rely on the discrete logarithm problem (DLP) will also
work when based on its elliptic curve counterpart, ECDLP, with one notable
exception: the Secure Remote Password (SRP) protocol.

"This chapter focuses on applications of ECC and discusses why you would
use ECC rather than RSA or classical Diffie-Hellman, as well as how to
choose the right elliptic curve for your application.

What Is an Elliptic Curve?



An elliptic curve is a curve on a plane—a group of points with x and y
coordinates. A curve’s equation defines all the points that belong to that
curve. For example, the curve y = 3 is a horizontal line with the vertical
coordinate 3, curves of the form y = ax + b with fixed numbers # and 4 are

straight lines, &? + y?> = 1 is a circle of radius 1 centered on the origin, and so
on. Whatever the type of curve, the points on a curve are all (x, y) pairs that
satisfy the curve’s equation.

An elliptic curve as used in cryptography is typically a curve whose

equation is of the form y? = &% + ax + b (known as the Weierstrass form), where
the constants # and 4 define the shape of the curve. For example, Figure 12-1

shows the elliptic curve that satisfies the equation y* = x° — 4x.

-3 -2 -1 0 1 2 3 4

Figure 12-1: An elliptic curve with the equation y2 =3 - 4x, shown over the real numbers

In this chapter, I focus on the simplest, most common type of elliptic curves—




namely, those with an equation that looks like y* = x> + ax + b—but there are

types of elliptic curves with equations in other forms. For example, Edwards
curves are elliptic curves whose equation is of the form x> + y* = 1 + dx’y’.

Edwards curves are sometimes used in cryptography (for example, in the
Ed25519 scheme).

Figure 12-1 shows all the points that make up the curve for x between -3
and 4, be they points on the left side of the curve, which looks like a circle,
or on the right side, which looks like a parabola. All these points have (x, y)
coordinates that satisfy the curve’s equation y?> = x° — 4x. For example, when
x =0, then y> = 2% —4x = 0> =4 x 0 = 0; hence, y = 0 is a solution, and the
point (0, 0) belongs to the curve. Likewise, if ¥ = 2, the solution to the
equation is y = 0, meaning that the point (2, 0) belongs to the curve.

It is crucial to distinguish points that belong to the curve from other
points, because when using elliptic curves for cryptography, we’ll be working
with points from the curve, and points off the curve often present a security
risk. However, note that the curve’s equation doesn’t always admit solutions,
at least not in the natural number plane. For example, to find points with the

horizontal coordinate x = 1, we solve y* = &° — 4« for y> with &’ — 4o = 1° — 4
x 1, giving a result of —3. But y?> = -3 doesn’t have a solution because there is

no number for which y? = —3. (There is a solution in the complex numbers,
but elliptic curve cryptography will only deal with natural numbers—more
precisely, integers modulo a prime.) Because there is no solution to the
curve’s equation for x = 1, the curve has no point at that position on the x-
axis, as you can see in Figure 12-1.

What if we try to solve for x = —1? In this case, we get the equation y* = -1
+ 4 = 3, which has two solutions (y = Y3 and y = —3), the square root of three
and its negative value. Squaring a number always gives a positive number, so

y? = (=y)? for any real number y, and as you can see, the curve in Figure 12-1

is symmetric with respect to the x-axis for all points that solve its equation

3

(as are all elliptic curves of the form y? = &% + ax + b).

Elliptic Curves over Integers

Now here’s a bit of a twist: the curves used in elliptic curve cryptography
actually don’t look like the curve shown in Figure 12-1. They look instead



like Figure 12-2, which is a cloud of points rather than a curve. What’s going
on here?

Figures 12-1 and 12-2 are actually based on the same curve equation, y* =

x> — 4x, but they show the curve’s points with respect to different sets of
numbers: Figure 12-1 shows the curve’s points over the set of real numbers,
which includes negative numbers, decimals, and so on. For example, as a
continuous curve, it shows the points at x = 2.0, x = 2.1, x = 2.00002, and so
on. Figure 12-2, on the other hand, shows only integers that satisty this
equation, which excludes decimal numbers. Specifically, Figure 12-2 shows

the curve y? = &3 — 4x with respect to the integers modulo 191: 0, 1,2, 3, up to
190. This set of numbers is denoted Z;q;. (There’s nothing special with 191

here, except that it’s a prime number. I picked a small number to avoid
having too many points on the graph.) The points shown on Figure 12-2
therefore all have x and y coordinates that are integers modulo 191 and that
satisfy the equation y? = x° — 4x. For example, for x = 2, we have y* = 0, for
which y = 0 is a valid solution. This tells us that the point (2, 0) belongs to
the curve.
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Figure 12-2: The elliptic curve with the equation y2 = x3 — 4x over Z 191, the set of integers

modulo 191

What if x = 37 We get the equation y> = 27 — 12 = 15, which admits two
solutions to y? = 15 (namely, 46 and 145), because 46> mod 191 = 15 and
1452 mod 191 = 15 both equal 15 in Z,¢;. Thus, the points (3, 46) and (3,

145) belong to the curve and appear as shown in Figure 12-2 (the two points
highlighted at the left).

Figure 12-2 considers points from the set denoted Zi9; = {0, 1, 2, ... , 190},

which includes zero. This differs from the groups denoted Zp* (with a star

superscript) that we discussed in the context of RSA and Diffie—Hellman. The
reason for this difference is that we’ll both multiply and add numbers, and we
therefore meed to ensure that the set of numbers includes addition’s identity




element (namely 0, such that x + 0 = x for every x in Z,91). Also, every number
x has an inverse with respect to addition, denoted —x, such that x + (—x) = 0. For
example, the inverse of 100 in Zyq; is 91, because 100 + 91 mod 191 = 0. Such

a set of numbers, where addition and multiplication ave possible and where each
element x admits an inverse with respect to addition (denoted —x) as well as an
inverse with respect to multiplication (denoted 1 / x), is called a tield. When a
field has a finite number of elements, as in Z,9; and as with all fields used for

elliptic curve cryptography, it is called a finite field.

Adding and Multiplying Points

We've seen that the points on an elliptic curve are all coordinates (x, y) that

satisfy the curve’s equation, y> = #° + ax + b. In this section, we look at how to

add elliptic curve points, a rule called the addition law.

Adding Two Points

Say that we want to add two points on the elliptic curve, P and Q, to give a
new point, R, that is the sum of these two points. The simplest way to
understand point addition is to determine the position of R = P + Q on the
curve relative to P and Q based on a geometric rule: draw the line that
connects P and Q, find the other point of the curve that intersects with this
line, and Q is the reflection of this point with respect to the x-axis. For
example, in Figure 12-3, the line connecting P and Q intersects the curve at
a third point between P and Q, and the point P + Q is the point at the same «
coordinate but the inverse y coordinate.
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Figure 12-3: A general case of the geometric rule for adding points over an elliptic curve

This geometric rule is simple, but it won’t directly give you the
coordinates of the point R. We compute the coordinates (xp, yp) of R using

the coordinates (xp , yp) of P and the coordinates (x), yg) of Q using the
formulas xp = 7% — xp — xq and yp = m(xp — xg) — yp , where the value 2 = (y
—yp) / (xg — xp) is the slope of the line connecting P and Q.

Unfortunately, these formulas and the line-drawing trick shown in Figure
12-3 don’t always work. If, for example, P = Q, you can’t draw a line between
two points (there’s only one), and if P = —P, the line doesn’t cross the curve

again, so there is no point on the curve to mirror. We’ll explore these in the
next section.

Adding a Point and Its Negative

The negative of a point P = (xp , yp) is the point —P = (xp , —yp), which is the
point mirrored around the x-axis. For any P, we say that P + (-P) = O, where



O is called the point ar infinity. And as you can see in Figure 12-4, the line
between P and —P runs to infinity and never intersects the curve. (The point
at infinity is a virtual point that belongs to any elliptic curve; it is to elliptic
curves what zero is to integers.)

T 1 | T 1 I T

P+{—P}=O;

of g d

-3 -2 -1 0 | 2 3 4
Figure 12-4: The geometric rule for adding points on an elliptic curve with the operation P + (-P) =
O when the line between the points never intersects the curve

Doubling a Point

When P = Q (that is, P and Q are at the same position), adding P and Q is
equivalent to computing P + P, also denoted 2P. This addition operation is
therefore called a doubling.

However, to find the coordinates of the result R = 2P, we can’t use the
geometric rule from the previous section, because we can’t draw a line
between P and itself. Instead, we draw the line tangent to the curve at P, and
2P is the negation of the point where this line intersects the curve, as shown
on Figure 12-5.



2k

4}

-3 -2 -1 0 ] 2 3 4
Figure 12-5: The geometric rule for adding points over an elliptic curve using the doubling
operation P + P

The formula for determining the coordinates (xg, yp) of R = P + P is
slightly different from the formula we would use for a distinct P and Q.
Again, the basic formula is xg = 7% — xp — x and yg = m(xp — xg) — yp, but the
value of 7 is different; it becomes (3xp* + 4) / 2yp, where 4 is the curve’s

3

parameter, as in y? = &> + ax + b.

Multiplication

In order to multiply points on elliptic curves by a given number &, where # is
an integer, we determine the point kP by adding P to itself # — 1 times. In
other words, 2P = P + P, 3P = P + P + P, and so on. To obtain the x and y
coordinates of kP, repeatedly add P to itself and apply the preceding addition
law.

To compute kP efficiently, however, the naive technique of adding P by



applying the addition law £ — 1 times is far from optimal. For example, if & is
large (of the order of, say, 22°%) as it occurs in elliptic curve-based crypto
schemes, then computing # — 1 additions is downright infeasible.

But there’s a trick: you can gain an exponential speed-up by adapting the
technique discussed in “Fast Exponentiation Algorithm: Square-and-

Multiply” on page 192 to compute x° mod 7. For example, to compute 8P in
three additions instead of seven using the naive method, you would first
compute P, = P + P, then Py = P, + P,, and finally P4 + P4 = 8P.

Elliptic Curve Groups

Because points can be added together, the set of points on an elliptic curve
forms a group. According to the definition of a group (see “What Is a
Group?” on page 174), if the points P and Q belong to a given curve, then P
+ Q also belongs to the curve.

Furthermore, because addition is associative, we have (P + Q) + R=P + (Q +
R) for any points P, Q, and R. In a group of elliptic curve points, the identity
element is called the point at infinity, and denoted O, such that P + O = P for
any P. Every point P = (xp, yp) has an inverse, —P = (xp , —yp), such that P +
(-P) = O.

In practice, most elliptic curve-based cryptosystems work with x and y
coordinates that are numbers modulo a prime number, p (in other words,
numbers in the finite field Z,). Just as the security of RSA depends on the

size of the numbers used, the security of an elliptic curve-based
cryptosystem depends on the number of points on the curve. But how do we
know the number of points on an elliptic curve, or its cardinality? Well, it
depends on the curve and the value of p.

One rule of thumb is that there are approximately p points on the curve,
but you can compute the exact number of points with Schoof’s algorithm,
which counts points on elliptic curves over finite fields. You’'ll find this
algorithm built in to SageMath. For example, Listing 12-1 shows how to use
this algorithm to count the number of points on the curve y* = &° — 4x over
Z,9; shown in Figure 12-1.

sage: Z = Zmod(191)

sage: E = EllipticCurve(Z, (-4,0))
sage: E.cardinality()

192




Listing 12-1: Computing the cardinality, or number of points on a curve

In Listing 12-1, we’ve first defined the variable z as the set over integers
modulo 191; then we defined the variable e as the elliptic curve over z with
the coefficients —4 and 0. Finally, we computed the number of points on the
curve, also known as its cardinality, group order, or just order. Note that this
count includes the point at infinity O.

The ECDLP Problem

Chapter 9 introduced the DLP: that of finding the number y given some

base number g, where ¥ = @ mod p for some large prime number p.
Cryptography with elliptic curves has a similar problem: the problem of
finding the number % given a base point P where the point Q = kP. 'This is
called the elliptic curve discrete logarithm problem, or ECDLP. (Instead of
numbers, the elliptic curve’s problems operate on points, and multiplication
is used instead of exponentiation.)

All elliptic curve cryptography is built on the ECDLP problem, which,
like DLP, is believed to be hard and has withstood cryptanalysis since its
introduction into cryptography in 1985. One important difference between

ECDLP and the classical DLP is that ECDLP allows you to work with
smaller numbers and still enjoy a similar level of security.

Generally, when p is n bits, you’ll get a security level of about #/2 bits. For
example, an elliptic curve taken over numbers modulo p, with a 256-bit p,
will give a security level of about 128 bits. For the sake of comparison, to
achieve a similar security level with DLP or RSA, you would need to use
numbers of several thousands of bits. The smaller numbers used for ECC
arithmetic are one reason why it’s often faster than RSA or classical Diffie—
Hellman.

One way of solving ECDLP is to find a collision between two outputs, ¢;P
+d,Q and ;P + d,Q. The points P and Q in these equations are such that Q =
kP for some unknown &, and ¢{, dy, ¢, and d, are the numbers you will need
in order to find .

