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FOREWORD
If	 you’ve	 read	 a	 book	 or	 two	 on	 computer	 security,	 you	 may	 have
encountered	 a	 common	 perspective	 on	 the	 field	 of	 cryptography.
“Cryptography,”	they	say,	“is	the	strongest	link	in	the	chain.”	Strong	praise
indeed,	 but	 it’s	 also	 somewhat	 dismissive.	 If	 cryptography	 is	 in	 fact	 the
strongest	part	of	your	system,	why	invest	time	improving	it	when	there	are
so	 many	 other	 areas	 of	 the	 system	 that	 will	 benefit	 more	 from	 your
attention?

If	there’s	one	thing	that	I	hope	you	take	away	from	this	book,	it’s	that	this
view	of	cryptography	is	idealized;	it’s	largely	a	myth.	Cryptography	in	theory
is	 strong,	 but	 cryptography	 in	 practice	 is	 as	 prone	 to	 failure	 as	 any	 other
aspect	 of	 a	 security	 system.	 This	 is	 particularly	 true	 when	 cryptographic
implementations	 are	 developed	 by	 non-experts	 without	 sufficient	 care	 or
experience,	as	 is	the	case	with	many	cryptographic	systems	deployed	today.
And	it	gets	worse:	when	cryptographic	implementations	fail,	they	often	do	so
in	uniquely	spectacular	ways.

But	why	should	you	care,	and	why	this	book?
When	 I	 began	 working	 in	 the	 field	 of	 applied	 cryptography	 nearly	 two

decades	 ago,	 the	 information	 available	 to	 software	 developers	 was	 often
piecemeal	 and	 outdated.	 Cryptographers	 developed	 algorithms	 and
protocols,	and	cryptographic	engineers	implemented	them	to	create	opaque,
poorly	 documented	 cryptographic	 libraries	 designed	 mainly	 for	 other
experts.	There	was—and	there	has	been—a	huge	divide	between	those	who
know	and	understand	cryptographic	algorithms	and	those	who	use	them	(or
ignore	them	at	their	peril).	There	are	a	few	decent	textbooks	on	the	market,
but	even	fewer	have	provided	useful	tools	for	the	practitioner.

The	 results	 have	 not	 been	 pretty.	 I’m	 talking	 about	 compromises	 with
labels	like	“CVE”	and	“Severity:	High,”	and	in	a	few	alarming	cases,	attacks
on	slide	decks	marked	“TOP	SECRET.”	You	may	be	familiar	with	some	of
the	more	famous	examples	if	only	because	they’ve	affected	systems	that	you
rely	on.	Many	of	 these	problems	occur	because	 cryptography	 is	 subtle	 and
mathematically	 elegant,	 and	 because	 cryptographic	 experts	 have	 failed	 to
share	their	knowledge	with	the	engineers	who	actually	write	the	software.

Thankfully,	this	has	begun	to	change	and	this	book	is	a	symptom	of	that
change.



Serious	Cryptography	was	written	by	one	of	the	foremost	experts	in	applied
cryptography,	but	it’s	not	targeted	at	other	experts.	Nor,	for	that	matter,	is	it
intended	as	a	superficial	overview	of	the	field.	On	the	contrary,	it	contains	a
thorough	and	up-to-date	discussion	of	cryptographic	engineering,	designed
to	help	practitioners	who	plan	to	work	in	this	field	do	better.	In	these	pages,
you’ll	 learn	 not	 only	 how	 cryptographic	 algorithms	 work,	 but	 how	 to	 use
them	in	real	systems.

The	 book	 begins	with	 an	 exploration	 of	many	 of	 the	 key	 cryptographic
primitives,	 including	basic	 algorithms	 like	 block	 ciphers,	 public	 encryption
schemes,	 hash	 functions,	 and	 random	 number	 generators.	 Each	 chapter
provides	working	examples	of	how	the	algorithms	work	and	what	you	should
or	should	not	do.	Final	chapters	cover	advanced	subjects	such	as	TLS,	as	well
as	 the	 future	of	cryptography—what	 to	do	after	quantum	computers	arrive
to	complicate	our	lives.

While	no	single	book	can	solve	all	our	problems,	a	bit	of	knowledge	can
go	a	long	way.	This	book	contains	plenty	of	knowledge.	Perhaps	enough	to
make	 real,	 deployed	 cryptography	 live	 up	 to	 the	 high	 expectations	 that	 so
many	have	of	it.

Happy	reading.

Matthew	D.	Green
Professor
Information	Security	Institute
Johns	Hopkins	University



PREFACE

I	wrote	this	book	to	be	the	one	I	wish	I	had	when	I	started	learning	crypto.
In	 2005,	 I	 was	 studying	 for	 my	 masters	 degree	 near	 Paris,	 and	 I	 eagerly
registered	for	the	crypto	class	in	the	upcoming	semester.	Unfortunately,	the
class	was	 canceled	because	 too	 few	 students	had	 registered.	 “Crypto	 is	 too
hard,”	 the	 students	 argued,	 and	 instead,	 they	 enrolled	 en	 masse	 in	 the
computer	graphics	and	database	classes.

I’ve	 heard	 “crypto	 is	 hard”	more	 than	 a	 dozen	 times	 since	 then.	 But	 is
crypto	 really	 that	 hard?	 To	 play	 an	 instrument,	 master	 a	 programming
language,	or	put	 the	 applications	of	 any	 fascinating	 field	 into	practice,	 you
need	to	learn	some	concepts	and	symbols,	but	doing	so	doesn’t	take	a	PhD.	I
think	 the	 same	 applies	 to	 becoming	 a	 competent	 cryptographer.	 I	 also
believe	that	crypto	is	perceived	as	hard	because	cryptographers	haven’t	done
a	good	job	of	teaching	it.

Another	reason	why	I	felt	the	need	for	this	book	is	that	crypto	is	no	longer
just	 about	 crypto—it	 has	 expanded	 into	 a	 multidisciplinary	 field.	 To	 do
anything	 useful	 and	 relevant	 in	 crypto,	 you’ll	 need	 some	 understanding	 of
the	concepts	around	crypto:	how	networks	and	computers	work,	what	users
and	 systems	 need,	 and	 how	 attackers	 can	 abuse	 algorithms	 and	 their
implementations.	In	other	words,	you	need	a	connection	to	reality.

This	Book’s	Approach
The	 initial	 title	 of	 this	 book	 was	 Crypto	 for	 Real	 to	 stress	 the	 practice-
oriented,	real-world,	no-nonsense	approach	I	aimed	to	follow.	I	didn’t	want
to	make	cryptography	approachable	by	dumbing	it	down,	but	instead	tie	it	to
real	applications.	I	provide	source	code	examples	and	describe	real	bugs	and
horror	stories.

Along	with	a	clear	connection	to	reality,	other	cornerstones	of	 this	book



are	its	simplicity	and	modernity.	I	focus	on	simplicity	in	form	more	than	in
substance:	 I	 present	 many	 non-trivial	 concepts,	 but	 without	 the	 dull
mathematical	 formalism.	 Instead,	 I	 attempt	 to	 impart	 an	 understanding	 of
cryptography’s	 core	 ideas,	 which	 are	more	 important	 than	 remembering	 a
bunch	 of	 equations.	 To	 ensure	 the	 book’s	 modernity,	 I	 cover	 the	 latest
developments	and	applications	of	cryptography,	 such	as	TLS	1.3	and	post-
quantum	 cryptography.	 I	 don’t	 discuss	 the	 details	 of	 obsolete	 or	 insecure
algorithms	such	as	DES	or	MD5.	An	exception	to	this	is	RC4,	but	it’s	only
included	 to	explain	how	weak	 it	 is	 and	 to	 show	how	a	 stream	cipher	of	 its
kind	works.

Serious	 Cryptography	 isn’t	 a	 guide	 for	 crypto	 software,	 nor	 is	 it	 a
compendium	of	technical	specifications—stuff	 that	you’ll	easily	 find	online.
Instead,	the	foremost	goal	of	this	book	is	to	get	you	excited	about	crypto	and
to	teach	you	its	fundamental	concepts	along	the	way.

Who	This	Book	Is	For
While	 writing,	 I	 often	 imagined	 the	 reader	 as	 a	 developer	 who’d	 been
exposed	to	crypto	but	still	felt	clueless	and	frustrated	after	attempting	to	read
abstruse	textbooks	and	research	papers.	Developers	often	need—and	want—
a	better	grasp	of	crypto	to	avoid	unfortunate	design	choices,	and	I	hope	this
book	will	help.

But	if	you	aren’t	a	developer,	don’t	worry!	The	book	doesn’t	require	any
coding	 skills,	 and	 is	 accessible	 to	 anyone	 who	 understands	 the	 basics	 of
computer	 science	and	college-level	math	 (notions	of	probabilities,	modular
arithmetic,	and	so	on).

This	 book	 can	 nonetheless	 be	 intimidating,	 and	 despite	 its	 relative
accessibility,	 it	 requires	 some	 effort	 to	 get	 the	 most	 out	 of	 it.	 I	 like	 the
mountaineering	analogy:	the	author	paves	the	way,	providing	you	with	ropes
and	 ice	 axes	 to	 facilitate	 your	 work,	 but	 you	 make	 the	 ascent	 yourself.
Learning	 the	 concepts	 in	 this	 book	will	 take	 an	 effort,	 but	 there	will	 be	 a
reward	at	the	end.

How	This	Book	Is	Organized
The	book	has	 fourteen	chapters,	 loosely	split	 into	 four	parts.	The	chapters
are	mostly	independent	from	one	another,	except	for	Chapter	9,	which	lays
the	foundations	for	the	three	subsequent	chapters.	I	also	recommend	reading



the	first	three	chapters	before	anything	else.

Fundamentals

Chapter	 1:	 Encryption	 introduces	 the	 notion	 of	 secure	 encryption,
from	weak	pen-and-paper	ciphers	to	strong,	randomized	encryption.
Chapter	 2:	 Randomness	 describes	 how	 a	 pseudorandom	 generator
works,	what	it	takes	for	one	to	be	secure,	and	how	to	use	one	securely.
Chapter	3:	Cryptographic	Security	discusses	theoretical	and	practical
notions	 of	 security,	 and	 compares	 provable	 security	 with	 probable
security.

Symmetric	Crypto

Chapter	 4:	 Block	 Ciphers	 deals	 with	 ciphers	 that	 process	 messages
block	 per	 block,	 focusing	 on	 the	 most	 famous	 one,	 the	 Advanced
Encryption	Standard	(AES).
Chapter	5:	Stream	Ciphers	presents	ciphers	that	produce	a	stream	of
random-looking	bits	that	are	XORed	with	messages	to	be	encrypted.
Chapter	 6:	 Hash	 Functions	 is	 about	 the	 only	 algorithms	 that
don’t	work	with	a	secret	key,	which	turn	out	to	be	the	most	ubiquitous
crypto	building	blocks.
Chapter	 7:	Keyed	Hashing	 explains	what	 happens	 if	 you	 combine	 a
hash	 function	 with	 a	 secret	 key,	 and	 how	 this	 serves	 to	 authenticate
messages.
Chapter	 8:	 Authenticated	 Encryption	 shows	 how	 some	 algorithms
can	both	encrypt	and	authenticate	a	message	with	examples,	such	as	the
standard	AES-GCM.

Asymmetric	Crypto

Chapter	9:	Hard	Problems	lays	out	the	fundamental	concepts	behind
public-key	encryption,	using	notions	from	computational	complexity.
Chapter	 10:	 RSA	 leverages	 the	 factoring	 problem	 in	 order	 to	 build
secure	 encryption	 and	 signature	 schemes	 with	 a	 simple	 arithmetic
operation.



Chapter	11:	Diffie–Hellman	extends	asymmetric	cryptography	to	the
notion	 of	 key	 agreement,	 wherein	 two	 parties	 establish	 a	 secret	 value
using	only	non-secret	values.
Chapter	12:	Elliptic	Curves	provides	a	gentle	introduction	to	elliptic
curve	 cryptography,	 which	 is	 the	 fastest	 kind	 of	 asymmetric
cryptography.

Applications

Chapter	 13:	 TLS	 focuses	 on	 Transport	 Layer	 Security	 (TLS),
arguably	the	most	important	protocol	in	network	security.
Chapter	14:	Quantum	and	Post-Quantum	concludes	with	a	note	of
science	 fiction	 by	 covering	 the	 concepts	 of	 quantum	 computing	 and
a	new	kind	of	cryptography.
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1
ENCRYPTION

Encryption	 is	 the	 principal	 application	 of	 cryptography;	 it	 makes	 data
incomprehensible	 in	 order	 to	 ensure	 its	 confidentiality.	 Encryption	 uses	 an
algorithm	called	a	cipher	and	a	secret	value	called	the	key;	if	you	don’t	know
the	secret	key,	you	can’t	decrypt,	nor	can	you	learn	any	bit	of	information	on
the	encrypted	message—and	neither	can	any	attacker.

This	 chapter	 will	 focus	 on	 symmetric	 encryption,	 which	 is	 the	 simplest
kind	 of	 encryption.	 In	 symmetric	 encryption,	 the	 key	 used	 to	 decrypt	 is	 the
same	 as	 the	 key	 used	 to	 encrypt	 (unlike	 asymmetric	 encryption,	 or	 public-key
encryption,	in	which	the	key	used	to	decrypt	is	different	from	the	key	used	to
encrypt).	 You’ll	 start	 by	 learning	 about	 the	 weakest	 forms	 of	 symmetric
encryption,	 classical	 ciphers	 that	 are	 secure	 against	 only	 the	most	 illiterate
attacker,	and	then	move	on	to	the	strongest	forms	that	are	secure	forever.

The	Basics
When	 we’re	 encrypting	 a	 message,	 plaintext	 refers	 to	 the	 unencrypted
message	 and	 ciphertext	 to	 the	 encrypted	 message.	 A	 cipher	 is	 therefore
composed	of	two	functions:	encryption	turns	a	plaintext	into	a	ciphertext,	and
decryption	turns	a	ciphertext	back	into	a	plaintext.	But	we’ll	often	say	“cipher”
when	 we	 actually	 mean	 “encryption.”	 For	 example,	 Figure	 1-1	 shows	 a
cipher,	E,	 represented	as	a	box	taking	as	 input	a	plaintext,	P,	and	a	key,	K,
and	producing	a	ciphertext,	C,	as	output.	I’ll	write	this	relation	as	C	=	E(K,
P).	Similarly,	when	the	cipher	is	in	decryption	mode,	I’ll	write	D(K,	C).



Figure	1-1:	Basic	encryption	and	decryption

NOTE
For	some	ciphers,	the	ciphertext	is	the	same	size	as	the	plaintext;	for	some	others,
the	ciphertext	is	slightly	longer.	However,	ciphertexts	can	never	be	shorter	than
plaintexts.

Classical	Ciphers
Classical	ciphers	are	ciphers	that	predate	computers	and	therefore	work	on
letters	rather	than	on	bits.	They	are	much	simpler	than	a	modern	cipher	like
DES—for	 example,	 in	 ancient	 Rome	 or	 during	WWI,	 you	 couldn’t	 use	 a
computer	chip’s	power	to	scramble	a	message,	so	you	had	to	do	everything
with	 only	 pen	 and	 paper.	 There	 are	 many	 classical	 ciphers,	 but	 the	 most
famous	are	the	Caesar	cipher	and	Vigenère	cipher.

The	Caesar	Cipher
The	 Caesar	 cipher	 is	 so	 named	 because	 the	 Roman	 historian	 Suetonius
reported	that	Julius	Caesar	used	it.	It	encrypts	a	message	by	shifting	each	of
the	letters	down	three	positions	in	the	alphabet,	wrapping	back	around	to	A
if	 the	 shift	 reaches	 Z.	 For	 example,	 ZOO	 encrypts	 to	 CRR,	 FDHVDU
decrypts	 to	CAESAR,	and	 so	on,	 as	 shown	 in	Figure	1-2.	There’s	nothing
special	about	the	value	3;	it’s	just	easier	to	compute	in	one’s	head	than	11	or
23.

The	Caesar	 cipher	 is	 super	 easy	 to	 break:	 to	 decrypt	 a	 given	 ciphertext,
simply	 shift	 the	 letters	 three	 positions	 back	 to	 retrieve	 the	 plaintext.	That
said,	 the	 Caesar	 cipher	 may	 have	 been	 strong	 enough	 during	 the	 time	 of
Crassus	and	Cicero.	Because	no	secret	key	is	involved	(it’s	always	3),	users	of
Caesar’s	 cipher	 only	 had	 to	 assume	 that	 attackers	 were	 illiterate	 or	 too
uneducated	to	figure	it	out—an	assumption	that’s	much	less	realistic	today.
(In	 fact,	 in	 2006,	 the	 Italian	 police	 arrested	 a	 mafia	 boss	 after	 decrypting



messages	 written	 on	 small	 scraps	 of	 paper	 that	 were	 encrypted	 using	 a
variant	of	the	Caesar	cipher:	ABC	was	encrypted	to	456	instead	of	DEF,	for
example.)

Figure	1-2:	The	Caesar	cipher

Could	 the	 Caesar	 cipher	 be	 made	 more	 secure?	 You	 can,	 for	 example,
imagine	a	version	that	uses	a	secret	shift	value	instead	of	always	using	3,	but
that	wouldn’t	help	much	because	an	attacker	could	easily	try	all	25	possible
shift	values	until	the	decrypted	message	makes	sense.

The	Vigenère	Cipher
It	 took	 about	 1500	 years	 to	 see	 a	meaningful	 improvement	 of	 the	 Caesar
cipher	in	the	form	of	the	Vigenère	cipher,	created	in	the	16th	century	by	an
Italian	 named	Giovan	 Battista	 Bellaso.	 The	 name	 “Vigenère”	 comes	 from
the	Frenchman	Blaise	 de	Vigenère,	who	 invented	 a	 different	 cipher	 in	 the
16th	 century,	 but	 due	 to	 historical	 misattribution,	 Vigenère’s	 name	 stuck.
Nevertheless,	the	Vigenère	cipher	became	popular	and	was	later	used	during
the	 American	 Civil	War	 by	 Confederate	 forces	 and	 during	WWI	 by	 the
Swiss	Army,	among	others.

The	Vigenère	 cipher	 is	 similar	 to	 the	 Caesar	 cipher,	 except	 that	 letters
aren’t	 shifted	 by	 three	 places	 but	 rather	 by	 values	 defined	 by	 a	 key,	 a
collection	 of	 letters	 that	 represent	 numbers	 based	 on	 their	 position	 in	 the
alphabet.	For	example,	if	the	key	is	DUH,	letters	in	the	plaintext	are	shifted
using	 the	 values	 3,	 20,	 7	 because	D	 is	 three	 letters	 after	A,	U	 is	 20	 letters
after	A,	 and	H	 is	 seven	 letters	 after	A.	 The	 3,	 20,	 7	 pattern	 repeats	 until



you’ve	 encrypted	 the	 entire	 plaintext.	 For	 example,	 the	 word	 CRYPTO
would	 encrypt	 to	 FLFSNV	 using	 DUH	 as	 the	 key:	 C	 is	 shifted	 three
positions	to	F,	R	is	shifted	20	positions	to	L,	and	so	on.	Figure	1-3	illustrates
this	principle	when	encrypting	the	sentence	THEY	DRINK	THE	TEA.

Figure	1-3:	The	Vigenère	cipher

The	Vigenère	cipher	is	clearly	more	secure	than	the	Caesar	cipher,	yet	it’s
still	fairly	easy	to	break.	The	first	step	to	breaking	it	is	to	figure	out	the	key’s
length.	 For	 example,	 take	 the	 example	 in	 Figure	 1-3,	 wherein	 THEY
DRINK	 THE	 TEA	 encrypts	 to	WBLBXYLHRWBLWYH	 with	 the	 key
DUH.	(Spaces	are	usually	removed	to	hide	word	boundaries.)	Notice	that	in
the	ciphertext	WBLBXYLHRWBLWYH,	the	group	of	 three	 letters	WBL
appears	twice	in	the	ciphertext	at	nine-letter	intervals.	This	suggests	that	the
same	three-letter	word	was	encrypted	using	the	same	shift	values,	producing
WBL	 each	 time.	 A	 cryptanalyst	 can	 then	 deduce	 that	 the	 key’s	 length	 is
either	 nine	 or	 a	 value	 divisible	 by	 nine	 (that	 is,	 three).	 Furthermore,	 they
may	 guess	 that	 this	 repeated	 three-letter	 word	 is	 THE	 and	 therefore
determine	DUH	as	a	possible	encryption	key.

The	 second	 step	 to	 breaking	 the	 Vigenère	 cipher	 is	 to	 determine	 the
actual	key	using	a	method	called	frequency	analysis,	which	exploits	the	uneven
distribution	of	 letters	 in	 languages.	For	example,	 in	English,	E	 is	 the	most
common	 letter,	 so	 if	 you	 find	 that	 X	 is	 the	 most	 common	 letter	 in	 a
ciphertext,	then	the	most	likely	plaintext	value	at	this	position	is	E.

Despite	 its	 relative	 weakness,	 the	 Vigenère	 cipher	may	 have	 been	 good
enough	 to	 securely	 encrypt	messages	 when	 it	 was	 used.	 First,	 because	 the
attack	 just	 outlined	needs	messages	 of	 at	 least	 a	 few	 sentences,	 it	wouldn’t
work	 if	 the	 cipher	was	 used	 to	 encrypt	 only	 short	messages.	 Second,	most
messages	 needed	 to	 be	 secret	 only	 for	 short	 periods	 of	 time,	 so	 it	 didn’t
matter	 if	 ciphertexts	 were	 eventually	 decrypted	 by	 the	 enemy.	 (The	 19th-
century	 cryptographer	 Auguste	 Kerckhoffs	 estimated	 that	 most	 encrypted
wartime	messages	required	confidentiality	for	only	three	to	four	hours.)



How	Ciphers	Work
Based	on	simplistic	ciphers	like	the	Caesar	and	Vigenère	ciphers,	we	can	try
to	 abstract	 out	 the	 workings	 of	 a	 cipher,	 first	 by	 identifying	 its	 two	main
components:	 a	 permutation	 and	 a	 mode	 of	 operation.	 A	 permutation	 is	 a
function	that	transforms	an	item	(in	cryptography,	a	letter	or	a	group	of	bits)
such	 that	 each	 item	has	 a	unique	 inverse	 (for	 example,	 the	Caesar	 cipher’s
three-letter	shift).	A	mode	of	operation	is	an	algorithm	that	uses	a	permutation
to	 process	 messages	 of	 arbitrary	 size.	 The	 mode	 of	 the	 Caesar	 cipher	 is
trivial:	 it	 just	 repeats	 the	 same	 permutation	 for	 each	 letter,	 but	 as	 you’ve
seen,	 the	 Vigenère	 cipher	 has	 a	 more	 complex	 mode,	 where	 letters	 at
different	positions	undergo	different	permutations.

In	the	following	sections,	I	discuss	in	more	detail	what	these	are	and	how
they	relate	to	a	cipher’s	security.	I	use	each	component	to	show	why	classical
ciphers	are	doomed	to	be	insecure,	unlike	modern	ciphers	that	run	on	high-
speed	computers.

The	Permutation
Most	classical	ciphers	work	by	replacing	each	letter	with	another	letter—in
other	 words,	 by	 performing	 a	 substitution.	 In	 the	 Caesar	 and	 Vigenère
ciphers,	the	substitution	is	a	shift	in	the	alphabet,	though	the	alphabet	or	set
of	symbols	can	vary:	instead	of	the	English	alphabet,	it	could	be	the	Arabic
alphabet;	 instead	 of	 letters,	 it	 could	 be	words,	 numbers,	 or	 ideograms,	 for
example.	The	representation	or	encoding	of	information	is	a	separate	matter
that	 is	 mostly	 irrelevant	 to	 security.	 (We’re	 just	 considering	 Latin	 letters
because	that’s	what	classical	ciphers	use.)

A	 cipher’s	 substitution	 can’t	 be	 just	 any	 substitution.	 It	 should	 be	 a
permutation,	which	is	a	rearrangement	of	the	letters	A	to	Z,	such	that	each
letter	has	a	unique	 inverse.	For	example,	a	 substitution	 that	 transforms	 the
letters	 A,	 B,	 C,	 and	 D,	 respectively	 to	 C,	 A,	 D,	 and	 B	 is	 a	 permutation,
because	each	 letter	maps	onto	another	 single	 letter.	But	a	 substitution	 that
transforms	A,	B,	C,	D	to	D,	A,	A,	C	is	not	a	permutation,	because	both	B	and
C	map	onto	A.	With	a	permutation,	each	letter	has	exactly	one	inverse.

Still,	 not	 every	 permutation	 is	 secure.	 In	 order	 to	 be	 secure,	 a	 cipher’s
permutation	should	satisfy	three	criteria:

The	permutation	 should	be	determined	by	 the	key,	 so	 as	 to	 keep



the	 permutation	 secret	 as	 long	 as	 the	 key	 is	 secret.	 In	 the	 Vigenère
cipher,	 if	 you	 don’t	 know	 the	 key,	 you	 don’t	 know	 which	 of	 the	 26
permutations	was	used;	hence,	you	can’t	easily	decrypt.
Different	keys	should	result	 in	different	permutations.	Otherwise,
it	becomes	easier	to	decrypt	without	the	key:	 if	different	keys	result	 in
identical	 permutations,	 that	 means	 there	 are	 fewer	 distinct	 keys	 than
distinct	 permutations,	 and	 therefore	 fewer	 possibilities	 to	 try	 when
decrypting	without	the	key.	In	the	Vigenère	cipher,	each	letter	from	the
key	determines	a	substitution;	there	are	26	distinct	letters,	and	as	many
distinct	permutations.
The	 permutation	 should	 look	 random,	 loosely	 speaking.	 There
should	be	no	pattern	in	the	ciphertext	after	performing	a	permutation,
because	 patterns	make	 a	 permutation	 predictable	 for	 an	 attacker,	 and
therefore	less	secure.	For	example,	the	Vigenère	cipher’s	substitution	is
pretty	 predictable:	 if	 you	 determine	 that	A	 encrypts	 to	 F,	 you	 could
conclude	 that	 the	 shift	 value	 is	 5	 and	 you	 would	 also	 know	 that	 B
encrypts	 to	 G,	 that	 C	 encrypts	 to	 H,	 and	 so	 on.	 However,	 with	 a
randomly	 chosen	 permutation,	 knowing	 that	 A	 encrypts	 to	 F	 would
only	tell	you	that	B	does	not	encrypt	to	F.

We’ll	 call	 a	 permutation	 that	 satisfies	 these	 criteria	 a	 secure	 permutation.
But	as	you’ll	see	next,	a	secure	permutation	is	necessary	but	not	sufficient	on
its	 own	 for	 building	 a	 secure	 cipher.	 A	 cipher	 will	 also	 need	 a	 mode	 of
operation	to	support	messages	of	any	length.

The	Mode	of	Operation
Say	we	have	a	secure	permutation	that	transforms	A	to	X,	B	to	M,	and	N	to
L,	for	example.	The	word	BANANA	therefore	encrypts	to	MXLXLX,	where
each	occurrence	of	A	is	replaced	by	an	X.	Using	the	same	permutation	for	all
the	letters	in	the	plaintext	thus	reveals	any	duplicate	letters	in	the	plaintext.
By	analyzing	 these	duplicates,	 you	might	not	 learn	 the	entire	message,	but
you’ll	 learn	 something	 about	 the	 message.	 In	 the	 BANANA	 example,	 you
don’t	need	the	key	to	guess	that	the	plaintext	has	the	same	letter	at	the	three
X	positions	and	another	same	letter	at	the	two	L	positions.	So	if	you	know,
for	example,	that	the	message	is	a	fruit’s	name,	you	could	determine	that	it’s
BANANA	rather	than	CHERRY,	LYCHEE,	or	another	six-letter	fruit.

The	mode	of	operation	(or	just	mode)	of	a	cipher	mitigates	the	exposure	of



duplicate	 letters	 in	 the	 plaintext	 by	 using	 different	 permutations	 for
duplicate	letters.	The	mode	of	the	Vigenère	cipher	partially	addresses	this:	if
the	key	is	N	letters	long,	then	N	different	permutations	will	be	used	for	every
N	 consecutive	 letters.	 However,	 this	 can	 still	 result	 in	 patterns	 in	 the
ciphertext	 because	 every	 Nth	 letter	 of	 the	 message	 uses	 the	 same
permutation.	 That’s	 why	 frequency	 analysis	 works	 to	 break	 the	 Vigenère
cipher,	as	you	saw	earlier.

Frequency	 analysis	 can	be	 defeated	 if	 the	Vigenère	 cipher	 only	 encrypts
plaintexts	 that	 are	 of	 the	 same	 length	 as	 the	 key.	 But	 even	 then,	 there’s
another	 problem:	 reusing	 the	 same	 key	 several	 times	 exposes	 similarities
between	plaintexts.	For	example,	with	the	key	KYN,	the	words	TIE	and	PIE
encrypt	to	DGR	and	ZGR,	respectively.	Both	end	with	the	same	two	letters
(GR),	 revealing	 that	 both	 plaintexts	 share	 their	 last	 two	 letters	 as	 well.
Finding	these	patterns	shouldn’t	be	possible	with	a	secure	cipher.

To	build	a	secure	cipher,	you	must	combine	a	secure	permutation	with	a
secure	 mode.	 Ideally,	 this	 combination	 prevents	 attackers	 from	 learning
anything	about	a	message	other	than	its	length.

Why	Classical	Ciphers	Are	Insecure
Classical	 ciphers	 are	 doomed	 to	 be	 insecure	 because	 they’re	 limited	 to
operations	 you	 can	do	 in	 your	head	or	on	 a	piece	of	 paper.	They	 lack	 the
computational	 power	 of	 a	 computer	 and	 are	 easily	 broken	 by	 simple
computer	 programs.	 Let’s	 see	 the	 fundamental	 reason	 why	 that	 simplicity
makes	them	insecure	in	today’s	world.

Remember	that	a	cipher’s	permutation	should	look	random	in	order	to	be
secure.	Of	course,	the	best	way	to	look	random	is	to	be	random—that	is,	to
select	 every	 permutation	 randomly	 from	 the	 set	 of	 all	 permutations.	 And
there	 are	many	 permutations	 to	 choose	 from.	 In	 the	 case	 of	 the	 26-letter
English	alphabet,	there	are	approximately	288	permutations:

26!	=	403291461126605635584000000	≈	288

Here,	the	exclamation	point	(!)	is	the	factorial	symbol,	defined	as	follows:

n!	=	n	×	(n	−	1)	×	(n	–	2)	×	…	×	3	×	2

(To	see	why	we	end	up	with	this	number,	count	the	permutations	as	lists



of	reordered	letters:	there	are	26	choices	for	the	first	possible	letter,	then	25
possibilities	 for	 the	 second,	 24	 for	 the	 third,	 and	 so	 on.)	 This	 number	 is
huge:	 it’s	 of	 the	 same	 order	 of	magnitude	 as	 the	 number	 of	 atoms	 in	 the
human	 body.	 But	 classical	 ciphers	 can	 only	 use	 a	 small	 fraction	 of	 those
permutations—namely,	 those	 that	 need	 only	 simple	 operations	 (such	 as
shifts)	 and	 that	 have	 a	 short	 description	 (like	 a	 short	 algorithm	 or	 a	 small
look-up	table).	The	problem	is	that	a	secure	permutation	can’t	accommodate
both	of	these	limitations.

You	 can	 get	 secure	 permutations	 using	 simple	 operations	 by	 picking	 a
random	 permutation,	 representing	 it	 as	 a	 table	 of	 25	 letters	 (enough	 to
represent	 a	 permutation	 of	 26	 letters,	 with	 the	 26th	 one	 missing),	 and
applying	it	by	looking	up	letters	in	this	table.	But	then	you	wouldn’t	have	a
short	 description.	 For	 example,	 it	 would	 take	 250	 letters	 to	 describe	 10
different	permutations,	 rather	 than	 just	 the	10	 letters	used	 in	 the	Vigenère
cipher.

You	 can	 also	 produce	 secure	 permutations	 with	 a	 short	 description.
Instead	of	just	shifting	the	alphabet,	you	could	use	more	complex	operations
such	 as	 addition,	 multiplication,	 and	 so	 on.	 That’s	 how	 modern	 ciphers
work:	given	a	key	of	typically	128	or	256	bits,	they	perform	hundreds	of	bit
operations	to	encrypt	a	single	letter.	This	process	is	fast	on	a	computer	that
can	do	billions	of	bit	operations	per	second,	but	it	would	take	hours	to	do	by
hand,	and	would	still	be	vulnerable	to	frequency	analysis.

Perfect	Encryption:	The	One-Time	Pad
Essentially,	a	classical	cipher	can’t	be	secure	unless	it	comes	with	a	huge	key,
but	encrypting	with	a	huge	key	is	impractical.	However,	the	one-time	pad	is
such	a	cipher,	and	 it	 is	 the	most	secure	cipher.	 In	 fact,	 it	guarantees	perfect
secrecy:	even	if	an	attacker	has	unlimited	computing	power,	it’s	impossible	to
learn	anything	about	the	plaintext	except	for	its	length.

In	 the	 next	 sections,	 I’ll	 show	 you	 how	 a	 one-time	 pad	works	 and	 then
offer	a	sketch	of	its	security	proof.

Encrypting	with	the	One-Time	Pad
The	one-time	pad	takes	a	plaintext,	P,	and	a	random	key,	K,	that’s	the	same
length	as	P	and	produces	a	ciphertext	C,	defined	as



C	=	P	⊕	K

where	C,	P,	 and	K	 are	 bit	 strings	 of	 the	 same	 length	 and	where	⊕	 is	 the
bitwise	exclusive	OR	operation	(XOR),	defined	as	0	⊕	0	=	0,	0	⊕	1	=	1,	1	⊕
0	=	1,	1	⊕	1	=	0.

NOTE
I’m	presenting	the	one-time	pad	in	its	usual	form,	as	working	on	bits,	but	it	can
be	adapted	to	other	symbols.	With	letters,	for	example,	you	would	end	up	with	a
variant	of	the	Caesar	cipher	with	a	shift	index	picked	at	random	for	each	letter.

The	one-time	pad’s	decryption	is	identical	to	encryption;	it’s	just	an	XOR:
P	=	C	⊕	K.	Indeed,	we	can	verify	C	⊕	K	=	P	⊕	K	⊕	K	=	P	because	XORing	K
with	itself	gives	the	all-zero	string	000	…	000.	That’s	it—even	simpler	than
the	Caesar	cipher.

For	example,	if	P	=	01101101	and	K	=	10110100,	then	we	can	calculate	the
following:

C	=	P	⊕	K	=	01101101	⊕	10110100	=	11011001

Decryption	retrieves	P	by	computing	the	following:

P	=	C	⊕	K	=	11011001	⊕	10110100	=	01101101

The	important	thing	is	that	a	one-time	pad	can	only	be	used	one	time:	each
key	K	should	be	used	only	once.	If	the	same	K	is	used	to	encrypt	P1	and	P2	to
C1	and	C2,	then	an	eavesdropper	can	compute	the	following:

C1	⊕	C2	=	(P1	⊕	K)	⊕	(P2	⊕	K)	=	P1	⊕	P2	⊕	K	⊕	K	=	P1	⊕	P2

An	 eavesdropper	 would	 thus	 learn	 the	 XOR	 difference	 of	 P1	 and	 P2,
information	that	should	be	kept	secret.	Moreover,	if	either	plaintext	message
is	known,	then	the	other	message	can	be	recovered.

Of	 course,	 the	 one-time	 pad	 is	 utterly	 inconvenient	 to	 use	 because	 it
requires	a	key	as	 long	as	the	plaintext	and	a	new	random	key	for	each	new
message	or	group	of	data.	To	encrypt	a	one-terabyte	hard	drive,	you’d	need
another	one-terabyte	drive	to	store	the	key!	Nonetheless,	the	one-time	pad



has	been	used	 throughout	history.	For	 example,	 it	was	used	by	 the	British
Special	Operations	Executive	during	WWII,	by	KGB	spies,	by	the	NSA,	and
is	 still	 used	 today	 in	 specific	 contexts.	 (I’ve	 heard	 of	 Swiss	 bankers	 who
couldn’t	agree	on	a	cipher	trusted	by	both	parties	and	ended	up	using	one-
time	pads,	but	I	don’t	recommend	doing	this.)

Why	Is	the	One-Time	Pad	Secure?
Although	 the	 one-time	 pad	 is	 not	 practical,	 it’s	 important	 to	 understand
what	 makes	 it	 secure.	 In	 the	 1940s,	 American	 mathematician	 Claude
Shannon	proved	that	the	one-time	pad’s	key	must	be	at	least	as	long	as	the
message	 to	 achieve	 perfect	 secrecy.	 The	 proof’s	 idea	 is	 fairly	 simple.	 You
assume	that	the	attacker	has	unlimited	power,	and	thus	can	try	all	the	keys.
The	 goal	 is	 to	 encrypt	 such	 that	 the	 attacker	 can’t	 rule	 out	 any	 possible
plaintext	given	some	ciphertext.

The	intuition	behind	the	one-time	pad’s	perfect	secrecy	goes	as	follows:	if
K	is	random,	the	resulting	C	looks	as	random	as	K	to	an	attacker	because	the
XOR	of	a	random	string	with	any	fixed	string	yields	a	random	string.	To	see
this,	consider	the	probability	of	getting	0	as	the	first	bit	of	a	random	string
(namely,	 a	 probability	 of	 1/2).	 What’s	 the	 probability	 that	 a	 random	 bit
XORed	with	the	second	bit	is	0?	Right,	1/2	again.	The	same	argument	can
be	 iterated	 over	 bit	 strings	 of	 any	 length.	 The	 ciphertext	 C	 thus	 looks
random	 to	 an	 attacker	 that	 doesn’t	 know	K,	 so	 it’s	 literally	 impossible	 to
learn	anything	about	P	given	C,	even	for	an	attacker	with	unlimited	time	and
power.	 In	 other	 words,	 knowing	 the	 ciphertext	 gives	 no	 information
whatsoever	about	the	plaintext	except	its	length—pretty	much	the	definition
of	a	secure	cipher.

For	example,	if	a	ciphertext	is	128	bits	long	(meaning	the	plaintext	is	128
bits	 as	well),	 there	 are	 2128	 possible	 ciphertexts;	 therefore,	 there	 should	be
2128	 possible	 plaintexts	 from	 the	 attacker’s	 point	 of	 view.	 But	 if	 there	 are
fewer	than	2128	possible	keys,	the	attacker	can	rule	out	some	plaintexts.	If	the
key	is	only	64	bits,	for	example,	the	attacker	can	determine	the	264	possible
plaintexts	 and	 rule	 out	 the	 overwhelming	majority	 of	 128-bit	 strings.	The
attacker	wouldn’t	learn	what	the	plaintext	is,	but	they	would	learn	what	the
plaintext	is	not,	which	makes	the	encryption’s	secrecy	imperfect.

As	 you	 can	 see,	 you	must	 have	 a	 key	 as	 long	 as	 the	 plaintext	 to	 achieve
perfect	 security,	 but	 this	 quickly	 becomes	 impractical	 for	 real-world	 use.



Next,	I’ll	discuss	the	approaches	taken	in	modern-day	encryption	to	achieve
the	best	security	that’s	both	possible	and	practical.

PROBABILITY	IN	CRYPTOGRAPHY

A	 probability	 is	 a	 number	 that	 expresses	 the	 likelihood,	 or
chance,	of	some	event	happening.	It’s	expressed	as	a	number
between	 0	 and	 1,	 where	 0	 means	 “never”	 and	 1	 means
“always.”	The	higher	the	probability,	the	greater	the	chance.
You’ll	find	many	explanations	of	probability,	usually	in	terms
of	 white	 balls	 and	 red	 balls	 in	 a	 bag	 and	 the	 probability	 of
picking	a	ball	of	either	color.
Cryptography	 often	 uses	 probabilities	 to	 measure	 an

attack’s	 chances	 of	 success,	 by	 1)	 counting	 the	 number	 of
successful	events	(for	example,	the	event	“find	the	one	correct
secret	 key”)	 and	 2)	 counting	 the	 total	 number	 of	 possible
events	(for	example,	the	total	number	of	keys	is	2n	if	we	deal
with	 n-bit	 keys).	 In	 this	 example,	 the	 probability	 that	 a
randomly	chosen	key	is	the	correct	one	is	1/2n,	or	the	count
of	 successful	 events	 (1	 secret	 key)	 and	 the	 count	 of	 possible
events	(2n	possible	keys).	The	number	1/2n	is	negligibly	small
for	common	key	lengths	such	as	128	and	256.
The	 probability	 of	 an	 event	 not	 happening	 is	 1	 –	 p,	 if	 the

event’s	 probability	 is	 p.	 The	 probability	 of	 getting	 a	 wrong
key	 in	our	previous	example	 is	 therefore	1	–	1/2n,	 a	number
very	close	to	1,	meaning	almost	certainty.

Encryption	Security
You’ve	 seen	 that	 classical	 ciphers	 aren’t	 secure	 and	 that	 a	 perfectly	 secure
cipher	like	the	one-time	pad	is	impractical.	We’ll	thus	have	to	give	a	little	in
terms	 of	 security	 if	 we	 want	 secure	 and	 usable	 ciphers.	 But	 what	 does



“secure”	really	mean,	besides	the	obvious	and	informal	“eavesdroppers	can’t
decrypt	secure	messages”?

Intuitively,	 a	 cipher	 is	 secure	 if,	 even	given	a	 large	number	of	plaintext–
ciphertext	 pairs,	 nothing	 can	 be	 learned	 about	 the	 cipher’s	 behavior	 when
applied	to	other	plaintexts	or	ciphertexts.	This	opens	up	new	questions:

How	 does	 an	 attacker	 come	 by	 these	 pairs?	 How	 large	 is	 a	 “large
number”?	This	 is	 all	defined	by	attack	models,	 assumptions	 about	what
the	attacker	can	and	cannot	do.
What	 could	 be	 “learned”	 and	what	 “cipher’s	 behavior”	 are	we	 talking
about?	 This	 is	 defined	 by	 security	 goals,	 descriptions	 of	 what	 is
considered	a	successful	attack.

Attack	models	and	security	goals	must	go	together;	you	can’t	claim	that	a
system	is	 secure	without	explaining	against	whom	or	 from	what	 it’s	 safe.	A
security	notion	is	thus	the	combination	of	some	security	goal	with	some	attack
model.	 We’ll	 say	 that	 a	 cipher	 achieves	 a	 certain	 security	 notion	 if	 any
attacker	working	in	a	given	model	can’t	achieve	the	security	goal.

Attack	Models
An	attack	model	 is	a	set	of	assumptions	about	how	attackers	might	interact
with	a	cipher	and	what	they	can	and	can’t	do.	The	goals	of	an	attack	model
are	as	follows:

To	 set	 requirements	 for	 cryptographers	 who	 design	 ciphers,	 so	 that
they	know	what	attackers	and	what	kinds	of	attacks	to	protect	against.
To	give	guidelines	to	users,	about	whether	a	cipher	will	be	safe	to	use	in
their	environment.
To	provide	clues	for	cryptanalysts	who	attempt	to	break	ciphers,	so	they
know	whether	a	given	attack	is	valid.	An	attack	is	only	valid	if	it’s	doable
in	the	model	considered.

Attack	 models	 don’t	 need	 to	 match	 reality	 exactly;	 they’re	 an
approximation.	As	 the	 statistician	George	E.	P.	Box	put	 it,	 “all	models	 are
wrong;	 the	 practical	 question	 is	 how	wrong	 do	 they	 have	 to	 be	 to	 not	 be
useful.”	 To	 be	 useful	 in	 cryptography,	 attack	 models	 should	 at	 least
encompass	what	attackers	can	actually	do	to	attack	a	cipher.	It’s	okay	and	a



good	 thing	 if	 a	model	overestimates	attackers’	 capabilities,	because	 it	helps
anticipate	 future	 attack	 techniques—only	 the	 paranoid	 cryptographers
survive.	A	bad	model	underestimates	attackers	and	provides	false	confidence
in	a	cipher	by	making	it	seem	secure	in	theory	when	it’s	not	secure	in	reality.

Kerckhoffs’s	Principle
One	 assumption	 made	 in	 all	 models	 is	 the	 so-called	 Kerckhoffs’s	 principle,
which	states	that	the	security	of	a	cipher	should	rely	only	on	the	secrecy	of
the	key	and	not	on	the	secrecy	of	the	cipher.	This	may	sound	obvious	today,
when	ciphers	and	protocols	are	publicly	specified	and	used	by	everyone.	But
historically,	 Dutch	 linguist	 Auguste	 Kerckhoffs	 was	 referring	 to	 military
encryption	 machines	 specifically	 designed	 for	 a	 given	 army	 or	 division.
Quoting	from	his	1883	essay	“La	Cryptographie	Militaire,”	where	he	listed
six	 requirements	 of	 a	 military	 encryption	 system:	 “The	 system	 must	 not
require	secrecy	and	can	be	stolen	by	the	enemy	without	causing	trouble.”

Black-Box	Models
Let’s	now	consider	some	useful	attack	models	expressed	in	terms	of	what	the
attacker	can	observe	and	what	queries	they	can	make	to	the	cipher.	A	query
for	our	purposes	is	the	operation	that	sends	an	input	value	to	some	function
and	gets	the	output	in	return,	without	exposing	the	details	of	that	function.

An	 encryption	 query,	 for	 example,	 takes	 a	 plaintext	 and	 returns	 a
corresponding	ciphertext,	without	revealing	the	secret	key.

We	call	these	models	black-box	models,	because	the	attacker	only	sees	what
goes	in	and	out	of	the	cipher.	For	example,	some	smart	card	chips	securely
protect	a	cipher’s	internals	as	well	as	its	keys,	yet	you’re	allowed	to	connect
to	 the	 chip	 and	 ask	 it	 to	 decrypt	 any	 ciphertext.	The	 attacker	would	 then
receive	 the	 corresponding	 plaintext,	 which	 may	 help	 them	 determine	 the
key.	That’s	a	real	example	where	decryption	queries	are	possible.

There	are	 several	different	black-box	attack	models.	Here,	 I	 list	 them	 in
order	 from	weakest	 to	 strongest,	 describing	 attackers’	 capabilities	 for	 each
model:

Ciphertext-only	 attackers	 (COA)	 observe	 ciphertexts	 but	 don’t	 know	 the
associated	plaintexts,	and	don’t	know	how	the	plaintexts	were	selected.
Attackers	 in	 the	COA	model	are	passive	and	can’t	perform	encryption
or	decryption	queries.



Known-plaintext	 attackers	 (KPA)	 observe	 ciphertexts	 and	 do	 know	 the
associated	 plaintexts.	 Attackers	 in	 the	 KPA	 model	 thus	 get	 a	 list	 of
plaintext–ciphertext	pairs,	where	plaintexts	are	assumed	to	be	randomly
selected.	Again,	KPA	is	a	passive	attacker	model.
Chosen-plaintext	 attackers	 (CPA)	 can	 perform	 encryption	 queries	 for
plaintexts	 of	 their	 choice	 and	 observe	 the	 resulting	 ciphertexts.	 This
model	captures	situations	where	attackers	can	choose	all	or	part	of	the
plaintexts	that	are	encrypted	and	then	get	to	see	the	ciphertexts.	Unlike
COA	 or	 KPA,	 which	 are	 passive	 models,	 CPA	 are	 active	 attackers,
because	 they	 influence	 the	 encryption	 processes	 rather	 than	 passively
eavesdropping.
Chosen-ciphertext	attackers	 (CCA)	 can	both	encrypt	and	decrypt;	 that	 is,
they	 get	 to	 perform	 encryption	 queries	 and	 decryption	 queries.	 The
CCA	model	may	sound	ludicrous	at	first—if	you	can	decrypt,	what	else
do	you	need?—but	like	the	CPA	model,	 it	aims	to	represent	situations
where	attackers	can	have	some	influence	on	the	ciphertext	and	later	get
access	 to	 the	 plaintext.	Moreover,	 decrypting	 something	 is	 not	 always
enough	to	break	a	system.	For	example,	some	video-protection	devices
allow	 attackers	 to	 perform	 encryption	 queries	 and	 decryption	 queries
using	the	device’s	chip,	but	in	that	context	attackers	are	interested	in	the
key	 in	 order	 to	 redistribute	 it;	 in	 this	 case,	 being	 able	 to	 decrypt	 “for
free”	isn’t	sufficient	to	break	the	system.

In	the	preceding	models,	ciphertexts	 that	are	observed	as	well	as	queried
don’t	 come	 for	 free.	 Each	 ciphertext	 comes	 from	 the	 computation	 of	 the
encryption	 function.	 This	 means	 that	 generating	 2n	 plaintext–ciphertext
pairs	through	encryption	queries	takes	about	as	much	computation	as	trying
2n	keys,	for	example.	The	cost	of	queries	should	be	taken	into	account	when
you’re	computing	the	cost	of	an	attack.

Gray-Box	Models
In	a	gray-box	model,	the	attacker	has	access	to	a	cipher’s	implementation.	This
makes	gray-box	models	more	realistic	than	black-box	models	for	applications
such	 as	 smart	 cards,	 embedded	 systems,	 and	 virtualized	 systems,	 to	 which
attackers	often	have	physical	access	and	can	thus	tamper	with	the	algorithms’
internals.	By	 the	 same	 token,	 gray-box	models	 are	more	difficult	 to	define
than	 black-box	 ones	 because	 they	 depend	 on	 physical,	 analog	 properties



rather	than	just	on	an	algorithm’s	input	and	outputs,	and	crypto	theory	will
often	fail	to	abstract	the	complexity	of	the	real	world.

Side-channel	attacks	are	a	family	of	attacks	within	gray-box	models.	A	side
channel	 is	 a	 source	 of	 information	 that	 depends	 on	 the	 implementation	of
the	cipher,	be	it	in	software	or	hardware.	Side-channel	attackers	observe	or
measure	 analog	characteristics	of	 a	 cipher’s	 implementation	but	don’t	 alter
its	integrity;	they	are	noninvasive.	For	pure	software	implementations,	typical
side	 channels	 are	 the	 execution	 time	 and	 the	 behavior	 of	 the	 system	 that
surrounds	the	cipher,	such	as	error	messages,	return	values,	branches,	and	so
on.	In	the	case	of	implementations	on	smart	cards,	for	example,	typical	side-
channel	attackers	measure	power	consumption,	electromagnetic	emanations,
or	acoustic	noise.

Invasive	attacks	are	a	family	of	attacks	on	cipher	implementations	that	are
more	powerful	 than	side-channel	attacks,	and	more	expensive	because	 they
require	sophisticated	equipment.	You	can	run	basic	side-channel	attacks	with
a	standard	PC	and	an	off-the-shelf	oscilloscope,	but	invasive	attacks	require
tools	 such	 as	 a	 high-resolution	 microscopes	 and	 a	 chemical	 lab.	 Invasive
attacks	thus	consist	of	a	whole	set	of	techniques	and	procedures,	from	using
nitric	acid	to	remove	a	chip’s	packaging	to	microscopic	imagery	acquisition,
partial	reverse	engineering,	and	possible	modification	of	the	chip’s	behavior
with	something	like	laser	fault	injection.

Security	Goals
I’ve	informally	defined	the	goal	of	security	as	“nothing	can	be	learned	about
the	 cipher’s	 behavior.”	 To	 turn	 this	 idea	 into	 a	 rigorous	 mathematical
definition,	cryptographers	define	two	main	security	goals	that	correspond	to
different	ideas	of	what	it	means	to	learn	something	about	a	cipher’s	behavior:

Indistinguishability	(IND)	Ciphertexts	should	be	indistinguishable	from
random	strings.	This	is	usually	illustrated	with	this	hypothetical	game:	if
an	 attacker	picks	 two	plaintexts	 and	 then	 receives	 a	 ciphertext	of	one	of
the	two	(chosen	at	random),	they	shouldn’t	be	able	to	tell	which	plaintext
was	 encrypted,	 even	 by	 performing	 encryption	 queries	 with	 the	 two
plaintexts	(and	decryption	queries,	if	the	model	is	CCA	rather	than	CPA).
Non-malleability	 (NM)	Given	 a	 ciphertext	C1	 =	E(K,	P1),	 it	 should	be
impossible	 to	 create	 another	 ciphertext,	 C2,	 whose	 corresponding



plaintext,	P2,	is	related	to	P1	in	a	meaningful	way	(for	example,	to	create	a
P2	 that	 is	 equal	 to	 P1	⊕	 1	 or	 to	 P1	⊕	 X	 for	 some	 known	 value	 X).
Surprisingly,	the	one-time	pad	is	malleable:	given	a	ciphertext	C1	=	P1	⊕
K,	you	can	define	C2	=	C1	⊕	1,	which	is	a	valid	ciphertext	of	P2	=	P1	⊕	1
under	the	same	key	K.	Oops,	so	much	for	our	perfect	cipher.

Next,	 I’ll	 discuss	 these	 security	 goals	 in	 the	 context	 of	 different	 attack
models.

Security	Notions
Security	 goals	 are	 only	 useful	 when	 combined	 with	 an	 attack	model.	 The
convention	 is	 to	 write	 a	 security	 notion	 as	GOAL-MODEL.	 For	 example,
IND-CPA	 denotes	 indistinguishability	 against	 chosen-plaintext	 attackers,
NM-CCA	denotes	nonmalleability	 against	 chosen-ciphertext	 attackers,	 and
so	on.	Let’s	start	with	the	security	goals	for	an	attacker.

Semantic	Security	and	Randomized	Encryption:	IND-CPA
The	 most	 important	 security	 notion	 is	 IND-CPA,	 also	 called	 semantic
security.	 It	 captures	 the	 intuition	 that	 ciphertexts	 shouldn’t	 leak	 any
information	about	plaintexts	 as	 long	as	 the	key	 is	 secret.	To	achieve	 IND-
CPA	security,	encryption	must	return	different	ciphertexts	if	called	twice	on
the	same	plaintext;	otherwise,	an	attacker	could	identify	duplicate	plaintexts
from	their	ciphertexts,	contradicting	the	definition	that	ciphertexts	shouldn’t
reveal	any	information.

One	way	to	achieve	IND-CPA	security	is	to	use	randomized	encryption.	As
the	 name	 suggests,	 it	 randomizes	 the	 encryption	 process	 and	 returns
different	ciphertexts	when	the	same	plaintext	is	encrypted	twice.	Encryption
can	 then	 be	 expressed	 as	 C	 =	 E(K,	 R,	 P),	 where	 R	 is	 fresh	 random	 bits.
Decryption	 remains	 deterministic,	 however,	 because	 given	E(K,	R,	P),	 you
should	always	get	P,	regardless	of	the	value	of	R.

What	 if	 encryption	 isn’t	 randomized?	 In	 the	 IND	 game	 introduced	 in
“Security	Goals”	 on	 page	 12,	 the	 attacker	 picks	 two	 plaintexts,	P1	 and	P2,
and	receives	a	ciphertext	of	one	of	the	two,	but	doesn’t	know	which	plaintext
the	 ciphertext	 corresponds	 to.	That	 is,	 they	 get	Ci	 =	E(K,	Pi)	 and	 have	 to
guess	 whether	 i	 is	 1	 or	 2.	 In	 the	 CPA	 model,	 the	 attacker	 can	 perform
encryption	 queries	 to	 determine	 both	C1	 =	E(K,	P1)	 and	C2	 =	E(K,	P2).	 If



encryption	isn’t	randomized,	it	suffices	to	see	if	Ci	is	equal	to	C1	or	to	C2	in
order	to	determine	which	plaintext	was	encrypted	and	thereby	win	the	IND
game.	Therefore,	randomization	is	key	to	the	IND-CPA	notion.

NOTE
With	randomized	encryption,	ciphertexts	must	be	slightly	longer	than	plaintexts
in	 order	 to	 allow	 for	 more	 than	 one	 possible	 ciphertext	 per	 plaintext.	 For
example,	if	there	are	264	possible	ciphertexts	per	plaintext,	ciphertexts	must	be	at
least	64	bits	longer	than	plaintexts.

Achieving	Semantically	Secure	Encryption
One	 of	 the	 simplest	 constructions	 of	 a	 semantically	 secure	 cipher	 uses	 a
deterministic	random	bit	generator	(DRBG),	an	algorithm	that	returns	random-
looking	bits	given	some	secret	value:

E(K,	R,	P)	=	(DRBG(K	||	R)	⊕	P,	R)

Here,	R	is	a	string	randomly	chosen	for	each	new	encryption	and	given	to
a	 DRBG	 along	 with	 the	 key	 (K	 ||	 R	 denotes	 the	 string	 consisting	 of	 K
followed	by	R).	This	approach	is	reminiscent	of	the	one-time	pad:	instead	of
picking	 a	 random	 key	 of	 the	 same	 length	 as	 the	 message,	 we	 leverage	 a
random	bit	generator	to	get	a	random-looking	string.

The	proof	that	this	cipher	is	IND-CPA	secure	is	simple,	if	we	assume	that
the	DRBG	produces	random	bits.	The	proof	works	ad	absurdum:	if	you	can
distinguish	 ciphertexts	 from	 random	 strings,	 which	 means	 that	 you	 can
distinguish	DRBG(K	||	R)	⊕	P	from	random,	then	this	means	that	you	can
distinguish	DRBG(K	 ||	R)	 from	random.	Remember	 that	 the	CPA	model
lets	 you	 get	 ciphertexts	 for	 chosen	 values	 of	 P,	 so	 you	 can	 XOR	 P	 to
DRBG(K,	R)	⊕	P	and	get	DRBG(K,	R).	But	now	we	have	a	contradiction,
because	 we	 started	 by	 assuming	 that	DRBG(K,	 R)	 can’t	 be	 distinguished
from	 random,	 producing	 random	 strings.	 So	 we	 conclude	 that	 ciphertexts
can’t	be	distinguished	from	random	strings,	and	therefore	that	the	cipher	is
secure.

NOTE



As	an	exercise,	try	to	determine	what	other	security	notions	are	satisfied	by	the
above	cipher	E(K,	R,	P)	=	(DRBG(K	||	R)	⊕	P,	R).	Is	it	NM-CPA?	IND-
CCA?	You’ll	find	the	answers	in	the	next	section.

Comparing	Security	Notions
You’ve	learned	that	attack	models	such	as	CPA	and	CCA	are	combined	with
security	goals	such	as	NM	and	IND	to	build	the	security	notions	NM-CPA,
NM-CCA,	IND-CPA,	and	IND-CCA.	How	are	these	notions	related?	Can
we	prove	that	satisfying	notion	X	implies	satisfying	notion	Y?

Some	relations	are	obvious:	IND-CCA	implies	IND-CPA,	and	NM-CCA
implies	NM-CPA,	because	anything	a	CPA	attacker	can	do,	a	CCA	attacker
can	do	 as	well.	That	 is,	 if	 you	 can’t	 break	 a	 cipher	by	performing	 chosen-
ciphertext	 and	 chosen-plaintext	 queries,	 you	 can’t	 break	 it	 by	 performing
chosen-plaintext	queries	only.

A	 less	 obvious	 relation	 is	 that	 IND-CPA	does	 not	 imply	NM-CPA.	To
understand	 this,	 observe	 that	 the	 previous	 IND-CPA	 construction
(DRBG(K	||	R)	⊕	P,	R)	is	not	NM-CPA:	given	a	ciphertext	(X,	R),	you	can
create	 the	ciphertext	 (X	⊕	1,	R),	which	 is	a	valid	ciphertext	of	P	⊕	1,	 thus
contradicting	the	notion	of	non-malleability.

But	 the	 opposite	 relation	 does	 hold:	NM-CPA	 implies	 IND-CPA.	The
intuition	 is	 that	 IND-CPA	 encryption	 is	 like	 putting	 items	 in	 a	 bag:	 you
don’t	 get	 to	 see	 them,	but	 you	 can	 rearrange	 their	positions	 in	 the	bag	by
shaking	it	up	and	down.	NM-CPA	is	more	like	a	safe:	once	inside,	you	can’t
interact	with	what	you	put	in	there.	But	this	analogy	doesn’t	work	for	IND-
CCA	 and	 NM-CCA,	 which	 are	 equivalent	 notions	 that	 each	 imply	 the
presence	of	the	other.	I’ll	spare	you	the	proof,	which	is	pretty	technical.

TWO	TYPES	OF	ENCRYPTION	APPLICATIONS

There	 are	 two	 main	 types	 of	 encryption	 applications.	 In-
transit	 encryption	 protects	 data	 sent	 from	 one	 machine	 to
another:	 data	 is	 encrypted	 before	 being	 sent	 and	 decrypted
after	 being	 received,	 as	 in	 encrypted	 connections	 to	 e-
commerce	websites.	At-rest	encryption	protects	data	stored	on
an	information	system.	Data	is	encrypted	before	being	written



to	 memory	 and	 decrypted	 before	 being	 read.	 Examples
include	disk	 encryption	 systems	on	 laptops	 as	well	 as	 virtual
machine	encryption	 for	 cloud	virtual	 instances.	The	 security
notions	we’ve	seen	apply	to	both	types	of	applications,	but	the
right	notion	to	consider	may	depend	on	the	application.

Asymmetric	Encryption
So	far	we’ve	considered	only	symmetric	encryption,	where	two	parties	share
a	 key.	 In	 asymmetric	 encryption,	 there	 are	 two	 keys:	 one	 to	 encrypt	 and
another	to	decrypt.	The	encryption	key	is	called	a	public	key	and	is	generally
considered	 publicly	 available	 to	 anyone	 who	 wants	 to	 send	 you	 encrypted
messages.	The	decryption	key,	however,	must	remain	secret	and	 is	called	a
private	key.

The	public	key	can	be	computed	from	the	private	key,	but	obviously	the
private	key	can’t	be	computed	from	the	public	key.	In	other	words,	it’s	easy
to	compute	 in	one	direction,	but	not	 in	 the	other—and	 that’s	 the	point	of
public-key	cryptography,	whose	functions	are	easy	to	compute	in	one	direction
but	practically	impossible	to	invert.

The	attack	models	and	security	goals	for	asymmetric	encryption	are	about
the	 same	 as	 for	 symmetric	 encryption,	 except	 that	 because	 the	 encryption
key	is	public,	any	attacker	can	make	encryption	queries	by	using	the	public
key	 to	 encrypt.	The	 default	model	 for	 asymmetric	 encryption	 is	 therefore
the	chosen-plaintext	attacker	(CPA).

Symmetric	 and	 asymmetric	 encryption	 are	 the	 two	 main	 types	 of
encryption,	 and	 they	 are	 usually	 combined	 to	 build	 secure	 communication
systems.	They’re	also	used	to	form	the	basis	of	more	sophisticated	schemes,
as	you’ll	see	next.

When	Ciphers	Do	More	Than	Encryption
Basic	 encryption	 turns	 plaintexts	 into	 ciphertexts	 and	 ciphertexts	 into
plaintexts,	 with	 no	 requirements	 other	 than	 security.	 However,	 some
applications	often	need	more	than	that,	be	it	extra	security	features	or	extra
functionalities.	That’s	why	cryptographers	created	variants	of	symmetric	and
asymmetric	 encryption.	 Some	 are	 well-understood,	 efficient,	 and	 widely



deployed,	 while	 others	 are	 experimental,	 hardly	 used,	 and	 offer	 poor
performance.

Authenticated	Encryption
Authenticated	 encryption	 (AE)	 is	 a	 type	of	 symmetric	encryption	 that	 returns
an	 authentication	 tag	 in	 addition	 to	 a	 ciphertext.	 Figure	 1-4	 shows
authenticated	 encryption	 sets	AE(K,	P)	 =	 (C,	T),	 where	 the	 authentication
tag	T	is	a	short	string	that’s	impossible	to	guess	without	the	key.	Decryption
takes	K,	C,	and	T	and	returns	the	plaintext	P	only	if	it	verifies	that	T	is	a	valid
tag	 for	 that	plaintext–ciphertext	pair;	otherwise,	 it	aborts	and	returns	 some
error.

Figure	1-4:	Authenticated	encryption

The	tag	ensures	the	integrity	of	the	message	and	serves	as	evidence	that	the
ciphertext	 received	 is	 identical	 to	 the	 one	 sent	 in	 the	 first	 place	 by	 a
legitimate	party	that	knows	the	key	K.	When	K	is	shared	with	only	one	other
party,	the	tag	also	guarantees	that	the	message	was	sent	by	that	party;	that	is,
it	 implicitly	 authenticates	 the	 expected	 sender	 as	 the	 actual	 creator	 of	 the
message.

NOTE
I	 use	 “creator”	 rather	 than	 “sender”	 here	 because	 an	 eavesdropper	 can	 record
some	 (C,	T)	pairs	 sent	by	party	A	to	party	B	and	then	send	them	again	to	B,
pretending	to	be	A.	This	 is	 called	a	replay	attack,	and	 it	 can	be	prevented,	 for
example,	 by	 including	 a	 counter	 number	 in	 the	 message.	When	 a	 message	 is
decrypted,	its	counter	i	is	increased	by	one:	i	+	1.	In	this	way,	one	could	check	the
counter	 to	 see	 if	 a	message	 has	 been	 sent	 twice,	 indicating	 that	 an	 attacker	 is
attempting	 a	 replay	 attack	 by	 resending	 the	 message.	 This	 also	 enables	 the
detection	of	lost	messages.

Authenticated	 encryption	 with	 associated	 data	 (AEAD)	 is	 an	 extension	 of



authenticated	encryption	that	takes	some	cleartext	and	unencrypted	data	and
uses	it	to	generate	the	authentication	tag	AEAD(K,	P,	A)	=	(C,	T).	A	typical
application	of	AEAD	is	used	to	protect	protocols’	datagrams	with	a	cleartext
header	and	an	encrypted	payload.	In	such	cases,	at	least	some	header	data	has
to	remain	in	the	clear;	for	example,	destination	addresses	need	to	be	clear	in
order	to	route	network	packets.

For	more	on	authenticated	encryption,	jump	to	Chapter	8.

Format-Preserving	Encryption
A	 basic	 cipher	 takes	 bits	 and	 returns	 bits;	 it	 doesn’t	 care	 whether	 bits
represents	text,	an	image,	or	a	PDF	document.	The	ciphertext	may	in	turn
be	encoded	as	raw	bytes,	hexadecimal	characters,	base64,	and	other	formats.
But	what	if	you	need	the	ciphertext	to	have	the	same	format	as	the	plaintext,
as	is	sometimes	required	by	database	systems	that	can	only	record	data	in	a
prescribed	format?

Format-preserving	 encryption	 (FPE)	 solves	 this	 problem.	 It	 can	 create
ciphertexts	that	have	the	same	format	as	the	plaintext.	For	example,	FPE	can
encrypt	IP	addresses	to	IP	addresses	(as	shown	in	Figure	1-5),	ZIP	codes	to
ZIP	 codes,	 credit	 card	 numbers	 to	 credit	 card	 numbers	 with	 a	 valid
checksum,	and	so	on.

Figure	1-5:	Format-preserving	encryption	for	IP	addresses

Fully	Homomorphic	Encryption
Fully	 homomorphic	 encryption	 (FHE)	 is	 the	 holy	 grail	 to	 cryptographers:	 it
enables	its	users	to	replace	a	ciphertext,	C	=	E(K,	P),	with	another	ciphertext,
C′	 =	 E(K,	 F(P)),	 for	 F(P)	 can	 be	 any	 function	 of	 P,	 and	 without	 ever
decrypting	the	initial	ciphertext	C.	For	example,	P	can	be	a	text	document,
and	F	can	be	the	modification	of	part	of	the	text.	You	can	imagine	a	cloud
application	 that	 stores	 your	 encrypted	 data,	 but	 where	 the	 cloud	 provider
doesn’t	know	what	the	data	is	or	the	type	of	changes	made	when	you	change
that	data.	Sounds	amazing,	doesn’t	it?



But	there’s	a	 flip	side:	 this	 type	of	encryption	 is	 slow—so	slow	that	even
the	most	 basic	 operation	would	 take	 an	 unacceptably	 long	 time.	The	 first
FHE	 scheme	 was	 created	 in	 2009,	 and	 since	 then	 more	 efficient	 variants
appeared,	but	it	remains	unclear	whether	FHE	will	ever	be	fast	enough	to	be
useful.

Searchable	Encryption
Searchable	 encryption	 enables	 searching	 over	 an	 encrypted	 database	 without
leaking	the	searched	terms	by	encrypting	the	search	query	 itself.	Like	 fully
homomorphic	encryption,	searchable	encryption	could	enhance	the	privacy
of	many	cloud-based	applications	by	hiding	your	 searches	 from	your	cloud
provider.	 Some	 commercial	 solutions	 claim	 to	 offer	 searchable	 encryption,
though	they’re	mostly	based	on	standard	cryptography	with	a	 few	tricks	 to
enable	 partial	 searchability.	 As	 of	 this	 writing,	 however,	 searchable
encryption	remains	experimental	within	the	research	community.

Tweakable	Encryption
Tweakable	 encryption	 (TE)	 is	 similar	 to	 basic	 encryption,	 except	 for	 an
additional	 parameter	 called	 the	 tweak,	 which	 aims	 to	 simulate	 different
versions	 of	 a	 cipher	 (see	 Figure	 1-6).	 The	 tweak	 might	 be	 a	 unique	 per-
customer	value	to	ensure	that	a	customer’s	cipher	can’t	be	cloned	by	other
parties	 using	 the	 same	 product,	 but	 the	 main	 application	 of	 TE	 is	 disk
encryption.	However,	TE	is	not	bound	to	a	single	application	and	is	a	lower-
level	type	of	encryption	used	to	build	other	schemes,	such	as	authentication
encryption	modes.

Figure	1-6:	Tweakable	encryption

In	 disk	 encryption,	 TE	 encrypts	 the	 content	 of	 storage	 devices	 such	 as
hard	 drives	 or	 solid-state	 drives.	 (Randomized	 encryption	 can’t	 be	 used



because	 it	 increases	 the	 size	of	 the	data,	which	 is	 unacceptable	 for	 files	 on
storage	media.)	To	make	 encryption	unpredictable,	TE	uses	 a	 tweak	 value
that	depends	on	the	position	of	the	data	encrypted,	which	is	usually	a	sector
number	or	a	block	index.

How	Things	Can	Go	Wrong
Encryption	 algorithms	 or	 implementations	 thereof	 can	 fail	 to	 protect
confidentiality	 in	 many	 ways.	 This	 can	 be	 due	 to	 a	 failure	 to	 match	 the
security	requirements	(such	as	“be	IND-CPA	secure”)	or	to	set	requirements
matching	 reality	 (if	 you	 target	only	 IND-CPA	 security	when	attackers	 can
actually	perform	chosen-ciphertext	queries).	Alas,	many	engineers	don’t	even
think	about	cryptographic	security	requirements	and	just	want	to	be	“secure”
without	understanding	what	that	actually	means.	That’s	usually	a	recipe	for
disaster.	Let’s	look	at	two	examples.

Weak	Cipher
Our	first	example	concerns	ciphers	that	can	be	attacked	using	cryptanalysis
techniques,	 as	 occurred	 with	 the	 2G	 mobile	 communication	 standard.
Encryption	in	2G	mobile	phones	used	a	cipher	called	A5/1	that	turned	out
to	be	weaker	than	expected,	enabling	the	interception	of	calls	by	anyone	with
the	 right	 skills	 and	 tools.	 Telecommunication	 operators	 had	 to	 find
workarounds	to	prevent	the	attack.

NOTE
The	2G	standard	also	defined	A5/2,	a	cipher	for	areas	other	than	the	EU	and
US.	 A5/2	 was	 purposefully	 weaker	 to	 prevent	 the	 use	 of	 strong	 encryption
everywhere.

That	said,	attacking	A5/1	isn’t	trivial,	and	it	took	more	than	10	years	for
researchers	to	come	up	with	an	effective	cryptanalysis	method.	Furthermore,
the	attack	is	a	time-memory	trade-off	(TMTO),	a	type	of	method	that	first	runs
computations	for	days	or	weeks	in	order	to	build	large	look-up	tables,	which
are	 subsequently	 used	 for	 the	 actual	 attack.	 For	 A5/1,	 the	 precomputed
tables	are	more	than	1TB.	Later	standards	for	mobile	encryption,	such	as	3G
and	 LTE,	 specify	 stronger	 ciphers,	 but	 that	 doesn’t	 mean	 that	 their
encryption	 won’t	 be	 compromised;	 rather,	 it	 simply	 means	 that	 the



encryption	won’t	be	compromised	by	breaking	 the	 symmetric	cipher	 that’s
part	of	the	system.

Wrong	Model
The	 next	 example	 concerns	 an	 invalid	 attack	model	 that	 overlooked	 some
side	channels.

Many	communication	protocols	 that	use	encryption	ensure	 that	 they	use
ciphers	 considered	 secure	 in	 the	 CPA	 or	 CCA	 model.	 However,	 some
attacks	don’t	require	encryption	queries,	as	in	the	CPA	model,	nor	do	they
require	decryption	queries,	as	in	the	CCA	model.	They	simply	need	validity
queries	to	tell	whether	a	ciphertext	is	valid,	and	these	queries	are	usually	sent
to	the	system	responsible	for	decrypting	ciphertexts.	Padding	oracle	attacks	are
an	example	of	such	attacks,	wherein	an	attacker	learns	whether	a	ciphertext
conforms	to	the	required	format.

Specifically,	in	the	case	of	padding	oracle	attacks,	a	ciphertext	is	valid	only
if	 its	plaintext	has	 the	proper	padding,	 a	 sequence	of	bytes	appended	to	 the
plaintext	to	simplify	encryption.	Decryption	fails	if	the	padding	is	incorrect,
and	 attackers	 can	 often	 detect	 decryption	 failures	 and	 attempt	 to	 exploit
them.	 For	 example,	 the	 presence	 of	 the	 Java	 exception
javax.crypto.BadPaddingException	 would	 indicate	 that	 an	 incorrect	 padding	 was
observed.

In	 2010,	 researchers	 found	 padding	 oracle	 attacks	 in	 several	 web
application	servers.	The	validity	queries	consisted	of	sending	a	ciphertext	to
some	 system	 and	 observing	 whether	 it	 threw	 an	 error.	 Thanks	 to	 these
queries,	 they	 could	 decrypt	 otherwise	 secure	 ciphertexts	 without	 knowing
the	key.

Cryptographers	often	overlook	attacks	like	padding	oracle	attacks	because
they	 usually	 depend	 on	 an	 application’s	 behavior	 and	 on	 how	 users	 can
interact	with	the	application.	But	if	you	don’t	anticipate	such	attacks	and	fail
to	include	them	in	your	model	when	designing	and	deploying	cryptography,
you	may	have	some	nasty	surprises.

Further	Reading
We	discuss	encryption	and	its	various	forms	in	more	detail	throughout	this
book,	 especially	 how	 modern,	 secure	 ciphers	 work.	 Still,	 we	 can’t	 cover
everything,	and	many	fascinating	topics	won’t	be	discussed.	For	example,	to



learn	 the	 theoretical	 foundations	 of	 encryption	 and	 gain	 a	 deeper
understanding	of	 the	notion	of	 indistinguishability	 (IND),	you	 should	 read
the	1982	paper	that	introduced	the	idea	of	semantic	security,	“Probabilistic
Encryption	 and	 How	 to	 Play	 Mental	 Poker	 Keeping	 Secret	 All	 Partial
Information”	 by	 Goldwasser	 and	 Micali.	 If	 you’re	 interested	 in	 physical
attacks	 and	 cryptographic	 hardware,	 the	 proceedings	 of	 the	 CHES
conference	are	the	main	reference.

There	are	also	many	more	types	of	encryption	than	those	presented	in	this
chapter,	 including	 attribute-based	 encryption,	 broadcast	 encryption,
functional	 encryption,	 identity-based	 encryption,	 message-locked
encryption,	 and	 proxy	 re-encryption,	 to	 cite	 but	 a	 few.	 For	 the	 latest
research	 on	 those	 topics,	 you	 should	 check	 https://eprint.iacr.org/,	 an
electronic	archive	of	cryptography	research	papers.

https://eprint.iacr.org/


2
RANDOMNESS

Randomness	 is	 found	 everywhere	 in	 cryptography:	 in	 the	 generation	 of
secret	keys,	in	encryption	schemes,	and	even	in	the	attacks	on	cryptosystems.
Without	 randomness,	 cryptography	 would	 be	 impossible	 because	 all
operations	would	become	predictable,	and	therefore	insecure.

This	chapter	introduces	you	to	the	concept	of	randomness	in	the	context
of	 cryptography	 and	 its	 applications.	 We	 discuss	 pseudorandom	 number
generators	and	how	operating	systems	can	produce	reliable	randomness,	and
we	conclude	with	real	examples	showing	how	flawed	randomness	can	impact
security.

Random	or	Non-Random?
You’ve	 probably	 already	 heard	 the	 phrase	 “random	 bits,”	 but	 strictly
speaking	there	is	no	such	thing	as	a	series	of	random	bits.	What	is	random	is
actually	 the	 algorithm	 or	 process	 that	 produces	 a	 series	 of	 random	 bits;
therefore,	when	we	say	“random	bits,”	we	actually	mean	randomly	generated
bits.

What	 do	 random	bits	 look	 like?	For	 example,	 to	most	 people,	 the	 8-bit
string	 11010110	 is	 more	 random	 than	 00000000,	 although	 both	 have	 the
same	chance	of	being	generated	(namely,	1/256).	The	value	11010110	looks
more	random	than	00000000	because	it	has	the	signs	typical	of	a	randomly
generated	value.	That	is,	11010110	has	no	obvious	pattern.

When	we	see	the	string	11010110,	our	brain	registers	that	it	has	about	as
many	 zeros	 (three)	 as	 it	 does	 ones	 (five),	 just	 like	 55	 other	 8-bit	 strings
(11111000,	11110100,	11110010,	 and	 so	on),	but	only	one	8-bit	 string	has
eight	zeros.	Because	the	pattern	three-zeros-and-five-ones	 is	more	likely	to



occur	 than	 the	 pattern	 eight-zeros,	 we	 identify	 11010110	 as	 random	 and
00000000	as	non-random,	and	if	a	program	produces	the	bits	11010110,	you
may	 think	 that	 it’s	 random,	 even	 if	 it’s	 not.	 Conversely,	 if	 a	 randomized
program	produces	00000000,	you’ll	probably	doubt	that	it’s	random.

This	 example	 illustrates	 two	 types	 of	 errors	 people	 often	 make	 when
identifying	randomness:

Mistaking	 non-randomness	 for	 randomness	 Thinking	 that	 an	 object
was	randomly	generated	simply	because	it	looks	random.

Mistaking	 randomness	 for	 non-randomness	 Thinking	 that	 patterns
appearing	by	chance	are	there	for	a	reason	other	than	chance.

The	distinction	between	 random-looking	and	actually	 random	 is	 crucial.
Indeed,	in	crypto,	non-randomness	is	often	synonymous	with	insecurity.

Randomness	as	a	Probability	Distribution
Any	 randomized	 process	 is	 characterized	 by	 a	 probability	 distribution,	which
gives	all	there	is	to	know	about	the	randomness	of	the	process.	A	probability
distribution,	 or	 simply	 distribution,	 lists	 the	 outcomes	 of	 a	 randomized
process	where	each	outcome	is	assigned	a	probability.

A	probability	measures	the	likelihood	of	an	event	occurring.	It’s	expressed
as	 a	 real	number	between	0	 and	1	where	 a	probability	0	means	 impossible
and	a	probability	of	1	means	certain.	For	example,	when	tossing	a	two-sided
coin,	 each	 side	 has	 a	 probability	 of	 landing	 face	 up	 of	 1/2,	 and	we	usually
assume	that	landing	on	the	edge	of	the	coin	has	probability	zero.

A	 probability	 distribution	must	 include	 all	 possible	 outcomes,	 such	 that
the	sum	of	all	probabilities	 is	1.	Specifically,	 if	 there	are	N	possible	events,
there	are	N	probabilities	p1,	p2,	…	,	pN	with	p1	+	p2	+	…	+	pN	=	1.	In	the	case
of	the	coin	toss,	the	distribution	is	1/2	for	heads	and	1/2	for	tails.	The	sum
of	both	probabilities	 is	equal	to	1/2	+	1/2	=	1,	because	the	coin	will	 fall	on
one	of	its	two	faces.

A	uniform	distribution	occurs	when	all	probabilities	 in	the	distribution	are
equal,	meaning	that	all	outcomes	are	equally	 likely	to	occur.	If	 there	are	N
events,	then	each	event	has	probability	1/N.	For	example,	if	a	128-bit	key	is
picked	uniformly	at	random—that	is,	according	to	a	uniform	distribution—
then	each	of	the	2128	possible	keys	should	have	a	probability	of	1/2128.



In	 contrast,	 when	 a	 distribution	 is	 non-uniform,	 probabilities	 aren’t	 all
equal.	A	coin	toss	with	a	non-uniform	distribution	is	said	to	be	biased,	and
may	 yield	 heads	 with	 probability	 1/4	 and	 tails	 with	 probability	 3/4,	 for
example.

Entropy:	A	Measure	of	Uncertainty
Entropy	 is	 the	measure	 of	 uncertainty,	 or	 disorder	 in	 a	 system.	You	might
think	 of	 entropy	 as	 the	 amount	 of	 surprise	 found	 in	 the	 result	 of	 a
randomized	process:	 the	higher	the	entropy,	the	 less	the	certainty	found	in
the	result.

We	 can	 compute	 the	 entropy	 of	 a	 probability	 distribution.	 If	 your
distribution	 consists	 of	 probabilities	 p1,	 p2,	…	 ,	 pN,	 then	 its	 entropy	 is	 the
negative	sum	of	all	probabilities	multiplied	by	their	 logarithm,	as	shown	in
this	expression:

−p1	×	log(p1)	−	p2	×	log(p2)	−	…	−	pN	×	log(pN)

Here	 the	 function	 log	 is	 the	 binary	 logarithm,	 or	 logarithm	 in	 base	 two.
Unlike	the	natural	logarithm,	the	binary	logarithm	expresses	the	information
in	bits	 and	yields	 integer	 values	when	probabilities	 are	powers	of	 two.	For
example,	 log(1/2)	 =	 –1,	 log(1/4)	 =	 –2,	 and	more	 generally	 log(1/2n)	 =	 –n.
(That’s	 why	 we	 actually	 take	 the	 negative	 sum,	 in	 order	 to	 end	 up	 with	 a
positive	 number.)	 Random	 128-bit	 keys	 produced	 using	 a	 uniform
distribution	therefore	have	the	following	entropy:

2128	×	(−2−128	×	log(2−128))	=	−log(2−128)	=	128	bits

If	 you	 replace	 128	 by	 any	 integer	 n	 you	will	 find	 that	 the	 entropy	 of	 a
uniformly	distributed	n-bit	string	will	be	n	bits.

Entropy	is	maximized	when	the	distribution	is	uniform	because	a	uniform
distribution	 maximizes	 uncertainty:	 no	 outcome	 is	 more	 likely	 than	 the
others.	Therefore,	n-bit	values	can’t	have	more	than	n	bits	of	entropy.

By	the	same	token,	when	the	distribution	is	not	uniform,	entropy	is	lower.
Consider	the	coin	toss	example.	The	entropy	of	a	fair	toss	is	the	following:

−(1/2)	×	log	(1/2)	−	(1/2)	×	log	(1/2)	=	1/2	+	1/2	=	1	bit



What	 if	one	 side	of	 the	 coin	has	 a	higher	probability	of	 landing	 face	up
than	the	other?	Say	heads	has	a	probability	of	1/4	and	tails	3/4	 (remember
that	the	sum	of	all	probabilities	should	be	1).

The	entropy	of	such	a	biased	toss	is	this:

−(3/4)	×	log(3/4)	−	(1/4)	×	log(1/4)	≈	−(3/4)	×	(−0.415)	−	(1/4)	×	(−2)	≈	0.81	bit

The	fact	that	0.81	is	less	than	the	1-bit	entropy	of	a	fair	toss	tells	us	that
the	more	biased	the	coin,	the	less	uniform	the	distribution	and	the	lower	the
entropy.	Taking	this	example	further,	if	heads	has	a	probability	of	1/10,	the
entropy	 is	 0.469;	 if	 the	 probability	 drops	 to	 1/100,	 the	 entropy	 drops	 to
0.081.

NOTE
Entropy	can	also	be	viewed	as	a	measure	of	information.	For	example,	the	result
of	a	fair	coin	toss	gives	you	exactly	one	bit	of	information—heads	or	tails—and
you’re	unable	to	predict	the	result	of	the	toss	in	advance.	In	the	case	of	the	unfair
coin	 toss,	 you	 know	 in	 advance	 that	 tails	 is	more	 probable,	 so	 you	 can	 usually
predict	 the	 outcome	 of	 the	 toss.	 The	 result	 of	 the	 coin	 toss	 gives	 you	 the
information	needed	to	predict	the	result	with	certainty.

Random	Number	Generators	 (RNGs)	and	Pseudorandom
Number	Generators	(PRNGs)
Cryptosystems	 need	 randomness	 to	 be	 secure	 and	 therefore	 need	 a
component	from	which	to	get	their	randomness.	The	job	of	this	component
is	 to	return	random	bits	when	requested	to	do	so.	How	is	 this	randomness
generation	done?	You’ll	need	two	things:

A	 source	 of	 uncertainty,	 or	 source	 of	 entropy,	 provided	 by	 random
number	generators	(RNGs).
A	 cryptographic	 algorithm	 to	 produce	 high-quality	 random	 bits	 from
the	 source	 of	 entropy.	 This	 is	 found	 in	 pseudorandom	 number
generators	(PRNGs).

Using	RNGs	and	PRNGs	is	the	key	to	making	cryptography	practical	and
secure.	Let’s	 briefly	 look	 at	 how	RNGs	work	 before	 exploring	PRNGs	 in



depth.
Randomness	 comes	 from	 the	 environment,	 which	 is	 analog,	 chaotic,

uncertain,	 and	 hence	 unpredictable.	 Randomness	 can’t	 be	 generated	 by
computer-based	 algorithms	 alone.	 In	 cryptography,	 randomness	 usually
comes	 from	 random	 number	 generators	 (RNGs),	 which	 are	 software	 or
hardware	components	that	leverage	entropy	in	the	analog	world	to	produce
unpredictable	bits	in	a	digital	system.	For	example,	an	RNG	might	directly
sample	 bits	 from	 measurements	 of	 temperature,	 acoustic	 noise,	 air
turbulence,	 or	 electrical	 static.	Unfortunately,	 such	 analog	 entropy	 sources
aren’t	always	available,	and	their	entropy	is	often	difficult	to	estimate.

RNGs	 can	 also	 harvest	 the	 entropy	 in	 a	 running	 operating	 system	 by
drawing	from	attached	sensors,	I/O	devices,	network	or	disk	activity,	system
logs,	 running	 processes,	 and	 user	 activities	 such	 as	 key	 presses	 and	mouse
movement.	 Such	 system-	 and	 human-generated	 activities	 can	 be	 a	 good
source	of	 entropy,	but	 they	 can	be	 fragile	 and	manipulated	by	 an	 attacker.
Also,	they’re	slow	to	yield	random	bits.

Quantum	random	number	generators	(QRNGs)	are	a	type	of	RNG	that	relies
on	 the	 randomness	 arising	 from	 quantum	mechanical	 phenomena	 such	 as
radioactive	decay,	vacuum	fluctuations,	and	observing	photons’	polarization.
These	 can	provide	 real	 randomness,	 rather	 than	 just	 apparent	 randomness.
However,	in	practice,	QRNGs	may	be	biased	and	don’t	produce	bits	quickly;
like	the	previously	cited	entropy	sources,	they	need	an	additional	component
to	produce	reliably	at	high	speed.