As with the hash function discussed in Chapter 6, a collision occurs when
two different inputs produce the same output. Therefore, in order to solve
ECDLP, we need to find points where the following is true:



Clp + de = C2P + d2Q

In order to find these points, we replace Q with the value £P, and we have
the following:

C1P + dlkp = (Cl + dlk)P = C2P + dzkp = (C2 + de)P

This tells us that (¢; + dik) equals (¢, + drk) when taken modulo the
number of points on the curve, which is not a secret.
From this, we can deduce the following:

dk—dk=c¢ —c,
k(dl_di):‘{?l_ﬁi
b= (o -e) / (4 &)

And we’ve found %, the solution to ECDLP.

Of course, that’s only the big picture—the details are more complex and
interesting. In practice, elliptic curves extend over numbers of at least 256

bits, which makes attacking elliptic curve cryptography by finding a collision

impractical because doing so takes up to 2!2% operations (the cost of finding

a collision over 256-bit numbers, as you learned in Chapter 6).

Diffie—Hellman Key Agreement over Elliptic Curves

Recall from Chapter 11 that in the classical Diffie-Hellman (DH) key
agreement protocol, two parties establish a shared secret by exchanging non-
secret values. Given some fixed number g, Alice picks a secret random

number #, computes A = g”, sends A to Bob, and Bob picks a secret random &
and sends B = g’ to Alice. Both then combine their secret key with the
other’s public key to produce the same 4° = B* = g*.

The elliptic curve version of DH is identical to that of classical DH but
with different notations. In the case of ECC, for some fixed point G, Alice
picks a secret random number dy, computes P, = d,G (the point G

multiplied by d,), and sends P, to Bob. Bob picks a secret random dp,
computes the point Py = dgG, and sends it to Alice. Then both compute the
same shared secret, d,Pp = dgP 4 = d 4dpG. This method is called elliptic curve



Diffie—Hellman, or ECDH.

ECDH is to the ECDLP problem what DH is to DLP: it’s secure as long
as ECDLP is hard. DH protocols that rely on DLP can therefore be adapted
to work with elliptic curves and rely on ECDLP as a hardness assumption.
For example, authenticated DH and Menezes—Qu—Vanstone (MQV) will
also be secure when used with elliptic curves. (In fact, MQV was first defined
as working over elliptic curves.)

Signing with Elliptic Curves

The standard algorithm used for signing with ECC is ECDSA, which stands
for elliptic curve digital signature algorithm. This algorithm has replaced RSA
signatures and classical DSA signatures in many applications. It is, for
example, the only signature algorithm used in Bitcoin and is supported by
many TLS and SSH implementations.

As with all signature schemes, ECDSA consists of a signature generation
algorithm that the signer uses to create a signature using their private key
and a wverification algorithm that a verifier uses to check a signature’s
correctness given the signer’s public key. The signer holds a number, d, as a
private key, and verifiers hold the public key, P = dG. Both know in advance
what elliptic curve to use, its order (7, the number of points in the curve), as
well as the coordinates of a base point, G.

ECDSA Signature Generation

In order to sign a message, the signer first hashes the message with a
cryptographic hash function such as SHA-256 or BLAKE2 to generate a
hash value, b, that is interpreted as a number between 0 and » — 1. Next, the
signer picks a random number, &, between 1 and # — 1 and computes kG, a
point with the coordinates (x, y). The signer now sets » = x mod » and
computes s = (b + 7d) / k mod n, and then uses these values as the signature
(7, $).

The length of the signature will depend on the coordinate lengths being
used. For example, when you’re working with a curve where coordinates are
256-bit numbers, 7 and s would both be 256 bits long, yielding a 512-bit-
long signature.

ECDSA Signature Verification



The ECDSA verification algorithm uses a signer’s public key to verify the
validity of a signature.

In order to verify an ECDSA signature (7, 5) and a message’s hash, 5, the
verifier first computes w = 1 /s, the inverse of s in the signature, which is
equal to k£ / (b + rd) mod n, since s is defined as s = (b + rd) / k. Next, the
verifier multiplies w with 4 to find # according to the following formula:

wh = hk (h+ rd) = u
The verifier then multiplies w with 7 to find v:
wr=rk(th+rd)=v

Given # and v, the verifier computes the point Q according to the
following formula:

Q=uG +vP

Here, P is the signer’s public key, which is equal to dG, and the verifier
only accepts the signature if the x coordinate of Q is equal to the value 7
from the signature.

This process works because, as a last step, we compute the point Q by
substituting the public key P with its actual value dG:

uG +vdG = (u + vd)G
When we replace # and v with their actual values, we obtain the following:

u+vd=hk(h+rd)+drk/(h+rd)=(hk+drk)/(h+rd)=k(h+dr)/(h+rd)
=k

This tells us that (# + vd) is equal to the value &, chosen during signature
generation, and that #G + vdG is equal to the point kG. In other words, the
verification algorithm succeeds in computing point kG, the same point
computed during signature generation. Validation is complete once a verifier
confirms that #G’s x coordinate is equal to the 7 received; otherwise, the
signature is rejected as invalid.

ECDSA vs. RSA Signatures



Elliptic curve cryptography is often viewed as an alternative to RSA for
public-key cryptography, but ECC and RSA don’t have much in common.
RSA is only used for encryption and signatures, whereas ECC is a family of
algorithms that can be used to perform encryption, generate signatures,
perform key agreement, and offer advanced cryptographic functionalities
such as identity-based encryption (a kind of encryption that uses encryption
keys derived from a personal identifier, such as an email address).

When comparing RSA and ECC’s signature algorithms, recall that in RSA

signatures, the signer uses their private key 4 to compute a signature as y = x*
mod 7, where x is the data to be signed and y is the signature. Verification

uses the public key ¢ to confirm that y* mod 7z equals x—a process that’s
clearly simpler than that of ECDSA.

RSA’s verification process is often faster than ECC’s signature generation
because it uses a small public key e. But ECC has two major advantages over
RSA: shorter signatures and signing speed. Because ECC works with shorter
numbers, it produces shorter signatures than RSA (hundreds of bits long,
not thousands of bits), which is an obvious benefit if you have to store or
transmit numerous signatures. Signing with ECDSA is also much faster than
signing with RSA (though signature verification is about as fast) because
ECDSA works with much smaller numbers than RSA does for a similar
security level. For example, Listing 12-2 shows that ECDSA is about 150
times faster at signing and a little faster at verifying. Note that ECDSA
signatures are also shorter than RSA signatures because they’re 512 bits (two
elements of 256 bits each) rather than 4096 bits.

$ openssl speed ecdsap256 rsa4096

sign verify sign/s verify/s
rsa 4096 bits 0.007267s 0.000116s 137.6 8648.0
sign verify sign/s verify/s
256 bit ecdsa (nistp256) 0.0000s 0.0001s 21074.6 9675.7

Listing 12-2: Comparing the speed of 4096-bit RSA signatures with 256-bit ECDSA signatures

It’s fair to compare the performance of these differently sized signatures
because they provide a similar security level. However, in practice, many
systems use RSA signatures with 2048 bits, which is orders of magnitude less
secure than 256-bit ECDSA. Thanks to its smaller modulus size, 2048-bit
RSA is faster than 256-bit ECDSA at verifying, yet still slower at signing, as
shown in Listing 12-3.




$ openssl speed rsa2048
sign verify sign/s verify/s
rsa 2048 bits 0.000696s 0.000032s 1436.1 30967.1

Listing 12-3: The speed of 2048-bit RSA signatures

The upshot is that you should prefer ECDSA to RSA except when
signature verification is critical 4nd you don’t care about signing speed, as in
a sign-once, verify-many situation (for example, when a Windows executable
application is signed once and then verified by all the systems executing it).

Encrypting with Elliptic Curves

Although elliptic curves are more commonly used for signing, you can still
encrypt with them. But you’ll rarely see people do so in practice due to
restrictions in the size of the plaintext that can be encrypted: you can fit only
about 100 bits of plaintext, as compared to almost 4000 in RSA with the
same security level.

One simple way to encrypt with elliptic curves is to use the integrated
encryption scheme (IES), a hybrid asymmetric-symmetric key encryption
algorithm based on the Diffie-Hellman key exchange. Essentially, IES
encrypts a message by generating a Diffie-Hellman key pair, combining the
private key with the recipient’s own public key, deriving a symmetric key
from the shared secret obtained, and then using an authenticated cipher to
encrypt the message.

When used with elliptic curves, IES relies on ECDLP’s hardness and is
called elliptic-curve integrated encryption scheme (ECIES). Given a recipient’s
public key, P, ECIES encrypts a message, M, as follows:

1. Pick a random number, d, and compute the point Q = 4G, where the
base point G is a fixed parameter. Here, (d, Q) acts as an ephemeral key
pair, used only for encrypting M.

2. Compute an ECDH shared secret by computing S = dP.

3. Use a key derivation scheme (KDF) to derive a symmetric key, K, from
S.

4. Encrypt M using K and a symmetric authenticated cipher, obtaining a
ciphertext, C, and an authentication tag, 7.

The ECIES ciphertext then consists of the ephemeral public key Q



followed by C and 7. Decryption is straightforward: the recipient computes
S by multiplying R with their private exponent to obtain S, and then derives
the key K and decrypts C and verifies 7.

Choosing a Curve

Criteria used to assess the safety of an elliptic curve include the order of the
group used (that is, its number of points), its addition formulas, and its
origins.

There are several types of elliptic curves, but not all are equally good for

cryptographic purposes. When making your selection, be sure to choose

coefficients # and & in the curve’s equation y> = &% + ax + b carefully;

otherwise, you may end up with an insecure curve. In practice, you’ll use
some de facto standard curve for encryption, but knowing what makes a safe
curve will help you choose among the several available ones and better
understand any associated risks. Here are some points to keep in mind:

e The order of the group should not be a product of small numbers;
otherwise solving ECDLP becomes much easier.

e In “Adding and Multiplying Points” on page 221, you learned that
adding points P + Q required a specific addition formula when Q = P.
Unfortunately, treating this case differently from the general one may
leak critical information if an attacker is able to distinguish doublings
from additions between distinct points. Some curves are secure because
they use a single formula for all point addition. (When a curve does not
require a specific formula for doublings, we say that it admits a unified
addition law.)

o If the creators of a curve don’t explain the origin of # and b, they may be
suspected of foul play because you can’t know whether they may have
chosen weaker values that enable some yet-unknown attack on the
cryptosystem.

Let’s review some of the most commonly used curves, especially ones used
for signatures or Diffie-Hellman key agreement.

Youw’ll find more critevia and more details about curves on the dedicated website




| https://safecurves.cr.yp.to/.

NIST Curves
In 2000, the NIST curves were standardized by the US NIST in the FIPS

186 document under “Recommended Elliptic Curves for Federal
Government Use.” Five NIST curves work modulo a prime number (as
discussed in “Elliptic Curves over Integers” on page 219), called prime curves.
Ten other NIST curves work with binary polynomials, which are
mathematical objects that make implementation in hardware more efficient.
(We won’t cover binary polynomials in further detail because they’re seldom
used with elliptic curves.)

The most common NIST curves are the prime curves. Of these, one of
the most common is P-256, a curve that works over numbers modulo the

256-bit number p = 2236 — 2224 4 2192 4, 29 _ 1, The equation for P-256 is y?

= &3 — 3x + b, where b is a 256-bit number. NIST also provides prime curves
of 192 bits, 224 bits, 384 bits, and 521 bits.

NIST curves are sometimes criticized because only the NSA, creator of
the curves, knows the origin of the # coefficient in their equations. The only
explanation we’ve been given is that / results from hashing a random-
looking constant with SHA-1. For example, P-256’s / parameter comes from
the following constant: c49d3608 86e70493 6a6678e1 139d26b7 819f7e90.

No one knows why the NSA picked this particular constant, but most
experts don’t believe the curve’s origin hides any weakness.

Curve25519

Daniel J. Bernstein brought Curve25519 (pronounced curve-twenty-five-five-
nineteen) to the world in 2006. Motivated by performance, he designed
Curve25519 to be faster and use shorter keys than the standard curves. But
Curve25519 also brings security benefits, because unlike the NIST curves it
has no suspicious constants and can use the same unified formula for adding
distinct points or for doubling a point.

The form of Curve25519’s equation, y* = &° + 486662x* + x, is slightly
different from that of the other equations you’ve seen in this chapter, but it
still belongs to the elliptic curve family. The unusual form of this equation
allows for specific implementation techniques that make Curve25519 fast in
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software.

Curve25519 works with numbers modulo the prime number 22°° - 19, a

256-bit prime number that is as close as possible to 22°°. The & coefficient
486662 is the smallest integer that satisfies the security criteria set by
Bernstein. Taken together, these features make Curve25519 more trust-
worthy than NIST curves and their fishy coefficients.

Curve25519 is used everywhere: in Google Chrome, Apple systems,
OpenSSH, and many other systems. However, because Curve25519 isn’t a
NIST standard, some applications stick to NIST curves.

To learn all the details and rationale bebind Curve25519, view the 2016
presentation “The first 10 years of Curve25519” by Daniel ¥. Bernstein,
available at http://cr.yp.to/talks.html#2016.03.09/.

Other Curves

As I write this, most cryptographic applications use NIST curves or
Curve25519, but there are other legacy standards in use, and newer curves
are being promoted and pushed within standardization committees. Some of
the old national standards include France’s ANSSI curves and Germany’s
Brainpool curves: two families that don’t support complete addition formulas
and that use constants of unknown origins.

Some newer curves are more efficient than the older ones and are clear of
any suspicion; they offer different security levels and various efficiency
optimizations. Examples include Curve41417, a variant of Curve25519,
which works with larger numbers and offers a higher level of security
(approximately 200 bits); Ed448-Goldilocks, a 448-bit curve first proposed
in 2014 and considered to be an internet standard; as well as six curves
proposed by Aranha et al. in “A note on high-security general-purpose
elliptic curves” (see http://eprint.iacr.org/2013/647/), though these curves are
rarely used. The details specific to all these curves are beyond the scope of

this book.

How Things Can Go Wrong

Elliptic curves have their downsides due to their complexity and large attack
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surface. Their use of more parameters than classical Diffie-Hellman brings
with it a greater attack surface with more opportunities for mistakes and
abuse—and possible software bugs that might affect their implementation.
Elliptic curve software may also be vulnerable to side-channel attacks due to
the large numbers used in their arithmetic. If the speed of calculations
depends on inputs, attackers may be able to obtain information about the
formulas being used to encrypt.

In the following sections, I discuss two examples of vulnerabilities that can
occur with elliptic curves, even when the implementation is safe. These are
protocol vulnerabilities rather than implementation vulnerabilities.

ECDSA with Bad Randomness

ECDSA signing is randomized, as it involves a secret random number 4
when setting s = (b + 7d) / k mod n. However, if the same £ is reused to sign a
second message, an attacker could combine the resulting two values, s; = (b,
+7d)/ kand s, = (b, + 7d) / k, to gets; —s, = (b; — b;) / k and then k = (b; — b,)
/ (s; — 5). When k is known, the private key 4 is easily recovered by
computing the following:

(ksl_hl)/r:((h1+rd)_hl)/r:rd/r:d

Unlike RSA signatures, which won’t allow the key to be recovered if a
weak pseudorandom number generator (PRNG) is used, the use of non-
random numbers can lead to ECDSA’s & being recoverable, as happened
with the attack on the PlayStation 3 game console in 2010, presented by the
failOverflow team at the 27th Chaos Communication Congress in Berlin,
Germany.

Breaking ECDH Using Another Curve

ECDH can be elegantly broken if you fail to validate input points. The
primary reason is that the formulas that give the coordinates for the sum of
points P + Q never involve the & coefficient of the curve; instead, they rely
only on the coordinates of P and Q and the # coefficient (when doubling a
point). The unfortunate consequence of this is that when adding two points,
you can never be sure that you’re working on the right curve because you
may actually be adding points on a different curve with a different &



coefficient. That means you can break ECDH as described in the following
scenario, called the invalid curve attack.

Say that Alice and Bob are running ECDH and have agreed on a curve
and a base point, G. Bob sends his public key dgG to Alice. Alice, instead of

sending a public key d,G on the agreed upon curve, sends a point on a

different curve, either intentionally or accidentally. Unfortunately, this new
curve is weak and allows Alice to choose a point P for which solving ECDLP
is easy. She chooses a point of low order, for which there is a relatively small

k such that kP = O.

Now Bob, believing that he has a legitimate public key, computes what he
thinks is the shared secret dgP, hashes it, and uses the resulting key to

encrypt data sent to Alice. The problem is that when Bob computes dgP, he

is unknowingly computing on the weaker curve. As a result, because P was
chosen to belong to a small subgroup within the larger group of points, the
result dgP will also belong to that small subgroup, allowing an attacker to

determine the shared secret dgP efficiently if they know the order of P.

One way to prevent this is to make sure that points P and Q belong to the
right curve by ensuring that their coordinates satisfy the curve’s equation.
Doing so would prevent this attack by making sure that you’re only able to
work on the secure curve.

Such an invalid curve attack was found in 2015 on certain
implementations of the TLS protocol, which uses ECDH to negotiate
session keys. (For details, see the paper “Practical Invalid Curve Attacks on

TLS-ECDH?” by Jager, Schwenk, and Somorovsky.)

Further Reading

Elliptic curve cryptography is a fascinating and complex topic that involves
lots of mathematics. I’ve not discussed important notions such as a point’s
order, a curve’s cofactor, projective coordinates, torsion points, and methods
for solving the ECDLP problem. If you are mathematically inclined, you’ll
find information on these and other related topics in the Handbook of Elliptic
and Hyperelliptic Curve Cryptography by Cohen and Frey (Chapman and
Hall/CRC, 2005). The 2013 survey “Elliptic Curve Cryptography in
Practice” by Bos, Halderman, Heninger, Moore, Naehrig, and Wustrow also
gives a good illustrated introduction with practical examples



(bttps://eprint.iacr.org/2013/734/).
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13
TLS

The Transport Layer Security (TLS) protocol, also known as Secure Socket Layer
(SSL), which is the name of its predecessor, is the workhorse of internet
security. TLS protects connections between servers and clients, whether that
connection is between a website and its visitors, email servers, a mobile
application and its servers, or video game servers and players. Without TLS,
there would be no secure online commerce, secure online banking, or for
that matter secure online anything.

TLS is application agnostic; it doesn’t care about the type of content
encrypted. This means that you can use it for web-based applications that
rely on the HI'TP protocol, as well as for any system where a client
computer or device needs to initiate a connection with a remote server. For
example, TLS is widely used for machine-to-machine communications in so-
called internet of things (IoT) applications.

This chapter provides you with an abbreviated view of TLS. As you’ll see,
TLS has become increasingly complex over the years. Unfortunately,
complexity and bloat brought multiple vulnerabilities, and bugs found in its
cluttered implementations have made headlines—think Heartbleed, BEAST,
CRIME, and POODLE, all vulnerabilities that impacted millions of web
servers.

In 2013, engineers tired of fixing new cryptographic vulnerabilities in
TLS overhauled it and started working on TLS 1.3. As you’ll learn in this
chapter, TLS 1.3 ditched unnecessary features and insecure ones, and
replaced old algorithms with state-of-the-art ciphers. The result is a simpler,
faster, and more secure protocol.

But before we explore how TLS 1.3 works, let’s review the problem that
TLS aims to solve in the first place, and the reason for its very existence.



Target Applications and Requirements
TLS is best known for being the S in HI'TPS websites, and the padlock in a

browser’s address bar indicating that a page is secure. The primary driver for
creating TLS was to enable secure browsing in applications such as e-
commerce or e-banking by encrypting website connections to protect credit
card numbers, user credentials, and other sensitive information.

TLS also helps to protect internet-based communication in general by
establishing a secure channel between a client and a server that ensures the
data transferred is confidential, authenticated, and unmodified.

One of TLS’s security goals is to prevent man-in-the-middle attacks,
wherein an attacker intercepts encrypted traffic from the transmitting party,
decrypts the traffic to capture the clear content, and re-encrypts it to send to
the receiving party. TLS defeats man-in-the-middle attacks by
authenticating servers (and optionally clients) using certificates and trusted
certificate authorities, as we’ll discuss in more detail in the section
“Certificates and Certificate Authorities” on page 238.

To ensure wide adoption, TLS needed to satisfy four more requirements:
it needed to be efficient, interoperable, extensible, and versatile.

For TLS, efficiency means minimizing the performance penalty compared
with unencrypted connections. This is good for both the server (to reduce
the cost of hardware for the service providers) and for clients (to avoid
perceptible delays or the reduction of mobile devices’ battery life). The
protocol needed to be interoperable so that it would work on any hardware
and any operating system. It was to be extensible so that it could support
additional features or algorithms. And it had to be versatile—that is, not
bound to a specific application (this parallels something like Transport
Control Protocol, which doesn’t care about the application protocol used on
top of it).

The TLS Protocol Suite

To protect client-server communications, TLS is made up of multiple
versions of several protocols that together form the TLS protocol suite. And
although TLS stands for Transport Layer Security, it’s actually not a transport
protocol. TLS usually sits between the transport protocol TCP and an
application layer protocol such as HI'TP or SMTP, in order to secure data



transmitted over a T'CP connection.

TLS can also work over the User Datagram Protocol (UDP) transport
protocol, which is used for “connectionless” transmissions such as voice or
video traffic. However, unlike TCP, UDP doesn’t guarantee delivery or
correct packet ordering. The UDP version of TLS is therefore slightly
different and is called DTLS (Datagram Transport Layer Security). For more
on TCP and UDP, see Charles Kozierok’s The TCP/IP Guide (No Starch
Press, 2005.)

The TLS and SSL Family of Protocols: A Brief History

TLS began life in 1995 when Netscape, developer of the Netscape browser,
developed TLS’s ancestor, the Secure Socket Layer (SSL) protocol. SSL was
far from perfect, and both SSL 2.0 and SSL 3.0 had security flaws. The
upshot is that you should never use SSL, you should always use TLS—what
adds to the confusion is that TLS is often referred to as “SSL,” even by
security experts.

Moreover, not all versions of TLS are secure. TLS 1.0 (1999) is the least
secure TLS version, though it’s still more secure than SSL 3.0. TLS 1.1
(2006) is better but includes a number of algorithms known today to be
weak. TLS 1.2 (2008) is better yet, but it’s complex and only gets you high
security if configured correctly (which is no simple matter). Also, its
complexity increases the risk of bugs in implementations and the risk of
incorrect configurations. For example, TLS 1.2 supports AES in CBC mode,
which is often vulnerable to padding oracle attacks.

TLS 1.2 inherited dozens of features and design choices from earlier
versions of TLS that make it suboptimal, both in terms of security and
performance. To clean up this mess, cryptography engineers reinvented
TLS—keeping only the good parts and adding security features. The result
is TLS 1.3, an overhaul that has simplified a bloated design and made it
more secure, more efficient, and simpler. Essentially, TLS 1.3 is mature

TLS.
TLS in a Nutshell

TLS has two main protocols: one determines how to transmit data, and the
other what data to transmit. The 7ecord protocol defines a packet format to
encapsulate data from higher-level protocols and sends this data to another



party. It’s a simple protocol that people often forget is part of TLS.

The handshake protocol—or just handshake—is TLS’s key agreement
protocol. It’s often mistaken for “the” TLS protocol but the record protocol
and the handshake can’t be separated.

The handshake is started by a client to initiate a secure connection with a
server. The client sends an initial message called ClientHello with
parameters that include the cipher it wants to use. The server checks this
message and its parameters and then responds with a message called
ServerHello. Once both the client and the server have processed each other’s
messages, they’re ready to exchange encrypted data using session keys
established through the handshake protocol, as you’ll see in the section “The
TLS Handshake Protocol” on page 241.

Certificates and Certificate Authorities

The most critical step in the 'TLS handshake, and the crux of TLS’s security,
is the certificate validation step, wherein a server uses a certificate to
authenticate itself to a client.

A certificate is essentially a public key accompanied by a signature of that
key and associated information (including the domain name). For example,
when connecting to https://www.google.com/, your browser will receive a
certificate from some network host and will then verify the certificate’s
signature, which reads something like “I am google.com and my public key is
[key].” If the signature is verified, the certificate (and its public key) are said
to be trusted, and the browser can proceed with establishing the connection.
(See Chapters 10 and 12 for details about signatures.)

How does the browser know the public key needed to verify the signature?
That’s where the concept of certificate authority (CA) comes in. A CA is
essentially a public key hard coded in your browser or operating system. The
public key’s private key (that is, its signing capability) belongs to a trusted
organization that ensures the public keys in certificates that it issues belong
to the website or entity that claims them. That is, a CA acts as a trusted third
party. Without CAs, there would be no way to verify that the public key
served by google.com belongs to Google and not to an eavesdropper
performing a man-in-the-middle attack.