Pseudorandom	number	generators	(PRNGs)	address	the	challenge	we	face	in
generating	 randomness	 by	 reliably	 producing	 many	 artificial	 random	 bits
from	a	 few	 true	 random	bits.	For	 example,	 an	RNG	 that	 translates	mouse
movements	 to	 random	 bits	 would	 stop	 working	 if	 you	 stop	 moving	 the
mouse,	whereas	a	PRNG	always	returns	pseudorandom	bits	when	requested
to	do	so.

PRNGs	 rely	 on	 RNGs	 but	 behave	 differently:	 RNGs	 produce	 true
random	bits	relatively	slowly	from	analog	sources,	in	a	nondeterministic	way,
and	 with	 no	 guarantee	 of	 high	 entropy.	 In	 contrast,	 PRNGs	 produce
random-looking	bits	quickly	from	digital	sources,	in	a	deterministic	way,	and
with	 maximum	 entropy.	 Essentially,	 PRNGs	 transform	 a	 few	 unreliable
random	 bits	 into	 a	 long	 stream	 of	 reliable	 pseudorandom	 bits	 suitable	 for
crypto	applications,	as	shown	in	Figure	2-1.



Figure	2-1:	RNGs	produce	few	unreliable	bits	from	analog	sources,	whereas	PRNGs	expand	those
bits	to	a	long	stream	of	reliable	bits.

How	PRNGs	Work
A	PRNG	receives	 random	bits	 from	an	RNG	at	 regular	 intervals	 and	uses
them	to	update	the	contents	of	a	large	memory	buffer,	called	the	entropy	pool.
The	 entropy	 pool	 is	 the	 PRNG’s	 source	 of	 entropy,	 just	 like	 the	 physical
environment	is	to	an	RNG.	When	the	PRNG	updates	the	entropy	pool,	 it
mixes	the	pool’s	bits	together	to	help	remove	any	statistical	bias.

In	order	to	generate	pseudorandom	bits,	the	PRNG	runs	a	deterministic
random	bit	 generator	 (DRBG)	 algorithm	 that	 expands	 some	 bits	 from	 the
entropy	pool	into	a	much	longer	sequence.	As	its	name	suggests,	a	DRBG	is
deterministic,	not	randomized:	given	one	input	you	will	always	get	the	same
output.	The	PRNG	ensures	 that	 its	DRBG	never	 receives	 the	 same	 input
twice,	in	order	to	generate	unique	pseudorandom	sequences.

In	 the	 course	 of	 its	 work,	 the	 PRNG	 performs	 three	 operations,	 as
follows:

init()	Initializes	the	entropy	pool	and	the	internal	state	of	the	PRNG

refresh(R)	Updates	the	entropy	pool	using	some	data,	R,	usually	sourced
from	an	RNG
next(N)	Returns	N	pseudorandom	bits	and	updates	the	entropy	pool

The	 init	 operation	 resets	 the	 PRNG	 to	 a	 fresh	 state,	 reinitializes	 the
entropy	pool	to	some	default	value,	and	initializes	any	variables	or	memory
buffers	used	by	the	PRNG	to	carry	out	the	refresh	and	next	operations.

The	refresh	operation	is	often	called	reseeding,	and	its	argument	R	is	called
a	seed.	When	no	RNG	is	available,	seeds	may	be	unique	values	hardcoded	in
a	 system.	The	 refresh	 operation	 is	 typically	 called	by	 the	operating	 system,
whereas	 next	 is	 typically	 called	 or	 requested	 by	 applications.	 The	 next
operation	runs	the	DRBG	and	modifies	the	entropy	pool	to	ensure	that	the
next	call	will	yield	different	pseudorandom	bits.

Security	Concerns
Let’s	 talk	 briefly	 about	 the	 way	 that	 PRNGs	 address	 some	 high-level



security	 concerns.	 Specifically,	 PRNGs	 should	 guarantee	 backtracking
resistance	and	prediction	resistance.	Backtracking	resistance	(also	called	forward
secrecy)	 means	 that	 previously	 generated	 bits	 are	 impossible	 to	 recover,
whereas	prediction	resistance	(backward	secrecy)	means	that	future	bits	should
be	impossible	to	predict.

In	order	to	achieve	backtracking	resistance,	the	PRNG	should	ensure	that
the	 transformations	performed	when	updating	 the	state	 through	the	refresh
and	next	 operations	 are	 irreversible	 so	 that	 if	 an	 attacker	 compromises	 the
system	 and	 obtains	 the	 entropy	 pool’s	 value,	 they	 can’t	 determine	 the
previous	 values	 of	 the	 pool	 or	 the	 previously	 generated	 bits.	 To	 achieve
prediction	resistance,	 the	PRNG	should	call	refresh	 regularly	with	R	 values
that	 are	 unknown	 to	 an	 attacker	 and	 that	 are	 difficult	 to	 guess,	 thus
preventing	an	attacker	from	determining	future	values	of	the	entropy	pool,
even	if	the	whole	pool	is	compromised.	(Even	if	the	list	of	R	values	used	were
known,	 you’d	need	 to	 know	 the	 order	 in	which	 refresh	 and	next	 calls	were
made	in	order	to	reconstruct	the	pool.)

The	PRNG	Fortuna
Fortuna	 is	 a	 PRNG	 construction	 used	 in	Windows	 originally	 designed	 in
2003	by	Niels	Ferguson	and	Bruce	Schneier.	Fortuna	superseded	Yarrow,	a
1998	 design	 by	 Kelsey	 and	 Schneier	 now	 used	 in	 the	 macOS	 and	 iOS
operating	 systems.	 I	won’t	 provide	 the	Fortuna	 specification	 here	 or	 show
you	how	to	implement	it,	but	I	will	try	to	explain	how	it	works.	You’ll	find	a
complete	description	of	Fortuna	in	Chapter	9	of	Cryptography	Engineering	by
Ferguson,	Schneier,	and	Kohno	(Wiley,	2010).

Fortuna’s	internal	memory	includes	the	following:

Thirty-two	entropy	pools,	P1,	P2,	…	,	P32,	such	that	Pi	is	used	every	2i

reseeds.
A	key,	K,	and	a	counter,	C	(both	16	bytes).	These	form	the	internal	state
of	Fortuna’s	DRBG.

In	simplest	terms,	Fortuna	works	like	this:

init()	sets	K	and	C	to	zero	and	empties	the	32	entropy	pools	Pi,	where	i	=
1	…	32.



refresh(R)	appends	the	data,	R,	to	one	of	the	entropy	pools.	The	system
chooses	 the	RNGs	used	 to	produce	R	values,	and	 it	 should	call	refresh
regularly.
next(N)	 updates	K	 using	 data	 from	one	 or	more	 entropy	 pools,	where
the	choice	of	 the	entropy	pools	depends	mainly	on	how	many	updates
of	K	have	already	been	done.	The	N	bits	requested	are	then	produced
by	 encrypting	 C	 using	 K	 as	 a	 key.	 If	 encrypting	 C	 is	 not	 enough,
Fortuna	encrypts	C	+	1,	then	C	+	2,	and	so	on,	to	get	enough	bits.

Although	 Fortuna’s	 operations	 look	 fairly	 simple,	 implementing	 them
correctly	 is	 hard.	 For	 one	 thing,	 you	 need	 to	 get	 all	 the	 details	 of	 the
algorithm	right—namely,	how	entropy	pools	are	chosen,	the	type	of	cipher
to	be	used	 in	next,	how	to	behave	when	no	entropy	 is	 received,	and	so	on.
Although	 the	 specs	 define	 most	 of	 the	 details,	 they	 don’t	 include	 a
comprehensive	test	suite	to	check	that	an	 implementation	 is	correct,	which
makes	it	difficult	to	ensure	that	your	implementation	of	Fortuna	will	behave
as	expected.

Even	if	Fortuna	is	correctly	implemented,	security	failures	may	occur	for
reasons	other	than	the	use	of	an	incorrect	algorithm.	For	example,	Fortuna
might	not	notice	if	the	RNGs	fail	to	produce	enough	random	bits,	and	as	a
result	Fortuna	will	produce	lower-quality	pseudorandom	bits,	or	it	may	stop
delivering	pseudorandom	bits	altogether.

Another	risk	inherent	in	Fortuna	implementations	lies	in	the	possibility	of
exposing	 associated	 seed	 files	 to	 attackers.	The	 data	 in	Fortuna	 seed	 files	 is
used	 to	 feed	entropy	 to	Fortuna	 through	refresh	 calls	when	an	RNG	is	not
immediately	available,	such	as	immediately	after	a	system	reboot	and	before
the	system’s	RNGs	have	recorded	any	unpredictable	events.	However,	if	an
identical	 seed	 file	 is	 used	 twice,	 then	 Fortuna	 will	 produce	 the	 same	 bit
sequence	 twice.	 Seed	 files	 should	 therefore	 be	 erased	 after	 being	 used	 to
ensure	that	they	aren’t	reused.

Finally,	 if	 two	 Fortuna	 instances	 are	 in	 the	 same	 state	 because	 they	 are
sharing	a	 seed	 file	 (meaning	 they	are	 sharing	 the	 same	data	 in	 the	entropy
pools,	 including	the	same	C	and	K),	then	the	next	operation	will	return	the
same	bits	in	both	instances.

Cryptographic	vs.	Non-Cryptographic	PRNGs



There	are	both	cryptographic	and	non-cryptographic	PRNGs.	Non-crypto
PRNGs	are	designed	to	produce	uniform	distributions	for	applications	such
as	 scientific	 simulations	 or	 video	 games.	 However,	 you	 should	 never	 use
non-crypto	PRNGs	in	crypto	applications,	because	they’re	insecure—they’re
only	concerned	with	the	quality	of	the	bits’	probability	distribution	and	not
with	 their	 predictability.	 Crypto	 PRNGs,	 on	 the	 other	 hand,	 are
unpredictable,	 because	 they’re	 also	 concerned	 with	 the	 strength	 of	 the
underlying	operations	used	to	deliver	well-distributed	bits.

Unfortunately,	most	PRNGs	exposed	by	programming	languages,	such	as
libc’s	rand	and	drand48,	PHP’s	rand	and	mt_rand,	Python’s	random	module,	Ruby’s
Random	 class,	 and	 so	 on,	 are	 non-cryptographic.	Defaulting	 to	 a	 non-crypto
PRNG	is	a	recipe	for	disaster	because	it	often	ends	up	being	used	in	crypto
applications,	so	be	sure	to	use	only	crypto	PRNGs	in	crypto	applications.

A	Popular	Non-Crypto	PRNG:	Mersenne	Twister
The	Mersenne	Twister	 (MT)	algorithm	 is	 a	non-cryptographic	PRNG	used
(at	 the	 time	 of	 this	 writing)	 in	 PHP,	 Python,	 R,	 Ruby,	 and	 many	 other
systems.	 MT	 will	 generate	 uniformly	 distributed	 random	 bits	 without
statistical	bias,	but	it’s	predictable:	given	a	few	bits	produced	by	MT,	it’s	easy
enough	to	tell	which	bits	will	follow.

Let’s	 look	 under	 the	 hood	 to	 see	 what	 makes	 the	 Mersenne	 Twister
insecure.	The	MT	algorithm	is	much	simpler	than	that	of	crypto	PRNGs:	its
internal	 state	 is	 an	 array,	 S,	 consisting	 of	 624	 32-bit	 words.	 This	 array	 is
initially	set	to	S1,	S2,	…	,	S624	and	evolves	to	S2,	…	,	S625,	then	S3,	…	,	S626,
and	so	on,	according	to	this	equation:

Sk	+	624	=	Sk	+	397	⊕	A((Sk	∧	0x80000000)	∨	(Sk	+	1	∧	0x7fffffff))

Here,	⊕	denotes	the	bitwise	XOR	(^	in	the	C	programming	language),	∧
denotes	the	bitwise	AND	(&	in	C),	∨	denotes	the	bitwise	OR	(|	in	C),	and	A
is	 a	 function	 that	 transforms	 some	 32-bit	word,	 x,	 to	 (x	 >>	 1),	 if	 x’s	most
significant	bit	is	0,	or	to	(x	>>	1)	⊕	0x9908b0df	otherwise.

Notice	in	this	equation	that	bits	of	S	interact	with	each	other	only	through
XORs.	The	operators	∧	 and	∨	 never	 combine	 two	bits	 of	S	 together,	 but
just	 bits	 of	S	with	 bits	 from	 the	 constants	 0x80000000	 and	 0x7fffffff.	This
way,	any	bit	from	S625	can	be	expressed	as	an	XOR	of	bits	from	S398,	S1,	and



S2,	 and	 any	 bit	 from	 any	 future	 state	 can	 be	 expressed	 as	 an	 XOR
combination	of	bits	 from	the	 initial	 state	S1,	…	,	S624.	 (When	you	express,
say,	S228	 +	 624	 =	S852	 as	 a	 function	 of	S625,	S228,	 and	S229,	 you	 can	 in	 turn
replace	S625	by	its	expression	in	terms	of	S398,	S1,	and	S2.)

Because	there	are	exactly	624	×	32	=	19,968	bits	in	the	initial	state	(or	624
32-bit	words),	any	output	bit	can	be	expressed	as	an	equation	with	at	most
19,969	 terms	 (19,968	 bits	 plus	 one	 constant	 bit).	 That’s	 just	 about	 2.5
kilobytes	of	data.	The	converse	is	also	true:	bits	from	the	initial	state	can	be
expressed	as	an	XOR	of	output	bits.

Linearity	Insecurity
We	call	an	XOR	combination	of	bits	a	linear	combination.	For	example,	if	X,
Y,	 and	Z	 are	bits,	 then	 the	expression	X	⊕	Y	⊕	Z	 is	 a	 linear	combination,
whereas	(X	∧	Y)	⊕	Z	is	not	because	there’s	an	AND	(∧).	If	you	flip	a	bit	of	X
in	X	⊕	Y	⊕	Z,	then	the	result	changes	as	well,	regardless	of	the	value	of	the
Y	and	Z.	In	contrast,	if	you	flip	a	bit	of	X	in	(X	∧	Y)	⊕	Z,	the	result	changes
only	 if	 Y’s	 bit	 at	 the	 same	 position	 is	 1.	 The	 upshot	 is	 that	 linear
combinations	are	predictable,	because	you	don’t	need	to	know	the	value	of
the	bits	in	order	to	predict	how	a	change	in	their	value	will	affect	the	result.

For	 comparison,	 if	 the	MT	 algorithm	were	 cryptographically	 strong,	 its
equations	would	be	nonlinear	and	would	involve	not	only	single	bits	but	also
AND-combinations	 (products)	 of	 bits,	 such	 as	 S1S15S182	 or
S17S256S257S354S498S601.	Although	linear	combinations	of	those	bits	 include
at	most	624	variables,	nonlinear	combinations	allow	for	up	to	2624	variables.
It	 would	 be	 impossible	 to	 solve,	 let	 alone	 write	 down	 the	 whole	 of	 these
equations.	 (Note	 that	 2305,	 a	 much	 smaller	 number,	 is	 the	 estimated
information	capacity	of	the	observable	universe.)

The	 key	 here	 is	 that	 linear	 transformations	 lead	 to	 short	 equations
(comparable	 in	 size	 to	 the	 number	 of	 variables),	 which	 are	 easy	 to	 solve,
whereas	nonlinear	transformations	give	rise	to	equations	of	exponential	size,
which	 are	 practically	 unsolvable.	 The	 game	 of	 cryptographers	 is	 thus	 to
design	 PRNG	 algorithms	 that	 emulate	 such	 complex	 nonlinear
transformations	using	only	a	small	number	of	simple	operations.

NOTE



Linearity	is	just	one	of	many	security	criteria.	Although	necessary,	nonlinearity
alone	does	not	make	a	PRNG	cryptographically	secure.

The	Uselessness	of	Statistical	Tests
Statistical	 test	 suites	 like	 TestU01,	 Diehard,	 or	 the	 National	 Institute	 of
Standards	and	Technology	(NIST)	test	suite	are	one	way	to	test	the	quality
of	 pseudorandom	 bits.	 These	 tests	 take	 a	 sample	 of	 pseudorandom	 bits
produced	by	a	PRNG	(say,	one	megabyte	worth),	compute	some	statistics	on
the	distribution	of	certain	patterns	in	the	bits,	and	compare	the	results	with
the	typical	results	obtained	for	a	perfect,	uniform	distribution.	For	example,
some	 tests	 count	 the	number	of	 1	bits	 versus	 the	number	of	 0	bits,	 or	 the
distribution	 of	 8-bit	 patterns.	 But	 statistical	 tests	 are	 largely	 irrelevant	 to
cryptographic	 security,	 and	 it’s	possible	 to	design	a	 cryptographically	weak
PRNG	that	will	fool	any	statistical	test.

When	 you	 run	 statistical	 tests	 on	 randomly	 generated	 data,	 you	 will
usually	see	a	bunch	of	statistical	indicators	as	a	result.	These	are	typically	p-
values,	 a	 common	 statistical	 indicator.	 These	 results	 aren’t	 always	 easy	 to
interpret,	 because	 they’re	 rarely	 as	 simple	 as	 passed	 or	 failed.	 If	 your	 first
results	 seem	 abnormal,	 don’t	 worry:	 they	 may	 be	 the	 result	 of	 some
accidental	deviation,	or	you	may	be	testing	too	few	samples.	To	ensure	that
the	results	you	see	are	normal,	compare	them	with	those	obtained	for	some
reliable	 sample	 of	 identical	 size;	 for	 example,	 one	 generated	 with	 the
OpenSSL	toolkit	using	the	following	command:

$	openssl	rand	<number	of	bytes>	-out	<output	file>

Real-World	PRNGs
Let’s	 turn	 our	 attention	 to	 how	 to	 implement	 PRNGs	 in	 the	 real	 world.
You’ll	find	crypto	PRNGs	in	the	operating	systems	(OSs)	of	most	platforms,
from	desktops	and	laptops	to	embedded	systems	such	as	routers	and	set-top
boxes,	as	well	as	virtual	machines,	mobile	phones,	and	so	on.	Most	of	these
PRNGs	are	software	based,	but	some	are	pure	hardware.	Those	PRNGs	are
used	 by	 applications	 running	 on	 the	 OS,	 and	 sometimes	 other	 PRNGs
running	on	top	of	cryptographic	libraries	or	applications.

Next	we’ll	 look	at	the	most	widely	deployed	PRNGs:	the	one	for	Linux,
Android,	and	many	other	Unix-based	systems;	the	one	in	Windows;	and	the



one	in	recent	Intel	microprocessors,	which	is	hardware	based.

Generating	Random	Bits	in	Unix-Based	Systems
The	device	 file	/dev/urandom	 is	 the	userland	 interface	to	the	crypto	PRNG
of	 common	 *nix	 systems,	 and	 it’s	 what	 you	 will	 typically	 use	 to	 generate
reliable	random	bits.	Because	it’s	a	device	file,	requesting	random	bits	from
/dev/urandom	 is	 done	 by	 reading	 it	 as	 a	 file.	 For	 example,	 the	 following
command	uses	/dev/urandom	to	write	10MB	of	random	bits	to	a	file:

$	dd	if=/dev/urandom	of=<output	file>	bs=1M	count=10

The	Wrong	Way	to	Use	/dev/urandom
You	 could	 write	 a	 naive	 and	 insecure	 C	 program	 like	 the	 one	 shown	 in
Listing	2-1	to	read	random	bits,	and	hope	for	the	best,	but	that	would	be	a
bad	idea.

int	random_bytes_insecure(void	*buf,	size_t	len)
{
				int	fd	=	open("/dev/urandom",	O_RDONLY);
				read(fd,	buf,	len);
				close(fd);
				return	0;
}

Listing	2-1:	Insecure	use	of	/dev/urandom

This	code	is	insecure;	it	doesn’t	even	check	the	return	values	of	open()	and
read(),	which	means	 your	 expected	 random	buffer	 could	 end	up	 filled	with
zeroes,	or	left	unchanged.

A	Safer	Way	to	Use	/dev/urandom
Listing	2-2,	copied	from	LibreSSL,	shows	a	safer	way	to	use	/dev/urandom.

int	random_bytes_safer(void	*buf,	size_t	len)
{
				struct	stat	st;
				size_t	i;
				int	fd,	cnt,	flags;
				int	save_errno	=	errno;

start:
				flags	=	O_RDONLY;
#ifdef	O_NOFOLLOW
				flags	|=	O_NOFOLLOW;



#endif
#ifdef	O_CLOEXEC
				flags	|=	O_CLOEXEC;
#endif

				fd	=	❶open("/dev/urandom",	flags,	0);
				if	(fd	==	-1)	{
								if	(errno	==	EINTR)
												goto	start;
								goto	nodevrandom;
				}
#ifndef	O_CLOEXEC
				fcntl(fd,	F_SETFD,	fcntl(fd,	F_GETFD)	|	FD_CLOEXEC);
#endif
				/*	Lightly	verify	that	the	device	node	looks	sane	*/
				if	(fstat(fd,	&st)	==	-1	||	!S_ISCHR(st.st_mode))	{
								close(fd);
								goto	nodevrandom;
				}
				if	(ioctl(fd,	RNDGETENTCNT,	&cnt)	==	-1)	{
								close(fd);
								goto	nodevrandom;
				}
				for	(i	=	0;	i	<	len;	)	{
								size_t	wanted	=	len	-	i;

								ssize_t	ret	=	❷read(fd,	(char	*)buf	+	i,	wanted);
								if	(ret	==	-1)	{
												if	(errno	==	EAGAIN	||	errno	==	EINTR)
																continue;
												close(fd);
												goto	nodevrandom;
								}
								i	+=	ret;
				}
				close(fd);
				if	(gotdata(buf,	len)	==	0)	{
								errno	=	save_errno;
								return	0;																	/*	satisfied	*/
				}
nodevrandom:
				errno	=	EIO;
				return	-1;
}

Listing	2-2:	Safe	use	of	/dev/urandom

Unlike	Listing	2-1,	Listing	2-2	makes	several	sanity	checks.	Compare,	for
example,	 the	 call	 to	 open()	 at	❶	 and	 the	 call	 to	 read()	 at	❷	 with	 those	 in
Listing	2-1:	you’ll	notice	that	the	safer	code	checks	the	return	values	of	those
functions,	and	upon	failure	closes	the	file	descriptor	and	returns	–1.

Differences	Between	/dev/urandom	and	/dev/random	on	Linux



Different	Unix	versions	use	different	PRNGs.	The	Linux	PRNG,	defined	in
drivers/char/random.c	 in	 the	 Linux	 kernel,	 mainly	 uses	 the	 hash	 function
SHA-1	 to	 turn	 raw	 entropy	 bits	 into	 reliable	 pseudorandom	 bits.	 The
PRNG	 harvests	 entropy	 from	 various	 sources	 (including	 the	 keyboard,
mouse,	disk,	 and	 interrupt	 timings)	and	has	a	primary	entropy	pool	of	512
bytes,	as	well	as	a	non-blocking	pool	 for	 /dev/urandom	 and	a	blocking	pool
for	/dev/random.

What’s	 the	difference	between	/dev/urandom	and	/dev/random?	The	short
story	 is	 that	 /dev/random	 attempts	 to	 estimate	 the	 amount	 of	 entropy	 and
refuses	 to	 return	bits	 if	 the	 level	 of	 entropy	 is	 too	 low.	Although	 this	may
sound	 like	 a	 good	 idea,	 it’s	 not.	 For	 one	 thing,	 entropy	 estimators	 are
notoriously	unreliable	 and	 can	be	 fooled	by	 attackers	 (which	 is	 one	 reason
why	 Fortuna	 ditched	 Yarrow’s	 entropy	 estimation).	 Furthermore,
/dev/random	runs	out	of	estimated	entropy	pretty	quickly,	which	can	produce
a	denial-of-service	condition,	slowing	applications	that	are	forced	to	wait	for
more	entropy.	The	upshot	is	that	in	practice,	/dev/random	 is	no	better	than
/dev/urandom	and	creates	more	problems	than	it	solves.

Estimating	the	Entropy	of	/dev/random
You	can	observe	how	/dev/random’s	entropy	estimate	evolves	by	reading	 its
current	 value	 in	 bits	 in	 /proc/sys/kernel/random/entropy_avail	 on	 Linux.	 For
example,	 the	 shell	 script	 shown	 in	Listing	 2-3	 first	minimizes	 the	 entropy
estimate	by	reading	4KB	from	/dev/random,	waits	until	it	reaches	an	estimate
of	128	bits,	reads	64	bits	from	/dev/random,	and	then	shows	the	new	estimate.
When	 running	 the	 script,	 notice	 how	 user	 activity	 accelerates	 entropy
recovery	(bytes	read	are	printed	to	stdout	encoded	in	base64).

#!/bin/sh
ESTIMATE=/proc/sys/kernel/random/entropy_avail
timeout	3s	dd	if=/dev/random	bs=4k	count=1	2>	/dev/null	|	base64
ent=`cat	$ESTIMATE`
while	[	$ent	-lt	128	]
do
				sleep	3
				ent=`cat	$ESTIMATE`
				echo	$ent
done
dd	if=/dev/random	bs=8	count=1	2>	/dev/null	|	base64
cat	$ESTIMATE

Listing	2-3:	A	script	showing	the	evolution	of	/dev/urandom’s	entropy	estimate



A	sample	run	of	Listing	2-3	gave	the	output	shown	in	Listing	2-4.	(Guess
when	 I	 started	 randomly	 moving	 the	 mouse	 and	 hitting	 the	 keyboard	 to
gather	entropy.)

xFNX/f2R87/zrrNJ6Ibr5R1L913tl+F4GNzKb60BC+qQnHQcyA==
2
18
19
27
28
72
124
193
jq8XWCt8
129

Listing	2-4:	A	sample	execution	of	the	entropy	estimate	evolution	script	in	Listing	2-3

As	you	can	see	in	Listing	2-4,	we	have	193	−	64	=	129	bits	of	entropy	left
in	the	pool,	as	per	/dev/random’s	estimator.	Does	it	make	sense	to	consider	a
PRNG	as	having	N	less	entropy	bits	just	because	N	bits	were	just	read	from
the	PRNG?	(Spoiler:	it	does	not.)

NOTE
Like	/dev/random,	Linux’s	getrandom()	system	call	blocks	if	it	hasn’t	gathered
enough	 initial	 entropy.	 However,	 unlike	 /dev/random,	 it	 won’t	 attempt	 to
estimate	 the	 entropy	 in	 the	 system	and	will	 never	 block	 after	 its	 initialization
stage.	And	that’s	fine.	(You	can	force	getrandom()	to	use	/dev/random	and	to
block	by	tweaking	its	flags,	but	I	don’t	see	why	you’d	want	to	do	that.)

The	CryptGenRandom()	Function	in	Windows
In	 Windows,	 the	 legacy	 userland	 interface	 to	 the	 system’s	 PRNG	 is	 the
CryptGenRandom()	 function	 from	 the	 Cryptography	 application	 programming
interface	 (API).	 The	 CryptGenRandom()	 function	 has	 been	 replaced	 in	 recent
Windows	 versions	 with	 the	 BcryptGenRandom()	 function	 in	 the	 Cryptography
API:	 Next	 Generation	 (CNG)	 API.	 The	 Windows	 PRNG	 takes	 entropy
from	 the	 kernel	 mode	 driver	 cng.sys	 (formerly	 ksecdd.sys),	 whose	 entropy
collector	is	loosely	based	on	Fortuna.	As	is	usually	the	case	in	Windows,	the
process	is	complicated.

Listing	 2-5	 shows	 a	 typical	 C++	 invocation	 of	 CryptGenRandom()	 with	 the



required	checks.

int	random_bytes(unsigned	char	*out,	size_t	outlen)
{
				static	HCRYPTPROV	handle	=	0;	/*	only	freed	when	the	program	ends	*/
				if(!handle)	{
								if(!CryptAcquireContext(&handle,	0,	0,	PROV_RSA_FULL,
																												CRYPT_VERIFYCONTEXT	|	CRYPT_SILENT))	{
												return	-1;
								}
				}
				while(outlen	>	0)	{
								const	DWORD	len	=	outlen	>	1048576UL	?	1048576UL	:	outlen;
								if(!CryptGenRandom(handle,	len,	out))	{
												return	-2;
								}
								out				+=	len;
								outlen	-=	len;
				}
				return	0;
}

Listing	2-5:	Using	the	Windows	CryptGenRandom()	PRNG	interface

Notice	in	Listing	2-5	that	prior	to	calling	the	actual	PRNG,	you	need	to
declare	 a	 cryptographic	 service	 provider	 (HCRYPTPROV)	 and	 then	 acquire	 a
cryptographic	 context	with	CryptAcquireContext(),	which	 increases	 the	chances	of
things	 going	 wrong.	 For	 instance,	 the	 final	 version	 of	 the	 TrueCrypt
encryption	software	was	found	to	call	CryptAcquireContext()	in	a	way	that	could
silently	 fail,	 leading	 to	 suboptimal	 randomness	without	 notifying	 the	 user.
Fortunately,	 the	 newer	 BCryptGenRandom()	 interface	 for	 Windows	 is	 much
simpler	and	doesn’t	require	the	code	to	explicitly	open	a	handle	(or	at	least
makes	it	much	easier	to	use	without	a	handle).

A	 Hardware-Based	 PRNG:	 RDRAND	 in	 Intel
Microprocessors
We’ve	 discussed	 only	 software	 PRNGs	 so	 far,	 so	 let’s	 have	 a	 look	 at	 a
hardware	 one.	 The	 Intel	 Digital	 Random	 Number	 Generator	 is	 a	 hardware
PRNG	introduced	 in	2012	 in	 Intel’s	 Ivy	Bridge	microarchitecture,	 and	 it’s
based	 on	 NIST’s	 SP	 800-90	 guidelines	 with	 the	 Advanced	 Encryption
Standard	 (AES)	 in	CTR_DRBG	mode.	 Intel’s	 PRNG	 is	 accessed	 through
the	RDRAND	assembly	instruction,	which	offers	an	interface	independent	of	the
operating	system	and	is	in	principle	faster	than	software	PRNGs.

Whereas	 software	 PRNGs	 try	 to	 collect	 entropy	 from	 unpredictable



sources,	 RDRAND	 has	 a	 single	 entropy	 source	 that	 provides	 a	 serial	 stream	 of
entropy	data	as	zeroes	and	ones.	In	hardware	engineering	terms,	this	entropy
source	 is	 a	 dual	 differential	 jamb	 latch	 with	 feedback;	 essentially,	 a	 small
hardware	 circuit	 that	 jumps	 between	 two	 states	 (0	 or	 1)	 depending	 on
thermal	noise	fluctuations,	at	a	frequency	of	800	MHz.	This	kind	of	thing	is
usually	pretty	reliable.

The	RDRAND	assembly	instruction	takes	as	an	argument	a	register	of	16,	32,
or	 64	 bits	 and	 then	writes	 a	 random	 value.	When	 invoked,	 RDRAND	 sets	 the
carry	 flag	 to	 1	 if	 the	 data	 set	 in	 the	 destination	 register	 is	 a	 valid	 random
value,	and	to	0	otherwise,	which	means	you	should	be	sure	 to	check	the	CF
flag	if	you	write	assembly	code	directly.	Note	that	the	C	intrinsics	available
in	common	compilers	don’t	check	the	CF	flag	but	do	return	its	value.

NOTE
Intel’s	 PRNG	 framework	 provides	 an	 assembly	 instruction	 other	 than
RDRAND:	 the	 RDSEED	 assembly	 instruction	 returns	 random	 bits	 directly
from	the	entropy	source,	after	some	conditioning	or	cryptographic	processing.	It’s
intended	to	be	able	to	seed	other	PRNGs.

Intel’s	 PRNG	 is	 only	 partially	 documented,	 but	 it’s	 built	 on	 known
standards,	 and	 has	 been	 audited	 by	 the	 well-regarded	 company
Cryptography	Research	(see	their	report	titled	“Analysis	of	Intel’s	Ivy	Bridge
Digital	Random	Number	Generator”).	Nonetheless,	 there	have	been	 some
concerns	about	its	security,	especially	following	Snowden’s	revelations	about
cryptographic	 backdoors,	 and	 PRNGs	 are	 indeed	 the	 perfect	 target	 for
sabotage.	 If	 you’re	 concerned	but	 still	wish	 to	use	 RDRAND	 or	 RDSEED,	 just	mix
them	with	other	entropy	sources.	Doing	so	will	prevent	effective	exploitation
of	a	hypothetical	backdoor	in	Intel’s	hardware	or	in	the	associated	microcode
in	all	but	the	most	far-fetched	scenarios.

How	Things	Can	Go	Wrong
To	conclude,	I’ll	present	a	 few	examples	of	randomness	failures.	There	are
countless	 examples	 to	 choose	 from,	 but	 I’ve	 chosen	 four	 that	 are	 simple
enough	to	understand	and	illustrate	different	problems.

Poor	Entropy	Sources



In	1996,	 the	SSL	 implementation	of	 the	Netscape	browser	was	 computing
128-bit	 PRNG	 seeds	 according	 to	 the	 pseudocode	 shown	 in	 Listing	 2-6,
copied	 from	 Goldberg	 and	 Wagner’s	 page	 at
http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html.

			global	variable	seed;

			RNG_CreateContext()
							(seconds,	microseconds)	=	time	of	day;	/*	Time	elapsed	since	1970	*/
							pid	=	process	ID;		ppid	=	parent	process	ID;
							a	=	mklcpr(microseconds);

				➊	b	=	mklcpr(pid	+	seconds	+	(ppid	<<	12));
						seed	=	MD5(a,	b);	/*	Derivation	of	a	128-bit	value	using	the	hash	MD5	*/

			mklcpr(x)	/*	not	cryptographically	significant;	shown	for	completeness	*/
							return	((0xDEECE66D	*	x	+	0x2BBB62DC)	>>	1);

			MD5()	/*	a	very	good	standard	mixing	function,	source	omitted	*/

Listing	2-6:	Pseudocode	of	the	Netscape	browser’s	generation	of	128-bit	PRNG	seeds

The	problem	here	is	that	the	PIDs	and	microseconds	are	guessable	values.
Assuming	 that	 you	 can	 guess	 the	 value	 of	 seconds,	 microseconds	 has	 only	 106

possible	values	and	thus	an	entropy	of	log(106),	or	about	20	bits.	The	process
ID	(PID)	and	parent	process	ID	(PPID)	are	15-bit	values,	so	you’d	expect	15
+	15	=	30	additional	entropy	bits.	But	if	you	look	at	how	b	is	computed	at	❶,
you’ll	see	that	the	overlap	of	three	bits	yields	an	entropy	of	only	about	15	+
12	=	27	bits,	for	a	total	entropy	of	only	47	bits,	whereas	a	128-bit	seed	should
have	128	bits	of	entropy.

Insufficient	Entropy	at	Boot	Time
In	 2012,	 researchers	 scanned	 the	whole	 internet	 and	harvested	public	 keys
from	TLS	certificates	and	SSH	hosts.	They	found	that	a	handful	of	systems
had	identical	public	keys,	and	in	some	cases	very	similar	keys	(namely,	RSA
keys	with	shared	prime	factors):	in	short,	two	numbers,	n	=	pq	and	n′	=	p′q′,
with	 p	 =	 p′,	 whereas	 normally	 all	 ps	 and	 qs	 should	 be	 different	 in	 distinct
modulus	values.

After	further	investigation,	it	turned	out	that	many	devices	generated	their
public	 key	 early,	 at	 first	 boot,	 before	 having	 collected	 enough	 entropy,
despite	using	an	otherwise	decent	PRNG	(typically	 /dev/urandom).	PRNGs
in	different	systems	ended	up	producing	identical	random	bits	due	to	a	same

http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html


base	entropy	source	(for	example,	a	hardcoded	seed).
At	 a	 high	 level,	 the	 presence	 of	 identical	 keys	 is	 due	 to	 key-generation

schemes	like	the	following,	in	pseudocode:

prng.seed(seed)
p	=	prng.generate_random_prime()
q	=	prng.generate_random_prime()
n	=	p*q

If	 two	 systems	 run	 this	 code	given	 an	 identical	 seed,	 they’ll	 produce	 the
same	p,	the	same	q,	and	therefore	the	same	n.

The	presence	of	shared	primes	in	different	keys	 is	due	to	key-generation
schemes	where	 additional	 entropy	 is	 injected	during	 the	process,	 as	 shown
here:

prng.seed(seed)
p	=	prng.generate_random_prime()
prng.add_entropy()
q	=	prng.generate_random_prime()
n	=	p*q

If	two	systems	run	this	code	with	the	same	seed,	they’ll	produce	the	same
p,	but	 the	 injection	of	entropy	through	prng.add_entropy()	will	ensure	distinct
qs.

The	problem	with	shared	prime	factors	is	that	given	n	=	pq	and	n′	=	pq′,	it’s
trivial	 to	 recover	 the	 shared	 p	 by	 computing	 the	 greatest	 common	 divisor
(GCD)	of	n	and	n′.	For	the	details,	see	the	paper	“Mining	Your	Ps	and	Qs”
by	 Heninger,	 Durumeric,	 Wustrow,	 and	 Halderman,	 available	 at
https://factorable.net/.

Non-cryptographic	PRNG
Earlier	we	discussed	the	difference	between	crypto	and	non-crypto	PRNGs
and	why	the	latter	should	never	be	used	for	crypto	applications.	Alas,	many
systems	overlook	that	detail,	so	I	thought	I	should	give	you	at	least	one	such
example.
The	 popular	 MediaWiki	 application	 runs	 on	 Wikipedia	 and	 many	 other
wikis.	 It	 uses	 randomness	 to	 generate	 things	 like	 security	 tokens	 and
temporary	 passwords,	 which	 of	 course	 should	 be	 unpredictable.
Unfortunately,	 a	 now	 obsolete	 version	 of	 MediaWiki	 used	 a	 non-crypto
PRNG,	 the	 Mersenne	 Twister,	 to	 generate	 these	 tokens	 and	 passwords.

https://factorable.net/


Here’s	a	snippet	from	the	vulnerable	MediaWiki	source	code.	Look	for	the
function	called	to	get	a	random	bit,	and	be	sure	to	read	the	comments.

								/**
									*	Generate	a	hex-y	looking	random	token	for	various	uses.
									*	Could	be	made	more	cryptographically	sure	if	someone	cares.
									*	@return	string
									*/
function	generateToken(	$salt	=	''	)	{
				$token	=	dechex(mt_rand()).dechex(mt_rand());
				return	md5(	$token	.	$salt	);
}

Did	 you	 notice	 mt_rand()	 in	 the	 preceding	 code?	 Here,	 mt	 stands	 for
Mersenne	 Twister,	 the	 non-crypto	 PRNG	 discussed	 earlier.	 In	 2012,
researchers	showed	how	to	exploit	the	predictability	of	Mersenne	Twister	to
predict	 future	 tokens	 and	 temporary	 passwords,	 given	 a	 couple	 of	 security
tokens.	MediaWiki	was	patched	in	order	to	use	a	crypto	PRNG.

Sampling	Bug	with	Strong	Randomness
The	 next	 bug	 shows	 how	 even	 a	 strong	 crypto	 PRNG	 with	 sufficient
entropy	can	produce	a	biased	distribution.	The	chat	program	Cryptocat	was
designed	to	offer	secure	communication.	It	used	a	function	that	attempted	to
create	a	uniformly	distributed	string	of	decimal	digits—namely,	numbers	in
the	 range	 0	 through	 9.	 However,	 just	 taking	 random	 bytes	 modulo	 10
doesn’t	 yield	 a	 uniform	 distribution,	 because	 when	 taking	 all	 numbers
between	0	 and	255	 and	 reducing	 them	modulo	10,	 you	don’t	 get	 an	 equal
number	of	values	in	0	to	9.

Cryptocat	did	the	following	to	address	that	problem	and	obtain	a	uniform
distribution:

Cryptocat.random	=	function()	{
				var	x,	o	=	'';
				while	(o.length	<	16)	{
									x	=	state.getBytes(1);
									if	(x[0]	<=	250)	{
													o	+=	x[0]	%	10;
									}
					}
				return	parseFloat('0.'	+	o)
}

And	that	was	almost	perfect.	By	taking	only	the	numbers	up	to	a	multiple
of	10	and	discarding	others,	you’d	expect	a	uniform	distribution	of	the	digits



0	 through	 9.	 Unfortunately,	 there	 was	 an	 off-by-one	 error	 in	 the	 if

condition.	I’ll	leave	the	details	to	you	as	an	exercise.	You	should	find	that	the
values	generated	had	an	entropy	of	45	instead	of	approximately	53	bits	(hint:
<=	should	have	been	<	instead).

Further	Reading
I’ve	just	scratched	the	surface	of	randomness	in	cryptography	in	this	chapter.
There	 is	 much	 more	 to	 learn	 about	 the	 theory	 of	 randomness,	 including
topics	such	as	different	entropy	notions,	randomness	extractors,	and	even	the
power	 of	 randomization	 and	 derandomization	 in	 complexity	 theory.	 To
learn	 more	 about	 PRNGs	 and	 their	 security,	 read	 the	 classic	 1998	 paper
“Cryptanalytic	Attacks	 on	Pseudorandom	Number	Generators”	 by	Kelsey,
Schneier,	Wagner,	and	Hall.	Then	look	at	the	implementation	of	PRNGs	in
your	favorite	applications	and	try	to	find	their	weaknesses.	(Search	online	for
“random	generator	bug”	to	find	plenty	of	examples.)

We’re	not	done	with	 randomness,	 though.	We’ll	 encounter	 it	 again	 and
again	 throughout	 this	 book,	 and	 you’ll	 discover	 the	many	ways	 it	 helps	 to
construct	secure	systems.



3
CRYPTOGRAPHIC	SECURITY

Cryptographic	definitions	of	security	are	not	the	same	as	those	that	apply	to
general	 computer	 security.	The	main	 difference	 between	 software	 security
and	cryptographic	security	is	that	the	latter	can	be	quantified.	Unlike	in	the
software	 world,	 where	 applications	 are	 usually	 seen	 as	 either	 secure	 or
insecure,	 in	 the	 cryptographic	 world	 it’s	 often	 possible	 to	 calculate	 the
amount	of	effort	required	to	break	a	cryptographic	algorithm.	Also,	whereas
software	security	 focuses	on	preventing	attackers	 from	abusing	a	program’s
code,	 the	 goal	 of	 cryptographic	 security	 is	 to	make	well-defined	 problems
impossible	to	solve.

Cryptographic	 problems	 involve	mathematical	 notions,	 but	 not	 complex
math—or	at	least	not	in	this	book.	This	chapter	walks	you	through	some	of
these	security	notions	and	how	they’re	applied	to	solve	real-world	problems.
In	 the	 following	sections,	 I	discuss	how	to	quantify	crypto	security	 in	ways
that	 are	 both	 theoretically	 sound	 and	 practically	 relevant.	 I	 discuss	 the
notions	 of	 informational	 versus	 computational	 security,	 bit	 security	 versus
full	 attack	 cost,	 provable	 versus	 heuristic	 security,	 and	 symmetric	 versus
asymmetric	key	generation.	 I	conclude	 the	chapter	with	actual	examples	of
failures	in	seemingly	strong	cryptography.

Defining	the	Impossible
In	 Chapter	 1,	 I	 described	 a	 cipher’s	 security	 relative	 to	 an	 attacker’s
capabilities	 and	 goals,	 and	 deemed	 a	 cipher	 secure	 if	 it	 was	 impossible	 to
reach	 these	 goals	 given	 an	 attacker’s	 known	 capabilities.	 But	 what	 does
impossible	mean	in	this	context?

Two	 notions	 define	 the	 concept	 of	 impossible	 in	 cryptography:
informational	 security	 and	 computational	 security.	 Roughly	 speaking,



informational	 security	 is	about	theoretical	 impossibility	whereas	 computational
security	 is	 about	 practical	 impossibility.	 Informational	 security	 doesn’t
quantify	security	because	it	views	a	cipher	as	either	secure	or	insecure,	with
no	 middle	 ground;	 it’s	 therefore	 useless	 in	 practice,	 although	 it	 plays	 an
important	 role	 in	 theoretical	 cryptography.	 Computational	 security	 is	 the
more	relevant	and	practical	measure	of	the	strength	of	a	cipher.

Security	in	Theory:	Informational	Security
Informational	security	is	based	not	on	how	hard	it	 is	to	break	a	cipher,	but
whether	it’s	conceivable	to	break	it	at	all.	A	cipher	is	informationally	secure
only	 if,	 even	 given	 unlimited	 computation	 time	 and	memory,	 it	 cannot	 be
broken.	Even	if	a	successful	attack	on	a	cipher	would	take	trillions	of	years,
such	a	cipher	is	informationally	insecure.

For	example,	the	one-time	pad	introduced	in	Chapter	1	is	informationally
secure.	Recall	that	the	one-time	pad	encrypts	a	plaintext,	P,	to	a	ciphertext,
C	=	P	⊕	K,	where	K	 is	a	random	bit	string	that	is	unique	to	each	plaintext.
The	 cipher	 is	 informationally	 secure	 because	 given	 a	 ciphertext	 and
unlimited	 time	 to	 try	 all	 possible	 keys,	K,	 and	 compute	 the	 corresponding
plaintext,	P,	you	would	still	be	unable	to	identify	the	right	K	because	there
are	as	many	possible	Ps	as	there	are	Ks.

Security	in	Practice:	Computational	Security
Unlike	 informational	 security,	 computational	 security	 views	 a	 cipher	 as
secure	 if	 it	 cannot	be	broken	within	 a	 reasonable	 amount	of	 time,	 and	with
reasonable	resources	such	as	memory,	hardware,	budget,	energy,	and	so	on.
Computational	 security	 is	a	way	to	quantify	 the	security	of	a	cipher	or	any
crypto	algorithm.

For	 example,	 consider	 a	 cipher,	 E,	 for	 which	 you	 know	 a	 plaintext–
ciphertext	pair	(P,	C)	but	not	the	128-bit	key,	K,	that	served	to	compute	C	=
E(K,	P).	This	cipher	is	not	informationally	secure	because	you	could	break	it
after	trying	the	2128	possible	128-bit	Ks	until	you	find	the	one	that	satisfies
E(K,	 P)	 =	C.	 But	 in	 practice,	 even	 testing	 100	 billion	 keys	 per	 second,	 it
would	 take	more	 than	 100,000,000,000,000,000,000	 years.	 In	 other	words,
reasonably	 speaking,	 this	 cipher	 is	 computationally	 secure	 because	 it’s
practically	impossible	to	break.

Computational	security	is	sometimes	expressed	in	terms	of	two	values:



t,	 which	 is	 a	 limit	 on	 the	 number	 of	 operations	 that	 an	 attacker	 will
carry	out
ε	(called	“epsilon”),	which	is	a	limit	on	the	probability	of	success	of	an
attack

We	 then	 say	 that	 a	 cryptographic	 scheme	 is	 (t,	 ε)-secure	 if	 an	 attacker
performing	 at	 most	 t	 operations—whatever	 those	 operations	 are—has	 a
probability	of	 success	 that	 is	no	higher	 than	ε,	where	ε	 is	 at	 least	0	and	at
most	 1.	Computational	 security	 gives	 a	 limit	 on	 how	 hard	 it	 is	 to	 break	 a
cryptographic	algorithm.

Here	it’s	important	to	know	that	t	and	ε	are	just	limits:	if	a	cipher	is	(t,	ε)-
secure,	then	no	attacker	performing	fewer	than	t	operations	will	succeed	(with
probability	 ε).	 But	 that	 doesn’t	 imply	 that	 an	 attacker	 doing	 exactly	 t
operations	 will	 succeed,	 and	 it	 doesn’t	 tell	 you	 how	 many	 operations	 are
needed,	which	may	be	much	larger	than	t.	We	say	that	t	is	a	lower	bound	on
the	 computation	 effort	needed,	because	 you’d	need	 at	 least	 t	 operations	 to
compromise	security.

We	sometimes	know	precisely	how	much	effort	it	takes	to	break	a	cipher;
in	such	cases	we	say	that	a	(t,	ε)-security	gives	us	a	tight	bound	when	an	attack
exists	that	breaks	the	cipher	with	probability	ε	and	exactly	t	operations.

For	example,	consider	a	symmetric	cipher	with	a	128-bit	key.	Ideally,	this
cipher	should	be	(t,	t/2128)-secure	for	any	value	of	t	between	1	and	2128.	The
best	 attack	 should	 be	 brute	 force	 (trying	 all	 keys	 until	 you	 find	 the	 correct
one).	 Any	 better	 attack	 would	 have	 to	 exploit	 some	 imperfection	 in	 the
cipher,	 so	we	strive	 to	create	ciphers	where	brute	 force	 is	 the	best	possible
attack.

Given	 the	 statement	 (t,	 t/2128)-secure,	 let’s	 examine	 the	 probability	 of
success	of	three	possible	attacks:

In	 the	 first	 case,	 t	 =	 1,	 an	 attacker	 tries	 one	 key	 and	 succeeds	 with	 a
probability	of	ε	=	1/2128.
In	 the	 second	 case,	 t	 =	 2128,	 an	 attacker	 tries	 all	 2128	 keys	 and	 one
succeeds.	 Thus,	 the	 probability	 ε	 =	 1	 (if	 the	 attacker	 tries	 all	 keys,
obviously	the	right	one	must	be	one	of	them).
In	the	third	case,	an	attacker	tries	only	t	=	264	keys,	and	succeeds	with	a
probability	of	ε	=	264/2128	=	2−64.	When	an	attacker	only	tries	a	fraction



of	all	keys,	the	success	probability	is	proportional	to	the	number	of	keys
tried.

We	can	conclude	that	a	cipher	with	a	key	of	n	bits	is	at	best	(t,	t/2n)-secure,
for	 any	 t	 between	 1	 and	 2n,	 because	 no	 matter	 how	 strong	 the	 cipher,	 a
brute-force	attack	against	it	will	always	succeed.	The	key	thus	needs	be	long
enough	to	blunt	brute-force	attacks	in	practice.

NOTE
In	this	example,	we	are	counting	the	number	of	evaluations	of	the	cipher,	not	the
absolute	 time	 or	 number	 of	 processor	 clock	 cycles.	 Computational	 security	 is
technology	agnostic,	which	is	good:	a	cipher	that	is	(t,	ε)-secure	today	will	be	(t,
ε)-secure	tomorrow,	but	what’s	considered	secure	in	practice	today	might	not	be
considered	secure	tomorrow.

Quantifying	Security
When	an	attack	is	found,	the	first	thing	you	want	to	know	is	how	efficient	it
is	 in	theory,	and	how	practical	 it	 is,	 if	at	all.	Likewise,	given	a	cipher	that’s
allegedly	 secure,	you	want	 to	know	what	amount	of	work	 it	can	withstand.
To	 address	 those	 questions,	 I’ll	 explain	 how	 cryptographic	 security	 can	 be
measured	in	bits	(the	theoretical	view)	and	what	factors	affect	the	actual	cost
of	an	attack.

Measuring	Security	in	Bits
When	 speaking	 of	 computational	 security,	 we	 say	 that	 a	 cipher	 is	 t-secure
when	 a	 successful	 attack	 needs	 at	 least	 t	 operations.	 We	 thus	 avoid	 the
unintuitive	(t,	ε)	notation	by	assuming	a	success	probability	of	ε	close	to	1,
or	what	we	care	about	 in	practice.	We	 then	express	 security	 in	bits,	where
“n-bit	 security”	means	 that	 about	2n	 operations	 are	needed	 to	 compromise
some	particular	security	notion.

If	you	know	approximately	how	many	operations	it	takes	to	break	a	cipher,
you	can	determine	its	security	level	in	bits	by	taking	the	binary	logarithm	of
the	number	of	operations:	if	it	takes	1000000	operations,	the	security	level	is
log2(1000000),	or	about	20	bits	 (that	 is,	1000000	 is	 approximately	equal	 to
220).	Recall	that	an	n-bit	key	will	give	at	most	n-bit	security	because	a	brute-



force	 attack	with	 all	 2n	 possible	 keys	will	 always	 succeed.	 But	 the	 key	 size
doesn’t	always	match	the	security	 level—it	 just	gives	an	upper	bound,	or	 the
highest	possible	security	level.

A	security	level	may	be	smaller	than	the	key	size	for	one	of	two	reasons:

An	 attack	 broke	 the	 cipher	 in	 fewer	 operations	 than	 expected—for
example,	using	a	method	that	recovers	the	key	by	trying	not	all	2n	keys,
but	only	a	subset	of	those.
The	cipher’s	security	level	intentionally	differs	from	its	key	size,	as	with
most	 public	 key	 algorithms.	 For	 example,	 the	 RSA	 algorithm	 with	 a
2048-bit	secret	key	provides	less	than	100-bit	security.

Bit	 security	 proves	 useful	 when	 comparing	 ciphers’	 security	 levels	 but
doesn’t	 provide	 enough	 information	 on	 the	 actual	 cost	 of	 an	 attack.	 It	 is
sometimes	 too	 simple	 an	 abstraction	because	 it	 just	 assumes	 that	 an	n-bit-
secure	 cipher	 takes	 2n	 operations	 to	 break,	 whatever	 these	 operations	 are.
Two	 ciphers	 with	 the	 same	 bit	 security	 level	 can	 therefore	 have	 vastly
different	real-world	security	 levels	when	you	factor	 in	 the	actual	cost	of	an
attack	to	a	real	attacker.

Say	 we	 have	 two	 ciphers,	 each	 with	 a	 128-bit	 key	 and	 128-bit	 security.
Each	must	 be	 evaluated	 2128	 times	 in	 order	 to	 be	 broken,	 except	 that	 the
second	 cipher	 is	 100	 times	 slower	 than	 the	 first.	 Evaluating	 the	 second
cipher	2128	times	thus	takes	the	same	time	as	100	×	2128	≈	2134.64	evaluations
of	 the	 first.	 If	we	count	 in	 terms	of	 the	 first,	 fast	cipher,	 then	breaking	the
slower	one	takes	2134.64	operations.	If	we	count	in	terms	of	the	second,	slow
cipher,	 it	 only	 takes	 2128	 operations.	 Should	 we	 then	 say	 that	 the	 second
cipher	 is	 stronger	 than	the	 first?	 In	principle,	yes,	but	we	rarely	 see	such	a
hundred-fold	performance	difference	between	commonly	used	ciphers.

The	 inconsistent	definition	of	 an	operation	 raises	more	difficulties	when
comparing	the	efficiency	of	attacks.	Some	attacks	claim	to	reduce	a	cipher’s
security	because	they	perform	2120	evaluations	of	some	operation	rather	than
2128	evaluations	of	the	cipher,	but	the	speed	of	each	type	of	attack	is	left	out
of	the	analysis.	The	2120-operation	attack	won’t	always	be	faster	than	a	2128

brute-force	attack.
Nevertheless,	bit	security	remains	a	useful	notion	as	long	as	the	operation



is	reasonably	defined—meaning	about	as	fast	as	an	evaluation	of	the	cipher.
After	 all,	 in	 real	 life,	 all	 it	 takes	 to	 determine	 whether	 a	 security	 level	 is
sufficient	is	an	order	of	magnitude.

Full	Attack	Cost
Bit	 security	 expresses	 the	 cost	 of	 the	 fastest	 attack	 against	 a	 cipher	 by
estimating	 the	order	of	magnitude	of	 the	number	of	operations	 it	needs	 to
succeed.	 But	 other	 factors	 affect	 the	 cost	 of	 an	 attack,	 and	 these	must	 be
taken	into	account	when	estimating	the	actual	security	level.	I’ll	explain	the
four	main	 ones:	 parallelism,	memory,	 precomputation,	 and	 the	 number	 of
targets.

Parallelism
The	 first	 factor	 to	 consider	 is	 computational	 parallelism.	 For	 example,
consider	two	attacks	of	256	operations	each.	The	difference	between	the	two
is	that	the	second	attack	can	be	parallelized	but	not	the	first:	the	first	attack
performs	256	sequentially	dependent	operations,	such	as	xi	+	1	=	fi(xi)	for	some	x0
and	some	functions	fi	(with	i	from	1	to	256),	whereas	the	second	performs	256

independent	operations,	such	as	xi	=	fi(x)	for	some	x	and	i	from	1	to	256,	which
can	be	executed	 in	parallel.	Parallel	processing	can	be	orders	of	magnitude
faster	 than	 sequential	 processing.	 For	 example,	 if	 you	 had	 216	 =	 65536
processors	 available,	 you	 could	 divide	 the	 workload	 of	 the	 parallel	 attacks
into	216	independent	tasks,	each	performing	256	/	216	=	240	operations.	The
first	 attack,	 however,	 cannot	 benefit	 from	 having	 multiple	 cores	 available
because	each	operation	relies	on	the	previous	operation’s	result.	Therefore,
the	parallel	attack	will	complete	65536	times	faster	than	the	sequential	one,
even	though	they	perform	the	same	number	of	operations.

NOTE
Algorithms	that	become	N	times	faster	to	attack	when	N	cores	are	available	are
called	 embarrassingly	 parallel,	 and	 we	 say	 that	 their	 execution	 times	 scale
linearly	with	respect	to	the	number	of	computing	cores.

Memory



The	 second	 factor	 when	 determining	 the	 cost	 of	 an	 attack	 is	 memory.
Cryptanalytic	 attacks	 should	be	 evaluated	with	 respect	 to	 their	use	of	 time
and	 space:	 how	 many	 operations	 do	 they	 perform	 over	 time,	 how	 much
memory	or	space	do	they	consume,	how	do	they	use	the	space	they	consume,
and	what’s	the	speed	of	the	available	memory?	Unfortunately,	bit	security	is
concerned	only	with	the	time	it	takes	to	perform	an	attack.

Concerning	 the	way	 space	 is	 used,	 it’s	 important	 to	 consider	 how	many
memory	 lookups	 are	 required	 as	 part	 of	 an	 attack,	 the	 speed	 of	 memory
accesses	 (which	may	 differ	 between	 reads	 and	writes),	 the	 size	 of	 the	 data
accessed,	the	access	pattern	(contiguous	or	random	memory	addresses),	and
how	data	is	structured	in	memory.	For	example,	on	one	of	today’s	general-
purpose	 CPUs,	 reading	 from	 a	 register	 takes	 one	 cycle,	 whereas	 reading
from	 the	CPU’s	 cache	memory	 takes	 around	20	 cycles	 (for	 the	L3	 cache),
and	 reading	 from	DRAM	usually	 takes	 at	 least	 100	 cycles.	A	 factor	of	 100
can	make	the	difference	between	one	day	and	three	months.

Precomputation
Precomputation	operations	 are	 those	 that	need	 to	be	performed	only	once
and	can	be	reused	over	subsequent	executions	of	the	attack.	Precomputation
is	sometimes	called	the	offline	stage	of	an	attack.

For	 example,	 consider	 the	 time-memory	 trade-off	 attack.	 When
performing	this	kind	of	attack,	the	attacker	performs	one	huge	computation
that	produces	large	lookup	tables	that	are	then	stored	and	reused	to	perform
the	actual	attack.	For	example,	one	attack	on	2G	mobile	encryption	took	two
months	 to	 build	 two	 terabytes’	 worth	 of	 tables,	 which	 were	 then	 used	 to
break	 the	 encryption	 in	 2G	and	 recover	 a	 secret	 session	 key	 in	 only	 a	 few
seconds.

Number	of	Targets
Finally,	 we	 come	 to	 the	 number	 of	 targets	 of	 the	 attack.	 The	 greater	 the
number	of	targets,	the	greater	the	attack	surface,	and	the	more	attackers	can
learn	about	the	keys	they’re	after.

For	example,	consider	a	brute-force	key	search:	if	you	target	a	single	n-bit
key,	it	will	take	2n	attempts	to	find	the	correct	key	with	certainty.	But	if	you
target	multiple	n-bit	keys—say,	a	number	M—and	if	for	a	single	P	you	have
M	 distinct	 ciphertexts,	where	C	 =	E(K,	P)	 for	 each	of	 the	M	 keys	 (K)	 that



you’re	after,	it	will	again	take	2n	attempts	to	find	each	key.	But	if	you’re	only
interested	in	at	least	one	of	the	M	keys	and	not	in	every	one,	it	would	take	on
average	2n	/	M	attempts	to	succeed.	For	example,	to	break	one	128-bit	key	of
216	=	65536	target	keys,	it	will	take	on	average	2128	−	16	=	2112	evaluations	of
the	 cipher.	 That	 is,	 the	 cost	 (and	 speed)	 of	 the	 attack	 decreases	 as	 the
number	of	targets	increases.

Choosing	and	Evaluating	Security	Levels
Choosing	a	security	level	often	involves	selecting	between	128-bit	and	256-
bit	 security	 because	most	 standard	 crypto	 algorithms	 and	 implementations
are	 available	 in	one	of	 these	 two	 security	 levels.	Below	128	bits	 you’ll	 find
schemes	 with	 64-	 or	 80-bit	 security,	 but	 these	 are	 generally	 not	 secure
enough	for	real-world	use.

At	 a	 high	 level,	 128-bit	 security	 means	 that	 you’d	 need	 to	 carry	 out
approximately	 2128	 operations	 to	 break	 that	 crypto	 system.	To	 give	 you	 a
sense	 of	 what	 this	 number	 means,	 consider	 the	 fact	 that	 the	 universe	 is
approximately	 288	 nanoseconds	 old	 (there’s	 a	 billion	 nanoseconds	 in	 a
second).	 Since	 testing	 a	 key	 with	 today’s	 technology	 takes	 no	 less	 than	 a
nanosecond,	you’d	need	several	times	the	age	of	the	universe	for	an	attack	to
succeed	(240	times	to	be	precise)	if	it	takes	exactly	one	nanosecond	to	test	a
key.

But	can’t	parallelism	and	multiple	 targets	dramatically	reduce	the	time	 it
takes	 to	complete	a	 successful	 attack?	Not	exactly.	Say	you’re	 interested	 in
breaking	any	of	a	million	targets,	and	that	you	have	a	million	parallel	cores
available.	That	brings	the	search	time	down	from	2128	to	(2128	/	220)	/	220	=
288,	which	is	equivalent	to	only	one	universe	lifetime.

Another	thing	to	consider	when	evaluating	security	levels	is	the	evolution
of	technology.	Moore’s	law	posits	that	computing	efficiency	doubles	roughly
every	 two	years.	We	can	 think	of	 this	as	a	 loss	of	one	bit	of	 security	every
two	years:	 if	today	a	$1000	budget	allows	you	to	break,	say,	a	40-bit	key	in
one	hour,	then	Moore’s	law	says	that	two	years	later,	you	could	break	a	41-
bit	 key	 in	 one	 hour	 for	 the	 same	 $1000	 budget	 (I’m	 simplifying).	We	 can
extrapolate	 from	 this	 to	 say	 that,	 according	 to	Moore’s	 law,	 we’ll	 have	 40
fewer	bits	of	security	 in	80	years	compared	to	today.	In	other	words,	 in	80
years	doing	2128	operations	may	cost	as	much	as	doing	288	operations	today.



Accounting	 for	 parallelism	 and	multiple	 targets,	 as	 discussed	 earlier,	 we’re
down	 to	 248	 nanoseconds	 of	 computation,	 or	 about	 three	 days.	 But	 this
extrapolation	is	highly	inaccurate,	because	Moore’s	law	won’t	and	can’t	scale
that	much.	Still,	you	get	the	idea:	what	looks	infeasible	today	may	be	realistic
in	a	century.

There	will	be	times	when	a	security	level	 lower	than	128	bits	is	 justified.
For	example,	when	you	need	security	for	only	a	short	time	period	and	when
the	costs	of	 implementing	a	higher	security	level	will	negatively	impact	the
cost	or	usability	of	a	system.	A	real-world	example	is	that	of	pay	TV	systems,
wherein	 encryption	 keys	 are	 either	 48	or	 64	 bits.	This	 sounds	 ridiculously
low,	but	that’s	a	sufficient	security	level	because	the	key	is	refreshed	every	5
or	10	seconds.

Nevertheless,	 to	 ensure	 long-term	 security,	 you	 should	 choose	 256-bit
security	 or	 a	 bit	 less.	 Even	 in	 a	 worst-case	 scenario—the	 existence	 of
quantum	computers,	see	Chapter	14—a	256-bit	secure	scheme	is	unlikely	to
be	 broken	 in	 the	 foreseeable	 future.	 More	 than	 256	 bits	 of	 security	 is
practically	unnecessary,	except	as	a	marketing	device.

As	NIST	cryptographer	John	Kelsey	once	put	it,	“The	difference	between
80	bits	and	128	bits	of	key	search	is	like	the	difference	between	a	mission	to
Mars	 and	 a	 mission	 to	 Alpha	 Centauri.	 As	 far	 as	 I	 can	 see,	 there	 is	 no
meaningful	difference	between	192-bit	and	256-bit	keys	in	terms	of	practical
brute-force	attacks;	impossible	is	impossible.”

Achieving	Security
Once	 you’ve	 chosen	 a	 security	 level,	 it’s	 important	 to	 guarantee	 that	 your
cryptographic	 schemes	will	 stick	 to	 it.	 In	other	words,	 you	want	 confidence,
not	just	hope	and	uncertainty,	that	things	will	work	as	planned,	all	the	time.

When	building	confidence	in	the	security	of	a	crypto	algorithm,	you	can
rely	 on	 mathematical	 proofs,	 an	 approach	 called	 provable	 security,	 or	 on
evidence	 of	 failed	 attempts	 to	 break	 the	 algorithm,	 which	 I’ll	 call	 heuristic
security	 (though	 it’s	 sometimes	 called	 probable	 security).	 These	 two
approaches	are	complementary	and	neither	is	better	than	the	other,	as	you’ll
see.

Provable	Security
Provable	 security	 is	 about	 proving	 that	 breaking	 your	 crypto	 scheme	 is	 at



least	 as	hard	as	 solving	another	problem	known	 to	be	hard.	Such	a	 security
proof	 guarantees	 that	 the	 crypto	 remains	 safe	 as	 long	 as	 the	 hard	 problem
remains	hard.	This	type	of	proof	is	called	a	reduction,	and	it	comes	from	the
field	of	complexity	theory.	We	say	that	breaking	some	cipher	is	reducible	to
problem	X	if	any	method	to	solve	problem	X	also	yields	a	method	to	break
the	cipher.

Security	proofs	come	in	two	flavors,	depending	on	the	type	of	presumably
hard	 problem	 used:	 proofs	 relative	 to	 a	mathematical	 problem	 and	 proofs
relative	to	a	cryptographic	problem.

Proofs	Relative	to	a	Mathematical	Problem
Many	 security	 proofs	 (such	 as	 those	 for	 public-key	 crypto)	 show	 that
breaking	 a	 crypto	 scheme	 is	 at	 least	 as	 hard	 as	 solving	 some	 hard
mathematical	 problem.	We’re	 talking	 of	 problems	 for	 which	 a	 solution	 is
known	to	exist,	and	is	easy	to	verify	once	it’s	known,	but	is	computationally
hard	to	find.

NOTE
There’s	no	real	proof	that	seemingly	hard	math	problems	are	actually	hard.	In
fact,	proving	this	for	a	specific	class	of	problems	is	one	of	the	greatest	challenges	in
the	field	of	complexity	theory,	and	as	I	write	this	there	is	a	$1,000,000	bounty
for	anyone	who	can	solve	it,	awarded	by	the	Clay	Mathematics	Institute.	This	is
discussed	in	more	detail	in	Chapter	9.

For	example,	consider	the	challenge	of	solving	the	factoring	problem,	which
is	the	best-known	math	problem	in	crypto:	given	a	number	that	you	know	is
the	 product	 of	 two	 prime	 numbers	 (n	 =	 pq),	 find	 the	 said	 primes.	 For
example,	if	n	=	15,	the	answer	is	3	and	5.	That’s	easy	for	a	small	number,	but
it	 becomes	 exponentially	 harder	 as	 the	 size	 of	 the	 number	 grows.	 For
example,	if	a	number,	n,	is	3000	bits	long	(about	900	decimal	digits)	or	more,
factoring	is	believed	to	be	practically	infeasible.

RSA	is	the	most	famous	crypto	scheme	to	rely	on	the	factoring	problem:
RSA	encrypts	 a	plaintext,	P,	 seen	 as	 a	 large	number,	by	 computing	C	 =	Pe

mod	 n,	 where	 the	 number	 e	 and	 n	 =	 pq	 are	 the	 public	 key.	 Decryption
recovers	a	plaintext	from	a	ciphertext	by	computing	P	=	Cd	mod	n,	where	d	is
the	private	key	associated	to	e	and	n.	 If	we	can	factor	n,	 then	we	can	break



RSA	 (by	 recovering	 the	 private	 key	 from	 the	 public	 key),	 and	 if	 we	 can
obtain	the	private	key,	 then	we	can	factor	n;	 in	other	words,	recovering	an
RSA	private	key	and	factoring	n	are	equivalently	hard	problems.	That’s	the
kind	of	reduction	we’re	 looking	for	 in	provable	security.	However,	 there	 is
no	guarantee	that	recovering	an	RSA	plaintext	is	as	hard	as	factoring	n,	since
the	knowledge	of	a	plaintext	doesn’t	reveal	the	private	key.

Proofs	Relative	to	Another	Crypto	Problem
Instead	of	comparing	a	crypto	scheme	to	a	math	problem,	you	can	compare
it	to	another	crypto	scheme	and	prove	that	you	can	only	break	the	second	if
you	can	break	the	first.	Security	proofs	for	symmetric	ciphers	usually	follow
this	approach.

For	example,	 if	 all	 you	have	 is	 a	 single	permutation	algorithm,	 then	you
can	 build	 symmetric	 ciphers,	 random	 bit	 generators,	 and	 other	 crypto
objects	such	as	hash	functions	by	combining	calls	 to	the	permutations	with
various	types	of	inputs	(as	you’ll	see	in	Chapter	6).	Proofs	then	show	that	the
newly	 created	 schemes	 are	 secure	 if	 the	 permutation	 is	 secure.	 In	 other
words,	we	know	for	sure	that	the	newly	created	algorithm	is	not	weaker	than
the	 original	 one.	 Such	 proofs	 usually	 work	 by	 crafting	 an	 attack	 on	 the
smaller	component	given	an	attack	on	the	larger	one—that	is,	by	showing	a
reduction.

When	you’re	proving	that	a	crypto	algorithm	is	no	weaker	than	another,
the	main	benefit	is	that	of	a	reduced	attack	surface:	instead	of	analyzing	both
the	 core	 algorithm	 and	 the	 combination,	 you	 can	 simply	 look	 at	 the	 new
cipher’s	core	algorithm.	Specifically,	 if	you	write	a	cipher	that	uses	a	newly
developed	 permutation	 and	 a	 new	 combination,	 you	 may	 prove	 that	 the
combination	 doesn’t	 weaken	 security	 compared	 to	 the	 core	 algorithm.
Therefore,	 to	 break	 the	 combination,	 you	 need	 to	 break	 the	 new
permutation.

Caveats
Cryptography	 researchers	 rely	 heavily	 on	 security	 proofs,	 whether	 with
respect	 to	 math	 problem	 schemes	 or	 to	 other	 crypto	 schemes.	 But	 the
existence	of	a	security	proof	does	not	guarantee	that	a	cryptographic	scheme
is	 perfect,	 nor	 is	 it	 an	 excuse	 for	 neglecting	 the	more	 practical	 aspects	 of
implementation.	After	all,	as	cryptographer	Lars	Knudsen	once	said,	“If	it’s
provably	secure,	 it’s	probably	not,”	meaning	that	a	security	proof	shouldn’t



be	 taken	 as	 an	 absolute	 guarantee	 of	 security.	 Worse,	 there	 are	 multiple
reasons	why	a	“provably	secure”	scheme	may	lead	to	a	security	failure.

One	 issue	 is	with	 the	phrase	“proof	of	 security”	 itself.	 In	mathematics,	 a
proof	is	the	demonstration	of	an	absolute	truth,	but	in	crypto,	a	proof	is	only
the	demonstration	of	a	relative	truth.	For	example,	a	proof	that	your	cipher	is
as	hard	to	break	as	it	is	to	compute	discrete	logarithms—finding	the	number
x	given	g	and	gx	mod	n—guarantees	that	if	your	cipher	fails,	a	whole	lot	of
other	 ciphers	 will	 fail	 as	 well,	 and	 nobody	 will	 blame	 you	 if	 the	 worst
happens.

Another	caveat	is	that	security	proofs	are	usually	proven	with	respect	to	a
single	notion	of	security.	For	example,	you	might	prove	that	recovering	the
private	 key	of	 a	 cipher	 is	 as	 hard	 as	 the	 factoring	problem.	But	 if	 you	 can
recover	plaintexts	 from	ciphertext	without	 the	key,	you’ll	bypass	 the	proof,
and	recovering	the	key	hardly	matters.

Then	again,	proofs	are	not	always	correct,	and	it	may	be	easier	to	break	an
algorithm	than	originally	thought.

NOTE
Unfortunately,	 few	researchers	 carefully	 check	 security	proofs,	which	 commonly
span	dozens	of	pages,	thus	complicating	quality	control.	That	said,	demonstrating
that	 a	 proof	 is	 incorrect	 doesn’t	 necessarily	 imply	 that	 the	 proof’s	 goal	 is
completely	wrong;	if	the	result	is	correct,	the	proof	may	be	salvaged	by	correcting
its	errors.

Another	 important	 consideration	 is	 that	 hard	math	 problems	 sometimes
turn	 out	 to	 be	 easier	 to	 solve	 than	 expected.	 For	 example,	 certain	 weak
parameters	make	breaking	RSA	easy.	Or	the	math	problem	may	be	hard	in
certain	 cases,	 but	 not	 on	 average,	 as	 often	 happens	 when	 the	 reference
problem	 is	 new	 and	not	well	 understood.	That’s	what	 happened	when	 the
1978	knapsack	encryption	scheme	by	Merkle	and	Hellman	was	later	totally
broken	using	lattice	reduction	techniques.

Finally,	 although	 the	 proof	 of	 an	 algorithm’s	 security	 may	 be	 fine,	 the
implementation	of	 the	 algorithm	can	be	weak.	For	 example,	 attackers	may
exploit	 side-channel	 information	 such	 as	 power	 consumption	 or	 execution
time	 to	 learn	about	an	algorithm’s	 internal	operations	 in	order	 to	break	 it,
thus	bypassing	the	proof.	Or	implementers	may	misuse	the	crypto	scheme:	if



the	algorithm	is	too	complicated	with	too	many	knobs	to	configure,	chances
are	higher	that	the	user	or	developer	will	get	a	configuration	wrong,	which
may	render	the	algorithm	completely	insecure.

Heuristic	Security
Provable	security	is	a	great	tool	to	gain	confidence	in	a	crypto	scheme,	but	it
doesn’t	 apply	 to	 all	 kinds	 of	 algorithms.	 In	 fact,	 most	 symmetric	 ciphers
don’t	have	a	security	proof.	For	example,	every	day	we	rely	on	the	Advanced
Encryption	 Standard	 (AES)	 to	 securely	 communicate	 using	 our	 mobile
phones,	 laptops,	 and	 desktop	 computers,	 but	 AES	 is	 not	 provably	 secure;
there’s	no	proof	that	it’s	as	hard	to	break	as	some	well-known	problem.	AES
can’t	be	related	to	a	math	problem	or	to	another	algorithm	because	it	is	the
hard	problem	itself.

In	cases	where	provable	security	doesn’t	apply,	the	only	reason	to	trust	a
cipher	 is	 because	many	 skilled	 people	 tried	 to	 break	 it	 and	 failed.	 This	 is
sometimes	called	heuristic	security.

When	can	we	be	sure	that	a	cipher	is	secure	then?	We	can	never	be	sure,
but	 we	 can	 be	 pretty	 confident	 that	 an	 algorithm	 won’t	 be	 broken	 when
hundreds	 of	 experienced	 cryptanalysts	 have	 each	 spent	 hundreds	 of	 hours
trying	to	break	it	and	published	their	findings—usually	by	attempting	attacks
on	 simplified	 versions	 of	 a	 cipher	 (often	 versions	 with	 fewer	 operations,	 or
fewer	rounds,	which	are	short	series	of	operations	that	ciphers	iterate	in	order
to	mix	bits	together).

When	analyzing	a	new	cipher,	cryptanalysts	first	try	to	break	one	round,
then	 two,	 three,	 or	 as	 many	 as	 they	 can.	 The	 security	 margin	 is	 then	 the
difference	 between	 the	 total	 number	 of	 rounds	 and	 the	 number	 of	 rounds
that	were	successfully	attacked.	When	after	years	of	study	a	cipher’s	security
margin	is	still	high,	we	become	confident	that	it’s	(probably)	secure.

Generating	Keys
If	you	plan	to	encrypt	something,	you’ll	have	to	generate	keys,	whether	they
are	 temporary	 “session	 keys”	 (like	 the	 ones	 generated	 when	 browsing	 an
HTTPS	 site)	 or	 long-term	public	 keys.	Recall	 from	Chapter	 2	 that	 secret
keys	 are	 the	 crux	 of	 cryptographic	 security	 and	 should	 be	 randomly
generated	so	that	they	are	unpredictable	and	secret.

For	example,	when	you	browse	an	HTTPS	website,	your	browser	receives



the	site’s	public	key	and	uses	it	to	establish	a	symmetric	key	that’s	only	valid
for	 the	 current	 session,	 and	 that	 site’s	 public	 key	 and	 its	 associated	private
key	 may	 be	 valid	 for	 years.	 Therefore,	 it’d	 better	 be	 hard	 to	 find	 for	 an
attacker.	 But	 generating	 a	 secret	 key	 isn’t	 always	 as	 simple	 as	 dumping
enough	pseudo​random	bits.	Cryptographic	keys	may	be	generated	in	one	of
three	ways:

Randomly,	using	a	pseudorandom	number	generator	(PRNG)	and,	when
needed,	a	key-generation	algorithm
From	 a	 password,	 using	 a	 key	 derivation	 function	 (KDF),	 which
transforms	the	user-supplied	password	into	a	key
Through	a	key	agreement	protocol,	which	is	a	series	of	message	exchanges
between	 two	 or	 more	 parties	 that	 ends	 with	 the	 establishment	 of	 a
shared	key

For	now,	I’ll	explain	the	simplest	method:	randomized	generation.

Generating	Symmetric	Keys
Symmetric	 keys	 are	 secret	 keys	 shared	 by	 two	 parties,	 and	 they	 are	 the
simplest	to	generate.	They	are	usually	the	same	length	as	the	security	 level
they	 provide:	 a	 128-bit	 key	 provides	 128-bit	 security,	 and	 any	 of	 the	 2128

possible	keys	is	a	valid	one	that	can	do	the	job	as	well	as	any	other	key.
To	generate	a	symmetric	key	of	n	bits	using	a	cryptographic	PRNG,	you

simply	ask	it	for	n	pseudorandom	bits	and	use	those	bits	as	the	key.	That’s	it.
You	 can,	 for	 example,	 use	 the	 OpenSSL	 toolkit	 to	 generate	 a	 random
symmetric	 key	 by	 dumping	 pseudorandom	 bytes,	 as	 in	 the	 following
command	(obviously,	your	result	will	differ	from	mine):

$	openssl	rand	16	-hex
65a4400ea649d282b855bd2e246812c6

Generating	Asymmetric	Keys
Unlike	symmetric	keys,	asymmetric	keys	are	usually	longer	than	the	security
level	 they	 provide.	 But	 that’s	 not	 the	main	 problem.	 Asymmetric	 keys	 are
trickier	to	generate	than	symmetric	ones	because	you	can’t	just	dump	n	bits
from	your	PRNG	and	get	away	with	the	result.	Asymmetric	keys	aren’t	just
raw	bit	sequences;	instead,	they	represent	a	specific	type	of	object,	such	as	a



large	number	with	specific	properties	(in	RSA,	a	product	of	two	primes).	A
random	bit	string	value	(and	thus	a	random	number)	is	unlikely	to	have	the
specific	properties	needed,	and	therefore	won’t	be	a	valid	key.

To	generate	an	asymmetric	key,	you	send	pseudorandom	bits	as	a	seed	to
a	 key-generation	 algorithm.	 This	 key-generation	 algorithm	 takes	 as	 input	 a
seed	 value	 that’s	 at	 least	 as	 long	 as	 the	 intended	 security	 level	 and	 then
constructs	 from	it	a	private	key	and	 its	 respective	public	key,	ensuring	that
both	 satisfy	 all	 the	 necessary	 criteria.	 For	 example,	 a	 naive	 key-generation
algorithm	for	RSA	would	generate	a	number,	n	=	pq,	by	using	an	algorithm
to	generate	 two	 random	primes	 of	 about	 the	 same	 length.	That	 algorithm
would	pick	random	numbers	until	one	happens	to	be	prime—so	you’d	also
need	an	algorithm	to	test	whether	a	number	is	prime.

To	save	yourself	the	burden	of	manually	implementing	the	key-generation
algorithm,	 you	 can	 use	OpenSSL	 to	 generate	 a	 4096-bit	RSA	 private	 key,
like	this:

$	openssl	genrsa	4096
Generating	RSA	private	key,	4096	bit	long	modulus
..............................................................................
...............................++
...............................................++
e	is	65537	(0x10001)
-----BEGIN	RSA	PRIVATE	KEY-----
MIIJKQIBAAKCAgEA3Qgm6OjMy61YVstaGawk22A9LyMXhiQUU4N8F5QZXEef2Pjq
vTtAIA1hzpK2AJsv16INpNkYcTjNmechAJ0xHraftO6cp2pZFP85dvknsMfUoe8u
btKXZiYvJwpS0fQQ4tzlDtH45Gj8sMHcwFxTO3HSIx0XV0owfJTLMzZbSE3TDlN+
JdW8d9Xd5UVB+o9gUCI8tSfnOjF2dHlLNiOhlfT4w0Rf+G35USIyUJZtOQ0Dh8M+
--snip--
zO/dbYtqRkMT8Ubb/0Q1IW0q8e0WnFetzkwPzAIjwZGXT0kWJu3RYj1OXbTYDr2c
xBRVC/ujoDL6O3NaqPxkWY5HJVmkyKIE5pC04RFNyaQ8+o4APyobabPMylQq5Vo5
N5L2c4mhy1/OH8fvKBRDuvCk2oZinjdoKUo8ZA5DOa4pdvIQfR+b4/4Jjsx4
-----END	RSA	PRIVATE	KEY-----

Notice	that	the	key	comes	in	a	specific	format—namely,	base64-encoded
data	between	the	BEGIN	RSA	PRIVATE	KEY	and	END	RSA	PRIVATE	KEY	markers.	That’s	a
standard	 encoding	 format	 supported	 by	most	 systems,	 which	 then	 convert
this	representation	to	raw	bytes	of	data.	The	dot	sequences	at	the	beginning
are	a	kind	of	progress	bar,	and	e	is	65537	(0x10001)	indicates	the	parameter	to
use	 when	 encrypting	 (remember	 that	 RSA	 encrypts	 by	 computing	C	 =	 Pe

mod	n).

Protecting	Keys



Once	you	have	a	 secret	key,	you	need	 to	keep	 it	 secret,	yet	available	when
you	need	it.	There	are	three	ways	to	address	this	problem.

Key	wrapping	(encrypting	the	key	using	a	second	key)
The	problem	with	this	approach	is	that	the	second	key	must	be	available
when	you	need	to	decrypt	the	protected	key.	In	practice,	this	second	key
is	often	generated	from	a	password	supplied	by	the	user	when	he	needs	to
use	the	protected	key.	That’s	how	private	keys	for	the	Secure	Shell	(SSH)
protocol	are	usually	protected.

On-the-fly	generation	from	a	password
Here,	no	encrypted	file	needs	to	be	stored	because	the	key	comes	straight
out	 from	the	password.	Modern	systems	 like	miniLock	use	 this	method.
Although	 this	 method	 is	 more	 direct	 than	 key	 wrapping,	 it’s	 less
widespread,	 in	part	because	it’s	more	vulnerable	to	weak	passwords.	Say,
for	 example,	 that	 an	 attacker	 captured	 some	 encrypted	 message:	 if	 key
wrapping	was	used,	 the	attacker	 first	needs	 to	get	 the	protected	key	 file,
which	is	usually	stored	locally	on	the	user’s	file	system	and	therefore	not
easy	 to	 access.	 But	 if	 on-the-fly	 generation	 was	 used,	 the	 attacker	 can
directly	 search	 for	 the	 correct	 password	 by	 attempting	 to	 decrypt	 the
encrypted	message	with	candidate	passwords.	And	if	the	password	is	weak,
the	key	is	compromised.
Storing	the	key	on	a	hardware	token	(smart	card	or	USB	dongle)
In	 this	 approach,	 the	 key	 is	 stored	 in	 secure	memory	 and	 remains	 safe
even	if	 the	computer	 is	compromised.	This	 is	 the	safest	approach	to	key
storage,	but	also	the	costliest	and	least	convenient	because	it	requires	you
to	carry	the	hardware	token	with	you	and	run	the	risk	of	losing	it.	Smart
cards	and	USB	dongles	usually	require	you	to	enter	a	password	to	unlock
the	key	from	the	secure	memory.

NOTE
Whatever	method	 you	 use,	 make	 sure	 not	 to	 mistake	 the	 private	 key	 for	 the
public	one	when	exchanging	keys,	and	don’t	accidentally	publish	the	private	key
through	email	or	source	code.	(I’ve	actually	found	private	keys	on	GitHub.)

To	test	key	wrapping,	 run	 the	OpenSSL	command	shown	here	with	 the
argument	-aes128	 to	 tell	OpenSSL	to	encrypt	 the	key	with	 the	cipher	AES-



128	(AES	with	a	128-bit	key):

$	openssl	genrsa	-aes128	4096
Generating	RSA	private	key,	4096	bit	long	modulus
..........++
.............................................................................................................................++
e	is	65537	(0x10001)
Enter	pass	phrase:

The	passphrase	requested	will	be	used	to	encrypt	the	newly	created	key.

How	Things	Can	Go	Wrong
Cryptographic	security	can	go	wrong	in	many	ways.	The	biggest	risk	is	when
we	have	a	false	sense	of	security	thanks	to	security	proofs	or	to	well-studied
protocols,	as	illustrated	by	the	following	two	examples.

Incorrect	Security	Proof
Even	proofs	of	security	by	renowned	researchers	may	be	wrong.	One	of	the
most	 striking	 examples	 of	 a	 proof	 gone	 terribly	 wrong	 is	 that	 of	Optimal
Asymmetric	Encryption	Padding	 (OAEP),	 a	method	of	 secure	encryption	 that
used	 RSA	 and	 was	 implemented	 in	 many	 applications.	 Yet,	 an	 incorrect
proof	of	OAEP’s	security	against	chosen-ciphertext	attackers	was	accepted	as
valid	for	seven	years,	until	a	researcher	found	the	flaw	in	2001.	Not	only	was
the	proof	wrong,	the	result	was	wrong	as	well.	A	new	proof	later	showed	that
OAEP	 is	 only	 almost	 secure	 against	 chosen-ciphertext	 attackers.	We	 now
have	to	trust	the	new	proof	and	hope	that	 it’s	 flawless.	 (For	further	details,
see	the	2001	paper	“OAEP	Reconsidered”	by	Victor	Shoup.)