For example, the command shown in Listing 13-1 shows what happens
when we use the OpenSSL command-line tool to initiate a TLS connection
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to www.google.com on port 443, the network port used for TLS-based HT'TP
connections (that is, HT'TPS.):

$ openssl s_client -connect www.google.com:443
CONNECTED (00000003)
--snip--

Certificate chain

® 0 s:/C=US/ST=California/L=Mountain View/0=Google Inc/CN=www.google.com
i1:/C=US/0=Google Inc/CN=Google Internet Authority G2

M 1 s:/C=US/0=Google Inc/CN=Google Internet Authority G2
i1:/C=US/0=GeoTrust Inc./CN=GeoTrust Global CA

® 2 s:/C=US/0=GeoTrust Inc./CN=GeoTrust Global CA
i1:/C=US/0=Equifax/0U=Equifax Secure Certificate Authority
Server certificate
----- BEGIN CERTIFICATE-----
MIIEgDCCA21gAwIBAQIISCr6QCbz5rowDQYJIKoZIhvcNAQELBQAWSTELMAKGALUE
BhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJIbmMxJTAjBgNVBAMTHEdvb2dsZSBIbnR1
--snip--
cb9reU8in8yCaH8dtzrFyUracpMureWnBeajOYXRPTdCFccejAh/xyH5SKDO0Z4v
3TP9GBtCLAHIMSXoPhX73dp7jipZqgbY4kiEDNx+hformTUFBDHDOeO/s2ngwulL
pPBHEXQ==
----- END CERTIFICATE-----
subject=/C=US/ST=California/L=Mountain View/0=Google Inc/CN=www.google.com
issuer=/C=US/0=Google Inc/CN=Google Internet Authority G2
--snip--

Listing 13-1: Establishing a TLS connection with www.google.com and receiving certificates to
authenticate the connection

I've trimmed the output to show only the interesting part, which is the
certificate. Notice that before the first certificate (which starts with the BeGIn
CERTIFICATE tag) is a description of the certificate chain, where the line starting
with s: describes the subject name and the line starting with i: describes the

issuer of the signature. Here, certificate o is the one received by google.com @,
certificate 1 @ belongs to the entity that signed certificate o, and certificate 2

® belongs to the entity that signed certificate 1. The organization that issued
certificate 2 (GeoTrust) granted permission to Google Internet Authority to
issue a certificate (certificate 1) for the domain name www.google.com, thereby
transferring trust to Google Internet Authority.

Obviously, these CA organizations must be trustworthy and only issue
certificates to trustworthy entities, and they must protect their private keys
in order to prevent an attacker from issuing certificates on their behalf (for
example, in order to impersonate a legitimate google.comn server).
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To see what’s in a certificate, we enter the command shown in Listing 13-
2 into a Linux terminal and then paste the first certificate shown in Listing
13-1.

$ openssl x509 -text -noout
----- BEGIN CERTIFICATE-----
--snip--
----- END CERTIFICATE-----
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 5200243873191028410 (0x482afad4026f3e6ba)
Signature Algorithm: sha256WithRSAEncryption
Issuer: C=US, 0=Google Inc, CN=Google Internet Authority G2
Validity
Not Before: Dec 15 14:07:56 2016 GMT
Not After : Mar 9 13:35:00 2017 GMT
Subject: C=US, ST=California, L=Mountain View, 0=Google Inc, CN=www.google.com
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)
Modulus:
00:bc:bc:b2:f3:1a:16:3b:c6:f6:9d:28:el:ef:8e:
92:9b:13:b2:3e:7b:50:8f:f0:b4:e0:36:8d:09:00:

--snip--
8f:e6:96:fe:41:41:85:9d:29:10:9a3:09:6e:fc:bd:
43:fa:4d:c6:a3:55:9a3:9e:07:8b:f9:b1:1e:ce:d1:
22:49
Exponent: 65537 (0x10001)
--snip--

Signature Algorithm: sha256WithRSAEncryption
94:cd:66:55:83:f1:16:7d:46:d8:66:21:06:ec:c6:9d:7c:1c:
2b:c1:f6:4f:b7:3e:cd:01:ad:69:bd:a1:81:6a:7c:96:f5:9c:
--snip--
85:fa:2b:99:35:05:04:31:c3:d1:e3:bf:b3:69:ea:c2:e5:8b:
a4:11:fa:5d

Listing 13-2: Decoding a certificate received from www.google.com

What you see in Listing 13-2 is the command opensst x509 decoding a
certificate, originally provided as a block of base64-encoded data. Because
OpenSSL knows how this block of data is structured, it can tell us what’s
inside the certificate, including a serial number and version information,
identifying information, validity dates (the Not Before and Not After lines), a
public key (here as an RSA modulus and its public exponent), and a signature
of the preceding information.

Although security experts and cryptographers often claim the whole
certificate system is broken by design, it’s one of the best solutions we have,
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along with the trust-on-first-use (TOFU) policy adopted by SSH, for

example.

The Record Protocol

All data exchanged through TLS 1.3 communications is transmitted as
sequences of TLS records, the data packets used by TLS. The TLS record
protocol (the record layer) is essentially a transport protocol, agnostic of the
transported data’s meaning; this is what makes TLS suitable for any
application.

The TLS record protocol is first used to carry the data exchanged during
the handshake. Once the handshake is complete and both parties share a
secret key, application data is fragmented into chunks that are transmitted as
part of the TLS records.

Structure of a TLS Record

A TLS record is a chunk of data of at most 16 kilobytes, structured as
follows:

e The first byte represents the type of data transmitted and is set to the
value 22 for handshake data, 23 for encrypted data, and 21 for alerts. In
the TLS 1.3 specifications, this value is called ContentType.

e The second and third byte are set to 3 and 1, respectively. These bytes
are fixed for historical reasons and are not unique to TLS version 1.3.
In the specifications, this 2-byte value is called ProtocolVersion.

e The fourth and fifth bytes encode the length of the data to transmit as a
16-bit integer, which can be no larger than 21* bytes (16KB).

o The rest of the bytes are the data to transmit (also called the payload), of
a length equal to the value encoded by the record’s fourth and fifth
bytes.

A TLS record has a relatively simple structure. As we’ve seen, a TLS record’s
header includes only three fields. For comparison, an IPv4 packet includes 14
fields before its payload and a TCP segment includes 13 fields.




When the first byte of a TLS 1.3 record (ContentType) is set to 23, its
payload is encrypted and authenticated using an authenticated cipher. The
payload consists of a ciphertext followed by an authentication tag, which the
receiving end will decrypt. But then how does the recipient know which
cipher and key to decrypt with? That’s the magic of TLS: if you receive an
encrypted TLS record, you already know the cipher and key, because they
are established when the TLS handshake protocol is executed.

Nonces

Unlike many other protocols such as IPsec’s Encapsulating Security Payload
(ESP), TLS records don’t specify the nonce to be used by the authenticated
cipher.

The nonces used to encrypt and decrypt TLS records are derived from
64-bit sequence numbers, maintained locally by each party, and incremented
for each new record. When the client encrypts data, it derives a nonce by
XORing the sequence number with a value called client_write v, itself
derived from the shared secret. The server uses a similar method but with a
different Value, called server_write_1iv.

For example, if you transmit three TLS records, you’ll derive a nonce
from O for the first record, from 1 for the second, and from 2 for the third; if
you then receive three records, you’ll also use nonces 0, 1, and 2, in this
order. Reuse of the same sequence numbers values for encrypting trans-
mitted data and decrypting receiving data isn’t a weakness because they are
XORed with different constants (client_write_iv and server_write_iv) and
because you use different secret keys for each direction.

Zero Padding

TLS 1.3 records support a nice feature known as zero padding that mitigates
traffic analysis attacks. Traffic analysis is a method that attackers use to extract
information from traffic patterns using timing, volume of data transferred,
and so on. For example, because ciphertexts are approximately the same size
as plaintexts, even when strong encryption is used, attackers can determine
the approximate size of your messages simply by looking at the length of
their ciphertext.

Zero padding adds zeros to the plaintext in order to inflate the ciphertext’s
size, and thus to fool observers into thinking that an encrypted message is



longer than it really is.

The TLS Handshake Protocol

The handshake is the key TLS agreement protocol—the process by which a
client and server establish shared secret keys in order to initiate secure
communications. During the course of a TLS handshake, the client and
server play different roles. The client proposes some configurations (the
TLS version and a suite of ciphers, in order of preference) and the server
chooses the configuration to be used. The server should follow the client’s
preferences, but it may do otherwise. In order to ensure interoperability
between implementations and to guarantee that any server implementing
TLS 1.3 will be able to read TLS 1.3 data sent by any client implementing
TLS 1.3 (even if it’s using a different library or programming language), the
TLS 1.3 specifications also describe the format in which data should be sent.

Figure 13-1 shows how data is exchanged in the handshake process, as
described in the TLS 1.3 specifications. As you can see, in the TLS 1.3
handshake, the client sends a message to the server saying, “I want to
establish a TLS connection with you. Here are the ciphers that I support to
encrypt TLS records, and here is a Diffie-Hellman public key.” The public
key must be generated specifically for this TLS session, and the client keeps
the associated private key. The message sent by the client also includes a 32-
byte random value and optional information (additional parameters and
such). This first message is called ClientHello, and it must follow a specific
format when transmitted as a series of bytes, as defined in the TLS 1.3
specification.



Client Server

Generate key pair (¢, C = cQ)

ClientHello Generate key pair (s, S = sQ)
- ciphers supported ———» Compute secret = DH(s, C)
- public key C Derive keys = KDF(secret]
ServerHello
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Figure 13-1: The TLS 1.3 handshake process when connecting to HTTPS websites

But note that the specifications also describe in what format data should
be sent, in order to ensure interoperability between implementations by
guaranteeing that any server implementing TLS 1.3 will be able to read TLS
1.3 data sent by any client implementing TLS 1.3, possibly using a different
library or programming language.

The server receives the ClientHello message, verifies that it’s correctly
formatted, and responds with a message called ServerHello. The ServerHello
message is loaded with information: it contains the cipher to be used to
encrypt TLS records, a Diffie-Hellman public key, a 32-byte random value
(discussed in “Downgrade Protection” on page 244), a certificate, a signature
of all the previous information in ClientHello and ServerHello messages
(computed using the private key associated with the certificate’s public key),
a MAC of that same information plus the signature. The MAC is computed
using a symmetric key derived from the Diffie-Hellman shared secret, which
the server computes from its Diffie-Hellman private key and the client’s
public key.

When the client receives the ServerHello message, it verifies the
certificate’s validity, verifies the signature, computes the shared Diffie—



Hellman secret and derives symmetric keys from it, and verifies the MAC
sent by the server. Once everything has been verified, the client is ready to
send encrypted messages to the server.

Note, however, that TLS 1.3 supports many options and extensions, so it
may behave differently than what has been described here (and shown in
Figure 13-1). You can, for example, configure the TLS 1.3 handshake to
require a client certificate so that the server verifies the identity of the client.
TLS 1.3 also supports a handshake with pre-shared keys.

TLS 1.3 supports many options and extensions, so it may bebave differently than
what bas been described bhere (and shown in Figure 13-1). You can, for example,
configure the TLS 1.3 handshake to require a client certificate so that the server
verifies the identity of the client. TLS 1.3 also supports a handshake with pre-
shared keys.

Let’s look at this in practice. Say you’ve deployed TLS 1.3 to provide
secure access to the website https://www.nostarch.com/. When you point your
browser (the client) to this site, your browser sends a ClientHello message to
the site’s server that includes the ciphers that it supports. The website
responds with a ServerHello message and a certificate that includes a public
key associated with the domain www.nostarch.com. The client verifies the
certificate’s validity using one of the certificate authorities embedded in the
browser (the received certificate should be signed by a trusted certificate
authority, whose certificate should be included in the browser’s certificate
store in order to be validated). Once all checks are passed, the browser
requests the site’s initial page from the www.nostarch.com server.

Upon a successful TLS 1.3 handshake, all communications between the
client and the server are encrypted and authenticated. An eavesdropper can
learn that a client at a given IP address is talking to a server at another given
IP address, and can observe the encrypted content exchanged, but won’t be
able to learn the underlying plaintext or modify the encrypted messages (if
they do, the receiving party will notice that the communication has been
tampered with, because messages are not only encrypted but also
authenticated). That’s enough security for many applications.
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TLS 1.3 Cryptographic Algorithms

We know that TLS 1.3 uses authenticated encryption algorithms, a key
derivation function (a hash function that derives secret keys from a shared
secret), as well as a Diffie-Hellman operation. But how exactly do these
work, what algorithms are used, and how secure are they?

With regard to the choice of authenticated ciphers, TLS 1.3 supports only
three algorithms: AES-GCM, AES-CCM (a slightly less efficient mode than
GCM), and the ChaCha20 stream cipher combined with the Poly1305 MAC
(as defined in RFC 7539). Because TLS 1.3 prevents you from using an
unsafe key length such as 64 or 80 bits (which are both too short), the secret
key can be either 128 bits (AES-GCM or AES-CCM) or 256 bits (AES-
GCM or ChaCha20-Poly1305).

The key derivation operation (KDF) in Figure 13-1 is based on HKDF, a
construction based on HMAC (discussed in Chapter 7) and defined in RFC
5869 that uses either the SHA-256 or the SHA-384 hash function.

Your options for performing the Diffie-Hellman operation (the core of
the TLS 1.3 handshake) are limited to elliptic curve cryptography and a
multiplicative group of integers modulo a prime number (as in traditional
Diffie-Hellman). But you can’t use just any elliptic curve or group: the
supported curves include three NIST curves as well as Curve25519
(discussed in Chapter 12) and Curve448, both defined in RFC 7748. TLS
1.3 also supports DH over groups of integers, as opposed to elliptic curves.
The groups supported are the five groups defined in RFC 7919: groups of
2048, 3072, 4096, 6144, and 8192 bits.

The 2048-bit group may be TLS 1.3’s weakest link. Whereas the other
options provide at least 128-bit security, 2048-bit Diffie—-Hellman is believed
to provide less than 100-bit security. Supporting a 2048-bit group can
therefore be seen as inconsistent with other TLS 1.3 design choices.