Short	Keys	for	Legacy	Support
In	 2015,	 researchers	 found	 that	 some	 HTTPS	 sites	 and	 SSH	 servers
supported	public-key	cryptography	with	shorter	keys	than	expected:	namely,
512	bits	 instead	of	at	 least	2048	bits.	Remember,	with	public-key	 schemes,
the	security	level	isn’t	equal	to	the	key	size,	and	in	the	case	of	HTTPS,	keys
of	512	bits	offer	a	security	level	of	approximately	60	bits.	These	keys	could
be	broken	after	only	about	two	weeks	of	computation	using	a	cluster	of	72
processors.	Many	websites	were	affected,	including	the	FBI’s.	Although	the
software	was	ultimately	fixed	(thanks	to	patches	for	OpenSSL	and	for	other
software),	the	problem	was	quite	an	unpleasant	surprise.



Further	Reading
To	 learn	 more	 about	 provable	 security	 for	 symmetric	 ciphers,	 read	 the
sponge	 functions	 documentation	 (http://sponge.noekeon.org/).	 Sponge
functions	 introduced	the	permutation-based	approach	 in	symmetric	crypto,
which	 describes	 how	 to	 construct	 a	 bunch	 of	 different	 cryptographic
functions	using	only	one	permutation.

Some	must-reads	on	the	real	cost	of	attacks	include	Bernstein’s	2005	paper
“Understanding	Brute	Force”	 and	Wiener’s	2004	paper	 “The	Full	Cost	of
Cryptanalytic	Attacks,”	both	available	online	for	free.

To	 determine	 the	 security	 level	 for	 a	 given	 key	 size,	 visit
http://www.keylength.com/.	This	site	also	offers	an	explanation	on	how	private
keys	 are	 protected	 in	 common	 cryptographic	 utilities,	 such	 as	 SSH,
OpenSSL,	GnuPG,	and	so	on.

Finally,	 as	 an	 exercise,	 pick	 an	 application	 (such	 as	 a	 secure	 messaging
application)	 and	 identify	 its	 crypto	 schemes,	 key	 length,	 and	 respective
security	 levels.	 You’ll	 often	 find	 surprising	 inconsistencies,	 such	 as	 a	 first
scheme	 providing	 a	 256-bit	 security	 level	 but	 a	 second	 scheme	 providing
only	 100-bit	 security.	 The	 security	 of	 the	 whole	 system	 is	 often	 only	 as
strong	as	that	of	its	weakest	component.

http://sponge.noekeon.org/
http://www.keylength.com/


4
BLOCK	CIPHERS

During	the	Cold	War,	the	US	and	Soviets	developed	their	own	ciphers.	The
US	 government	 created	 the	Data	 Encryption	 Standard	 (DES),	 which	 was
adopted	as	a	federal	standard	from	1979	to	2005,	while	the	KGB	developed
GOST	28147-89,	an	algorithm	kept	secret	until	1990	and	still	used	today.	In
2000,	the	US-based	National	Institute	of	Standards	and	Technology	(NIST)
selected	 the	 successor	 to	 DES,	 called	 the	 Advanced	 Encryption	 Standard
(AES),	an	algorithm	developed	in	Belgium	and	now	found	in	most	electronic
devices.	 AES,	 DES,	 and	 GOST	 28147-89	 have	 something	 in	 common:
they’re	 all	 block	 ciphers,	 a	 type	 of	 cipher	 that	 combines	 a	 core	 algorithm
working	 on	 blocks	 of	 data	 with	 a	 mode	 of	 operation,	 or	 a	 technique	 to
process	sequences	of	data	blocks.

This	 chapter	 reviews	 the	 core	 algorithms	 that	 underlie	 block	 ciphers,
discusses	their	modes	of	operation,	and	explains	how	they	all	work	together.
It	 also	 discusses	 how	AES	works	 and	 concludes	 with	 coverage	 of	 a	 classic
attack	 tool	 from	 the	 1970s,	 the	 meet-in-the-middle	 attack,	 and	 a	 favorite
attack	technique	of	the	2000s—padding	oracles.

What	Is	a	Block	Cipher?
A	 block	 cipher	 consists	 of	 an	 encryption	 algorithm	 and	 a	 decryption
algorithm:

The	encryption	algorithm	(E)	takes	a	key,	K,	and	a	plaintext	block,	P,	and
produces	a	ciphertext	block,	C.	We	write	an	encryption	operation	as	C	=
E(K,	P).
The	decryption	algorithm	 (D)	 is	 the	 inverse	of	the	encryption	algorithm
and	 decrypts	 a	message	 to	 the	 original	 plaintext,	P.	This	 operation	 is



written	as	P	=	D(K,	C).

Since	 they’re	 the	 inverse	 of	 each	 other,	 the	 encryption	 and	 decryption
algorithms	usually	involve	similar	operations.

Security	Goals
If	 you’ve	 followed	 earlier	 discussions	 about	 encryption,	 randomness,	 and
indistinguishability,	 the	definition	of	a	 secure	block	cipher	will	 come	as	no
surprise.	Again,	we’ll	define	security	as	random-lookingness,	so	to	speak.

In	 order	 for	 a	 block	 cipher	 to	 be	 secure,	 it	 should	 be	 a	 pseudorandom
permutation	 (PRP),	 meaning	 that	 as	 long	 as	 the	 key	 is	 secret,	 an	 attacker
shouldn’t	be	able	to	compute	an	output	of	the	block	cipher	from	any	input.
That	 is,	 as	 long	 as	K	 is	 secret	 and	 random	 from	 an	 attacker’s	 perspective,
they	should	have	no	clue	about	what	E(K,	P)	looks	like,	for	any	given	P.

More	generally,	attackers	should	be	unable	to	discover	any	pattern	 in	the
input/output	values	of	a	block	cipher.	In	other	words,	it	should	be	impossible
to	 tell	 a	 block	 cipher	 from	 a	 truly	 random	 permutation,	 given	 black-box
access	 to	 the	 encryption	 and	 decryption	 functions	 for	 some	 fixed	 and
unknown	key.	By	the	same	token,	they	should	be	unable	to	recover	a	secure
block	cipher’s	secret	key;	otherwise,	they	would	be	able	to	use	that	key	to	tell
the	 block	 cipher	 from	 a	 random	 permutation.	Of	 course	 that	 also	 implies
that	 attackers	 can’t	 predict	 the	 plaintext	 that	 corresponds	 to	 a	 given
ciphertext	produced	by	the	block	cipher.

Block	Size
Two	 values	 characterize	 a	 block	 cipher:	 the	 block	 size	 and	 the	 key	 size.
Security	depends	on	both	 values.	Most	block	 ciphers	have	 either	 64-bit	 or
128-bit	blocks—DES’s	blocks	have	64	(26)	bits,	and	AES’s	blocks	have	128
(27)	 bits.	 In	 computing,	 lengths	 that	 are	 powers	 of	 two	 simplify	 data
processing,	 storage,	 and	 addressing.	 But	 why	 26	 and	 27	 and	 not	 24	 or	 216

bits?
For	 one	 thing,	 it’s	 important	 that	 blocks	 are	 not	 too	 large	 in	 order	 to

minimize	 both	 the	 length	 of	 ciphertext	 and	 the	 memory	 footprint.	 With
regard	to	the	length	of	the	ciphertext,	block	ciphers	process	blocks,	not	bits.
This	means	 that	 in	order	 to	encrypt	a	16-bit	message	when	blocks	are	128
bits,	you’ll	 first	need	to	convert	the	message	 into	a	128-bit	block,	and	only



then	will	 the	 block	 cipher	 process	 it	 and	 return	 a	 128-bit	 ciphertext.	The
wider	 the	 blocks,	 the	 longer	 this	 overhead.	 As	 for	 the	memory	 footprint,	 in
order	to	process	a	128-bit	block,	you	need	at	least	128	bits	of	memory.	This
is	 small	enough	to	 fit	 in	 the	registers	of	most	CPUs	or	 to	be	 implemented
using	 dedicated	 hardware	 circuits.	 Blocks	 of	 64,	 128,	 or	 even	 512	 bits	 are
short	enough	to	allow	for	efficient	implementations	in	most	cases.	But	larger
blocks	(for	example,	several	kilobytes	long)	can	have	a	noticeable	impact	on
the	cost	and	performance	of	implementations.

When	ciphertexts’	length	or	memory	footprint	is	critical,	you	may	have	to
use	 64-bit	 blocks,	 because	 these	 will	 produce	 shorter	 ciphertexts	 and
consume	less	memory.	Otherwise,	128-bit	or	larger	blocks	are	better,	mainly
because	128-bit	blocks	can	be	processed	more	efficiently	than	64-bit	ones	on
modern	CPUs	and	 are	 also	more	 secure.	 In	particular,	CPUs	can	 leverage
special	CPU	instructions	in	order	to	efficiently	process	one	or	more	128-bit
blocks	 in	 parallel—for	 example,	 the	 Advanced	 Vector	 Extensions	 (AVX)
family	of	instructions	in	Intel	CPUs.

The	Codebook	Attack
While	 blocks	 shouldn’t	 be	 too	 large,	 they	 also	 shouldn’t	 be	 too	 small;
otherwise,	 they	 may	 be	 susceptible	 to	 codebook	 attacks,	 which	 are	 attacks
against	 block	 ciphers	 that	 are	 only	 efficient	when	 smaller	 blocks	 are	 used.
The	codebook	attack	works	like	this	with	16-bit	blocks:

1.	 Get	 the	65536	 (216)	ciphertexts	corresponding	to	each	16-bit	plaintext
block.

2.	 Build	 a	 lookup	 table—the	 codebook—mapping	 each	 ciphertext	 block	 to
its	corresponding	plaintext	block.

3.	 To	 decrypt	 an	 unknown	 ciphertext	 block,	 look	 up	 its	 corresponding
plaintext	block	in	the	table.

When	16-bit	blocks	are	used,	the	lookup	table	needs	only	216	×	16	=	220

bits	of	memory,	or	128	kilobytes.	With	32-bit	blocks,	memory	needs	grow	to
16	gigabytes,	which	is	still	manageable.	But	with	64-bit	blocks,	you’d	have	to
store	 270	 bits	 (a	 zetabit,	 or	 128	 exabytes),	 so	 forget	 about	 it.	 Codebook
attacks	won’t	be	an	issue	for	larger	blocks.



How	to	Construct	Block	Ciphers
There	 are	 hundreds	 of	 block	 ciphers	 but	 only	 a	 handful	 of	 techniques	 to
construct	one.	First,	a	block	cipher	used	in	practice	isn’t	a	gigantic	algorithm
but	a	repetition	of	rounds,	a	short	sequence	of	operations	that	is	weak	on	its
own	 but	 strong	 in	 number.	 Second,	 there	 are	 two	 main	 techniques	 to
construct	 a	 round:	 substitution–permutation	 networks	 (as	 in	 AES)	 and
Feistel	schemes	(as	in	DES).	In	this	section,	we	look	at	how	these	work,	after
viewing	an	attack	that	works	when	all	rounds	are	identical	to	each	other.

A	Block	Cipher’s	Rounds
Computing	a	block	cipher	boils	down	to	computing	a	sequence	of	rounds.	In
a	block	cipher,	a	round	is	a	basic	transformation	that	is	simple	to	specify	and
to	implement,	and	which	is	iterated	several	times	to	form	the	block	cipher’s
algorithm.	 This	 construction,	 consisting	 of	 a	 small	 component	 repeated
many	times,	is	simpler	to	implement	and	to	analyze	than	a	construction	that
would	consist	of	a	single	huge	algorithm.

For	 example,	 a	 block	 cipher	 with	 three	 rounds	 encrypts	 a	 plaintext	 by
computing	C	=	R3(R2(R1(P))),	where	the	rounds	are	R1,	R2,	and	R3	and	P	is
a	 plaintext.	 Each	 round	 should	 also	 have	 an	 inverse	 in	 order	 to	 make	 it
possible	 for	 a	 recipient	 to	 compute	 back	 to	 plaintext.	 Specifically,	 P	 =
iR1(iR2(iR3(C))),	where	iR1	is	the	inverse	of	R1,	and	so	on.

The	round	functions—R1,	R2,	and	so	on—are	usually	identical	algorithms,
but	 they	 are	 parameterized	 by	 a	 value	 called	 the	 round	 key.	 Two	 round
functions	with	two	distinct	round	keys	will	behave	differently,	and	therefore
will	produce	distinct	outputs	if	fed	with	the	same	input.

Round	 keys	 are	 keys	 derived	 from	 the	main	 key,	K,	 using	 an	 algorithm
called	a	key	 schedule.	For	example,	R1	 takes	 the	 round	key	K1,	R2	 takes	 the
round	key	K2,	and	so	on.

Round	 keys	 should	 always	 be	 different	 from	 each	 other	 in	 every	 round.
For	that	matter,	not	all	round	keys	should	be	equal	to	the	key	K.	Otherwise,
all	the	rounds	would	be	identical	and	the	block	cipher	would	be	less	secure,
as	described	next.

The	Slide	Attack	and	Round	Keys
In	a	block	cipher,	no	round	should	be	identical	to	another	round	in	order	to



avoid	a	 slide	attack.	Slide	attacks	 look	 for	 two	plaintext/ciphertext	pairs	 (P1,
C1)	and	(P2,	C2),	where	P2	=	R(P1)	if	R	is	the	cipher’s	round	(see	Figure	4-1).
When	 rounds	 are	 identical,	 the	 relation	 between	 the	 two	 plaintexts,	 P2	 =
R(P1),	 implies	 the	relation	C2	=	R(C1)	between	their	respective	ciphertexts.
Figure	 4-1	 shows	 three	 rounds,	 but	 the	 relation	C2	 =	R(C1)	 will	 hold	 no
matter	 the	 number	 of	 rounds,	 be	 it	 3,	 10,	 or	 100.	 The	 problem	 is	 that
knowing	the	input	and	output	of	a	single	round	often	helps	recover	the	key.
(For	details,	read	the	1999	paper	by	Biryukov	and	Wagner	called	“Advanced
Slide	 Attacks,”	 available	 at
https://www.iacr.org/archive/eurocrypt2000/1807/18070595-new.pdf)

The	use	of	different	round	keys	as	parameters	ensures	that	the	rounds	will
behave	differently	and	thus	foil	slide	attacks.

Figure	4-1:	The	principle	of	the	slide	attack,	against	block	ciphers	with	identical	rounds

NOTE
One	 potential	 byproduct	 and	 benefit	 of	 using	 round	 keys	 is	 protection	 against
side-channel	 attacks,	 or	 attacks	 that	 exploit	 information	 leaked	 from	 the
implementation	 of	 a	 cipher	 (for	 example,	 electromagnetic	 emanations).	 If	 the
transformation	from	the	main	key,	K,	to	a	round	key,	Ki,	is	not	invertible,	then
if	 an	 attacker	 finds	Ki,	 they	 can’t	 use	 that	 key	 to	 find	K.	Unfortunately,	 few
block	 ciphers	 have	 a	 one-way	 key	 schedule.	 The	 key	 schedule	 of	 AES	 allows
attackers	to	compute	K	from	any	round	key,	Ki,	for	example.

Substitution–Permutation	Networks
If	 you’ve	 read	 textbooks	 about	 cryptography,	 you’ll	 undoubtedly	have	 read
about	 confusion	and	diffusion.	Confusion	means	that	 the	 input	 (plaintext	and
encryption	 key)	 undergoes	 complex	 transformations,	 and	 diffusion	 means
that	these	transformations	depend	equally	on	all	bits	of	the	input.	At	a	high

https://www.iacr.org/archive/eurocrypt2000/1807/18070595-new.pdf


level,	 confusion	 is	 about	 depth	 whereas	 diffusion	 is	 about	 breadth.	 In	 the
design	 of	 a	 block	 cipher,	 confusion	 and	 diffusion	 take	 the	 form	 of
substitution	 and	 permutation	 operations,	 which	 are	 combined	 within
substitution–permutation	networks	(SPNs).

Substitution	 often	 appears	 in	 the	 form	 of	 S-boxes,	 or	 substitution	 boxes,
which	 are	 small	 lookup	 tables	 that	 transform	 chunks	 of	 4	 or	 8	 bits.	 For
example,	 the	 first	 of	 the	 eight	 S-boxes	 of	 the	 block	 cipher	 Serpent	 is
composed	of	 the	16	elements	 (3	8	 f	1	a	6	5	b	e	d	4	2	7	0	9	c),	where	each
element	 represents	 a	 4-bit	 nibble.	 This	 particular	 S-box	 maps	 the	 4-bit
nibble	0000	to	3	(0011),	the	4-bit	nibble	0101	(5	in	decimal)	to	6	(0110),	and
so	on.

NOTE
S-boxes	must	be	carefully	chosen	to	be	cryptographically	strong:	they	should	be	as
nonlinear	 as	 possible	 (inputs	 and	 outputs	 should	 be	 related	 with	 complex
equations)	and	have	no	statistical	bias	(meaning,	 for	example,	 that	flipping	an
input	bit	should	potentially	affect	any	of	the	output	bits).

The	permutation	in	a	substitution–permutation	network	can	be	as	simple
as	changing	the	order	of	the	bits,	which	is	easy	to	implement	but	doesn’t	mix
up	the	bits	very	much.	Instead	of	a	reordering	of	the	bits,	some	ciphers	use
basic	 linear	 algebra	 and	 matrix	 multiplications	 to	 mix	 up	 the	 bits:	 they
perform	a	series	of	multiplication	operations	with	fixed	values	 (the	matrix’s
coefficients)	 and	 then	 add	 the	 results.	 Such	 linear	 algebra	 operations	 can
quickly	 create	 dependencies	 between	 all	 the	 bits	 within	 a	 cipher	 and	 thus
ensure	strong	diffusion.	For	example,	the	block	cipher	FOX	transforms	a	4-
byte	vector	(a,	b,	c,	d)	to	(a′,	b′,	c′,	d′),	defined	as	follows:

In	the	above	equations,	 the	numbers	2	and	253	are	 interpreted	as	binary
polynomials	 rather	 than	 integers;	 hence,	 additions	 and	 multiplications	 are
defined	 a	 bit	 differently	 than	what	 we’re	 used	 to.	 For	 example,	 instead	 of
having	2	+	2	=	4,	we	have	2	+	2	=	0.	Regardless,	the	point	is	that	each	byte	in



the	initial	state	affects	all	4	bytes	in	the	final	state.

Feistel	Schemes
In	 the	 1970s,	 IBM	 engineer	 Horst	 Feistel	 designed	 a	 block	 cipher	 called
Lucifer	that	works	as	follows:

1.	 Split	the	64-bit	block	into	two	32-bit	halves,	L	and	R.
2.	 Set	L	to	L	⊕	F(R),	where	F	is	a	substitution–permutation	round.
3.	 Swap	the	values	of	L	and	R.
4.	 Go	to	step	2	and	repeat	15	times.
5.	 Merge	L	and	R	into	the	64-bit	output	block.

This	construction	became	known	as	a	Feistel	scheme,	as	shown	in	Figure	4-
2.	The	left	side	is	the	scheme	as	just	described;	the	right	side	is	a	functionally
equivalent	 representation	 where,	 instead	 of	 swapping	 L	 and	 R,	 rounds
alternate	the	operations	L	=	L	⊕	F(R)	and	R	=	R	⊕	F(L).

Figure	4-2:	The	Feistel	scheme	block	cipher	construction	in	two	equivalent	forms

I’ve	omitted	the	keys	from	Figure	4-2	to	simplify	the	diagrams,	but	note
that	 the	 first	F	 takes	a	 first	 round	key,	K1,	 and	 the	 second	F	 takes	another
round	 key,	K2.	 In	DES,	 the	F	 functions	 take	 a	 48-bit	 round	 key,	which	 is
derived	from	the	56-bit	key,	K.

In	 a	 Feistel	 scheme,	 the	 F	 function	 can	 be	 either	 a	 pseudorandom
permutation	 (PRP)	 or	 a	 pseudorandom	 function	 (PRF).	 A	 PRP	 yields
distinct	outputs	for	any	two	distinct	inputs,	whereas	a	PRF	will	have	values	X
and	Y	for	which	F(X)	=	F(Y).	But	in	a	Feistel	scheme,	that	difference	doesn’t
matter	as	long	as	F	is	cryptographically	strong.



How	 many	 rounds	 should	 there	 be	 in	 a	 Feistel	 scheme?	 Well,	 DES
performs	16	rounds,	whereas	GOST	28147-89	performs	32	rounds.	If	the	F
function	is	as	strong	as	possible,	four	rounds	are	in	theory	sufficient,	but	real
ciphers	use	more	rounds	to	defend	against	potential	weaknesses	in	F.

The	Advanced	Encryption	Standard	(AES)
AES	is	the	most-used	cipher	in	the	universe.	Prior	to	the	adoption	of	AES,
the	 standard	 cipher	 in	 use	was	DES,	with	 its	 ridiculous	 56-bit	 security,	 as
well	as	the	upgraded	version	of	DES	known	as	Triple	DES,	or	3DES.

Although	3DES	provides	a	higher	 level	of	security	 (112-bit	security),	 it’s
inefficient	because	the	key	needs	to	be	168	bits	long	in	order	to	get	112-bit
security,	and	it’s	slow	in	software	(DES	was	created	to	be	fast	in	integrated
circuits,	not	on	mainstream	CPUs).	AES	fixes	both	issues.

NIST	standardized	AES	in	2000	as	a	replacement	for	DES,	at	which	point
it	 became	 the	 world’s	 de	 facto	 encryption	 standard.	 Most	 commercial
encryption	 products	 today	 support	AES,	 and	 the	NSA	has	 approved	 it	 for
protecting	 top-secret	 information.	 (Some	 countries	 do	 prefer	 to	 use	 their
own	cipher,	largely	because	they	don’t	want	to	use	a	US	standard,	but	AES	is
actually	more	Belgian	than	it	is	American.)

NOTE
AES	used	to	be	called	Rijndael	(a	portmanteau	for	its	inventors’	names,	Rijmen
and	Daemen,	pronounced	like	“rain-dull”)	when	it	was	one	of	the	15	candidates
in	the	AES	competition,	the	process	held	by	NIST	from	1997	to	2000	to	specify
“an	 unclassified,	 publicly	 disclosed	 encryption	 algorithm	 capable	 of	 protecting
sensitive	 government	 information	well	 into	 the	next	 century,”	 as	 stated	 in	 the
1997	 announcement	 of	 the	 competition	 in	 the	 Federal	 Register.	 The	 AES
competition	was	kind	 of	 a	 “Got	Talent”	 competition	 for	 cryptographers,	where
anyone	 could	 participate	 by	 submitting	 a	 cipher	 or	 breaking	 other	 contestants’
ciphers.

AES	Internals
AES	processes	blocks	of	128	bits	using	a	secret	key	of	128,	192,	or	256	bits,
with	 the	128-bit	 key	being	 the	most	 common	because	 it	makes	 encryption
slightly	faster	and	because	the	difference	between	128-	and	256-bit	security



is	meaningless	for	most	applications.

Figure	4-3:	The	internal	state	of	AES	viewed	as	a	4	×	4	array	of	16	bytes

Whereas	 some	 ciphers	 work	 with	 individual	 bits	 or	 64-bit	 words,	 AES
manipulates	bytes.	It	views	a	16-byte	plaintext	as	a	two-dimensional	array	of
bytes	(s	=	s0,	s1,	…	,	s15),	as	shown	in	Figure	4-3.	(The	letter	s	is	used	because
this	array	is	called	the	internal	state,	or	just	state.)	AES	transforms	the	bytes,
columns,	and	rows	of	this	array	to	produce	a	final	value	that	is	the	ciphertext.

In	 order	 to	 transform	 its	 state,	AES	uses	 an	 SPN	 structure	 like	 the	 one
shown	 in	Figure	4-4,	with	10	rounds	 for	128-bit	keys,	12	 for	192-bit	keys,
and	14	for	256-bit	keys.



Figure	4-4:	The	internal	operations	of	AES

Figure	4-4	shows	the	four	building	blocks	of	an	AES	round	(note	that	all
but	the	last	round	are	a	sequence	of	SubBytes,	ShiftRows,	MixColumns,	and
AddRoundKey):

AddRoundKey	XORs	a	round	key	to	the	internal	state.
SubBytes	Replaces	each	byte	(s0,	s1,	…	,	s15)	with	another	byte	according
to	an	S-box.	In	this	example,	the	S-box	is	a	lookup	table	of	256	elements.

ShiftRows	Shifts	the	ith	row	of	i	positions,	for	i	ranging	from	0	to	3	(see
Figure	4-5).
MixColumns	Applies	the	same	linear	transformation	to	each	of	the	four
columns	of	 the	state	 (that	 is,	each	group	of	cells	with	 the	same	shade	of
gray,	as	shown	on	the	left	side	of	Figure	4-5).
Remember	 that	 in	 an	 SPN,	 the	 S	 stands	 for	 substitution	 and	 the	P	 for

permutation.	Here,	 the	 substitution	 layer	 is	SubBytes	 and	 the	permutation



layer	is	the	combination	of	ShiftRows	and	MixColumns.
The	key	schedule	function	KeyExpansion,	shown	in	Figure	4-4,	is	the	AES

key	schedule	algorithm.	This	expansion	creates	11	round	keys	 (K0,	K1,	…	,
K10)	 of	 16	 bytes	 each	 from	 the	 16-byte	 key,	 using	 the	 same	 S-box	 as
SubBytes	 and	 a	 combination	 of	 XORs.	 One	 important	 property	 of
KeyExpansion	is	that	given	any	round	key,	Ki,	an	attacker	can	determine	all
other	round	keys	as	well	as	the	main	key,	K,	by	reversing	the	algorithm.	The
ability	 to	 get	 the	 key	 from	 any	 round	 key	 is	 usually	 seen	 as	 an	 imperfect
defense	against	side-channel	attacks,	where	an	attacker	may	easily	recover	a
round	key.

Figure	4-5:	ShiftRows	rotates	bytes	within	each	row	of	the	internal	state.

Without	these	operations,	AES	would	be	totally	insecure.	Each	operation
contributes	to	AES’s	security	in	a	specific	way:

Without	KeyExpansion,	all	rounds	would	use	the	same	key,	K,	and	AES
would	be	vulnerable	to	slide	attacks.
Without	 AddRoundKey,	 encryption	 wouldn’t	 depend	 on	 the	 key;
hence,	anyone	could	decrypt	any	ciphertext	without	the	key.
SubBytes	 brings	 nonlinear	 operations,	 which	 add	 cryptographic
strength.	 Without	 it,	 AES	 would	 just	 be	 a	 large	 system	 of	 linear
equations	that	is	solvable	using	high-school	algebra.
Without	ShiftRows,	changes	 in	a	given	column	would	never	affect	the
other	 columns,	 meaning	 you	 could	 break	 AES	 by	 building	 four	 232-
element	codebooks	for	each	column.	(Remember	that	in	a	secure	block
cipher,	flipping	a	bit	in	the	input	should	affect	all	the	output	bits.)
Without	MixColumns,	 changes	 in	 a	 byte	 would	 not	 affect	 any	 other



bytes	 of	 the	 state.	A	 chosen-plaintext	 attacker	 could	 then	 decrypt	 any
ciphertext	after	storing	16	lookup	tables	of	256	bytes	each	that	hold	the
encrypted	values	of	each	possible	value	of	a	byte.

Notice	 in	 Figure	 4-4	 that	 the	 last	 round	 of	 AES	 doesn’t	 include	 the
MixColumns	operation.	That	operation	 is	 omitted	 in	order	 to	 save	useless
computation:	 because	 MixColumns	 is	 linear	 (meaning,	 predictable),	 you
could	cancel	its	effect	in	the	very	last	round	by	combining	bits	in	a	way	that
doesn’t	 depend	 on	 their	 value	 or	 the	 key.	 SubBytes,	 however,	 can’t	 be
inverted	without	the	state’s	value	being	known	prior	to	AddRoundKey.

To	decrypt	a	ciphertext,	AES	unwinds	each	operation	by	taking	its	inverse
function:	 the	 inverse	 lookup	 table	 of	 SubBytes	 reverses	 the	 SubBytes
transformation,	 ShiftRow	 shifts	 in	 the	 opposite	 direction,	 MixColumns’s
inverse	 is	 applied	 (as	 in	 the	 matrix	 inverse	 of	 the	 matrix	 encoding	 its
operation),	 and	AddRoundKey’s	XOR	 is	unchanged	because	 the	 inverse	of
an	XOR	is	another	XOR.

AES	in	Action
To	try	encrypting	and	decrypting	with	AES,	you	can	use	Python’s	 crypto​-
graphy	library,	as	in	Listing	4-1.

#!/usr/bin/env	python

from	cryptography.hazmat.primitives.ciphers	import	Cipher,	algorithms,	modes
from	cryptography.hazmat.backends	import	default_backend
from	binascii	import	hexlify	as	hexa
from	os	import	urandom

#	pick	a	random	16-byte	key	using	Python's	crypto	PRNG
k	=	urandom(16)
print	"k	=	%s"	%	hexa(k)
#	create	an	instance	of	AES-128	to	encrypt	a	single	block
cipher	=	Cipher(algorithms.AES(k),	modes.ECB(),	backend	=	default_backend())
aes_encrypt	=	cipher.encryptor()

#	set	plaintext	block	p	to	the	all-zero	string
p	=	'\x00'*16
#	encrypt	plaintext	p	to	ciphertext	c
c	=	aes_encrypt.update(p)	+	aes_encrypt.finalize()
print	"enc(%s)	=	%s"	%	(hexa(p),	hexa(c))
#	decrypt	ciphertext	c	to	plaintext	p
aes_decrypt	=	cipher.decryptor()
p	=	aes_decrypt.update(c)	+	aes_decrypt.finalize()
print	"dec(%s)	=	%s"	%	(hexa(c),	hexa(p))



Listing	4-1:	Trying	AES	with	Python’s	cryptography	library

Running	this	script	produces	something	like	the	following	output:

$	./aes_block.py
k	=	2c6202f9a582668aa96d511862d8a279
enc(00000000000000000000000000000000)	=	12b620bb5eddcde9a07523e59292a6d7
dec(12b620bb5eddcde9a07523e59292a6d7)	=	00000000000000000000000000000000

You’ll	 get	 different	 results	 because	 the	 key	 is	 randomized	 at	 every	 new
execution.

Implementing	AES
Real	AES	software	works	differently	than	the	algorithm	shown	in	Figure	4-
4.	 You	won’t	 find	 production-level	 AES	 code	 calling	 a	 SubBytes()	 function,
then	 a	 ShiftRows()	 function,	 and	 then	 a	 MixColumns()	 function	 because	 that
would	be	inefficient.	Instead,	fast	AES	software	uses	special	techniques	called
table-based	implementations	and	native	instructions.

Table-Based	Implementations
Table-based	 implementations	 of	 AES	 replace	 the	 sequence	 SubBytes-
ShiftRows-MixColumns	with	a	combination	of	XORs	and	lookups	in	tables
hardcoded	into	the	program	and	loaded	in	memory	at	execution	time.	This
is	possible	because	MixColumns	is	equivalent	to	XORing	four	32-bit	values,
where	each	depends	on	a	single	byte	from	the	state	and	on	SubBytes.	Thus,
you	can	build	four	tables	with	256	entries	each,	one	for	each	byte	value,	and
implement	 the	 sequence	 SubBytes-MixColumns	 by	 looking	 up	 four	 32-bit
values	and	XORing	them	together.

For	 example,	 the	 table-based	C	 implementation	 in	 the	OpenSSL	 toolkit
looks	like	Listing	4-2.

				/*	round	1:	*/
				t0	=	Te0[s0	>>	24]	^	Te1[(s1	>>	16)	&	0xff]	^	Te2[(s2	>>	8)	&	0xff]	^	Te3[s3	&
0xff]	^	rk[	4];
				t1	=	Te0[s1	>>	24]	^	Te1[(s2	>>	16)	&	0xff]	^	Te2[(s3	>>	8)	&	0xff]	^	Te3[s0	&
0xff]	^	rk[	5];
				t2	=	Te0[s2	>>	24]	^	Te1[(s3	>>	16)	&	0xff]	^	Te2[(s0	>>	8)	&	0xff]	^	Te3[s1	&
0xff]	^	rk[	6];
				t3	=	Te0[s3	>>	24]	^	Te1[(s0	>>	16)	&	0xff]	^	Te2[(s1	>>	8)	&	0xff]	^	Te3[s2	&
0xff]	^	rk[	7];
				/*	round	2:	*/
				s0	=	Te0[t0	>>	24]	^	Te1[(t1	>>	16)	&	0xff]	^	Te2[(t2	>>	8)	&	0xff]	^	Te3[t3	&
0xff]	^	rk[	8];



				s1	=	Te0[t1	>>	24]	^	Te1[(t2	>>	16)	&	0xff]	^	Te2[(t3	>>	8)	&	0xff]	^	Te3[t0	&
0xff]	^	rk[	9];
				s2	=	Te0[t2	>>	24]	^	Te1[(t3	>>	16)	&	0xff]	^	Te2[(t0	>>	8)	&	0xff]	^	Te3[t1	&
0xff]	^	rk[10];
				s3	=	Te0[t3	>>	24]	^	Te1[(t0	>>	16)	&	0xff]	^	Te2[(t1	>>	8)	&	0xff]	^	Te3[t2	&
0xff]	^	rk[11];
--snip--

Listing	4-2:	The	table-based	C	implementation	of	AES	in	OpenSSL

A	 basic	 table-based	 implementation	 of	 AES	 encryption	 needs	 four
kilobytes’	worth	of	tables	because	each	table	stores	256	32-bit	values,	which
occupy	256	×	32	=	8192	bits,	or	one	kilobyte.	Decryption	requires	another
four	tables,	and	thus	four	more	kilobytes.	But	there	are	tricks	to	reduce	the
storage	from	four	kilobytes	to	one,	or	even	fewer.

Alas,	 table-based	 implementations	 are	 vulnerable	 to	 cache-timing	 attacks,
which	exploit	timing	variations	when	a	program	reads	or	writes	elements	in
cache	memory.	Depending	on	the	relative	position	in	cache	memory	of	the
elements	accessed,	access	 time	varies.	Timings	 thus	 leak	 information	about
which	element	was	accessed,	which	in	turn	leaks	information	on	the	secrets
involved.

Cache-timing	attacks	are	difficult	to	avoid.	One	obvious	solution	would	be
to	ditch	lookup	tables	altogether	by	writing	a	program	whose	execution	time
doesn’t	 depend	 on	 its	 inputs,	 but	 that’s	 almost	 impossible	 to	 do	 and	 still
retain	 the	 same	 speed,	 so	 chip	 manufacturers	 have	 opted	 for	 a	 radical
solution:	 instead	of	 relying	on	potentially	vulnerable	 software,	 they	rely	on
hardware.

Native	Instructions
AES	native	instructions	(AES-NI)	solve	the	problem	of	cache-timing	attacks
on	AES	software	implementations.	To	understand	how	AES-NI	works,	you
need	to	think	about	the	way	software	runs	on	hardware:	to	run	a	program,	a
microprocessor	 translates	binary	code	 into	a	 series	of	 instructions	executed
by	 integrated	 circuit	 components.	 For	 example,	 a	 MUL	 assembly	 instruction
between	two	32-bit	values	will	activate	the	transistors	implementing	a	32-bit
multiplier	 in	 the	 microprocessor.	 To	 implement	 a	 crypto	 algorithm,	 we
usually	 just	 express	 a	 combination	 of	 such	 basic	 operations—additions,
multiplications,	 XORs,	 and	 so	 on—and	 the	 microprocessor	 activates	 its
adders,	multipliers,	and	XOR	circuits	in	the	prescribed	order.

AES	 native	 instructions	 take	 this	 to	 a	 whole	 new	 level	 by	 providing



developers	with	dedicated	assembly	instructions	that	compute	AES.	Instead
of	coding	an	AES	round	as	a	sequence	of	assembly	instructions,	when	using
AES-NI,	 you	 just	 call	 the	 instruction	 AESENC	 and	 the	 chip	will	 compute	 the
round	for	you.	Native	instructions	allow	you	to	just	tell	the	processor	to	run
an	AES	round	instead	of	requiring	you	to	program	rounds	as	a	combination
of	basic	operations.

A	typical	assembly	implementation	of	AES	using	native	instructions	looks
like	Listing	4-3.

PXOR							%xmm5,		%xmm0
AESENC					%xmm6,		%xmm0
AESENC					%xmm7,		%xmm0
AESENC					%xmm8,		%xmm0
AESENC					%xmm9,		%xmm0
AESENC					%xmm10,	%xmm0
AESENC					%xmm11,	%xmm0
AESENC					%xmm12,	%xmm0
AESENC					%xmm13,	%xmm0
AESENC					%xmm14,	%xmm0
AESENCLAST	%xmm15,	%xmm0

Listing	4-3:	AES	native	instructions

This	 code	 encrypts	 the	 128-bit	 plaintext	 initially	 in	 the	 register	 xmm0,
assuming	that	registers	xmm5	to	xmm15	hold	the	precomputed	round	keys,	with
each	instruction	writing	its	result	into	xmm0.	The	initial	PXOR	instruction	XORs
the	first	round	key	prior	to	computing	the	first	round,	and	the	final	AESENCLAST
instruction	 performs	 the	 last	 round	 slightly	 different	 from	 the	 others
(MixColumns	is	omitted).

NOTE
AES	is	about	ten	times	faster	on	platforms	that	implement	native	instructions,
which	 as	 I	 write	 this,	 are	 virtually	 all	 laptop,	 desktop,	 and	 server
microprocessors,	as	well	as	most	mobile	phones	and	tablets.	In	fact,	on	the	latest
Intel	microarchitecture	the	AESENC	instruction	has	a	latency	of	four	cycles	with
a	reciprocal	throughput	of	one	cycle,	meaning	that	a	call	to	AESENC	takes	four
cycles	to	complete	and	that	a	new	call	can	be	made	every	cycle.	To	encrypt	a	series
of	blocks	consecutively	it	thus	takes	4	×	10	=	40	cycles	to	complete	the	10	rounds
or	40	 /	16	=	2.5	 cycles	 per	byte.	At	2	GHz	(2	×	10	9	 cycles	 per	 second),	 that
gives	a	throughput	of	about	736	megabytes	per	second.	If	the	blocks	to	encrypt	or
decrypt	are	independent	of	each	other,	as	certain	modes	of	operation	allow,	then



four	blocks	 can	be	processed	 in	parallel	 to	 take	 full	advantage	of	 the	AESENC
circuit	in	order	to	reach	a	latency	of	10	cycles	per	block	instead	of	40,	or	about	3
gigabytes	per	second.

Is	AES	Secure?
AES	 is	 as	 secure	 as	 a	 block	 cipher	 can	 be,	 and	 it	 will	 never	 be	 broken.
Fundamentally,	AES	is	secure	because	all	output	bits	depend	on	all	input	bits
in	some	complex,	pseudorandom	way.	To	achieve	this,	the	designers	of	AES
carefully	chose	each	component	for	a	particular	reason—MixColumns	for	its
maximal	 diffusion	 properties	 and	 SubBytes	 for	 its	 optimal	 non-linearity—
and	 they	 have	 shown	 that	 this	 composition	 protects	 AES	 against	 whole
classes	of	cryptanalytic	attacks.

But	there’s	no	proof	that	AES	is	 immune	to	all	possible	attacks.	For	one
thing,	we	don’t	know	what	all	possible	attacks	are,	and	we	don’t	always	know
how	to	prove	that	a	cipher	is	secure	against	a	given	attack.	The	only	way	to
really	gain	confidence	in	the	security	of	AES	is	to	crowdsource	attacks:	have
many	skilled	people	attempt	to	break	AES	and,	hopefully,	fail	to	do	so.

After	 more	 than	 15	 years	 and	 hundreds	 of	 research	 publications,	 the
theoretical	 security	 of	AES	has	 only	 been	 scratched.	 In	 2011	 cryptanalysts
found	a	way	to	recover	an	AES-128	key	by	performing	about	2126	operations
instead	 of	 2128,	 a	 speed-up	 of	 a	 factor	 four.	 But	 this	 “attack”	 requires	 an
insane	amount	of	plaintext–ciphertext	pairs—about	288	bits	worth.	In	other
words,	it’s	a	nice	finding	but	not	one	you	need	to	worry	about.

The	 upshot	 is	 that	 you	 should	 care	 about	 a	 million	 things	 when
implementing	 and	deploying	 crypto,	 but	AES	 security	 is	 not	one	of	 those.
The	biggest	threat	to	block	ciphers	isn’t	in	their	core	algorithms	but	in	their
modes	of	operation.	When	an	incorrect	mode	is	chosen,	or	when	the	right
one	is	misused,	even	a	strong	cipher	like	AES	won’t	save	you.

Modes	of	Operation
In	Chapter	1,	 I	 explained	how	encryption	 schemes	combine	a	permutation
with	a	mode	of	operation	to	handle	messages	of	any	length.	In	this	section,
I’ll	cover	the	main	modes	of	operations	used	by	block	ciphers,	their	security
and	 function	 properties,	 and	 how	 (not)	 to	 use	 them.	 I’ll	 begin	 with	 the
dumbest	one:	electronic	codebook.



The	Electronic	Codebook	(ECB)	Mode

Figure	4-6:	The	ECB	mode

The	 simplest	of	 the	block	 cipher	 encryption	modes	 is	 electronic	 codebook
(ECB),	which	is	barely	a	mode	of	operation	at	all.	ECB	takes	plaintext	blocks
P1,	P2,	…	 ,	PN	 and	processes	 each	 independently	by	 computing	C1	 =	E(K,
P1),	C2	=	E(K,	P2),	and	so	on,	as	shown	in	Figure	4-6.	It’s	a	simple	operation
but	also	an	insecure	one.	I	repeat:	ECB	is	insecure	and	you	should	not	use	it!

Marsh	Ray,	 a	 cryptographer	 at	Microsoft,	 once	 said,	 “Everybody	 knows
ECB	mode	 is	bad	because	we	can	 see	 the	penguin.”	He	was	 referring	 to	a
famous	illustration	of	ECB’s	insecurity	that	uses	an	image	of	Linux’s	mascot,
Tux,	as	shown	in	Figure	4-7.	You	can	see	the	original	image	of	Tux	on	the
left,	 and	 the	 image	 encrypted	 in	 ECB	 mode	 using	 AES	 (though	 the
underlying	cipher	doesn’t	matter)	on	the	right.	It’s	easy	to	see	the	penguin’s
shape	in	the	encrypted	version	because	all	the	blocks	of	one	shade	of	gray	in
the	original	image	are	encrypted	to	the	same	new	shade	of	gray	in	the	new
image;	 in	other	words,	ECB	encryption	 just	gives	 you	 the	 same	 image	but
with	different	colors.



Figure	4-7:	The	original	image	(left)	and	the	ECB-encrypted	image	(right)

The	Python	program	in	Listing	4-4	also	shows	ECB’s	insecurity.	It	picks	a
pseudorandom	key	and	encrypts	a	32-byte	message	p	containing	two	blocks
of	 null	 bytes.	 Notice	 that	 encryption	 yields	 two	 identical	 blocks	 and	 that
repeating	 encryption	 with	 the	 same	 key	 and	 the	 same	 plaintext	 yields	 the
same	two	blocks	again.

#!/usr/bin/env	python

from	cryptography.hazmat.primitives.ciphers	import	Cipher,	algorithms,	modes
from	cryptography.hazmat.backends	import	default_backend
from	binascii	import	hexlify	as	hexa
from	os	import	urandom

BLOCKLEN	=	16
def	blocks(data):
				split	=	[hexa(data[i:i+BLOCKLEN])	for	i	in	range(0,	len(data),	BLOCKLEN)]
				return	'	'.join(split)

k	=	urandom(16)
print	'k	=	%s'	%	hexa(k)

#	create	an	instance	of	AES-128	to	encrypt	and	decrypt
cipher	=	Cipher(algorithms.AES(k),	modes.ECB(),	backend=default_backend())
aes_encrypt	=	cipher.encryptor()
#	set	plaintext	block	p	to	the	all-zero	string
p	=	'\x00'*BLOCKLEN*2



#	encrypt	plaintext	p	to	ciphertext	c
c	=	aes_encrypt.update(p)	+	aes_encrypt.finalize()
print	'enc(%s)	=	%s'	%	(blocks(p),	blocks(c))

Listing	4-4:	Using	AES	in	ECB	mode	in	Python

Running	this	script	gives	ciphertext	blocks	like	this,	for	example:

$	./aes_ecb.py
k	=	50a0ebeff8001250e87d31d72a86e46d
enc(00000000000000000000000000000000	00000000000000000000000000000000)	=
5eb4b7af094ef7aca472bbd3cd72f1ed	5eb4b7af094ef7aca472bbd3cd72f1ed

As	you	can	 see,	when	 the	ECB	mode	 is	used,	 identical	 ciphertext	blocks
reveal	 identical	 plaintext	 blocks	 to	 an	 attacker,	 whether	 those	 are	 blocks
within	 a	 single	 ciphertext	 or	 across	 different	 ciphertexts.	 This	 shows	 that
block	ciphers	in	ECB	mode	aren’t	semantically	secure.

Another	problem	with	ECB	is	that	 it	only	takes	complete	blocks	of	data,
so	if	blocks	were	16	bytes,	as	 in	AES,	you	could	only	encrypt	chunks	of	16
bytes,	32	bytes,	48	bytes,	or	any	other	multiple	of	16	bytes.	There	are	a	few
ways	to	deal	with	this,	as	you’ll	see	with	the	next	mode,	CBC.	(I	won’t	tell
you	how	these	tricks	work	with	ECB	because	you	shouldn’t	be	using	ECB	in
the	first	place.)

The	Cipher	Block	Chaining	(CBC)	Mode
Cipher	block	chaining	(CBC)	is	like	ECB	but	with	a	small	twist	that	makes	a
big	difference:	instead	of	encrypting	the	ith	block,	Pi,	as	Ci	=	E(K,	Pi),	CBC
sets	Ci	 =	E(K,	Pi	⊕	Ci	 −	 1),	where	Ci	 −	 1	 is	 the	 previous	 ciphertext	 block—
thereby	chaining	the	blocks	Ci	−	1	and	Ci.	When	encrypting	the	first	block,	P1,
there	 is	no	previous	ciphertext	block	to	use,	so	CBC	takes	a	random	initial
value	(IV),	as	shown	in	Figure	4-8.

Figure	4-8:	The	CBC	mode



The	 CBC	 mode	 makes	 each	 ciphertext	 block	 dependent	 on	 all	 the
previous	blocks,	and	ensures	that	identical	plaintext	blocks	won’t	be	identical
ciphertext	 blocks.	 The	 random	 initial	 value	 guarantees	 that	 two	 identical
plaintexts	will	 encrypt	 to	distinct	 ciphertexts	when	calling	 the	 cipher	 twice
with	two	distinct	initial	values.

Listing	4-5	illustrates	these	two	benefits.	This	program	takes	an	all-zero,
32-byte	message	 (like	 the	one	 in	Listing	4-4),	 encrypts	 it	 twice	with	CBC,
and	shows	the	two	ciphertexts.	The	line	iv	=	urandom(16),	shown	in	bold,	picks
a	new	random	IV	for	each	new	encryption.

#!/usr/bin/env	python

from	cryptography.hazmat.primitives.ciphers	import	Cipher,	algorithms,	modes
from	cryptography.hazmat.backends	import	default_backend
from	binascii	import	hexlify	as	hexa
from	os	import	urandom

BLOCKLEN	=	16
#	the	blocks()	function	splits	a	data	string	into	space-separated	blocks
def	blocks(data):
				split	=	[hexa(data[i:i+BLOCKLEN])	for	i	in	range(0,	len(data),	BLOCKLEN)]
				return	'	'.join(split)
k	=	urandom(16)
print	'k	=	%s'	%	hexa(k)
#	pick	a	random	IV
iv	=	urandom(16)
print	'iv	=	%s'	%	hexa(iv)
#	pick	an	instance	of	AES	in	CBC	mode
aes	=	Cipher(algorithms.AES(k),	modes.CBC(iv),	backend=default_backend()).encryptor()

p	=	'\x00'*BLOCKLEN*2
c	=	aes.update(p)	+	aes.finalize()
print	'enc(%s)	=	%s'	%	(blocks(p),	blocks(c))
#	now	with	a	different	IV	and	the	same	key
iv	=	urandom(16)
print	'iv	=	%s'	%	hexa(iv)
aes	=	Cipher(algorithms.AES(k),	modes.CBC(iv),	backend=default_backend()).encryptor()
c	=	aes.update(p)	+	aes.finalize()
print	'enc(%s)	=	%s'	%	(blocks(p),	blocks(c))

Listing	4-5:	Using	AES	in	CBC	mode

The	two	plaintexts	are	 the	 same	 (two	all-zero	blocks),	but	 the	encrypted
blocks	should	be	distinct,	as	in	this	example	execution:

$	./aes_cbc.py
k	=	9cf0d31ad2df24f3cbbefc1e6933c872
iv	=	0a75c4283b4539c094fc262aff0d17af
enc(00000000000000000000000000000000	00000000000000000000000000000000)	=



370404dcab6e9ecbc3d24ca5573d2920	3b9e5d70e597db225609541f6ae9804a
iv	=	a6016a6698c3996be13e8739d9e793e2
enc(00000000000000000000000000000000	00000000000000000000000000000000)	=
655e1bb3e74ee8cf9ec1540afd8b2204	b59db5ac28de43b25612dfd6f031087a

Alas,	CBC	is	often	used	with	a	constant	IV	instead	of	a	random	one,	which
exposes	identical	plaintexts	and	plaintexts	that	start	with	identical	blocks.	For
example,	say	the	two-block	plaintext	P1	||	P2	is	encrypted	in	CBC	mode	to
the	 two-block	ciphertext	C1	||	C2.	 If	P1	||	P2′	 is	encrypted	with	 the	 same
IV,	where	P2′	 is	 some	block	distinct	 from	P2,	 then	 the	ciphertext	will	 look
like	C1	||	C2′,	with	C2′	different	 from	C2	but	with	the	same	first	block	C1.
Thus,	 an	 attacker	 can	 guess	 that	 the	 first	 block	 is	 the	 same	 for	 both
plaintexts,	even	though	they	only	see	the	ciphertexts.

NOTE
In	CBC	mode,	decryption	needs	to	know	the	IV	used	to	encrypt,	so	the	IV	is	sent
along	with	the	ciphertext,	in	the	clear.

With	 CBC,	 decryption	 can	 be	 much	 faster	 than	 encryption	 due	 to
parallelism.	 While	 encryption	 of	 a	 new	 block,	 Pi,	 needs	 to	 wait	 for	 the
previous	block,	Ci	−	1,	decryption	of	a	block	computes	Pi	=	D(K,	Ci)	⊕	Ci	−	1,
where	 there’s	 no	 need	 for	 the	 previous	 plaintext	 block,	Pi	 −	 1.	This	means
that	all	blocks	can	be	decrypted	in	parallel	simultaneously,	as	long	as	you	also
know	the	previous	ciphertext	block,	which	you	usually	do.

How	to	Encrypt	Any	Message	in	CBC	Mode
Let’s	circle	back	to	the	block	termination	issue	and	look	at	how	to	process	a
plaintext	whose	 length	 is	 not	 a	multiple	 of	 the	 block	 length.	For	 example,
how	would	we	encrypt	an	18-byte	plaintext	with	AES-CBC	when	blocks	are
16	bytes?	What	do	we	do	with	the	two	bytes	left?	We’ll	look	at	two	widely
used	techniques	to	deal	with	this	problem.	The	first	one,	padding,	makes	the
ciphertext	 a	 bit	 longer	 than	 the	 plaintext,	 while	 the	 second	 one,	 ciphertext
stealing,	produces	a	ciphertext	of	the	same	length	as	the	plaintext.

Padding	a	Message
Padding	 is	a	 technique	that	allows	you	to	encrypt	a	message	of	any	 length,
even	one	smaller	than	a	single	block.	Padding	for	block	ciphers	is	specified	in



the	PKCS#7	standard	and	in	RFC	5652,	and	is	used	almost	everywhere	CBC
is	used,	such	as	in	some	HTTPS	connections.

Padding	 is	 used	 to	 expand	 a	message	 to	 fill	 a	 complete	 block	 by	 adding
extra	bytes	to	the	plaintext.	Here	are	the	rules	for	padding	16-byte	blocks:

If	there’s	one	byte	left—for	example,	if	the	plaintext	is	1	byte,	17	bytes,
or	33	bytes	long—pad	the	message	with	15	bytes	0f	(15	in	decimal).
If	 there	 are	 two	 bytes	 left,	 pad	 the	 message	 with	 14	 bytes	 0e	 (14	 in
decimal).
If	 there	 are	 three	 bytes	 left,	 pad	 the	message	with	 13	 bytes	 0d	 (13	 in
decimal).

If	 there	 are	 15	 plaintext	 bytes	 and	 a	 single	 byte	missing	 to	 fill	 a	 block,
padding	adds	a	single	01	byte.	If	the	plaintext	is	already	a	multiple	of	16,	the
block	 length,	 add	16	bytes	10	 (16	 in	decimal).	You	get	 the	 idea.	The	 trick
generalizes	to	any	block	length	up	to	255	bytes	(for	 larger	blocks,	a	byte	 is
too	small	to	encode	values	greater	than	255).

Decryption	of	a	padded	message	works	like	this:

1.	 Decrypt	all	the	blocks	as	with	unpadded	CBC.
2.	 Make	sure	that	the	last	bytes	of	the	last	block	conform	to	the	padding

rule:	that	they	finish	with	at	least	one	01	byte,	at	least	two	02	bytes,	or
at	 least	 three	 03	 bytes,	 and	 so	 on.	 If	 the	 padding	 isn’t	 valid—for
example,	 if	 the	 last	 bytes	 are	 01	 02	 03—the	 message	 is	 rejected.
Otherwise,	decryption	strips	the	padding	bytes	and	returns	the	plaintext
bytes	left.

One	downside	of	padding	is	that	it	makes	ciphertext	longer	by	at	least	one
byte	and	at	most	a	block.

Ciphertext	Stealing
Ciphertext	stealing	is	another	trick	used	to	encrypt	a	message	whose	length
isn’t	 a	multiple	 of	 the	block	 size.	Ciphertext	 stealing	 is	more	 complex	 and
less	popular	than	padding,	but	it	offers	at	least	three	benefits:

Plaintexts	can	be	of	any	bit	length,	not	just	bytes.	You	can,	for	example,
encrypt	a	message	of	131	bits.



Ciphertexts	are	exactly	the	same	length	as	plaintexts.
Ciphertext	stealing	is	not	vulnerable	to	padding	oracle	attacks,	powerful
attacks	that	sometimes	work	against	CBC	with	padding	(as	we’ll	see	in
“Padding	Oracle	Attacks”	on	page	74).

In	 CBC	mode,	 ciphertext	 stealing	 extends	 the	 last	 incomplete	 plaintext
block	 with	 bits	 from	 the	 previous	 ciphertext	 block,	 and	 then	 encrypts	 the
resulting	block.	The	last,	incomplete	ciphertext	block	is	made	up	of	the	first
blocks	from	the	previous	ciphertext	block;	that	is,	the	bits	that	have	not	been
appended	to	the	last	plaintext	block.

Figure	4-9:	Ciphertext	stealing	for	CBC-mode	encryption

In	Figure	4-9,	we	have	three	blocks,	where	the	last	block,	P3,	is	incomplete
(represented	 by	 a	 zero).	P3	 is	XORed	with	 the	 last	 bits	 from	 the	 previous
ciphertext	 block,	 and	 the	 encrypted	 result	 is	 returned	 as	 C2.	 The	 last
ciphertext	 block,	 C3,	 then	 consists	 of	 the	 first	 bits	 from	 the	 previous
ciphertext	block.	Decryption	is	simply	the	inverse	of	this	operation.

There	 aren’t	 any	 major	 problems	 with	 ciphertext	 stealing,	 but	 it’s
inelegant	 and	 hard	 to	 get	 right,	 especially	when	NIST’s	 standard	 specifies
three	different	ways	to	implement	it	(see	Special	Publication	800-38A).

The	Counter	(CTR)	Mode
To	 avoid	 the	 troubles	 and	 retain	 the	 benefits	 of	 ciphertext	 stealing,	 you
should	 use	 counter	 mode	 (CTR).	 CTR	 is	 hardly	 a	 block	 cipher	 mode:	 it
turns	a	block	cipher	into	a	stream	cipher	that	just	takes	bits	in	and	spits	bits
out	and	doesn’t	embarrass	itself	with	the	notion	of	blocks.	(I’ll	discuss	stream



ciphers	in	detail	in	Chapter	5.)

Figure	4-10:	The	CTR	mode

In	 CTR	 mode	 (see	 Figure	 4-10),	 the	 block	 cipher	 algorithm	 won’t
transform	plaintext	data.	Instead,	it	will	encrypt	blocks	composed	of	a	counter
and	a	nonce.	A	counter	is	an	integer	that	is	 incremented	for	each	block.	No
two	 blocks	 should	 use	 the	 same	 counter	 within	 a	 message,	 but	 different
messages	can	use	the	same	sequence	of	counter	values	(1,	2,	3,	…).	A	nonce
is	a	number	used	only	once.	It	is	the	same	for	all	blocks	in	a	single	message,
but	no	two	messages	should	use	the	same	nonce.

As	shown	 in	Figure	4-10,	 in	CTR	mode,	encryption	XORs	the	plaintext
and	 the	 stream	 taken	 from	 “encrypting”	 the	 nonce,	N,	 and	 counter,	 Ctr.
Decryption	is	the	same,	so	you	only	need	the	encryption	algorithm	for	both
encryption	 and	 decryption.	 The	 Python	 script	 in	 Listing	 4-6	 gives	 you	 a
hands-on	example.

#!/usr/bin/env	python

from	Crypto.Cipher	import	AES
from	Crypto.Util	import	Counter
from	binascii	import	hexlify	as	hexa
from	os	import	urandom
from	struct	import	unpack

k	=	urandom(16)
print	'k	=	%s'	%	hexa(k)

#	pick	a	starting	value	for	the	counter
nonce	=	unpack('<Q',	urandom(8))[0]
#	instantiate	a	counter	function
ctr	=	Counter.new(128,	initial_value=nonce)

#	pick	an	instance	of	AES	in	CTR	mode,	using	ctr	as	counter
aes	=	AES.new(k,	AES.MODE_CTR,	counter=ctr)

#	no	need	for	an	entire	block	with	CTR



p	=	'\x00\x01\x02\x03'

#	encrypt	p
c	=	aes.encrypt(p)
print	'enc(%s)	=	%s'	%	(hexa(p),	hexa(c))
#	decrypt	using	the	encrypt	function
ctr	=	Counter.new(128,	initial_value=nonce)
aes	=	AES.new(k,	AES.MODE_CTR,	counter=ctr)
p	=	aes.encrypt(c)
print	'enc(%s)	=	%s'	%	(hexa(c),	hexa(p))

Listing	4-6:	Using	AES	in	CTR	mode

The	 example	 execution	 encrypts	 a	 4-byte	 plaintext	 and	 gets	 a	 4-byte
ciphertext.	It	then	decrypts	that	ciphertext	using	the	encryption	function:

$	./aes_ctr.py
k	=	130a1aa77fa58335272156421cb2a3ea
enc(00010203)	=	b23d284e
enc(b23d284e)	=	00010203

As	with	the	initial	value	in	CBC,	CTR’s	nonce	is	supplied	by	the	encrypter
and	 sent	 with	 the	 ciphertext	 in	 the	 clear.	 But	 unlike	 CBC’s	 initial	 value,
CTR’s	nonce	doesn’t	 need	 to	 be	 random,	 it	 simply	needs	 to	 be	 unique.	A
nonce	should	be	unique	for	 the	same	reason	that	a	one-time	pad	shouldn’t
be	reused:	when	calling	the	pseudorandom	stream,	S,	if	you	encrypt	P1	to	C1
=	P1	⊕	S	and	P2	to	C2	=	P2	⊕	S	using	the	same	nonce,	then	C1	⊕	C2	reveals
P1	⊕	P2.

A	random	nonce	will	do	the	trick	only	if	it’s	long	enough;	for	example,	if
the	 nonce	 is	 n	 bits,	 chances	 are	 that	 after	 2N/	 2	 encryptions	 and	 as	 many
nonces	you’ll	run	into	duplicates.	Sixty-four	bits	are	therefore	insufficient	for
a	 random	nonce,	 since	 you	 can	 expect	 a	 repetition	 after	 approximately	 232

nonces,	which	is	an	unacceptably	low	number.
The	 counter	 is	 guaranteed	 unique	 if	 it’s	 incremented	 for	 every	 new

plaintext,	and	if	it’s	long	enough;	for	example,	a	64-bit	counter.
One	particular	benefit	 to	CTR	 is	 that	 it	 can	be	 faster	 than	 in	 any	other

mode.	Not	 only	 is	 it	 parallelizable,	 but	 you	 can	 also	 start	 encrypting	 even
before	knowing	the	message	by	picking	a	nonce	and	computing	the	stream
that	you’ll	later	XOR	with	the	plaintext.

How	Things	Can	Go	Wrong



There	 are	 two	 must-know	 attacks	 on	 block	 ciphers:	 meet-in-the-middle
attacks,	 a	 technique	 discovered	 in	 the	 1970s	 but	 still	 used	 in	 many
cryptanalytic	 attacks	 (not	 to	 be	 confused	 with	man-in-the-middle	 attacks),
and	padding	oracle	attacks,	a	class	of	attacks	discovered	in	2002	by	academic
cryptographers,	then	mostly	ignored,	and	finally	rediscovered	a	decade	later
along	with	several	vulnerable	applications.

Meet-in-the-Middle	Attacks
The	3DES	block	cipher	is	an	upgraded	version	of	the	1970s	standard	DES
that	takes	a	key	of	56	×	3	=	168	bits	(an	improvement	on	DES’s	56-bit	key).
But	the	security	level	of	3DES	is	112	bits	instead	of	168	bits,	because	of	the
meet-in-the-middle	(MitM)	attack.

As	 you	 can	 see	 in	 Figure	 4-11,	 3DES	 encrypts	 a	 block	 using	 the	 DES
encryption	 and	 decryption	 functions:	 first	 encryption	with	 a	 key,	K1,	 then
decryption	with	a	key,	K2,	and	finally	encryption	with	another	key,	K3.	If	K1
=	K2,	 the	 first	 two	 calls	 cancel	 themselves	 out	 and	 3DES	 boils	 down	 to	 a
single	 DES	 with	 key	K3.	 3DES	 does	 encrypt-decrypt-encrypt	 rather	 than
encrypting	thrice	to	allow	systems	to	emulate	DES	when	necessary	using	the
new	3DES	interface.

Figure	4-11:	The	3DES	block	cipher	construction

Why	use	triple	DES	and	not	just	double	DES,	that	is,	E(K1,	E(K2,	P))?	It
turns	out	 that	 the	MitM	attack	makes	double	DES	only	as	secure	as	single
DES.	Figure	4-12	shows	the	MitM	attack	in	action.



Figure	4-12:	The	meet-in-the-middle	attack

The	meet-in-the-middle	attack	works	as	follows	to	attack	double	DES:

1.	 Say	you	have	P	and	C	=	E(K2,	E(K1,	P))	with	two	unknown	56-bit	keys,
K1	and	K2.	(DES	takes	56-bit	keys,	so	double	DES	takes	112	key	bits	in
total.)	You	build	a	key–value	table	with	256	entries	of	E(K1,	P),	where	E
is	the	DES	encryption	function	and	K1	is	the	value	stored.

2.	 For	 all	 256	 values	 of	 K2,	 compute	D(K2,	 C)	 and	 check	 whether	 the
resulting	value	appears	in	the	table	as	an	index	(thus	as	a	middle	value,
represented	by	a	question	mark	in	Figure	4-12).

3.	 If	 a	 middle	 value	 is	 found	 as	 an	 index	 of	 the	 table,	 you	 fetch	 the
corresponding	K1	from	the	table	and	verify	that	the	(K1,	K2)	found	is	the
right	one	by	using	other	pairs	of	P	 and	C.	Encrypt	P	using	K1	 and	K2
and	then	check	that	the	ciphertext	obtained	is	the	given	C.

This	method	recovers	K1	and	K2	by	performing	about	257	 instead	of	2112

operations:	 step	1	encrypts	256	blocks	and	then	step	2	decrypts	at	most	256

blocks,	 for	 256	 +	 256	 =	 257	 operations	 in	 total.	 You	 also	 need	 to	 store	 256

elements	of	15	bytes	each,	or	about	128	petabytes.	That’s	a	lot,	but	there’s	a
trick	that	allows	you	to	run	the	same	attack	with	only	negligible	memory	(as
you’ll	see	in	Chapter	6).

As	 you	 can	 see,	 you	 can	 apply	 the	MitM	 attack	 to	 3DES	 in	 almost	 the
same	 way	 you	 would	 to	 double	 DES,	 except	 that	 the	 third	 stage	 will	 go
through	all	2112	 values	of	K2	 and	K3.	The	whole	attack	 thus	 succeeds	after
performing	 about	 2112	 operations,	 meaning	 that	 3DES	 gets	 only	 112-bit
security	despite	having	168	bits	of	key	material.

Padding	Oracle	Attacks
Let’s	conclude	this	chapter	with	one	of	the	simplest	and	yet	most	devastating
attacks	of	the	2000s:	the	padding	oracle	attack.	Remember	that	padding	fills
the	plaintext	with	extra	bytes	in	order	to	fill	a	block.	A	plaintext	of	111	bytes,
for	 example,	 is	 a	 sequence	 of	 six	 16-byte	 blocks	 followed	 by	 15	 bytes.	To
form	 a	 complete	 block,	 padding	 adds	 a	 01	 byte.	 For	 a	 110-byte	 plaintext,
padding	adds	two	02	bytes,	and	so	on.



A	padding	oracle	is	a	system	that	behaves	differently	depending	on	whether
the	padding	in	a	CBC-encrypted	ciphertext	is	valid.	You	can	see	it	as	a	black
box	or	an	API	that	returns	either	a	success	or	an	error	value.	A	padding	oracle
can	be	found	in	a	service	on	a	remote	host	sending	error	messages	when	it
receives	 malformed	 ciphertexts.	 Given	 a	 padding	 oracle,	 padding	 oracle
attacks	 record	 which	 inputs	 have	 a	 valid	 padding	 and	 which	 don’t,	 and
exploit	this	information	to	decrypt	chosen	ciphertext	values.

Figure	 4-13:	 Padding	 oracle	 attacks	 recover	 X	 by	 choosing	 C1	 and	 checking	 the	 validity	 of
padding.

Say	you	want	 to	decrypt	 ciphertext	block	C2.	 I’ll	 call	X	 the	 value	 you’re
looking	for,	namely	D(K,	C2),	and	P2	the	block	obtained	after	decrypting	in
CBC	mode	 (see	Figure	4-13).	 If	you	pick	a	 random	block	C1	 and	send	 the
two-block	ciphertext	C1	||	C2	to	the	oracle,	decryption	will	only	succeed	if
C1	⊕	P2	 =	X	 ends	with	 valid	 padding—a	 single	 01	 byte,	 two	 02	 bytes,	 or
three	03	bytes,	and	so	on.

Based	on	this	observation,	padding	oracle	attacks	on	CBC	encryption	can
decrypt	a	block	C2	like	this	(bytes	are	denoted	in	array	notation:	C1[0]	is	C1’s
first	byte,	C1[1]	its	second	byte,	and	so	on	up	to	C1[15],	C1’s	last	byte):

1.	 Pick	a	random	block	C1	 and	vary	 its	 last	byte	until	 the	padding	oracle
accepts	 the	ciphertext	as	valid.	Usually,	 in	a	valid	ciphertext,	C1[15]	⊕
X[15]	=	01,	so	you’ll	find	X[15]	after	trying	around	128	values	of	C1[15].

2.	 Find	the	value	X[14]	by	setting	C1[15]	to	X[15]	⊕	02	and	searching	for
the	 C1[14]	 that	 gives	 correct	 padding.	 When	 the	 oracle	 accepts	 the
ciphertext	as	valid,	it	means	you	have	found	C1[14]	such	that	C1[14]	⊕
X[14]	=	02.



3.	 Repeat	steps	1	and	2	for	all	16	bytes.

The	attack	needs	on	average	128	queries	to	the	oracle	for	each	of	the	16
bytes,	which	is	about	2000	queries	in	total.	(Note	that	each	query	must	use
the	same	initial	value.)

NOTE
In	practice,	implementing	a	padding	oracle	attack	is	a	bit	more	complicated	than
what	 I’ve	 described,	 because	 you	have	 to	 deal	with	wrong	 guesses	 at	 step	 1.	A
ciphertext	may	 have	 valid	 padding	 not	 because	 P2	 ends	 with	 a	 single	 01	 but
because	it	ends	with	two	02	bytes	or	three	03	bytes.	But	that’s	easily	managed	by
testing	the	validity	of	ciphertexts	where	more	bytes	are	modified.

Further	Reading
There’s	a	lot	to	say	about	block	ciphers,	be	it	in	how	algorithms	work	or	in
how	 they	 can	 be	 attacked.	 For	 instance,	 Feistel	 networks	 and	 SPNs	 aren’t
the	only	ways	to	build	a	block	cipher.	The	block	ciphers	IDEA	and	FOX	use
the	 Lai–Massey	 construction,	 and	 Threefish	 uses	 ARX	 networks,	 a
combination	of	addition,	word	rotations,	and	XORs.

There	are	also	many	more	modes	than	just	ECB,	CBC,	and	CTR.	Some
modes	are	 folklore	 techniques	 that	nobody	uses,	 like	CFB	and	OFB,	while
others	 are	 for	 specific	 applications,	 like	 XTS	 for	 tweakable	 encryption	 or
GCM	for	authenticated	encryption.

I’ve	 discussed	 Rijndael,	 the	 AES	 winner,	 but	 there	 were	 14	 other
algorithms	in	the	race:	CAST-256,	CRYPTON,	DEAL,	DFC,	E2,	FROG,
HPC,	LOKI97,	Magenta,	MARS,	RC6,	SAFER+,	Serpent,	 and	Twofish.	 I
recommend	 that	 you	 look	 them	 up	 to	 see	 how	 they	work,	 how	 they	were
designed,	how	they	have	been	attacked,	and	how	fast	they	are.	It’s	also	worth
checking	out	the	NSA’s	designs	(Skipjack,	and	more	recently,	SIMON	and
SPECK)	 and	 more	 recent	 “lightweight”	 block	 ciphers	 such	 as	 KATAN,
PRESENT,	or	PRINCE.



5
STREAM	CIPHERS

Symmetric	ciphers	can	be	either	block	ciphers	or	stream	ciphers.	Recall	from
Chapter	4	that	block	ciphers	mix	chunks	of	plaintext	bits	together	with	key
bits	to	produce	chunks	of	ciphertext	of	the	same	size,	usually	64	or	128	bits.
Stream	ciphers,	on	the	other	hand,	don’t	mix	plaintext	and	key	bits;	instead,
they	generate	pseudorandom	bits	from	the	key	and	encrypt	the	plaintext	by
XORing	it	with	the	pseudorandom	bits,	in	the	same	fashion	as	the	one-time
pad	explained	in	Chapter	1.

Stream	 ciphers	 are	 sometimes	 shunned	 because	 historically	 they’ve	 been
more	 fragile	 than	 block	 ciphers	 and	 are	 more	 often	 broken—both	 the
experimental	ones	designed	by	amateurs	and	the	ciphers	deployed	in	systems
used	 by	 millions,	 including	 mobile	 phones,	 Wi-Fi,	 and	 public	 transport
smart	 cards.	 But	 that’s	 all	 history.	 Fortunately,	 although	 it	 has	 taken	 20
years,	we	now	know	how	to	design	secure	stream	ciphers,	and	we	trust	them
to	 protect	 things	 like	 Bluetooth	 connections,	mobile	 4G	 communications,
TLS	connections,	and	more.

This	chapter	first	presents	how	stream	ciphers	work	and	discusses	the	two
main	 classes	 of	 stream	 ciphers:	 stateful	 and	 counter-based	 ciphers.	 We’ll
then	study	hardware-	and	software-oriented	stream	ciphers	and	look	at	some
insecure	ciphers	(such	as	A5/1	in	GSM	mobile	communications	and	RC4	in
TLS)	 and	 some	 secure,	 state-of-the-art	 ones	 (such	 as	 Grain-128a	 for
hardware	and	Salsa20	for	software).

How	Stream	Ciphers	Work
Stream	 ciphers	 are	 more	 akin	 to	 deterministic	 random	 bit	 generators
(DRBGs)	 than	 they	 are	 to	 full-fledged	 pseudorandom	 number	 generators
(PRNGs)	 because,	 like	 DRBGs,	 stream	 ciphers	 are	 deterministic.	 Stream



ciphers’	 determinism	 allows	 you	 to	 decrypt	 by	 regenerating	 the
pseudorandom	bits	used	to	encrypt.	With	a	PRNG,	you	could	encrypt	but
never	decrypt—which	is	secure,	but	useless.

What	sets	stream	ciphers	apart	from	DRBGs	is	that	DRBGs	take	a	single
input	value	whereas	stream	ciphers	take	two	values:	a	key	and	a	nonce.	The
key	should	be	secret	and	is	usually	128	or	256	bits.	The	nonce	doesn’t	have
to	be	secret,	but	it	should	be	unique	for	each	key	and	is	usually	between	64
and	128	bits.

Figure	5-1:	How	stream	ciphers	encrypt,	taking	a	secret	key,	K,	and	a	public	nonce,	N

Stream	 ciphers	 produce	 a	 pseudorandom	 stream	 of	 bits	 called	 the
keystream.	 The	 keystream	 is	 XORed	 to	 a	 plaintext	 to	 encrypt	 it	 and	 then
XORed	 again	 to	 the	 ciphertext	 to	 decrypt	 it.	 Figure	 5-1	 shows	 the	 basic
stream	 cipher	 encryption	 operation,	 where	 SC	 is	 the	 stream	 cipher
algorithm,	KS	the	keystream,	P	the	plaintext,	and	C	the	ciphertext.

A	 stream	cipher	computes	KS	=	SC(K,	N),	 encrypts	as	C	=	P	⊕	KS,	 and
decrypts	 as	P	 =	C	⊕	KS.	The	 encryption	 and	decryption	 functions	 are	 the
same	 because	 both	 do	 the	 same	 thing—namely,	 XOR	 bits	 with	 the
keystream.	That’s	why,	for	example,	certain	cryptographic	libraries	provide	a
single	encrypt	function	that’s	used	for	both	encryption	and	decryption.

Stream	ciphers	allow	you	to	encrypt	a	message	with	key	K1	and	nonce	N1
and	then	encrypt	another	message	with	key	K1	and	nonce	N2	that	is	different
from	N1,	or	with	key	K2,	which	is	different	from	K1	and	nonce	N1.	However,
you	should	never	again	encrypt	with	K1	and	N1,	because	you	would	then	use
twice	the	same	keystream	KS.	You	would	then	have	a	first	ciphertext	C1	=	P1
⊕	KS,	a	second	ciphertext	C2	=	P2	⊕	KS,	and	if	you	know	P1,	then	you	could
determine	P2	=	C1	⊕	C2	⊕	P1.

NOTE
The	name	nonce	is	actually	short	for	number	used	only	once.	In	the	context
of	stream	ciphers,	it’s	sometimes	called	the	IV,	for	initial	value.



Stateful	and	Counter-Based	Stream	Ciphers
From	a	high-level	perspective,	there	are	two	types	of	stream	ciphers:	stateful
and	 counter	 based.	 Stateful	 stream	 ciphers	 have	 a	 secret	 internal	 state	 that
evolves	 throughout	 keystream	 generation.	 The	 cipher	 initializes	 the	 state
from	the	key	and	the	nonce	and	then	calls	an	update	function	to	update	the
state	value	and	produce	one	or	more	keystream	bits	from	the	state,	as	shown
in	Figure	5-2.	For	example,	the	famous	RC4	is	a	stateful	cipher.

Figure	5-2:	The	stateful	stream	cipher

Counter-based	 stream	 ciphers	 produce	 chunks	 of	 keystream	 from	 a	 key,	 a
nonce,	and	a	counter	value,	as	 shown	in	Figure	5-3.	Unlike	stateful	 stream
ciphers,	 such	 as	 Salsa20,	 no	 secret	 state	 is	 memorized	 during	 keystream
generation.

Figure	5-3:	The	counter-based	stream	cipher

These	 two	 approaches	 define	 the	 high-level	 architecture	 of	 the	 stream
cipher,	 regardless	 of	 how	 the	 core	 algorithms	 work.	 The	 internals	 of	 the
stream	cipher	also	fall	into	two	categories,	depending	on	the	target	platform
of	the	cipher:	hardware	oriented	and	software	oriented.



Hardware-Oriented	Stream	Ciphers
When	 cryptographers	 talk	 about	 hardware,	 they	mean	 application-specific
integrated	circuits	 (ASICs),	programmable	 logic	devices	 (PLDs),	 and	 field-
programmable	gate	arrays	(FPGAs).	A	cipher’s	hardware	implementation	is
an	electronic	circuit	that	implements	the	cryptographic	algorithm	at	the	bit
level	and	that	can’t	be	used	for	anything	else;	 in	other	words,	 the	circuit	 is
dedicated	 hardware.	 On	 the	 other	 hand,	 software	 implementations	 of
cryptographic	 algorithms	 simply	 tell	 a	microprocessor	what	 instructions	 to
execute	in	order	to	run	the	algorithm.	These	instructions	operate	on	bytes	or
words	 and	 then	 call	 pieces	 of	 electronic	 circuit	 that	 implement	 general-
purpose	operations	such	as	addition	and	multiplication.	Software	deals	with
bytes	or	words	of	32	or	64	bits,	whereas	hardware	deals	with	bits.	The	first
stream	 ciphers	 worked	 with	 bits	 in	 order	 to	 save	 complex	 word-wise
operations	and	 thus	be	more	efficient	 in	hardware,	 their	 target	platform	at
the	time.

The	main	reason	why	stream	ciphers	were	commonly	used	 for	hardware
implementations	 is	 that	 they	 were	 cheaper	 than	 block	 ciphers.	 Stream
ciphers	needed	less	memory	and	fewer	logical	gates	than	block	ciphers,	and
therefore	 occupied	 a	 smaller	 area	 on	 an	 integrated	 circuit,	 which	 reduced
fabrication	 costs.	 For	 example,	 counting	 in	 gate-equivalents,	 the	 standard
area	metric	for	integrated	circuits,	you	could	find	stream	ciphers	taking	less
than	 1000	 gate-equivalents;	 by	 contrast,	 typical	 software-oriented	 block
ciphers	 needed	 at	 least	 10000	 gate-equivalents,	making	 crypto	 an	 order	 of
magnitude	more	expensive	than	with	stream	ciphers.

Today,	however,	block	ciphers	are	no	longer	more	expensive	than	stream
ciphers—first,	because	there	are	now	hardware-friendly	block	ciphers	about
as	 small	 as	 stream	 ciphers,	 and	 second,	 because	 the	 cost	 of	 hardware	 has
plunged.	Yet	stream	ciphers	are	often	associated	with	hardware	because	they
used	to	be	the	best	option.

In	 the	 next	 section,	 I’ll	 explain	 the	 basic	 mechanism	 behind	 hardware
stream	 ciphers,	 called	 feedback	 shift	 registers	 (FSRs).	 Almost	 all	 hardware
stream	 ciphers	 rely	 on	 FSRs	 in	 some	way,	whether	 that’s	 the	A5/1	 cipher
used	in	2G	mobile	phones	or	the	more	recent	cipher	Grain-128a.

NOTE
The	 first	 standard	 block	 cipher,	 the	 Data	 Encryption	 Standard	 (DES),	 was



optimized	 for	 hardware	 rather	 than	 for	 software.	When	 the	US	 government
standardized	 DES	 in	 the	 1970s,	 most	 target	 applications	 were	 hardware
implementations.	 It’s	 therefore	no	 surprise	 that	 the	S-boxes	 in	DES	are	 small
and	 fast	 to	 compute	 when	 implemented	 as	 a	 logical	 circuit	 in	 hardware	 but
inefficient	in	software.	Unlike	DES,	the	current	Advanced	Encryption	Standard
(AES)	deals	with	bytes	and	is	therefore	more	efficient	in	software	than	DES.

Feedback	Shift	Registers
Countless	 stream	 ciphers	 have	 used	 FSRs	 because	 they’re	 simple	 and	well
understood.	 An	 FSR	 is	 simply	 an	 array	 of	 bits	 equipped	 with	 an	 update
feedback	function,	which	I’ll	denote	as	f.	The	FSR’s	state	is	stored	in	the	array,
or	register,	and	each	update	of	the	FSR	uses	the	feedback	function	to	change
the	state’s	value	and	to	produce	one	output	bit.

In	practice,	an	FSR	works	like	this:	if	R0	is	the	initial	value	of	the	FSR,	the
next	state,	R1,	is	defined	as	R0	left-shifted	by	1	bit,	where	the	bit	leaving	the
register	 is	 returned	 as	 output,	 and	where	 the	 empty	 position	 is	 filled	with
f(R0).

The	same	rule	is	repeated	to	compute	the	subsequent	state	values	R2,	R3,
and	so	on.	That	is,	given	Rt,	the	FSR’s	state	at	time	t,	the	next	state,	Rt	+	1,	is
the	following:

Ri	+	1	=	(Rt	<<	1)|f(Rt)

In	this	equation,	|	is	the	logical	OR	operator	and	<<	is	the	shift	operator,
as	used	in	the	C	language.	For	example,	given	the	8-bit	string	00001111,	we
have	this:

The	bit	shift	moves	the	bits	to	the	left,	losing	the	leftmost	bit	in	order	to
retain	 the	 state’s	 bit	 length,	 and	 zeroing	 the	 rightmost	 bit.	 The	 update
operation	of	 an	FSR	 is	 identical,	 except	 that	 instead	of	 being	 set	 to	 0,	 the
rightmost	bit	is	set	to	f(Rt).

Consider,	for	example,	a	4-bit	FSR	whose	feedback	function	f	XORs	all	4



bits	together.	Initialize	the	state	to	the	following:

1	1	0	0

Now	shift	the	bits	to	the	left,	where	1	is	output	and	the	rightmost	bit	is	set
to	the	following:

f(1100)	=	1	⊕	1	⊕	0	⊕	0	=	0

Now	the	state	becomes	this:

1	0	0	0

The	next	update	outputs	1,	left-shifts	the	state,	and	sets	the	rightmost	bit
to	the	following:

f(1000)	=	1	⊕	0	⊕	0	⊕0	=	1

Now	the	state	is	this:

0	0	0	1

The	 next	 three	 updates	 return	 three	 0	 bits	 and	 give	 the	 following	 state
values:

We	thus	return	to	our	initial	state	of	1100	after	five	iterations,	and	we	can
see	 that	 updating	 the	 state	 five	 times	 from	 any	 of	 the	 values	 observed
throughout	this	cycle	will	return	us	to	this	initial	value.	We	say	that	5	is	the
period	 of	 the	 FSR	 given	 any	 one	 of	 the	 values	 1100,	 1000,	 0001,	 0011,	 or
0110.	Because	the	period	of	this	FSR	is	5,	clocking	the	register	10	times	will
yield	 twice	 the	 same	5-bit	 sequence.	Likewise,	 if	 you	 clock	 the	 register	 20
times,	 starting	 from	1100,	 the	output	bits	will	 be	11000110001100011000,
or	 four	times	the	same	5-bit	 sequence	of	11000.	Intuitively,	 such	repeating
patterns	should	be	avoided,	and	a	longer	period	is	better	for	security.

NOTE



If	you	plan	to	use	an	FSR	in	a	stream	cipher,	avoid	using	one	with	short	periods,
which	make	 the	 output	more	 predictable.	 Some	 types	 of	 FSRs	make	 it	 easy	 to
figure	out	their	period,	but	it’s	almost	impossible	to	do	so	with	others.

Figure	5-4	shows	the	structure	of	this	cycle,	along	with	the	other	cycles	of
that	FSR,	with	each	cycle	shown	as	a	circle	whose	dots	represent	a	state	of
the	register.

Figure	5-4:	Cycles	of	the	FSR	whose	feedback	function	XORs	the	4	bits	together

Indeed,	this	particular	FSR	has	two	other	period-5	cycles—namely,	{0100,
1001,	0010,	0101,	1010}	and	{1111,	1110,	1101,	1011,	0111}.	Note	that	any
given	state	can	belong	to	only	one	cycle	of	states.	Here,	we	have	three	cycles
of	five	states	each,	covering	15	of	all	the	24	=	16	possible	values	of	our	4-bit
register.	The	16th	possible	 value	 is	 0000,	which,	 as	Figure	 5-4	 shows,	 is	 a
period-1	cycle	because	the	FSR	will	transform	0000	to	0000.

You’ve	seen	that	an	FSR	is	essentially	a	register	of	bits,	where	each	update
of	 the	 register	 outputs	 a	 bit	 (the	 leftmost	 bit	 of	 the	 register)	 and	where	 a
function	computes	the	new	rightmost	bit	of	the	register.	 (All	other	bits	are
left-shifted.)	The	period	of	an	FSR,	from	some	initial	state,	is	the	number	of
updates	 needed	 until	 the	 FSR	 enters	 the	 same	 state	 again.	 If	 it	 takes	 N
updates	to	do	so,	the	FSR	will	produce	the	same	N	bits	again	and	again.

Linear	Feedback	Shift	Registers
Linear	 feedback	 shift	 registers	 (LFSRs)	 are	 FSRs	 with	 a	 linear	 feedback



function—namely,	a	function	that’s	the	XOR	of	some	bits	of	the	state,	such
as	 the	 example	 of	 a	 4-bit	 FSR	 in	 the	 previous	 section	 and	 its	 feedback
function	 returning	 the	 XOR	 of	 the	 register’s	 4	 bits.	 Recall	 that	 in
cryptography,	linearity	is	synonymous	with	predictability	and	suggestive	of	a
simple	underlying	mathematical	structure.	And,	as	you	might	expect,	thanks
to	this	linearity,	LFSRs	can	be	analyzed	using	notions	like	linear	complexity,
finite	 fields,	 and	 primitive	 polynomials—but	 I’ll	 skip	 the	math	 details	 and
just	give	you	the	essential	facts.

The	choice	of	which	bits	are	XORed	together	is	crucial	for	the	period	of
the	LFSR	 and	 thus	 for	 its	 cryptographic	 value.	The	 good	 news	 is	 that	we
know	how	to	select	the	position	of	the	bits	in	order	to	guarantee	a	maximal
period,	of	2n	–	1.	Specifically,	we	take	the	indices	of	the	bits,	from	1	for	the
rightmost	to	n	for	the	leftmost,	and	write	the	polynomial	expression	1	+	X	+
X2	+	…	+	Xn,	where	the	term	Xi	is	only	included	if	the	ith	bit	is	one	of	the
bits	XORed	 in	 the	 feedback	 function.	The	period	 is	maximal	 if	 and	 only	 if
that	polynomial	is	primitive.	To	be	primitive,	the	polynomial	must	have	the
following	qualities:

The	polynomial	must	be	irreducible,	meaning	that	it	can’t	be	factorized;
that	is,	written	as	a	product	of	smaller	polynomials.	For	example,	X	+	X3

is	not	irreducible	because	it’s	equal	to	(1	+	X)(X	+	X2):

(1	+	X)(X	+	X2)	=	X	+	X2	+	X2	+	X3	=	X	+	X3

The	polynomial	must	satisfy	certain	other	mathematical	properties	that
cannot	be	easily	explained	without	nontrivial	mathematical	notions	but
are	easy	to	test.