TLS 1.3 Improvements over TLS 1.2

TLS 1.3 is very different from its predecessor. For one thing, it gets rid of
weak algorithms like MDS5, SHA-1, RC4, and AES in CBC mode. Also,
whereas TLS 1.2 often protected records using a combination of a cipher

and a MAC (such as HMAC-SHA-1) within a MAC-then-encrypt

construction, TLS 1.3 only supports the more efficient and more secure



authenticated ciphers. TLS 1.3 also ditches elliptic curve point encoding
negotiation, and defines a single point format for each curve.

One of the main development goals of TLS 1.3 was to remove features in
1.2 that weakened the protocol and to reduce the protocol’s overall
complexity and thereby its attack surface. For example, TLS 1.3 ditches
optional data compression, a feature that enabled the CRIME attack on TLS
1.2. 'This attack exploited the fact that the length of the compressed version
of a message leaks information on the content of the message.

But TLS 1.3 also brings new features that make connections either more
secure or more efficient. I'll discuss three of these features briefly:
downgrade protection, the single round-trip handshake, and session
resumption.

Downgrade Protection

TLS 1.3’s downgrade protection feature is designed as a defense against
downgrade attacks, wherein an attacker forces the client and server to use a
weaker version of TLS than 1.3. To carry out a downgrade attack, an
attacker forces the server to use a weaker version of TLS by intercepting and
modifying the ClientHello message to tell the server that the client doesn’t
support TLS 1.3. Now the attacker can exploit vulnerabilities in earlier
versions of TLS.

In an effort to defeat downgrade attacks, the TLS 1.3 server uses three
types of patterns in the 32-byte random value sent within the ServerHello
message to identify the type of connection requested. The pattern should
match the client’s request for a specific type of TLS connection. If the client
receives the wrong pattern, it knows that something is up.

Specifically, if the client asks for a 'TLS 1.2 connection, the first eight of
the 32 bytes are set to 44 4F 57 4K 47 52 44 01, and if it asks for a TLS 1.1
connection, they’re set to 44 4F 57 4E 47 52 44 00. However, if the client
requests a TLS 1.3 connection, these first eight bits should be random. For
example, if a client sends a ClientHello asking for a TLS 1.3 connection, but
an attacker on the network modifies it to ask for a TLS 1.1 connection,
when the client receives the ServerHello with the wrong pattern, it will
know that its ClientHello message was modified. (The attacker can’t
arbitrarily modify the server’s 32-byte random value because this value is

cryptographically signed.)



Single Round-Trip Handshake

In a typical TLS 1.2 handshake, the client sends some data to the server,
waits for a response, and then sends more data and waits for the server’s
response before sending encrypted messages. The delay is that of two round-
trip times (RT'T). In contrast, TLS 1.3’s handshake takes a single round-trip
time, as shown in Figure 13-1. The time saved can be in the hundreds of
milliseconds. That may sound small, but its actually significant when you
consider that servers of popular services handle thousands of connections per
second.

Session Resumption

TLS 1.3 is faster than 1.2, but it can be made even faster (on the order of
hundreds of milliseconds) by completely eliminating the round trips that
precede an encrypted session. The trick is to use session resumption, a method
that leverages the pre-shared key exchanged between the client and server in
a previous session to bootstrap a new session. Session resumption brings two
major benefits: the client can start encrypting immediately, and there is no
need to use certificates in these subsequent sessions.

Figure 13-2 shows how session resumption works. First, the client sends a
ClientHello message that includes the identifier of the key already shared
(denoted PSK for pre-shared key) with the server, along with a fresh DH
public key. The client can also include encrypted data in this first message
(such data is known as O-RTT data). When the server responds to a
ClientHello message, it provides a MAC over the data exchange. The client
verifies the MAC and knows that it’s talking to the same server as it did
previously, thus rendering certificate validation somewhat superfluous. The
client and the server perform a Diffie-Hellman key agreement as in the
normal handshake, and subsequent messages are encrypted using keys that
depend on both the PSK and the newly computed Diffie-Hellman shared
secret.
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Figure 13-2: The TLS 1.3 session resumption handshake. The O-RTT data is the session
resumption data sent along with the ClientHello.

The Strengths of TLS Security

We'll evaluate the strengths of TLS 1.3 with respect to two main security
notions discussed in Chapter 11: authentication and forward secrecy.

Authentication

During the TLS 1.3 handshake, the server authenticates to the client using
the certificate mechanism. However, the client is not authenticated, and
clients may authenticate with a server-based application (such as Gmail) by
providing a username and password in a TLS record after performing the
handshake. If the client has already established a session with the remote
service, it may authenticate by sending a secure cookie, one that can only be
sent through a TLS connection.

In certain cases, clients can authenticate to a server using a certificate-
based mechanism similar to what the server uses in order to authenticate to
the client: the client sends a client certificate to the server, which in turn
verifies this certificate before authorizing the client. However, client
certificates are rarely used because they complicate things for both clients
and the server (that is, the certificate issuer): clients need to perform
complex operations in order to integrate the certificate into their system and
to protect its private key, while the issuer needs to make sure that only
authorized clients received a certificate, among other requirements.



Forward Secrecy

Recall from “Key Agreement Protocols” on page 205 that a key agreement is
said to provide forward secrecy if previous sessions aren’t compromised
when the present session is compromised. In the data leak model, only
temporary secrets are compromised, whereas in the breach model, long-term
secrets are exposed.

Thankfully, TLS 1.3 forward secrecy holds up in the face of both a data
leak and a breach. In the case of the data leak model, the attacker recovers
temporary secrets such as the session keys or Diffie-Hellman private keys of
a specific session (the values ¢, s, secret, and keys in Figure 13-1 on page 242).
However, they can only use these values to decrypt communications from
the present session, but not from previous sessions, because different values
of ¢ and s were used (thus yielding different keys).

In the breach model, the attacker also recovers long-term secrets (namely,
the private key that corresponds to the public key in the certificate).
However, this is no more useful when decrypting previous sessions than
temporary secrets, because this private key only serves to authenticate the
server, and forward secrecy holds up again.

But what happens in practice? Say an attacker compromises a client’s
machine and gains access to all of its memory. Now the attacker may recover
the client’s TLS session keys and secrets for the current session from
memory. But more importantly, if previous keys are still in memory, the
attacker may be able to find them too and use them to decrypt previous
sessions, thereby bypassing the theoretical forward secrecy. Therefore, in
order for a TLS implementation to ensure forward secrecy, it must properly
erase keys from memory once they are no longer used, typically by zeroing
out the memory.

How Things Can Go Wrong

TLS 1.3 fits the bill as a general-purpose secure communications protocol,
but it’s not bulletproof. Like any security system, it can fail under certain
circumstances (for example, when the assumptions made by its designers
about real attacks turn out to be wrong). Unfortunately, even the latest
version of TLS 1.3, configured with the most secure ciphers, can still be
compromised. For example, TLS 1.3 security relies on the assumption that
all three parties (the client, the server, and the certificate authority) will



behave honestly, but what if one party is compromised or the TLS
implementation itself is poorly implemented?

Compromised Certificate Authority

Root certificate authorities (root CAs) are organizations that are trusted by
browsers to validate certificates served by remote hosts. For example, if your
browser accepts the certificate provided by www.google.com, the assumption is
that a trusted CA has verified the legitimacy of the certificate owner. The
browser verifies the certificate by checking its CA-issued signature. Since
only the CA knows the private key required to create this signature, we
assume that others can’t create valid certificates on behalf of the CA. Very
often a website’s certificate won’t be signed by a root CA but by an inter-
mediate CA, which is connected to the root CA through a certificate chain.

But let’s say that a CA’s private key is compromised. Now the attacker will
be able to use the CA’s private key to create a certificate for any URLs in,
say, the google.comm domain without Google’s approval. What happens then?
The attacker can use those certificates to pretend to host a legitimate server
or subdomain like mzail.google.com and intercept a user’s credentials and
communications. That’s exactly what happened in 2011 when an attacker
hacked into the network of the Dutch certificate authority DigiNotar and
was able to create certificates that appeared to have been legitimate
DigiNotar certificates. The attacker then used these fake certificates for
several Google services.

Compromised Server

If a server is compromised and fully controlled by an attacker, all is lost: the
attacker will be able to see all transmitted data before it’s encrypted, and all
received data once it has been decrypted. They will also be able to get their
hands on the server’s private key, which could allow them to impersonate the
legitimate server using their own malicious server. Obviously, TLS won’t
save you in this case.

Fortunately, such security disasters are rarely seen in high-profile
applications such as Gmail and iCloud, which are well protected and
sometimes have their private keys stored in a separate security module.
Attacks on web applications via vulnerabilities such as database query
injections and cross-site scripting are more common, because they are
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mostly independent of TLS’s security and are carried out by attackers over a
legitimate TLS connection. Such attacks may compromise usernames,
passwords, and so on.

Compromised Client

TLS security is also compromised when a client, such as a browser, is
compromised by a remote attacker. Having compromised the client, the
attacker will be able to capture session keys, read any decrypted data, and so
on. They could even install a rogue CA certificate in the client’s browser to
have it silently accept otherwise invalid certificates, thereby letting attackers
intercept TLS connections.

The big difference between the compromised CA or server scenarios and
the compromised client scenario is that in the case of the compromised
client, only the targeted client will be affected, instead of potentially 4// the
clients.

Bugs in Implementations

As with any cryptographic system, TLS can fail when there are bugs in its
implementation. The poster child for TLS bugs is Heartbleed (see Figure
13-3), a buffer overflow in the OpenSSL implementation of a minor TLS
feature known as heartbeat. Heartbleed was discovered in 2014,
independently by a Google researcher and by the Codenomicon company,
and affected millions of TLS servers and clients.

As you can see in Figure 13-3, a client first sends a buffer along with a
buffer length to the server to check whether the server is online. In this
example, the buffer is the string BANANAS, and the client explicitly says
that this word is seven letters long. The server reads the seven-letter word
and returns it to the client.
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Figure 13-3: The Heartbleed bug in OpenSSL implementations of TLS

The problem is that the server doesn’t confirm that the length is correct,
and will attempt to read as many characters as the client tells it to.
Consequently, if the client provides a length that is longer than the string’s
actual length, the server reads too much data from memory and will return it
to the client, together with any extra data that may contain sensitive
information, such as private keys or session cookies.

It won’t surprise you to hear that the Heartbleed bug came as a shock. To
avoid similar future bugs, OpenSSL and other major TLS implementations
now perform rigorous code reviews and use automated tools such as fuzzers
in order to identify potential issues.

Further Reading

As T stated at the outset, this chapter is not a comprehensive guide to TLS,
and you may want to dig deeper into TLS 1.3. For starters, the complete
TLS 1.3 specifications include everything about the protocol (though not
necessarily about its underlying rationale). You can find that on the home

page of the TLS Working Group (I'LSWG) here: betps://tlswg.github.io/.

In addition, let me cite two important TLS initiatives:

e SSL Labs TLS test (bttps://www.ssllabs.com/ssitest/) is a free service by
Qualys that lets you test a browser’s or a server’s TLS configuration,
providing a security rating as well as improvement suggestions. If you
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set up your own TLS server, use this test to make sure that everything is
safe and that you get an “A” rating.

Let’s Encrypt (bttps://letsencrypt.org/) is a nonprofit that offers a service
to “automagically” deploy TLS on your HTTP servers. It includes
features to automatically generate a certificate and configure the TLS
server, and it supports all the common web servers and operating
systems.


https://letsencrypt.org/

14
QUANTUM AND POST-QUANTUM

Previous chapters focused on cryptography today, but in this chapter I'll
examine the future of cryptography over a time horizon of, say, a century or
more—one in which gquantum computers exist. Quantum computers are
computers that leverage phenomena from quantum physics in order to run
different kinds of algorithms than the ones we’re used to. Quantum
computers don’t exist yet and look very hard to build, but if they do exist one
day, then they’ll have the potential to break RSA, Diffie-Hellman, and
elliptic curve cryptography—that is, all the public-key crypto deployed or
standardized as of this writing.

To insure against the risk posed by quantum computers, cryptography
researchers have developed alternative public-key crypto algorithms called
post-quantum algorithms that would resist quantum computers. In 2015, the
NSA called for a transition to quantum-resistant algorithms designed to be
safe even in the face of quantum computers, and in 2017 the US
standardization agency NIST began a process that will eventually
standardize post-quantum algorithms.

This chapter will thus give you a nontechnical overview of the principles
behind quantum computers as well as a glimpse of post-quantum algorithms.
There’s some math involved, but nothing more than basic arithmetic and
linear algebra, so don’t be scared by the unusual notations.

How Quantum Computers Work

Quantum computing is a model of computing that uses quantum physics to
compute differently and do things that classical computers can’t, such as
breaking RSA and elliptic curve cryptography efficiently. But a quantum
computer is not a super-fast normal computer. In fact, quantum computers



can’t solve any problem that is too hard for a classical computer, such as
brute force search or NP-complete problems.

Quantum computers are based on quantum mechanics, the branch of
physics that studies the behavior of subatomic particles, which behave truly
randomly. Unlike classical computers, which operate on bits that are either 0
or 1, quantum computers are based on guantum bits (or qubits), which can be
both 0 and 1 simultaneously—a state of ambiguity called superposition.
Physicists discovered that in this microscopic world, particles such as
electrons and photons behave in a highly counterintuitive way: before you
observe an electron, the electron is not at a definite location in space, but in
several locations at the same time (that is, in a state of superposition). But
once you observe it—an operation called measurement in quantum physics—
then it stops at a fixed, random location and is no longer in superposition.
This quantum magic is what enables the creation of qubits in a quantum
computer.

But quantum computers only work because of a crazier phenomenon
called entanglement: two particles can be connected (entangled) in a way that
observing the value of one gives the value of the other, even if the two
particles are widely separated (kilometers or even light-years away from each
other). This behavior is illustrated by the Einstein—Podolsky—Rosen (EPR)
paradox and is the reason why Albert Einstein initially dismissed quantum
mechanics. (See https://platro.stanford.edu/entries/qt-epr/ for an in-depth
explanation of why.)

To best explain how a quantum computer works, we should distinguish
the actual quantum computer (the hardware, composed of quantum bits)
from quantum algorithms (the software that runs on it, composed of
quantum gates). The next two sections discuss these two notions.

Quantum Bits

Quantum bits (qubits), or groups thereof, are characterized with numbers
called amplitudes, which are akin to probabilities but aren’t exactly
probabilities. Whereas a probability is a number between 0 and 1, an
amplitude is a complex number of the form # + b x i, or simply & + bi, where
a and b are real numbers, and 7 is an imaginary unit. 'The number 7 is used to
form imaginary numbers, which are of the form b7, with » a real number.
When 7 is multiplied by a real number, we get another imaginary number,
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and when it is multiplied by itself it gives —1; that is i = —1.

Unlike real numbers, which can be seen as belonging to a line (see Figure
14-1), complex numbers can be seen as belonging to a plane (a space with two
dimensions), as shown in Figure 14-2. Here, the x-axis in the figure
corresponds to the # in & + bi, the y-axis corresponds to the 4, and the dotted
lines correspond to the real and imaginary part of each number. For
example, the vertical dotted line going from the point 3 + 27 down to 3 is two
units long (the 2 in the imaginary part 27).
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Figure 14-1: View of real numbers as points on an infinite straight line
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Figure 14-2: A view of complex numbers as points in a two-dimensional space

As you can see in Figure 14-2, you can use the Pythagorean theorem to
compute the length of the line going from the origin (0) to the point # + b:
by viewing this line as the diagonal of a triangle. The length of this diagonal
is equal to the square root of the sum of the squared coordinates of the

point, or y(#* + b?), which we call the modulus of the complex number # + bi.
We denote the modulus as |4 + bil and can use it as the length of a complex
number.

In a quantum computer, registers consist of 1 or more qubits in a state of



superposition characterized by a set of such complex numbers. But as we’ll
see, these complex numbers—the amplitudes—can’t be any numbers.

Amplitudes of a Single Qubit

A single qubit is characterized by two amplitudes that I'll call a (alpha) and B
(beta). We can then express a qubit’s state as & 10> + B 1) , where the |
> ” notation is used to denote vectors in a quantum state. This notation then
means that when you observe this qubit it will appear as 0 with a probability
la 12 and 1 with a probability 1B 12. Of course, in order for these to be actual
probabilities, [0 1? and |B|% must be numbers between 0 and 1, and o l? +
|B12 must be equal to 1.

For example, say we have the qubit W (psi) with amplitudes of a = 1/y2
and B = 1/Y2. We can express this as follows:

¥ =(1/+2)[0)+(1/+2)|1) = (jo+[1) /2

This notation means that in the qubit ¥, the value 0 has an amplitude of
1/42, and the value 1 has the same amplitude, 1/y2. To get the actual
probability from the amplitudes, we compute the modulus of 1/y2 (which is
equal to 1/y2, because it has no imaginary part), then square it: (1/42)? = 1/2.
That is, if you observe the qubit W, you’ll have a 1/2 chance of seeing a 0,
and the same chance of seeing a 1.

Now consider the qubit ® (phi), where
® =(i/2)]0)—(1/+2)1) = (il0) = [1)) / 2, or |@) = (i / V2, 1/R)

The qubit @ is fundamentally distinct from ¥ because unlike W, where
amplitudes have equal values, the qubit ® has distinct amplitudes of & = i/y2
(a positive imaginary number) and B = —1/Y2 (a negative real number). If,
however, you observe @, the chance of your seeing a 0 or 1 is 1/2, the same
as it is with W. Indeed, we can compute the probability of seeing a 0 as
follows, based on the preceding rules:

|u|2=( (15\/5)2}2:1;\/?:1;2



Because o = /N2, Q. can be written as a + bi with a = 0 and b = 1/N2, and
computing | Q| = (2% + b?) yields 1/12.

The upshot is that different qubits can behave similarly to an observer
(with the same probability of seeing a 0 for both qubits) but have different
amplitudes. This tells us that the actual probabilities of seeing a 0 or a 1 only
partially characterize a qubit; just as when you observe the shadow of an
object on a wall, the shape of the shadow will give you an idea of the object’s
width and height, but not of its depth. In the case of qubits, this hidden
dimension is the value of its amplitude: Is it positive or negative? Is it a real
number or an imaginary number?

To simplify notations, a qubit is often simply written as its pair of amplitudes (Q,
B). Our previous example can then be written W) = (1/42, 1/42).

Amplitudes of Groups of Qubits

We've explored single qubits, but how do we understand multiple qubits?
For example, a quantum byte can be formed with 8 qubits, when put into a
state where the quantum states of these 8 qubits are somehow connected to
each other (we say that the qubits are entangled, which is a complex physical
phenomenon). Such a quantum byte can be described as follows, where the
as are the amplitudes associated with each of the 256 possible values of the
group of 8 qubits:

oty |00000000) + o, |00000001) + aty |00000010) + ety |00000011) + ... + Oty |11111111)

Note that we must have 10,12 + 10;1% + ... + 10,5517 = 1, so that all
probabilities sum to 1.

Our group of 8 qubits can be viewed as a set of 28 = 256 amplitudes,
because it has 256 possible configurations, each with its own amplitude. In
physical reality, however, you’d only have eight physical objects, not 256.
The 256 amplitudes are an implicit characteristic of the group of 8 qubits;
each of these 256 numbers can take any of infinitely many different values.



Generalizing, a group of n qubits is characterized by a set of 2” complex
numbers, a number that grows exponentially with the numbers of qubits.

This encoding of exponentially many high-precision complex numbers is a
core reason why a classical computer can’t simulate a quantum computer: in
order to do so, it would need an unfathomably high amount of memory (of

size around 2”) to store the same amount of information contained in only »
qubits.

Quantum Gates

The concepts of amplitude and quantum gates are unique to quantum
computing. Whereas a classical computer uses registers, memory, and a
microprocessor to perform a sequence of instructions on data, a quantum
computer transforms a group of qubits reversibly by applying a series of
quantum gates, and then measures the value of one or more qubits.
Quantum computers promise more computing power because with only #
qubits, they can process 2” numbers (the qubits’ amplitudes). This property
has profound implications.

From a mathematical standpoint, quantum algorithms are essentially a
circuit of quantum gates that transforms a set of complex numbers (the
amplitudes) before a final measurement where the value of 1 or more qubits
is observed (see Figure 14-3). You'll also see quantum algorithms referred to
as quantum gate arrays Or qUANTUNL CIVCULLS.
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Figure 14-3: Principle of a quantum algorithm

Quantum Gates as Matrix Multiplications

Unlike the Boolean gates of a classical computer (AND, XOR, and so on), a
quantum gate acts on a group of amplitudes just as a matrix acts when multi-



plied with a vector. For example, in order to apply the simplest quantum
gate, the identity gate, to the qubit ®, we see [ as a 2 x 2 matrix and multiply
it with the column vector consisting of the two amplitudes of ®, as shown
here:
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The result of this matrix—vector multiplication is another column vector
with two elements, where the top value is equal to the dot product of the I
matrix’s first line with the input vector (the result of adding the product of
the first elements 1 and i/42 to the product of the second elements 0 and —1/
v2), and likewise for the bottom value.

In practice, a quantum computer wouldn’t explicitly compute matrix—vector
multiplications because the matrices would be way too large. (That’s why
quantum computing can’t be simulated by a classical computer.) Instead, a
quantum computer would transform qubits as physical particles through physical
transformations that arve equivalent to a matrix multiplication. Confused?
Here’s what Richard Feynman had to say: “If you are not completely confused by
quantum mechanics, you do not understand it.”

The Hadamard Quantum Gate

The only quantum gate we’ve seen so far, the identity gate [, is pretty useless
because it doesn’t do anything and leaves a qubit unchanged. Now we’re
going to see one of the most useful quantum gates, called the Hadamard gate,
usually denoted H. The Hadamard gate is defined as follows (note the
negative value in the bottom-right position):

[lf\@ 1,.«’\@}
1/4J2 -1/42



Let’s see what happens if we apply this gate to the qubit W) = (1/42, 1/
\V2):

ol VAL

1742 -1/ N1/42) \1/2-1/2) |0

By applying the Hadamard gate H to |¥) , we obtain the qubit 10) for

which the value 107 has amplitude 1, and 11) has amplitude 0. This tells
us that the qubit will behave deterministically: that is, if you observe this
qubit, you would always see a 0 and never a 1. In other words, we’ve lost the

randomness of the initial qubit [¥) .

What happens if we apply the Hadamard gate again to the qubit 10) ?

H10) - 1/42 1742 [1]_ 1/+2 %)
1/42 -1/2\0) (1/+2
This brings us back to the qubit |¥) and a randomized state. Indeed, the

Hadamard gate is often used in quantum algorithms to go from a
deterministic state to a uniformly random one.

Not All Matrices are Quantum Gates

Although quantum gates can be seen as matrix multiplications, not all
matrices correspond to quantum gates. Recall that a qubit consists of the
complex numbers & and B and the amplitudes of the qubit, such that they
satisfy the condition lal? + [B1? = 1. If after multiplying a qubit by a matrix
we get two amplitudes that don’t match this condition, the result can’t be a
qubit. Quantum gates can only correspond to matrices that preserve the
property lal? + IB 1% = 1, and matrices that satisfy this condition are called
Unitary matrices.

Unitary matrices (and quantum gates by definition) are invertible, meaning
that given the result of an operation, you can compute back the original
qubit by applying the inverse matrix. This is the reason why quantum
computing is said to be a kind of reversible computing.

Quantum Speed-Up



A quantum speed-up occurs when a problem can be solved faster by a
quantum computer than by a classical one. For example, in order to search
for an item among 7 items of an unordered list on a classical computer, you
need on average 7/2 operations, because you need to look at each item in the
list before finding the one you’re looking for. (On average, you’ll find that
item after searching half of the list.) No classical algorithm can do better
than 7/2. However, a quantum algorithm exists to search for an item in only

about Vn operations, which is orders of magnitude smaller than #/2. For
example, if 7 is equal to 1000000, then /2 is 500000, whereas yz is 1000.

We attempt to quantify the difference between quantum and classical
algorithms in terms of #ime complexity, which is represented by O() notation.
In the previous example, the quantum algorithm runs in time O(z) but the
classical algorithm can’t be faster than O(z). Because the difference in time
complexity here is due to the square exponent, we call this guadratic speed-up.
But while such a speed-up will likely make a difference, there are much more
powerful ones.

Exponential Speed-Up and Simon’s Problem

Exponential speed-ups are the Holy Grail of quantum computing. They occur
when a task that takes an exponential amount of time on a classical

computer, such as O(2”), can be performed on a quantum computer with

polynomial complexity—namely O(»*) for some fixed number k. This
exponential speed-up can turn a practically impossible task into a possible
one. (Recall from Chapter 9 that cryptographers and complexity theorists
associate exponential time with the impossible, and they associate
polynomial time with the practical.)

The poster child of exponential speed-ups is Simzon’s problem. In this
computational problem, a function, f(), transforms 7-bit strings to n-bit
strings, such that the output of f() looks random except that there is a value,
m, such that any two values , y that satisties f(x) = f(y), then y =x @ . The
way to solve this problem is to find 7.

The route to take when solving Simon’s problem with a classical
algorithm boils down to finding a collision, which takes approximately 2/2
queries to f(). However, a quantum algorithm (shown in Figure 14-4) can
solve Simon’s problem in approximately n queries, with the extremely
efficient time complexity of O(#).
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Figure 14-4: The circuit of the quantum algorithm that solves Simon’s problem efficiently

As you can see in Figure 14-4, you initialize 2n qubits to 10) , apply
Hadamard gates (H) to the first # qubits, then apply the gate Qf to the two
groups of all #» qubits. Given two n-qubit groups x and y, the gate Qf

transforms the quantum state lx) ly) to the state lx) |f(x) ® y) . That s,
it computes the function f() on the quantum state reversibly, because you can
go from the new state to the old one by computing f(x) and XORing it to
f(x) ® y. (Unfortunately, explaining why all of this works is beyond the scope
of this book.)