NOTE

The	maximal	period	 of	an	n-bit	LFSR	 is	2n	–	1,	not	2n,	because	 the	all-zero
state	always	loops	on	itself	infinitely.	Because	the	XOR	of	any	number	of	zeros	is
zero,	new	bits	entering	the	state	from	the	feedback	functions	will	always	be	zero;
hence,	the	all-zero	state	is	doomed	to	stay	all	zeros.

For	 example,	 Figure	 5-5	 shows	 a	 4-bit	 LFSR	 with	 the	 feedback
polynomial	 1	 +	X	 +	X3	 +	X4	 in	which	 the	bits	 at	 positions	 1,	 3,	 and	4	 are



XORed	together	to	compute	the	new	bit	set	to	L1.	However,	this	polynomial
isn’t	primitive	because	it	can	be	factorized	into	(1	+	X3)(1	+	X).

Figure	5-5:	An	LFSR	with	the	feedback	polynomial	1	+	X	+	X3	+	X4

Indeed,	 the	 period	 of	 the	LFSR	 shown	 in	Figure	 5-5	 isn’t	maximal.	To
prove	that,	start	from	the	state	0001.

0	0	0	1

Now	left-shift	by	1	bit	and	set	the	new	bit	to	0	+	0	+	1	=	1:

0	0	1	1

Repeating	the	operation	four	times	gives	the	following	state	values:

And	as	 you	can	 see,	 the	 state	 after	 five	updates	 is	 the	 same	as	 the	 initial
one,	 demonstrating	 that	 we’re	 in	 a	 period-5	 cycle	 and	 proving	 that	 the
LFSR’s	period	isn’t	the	maximal	value	of	15.

Now,	by	way	of	contrast,	consider	the	LFSR	shown	in	Figure	5-6.

Figure	5-6:	An	LFSR	with	the	feedback	polynomial	1	+	X3	+	X4,	a	primitive	polynomial,	ensuring	a
maximal	period

This	feedback	polynomial	is	a	primitive	polynomial	described	by	1	+	X3	+
X4,	 and	 you	 can	 verify	 that	 its	 period	 is	 indeed	 maximal	 (namely	 15).
Specifically,	from	an	initial	value,	the	state	evolves	as	follows:



The	state	spans	all	possible	values	except	0000	with	no	repetition	until	 it
eventually	 loops.	This	demonstrates	 that	 the	period	 is	maximal	 and	proves
that	the	feedback	polynomial	is	primitive.

Alas,	using	an	LFSR	as	a	stream	cipher	is	insecure.	If	n	is	the	LFSR’s	bit
length,	 an	 attacker	 needs	 only	 n	 output	 bits	 to	 recover	 the	 LFSR’s	 initial
state,	allowing	them	to	determine	all	previous	bits	and	predict	all	future	bits.
This	attack	is	possible	because	the	Berlekamp–Massey	algorithm	can	be	used
to	solve	the	equations	defined	by	the	LFSR’s	mathematical	structure	to	find
not	 only	 the	LFSR’s	 initial	 state	 but	 also	 its	 feedback	 polynomial.	 In	 fact,
you	don’t	even	need	to	know	the	exact	length	of	the	LFSR	to	succeed;	you
can	repeat	the	Berlekamp–Massey	algorithm	for	all	possible	values	of	n	until
you	hit	the	right	one.

The	 upshot	 is	 that	 LFSRs	 are	 cryptographically	 weak	 because	 they’re
linear.	 Output	 bits	 and	 initial	 state	 bits	 are	 related	 by	 simple	 and	 short
equations	 that	 can	 be	 easily	 solved	 with	 high-school	 linear	 algebra
techniques.

To	strengthen	LFSRs,	let’s	thus	add	a	pinch	of	nonlinearity.

Filtered	LFSRs

Figure	5-7:	A	filtered	LFSR

To	mitigate	the	insecurity	of	LFSRs,	you	can	hide	their	linearity	by	passing
their	 output	 bits	 through	 a	 nonlinear	 function	 before	 returning	 them	 to
produce	what	is	called	a	filtered	LFSR	(see	Figure	5-7).



The	g	function	in	Figure	5-7	must	be	a	nonlinear	function—one	that	both
XORs	bits	together	and	combines	them	with	logical	AND	or	OR	operations.
For	example,	L1L2	+	L3L4	is	a	nonlinear	function	(I’ve	omitted	the	multiply
sign,	so	L1L2	means	L1	×	L2,	or	L1	&	L2	using	C	syntax).

NOTE
You	can	write	 feedback	functions	either	directly	 in	terms	of	an	FSR’s	bits,	 like
L1L2	+	L3L4,	or	using	the	equivalent	polynomial	notation	1	+	XX2	+	X3X4.
The	direct	notation	is	easier	to	grasp,	but	the	polynomial	notation	better	serves
the	mathematical	analysis	of	an	FSR’s	properties.	We’ll	now	stick	to	the	direct
notation	unless	we	care	about	the	mathematical	properties.

Filtered	 LFSRs	 are	 stronger	 than	 plain	 LFSRs	 because	 their	 nonlinear
function	thwarts	straightforward	attacks.	Still,	more	complex	attacks	such	as
the	following	will	break	the	system:

Algebraic	attacks	will	solve	the	nonlinear	equation	systems	deduced	from
the	 output	 bits,	 where	 unknowns	 in	 the	 equations	 are	 bits	 from	 the
LFSR	state.
Cube	attacks	will	compute	derivatives	of	the	nonlinear	equations	in	order
to	 reduce	 the	 degree	 of	 the	 system	 down	 to	 one	 and	 then	 solve	 it
efficiently	like	a	linear	system.
Fast	 correlation	 attacks	will	 exploit	 filtering	 functions	 that,	despite	 their
nonlinearity,	tend	to	behave	like	linear	functions.

The	 lesson	 here,	 as	 we’ve	 seen	 in	 previous	 examples,	 is	 that	 Band-Aids
don’t	 fix	bullet	holes.	Patching	a	broken	algorithm	with	a	 slightly	 stronger
layer	won’t	make	the	whole	thing	secure.	The	problem	has	to	be	fixed	at	the
core.

Nonlinear	FSRs
Nonlinear	 FSRs	 (NFSRs)	 are	 like	 LFSRs	 but	 with	 a	 nonlinear	 feedback
function	 instead	of	 a	 linear	one.	That	 is,	 instead	of	 just	bitwise	XORs,	 the
feedback	 function	 can	 include	bitwise	AND	and	OR	operations—a	 feature
with	both	pros	and	cons.

One	benefit	 of	 the	 addition	 of	 nonlinear	 feedback	 functions	 is	 that	 they



make	NFSRs	cryptographically	stronger	than	LFSRs	because	the	output	bits
depend	 on	 the	 initial	 secret	 state	 in	 a	 complex	 fashion,	 according	 to
equations	of	exponential	size.	The	LFSRs’	linear	function	keeps	the	relations
simple,	with	at	most	n	terms	(N1,	N2,	…	,	Nn,	if	the	Nis	are	the	NFSR’s	state
bits).	For	example,	a	4-bit	NFSR	with	an	initial	secret	state	(N1,	N2,	N3,	N4)
and	a	feedback	function	(N1	+	N2	+	N1N2	+	N3N4)	will	produce	a	first	output
bit	equal	to	the	following:

N1	+	N2	+	N1N2	+	N3N4

The	second	iteration	replaces	the	N1	value	with	that	new	bit.	Expressing
the	 second	 output	 bit	 in	 terms	 of	 the	 initial	 state,	 we	 get	 the	 following
equation:

This	 new	 equation	 has	 algebraic	 degree	 3	 (the	 highest	 number	 of	 bits
multiplied	 together,	here	 in	N1N3N4)	 rather	 than	degree	2	of	 the	 feedback
function,	 and	 it	 has	 six	 terms	 instead	 of	 four.	 As	 a	 result,	 iterating	 the
nonlinear	 function	quickly	 yields	 unmanageable	 equations	 because	 the	 size
of	 the	 output	 grows	 exponentially.	 Although	 you’ll	 never	 compute	 those
equations	when	running	the	NFSR,	an	attacker	would	have	to	solve	them	in
order	to	break	the	system.

One	downside	to	NFSRs	is	that	there’s	no	efficient	way	to	determine	an
NFSR’s	 period,	 or	 simply	 to	 know	whether	 its	 period	 is	maximal.	 For	 an
NFSR	of	n	bits,	you’d	need	to	run	close	to	2n	trials	to	verify	that	its	period	is
maximal.	This	calculation	is	impossible	for	large	NFSRs	of	80	bits	or	more.

Fortunately,	 there’s	 a	 trick	 to	 using	 an	 NFSR	 without	 worrying	 about
short	periods:	you	can	combine	LFSRs	and	NFSRs	to	get	both	a	guaranteed
maximal	 period	 and	 the	 cryptographic	 strength—and	 that’s	 exactly	 how
Grain-128a	works.

Grain-128a
Remember	 the	AES	 competition	discussed	 in	Chapter	 4,	 in	 the	 context	 of
the	AES	block	cipher?	The	stream	cipher	Grain	is	the	offspring	of	a	similar



project	called	the	eSTREAM	competition.	This	competition	closed	in	2008
with	 a	 shortlist	 of	 recommended	 stream	 ciphers,	 which	 included	 four
hardware-oriented	ciphers	and	four	software-oriented	ones.	Grain	is	one	of
these	 hardware	 ciphers,	 and	 Grain-128a	 is	 an	 upgraded	 version	 from	 the
original	authors	of	Grain.	Figure	5-8	shows	the	action	mechanism	of	Grain-
128a.

Figure	5-8:	The	mechanism	of	Grain-128a,	with	a	128-bit	NFSR	and	a	128-bit	LFSR

As	you	can	 see	 in	Figure	5-8,	Grain-128a	 is	 about	 as	 simple	 as	 a	 stream
cipher	 can	 be,	 combining	 a	 128-bit	 LFSR,	 a	 128-bit	 NFSR,	 and	 a	 filter
function,	h.	The	LFSR	has	a	maximal	period	of	2128	–	1,	which	ensures	that
the	period	of	the	whole	system	is	at	least	2128	–	1	to	protect	against	potential
short	 cycles	 in	 the	NFSR.	At	 the	 same	 time,	 the	NFSR	and	 the	nonlinear
filter	function	h	add	cryptographic	strength.

Grain-128a	takes	a	128-bit	key	and	a	96-bit	nonce.	It	copies	the	128	key
bits	into	the	NFSR’s	128	bits	and	copies	the	96	nonce	bits	into	the	first	96
LFSR	bits,	filling	the	32	bits	left	with	ones	and	a	single	zero	bit	at	the	end.
The	 initialization	 phase	 updates	 the	 whole	 system	 256	 times	 before
returning	 the	 first	 keystream	bit.	During	 initialization,	 the	bit	 returned	by
the	h	 function	 is	 thus	not	output	as	a	keystream,	but	 instead	goes	 into	 the
LFSR	to	ensure	 that	 its	 subsequent	 state	depends	on	both	 the	key	and	 the
nonce.

Grain-128a’s	LFSR	feedback	function	is

f(L)	=	L32	+	L47	+	L58	+	L90	+	L121	+	L128

where	L1,	L2,	…	 ,	L128	 are	 the	 bits	 of	 the	 LFSR.	This	 feedback	 function



takes	only	6	bits	from	the	128-bit	LFSR,	but	that’s	enough	to	get	a	primitive
polynomial	 that	 guarantees	 a	 maximal	 period.	 The	 small	 number	 of	 bits
minimizes	the	cost	of	a	hardware	implementation.

Here	is	the	feedback	polynomial	of	Grain-128a’s	NFSR	(N1,	…	,	N128):

This	function	was	carefully	chosen	to	maximize	its	cryptographic	strength
while	minimizing	 its	 implementation	 cost.	 It	 has	 an	 algebraic	 degree	 of	 4
because	 its	 term	 with	 the	 most	 variables	 has	 four	 variables	 (namely,
N33N35N36N40).	 Moreover,	 g	 can’t	 be	 approximated	 by	 a	 linear	 function
because	it	is	highly	nonlinear.	Also,	in	addition	to	g,	Grain-128a	XORs	the
bit	coming	out	from	the	LFSRs	to	feed	the	result	back	as	the	NFSR’s	new,
rightmost	bit.

The	filter	function	h	is	another	nonlinear	function;	it	takes	9	bits	from	the
NFSR	and	7	bits	from	the	LFSR	and	combines	them	in	a	way	that	ensures
good	cryptographic	properties.

As	I	write	this,	there	is	no	known	attack	on	Grain-128a,	and	I’m	confident
that	 it	 will	 remain	 secure.	Grain-128a	 is	 used	 in	 some	 low-end	 embedded
systems	 that	 need	 a	 compact	 and	 fast	 stream	 cipher—typically	 industrial
proprietary	systems—which	 is	why	Grain-128a	 is	 little	known	in	the	open-
source	software	community.

A5/1
A5/1	 is	 a	 stream	cipher	 that	was	 used	 to	 encrypt	 voice	 communications	 in
the	 2G	mobile	 standard.	The	A5/1	 standard	was	 created	 in	 1987	 but	 only
published	in	the	late	1990s	after	it	was	reverse	engineered.	Attacks	appeared
in	 the	 early	 2000s,	 and	 A5/1	 was	 eventually	 broken	 in	 a	 way	 that	 allows
actual	 (rather	 than	 theoretical)	 decryption	 of	 encrypted	 communications.
Let’s	see	why	and	how.

A5/1’s	Mechanism
A5/1	relies	on	three	LFSRs	and	uses	a	trick	that	looks	clever	at	first	glance
but	actually	fails	to	be	secure	(see	Figure	5-9).



Figure	5-9:	The	A5/1	cipher

As	you	can	see	in	Figure	5-9,	A5/1	uses	LFSRs	of	19,	22,	and	23	bits,	with
the	polynomials	for	each	as	follows:

How	could	 this	be	 seen	 as	 secure	with	only	LFSRs	 and	no	NFSR?	The
trick	lies	in	A5/1’s	update	mechanism.	Instead	of	updating	all	three	LFSRs	at
each	clock	cycle,	 the	designers	of	A5/1	added	a	clocking	rule	 that	does	 the
following:

1.	 Checks	 the	value	of	 the	ninth	bit	of	LFSR	1,	 the	11th	bit	of	LFSR	2,
and	the	11th	bit	of	LFSR	3,	called	the	clocking	bits.	Of	those	three	bits,
either	 all	 have	 the	 same	 value	 (1	 or	 0)	 or	 exactly	 two	 have	 the	 same
value.

2.	 Clocks	the	registers	whose	clocking	bits	are	equal	to	the	majority	value,
0	or	1.	Either	two	or	three	LFSRs	are	clocked	at	each	update.

Without	this	simple	rule,	A5/1	would	provide	no	security	whatsoever,	and



bypassing	this	rule	is	enough	to	break	the	cipher.	However,	that	is	easier	said
than	done,	as	you’ll	see.

NOTE
In	A5/1’s	 irregular	 clocking	rule,	 each	register	 is	 clocked	with	a	probability	 of
3/4	at	any	update.	Namely,	 the	probability	 that	at	 least	one	other	register	has
the	same	bit	value	is	1	–	(1/2)2,	where	(1/2)2	is	the	chance	that	both	of	the	other
two	registers	have	a	different	bit	value.

2G	 communications	 use	A5/1	with	 a	 key	 of	 64	 bits	 and	 a	 22-bit	 nonce,
which	is	changed	for	every	new	data	frame.	Attacks	on	A5/1	recover	the	64-
bit	 initial	state	of	 the	system	(the	19	+	22	+	23	LFSR	initial	value),	 thus	 in
turn	 revealing	 the	 nonce	 (if	 it	 was	 not	 already	 known)	 and	 the	 key,	 by
unwinding	 the	 initialization	 mechanism.	 The	 attacks	 are	 referred	 to	 as
known-plaintext	attacks	 (KPAs)	because	part	of	 the	encrypted	data	 is	known,
which	 allows	 attackers	 to	 determine	 the	 corresponding	 keystream	parts	 by
XORing	the	ciphertext	with	the	known	plaintext	chunks.

There	are	two	main	types	of	attacks	on	A5/1:

Subtle	 attacks	 Exploit	 the	 internal	 linearity	 of	 A5/1	 and	 its	 simple
irregular	clocking	system
Brutal	attacks	Only	exploit	the	short	key	of	A5/1	and	the	invertibility	of
the	frame	number	injection

Let’s	see	how	these	attacks	work.

Subtle	Attacks
In	 a	 subtle	 attack	 called	 a	 guess-and-determine	 attack,	 an	 attacker	 guesses
certain	 secret	 values	 of	 the	 state	 in	 order	 to	 determine	 others.	 In
cryptanalysis,	 “guessing”	 means	 brute-forcing:	 for	 each	 possible	 value	 of
LFSRs	1	and	2,	and	all	possible	values	of	LFSR	3’s	clocking	bit	during	the
first	 11	 clocks,	 the	 attack	 reconstructs	 LFSR	 3’s	 bits	 by	 solving	 equations
that	depend	on	the	bits	guessed.	When	the	guess	is	correct,	the	attacker	gets
the	right	value	for	LFSR	3.

The	attack’s	pseudocode	looks	like	this:

For	all	219	values	of	LFSR	1's	initial	state



				For	all	222	values	of	LFSR	2's	initial	state

								For	all	211	values	of	LFSR	3's	clocking	bit	during	the	first	11	clocks
												Reconstruct	LFSR	3's	initial	state
												Test	whether	guess	is	correct;	if	yes,	return;	else	continue

How	 efficient	 is	 this	 attack	 compared	 to	 the	 264-trial	 brute-force	 search
discussed	 in	 Chapter	 3?	 This	 attack	 makes	 at	 most	 219	 ×	 222	 ×	 211	 =	 252

operations	 in	 the	worst	case,	when	the	algorithm	only	succeeds	at	 the	very
last	 test.	 That’s	 212	 (or	 about	 4000)	 times	 faster	 than	 in	 the	 brute-force
search,	 assuming	 that	 the	 last	 two	 operations	 in	 the	 above	 pseudocode
require	about	as	much	computation	as	 testing	a	64-bit	key	 in	a	brute-force
search.	But	is	this	assumption	correct?

Recall	our	discussion	of	the	full	attack	cost	in	Chapter	3.	When	evaluating
the	 cost	 of	 an	 attack,	 we	 need	 to	 consider	 not	 only	 the	 amount	 of
computation	required	to	perform	the	attack	but	also	parallelism	and	memory
consumption.	 Neither	 are	 issues	 here:	 as	 with	 any	 brute-force	 attack,	 the
guess-and-determine	 attack	 is	 embarrassingly	 parallel	 (or	 N	 times	 faster
when	run	on	N	cores)	and	doesn’t	need	more	memory	than	just	running	the
cipher	itself.

Our	252	attack	cost	estimate	is	inaccurate	for	another	reason.	In	fact,	each
of	the	252	operations	(testing	a	key	candidate)	takes	about	four	times	as	many
clock	cycles	as	does	testing	a	key	in	a	brute-force	attack.	The	upshot	is	that
the	 real	 cost	 of	 this	 particular	 attack	 is	 closer	 to	 4	 ×	 252	 =	 254	 operations,
when	compared	to	a	brute-force	attack.

The	 guess-and-determine	 attack	 on	 A5/1	 can	 decrypt	 encrypted	mobile
communications,	but	it	takes	a	couple	of	hours	to	recover	the	key	when	run
on	a	cluster	of	dedicated	hardware	devices.	In	other	words,	it’s	nowhere	near
real-time	decryption.	For	that,	we	have	another	type	of	attack.

Brutal	Attacks
The	 time-memory	 trade-off	 (TMTO)	 attack	 is	 the	 brutal	 attack	 on	 A5/1.
This	attack	doesn’t	care	about	A5/1’s	internals;	it	cares	only	that	its	state	is
64	bits	long.	The	TMTO	attack	sees	A5/1	as	a	black	box	that	takes	in	a	64-
bit	value	(the	state)	and	spits	out	a	64-bit	value	(the	first	64	keystream	bits).

The	idea	behind	the	attack	is	to	reduce	the	cost	of	a	brute-force	search	in
exchange	 for	 using	 lots	 of	 memory.	 The	 simplest	 type	 of	 TMTO	 is	 the



codebook	 attack.	 In	 a	 codebook	 attack,	 you	 precompute	 a	 table	 of	 264

elements	 containing	 a	 combination	 of	 key	 and	 value	 pairs	 (key:value),	 and
store	 the	 output	 value	 for	 each	 of	 the	 264	 possible	 keys.	 To	 use	 this
precomputed	table	 for	the	attack,	you	simply	collect	 the	output	of	an	A5/1
instance	and	then	look	up	in	the	table	which	key	corresponds	to	that	output.
The	attack	itself	is	fast—taking	only	the	amount	of	time	necessary	to	look	up
a	value	in	memory—but	the	creation	of	the	table	takes	264	computations	of
A5/1.	Worse,	codebook	attacks	require	an	insane	amount	of	memory:	264	×
(64	 +	 64)	 bits,	 which	 is	 268	 bytes	 or	 256	 exabytes.	 That’s	 dozens	 of	 data
centers,	so	we	can	forget	about	it.

TMTO	attacks	reduce	the	memory	required	by	a	codebook	attack	at	the
price	 of	 increased	 computation	 during	 the	 online	 phase	 of	 the	 attack;	 the
smaller	the	table,	the	more	computations	required	to	crack	a	key.	Regardless,
it	will	still	cost	about	264	operations	to	prepare	the	table,	but	that	needs	to	be
done	only	once.

In	 2010,	 researchers	 took	 about	 two	months	 to	 generate	 two	 terabytes’
worth	of	tables,	using	graphics	processing	units	(GPUs)	and	running	100000
instances	 of	 A5/1	 in	 parallel.	 With	 the	 help	 of	 such	 large	 tables,	 calls
encrypted	 with	 A5/1	 could	 be	 decrypted	 almost	 in	 real	 time.
Telecommunication	 operators	 have	 implemented	 workarounds	 to	mitigate
the	 attack,	 but	 a	 real	 solution	 came	 with	 the	 later	 3G	 and	 4G	 mobile
telephony	standards,	which	ditched	A5/1	altogether.

Software-Oriented	Stream	Ciphers
Software	 stream	ciphers	work	with	bytes	or	32-	or	64-bit	words	 instead	of
individual	bits,	which	proves	 to	be	more	efficient	on	modern	CPUs	where
instructions	 can	 perform	 arithmetic	 operations	 on	 a	 word	 in	 the	 same
amount	 of	 time	 as	 on	 a	 bit.	 Software	 stream	 ciphers	 are	 therefore	 better
suited	 than	 hardware	 ciphers	 for	 servers	 or	 browsers	 running	 on	 personal
computers,	 where	 powerful	 general-purpose	 processors	 run	 the	 cipher	 as
native	software.

Today,	there	is	considerable	interest	in	software	stream	ciphers	for	a	few
reasons.	 First,	 because	many	 devices	 embed	 powerful	CPUs	 and	 hardware
has	become	cheaper,	there’s	less	of	a	need	for	small	bit-oriented	ciphers.	For
example,	the	two	stream	ciphers	in	the	mobile	communications	standard	4G



(the	European	SNOW3G	and	 the	Chinese	ZUC)	work	with	 32-bit	words
and	not	bits,	unlike	the	older	A5/1.

Second,	stream	ciphers	have	gained	popularity	in	software	at	the	expense
of	 block	 ciphers,	 notably	 following	 the	 fiasco	 of	 the	 padding	 oracle	 attack
against	block	ciphers	in	CBC	mode.	In	addition,	stream	ciphers	are	easier	to
specify	and	to	implement	than	block	ciphers:	instead	of	mixing	message	and
key	bits	together,	stream	ciphers	just	ingest	key	bits	as	a	secret.	In	fact,	one
of	the	most	popular	stream	ciphers	is	actually	a	block	cipher	in	disguise:	AES
in	counter	mode	(CTR).

One	software	stream	cipher	design,	used	by	SNOW3G	and	ZUC,	copies
hardware	 ciphers	 and	 their	 FSRs,	 replacing	 bits	 with	 bytes	 or	 words.	 But
these	 aren’t	 the	 most	 interesting	 designs	 for	 a	 cryptographer.	 As	 of	 this
writing,	 the	 two	 designs	 of	most	 interest	 are	 RC4	 and	 Salsa20,	 which	 are
used	in	numerous	systems,	despite	the	fact	that	one	is	completely	broken.

RC4
Designed	 in	1987	by	Ron	Rivest	of	RSA	Security,	 then	reverse	engineered
and	leaked	in	1994,	RC4	has	long	been	the	most	widely	used	stream	cipher.
RC4	has	been	used	in	countless	applications,	most	famously	in	the	first	Wi-
Fi	 encryption	 standard	 Wireless	 Equivalent	 Privacy	 (WEP)	 and	 in	 the
Transport	 Layer	 Security	 (TLS)	 protocol	 used	 to	 establish	 HTTPS
connections.	Unfortunately,	RC4	isn’t	secure	enough	for	most	applications,
including	WEP	and	TLS.	To	understand	why,	let’s	see	how	RC4	works.

How	RC4	Works
RC4	 is	 among	 the	 simplest	 ciphers	 ever	 created.	 It	 doesn’t	 perform	 any
crypto-like	operations,	and	 it	has	no	XORs,	no	multiplications,	no	S-boxes
…	nada.	 It	 simply	 swaps	 bytes.	 RC4’s	 internal	 state	 is	 an	 array,	S,	 of	 256
bytes,	 first	 set	 to	S[0]	 =	 0,	S[1]	 =	 1,	S[2]	 =	 2,	…	 ,	S[255]	 =	 255,	 and	 then
initialized	 from	an	n-byte	K	 using	 its	key	 scheduling	 algorithm	 (KSA),	which
works	as	shown	in	the	Python	code	in	Listing	5-1.

j	=	0
#	set	S	to	the	array	S[0]	=	0,	S[1]	=	1,	…	,	S[255]	=	255
S	=	range(256)
#	iterate	over	i	from	0	to	255
for	i	in	range(256):
				#	compute	the	sum	of	v
				j	=	(j	+	S[i]	+	K[i	%	n])	%	256



				#	swap	S[i]	and	S[j]
				S[i],	S[j]	=	S[j],	S[i]

Listing	5-1:	The	key	scheduling	algorithm	of	RC4

Once	 this	 algorithm	 completes,	 array	S	 still	 contains	 all	 the	 byte	 values
from	0	 to	255,	but	now	 in	a	 random-looking	order.	For	example,	with	 the
all-zero	128-bit	key,	the	state	S	(from	S[0]	to	S[255])	becomes	this:

0,	35,	3,	43,	9,	11,	65,	229,	(…),	233,	169,	117,	184,	31,	39

However,	 if	 I	 flip	the	first	key	bit	and	run	the	KSA	again,	I	get	a	 totally
different,	apparently	random	state:

32,	116,	131,	134,	138,	143,	149,	(…),	152,	235,	111,	48,	80,	12

Given	 the	 initial	 state	 S,	 RC4	 generates	 a	 keystream,	 KS,	 of	 the	 same
length	as	the	plaintext,	P,	in	order	to	compute	a	ciphertext:	C	=	P	⊕	KS.	The
bytes	 of	 the	 keystream	KS	 are	 computed	 from	S	 according	 to	 the	 Python
code	in	Listing	5-2,	if	P	is	m	bytes	long.

i	=	0
j	=	0
for	b	in	range(m):
				i	=	(i	+	1)	%	256
				j	=	(j	+	S[i])	%	256
				S[i],	S[j]	=	S[j],	S[i]
				KS[b]	=	S[(S[i]	+	S[j])	%	256]

Listing	5-2:	The	keystream	generation	of	RC4,	where	S	is	the	state	initialized	in	Listing	5-1

In	 Listing	 5-2,	 each	 iteration	 of	 the	 for	 loop	modifies	 up	 to	 2	 bytes	 of
RC4’s	internal	state	S:	the	S[i]	and	S[j]	whose	values	are	swapped.	That	is,	if
i	=	0	and	j	=	4,	and	if	S[0]	=	56	and	S[4]	=	78,	then	the	swap	operation	sets
S[0]	to	78	and	S[4]	to	56.	If	j	equals	i,	then	S[i]	isn’t	modified.

This	looks	too	simple	to	be	secure,	yet	it	took	20	years	for	cryptanalysts	to
find	exploitable	 flaws.	Before	the	 flaws	were	revealed,	we	only	knew	RC4’s
weaknesses	 in	 specific	 implementations,	 as	 in	 the	 first	 Wi-Fi	 encryption
standard,	WEP.

RC4	in	WEP
WEP,	 the	 first	 generation	 Wi-Fi	 security	 protocol,	 is	 now	 completely



broken	due	to	weaknesses	in	the	protocol’s	design	and	in	RC4.
In	its	WEP	implementation,	RC4	encrypts	payload	data	of	802.11	frames,

the	datagrams	(or	packets)	that	transport	data	over	the	wireless	network.	All
payloads	delivered	in	the	same	session	use	the	same	secret	key	of	40	or	104
bits	but	have	what	is	a	supposedly	unique	3-byte	nonce	encoded	in	the	frame
header	 (the	part	of	 the	 frame	 that	 encodes	metadata	 and	comes	before	 the
actual	payload).	See	the	problem?

The	 problem	 is	 that	 RC4	 doesn’t	 support	 a	 nonce,	 at	 least	 not	 in	 its
official	specification,	and	a	stream	cipher	can’t	be	used	without	a	nonce.	The
WEP	designers	addressed	this	limitation	with	a	workaround:	they	included	a
24-bit	 nonce	 in	 the	wireless	 frame’s	 header	 and	prepended	 it	 to	 the	WEP
key	to	be	used	as	RC4’s	 secret	key.	That	 is,	 if	 the	nonce	 is	 the	bytes	N[0],
N[1],	N[2]	and	the	WEP	key	is	K[0],	K[1],	K[2],	K[3],	K[4],	the	actual	RC4
key	is	N[0],	N[1],	N[2],	K[0],	K[1],	K[2],	K[3],	K[4].	The	net	effect	is	to	have
40-bit	secret	keys	yield	64-bit	effective	keys,	and	104-bit	keys	yield	128-bit
effective	 keys.	 The	 result?	 The	 advertised	 128-bit	WEP	 protocol	 actually
offers	only	104-bit	security,	at	best.

But	here	are	the	real	problems	with	WEP’s	nonce	trick:

The	nonces	are	too	small	at	only	24	bits.	This	means	that	if	a	nonce
is	 chosen	 randomly	 for	 each	 new	 message,	 you’ll	 have	 to	 wait	 about
224/2	=	212	packets,	or	a	 few	megabytes’	worth	of	 traffic,	until	you	can
find	 two	 packets	 encrypted	 with	 the	 same	 nonce,	 and	 thus	 the	 same
keystream.	Even	if	the	nonce	is	a	counter	running	from	0	to	224	–	1,	it
will	 take	 a	 few	 gigabytes’	 worth	 of	 data	 until	 a	 rollover,	 when	 the
repeated	nonce	can	allow	the	attacker	to	decrypt	packets.	But	there’s	a
bigger	problem.
Combining	 the	 nonce	 and	 key	 in	 this	 fashion	 helps	 recover	 the
key.	WEP’s	three	non-secret	nonce	bytes	let	an	attacker	determine	the
value	 of	 S	 after	 three	 iterations	 of	 the	 key	 scheduling	 algorithm.
Because	 of	 this,	 cryptanalysts	 found	 that	 the	 first	 keystream	 byte
strongly	depends	on	the	first	secret	key	byte—the	fourth	byte	ingested
by	 the	KSA—and	 that	 this	 bias	 can	be	 exploited	 to	 recover	 the	 secret
key.

Exploiting	 those	 weaknesses	 requires	 access	 to	 both	 ciphertexts	 and	 the
keystream;	 that	 is,	 known	 or	 chosen	 plaintexts.	 But	 that’s	 easy	 enough:



known	 plaintexts	 occur	 when	 the	 Wi-Fi	 frames	 encapsulate	 data	 with	 a
known	header,	and	chosen	plaintexts	occur	when	the	attacker	injects	known
plaintext	encrypted	with	the	target	key.	The	upshot	is	that	the	attacks	work
in	practice,	not	just	on	paper.

Following	the	appearance	of	the	first	attacks	on	WEP	in	2001,	researchers
found	 faster	 attacks	 that	 required	 fewer	 ciphertexts.	 Today,	 you	 can	 even
find	tools	such	as	aircrack-ng	that	implement	the	entire	attack,	from	network
sniffing	to	cryptanalysis.

WEP’s	insecurity	is	due	to	both	weaknesses	in	RC4,	which	takes	a	single
one-use	key	instead	of	a	key	and	nonce	(as	in	any	decent	stream	cipher),	and
weaknesses	in	the	WEP	design	itself.

Now	let’s	look	at	the	second	biggest	failure	of	RC4.

RC4	in	TLS
TLS	is	the	single	most	important	security	protocol	used	on	the	internet.	It	is
best	known	for	underlying	HTTPS	connections,	but	it’s	also	used	to	protect
some	 virtual	 private	 network	 (VPN)	 connections,	 as	 well	 as	 email	 servers,
mobile	 applications,	 and	many	others.	And	 sadly,	TLS	has	 long	 supported
RC4.

Unlike	WEP,	 the	 TLS	 implementation	 doesn’t	 make	 the	 same	 blatant
mistake	of	tweaking	the	RC4	specs	in	order	to	use	a	public	nonce.	Instead,
TLS	just	feeds	RC4	a	unique	128-bit	session	key,	which	means	it’s	a	bit	less
broken	than	WEP.

The	 weakness	 in	 TLS	 is	 due	 only	 to	 RC4	 and	 its	 inexcusable	 flaws:
statistical	biases,	or	non-randomness,	which	we	know	is	a	total	deal	breaker
for	 a	 stream	 cipher.	 For	 example,	 the	 second	 keystream	 byte	 produced	 by
RC4	is	zero,	with	a	probability	of	1/128,	whereas	it	should	be	1/256	ideally.
(Recall	that	a	byte	can	take	256	values	from	0	to	255;	hence,	a	truly	random
byte	is	zero	with	a	chance	of	1/256.)	Crazier	still	is	the	fact	that	most	experts
continued	to	trust	RC4	as	late	as	2013,	even	though	its	statistical	biases	have
been	known	since	2001.

RC4’s	 known	 statistical	 biases	 should	 have	 been	 enough	 to	 ditch	 the
cipher	 altogether,	 even	 if	 we	 didn’t	 know	 how	 to	 exploit	 the	 biases	 to
compromise	 actual	 applications.	 In	 TLS,	 RC4’s	 flaws	 weren’t	 publicly
exploited	 until	 2011,	 but	 the	 NSA	 allegedly	 managed	 to	 exploit	 RC4’s
weaknesses	to	compromise	TLS’s	RC4	connections	well	before	then.



As	it	turned	out,	not	only	was	RC4’s	second	keystream	byte	biased,	but	all
of	the	first	256	bytes	were	biased	as	well.	In	2011,	researchers	found	that	the
probability	that	one	of	those	bytes	comes	to	zero	equals	1/256	+	c/2562,	for
some	constant,	 c,	 taking	values	between	0.24	and	1.34.	 It’s	not	 just	 for	 the
byte	zero	but	for	other	byte	values	as	well.	The	amazing	thing	about	RC4	is
that	it	fails	where	even	many	noncryptographic	PRNGs	succeed—namely,	at
producing	uniformly	distributed	pseudorandom	bytes	(that	is,	where	each	of
the	256	bytes	has	a	chance	of	1/256	of	showing	up).

Even	the	weakest	attack	model	can	be	used	to	exploit	RC4’s	flawed	TLS
implementation:	basically,	you	collect	ciphertexts	and	look	for	the	plaintext,
not	 the	 key.	But	 there’s	 a	 caveat:	 you’ll	 need	many	 ciphertexts,	 encrypting
the	same	plaintext	several	times	using	different	secret	keys.	This	attack	model
is	sometimes	called	the	broadcast	model,	because	it’s	akin	to	broadcasting	the
same	message	to	multiple	recipients.

For	 example,	 say	 you	want	 to	 decrypt	 the	 plaintext	 byte	P1	 given	many
ciphertext	 bytes	 obtained	 by	 intercepting	 the	 different	 ciphertexts	 of	 the
same	message.	The	first	four	ciphertext	bytes	will	therefore	look	like	this:

Because	 of	 RC4’s	 bias,	 keystream	 bytes	KS1
i	 are	more	 likely	 to	 be	 zero

than	any	other	byte	value.	Therefore,	C1
i	bytes	are	more	likely	to	be	equal	to

P1	than	to	any	other	value.	In	order	to	determine	P1	given	the	C1
i	bytes,	you

simply	count	 the	number	of	occurrences	of	each	byte	value	and	return	 the
most	frequent	one	as	P1.	However,	because	the	statistical	bias	is	very	small,
you’ll	need	millions	of	values	to	get	it	right	with	any	certainty.

The	 attack	 generalizes	 to	 recover	 more	 than	 one	 plaintext	 byte	 and	 to
exploit	more	than	one	biased	value	(zero	here).	The	algorithm	just	becomes
a	 bit	 more	 complicated.	 However,	 this	 attack	 is	 hard	 to	 put	 into	 practice
because	 it	 needs	 to	 collect	many	 ciphertexts	 encrypting	 the	 same	 plaintext
but	 using	 different	 keys.	 For	 example,	 the	 attack	 can’t	 break	 all	 TLS-
protected	connections	that	use	RC4	because	you	need	to	trick	the	server	into
encrypting	the	same	plaintext	to	many	different	recipients,	or	many	times	to



the	same	recipient	with	different	keys.

Salsa20
Salsa20	 is	 a	 simple,	 software-oriented	 cipher	 optimized	 for	modern	CPUs
that	has	been	implemented	in	numerous	protocols	and	libraries,	along	with
its	 variant,	 ChaCha.	 Its	 designer,	 respected	 cryptographer	 Daniel	 J.
Bernstein,	 submitted	 Salsa20	 to	 the	 eSTREAM	 competition	 in	 2005	 and
won	 a	 place	 in	 eSTREAM’s	 software	 portfolio.	 Salsa20’s	 simplicity	 and
speed	have	made	it	popular	among	developers.

Figure	5-10:	Salsa20’s	encryption	scheme	for	a	512-bit	plaintext	block

Salsa20	 is	 a	 counter-based	 stream	 cipher—it	 generates	 its	 keystream	 by
repeatedly	processing	a	counter	incremented	for	each	block.	As	you	can	see
in	Figure	5-10,	the	Salsa20	core	algorithm	transforms	a	512-bit	block	using	a
key	(K),	a	nonce	(N),	and	a	counter	value	(Ctr).	Salsa20	then	adds	the	result
to	 the	 original	 value	 of	 the	 block	 to	 produce	 a	 keystream	 block.	 (If	 the
algorithm	 were	 to	 return	 the	 core’s	 permutation	 directly	 as	 an	 output,
Salsa20	 would	 be	 totally	 insecure,	 because	 it	 could	 be	 inverted.	 The	 final
addition	of	the	initial	secret	state	K	||	N	||	Ctr	makes	the	transform	key-to-
keystream-block	non-invertible.)

The	Quarter-Round	Function
Salsa20’s	 core	 permutation	 uses	 a	 function	 called	 quarter-round	 (QR)	 to
transform	four	32-bit	words	(a,	b,	c,	and	d),	as	shown	here:



These	four	lines	are	computed	from	top	to	bottom,	meaning	that	the	new
value	of	b	depends	on	a	and	d,	 the	new	value	of	c	depends	on	a	and	on	the
new	value	of	b	(and	thus	d	as	well),	and	so	on.

The	 operation	 <<<	 is	wordwise	 left-rotation	 by	 the	 specified	 number	 of
bits,	 which	 can	 be	 any	 value	 between	 1	 and	 31	 (for	 32-bit	 words).	 For
example,	 <<<	 8	 rotates	 a	 word’s	 bits	 of	 eight	 positions	 toward	 the	 left,	 as
shown	in	these	examples:

Transforming	Salsa20’s	512-bit	State
Salsa20’s	core	permutation	transforms	a	512-bit	internal	state	viewed	as	a	4	×
4	 array	of	32-bit	words.	Figure	5-11	 shows	 the	 initial	 state,	using	 a	key	of
eight	 words	 (256	 bits),	 a	 nonce	 of	 two	 words	 (64	 bits),	 a	 counter	 of	 two
words	(64	bits),	and	four	fixed	constant	words	(128	bits)	that	are	identical	for
each	encryption/decryption	and	all	blocks.

To	 transform	 the	 initial	 512-bit	 state,	 Salsa20	 first	 applies	 the	 QR
transform	 to	 all	 four	 columns	 independently	 (known	 as	 the	 column-round)
and	then	to	all	four	rows	independently	(the	row-round),	as	shown	in	Figure
5-12.	 The	 sequence	 column-round/row-round	 is	 called	 a	 double-round.
Salsa20	 repeats	 10	 double-rounds,	 for	 20	 rounds	 in	 total,	 thus	 the	 20	 in
Salsa20.



Figure	5-11:	The	initialization	of	Salsa20’s	state

Figure	5-12:	Columns	and	rows	transformed	by	Salsa20’s	quarter-round	(QR)	function

The	column-round	transforms	the	four	columns	like	so:

The	row-round	transforms	the	rows	by	doing	the	following:

Notice	that	in	a	column-round,	each	QR	takes	xi	arguments	ordered	from
the	 top	 to	 the	 bottom	 line,	 whereas	 a	 row-round’s	 QR	 takes	 as	 a	 first
argument	the	words	on	the	diagonal	 (as	shown	in	the	array	on	the	right	 in



Figure	5-12)	rather	than	words	from	the	first	column.

Evaluating	Salsa20
Listing	5-3	shows	Salsa20’s	initial	states	for	the	first	and	second	blocks	when
initialized	 with	 an	 all-zero	 key	 (00	 bytes)	 and	 an	 all-one	 nonce	 (ff	 bytes).
These	 two	 states	 differ	 in	 only	 one	 bit,	 in	 the	 counter,	 as	 shown	 in	 bold:
specifically,	0	for	the	first	block	and	1	for	the	second.

61707865	00000000	00000000	00000000						61707865	00000000	00000000	00000000
00000000	3320646e	ffffffff	ffffffff						00000000	3320646e	ffffffff	ffffffff
00000000	00000000	79622d32	00000000						00000001	00000000	79622d32	00000000
00000000	00000000	00000000	6b206574						00000000	00000000	00000000	6b206574

Listing	 5-3:	 Salsa20’s	 initial	 states	 for	 the	 first	 two	 blocks	 with	 an	 all-zero	 key	 and	 an	 all-one
nonce

Yet,	 despite	only	 a	one-bit	 difference,	 the	 respective	 internal	 states	 after
10	double-rounds	are	totally	different	from	each	other,	as	Listing	5-4	shows.

e98680bc	f730ba7a	38663ce0	5f376d93						1ba4d492	c14270c3	9fb05306	ff808c64
85683b75	a56ca873	26501592	64144b6d						b49a4100	f5d8fbbd	614234a0	e20663d1
6dcb46fd	58178f93	8cf54cfe	cfdc27d7						12e1e116	6a61bc8f	86f01bcb	2efead4a
68bbe09e	17b403a1	38aa1f27	54323fe0						77775a13	d17b99d5	eb773f5b	2c3a5e7d

Listing	5-4:	The	states	from	Listing	5-3	after	10	Salsa20	double-rounds

But	remember,	even	though	word	values	in	the	keystream	block	may	look
random,	we’ve	seen	that	 it’s	 far	from	a	guarantee	of	security.	RC4’s	output
looks	 random,	but	 it	has	blatant	biases.	Fortunately,	Salsa20	 is	much	more
secure	than	RC4	and	doesn’t	have	statistical	biases.

Differential	Cryptanalysis
To	demonstrate	why	Salsa20	 is	more	secure	 than	RC4,	 let’s	have	a	 look	at
the	 basics	 of	 differential	 cryptanalysis,	 the	 study	 of	 the	 differences	 between
states	 rather	 than	 their	 actual	 values.	For	 example,	 the	 two	 initial	 states	 in
Figure	5-13	differ	by	one	bit	in	the	counter,	or	by	the	word	x8	in	the	Salsa20
state	array.	The	bitwise	difference	between	these	two	states	is	thus	shown	in
this	array:



The	difference	between	the	two	states	is	actually	the	XOR	of	these	states.
The	1	bit	shown	in	bold	corresponds	to	a	1-bit	difference	between	the	two
states.	In	the	XOR	of	the	two	states,	any	nonzero	bits	indicate	differences.

To	 see	 how	 fast	 changes	 propagate	 in	 the	 initial	 state	 as	 a	 result	 of
Salsa20’s	 core	 algorithm,	 let’s	 look	 at	 the	 difference	 between	 two	 states
throughout	the	rounds	iteration.	After	one	round,	the	difference	propagates
across	the	first	column	to	two	of	the	three	other	words	in	that	column:

After	 two	 rounds,	 differences	 further	 propagate	 across	 the	 rows	 that
already	 include	 a	difference,	which	 is	 all	but	 the	 second	 row.	At	 this	point
the	 differences	 between	 the	 states	 are	 rather	 sparse;	 not	 many	 bits	 have
changed	within	a	word	as	shown	here:

After	three	rounds,	the	differences	between	the	states	become	more	dense,
though	 the	many	zero	nibbles	 indicate	 that	many	bit	positions	are	 still	not
affected	by	the	initial	difference:

After	four	rounds,	differences	look	random	to	a	human	observer,	and	they
are	also	almost	random	statistically	as	well,	as	shown	here:



So	 after	 only	 four	 rounds,	 a	 single	 difference	 propagates	 to	most	 of	 the
bits	in	the	512-bit	state.	In	cryptography,	this	is	called	full	diffusion.

We’ve	seen	that	differences	propagate	quickly	throughout	Salsa20	rounds.
But	 not	 only	 do	 differences	 propagate	 across	 all	 states,	 they	 also	 do	 so
according	to	complex	equations	that	make	future	differences	hard	to	predict
because	highly	nonlinear	 relations	 drive	 the	 state’s	 evolution,	 thanks	 to	 the
mix	of	XOR,	addition,	and	rotation.	If	only	XORs	were	used,	we’d	still	have
many	differences	propagating,	but	the	process	would	be	linear	and	therefore
insecure.

Attacking	Salsa20/8
Salsa20	makes	 20	 rounds	 by	 default,	 but	 it’s	 sometimes	 used	with	 only	 12
rounds,	in	a	version	called	Salsa20/12,	to	make	it	faster.	Although	Salsa20/12
uses	eight	fewer	rounds	than	Salsa20,	it’s	still	significantly	stronger	than	the
weaker	Salsa20/8,	 another	 version	with	 eight	 rounds,	which	 is	more	 rarely
used.

Breaking	Salsa20	should	ideally	take	2256	operations,	thanks	to	its	use	of	a
256-bit	key.	If	the	key	can	be	recovered	by	performing	any	fewer	than	2256

operations,	 the	 cipher	 is	 in	 theory	 broken.	 That’s	 exactly	 the	 case	 with
Salsa20/8.

The	 attack	 on	 Salsa20/8	 (published	 in	 the	 2008	 paper	 New	 Features	 of
Latin	Dances:	Analysis	of	Salsa,	ChaCha,	and	Rumba,	of	which	I’m	a	co-author,
and	for	which	we	won	a	cryptanalysis	prize	from	Daniel	J.	Bernstein)	exploits
a	statistical	bias	in	Salsa’s	core	algorithm	after	four	rounds	to	recover	the	key
of	 eight-round	 Salsa20.	 In	 reality,	 this	 is	 mostly	 a	 theoretical	 attack:	 we
estimate	its	complexity	at	2251	operations	of	the	core	function—impossible,
but	less	so	than	breaking	the	expected	2256	complexity.

The	attack	exploits	not	only	a	bias	over	the	first	four	rounds	of	Salsa20/8,
but	also	a	property	of	 the	 last	 four	rounds:	knowing	the	nonce,	N,	and	the
counter,	Ctr	(refer	back	to	Figure	5-10),	the	only	value	needed	to	invert	the
computation	from	the	keystream	back	to	the	initial	state	is	the	key,	K.	But	as
shown	 in	Figure	 5-13,	 if	 you	only	 know	 some	part	 of	K,	 you	 can	partially



invert	 the	computation	up	until	 the	 fourth	round	and	observe	some	bits	of
that	 intermediate	 state—including	 the	 biased	 bit!	 You’ll	 only	 observe	 the
bias	if	you	have	the	correct	guess	of	the	partial	key;	hence,	the	bias	serves	as
an	indicator	that	you’ve	got	the	correct	key.

Figure	5-13:	The	principle	of	the	attack	on	Salsa20/8

In	the	actual	attack	on	Salsa20/8,	in	order	to	determine	the	correct	guess,
we	 need	 to	 guess	 220	 bits	 of	 the	 key,	 and	we	 need	 231	 pairs	 of	 keystream
blocks,	all	with	the	same	specific	difference	in	the	nonce.	Once	we’ve	singled
out	the	correct	220	bits,	we	simply	need	to	brute-force	36	bits.	The	brute-
forcing	takes	236	operations,	a	computation	that	dwarfs	the	unrealistic	2220	×
231	=	2251	trials	needed	to	find	the	220	bits	to	complete	the	first	part	of	the
attack.

How	Things	Can	Go	Wrong
Alas,	many	things	can	go	wrong	with	stream	ciphers,	 from	brittle,	 insecure
designs	 to	 strong	 algorithms	 incorrectly	 implemented.	 I’ll	 explore	 each
category	of	potential	problems	in	the	following	sections.

Nonce	Reuse
The	most	common	failure	seen	with	stream	ciphers	is	an	amateur	mistake:	it
occurs	 when	 a	 nonce	 is	 reused	 more	 than	 once	 with	 the	 same	 key.	 This
produces	 identical	 keystreams,	 allowing	 you	 to	 break	 the	 encryption	 by
XORing	two	ciphertexts	together.	The	keystream	then	vanishes,	and	you’re
left	with	the	XOR	of	the	two	plaintexts.

For	example,	older	versions	of	Microsoft	Word	and	Excel	used	a	unique



nonce	for	each	document,	but	the	nonce	wasn’t	changed	once	the	document
was	modified.	As	a	result,	the	clear	and	encrypted	text	of	an	older	version	of
a	 document	 could	 be	 used	 to	 decrypt	 later	 encrypted	 versions.	 If	 even
Microsoft	 made	 this	 kind	 of	 blunder,	 you	 can	 imagine	 how	 large	 the
problem	might	be.

Certain	stream	ciphers	designed	in	the	2010s	tried	to	mitigate	the	risk	of
nonce	 reuse	 by	 building	 “misuse-resistant”	 constructions,	 or	 ciphers	 that
remain	secure	even	if	a	nonce	is	used	twice.	However,	achieving	this	level	of
security	comes	with	a	performance	penalty,	as	we’ll	see	in	Chapter	8	with	the
SIV	mode.

Broken	RC4	Implementation
Though	 it’s	 already	 weak,	 RC4	 can	 become	 even	 weaker	 if	 you	 blindly
optimize	 its	 implementation.	 For	 example,	 consider	 the	 following	 entry	 in
the	 2007	 Underhanded	 C	 Contest,	 an	 informal	 competition	 where
programmers	 write	 benign-looking	 code	 that	 actually	 includes	 a	malicious
function.

Here’s	how	it	works.	The	naive	way	to	implement	the	line	swap(S[i],	S[j])
in	RC4’s	algorithm	is	to	do	the	following,	as	expressed	in	this	Python	code:

buf	=	S[i]
S[i]	=	S[j]
S[j]	=	buf

This	 way	 of	 swapping	 two	 variables	 obviously	 works,	 but	 you	 need	 to
create	a	new	variable,	buf.	To	avoid	 this,	programmers	often	use	 the	XOR-
swap	trick,	shown	here,	to	swap	the	values	of	the	variables	x	and	y:

x	=	x	⊕	y
y	=	x	⊕	y
x	=	x	⊕	y

This	trick	works	because	the	second	line	sets	y	 to	x	⊕	y	⊕	y	=	x,	and	the
third	line	sets	x	to	x	⊕	y	⊕	x	⊕	y	⊕	y	=	y.	Using	this	trick	to	implement	RC4
gives	 the	 implementation	shown	 in	Listing	5-5	 (adapted	 from	Wagner	and
Biondi’s	program	submitted	 to	 the	Underhanded	C	Contest,	 and	online	at
http://www.underhanded-c.org/_page_id_16.html).

#	define	TOBYTE(x)	(x)	&	255
#	define	SWAP(x,y)	do	{	x^=y;	y^=x;	x^=y;	}	while	(0)

http://www.underhanded-c.org/_page_id_16.html


static	unsigned	char	S[256];
static	int	i=0,	j=0;

void	init(char	*passphrase)	{
				int	passlen	=	strlen(passphrase);
				for	(i=0;	i<256;	i++)
								S[i]	=	i;
				for	(i=0;	i<256;	i++)	{
								j	=	TOBYTE(j	+	S[TOBYTE(i)]	+	passphrase[j	%	passlen]);
								SWAP(S[TOBYTE(i)],	S[j]);
				}
				i	=	0;	j	=	0;
}

unsigned	char	encrypt_one_byte(unsigned	char	c)	{
				int	k;
				i	=	TOBYTE(i+1);
				j	=	TOBYTE(j	+	S[i]);
				SWAP(S[i],	S[j]);
				k	=	TOBYTE(S[i]	+	S[j]);
				return	c	^	S[k];
}

Listing	5-5:	Incorrect	C	implementation	of	RC4,	due	to	its	use	of	an	XOR	swap

Now	 stop	 reading,	 and	 try	 to	 spot	 the	 problem	with	 the	 XOR	 swap	 in
Listing	5-5.

Things	will	go	south	when	i	=	j.	Instead	of	 leaving	the	state	unchanged,
the	XOR	swap	will	set	S[i]	to	S[i]	⊕	S[i]	=	0.	In	effect,	a	byte	of	the	state	will
be	set	to	zero	each	time	i	equals	j	in	the	key	schedule	or	during	encryption,
ultimately	leading	to	an	all-zero	state	and	thus	to	an	all-zero	keystream.	For
example,	 after	68KB	of	data	have	been	processed,	most	of	 the	bytes	 in	 the
256-byte	state	are	zero,	and	the	output	keystream	looks	like	this:

00	00	00	00	00	00	00	53	53	00	00	00	00	00	00	00	00	00	00	00	13	13	00	5c	00	a5
00	00	…

The	 lesson	 here	 is	 to	 refrain	 from	 over-optimizing	 your	 crypto
implementations.	 Clarity	 and	 confidence	 always	 trump	 performance	 in
cryptography.

Weak	Ciphers	Baked	Into	Hardware
When	a	cryptosystem	fails	 to	be	 secure,	 some	systems	can	quickly	 respond
by	 silently	 updating	 the	 affected	 software	 remotely	 (as	 with	 some	 pay-TV
systems)	or	by	releasing	a	new	version	and	prompting	the	users	to	upgrade



(as	with	mobile	applications).	Some	other	systems	are	not	so	lucky	and	need
to	stick	to	the	compromised	cryptosystem	for	a	while	before	upgrading	to	a
secure	version,	as	is	the	case	with	certain	satellite	phones.

In	the	early	2000s,	US	and	European	telecommunication	standardization
institutes	(TIA	and	ETSI)	jointly	developed	two	standards	for	satellite	phone
(satphone)	 communications.	 Satphones	 are	 like	mobile	 phones,	 except	 that
their	 signal	 goes	 through	 satellites	 rather	 than	 terrestrial	 stations.	 The
advantage	 is	 that	 you	 can	 use	 them	pretty	much	 everywhere	 in	 the	world.
Their	downsides	are	the	price,	quality,	latency,	and,	as	it	turns	out,	security.

GMR-1	 and	 GMR-2	 are	 the	 two	 satphone	 standards	 adopted	 by	 most
commercial	 vendors,	 such	 as	 Thuraya	 and	 Inmarsat.	 Both	 include	 stream
ciphers	 to	 encrypt	 voice	 communications.	 GMR-1’s	 cipher	 is	 hardware
oriented,	with	a	combination	of	four	LFSRs,	similar	to	A5/2,	the	deliberately
insecure	cipher	in	the	2G	mobile	standard	aimed	at	non-Western	countries.
GMR-2’s	cipher	is	software	oriented,	with	an	8-byte	state	and	the	use	of	S-
boxes.	Both	stream	ciphers	are	 insecure,	and	will	only	protect	users	against
amateurs,	not	against	state	agencies.

This	story	should	remind	us	that	stream	ciphers	used	to	be	easier	to	break
than	 block	 ciphers	 and	 that	 they’re	 easier	 to	 sabotage.	Why?	Well,	 if	 you
design	a	weak	stream	cipher	on	purpose,	when	the	flaw	is	found,	you	can	still
blame	it	on	the	weakness	of	stream	ciphers	and	deny	any	malicious	intent.

Further	Reading
To	 learn	 more	 about	 stream	 ciphers,	 begin	 with	 the	 archives	 of	 the
eSTREAM	competition	at	http://www.ecrypt.eu.org/stream/project.html,	where
you’ll	 find	hundreds	of	papers	on	stream	ciphers,	 including	details	of	more
than	30	candidates	 and	many	attacks.	Some	of	 the	most	 interesting	attacks
are	 the	 correlation	 attacks,	 algebraic	 attacks,	 and	 cube	 attacks.	 See	 in
particular	the	work	of	Courtois	and	Meier	for	the	first	two	attack	types	and
that	of	Dinur	and	Shamir	for	cube	attacks.

For	more	information	on	RC4,	see	the	work	of	Paterson	and	his	team	at
http://www.isg.rhul.ac.uk/tls/	 on	 the	 security	 of	 RC4	 as	 used	 in	 TLS	 and
WPA.	Also	see	Spritz,	 the	RC4-like	cipher	created	 in	2014	by	Rivest,	who
designed	RC4	in	the	1980s.

Salsa20’s	legacy	deserves	your	attention,	too.	The	stream	cipher	ChaCha
is	similar	to	Salsa20,	but	with	a	slightly	different	core	permutation	that	was

http://www.ecrypt.eu.org/stream/project.html
http://www.isg.rhul.ac.uk/tls/


later	 used	 in	 the	hash	 function	BLAKE,	 as	 you’ll	 see	 in	Chapter	 6.	These
algorithms	all	 leverage	Salsa20’s	 software	 implementation	 techniques	using
parallelized	instructions,	as	discussed	at	https://cr.yp.to/snuffle.html.

https://cr.yp.to/snuffle.html


6
HASH	FUNCTIONS

Hash	functions—such	as	MD5,	SHA-1,	SHA-256,	SHA-3,	and	BLAKE2—
comprise	 the	 cryptographer’s	 Swiss	 Army	 Knife:	 they	 are	 used	 in	 digital
signatures,	 public-key	 encryption,	 integrity	 verification,	 message
authentication,	 password	 protection,	 key	 agreement	 protocols,	 and	 many
other	cryptographic	protocols.	Whether	you’re	encrypting	an	email,	sending
a	 message	 on	 your	 mobile	 phone,	 connecting	 to	 an	 HTTPS	 website,	 or
connecting	 to	 a	 remote	 machine	 through	 IPSec	 or	 SSH,	 there’s	 a	 hash
function	somewhere	under	the	hood.

Hash	 functions	are	by	 far	 the	most	versatile	and	ubiquitous	of	all	 crypto
algorithms.	There	 are	many	examples	of	 their	use	 in	 the	 real	world:	 cloud
storage	 systems	 use	 them	 to	 identify	 identical	 files	 and	 to	 detect	modified
files;	 the	 Git	 revision	 control	 system	 uses	 them	 to	 identify	 files	 in	 a
repository;	 host-based	 intrusion	 detection	 systems	 (HIDS)	 use	 them	 to
detect	modified	files;	network-based	intrusion	detection	systems	(NIDS)	use
hashes	 to	 detect	 known-malicious	 data	 going	 through	 a	 network;	 forensic
analysts	 use	 hash	 values	 to	 prove	 that	 digital	 artifacts	 have	 not	 been
modified;	 Bitcoin	 uses	 a	 hash	 function	 in	 its	 proof-of-work	 systems—and
there	are	many	more.

Figure	6-1:	A	hash	function’s	input	and	output

Unlike	stream	ciphers,	which	create	a	long	output	from	a	short	one,	hash
functions	take	a	long	input	and	produce	a	short	output,	called	a	hash	value	or
digest	(see	Figure	6-1).



This	chapter	revolves	around	two	main	topics.	First,	security:	what	does	it
mean	for	a	hash	function	to	be	secure?	To	that	end,	I	introduce	two	essential
notions—namely,	 collision	 resistance	 and	 preimage	 resistance.	The	 second
big	topic	revolves	around	hash	functions	construction.	We	look	at	the	high-
level	 techniques	 used	 by	 modern	 hash	 functions	 and	 then	 review	 the
internals	of	the	most	common	hash	functions:	SHA-1,	SHA-2,	SHA-3,	and
BLAKE2.	Lastly,	we	see	how	secure	hash	functions	can	behave	insecurely	if
misused.

NOTE
Do	 not	 confuse	 cryptographic	 hash	 functions	 with	 noncryptographic	 ones.
Noncryptographic	hash	functions	are	used	in	data	structures	such	as	hash	tables
or	 to	 detect	 accidental	 errors,	 and	 they	 provide	 no	 security	 whatsoever.	 For
example,	 cyclic	 redundancy	 checks	 (CRCs)	 are	 noncryptographic	 hashes	 used	 to
detect	accidental	modifications	of	a	file.

Secure	Hash	Functions

Figure	 6-2:	 A	 hash	 function	 in	 a	 digital	 signature	 scheme.	 The	 hash	 acts	 as	 a	 proxy	 for	 the
message.

The	notion	of	security	for	hash	functions	is	different	from	what	we’ve	seen
thus	 far.	 Whereas	 ciphers	 protect	 data	 confidentiality	 in	 an	 effort	 to
guarantee	 that	 data	 sent	 in	 the	 clear	 can’t	 be	 read,	 hash	 functions	 protect
data	integrity	in	an	effort	to	guarantee	that	data—whether	sent	in	the	clear
or	encrypted—hasn’t	been	modified.	If	a	hash	function	is	secure,	two	distinct
pieces	 of	 data	 should	 always	 have	 different	 hashes.	 A	 file’s	 hash	 can	 thus
serve	as	its	identifier.

Consider	 the	 most	 common	 application	 of	 a	 hash	 function:	 digital
signatures,	 or	 just	 signatures.	When	 digital	 signatures	 are	 used,	 applications
process	the	hash	of	the	message	to	be	signed	rather	than	the	message	itself,
as	 shown	 in	Figure	 6-2.	The	 hash	 acts	 as	 an	 identifier	 for	 the	message.	 If
even	a	single	bit	is	changed	in	the	message,	the	hash	of	the	message	will	be



totally	different.	The	hash	 function	 thus	helps	ensure	 that	 the	message	has
not	 been	 modified.	 Signing	 a	 message’s	 hash	 is	 as	 secure	 as	 signing	 the
message	itself,	and	signing	a	short	hash	of,	say,	256	bits	is	much	faster	than
signing	a	message	that	may	be	very	large.	In	fact,	most	signature	algorithms
can	only	work	on	short	inputs	such	as	hash	values.

Unpredictability	Again
All	 of	 the	 cryptographic	 strength	 of	 hash	 functions	 stems	 from	 the
unpredictability	of	their	outputs.	Take	the	256-bit	hexadecimal	values	shown
next;	 these	 hashes	 are	 computed	 using	 the	 NIST	 standard	 hash	 function
SHA-256	with	the	ASCII	letters	a,	b,	and	c	as	inputs.	As	you	can	see,	though
the	 values	 a,	 b,	 and	 c	 differ	 by	 only	 one	 or	 two	 bits	 (a	 is	 the	 bit	 sequence
01100001,	 b	 is	 01100010,	 and	 c	 is	 01100011),	 their	 hash	 values	 are
completely	different.

Given	only	these	three	hashes,	it	would	be	impossible	to	predict	the	value
of	the	SHA-256	hash	of	d	or	any	of	its	bits.	Why?	Because	hash	values	of	a
secure	hash	function	are	unpredictable.	A	secure	hash	function	should	be	like
a	black	box	that	returns	a	random	string	each	time	it	receives	an	input.

The	 general,	 theoretical	 definition	 of	 a	 secure	 hash	 function	 is	 that	 it
behaves	 like	 a	 truly	 random	 function	 (sometimes	 called	 a	 random	 oracle).
Specifically,	 a	 secure	hash	 function	 shouldn’t	have	 any	property	or	pattern
that	 a	 random	 function	 wouldn’t	 have.	 This	 definition	 is	 helpful	 for
theoreticians,	 but	 in	 practice	 we	 need	 more	 specific	 notions:	 namely,
preimage	resistance	and	collision	resistance.

Preimage	Resistance
A	preimage	of	a	given	hash	value,	H,	is	any	message,	M,	such	that	Hash(M)	=
H.	Preimage	resistance	describes	the	security	guarantee	that	given	a	random
hash	value,	an	attacker	will	never	find	a	preimage	of	that	hash	value.	Indeed,
hash	 functions	 are	 sometimes	 called	 one-way	 functions	 because	 you	 can	 go
from	the	message	to	its	hash,	but	not	the	other	way.

First,	 note	 that	 a	 hash	 function	 can’t	 be	 inverted,	 even	 given	 unlimited



computing	power.	For	example,	suppose	that	I	hash	some	message	using	the
SHA-256	hash	function	and	get	this	256-bit	hash	value:

f67a58184cef99d6dfc3045f08645e844f2837ee4bfcc6c949c9f7674367adfd

Even	 given	 unlimited	 computing	 power,	 you	 would	 never	 be	 able	 to
determine	 the	message	 that	 I	 picked	 to	 produce	 this	 particular	 hash,	 since
there	 are	many	messages	 hashing	 to	 the	 same	 value.	 You	would	 therefore
find	some	messages	that	produce	this	hash	value	(possibly	including	the	one	I
picked),	but	would	be	unable	to	determine	the	message	that	I	used.

For	 example,	 there	 are	 2256	 possible	 values	 of	 a	 256-bit	 hash	 (a	 typical
length	with	hash	functions	used	in	practice),	but	there	are	many	more	values
of,	 say,	 1024-bit	 messages	 (namely,	 21024	 possible	 values).	 Therefore,	 it
follows	 that,	 on	 average,	 each	possible	 256-bit	hash	 value	will	 have	21024	 /
2256	=	21024	–	256	=	2768	preimages	of	1024	bits	each.

In	 practice,	 we	must	 be	 sure	 that	 it	 is	 practically	 impossible	 to	 find	 any
message	that	maps	to	a	given	hash	value,	not	just	the	message	that	was	used,
which	is	what	preimage	resistance	actually	stands	for.	Specifically,	we	speak
of	first-preimage	and	second-preimage	resistance.	First-preimage	resistance	(or
just	 preimage	 resistance)	 describes	 cases	where	 it	 is	 practically	 impossible	 to
find	a	message	that	hashes	to	a	given	value.	Second-preimage	resistance,	on	the
other	hand,	describes	the	case	that	when	given	a	message,	M1,	it’s	practically
impossible	to	find	another	message,	M2,	 that	hashes	to	the	same	value	that
M1	does.

The	Cost	of	Preimages
Given	a	hash	function	and	a	hash	value,	you	can	search	for	first	preimages	by
trying	different	messages	until	one	hits	 the	 target	hash.	You	would	do	 this
using	an	algorithm	similar	to	find-preimage()	in	Listing	6-1.

find-preimage(H)	{
				repeat	{
								M	=	random_message()
								if	Hash(M)	==	H	then	return	M
					}
}

Listing	6-1:	The	optimal	preimage	search	algorithm	for	a	secure	hash	function



In	Listing	6-1,	random_message()	generates	a	random	message	(say,	a	random
1024-bit	 value).	Obviously,	 find-preimage()	 will	 never	 complete	 if	 the	 hash’s
bit	 length,	 n,	 is	 large	 enough,	 because	 it	 will	 take	 on	 average	 2n	 attempts
before	finding	a	preimage.	That’s	a	hopeless	situation	when	working	with	n
=	256,	as	in	modern	hashes	like	SHA-256	and	BLAKE2.

Why	Second-Preimage	Resistance	Is	Weaker
I	claim	that	if	you	can	find	first	preimages,	you	can	find	second	preimages	as
well	 (for	 the	same	hash	 function).	As	proof,	 if	 the	algorithm	solve-preimage()
returns	 a	 preimage	 of	 a	 given	 hash	 value,	 you	 can	 use	 the	 algorithm	 in
Listing	6-2	to	find	a	second	preimage	of	some	message,	M.

solve-second-preimage(M)	{
				H	=	Hash(M)
				return	solve-preimage(H)
}

Listing	6-2:	How	to	find	second	preimages	if	you	can	find	first	preimages

That	 is,	 you’ll	 find	 the	 second	 preimage	 by	 seeing	 it	 as	 a	 preimage
problem	 and	 applying	 the	 preimage	 attack.	 It	 follows	 that	 any	 second-
preimage	resistant	hash	function	 is	also	preimage	resistant.	 (Were	 it	not,	 it
wouldn’t	be	second	preimage	resistant	either,	per	the	preceding	solve-second-
preimage	algorithm.)	In	other	words,	the	best	attack	we	can	use	to	find	second
preimages	 is	 almost	 identical	 to	 the	 best	 attack	 we	 can	 use	 to	 find	 first
preimages	 (unless	 the	 hash	 function	 has	 some	 defect	 that	 allows	 for	more
efficient	 attacks).	Also	 note	 that	 a	 preimage	 search	 attack	 is	 essentially	 the
same	as	a	key	recovery	attack	on	a	block	cipher	or	stream	cipher—namely,	a
brute-force	search	for	a	single	magic	value.

Collision	Resistance
Whatever	hash	function	you	choose	to	use,	collisions	will	inevitably	exist	due
to	the	pigeonhole	principle,	which	states	that	if	you	have	m	holes	and	n	pigeons
to	 put	 into	 those	 holes,	 and	 if	n	 is	 greater	 than	m,	 at	 least	 one	 hole	must
contain	more	than	one	pigeon.

NOTE
This	can	be	generalized	to	other	items	and	containers	as	well.	For	example,	any



27-word	sequence	in	the	US	Constitution	includes	at	least	two	words	that	start
with	the	same	letter.	In	the	world	of	hash	functions,	holes	are	the	hash	values,
and	 pigeons	 are	 the	 messages.	 Because	 we	 know	 that	 there	 are	 many	 more
possible	messages	than	hash	values,	collisions	must	exist.

However,	despite	the	inevitable,	collisions	should	be	as	hard	to	find	as	the
original	 message	 in	 order	 for	 a	 hash	 function	 to	 be	 considered	 collision
resistant—in	 other	 words,	 attackers	 shouldn’t	 be	 able	 to	 find	 two	 distinct
messages	that	hash	to	the	same	value.

The	 notion	 of	 collision	 resistance	 is	 related	 to	 the	 notion	 of	 second-
preimage	 resistance:	 if	 you	 can	 find	 second	preimages	 for	 a	 hash	 function,
you	can	also	find	collisions,	as	shown	in	Listing	6-3.

solve-collision()	{
				M	=	random_message()
				return	(M,	solve-second-preimage(M))
}

Listing	6-3:	The	naive	collision	search	algorithm

That	 is,	 any	 collision-resistant	 hash	 is	 also	 second	 preimage	 resistant.	 If
this	 were	 not	 the	 case,	 there	 would	 be	 an	 efficient	 solve-second-preimage
algorithm	that	could	be	used	to	break	collision	resistance.

Finding	Collisions
It’s	faster	to	find	collisions	than	it	is	to	find	preimages,	on	the	order	of	about
2n/2	operations	instead	of	2n,	thanks	to	the	birthday	attack,	whose	key	idea	is
the	following:	given	N	messages	and	as	many	hash	values,	you	can	produce	a
total	of	N	×	(N	–	1)	/	2	potential	collisions	by	considering	each	pair	of	two
hash	 values	 (a	 number	 of	 the	 same	 order	 of	 magnitude	 as	N2).	 It’s	 called
birthday	 attack	 because	 it’s	 usually	 illustrated	 using	 the	 so-called	 birthday
paradox,	or	the	fact	that	a	group	of	only	23	persons	will	include	two	persons
having	the	same	birth	date	with	probability	1/2.

NOTE
N	×	(N	–	1)	/	2	is	the	count	of	pairs	of	two	distinct	messages,	where	we	divide
by	2	because	we	view	(M1,	M2)	and	(M2,	M1)	as	a	same	pair.	In	other	words,
we	don’t	care	about	the	ordering.



For	the	sake	of	comparison,	in	the	case	of	a	preimage	search,	N	messages
only	 get	 you	 N	 candidate	 preimages,	 whereas	 the	 same	 N	 messages	 give
approximately	N2	potential	collisions,	as	 just	discussed.	With	N2	 instead	of
N,	we	 say	 that	 there	are	quadratically	more	chances	 to	 find	a	 solution.	The
complexity	 of	 the	 search	 is	 in	 turn	 quadratically	 lower:	 in	 order	 to	 find	 a
collision,	 you’ll	 need	 to	 use	 the	 square	 root	 of	 2n	 messages;	 that	 is,	 2n/2

instead	of	2n.

The	Naive	Birthday	Attack
Here’s	 the	 simplest	 way	 to	 carry	 out	 the	 birthday	 attack	 in	 order	 to	 find
collisions:

1.	 Compute	 2n/2	 hashes	 of	 2n/2	 arbitrarily	 chosen	messages	 and	 store	 all
the	message/hash	pairs	in	a	list.

2.	 Sort	 the	 list	with	respect	 to	 the	hash	value	 to	move	any	 identical	hash
values	next	to	each	other.

3.	 Search	the	sorted	list	to	find	two	consecutive	entries	with	the	same	hash
value.

Unfortunately,	this	method	requires	a	lot	of	memory	(enough	to	store	2n/2

message/hash	 pairs),	 and	 sorting	 lots	 of	 elements	 slows	 down	 the	 search,
requiring	 about	 n2n	 basic	 operations	 on	 average	 using	 even	 the	 quicksort
algorithm.

Low-Memory	Collision	Search:	The	Rho	Method
The	Rho	method	 is	an	algorithm	for	finding	collisions	that,	unlike	the	naive
birthday	attack,	requires	only	a	small	amount	of	memory.	It	works	like	this:

1.	 Given	a	hash	 function	with	n-bit	hash	values,	pick	 some	random	hash
value	(H1),	and	define	H1	=	H′1.

2.	 Compute	H2	 =	Hash(H1),	 and	H′2	 =	Hash(Hash(H′1));	 that	 is,	 in	 the
first	case	we	apply	the	hash	function	once,	while	in	the	second	case	we
apply	it	twice.

3.	 Iterate	 the	 process	 and	 compute	 Hi	 +	 1	 =	 Hash(Hi),	 H′i	 +	 1	 =
Hash(Hash(H′i)),	until	you	reach	i	such	that	Hi	+	1	=	H′i	+	1.



Figure	6-3	will	help	you	to	visualize	the	attack,	where	an	arrow	from,	say,
H1	to	H2	means	H2	=	Hash(H1).	Observe	that	the	sequence	of	His	eventually
enters	a	loop,	also	called	a	cycle,	which	resembles	the	Greek	letter	rho	(ρ)	in
shape.	The	cycle	starts	at	H5	and	is	characterized	by	the	collision	Hash(H4)
=	Hash(H10)	 =	 H5.	 The	 key	 observation	 here	 is	 that	 in	 order	 to	 find	 a
collision,	you	simply	need	to	find	such	a	cycle.	The	algorithm	above	allows
an	 attacker	 to	 detect	 the	 position	 of	 the	 cycle,	 and	 therefore	 to	 find	 the
collision.

Figure	6-3:	 The	 structure	 of	 the	Rho	hash	 function.	Each	 arrow	 represents	 an	 evaluation	 of	 the
hash	function.	The	cycle	beginning	at	H5	corresponds	to	a	collision,	Hash(H4)	=	Hash(H10)	=	H5.

Advanced	collision-finding	techniques	work	by	first	detecting	the	start	of
the	cycle	and	then	finding	the	collision,	without	storing	numerous	values	in
memory	 and	 without	 needing	 to	 sort	 a	 long	 list.	 The	 Rho	 method	 takes
about	 2n/2	 operations	 to	 succeed.	 Indeed,	Figure	 6-3	 has	many	 fewer	 hash
values	 than	would	 an	 actual	 function	with	digests	of	256	bits	or	more.	On
average,	the	cycle	and	the	tail	(the	part	that	extends	from	H1	to	H5	in	Figure
6-3)	each	include	about	2n/2	hash	values,	where	n	is	the	bit	length	of	the	hash
values.	Therefore,	you’ll	need	at	 least	2n/2	+	2n/2	evaluations	of	 the	hash	to
find	a	collision.

Building	Hash	Functions
In	 the	 1980s,	 cryptographers	 realized	 that	 the	 simplest	 way	 to	 hash	 a
message	is	to	split	it	into	chunks	and	process	each	chunk	consecutively	using
a	similar	algorithm.	This	strategy	is	called	 iterative	hashing,	and	it	comes	in



two	main	forms:

Iterative	hashing	using	a	compression	function	that	transforms	an	input	to
a	smaller	output,	as	shown	in	Figure	6-4.	This	technique	is	also	known	as
the	 Merkle–Damgård	 construction	 (named	 after	 the	 cryptographers
Ralph	Merkle	and	Ivan	Damgård).
Iterative	hashing	using	a	function	that	transforms	an	input	to	an	output
of	 the	 same	 size,	 such	 that	 any	 two	 different	 inputs	 give	 two	 different
outputs	(that	is,	a	permutation),	as	shown	in	Figure	6-7.	Such	functions
are	called	sponge	functions.

We’ll	 now	 discuss	 how	 these	 constructions	 actually	 work	 and	 how
compression	functions	look	in	practice.

Compression-Based	 Hash	 Functions:	 The	 Merkle–
Damgård	Construction
All	hash	functions	developed	from	the	1980s	through	the	2010s	are	based	on
the	 Merkle–Damgård	 (M–D)	 construction:	 MD4,	 MD5,	 SHA-1,	 and	 the
SHA-2	 family,	 as	 well	 as	 the	 lesser-known	RIPEMD	 and	Whirlpool	 hash
functions.	 The	 M–D	 construction	 isn’t	 perfect,	 but	 it	 is	 simple	 and	 has
proven	to	be	secure	enough	for	many	applications.

NOTE
In	 MD4,	 MD5,	 and	 RIPEMD,	 the	 MD	 stands	 for	 message	 digest,	 not
Merkle–Damgård.

To	hash	a	message,	the	M–D	construction	splits	the	message	into	blocks
of	 identical	 size	 and	 mixes	 these	 blocks	 with	 an	 internal	 state	 using	 a
compression	function,	as	shown	in	Figure	6-4.	Here,	H0	 is	 the	 initial	value
(denoted	 IV)	 of	 the	 internal	 state,	 the	 values	 H1,	 H2,	 …	 are	 called	 the
chaining	values,	and	the	final	value	of	the	internal	state	is	the	message’s	hash
value.



Figure	6-4:	The	Merkle–Damgård	construction	using	a	compression	function	called	Compress

The	 message	 blocks	 are	 usually	 512	 or	 1024	 bits,	 but	 they	 can,	 in
principle,	be	of	any	size.	However,	the	block	length	is	fixed	for	a	given	hash
function.	 For	 example,	 SHA-256	works	with	 512-bit	 blocks	 and	 SHA-512
works	with	1024-bit	blocks.

Padding	Blocks
What	 happens	 if	 you	 want	 to	 hash	 a	 message	 that	 can’t	 be	 split	 into	 a
sequence	of	complete	blocks?	For	example,	if	blocks	are	512	bits,	then	a	520-
bit	message	will	consist	of	one	512-bit	block	plus	8	bits.	In	such	a	case,	the
M–D	construction	forms	the	last	block	as	follows:	take	the	chunk	of	bits	left
(8	in	our	example),	append	1	bit,	then	append	0	bits,	and	finally	append	the
length	 of	 the	 original	 message,	 encoded	 on	 a	 fixed	 number	 of	 bits.	 This
padding	 trick	guarantees	 that	 any	 two	distinct	messages	will	give	a	distinct
sequence	of	blocks,	and	thus	a	distinct	hash	value.

For	example,	if	you	hash	the	8-bit	string	10101010	using	SHA-256,	which
is	a	hash	function	with	512-bit	message	blocks,	the	first	and	only	block	will
appear,	in	bits,	as	follows:

Here,	the	message	bits	are	the	first	eight	bits	(10101010),	and	the	padding
bits	are	all	the	subsequent	bits	(shown	in	italic).	The	1000	at	the	end	of	the
block	 (underlined)	 is	 the	 message’s	 length,	 or	 8	 encoded	 in	 binary.	 The
padding	 thus	 produces	 a	 512-bit	 message	 composed	 of	 a	 single	 512-bit
block,	ready	to	be	processed	by	SHA-256’s	compression	function.

Security	Guarantees
The	 Merkle–Damgård	 construction	 is	 essentially	 a	 way	 to	 turn	 a	 secure
compression	function	that	takes	small,	fixed-length	inputs	into	a	secure	hash
function	 that	 takes	 inputs	of	arbitrary	 lengths.	 If	 a	compression	 function	 is
preimage	 and	 collision	 resistant,	 then	 a	hash	 function	built	on	 it	using	 the



M–D	construction	will	also	be	preimage	and	collision	resistant.	This	is	true
because	 any	 successful	 preimage	 attack	 for	 the	M–D	hash	 could	be	 turned
into	 a	 successful	 preimage	 attack	 for	 the	 compression	 function,	 as	Merkle
and	 Damgård	 both	 demonstrated	 in	 their	 1989	 papers	 (see	 “Further
Reading”	 on	 page	 126).	 The	 same	 is	 true	 for	 collisions:	 an	 attacker	 can’t
break	 the	 hash’s	 collision	 resistance	 without	 breaking	 the	 underlying
compression	 function’s	collision	resistance;	hence,	 the	security	of	 the	 latter
guarantees	the	security	of	the	hash.

Note	 that	 the	 converse	 argument	 is	 wrong,	 because	 a	 collision	 for	 the
compression	 function	 doesn’t	 necessarily	 give	 a	 collision	 for	 the	 hash.	 A
collision,	Compress(X,	M1)	=	Compress(Y,	M2),	for	chaining	values	X	and
Y,	both	distinct	from	H0,	won’t	get	you	a	collision	for	the	hash	because	you
can’t	 plug	 the	 collision	 into	 the	 iterative	 chain	of	hashes—except	 if	 one	of
the	chaining	values	happens	to	be	X	and	the	other	Y,	but	that’s	unlikely	to
happen.

Finding	Multicollisions
A	multicollision	occurs	when	a	set	of	three	or	more	messages	hash	to	the	same
value.	 For	 example,	 the	 triplet	 (X,	Y,	Z),	 such	 that	Hash(X)	 =	Hash(Y)	 =
Hash(Z)	is	called	a	3-collision.	Ideally,	multicollisions	should	be	much	harder
to	find	than	collisions,	but	there	is	a	simple	trick	for	finding	them	at	almost
the	same	cost	as	that	of	a	single	collision.	Here’s	how	it	works:

1.	 Find	a	first	collision:	Compress(H0,	M1.1)	=	Compress(H0,	M1.2)	=	H1.
Now	you	have	a	2-collision,	or	two	messages	hashing	to	the	same	value.

2.	 Find	 a	 second	 collision	 with	 H1	 as	 a	 starting	 chaining	 value:
Compress(H1,	M2.1)	=	Compress(H1,	M2.2)	=	H2.	Now	you	have	a	4-
collision,	 with	 four	 messages	 hashing	 to	 the	 same	 value	H2:	M1.1	 ||
M2.1,	M1.1	||	M2.2,	M1.2	||	M2.1,	and	M1.2	||	M2.2.

3.	 Repeat	 and	 find	 N	 times	 a	 collision,	 and	 you’ll	 have	 2N	 N-block
messages	 hashing	 to	 the	 same	 value,	 or	 a	 2N-collision,	 at	 the	 cost	 of
“only”	about	N2N	hash	computations.

In	practice,	this	trick	isn’t	all	that	practical	because	it	requires	you	to	find	a
basic	2-collision	in	the	first	place.



Building	Compression	Functions:	The	Davies–Meyer	Construction

Figure	6-5:	The	Davies–Meyer	construction.	The	dark	triangle	shows	where	the	block	cipher's	key	is
input.

All	compression	functions	used	in	real	hash	functions	such	as	SHA-256	and
BLAKE2	 are	 based	 on	 block	 ciphers,	 because	 that	 is	 the	 simplest	 way	 to
build	 a	 compression	 function.	 Figure	 6-5	 shows	 the	most	 common	 of	 the
block	cipher–based	compression	functions,	the	Davies–Meyer	construction.

Given	 a	message	 block,	Mi,	 and	 the	 previous	 chaining	 value	Hi	 −	 1,	 the
Davies–Meyer	compression	function	uses	a	block	cipher,	E,	to	compute	the
new	chaining	value	as

Hi	=	E(Mi,	Hi	−	1)	⊕	Hi	−	1

The	message	block	Mi	acts	as	the	block	cipher	key,	and	the	chaining	value
Hi	 –	 1	 acts	 as	 its	 plaintext	 block.	As	 long	 as	 the	block	 cipher	 is	 secure,	 the
resulting	 compression	 function	 is	 secure	 as	 well	 as	 collision	 and	 preimage
resistant.	 Without	 the	 XOR	 of	 the	 preceding	 chaining	 value	 (⊕	 Hi	 –	 1),
Davies–Meyer	would	be	insecure	because	you	could	invert	it,	going	from	the
new	chaining	value	to	the	previous	one	using	the	block	cipher’s	decryption
function.

NOTE
The	Davies–Meyer	 construction	 has	 a	 surprising	 property:	 you	 can	 find	 fixed
points,	or	 chaining	values,	 that	are	unchanged	after	applying	 the	 compression
function	with	a	given	message	block.	It	suffices	to	take	Hi	 –	1	=	D(Mi,	0)	as	a
chaining	value,	where	D	is	the	decryption	function	corresponding	to	E.	The	new
chaining	value	Hi	is	therefore	equal	to	the	original	Hi	–	1:



			We	get	Hi	=	Hi	–	1	because	plugging	the	decryption	of	zero	into	the	encryption
function	 yields	 zero—the	 term	E(Mi,	D(Mi,	0))—leaving	 only	 the	⊕	Hi	 –	 1
part	of	the	equation	in	the	expression	of	the	compression	function’s	output.	You
can	then	find	fixed	points	for	the	compression	functions	of	the	SHA-2	functions,
as	with	the	 standards	MD5	and	SHA-1,	which	are	also	based	on	the	Davies–
Meyer	construction.	Fortunately,	fixed	points	aren’t	a	security	risk.

There	 are	 many	 block	 cipher–based	 compression	 functions	 other	 than
Davies–Meyer,	such	as	those	shown	in	Figure	6-6,	but	they	are	less	popular
because	they’re	more	complex	or	require	the	message	block	to	be	the	same
length	as	the	chaining	value.

Figure	6-6:	Other	secure	block	cipher–based	compression	function	constructions

Permutation-Based	Hash	Functions:	Sponge	Functions
After	decades	of	research,	cryptographers	know	everything	there	is	to	know
about	 block	 cipher–based	 hashing	 techniques.	 Still,	 shouldn’t	 there	 be	 a
simpler	 way	 to	 hash?	Why	 bother	 with	 a	 block	 cipher,	 an	 algorithm	 that
takes	 a	 secret	 key,	 when	 hash	 functions	 don’t	 take	 a	 secret	 key?	Why	 not
build	 hash	 functions	 with	 a	 fixed-key	 block	 cipher,	 a	 single	 permutation
algorithm?

Those	simpler	hash	functions	are	called	sponge	functions,	and	they	use	a
single	permutation	instead	of	a	compression	function	and	a	block	cipher	(see
Figure	 6-7).	 Instead	 of	 using	 a	 block	 cipher	 to	mix	message	 bits	 with	 the
internal	state,	sponge	functions	just	do	an	XOR	operation.	Sponge	functions
are	 not	 only	 simpler	 than	 Merkle–Damgård	 functions,	 they’re	 also	 more
versatile.	You	will	find	them	used	as	hash	functions	and	also	as	deterministic
random	 bit	 generators,	 stream	 ciphers,	 pseudorandom	 functions	 (see



Chapter	 7),	 and	 authenticated	 ciphers	 (see	 Chapter	 8).	 The	 most	 famous
sponge	function	is	Keccak,	also	known	as	SHA-3.

Figure	6-7:	The	sponge	construction

A	sponge	function	works	as	follows:

1.	 It	XORs	the	first	message	block,	M1,	to	H0,	a	predefined	initial	value	of
the	internal	state	(for	example,	the	all-zero	string).	Message	blocks	are
all	the	same	size	and	smaller	than	the	internal	state.

2.	 A	permutation,	P,	transforms	the	internal	state	to	another	value	of	the
same	size.

3.	 It	 XORs	 block	M2	 and	 applies	P	 again,	 and	 then	 repeats	 this	 for	 the
message	blocks	M3,	M4,	and	so	on.	This	is	called	the	absorbing	phase.

4.	 After	 injecting	all	 the	message	blocks,	 it	applies	P	again	and	extracts	a
block	of	bits	from	the	state	to	form	the	hash.	(If	you	need	a	longer	hash,
apply	P	again	and	extract	a	block.)	This	is	called	the	squeezing	phase.

The	 security	 of	 a	 sponge	 function	 depends	 on	 the	 length	 of	 its	 internal
state	and	the	 length	of	 the	blocks.	If	message	blocks	are	r-bit	 long	and	the
internal	state	is	w-bit	long,	then	there	are	c	=	w	–	r	bits	of	the	internal	state
that	can’t	be	modified	by	message	blocks.	The	value	of	c	is	called	a	sponge’s
capacity,	and	the	security	level	guaranteed	by	the	sponge	function	is	c/2.	For
example,	 to	 reach	256-bit	 security	with	64-bit	message	blocks,	 the	 internal
state	should	be	w	=	2	×	256	+	64	=	576	bits.	Of	course,	the	security	level	also
depends	on	 the	 length,	n,	 of	 the	hash	 value.	The	 complexity	of	 a	 collision
attack	 is	 therefore	 the	 smallest	 value	 between	 2n/2	 and	 2c/2,	 while	 the
complexity	of	a	second	preimage	attack	is	the	smallest	value	between	2n	and
2c/2.



To	 be	 secure,	 the	 permutation	 P	 should	 behave	 like	 a	 random
permutation,	 without	 statistical	 bias	 and	 without	 a	 mathematical	 structure
that	would	allow	an	attacker	to	predict	outputs.	As	in	compression	function–
based	hashes,	sponge	functions	also	pad	messages,	but	the	padding	is	simpler
because	it	doesn’t	need	to	include	the	message’s	length.	The	last	message	bit
is	simply	followed	by	a	1	bit	and	as	many	zeroes	as	necessary.

The	SHA	Family	of	Hash	Functions
The	Secure	Hash	Algorithm	(SHA)	hash	functions	are	standards	defined	by
NIST	for	use	by	non-military	federal	government	agencies	in	the	US.	They
are	considered	worldwide	standards,	and	only	certain	non-US	governments
opt	for	their	own	hash	algorithms	(such	as	China’s	SM3,	Russia’s	Streebog,
and	Ukraine’s	Kupyna)	for	reasons	of	sovereignty	rather	than	a	lack	of	trust
in	SHA’s	 security.	The	US	SHAs	have	been	more	 extensively	 reviewed	by
cryptanalysts	than	the	non-US	ones.

NOTE
Message	Digest	5	(MD5)	was	the	most	popular	hash	function	from	1992	until
it	was	broken	around	2005,	and	many	applications	then	switched	to	one	of	the
SHA	hash	functions.	MD5	processes	512-bit	block	messages	and	updates	a	128-
bit	 internal	 state	 to	 produce	 a	 128-bit	 hash,	 thus	 providing	 at	 best	 128-bit
preimage	security	and	64-bit	collision	security.	In	1996,	cryptanalysts	warned	of
a	 collision	 for	MD5’s	 compression	 function,	 but	 their	warning	went	 unheeded
until	 2005	 when	 a	 team	 of	 Chinese	 cryptanalysts	 discovered	 how	 to	 compute
collisions	for	the	full	MD5	hash.	As	I	write	this,	it	takes	only	seconds	to	find	a
collision	for	MD5,	yet	many	systems	still	use	or	support	MD5,	often	for	reasons
of	backward	compatibility.

SHA-1
The	SHA-1	standard	arose	from	a	failure	in	the	NSA’s	original	SHA-0	hash
function.	In	1993,	NIST	standardized	the	NSA’s	SHA-0	hash	algorithm,	but
in	 1995	 the	 NSA	 released	 SHA-1	 to	 fix	 an	 unidentified	 security	 issue	 in
SHA-0.	 The	 reason	 for	 the	 tweak	 became	 clear	 when	 in	 1998	 two
researchers	 discovered	 how	 to	 find	 collisions	 for	 SHA-0	 in	 about	 260

operations	 instead	 of	 the	 280	 expected	 for	 160-bit	 hash	 functions	 such	 as



SHA-0	 and	 SHA-1.	 Later	 attacks	 reduced	 the	 complexity	 to	 around	 233

operations,	leading	to	actual	collisions	in	less	than	an	hour	for	SHA-0.

SHA-1	Internals
SHA-1	 combines	 a	Merkle–Damgård	 hash	 function	 with	 a	 Davies–Meyer
compression	 function	based	 on	 a	 specially	 crafted	 block	 cipher,	 sometimes
called	SHACAL.	That	is,	SHA-1	works	by	iterating	the	following	operation
over	512-bit	message	blocks	(M):

H	=	E(M,	H)	+	H

Here,	the	use	of	a	plus	sign	(+)	rather	than	⊕	(XOR)	is	intentional.	E(M,
H)	 and	H	 are	 viewed	as	 arrays	of	32-bit	 integers,	 and	each	 two	words	 at	 a
same	position	are	added	together:	the	first	32-bit	word	of	E(M,	H)	with	the
first	32-bit	word	of	H,	and	so	on.	The	initial	value	of	H	is	constant	for	any
message,	then	H	is	modified	as	per	the	above	equation,	and	the	final	value	of
H	after	processing	all	blocks	is	returned	as	the	hash	of	the	message.

Once	 the	 block	 cipher	 is	 run	 using	 the	message	 block	 as	 a	 key	 and	 the
current	160-bit	chaining	value	as	a	plaintext	block,	the	160-bit	result	is	seen
as	 an	 array	 of	 five	 32-bit	 words,	 each	 of	 which	 is	 added	 to	 its	 32-bit
counterpart	in	the	initial	H	value.

Listing	6-4	shows	SHA-1’s	compression	function,	SHA1-compress():

SHA1-compress(H,	M)	{
				(a0,	b0,	c0,	d0,	e0)	=	H			//	parsing	H	as	five	32-bit	big	endian	words
				(a,	b,	c,	d,	e)	=	SHA1-blockcipher(a0,	b0,	c0,	d0,	e0,	M)
				return	(a	+	a0,	b	+	b0,	c	+	c0,	d	+	d0,	e	+	e0)
}

Listing	6-4:	SHA-1’s	compression	function

SHA-1’s	block	cipher	SHA1-blockcipher(),	shown	in	bold	in	Listing	6-5,	takes
a	512-bit	message	block,	M,	as	a	key	and	transforms	the	five	32-bit	words	(a,
b,	c,	d,	and	e)	by	iterating	80	steps	of	a	short	sequence	of	operations	to	replace
the	 word	 a	 with	 a	 combination	 of	 all	 five	 words.	 It	 then	 shifts	 the	 other
words	in	the	array,	as	in	a	shift	register.

SHA1-blockcipher(a,	b,	c,	d,	e,	M)	{
				W	=	expand(M)
				for	i	=	0	to	79	{
								new	=	(a	<<<	5)	+	f(i,	b,	c,	d)	+	e	+	K[i]	+	W[i]



								(a,	b,	c,	d,	e)	=	(new,	a,	b	>>>	2,	c,	d)
				}
				return	(a,	b,	c,	d,	e)
}

Listing	6-5:	SHA-1’s	block	cipher

The	expand()	 function	shown	in	Listing	6-6	creates	an	array	of	eighty	32-
bit	words,	W,	from	the	16-word	message	block	by	setting	W’s	first	16	words
to	M	 and	 the	 subsequent	ones	 to	an	XOR	combination	of	previous	words,
rotated	one	bit	to	the	left.

expand(M)	{
				//	the	512-bit	M	is	seen	as	an	array	of	sixteen	32-bit	words
				W	=	empty	array	of	eighty	32-bit	words
				for	i	=	0	to	79	{
								if	i	<	16	then	W[i]	=	M[i]
								else
												W[i]	=	(W[i	–	3]	⊕	W[i	–	8]	⊕	W[i	–	14]	⊕	W[i	–	16])	<<<	1
				}
				return	W
}

Listing	6-6:	SHA-1’s	expand()	function

The	 <<<	 1	 operation	 in	 Listing	 6-6	 is	 the	 only	 difference	 between	 the
SHA-1	and	SHA-0	functions.

Finally,	the	f()	function	(see	Listing	6-7)	in	SHA1-blockcipher()	is	a	sequence
of	basic	bitwise	logical	operations	(a	Boolean	function)	that	depends	on	the
round	number.

f(i,	b,	c,	d)	{
				if	i	<	20	then	return	((b	&	c)	⊕	(~b	&	d))
				if	i	<	40	then	return	(b	⊕	c	⊕	d)
				if	i	<	60	then	return	((b	&	c)	⊕	(b	&	d)	⊕	(c	&	d))
				if	i	<	80	then	return	(b	⊕	c	⊕	d)
}

Listing	6-7:	SHA-1’s	f()	function.

The	second	and	fourth	Boolean	functions	in	Listing	6-7	simply	XOR	the
three	input	words	together,	which	is	a	linear	operation.	In	contrast,	the	first
and	third	functions	use	the	non-linear	&	operator	(logical	AND)	to	protect
against	differential	cryptanalysis,	which	as	you	recall,	exploits	the	predictable
propagation	of	bitwise	difference.	Without	the	&	operator	(in	other	words,
if	f()	were	always	b	⊕	c	⊕	d,	for	example),	SHA-1	would	be	easy	to	break	by



tracing	patterns	within	its	internal	state.

Attacks	on	SHA-1
Though	more	secure	than	SHA-0,	SHA-1	is	still	insecure,	which	is	why	the
Chrome	browser	marks	websites	using	SHA-1	in	their	HTTPS	connection
as	 insecure.	 Although	 its	 160-bit	 hash	 should	 grant	 it	 80-bit	 collision
resistance,	 in	 2005	 researchers	 found	 weaknesses	 in	 SHA-1	 and	 estimated
that	 finding	 a	 collision	 would	 take	 approximately	 263	 calculations.	 (That
number	would	be	280	if	the	algorithm	were	flawless.)	A	real	SHA-1	collision
only	came	twelve	years	later	when	after	years	of	cryptanalysis,	Marc	Stevens
and	 other	 researchers	 presented	 two	 colliding	 PDF	 documents	 through	 a
joint	work	with	Google	researchers	(see	https://shattered.io/).

The	 upshot	 is	 that	 you	 should	 not	 use	 SHA-1.	 As	 mentioned,	 internet
browsers	 now	 mark	 SHA-1	 as	 insecure,	 and	 SHA-1	 is	 no	 longer
recommended	by	NIST.	Use	SHA-2	hash	functions	instead,	or	BLAKE2	or
SHA-3.

SHA-2
SHA-2,	the	successor	to	SHA-1,	was	designed	by	the	NSA	and	standardized
by	NIST.	 SHA-2	 is	 a	 family	 of	 four	 hash	 functions:	 SHA-224,	 SHA-256,
SHA-384,	and	SHA-512,	of	which	SHA-256	and	SHA-512	are	the	two	main
algorithms.	The	three-digit	numbers	represent	the	bit	lengths	of	each	hash.

SHA-256
The	 initial	motivation	 behind	 the	 development	 of	 SHA-2	was	 to	 generate
longer	 hashes	 and	 thus	 deliver	 higher	 security	 levels	 than	 SHA-1.	 For
example,	whereas	SHA-1	has	160-bit	chaining	values,	SHA-256	has	256-bit
chaining	values	or	eight	32-bit	words.	Both	SHA-1	and	SHA-256	have	512-
bit	 message	 blocks;	 however,	 whereas	 SHA-1	makes	 80	 rounds,	 SHA-256
makes	 64	 rounds,	 expanding	 the	 16-word	 message	 block	 to	 a	 64-word
message	block	using	the	expand256()	function	shown	in	Listing	6-8.

expand256(M)	{
				//	the	512-bit	M	is	seen	as	an	array	of	sixteen	32-bit	words
				W	=	empty	array	of	sixty-four	32-bit	words
				for	i	=	0	to	63	{
								if	i	<	16	then	W[i]	=	M[i]
								else	{
												//	the	">>"	shifts	instead	of	a	">>>"	rotates	and	is	not	a	typo
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												s0	=	(W[i	–	15]	>>>	7)	⊕	(W[i	–	15]	>>>	18)	⊕	(W[i	–	15]	>>	3)
												s1	=	(W[i	–	2]	>>>	17)	⊕	(W[i	–	2]	>>>	19)	⊕	(W[i	–	2]	>>	10)
												W[i]	=	W[i	–	16]	+	s0	+	W[i	–	7]	+	s1
								}
				}
				return	W
}

Listing	6-8:	SHA-256’s	expand256()	function

Note	 how	 SHA-2’s	 expand256()	 message	 expansion	 is	more	 complex	 than
SHA-1’s	expand(),	shown	previously	in	Listing	6-6,	which	in	contrast	simply
performs	 XORs	 and	 a	 1-bit	 rotation.	 The	 main	 loop	 of	 SHA-256’s
compression	function	is	also	more	complex	than	that	of	SHA-1,	performing
26	 arithmetic	 operations	 per	 iteration	 compared	 to	 11	 for	 SHA-1.	 Again,
these	operations	are	XORs,	logical	ANDs,	and	word	rotations.

Other	SHA-2	Algorithms
The	SHA-2	 family	 includes	SHA-224,	which	 is	algorithmically	 identical	 to
SHA-256	except	that	its	initial	value	is	a	different	set	of	eight	32-bit	words,
and	its	hash	value	length	is	224	bits,	instead	of	256	bits,	and	is	taken	as	the
first	224	bits	of	the	final	chaining	value.

The	SHA-2	family	also	 includes	 the	algorithms	SHA-512	and	SHA-384.
SHA-512	 is	 similar	 to	 SHA-256	 except	 that	 it	 works	 with	 64-bit	 words
instead	of	32-bit	words.	As	a	result,	it	uses	512-bit	chaining	values	(eight	64-
bit	words)	and	ingests	1024-bit	message	blocks	(sixteen	64-bit	words),	and	it
makes	 80	 rounds	 instead	 of	 64.	 The	 compression	 function	 is	 otherwise
almost	the	same	as	that	of	SHA-256,	though	with	different	rotation	distances
to	 cope	 with	 the	 wider	 word	 size.	 (For	 example,	 SHA-512	 includes	 the
operation	 a	 >>>	 34,	 which	 wouldn’t	 make	 sense	 with	 SHA-256’s	 32-bit
words.)	 SHA-384	 is	 to	 SHA-512	 what	 SHA-224	 is	 to	 SHA-256—namely,
the	 same	 algorithm	 but	 with	 a	 different	 initial	 value	 and	 a	 final	 hash
truncated	to	384	bits.

Security-wise,	all	four	SHA-2	versions	have	lived	up	to	their	promises	so
far:	SHA-256	guarantees	256-bit	preimage	 resistance,	SHA-512	guarantees
about	256-bit	collision	resistance,	and	so	on.	Still,	there	is	no	genuine	proof
that	SHA-2	functions	are	secure;	we’re	talking	about	probable	security.

That	said,	after	practical	attacks	on	MD5	and	on	SHA-1,	researchers	and
NIST	 grew	 concerned	 about	 SHA-2’s	 long-term	 security	 due	 to	 its
similarity	 to	SHA-1,	 and	many	believed	 that	 attacks	on	SHA-2	were	 just	 a



matter	of	time.	As	I	write	this,	though,	we	have	yet	to	see	a	successful	attack
on	SHA-2.	Regardless,	NIST	developed	a	backup	plan:	SHA-3.

The	SHA-3	Competition
Announced	 in	 2007,	 the	 NIST	 Hash	 Function	 Competition	 (the	 official
name	of	the	SHA-3	competition)	began	with	a	call	for	submissions	and	some
basic	requirements:	hash	submissions	were	to	be	at	least	as	secure	and	as	fast
as	SHA-2,	and	they	should	be	able	to	do	at	least	as	much	as	SHA-2.	SHA-3
candidates	also	shouldn’t	look	too	much	like	SHA-1	and	SHA-2	in	order	to
be	 immune	 to	 attacks	 that	would	break	SHA-1	 and	potentially	SHA-2.	By
2008,	NIST	had	received	64	submissions	from	around	the	world,	including
from	universities	 and	 large	corporations	 (BT,	 IBM,	Microsoft,	Qualcomm,
and	 Sony,	 to	 name	 a	 few).	 Of	 these	 64	 submissions,	 51	 matched	 the
requirements	and	entered	the	first	round	of	the	competition.

During	 the	 first	 weeks	 of	 the	 competition,	 cryptanalysts	 mercilessly
attacked	 the	 submissions.	 In	 July	2009,	NIST	announced	14	 second-round
candidates.	 After	 spending	 15	 months	 analyzing	 and	 evaluating	 the
performance	of	these	candidates,	NIST	chose	five	finalists:

BLAKE	 An	 enhanced	 Merkle–Damgård	 hash	 whose	 compression
function	 is	 based	 on	 a	 block	 cipher,	which	 is	 in	 turn	 based	 on	 the	 core
function	of	 the	 stream	cipher	ChaCha,	 a	 chain	of	 additions,	XORs,	 and
word	rotations.	BLAKE	was	designed	by	a	team	of	academic	researchers
based	in	Switzerland	and	the	UK,	including	myself.
Grøstl	An	enhanced	Merkle–Damgård	hash	whose	compression	function
uses	 two	 permutations	 (or	 fixed-key	 block	 ciphers)	 based	 on	 the	 core
function	of	the	AES	block	cipher.	Grøstl	was	designed	by	a	team	of	seven
academic	researchers	from	Denmark	and	Austria.

JH	A	 tweaked	sponge	 function	construction	wherein	message	blocks	are
injected	 before	 and	 after	 the	 permutation	 rather	 than	 just	 before.	 The
permutation	 also	 performs	 operations	 similar	 to	 a	 substitution–
permutation	block	cipher	(as	discussed	in	Chapter	4).	JH	was	designed	by
a	cryptographer	from	a	university	in	Singapore.
Keccak	 A	 sponge	 function	 whose	 permutation	 performs	 only	 bitwise
operations.	 Keccak	 was	 designed	 by	 a	 team	 of	 four	 cryptographers
working	 for	 a	 semiconductor	 company	 based	 in	 Belgium	 and	 Italy,	 and



included	one	of	the	two	designers	of	AES.

Skein	 A	 hash	 function	 based	 on	 a	 different	 mode	 of	 operation	 than
Merkle–Damgård,	 and	whose	 compression	 function	 is	 based	 on	 a	 novel
block	 cipher	 that	 uses	 only	 integer	 addition,	 XOR,	 and	 word	 rotation.
Skein	was	designed	by	a	team	of	eight	cryptographers	from	academia	and
industry,	all	but	one	of	whom	is	based	in	the	US,	including	the	renowned
Bruce	Schneier.

After	 extensive	 analysis	 of	 the	 five	 finalists,	NIST	 announced	 a	 winner:
Keccak.	 NIST’s	 report	 rewarded	 Keccak	 for	 its	 “elegant	 design,	 large
security	margin,	good	general	performance,	excellent	efficiency	in	hardware,
and	its	flexibility.”	Let’s	see	how	Keccak	works.

Keccak	(SHA-3)
One	of	the	reasons	that	NIST	chose	Keccak	is	that	it’s	completely	different
from	 SHA-1	 and	 SHA-2.	 For	 one	 thing,	 it’s	 a	 sponge	 function.	 Keccak’s
core	 algorithm	 is	 a	 permutation	 of	 a	 1600-bit	 state	 that	 ingests	 blocks	 of
1152,	1088,	832,	or	576	bits,	producing	hash	values	of	224,	256,	384,	or	512
bits,	respectively—the	same	four	lengths	produced	by	SHA-2	hash	functions.
But	 unlike	 SHA-2,	 SHA-3	 uses	 a	 single	 core	 algorithm	 rather	 than	 two
algorithms	for	all	four	hash	lengths.

Another	 reason	 is	 that	 Keccak	 is	 more	 than	 just	 a	 hash.	 The	 SHA-3
standard	 document	FIPS	 202	 defines	 four	 hashes—SHA3-224,	 SHA3-256,
SHA3-384,	 and	 SHA3-512—and	 two	 algorithms	 called	 SHAKE128	 and
SHAKE256.	 (The	 name	 SHAKE	 stands	 for	 Secure	 Hash	 Algorithm	 with
Keccak.)	These	two	algorithms	are	extendable-output	functions	(XOFs),	or	hash
functions	 that	 can	 produce	hashes	 of	 variable	 length,	 even	 very	 long	 ones.
The	numbers	128	and	256	represent	the	security	level	of	each	algorithm.

The	FIPS	202	standard	itself	is	lengthy	and	hard	to	parse,	but	you’ll	find
open-source	 implementations	 that	 are	 reasonably	 fast	 and	 make	 the
algorithm	 easier	 to	 understand	 than	 the	 specifications.	 For	 example,	 the
MIT-licensed	 tiny_sha3	 (https://github.com/mjosaarinen/tiny_sha3/)	 by
Markku-Juhani	O.	Saarinen,	explains	Keccak’s	core	algorithm	in	19	lines	of
C,	as	partially	reproduced	in	Listing	6-9.

static	void	sha3_keccakf(uint64_t	st[25],	int	rounds)
{
				(⊕)
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				for	(r	=	0;	r	<	rounds;	r++)	{

					❶	//	Theta	
								for	(i	=	0;	i	<	5;	i++)
												bc[i]	=	st[i]	^	st[i	+	5]	^	st[i	+	10]	^	st[i	+	15]	^	st[i	+	20];

								for	(i	=	0;	i	<	5;	i++)	{
												t	=	bc[(i	+	4)	%	5]	^	ROTL64(bc[(i	+	1)	%	5],	1);
												for	(j	=	0;	j	<	25;	j	+=	5)
																st[j	+	i]	^=	t;
								}

					❷	//	Rho	Pi
								t	=	st[1];
								for	(i	=	0;	i	<	24;	i++)	{
												j	=	keccakf_piln[i];
												bc[0]	=	st[j];
												st[j]	=	ROTL64(t,	keccakf_rotc[i]);
												t	=	bc[0];
								}

					❸	//	Chi
								for	(j	=	0;	j	<	25;	j	+=	5)	{
												for	(i	=	0;	i	<	5;	i++)
																bc[i]	=	st[j	+	i];
												for	(i	=	0;	i	<	5;	i++)
																st[j	+	i]	^=	(~bc[(i	+	1)	%	5])	&	bc[(i	+	2)	%	5];
								}

					❹	//	Iota
								st[0]	^=	keccakf_rndc[r];
				}
				(⊕)
}

Listing	6-9:	The	tiny_sha3	implementation

The	 tiny_sha3	 program	 implements	 the	 permutation,	 P,	 of	 Keccak,	 an
invertible	 transformation	of	 a	 1600-bit	 state	 viewed	 as	 an	 array	 of	 twenty-
five	64-bit	words.	As	you	review	the	code,	notice	 that	 it	 iterates	a	 series	of
rounds,	where	each	round	consists	of	four	main	steps	(as	marked	by	❶,	❷,	❸,
and	❹):

The	first	step,	Theta	❶,	includes	XORs	between	64-bit	words	or	a	1-bit
rotated	value	of	the	words	(the	ROTL64(w,	1)	operation	left-rotates	a	word
w	of	1	bit).

The	 second	 step,	 Rho	 Pi	 ❷,	 includes	 rotations	 of	 64-bit	 words	 by



constants	hardcoded	in	the	keccakf_rotc[]	array.

The	third	step,	Chi	❸,	includes	more	XORs,	but	also	logical	ANDs	(the
&	operator)	between	64-bit	words.	These	ANDs	are	the	only	nonlinear
operations	in	Keccak,	and	they	bring	with	them	cryptographic	strength.

The	 fourth	 step,	 Iota	 ❹,	 includes	 a	 XOR	 with	 a	 64-bit	 constant,
hardcoded	in	the	keccakf_rndc[].

These	 operations	 provide	 SHA-3	 with	 a	 strong	 permutation	 algorithm
free	of	any	bias	or	exploitable	structure.	SHA-3	is	the	product	of	more	than	a
decade	of	research,	and	hundreds	of	skilled	cryptanalysts	have	failed	to	break
it.	It’s	unlikely	to	be	broken	anytime	soon.

The	BLAKE2	Hash	Function
Security	may	matter	most,	 but	 speed	 comes	 second.	 I’ve	 seen	many	 cases
where	 a	 developer	 wouldn’t	 switch	 from	MD5	 to	 SHA-1	 simply	 because
MD5	is	faster,	or	from	SHA-1	to	SHA-2	because	SHA-2	is	noticeably	slower
than	 SHA-1.	 Unfortunately,	 SHA-3	 isn’t	 faster	 than	 SHA-2,	 and	 because
SHA-2	is	still	secure,	there	are	few	incentives	to	upgrade	to	SHA-3.	So	how
to	hash	faster	than	SHA-1	and	SHA-2	and	be	even	more	secure?	The	answer
lies	in	the	hash	function	BLAKE2,	released	after	the	SHA-3	competition.

NOTE
Full	disclosure:	I’m	a	designer	of	BLAKE2,	together	with	Samuel	Neves,	Zooko
Wilcox-O’Hearn,	and	Christian	Winnerlein.

BLAKE2	was	designed	with	the	following	ideas	in	mind:

It	should	be	least	as	secure	as	SHA-3,	if	not	stronger.
It	should	be	faster	than	all	previous	hash	standards,	including	MD5.
It	 should	 be	 suited	 for	 use	 in	 modern	 applications,	 and	 able	 to	 hash
large	amounts	of	data	either	as	a	few	large	messages	or	many	small	ones,
with	or	without	a	secret	key.
It	 should	 be	 suited	 for	 use	 on	 modern	 CPUs	 supporting	 parallel
computing	on	multicore	systems	as	well	as	instruction-level	parallelism
within	a	single	core.



The	outcome	of	the	engineering	process	is	a	pair	of	main	hash	functions:

BLAKE2b	(or	just	BLAKE2),	optimized	for	64-bit	platforms,	produces
digests	ranging	from	1	to	64	bytes.
BLAKE2s,	 optimized	 for	 8-	 to	 32-bit	 platforms,	 can	 produce	 digests
ranging	from	1	to	32	bytes.

Each	function	has	a	parallel	variant	that	can	leverage	multiple	CPU	cores.
The	 parallel	 counterpart	 of	 BLAKE2b,	 BLAKE2bp,	 runs	 on	 four	 cores,
whereas	 BLAKE2sp	 runs	 on	 eight	 cores.	 The	 former	 is	 the	 fastest	 on
modern	server	and	laptop	CPUs	and	can	hash	at	close	to	2	Gbps	on	a	laptop
CPU.	 In	 fact,	 BLAKE2	 is	 the	 fastest	 secure	 hash	 available	 today,	 and	 its
speed	and	features	have	made	it	the	most	popular	non-NIST-standard	hash.
BLAKE2	is	used	in	countless	software	applications	and	has	been	integrated
into	major	cryptography	libraries	such	as	OpenSSL	and	Sodium.

NOTE
You	 can	 find	 BLAKE2’s	 specifications	 and	 reference	 code	 at
https://blake2.net/,	and	 you	 can	 download	 optimized	 code	 and	 libraries	 from
https://github.com/BLAKE2/.	The	 reference	 code	 also	 provides	 BLAKE2X,
an	extension	of	BLAKE2	that	can	produce	hash	values	of	arbitrary	length.

Figure	6-8:	BLAKE2’s	compression	function.	The	two	halves	of	the	state	are	XORed	together	after
the	block	cipher.

BLAKE2’s	compression	function,	shown	in	Figure	6-8,	is	a	variant	of	the
Davies–Meyer	 construction	 that	 takes	 parameters	 as	 additional	 input—
namely,	a	counter	(which	ensures	that	each	compression	function	behaves	like
a	 different	 function)	 and	 a	 flag	 (which	 indicates	 whether	 the	 compression
function	is	processing	the	last	message	block,	for	increased	security).

The	 block	 cipher	 in	 BLAKE2’s	 compression	 function	 is	 based	 on	 the
stream	cipher	ChaCha,	itself	a	variant	of	the	Salsa20	stream	cipher	discussed
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in	 Chapter	 5.	 Within	 this	 block	 cipher,	 BLAKE2b’s	 core	 operation	 is
composed	of	the	following	chain	of	operations,	which	transforms	a	state	of
four	64-bit	words	using	two	message	words,	Mi	and	Mj:

BLAKE2s’s	core	operation	is	similar	but	works	with	32-bit	instead	of	64-
bit	words	(and	thus	uses	different	rotation	values).

How	Things	Can	Go	Wrong
Despite	 their	 apparent	 simplicity,	 hash	 functions	 can	 cause	major	 security
troubles	when	used	at	 the	wrong	place	or	 in	 the	wrong	way—for	example,
when	weak	checksum	algorithms	like	CRCs	are	used	instead	of	a	crypto	hash
to	 check	 file	 integrity	 in	 applications	 transmitting	 data	 over	 a	 network.
However,	this	weakness	pales	in	comparison	to	some	others,	which	can	cause
total	 compromise	 in	 seemingly	 secure	 hash	 functions.	 We’ll	 see	 two
examples	of	 failures:	 the	first	one	applies	to	SHA-1	and	SHA-2,	but	not	to
BLAKE2	 or	 SHA-3,	 whereas	 the	 second	 one	 applies	 to	 all	 of	 these	 four
functions.

The	Length-Extension	Attack
The	 length-extension	 attack,	 shown	 in	 Figure	 6-9,	 is	 the	main	 threat	 to	 the
Merkle–Damgård	construction.



Figure	6-9:	The	length-extension	attack

Basically,	if	you	know	Hash(M)	for	some	unknown	message,	M,	composed
of	blocks	M1	and	M2	(after	padding),	you	can	determine	Hash(M1	||	M2	||
M3)	for	any	block,	M3.	Because	the	hash	of	M1	||	M2	is	the	chaining	value
that	 follows	 immediately	 after	M2,	 you	 can	 add	 another	 block,	M3,	 to	 the
hashed	 message,	 even	 though	 you	 don’t	 know	 the	 data	 that	 was	 hashed.
What’s	more,	this	trick	generalizes	to	any	number	of	blocks	in	the	unknown
message	(M1	||	M2	here)	or	in	the	suffix	(M3).

The	 length-extension	 attack	 won’t	 affect	 most	 applications	 of	 hash
functions,	 but	 it	 can	 compromise	 security	 if	 the	 hash	 is	 used	 a	 bit	 too
creatively.	 Unfortunately,	 SHA-2	 hash	 functions	 are	 vulnerable	 to	 the
length-extension	 attack,	 even	 though	 the	NSA	 designed	 the	 functions	 and
NIST	standardized	them	while	both	were	well	aware	of	the	flaw.	This	flaw
could	have	been	avoided	simply	by	making	the	last	compression	function	call
different	from	all	others	(for	example,	by	taking	a	1	bit	as	an	extra	parameter
while	the	previous	calls	take	a	0	bit).	And	that	is	in	fact	what	BLAKE2	does.

Fooling	Proof-of-Storage	Protocols
Cloud	 computing	 applications	 have	 used	 hash	 functions	 within	 proof-of-
storage	 protocols—that	 is,	 protocols	 where	 a	 server	 (the	 cloud	 provider)
proves	 to	a	client	 (a	user	of	a	cloud	storage	service)	 that	 the	server	does	 in
fact	store	the	files	that	it’s	supposed	to	store	on	behalf	of	the	client.

In	2007,	 the	paper	“SafeStore:	A	Durable	and	Practical	Storage	System”
(https://www.cs.utexas.edu/~lorenzo/papers/p129-kotla.pdf)	 by	 Ramakrishna
Kotla,	 Lorenzo	 Alvisi,	 and	 Mike	 Dahlin	 proposed	 a	 proof-of-storage
protocol	to	verify	the	storage	of	some	file,	M,	as	follows:

1.	 The	client	picks	a	random	value,	C,	as	a	challenge.
2.	 The	server	computes	Hash(M	||	C)	as	a	response	and	sends	the	result	to

https://www.cs.utexas.edu/~lorenzo/papers/p129-kotla.pdf


the	client.
3.	 The	client	also	computes	Hash(M	||	C)	and	checks	that	it	matches	the

value	received	from	the	server.

The	premise	of	 the	paper	 is	 that	 the	server	shouldn’t	be	able	 to	 fool	 the
client	because	 if	 the	 server	doesn’t	 know	M,	 it	 can’t	 guess	Hash(M	 ||	C).
But	there’s	a	catch:	in	reality,	Hash	will	be	an	iterated	hash	that	processes	its
input	block	by	block,	computing	intermediate	chaining	values	between	each
block.	For	example,	if	Hash	is	SHA-256	and	M	is	512	bits	long	(the	size	of	a
block	 in	 SHA-256),	 the	 server	 can	 cheat.	How?	The	 first	 time	 the	 server
receives	 M,	 it	 computes	 H1	 =	 Compress(H0,	 M1),	 the	 chaining	 value
obtained	from	SHA-256’s	initial	value,	H0,	and	from	the	512-bit	M.	It	then
records	H1	in	memory	and	discards	M,	at	which	point	it	no	longer	stores	M.

Now	 when	 the	 client	 sends	 a	 random	 value,	 C,	 the	 server	 computes
Compress(H1,	C),	 after	 adding	 the	 padding	 to	C	 to	 fill	 a	 complete	 block,
and	 returns	 the	 result	 as	 Hash(M	 ||	 C).	 The	 client	 then	 believes	 that,
because	the	server	returned	the	correct	value	of	Hash(M	||	C),	it	holds	the
complete	message—except	that	it	may	not,	as	you’ve	seen.

This	trick	will	work	for	SHA-1,	SHA-2,	as	well	as	SHA-3	and	BLAKE2.
The	solution	is	simple:	ask	for	Hash(C	||	M)	instead	of	Hash(M	||	C).

Further	Reading
To	 learn	more	 about	 hash	 functions,	 read	 the	 classics	 from	 the	 1980s	 and
90s:	 research	 articles	 like	 Ralph	Merkle’s	 “One	Way	Hash	 Functions	 and
DES”	and	 Ivan	Damgård’s	 “A	Design	Principle	 for	Hash	Functions.”	Also
read	 the	 first	 thorough	 study	 of	 block	 cipher-based	 hashing,	 “Hash
Functions	 Based	 on	 Block	 Ciphers:	 A	 Synthetic	 Approach”	 by	 Preneel,
Govaerts,	and	Vandewalle.

For	 more	 on	 collision	 search,	 read	 the	 1997	 paper	 “Parallel	 Collision
Search	with	Cryptanalytic	Applications”	by	 van	Oorschot	 and	Wiener.	To
learn	 more	 about	 the	 theoretical	 security	 notions	 that	 underpin	 preimage
resistance	and	collision	resistance,	as	well	as	length-extension	attacks,	search
for	indifferentiability.

For	more	recent	research	on	hash	functions,	see	the	archives	of	the	SHA-3
competition,	which	 include	all	 the	different	 algorithms	and	how	 they	were
broken.	 You’ll	 find	 many	 references	 on	 the	 SHA-3	 Zoo	 at



http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo,	 and	 on	 NIST’s	 page,
http://csrc.nist.gov/groups/ST/hash/sha-3/.

For	 more	 on	 the	 SHA-3	 winner	 Keccak	 and	 sponge	 functions,	 see
http://keccak.noekeon.org/	 and	 http://sponge.noekeon.org/,	 the	 official	 pages	 of
the	Keccak	designers.

Last	 but	 not	 least,	 research	 these	 two	 real	 exploitations	 of	 weak	 hash
functions:

The	nation-state	malware	Flame	exploited	an	MD5	collision	to	make	a
counterfeit	certificate	and	appear	to	be	a	legitimate	piece	of	software.
The	Xbox	game	console	used	a	weak	block	cipher	(called	TEA)	to	build
a	 hash	 function,	 which	 was	 exploited	 to	 hack	 the	 console	 and	 run
arbitrary	code	on	it.

http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo
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http://sponge.noekeon.org/


7
KEYED	HASHING

The	hash	functions	discussed	in	Chapter	6	take	a	message	and	return	its	hash
value—typically	a	short	string	of	256	or	512	bits.	Anyone	can	compute	the
hash	 value	 of	 a	 message	 and	 verify	 that	 a	 particular	 message	 hashes	 to	 a
particular	value	because	there’s	no	secret	value	involved,	but	sometimes	you
don’t	 want	 to	 let	 just	 anyone	 do	 that.	 That’s	 where	 keyed	 hash	 functions
come	in,	or	hashing	with	secret	keys.

Keyed	 hashing	 forms	 the	 basis	 of	 two	 types	 of	 important	 cryptographic
algorithms:	message	authentication	codes	(MACs),	which	authenticate	a	message
and	protect	 its	 integrity,	 and	 pseudorandom	 functions	 (PRFs),	which	 produce
random-looking	 hash-sized	 values.	We’ll	 look	 at	 how	 and	why	MACs	 and
PRFs	are	 similar	 in	 the	 first	 section	of	 this	 chapter;	 then	we’ll	 review	how
real	 MACs	 and	 PRFs	 work.	 Some	 MACs	 and	 PRFs	 are	 based	 on	 hash
functions,	 some	 are	 based	 on	 block	 ciphers,	 and	 still	 others	 are	 original
designs.	Finally,	we’ll	review	examples	of	attacks	on	otherwise	secure	MACs.

Message	Authentication	Codes	(MACs)
A	MAC	protects	a	message’s	integrity	and	authenticity	by	creating	a	value	T
=	 MAC(K,	 M),	 called	 the	 authentication	 tag	 of	 the	 message,	 M	 (often
confusingly	called	the	MAC	of	M).	Just	as	you	can	decrypt	a	message	if	you
know	a	cipher’s	key,	you	can	validate	that	a	message	has	not	been	modified	if
you	know	a	MAC’s	key.

For	example,	say	Alex	and	Bill	share	a	key,	K,	and	Alex	sends	a	message,
M,	to	Bill	along	with	its	authentication	tag,	T	=	MAC(K,	M).	Upon	receiving
the	 message	 and	 its	 authentication	 tag,	 Bill	 recomputes	MAC(K,	M)	 and
checks	that	it	is	equal	to	the	authentication	tag	received.	Because	only	Alex
could	 have	 computed	 this	 value,	 Bill	 knows	 that	 the	 message	 wasn’t



corrupted	 in	 transit	 (confirming	 integrity),	 whether	 accidentally	 or
maliciously,	and	that	Alex	sent	that	message	(confirming	authenticity).

MACs	in	Secure	Communication
Secure	 communication	 systems	 often	 combine	 a	 cipher	 and	 a	 MAC	 to
protect	a	message’s	confidentiality,	integrity,	and	authenticity.	For	example,
the	protocols	in	Internet	Protocol	Security	(IPSec),	Secure	Shell	(SSH),	and
Transport	Layer	Security	 (TLS)	generate	 a	MAC	for	each	network	packet
transmitted.

Not	all	communication	systems	use	MACs.	Sometimes	an	authentication
tag	can	add	unacceptable	overhead	to	each	packet,	typically	 in	the	range	of
64	 to	 128	 bits.	 For	 example,	 the	 3G	 and	 4G	mobile	 telephony	 standards
encrypt	 packets	 encoding	 voice	 calls	 but	 they	 don’t	 authenticate	 them.	An
attacker	 can	modify	 the	 encrypted	 audio	 signal	 and	 the	 recipient	wouldn’t
notice.	 Thus,	 if	 an	 attacker	 damages	 an	 encrypted	 voice	 packet,	 it	 will
decrypt	to	noise,	which	would	sound	like	static.

Forgery	and	Chosen-Message	Attacks
What	does	it	mean	for	a	MAC	to	be	secure?	First	of	all,	as	with	a	cipher,	the
secret	key	should	remain	secret.	If	a	MAC	is	secure,	an	attacker	shouldn’t	be
able	 to	 create	 a	 tag	 of	 some	message	 if	 they	 don’t	 know	 the	 key.	 Such	 a
made-up	message/tag	pair	 is	 called	 a	 forgery,	 and	 recovering	 a	key	 is	 just	 a
specific	 case	 of	 a	 more	 general	 class	 of	 attacks	 called	 forgery	 attacks.	 The
security	 notion	 that	 posits	 that	 forgeries	 should	 be	 impossible	 to	 find	 is
called	unforgeability.	Obviously,	it	should	be	impossible	to	recover	the	secret
key	from	a	list	of	tags;	otherwise,	attackers	could	forge	tags	using	the	key.

What	 can	 an	 attacker	 do	 to	 break	 a	MAC?	 In	 other	 words,	 what’s	 the
attack	 model?	 The	 most	 basic	 model	 is	 the	 known-message	 attack,	 which
passively	 collects	 messages	 and	 their	 associated	 tags	 (for	 example,	 by
eavesdropping	on	a	network).	But	real	attackers	often	launch	more	powerful
attacks	because	they	can	often	choose	the	messages	to	be	authenticated,	and
therefore	 get	 the	MAC	 of	 the	message	 they	 want.	 The	 standard	model	 is
therefore	 that	 of	 chosen-message	 attacks,	 wherein	 attackers	 get	 tags	 for
messages	of	their	choice.

Replay	Attacks



MACs	aren’t	safe	from	attacks	involving	replays	of	tags.	For	example,	if	you
were	 to	eavesdrop	on	Alex	and	Bill’s	 communications,	you	could	capture	a
message	 and	 its	 tag	 sent	 by	Alex	 to	Bill,	 and	 later	 send	 them	again	 to	Bill
pretending	 to	 be	 Alex.	 To	 prevent	 such	 replay	 attacks,	 protocols	 include	 a
message	number	in	each	message.	This	number	is	incremented	for	each	new
message	and	authenticated	along	with	the	message.	The	receiving	party	gets
messages	numbered	1,	2,	3,	4,	and	so	on.	Thus,	 if	an	attacker	tries	 to	send
message	number	1	again,	the	receiver	will	notice	that	this	message	is	out	of
order	and	that	it’s	a	potential	replay	of	the	earlier	message	number	1.

Pseudorandom	Functions	(PRFs)
A	PRF	is	a	function	that	uses	a	secret	key	to	return	PRF(K,	M),	such	that	the
output	 looks	 random.	 Because	 the	 key	 is	 secret,	 the	 output	 values	 are
unpredictable	to	an	attacker.

Unlike	MACs,	PRFs	are	not	meant	to	be	used	on	their	own	but	as	part	of
a	 cryptographic	 algorithm	or	 protocol.	 For	 example,	 PRFs	 can	 be	 used	 to
create	 block	 ciphers	 within	 the	 Feistel	 construction	 discussed	 in	 “How	 to
Construct	Block	Ciphers”	on	page	55.	Key	derivation	schemes	use	PRFs	to
generate	 cryptographic	 keys	 from	 a	 master	 key	 or	 a	 password,	 and
identification	 schemes	 use	 PRFs	 to	 generate	 a	 response	 from	 a	 random
challenge.	(Basically,	a	server	sends	a	random	challenge	message,	M,	and	the
client	returns	PRF(K,	M)	in	its	response	to	prove	that	it	knows	K.)	The	4G
telephony	 standard	 uses	 a	 PRF	 to	 authenticate	 a	 SIM	 card	 and	 its	 service
provider,	and	a	similar	PRF	also	serves	 to	generate	 the	encryption	key	and
MAC	key	to	be	used	during	a	phone	call.	The	TLS	protocol	uses	a	PRF	to
generate	key	material	from	a	master	secret	as	well	as	session-specific	random
values.	There’s	even	a	PRF	in	the	noncryptographic	hash()	function	built	into
the	Python	language	to	compare	objects.

PRF	Security
In	order	to	be	secure,	a	pseudorandom	function	should	have	no	pattern	that
sets	 its	 outputs	 apart	 from	 truly	 random	 values.	 An	 attacker	 who	 doesn’t
know	the	key,	K,	shouldn’t	be	able	to	distinguish	the	outputs	of	PRF(K,	M)
from	 random	 values.	 Viewed	 differently,	 an	 attacker	 shouldn’t	 have	 any
means	 of	 knowing	 whether	 they’re	 talking	 to	 a	 PRF	 algorithm	 or	 to	 a
random	 function.	 The	 erudite	 phrase	 for	 that	 security	 notion	 is



indistinguishability	 from	 a	 random	 function.	 (To	 learn	 more	 about	 the
theoretical	 foundations	of	PRFs,	 see	Volume	1,	Section	3.6	of	Goldreich’s
Foundations	of	Cryptography.)

Why	PRFs	Are	Stronger	Than	MACs
PRFs	 and	 MACs	 are	 both	 keyed	 hashes,	 but	 PRFs	 are	 fundamentally
stronger	 than	 MACs,	 largely	 because	 MACs	 have	 weaker	 security
requirements.	Whereas	a	MAC	is	considered	secure	if	tags	can’t	be	forged—
that	 is,	 if	 the	MAC’s	outputs	 can’t	be	guessed—a	PRF	 is	only	 secure	 if	 its
outputs	 are	 indistinguishable	 random	 strings,	 which	 is	 a	 stronger
requirement.	If	a	PRF’s	outputs	can’t	be	distinguished	from	random	strings,
the	 implication	 is	 that	 their	 values	 can’t	 be	 guessed;	 in	 other	 words,	 any
secure	PRF	is	also	a	secure	MAC.

The	converse	is	not	true,	however:	a	secure	MAC	isn’t	necessarily	a	secure
PRF.	For	example,	say	you	start	with	a	secure	PRF,	PRF1,	and	you	want	to
build	a	second	PRF,	PRF2,	from	it,	like	this:

PRF2(K,	M)	=	PRF1(K,	M)	||	0

Because	PRF2’s	output	is	defined	as	PRF1’s	output	followed	by	one	0	bit,
it	doesn’t	look	as	random	as	a	true	random	string,	and	you	can	distinguish	its
outputs	 by	 that	 last	 0	 bit.	 Hence,	 PRF2	 is	 not	 a	 secure	 PRF.	 However,
because	 PRF1	 is	 secure,	 PRF2	 would	 still	 make	 a	 secure	 MAC.	 Why?
Because	if	you	were	able	to	forge	a	tag,	T	=	PRF2(K,	M),	for	some	M,	then
you’d	also	be	able	to	forge	a	tag	for	PRF1,	which	we	know	to	be	impossible
in	the	first	place	because	PRF1	is	a	secure	MAC.	Thus,	PRF2	is	a	keyed	hash
that’s	a	secure	MAC	but	not	a	secure	PRF.

But	 don’t	 worry:	 you	 won’t	 find	 such	 MAC	 constructions	 in	 real
applications.	 In	 fact,	many	of	 the	MACs	deployed	or	 standardized	 are	 also
secure	 PRFs	 and	 are	 often	 used	 as	 either.	 For	 example,	 TLS	 uses	 the
algorithm	HMAC-SHA-256	both	as	a	MAC	and	as	a	PRF.

Creating	Keyed	Hashes	from	Unkeyed	Hashes
Throughout	the	history	of	cryptography,	MACs	and	PRFs	have	rarely	been
designed	 from	scratch	but	 rather	have	been	built	 from	existing	algorithms,
usually	 hash	 functions	 of	 block	 ciphers.	 One	 seemingly	 obvious	 way	 to



produce	a	keyed	hash	function	would	be	to	feed	an	(unkeyed)	hash	function	a
key	and	a	message,	but	that’s	easier	said	than	done,	as	I	discuss	next.

The	Secret-Prefix	Construction
The	first	technique	we’ll	examine,	called	the	secret-prefix	construction,	turns	a
normal	hash	 function	 into	 a	 keyed	hash	one	by	prepending	 the	 key	 to	 the
message	and	returning	Hash(K	||	M).	Although	this	approach	is	not	always
wrong,	 it	 can	 be	 insecure	when	 the	 hash	 function	 is	 vulnerable	 to	 length-
extension	 attacks	 (as	 discussed	 in	 “The	Length-Extension	Attack”	 on	 page
125)	and	when	the	hash	supports	keys	of	different	lengths.

Insecurity	Against	Length-Extension	Attacks
Recall	 from	 Chapter	 6	 that	 hash	 functions	 of	 the	 SHA-2	 family	 allow
attackers	to	compute	the	hash	of	a	partially	unknown	message	when	given	a
hash	 of	 a	 shorter	 version	 of	 that	 message.	 In	 formal	 terms,	 the	 length-
extension	 attack	 allows	 attackers	 to	 compute	Hash(K	 ||	M1	 ||	M2)	 given
only	Hash(K	||	M1)	and	neither	M1	nor	K.	These	functions	allow	attackers
to	forge	valid	MAC	tags	for	free	because	they’re	not	supposed	to	be	able	to
guess	the	MAC	of	M1	||	M2	given	only	the	MAC	of	M1.	This	fact	makes	the
secret-prefix	construction	as	insecure	as	a	MAC	and	PRF	when,	for	example,
it’s	used	with	SHA-256	or	SHA-512.	It	is	a	weakness	of	Merkle–Damgård	to
allow	 length-extension	 attacks,	 and	 none	 of	 the	 SHA-3	 finalists	 do.	 The
ability	 to	 thwart	 length-extension	 attacks	 was	 mandatory	 for	 SHA-3
submissions.

Insecurity	with	Different	Key	Lengths
The	secret-prefix	construction	is	also	insecure	when	it	allows	the	use	of	keys
of	 different	 lengths.	 For	 example,	 if	 the	 key	 K	 is	 the	 24-bit	 hexa ​decimal
string	123abc	and	M	is	def00,	then	Hash()	will	process	the	value	K	||	M	=
123abcdef00.	If	K	 is	instead	the	16-bit	string	123a	and	M	 is	bcdef000,	then
Hash()	will	process	K	||	M	=	123abcdef00,	too.	Therefore,	the	result	of	the
secret-prefix	construction	Hash(K	||	M)	will	be	the	same	for	both	keys.

This	problem	is	 independent	of	 the	underlying	hash	and	can	be	fixed	by
hashing	the	key’s	length	along	with	the	key	and	the	message,	for	example,	by
encoding	 the	 key’s	 bit	 length	 as	 a	 16-bit	 integer,	 L,	 and	 then	 hashing
Hash(L	 ||	 K	 ||	 M).	 But	 you	 shouldn’t	 have	 to	 do	 this.	 Modern	 hash



functions	 such	 as	 BLAKE2	 and	 SHA-3	 include	 a	 keyed	mode	 that	 avoids
those	pitfalls	and	yields	a	secure	PRF,	and	thus	a	secure	MAC	as	well.

The	Secret-Suffix	Construction
Instead	 of	 hashing	 the	 key	 before	 the	 message	 as	 in	 the	 secret-prefix
construction,	 we	 can	 hash	 it	 after.	 And	 that’s	 exactly	 how	 the	 secret-suffix
construction	works:	by	building	a	PRF	from	a	hash	function	as	Hash(M	||	K).

Putting	 the	 key	 at	 the	 end	makes	 quite	 a	 difference.	 For	 one	 thing,	 the
length-extension	 attack	 that	works	 against	 secret-prefix	MACs	won’t	work
against	 the	secret	suffix.	Applying	 length	extension	to	a	secret-suffix	MAC,
you’d	get	Hash(M1	||	K	||	M2)	from	Hash(M1	||	K),	but	that	wouldn’t	be
a	valid	attack	because	Hash(M1	||	K	||	M2)	isn’t	a	valid	secret-suffix	MAC;
the	key	needs	to	be	at	the	end.

However,	the	secret-suffix	construction	is	weaker	against	another	type	of
attack.	Say	you’ve	got	a	collision	for	the	hash	Hash(M1)	=	Hash(M2),	where
M1	and	M2	are	two	distinct	messages,	possibly	of	different	sizes.	In	the	case
of	 a	hash	 function	 such	as	SHA-256,	 this	 implies	 that	Hash(M1	 ||	K)	 and
Hash(M2	 ||	K)	 will	 be	 equal	 too,	 because	 internally	K	 will	 be	 processed
based	on	the	data	hashed	previously,	namely	Hash(M1),	equal	to	Hash(M2).
Hence,	you’d	get	the	same	hash	value	whether	you	hash	K	after	M1	or	after
M2,	regardless	of	the	value	of	K.

To	exploit	this	property,	an	attacker	would:

1.	 Find	two	colliding	messages,	M1	and	M2

2.	 Request	the	MAC	tag	of	M1	Hash(M1	||	K)
3.	 Guess	that	Hash(M2	||	K)	is	the	same,	thereby	forging	a	valid	tag	and

breaking	the	MAC’s	security

The	HMAC	Construction
The	hash-based	MAC	(HMAC)	construction	allows	us	to	build	a	MAC	from
a	 hash	 function,	 which	 is	 more	 secure	 than	 either	 secret	 prefix	 or	 secret
suffix.	HMAC	yields	a	secure	PRF	as	long	as	the	underlying	hash	is	collision
resistant,	but	even	if	that’s	not	the	case,	HMAC	will	still	yield	a	secure	PRF
if	 the	 hash’s	 compression	 function	 is	 a	 PRF.	 The	 secure	 communication



protocols	IPSec,	SSH,	and	TLS	have	all	used	HMAC.	(You’ll	 find	HMAC
specifications	in	NIST’s	FIPS	198-1	standard	and	in	RFC	2104.)

HMAC	uses	a	hash	function,	Hash,	to	compute	a	MAC	tag,	as	shown	in
Figure	7-1	and	according	to	the	following	expression:

Hash((K	⊕	opad)	Hash((K	⊕	ipad)	M))

The	term	opad	 (outer	padding)	 is	a	string	(5c5c5c	…	5c)	 that	 is	as	 long	as
Hash’s	block	size.	The	key,	K,	is	usually	shorter	than	one	block	that	is	filled
with	00	bytes	and	XORed	with	opad.	For	example,	 if	K	 is	 the	1-byte	string
00,	then	K	⊕	opad	=	opad.	(The	same	is	true	if	K	is	the	all-zero	string	of	any
length	up	 to	a	block’s	 length.)	K	⊕	opad	 is	 the	 first	block	processed	by	 the
outer	call	 to	Hash—namely,	 the	 leftmost	Hash	 in	 the	preceding	equation,
or	the	bottom	hash	in	Figure	7-1.

The	term	ipad	(inner	padding)	is	a	string	(363636	…	36)	that	is	as	long	as
the	Hash’s	block	size	and	that	is	also	completed	with	00	bytes.	The	resulting
block	 is	 the	 first	 block	 processed	 by	 the	 inner	 call	 to	Hash—namely,	 the
rightmost	Hash	in	the	equation,	or	the	top	hash	in	Figure	7-1.

Figure	7-1:	The	HMAC	hash-based	MAC	construction

NOTE
The	envelope	method	is	an	even	more	secure	construction	than	secret	prefix	and
secret	suffix.	It’s	expressed	as	Hash(K	||	M	||	K),	something	called	a	sandwich
MAC,	but	it’s	theoretically	less	secure	than	HMAC.

If	SHA-256	 is	 the	hash	 function	used	as	Hash,	 then	we	call	 the	HMAC



instance	HMAC-SHA-256.	More	generally,	we	call	HMAC-Hash	an	HMAC
instance	using	 the	hash	 function	Hash.	That	means	 if	 someone	asks	you	 to
use	HMAC,	you	should	always	ask,	“Which	hash	function?”

A	Generic	Attack	Against	Hash-Based	MACs
There	 is	one	attack	that	works	against	all	MACs	based	on	an	 iterated	hash
function.	Recall	the	attack	in	“The	Secret-Suffix	Construction”	on	page	131
where	we	used	a	hash	collision	to	get	a	collision	of	MACs.	You	can	use	the
same	 strategy	 to	 attack	 a	 secret-prefix	 MAC	 or	 HMAC,	 though	 the
consequences	are	less	devastating.

To	illustrate	the	attack,	consider	the	secret-prefix	MAC	Hash(K	||	M),	as
shown	in	Figure	7-2.	If	 the	digest	 is	n	bits,	you	can	find	two	messages,	M1
and	 M2,	 such	 that	 Hash(K	 ||	 M1)	 =	 Hash(K	 ||	 M2),	 by	 requesting
approximately	 2n/2	 MAC	 tags	 to	 the	 system	 holding	 the	 key.	 (Recall	 the
birthday	attack	from	Chapter	6.)	If	the	hash	lends	itself	to	length	extension,
as	SHA-256	does,	you	can	then	use	M1	and	M2	to	forge	MACs	by	choosing
some	arbitrary	data,	M3,	and	then	querying	the	MAC	oracle	for	Hash(K	||
M1	||	M3),	which	is	the	MAC	of	message	M1	||	M3.	As	it	turns	out,	this	is
also	the	MAC	of	message	M2	||	M3,	because	the	hash’s	internal	state	of	M1
and	M3	and	M2	and	M3	 is	the	same,	and	you’ve	successfully	forged	a	MAC
tag.	(The	effort	becomes	infeasible	as	n	grows	beyond,	say,	128	bits.)

Figure	7-2:	The	principle	of	the	generic	forgery	attack	on	hash-based	MACs

This	attack	will	work	even	if	the	hash	function	is	not	vulnerable	to	length
extension,	and	it	will	work	for	HMAC,	too.	The	cost	of	the	attack	depends
on	 both	 the	 size	 of	 the	 chaining	 value	 and	 the	MAC’s	 length:	 if	 a	MAC’s



chaining	value	is	512	bits	and	its	tags	are	128	bits,	a	264	computation	would
find	a	MAC	collision	but	probably	not	a	collision	in	the	internal	state,	since
finding	such	a	collision	would	require	2512/2	=	2256	operations	on	average.

Creating	Keyed	Hashes	from	Block	Ciphers:	CMAC
Recall	 from	 Chapter	 6	 that	 the	 compression	 functions	 in	 many	 hash
functions	are	built	on	block	ciphers.	For	example,	HMAC-SHA-256	PRF	is
a	 series	of	calls	 to	SHA-256’s	compression	 function,	which	 itself	 is	 a	block
cipher	that	repeats	a	sequence	of	rounds.	In	other	words,	HMAC-SHA-256
is	 a	 block	 cipher	 inside	 a	 compression	 function	 inside	 a	 hash	 inside	 the
HMAC	 construction.	 So	 why	 not	 use	 a	 block	 cipher	 directly	 rather	 than
build	such	a	layered	construction?

CMAC	 (which	 stands	 for	 cipher-based	 MAC)	 is	 such	 a	 construction:	 it
creates	a	MAC	given	only	a	block	cipher,	such	as	AES.	Though	less	popular
than	HMAC,	CMAC	 is	 deployed	 in	many	 systems,	 including	 the	 Internet
Key	 Exchange	 (IKE)	 protocol,	 which	 is	 part	 of	 the	 IPSec	 suite.	 IKE,	 for
example,	 generates	 key	 material	 using	 a	 construction	 called	 AES-CMAC-
PRF-128	as	a	core	algorithm	(or	CMAC	based	on	AES	with	128-bit	output).
CMAC	is	specified	in	RFC	4493.

Breaking	CBC-MAC
CMAC	 was	 designed	 in	 2005	 as	 an	 improved	 version	 of	 CBC-MAC,	 a
simpler	 block	 cipher–based	MAC	 derived	 from	 the	 cipher	 block	 chaining
(CBC)	block	cipher	mode	of	operation	(see	“Modes	of	Operation”	on	page
65).

CBC-MAC,	 the	 ancestor	 of	CMAC,	 is	 simple:	 to	 compute	 the	 tag	 of	 a
message,	M,	given	a	block	cipher,	E,	you	encrypt	M	in	CBC	mode	with	an
all-zero	initial	value	(IV)	and	discard	all	but	the	last	ciphertext	block.	That	is,
you	compute	C1	=	E(K,	M1),	C2	=	E(K,	M2	⊕	C1),	C3	=	E(K,	M3	⊕	C2),	and
so	on	for	each	of	M’s	blocks	and	keep	only	the	last	Ci,	your	CBC-MAC	tag
for	M—simple,	and	simple	to	attack.

To	understand	why	CBC-MAC	is	insecure,	consider	the	CBC-MAC	tag,
T1	=	E(K,	M1),	of	a	single-block	message,	M1,	and	the	tag,	T2	=	E(K,	M2),	of
another	single-block	message,	M2.	Given	these	two	pairs,	(M1,	T1)	and	(M2,
T2),	you	can	deduce	that	T2	is	also	the	tag	of	the	two-block	message	M1	||



(M2	 ⊕	 T1).	 Indeed,	 if	 you	 apply	 CBC-MAC	 to	 M1	 ||	 (M2	 ⊕	 T1)	 and
compute	C1	=	E(K,	M1)	=	T1	followed	by	C2	=	E(K,	(M2	⊕	T1)	⊕	T1)	=	E(K,
M2)	=	T2,	you	can	create	a	third	message/tag	pair	from	two	message/tag	pairs
without	knowing	 the	key.	That	 is,	 you	 can	 forge	CBC-MAC	tags,	 thereby
breaking	CBC-MAC’s	security.

Fixing	CBC-MAC
CMAC	 fixes	CBC-MAC	by	processing	 the	 last	block	using	 a	different	key
from	the	preceding	blocks.	To	do	this,	CMAC	first	derives	two	keys,	K1	and
K2,	from	the	main	key,	K,	such	that	K,	K1,	and	K2	will	be	distinct.	In	CMAC,
the	last	block	is	processed	using	either	K1	or	K2,	while	the	preceding	blocks
use	K.

To	determine	K1	 and	K2,	CMAC	 first	 computes	 a	 temporary	 value,	L	 =
E(0,	K),	where	0	acts	as	the	key	of	the	block	cipher	and	K	acts	as	the	plaintext
block.	 Then	 CMAC	 sets	 the	 value	 of	 K1	 equal	 to	 (L	 <<	 1)	 if	 L’s	 most
significant	bit	 (MSB)	 is	0,	or	equal	 to	 (L	<<	1)	⊕	87	 if	L’s	MSB	is	1.	 (The
number	 87	 is	 carefully	 chosen	 for	 its	 mathematical	 properties	 when	 data
blocks	are	128	bits;	a	value	other	than	87	is	needed	when	blocks	aren’t	128
bits.)

The	value	of	K2	is	set	equal	to	(K1	<<	1)	if	K1’s	MSB	is	0,	or	K2	=	(K1	<<	1)
⊕	87	otherwise.

Given	K1	and	K2,	CMAC	works	like	CBC-MAC,	except	for	the	last	block.
If	the	final	message	chunk	Mn	 is	exactly	the	size	of	a	block,	CMAC	returns
the	value	E(K,	MN	⊕	Cn	−	1	⊕	K1)	as	a	tag,	as	shown	in	Figure	7-3.	But	if	MN
has	fewer	bits	than	a	block,	CMAC	pads	it	with	a	1	bit	and	zeros,	and	returns
the	value	E(K,	Mn	⊕	Cn	 −	 1	⊕	K2)	as	a	tag,	as	shown	in	Figure	7-4.	Notice
that	the	first	case	uses	only	K1	and	the	second	only	K2,	but	both	use	only	the
main	key	K	to	process	the	message	chunks	that	precede	the	final	one.



Figure	7-3:	The	CMAC	block	cipher–based	MAC	construction	when	the	message	is	a	sequence	of
integral	blocks

Figure	7-4:	The	CMAC	block	cipher–based	MAC	construction	when	the	last	block	of	the	message
has	to	be	padded	with	a	1	bit	and	zeros	to	fill	a	block

Note	that	unlike	the	CBC	encryption	mode,	CMAC	does	not	take	an	IV
as	a	parameter	and	is	deterministic:	CMAC	will	always	return	the	same	tag
for	 a	 given	 message,	 M,	 because	 the	 computation	 of	 CMAC(M)	 is	 not
randomized—and	that’s	fine,	because	unlike	encryption,	MAC	computation
doesn’t	have	to	be	randomized	to	be	secure,	which	eliminates	the	burden	of
having	to	choose	random	IV.

Dedicated	MAC	Designs
You’ve	seen	how	to	recycle	hash	functions	and	block	ciphers	to	build	PRFs
that	are	secure	as	long	as	their	underlying	hash	or	cipher	is	secure.	Schemes
such	 as	 HMAC	 and	 CMAC	 simply	 combine	 available	 hash	 functions	 or
block	ciphers	to	yield	a	secure	PRF	or	MAC.	Reusing	available	algorithms	is
convenient,	but	is	it	the	most	efficient	approach?

Intuitively,	PRFs	and	MACs	should	require	less	work	than	unkeyed	hash
functions	in	order	to	be	secure—their	use	of	a	secret	key	prevents	attackers
from	playing	with	the	algorithm	because	they	don’t	have	the	key.	Also,	PRFs
and	MACs	only	expose	a	short	tag	to	attackers,	unlike	block	ciphers,	which
expose	a	ciphertext	that	is	as	long	as	the	message.	Hence,	PRFs	and	MACs



should	not	need	the	whole	power	of	hash	functions	or	block	ciphers,	which
is	the	point	of	dedicated	design—that	is,	algorithms	created	solely	to	serve	as
PRFs	and/or	MACs.

The	 sections	 that	 follow	 focus	 on	 two	 such	 algorithms	 that	 are	 widely
used:	 Poly1305	 and	 SipHash.	 I’ll	 explain	 their	 design	 principles	 and	 why
they	are	likely	secure.

Poly1305
The	 Poly1305	 algorithm	 (pronounced	 poly-thirteen-o-five)	 was	 designed	 in
2005	by	Daniel	J.	Bernstein	(creator	of	the	Salsa20	stream	cipher	discussed
in	Chapter	5	and	the	ChaCha	cipher	that	inspired	the	BLAKE	and	BLAKE2
hash	 functions	discussed	 in	Chapter	 6).	Poly1305	 is	 optimized	 to	be	 super
fast	 on	modern	CPUs,	 and	 as	 I	 write	 this,	 it	 is	 used	 by	Google	 to	 secure
HTTPS	 (HTTP	 over	 TLS)	 connections	 and	 by	OpenSSH,	 among	many
other	 applications.	 Unlike	 Salsa20,	 the	 design	 of	 Poly1305	 is	 built	 on
techniques	dating	back	to	the	1970s—namely,	universal	hash	functions	and
the	Wegman–Carter	construction.

Universal	Hash	Functions
The	 Poly1305	MAC	 uses	 a	 universal	 hash	 function	 internally	 that	 is	 much
weaker	than	a	cryptographic	hash	function,	but	also	much	faster.	Universal
hash	functions	don’t	have	to	be	collision	resistant,	for	example.	That	means
less	work	is	required	to	achieve	their	security	goals.

Like	 a	 PRF,	 a	 universal	 hash	 is	 parameterized	 by	 a	 secret	 key:	 given	 a
message,	M,	 and	key,	K,	we	write	UH(K,	M),	which	 is	 the	computation	of
the	 output	 of	 a	 universal	 hash	 function,	 denoted	 UH.	 A	 universal	 hash
function	has	only	one	 security	 requirement:	 for	 any	 two	messages,	M1	 and
M2,	 the	probability	that	UH(K,	M1)	=	UH(K,	M2)	must	be	negligible	for	a
random	 key,	 K.	 Unlike	 a	 PRF,	 a	 universal	 hash	 doesn’t	 need	 to	 be
pseudorandom;	there	simply	should	be	no	pair	(M1,	M2)	that	gives	the	same
hash	for	many	different	keys.	Because	their	security	requirements	are	easier
to	 satisfy,	 fewer	 operations	 are	 required	 and	 therefore	 universal	 hash
functions	are	considerably	faster	than	PRFs.

You	can	use	a	universal	hash	as	a	MAC	to	authenticate	no	more	than	one
message,	 however.	 For	 example,	 consider	 the	 universal	 hash	 used	 in
Poly1305,	 called	 a	polynomial-evaluation	 hash.	 (See	 the	 seminal	 1974	 article



“Codes	Which	Detect	Deception”	by	Gilbert,	MacWilliams,	and	Sloane	for
more	 on	 this	 notion.)	 This	 kind	 of	 polynomial-evaluation	 hash	 is
parameterized	by	a	prime	number,	p,	and	takes	as	 input	a	key	consisting	of
two	numbers,	R	and	K,	in	the	range	[1,	p]	and	a	message,	M,	consisting	of	n
blocks	(M1,	M2,	…	,	Mn).	The	output	of	the	universal	hash	is	then	computed
as	the	following:

UH(R,	K,	M)	=	R	+	M1K	+	M3K2	+	M3K3	+	…	+	MnKn	mod	p

The	 plus	 sign	 (+)	 denotes	 the	 addition	 of	 positive	 integers,	 Ki	 is	 the
number	K	raised	to	the	power	i,	and	“mod	p”	denotes	the	reduction	modulo
p	of	 the	result	 (that	 is,	 the	remainder	of	 the	division	of	 the	result	by	p;	 for
example,	12	mod	10	=	2,	10	mod	10	=	0,	8	mod	10	=	8,	and	so	on).

Because	we	want	 the	hash	 to	be	 as	 fast	 as	 possible,	 universal	 hash-based
MACs	often	work	with	message	blocks	of	128	bits	and	with	a	prime	number,
p,	that	is	slightly	larger	than	2128,	such	as	2128	+	51.	The	128-bit	width	allows
for	 very	 fast	 implementations	 by	 efficiently	 using	 the	 32-	 and	 64-bit
arithmetic	units	of	common	CPUs.

Potential	Vulnerabilities
Universal	hashes	have	one	weakness:	because	a	universal	hash	is	only	able	to
securely	 authenticate	 one	 message,	 an	 attacker	 could	 break	 the	 preceding
polynomial-evaluation	MAC	 by	 requesting	 the	 tags	 of	 only	 two	messages.
Specifically,	they	could	request	the	tags	for	a	message	where	M1	=	M2	=	…	=
0	 (that	 is,	whose	 tag	 is	UH(R,	K,	0)	=	R)	 and	 then	use	 the	 tags	 to	 find	 the
secret	value	R.	Alternatively,	they	could	request	the	tags	for	a	message	where
M1	=	1	and	where	M2	=	M3	=	…	=	0	(that	is,	whose	tag	is	T	=	R	+	K),	which
would	 allow	 them	 to	 find	 K	 by	 subtracting	 R	 from	 T.	 Now	 the	 attacker
knows	the	whole	key	(R,	K)	and	they	can	forge	MACs	for	any	message.

Fortunately,	 there’s	 a	 way	 to	 go	 from	 single-message	 security	 to	multi-
message	security.

Wegman–Carter	MACs
The	 trick	 to	 authenticating	 multiple	 messages	 using	 a	 universal	 hash
function	 arrived	 thanks	 to	 IBM	researchers	Wegman	 and	Carter	 and	 their
1981	paper	“New	Hash	Functions	and	Their	Use	in	Authentication	and	Set



Equality.”	The	so-called	Wegman–Carter	construction	builds	a	MAC	from
a	 universal	 hash	 function	 and	 a	 PRF,	 using	 two	 keys,	 K1	 and	 K2,	 and	 it
returns

MAC(K1,	K2,	N,	M)	=	UH(K1,	M)	+	PRF(K2,	N)

where	N	is	a	nonce	that	should	be	unique	for	each	key,	K2,	and	where	PRF’s
output	is	as	large	as	that	of	the	universal	hash	function	UH.	By	adding	these
two	 values,	 PRF’s	 strong	 pseudorandom	 output	 masks	 the	 cryptographic
weakness	of	UH.	You	can	see	this	as	the	encryption	of	the	universal	hash’s
result,	 where	 the	 PRF	 acts	 as	 a	 stream	 cipher	 and	 prevents	 the	 preceding
attack	by	making	it	possible	to	authenticate	multiple	messages	with	the	same
key,	K1.

To	 recap,	 the	Wegman–Carter	 construction	UH(K1,	M)	 +	PRF(K2,	N)
gives	a	secure	MAC	if	we	assume	the	following:

UH	is	a	secure	universal	hash.
PRF	is	a	secure	PRF.
Each	nonce	N	is	used	only	once	for	each	key	K2.
The	 output	 values	 of	UH	 and	PRF	 are	 long	 enough	 to	 ensure	 high
enough	security.

Now	let’s	 see	how	Poly1305	 leverages	 the	Wegman–Carter	construction
to	build	a	secure	and	fast	MAC.

Poly1305-AES
Poly1305	was	initially	proposed	as	Poly1305-AES,	combining	the	Poly1305
universal	hash	with	the	AES	block	cipher.	Poly1305-AES	is	much	faster	than
HMAC-based	 MACs,	 or	 even	 than	 CMACs,	 since	 it	 only	 computes	 one
block	of	AES	and	processes	the	message	in	parallel	through	a	series	of	simple
arithmetic	operations.

Given	 a	 128-bit	K1,	K2,	 and	N,	 and	message,	M,	 Poly1305-AES	 returns
the	following:

Poly	1305(K1,	M)	+	AES(K2,	N)	mod	2128



The	 mod	 2128	 reduction	 ensures	 that	 the	 result	 fits	 in	 128	 bits.	 The
message	M	is	parsed	as	a	sequence	of	128-bit	blocks	(M1,	M2,	…	,	Mn),	and	a
129th	bit	is	appended	to	each	block’s	most	significant	bit	to	make	all	blocks
129	bits	long.	(If	the	last	block	is	smaller	than	16	bytes,	it’s	padded	with	a	1
bit	 followed	by	0	bits	before	 the	 final	129th	bit.)	Next,	Poly1305	evaluates
the	polynomial	to	compute	the	following:

Poly	1305(K1,	M)	=	M1K1i	+	M2K1n	−	1	+	…	+MnK1	mod	2130	−	5

The	 result	 of	 this	 expression	 is	 an	 integer	 that	 is	 at	most	 129-bits	 long.
When	added	to	the	128-bit	value	AES(K2,	N),	the	result	is	reduced	modulo
2128	to	produce	a	128-bit	MAC.

NOTE
AES	isn’t	a	PRF;	 instead,	 it’s	a	pseudorandom	permutation	 (PRP).	However,
that	doesn’t	matter	much	here	because	the	Wegman–Carter	construction	works
with	a	PRP	as	well	 as	with	a	PRF.	This	 is	 because	 if	 you’re	given	a	 function
that	is	either	a	PRF	of	a	PRP,	it’s	hard	to	determine	whether	it’s	a	PRF	of	a
PRP	just	by	looking	at	the	function’s	output	values.

The	 security	 analysis	 of	 Poly1305-AES	 (see	 “The	 Poly1305-AES
Message-Authentication	Code”	 at	 http://cr.yp.to/mac/poly1305-20050329.pdf)
shows	that	Poly1305-AES	is	128-bit	secure	as	long	as	AES	is	a	secure	block
cipher—and,	 of	 course,	 as	 long	 as	 everything	 is	 implemented	 correctly,	 as
with	any	cryptographic	algorithm.

The	Poly1305	universal	hash	can	be	combined	with	algorithms	other	than
AES.	For	example,	Poly1305	was	used	with	the	stream	cipher	ChaCha	(see
RFC	 7539,	 “ChaCha20	 and	 Poly1305	 for	 IETF	 Protocols”).	 There’s	 no
doubt	that	Poly1305	will	keep	being	used	wherever	a	fast	MAC	is	needed.

SipHash
Although	Poly1305	is	fast	and	secure,	 it	has	several	downsides.	For	one,	 its
polynomial	evaluation	 is	difficult	 to	 implement	efficiently,	especially	 in	 the
hands	of	many	who	are	unfamiliar	with	the	associated	mathematical	notions.
(See	 examples	 at	 https://github.com/floodyberry/poly1305-donna/).	 Second,	 on
its	own,	it’s	secure	for	only	one	message	unless	you	use	the	Wegman–Carter

http://cr.yp.to/mac/poly1305-20050329.pdf
https://github.com/floodyberry/poly1305-donna/


construction.	 But	 in	 that	 case,	 it	 requires	 a	 nonce,	 and	 if	 the	 nonce	 is
repeated,	the	algorithm	becomes	insecure.	Finally,	Poly1305	is	optimized	for
long	messages,	but	it’s	overkill	if	you	process	only	small	messages	(say,	fewer
than	128	bytes).	In	such	cases,	SipHash	is	the	solution.

I	 designed	 SipHash	 in	 2012	 with	 Dan	 Bernstein	 initially	 to	 address	 a
noncryptographic	 problem:	 denial-of-service	 attacks	 on	 hash	 tables.	 Hash
tables	are	data	structures	used	to	efficiently	store	elements	in	programming
languages.	 Prior	 to	 the	 advent	 of	 SipHash,	 hash	 tables	 relied	 on
noncryptographic	 keyed	 hash	 functions	 for	 which	 collisions	 were	 easy	 to
find,	and	it	was	easy	to	exploit	a	remote	system	using	a	hash	table	by	slowing
it	 down	with	 a	 denial-of-service	 attack.	We	determined	 that	 a	PRF	would
address	this	problem	and	thus	set	out	to	design	SipHash,	a	PRF	suitable	for
hash	 tables.	 Because	 hash	 tables	 process	 mostly	 short	 inputs,	 SipHash	 is
optimized	for	short	messages.	However,	SipHash	can	be	used	for	more	than
hash	 tables:	 it’s	a	 full-blown	PRF	and	MAC	that	 shines	where	most	 inputs
are	short.

How	SipHash	Works
SipHash	uses	a	trick	that	makes	it	more	secure	than	basic	sponge	functions:
instead	 of	 XORing	 message	 blocks	 only	 once	 before	 the	 permutation,
SipHash	XORs	them	before	and	after	the	permutation,	as	shown	in	Figure
7-5.	The	 128-bit	 key	 of	 SipHash	 is	 seen	 as	 two	 64-bit	 words,	K1	 and	K2,
XORed	to	a	256-bit	fixed	initial	state	that	is	seen	as	four	64-bit	words.	Next,
the	 keys	 are	 discarded,	 and	 computing	 SipHash	 boils	 down	 to	 iterating
through	a	core	function	called	SipRound	and	then	XORing	message	chunks
to	modify	the	four-word	internal	state.	Finally,	SipHash	returns	a	64-bit	tag
by	XORing	the	four-state	words	together.



Figure	7-5:	SipHash-2-4	processing	a	15-byte	message	(a	block,	M1,	of	8	bytes	and	a	block,	M2,
of	7	bytes,	plus	1	byte	of	padding)

The	 SipRound	 function	 uses	 a	 bunch	 of	 XORs	 together	 with	 additions
and	word	rotations	to	make	the	function	secure.	SipRound	transforms	a	state
of	four	64-bit	words	(a,	b,	c,	d)	by	performing	the	following	operations,	top
to	bottom.	The	operations	on	the	left	and	right	are	independent	and	can	be
carried	out	in	parallel:

Here,	a	+=	b	is	shorthand	for	a	=	a	+	b,	and	b	<<<	=	13	is	shorthand	for	b	=	b
<<<	13	(the	64-bit	word	b	left-rotated	13	bits.)

These	 simple	 operations	 on	 64-bit	 words	 are	 almost	 all	 you	 need	 to
implement	 in	 order	 to	 compute	 SipHash—although	 you	 won’t	 have	 to
implement	 it	 yourself.	 You	 can	 find	 readily	 available	 implementations	 in
most	languages,	including	C,	Go,	Java,	JavaScript,	and	Python.

NOTE



We	write	SipHash-x-y	as	the	SipHash	version,	meaning	it	makes	x	SipRounds
between	 each	message	 block	 injection	 and	 then	 y	 rounds.	More	 rounds	 require
more	 operations,	 which	 slows	 down	 operations	 but	 also	 increases	 security.	 The
default	 version	 is	 SipHash-2-4	 (simply	 noted	 as	 SipHash),	 and	 it	 has	 so	 far
resisted	 cryptanalysis.	 However,	 you	may	 want	 to	 be	 conservative	 and	 opt	 for
SipHash-4-8	instead,	which	makes	twice	as	many	rounds	and	is	therefore	twice
as	slow.

How	Things	Can	Go	Wrong
Like	ciphers	 and	unkeyed	hash	 functions,	MACs	and	PRFs	 that	 are	 secure
on	 paper	 can	 be	 vulnerable	 to	 attacks	when	 used	 in	 a	 real	 setting,	 against
realistic	attackers.	Let’s	see	two	examples.

Timing	Attacks	on	MAC	Verification
Side-channel	attacks	 target	 the	 implementation	of	a	cryptographic	algorithm
rather	 than	 the	 algorithm	 itself.	 In	 particular,	 timing	 attacks	 use	 an
algorithm’s	 execution	 time	 to	 determine	 secret	 information,	 such	 as	 keys,
plaintext,	 and	 secret	 random	 values.	 As	 you	 might	 imagine,	 variable-time
string	comparison	induces	vulnerabilities	not	only	in	MAC	verification,	but
also	in	many	other	cryptographic	and	security	functionalities.

MACs	can	be	vulnerable	to	timing	attacks	when	a	remote	system	verifies
tags	in	a	period	of	time	that	depends	on	the	tag’s	value,	thereby	allowing	an
attacker	to	determine	the	correct	message	tag	by	trying	many	incorrect	ones
to	determine	the	one	that	takes	the	longest	amount	of	time	to	complete.	The
problem	 occurs	 when	 a	 server	 compares	 the	 correct	 tag	 with	 an	 incorrect
one	 by	 comparing	 the	 two	 strings	 byte	 per	 byte,	 in	 order,	 until	 the	 bytes
differ.	 For	 example,	 the	 Python	 code	 in	 Listing	 7-1	 compares	 two	 strings
byte	 per	 byte,	 in	 variable	 time:	 if	 the	 first	 bytes	 differ,	 the	 function	 will
return	 after	 only	 one	 comparison;	 if	 the	 strings	 x	 and	 y	 are	 identical,	 the
function	will	make	n	comparisons	against	the	length	of	the	strings.

def	compare_mac(x,	y,	n):
				for	i	in	range(n):
								if	x[i]	!=	y[i]:
												return	False
				return	True

Listing	7-1:	Comparison	of	two	n-byte	strings,	taking	variable	time



To	demonstrate	the	vulnerability	of	the	verify_mac()	 function,	let’s	write	a
program	that	measures	the	execution	time	of	100000	calls	to	verify_mac(),	first
with	identical	10-byte	x	and	y	values	and	then	with	x	and	y	values	that	differ
in	 their	 third	 byte.	 We	 should	 expect	 the	 latter	 comparison	 to	 take
noticeably	less	time	than	the	former	because	verify_mac()	will	compare	fewer
bytes	than	the	identical	x	and	y	would,	as	shown	in	Listing	7-2.

from	time	import	time

MAC1	=	'0123456789abcdef'
MAC2	=	'01X3456789abcdef'
TRIALS	=	100000

#	each	call	to	verify_mac()	will	look	at	all	eight	bytes
start	=	time()
for	i	in	range(TRIALS):
				compare_mac(MAC1,	MAC1,	len(MAC1))
end	=	time()
print('%0.5f'	%	(end-start))

#	each	call	to	verify_mac()	will	look	at	three	bytes
start	=	time()
for	i	in	range(TRIALS):
				compare_mac(MAC1,	MAC2,	len(MAC1))
end	=	time()
print('%0.5f'	%	(end-start))

Listing	7-2:	Measuring	timing	differences	when	executing	compare_mac()	from	Listing	7-1

In	my	 test	 environment,	 typical	 execution	of	 the	program	 in	Listing	7-2
prints	execution	times	of	around	0.215	and	0.095	seconds,	respectively.	That
difference	is	significant	enough	for	you	to	identify	what’s	happening	within
the	algorithm.	Now	move	 the	difference	 to	other	offsets	 in	 the	 string,	 and
you’ll	 observe	 different	 execution	 times	 for	 different	 offsets.	 If	 MAC1	 is	 the
correct	MAC	 tag	 and	 MAC2	 is	 the	 one	 tried	 by	 the	 attacker,	 you	 can	 easily
identify	the	position	of	the	first	difference,	which	is	the	number	of	correctly
guessed	bytes.

Of	 course,	 if	 execution	 time	 doesn’t	 depend	 on	 a	 secret	 timing,	 timing
attacks	won’t	work,	which	is	why	implementers	strive	to	write	 constant-time
implementations—that	is,	code	that	takes	exactly	the	same	time	to	complete
for	 any	 secret	 input	 value.	 For	 example,	 the	 C	 function	 in	 Listing	 7-3
compares	two	buffers	of	size	bytes	 in	constant	time:	the	temporary	variable
result	will	be	nonzero	if	and	only	if	there’s	a	difference	somewhere	in	the	two
buffers.



int	cmp_const(const	void	*a,	const	void	*b,	const	size_t	size)	
{
		const	unsigned	char	*_a	=	(const	unsigned	char	*)	a;
		const	unsigned	char	*_b	=	(const	unsigned	char	*)	b;
		unsigned	char	result	=	0;
		size_t	i;

		for	(i	=	0;	i	<	size;	i++)	{
				result	|=	_a[i]	^	_b[i];
		}

		return	result;	/*	returns	0	if	*a	and	*b	are	equal,	nonzero	otherwise	*/
}

Listing	7-3:	Constant-time	comparison	of	two	buffers,	for	safer	MAC	verification

When	Sponges	Leak
Permutation-based	algorithms	 like	SHA-3	and	SipHash	are	 simple,	easy	 to
implement,	and	come	with	compact	 implementations,	but	they’re	fragile	 in
the	face	of	side-channel	attacks	that	recover	a	snapshot	of	the	system’s	state.
For	example,	if	a	process	can	read	the	RAM	and	registers’	values	at	any	time,
or	read	a	core	dump	of	the	memory,	an	attacker	can	determine	the	internal
state	 of	 SHA-3	 in	MAC	mode,	 or	 the	 internal	 state	 of	 SipHash,	 and	 then
compute	 the	 reverse	 of	 the	 permutation	 to	 recover	 the	 initial	 secret	 state.
They	can	then	forge	tags	for	any	message,	breaking	the	MAC’s	security.

Fortunately,	this	attack	will	not	work	against	compression	function–based
MACs	 such	 as	HMAC-SHA-256	and	keyed	BLAKE2	because	 the	 attacker
would	need	a	 snapshot	of	memory	at	 the	exact	 time	when	 the	key	 is	used.
The	 upshot	 is	 that	 if	 you’re	 in	 an	 environment	where	 parts	 of	 a	 process’s
memory	may	 leak,	you	can	use	a	MAC	based	on	a	noninvertible	 transform
compression	function	rather	than	a	permutation.