The exponential speed-up for Simon’s problem can be used against
symmetric ciphers only in very specific cases, but in the next section you’ll
see some real crypto-killer applications of quantum computing.

The Threat of Shor’s Algorithm

In 1995, AT&T researcher Peter Shor published an eye-opening article
titled “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer.” Shor’s algorithm is a quantum
algorithm that causes an exponential speed-up when solving the factoring,
discrete logarithm (DLP), and elliptic curve discrete logarithm (ECDLP)
problems. You can’t solve these problems with a classical computer, but you
could with a quantum computer. That means that you could use a quantum
computer to solve any cryptographic algorithm that relies on those
problems, including RSA, Diffie-Hellman, elliptic curve cryptography, and



all currently deployed public-key cryptography mechanisms. In other words,
you could reduce the security of RSA or elliptic curve cryptography to that
of Caesar’s cipher. (Shor might as well have titled his article “Breaking All
Public-Key Crypto on a Quantum Computer.”) Shor’s algorithm has been
called “one of the major scientific achievements of the late 20th century” by
renowned complexity theorist Scott Aaronson.

Shor’s algorithm actually solves a more general class of problems than
factoring and discrete logarithms. Specifically, if a function () is periodic—
that is, if there’s a W (the period) such that f(x + W) = f(x) for any x, Shor’s
algorithm will efficiently find w. (This looks very similar to Simon’s
problem discussed previously, and indeed Simon’s algorithm was a major
inspiration for Shor’s algorithm.) The ability of Shor’s algorithm to
efficiently compute the period of a function is important to cryptographers
because that ability can be used to attack public-key cryptography, as I'll
discuss next.

A discussion of the details of how Shor’s algorithm achieves its speed-up is
far too technical for this book, but in this section I'll show how you could
use Shor’s algorithm to attack public-key cryptography. Let’s see how Shor’s
algorithm could be used to solve the factoring and discrete logarithm
problems (as discussed in Chapter 9), which are respectively the hard
problems behind RSA and Diffie-Hellman.

Shor’s Algorithm Solves the Factoring Problem

Say you want to factor a large number, N = pg. It’s easy to factor N if you can

compute the period of #* mod N, a task that is hard to do with a classical
computer but easy to do on a quantum one. You first pick a random number

a less than N, and ask Shor’s algorithm to find the period w of the function

f(x) = #* mod N. Once you’ve found the period, you’ll have 4* mod N = #** %

mod N (that is, 2* mod N = #%a% mod N), which means that 2% mod N = 1,

or 4% — 1 mod N = 0. In other words, 4% — 1 is a multiple of N, or 4% =1 = AN
for some unknown number %.

The key observation here is that you can easily factor the number 4% ~ ! as

the product of two terms, where 2% =1 = (4% /2 — 1)(@®’? + 1). You can then
compute the greatest common divisor (GCD) between (#* /2 — 1) and N,
and check to see if you've obtained a nontrivial factor of N (that is, a value
other than 1 or N). If not, you can just rerun the same algorithm with



another value of #. After a few trials, you’ll get a factor of N. You’ve now
recovered the private RSA key from its public key, which allows you to
decrypt messages or forge signatures.

But just how easy is this computation? Note that the best classical
algorithm to use to factor a number N runs in time exponential in 7, the bit
length of N (that is, » = log, N). However, Shor’s algorithm runs in time

polynomial in n—namely, O(n*(log n)(log log n)). This means that if we had a
quantum computer, we could run Shor’s algorithm and see the result within
a reasonable amount of time (days? weeks? months, maybe?) instead of
thousands of years.

Shor’s Algorithm and the Discrete Logarithm Problem

The challenge in the discrete logarithm problem is to find y, given y = g*
mod p, for some known numbers g and p. Solving this problem takes an
exponential amount of time on a classical computer, but Shor’s algorithm
lets you find y easily thanks to its efficient period-finding technique.

For example, consider the function f(z, b) = g%’. Say we want to find the
period of this function, the numbers w and W', such that f(z + W, b + W) =
f(a, b) for any a and b. The solution we seek is then x = —-w / W modulo ¢,
the order of g, which is a known parameter. The equality f(z + W, b + W) =
f(a, b) implies g¥y* mod p = 1. By substituting y with g*, we have g * X'
mod p = 1, which is equivalent to W + xW" mod ¢ = 0, from which we derive x
=-W/Ww.

Again, the overall complexity is O(’(log n)(log log n)), with # the bit
length of p. This algorithm generalizes to find discrete logarithms in any
commutative group, not just the group of numbers modulo a prime number.

Grover’s Algorithm

After Shor’s algorithm exponential speed-up for factoring, another
important form of quantum speed-up is the ability to search among 7 items
in time proportional to the square root of 7, whereas any classical algorithm
would take time proportional to 7. This quadratic speed-up is possible
thanks to Grover’s algorithm, a quantum algorithm discovered in 1996 (after
Shor’s algorithm). I won’t cover the internals of Grover’s algorithm because
they’re essentially a bunch of Hadamard gates, but I’ll explain what kind of
problem Grover solves and its potential impact on cryptographic security.



I'll also show why you can salvage a symmetric crypto algorithm from
quantum computers by doubling the key or hash value size, whereas
asymmetric algorithms are destroyed for good.

Think of Grover’s algorithm as a way to find the value x among 7 possible
values, such that f(x) = 1, and where f(x) = 0 for most other values. If
values of x satisfy f(x) = 1, Grover will find a solution in time O((n / m));
that is, in time proportional to the square root of » divided by . In
comparison, a classical algorithm can’t do better than O(n / m).

Now consider the fact that f() can be any function. It could be, for
example, “f(x) = 1 if and only if x is equal to the unknown secret key K such
that E(K, P) = C” for some known plaintext P and ciphertext C, and where
E() is some encryption function. In practice, this means that if you’re looking
for a 128-bit AES key with a quantum computer, you’ll find the key in time

proportional to 2%4, rather than 2128 if you had only classical computers. You
would need a large enough plaintext to ensure the uniqueness of the key. (If
the plaintext and ciphertext are, say, 32 bits, many candidate keys would map

that plaintext to that ciphertext.) The complexity 2% is much smaller than

2128 ‘meaning that a secret key would be much easier to recover. But there’s

an easy solution: to restore 128-bit security, just use 256-bit keys! Grover’s

algorithm will then reduce the complexity of searching a key to “only” 2276/

2 = 2128 operations.

Grover’s algorithm can also find preimages of hash functions (a notion
discussed in Chapter 6). To find a preimage of some value 4, the f() function
is defined as “f(x) = 1 if and only if Hash(x) = A, otherwise f(x) = 0.” Grover
thus gets you preimages of n-bit hashes at the cost of the order of 27/
operations. As with encryption, to ensure 2” post-quantum security, just use
hash values twice as large, since Grover’s algorithm will find a preimage of a
2n-bit value in at least 2” operations.

The bottom line is that you can salvage symmetric crypto algorithms from
quantum computers by doubling the key or hash value size, whereas
asymmetric algorithms are destroyed for good.

There is a quantum algorithm that finds bash function collisions in time
OQ"3), instead of OQR™?), as with the classic birthday attack. This would




suggest that quantum computers can outperform classical computers for finding
bash function collisions, except that the OQ2™3)-time quantum algorithm also
requires OQ™3) space, or memory, in order to run. Give OQ™3) worth of
computer space to a classic algorithm and it can run a parallel collision search
algorithm with a collision time of only OQ™0), which is much faster than the
OQR™3) quantum algorithm. (For details of this attack, see “Cost Analysis of
Hash Collisions” by Daniel 7 Bernstein at
http://cr.yp.to/papers.html#collisioncost.)

Why Is It So Hard to Build a Quantum Computer?

Although quantum computers can in principle be built, we don’t know how
hard it will be or when that might happen, if at all. And so far, it looks really
hard. As of early 2017, the record holder is a machine that is able to keep 14
(fourteen!) qubits stable for only a few milliseconds, whereas we’d need to
keep millions of qubits stable for weeks in order to break any crypto. The
point is, we’re not there yet.

Why is it so hard to build a quantum computer? Because you need
extremely small things to play the role of qubits—about the size of electrons
or photons. And because qubits must be so small, they’re also extremely
fragile.

Qubits must also be kept at extremely low temperatures (close to absolute
zero) in order to remain stable. But even at such a freezing temperature, the
state of the qubits decays, and they eventually become useless. As of this
writing, we don’t yet know how to make qubits that will last for more than a
couple of seconds.

Another challenge is that qubits can be affected by the environment, such
as heat and magnetic fields, which can create noise in the system, and hence
computation errors. In theory, it’s possible to deal with these errors (as long
as the error rate isn’t too high), but it’s hard to do so. Correcting qubits’
errors requires specific techniques called quantum error-correcting codes,
which in turn require additional qubits and a low enough rate of error. But
we don’t know how to build systems with such a low error rate.

At the moment, there are two main approaches to forming qubits, and
therefore to building quantum computers: superconducting circuits and ion
traps. Using superconducting circuits is the approach championed by labs at


http://cr.yp.to/papers.html#collisioncost

Google and IBM. It’s based on forming qubits as tiny electrical circuits that
rely on quantum phenomena from superconductor materials, where charge
carriers are pairs of electrons. Qubits made of superconducting circuits need
to be kept at temperatures close to absolute zero, and they have a very short
lifetime. The record as of this writing is nine qubits kept stable for a few
microseconds.

Ion traps, or trapped ions, are made up of ions (charged atoms) and are
manipulated using lasers in order to prepare the qubits in specific initial
states. Using ion traps was one of the first approaches to building qubits, and
they tend to be more stable than superconducting circuits. The record as of
this writing is 14 qubits stable for a few milliseconds. But ion traps are
slower to operate and seem harder to scale than superconducting circuits.

Building a quantum computer is really a moonshot effort. The challenge
comes down to 1) building a system with a handful of qubits that is stable,
fault tolerant, and capable of applying basic quantum gates, and 2) scaling
such a system to thousands or millions of qubits to make it useful. From a
purely physical standpoint, and to the best of our knowledge, there is
nothing to prevent the creation of large fault-tolerant quantum computers.
But many things are possible in theory and prove hard or too costly to
realize in practice (like secure computers). Of course, the future will tell who
is right—the quantum optimists (who sometimes predict a large quantum
computer in ten years) or the quantum skeptics (who argue that the human
race will never see a quantum computer).

Post-Quantum Cryptographic Algorithms

The field of post-quantum cryptography is about designing public-key
algorithms that cannot be broken by a quantum computer; that is, they
would be quantum safe and able to replace RSA and elliptic curve-based
algorithms in a future where off-the-shelf quantum computers could break
4096-bit RSA moduli in a snap.

Such algorithms should not rely on a hard problem known to be efficiently
solvable by Shor’s algorithm, which kills the hardness in factoring and
discrete logarithm problems. Symmetric algorithms such as block ciphers
and hash functions would lose only half their theoretical security in the face
of a quantum computer but would not be badly broken as RSA. They might
constitute the basis for a post-quantum scheme.



In the following sections, I explain the four main types of post-quantum
algorithms: code-based, lattice-based, multivariate, and hash-based. Of
these, hash-based is my favorite because of its simplicity and strong security
guarantees.

Code-Based Cryptography

Code-based post-quantum cryptographic algorithms are based on error-
correcting codes, which are techniques designed to transmit bits over a noisy
channel. The basic theory of error-correcting codes dates back to the 1950s.
The first code-based encryption scheme (the McEliece cryptosystem) was
developed in 1978 and is still unbroken. Code-based crypto schemes can be
used for both encryption and signatures. Their main limitation is the size of
their public key, which is typically on the order of a hundred kilobytes. But is
that really a problem when the average size of a web page is around two
megabytes?

Let me first explain what error-correcting codes are. Say you want to
transmit a sequence of bits as a sequence of (say) 3-bit words, but the
transmission is unreliable and you’re concerned that 1 or more bits may be
incorrectly transmitted: you send 010, but the receiver gets 011. One simple
way to address this would be to use a very basic error-correction code:
instead of transmitting 010 you would transmit 000111000 (repeating each
bit three times), and the receiver would decode the received word by taking
the majority value for each of the three bits. For example, 100110111 would
be decoded to 011 because that pattern appears twice. But as you can see,
this particular error-correcting code would allow a receiver to correct only
up to one error per 3-bit chunk, because if two errors occur in the same 3-bit
chunk, the majority value would be the wrong one.

Linear codes are an example of less trivial error-correcting codes. In the
case of linear codes, a word to encode is seen as an n-bit vector v, and
encoding consists of multiplying v with an 7 x » matrix G to compute the
code word w = vG. (In this example, m is greater than », meaning that the
code word is longer than the original word.) The value G can be structured
such that for a given number ¢, any #-bit error in w allows the recipient to
recover the correct v. In other words, ¢ is the maximum number of errors
that can be corrected.

In order to encrypt data using linear codes, the McEliece cryptosystem



constructs (G as a secret combination of three matrices, and encrypts by
computing w = vG plus some random value, ¢, which is a fixed number of 1
bit. Here, GG is the public key, and the private key is composed of the
matrices A, B, and C such that G = ABC. Knowing A, B, and C allows one to
decode a message reliably and retrieve w. (You’ll find the decoding step
described online.)