Further	Reading
The	venerable	HMAC	deserves	more	attention	than	I	have	space	 for	here,
and	 even	more	 for	 the	 train	 of	 thought	 that	 led	 to	 its	wide	 adoption,	 and
eventually	 to	 its	 demise	 when	 combined	 with	 a	 weak	 hash	 function.	 I
recommend	 the	 1996	 paper	 “Keying	 Hash	 Functions	 for	 Message
Authentication”	 by	 Bellare,	 Canetti,	 and	 Krawczyk,	 which	 introduced
HMAC	 and	 its	 cousin	 NMAC,	 and	 the	 2006	 follow-up	 paper	 by	 Bellare
called	 “New	 Proofs	 for	NMAC	 and	HMAC:	 Security	Without	 Collision-
Resistance,”	 which	 proves	 that	 HMAC	 doesn’t	 need	 a	 collision-resistant



hash,	 but	 only	 a	 hash	with	 a	 compression	 function	 that	 is	 a	 PRF.	On	 the
offensive	 side,	 the	 2007	 paper	 “Full	 Key-Recovery	 Attacks	 on
HMAC/NMAC-MD4	and	NMAC-MD5”	by	Fouque,	Leurent,	and	Nguyen
shows	 how	 to	 attack	 HMAC	 and	NMAC	 when	 they’re	 built	 on	 top	 of	 a
brittle	hash	function	such	as	MD4	or	MD5.	(By	the	way,	HMAC-MD5	and
HMAC-SHA-1	aren’t	totally	broken,	but	the	risk	is	high	enough.)

The	Wegman–Carter	MACs	are	also	worth	more	attention,	both	for	their
practical	 interest	 and	 underlying	 theory.	 The	 seminal	 papers	 by	Wegman
and	Carter	are	available	at	http://cr.yp.to/bib/entries.html.	Other	state-of-the-
art	designs	include	UMAC	and	VMAC,	which	are	among	the	fastest	MACs
on	long	messages.

One	type	of	MAC	not	discussed	in	this	chapter	is	Pelican,	which	uses	the
AES	block	 cipher	 reduced	 to	 four	 rounds	 (down	 from	10	 in	 the	 full	 block
cipher)	to	authenticate	chunks	of	messages	within	a	simplistic	construction,
as	described	in	https://eprint.iacr.org/2005/088/.	Pelican	is	more	of	a	curiosity,
though,	and	it’s	rarely	used	in	practice.

Last	 but	 not	 least,	 if	 you’re	 interested	 in	 finding	 vulnerabilities	 in
cryptographic	 software,	 look	 for	 uses	 of	 CBC-MAC,	 or	 for	 weaknesses
caused	 by	HMAC	handling	 keys	 of	 arbitrary	 sizes—taking	Hash(K)	 as	 the
key	 rather	 than	K	 if	K	 is	 too	 long,	 thus	making	K	 and	Hash(K)	 equivalent
keys.	 Or	 just	 look	 for	 systems	 than	 don’t	 use	MAC	 when	 they	 should—a
frequent	occurrence.

In	Chapter	8,	we’ll	look	at	how	to	combine	MACs	with	ciphers	to	protect
a	 message’s	 authenticity,	 integrity,	 and	 confidentiality.	 We’ll	 also	 look	 at
how	 to	 do	 it	 without	 MACs,	 thanks	 to	 authenticated	 ciphers,	 which	 are
ciphers	that	combine	the	functionality	of	a	basic	cipher	with	that	of	a	MAC
by	returning	a	tag	along	with	each	ciphertext.

http://cr.yp.to/bib/entries.html
https://eprint.iacr.org/2005/088/


8
AUTHENTICATED	ENCRYPTION

This	chapter	is	about	a	type	of	algorithm	that	protects	not	only	a	message’s
confidentiality	but	also	its	authenticity.	Recall	from	Chapter	7	that	message
authentication	 codes	 (MACs)	 are	 algorithms	 that	 protect	 a	 message’s
authenticity	by	creating	a	tag,	which	is	a	kind	of	signature.	Like	MACs,	the
authenticated	 encryption	 (AE)	 algorithms	 we’ll	 discuss	 in	 this	 chapter
produce	an	authentication	 tag,	but	 they	also	encrypt	 the	message.	 In	other
words,	a	single	AE	algorithm	offers	the	features	of	both	a	normal	cipher	and
a	MAC.

Combining	 a	 cipher	 and	 a	 MAC	 can	 achieve	 varying	 levels	 of
authenticated	encryption,	as	you’ll	learn	throughout	this	chapter.	I’ll	review
several	possible	ways	to	combine	MACs	with	ciphers,	explain	which	methods
are	 the	 most	 secure,	 and	 introduce	 you	 to	 ciphers	 that	 produce	 both	 a
ciphertext	 and	 an	 authentication	 tag.	 We’ll	 then	 look	 at	 four	 important
authenticated	ciphers:	 three	block	cipher–based	constructions,	with	a	 focus
on	 the	 popular	 Advanced	 Encryption	 Standard	 in	 Galois	 Counter	 Mode
(AES-GCM),	and	a	cipher	that	uses	only	a	permutation	algorithm.

Authenticated	Encryption	Using	MACs
As	shown	in	Figure	8-1,	MACs	and	ciphers	can	be	combined	in	one	of	three
ways	to	both	encrypt	and	authenticate	a	plaintext:	encrypt-and-MAC,	MAC-
then-encrypt,	and	encrypt-then-MAC.



Figure	8-1:	Cipher	and	MAC	combinations

The	three	combinations	differ	in	the	order	in	which	encryption	is	applied
and	 the	 authentication	 tag	 is	 generated.	However,	 the	 choice	 of	 a	 specific
MAC	or	cipher	algorithm	is	unimportant	as	long	as	each	is	secure	in	its	own
right,	and	the	MAC	and	cipher	use	distinct	keys.

As	you	can	see	 in	Figure	8-1,	 in	the	encrypt-and-MAC	composition,	 the
plaintext	 is	 encrypted	 and	 an	 authentication	 tag	 is	 generated	 from	 the
plaintext	 directly,	 such	 that	 the	 two	 operations	 (encryption	 and
authentication)	 are	 independent	 of	 each	 other	 and	 can	 therefore	 be
computed	in	parallel.	In	the	MAC-then-encrypt	scheme,	the	tag	is	generated
from	 the	 plaintext	 first,	 and	 then	 the	 plaintext	 and	 MAC	 are	 encrypted
together.	 In	 contrast,	 in	 the	 case	 of	 the	 encrypt-then-MAC	 method,	 the
plaintext	is	encrypted	first,	and	then	the	tag	is	generated	from	the	ciphertext.

All	three	approaches	are	about	equally	resource	intensive.	Let’s	see	which
method	is	likely	to	be	the	most	secure.

Encrypt-and-MAC
The	 encrypt-and-MAC	 approach	 computes	 a	 ciphertext	 and	 a	 MAC	 tag
separately.	Given	a	plaintext	(P),	the	sender	computes	a	ciphertext	C	=	E(K1,
P),	where	E	is	an	encryption	algorithm	and	C	is	the	resulting	ciphertext.	The
authentication	 tag	 (T)	 is	 calculated	 from	 the	plaintext	 as	T	 =	MAC(K2,	P).
You	can	compute	C	and	T	first	or	in	parallel.

Once	 the	 ciphertext	 and	 authentication	 tag	 have	 been	 generated,	 the
sender	transmits	both	to	the	intended	recipient.	When	the	recipient	receives
C	and	T,	 they	decrypt	C	 to	obtain	the	plaintext	P	by	computing	P	=	D(K1,



C).	 Next,	 they	 compute	 MAC(K2,	 P)	 using	 the	 decrypted	 plaintext	 and
compare	the	result	to	the	T	received.	This	verification	will	fail	if	either	C	or
T	was	corrupted,	and	the	message	will	be	deemed	invalid.

At	least	in	theory,	encrypt-and-MAC	is	the	least	secure	MAC	and	cipher
composition	because	even	a	secure	MAC	could	leak	information	on	P,	which
would	make	P	easier	to	recover.	Because	the	goal	of	using	MACs	is	simply	to
make	tags	unforgeable,	and	because	tags	aren’t	necessarily	random	looking,
the	authentication	tag	(T)	of	a	plaintext	(P)	could	still	leak	information	even
though	 the	 MAC	 is	 considered	 secure!	 (Of	 course,	 if	 the	 MAC	 is	 a
pseudorandom	function,	the	tag	won’t	leak	anything	on	P.)

Still,	 despite	 its	 relative	 weakness,	 encrypt-and-MAC	 continues	 to	 be
supported	 by	many	 systems,	 including	 the	 secure	 transport	 layer	 protocol
SSH,	wherein	each	encrypted	packet	C	is	followed	by	the	tag	T	=	MAC(K,	N
||	P)	sent	in	the	unencrypted	plaintext	packet	P.	N	in	this	equation	is	a	32-
bit	 sequence	number	 that	 is	 incremented	 for	 each	 sent	 packet,	 in	 order	 to
help	 ensure	 that	 the	 received	 packets	 are	 processed	 in	 the	 right	 order.	 In
practice,	 encrypt-and-MAC	 has	 proven	 good	 enough	 for	 use	 with	 SSH,
thanks	 to	 the	 use	 of	 strong	 MAC	 algorithms	 like	 HMAC-SHA-256	 that
don’t	leak	information	on	P.

MAC-then-Encrypt
The	 MAC-then-encrypt	 composition	 protects	 a	 message,	 P,	 by	 first
computing	 the	 authentication	 tag	 T	 =	MAC(K2,	 P).	 Next,	 it	 creates	 the
ciphertext	 by	 encrypting	 the	 plaintext	 and	 tag	 together,	 according	 to	C	 =
E(K1,	P	||	T).

Once	these	steps	have	been	completed,	the	sender	transmits	only	C,	which
contains	 both	 the	 encrypted	 plaintext	 and	 tag.	Upon	 receipt,	 the	 recipient
decrypts	C	by	computing	P	||	T	=	D(K1,	C)	to	obtain	the	plaintext	and	tag
T.	Next,	the	recipient	verifies	the	received	tag	T	by	computing	a	tag	directly
from	 the	 plaintext	 according	 to	MAC(K2,	P)	 in	 order	 to	 confirm	 that	 the
computed	tag	is	equal	to	the	tag	T.

As	 with	 encrypt-and-MAC,	 when	 MAC-then-encrypt	 is	 used,	 the
recipient	 must	 decrypt	 C	 before	 they	 can	 determine	 whether	 they	 are
receiving	 corrupted	 packets—a	 process	 that	 exposes	 potentially	 corrupted
plaintexts	 to	 the	 receiver.	Nevertheless,	MAC-then-encrypt	 is	more	 secure
than	 encrypt-and-MAC	 because	 it	 hides	 the	 plaintext’s	 authentication	 tag,



thus	preventing	the	tag	from	leaking	information	on	the	plaintext.
MAC-then-encrypt	has	been	used	in	the	TLS	protocol	for	years,	but	TLS

1.3	replaced	MAC-then-encrypt	with	authenticated	ciphers	(see	Chapter	13
for	more	on	TLS	1.3).

Encrypt-then-MAC
The	encrypt-then-MAC	composition	sends	two	values	to	the	recipient:	 the
ciphertext	produced	by	C	=	E(K1,	P)	and	a	tag	based	on	the	ciphertext,	T	=
MAC(K2,	C).	The	receiver	computes	the	tag	using	MAC(K2,	C)	and	verifies
that	 it	 equals	 the	 T	 received.	 If	 the	 values	 are	 equal,	 the	 plaintext	 is
computed	as	P	=	D(K1,	C);	if	they	are	not	equal,	the	plaintext	is	discarded.

One	 advantage	 with	 this	 method	 is	 that	 the	 receiver	 only	 needs	 to
compute	a	MAC	in	order	to	detect	corrupt	messages,	meaning	that	there	is
no	need	to	decrypt	a	corrupt	ciphertext.	Another	advantage	is	that	attackers
can’t	send	pairs	of	C	and	T	to	the	receiver	to	decrypt	unless	they	have	broken
the	MAC,	which	makes	it	harder	for	attackers	to	transmit	malicious	data	to
the	recipient.

This	combination	of	features	makes	encrypt-then-MAC	stronger	than	the
encrypt-and-MAC	 and	MAC-then-encrypt	 approaches.	This	 is	 one	 reason
why	the	widely	used	IPSec	secure	communications	protocol	suite	uses	 it	 to
protect	packets	(for	example,	within	VPN	tunnels).

But	 then	why	 don’t	 SSH	 and	TLS	use	 encrypt-then-MAC?	The	 simple
answer	is	that	when	SSH	and	TLS	were	created,	other	approaches	appeared
adequate—not	 because	 theoretical	 weaknesses	 didn’t	 exist	 but	 because
theoretical	weaknesses	don’t	necessarily	become	actual	vulnerabilities.

Authenticated	Ciphers
Authenticated	ciphers	are	an	alternative	to	the	cipher	and	MAC	combinations.
They	are	 like	normal	ciphers	except	 that	 they	 return	an	authentication	 tag
together	with	the	ciphertext.

The	authenticated	cipher	encryption	is	represented	as	AE(K,	P)	=	(C,	T).
The	term	AE	 stands	 for	authenticated	encryption,	which	as	you	can	see	from
this	equation	is	based	on	a	key	(K)	and	a	plaintext	(P)	and	returns	a	ciphertext
(C)	 and	 a	 generated	 authentication	 tag	 pair	 (T).	 In	 other	 words,	 a	 single
authenticated	 cipher	 algorithm	 does	 the	 same	 job	 as	 a	 cipher	 and	 MAC



combination,	making	it	simpler,	faster,	and	often	more	secure.
Authenticated	cipher	decryption	is	represented	by	AD(K,	C,	T)	=	P.	Here,

AD	 stands	 for	 authenticated	 decryption,	 which	 returns	 a	 plainte	 (P)	 given	 a
ciphertext	(C),	tag	(T),	and	key	(K).	If	either	or	both	C	and	T	are	invalid,	AD
will	return	an	error	to	prevent	the	recipient	from	processing	a	plaintext	that
may	have	been	forged.	By	the	same	token,	if	AD	returns	a	plaintext,	you	can
be	sure	that	it	has	been	encrypted	by	someone	or	something	that	knows	the
secret	key.

The	basic	security	requirements	of	an	authenticated	cipher	are	simple:	its
authentication	 should	 be	 as	 strong	 as	 a	MAC’s,	meaning	 that	 it	 should	 be
impossible	 to	 forge	 a	 ciphertext	 and	 tag	 pair	 (C,	 T)	 that	 the	 decryption
function	AD	will	accept	and	decrypt.

As	 far	 as	 confidentiality	 is	 concerned,	 an	 authenticated	 cipher	 is
fundamentally	 stronger	 than	 a	 basic	 cipher	 because	 systems	 holding	 the
secret	key	will	only	decrypt	a	ciphertext	if	the	authentication	tag	is	valid.	If
the	tag	is	invalid,	the	plaintext	will	be	discarded.	This	characteristic	prevents
attackers	 from	performing	 chosen-ciphertext	 queries,	 an	 attack	where	 they
create	ciphertexts	and	ask	for	the	corresponding	plaintext.

Authenticated	Encryption	with	Associated	Data
Cryptographers	 define	 associated	 data	 as	 any	 data	 processed	 by	 an
authenticated	 cipher	 such	 that	 the	 data	 is	 authenticated	 (thanks	 to	 the
authentication	 tag)	but	not	encrypted.	 Indeed,	by	default,	 all	plaintext	data
fed	to	an	authenticated	cipher	is	encrypted	and	authenticated.

But	what	if	you	simply	want	to	authenticate	all	of	a	message,	including	its
unencrypted	parts,	but	not	encrypt	the	entire	message?	That	is,	you	want	to
authenticate	 and	 transmit	 data	 in	 addition	 to	 an	 encrypted	 message.	 For
example,	 if	 a	 cipher	 processes	 a	 network	 packet	 composed	 of	 a	 header
followed	by	a	payload,	you	might	choose	to	encrypt	the	payload	to	hide	the
actual	 data	 transmitted,	 but	 not	 encrypt	 the	 header	 since	 it	 contains
information	required	to	deliver	the	packet	to	its	final	recipient.	At	the	same
time,	you	might	still	like	to	authenticate	the	header’s	data	to	make	sure	that
it	is	received	from	the	expected	sender.

In	order	to	accomplish	these	goals,	cryptographers	have	created	the	notion
of	 authenticated	 encryption	 with	 associated	 data	 (AEAD).	 An	 AEAD
algorithm	allows	 you	 to	 attach	 cleartext	 data	 to	 a	 ciphertext	 in	 such	 a	way



that	if	the	cleartext	data	is	corrupted,	the	authentication	tag	will	not	validate
and	the	ciphertext	will	not	be	decrypted.

We	can	write	an	AEAD	operation	as	AEAD(K,	P,	A)	=	(C,	A,	T).	Given	a
key	(K),	plaintext	(P),	and	associated	data	(A),	AEAD	returns	the	ciphertext,
the	unencrypted	associated	data	A,	and	an	authentication	tag.	AEAD	leaves
the	 unencrypted	 associated	 data	 unchanged,	 and	 the	 ciphertext	 is	 the
encryption	 of	 plaintext.	The	 authentication	 tag	 depends	 on	 both	P	 and	A,
and	will	only	be	verified	as	valid	if	neither	C	nor	A	has	been	modified.

Because	 the	 authenticated	 tag	 depends	 on	A,	 decryption	with	 associated
data	 is	 computed	by	ADAD(K,	C,	A,	T)	 =	 (P,	A).	Decryption	 requires	 the
key,	 ciphertext,	 associated	 data,	 and	 tag	 in	 order	 to	 compute	 the	 plaintext
and	associated	data,	and	it	will	fail	if	either	C	or	A	has	been	corrupted.

One	thing	to	note	when	using	AEAD	is	that	you	can	leave	A	or	P	empty.
If	 the	 associated	 data	A	 is	 empty,	 AEAD	 becomes	 a	 normal	 authenticated
cipher;	if	P	is	empty,	it’s	just	a	MAC.

NOTE
As	 of	 this	 writing,	 AEAD	 is	 the	 current	 norm	 for	 authenticated	 encryption.
Because	 nearly	 all	 authenticated	 ciphers	 in	 use	 today	 support	 associated	 data,
when	referring	to	authenticated	ciphers	throughout	this	book,	I	am	referring	to
AEAD	unless	stated	otherwise.	When	discussing	AEAD	operations	of	encryption
and	decryption,	I’ll	refer	to	them	as	AE	and	AD,	respectively.

Avoiding	Predictability	with	Nonces
Recall	from	Chapter	1	that	in	order	to	be	secure,	encryption	schemes	must
be	unpredictable	and	return	different	ciphertexts	when	called	repeatedly	 to
encrypt	 the	 same	 plaintext—otherwise,	 an	 attacker	 can	 determine	whether
the	same	plaintext	was	encrypted	twice.	In	order	to	be	unpredictable,	block
ciphers	 and	 stream	 ciphers	 feed	 the	 cipher	 an	 extra	 parameter:	 the	 initial
value	 (IV)	or	nonce—a	number	 that	 can	be	used	only	once.	Authenticated
ciphers	use	the	same	trick.	Thus,	authenticated	encryption	can	be	expressed
as	AE(K,	P,	A,	N),	where	N	is	a	nonce.	It’s	up	to	the	encryption	operation	to
pick	a	nonce	that	has	never	been	used	before	with	the	same	key.

As	with	block	and	stream	ciphers,	decryption	with	an	authenticated	cipher
requires	 the	 nonce	 used	 for	 encryption	 in	 order	 to	 perform	 correctly.	We



can	 thus	express	decryption	as	AD(K,	C,	A,	T,	N)	=	 (P,	A),	where	N	 is	 the
nonce	used	to	create	C	and	T.

What	Makes	a	Good	Authenticated	Cipher?
Researchers	have	been	struggling	since	the	early	2000s	to	define	what	makes
a	good	 authenticated	 cipher,	 and	 as	 I	write	 this,	 the	 answer	 is	 still	 elusive.
Because	 of	 AEAD’s	 many	 inputs	 that	 play	 different	 roles,	 it’s	 harder	 to
define	 a	 notion	 of	 security	 than	 it	 is	 for	 basic	 ciphers	 that	 only	 encrypt	 a
message.	 Nevertheless,	 in	 this	 section,	 I’ll	 summarize	 the	 most	 important
criteria	 to	 consider	 when	 evaluating	 the	 security,	 performance,	 and
functionality	of	an	authenticated	cipher.

Security	Criteria
The	 most	 important	 criteria	 used	 to	 measure	 the	 strength	 of	 an
authenticated	cipher	are	its	ability	to	protect	the	confidentiality	of	data	(that
is,	 the	 secrecy	 of	 the	 plaintext)	 and	 the	 authenticity	 and	 integrity	 of	 the
communication	(as	with	the	MAC’s	ability	to	detect	corrupted	messages).	An
authenticated	cipher	must	compete	in	both	leagues:	 its	confidentiality	must
be	as	strong	as	that	of	the	strongest	cipher,	and	its	authenticity	as	strong	as
that	of	the	best	MAC.	In	other	words,	if	you	remove	the	authentication	part
in	 an	 AEAD,	 you	 should	 get	 a	 secure	 cipher,	 and	 if	 you	 remove	 the
encryption	part,	you	should	get	a	strong	MAC.

Another	measure	 of	 the	 strength	 of	 an	 authenticated	 cipher’s	 security	 is
based	on	something	a	bit	more	subtle—namely,	its	fragility	when	faced	with
repeated	nonces.	For	example,	 if	a	nonce	is	reused,	can	an	attacker	decrypt
ciphertexts	or	learn	the	difference	between	plaintexts?

Researchers	 call	 this	 notion	 of	 robustness	 misuse	 resistance,	 and	 have
designed	 misuse-resistant	 authenticated	 ciphers	 to	 weigh	 the	 impact	 of	 a
repeated	 nonce	 and	 attempt	 to	 determine	 whether	 confidentiality,
authenticity,	or	both	would	be	compromised	in	the	face	of	such	an	attack,	as
well	as	what	information	about	the	encrypted	data	would	likely	be	leaked.

Performance	Criteria
As	with	every	cryptographic	algorithm,	 the	 throughput	of	an	authenticated
cipher	can	be	measured	in	bits	processed	per	second.	This	speed	depends	on
the	number	of	 operations	performed	by	 the	 cipher’s	 algorithm	and	on	 the



extra	 cost	 of	 the	 authentication	 functionality.	 As	 you	 might	 imagine,	 the
extra	security	features	of	authenticated	ciphers	come	with	a	performance	hit.
However,	the	measure	of	a	cipher’s	performance	isn’t	just	about	pure	speed.
It’s	 also	 about	 parallelizability,	 structure,	 and	 whether	 the	 cipher	 is
streamable.	Let’s	examine	these	notions	more	closely.

A	cipher’s	parallelizability	is	a	measure	of	its	ability	to	process	multiple	data
blocks	simultaneously	without	waiting	for	the	previous	block’s	processing	to
complete.	Block	cipher–based	designs	can	be	easily	parallelizable	when	each
block	can	be	processed	independently	of	the	other	blocks.	For	example,	the
CTR	block	cipher	mode	discussed	in	Chapter	4	is	parallelizable,	whereas	the
CBC	encryption	mode	is	not,	because	blocks	are	chained.

The	 internal	 structure	 of	 an	 authenticated	 cipher	 is	 another	 important
performance	criteria.	There	are	 two	main	types	of	 structure:	one-layer	and
two-layer.	 In	 a	 two-layer	 structure	 (for	 example,	 in	 the	 widely	 used	 AES-
GCM),	one	algorithm	processes	 the	plaintext	 and	 then	a	 second	algorithm
processes	the	result.	Typically,	the	first	layer	is	the	encryption	layer	and	the
second	 is	 the	 authentication	 layer.	 But	 as	 you	 might	 expect,	 a	 two-layer
structure	complicates	implementation	and	tends	to	slow	down	computations.

An	authenticated	cipher	is	streamable	(also	called	an	online	cipher)	when	it
can	 process	 a	 message	 block-by-block	 and	 discard	 any	 already-processed
blocks.	 In	 contrast,	 nonstreamable	 ciphers	 must	 store	 the	 entire	 message,
typically	 because	 they	 need	 to	make	 two	 consecutive	 passes	 over	 the	 data:
one	from	the	start	to	the	end,	and	the	other	from	the	end	to	the	start	of	the
data	obtained	from	the	first	pass.

Due	 to	 potentially	 high	memory	 requirements,	 some	 applications	 won’t
work	 with	 nonstreamable	 ciphers.	 For	 example,	 a	 router	 could	 receive	 an
encrypted	 block	 of	 data,	 decrypt	 it,	 and	 then	 return	 the	 plaintext	 block
before	moving	on	 to	decrypt	 the	 subsequent	block	of	 the	message,	 though
the	 recipient	 of	 the	 decrypted	 message	 would	 still	 have	 to	 verify	 the
authentication	tag	sent	at	the	end	of	the	decrypted	data	stream.

Functional	Criteria
Functional	 criteria	 are	 the	 features	 of	 a	 cipher	 or	 its	 implementation	 that
don’t	 directly	 relate	 to	 either	 security	 or	 performance.	 For	 example,	 some
authenticated	 ciphers	 only	 allow	 associated	 data	 to	 precede	 the	 data	 to	 be
encrypted	 (because	 they	 need	 access	 to	 it	 in	 order	 to	 start	 encryption).



Others	require	associated	data	to	follow	the	data	to	be	encrypted	or	support
the	 inclusion	 of	 associated	 data	 anywhere—even	 between	 chunks	 of
plaintext.	This	last	case	is	the	best,	because	it	enables	users	to	protect	their
data	in	any	possible	situation,	but	it’s	also	the	hardest	to	design	securely:	as
always,	 more	 features	 often	 bring	 more	 complexity—and	 more	 potential
vulnerabilities.

Another	piece	of	functional	criteria	to	consider	relates	to	whether	you	can
use	 the	 same	 core	 algorithm	 for	 both	 encryption	 and	 decryption.	 For
example,	 many	 authenticated	 ciphers	 are	 based	 on	 the	 AES	 block	 cipher,
which	 specifies	 the	 use	 of	 two	 similar	 algorithms	 for	 encrypting	 and
decrypting	a	block.	As	discussed	in	Chapter	4,	the	CBC	block	cipher	mode
requires	both	algorithms,	but	 the	CTR	mode	 requires	only	 the	encryption
algorithm.	 Likewise,	 authenticated	 ciphers	may	 not	 need	 both	 algorithms.
Although	 the	 extra	 cost	 of	 implementing	 both	 encryption	 and	 decryption
algorithms	 won’t	 impact	 most	 software,	 it’s	 often	 noticeable	 on	 low-cost
dedicated	 hardware,	 where	 implementation	 cost	 is	 measured	 in	 terms	 of
logic	gates,	or	the	silicon	area	occupied	by	the	cryptography.

AES-GCM:	The	Authenticated	Cipher	Standard
AES-GCM	is	 the	most	widely	used	authenticated	cipher.	AES-GCM	is,	of
course,	based	on	the	AES	algorithm,	and	the	Galois	counter	mode	(GCM)
of	 operation	 is	 essentially	 a	 tweak	 of	 the	 CTR	 mode	 that	 incorporates	 a
small	and	efficient	component	to	compute	an	authentication	tag.	As	I	write
this,	AES-GCM	is	the	only	authenticated	cipher	that	is	a	NIST	standard	(SP
800-38D).	 AES-GCM	 is	 also	 part	 of	 NSA’s	 Suite	 B	 and	 of	 the	 Internet
Engineering	 Task	 Force	 (IETF)	 for	 the	 secure	 network	 protocols	 IPSec,
SSH,	and	TLS	1.2.

NOTE
Although	GCM	works	 with	 any	 block	 cipher,	 you’ll	 probably	 only	 see	 it	 used
with	AES.	Some	people	don’t	want	to	use	AES	because	it’s	American,	but	they
won’t	use	GCM	either,	 for	 the	 same	reason.	Therefore,	GCM	is	rarely	paired
with	other	ciphers.

GCM	Internals:	CTR	and	GHASH



Figure	 8-2:	 The	 AES-GCM	 mode,	 applied	 to	 one	 associated	 data	 block,	 A1,	 and	 two	 plaintext
blocks,	P1	and	P2.	The	circled	multiplication	sign	represents	polynomial	multiplication	by	H,	the
authentication	key	derived	from	K.

Figure	8-2	shows	how	AES-GCM	works:	AES	instances	parameterized	by	a
secret	 key	 (K)	 transform	 a	 block	 composed	 of	 the	 nonce	 (N)	 concatenated
with	a	counter	(starting	here	at	1,	then	incremented	to	2,	3,	and	so	on)	and
then	XOR	the	result	with	a	plaintext	block	to	obtain	a	ciphertext	block.	So
far,	that’s	nothing	new	compared	to	the	CTR	mode.

Next,	 the	ciphertext	blocks	are	mixed	using	a	combination	of	XORs	and
multiplications	 (as	 you’ll	 see	next).	You	 can	 see	AES-GCM	as	doing	1)	 an
encryption	 in	 CTR	 mode	 and	 2)	 a	 MAC	 over	 the	 ciphertext	 blocks.
Therefore,	 AES-GCM	 is	 essentially	 an	 encrypt-then-MAC	 construction,
where	AES-CTR	encrypts	using	a	128-bit	key	 (K)	 and	a	96-bit	nonce	 (N),
with	the	minor	difference	that	the	counter	starts	from	1,	not	0,	as	in	normal
CTR	mode	(which	doesn’t	matter,	as	far	as	security	is	concerned).

To	authenticate	 the	ciphertext,	GCM	uses	a	Wegman–Carter	MAC	(see
Chapter	7)	to	authenticate	the	ciphertext,	which	XORs	the	value	AES(K,	N
||	0)	with	the	output	of	a	universal	hash	function	called	GHASH.	In	Figure
8-2,	GHASH	corresponds	to	the	series	of	operations	“⊗H”	followed	by	the
XOR	 with	 len(A)	 ||	 len(C),	 or	 the	 bit	 length	 of	 A	 (the	 associated	 data)



followed	by	the	bit	length	of	C	(the	ciphertext).
We	can	thus	express	the	authentication	tag’s	value	as	T	=	GHASH(H,	C)

⊕	 AES(K,	N	 ||	 0),	 where	 C	 is	 the	 ciphertext	 and	H	 is	 the	 hash	 key,	 or
authentication	 key.	 This	 key	 is	 determined	 as	H	 =	AES(K,	 0),	 which	 is	 the
encryption	of	the	block	equal	to	a	sequence	of	null	bytes	(this	step	does	not
appear	in	Figure	8-2,	for	clarity).

NOTE
In	GCM,	GHASH	doesn’t	use	K	directly	in	order	to	ensure	that	if	GHASH’s
key	is	compromised,	the	master	key	K	remains	secret.	Given	K,	you	can	get	H	by
computing	AES(K,	0),	 but	 you	 can’t	 recover	K	 from	 that	 value	 since	K	 acts
here	as	AES’s	key.

As	 Figure	 8-2	 shows,	GHASH	 uses	 polynomial	 notation	 to	multiply	 each
ciphertext	 block	 with	 the	 authentication	 key	 H.	 This	 use	 of	 polynomial
multiplication	makes	GHASH	fast	in	hardware	as	well	as	in	software,	thanks
to	a	special	polynomial	multiplication	instruction	available	in	many	common
microprocessors	(CLMUL,	for	carry-less	multiplication).

Alas,	GHASH	 is	 far	 from	 ideal.	 For	 one	 thing,	 its	 speed	 is	 suboptimal.
Even	when	 the	 CLMUL	 instruction	 is	 used,	 the	AES-CTR	 layer	 that	 encrypts
the	 plaintext	 remains	 faster	 than	 the	GHASH	MAC.	 Second,	 GHASH	 is
painful	 to	 implement	correctly.	 In	 fact,	even	 the	experienced	developers	of
the	OpenSSL	project,	by	far	the	most-used	cryptographic	piece	of	software
in	the	world,	got	AES-GCM’s	GHASH	wrong.	One	commit	had	a	bug	in	a
function	called	gcm_ghash_clmul	that	allowed	attackers	to	forge	valid	MACs	for
the	AES-GCM.	(Fortunately,	the	error	was	spotted	by	Intel	engineers	before
the	bug	entered	the	next	OpenSSL	release.)

POLYNOMIAL	MULTIPLICATION

While	 clearly	 more	 complicated	 for	 us	 than	 classic	 integer
arithmetic,	 polynomial	 multiplication	 is	 simpler	 for
computers	because	there	are	no	carries.	For	example,	say	we
want	to	compute	the	product	of	the	polynomials	(1	+	X	+	X2)
and	(X	+	X3).	We	first	multiply	the	two	polynomials	(1	+	X	+



X2)	and	(X	+	X3)	as	though	we	were	doing	normal	polynomial
multiplication,	thus	giving	us	the	following	(the	two	terms	X3

cancel	each	other	out):

(1	+	X	+	X2)	⊕	(X	+	X3)	=	X	+	X3	+	X2	+	X4	+	X3	+	X5	=	X	+	X2	+	X4	+	X5

We	now	apply	modulo	reduction,	reducing	X	+	X2	+	X4	+
X5	modulo	1	+	X3	+X4	to	give	us	X2,	because	X	+	X2	+	X4	+
X5	can	be	written	as	X	+	X2	+	X4	+	X5	=	X	⊗	(1	+	X3	+	X4)	+
X2.	In	more	general	terms,	A	+	BC	modulo	B	is	equal	to	A,	by
definition	of	modular	reduction.

GCM	Security
AES-GCM’s	biggest	weakness	is	its	fragility	in	the	face	of	nonce	repetition.
If	 the	 same	 nonce	N	 is	 used	 twice	 in	 an	 AES-GCM	 implementation,	 an
attacker	 can	 get	 the	 authentication	 key	H	 and	 use	 it	 to	 forge	 tags	 for	 any
ciphertext,	associated	data,	or	combination	thereof.

A	look	at	the	basic	algebra	behind	AES-GCM’s	computations	(as	shown	in
Figure	 8-2)	 will	 help	 make	 this	 fragility	 clear.	 Specifically,	 a	 tag	 (T)	 is
computed	as	T	=	GHASH(H,	A,	C)	⊕	AES(K,	N	||	0),	where	GHASH	is	a
universal	hash	function	with	linearly	related	inputs	and	outputs.

Now	 what	 happens	 if	 you	 get	 two	 tags,	T1	 and	T2,	 computed	 with	 the
same	nonce	N	?	Right,	 the	AES	part	will	vanish.	If	we	have	two	tags,	T1	=
GHASH(H,	A1,	C1)	⊕	AES(K,	N	 ||	 0)	 and	T2	 =	GHASH(H,	A1,	C1)	⊕
AES(K,	N	||	0),	then	XORing	them	together	gives	the	following:

If	 the	 same	 nonce	 is	 used	 twice,	 an	 attacker	 can	 thus	 recover	 the	 value
GHASH(H,	A1,	C1)	⊕	GHASH(H,	A2,	C2)	for	some	known	A1,	C1,	A2,	and
C2.	The	linearity	of	GHASH	then	allows	an	attacker	to	easily	determine	H.



(It	 would	 have	 been	 worse	 if	 GHASH	 had	 used	 the	 same	 key	 K	 as	 the
encryption	part,	but	because	H	=	AES(K,	0),	there’s	no	way	to	find	K	 from
H.)

As	recently	as	2016,	researchers	scanned	the	internet	for	instances	of	AES-
GCM	exposed	through	HTTPS	servers,	in	search	of	systems	with	repeating
nonces	 (see	 https://eprint.iacr.org/2016/475/).	 They	 found	 184	 servers	 with
repeating	 nonces,	 including	 23	 that	 always	 used	 the	 all-zero	 string	 as	 a
nonce.

GCM	Efficiency
One	advantage	of	GCM	mode	is	that	both	GCM	encryption	and	decryption
are	 parallelizable,	 allowing	 you	 to	 encrypt	 or	 decrypt	 different	 plaintext
blocks	 independently.	 However,	 the	 AES-GCM	 MAC	 computation	 isn’t
parallelizable,	because	it	must	be	computed	from	the	beginning	to	the	end	of
the	ciphertext	once	GHASH	has	processed	any	associated	data.	This	lack	of
parallelizability	means	 that	 any	 system	 that	 receives	 the	 plaintext	 first	 and
then	the	associated	data	will	have	to	wait	until	all	associated	data	is	read	and
hashed	before	hashing	the	first	ciphertext	block.

Nevertheless,	GCM	is	streamable:	since	the	computations	in	its	two	layers
can	 be	 pipelined,	 there’s	 no	 need	 to	 store	 all	 ciphertext	 blocks	 before
computing	 GHASH	 because	 GHASH	 will	 process	 each	 block	 as	 it’s
encrypted.	In	other	words,	P1	is	encrypted	to	C1,	then	GHASH	processes	C1
while	P2	is	encrypted	to	C2,	then	P1	and	C1	are	no	longer	needed,	and	so	on.

OCB:	An	Authenticated	Cipher	Faster	than	GCM
The	 acronym	 OCB	 stands	 for	 offset	 codebook	 (though	 its	 designer,	 Phil
Rogaway,	 prefers	 to	 simply	 call	 it	 OCB).	 First	 developed	 in	 2001,	 OCB
predates	GCM,	and	 like	GCM	 it	produces	 an	 authenticated	 cipher	 from	a
block	 cipher,	 though	 it	 does	 so	 faster	 and	more	 simply.	 Then	 why	 hasn’t
OCB	 seen	 wider	 adoption?	 Unfortunately,	 until	 2013,	 all	 uses	 of	 OCB
required	a	 license	 from	 the	 inventor.	Fortunately,	 as	 I	write	 this,	Rogaway
grants	 free	 licenses	 for	 nonmilitary	 software	 implementations	 (see
http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm).	 Therefore,	 although	 OCB
is	not	yet	a	formal	standard,	perhaps	we	will	begin	to	see	wider	adoption.

Unlike	 GCM,	 OCB	 blends	 encryption	 and	 authentication	 into	 one
processing	 layer	that	uses	only	one	key.	There’s	no	separate	authentication
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component,	 so	OCB	gets	 you	 authentication	mostly	 for	 free	 and	performs
almost	 as	many	 block	 cipher	 calls	 as	 a	 non-authenticated	 cipher.	 Actually,
OCB	is	almost	as	simple	as	the	ECB	mode	(see	Chapter	4),	except	that	it’s
secure.

OCB	Internals
Figure	8-3	shows	how	OCB	works:	OCB	encrypts	each	plaintext	block	P	to	a
ciphertext	block	C	=	E(K,	P	⊕	O)	⊕	O,	where	E	is	a	block	cipher	encryption
function.	Here,	O	(called	the	offset)	is	a	value	that	depends	on	the	key	and	the
nonce	incremented	for	each	new	block	processed.

To	produce	the	authentication	tag,	OCB	first	XORs	the	plaintext	blocks
together	to	compute	S	=	P1	⊕	P2	⊕	P3	⊕	…	(that	is,	the	XOR	of	all	plaintext
blocks).	The	 authentication	 tag	 is	 then	T	 =	E(K,	S	⊕	O*),	 where	O*	 is	 an
offset	value	computed	from	the	offset	of	the	last	plaintext	block	processed.

Figure	8-3:	The	OCB	encryption	process	when	run	on	two	plaintext	blocks,	with	no	associated	data

Like	AES-GCM,	OCB	also	supports	associated	data	as	a	series	of	blocks,
A1,	A2,	 and	 so	 on.	When	 an	OCB	 encrypted	message	 contains	 associated
data,	the	authentication	tag	is	calculated	according	to	the	formula

T	=	E(K,	S	⊕	O*)	⊕	E(K,	A1	⊕	O1)	⊕	E(K,	A2	⊕	O2)	⊕	…

where	 OCB	 specifies	 offset	 values	 that	 are	 different	 from	 those	 used	 to
encrypt	P.

Unlike	GCM	and	encrypt-then-MAC,	which	create	an	authentication	tag
by	 combining	 ciphertext,	 OCB	 calculates	 the	 authentication	 tag	 by
combining	 plaintext	 data.	 There’s	 nothing	 wrong	 with	 this	 approach,	 and
OCB	is	backed	by	solid	security	proofs.



NOTE
For	more	on	how	to	implement	OCB	correctly,	see	either	RFC	7253	or	the	2011
paper	 “The	 Software	 Performance	 of	 Authenticated-Encryption	 Modes”	 by
Krovetz	and	Rogaway,	which	covers	the	latest	and	best	version	of	OCB,	OCB3.
For	 further	 details	 on	 OCB,	 see	 the	 OCB	 FAQ	 at
http://web.cs.ucdavis.edu/~rogaway/ocb/ocb-faq.htm.

OCB	Security
OCB	is	a	bit	less	fragile	than	GCM	against	repeated	nonces.	For	example,	if
a	 nonce	 is	 used	 twice,	 an	 attacker	 that	 sees	 the	 two	 ciphertexts	will	 notice
that,	say,	the	third	plaintext	block	of	the	first	message	is	identical	to	the	third
plaintext	 block	 of	 the	 second	message.	With	GCM,	 attackers	 can	 find	 not
only	 duplicates	 but	 also	 XOR	 differences	 between	 blocks	 at	 the	 same
position.	The	impact	of	repeated	nonces	is	therefore	worse	with	GCM	than
it	is	with	OCB.

As	 with	 GCM,	 repeated	 nonces	 can	 break	 the	 authenticity	 of	 OCB,
though	less	effectively.	For	example,	an	attacker	could	combine	blocks	from
two	messages	authenticated	with	OCB	to	create	another	encrypted	message
with	the	same	checksum	and	tag	as	one	of	the	original	two	messages,	but	the
attacker	would	not	be	able	to	recover	a	secret	key	as	with	GCM.

OCB	Efficiency
OCB	 and	GCM	 are	 about	 equally	 fast.	 Like	GCM,	OCB	 is	 parallelizable
and	streamable.	In	terms	of	raw	efficiency,	GCM	and	OCB	will	make	about
as	 many	 calls	 to	 the	 underlying	 block	 cipher	 (usually	 AES),	 but	 OCB	 is
slightly	 more	 efficient	 than	 GCM	 because	 it	 simply	 XORs	 the	 plaintext
rather	 than	 performing	 something	 like	 the	 relatively	 expensive	 GHASH
computation.	 (In	 earlier	 generations	 of	 Intel	 microprocessors,	 AES-GCM
used	to	be	more	than	three	times	slower	than	AES-OCB	because	AES	and
GHASH	 instructions	 had	 to	 compete	 for	 CPU	 resources	 and	 couldn’t	 be
run	in	parallel.)

One	 important	 difference	 between	 OCB	 and	 GCM	 implementations	 is
that	OCB	needs	both	the	block	cipher’s	encryption	and	decryption	functions
in	 order	 to	 encrypt	 and	 decrypt,	 which	 increases	 the	 cost	 of	 hardware
implementations	 when	 only	 limited	 silicon	 is	 available	 for	 crypto
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components.	 In	contrast,	GCM	uses	only	 the	encryption	 function	 for	both
encryption	and	decryption.

SIV:	The	Safest	Authenticated	Cipher?
Synthetic	 IV,	 also	 known	 as	SIV,	 is	 an	 authenticated	 cipher	mode	 typically
used	with	AES.	Unlike	GCM	and	OCB,	SIV	 is	 secure	even	 if	 you	use	 the
same	 nonce	 twice:	 if	 an	 attacker	 gets	 two	 ciphertexts	 encrypted	 using	 the
same	 nonce,	 they’ll	 only	 be	 able	 to	 learn	 whether	 the	 same	 plaintext	 was
encrypted	 twice.	Unlike	with	messages	 encrypted	with	GCM	or	OCB,	 the
attacker	would	be	unable	to	tell	whether	the	first	block	of	the	two	messages
is	 the	 same	 because	 the	 nonce	 used	 to	 encrypt	 is	 first	 computed	 as	 a
combination	of	the	given	nonce	and	the	plaintext.

The	 SIV	 construction	 specification	 is	 more	 general	 than	 that	 of	GCM.
Instead	of	specifying	detailed	internals	as	with	GCM’s	GHASH,	SIV	simply
tells	you	how	to	combine	a	cipher	(E)	and	a	pseudorandom	function	(PRF)
to	 get	 an	 authenticated	 cipher.	 Specifically,	 you	 compute	 the	 tag	 T	 =
PRF(K1,	N	||	P)	and	then	compute	the	ciphertext	C	=	E(K2,	T,	P),	where	T
acts	as	the	nonce	of	E.	Thus,	SIV	needs	two	keys	(K1	and	K2)	and	a	nonce
(N).

The	major	problem	with	SIV	is	that	 it’s	not	streamable:	after	computing
T,	it	must	keep	the	entire	plaintext	P	in	memory.	In	other	words,	in	order	to
encrypt	 a	 100GB	 plaintext	 with	 SIV,	 you	 must	 first	 store	 the	 100GB	 of
plaintext	so	that	SIV	encryption	can	read	it.

The	 document	 RFC	 5297,	 based	 on	 the	 2006	 paper	 “Deterministic
Authenticated-Encryption”	 by	 Rogaway	 and	 Shrimpton,	 specifies	 SIV	 as
using	 CMAC-AES	 (a	MAC	 construction	 using	 AES)	 as	 a	 PRF	 and	 AES-
CTR	 as	 a	 cipher.	 In	 2015,	 a	more	 efficient	 version	 of	 SIV	was	 proposed,
called	GCM-SIV,	 that	 combines	GCM’s	 fast	GHASH	 function	 and	 SIV’s
mode	and	is	nearly	as	fast	as	GCM.	Like	the	original	SIV,	however,	GCM-
SIV	 isn’t	 streamable.	 (For	 more	 information,	 see
https://eprint.iacr.org/2015/102/.)

Permutation-Based	AEAD
Now	 for	 a	 totally	 different	 approach	 to	 building	 an	 authenticated	 cipher:
instead	 of	 building	 a	 mode	 of	 operation	 around	 a	 block	 cipher	 like	 AES,
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we’ll	 look	 at	 a	 cipher	 that	 builds	 a	 mode	 around	 a	 permutation.	 A
permutation	 simply	 transforms	 an	 input	 to	 an	 output	 of	 the	 same	 size,
reversibly,	without	 using	 a	 key,	 that’s	 the	 simplest	 component	 imaginable.
Better	still,	 the	resulting	AEAD	is	 fast,	provably	secure,	and	more	resistant
to	nonce	reuse	than	GCM	and	OCB.

Figure	8-4	shows	how	a	permutation-based	AEAD	works:	from	some	fixed
initial	state	H0,	you	XOR	the	key	K	followed	by	the	nonce	N	to	the	internal
state,	to	obtain	a	new	value	of	the	internal	state	that	is	the	same	size	as	the
original.	You	then	transform	the	new	state	with	P	and	get	another	new	value
of	the	state.	Now	you	XOR	the	first	plaintext	block	P1	 to	the	current	state
and	take	the	resulting	value	as	the	first	ciphertext	block	C1,	where	P1	and	C1
are	equal	in	size	but	smaller	than	the	state.

To	encrypt	a	second	block,	you	transform	the	state	with	P,	XOR	the	next
plaintext	block	P2	to	the	current	state,	and	take	the	resulting	value	as	C2.	You
then	iterate	over	all	plaintext	blocks	and,	following	the	last	call	to	P,	take	bits
from	the	internal	state	as	the	authentication	tag	T,	as	shown	at	the	right	of
Figure	8-4.

Figure	8-4:	Permutation-based	authenticated	cipher

NOTE
The	mode	shown	in	Figure	8-4	can	be	adapted	to	support	associated	data,	but	the
process	is	a	bit	more	complicated,	so	we’ll	skip	its	description.

Designing	 permutation-based	 authenticated	 ciphers	 has	 certain
requirements	in	order	to	ensure	security.	For	one	thing,	note	that	you	only
XOR	input	values	to	a	part	of	the	state:	the	larger	this	part,	the	more	control
a	successful	attacker	has	on	the	internal	state,	and	thus	the	lower	the	cipher’s
security.	Indeed,	all	security	relies	on	the	secrecy	of	the	internal	state.

Also,	blocks	must	be	padded	properly	with	extra	bits,	in	a	way	that	ensures



that	 any	 two	 different	 messages	 will	 yield	 different	 results.	 As	 a
counterexample,	if	the	last	plaintext	block	is	shorter	than	a	complete	block,	it
should	not	 just	be	padded	with	zeroes;	otherwise,	 a	plaintext	block	of,	 say,
two	bytes	(0000)	would	result	in	a	complete	plaintext	block	(0000	…	0000),
as	would	a	block	of	three	bytes	(000000).	As	a	result,	you’d	get	the	same	tag
for	both	messages,	although	they	differ	in	size.

What	if	a	nonce	is	reused	in	such	a	permutation-based	cipher?	The	good
news	is	that	the	impact	isn’t	as	bad	as	with	GCM	or	OCB—the	strength	of
the	 authentication	 tag	 won’t	 be	 compromised.	 If	 a	 nonce	 is	 repeated,	 a
successful	 attacker	would	only	be	 able	 to	 learn	whether	 the	 two	 encrypted
messages	begin	with	 the	 same	value,	 as	well	 as	 the	 length	of	 this	 common
value,	 or	 prefix.	 For	 example,	 although	 encrypting	 the	 two	 six-block
messages	ABCXYZ	and	ABCDYZ	(each	letter	symbolizing	a	block	here)	with
the	 same	 nonce	 might	 yield	 the	 two	 ciphertexts	 JKLTUV	 and	 JKLMNO,
which	have	 identical	prefixes,	 attackers	would	not	be	able	 to	 learn	 that	 the
two	plaintexts	shared	the	same	final	two	blocks	(YZ).

In	terms	of	performance,	permutation-based	ciphers	offer	the	benefits	of	a
single	layer	of	operations,	streamable	processing,	and	the	use	of	a	single	core
algorithm	 for	 encryption	 and	 decryption.	 However,	 they	 are	 not
parallelizable	like	GCM	or	OCB	because	new	calls	to	P	need	to	wait	for	the
previous	call	to	complete.

NOTE
If	 you’re	 tempted	 to	 pick	 your	 favorite	 permutation	 and	 make	 up	 your	 own
authenticated	 cipher,	 don’t.	 You’re	 likely	 to	 get	 the	 details	wrong	 and	 end	 up
with	 an	 insecure	 cipher.	 Read	 the	 specifications	 written	 by	 experienced
cryptographers	for	algorithms	such	as	Keyak	(an	algorithm	derived	from	Keccak)
and	NORX	 (designed	 by	 Philipp	 Jovanovic,	 Samuel	Neves,	 and	myself),	 and
you’ll	see	that	permutation-based	ciphers	are	way	more	complex	than	they	may
first	appear.

How	Things	Can	Go	Wrong
Authenticated	 ciphers	 have	 a	 larger	 attack	 surface	 than	 hash	 functions	 or
block	 ciphers	 because	 they	 aim	 to	 achieve	 both	 confidentiality	 and
authenticity.	 They	 take	 several	 different	 input	 values,	 and	 must	 remain



secure	 regardless	 of	 the	 input—whether	 that	 contains	 only	 associated	 data
and	 no	 encrypted	 data,	 extremely	 large	 plaintexts,	 or	 different	 key	 sizes.
They	must	also	be	secure	for	all	nonce	values	against	attackers	who	collect
numerous	 message/tag	 pairs	 and,	 to	 some	 extent,	 against	 accidental
repetition	of	nonces.

That’s	 a	 lot	 to	 ask,	 and	 as	 you’ll	 see	 next,	 even	 AES-GCM	 has	 several
imperfections.

AES-GCM	and	Weak	Hash	Keys
One	 of	 AES-GCM’s	 weaknesses	 is	 found	 in	 its	 authentication	 algorithm
GHASH:	 certain	 values	 of	 the	 hash	 key	H	 greatly	 simplify	 attacks	 against
GCM’s	 authentication	 mechanism.	 Specifically,	 if	 the	 value	H	 belongs	 to
some	 specific,	 mathematically	 defined	 subgroups	 of	 all	 128-bit	 strings,
attackers	might	be	able	to	guess	a	valid	authentication	tag	for	some	message
simply	by	shuffling	the	blocks	of	a	previous	message.

In	order	to	understand	this	weakness,	let’s	look	at	how	GHASH	works.

GHASH	Internals
As	you	saw	in	Figure	8-2,	GHASH	starts	with	a	128-bit	value,	H,	initially	set
to	AES(K,	0),	and	then	repeatedly	computes

Xi	=	(Xi	−	1	⊕	Ci)	⊗	H

starting	from	X0	=	0	and	processing	ciphertext	blocks	C1,	C2,	and	so	on.	The
final	Xi	is	returned	by	GHASH	to	compute	the	final	tag.

Now	say	for	the	sake	of	simplicity	that	all	Ci	values	are	equal	to	1,	so	that
for	any	i	we	have	this:

Ci	⊗	=	1	⊗	H	=	H

Next,	from	the	GHASH	equation

Xi	=	(Xi	−	1	⊕	Ci)	⊗	H

we	derive

X1	=	(X0	⊕	C1)	⊕	H	=	(0	⊕	1)	⊗	H	=	H



substituting	X0	with	0	and	C1	with	1,	to	yield	the	following:

(0	⊕	1)	=	1

Thanks	to	the	distributive	property	of	⊗	over	⊕,	we	substitute	X	with	H
and	C2	with	1	and	then	compute	the	next	value	X2	as

X2=	(X1	⊕	X2)	⊗	H	=	(H	⊕	1)	⊗	H	=	H2	⊕	H

where	H2	is	H	squared,	or	H	⊗	H.
Now	we	 derive	X3	 by	 substituting	X2	 for	 its	 derivation,	 and	 obtain	 the

following:

X3	=	(X2	⊕	C3)	⊗	H	=	(H2	⊕	H	⊕	1)	⊗	H	=	H3	⊕	H2	⊕	H

Next,	we	 derive	X4	 to	 be	X4	 =	H	 4	⊕	H	 3	⊕	H	 2	⊕	H,	 and	 so	 on,	 and
eventually	the	last	Xi	is	this:

Xn	=	Hn	⊕	Hn	−	1	⊕	Hn	−	2	⊕	…	⊕	H2	⊕	H

Remember	that	we	set	all	blocks	Ci	equal	to	1.	If	instead	those	values	were
arbitrary	values,	we	would	end	up	with	the	following:

Xn	=	C1	⊕	Hn	⊕	C2	⊕	Hn	−	1	⊕	C3	Hn	−	2	⊕	…	⊕	Cn	−	1	H2	⊕	Cn	⊕	H

GHASH	then	would	XOR	the	message’s	 length	 to	 this	 last	Xn,	multiply
the	result	by	H,	and	then	XOR	this	value	with	AES(K,	N	||	0)	to	create	the
final	authentication	tag,	T.

Where	Things	Break
What	can	go	wrong	from	here?	Let’s	look	first	at	the	two	simplest	cases:

If	H	=	0,	then	Xn	=	0	regardless	of	the	Ci	values,	and	thus	regardless	of
the	message.	That	is,	all	messages	will	have	the	same	authentication	tag
if	H	is	0.
If	H	 =	 1,	 then	 the	 tag	 is	 just	 an	 XOR	 of	 the	 ciphertext	 blocks,	 and



reordering	the	ciphertext	blocks	will	give	the	same	authentication	tag.

Of	 course,	 0	 and	 1	 are	 only	 two	 values	 of	 2128	 possible	 values	 of	H,	 so
there	is	only	a	2/2128	=	1/2127	chance	of	these	occurring.	But	there	are	other
weak	values	as	well—namely,	all	values	of	H	that	belong	to	a	short	cycle	when
raised	 to	 ith	 powers.	 For	 example,	 the	 value	 H	 =
10d04d25f93556e69f58ce2f8d035a4	 belongs	 to	 a	 cycle	 of	 length	 five,	 as	 it
satisfies	H	5	=	H,	and	therefore	He	=	H	for	any	e	that	is	a	multiple	of	five	(the
very	definition	of	 cycle	with	 respect	 to	 fifth	powers).	Consequently,	 in	 the
preceding	expression	of	the	final	GHASH	value	Xn,	swapping	the	blocks	Cn

(multiplied	 to	H)	 and	 the	 block	 Cn	 –	 4	 (multiplied	 to	H	 5)	 will	 leave	 the
authentication	tag	unchanged,	which	amounts	to	a	forgery.	An	attacker	may
exploit	 this	 property	 to	 construct	 a	 new	message	 and	 its	 valid	 tag	without
knowing	 the	 key,	 which	 should	 be	 impossible	 for	 a	 secure	 authenticated
cipher.

The	 preceding	 example	 is	 based	 on	 a	 cycle	 of	 length	 five,	 but	 there	 are
many	 cycles	 of	 greater	 length	 and	 therefore	 many	 values	 of	 H	 that	 are
weaker	than	they	should	be.	The	upshot	is	that,	in	the	unlikely	case	that	H
belongs	 to	 a	 short	 cycle	 of	 values	 and	 attackers	 can	 forge	 as	 many
authentication	 tags	 as	 they	 want,	 unless	 they	 know	 H	 or	 K,	 they	 cannot
determine	H’s	cycle	length.	So	although	this	vulnerability	can’t	be	exploited,
it	could	have	been	avoided	by	more	carefully	choosing	the	polynomial	used
for	modulo	reductions.

NOTE
For	 further	 details	 on	 this	 attack,	 read	 “Cycling	Attacks	 on	GCM,	GHASH
and	Other	 Polynomial	MACs	 and	Hashes”	 by	Markku-Juhani	O.	 Saarinen,
available	at	https://eprint.iacr.org/2011/202/.

AES-GCM	and	Small	Tags
In	practice,	AES-GCM	usually	returns	128-bit	tags,	but	it	can	produce	tags
of	any	length.	Unfortunately,	when	shorter	tags	are	used,	the	probability	of
forgery	increases	significantly.

When	 a	 128-bit	 tag	 is	 used,	 an	 attacker	 who	 attempts	 a	 forgery	 should
succeed	with	a	probability	of	1/2128	because	 there	are	2128	possible	128-bit

https://eprint.iacr.org/2011/202/


tags.	(Generally,	with	an	n-bit	tag,	the	probability	of	success	should	be	1/2n,
where	2n	is	the	number	of	possible	values	of	an	n-bit	tag.)	But	when	shorter
tags	 are	 used,	 the	 probability	 of	 forgery	 is	 much	 higher	 than	 1/2n	 due	 to
weaknesses	 in	 the	 structure	 of	 GCM	 that	 are	 beyond	 the	 scope	 of	 this
discussion.	For	example,	 a	32-bit	 tag	will	 allow	an	attacker	who	knows	 the
authentication	tag	of	some	2MB	message	to	succeed	with	a	chance	of	1/216

instead	of	1/232.
Generally,	with	n-bit	tags,	the	probability	of	forgery	isn’t	1/2n	but	rather

2m/2n,	where	2m	is	the	number	of	blocks	of	the	longest	message	for	which	a
successful	attacker	observed	the	tag.	For	example,	if	you	use	48-bit	tags	and
process	messages	of	4GB	(or	228	blocks	of	16	bytes	each),	the	probability	of	a
forgery	will	 be	228/248	 =	 1/220,	 or	 about	one	 chance	 in	 a	million.	That’s	 a
relatively	 high	 chance	 as	 far	 as	 cryptography	 is	 concerned.	 (For	 more
information	on	this	attack,	see	the	2005	paper	“Authentication	Weaknesses
in	GCM”	by	Niels	Ferguson.)

Further	Reading
To	learn	more	about	authenticated	ciphers,	visit	the	home	page	of	CAESAR,
the	Competition	 for	Authenticated	Encryption:	Security,	Applicability,	and
Robustness	 (http://competitions.cr.yp.to/caesar.html).	Begun	 in	2012,	CAESAR
is	 a	 crypto	 competition	 in	 the	 style	 of	 the	 AES	 and	 SHA-3	 competitions,
though	it	isn’t	organized	by	NIST.

The	 CAESAR	 competition	 has	 attracted	 an	 impressive	 number	 of
innovative	 designs:	 from	OCB-like	modes	 to	 permutation-based	modes,	 as
well	 as	 new	 core	 algorithms.	 Examples	 include	 the	 previously	 mentioned
NORX	 and	 Keyak	 permutation-based	 authenticated	 ciphers;	 AEZ	 (as	 in
AEasy),	 which	 is	 built	 on	 a	 nonstreamable	 two-layer	 mode	 that	 makes	 it
misuse	 resistant;	 AEGIS,	 a	 beautifully	 simple	 authenticated	 cipher	 that
leverages	AES’s	round	function.

In	 this	chapter,	 I’ve	 focused	on	GCM,	but	a	handful	of	other	modes	are
used	 in	 real	 applications	 as	well.	 Specifically,	 the	 counter	with	CBC-MAC
(CCM)	 and	 EAX	 modes	 competed	 with	 GCM	 for	 standardization	 in	 the
early	2000s,	and	although	GCM	was	selected,	the	two	competitors	are	used
in	 a	 few	 applications.	 For	 example,	 CCM	 is	 used	 in	 the	 WPA2	 Wi-Fi
encryption	protocol.	You	may	want	to	read	these	ciphers’	specifications	and

http://competitions.cr.yp.to/caesar.html


review	their	relative	security	and	performance	merits.
This	 concludes	 our	 discussion	 of	 symmetric-key	 cryptography!	 You’ve

seen	 block	 ciphers,	 stream	 ciphers,	 (keyed)	 hash	 functions,	 and	 now
authenticated	ciphers—or	all	the	main	cryptography	components	that	work
with	 a	 symmetric	 key,	 or	 no	 key	 at	 all.	 Before	 we	 move	 to	 asymmetric
cryptography,	Chapter	9	will	focus	more	on	computer	science	and	math,	to
provide	background	for	asymmetric	schemes	such	as	RSA	(Chapter	10)	and
Diffie–Hellman	(Chapter	11).



9
HARD	PROBLEMS

Hard	computational	problems	are	the	cornerstone	of	modern	cryptography.
They’re	 problems	 that	 are	 simple	 to	 describe	 yet	 practically	 impossible	 to
solve.	These	are	problems	for	which	even	the	best	algorithm	wouldn’t	find	a
solution	before	the	sun	burns	out.

In	the	1970s,	the	rigorous	study	of	hard	problems	gave	rise	to	a	new	field
of	science	called	computational	complexity	theory,	which	would	dramatically
impact	 cryptography	 and	many	 other	 fields,	 including	 economics,	 physics,
and	 biology.	 In	 this	 chapter,	 I’ll	 give	 you	 the	 conceptual	 tools	 from
complexity	theory	necessary	to	understand	the	foundations	of	cryptographic
security,	 and	 I’ll	 introduce	 the	 hard	 problems	 behind	 public-key	 schemes
such	as	RSA	encryption	and	Diffie–Hellman	key	agreement.	We’ll	touch	on
some	deep	concepts,	but	I’ll	minimize	the	technical	details	and	only	scratch
the	 surface.	 Still,	 I	 hope	 you’ll	 see	 the	 beauty	 in	 the	 way	 cryptography
leverages	computational	complexity	theory	to	maximize	security.

Computational	Hardness
A	 computational	 problem	 is	 a	 question	 that	 can	 be	 answered	 by	 doing
enough	 computation,	 for	 example,	 “Is	 2017	 a	 prime	 number?”	 or	 “How
many	i	letters	are	there	in	incomprehensibilities?”	Computational	hardness	is	the
property	of	computational	problems	for	which	there	is	no	algorithm	that	will
run	in	a	reasonable	amount	of	time.	Such	problems	are	also	called	intractable
problems	and	are	often	practically	impossible	to	solve.

Surprisingly,	 computational	 hardness	 is	 independent	 of	 the	 type	 of
computing	device	used,	be	it	a	general-purpose	CPU,	an	integrated	circuit,
or	 a	 mechanical	 Turing	 machine.	 Indeed,	 one	 of	 the	 first	 findings	 of
computational	 complexity	 theory	 is	 that	 all	 computing	 models	 are



equivalent.	If	a	problem	can	be	solved	efficiently	with	one	computing	device,
it	can	be	solved	efficiently	on	any	other	device	by	porting	the	algorithm	to
the	other	device’s	language—an	exception	is	quantum	computers,	but	these
do	not	exist	(yet).	The	upshot	is	that	we	won’t	need	to	specify	the	underlying
computing	 device	 or	 hardware	 when	 discussing	 computational	 hardness;
instead,	we’ll	just	discuss	algorithms.

To	evaluate	hardness,	we’ll	 first	 find	a	way	to	measure	the	complexity	of
an	 algorithm,	 or	 its	 running	 time.	We’ll	 then	 categorize	 running	 times	 as
hard	or	easy.

Measuring	Running	Time
Most	 developers	 are	 familiar	 with	 computational	 complexity,	 or	 the
approximate	number	of	operations	done	by	an	algorithm	as	a	function	of	its
input	size.	The	size	is	counted	in	bits	or	in	the	number	of	elements	taken	as
input.	 For	 example,	 take	 the	 algorithm	 shown	 in	 Listing	 9-1,	 written	 in
pseudocode.	It	searches	for	a	value,	x,	within	an	array	of	n	elements	and	then
returns	its	index	position.

search(x,	array,	n):
				for	i	from	1	to	n	{
								if	(array[i]	==	x)	{
												return	i;
								}
				}
				return	0;
}

Listing	9-1:	A	simple	search	algorithm,	written	in	pseudocode,	of	complexity	linear	with	respect	to
the	array	length	n.	The	algorithm	returns	the	index	where	the	value	x	is	found	in	[1,	n],	or	0	if	x
isn’t	found	in	the	array.

In	this	algorithm,	we	use	a	for	loop	to	find	a	specific	value,	x,	by	iterating
through	 an	 array.	 On	 each	 iteration,	 we	 assign	 the	 variable	 i	 a	 number
starting	with	 1.	Then	we	 check	whether	 the	 value	 of	 position	 i	 in	 array	 is
equal	 to	 the	 value	 of	 x.	 If	 it	 is,	 we	 return	 the	 position	 i.	 Otherwise,	 we
increment	 i	 and	 try	 the	 next	 position	 until	 we	 reach	 n,	 the	 length	 of	 the
array,	at	which	point	we	return	0.

For	 this	 kind	 of	 algorithm,	 we	 count	 complexity	 as	 the	 number	 of
iterations	of	the	for	loop:	1	in	the	best	case	(if	x	is	equal	to	array[1]),	n	in	the
worst	case	(if	x	is	equal	to	array[n]	or	if	x	is	not	in	found	in	array),	and	n/2	on
average	if	x	is	randomly	distributed	in	one	of	the	n	cells	of	the	array.	With	an



array	10	times	as	large,	the	algorithm	will	be	10	times	as	slow.	Complexity	is
therefore	 proportional	 to	 n,	 or	 “linear”	 in	 n.	 A	 complexity	 linear	 in	 n	 is
considered	 fast,	 as	 opposed	 to	 complexities	 exponential	 in	 n.	 Although
processing	larger	input	values	will	be	slower,	 it	will	make	a	difference	of	at
most	just	seconds	for	most	practical	uses.

But	many	 useful	 algorithms	 are	 slower	 than	 that	 and	 have	 a	 complexity
higher	than	linear.	The	textbook	example	is	sorting	algorithms:	given	a	 list
of	 n	 values	 in	 a	 random	 order,	 you’ll	 need	 on	 average	 n	 ×	 log	 n	 basic
operations	to	sort	the	 list,	which	is	sometimes	called	 linearithmic	 complexity.
Since	n	×	log	n	grows	faster	than	n,	sorting	speed	will	slow	down	faster	than
proportionally	to	n.	Yet	such	sorting	algorithms	will	remain	in	the	realm	of
practical	computation,	or	computation	that	can	be	carried	out	in	a	reasonable
amount	of	time.

At	 some	 point,	we’ll	 hit	 the	 ceiling	 of	what’s	 feasible	 even	 for	 relatively
small	 input	 lengths.	 Take	 the	 simplest	 example	 from	 cryptanalysis:	 the
brute-force	 search	 for	 a	 secret	 key.	 Recall	 from	 Chapter	 1	 that	 given	 a
plaintext	 P	 and	 a	 ciphertext	C	 =	E(K,	 P),	 it	 takes	 at	 most	 2n	 attempts	 to
recover	 an	 n-bit	 symmetric	 key	 because	 there	 are	 2n	 possible	 keys—an
example	of	a	complexity	that	grows	exponentially.	For	complexity	theorists,
exponential	complexity	means	a	problem	that	is	practically	impossible	to	solve,
because	as	n	grows,	the	effort	very	rapidly	becomes	infeasible.

You	 may	 object	 that	 we’re	 comparing	 oranges	 and	 apples	 here:	 in	 the
search()	function	in	Listing	9-1,	we	counted	the	number	of	if	(array[i]	==	x)
operations,	 whereas	 key	 recovery	 counts	 the	 number	 of	 encryptions,	 each
thousands	 of	 times	 slower	 than	 a	 single	 ==	 comparison.	This	 inconsistency
can	 make	 a	 difference	 if	 you	 compare	 two	 algorithms	 with	 very	 similar
complexities,	 but	most	 of	 the	 time	 it	won’t	matter	 because	 the	 number	 of
operations	 will	 have	 a	 greater	 impact	 than	 the	 cost	 of	 an	 individual
operation.	 Also,	 complexity	 estimates	 ignore	 constant	 factors:	 when	 we	 say
that	an	algorithm	takes	time	in	the	order	of	n3	operations	(which	is	quadratic
complexity),	it	may	actually	take	41	×	n3	operations,	or	12345	×	n3	operations
—but	 again,	 as	n	 grows,	 the	 constant	 factors	 lose	 significance	 to	 the	point
that	we	can	ignore	them.	Complexity	analysis	is	about	theoretical	hardness	as
a	function	of	the	input	size;	it	doesn’t	care	about	the	exact	number	of	CPU
cycles	it	will	take	on	your	computer.

You’ll	often	find	the	O()	notation	(“big	O”)	used	to	express	complexities.



For	example,	O(n3)	means	that	complexity	grows	no	faster	than	n3,	ignoring
potential	 constant	 factors.	 O()	 denotes	 the	 upper	 bound	 of	 an	 algorithm’s
complexity.	The	notation	O(1)	means	that	an	algorithm	runs	in	constant	time
—that	is,	the	running	time	doesn’t	depend	on	the	input	length!	For	example,
the	 algorithm	 that	 determines	 an	 integer’s	 parity	 by	 looking	 at	 its	 least
significant	 bit	 (LSB)	 and	 returning	 “even”	 if	 it’s	 zero	 and	 “odd”	otherwise
will	do	the	same	thing	at	the	same	cost	whatever	the	integer’s	length.

To	 see	 the	 difference	 between	 linear,	 quadratic,	 and	 exponential	 time
complexities,	 look	 at	 how	 complexity	 grows	 for	O(n)	 (linear)	 versus	O(n2)
(quadratic)	versus	O(2n)	(exponential)	in	Figure	9-1.

Figure	 9-1:	 Growth	 of	 exponential,	 quadratic,	 and	 linear	 complexities,	 from	 the	 fastest	 to	 the
slowest	growing

Exponential	 complexity	 means	 the	 problem	 is	 practically	 impossible	 to
solve,	and	linear	complexity	means	the	solution	is	feasible,	whereas	quadratic
complexity	is	somewhere	between	the	two.



Polynomial	vs.	Superpolynomial	Time
The	 O(n2)	 complexity	 discussed	 in	 the	 last	 section	 (the	 middle	 curve	 in
Figure	9-1)	is	a	special	case	of	the	broader	class	of	polynomial	complexities,
or	O(nk),	where	k	is	some	fixed	number	such	as	3,	2.373,	7/10,	or	the	square
root	 of	 17.	 Polynomial-time	 algorithms	 are	 eminently	 important	 in
complexity	 theory	 and	 in	 crypto	 because	 they’re	 the	 very	 definition	 of
practically	 feasible.	When	 an	 algorithm	 runs	 in	polynomial	 time,	 or	polytime
for	 short,	 it	will	 complete	 in	 a	 decent	 amount	 of	 time	 even	 if	 the	 input	 is
large.	 That’s	 why	 polynomial	 time	 is	 synonymous	 with	 “efficient”	 for
complexity	theorists	and	cryptographers.

In	contrast,	algorithms	running	in	superpolynomial	time—that	is,	in	O(f(n)),
where	f(n)	is	any	function	that	grows	faster	than	any	poly​nomial—are	viewed
as	impractical.	I’m	saying	superpolynomial,	and	not	just	exponential,	because
there	 are	 complexities	 in	 between	 polynomial	 and	 the	 well-known
exponential	complexity	O(2n),	such	as	O(nlog(n)),	as	Figure	9-2	shows.



Figure	9-2:	Growth	of	the	2n,	nlog(n),	and	n2	functions,	from	the	fastest	to	the	slowest	growing

NOTE

Exponential	 complexity	O(2n)	 is	 not	 the	worst	 you	 can	 get.	 Some	 complexities
grow	even	faster	and	thus	characterize	algorithms	even	slower	to	compute—for
example,	the	complexity	O(nn)	or	the	exponential	factorial	O(nf(n	–	1)),	where
for	any	x,	the	function	f	is	here	recursively	defined	as	f(x)	=	xf(x	–	1).	In	practice,
you’ll	never	encounter	algorithms	with	such	preposterous	complexities.

O(n2)	 or	 O(n3)	 may	 be	 efficient,	 but	 O(n99999999999)	 obviously	 isn’t.	 In
other	 words,	 polytime	 is	 fast	 as	 long	 as	 the	 exponent	 isn’t	 too	 large.
Fortunately,	all	polynomial-time	algorithms	found	to	solve	actual	problems
do	have	small	exponents.	For	example,	O(n1.465)	 is	the	time	for	multiplying
two	n-bit	integers,	or	O(n2.373)	for	multiplying	two	n	×	n	matrices.	The	2002
breakthrough	polytime	algorithm	for	identifying	prime	numbers	initially	had
a	 complexity	O(n12),	 but	 it	 was	 later	 improved	 to	O(n6).	 Polynomial	 time
thus	may	not	be	the	perfect	definition	of	a	practical	 time	for	an	algorithm,
but	it’s	the	best	we	have.

By	 extension,	 a	 problem	 that	 can’t	 be	 solved	 by	 a	 polynomial-time
algorithm	 is	 considered	 impractical,	 or	 hard.	 For	 example,	 for	 a
straightforward	 key	 search,	 there’s	 no	 way	 to	 beat	 the	 O(2n)	 complexity
unless	the	cipher	is	somehow	broken.

We	know	 for	 sure	 that	 there’s	no	way	 to	beat	 the	O(2n)	 complexity	of	 a
brute-force	key	search	(as	long	as	the	cipher	is	secure),	but	we	don’t	always
know	 what	 the	 fastest	 way	 to	 solve	 a	 problem	 is.	 A	 large	 portion	 of	 the
research	 in	 complexity	 theory	 is	 about	 proving	 complexity	 bounds	 on	 the
running	 time	 of	 algorithms	 solving	 a	 given	 problem.	 To	 make	 their	 job
easier,	 complexity	 theorists	 have	 categorized	 computational	 problems	 in
different	groups,	or	classes,	according	to	the	effort	needed	to	solve	them.

Complexity	Classes
In	mathematics,	a	class	is	a	group	of	objects	with	some	similar	attribute.	For
example,	 all	 computational	 problems	 solvable	 in	 time	 O(n2),	 which
complexity	 theorists	 simply	 denote	 TIME(n2),	 are	 one	 class.	 Likewise,



TIME(n3)	 is	 the	class	of	problems	solvable	 in	time	O(n3),	TIME(2n)	 is	 the
class	of	problems	solvable	in	time	O(2n),	and	so	on.	For	the	same	reason	that
a	supercomputer	can	compute	whatever	a	laptop	can	compute,	any	problem
solvable	 in	O(n2)	 is	 also	 solvable	 in	O(n3).	Hence,	any	problem	 in	 the	class
TIME(n2)	 also	 belongs	 to	 the	 class	TIME(n3),	which	 both	 also	 belong	 to
the	class	TIME(n4),	and	so	on.	The	union	of	all	 these	classes	of	problems,
TIME(nk),	where	k	 is	 a	 constant,	 is	 called	P,	which	 stands	 for	 polynomial
time.

If	 you’ve	 ever	 programmed	 a	 computer,	 you’ll	 know	 that	 seemingly	 fast
algorithms	may	 still	 crash	 your	 system	by	 eating	 all	 its	memory	 resources.
When	 selecting	 an	 algorithm,	 you	 should	 not	 only	 consider	 its	 time
complexity	but	also	how	much	memory	it	uses,	or	its	space	complexity.	This	is
especially	 important	 because	 a	 single	 memory	 access	 is	 usually	 orders	 of
magnitudes	slower	than	a	basic	arithmetic	operation	in	a	CPU.

Formally,	 you	 can	 define	 an	 algorithm’s	 memory	 consumption	 as	 a
function	of	its	input	length,	n,	in	the	same	way	we	defined	time	complexity.
The	 class	 of	 problems	 solvable	 using	 f(n)	 bits	 of	memory	 is	SPACE(f(n)).
For	example,	SPACE(n3)	is	the	class	of	problems	solvable	using	of	the	order
of	n3	 bits	 of	memory.	 Just	 as	we	had	P	 as	 the	union	of	 all	TIME(nk),	 the
union	of	all	SPACE(nk)	problems	is	called	PSPACE.

Obviously,	the	lower	the	memory	the	better,	but	a	polynomial	amount	of
memory	doesn’t	necessarily	imply	that	an	algorithm	is	practical.	Why?	Well,
take	 for	 example	 a	 brute-force	 key	 search:	 again,	 it	 takes	 only	 negligible
memory	but	 is	slow	as	hell.	More	generally,	an	algorithm	can	take	forever,
even	if	it	uses	just	a	few	bytes	of	memory.

Any	 problem	 solvable	 in	 time	 f(n)	 needs	 at	 most	 f(n)	 memory,	 so
TIME(f(n))	is	included	in	SPACE(f(n)).	In	time	f(n),	you	can	only	write	up
to	 f(n)	 bits,	 and	no	more,	 because	writing	 (or	 reading)	 1	 bit	 is	 assumed	 to
take	one	unit	of	time;	therefore,	any	problem	in	TIME(f(n))	can’t	use	more
than	f(n)	space.	As	a	consequence,	P	is	a	subset	of	PSPACE.

Nondeterministic	Polynomial	Time
NP	 is	 the	 second	most	 important	 complexity	 class,	 after	 the	 class	P	 of	 all
polynomial-time	 algorithms.	 No,	 NP	 doesn’t	 stand	 for	 non-polynomial
time,	but	for	nondeterministic	polynomial	time.	What	does	that	mean?



NP	 is	 the	 class	 of	 problems	 for	 which	 a	 solution	 can	 be	 verified	 in
polynomial	time—that	is,	efficiently—even	though	the	solution	may	be	hard
to	find.	By	verified,	I	mean	that	given	a	potential	solution,	you	can	run	some
polynomial-time	 algorithm	 that	will	 verify	whether	 you’ve	 found	 an	 actual
solution.	For	example,	the	problem	of	recovering	a	secret	key	with	a	known
plaintext	is	in	NP,	because	given	P,	C	=	E(K,	P),	and	some	candidate	key	K0,
you	can	check	that	K0	is	the	correct	key	by	verifying	that	E(K0,	P)	equals	C.
The	 process	 of	 finding	 a	 potential	 key	 (the	 solution)	 can’t	 be	 done	 in
polynomial	 time,	 but	 checking	 whether	 the	 key	 is	 correct	 is	 done	 using	 a
polynomial-time	algorithm.

Now	 for	 a	 counterexample:	 what	 about	 known-ciphertext	 attacks?	 This
time,	you	only	get	some	E(K,	P)	values	for	random	unknown	plaintext	Ps.	If
you	 don’t	 know	what	 the	Ps	 are,	 then	 there’s	 no	 way	 to	 verify	 whether	 a
potential	key,	K0,	is	the	right	one.	In	other	words,	the	key-recovery	problem
under	known-ciphertext	attacks	is	not	in	NP	(let	alone	in	P).

Another	example	of	a	problem	not	in	NP	is	that	of	verifying	the	absence	of
a	 solution	 to	 a	 problem.	Verifying	 that	 a	 solution	 is	 correct	 boils	 down	 to
computing	some	algorithm	with	the	candidate	solution	as	an	input	and	then
checking	 the	 return	 value.	 However,	 to	 verify	 that	 no	 solution	 exists,	 you
may	 need	 to	 go	 through	 all	 possible	 inputs.	 And	 if	 there’s	 an	 exponential
number	 of	 inputs,	 you	 won’t	 be	 able	 to	 efficiently	 prove	 that	 no	 solution
exists.	The	absence	of	a	solution	is	hard	to	show	for	the	hardest	problems	in
the	 class	 NP—the	 so-called	 NP-complete	 problems,	 which	 we’ll	 discuss
next.

NP-Complete	Problems
The	 hardest	 problems	 in	 the	 class	NP	 are	 called	NP-complete;	 we	 don’t
know	how	 to	 solve	 these	 problems	 in	 polynomial	 time.	And	 as	 complexity
theorists	 discovered	 in	 the	 1970s	when	 they	 developed	 the	 theory	 of	NP-
completeness,	NP’s	hardest	problems	are	all	equally	hard.	This	was	proven
by	showing	that	any	efficient	solution	to	any	of	the	NP-complete	problems
can	be	 turned	 into	 an	 efficient	 solution	 for	 any	of	 the	other	NP-complete
problems.	 In	 other	 words,	 if	 you	 can	 solve	 any	 NP-complete	 problem
efficiently,	you	can	solve	all	of	them,	as	well	as	all	problems	in	NP.	How	can
this	be?
NP-complete	 problems	 come	 in	 different	 disguises,	 but	 they’re



fundamentally	 similar	 from	 a	 mathematical	 perspective.	 In	 fact,	 you	 can
reduce	any	NP-complete	problem	to	any	other	NP-complete	problem	such
that	solving	the	first	one	depends	on	solving	the	second.

Here	are	some	examples	of	NP-complete	problems:

The	traveling	salesman	problem	Given	a	set	of	points	on	a	map	(cities,
addresses,	or	other	geographic	locations)	and	the	distances	between	each
point	from	each	other	point,	 find	a	path	that	visits	every	point	such	that
the	total	distance	is	smaller	than	a	given	distance	of	x.

The	 clique	 problem	 Given	 a	 number,	 x,	 and	 a	 graph	 (a	 set	 of	 nodes
connected	by	edges,	as	in	Figure	9-3),	determine	if	there’s	a	set	of	x	points
or	less	such	that	all	points	are	connected	to	each	other.
The	knapsack	problem	Given	two	numbers,	x	and	y,	and	a	set	of	items,
each	of	a	known	value	and	weight,	can	we	pick	a	group	of	items	such	that
the	total	value	is	at	least	x	and	the	total	weight	at	most	y?

Figure	9-3:	A	graph	containing	a	clique	of	four	points.	The	general	problem	of	finding	a	clique	(set
of	nodes	all	connected	to	each	other)	of	given	size	in	a	graph	is	NP-complete.

Such	 NP-complete	 problems	 are	 found	 everywhere,	 from	 scheduling
problems	 (given	 jobs	 of	 some	 priority	 and	 duration,	 and	 one	 or	 more
processors,	 assign	 jobs	 to	 the	 processors	 by	 respecting	 the	 priority	 while
minimizing	 total	 execution	 time)	 to	 constraint-satisfaction	 problems



(determine	 values	 that	 satisfy	 a	 set	 of	 mathematical	 constraints,	 such	 as
logical	 equations).	 Even	 the	 task	 of	 winning	 in	 certain	 video	 games	 can
sometimes	be	proven	to	be	NP-complete	(for	famous	games	including	Tetris,
Super	Mario	Bros.,	Pokémon,	and	Candy	Crush	Saga).	For	example,	the	article
“Classic	 Nintendo	 Games	 Are	 (Computationally)	 Hard”
(https://arxiv.org/abs/1203.1895)	 considers	 “the	 decision	 problem	 of
reachability”	to	determine	the	possibility	of	reaching	the	goal	point	 from	a
particular	starting	point.

Some	 of	 these	 video	 game	 problems	 are	 actually	 even	 harder	 than	NP-
complete	and	are	called	NP-hard.	We	say	that	a	problem	is	NP-hard	when
it’s	at	 least	as	hard	as	NP-complete	problems.	More	formally,	a	problem	is
NP-hard	if	what	it	takes	to	solve	it	can	be	proven	to	also	solve	NP-complete
problems.

I	have	to	mention	an	 important	caveat.	Not	all	 instances	of	NP-complete
problems	are	actually	hard	to	solve.	Some	specific	instances,	because	they’re
small	 or	 because	 they	 have	 a	 specific	 structure,	 may	 be	 solved	 efficiently.
Take,	 for	example,	 the	graph	 in	Figure	9-3.	By	 just	 looking	at	 it	 for	a	 few
seconds	you’ll	spot	the	clique,	which	is	the	top	four	connected	nodes—even
though	the	aforementioned	clique	problem	is	NP-hard,	there’s	nothing	hard
here.	 So	 being	 NP-complete	 doesn’t	 mean	 that	 all	 instances	 of	 a	 given
problem	are	hard,	but	that	as	the	problem	size	grows,	many	of	them	are.

The	P	vs.	NP	Problem
If	 you	 could	 solve	 the	hardest	NP	 problems	 in	polynomial	 time,	 then	 you
could	 solve	all	NP	 problems	 in	polynomial	 time,	 and	 therefore	NP	would
equal	P.	That	sounds	preposterous;	 isn’t	 it	obvious	that	there	are	problems
for	which	a	solution	is	easy	to	verify	but	hard	to	find?	For	example,	 isn’t	 it
obvious	 that	 exponential-time	 brute	 force	 is	 the	 fastest	way	 to	 recover	 the
key	of	a	symmetric	cipher,	and	therefore	that	the	problem	can’t	be	in	P?	It
turns	out	 that,	 as	 crazy	 as	 it	 sounds,	no	one	has	proved	 that	P	 is	 different
from	NP,	despite	a	bounty	of	literally	one	million	dollars.

The	 Clay	Mathematics	 Institute	 will	 award	 this	 bounty	 to	 anyone	 who
proves	that	either	P	≠	NP	or	P	=	NP.	This	problem,	known	as	P	vs.	NP,	was
called	“one	of	the	deepest	questions	that	human	beings	have	ever	asked”	by
renowned	 complexity	 theorist	 Scott	 Aaronson.	 Think	 about	 it:	 if	 P	 were
equal	to	NP,	then	any	easily	checked	solution	would	also	be	easy	to	find.	All
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cryptography	used	in	practice	would	be	insecure,	because	you	could	recover
symmetric	keys	and	invert	hash	functions	efficiently.

Figure	9-4:	The	classes	NP,	P,	and	the	set	of	NP-complete	problems

But	 don’t	 panic:	most	 complexity	 theorists	 believe	P	 isn’t	 equal	 to	NP,
and	 therefore	 that	P	 is	 instead	 a	 strict	 subset	 of	NP,	 as	Figure	9-4	 shows,
where	NP-complete	 problems	 are	 another	 subset	 of	NP	 not	 overlapping
with	P.	 In	other	words,	problems	 that	 look	hard	actually	are	hard.	 It’s	 just
difficult	 to	 prove	 this	 mathematically.	While	 proving	 that	P	 =	NP	 would
only	 need	 a	 polynomial-time	 algorithm	 for	 an	 NP-complete	 problem,
proving	the	nonexistence	of	such	an	algorithm	is	fundamentally	harder.	But
this	 didn’t	 stop	wacky	mathematicians	 from	coming	up	with	 simple	proofs
that,	 while	 usually	 obviously	 wrong,	 often	 make	 for	 funny	 reads;	 for	 an
example,	 see	 “The	 P-versus-NP	 page”	 (https://www.win.tue.nl/~gwoegi/P-
versus-NP.htm).

Now	 if	 we’re	 almost	 sure	 that	 hard	 problems	 do	 exist,	 what	 about
leveraging	 them	 to	 build	 strong,	 provably	 secure	 crypto?	 Imagine	 a	 proof
that	breaking	some	cipher	is	NP-complete,	and	therefore	that	the	cipher	is
unbreakable	as	long	as	P	isn’t	equal	to	NP.	But	reality	is	disappointing:	NP-
complete	problems	have	proved	difficult	to	use	for	crypto	purposes	because
the	very	 structure	 that	makes	 them	hard	 in	general	can	make	 them	easy	 in
specific	cases—cases	 that	 sometimes	occur	 in	crypto.	 Instead,	cryptography
often	relies	on	problems	that	are	probably	not	NP-hard.

The	Factoring	Problem
The	factoring	problem	consists	of	finding	the	prime	numbers	p	and	q	given	a
large	number,	N	=	p	×	q.	The	widely	used	RSA	algorithms	are	based	on	the
fact	that	factoring	a	number	is	difficult.	In	fact,	the	hardness	of	the	factoring
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problem	 is	what	makes	RSA	encryption	and	 signature	 schemes	 secure.	But
before	we	see	how	RSA	leverages	the	factoring	problem	in	Chapter	10,	I’d
like	to	convince	you	that	this	problem	is	indeed	hard,	yet	probably	not	NP-
complete.

First,	 some	 kindergarten	 math.	 A	 prime	 number	 is	 a	 number	 that	 isn’t
divisible	by	any	other	number	but	itself	and	1.	For	example,	the	numbers	3,
7,	and	11	are	prime;	the	numbers	4	=	2	×	2,	6	=	2	×	3,	and	12	=	2	×	2	×	3	are
not	prime.	A	 fundamental	 theorem	of	number	 theory	 says	 that	any	 integer
number	 can	 be	 uniquely	 written	 as	 a	 product	 of	 primes,	 a	 representation
called	 the	 factorization	 of	 that	 number.	 For	 example,	 the	 factorization	 of
123456	is	26	×	3	×	643;	the	factorization	of	1234567	is	=	127	×	9721;	and	so
on.	Any	integer	has	a	unique	factorization,	or	a	unique	way	to	write	 it	as	a
product	of	prime	numbers.	But	how	do	we	know	that	a	given	factorization
contains	only	prime	numbers	or	that	a	given	number	is	prime?	The	answer	is
found	through	polynomial-time	primality	testing	algorithms,	which	allow	us
to	efficiently	test	whether	a	given	number	is	prime.	Getting	from	a	number
to	its	prime	factors,	however,	is	another	matter.

Factoring	Large	Numbers	in	Practice
So	 how	 do	 we	 go	 from	 a	 number	 to	 its	 factorization—namely,	 its
decomposition	as	a	product	of	prime	numbers?	The	most	basic	way	to	factor
a	number,	N,	is	to	try	dividing	it	by	all	the	numbers	lower	than	it	until	you
find	 a	 number,	x,	 that	 divides	N.	Then	 attempt	 to	 divide	N	with	 the	 next
number,	x	+	1,	and	so	on.	You’ll	end	up	with	a	 list	of	factors	of	N.	What’s
the	time	complexity	of	this?	First,	remember	that	we	express	complexities	as
a	function	of	the	input’s	 length.	The	bit	length	of	the	number	N	is	n	=	log2

N.	By	the	basic	definition	of	logarithm,	this	means	that	N	=	2n.	Because	all
the	numbers	 less	than	N/2	are	reasonable	guesses	for	possible	factors	of	N,
there	 are	 about	 N/2	 =	 2n/2	 values	 to	 try.	 The	 complexity	 of	 our	 naive
factoring	algorithm	is	therefore	O(2n),	ignoring	the	1/2	coefficient	in	the	O()
notation.

Of	 course,	 many	 numbers	 are	 easy	 to	 factor	 by	 first	 finding	 any	 small
factors	(2,	3,	5,	and	so	on)	and	then	iteratively	factoring	any	other	nonprime
factors.	But	here	we’re	interested	in	numbers	of	the	form	N	=	p	×	q,	where	p
and	q	are	large,	as	found	in	cryptography.

Let’s	be	a	bit	smarter.	We	don’t	need	to	test	all	numbers	lower	than	N/2,



but	 rather	 only	 the	 prime	numbers,	 and	we	 can	 start	 by	 trying	 only	 those
smaller	than	the	square	root	of	N.	Indeed,	if	N	is	not	a	prime	number,	then	it
has	to	have	at	least	one	factor	lower	than	its	square	root	√N.	This	is	because
if	both	of	N’s	factors	p	and	q	are	greater	than	√N,	then	their	product	would
be	greater	than	√N	×	√N	=	N,	which	is	impossible.	For	example,	if	we	say	N	=
100,	then	its	factors	p	and	q	can’t	both	be	greater	than	10	because	that	would
result	in	a	product	greater	than	100.	Either	p	or	q	has	to	be	smaller	than	√N.

So	 what’s	 the	 complexity	 of	 testing	 only	 the	 primes	 less	 than	 √N?	 The
prime	number	theorem	states	that	there	are	approximately	N/log	N	primes	less
than	N.	 Hence,	 there	 are	 approximately	 √N/log	 √N	 primes	 less	 than	 √N.
Expressing	this	value,	we	get	approximately	2n/2/n	possible	prime	factors	and
therefore	a	complexity	of	O(2n/2/n),	since	√N	=	2n/2	and	1/log√N	=	1/(n/2)	=
2n.	This	is	faster	than	testing	all	prime	numbers,	but	it’s	still	painfully	slow
—on	 the	 order	 of	 2120	 operations	 for	 a	 256-bit	 number.	 That’s	 quite	 an
impractical	computational	effort.

The	 fastest	 factoring	 algorithm	 is	 the	 general	 number	 field	 sieve	 (GNFS),
which	 I	won’t	describe	here	because	 it	 requires	 the	 introduction	of	 several
advanced	mathematical	concepts.	A	rough	estimate	of	GNFS’s	complexity	is
exp(1.91	×	n1/3	 (log	n)2/3),	where	exp(…)	 is	 just	a	different	notation	for	 the
exponential	function	ex,	with	e	the	exponential	constant	approximately	equal
to	2.718.	However,	it’s	difficult	to	get	an	accurate	estimate	of	GNFS’s	actual
complexity	for	a	given	number	size.	Therefore,	we	have	to	rely	on	heuristical
complexity	 estimates,	 which	 show	 how	 security	 increases	 with	 a	 longer	 n.
For	example:

Factoring	a	1024-bit	number,	which	would	have	 two	prime	 factors	of
approximately	 500	 bits	 each,	 will	 take	 on	 the	 order	 of	 270	 basic
operations.
Factoring	a	2048-bit	number,	which	would	have	 two	prime	 factors	of
approximately	 1000	 bits	 each,	 will	 take	 on	 the	 order	 of	 290	 basic
operations,	 which	 is	 about	 a	million	 times	 slower	 than	 for	 a	 1024-bit
number.

And	 we	 estimate	 that	 at	 least	 4096	 bits	 are	 needed	 to	 reach	 128-bit
security.	 Note	 that	 these	 values	 should	 be	 taken	 with	 a	 grain	 of	 salt,	 and
researchers	 don’t	 always	 agree	 on	 these	 estimates.	 Take	 a	 look	 at	 these



experimental	results	to	see	the	actual	cost	of	factoring:

In	 2005,	 after	 about	 18	 months	 of	 computation—and	 thanks	 to	 the
power	of	a	cluster	of	80	processors,	with	a	total	effort	equivalent	to	75
years	 of	 computation	 on	 a	 single	 processor—a	 group	 of	 researchers
factored	a	663-bit	(200-decimal	digit)	number.
In	 2009,	 after	 about	 two	 years	 and	 using	 several	 hundred	 processors,
with	a	total	effort	equivalent	to	about	2,000	years	of	computation	on	a
single	processor,	another	group	of	researchers	factored	a	768-bit	(232-
decimal	digit)	number.

As	you	can	see,	the	numbers	actually	factored	by	academic	researchers	are
shorter	than	those	in	real	applications,	which	are	at	least	1024-bit	and	often
more	than	2048-bit.	As	I	write	 this,	no	one	has	reported	the	 factoring	of	a
1024-bit	number,	but	many	speculate	that	well-funded	organizations	such	as
the	NSA	can	do	it.

In	 sum,	1024-bit	RSA	should	be	viewed	as	 insecure,	 and	RSA	should	be
used	with	at	least	a	2048-bit	value—and	preferably	a	4096-bit	one	to	ensure
higher	security.

Is	Factoring	NP-Complete?
We	don’t	know	how	to	factor	large	numbers	efficiently,	which	suggests	that
the	factoring	problem	doesn’t	belong	to	P.	However,	factoring	is	clearly	in
NP,	 because	 given	 a	 factorization,	 we	 can	 verify	 the	 solution	 by	 checking
that	 all	 factors	 are	prime	numbers,	 thanks	 to	 the	aforementioned	primality
testing	algorithm,	and	that	when	multiplied	together,	the	factors	do	give	the
expected	number.	For	example,	to	check	that	3	×	5	is	the	factorization	of	15,
you’ll	check	that	both	3	and	5	are	prime	and	that	3	times	5	equals	15.

So	we	have	a	problem	that	is	in	NP	and	that	looks	hard,	but	is	it	as	hard	as
the	 hardest	 NP	 problems?	 In	 other	 words,	 is	 factoring	 NP-complete?
Spoiler	alert:	probably	not.

There’s	no	mathematical	proof	 that	 factoring	 isn’t	NP-complete,	but	we
have	a	 few	pieces	of	soft	evidence.	First,	all	known	NP-complete	problems
can	 have	 one	 solution,	 but	 can	 also	 have	 more	 than	 one	 solution,	 or	 no
solution	 at	 all.	 In	 contrast,	 factoring	 always	has	 exactly	 one	 solution.	Also,
the	 factoring	 problem	 has	 a	 mathematical	 structure	 that	 allows	 for	 the
GNFS	algorithm	to	significantly	outperform	a	naive	algorithm,	a	 structure



that	NP-complete	problems	don’t	have.	Factoring	would	be	easy	if	we	had	a
quantum	 computer,	 a	 computing	 model	 that	 exploits	 quantum	 mechanical
phenomena	 to	 run	 different	 kinds	 of	 algorithms	 and	 that	 would	 have	 the
capability	 to	 factor	 large	 numbers	 efficiently	 (not	 because	 it’d	 run	 the
algorithm	faster,	but	because	it	could	run	a	quantum	algorithm	dedicated	to
factoring	 large	numbers).	A	quantum	computer	doesn’t	exist	yet,	 though—
and	might	never	exist.	Regardless,	a	quantum	computer	would	be	useless	in
tackling	NP-complete	problems	because	it’d	be	no	faster	than	a	classical	one
(see	Chapter	14).

Factoring	may	then	be	slightly	easier	than	NP-complete	in	theory,	but	as
far	 as	 cryptography	 is	 concerned,	 it’s	hard	enough,	 and	even	more	 reliable
than	NP-complete	 problems.	 Indeed,	 it’s	 easier	 to	 build	 cryptosystems	 on
top	of	the	factoring	problem	than	NP-complete	problems,	because	it’s	hard
to	know	exactly	how	hard	it	is	to	break	a	cryptosystem	based	on	some	NP-
complete	problems—in	other	words,	how	many	bits	of	security	you’d	get.

The	 factoring	 problem	 is	 just	 one	 of	 several	 problems	 used	 in
cryptography	 as	 a	 hardness	 assumption,	 which	 is	 an	 assumption	 that	 some
problem	is	computationally	hard.	This	assumption	is	used	when	proving	that
breaking	a	cryptosystem’s	security	is	at	least	as	hard	as	solving	said	problem.
Another	 problem	 used	 as	 a	 hardness	 assumption,	 the	 discrete	 logarithm
problem	(DLP),	is	actually	a	family	of	problems,	which	we’ll	discuss	next.

The	Discrete	Logarithm	Problem
The	 DLP	 predates	 the	 factoring	 problem	 in	 the	 official	 history	 of
cryptography.	 Whereas	 RSA	 appeared	 in	 1977,	 a	 second	 cryptographic
breakthrough,	 the	Diffie–Hellman	key	agreement	 (covered	 in	Chapter	11),
came	 about	 a	 year	 earlier,	 grounding	 its	 security	 on	 the	 hardness	 of	 the
DLP.	Like	 the	 factoring	problem,	 the	DLP	deals	with	 large	numbers,	 but
it’s	 a	bit	 less	 straightforward—it	will	 take	 you	 a	 few	minutes	 rather	 than	 a
few	seconds	to	get	it	and	requires	a	bit	more	math	than	factoring.	So	let	me
introduce	 the	 mathematical	 notion	 of	 a	 group	 in	 the	 context	 of	 discrete
logarithms.

What	Is	a	Group?
In	mathematical	context,	a	group	is	a	set	of	elements	(typically,	numbers)	that
are	related	to	each	other	according	to	certain	well-defined	rules.	An	example



of	a	group	is	the	set	of	nonzero	integers	(between	1	and	p	–	1)	modulo	some
prime	 number	 p,	 which	 we	 write	Zp

*.	 For	 p	 =	 5,	 we	 get	 the	 group	Z5
*	 =

{1,2,3,4}.	In	the	group	Z5
*,	operations	are	carried	out	modulo	5;	hence,	we

don’t	have	3	×	4	=	12	but	instead	have	3	×	4	=	2,	because	12	mod	5	=	2.	We
nonetheless	 use	 the	 same	 sign	 (×)	 that	 we	 use	 for	 normal	 integer
multiplication.	 Likewise,	 we	 also	 use	 the	 exponent	 notation	 to	 denote	 a
group	 element’s	 multiplication	 with	 itself	 mod	 p,	 a	 common	 operation	 in
cryptography.	For	example,	 in	the	context	of	Z5

*,	23	=	2	×	2	×	2	=	3	rather
than	8,	because	8	mod	5	is	equal	to	3.

To	 be	 a	 group,	 a	 mathematical	 set	 should	 have	 the	 following
characteristics,	called	group	axioms:

Closure	For	any	two	x	and	y	 in	the	group,	x	×	y	 is	 in	the	group	too.	In
Z5

*,	2	×	3	=	1	(because	6	=	1	mod	5),	2	×	4	=	3,	and	so	on.

Associativity	For	any	x,	y,	z	in	the	group,	(x	×	y)	×	z	=	x	×	(y	×	z).	In	Z5
*,

(2	×	3)	×	4	=	1	×	4	=	2	×	(3	×	4)	=	2	×	2	=	4.
Identity	existence	There’s	an	element	e	such	that	e	×	x	=	x	×	e	=	x.	In	any
Zp

*,	the	identity	element	is	1.

Inverse	existence	For	any	x	in	the	group,	there’s	a	y	such	that	x	×	y	=	y	×
x	=	e.	In	Z5

*,	the	inverse	of	2	is	3,	and	the	inverse	of	3	is	2,	while	4	is	its
own	inverse	because	4	×	4	=	16	=	1	mod	5.

In	 addition,	 a	 group	 is	 called	 commutative	 if	x	 ×	 y	 =	 y	 ×	x	 for	 any	group
elements	x	 and	 y.	That’s	 also	 true	 for	 any	multiplicative	 group	of	 integers
Zp

*.	In	particular,	Z5
*	is	commutative:	3	×	4	=	4	×	3,	2	×	3	=	3	×	2,	and	so	on.

A	group	is	called	cyclic	if	there’s	at	least	one	element	g	such	that	its	powers
(g1,	g2,	g3,	and	so	on)	mod	p	span	all	distinct	group	elements.	The	element	g
is	then	called	a	generator	of	the	group.	Z5

*	is	cyclic	and	has	two	generators,	2
and	3,	because	21	=	2,	22	=	4,	23	=	3,	24	=	1,	and	31	=	3,	32	=	4,	33	=	2,	34	=	1.

Note	that	I’m	using	multiplication	as	a	group	operator,	but	you	can	also
get	 groups	 from	 other	 operators.	 For	 example,	 the	 most	 straightforward
group	is	the	set	of	all	integers,	positive	and	negative,	with	addition	as	a	group
operation.	 Let’s	 check	 that	 the	 group	 axioms	 hold	 with	 addition,	 in	 the
preceding	order:	clearly,	the	number	x	+	y	is	an	integer	if	x	and	y	are	integers



(closure);	(x	+	y)	+	z	=	x	+	(y	+	z)	for	any	x,	y,	and	z	(associativity);	zero	is	the
identity	element;	and	the	inverse	of	any	number	x	in	the	group	is	–x	because
x	+	(–x)	=	0	for	any	integer	x.	A	big	difference,	though,	is	that	this	group	of
integers	is	of	infinite	size,	whereas	in	crypto	we’ll	only	deal	with	finite	groups,
or	groups	with	a	finite	number	of	elements.	Typically,	we’ll	use	groups	Zp

*,
where	p	is	thousands	of	bits	long	(that	is,	groups	that	contain	on	the	order	of
2p	numbers).

The	Hard	Thing
The	DLP	consists	of	finding	the	y	 for	which	gy	=	x,	given	a	base	number	g
within	 some	 group	 Zp

*,	 where	 p	 is	 a	 prime	 number,	 and	 given	 a	 group
element	x.	The	DLP	is	called	discrete	because	we’re	dealing	with	integers	as
opposed	 to	 real	 numbers	 (continuous),	 and	 it’s	 called	 a	 logarithm	 because
we’re	looking	for	the	logarithm	of	x	in	base	g.	(For	example,	the	logarithm	of
256	in	base	2	is	8	because	28	=	256.)

People	 often	 ask	 me	 whether	 factoring	 or	 a	 discrete	 logarithm	 is	 more
secure—or	in	other	words,	which	problem	is	the	hardest?	My	answer	is	that
they’re	about	equally	hard.	In	fact,	algorithms	to	solve	DLP	bear	similarities
with	those	factoring	integers,	and	you	get	about	the	same	security	level	with
n-bit	hard-to-factor	numbers	as	with	discrete	 logarithms	 in	an	n-bit	group.
And	 for	 the	 same	 reason	as	 factoring,	DLP	 isn’t	NP-complete.	 (Note	 that
there	are	certain	groups	where	the	DLP	is	easier	to	solve,	but	here	I’m	only
referring	 to	 the	 case	 of	 DLP	 groups	 consisting	 of	 a	 number	 modulo	 a
prime.)

How	Things	Can	Go	Wrong
More	than	40	years	later,	we	still	don’t	know	how	to	efficiently	factor	large
numbers	 or	 solve	 discrete	 logarithms.	 Amateurs	 may	 argue	 that	 someone
may	 eventually	 break	 factoring—and	 we	 have	 no	 proof	 that	 it’ll	 never	 be
broken—but	 we	 also	 don’t	 have	 proof	 that	 P	 ≠	 NP.	 Likewise,	 you	 can
speculate	 that	P	may	 be	 equal	 to	NP;	 however,	 according	 to	 experts,	 that
surprise	is	unlikely.	So	there’s	no	need	to	worry.	And	indeed	all	the	public-
key	crypto	deployed	today	relies	on	either	factoring	(RSA)	or	DLP	(Diffie–
Hellman,	 ElGamal,	 elliptic	 curve	 cryptography).	However,	 although	math
may	not	fail	us,	real-world	concerns	and	human	error	can	sneak	in.



When	Factoring	Is	Easy
Factoring	 large	 numbers	 isn’t	 always	 hard.	For	 example,	 take	 the	 1024-bit
number	N,	which	is	equal	to	the	following:

For	 1024-bit	 numbers	 used	 in	 RSA	 encryption	 or	 signature	 schemes
where	N	 =	pq,	we	 expect	 the	best	 factoring	 algorithms	 to	need	 around	270

operations,	as	we	discussed	earlier.	But	you	can	factor	this	sample	number	in
seconds	 using	 SageMath,	 a	 piece	 of	 Python-based	 mathematical	 software.
Using	SageMath’s	factor()	 function	on	my	2015	MacBook,	it	took	less	than
five	seconds	to	find	the	following	factorization:

Right,	I	cheated.	This	number	isn’t	of	the	form	N	=	pq	because	it	doesn’t
have	just	two	large	prime	factors	but	rather	five,	 including	very	small	ones,
which	makes	it	easy	to	factor.	First,	you’ll	identify	the	2800	×	641	×	6700417
part	 by	 trying	 small	 primes	 from	 a	 precomputed	 list	 of	 prime	 numbers,
which	leaves	you	with	a	192-bit	number	that’s	much	easier	to	factor	than	a
1024-bit	number	with	two	large	factors.

But	factoring	can	be	easy	not	only	when	n	has	small	prime	factors,	but	also
when	N	or	its	factors	p	and	q	have	particular	forms—for	example,	when	N	=
pq	with	p	and	q	both	close	to	some	2b,	when	N	=	pq	and	some	bits	of	p	or	q
are	known,	or	when	N	 is	 of	 the	 form	N	 =	prqs	 and	 r	 is	 greater	 than	 log	p.
However,	detailing	the	reasons	for	these	weaknesses	is	way	too	technical	for
this	book.

The	 upshot	 here	 is	 that	 the	 RSA	 encryption	 and	 signature	 algorithms
(covered	 in	Chapter	10)	will	need	 to	work	with	a	value	of	N	=	pq,	where	p
and	q	are	carefully	chosen,	to	avoid	easy	factorization	of	N,	which	can	result
in	security	disaster.

Small	Hard	Problems	Aren’t	Hard



Computationally	 hard	 problems	 become	 easy	 when	 they’re	 small	 enough,
and	even	exponential-time	algorithms	become	practical	as	the	problem	size
shrinks.	A	symmetric	cipher	may	be	secure	in	the	sense	that	there’s	no	faster
attack	 than	 the	 2n-time	 brute	 force,	 but	 if	 the	 key	 length	 is	n	 =	 32,	 you’ll
break	 the	cipher	 in	minutes.	This	 sounds	obvious,	and	you’d	 think	 that	no
one	would	be	naive	enough	to	use	small	keys,	but	in	reality	there	are	plenty
of	reasons	why	this	could	happen.	The	following	are	two	true	stories.

Say	you’re	a	developer	who	knows	nothing	about	crypto	but	has	some	API
to	 encrypt	 with	 RSA	 and	 has	 been	 told	 to	 encrypt	 with	 128-bit	 security.
What	RSA	key	size	would	you	pick?	I’ve	seen	real	cases	of	128-bit	RSA,	or
RSA	 based	 on	 a	 128-bit	 number	N	 =	 pq.	 However,	 although	 factoring	 is
impractically	 hard	 for	 an	 N	 thousands	 of	 bits	 long,	 factoring	 a	 128-bit
number	 is	 easy.	 Using	 the	 SageMath	 software,	 the	 commands	 shown	 in
Listing	9-2	complete	instantaneously.

sage:	p	=	random_prime(2**64)
sage:	q	=	random_prime(2**64)
sage:	factor(p*q)
6822485253121677229	*	17596998848870549923

Listing	9-2:	Generating	an	RSA	modulus	by	picking	 two	 random	prime	numbers	and	 factoring	 it
instantaneously

Listing	9-2	shows	that	a	128-bit	number	taken	randomly	as	the	product	of
two	 64-bit	 prime	 numbers	 can	 be	 easily	 factored	 on	 a	 typical	 laptop.
However,	 if	 I	 chose	 1024-bit	 prime	 numbers	 instead	 by	 using	 p	 =

random_prime(2**1024),	 the	command	 factor(p*q)	would	never	complete,	 at	 least
not	in	my	lifetime.

To	 be	 fair,	 the	 tools	 available	 don’t	 help	 prevent	 the	 naive	 use	 of
insecurely	 short	 parameters.	 For	 example,	 the	 OpenSSL	 toolkit	 lets	 you
generate	RSA	keys	as	short	as	31	bits	without	any	warning;	obviously,	such
short	keys	are	totally	insecure,	as	shown	in	Listing	9-3.

$	openssl	genrsa	31
Generating	RSA	private	key,	31	bit	long	modulus
.+++++++++++++++++++++++++++
.+++++++++++++++++++++++++++
e	is	65537	(0x10001)
-----BEGIN	RSA	PRIVATE	KEY-----
MCsCAQACBHHqFuUCAwEAAQIEP6zEJQIDANATAgMAjCcCAwCSBwICTGsCAhpp
-----END	RSA	PRIVATE	KEY-----



Listing	9-3:	Generating	an	insecure	RSA	private	key	using	the	OpenSSL	toolkit

When	 reviewing	 cryptography,	 you	 should	 not	 only	 check	 the	 type	 of
algorithms	 used,	 but	 also	 their	 parameters	 and	 the	 length	 of	 their	 secret
values.	However,	as	you’ll	 see	 in	 the	 following	story,	what’s	 secure	enough
today	may	be	insecure	tomorrow.

In	 2015,	 researchers	 discovered	 that	 many	 HTTPS	 servers	 and	 email
servers	still	supported	an	older,	 insecure	version	of	the	Diffie–Hellman	key
agreement	 protocol.	 Namely,	 the	 underlying	 TLS	 implementation
supported	Diffie–Hellman	within	a	group,	Zp

*,	defined	by	a	prime	number,
p,	 of	 only	 512	 bits,	 where	 the	 discrete	 logarithm	 problem	 was	 no	 longer
practically	impossible	to	compute.

Not	only	did	servers	support	a	weak	algorithm,	but	attackers	could	force	a
benign	client	to	use	that	algorithm	by	injecting	malicious	traffic	within	the
client’s	session.	Even	better	for	attackers,	the	largest	part	of	the	attack	could
be	 carried	 out	 once	 and	 recycled	 to	 attack	 multiple	 clients.	 After	 about	 a
week	of	computations	to	attack	a	specific	group,	Zp

*,	it	took	only	70	seconds
to	break	individual	sessions	of	different	users.

A	secure	protocol	is	worthless	if	it’s	undermined	by	a	weakened	algorithm,
and	 a	 reliable	 algorithm	 is	 useless	 if	 sabotaged	 by	 weak	 parameters.	 In
cryptography,	you	should	always	read	the	fine	print.

For	more	 details	 about	 this	 story,	 check	 the	 research	 article	 “Imperfect
Forward	 Secrecy:	 How	 Diffie–Hellman	 Fails	 in	 Practice”
(https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf).

Further	Reading
I	encourage	you	to	look	deeper	into	the	foundational	aspects	of	computation
in	 the	 context	 of	 computability	 (what	 functions	 can	 be	 computed?)	 and
complexity	(at	what	cost?),	and	how	they	relate	to	cryptography.	I’ve	mostly
talked	 about	 the	 classes	P	 and	NP,	 but	 there	 are	 many	 more	 classes	 and
points	 of	 interest	 for	 cryptographers.	 I	 highly	 recommend	 the	 book
Quantum	 Computing	 Since	 Democritus	 by	 Scott	 Aaronson	 (Cambridge
University	Press,	2013).	It’s	in	large	part	about	quantum	computing,	but	its
first	chapters	brilliantly	introduce	complexity	theory	and	cryptography.

In	 the	 cryptography	 research	 literature	 you’ll	 also	 find	 other	 hard
computational	 problems.	 I’ll	mention	 them	 in	 later	 chapters,	 but	 here	 are

https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf


some	 examples	 that	 illustrate	 the	 diversity	 of	 problems	 leveraged	 by
cryptographers:

The	Diffie–Hellman	problem	(given	gx	 and	gy,	 find	gxy)	 is	 a	variant	of
the	 discrete	 logarithm	 problem,	 and	 is	 widely	 used	 in	 key	 agreement
protocols.
Lattice	 problems,	 such	 as	 the	 shortest	 vector	 problem	 (SVP)	 and	 the
learning	with	errors	(LWE)	problem,	are	the	only	examples	of	NP-hard
problems	successfully	used	in	cryptography.
Coding	 problems	 rely	 on	 the	 hardness	 of	 decoding	 error-correcting
codes	with	insufficient	information,	and	have	been	studied	since	the	late
1970s.
Multivariate	problems	are	about	solving	nonlinear	systems	of	equations
and	 are	 potentially	 NP-hard,	 but	 they’ve	 failed	 to	 provide	 reliable
cryptosystems	because	hard	versions	are	too	big	and	slow,	and	practical
versions	were	found	to	be	insecure.

In	Chapter	10,	we’ll	keep	talking	about	hard	problems,	especially	factoring
and	its	main	variant,	the	RSA	problem.



10
RSA

The	 Rivest–Shamir–Adleman	 (RSA)	 cryptosystem	 revolutionized
cryptography	 when	 it	 emerged	 in	 1977	 as	 the	 first	 public-key	 encryption
scheme;	whereas	classical,	 symmetric-key	encryption	 schemes	use	 the	 same
secret	 key	 to	 encrypt	 and	 decrypt	 messages,	 public-key	 encryption	 (also
called	 asymmetric	 encryption)	 uses	 two	 keys:	 one	 is	 your	 public	 key,	which
can	be	used	by	anyone	who	wants	to	encrypt	messages	for	you,	and	the	other
is	your	private	key,	which	is	required	in	order	to	decrypt	messages	encrypted
using	 the	 public	 key.	 This	 magic	 is	 the	 reason	 why	 RSA	 came	 as	 a	 real
breakthrough,	 and	 40	 years	 later,	 it’s	 still	 the	 paragon	 of	 public-key
encryption	 and	 a	 workhorse	 of	 internet	 security.	 (One	 year	 prior	 to	 RSA,
Diffie	and	Hellman	had	introduced	the	concept	of	public-key	cryptography,
but	their	scheme	was	unable	to	perform	public-key	encryption.)

RSA	is	above	all	an	arithmetic	trick.	It	works	by	creating	a	mathematical
object	called	a	trapdoor	permutation,	a	function	that	transforms	a	number	x	to
a	number	y	in	the	same	range,	such	that	computing	y	from	x	is	easy	using	the
public	key,	but	computing	x	from	y	is	practically	impossible	unless	you	know
the	private	key—the	trapdoor.	(Think	of	x	as	a	plaintext	and	y	as	a	ciphertext.)

In	 addition	 to	 encryption,	 RSA	 is	 also	 used	 to	 build	 digital	 signatures,
wherein	the	owner	of	the	private	key	is	the	only	one	able	to	sign	a	message,
and	the	public	key	enables	anyone	to	verify	the	signature’s	validity.

In	 this	 chapter,	 I	 explain	 how	 the	 RSA	 trapdoor	 permutation	 works,
discuss	 RSA’s	 security	 relative	 to	 the	 factoring	 problem	 (discussed	 in
Chapter	9),	and	then	explain	why	the	RSA	trapdoor	permutation	alone	isn’t
enough	 to	 build	 secure	 encryption	 and	 signatures.	 I	 also	 discuss	 ways	 to
implement	RSA	and	demonstrate	how	to	attack	it.

We	begin	with	 an	 explanation	of	 the	basic	mathematical	notions	behind



RSA.

The	Math	Behind	RSA
When	 encrypting	 a	message,	 RSA	 sees	 the	message	 as	 a	 big	 number,	 and
encryption	consists	essentially	of	multiplications	of	big	numbers.	Therefore,
in	order	to	understand	how	RSA	works,	we	need	to	know	what	kind	of	big
numbers	it	manipulates	and	how	multiplication	works	on	those	numbers.

RSA	sees	the	plaintext	that	it’s	encrypting	as	a	positive	integer	between	1
and	n	–	1,	where	n	is	a	large	number	called	the	modulus.	More	precisely,	RSA
works	on	the	numbers	less	than	n	that	are	co-prime	with	n	and	therefore	that
have	 no	 common	 prime	 factor	 with	 n.	 Such	 numbers,	 when	 multiplied
together,	yield	another	number	that	satisfies	these	criteria.	We	say	that	these
numbers	 form	 a	 group,	 denoted	ZN

*,	 and	 call	 the	multiplicative	 group	 of
integers	modulo	n.	(See	the	mathematical	definition	of	a	group	in	“What	Is	a
Group?”	on	page	174.)

For	 example,	 consider	 the	 group	Z4
*	 of	 integers	modulo	 4.	Recall	 from

Chapter	9	that	a	group	must	include	an	identity	element	(that	is,	1)	and	that
each	number	x	in	the	group	must	have	an	inverse,	a	number	y	such	that	x	×	y
=	 1.	 How	 do	 we	 determine	 that	 set	 that	 makes	 up	 Z4

*?	 Based	 on	 our
definitions,	we	know	that	0	is	not	in	the	group	Z4

*	because	multiplying	any
number	by	0	can	never	give	1,	so	0	has	no	inverse.	By	the	same	token,	the
number	1	belongs	to	Z4

*	because	1	×	1	=	1,	so	1	is	its	own	inverse.	However,
the	number	 2	 does	 not	 belong	 in	 this	 group	because	we	 can’t	 obtain	 1	 by
multiplying	2	with	another	element	of	Z4

*	(the	reason	is	that	2	isn’t	co-prime
with	4,	because	4	and	2	share	the	factor	of	2.)	The	number	3	belongs	in	the
group	Z4

*	because	it	is	its	own	inverse	within	Z4
*.	Thus,	we	have	Z4

*	=	{1,	3}.

Now	consider	Z5
*,	 the	multiplicative	group	of	 integers	modulo	5.	What

numbers	does	this	set	contain?	The	number	5	is	prime,	and	1,	2,	3,	and	4	are
all	 co-prime	with	5,	 so	 the	 set	of	Z5

*	 is	 {1,	2,	3,	4}.	Let’s	verify	 this:	2	×	3
mod	5	=	1,	therefore,	2	is	3’s	 inverse,	and	3	is	2’s	 inverse;	note	that	4	is	 its
own	inverse	because	4	×	4	mod	5	=	1;	finally,	1	is	again	its	own	inverse	in	the
group.

In	order	to	find	the	number	of	elements	in	a	group	Zn
*	when	n	isn’t	prime,

we	use	Euler’s	 totient	 function,	which	 is	written	as	φ(n),	with	φ	 representing



the	Greek	letter	phi.	This	function	gives	the	number	of	elements	co-prime
with	n,	which	is	the	number	of	elements	in	Zn

*.	As	a	rule,	if	n	is	a	product	of
prime	numbers	n	=	p1	×	p2	×	…	×	pm,	the	number	of	elements	in	the	group
Zn

*	is	the	following:

φ(n)	=	(p1	−	1)	×	(p2	−	1)	×	…	×	(pm	−	1)

RSA	only	deals	with	numbers	n	that	are	the	product	of	two	large	primes,
usually	noted	as	n	=	pq.	The	associated	group	ZN

*	will	then	contain	φ(n)	=	(p
–	 1)(q	 –	 1)	 elements.	 By	 expanding	 this	 expression,	 we	 get	 the	 equivalent
definition	φ(n)	=	n	–	p	–	q	+	1,	or	φ(n)	=	 (n	+	1)	–	 (p	+	q),	which	expresses
more	intuitively	the	value	of	φ(n)	relative	to	n.	In	other	words,	all	but	(p	+	q)
numbers	between	1	and	n	–	1	belong	to	ZN

*	and	are	“valid	numbers”	in	RSA
operations.

The	RSA	Trapdoor	Permutation
The	 RSA	 trapdoor	 permutation	 is	 the	 core	 algorithm	 behind	 RSA-based
encryption	and	signatures.	Given	a	modulus	n	and	number	e,	called	the	public
exponent,	the	RSA	trapdoor	permutation	transforms	a	number	x	from	the	set
Zn

*	into	a	number	y	=	xe	mod	n.	In	other	words,	it	calculates	the	value	that’s
equal	to	x	multiplied	by	itself	e	times	modulo	n	and	then	returns	the	result.
When	we	use	the	RSA	trapdoor	permutation	to	encrypt,	the	modulus	n	and
the	exponent	e	make	up	the	RSA	public	key.

In	 order	 to	 get	 x	 back	 from	 y,	 we	 use	 another	 number,	 denoted	 d,	 to
compute	the	following:

yd	mod	n	=	(xe)d	mod	n	=	xed	mod	n	=	x

Because	d	is	the	trapdoor	that	allows	us	to	decrypt,	it	is	part	of	the	private
key	in	an	RSA	key	pair,	and,	unlike	the	public	key,	it	should	always	be	kept
secret.	The	number	d	is	also	called	the	secret	exponent.

Obviously,	d	isn’t	just	any	number;	it’s	the	number	such	that	e	multiplied
by	d	is	equivalent	to	1,	and	therefore	such	that	xed	mod	n	=	x	for	any	x.	More
precisely,	we	must	have	ed	=	1	mod	φ(n)	 in	order	to	get	xed	=	x1	=	x	and	to
decrypt	the	message	correctly.	Note	that	we	compute	modulo	φ(n)	and	not



modulo	n	here	because	exponents	behave	like	the	indexes	of	elements	of	Zn
*

rather	than	as	 the	elements	themselves.	Because	Zn
*	has	φ(n)	elements,	 the

index	must	be	less	than	φ(n).
The	number	φ(n)	is	crucial	to	RSA’s	security.	In	fact,	finding	φ(n)	for	an

RSA	modulus	n	is	equivalent	to	breaking	RSA,	because	the	secret	exponent	d
can	easily	be	derived	from	φ(n)	and	e,	by	computing	e’s	inverse.	Hence	p	and
q	should	also	be	secret,	since	knowing	p	or	q	gives	φ(n)	by	computing	(p	–	1)
(q	–	1)	=	φ(n).

NOTE

φ(n)	 is	 also	 called	 the	 order	 of	 the	 group	 Zn
*;	 the	 order	 is	 an	 important

characteristic	of	a	group,	which	is	also	essential	to	other	public-key	systems	such
as	Diffie–Hellman	and	elliptic	curve	cryptography.

RSA	Key	Generation	and	Security
Key	generation	 is	the	process	by	which	an	RSA	key	pair	is	created,	namely	a
public	 key	 (modulus	 n	 and	 public	 exponent	 e)	 and	 its	 private	 key	 (secret
exponent	 d).	 The	 numbers	 p	 and	 q	 (such	 that	 n	 =	 pq)	 and	 the	 order	φ(n)
should	also	be	secret,	so	they’re	often	seen	as	part	of	the	private	key.

In	 order	 to	 generate	 an	 RSA	 key	 pair,	 we	 first	 pick	 two	 random	 prime
numbers,	p	and	q,	and	then	compute	φ(n)	from	these,	and	we	compute	d	as
the	 inverse	 of	 e.	 To	 show	 how	 this	 works,	 Listing	 10-1	 uses	 SageMath
(http://www.sagemath.org/),	 an	 open-source	 Python-like	 environment	 that
includes	many	mathematical	packages.

❶	sage:	p	=	random_prime(2^32);	p
			1103222539

❷	sage:	q	=	random_prime(2^32);	q
			17870599

❸	sage:	n	=	p*q;	n
			19715247602230861​
❹	sage:	phi	=	(p-1)*(q-1);	phi
			36567230045260644

❺	sage:	e	=	random_prime(phi);	e
			13771927877214701

❻	sage:	d	=	xgcd(e,	phi)[1];	d
			15417970063428857

http://www.sagemath.org/


❼	sage:	mod(d*e,	phi)

			1

Listing	10-1:	Generating	RSA	parameters	using	SageMath

NOTE
In	 order	 to	 avoid	 multiple	 pages	 of	 output,	 I’ve	 used	 a	 64-bit	 modulus	 n	 in
Listing	10-1,	but	in	practice	an	RSA	modulus	should	be	at	least	2048	bits.

We	 use	 the	 random_prime()	 function	 to	 pick	 random	 primes	 p	❶	 and	 q	❷,
which	are	lower	than	a	given	argument.	Next,	we	multiply	p	and	q	to	get	the
modulus	 n	❸	 and	 φ(n),	 which	 is	 the	 variable	 phi	❹.	 We	 then	 generate	 a
random	 public	 exponent,	 e	❺,	 by	 picking	 a	 random	 prime	 less	 than	 phi	 in
order	to	ensure	that	e	will	have	an	inverse	modulo	phi.	We	then	generate	the
associated	private	exponent	d	by	using	the	xgcd()	function	from	Sage	❻.	This
function	computes	the	numbers	s	and	t	given	two	numbers,	a	and	b,	with	the
extended	 Euclidean	 algorithm	 such	 that	 as	 +	 bt	 =	GCD(a,	 b).	 Finally,	 we
check	that	ed	mod	φ(n)	=	1	❼,	to	ensure	that	d	will	work	correctly	to	invert
the	RSA	permutation.

Now	we	can	apply	the	trapdoor	permutation,	as	shown	in	Listing	10-2.

❶	sage:	x	=	1234567

❷	sage:	y	=	power_mod(x,	e,	n);	y
		19048323055755904

❸	sage:	power_mod(y,	d,	n)
		1234567

Listing	10-2:	Computing	the	RSA	trapdoor	permutation	back	and	forth

We	 assign	 the	 integer	 1234567	 to	 x	 ❶	 and	 then	 use	 the	 function
power_mod(x,	 e,	 n),	 the	 exponentiation	 modulo	 n,	 or	 xe	 mod	 n	 in	 equation
form,	to	calculate	y	❷.	Having	computed	y	=	xe	mod	n,	we	compute	yd	mod	n
❸	with	the	trapdoor	d	to	return	the	original	x.

But	how	hard	is	it	to	find	x	without	the	trapdoor	d?	An	attacker	who	can
factor	big	numbers	 can	break	RSA	by	 recovering	p	 and	q	 and	 then	φ(n)	 in
order	to	compute	d	from	e.	But	that’s	not	the	only	risk.	Another	risk	to	RSA
lies	in	an	attacker’s	ability	to	compute	x	from	xe	mod	n,	or	e	th	roots	modulo



n,	without	necessarily	factoring	n.	Both	risks	seem	closely	connected,	though
we	don’t	know	for	sure	whether	they	are	equivalent.

Assuming	that	factoring	is	indeed	hard	and	that	finding	e	th	roots	is	about
as	 hard,	 RSA’s	 security	 level	 depends	 on	 three	 factors:	 the	 size	 of	 n,	 the
choice	 of	 p	 and	 q,	 and	 how	 the	 trapdoor	 permutation	 is	 used.	 If	 n	 is	 too
small,	it	could	be	factored	in	a	realistic	amount	of	time,	revealing	the	private
key.	To	be	safe,	n	should	at	least	be	2048	bits	long	(a	security	level	of	about
90	 bits,	 requiring	 a	 computational	 effort	 of	 about	 290	 operations),	 but
preferably	 4096	 bits	 long	 (a	 security	 level	 of	 approximately	 128	 bits).	The
values	p	and	q	should	be	unrelated	random	prime	numbers	of	similar	size.	If
they	are	too	small,	or	too	close	together,	it	becomes	easier	to	determine	their
value	 from	 n.	 Finally,	 the	 RSA	 trapdoor	 permutation	 should	 not	 be	 used
directly	for	encryption	or	signing,	as	I’ll	discuss	shortly.

Encrypting	with	RSA
Typically,	RSA	is	used	in	combination	with	a	symmetric	encryption	scheme,
where	RSA	is	used	to	encrypt	a	symmetric	key	that	is	then	used	to	encrypt	a
message	with	a	cipher	such	as	the	Advanced	Encryption	Standard	(AES).	But
encrypting	a	message	or	symmetric	key	with	RSA	is	more	complicated	than
simply	converting	the	target	to	a	number	x	and	computing	xe	mod	n.

In	the	following	subsections,	I	explain	why	a	naive	application	of	the	RSA
trapdoor	 permutation	 is	 insecure,	 and	 how	 strong	 RSA-based	 encryption
works.

Breaking	Textbook	RSA	Encryption’s	Malleability
Textbook	 RSA	 encryption	 is	 the	 phrase	 used	 to	 describe	 the	 simplistic	 RSA
encryption	scheme	wherein	the	plaintext	contains	only	the	message	you	want
to	encrypt.	For	example,	to	encrypt	the	string	RSA,	we	would	first	convert	it
to	 a	 number	 by	 concatenating	 the	 ASCII	 encodings	 of	 each	 of	 the	 three
letters	as	a	byte:	R	(byte	52),	S	(byte	53),	and	A	(byte	41).	The	resulting	byte
string	525341	is	equal	to	5395265	when	converted	to	decimal,	which	we	might
then	 encrypt	 by	 computing	 5395265e	mod	n.	Without	 knowing	 the	 secret
key,	there	would	be	no	way	to	decrypt	the	message.

However,	 textbook	 RSA	 encryption	 is	 deterministic:	 if	 you	 encrypt	 the
same	 plaintext	 twice,	 you’ll	 get	 the	 same	 ciphertext	 twice.	 That’s	 one
problem,	but	there’s	a	bigger	problem—given	two	textbook	RSA	ciphertexts



y1	=	x1e	mod	n	and	y2	=	x2e	mod	n,	you	can	derive	the	ciphertext	of	x1	×	x2	by
multiplying	these	two	ciphertexts	together,	like	this:

y1	×	y2	mod	n	=	x1e	×	x2e	mod	n	=	(x1	×	x2)e	mod	n

The	result	is	(x1	×	x2)e	mod	n,	the	ciphertext	of	the	message	x1	×	x2	mod	n.
Thus	 an	 attacker	 could	 create	 a	 new	 valid	 ciphertext	 from	 two	 RSA
ciphertexts,	allowing	them	to	compromise	the	security	of	your	encryption	by
letting	 them	 deduce	 information	 about	 the	 original	message.	We	 say	 that
this	weakness	makes	 textbook	RSA	encryption	malleable.	 (Of	 course,	 if	 you
know	x1	and	x2,	you	can	compute	(x1	×	x2)e	mod	n,	too,	but	if	you	only	know
y1	and	y2,	you	should	not	be	able	to	multiply	ciphertexts	and	get	a	ciphertext
of	the	multiplied	plaintexts.)

Strong	RSA	Encryption:	OAEP
In	 order	 to	 make	 RSA	 ciphertexts	 nonmalleable,	 the	 ciphertext	 should
consist	of	the	message	data	and	some	additional	data	called	padding,	as	shown
in	Figure	10-1.	The	standard	way	to	encrypt	with	RSA	in	this	fashion	is	to
use	Optimal	Asymmetric	Encryption	Padding	 (OAEP),	 commonly	 referred
to	as	RSA-OAEP.	This	scheme	involves	creating	a	bit	string	as	large	as	the
modulus	 by	 padding	 the	 message	 with	 extra	 data	 and	 randomness	 before
applying	the	RSA	function.

Figure	10-1:	Encrypting	a	symmetric	key,	K,	with	RSA	using	(n,	e)	as	a	public	key

NOTE
OAEP	 is	 referred	 to	 as	 RSAES-OAEP	 in	 official	 documents	 such	 as	 the
PKCS#1	standard	by	 the	RSA	company	and	NIST’s	Special	Publication	800-
56B.	OAEP	improves	on	the	earlier	method	now	called	PKCS#1	v1.5,	which	is



one	 of	 the	 first	 in	 a	 series	 of	 Public-Key	 Cryptography	 Standards	 (PKCS)
created	by	RSA.	It	is	markedly	less	secure	than	OAEP,	yet	is	still	used	in	many
systems.

OAEP’s	Security
OAEP	 uses	 a	 pseudorandom	 number	 generator	 (PRNG)	 to	 ensure	 the
indistinguishability	 and	 nonmalleability	 of	 ciphertexts	 by	 making	 the
encryption	 probabilistic.	 It	 has	 been	 proven	 secure	 as	 long	 as	 the	 RSA
function	and	the	PRNG	are	secure	and,	to	a	lesser	extent,	as	long	as	the	hash
functions	 aren’t	 too	 weak.	 You	 should	 use	 OAEP	 whenever	 you	 need	 to
encrypt	with	RSA.

How	OAEP	Encryption	Works
In	order	to	encrypt	with	RSA	in	OAEP	mode,	you	need	a	message	(typically
a	 symmetric	 key,	 K),	 a	 PRNG,	 and	 two	 hash	 functions.	 To	 create	 the
ciphertext,	you	use	a	given	modulus	n	long	of	m	bytes	(that	is,	8m	bits,	and
therefore	an	n	lower	than	28m).	To	encrypt	K,	the	encoded	message	is	formed
as	M	=	H	||	00	…	00	||	01	||	K,	where	H	is	an	h-byte	constant	defined	by
the	OAEP	scheme,	 followed	by	as	many	00	bytes	as	needed	and	a	01	byte.
This	 encoded	 message,	 M,	 is	 then	 processed	 as	 described	 next	 and	 as
depicted	in	Figure	10-2.

Figure	10-2:	Encrypting	a	symmetric	key,	K,	with	RSA-OAEP,	where	H	is	a	fixed	parameter	and	R



is	random	bits

Next,	 you	 generate	 an	 h-byte	 random	 string	 R	 and	 set	 M	 =	 M	 ⊕
Hash1(R),	 where	 Hash1(R)	 is	 as	 long	 as	 M.	 You	 then	 set	 R	 =	 R	 ⊕
Hash2(M),	where	Hash2(M)	is	as	long	as	R.	Now	you	use	these	new	values
of	M	and	R	to	form	an	m-byte	string	P	=	00	||	M	||	R,	which	is	as	long	as
the	modulus	n	and	which	can	be	converted	to	an	integer	number	less	than	n.
The	result	of	this	conversion	is	the	number	x,	which	is	then	used	to	compute
the	RSA	function	xe	mod	n	to	get	the	ciphertext.

To	decrypt	a	ciphertext	y,	you	would	first	compute	x	=	yd	mod	n	and,	from
this,	recover	the	final	values	of	M	and	R.	Next,	you	would	retrieve	M’s	initial
value	by	computing	M	⊕	Hash1(R	⊕	Hash2(M)).	Finally,	you	would	verify
that	M	 is	of	the	form	H	||	00	…	00	||	01	||	K,	with	an	h-byte	H	and	00
bytes	followed	by	a	01	byte.

In	practice,	 the	parameters	m	 and	h	 (the	 length	of	 the	modulus	 and	 the
length	of	Hash2’s	output,	respectively)	are	typically	m	=	256	bytes	(for	2048-
bit	RSA)	and	h	=	32	(using	SHA-256	as	Hash2).	This	leaves	m	–	h	–	1	=	223
bytes	for	M,	of	which	up	to	m	–	2h	–	2	=	190	bytes	are	available	for	K	(the	“–
2”	 is	 due	 to	 the	 separator	 01	 byte	 in	M).	 The	Hash1	 hash	 value	 is	 then
composed	of	m	–	h	–	1	=	223	bytes,	which	is	 longer	than	the	hash	value	of
any	common	hash	function.

NOTE
In	order	to	build	a	hash	with	such	an	unusual	output	length,	the	RSA	standard
documents	specify	the	use	of	the	mask	generating	function	technique	to	create
hash	functions	that	return	arbitrarily	large	hash	values	from	any	hash	function.

Signing	with	RSA
Digital	 signatures	 can	 prove	 that	 the	 holder	 of	 the	 private	 key	 tied	 to	 a
particular	 digital	 signature	 signed	 some	message	 and	 that	 the	 signature	 is
authentic.	 Because	 no	 one	 other	 than	 the	 private	 key	 holder	 knows	 the
private	exponent	d,	no	one	can	compute	a	signature	y	=	xd	mod	n	from	some
value	x,	but	 everyone	can	verify	ye	mod	n	 =	x	 given	 the	public	 exponent	 e.
That	verified	signature	can	be	used	in	a	court	of	law	to	demonstrate	that	the
private-key	 holder	 did	 sign	 some	 particular	 message—a	 property	 of



undeniability	called	nonrepudiation.
It’s	tempting	to	see	RSA	signatures	as	the	converse	of	encryption,	but	they

are	not.	Signing	with	RSA	is	not	the	same	as	encrypting	with	the	private	key.
Encryption	 provides	 confidentiality	 whereas	 a	 digital	 signature	 is	 used	 to
prevent	forgeries.	The	most	salient	example	of	this	difference	is	that	it’s	okay
for	a	 signature	 scheme	to	 leak	 information	on	 the	message	 signed,	because
the	message	 is	 not	 secret.	 For	 example,	 a	 scheme	 that	 reveals	 parts	 of	 the
messages	 could	 be	 a	 secure	 signature	 scheme	 but	 not	 a	 secure	 encryption
scheme.

Due	to	the	processing	overhead	required,	public-key	encryption	can	only
process	 short	 messages,	 which	 are	 usually	 secret	 keys	 rather	 than	 actual
messages.	 A	 signature	 scheme,	 however,	 can	 process	messages	 of	 arbitrary
sizes	 by	 using	 their	 hash	 values	 Hash(M)	 as	 a	 proxy,	 and	 it	 can	 be
deterministic	 yet	 secure.	 Like	 RSA-OAEP,	 RSA-based	 signature	 schemes
can	use	a	padding	scheme,	but	they	can	also	use	the	maximal	message	space
allowed	by	the	RSA	modulus.

Breaking	Textbook	RSA	Signatures
What	we	call	a	textbook	RSA	signature	is	the	method	that	signs	a	message,	x,
by	directly	computing	y	=	xd	mod	n,	where	x	can	be	any	number	between	0
and	 n	 –	 1.	 Like	 textbook	 encryption,	 textbook	 RSA	 signing	 is	 simple	 to
specify	and	 implement	but	also	 insecure	 in	 the	 face	of	 several	attacks.	One
such	 attack	 involves	 a	 trivial	 forgery:	 upon	 noticing	 that	 0d	mod	n	 =	 0,	 1d

mod	n	=	1,	and	(n	–	1)d	mod	n	=	n	–	1,	regardless	of	the	value	of	the	private
key	d,	an	attacker	can	forge	signatures	of	0,	1,	or	n	–	1	without	knowing	d.

More	worrying	 is	 the	blinding	attack.	For	example,	 say	you	want	 to	get	a
third	 party’s	 signature	 on	 some	 incriminating	message,	M,	 that	 you	 know
they	would	never	knowingly	sign.	To	launch	this	attack,	you	could	first	find
some	 value,	R,	 such	 that	ReM	mod	n	 is	 a	message	 that	 your	 victim	would
knowingly	sign.	Next,	you	would	convince	them	to	sign	that	message	and	to
show	you	their	signature,	which	is	equal	to	S	=	(ReM)d	mod	n,	or	the	message
raised	 to	 the	 power	 d.	 Now,	 given	 that	 signature,	 you	 can	 derive	 the
signature	 of	 M,	 namely	 Md,	 with	 the	 aid	 of	 some	 straightforward
computations.

Here’s	how	this	works:	because	S	 can	be	written	as	 (ReM)d	=	RedMd,	 and



because	Red	=	R	is	equal	to	Red	=	R	(by	definition),	we	have	S	=	(ReM)d	=	RMd.
To	obtain	Md,	we	simply	divide	S	by	R,	as	follows,	to	obtain	the	signature:

S/R	=	RMd/R	=	Md

As	you	can	see,	this	is	a	practical	and	powerful	attack.

The	PSS	Signature	Standard
The	 RSA	 Probabilistic	 Signature	 Scheme	 (PSS)	 is	 to	 RSA	 signatures	 what
OAEP	is	to	RSA	encryption.	It	was	designed	to	make	message	signing	more
secure,	thanks	to	the	addition	of	padding	data.

As	 shown	 in	 Figure	 10-3,	 PSS	 combines	 a	 message	 narrower	 than	 the
modulus	with	some	random	and	fixed	bits	before	RSAing	the	results	of	this
padding	process.

Figure	 10-3:	 Signing	 a	 message,	 M,	 with	 RSA	 and	 with	 the	 PSS	 standard,	 where	 (n,	 d)	 is	 the
private	key

Like	 all	 public-key	 signature	 schemes,	 PSS	 works	 on	 a	 message’s	 hash
rather	than	on	the	message	itself.	Signing	Hash(M)	is	secure	as	long	as	the
hash	function	is	collision	resistant.	One	particular	benefit	of	PSS	is	that	you
can	use	 it	 to	sign	messages	of	any	 length,	because	after	hashing	a	message,
you’ll	 obtain	 a	 hash	 value	 of	 the	 same	 length	 regardless	 of	 the	 message’s
original	 length.	 The	 hash’s	 length	 is	 typically	 256	 bits,	 with	 the	 hash
function	SHA-256.

Why	 not	 sign	 by	 just	 running	OAEP	 on	Hash(M)?	Unfortunately,	 you
can’t.	 Although	 similar	 to	 PSS,	 OAEP	 has	 only	 been	 proven	 secure	 for
encryption,	not	for	signature.

Like	 OAEP,	 PSS	 also	 requires	 a	 PRNG	 and	 two	 hash	 functions.	 One,
Hash1,	 is	 a	 typical	 hash	 with	 h-byte	 hash	 values	 such	 as	 SHA-256.	 The



other,	Hash2,	is	a	wide-output	hash	like	OAEP’s	Hash2.
The	PSS	 signing	procedure	 for	message	M	works	 as	 follows	 (where	h	 is

Hash1’s	output	length):

1.	 Pick	an	r-byte	random	string	R	using	the	PRNG.
2.	 Form	an	encoded	message	M′	=	0000000000000000	||	Hash1(M)	||	R,

long	of	h	+	r	+	8	bytes	(with	eight	zero	bytes	at	the	beginning).
3.	 Compute	the	h-byte	string	H	=	Hash1(M′).
4.	 Set	L	=	00	…	00	||	01	||	R,	or	a	sequence	of	00	bytes	followed	by	a	01

byte	and	then	R,	with	a	number	of	00	bytes	such	that	L	is	long	of	m	–	h
–	 1	 bytes	 (the	 byte	width	m	 of	 the	modulus	minus	 the	 hash	 length	 h
minus	1).

5.	 Set	L	 =	L	⊕	Hash2(H),	 thus	 replacing	 the	previous	 value	of	L	with	 a
new	value.

6.	 Convert	the	m-byte	string	P	=	L	||	H	||	BC	to	a	number,	x,	lower	than
n.	Here,	the	byte	BC	is	a	fixed	value	appended	after	H.

7.	 Given	the	value	of	x	just	obtained,	compute	the	RSA	function	xd	mod	n
to	obtain	the	signature.

To	verify	a	signature	given	a	message,	M,	you	compute	Hash1(M)	and	use
the	public	exponent	e	 to	retrieve	L	and	H	and	then	M′	 from	the	signature,
checking	the	padding’s	correctness	at	each	step.

In	practice,	the	random	string	R	(called	a	salt	in	the	RSA-PSS	standard)	is
usually	as	long	as	the	hash	value.	For	example,	if	you	use	n	=	2048	bits	and
SHA-256	as	the	hash,	the	value	L	is	long	of	m	–	h	–	1	=	256	–	32	–	1	=	223
bytes,	and	the	random	string	R	would	typically	be	32	bytes.

Like	OAEP,	PSS	 is	 provably	 secure,	 standardized,	 and	widely	 deployed.
Also	like	OAEP,	it	looks	needlessly	complex	and	is	prone	to	implementation
errors	 and	mishandled	 corner	 cases.	 But	 unlike	 RSA	 encryption,	 there’s	 a
way	to	get	around	this	extra	complexity	with	a	signature	scheme	that	doesn’t
even	 need	 a	 PRNG,	 thus	 reducing	 the	 risk	 of	 insecure	 RSA	 signatures
caused	by	an	insecure	PRNG,	as	discussed	next.

Full	Domain	Hash	Signatures
Full	Domain	Hash	(FDH)	is	the	simplest	signature	scheme	you	can	imagine.
To	implement	it,	you	simply	convert	the	byte	string	Hash(M)	to	a	number,



x,	and	create	the	signature	y	=	xd	mod	n,	as	shown	in	Figure	10-4.

Figure	10-4:	Signing	a	message	with	RSA	using	the	Full	Domain	Hash	technique

Signature	 verification	 is	 straightforward,	 too.	Given	 a	 signature	 that	 is	 a
number	y,	you	compute	x	=	ye	mod	n	and	compare	the	result	with	Hash(M).
It’s	 boringly	 simple,	 deterministic,	 yet	 secure.	 So	 why	 bother	 with	 the
complexity	of	PSS?

The	main	reason	is	that	PSS	was	released	after	FDH,	in	1996,	and	it	has	a
security	 proof	 that	 inspires	 more	 confidence	 than	 FDH.	 Specifically,	 its
proof	offers	slightly	higher	security	guarantees	than	the	proof	of	FDH,	and
its	use	of	randomness	helped	strengthen	that	proof.

These	stronger	theoretical	guarantees	are	the	main	reason	cryptographers
prefer	PSS	over	FDH,	but	most	applications	using	PSS	today	could	switch
to	 FDH	 with	 no	 meaningful	 security	 loss.	 In	 some	 contexts,	 however,	 a
viable	reason	to	use	PSS	instead	of	FDH	is	that	PSS’s	randomness	protects	it
from	 some	 attacks	 on	 its	 implementation,	 such	 as	 the	 fault	 attacks	 we’ll
discuss	in	“How	Things	Can	Go	Wrong”	on	page	196.

RSA	Implementations
I	sincerely	hope	you’ll	never	have	to	implement	RSA	from	scratch.	If	you’re
asked	 to,	 run	as	 fast	 as	 you	can	and	question	 the	 sanity	of	 the	person	who
asked	 you	 to	 do	 so.	 It	 took	 decades	 for	 cryptographers	 and	 engineers	 to
develop	RSA	implementations	that	are	fast,	sufficiently	secure,	and	hopefully
free	 of	 debilitating	 bugs,	 so	 you	 really	 don’t	 want	 to	 reinvent	 RSA.	 Even
with	all	the	documentation	available,	it	would	take	months	to	complete	this
daunting	task.

Typically,	 when	 implementing	 RSA,	 you’ll	 use	 a	 library	 or	 API	 that
provides	the	necessary	functions	to	carry	out	RSA	operations.	For	example,
the	 Go	 language	 has	 the	 following	 function	 in	 its	 crypto	 package	 (from



https://www.golang.org/src/crypto/rsa/rsa.go):

func	EncryptOAEP(hash	hash.Hash,	random	io.Reader,	pub	*PublicKey,	msg	[]byte,
label	[]byte)	(out	[]byte,	err	error)

The	 function	 EncryptOAEP()	 takes	 a	 hash	 value,	 a	 PRNG,	 a	 public	 key,	 a
message,	 and	 a	 label	 (an	 optional	 parameter	 of	 OAEP),	 and	 returns	 a
signature	and	an	error	code.	When	you	call	EncryptOAEP(),	 it	calls	encrypt()	 to
compute	the	RSA	function	given	the	padded	data,	as	shown	in	Listing	10-3.

func	encrypt(c	*big.Int,	pub	*PublicKey,	m	*big.Int)	*big.Int	{
				e	:=	big.NewInt(int64(pub.E))
				c.Exp(m,	e,	pub.N)
				return	c
		}

Listing	10-3:	Implementing	the	core	RSA	encryption	function	from	the	Go	language	cryptography
library

The	 main	 operation	 shown	 in	 Listing	 10-3	 is	 c.Exp(m,	 e,	 pub.N),	 which
raises	a	message,	m,	to	the	power	e	modulo	pub.N,	and	assigns	the	result	to	the
variable	c.

If	you	choose	to	implement	RSA	instead	of	using	a	readily	available	library
function,	be	sure	to	rely	on	an	existing	big-number	 library,	which	is	a	set	of
functions	 and	 types	 that	 allow	 you	 to	 define	 and	 compute	 arithmetic
operations	on	large	numbers	thousands	of	bits	long.	For	example,	you	might
use	the	GNU	Multiple	Precision	(GMP)	arithmetic	library	in	C,	or	Go’s	big
package.	 (Believe	me,	you	don’t	want	 to	 implement	big-number	arithmetic
yourself.)

Even	 if	you	 just	use	a	 library	 function	when	 implementing	RSA,	be	 sure
that	you	understand	how	the	internals	work	in	order	to	measure	the	risks.

Fast	Exponentiation	Algorithm:	Square-and-Multiply
The	 operation	 of	 raising	 x	 to	 the	 power	 e,	 when	 computing	 xe	 mod	 n,	 is
called	 exponentiation.	When	we’re	working	with	big	numbers,	 as	with	RSA,
this	operation	can	be	extremely	slow	if	naively	implemented.	But	how	do	we
do	this	efficiently?

The	naive	way	to	compute	xe	mod	n	takes	e	–	1	multiplications,	as	shown
in	the	pseudocode	algorithm	in	Listing	10-4.

https://www.golang.org/src/crypto/rsa/rsa.go


expModNaive(x,	e,	n)	{
				y	=	x
				for	i	=	1	to	e	–	1	{
								y	=	y	*	x		mod	n
				}
				return	y
}

Listing	10-4:	A	naive	exponentiation	algorithm	in	pseudocode

This	algorithm	is	simple	but	highly	 inefficient.	One	way	to	get	the	same
result	exponentially	 faster	 is	 to	 square	rather	 than	multiply	exponents	until
the	 correct	 value	 is	 reached.	 This	 family	 of	 methods	 is	 called	 square-and-
multiply,	or	exponentiation	by	squaring	or	binary	exponentiation.

For	 example,	 say	 that	 we	 want	 to	 compute	 365537	 mod
36567232109354321.	 (The	 number	 65537	 is	 the	 public	 exponent	 used	 in
most	 RSA	 implementations.)	 We	 could	 multiply	 the	 number	 3	 by	 itself
65536	times,	or	we	could	approach	this	problem	with	the	understanding	that
65537	 can	 be	 written	 as	 216	 +	 1	 and	 use	 a	 series	 of	 squaring	 operations.
Essentially,	we	do	the	following:

Initialize	 a	 variable,	 y	 =	3,	 and	 then	compute	 the	 following	 squaring	 (y2)
operations:

1.	 Set	y	=	y2	mod	n	(now	y	=	32	mod	n).
2.	 Set	y	=	y2	mod	n	(now	y	=	(32)2	mod	n	=	34	mod	n).
3.	 Set	y	=	y2	mod	n	(now	y	=	(34)2	=	38	mod	n).
4.	 Set	y	=	y2	mod	n	(now	y	=	(38)2	=	316	mod	n).
5.	 Set	y	=	y2	mod	n	(now	y	=	(316)2=	332	mod	n).

And	so	on	until	y	=	365536,	by	performing	16	squarings.
To	 get	 the	 final	 result,	 we	 return	 3	 ×	 y	 mod	 n	 =	 365537	 mod	 n	 =

26652909283612267.	 In	 other	words,	 we	 compute	 the	 result	 with	 only	 17
multiplications	rather	than	65536	with	the	naive	method.

More	 generally,	 a	 square-and-multiply	 method	 works	 by	 scanning	 the
exponent’s	bits	one	by	one,	from	left	to	right,	computing	the	square	for	each
exponent’s	 bit	 to	 double	 the	 exponent’s	 value,	 and	 multiplying	 by	 the
original	number	for	each	bit	with	a	value	of	1	encountered.	In	the	preceding
example,	 the	 exponent	 65537	 is	 10000000000000001	 in	 binary,	 and	 we



squared	y	for	each	new	bit	and	multiplied	by	the	original	number	3	only	for
the	very	first	and	last	bits.

Listing	 10-5	 shows	 how	 this	 would	 work	 as	 a	 general	 algorithm	 in
pseudocode	to	compute	xe	mod	n	when	the	exponent	e	consists	of	bits	em	–
1em	–	2	…	e1e0,	where	e0	is	the	least	significant	bit.

expMod(x,	e,	n)	{
				y	=	x
				for	i	=	m	–	1	to	0	{
								y	=	y	*	y		mod	n
								if	ei	==	1	then

												y	=	y	*	x		mod	n
				}
				return	y
}

Listing	10-5:	A	fast	exponentiation	algorithm	in	pseudocode

The	expMod()	algorithm	shown	in	Listing	10-5	runs	in	time	O(m),	whereas
the	 naive	 algorithm	 runs	 in	 time	O(2m),	 where	m	 is	 the	 bit	 length	 of	 the
exponent.	 Here,	 O()	 is	 the	 asymptotic	 complexity	 notation	 introduced	 in
Chapter	9.

Real	 systems	 often	 implement	 variants	 of	 this	 simplest	 square-and-
multiply	 method.	 One	 such	 variant	 is	 the	 sliding	 window	 method,	 which
considers	 blocks	 of	 bits	 rather	 than	 individual	 bits	 to	 perform	 a	 given
multiplication	 operation.	 For	 example,	 see	 the	 function	 expNN()	 of	 the	 Go
language,	 whose	 source	 code	 is	 available	 at
https://golang.org/src/math/big/nat.go.

How	 secure	 are	 these	 square-and-multiply	 exponentiation	 algorithms?
Unfortunately,	 the	 tricks	 to	 speed	 the	 process	 up	 often	 result	 in	 increased
vulnerability	against	some	attacks.	Let’s	see	what	can	go	wrong.

The	 weakness	 in	 these	 algorithms	 is	 due	 to	 the	 fact	 that	 the
exponentiation	 operations	 are	 heavily	 dependent	 on	 the	 exponent’s	 value.
The	 if	 operation	 shown	 in	Listing	 10-5	 takes	 a	 different	 branch	 based	 on
whether	an	exponent’s	bit	is	0	or	1.	If	a	bit	is	1,	an	iteration	of	the	for	loop
will	be	slower	than	it	will	be	for	0,	and	attackers	who	monitor	the	execution
time	 of	 the	 RSA	 operation	 can	 exploit	 this	 time	 difference	 to	 recover	 a
private	 exponent.	 This	 is	 called	 a	 timing	 attack.	 Attacks	 on	 hardware	 can
distinguish	1	bit	from	0	bits	by	monitoring	the	device’s	power	consumption
and	 observing	 which	 iterations	 perform	 an	 extra	 multiplication	 to	 reveal

https://golang.org/src/math/big/nat.go


which	bits	of	the	private	exponent	are	1.
Only	 a	minority	 of	 cryptographic	 libraries	 implement	 effective	 defenses

against	timing	attacks,	let	alone	against	such	power-analysis	attacks.

Small	Exponents	for	Faster	Public-Key	Operations
Because	 an	 RSA	 computation	 is	 essentially	 the	 computation	 of	 an
exponentiation,	its	performance	depends	on	the	value	of	the	exponents	used.
Smaller	exponents	require	fewer	multiplications	and	therefore	can	make	the
exponentiation	computation	much	faster.

The	public	exponent	e	can	in	principle	be	any	value	between	3	and	φ(n)	–
1,	as	 long	as	e	and	φ(n)	are	co-prime.	But	 in	practice	you’ll	only	find	small
values	of	e,	and	most	of	the	time	e	=	65537	due	to	concerns	with	encryption
and	 signature	 verification	 speed.	 For	 example,	 the	 Microsoft	 Windows
CryptoAPI	only	supports	public	exponents	 that	 fit	 in	a	32-bit	 integer.	The
larger	the	e,	the	slower	it	is	to	compute	xe	mod	n.

Unlike	 the	 size	 of	 the	 public	 exponent,	 the	 private	 exponent	 d	 will	 be
about	 as	 large	 as	 n,	making	 decryption	much	 slower	 than	 encryption,	 and
signing	much	slower	than	verification.	Indeed,	because	d	is	secret,	it	must	be
unpredictable	and	therefore	can’t	be	restricted	to	a	small	value.	For	example,
if	e	is	fixed	to	65537,	the	corresponding	d	will	usually	be	of	the	same	order	of
magnitude	as	the	modulus	n,	which	would	be	close	to	22048	if	n	is	2048	bits
long.

As	discussed	in	“Fast	Exponentiation	Algorithm:	Square-and-Multiply”	on
page	 192,	 raising	 a	 number	 to	 the	 power	 65537	 will	 only	 take	 17
multiplications,	 whereas	 raising	 a	 number	 to	 the	 power	 of	 some	 2048-bit
number	will	take	on	the	order	of	3000	multiplications.

One	way	 to	 determine	 the	 actual	 speed	 of	 RSA	 is	 to	 use	 the	OpenSSL
toolkit.	For	example,	Listing	10-6	 shows	 the	 results	of	512-,	1024-,	2048-,
and	4096-bit	RSA	operations	 on	my	MacBook,	which	 is	 equipped	with	 an
Intel	Core	i5-5257U	clocked	at	2.7	GHz.

$	openssl	speed	rsa512	rsa1024	rsa2048	rsa4096
Doing	512	bit	private	rsa's	for	10s:	161476	512	bit	private	RSA's	in	9.59s
Doing	512	bit	public	rsa's	for	10s:	1875805	512	bit	public	RSA's	in	9.68s
Doing	1024	bit	private	rsa's	for	10s:	51500	1024	bit	private	RSA's	in	8.97s
Doing	1024	bit	public	rsa's	for	10s:	715835	1024	bit	public	RSA's	in	8.45s
Doing	2048	bit	private	rsa's	for	10s:	13111	2048	bit	private	RSA's	in	9.65s
Doing	2048	bit	public	rsa's	for	10s:	288772	2048	bit	public	RSA's	in	9.68s
Doing	4096	bit	private	rsa's	for	10s:	1273	4096	bit	private	RSA's	in	9.71s



Doing	4096	bit	public	rsa's	for	10s:	63987	4096	bit	public	RSA's	in	8.50s
OpenSSL	1.0.2g		1	Mar	2016
--snip--
																		sign				verify				sign/s	verify/s
rsa		512	bits	0.000059s	0.000005s		16838.0	193781.5
rsa	1024	bits	0.000174s	0.000012s			5741.4		84714.2
rsa	2048	bits	0.000736s	0.000034s			1358.7		29831.8
rsa	4096	bits	0.007628s	0.000133s				131.1			7527.9

Listing	10-6:	Benchmarks	of	RSA	operations	using	the	OpenSSL	toolkit

How	much	 slower	 is	 verification	 compared	 to	 signature	 generation?	To
get	an	idea,	we	can	compute	the	ratio	of	the	verification	time	over	signature
time.	The	benchmarks	in	Listing	10-6	show	that	I’ve	got	verification-over-
signature	 speed	 ratios	 of	 approximately	 11.51,	 14.75,	 21.96,	 and	 57.42	 for
512-,	1024-,	2048-,	and	4096-bit	moduli	sizes,	respectively.	The	gap	grows
with	the	modulus	size	because	the	number	of	multiplications	for	e	operations
will	remain	constant	with	respect	to	the	modulus	size	(for	example,	17	when
e	 =	 65537),	 while	 private-key	 operations	 will	 always	 need	 more
multiplications	for	a	greater	modulus	because	d	will	grow	accordingly.

But	if	small	exponents	are	so	nice,	why	use	65537	and	not	something	like
3?	 It	 would	 actually	 be	 fine	 (and	 faster)	 to	 use	 3	 as	 an	 exponent	 when
implementing	 RSA	 with	 a	 secure	 scheme	 such	 as	 OAEP,	 PSS,	 or	 FDH.
Cryptographers	 avoid	 doing	 so,	 however,	 because	 when	 e	 =	 3,	 less	 secure
schemes	make	 certain	 types	 of	mathematical	 attacks	 possible.	The	number
65537	is	large	enough	to	avoid	such	 low-exponent	attacks,	and	it	has	just	one
instance	 in	 which	 a	 bit	 is	 1,	 thanks	 to	 its	 low	 Hamming	 weight,	 which
decreases	the	computational	time.	65537	is	also	special	 for	mathematicians:
it’s	the	fourth	Fermat	number,	or	a	number	of	the	form

2(2
n)	+	1

because	it’s	equal	to	216	+	1,	where	16	=	24,	but	that’s	just	a	curiosity	mostly
irrelevant	for	cryptographic	engineers.

The	Chinese	Remainder	Theorem
The	most	 common	 trick	 to	 speed	up	decryption	 and	 signature	 verification
(that	is,	the	computation	of	yd	mod	n)	is	the	Chinese	remainder	theorem	(CRT).
It	makes	RSA	about	four	times	faster.

The	 Chinese	 remainder	 theorem	 allows	 for	 faster	 decryption	 by



computing	two	exponentiations,	modulo	p	and	modulo	q,	rather	than	simply
modulo	n.	Because	p	 and	q	 are	much	 smaller	 than	n,	 it’s	 faster	 to	perform
two	“small”	exponentiations	than	a	single	“big”	one.

The	 Chinese	 remainder	 theorem	 isn’t	 specific	 to	 RSA.	 It’s	 a	 general
arithmetic	result	that,	in	its	simplest	form,	states	that	if	n	=	n1n2n3	…	,	where
the	nis	are	pairwise	co-prime	(that	is,	GCD(ni,	nj)	=	1	for	any	distinct	i	and	j),
then	the	value	x	mod	n	can	be	computed	from	the	values	x	mod	n1,	x	mod	n2,
x	mod	n3,	…	 .	For	 example,	 say	we	have	n	 =	 1155,	which	we	write	 as	 the
product	of	prime	factors	3	×	5	×	7	×	11.	We	want	to	determine	the	number	x
that	satisfies	x	mod	3	=	2,	x	mod	5	=	1,	x	mod	7	=	6,	and	x	mod	11	=	8.	(I’ve
chosen	2,	1,	6,	and	8	arbitrarily.)

To	find	x	using	the	Chinese	remainder	theorem,	we	can	compute	the	sum
P(n1)	+	P(n2)	+	…	,	where	P(ni)	is	defined	as	follows:

P(ni)	=	(x	mod	ni)	×	n	/	ni	×	(1	/	(n	/	ni)	mod	ni)	mod	n

Note	that	the	second	term,	n/ni,	is	equal	to	the	product	of	all	other	factors
than	this	ni.

To	 apply	 this	 formula	 to	 our	 example	 and	 recover	 our	 x	mod	 1155,	we
take	the	arbitrary	values	2,	1,	6,	and	8;	we	compute	P(3),	P(5),	P(7),	and	P(8);
and	then	we	add	them	together	to	get	the	following	expression:

Here,	I’ve	just	applied	the	preceding	definition	of	P(ni).	(The	math	behind
the	 way	 each	 number	 was	 found	 is	 straightforward,	 but	 I	 won’t	 detail	 it
here.)	This	 expression	 can	 then	 be	 reduced	 to	 [770	 +	 231	 +	 1980	 +	 1680]
mod	n	=	41,	and	indeed	41	is	the	number	I	had	picked	for	this	example,	so
we’ve	got	the	correct	result.

Applying	the	CRT	to	RSA	is	simpler	than	the	previous	example,	because
there	are	only	two	factors	for	each	n	(namely	p	and	q).	Given	a	ciphertext	y	to
decrypt,	instead	of	computing	yd	mod	n,	you	use	the	CRT	to	compute	xp	=	ys

mod	p,	where	s	=	d	mod	(p	–	1)	and	xq	=	yt	mod	q,	where	t	=	d	mod	(q	–	1).
You	now	combine	these	two	expressions	and	compute	x	to	be	the	following:



x	=	xp	×	q	×	(1/q	mod	p)	+	xq	×	p	×	(1/p	mod	q)	mod	n

And	 that’s	 it.	 This	 is	 faster	 than	 square-and-multiply	 because	 the
multiplication-heavy	operations	are	carried	out	on	modulo	p	and	q,	numbers
that	are	twice	as	small	as	n.

NOTE
In	the	final	operation,	the	two	numbers	q	×	(1/q	mod	p)	and	p	×	(1/p	mod	q)
can	 be	 computed	 in	 advance,	 which	 means	 only	 two	 multiplications	 and	 an
addition	of	modulo	n	need	to	be	computed	to	find	x.

Unfortunately,	there’s	a	security	caveat	attached	to	these	techniques,	as	I’ll
discuss	next.

How	Things	Can	Go	Wrong
Even	more	beautiful	than	the	RSA	scheme	itself	is	the	range	of	attacks	that
work	 either	 because	 the	 implementation	 leaks	 (or	 can	 be	 made	 to	 leak)
information	on	its	internals	or	because	RSA	is	used	insecurely.	I	discuss	two
classic	examples	of	these	types	of	attacks	in	the	sections	that	follow.

The	Bellcore	Attack	on	RSA-CRT
The	 Bellcore	 attack	 on	 RSA	 is	 one	 of	 the	 most	 important	 attacks	 in	 the
history	 of	 RSA.	 When	 first	 discovered	 in	 1996,	 it	 stood	 out	 because	 it
exploited	RSA’s	 vulnerability	 to	 fault	 injections—attacks	 that	 force	 a	part	of
the	 algorithm	 to	misbehave	 and	 thus	 yield	 incorrect	 results.	 For	 example,
hardware	 circuits	 or	 embedded	 systems	 can	 be	 temporarily	 perturbed	 by
suddenly	 altering	 their	 voltage	 supply	 or	 by	 beaming	 a	 laser	 pulse	 to	 a
carefully	chosen	part	of	a	chip.	Attackers	can	then	exploit	the	resulting	faults
in	 an	 algorithm’s	 internal	 operation	 by	 observing	 the	 impact	 on	 the	 final
result.	 For	 example,	 comparing	 the	 correct	 result	 with	 a	 faulty	 one	 can
provide	 information	 on	 the	 algorithm’s	 internal	 values,	 including	 secret
values.

The	 Bellcore	 attack	 is	 such	 a	 fault	 attack.	 It	 works	 on	 RSA	 signature
schemes	that	use	the	Chinese	remainder	theorem	and	that	are	deterministic
—meaning	that	it	works	on	FDH,	but	not	on	PSS,	which	is	probabilistic.



To	 understand	 how	 the	 Bellcore	 attack	 works,	 recall	 from	 the	 previous
section	 that	with	CRT,	 the	 result	 that	 is	 equal	 to	xd	mod	n	 is	obtained	by
computing	the	following,	where	xp	=	ys	mod	p	and	xq	=	yt	mod	q:

x	=	xp	×	q	×	(1/q	mod	p)	+	xq	×	p	×	(1/p	mod	q)	mod	n

Now	assume	that	an	attacker	 induces	a	 fault	 in	 the	computation	of	xq	 so
that	you	end	up	with	some	incorrect	value,	which	differs	from	the	actual	xq.
Let’s	 call	 this	 incorrect	 value	 xq′	 and	 call	 the	 final	 result	 obtained	 x′.	The
attacker	 can	 then	 subtract	 the	 incorrect	 signature	 x′	 from	 the	 correct
signature	x	to	factor	n,	which	results	in	the	following:

x	−	x′	=	(xq	−	xq′)	×	p	×	(1/p	mod	q)	mod	n

The	 value	 x	 –	 x′	 is	 therefore	 a	multiple	 of	 p,	 so	 p	 is	 a	 divisor	 of	 x	 –	 x′.
Because	p	is	also	a	divisor	of	n,	the	greatest	common	divisor	of	n	and	x	–	x′
yields	p,	GCD(x	–	x′,	n)	=	p.	We	can	then	compute	q	=	n/p	and	d,	resulting	in
a	total	break	of	RSA	signatures.

A	variant	of	this	attack	works	when	you	don’t	know	the	correct	signature
but	only	know	the	message	 is	 signed.	There’s	also	a	 similar	 fault	attack	on
the	modulus	value,	rather	than	on	the	CRT	values	computation,	but	I	won’t
go	into	detail	on	that	here.

Sharing	Private	Exponents	or	Moduli
Now	I’ll	show	you	why	your	public	key	shouldn’t	have	the	same	modulus	n
as	that	of	someone	else.

Different	 private	 keys	 belonging	 to	 different	 systems	 or	 persons	 should
obviously	have	different	private	exponents,	d,	 even	 if	 the	keys	use	different
moduli,	or	you	could	try	your	own	value	of	d	to	decrypt	messages	encrypted
for	 other	 entities,	 until	 you	 hit	 one	 that	 shares	 the	 same	 d.	 By	 the	 same
token,	 different	 key	 pairs	 should	have	 different	n	 values,	 even	 if	 they	have
different	ds,	because	p	and	q	are	usually	part	of	the	private	key.	Hence,	if	we
share	the	same	n	and	thus	the	same	p	and	q,	I	can	compute	your	private	key
from	your	public	key	e	using	p	and	q.

What	if	my	private	key	is	simply	the	pair	(n,	d1),	and	your	private	key	is	(n,
d2)	and	your	public	key	is	(n,	e2)?	Say	that	I	know	n	but	not	p	and	q,	so	I	can’t



directly	 compute	 your	 private	 exponent	 d2	 from	 your	 public	 exponent	 e2.
How	 would	 you	 compute	 p	 and	 q	 from	 a	 private	 exponent	 d	 only?	 The
solution	is	a	bit	technical,	but	elegant.

Remember	 that	 d	 and	 e	 satisfy	 ed	 =	 kφ(n)	 +	 1,	 where	φ(n)	 is	 secret	 and
could	give	us	p	and	q	directly.	We	don’t	know	k	or	φ(n),	but	we	can	compute
kφ(n)	=	ed	–	1.

What	 can	 we	 do	 with	 this	 value	 kφ(n)?	 A	 first	 observation	 is	 that,
according	to	Euler’s	theorem,	we	know	that	for	any	number	a	co-prime	with
n,	aφ(n)	=	1	mod	n.	Therefore,	modulo	n	we	have	the	following:

akφ(n)	=	(aφ(n))k	=	1k	=	1

A	 second	 observation	 is	 that,	 because	 kφ(n)	 is	 an	 even	 number,	 we	 can
write	it	as	2st	for	some	numbers	s	and	t.	That	is,	we’ll	be	able	to	write	akφ(n)	=
1	mod	 n	 under	 the	 form	 x2	 =	 1	mod	 n	 for	 some	 x	 easily	 computed	 from
kφ(n).	Such	an	x	is	called	a	root	of	unity.

The	key	observation	is	that	x2	=	1	mod	n	 is	equivalent	to	saying	that	the
value	x2	–	1	=	(x	–	1)(x	+	1)	divides	n.	In	other	words,	x	–	1	or	x	+	1	must	have
a	common	factor	with	n,	which	can	give	us	the	factorization	of	n.

Listing	 10-7	 shows	 a	 Python	 implementation	 of	 this	 method	 where,	 in
order	to	find	the	factors	p	and	q	from	n	and	d,	we	use	small,	64-bit	numbers
for	the	sake	of	simplicity.

		from	math	import	gcd

		n	=	36567232109354321
		e	=	13771927877214701
		d	=	15417970063428857

❶	kphi	=	d*e	-	1
			t	=	kphi

❷	while	t	%	2	==	0:
						t	=	divmod(t,	2)[0]

❸	a	=	2
		while	a	<	100:

			❹	k	=	t
						while	k	<	kphi:
										x	=	pow(a,	k,	n)

							❺	if	x	!	=	1	and	x	!	=	(n	-	1)	and	pow(x,	2,	n)	==	1:



											❻	p	=	gcd(x	-	1,	n)
														break
										k	=	k*2
						a	=	a	+	2

		q	=	n//p

❼	assert	(p*q)	==	n
		print('p	=	',	p)
		print('q	=	',	q)

Listing	10-7:	A	python	program	that	computes	the	prime	factors	p	and	q	from	the	private	exponent
d

This	program	determines	kφ(n)	 from	e	and	d	❶	by	 finding	the	number	 t
such	that	kφ(n)	=	2st,	for	some	s	❷.	Then	it	looks	for	a	and	k	such	that	(ak)2	=
1	 mod	 n	❸,	 using	 t	 as	 a	 starting	 point	 for	 k	❹.	 When	 this	 condition	 is
satisfied	❺,	 we’ve	 found	 a	 solution.	 It	 then	 determines	 the	 factor	 p	❻	 and
verifies	 ❼	 that	 the	 value	 of	 pq	 equals	 the	 value	 of	 n.	 It	 then	 prints	 the
resulting	values	of	p	and	q:

p	=	2046223079
q	=	17870599

The	program	correctly	returns	the	two	factors.