The security of the McEliece encryption scheme relies on the hardness of
decoding a linear code with insufficient information, a problem known to be
NP-complete and therefore out of reach of quantum computers.

Lattice-Based Cryptography

Lattices are mathematical structures that essentially consist of a set of points
in an z-dimensional space, with some periodic structure. For example, in
dimension two (n = 2), a lattice can be viewed as the set of points shown in
Figure 14-5.
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Figure 14-5: Points of a two-dimensional lattice, where v and w are basis vectors of the lattice, and
s is the closest vector to the star-shaped point

Lattice theory has led to deceptively simple cryptography schemes. I'll
give you the gist of it.

A first hard problem found in lattice-based crypto is known as short integer
solution (SIS). SIS consists of finding the secret vector s of » numbers given
(A, b) such that b = As mod ¢, where A is a random 7 x 7 matrix and ¢ is a
prime number.

The second hard problem in lattice-based cryptography is called learning
with errors (LWE). LWE consists of finding the secret vector s of » numbers



given (A4, b), where b = As + e mod ¢, with A being a random 72 x » matrix, ¢ a
random vector of noise, and ¢ a prime number. This problem looks a lot like
noisy decoding in code-based cryptography.

SIS and LWE are somewhat equivalent, and can be restated as instances of
the closest vector problem (CVP) on a lattice, or the problem of finding the
vector in a lattice closest to a given point, by combining a set of basis vectors.
The dotted vector s in Figure 14-5 shows how we would find the closest
vector to the star-shaped point by combining the basis vectors v and w.

CVP and other lattice problems are believed to be hard both for classical
and quantum computers. But this doesn’t directly transfer to secure
cryptosystems, because some problems are only hard in the worst case (that
is, for their hardest instance) rather than the average case (which is what we
need for crypto). Furthermore, while finding the exact solution to CVP is
hard, finding an approximation of the solution can be considerably easier.

Multivariate Cryptography

Multivariate cryptography is about building cryptographic schemes that are as
hard to break as it is to solve systems of multivariate equations, or equations
involving multiple unknowns. Consider, for example, the following system
of equations involving four unknowns xy, x,, a3, x4:

xx +xx +x =1

x5 + 2%, + x,x, =12
) 2 -

L +.x4—4

Xy + 256, + 2, +x, =0

These equations consist of the sum of terms that are either a single
unknown, such as x4 (or terms of degree one), or the product of two
unknown values, such as x,x; (terms of degree two or quadratic terms). To
solve this system, we need to find the values of xy, x,, x3, x4 that satisfy all
four equations. Equations may be over all real numbers, integers only, or
over finite sets of numbers. In cryptography, however, equations are
typically over numbers modulo some prime numbers, or over binary values
(0 and 1).

The problem here is to find a solution that is NP-hard given a random
quadratic system of equations. This hard problem, known as multivariate



quadratics (MQ) equations, is therefore a potential basis for post-quantum
systems because quantum computers won’t solve NP-hard problems
efficiently.

Unfortunately, building a cryptosystem on top on MQ isn’t so
straightforward. For example, if we were to use MQ for signatures, the
private key might consist of three systems of equations, L, N, and L,, which

when combined in this order would give another system of equations that
we’ll call P, the public key. Applying the transformations L;, N, and L,
consecutively (that is, transforming a group of values as per the system of
equations) is then equivalent to applying P by transforming x;, x, x3, x4 to
Y1, Y2, V3, V4, defined as follows:

N = XXy T XXy T X

Yo = XXy + XX, + XXy

s =X+ X, +

Yz = 4 Xy T Xy

Y, = XXy + XX, + % + X,

In such a cryptosystem, L, N, and L, are chosen such that L.; and L, are
linear transformations (that is, having equations where terms are only added,
not multiplied) that are invertible, and where N is a quadratic system of
equations that is also invertible. This makes the combination of the three a
quadratic system that’s also invertible, but whose inverse is hard to
determine without knowing the inverses of L, N, and L.

Computing a signature then consists of computing the inverses of L;, N,
and L, applied to some message, M, seen as a sequence of variables, x{, x,, ...

S=L, (N L, (M)

Veritying a signature then consists of verifying that P(S) = M.

Attackers could break such a cryptosystem if they manage to compute the
inverse of P, or to determine L, N, and L, from P. The actual hardness of

solving such problems depends on the parameters of the scheme, such as the
number of equations used, the size and type of the numbers, and so on. But
choosing secure parameters is hard, and more than one multivariate scheme
considered safe has been broken.



Multivariate cryptography isn’t used in major applications due to concerns
about the scheme’s security and because it’s often slow or requires tons of
memory. A practical benefit of multivariate signature schemes, however, is
that it produces short signatures.

Hash-Based Cryptography

Unlike the previous schemes, hash-based cryptography is based on the well-
established security of cryptographic hash functions rather than on the
hardness of mathematical problems. Because quantum computers cannot
break hash functions, they cannot break anything that relies on the difficulty
of finding collisions, which is the key idea of hash function-based signature
schemes.

Hash-based cryptographic schemes are pretty complex, so we’ll just take a
look at their simplest building block: the one-time signature, a trick
discovered around 1979, and known as Winternitz one-time signature
(WOTY), after its inventor. Here “one-time” means that a private key can be
used to sign only one message; otherwise, the signature scheme becomes
insecure. (WO'TS can be combined with other methods to sign multiple
messages, as you'll see in the subsequent section.)

But first, let’s see how WOTS works. Say you want to sign a message
viewed as a number between 0 and w — 1, where w is some parameter of the
scheme. The private key is a random string, K. To sign a message, M, with 0
< M < w, you compute Hash(Hash(...(Hash(K))), where the hash function
Hash is repeated M times. We denote this value as Hash?/(K). The public

key is Hash”(K), or the result of w nested iterations of Hash, starting from
K.
A WOTS signature, S, is verified by checking that Hash? =~ ¥(S) is equal

to the public key Hash¥(K). Note that S is K after M applications of Hash,
so if we do another w — M applications of Hash, we’ll get a value equal to K

hashed M + (w — M) = w times, which is the public key.

"This scheme looks rather dumb, and it has significant limitations:

Signatures can be forged
From Hash™(K), the signature of M, you can compute Hash(Hash"/(K))

= Hash + 1(K), which is a valid signature of the message M + 1. This
problem can be fixed by signing not only M, but also w — M, using a



second key.

It only works for short messages

If messages are 8 bits long, there are up to 28 — 1 = 255 possible messages,
so you’ll have to compute Hash up to 255 times in order to create a

signature. That might work for short messages, but not for longer ones:

for example, with 128-bit messages, signing the message 2128 — 1 would

take forever. A workaround is to split longer messages into shorter ones.

It works only once
If a private key is used to sign more than one message, an attacker can
recover enough information to forge a signature. For example, if w = 8
and you sign the numbers 1 and 7 using the preceding trick to avoid trivial

forgeries, the attacker gets Hash!(K) and Hash’(K') as a signature of 1,
and Hash’(K) and Hash!(K) as a signature of 7. From these values, the

attacker can compute Hash*(K) and Hash*(K’) for any x in [1;7] and thus
forge a signature on behalf of the owner of K and K. There is no simple
way to fix this.

State-of-the-art hash-based schemes rely on more complex versions of
WOTS, combined with tree data structures and sophisticated techniques
designed to sign different messages with different keys. Unfortunately, the
resulting schemes produce large signatures (on the order of dozens of
kilobytes, as with SPHINCS, a state-of-the-art scheme at the time of this
writing), and they sometimes have a limit on the number of messages they
can sign.

How Things Can Go Wrong

Post-quantum cryptography may be fundamentally stronger than RSA or
elliptic curve cryptography, but it’s not infallible or omnipotent. Our
understanding of the security of post-quantum schemes and their
implementations is more limited than for not-post-quantum cryptography,
which brings with it increased risk, as summarized in the following sections.

Unclear Security Level

Post-quantum schemes can appear deceptively strong yet prove insecure
against both quantum and classical attacks. Lattice-based algorithms, such as



the ring-LWE family of computational problems (versions of the LWE
problem that work with polynomials), are sometimes problematic. Ring-
LWE is attractive for cryptographers because it can be leveraged to build
cryptosystems that are in principle as hard to break as it is to solve the
hardest instances of Ring-LWE problems, which can be NP-hard. But when
security looks too good to be true, it often is.

One problem with security proofs is that they are often asymptotic,
meaning that they’re true only for a large number of parameters such as the
dimension of the underlying lattice. However, in practice, a much smaller
number of parameters is used.

Even when a lattice-based scheme looks to be as hard to break as some
NP-hard problem, its security remains hard to quantify. In the case of
lattice-based algorithms, we rarely have a clear picture of the best attacks
against them and the cost of such an attack in terms of computation or
hardware, because of our lack of understanding of these recent
constructions. This uncertainty makes lattice-based schemes harder to
compare against better-understood constructions such as RSA, and this
scares potential users. However, researchers have been making progress on
this front and hopefully in a few years, lattice problems will be as well
understood as RSA. (For more technical details on the Ring-LWE problem,
read Peikert’s excellent survey at https://eprint.iacr.org/2016/351/.)

Fast Forward: What Happens if It’s Too Late?

Imagine this CNN headline: April 2, 2048: “ACME, Inc. reveals its secretly
built quantum computer, launches break-crypto-as-a-service platform.”
Okay, RSA and elliptic curve crypto are screwed. Now what?

The bottom line is that post-quantum encryption is way more critical than
post-quantum signatures. Let’s look at the case of signatures first. If you
were still using RSA-PSS or ECDSA as a signature scheme, you could just
issue new signatures using a post-quantum signature scheme in order to
restore your signatures’ trust. You would revoke your older, quantum-unsafe
public keys and compute fresh signatures for every message you had signed.
After a bit of work, you’d be fine.

You would only need to panic if you were encrypting data using quantum-
unsafe schemes, such as RSA-OAEP. In this case all transmitted ciphertext
could be compromised. Obviously, it would be pointless to encrypt that


https://eprint.iacr.org/2016/351/

plaintext again with a post-quantum algorithm since your data’s
confidentiality is already gone.

But what about key agreement, with Diffie-Hellman (DH) and its elliptic
curve counterpart (ECDH)?

Well, at first glance, the situation looks to be as bad as with encryption:

attackers who've collected public keys g” and g’ could use their shiny new
quantum computer to compute the secret exponent # or b and compute the

shared secret g, and then derive from it the keys used to encrypt your
traffic. But in practice, Diffie-Hellman isn’t always used in such a simplistic
fashion. The actual session keys used to encrypt your data may be derived
from both the Diffie-Hellman shared secret and some internal state of your
system.

For example, that’s how state-of-the-art mobile messaging systems work,
thanks to a protocol pioneered with the Signal application. When you send a
new message to a peer with Signal, a new Diffie-Hellman shared secret is
computed and combined with some internal secrets that depend on the
previous messages sent within that session (which can span long periods of
time). Such advanced use of Diffie-Hellman makes the work of an attacker
much harder, even one with a quantum computer.

Implementation Issues

In practice, post-quantum schemes will be code, not algorithms; that is,
software running on some physical processor. And however strong the
algorithms may be on paper, they won’t be immune to implementation
errors, software bugs, or side-channel attacks. An algorithm may be
completely post-quantum in theory but may still be broken by a simple
classical computer program because a programmer forgot to enter a
semicolon.

Furthermore, schemes such as code-based and lattice-based algorithms
rely heavily on mathematical operations, the implementation of which uses a
variety of tricks to make those operations as fast as possible. But by the same
token, the complexity of the code in these algorithms makes implementation
more vulnerable to side-channel attacks, such as timing attacks, which infer
information about secret values based on measurement of execution times.
In fact, such attacks have already been applied to code-based encryption (see
https://eprint.iacr.org/2010/479/) and to lattice-based signature schemes (see


https://eprint.iacr.org/2010/479/

bttps://eprint.iacr.org/2016/300/).

The upshot is that, ironically, post-quantum schemes will be less secure in
practice at first than non-post-quantum ones, due to vulnerabilities in their
implementations.

Further Reading

To learn the basics of quantum computation, read the classic Quantum
Computation and Quantum Information by Nielsen and Chuang (Cambridge,
2000). Aaronson’s Quantum Computing Since Democritus (Cambridge, 2013),
a less technical and more entertaining read, covers more than quantum
computing.

Several software simulators will allow you to experiment with quantum
computing. The Quantum Computing Playground at
http:/fwww.quantumplayground.net/ is particularly well designed, with a
simple programming language and intuitive visualizations.

For the latest research in post-quantum cryptography, see
https://pgcrypto.org/ and the associated conference PQCrypto.

The coming years promise to be particularly exciting for post-quantum
crypto thanks to NIST’s Post-Quantum Crypto Project, a community effort
to develop the future post-quantum standard. Be sure to check the project’s
website  bttp://csre.nist.gov/groups/ST/post-quantum-crypto/ for the related
algorithms, research papers, and workshops.
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