Further	Reading
RSA	deserves	a	book	by	itself.	I	had	to	omit	many	important	and	interesting
topics,	 such	 as	 Bleichenbacher’s	 padding	 oracle	 attack	 on	 OAEP’s
predecessor	 (the	 standard	 PKCS#1	 v1.5),	 an	 attack	 similar	 in	 spirit	 to	 the
padding	 oracle	 attack	 on	 block	 ciphers	 seen	 in	 Chapter	 4.	 There’s	 also
Wiener’s	 attack	 on	 RSA	 with	 low	 private	 exponents,	 and	 attacks	 using
Coppersmith’s	method	 on	 RSA	 with	 small	 exponents	 that	 potentially	 also
have	insecure	padding.

To	see	research	results	related	to	side-channel	attacks	and	defenses,	view
the	 CHES	 workshop	 proceedings	 that	 have	 run	 since	 1999	 at
http://www.chesworkshop.org/.	One	of	the	most	useful	references	while	writing
this	 chapter	 was	 Boneh’s	 “Twenty	 Years	 of	 Attacks	 on	 the	 RSA
Cryptosystem,”	 a	 survey	 that	 reviews	 and	 explains	 the	 most	 important
attacks	 on	 RSA.	 For	 reference	 specifically	 on	 timing	 attacks,	 the	 paper
“Remote	Timing	Attacks	Are	Practical”	by	Brumley	and	Boneh,	 is	a	must-

http://www.chesworkshop.org/


read,	both	 for	 its	analytical	and	experimental	contributions.	To	 learn	more
about	fault	attacks,	read	the	full	version	of	the	Bellcore	attack	paper	“On	the
Importance	 of	 Eliminating	 Errors	 in	 Cryptographic	 Computations”	 by
Boneh,	DeMillo,	and	Lipton.

The	best	way	to	learn	how	RSA	implementations	work,	though	sometimes
painful	 and	 frustrating,	 is	 to	 review	 the	 source	 code	 of	 widely	 used
implementations.	 For	 example,	 see	 RSA	 and	 its	 underlying	 big-number
arithmetic	 implementations	 in	OpenSSL,	 in	NSS	 (the	 library	 used	 by	 the
Mozilla	 Firefox	 browser),	 in	 Crypto++,	 or	 in	 other	 popular	 software,	 and
examine	 their	 implementations	 of	 arithmetic	 operations	 as	 well	 as	 their
defenses	against	timing	and	fault	attacks.



11
DIFFIE–HELLMAN

In	 November	 1976,	 Stanford	 researchers	 Whitfield	 Diffie	 and	 Martin
Hellman	 published	 a	 research	 paper	 titled	 “New	 Directions	 in
Cryptography”	 that	 revolutionized	 cryptography	 forever.	 In	 their	 paper,
they	introduced	the	notion	of	public-key	encryption	and	signatures,	though
they	didn’t	 actually	have	 any	of	 those	 schemes;	 they	 simply	had	what	 they
termed	a	public-key	 distribution	 scheme,	 a	protocol	 that	 allows	 two	parties	 to
establish	 a	 shared	 secret	 by	 exchanging	 information	 visible	 to	 an
eavesdropper.	 This	 protocol	 is	 now	 known	 as	 the	 Diffie–Hellman	 (DH)
protocol.

Prior	to	Diffie–Hellman,	establishing	a	shared	secret	required	performing
tedious	 procedures	 such	 as	 manually	 exchanging	 sealed	 envelopes.	 Once
communicating	parties	have	established	a	 shared	 secret	 value	with	 the	DH
protocol,	that	secret	can	be	used	to	establish	a	secure	channel	by	turning	the
secret	 into	one	or	more	 symmetric	 keys	 that	 are	 then	used	 to	 encrypt	 and
authenticate	subsequent	communication.	The	DH	protocol—and	its	variants
—are	therefore	called	key	agreement	protocols.

In	the	first	part	of	this	chapter,	I	review	the	mathematical	foundations	of
the	 Diffie–Hellman	 protocol,	 including	 the	 computational	 problems	 that
DH	relies	on	to	perform	its	magic.	I	then	describe	different	versions	of	the
Diffie–Hellman	protocol	used	to	create	secure	channels	in	the	second	part	of
this	chapter.	Finally,	because	Diffie–Hellman	schemes	are	only	secure	when
their	 parameters	 are	 well	 chosen,	 I	 conclude	 the	 chapter	 by	 examining
scenarios	where	Diffie–Hellman	can	fail.

NOTE
Diffie	 and	Hellman	 received	 the	 prestigious	Turing	Award	 in	2015	 for	 their



invention	 of	 public-key	 cryptography	 and	digital	 signatures,	 but	 others	 deserve
credit	 as	 well.	 In	 1974,	 two	 years	 before	 the	 seminal	 Diffie–Hellman	 paper,
computer	scientist	Ralph	Merkle	introduced	the	idea	of	public-key	cryptography
with	what	are	now	called	Merkle’s	puzzles.	Around	that	same	year,	researchers
at	 GCHQ	 (Government	 Communications	 Headquarters),	 the	 British
equivalent	 of	 the	 NSA,	 had	 also	 discovered	 the	 principles	 behind	 RSA	 and
Diffie–Hellman	 key	 agreement,	 though	 that	 fact	 would	 only	 be	 declassified
decades	later.

The	Diffie–Hellman	Function
In	 order	 to	 understand	 DH	 key	 agreement	 protocols,	 you	 must	 first
understand	 their	 core	 operation,	 the	DH	 function.	 The	 DH	 function	 will
usually	 work	 with	 groups	 denoted	Zp

*.	 Recall	 from	 Chapter	 9	 that	 these
groups	 are	 formed	 of	 nonzero	 integer	 numbers	 modulo	 a	 prime	 number,
denoted	 p.	 Another	 public	 parameter	 is	 the	 base	 number,	 g.	 All	 arithmetic
operations	are	performed	modulo	p.

The	DH	function	involves	two	private	values	chosen	randomly	by	the	two
communicating	parties	from	the	group	Zp

*,	denoted	a	and	b.	A	private	value
a	has	a	public	value	associated	with	A	=	ga	mod	p,	or	g	raised	to	the	power	a
modulo	 p.	This	 value	 is	 sent	 to	 the	 other	 party	 through	 a	message	 that	 is
visible	to	eavesdroppers.	The	public	value	associated	with	b	is	B	=	gb	mod	p,
or	g	raised	to	the	power	b	modulo	p,	which	is	sent	to	the	owner	of	a	through
a	publicly	readable	message.

DH	 works	 its	 magic	 by	 combining	 either	 public	 value	 with	 the	 other
private	value,	such	that	the	result	 is	 the	same	in	both	cases:	Ab	=	 (ga)b	=	gab

and	B	 a	 =	 (gb)a	 =	gba	 =	gab.	The	 resulting	value,	gab,	 is	 the	 shared	 secret;	 it	 is
then	 passed	 to	 a	 key	 derivation	 function	 (KDF)	 in	 order	 to	 generate	 one	 or
more	 shared	 symmetric	 keys.	 A	 KDF	 is	 a	 kind	 of	 hash	 function	 that	 will
return	a	random-looking	string	the	size	of	the	desired	key	length.

And	 that’s	 it.	 Like	 many	 great	 scientific	 discoveries	 (gravity,	 relativity,
quantum	computing,	or	RSA),	the	Diffie–Hellman	trick	is	terribly	simple	in
hindsight.

Diffie–Hellman’s	 simplicity	can	be	deceiving,	however.	For	one	 thing,	 it
won’t	 work	 with	 just	 any	 prime	 p	 or	 base	 number	 g.	 For	 example,	 some



values	 of	 g	 will	 restrict	 the	 shared	 secrets	 gab	 to	 a	 small	 subset	 of	 possible
values,	 whereas	 you’d	 expect	 to	 have	 about	 as	 many	 possible	 values	 as
elements	in	Zp

*,	and	therefore	as	many	possible	values	for	the	shared	secret.
To	 ensure	 the	 highest	 security,	 safe	 DH	 parameters	 should	 work	 with	 a
prime	p	such	that	(p	–	1)	/	2	is	also	prime.	Such	a	safe	prime	guarantees	that
the	 group	 doesn’t	 have	 small	 subgroups	 that	 would	 make	 DH	 easier	 to
break.	With	 a	 safe	 prime,	DH	 can	 notably	work	with	 g	 =	 2,	which	makes
computations	slightly	faster.	But	generating	a	safe	prime	p	 takes	more	time
than	generating	a	totally	random	prime.

For	 example,	 the	 dhparam	 command	 of	 the	 OpenSSL	 toolkit	 will	 only
generate	safe	DH	parameters,	but	the	extra	checks	built	 into	the	algorithm
result	increase	the	execution	time	considerably,	as	shown	in	Listing	11-1.

$	time	openssl	dhparam	2048
Generating	DH	parameters,	2048	bit	long	safe	prime,	generator	2
This	is	going	to	take	a	long	time
--snip--
-----BEGIN	DH	PARAMETERS-----
MIIBCAKCAQEAoSIbyA9e844q7V89rcoEV8vd/l2svwhIIjG9EPwWWr7FkfYhYkU9
fRNttmilGCTfxc9EDf+4dzw+AbRBc6oOL9gxUoPnOd1/G/YDYgyplF5M3xeswqea
SD+B7628pWTaCZGKZham7vmiN8azGeaYAucckTkjVWceHVIVXe5fvU74k7+C2wKk
iiyMFm8th2zm9W/shiKNV2+SsHtD6r3ZC2/hfu7XdOI4iT6ise83YicU/cRaDmK6
zgBKn3SlCjwL4M3+m1J+Vh0UFz/nWTJ1IWAVC+aoLK8upqRgApOgHkVqzP/CgwBw
XAOE8ncQqroJ0mUSB5eLqfpAvyBWpkrwQwIBAg==
-----END	DH	PARAMETERS-----
openssl	dhparam	2048		154.53s	user	0.86s	system	99%	cpu	2:36.85	total

Listing	11-1:	Measuring	the	execution	time	of	generating	2048-bit	Diffie–Hellman	parameters	with
the	OpenSSL	toolkit

As	you	can	see	in	Listing	11-1,	it	took	154.53	seconds	to	generate	the	DH
parameters	 using	 the	OpenSSL	 toolkit.	Now,	 for	 the	 sake	 of	 comparison,
Listing	11-2	shows	how	 long	 it	 takes	on	 the	same	system	to	generate	RSA
parameters	of	the	same	size	(that	is,	two	prime	numbers,	p	and	q,	each	half
the	size	of	the	p	used	for	DH).

$	time	openssl	genrsa	2048
Generating	RSA	private	key,	2048	bit	long	modulus
...................................................+++
.............................................................+++
e	is	65537	(0x10001)
-----BEGIN	RSA	PRIVATE	KEY-----
--snip--
-----END	RSA	PRIVATE	KEY-----
openssl	genrsa	2048		0.16s	user	0.01s	system	95%	cpu	0.171	total



Listing	11-2:	Generating	2048-bit	RSA	parameters	while	measuring	the	execution	time

Generating	DH	parameters	took	about	1000	times	longer	than	generating
RSA	parameters	of	the	same	security	level,	mainly	due	to	the	extra	constraint
imposed	on	the	prime	generated	to	create	DH	parameters.

The	Diffie–Hellman	Problems
The	 security	 of	 DH	 protocols	 relies	 on	 the	 hardness	 of	 computational
problems,	 especially	 on	 that	 of	 the	 discrete	 logarithm	 problem	 (DLP)
introduced	 in	 Chapter	 9.	 Clearly,	 DH	 can	 be	 broken	 by	 recovering	 the
private	value	a	from	its	public	value	ga,	which	boils	down	to	solving	a	DLP
instance.	But	we	don’t	care	only	about	the	discrete	logarithm	problem	when
using	DH	to	compute	shared	secrets.	We	also	care	about	 two	DH-specific
problems,	as	explained	next.

The	Computational	Diffie–Hellman	Problem
The	 computational	Diffie–Hellman	 (CDH)	 problem	 is	 that	of	 computing	 the
shared	secret	gab	given	only	 the	public	values	ga	 and	gb,	 and	not	any	of	 the
secret	 values	a	 or	 b.	The	motivation	 is	 obviously	 to	 ensure	 that	 even	 if	 an
eavesdropper	 captures	ga	 and	gb,	 they	 should	not	 be	 able	 to	determine	 the
shared	secret	gab.

If	you	can	solve	DLP,	 then	you	can	also	solve	CDH;	to	put	 it	 simply,	 if
you	can	solve	DLP,	then	given	ga	and	gb,	you’ll	be	able	to	derive	a	and	b	to
compute	gab.	In	other	words,	DLP	is	at	least	as	hard	as	CDH.	But	we	don’t
know	for	sure	whether	CDH	is	at	least	as	hard	as	DLP,	which	would	make
the	 problems	 equally	 hard.	 In	 other	 words,	 DLP	 is	 to	 CDH	 what	 the
factoring	problem	is	 to	the	RSA	problem.	(Recall	 that	 factoring	allows	you
to	solve	the	RSA	problem,	but	not	necessarily	the	converse.)

Diffie–Hellman	shares	another	similarity	with	RSA	in	that	DH	will	deliver
the	 same	 security	 level	 as	RSA	 for	 a	 given	modulus	 size.	For	 example,	 the
DH	protocol	with	a	2048-bit	prime	p	will	get	you	about	 the	 same	security
that	RSA	with	a	2048-bit	modulus	n	offers,	which	is	about	90	bits.	Indeed,
the	fastest	way	we	know	to	break	CDH	is	to	solve	DLP	using	an	algorithm
called	the	number	field	sieve,	a	method	similar	but	not	identical	to	the	fastest
one	that	breaks	RSA	by	factoring	its	modulus:	the	general	number	field	sieve
(GNFS).



The	Decisional	Diffie–Hellman	Problem
Sometimes	we	need	something	stronger	 than	CDH’s	hardness	assumption.
For	 example,	 imagine	 that	 an	 attacker	 can	 compute	 the	 first	 32	 bits	 of	 gab

given	the	2048-bit	values	of	ga	and	gb,	but	that	they	can’t	compute	all	2048
bits.	Although	CDH	would	still	be	unbroken	because	32	bits	aren’t	enough
to	 completely	 recover	 gab,	 the	 attacker	would	 still	 have	 learned	 something
about	 the	 shared	 secret,	 which	 might	 still	 allow	 them	 to	 compromise	 an
application’s	security.

To	ensure	that	an	attacker	can’t	learn	anything	about	the	shared	secret	gab,
this	value	needs	only	to	be	indistinguishable	from	a	random	group	element,
just	as	an	encryption	scheme	is	secure	when	ciphertexts	are	indistinguishable
from	random	strings.	The	computational	problem	formalizing	this	intuition
is	 called	 the	 decisional	 Diffie–Hellman	 (DDH)	 problem.	Given	 ga,	 gb,	 and	 a
value	that	is	either	gab	or	gc	for	some	random	c	(each	of	the	two	with	a	chance
of	1/2),	 the	DDH	problem	consists	of	determining	whether	gab	 (the	shared
secret	 corresponding	 to	 ga	 and	 gb)	 was	 chosen.	 The	 assumption	 that	 no
attacker	 can	 solve	 DDH	 efficiently	 is	 called	 the	 decisional	 Diffie–Hellman
assumption.

If	 DDH	 is	 hard,	 then	 CDH	 is	 also	 hard,	 and	 you	 can’t	 learn	 anything
about	gab.	But	if	you	can	solve	CDH,	you	can	also	solve	DDH:	given	a	triplet
(ga,	gb,	gc),	you	would	be	able	to	derive	gab	from	ga	and	gb	and	check	whether
the	 result	 is	 equal	 to	 the	 given	 gc.	 The	 bottom	 line	 is	 that	 DDH	 is
fundamentally	 less	 hard	 than	 CDH,	 yet	 DDH	 hardness	 is	 a	 prime
assumption	 in	 cryptography,	 and	 one	 of	 the	 most	 studied.	 We	 can	 be
confident	 that	 both	 CDH	 and	 DDH	 are	 hard	 when	 Diffie–Hellman
parameters	are	well	chosen.

More	Diffie–Hellman	Problems
Sometimes	 cryptographers	 devise	 new	 schemes	 and	 prove	 that	 they	 are	 at
least	as	hard	to	break	as	it	is	to	solve	some	problem	related	to	CDH	or	DDH
but	 not	 identical	 to	 either	 of	 these.	 Ideally,	 we’d	 like	 to	 demonstrate	 that
breaking	a	cryptosystem	is	as	hard	as	solving	CDH	or	DDH,	but	 this	 isn’t
always	possible	with	advanced	cryptographic	mechanisms,	 typically	because
such	 schemes	 involve	more	 complex	 operations	 than	 basic	Diffie–Hellman
protocols.



For	example,	in	one	DH-like	problem,	given	ga,	an	attacker	would	attempt
to	compute	g1/a,	where	1/a	is	the	inverse	of	a	in	the	group	(typically	Zp

*	for
some	 prime	 p).	 In	 another,	 an	 attacker	might	 distinguish	 the	 pairs	 (ga,	 gb)
from	the	pairs	(ga,	g1/a)	for	random	a	and	b.	Finally,	in	what	is	called	the	twin
Diffie–Hellman	 problem,	 given	 ga,	 gb,	 and	 gc,	 an	 attacker	 would	 attempt	 to
compute	the	two	values	gab	and	gac.	Sometimes	such	DH	variants	turn	out	to
be	as	hard	as	CDH	or	DDH,	and	sometimes	they’re	fundamentally	easier—
and	therefore	provide	 lower	 security	guarantees.	As	an	exercise,	 try	 to	 find
connections	between	the	hardness	of	these	problems	and	that	of	CDH	and
DDH.	(Twin	Diffie–Hellman	is	actually	as	hard	as	CDH,	but	that	isn’t	easy
to	prove!)

Key	Agreement	Protocols
The	 Diffie–Hellman	 problem	 is	 designed	 to	 build	 secure	 key	 agreement
protocols—protocols	 designed	 to	 secure	 communication	 between	 two	 or
more	parties	communicating	over	a	network	with	the	aid	of	a	shared	secret.
This	secret	 is	turned	into	one	or	more	 session	keys—symmetric	keys	used	to
encrypt	and	authenticate	the	information	exchanged	for	the	duration	of	the
session.	 But	 before	 studying	 actual	 DH	 protocols,	 you	 should	 know	 what
makes	 a	 key	 agreement	 protocol	 secure	 or	 insecure,	 and	 how	 simpler
protocols	 work.	 We’ll	 begin	 our	 discussion	 with	 a	 widely	 used	 key
agreement	protocol	that	doesn’t	rely	on	DH.

An	Example	of	Non-DH	Key	Agreement
To	 give	 you	 a	 sense	 of	 how	 a	 key	 agreement	 protocol	 works	 and	 what	 it
means	for	it	to	be	secure,	 let’s	 look	at	the	protocol	used	in	the	3G	and	4G
telecommunications	 standards	 to	 establish	 communication	 between	 a	 SIM
card	and	a	telecom	operator.	The	protocol	 is	often	referred	to	as	AKA,	 for
authenticated	key	agreement.	 It	doesn’t	use	 the	Diffie–Hellman	 function,	but
instead	uses	only	symmetric-key	operations.	The	details	are	a	bit	boring,	but
essentially	the	protocol	works	as	shown	in	Figure	11-1.



Figure	11-1:	The	authenticated	key	agreement	protocol	in	3G	and	4G	telecommunication

In	this	implementation	of	the	protocol,	the	SIM	card	has	a	secret	key,	K,
that	 the	 operator	 knows.	 The	 operator	 begins	 the	 session	 by	 selecting	 a
random	value,	R,	 and	 then	computes	 two	values,	SK	 and	V1,	based	on	 two
pseudorandom	 functions,	 PRF0	 and	 PRF1.	 Next,	 the	 operator	 sends	 a
message	to	the	SIM	card	containing	the	values	R	and	V1,	which	are	visible	to
attackers.	Once	the	SIM	card	has	R,	it	has	what	it	needs	in	order	to	compute
SK	with	PRF0,	and	it	does	so.	The	two	parties	in	this	session	end	up	with	a
shared	key,	SK,	that	attackers	are	unable	to	determine	by	simply	looking	at
the	messages	exchanged	between	the	parties,	or	even	by	modifying	them	or
injecting	new	ones.	The	SIM	card	verifies	that	it’s	talking	to	the	operator	by
recomputing	V1	with	PRF1,	K,	and	R,	and	then	checking	to	make	sure	that
the	calculated	V1	matches	the	V1	 sent	by	the	operator.	The	SIM	card	then
computes	a	verification	value,	V2,	with	a	new	function,	PRF2,	with	K	and	R
as	 input,	 and	 sends	V2	 to	 the	operator.	The	operator	verifies	 that	 the	SIM
card	 knows	 K	 by	 computing	 V2	 and	 checking	 that	 the	 computed	 value
matches	the	V2	it	received.

But	this	protocol	is	not	immune	to	all	kinds	of	attacks:	in	principle	there’s
a	way	 to	 fool	 the	SIM	card	with	 a	 replay	 attack.	Essentially,	 if	 an	 attacker
captures	a	pair	(R,	V1),	they	may	send	it	to	the	SIM	card	and	trick	the	SIM
into	believing	 that	 the	pair	 came	 from	a	 legitimate	operator	 that	knows	K.
To	prevent	this	attack,	the	protocol	includes	additional	checks	to	ensure	that



the	same	R	isn’t	reused.
Problems	can	also	arise	if	K	is	compromised.	For	example,	an	attacker	who

compromises	 K	 can	 perform	 a	 man-in-the-middle	 attack	 and	 listen	 to	 all
cleartext	communication.	Such	an	attacker	could	send	messages	between	the
two	 parties	while	 pretending	 to	 be	 both	 the	 legitimate	 SIM	 card	 operator
and	 the	 SIM	 card.	 The	 greater	 risk	 is	 that	 an	 attacker	 can	 record
communications	and	any	messages	exchanged	during	the	key	agreement,	and
later	 decrypt	 those	 communications	 by	 using	 the	 captured	 R	 values.	 An
attacker	could	then	determine	the	past	session	keys	and	use	them	to	decrypt
the	recorded	traffic.

Attack	Models	for	Key	Agreement	Protocols
There	 is	 no	 single	 definition	 of	 security	 for	 key	 agreement	 protocols,	 and
you	can	never	 say	 that	a	key	protocol	 is	completely	 secure	without	context
and	without	 considering	 the	 attack	model	 and	 the	 security	goals.	You	 can,
for	 example,	 argue	 that	 the	 previous	 3G/4G	 protocol	 is	 secure	 because	 a
passive	attacker	won’t	find	the	session	keys,	but	you	could	also	argue	that	it’s
insecure	 because	 once	 the	 key	 K	 leaks,	 then	 all	 previous	 and	 future
communications	are	compromised.

There	are	different	notions	of	security	in	key	agreement	protocols	as	well
as	 three	main	 attack	models	 that	 depend	 on	 the	 information	 the	 protocol
leaks.	From	weakest	to	strongest,	these	are	the	eavesdropper,	the	data	leak,	and
the	breach:

The	 eavesdropper	 This	 attacker	 observes	 the	 messages	 exchanged
between	the	two	legitimate	parties	running	a	key	agreement	protocol	and
can	 record,	 modify,	 drop,	 or	 inject	 messages.	 To	 protect	 against	 an
eavesdropper,	a	key	agreement	protocol	must	not	leak	any	information	on
the	shared	secret	established.
The	data	leak	In	this	model,	the	attacker	acquires	the	session	key	and	all
temporary	 secrets	 (such	 as	SK	 in	 the	 telecom	protocol	 example	discussed
previously)	 from	 one	 or	 more	 executions	 of	 the	 protocol,	 but	 not	 the
long-term	secrets	(like	K	in	that	same	protocol).

The	breach	(or	corruption)	In	this	model,	the	attacker	learns	the	long-
term	key	of	one	or	more	of	the	parties.	Once	a	breach	occurs,	security	is
no	 longer	 attainable	 because	 the	 attacker	 can	 impersonate	 one	 or	 both



parties	 in	 subsequent	 sessions	of	 the	protocol.	Nonetheless,	 the	 attacker
shouldn’t	 be	 able	 to	 recover	 secrets	 from	 sessions	 executed	 before
gathering	the	key.

Now	that	we’ve	looked	at	the	attack	models	and	seen	what	an	attacker	can
do,	let’s	explore	the	security	goals—that	is,	the	security	guarantees	that	the
protocol	 should	offer.	A	key	agreement	protocol	can	be	designed	 to	 satisfy
several	 security	 goals.	 The	 four	most	 relevant	 ones	 are	 described	 here,	 in
order	from	simplest	to	most	sophisticated.

Authentication	Each	party	should	be	able	to	authenticate	the	other	party.
That	is,	the	protocol	should	allow	for	mutual	authentication.	Authenticated
key	agreement	(AKA)	occurs	when	a	protocol	authen​ticates	both	parties.
Key	 control	 Neither	 party	 should	 be	 able	 to	 choose	 the	 final	 shared
secret	or	coerce	 it	 to	be	 in	a	 specific	 subset.	The	3G/4G	key	agreement
protocol	discussed	earlier	lacks	this	property	because	the	operator	chooses
the	value	for	R	that	entirely	determines	the	final	shared	key.
Forward	secrecy	This	is	the	assurance	that	even	if	all	 long-term	secrets
are	exposed,	shared	secrets	from	previous	executions	of	the	protocol	won’t
be	able	to	be	computed,	even	if	an	attacker	records	all	previous	executions
or	 is	 able	 to	 inject	 or	 modify	 messages	 from	 previous	 executions.	 A
forward-secret	 protocol	 guarantees	 that	 even	 if	 you	 have	 to	 deliver	 your
devices	and	their	secrets	to	some	authority	or	other,	they	won’t	be	able	to
decrypt	 your	 prior	 encrypted	 communications.	 (The	 3G/4G	 key
agreement	protocol	doesn’t	provide	forward	secrecy.)

Resistance	 to	 key-compromise	 impersonation	 (KCI)	 KCI	 occurs
when	an	attacker	compromises	a	party’s	long-term	key	and	is	able	to	use	it
to	 impersonate	 another	 party.	 For	 example,	 the	 3G/4G	 key	 agreement
protocol	 allows	 trivial	 key-compromise	 impersonation	 because	 both
parties	 share	 the	 same	 key	K.	 A	 key	 agreement	 protocol	 should	 ideally
prevent	this	kind	of	attack.

Performance
To	be	useful,	a	key	agreement	protocol	should	be	not	only	secure	but	also
efficient.	 Several	 factors	 should	 be	 taken	 into	 account	 when	 considering	 a
key	 agreement	 protocol’s	 efficiency,	 including	 the	 number	 of	 messages
exchanged,	the	length	and	number	of	messages,	the	computational	effort	to



implement	the	protocol,	and	whether	precomputations	can	be	made	to	save
time.	 A	 protocol	 is	 generally	more	 efficient	 if	 fewer,	 shorter	messages	 are
exchanged,	and	it’s	best	if	interactivity	is	kept	minimal	so	that	neither	party
has	 to	 wait	 to	 receive	 a	message	 before	 sending	 the	 next	 one.	 A	 common
measure	of	 a	protocol’s	 efficiency	 is	 its	duration	 in	 terms	of	round	 trips,	 or
the	time	it	takes	to	send	a	message	and	receive	a	response.

Round-trip	time	is	usually	the	main	cause	of	latency	in	protocols,	but	the
amount	 of	 computation	 to	 be	 carried	 out	 also	 counts;	 the	 fewer	 the
computations	required	the	better,	and	the	more	precomputations	that	can	be
done	in	advance,	the	better.

For	 example,	 the	 3G/4G	 key	 agreement	 protocol	 discussed	 earlier
exchanges	two	messages	of	a	few	hundred	bits	each,	which	must	be	sent	in	a
certain	order.	Pre-computation	can	be	used	with	this	protocol	 to	save	time
since	 the	 operator	 can	 pick	many	 values	 of	R	 in	 advance;	 precompute	 the
matching	values	of	SK,	V1,	and	V2;	and	store	them	all	in	a	database.	In	this
case,	 precomputation	 has	 the	 advantage	 of	 reducing	 the	 exposure	 of	 the
long-term	key.

Diffie–Hellman	Protocols
The	Diffie–Hellman	function	is	the	core	of	most	of	the	deployed	public-key
agreement	protocols.	However,	there	is	no	single	Diffie–Hellman	protocol,
but	rather	a	variety	of	ways	 to	use	 the	DH	function	 in	order	 to	establish	a
shared	 secret.	 We’ll	 review	 three	 of	 those	 protocols	 in	 the	 sections	 that
follow.	 In	 each	 discussion,	 I’ll	 stick	 to	 the	 usual	 crypto	 placeholder	 names
and	call	 the	two	parties	Alice	and	Bob,	and	the	attacker	Eve.	I’ll	write	g	as
the	 basis	 of	 the	 group	 used	 for	 arithmetic	 operations,	 a	 value	 fixed	 and
known	in	advance	to	Alice	and	Bob.

Anonymous	Diffie–Hellman
Anonymous	Diffie–Hellman	 is	 the	 simplest	 of	 the	Diffie–Hellman	 protocols.
It’s	called	anonymous	because	it’s	not	authenticated;	the	participants	have	no
identity	that	can	be	verified	by	either	party,	and	neither	party	holds	a	long-
term	key.	Alice	can’t	prove	to	Bob	that	she’s	Alice,	and	vice	versa.

In	 anonymous	 Diffie–Hellman,	 each	 party	 picks	 a	 random	 value	 (a	 for
Alice	 and	 b	 for	 Bob)	 to	 use	 as	 a	 private	 key,	 and	 sends	 the	 corresponding
public	 key	 to	 the	other	peer.	Figure	 11-2	 shows	 the	process	 in	 a	 bit	more



detail.

Figure	11-2:	The	anonymous	Diffie–Hellman	protocol

As	you	can	see,	Alice	uses	her	exponent	a	and	the	group	basis	g	to	compute
A	=	ga,	which	she	sends	to	Bob.	Bob	receives	A	and	computes	Ab,	which	 is
equal	 to	 (ga)b.	 Bob	 now	 obtains	 the	 value	 gab	 and	 computes	 B	 from	 his
random	exponent	b	and	the	value	g.	He	then	sends	B	to	Alice	and	she	uses	it
to	 compute	 gab.	 Alice	 and	 Bob	 end	 up	 with	 the	 same	 value,	 gab,	 after
performing	 similar	 operations,	 which	 involve	 raising	 both	 g	 and	 the	 value
received	 to	 their	 private	 exponent’s	 power.	 Pure,	 simple,	 but	 only	 secure
against	the	laziest	of	attackers.

Anonymous	DH	can	be	taken	down	with	a	man-in-the-middle	attack.	An
eavesdropper	simply	needs	to	intercept	messages	and	pretend	to	be	Bob	(to
Alice)	and	pretend	to	be	Alice	(to	Bob),	as	shown	in	Figure	11-3.



Figure	11-3:	A	man-in-the-middle	attack	on	the	anonymous	Diffie–Hellman	protocol

As	in	the	previous	exchange,	Alice	and	Bob	pick	random	exponents,	a	and
b.	 Alice	 now	 computes	 and	 sends	 A,	 but	 Eve	 intercepts	 and	 drops	 the
message.	Eve	then	picks	a	random	exponent,	c,	and	computes	C	=	gc	to	send
to	 Bob.	 Because	 this	 protocol	 has	 no	 authentication,	 Bob	 believes	 he	 is
receiving	C	 from	Alice	 and	 goes	 on	 to	 compute	gbc.	 Bob	 then	 computes	B
and	 sends	 that	 value	 to	 Alice,	 but	 Eve	 intercepts	 and	 drops	 the	 message
again.	 Eve	 now	 computes	 gbc,	 picks	 a	 new	 exponent,	 d,	 computes	 gad,
computes	D	from	gd,	and	sends	D	to	Alice.	Alice	then	computes	gad	as	well.

As	 a	 result	of	 this	 attack,	 the	 attacker	Eve	ends	up	 sharing	 a	 secret	with
Alice	 (gad)	 and	another	 secret	with	Bob	 (gbc),	 though	Alice	and	Bob	believe
that	 they’re	 sharing	 a	 single	 secret	 with	 each	 other.	 After	 completing	 the
protocol	 execution,	 Alice	 will	 derive	 symmetric	 keys	 from	 gad	 in	 order	 to
encrypt	 data	 sent	 to	 Bob,	 but	 Eve	 will	 intercept	 the	 encrypted	 messages,
decrypt	them,	and	re-encrypt	them	to	Bob	using	another	set	of	keys	derived
from	gbc—after	potentially	modifying	the	cleartext.	All	of	this	happens	with
Alice	and	Bob	unaware.	That	is,	they’re	doomed.



To	foil	this	attack,	you	need	a	way	to	authenticate	the	parties	so	that	Alice
can	prove	that	she’s	the	real	Alice	and	Bob	can	prove	that	he’s	the	real	Bob.
Fortunately,	there	is	a	way	to	do	so.

Authenticated	Diffie–Hellman
Authenticated	Diffie–Hellman	 was	 developed	 to	 address	 the	 sort	 of	man-in-
the-middle	attacks	that	can	affect	anonymous	DH.	Authenticated	DH	equips
the	two	parties	with	both	a	private	and	a	public	key,	thereby	allowing	Alice
and	Bob	to	sign	their	messages	in	order	to	stop	Eve	from	sending	messages
on	their	behalf.	Here,	 the	signatures	aren’t	computed	with	a	DH	function,
but	a	public-key	signature	scheme	such	as	RSA-PSS.	As	a	result,	in	order	to
successfully	 send	 messages	 on	 behalf	 of	 Alice,	 an	 attacker	 would	 need	 to
forge	a	valid	signature,	which	is	impossible	with	a	secure	signature	scheme.

Figure	11-4	shows	how	authenticated	DH	works.

Figure	11-4:	The	authenticated	Diffie–Hellman	protocol

The	Alice	 (privA,	pubB)	 label	on	the	 first	 line	means	 that	Alice	holds	her
own	private	key,	privA,	as	well	as	Bob’s	public	key,	pubB.	This	sort	of	priv/pub
key	 pair	 is	 called	 a	 long-term	 key	 because	 it’s	 fixed	 in	 advance	 and	 remains
constant	 through	 consecutive	 runs	 of	 the	 protocol.	Of	 course,	 these	 long-
term	private	keys	should	be	kept	secret,	while	the	public	keys	are	considered
to	be	known	to	an	attacker.

Alice	 and	 Bob	 begin	 by	 picking	 random	 exponents,	 a	 and	 b,	 as	 in
anonymous	 DH.	 Alice	 then	 calculates	 A	 and	 a	 signature	 sigA	 based	 on	 a
combination	of	her	signing	function	sign,	her	private	key	privA,	and	A.	Now



Alice	sends	A	and	sigA	to	Bob,	who	verifies	sigA	with	her	public	key	pubA.	If
the	signature	is	invalid,	Bob	knows	that	the	message	didn’t	come	from	Alice,
and	he	discards	A.

If	 the	 signature	 is	 correct,	Bob	will	 compute	gab	 from	A	 and	his	 random
exponent	 b.	 He	 would	 then	 compute	 B	 and	 his	 own	 signature	 from	 a
combination	of	the	sign	function,	his	private	key	privB,	and	B.	Now	he	sends
B	and	 sigB	 to	Alice,	who	attempts	 to	verify	 sigB	with	Bob’s	public	key	pubB.
Alice	will	only	compute	gab	if	Bob’s	signature	is	successfully	verified.

Security	Against	Eavesdroppers
Authenticated	 DH	 is	 secure	 against	 eavesdroppers	 because	 attackers	 can’t
learn	 any	bit	 of	 information	on	 the	 shared	 secret	gab	 since	 they	 ignore	 the
DH	exponents.	Authenticated	DH	also	provides	forward	secrecy:	even	if	an
attacker	 corrupts	 any	 of	 the	 parties	 at	 some	 point,	 as	 in	 the	 breach	 attack
model	 discussed	 earlier,	 they	would	 learn	 the	 private	 signing	 keys	 but	 not
any	of	 the	 ephemeral	DH	exponents;	 hence,	 they’d	be	unable	 to	 learn	 the
value	of	any	previously	shared	secrets.

Authenticated	DH	also	prevents	 any	party	 from	controlling	 the	 value	of
the	shared	secret.	Alice	can’t	craft	a	special	value	of	a	in	order	to	predict	the
value	of	gab	because	she	doesn’t	control	b,	which	influences	gab	as	much	as	a
does.	(One	exception	would	be	if	Alice	were	to	choose	a	=	0,	in	which	case
we’d	have	gab	 =	1	 for	 any	b.	But	0	 isn’t	 an	 authorized	 value	 and	 should	be
rejected	by	the	protocol.)

That	 said,	 authenticated	DH	 isn’t	 secure	 against	 all	 types	 of	 attack.	 For
one	thing,	Eve	can	record	previous	values	of	A	and	sigA	and	replay	them	later
to	 Bob,	 in	 order	 to	 pretend	 to	 be	 Alice.	 Bob	 will	 then	 believe	 that	 he’s
sharing	a	secret	with	Alice	when	he	isn’t,	even	though	Eve	would	not	be	able
to	learn	that	secret.	This	risk	is	eliminated	in	practice	by	adding	a	procedure
called	key	confirmation,	wherein	Alice	and	Bob	prove	to	each	other	that	they
own	 the	 shared	 secret.	 For	 example,	 Alice	 and	 Bob	 may	 perform	 key
confirmation	by	sending	respectively	Hash(pubA	||	pubB,	gab)	and	Hash(pubB
||	pubA,	gab)	for	some	hash	function	Hash;	when	Bob	receives	Hash(pubA	||
pubB,	 gab)	 and	 Alice	 receives	Hash(pubB	 ||	 pubA,	 gab),	 both	 can	 verify	 the
correctness	 of	 these	 hash	 values	 using	 pubA,	 pubB,	 and	 gab.	 The	 different



order	of	public	keys	(pubA	||	pubB	and	pubB	||	pubA)	ensures	that	Alice	and
Bob	will	send	different	values,	and	that	an	attacker	can’t	pretend	to	be	Alice
by	copying	Bob’s	hash	value.

Security	Against	Data	Leaks
Authenticated	DH’s	vulnerability	to	data	leak	attackers	is	of	greater	concern.
In	this	type	of	attack,	the	attacker	learns	the	value	of	ephemeral,	short-term
secrets	 (namely,	 the	 exponents	 a	 and	 b)	 and	 uses	 that	 information	 to
impersonate	 one	 of	 the	 communicating	 parties.	 If	 Eve	 is	 able	 to	 learn	 the
value	of	an	exponent	a	along	with	the	matching	values	of	A	and	sigA	sent	to
Bob,	 she	 could	 initiate	 a	 new	 execution	 of	 the	 protocol	 and	 impersonate
Alice,	as	shown	in	Figure	11-5.

Figure	11-5:	An	impersonation	attack	on	the	authenticated	Diffie–Hellman	protocol

In	 this	 attack	 scenario,	 Eve	 learns	 the	 value	 of	 an	 a	 and	 replays	 the
corresponding	A	and	its	signature	 sigA,	pretending	to	be	Alice.	Bob	verifies
the	signature	and	computes	gab	from	A	and	sends	B	and	sigB,	which	Eve	then
uses	 to	 compute	 gab,	 using	 the	 stolen	 a.	 This	 results	 in	 the	 two	 having	 a
shared	secret.	Bob	now	believes	he	is	talking	to	Alice.

One	way	to	make	authenticated	DH	secure	against	the	leak	of	ephemeral
secrets	is	to	integrate	the	long-term	keys	into	the	shared	secret	computation
so	that	the	shared	secret	can’t	be	determined	without	knowing	the	long-term
secret.

Menezes–Qu–Vanstone	(MQV)



The	Menezes–Qu–Vanstone	 (MQV)	protocol	 is	 a	milestone	 in	 the	history	of
DH-based	protocols.	Designed	in	1998,	MQV	had	been	approved	to	protect
most	 critical	 assets	when	 the	NSA	 included	 it	 in	 its	Suite	B,	 a	portfolio	of
algorithms	 designed	 to	 protect	 classified	 information.	 (NSA	 eventually
dropped	MQV,	allegedly	because	it	wasn’t	used.	I’ll	discuss	the	reasons	why
in	a	bit.)

MQV	is	Diffie–Hellman	on	steroids.	It’s	more	secure	than	authenticated
DH,	 and	 it	 improves	 on	 authenticated	 DH’s	 performance	 properties.	 In
particular,	MQV	allows	users	 to	 send	only	 two	messages,	 independently	of
each	other,	in	arbitrary	order.	Other	benefits	are	that	users	can	send	shorter
messages	than	they	would	be	able	to	with	authenticated	DH,	and	they	don’t
need	to	send	explicit	signature	or	verification	messages.	In	other	words,	you
don’t	 need	 to	 use	 a	 signature	 scheme	 in	 addition	 to	 the	 Diffie–Hellman
function.

As	with	authenticated	DH,	in	MQV	Alice	and	Bob	each	hold	a	long-term
private	 key	 as	 well	 as	 the	 long-term	 public	 key	 of	 the	 other	 party.	 The
difference	is	that	the	MQV	keys	aren’t	signing	keys:	the	keys	used	in	MQV
are	 composed	of	 a	private	 exponent,	x,	 and	 a	public	 value,	gx.	Figure	11-6
shows	the	operation	of	the	MQV	protocol.

Figure	11-6:	The	MQV	protocol

The	 x	 and	 y	 in	 Figure	 11-6	 are	 Alice	 and	 Bob’s	 respective	 long-term
private	keys,	and	X	and	Y	are	their	public	keys.	Bob	and	Alice	start	out	with
their	own	private	keys	and	each	other’s	public	keys,	which	are	g	to	the	power
of	a	private	key.	Each	chooses	a	random	exponent,	and	then	Alice	calculates
A	and	sends	it	to	Bob.	Bob	then	calculates	B	and	sends	it	to	Alice.	Once	Alice
gets	 Bob’s	 ephemeral	 public	 key	 B,	 she	 combines	 it	 with	 her	 long-term



private	key	x,	her	ephemeral	private	key	a,	and	Bob’s	long-term	public	key	Y
by	 calculating	 the	 result	 of	 (B	 ×	 YB)(a	 +	 xA),	 as	 defined	 in	 Figure	 11-6.
Developing	this	expression,	we	obtain	the	following:

(B	×	YB)(a	+	xA)	=	(gb	×	(gy)B)(a	+	xA)	=	(gb	+	yB)(a	+	xA)	=	g(b	+	yB)(a	+	xA)

Meanwhile,	Bob	calculates	the	result	of	(A	×	XA)(b	+	yB),	and	we	can	verify
that	it’s	equal	to	the	value	calculated	by	Alice:

(A	×	XA)(b	+	yB)	=	(ga	×	(gx)A)(b	+	yB)	=	(ga	+	xA)(b	+	yB)	=	g(a	+	xA)(b	+	yB)	=	g(b	+	yB)(a	+
xA)

As	you	can	see,	we	get	the	same	value	for	both	Alice	and	Bob,	namely	g(b	+
yB)(a	+	xA).	This	tells	us	that	Alice	and	Bob	share	the	same	secret.

Unlike	 authenticated	DH,	MQV	 can’t	 be	 broken	 by	 a	mere	 leak	 of	 the
ephemeral	secrets.	Knowledge	of	a	or	b	won’t	let	an	attacker	determine	the
final	 shared	 secret	 because	 they	would	 need	 the	 long-term	 private	 keys	 to
compute	it.

What	happens	 in	 the	 strongest	attack	model,	 the	breach	model,	where	a
long-term	 key	 is	 compromised?	 If	 Eve	 compromises	 Alice’s	 long-term
private	key	x,	the	previously	established	shared	secrets	are	safe	because	their
computation	also	involved	Alice’s	ephemeral	private	keys.

However,	 MQV	 doesn’t	 provide	 perfect	 forward	 secrecy	 because	 of	 the
following	attack.	Say,	for	example,	that	Eve	intercepts	Alice’s	A	message	and
replaces	it	with	her	A	=	ga	for	some	a	that	Eve	has	chosen.	In	the	meantime,
Bob	sends	B	 to	Alice	 (and	Eve	 records	B’s	 value)	 and	computes	 the	 shared
key.	 If	 Eve	 later	 compromises	 Alice’s	 long-term	 private	 key	 x,	 she	 can
determine	 the	key	 that	Bob	had	computed	during	 this	 session.	This	breaks
forward	secrecy,	since	Eve	has	now	recovered	the	shared	secret	of	a	previous
execution	of	the	protocol.	In	practice,	however,	the	risk	can	be	eliminated	by
a	 key-confirmation	 step	 that	 would	 have	 Alice	 and	 Bob	 realize	 that	 they
don’t	share	the	same	key,	and	they	would	therefore	abort	the	protocol	before
deriving	any	session	keys.

Despite	 its	 elegance	 and	 security,	MQV	 is	 rarely	 used	 in	 practice.	 One
reason	is	because	it	used	to	be	encumbered	by	patents,	which	hampered	its
widespread	adoption.	Another	reason	is	 that	 it’s	harder	than	 it	 looks	to	get
MQV	 right	 in	 practice.	 In	 fact,	 when	 weighed	 against	 its	 increased



complexity,	 MQV’s	 security	 benefits	 are	 often	 perceived	 as	 low	 in
comparison	to	the	simpler	authenticated	DH.

How	Things	Can	Go	Wrong
Diffie–Hellman	 protocols	 can	 fail	 spectacularly	 in	 a	 variety	 of	 ways.	 I
highlight	some	of	the	most	common	ones	in	the	next	sections.

Not	Hashing	the	Shared	Secret
I’ve	 alluded	 to	 the	 fact	 that	 the	 shared	 secret	 that	 concludes	 a	DH	session
exchange	(gab	in	our	examples)	is	taken	as	input	to	derive	session	keys	but	is
not	a	key	itself.	And	it	shouldn’t	be.	A	symmetric	key	should	look	random,
and	each	bit	should	either	be	0	or	1	with	the	same	probability.	But	gab	is	not
a	 random	 string;	 it’s	 a	 random	 element	 within	 some	 mathematical	 group
whose	 bits	may	 be	 biased	 toward	 0	 or	 1.	 And	 a	 random	 group	 element	 is
different	from	a	random	string	of	bits.

Imagine,	for	example,	that	we’re	working	within	the	multiplicative	group
Z13

*	=	{1,	2,	3,	…	,	12}	using	g	=	2	as	a	generator	of	the	group,	meaning	that
gi	spans	all	values	of	Z13

*	for	i	in	1,	2,	…	12:	g1	=	2,	g2	=	4,	g3	=	8,	g4	=	13,	and
so	on.	If	g’s	exponent	is	random,	you’ll	get	a	random	element	of	Z13

*,	but	the
encoding	of	a	Z13

*	element	as	a	4-bit	string	won’t	be	uniformly	random:	not
all	 bits	 will	 have	 the	 same	 probability	 of	 being	 a	 0	 or	 a	 1.	 In	Z13

*,	 seven
values	have	0	as	 their	most	 significant	bit	 (the	numbers	 from	1	 to	7	 in	 the
group),	but	only	five	have	1	as	their	most	significant	bit	(from	8	to	12).	That
is,	this	bit	is	0	with	probability	7	/	12	≈	0.58,	whereas,	ideally,	a	random	bit
should	be	0	with	probability	0.5.	Moreover,	the	4-bit	sequences	1101,	1110,
and	1111	will	never	appear.

To	avoid	such	biases	in	the	session	keys	derived	from	a	DH	shared	secret,
you	should	use	a	cryptographic	hash	function	such	as	BLAKE2	or	SHA-3—
or,	 better	 yet,	 a	 key	 derivation	 function	 (KDF).	 An	 example	 of	 KDF
construction	 is	HKDF,	or	HMAC-based	KDF	(as	 specified	 in	RFC	5869),
but	today	BLAKE2	and	SHA-3	feature	dedicated	modes	to	behave	as	KDFs.

Legacy	Diffie–Hellman	in	TLS
The	TLS	protocol	is	the	security	behind	HTTPS	secure	websites	as	well	as



the	 secure	 mail	 transfer	 protocol	 (SMTP).	 TLS	 takes	 several	 parameters,
including	the	type	of	Diffie–Hellman	protocol	it	will	use,	though	most	TLS
implementations	still	support	anonymous	DH	for	legacy	reasons,	despite	its
insecurity.

Unsafe	Group	Parameters
In	 January	 2016,	 the	 maintainers	 of	 the	 OpenSSL	 toolkit	 fixed	 a	 high-
severity	 vulnerability	 (CVE-2016-0701)	 that	 allowed	 an	 attacker	 to	 exploit
unsafe	Diffie–Hellman	parameters.	The	root	cause	of	 the	vulnerability	was
that	 OpenSSL	 allowed	 users	 to	 work	 with	 unsafe	 DH	 group	 parameters
(namely,	 an	unsafe	prime	p)	 instead	of	 throwing	 an	error	 and	aborting	 the
protocol	altogether	before	performing	any	arithmetic	operation.

Essentially,	 OpenSSL	 accepted	 a	 prime	 number	 p	 whose	 multiplicative
group	Zp

*	(where	all	DH	operations	happen)	contained	small	subgroups.	As
you	 learned	 at	 the	 beginning	 of	 this	 chapter,	 the	 existence	 of	 small
subgroups	within	a	larger	group	in	a	cryptographic	protocol	is	bad	because	it
confines	shared	secrets	to	a	much	smaller	set	of	possible	values	than	if	it	were
to	use	the	whole	group	Zp

*.	Worse	still,	an	attacker	can	craft	a	DH	exponent
x	 that,	 when	 combined	 with	 the	 victim’s	 public	 key	 gy,	 will	 reveal
information	on	the	private	key	y	and	eventually	its	entirety.

Although	 the	 actual	 vulnerability	 is	 from	 2016,	 the	 principle	 the	 attack
used	dates	back	to	the	1997	paper	“A	Key	Recovery	Attack	on	Discrete	Log-
based	Schemes	Using	a	Prime	Order	Subgroup”	by	Lim	and	Lee.	The	fix	for
the	vulnerability	is	simple:	when	accepting	a	prime	p	as	group	modulus,	the
protocol	must	 check	 that	 p	 is	 a	 safe	 prime	 by	 verifying	 that	 (p	 –	 1)	 /	 2	 is
prime	 as	 well	 in	 order	 to	 ensure	 that	 the	 group	 Zp

*	 won’t	 have	 small
subgroups,	and	that	an	attack	on	this	vulnerability	will	fail.

Further	Reading
Here’s	a	rundown	of	some	things	that	I	didn’t	cover	in	this	chapter	but	are
useful	to	learn	about.

You	 can	 dig	 deeper	 into	 the	DH	 key	 agreement	 protocols	 by	 reading	 a
number	of	standards	and	official	publications,	 including	ANSI	X9.42,	RFC
2631	 and	RFC	 5114,	 IEEE	 1363,	 and	NIST	 SP	 800-56A.	These	 serve	 as
references	 to	 ensure	 interoperability,	 and	 to	 provide	 recommendations	 for



group	parameters.
To	 learn	 more	 about	 advanced	 DH	 protocols	 (such	 as	 MQV	 and	 its

cousins	HMQV	and	OAKE,	among	others)	and	their	security	notions	(such
as	 unknown-key	 share	 attacks	 and	 group	 representation	 attacks),	 read	 the
2005	 article	 “HMQV:	 A	 High-Performance	 Secure	 Diffie–Hellman
Protocol”	by	Hugo	Krawczyk	(https://eprint.iacr.org/2005/176/)	and	the	2011
article	 “A	 New	 Family	 of	 Implicitly	 Authenticated	 Diffie–Hellman
Protocols”	 by	 by	 Andrew	 C.	 Yao	 and	 Yunlei	 Zhao
(https://eprint.iacr.org/2011/035/).	You’ll	 notice	 in	 these	 articles	 that	Diffie–
Hellman	 operations	 are	 expressed	 differently	 than	 in	 this	 chapter.	 For
example,	 instead	 of	 gx,	 you’ll	 find	 the	 shared	 secret	 represented	 as	 xP.
Generally,	 you’ll	 find	 multiplication	 replaced	 with	 addition	 and
exponentiation	 replaced	 with	 multiplication.	 The	 reason	 is	 that	 those
protocols	 are	 usually	 not	 defined	 over	 groups	 of	 integers,	 but	 over	 elliptic
curves,	as	discussed	in	Chapter	12.

https://eprint.iacr.org/2005/176/
https://eprint.iacr.org/2011/035/


12
ELLIPTIC	CURVES

The	 introduction	of	 elliptic	 curve	 cryptography	 (ECC)	 in	1985	revolutionized
the	way	we	do	public-key	cryptography.	ECC	is	more	powerful	and	efficient
than	alternatives	like	RSA	and	classical	Diffie–Hellman	(ECC	with	a	256-bit
key	is	stronger	than	RSA	with	a	4096-bit	key),	but	it’s	also	more	complex.

Like	RSA,	ECC	multiplies	 large	 numbers,	 but	 unlike	RSA	 it	 does	 so	 in
order	 to	 combine	 points	 on	 a	 mathematical	 curve,	 called	 an	 elliptic	 curve
(which	 has	 nothing	 to	 do	 with	 an	 ellipse,	 by	 the	 way).	 To	 complicate
matters,	 there	 are	 many	 different	 types	 of	 elliptic	 curves—simple	 and
sophisticated	 ones,	 efficient	 and	 inefficient	 ones,	 and	 secure	 and	 insecure
ones.

Although	first	introduced	in	1985,	ECC	wasn’t	adopted	by	standardization
bodies	until	the	early	2000s,	and	it	wasn’t	seen	in	major	toolkits	until	much
later:	OpenSSL	added	ECC	in	2005,	and	the	OpenSSH	secure	connectivity
tool	 waited	 until	 2011.	 But	 modern	 systems	 have	 few	 reasons	 not	 to	 use
ECC,	 and	 you’ll	 find	 it	 used	 in	Bitcoin	 and	many	 security	 components	 in
Apple	devices.	Indeed,	elliptic	curves	allow	you	to	perform	common	public-
key	 cryptography	 operations	 such	 as	 encryption,	 signature,	 and	 key
agreement	 faster	 than	 their	 classical	 counterparts.	 Most	 cryptographic
applications	 that	 rely	 on	 the	 discrete	 logarithm	 problem	 (DLP)	 will	 also
work	when	based	on	its	elliptic	curve	counterpart,	ECDLP,	with	one	notable
exception:	the	Secure	Remote	Password	(SRP)	protocol.

This	chapter	focuses	on	applications	of	ECC	and	discusses	why	you	would
use	 ECC	 rather	 than	 RSA	 or	 classical	 Diffie–Hellman,	 as	 well	 as	 how	 to
choose	the	right	elliptic	curve	for	your	application.

What	Is	an	Elliptic	Curve?



An	 elliptic	 curve	 is	 a	 curve	 on	 a	 plane—a	 group	 of	 points	 with	 x	 and	 y
coordinates.	 A	 curve’s	 equation	 defines	 all	 the	 points	 that	 belong	 to	 that
curve.	 For	 example,	 the	 curve	 y	 =	 3	 is	 a	 horizontal	 line	 with	 the	 vertical
coordinate	3,	curves	of	 the	 form	y	=	ax	+	b	with	 fixed	numbers	a	and	b	are
straight	lines,	x2	+	y2	=	1	is	a	circle	of	radius	1	centered	on	the	origin,	and	so
on.	Whatever	the	type	of	curve,	the	points	on	a	curve	are	all	(x,	y)	pairs	that
satisfy	the	curve’s	equation.

An	 elliptic	 curve	 as	 used	 in	 cryptography	 is	 typically	 a	 curve	 whose
equation	is	of	the	form	y2	=	x3	+	ax	+	b	(known	as	the	Weierstrass	form),	where
the	constants	a	and	b	define	the	shape	of	the	curve.	For	example,	Figure	12-1
shows	the	elliptic	curve	that	satisfies	the	equation	y2	=	x3	–	4x.

Figure	12-1:	An	elliptic	curve	with	the	equation	y2	=	x3	–	4x,	shown	over	the	real	numbers

NOTE
In	 this	 chapter,	 I	 focus	 on	 the	 simplest,	most	 common	 type	 of	 elliptic	 curves—



namely,	those	with	an	equation	that	looks	like	y2	=	x3	+	ax	+	b—but	there	are
types	 of	 elliptic	 curves	 with	 equations	 in	 other	 forms.	 For	 example,	 Edwards
curves	are	 elliptic	 curves	whose	 equation	 is	 of	 the	 form	 x2	 +	 y2	 =	1	+	dx2y2.
Edwards	 curves	 are	 sometimes	 used	 in	 cryptography	 (for	 example,	 in	 the
Ed25519	scheme).

Figure	12-1	shows	all	the	points	that	make	up	the	curve	for	x	between	–3
and	4,	be	they	points	on	the	left	side	of	the	curve,	which	looks	like	a	circle,
or	on	the	right	side,	which	looks	like	a	parabola.	All	these	points	have	(x,	y)
coordinates	that	satisfy	the	curve’s	equation	y2	=	x3	–	4x.	For	example,	when
x	=	0,	then	y2	=	x3	–	4x	=	03	–	4	×	0	=	0;	hence,	y	=	0	is	a	solution,	and	the
point	 (0,	 0)	 belongs	 to	 the	 curve.	 Likewise,	 if	 x	 =	 2,	 the	 solution	 to	 the
equation	is	y	=	0,	meaning	that	the	point	(2,	0)	belongs	to	the	curve.

It	 is	 crucial	 to	 distinguish	 points	 that	 belong	 to	 the	 curve	 from	 other
points,	because	when	using	elliptic	curves	for	cryptography,	we’ll	be	working
with	points	from	the	curve,	and	points	off	the	curve	often	present	a	security
risk.	However,	note	that	the	curve’s	equation	doesn’t	always	admit	solutions,
at	least	not	in	the	natural	number	plane.	For	example,	to	find	points	with	the
horizontal	coordinate	x	=	1,	we	solve	y2	=	x3	–	4x	for	y2	with	x3	–	4x	=	13	–	4
×	1,	giving	a	result	of	–3.	But	y2	=	–3	doesn’t	have	a	solution	because	there	is
no	number	for	which	y2	=	–3.	(There	is	a	solution	in	the	complex	numbers,
but	 elliptic	 curve	 cryptography	will	only	deal	with	natural	numbers—more
precisely,	 integers	 modulo	 a	 prime.)	 Because	 there	 is	 no	 solution	 to	 the
curve’s	equation	for	x	=	1,	the	curve	has	no	point	at	that	position	on	the	x-
axis,	as	you	can	see	in	Figure	12-1.

What	if	we	try	to	solve	for	x	=	–1?	In	this	case,	we	get	the	equation	y2	=	–1
+	4	=	3,	which	has	two	solutions	(y	=	√3	and	y	=	–√3),	the	square	root	of	three
and	its	negative	value.	Squaring	a	number	always	gives	a	positive	number,	so
y2	=	(–y)2	for	any	real	number	y,	and	as	you	can	see,	the	curve	in	Figure	12-1
is	symmetric	with	respect	 to	 the	x-axis	 for	all	points	 that	solve	 its	equation
(as	are	all	elliptic	curves	of	the	form	y2	=	x3	+	ax	+	b).

Elliptic	Curves	over	Integers
Now	here’s	 a	 bit	 of	 a	 twist:	 the	 curves	 used	 in	 elliptic	 curve	 cryptography
actually	don’t	 look	 like	 the	curve	shown	 in	Figure	12-1.	They	 look	 instead



like	Figure	12-2,	which	is	a	cloud	of	points	rather	than	a	curve.	What’s	going
on	here?

Figures	12-1	and	12-2	are	actually	based	on	the	same	curve	equation,	y2	=
x3	 –	 4x,	 but	 they	 show	 the	 curve’s	 points	 with	 respect	 to	 different	 sets	 of
numbers:	Figure	12-1	shows	the	curve’s	points	over	the	set	of	real	numbers,
which	 includes	 negative	 numbers,	 decimals,	 and	 so	 on.	 For	 example,	 as	 a
continuous	curve,	it	shows	the	points	at	x	=	2.0,	x	=	2.1,	x	=	2.00002,	and	so
on.	 Figure	 12-2,	 on	 the	 other	 hand,	 shows	 only	 integers	 that	 satisfy	 this
equation,	which	excludes	decimal	numbers.	Specifically,	Figure	12-2	shows
the	curve	y2	=	x3	–	4x	with	respect	to	the	integers	modulo	191:	0,	1,	2,	3,	up	to
190.	This	set	of	numbers	is	denoted	Z191.	(There’s	nothing	special	with	191
here,	 except	 that	 it’s	 a	 prime	 number.	 I	 picked	 a	 small	 number	 to	 avoid
having	 too	many	 points	 on	 the	 graph.)	The	 points	 shown	 on	 Figure	 12-2
therefore	all	have	x	and	y	coordinates	that	are	integers	modulo	191	and	that
satisfy	the	equation	y2	=	x3	–	4x.	For	example,	for	x	=	2,	we	have	y2	=	0,	for
which	y	=	0	is	a	valid	solution.	This	tells	us	that	the	point	(2,	0)	belongs	to
the	curve.



Figure	 12-2:	 The	 elliptic	 curve	 with	 the	 equation	 y2	 =	 x3	 –	 4x	 over	 Z191,	 the	 set	 of	 integers
modulo	191

What	if	x	=	3?	We	get	the	equation	y2	=	27	–	12	=	15,	which	admits	two
solutions	 to	 y2	 =	 15	 (namely,	 46	 and	 145),	 because	 462	mod	191	 =	 15	 and
1452	mod	191	=	15	both	equal	15	 in	Z191.	Thus,	 the	points	 (3,	46)	and	(3,
145)	belong	to	the	curve	and	appear	as	shown	in	Figure	12-2	(the	two	points
highlighted	at	the	left).

NOTE
Figure	12-2	 considers	points	 from	 the	 set	denoted	Z191	=	 {0,	1,	2,	…	 ,	190},
which	 includes	 zero.	 This	 differs	 from	 the	 groups	 denoted	 Zp

*	 (with	 a	 star
superscript)	 that	we	discussed	 in	 the	 context	 of	RSA	and	Diffie–Hellman.	The
reason	 for	 this	difference	 is	 that	we’ll	both	multiply	and	add	numbers,	and	we
therefore	 need	 to	 ensure	 that	 the	 set	 of	 numbers	 includes	 addition’s	 identity



element	(namely	0,	such	that	x	+	0	=	x	for	every	x	in	Z191).	Also,	every	number
x	has	an	inverse	with	respect	to	addition,	denoted	–x,	such	that	x	+	(–x)	=	0.	For
example,	the	inverse	of	100	in	Z191	is	91,	because	100	+	91	mod	191	=	0.	Such
a	set	of	numbers,	where	addition	and	multiplication	are	possible	and	where	each
element	x	admits	an	inverse	with	respect	to	addition	(denoted	–x)	as	well	as	an
inverse	with	respect	to	multiplication	(denoted	1	/	x),	is	called	a	field.	When	a
field	has	a	finite	number	of	elements,	as	in	Z191	and	as	with	all	fields	used	for
elliptic	curve	cryptography,	it	is	called	a	finite	field.

Adding	and	Multiplying	Points
We’ve	seen	that	the	points	on	an	elliptic	curve	are	all	coordinates	(x,	y)	that
satisfy	the	curve’s	equation,	y2	=	x3	+	ax	+	b.	In	this	section,	we	look	at	how	to
add	elliptic	curve	points,	a	rule	called	the	addition	law.

Adding	Two	Points
Say	that	we	want	to	add	two	points	on	the	elliptic	curve,	P	and	Q,	to	give	a
new	 point,	 R,	 that	 is	 the	 sum	 of	 these	 two	 points.	 The	 simplest	 way	 to
understand	point	addition	is	to	determine	the	position	of	R	=	P	+	Q	on	the
curve	 relative	 to	 P	 and	 Q	 based	 on	 a	 geometric	 rule:	 draw	 the	 line	 that
connects	P	and	Q,	find	the	other	point	of	the	curve	that	intersects	with	this
line,	 and	Q	 is	 the	 reflection	 of	 this	 point	 with	 respect	 to	 the	 x-axis.	 For
example,	in	Figure	12-3,	the	line	connecting	P	and	Q	intersects	the	curve	at
a	third	point	between	P	and	Q,	and	the	point	P	+	Q	is	the	point	at	the	same	x
coordinate	but	the	inverse	y	coordinate.



Figure	12-3:	A	general	case	of	the	geometric	rule	for	adding	points	over	an	elliptic	curve

This	 geometric	 rule	 is	 simple,	 but	 it	 won’t	 directly	 give	 you	 the
coordinates	of	the	point	R.	We	compute	the	coordinates	(xR,	yR)	of	R	using
the	 coordinates	 (xP	 ,	 yP)	 of	P	 and	 the	 coordinates	 (xQ,	 yQ)	 of	Q	 using	 the
formulas	xR	=	m2	–	xP	–	xQ	and	yR	=	m(xP	–	xR)	–	yP	,	where	the	value	m	=	(yQ
–	yP)	/	(xQ	–	xP)	is	the	slope	of	the	line	connecting	P	and	Q.

Unfortunately,	these	formulas	and	the	line-drawing	trick	shown	in	Figure
12-3	don’t	always	work.	If,	for	example,	P	=	Q,	you	can’t	draw	a	line	between
two	points	(there’s	only	one),	and	if	P	=	–P,	the	line	doesn’t	cross	the	curve
again,	so	there	is	no	point	on	the	curve	to	mirror.	We’ll	explore	these	in	the
next	section.

Adding	a	Point	and	Its	Negative
The	negative	of	a	point	P	=	(xP	,	yP)	is	the	point	–P	=	(xP	,	–yP),	which	is	the
point	mirrored	around	the	x-axis.	For	any	P,	we	say	that	P	+	(–P)	=	O,	where



O	 is	called	 the	point	at	 infinity.	And	as	you	can	see	 in	Figure	12-4,	 the	 line
between	P	and	–P	runs	to	infinity	and	never	intersects	the	curve.	(The	point
at	infinity	is	a	virtual	point	that	belongs	to	any	elliptic	curve;	it	is	to	elliptic
curves	what	zero	is	to	integers.)

Figure	12-4:	The	geometric	rule	for	adding	points	on	an	elliptic	curve	with	the	operation	P	+	(–P)	=
O	when	the	line	between	the	points	never	intersects	the	curve

Doubling	a	Point
When	P	=	Q	 (that	 is,	P	and	Q	are	at	the	same	position),	adding	P	and	Q	 is
equivalent	to	computing	P	+	P,	also	denoted	2P.	This	addition	operation	is
therefore	called	a	doubling.

However,	 to	 find	 the	 coordinates	 of	 the	 result	R	 =	 2P,	we	 can’t	 use	 the
geometric	 rule	 from	 the	 previous	 section,	 because	 we	 can’t	 draw	 a	 line
between	P	and	itself.	Instead,	we	draw	the	line	tangent	to	the	curve	at	P,	and
2P	is	the	negation	of	the	point	where	this	line	intersects	the	curve,	as	shown
on	Figure	12-5.



Figure	 12-5:	 The	 geometric	 rule	 for	 adding	 points	 over	 an	 elliptic	 curve	 using	 the	 doubling
operation	P	+	P

The	 formula	 for	 determining	 the	 coordinates	 (xR,	 yR)	 of	 R	 =	 P	 +	 P	 is
slightly	 different	 from	 the	 formula	 we	 would	 use	 for	 a	 distinct	 P	 and	Q.
Again,	the	basic	formula	is	xR	=	m2	–	xP	–	xQ	and	yR	=	m(xP	–	xR)	–	yP,	but	the
value	 of	m	 is	 different;	 it	 becomes	 (3xP2	 +	 a)	 /	 2yP,	 where	 a	 is	 the	 curve’s
parameter,	as	in	y2	=	x3	+	ax	+	b.

Multiplication
In	order	to	multiply	points	on	elliptic	curves	by	a	given	number	k,	where	k	is
an	 integer,	we	determine	the	point	kP	by	adding	P	 to	 itself	k	–	1	 times.	 In
other	words,	2P	=	P	+	P,	3P	=	P	+	P	+	P,	and	so	on.	To	obtain	the	x	and	y
coordinates	of	kP,	repeatedly	add	P	to	itself	and	apply	the	preceding	addition
law.

To	compute	kP	 efficiently,	however,	 the	naive	 technique	of	 adding	P	by



applying	the	addition	law	k	–	1	times	is	far	from	optimal.	For	example,	if	k	is
large	 (of	 the	 order	 of,	 say,	 2256)	 as	 it	 occurs	 in	 elliptic	 curve–based	 crypto
schemes,	then	computing	k	–	1	additions	is	downright	infeasible.

But	there’s	a	trick:	you	can	gain	an	exponential	speed-up	by	adapting	the
technique	 discussed	 in	 “Fast	 Exponentiation	 Algorithm:	 Square-and-
Multiply”	on	page	192	to	compute	xe	mod	n.	For	example,	to	compute	8P	in
three	 additions	 instead	 of	 seven	 using	 the	 naive	 method,	 you	 would	 first
compute	P2	=	P	+	P,	then	P4	=	P2	+	P2,	and	finally	P4	+	P4	=	8P.

Elliptic	Curve	Groups
Because	points	can	be	added	together,	the	set	of	points	on	an	elliptic	curve
forms	 a	 group.	 According	 to	 the	 definition	 of	 a	 group	 (see	 “What	 Is	 a
Group?”	on	page	174),	if	the	points	P	and	Q	belong	to	a	given	curve,	then	P
+	Q	also	belongs	to	the	curve.

Furthermore,	because	addition	is	associative,	we	have	(P	+	Q)	+	R	=	P	+	(Q	+
R)	for	any	points	P,	Q,	and	R.	In	a	group	of	elliptic	curve	points,	the	identity
element	is	called	the	point	at	infinity,	and	denoted	O,	such	that	P	+	O	=	P	for
any	P.	Every	point	P	=	(xP	,	yP)	has	an	inverse,	–P	=	(xP	,	–yP),	such	that	P	+
(–P)	=	O.

In	 practice,	 most	 elliptic	 curve–based	 cryptosystems	 work	 with	 x	 and	 y
coordinates	 that	 are	 numbers	modulo	 a	 prime	 number,	 p	 (in	 other	words,
numbers	 in	 the	 finite	 field	Zp).	 Just	as	 the	 security	of	RSA	depends	on	 the
size	 of	 the	 numbers	 used,	 the	 security	 of	 an	 elliptic	 curve–based
cryptosystem	depends	on	the	number	of	points	on	the	curve.	But	how	do	we
know	 the	number	of	 points	 on	 an	 elliptic	 curve,	 or	 its	 cardinality?	Well,	 it
depends	on	the	curve	and	the	value	of	p.

One	rule	of	thumb	is	that	there	are	approximately	p	points	on	the	curve,
but	 you	 can	 compute	 the	 exact	number	of	 points	with	Schoof’s	 algorithm,
which	 counts	 points	 on	 elliptic	 curves	 over	 finite	 fields.	 You’ll	 find	 this
algorithm	built	in	to	SageMath.	For	example,	Listing	12-1	shows	how	to	use
this	algorithm	to	count	the	number	of	points	on	the	curve	y2	=	x3	–	4x	over
Z191	shown	in	Figure	12-1.

sage:	Z	=	Zmod(191)
sage:	E	=	EllipticCurve(Z,	(-4,0))
sage:	E.cardinality()
192



Listing	12-1:	Computing	the	cardinality,	or	number	of	points	on	a	curve

In	Listing	12-1,	we’ve	first	defined	the	variable	Z	as	 the	set	over	 integers
modulo	191;	then	we	defined	the	variable	E	as	the	elliptic	curve	over	Z	with
the	coefficients	–4	and	0.	Finally,	we	computed	the	number	of	points	on	the
curve,	also	known	as	 its	 cardinality,	group	order,	or	 just	order.	Note	that	this
count	includes	the	point	at	infinity	O.

The	ECDLP	Problem
Chapter	 9	 introduced	 the	DLP:	 that	 of	 finding	 the	 number	 y	 given	 some
base	 number	 g,	 where	 x	 =	 gy	 mod	 p	 for	 some	 large	 prime	 number	 p.
Cryptography	 with	 elliptic	 curves	 has	 a	 similar	 problem:	 the	 problem	 of
finding	the	number	k	given	a	base	point	P	where	the	point	Q	=	kP.	This	is
called	 the	 elliptic	 curve	 discrete	 logarithm	 problem,	 or	 ECDLP.	 (Instead	 of
numbers,	the	elliptic	curve’s	problems	operate	on	points,	and	multiplication
is	used	instead	of	exponentiation.)

All	 elliptic	 curve	 cryptography	 is	 built	 on	 the	 ECDLP	 problem,	 which,
like	DLP,	 is	 believed	 to	 be	 hard	 and	 has	 withstood	 cryptanalysis	 since	 its
introduction	into	cryptography	in	1985.	One	important	difference	between
ECDLP	 and	 the	 classical	 DLP	 is	 that	 ECDLP	 allows	 you	 to	 work	 with
smaller	numbers	and	still	enjoy	a	similar	level	of	security.

Generally,	when	p	is	n	bits,	you’ll	get	a	security	level	of	about	n/2	bits.	For
example,	 an	 elliptic	 curve	 taken	over	numbers	modulo	p,	with	 a	 256-bit	 p,
will	 give	 a	 security	 level	 of	 about	 128	bits.	For	 the	 sake	of	 comparison,	 to
achieve	 a	 similar	 security	 level	with	DLP	 or	RSA,	 you	would	 need	 to	 use
numbers	 of	 several	 thousands	 of	 bits.	The	 smaller	 numbers	 used	 for	ECC
arithmetic	are	one	reason	why	it’s	often	faster	than	RSA	or	classical	Diffie–
Hellman.

One	way	of	solving	ECDLP	is	to	find	a	collision	between	two	outputs,	c1P
+	d1Q	and	c2P	+	d2Q.	The	points	P	and	Q	in	these	equations	are	such	that	Q	=
kP	for	some	unknown	k,	and	c1,	d1,	c2,	and	d2	are	the	numbers	you	will	need
in	order	to	find	k.

As	with	the	hash	function	discussed	in	Chapter	6,	a	collision	occurs	when
two	different	 inputs	produce	the	same	output.	Therefore,	 in	order	 to	solve
ECDLP,	we	need	to	find	points	where	the	following	is	true:



c1P	+	d1Q	=	c2P	+	d2Q

In	order	to	find	these	points,	we	replace	Q	with	the	value	kP,	and	we	have
the	following:

c1P	+	d1kP	=	(c1	+	d1k)P	=	c2P	+	d2kP	=	(c2	+	d2k)P

This	 tells	 us	 that	 (c1	 +	 d1k)	 equals	 (c2	 +	 d2k)	 when	 taken	 modulo	 the
number	of	points	on	the	curve,	which	is	not	a	secret.

From	this,	we	can	deduce	the	following:

And	we’ve	found	k,	the	solution	to	ECDLP.
Of	course,	 that’s	only	the	big	picture—the	details	are	more	complex	and

interesting.	 In	practice,	 elliptic	 curves	 extend	over	numbers	of	 at	 least	 256
bits,	which	makes	attacking	elliptic	curve	cryptography	by	finding	a	collision
impractical	because	doing	so	takes	up	to	2128	operations	(the	cost	of	finding
a	collision	over	256-bit	numbers,	as	you	learned	in	Chapter	6).

Diffie–Hellman	Key	Agreement	over	Elliptic	Curves
Recall	 from	 Chapter	 11	 that	 in	 the	 classical	 Diffie–Hellman	 (DH)	 key
agreement	protocol,	two	parties	establish	a	shared	secret	by	exchanging	non-
secret	 values.	 Given	 some	 fixed	 number	 g,	 Alice	 picks	 a	 secret	 random
number	a,	computes	A	=	ga,	sends	A	to	Bob,	and	Bob	picks	a	secret	random	b
and	 sends	 B	 =	 gb	 to	 Alice.	 Both	 then	 combine	 their	 secret	 key	 with	 the
other’s	public	key	to	produce	the	same	Ab	=	Ba	=	gab.

The	elliptic	curve	version	of	DH	is	 identical	 to	 that	of	classical	DH	but
with	different	notations.	In	the	case	of	ECC,	for	some	fixed	point	G,	Alice
picks	 a	 secret	 random	 number	 dA,	 computes	 PA	 =	 dAG	 (the	 point	 G
multiplied	 by	 dA),	 and	 sends	 PA	 to	 Bob.	 Bob	 picks	 a	 secret	 random	 dB,
computes	the	point	PB	=	dBG,	and	sends	it	to	Alice.	Then	both	compute	the
same	shared	secret,	dAPB	=	dBPA	=	dAdBG.	This	method	is	called	elliptic	curve



Diffie–Hellman,	or	ECDH.
ECDH	is	to	the	ECDLP	problem	what	DH	is	to	DLP:	it’s	secure	as	long

as	ECDLP	is	hard.	DH	protocols	that	rely	on	DLP	can	therefore	be	adapted
to	work	with	elliptic	curves	and	rely	on	ECDLP	as	a	hardness	assumption.
For	 example,	 authenticated	 DH	 and	 Menezes–Qu–Vanstone	 (MQV)	 will
also	be	secure	when	used	with	elliptic	curves.	(In	fact,	MQV	was	first	defined
as	working	over	elliptic	curves.)

Signing	with	Elliptic	Curves
The	standard	algorithm	used	for	signing	with	ECC	is	ECDSA,	which	stands
for	elliptic	curve	digital	signature	algorithm.	This	algorithm	has	replaced	RSA
signatures	 and	 classical	 DSA	 signatures	 in	 many	 applications.	 It	 is,	 for
example,	 the	only	 signature	 algorithm	used	 in	Bitcoin	 and	 is	 supported	by
many	TLS	and	SSH	implementations.

As	 with	 all	 signature	 schemes,	 ECDSA	 consists	 of	 a	 signature	 generation
algorithm	 that	 the	 signer	uses	 to	 create	 a	 signature	using	 their	 private	 key
and	 a	 verification	 algorithm	 that	 a	 verifier	 uses	 to	 check	 a	 signature’s
correctness	given	the	signer’s	public	key.	The	signer	holds	a	number,	d,	as	a
private	key,	and	verifiers	hold	the	public	key,	P	=	dG.	Both	know	in	advance
what	elliptic	curve	to	use,	its	order	(n,	the	number	of	points	in	the	curve),	as
well	as	the	coordinates	of	a	base	point,	G.

ECDSA	Signature	Generation
In	 order	 to	 sign	 a	 message,	 the	 signer	 first	 hashes	 the	 message	 with	 a
cryptographic	 hash	 function	 such	 as	 SHA-256	 or	 BLAKE2	 to	 generate	 a
hash	value,	h,	that	is	interpreted	as	a	number	between	0	and	n	–	1.	Next,	the
signer	picks	a	random	number,	k,	between	1	and	n	–	1	and	computes	kG,	a
point	 with	 the	 coordinates	 (x,	 y).	 The	 signer	 now	 sets	 r	 =	 x	 mod	 n	 and
computes	s	=	(h	+	rd)	/	k	mod	n,	and	then	uses	these	values	as	the	signature
(r,	s).

The	length	of	 the	signature	will	depend	on	the	coordinate	 lengths	being
used.	For	example,	when	you’re	working	with	a	curve	where	coordinates	are
256-bit	 numbers,	 r	 and	 s	would	 both	 be	 256	bits	 long,	 yielding	 a	 512-bit-
long	signature.

ECDSA	Signature	Verification



The	ECDSA	verification	 algorithm	uses	 a	 signer’s	public	 key	 to	 verify	 the
validity	of	a	signature.

In	order	to	verify	an	ECDSA	signature	(r,	s)	and	a	message’s	hash,	h,	the
verifier	 first	 computes	w	 =	1	 /	 s,	 the	 inverse	of	 s	 in	 the	 signature,	which	 is
equal	 to	k	 /	 (h	+	rd)	mod	n,	 since	 s	 is	defined	as	 s	=	 (h	+	rd)	 /	k.	Next,	 the
verifier	multiplies	w	with	h	to	find	u	according	to	the	following	formula:

wh	=	hk	(h	+	rd)	=	u

The	verifier	then	multiplies	w	with	r	to	find	v:

wr	=	rk(h	+	rd)	=	v

Given	 u	 and	 v,	 the	 verifier	 computes	 the	 point	 Q	 according	 to	 the
following	formula:

Q	=	uG	+	vP

Here,	P	 is	 the	 signer’s	public	key,	which	 is	 equal	 to	dG,	 and	 the	verifier
only	 accepts	 the	 signature	 if	 the	 x	 coordinate	 of	Q	 is	 equal	 to	 the	 value	 r
from	the	signature.

This	 process	 works	 because,	 as	 a	 last	 step,	 we	 compute	 the	 point	Q	 by
substituting	the	public	key	P	with	its	actual	value	dG:

uG	+	vdG	=	(u	+	vd)G

When	we	replace	u	and	v	with	their	actual	values,	we	obtain	the	following:

u	+	vd	=	hk	(h	+	rd)	+	drk	/	(h	+	rd)	=	(hk	+	drk)	/	(h	+	rd)	=	k	(h	+	dr)	/	(h	+	rd)
=	k

This	tells	us	that	(u	+	vd)	is	equal	to	the	value	k,	chosen	during	signature
generation,	and	that	uG	+	vdG	is	equal	to	the	point	kG.	In	other	words,	the
verification	 algorithm	 succeeds	 in	 computing	 point	 kG,	 the	 same	 point
computed	during	signature	generation.	Validation	is	complete	once	a	verifier
confirms	 that	 kG’s	 x	 coordinate	 is	 equal	 to	 the	 r	 received;	 otherwise,	 the
signature	is	rejected	as	invalid.

ECDSA	vs.	RSA	Signatures



Elliptic	 curve	 cryptography	 is	 often	 viewed	 as	 an	 alternative	 to	 RSA	 for
public-key	cryptography,	but	ECC	and	RSA	don’t	have	much	 in	common.
RSA	is	only	used	for	encryption	and	signatures,	whereas	ECC	is	a	family	of
algorithms	 that	 can	 be	 used	 to	 perform	 encryption,	 generate	 signatures,
perform	 key	 agreement,	 and	 offer	 advanced	 cryptographic	 functionalities
such	as	identity-based	encryption	(a	kind	of	encryption	that	uses	encryption
keys	derived	from	a	personal	identifier,	such	as	an	email	address).

When	comparing	RSA	and	ECC’s	signature	algorithms,	recall	that	in	RSA
signatures,	the	signer	uses	their	private	key	d	to	compute	a	signature	as	y	=	xd
mod	n,	where	x	 is	 the	data	to	be	signed	and	y	 is	 the	signature.	Verification
uses	 the	 public	 key	 e	 to	 confirm	 that	 ye	 mod	 n	 equals	 x—a	 process	 that’s
clearly	simpler	than	that	of	ECDSA.

RSA’s	verification	process	is	often	faster	than	ECC’s	signature	generation
because	it	uses	a	small	public	key	e.	But	ECC	has	two	major	advantages	over
RSA:	shorter	signatures	and	signing	speed.	Because	ECC	works	with	shorter
numbers,	 it	 produces	 shorter	 signatures	 than	 RSA	 (hundreds	 of	 bits	 long,
not	 thousands	 of	 bits),	which	 is	 an	 obvious	 benefit	 if	 you	have	 to	 store	 or
transmit	numerous	signatures.	Signing	with	ECDSA	is	also	much	faster	than
signing	 with	 RSA	 (though	 signature	 verification	 is	 about	 as	 fast)	 because
ECDSA	 works	 with	 much	 smaller	 numbers	 than	 RSA	 does	 for	 a	 similar
security	 level.	 For	 example,	 Listing	 12-2	 shows	 that	ECDSA	 is	 about	 150
times	 faster	 at	 signing	 and	 a	 little	 faster	 at	 verifying.	 Note	 that	 ECDSA
signatures	are	also	shorter	than	RSA	signatures	because	they’re	512	bits	(two
elements	of	256	bits	each)	rather	than	4096	bits.

$	openssl	speed	ecdsap256	rsa4096
																														sign					verify					sign/s					verify/s
rsa	4096	bits												0.007267s		0.000116s						137.6							8648.0
																														sign					verify					sign/s					verify/s
256	bit	ecdsa	(nistp256)			0.0000s				0.0001s				21074.6							9675.7

Listing	12-2:	Comparing	the	speed	of	4096-bit	RSA	signatures	with	256-bit	ECDSA	signatures

It’s	 fair	 to	compare	 the	performance	of	 these	differently	 sized	 signatures
because	 they	 provide	 a	 similar	 security	 level.	 However,	 in	 practice,	 many
systems	use	RSA	signatures	with	2048	bits,	which	is	orders	of	magnitude	less
secure	 than	 256-bit	ECDSA.	Thanks	 to	 its	 smaller	modulus	 size,	 2048-bit
RSA	is	faster	than	256-bit	ECDSA	at	verifying,	yet	still	slower	at	signing,	as
shown	in	Listing	12-3.



$	openssl	speed	rsa2048
																										sign									verify					sign/s					verify/s
rsa	2048	bits												0.000696s		0.000032s					1436.1						30967.1

Listing	12-3:	The	speed	of	2048-bit	RSA	signatures

The	 upshot	 is	 that	 you	 should	 prefer	 ECDSA	 to	 RSA	 except	 when
signature	verification	is	critical	and	you	don’t	care	about	signing	speed,	as	in
a	sign-once,	verify-many	situation	(for	example,	when	a	Windows	executable
application	is	signed	once	and	then	verified	by	all	the	systems	executing	it).

Encrypting	with	Elliptic	Curves
Although	elliptic	curves	are	more	commonly	used	for	signing,	you	can	still
encrypt	 with	 them.	 But	 you’ll	 rarely	 see	 people	 do	 so	 in	 practice	 due	 to
restrictions	in	the	size	of	the	plaintext	that	can	be	encrypted:	you	can	fit	only
about	 100	 bits	 of	 plaintext,	 as	 compared	 to	 almost	 4000	 in	 RSA	with	 the
same	security	level.

One	 simple	 way	 to	 encrypt	 with	 elliptic	 curves	 is	 to	 use	 the	 integrated
encryption	 scheme	 (IES),	 a	 hybrid	 asymmetric–symmetric	 key	 encryption
algorithm	 based	 on	 the	 Diffie–Hellman	 key	 exchange.	 Essentially,	 IES
encrypts	a	message	by	generating	a	Diffie–Hellman	key	pair,	combining	the
private	 key	 with	 the	 recipient’s	 own	 public	 key,	 deriving	 a	 symmetric	 key
from	the	shared	secret	obtained,	and	then	using	an	authenticated	cipher	 to
encrypt	the	message.

When	used	with	 elliptic	 curves,	 IES	 relies	on	ECDLP’s	hardness	 and	 is
called	 elliptic-curve	 integrated	 encryption	 scheme	 (ECIES).	Given	 a	 recipient’s
public	key,	P,	ECIES	encrypts	a	message,	M,	as	follows:

1.	 Pick	 a	 random	number,	d,	 and	 compute	 the	 point	Q	 =	dG,	where	 the
base	point	G	is	a	fixed	parameter.	Here,	(d,	Q)	acts	as	an	ephemeral	key
pair,	used	only	for	encrypting	M.

2.	 Compute	an	ECDH	shared	secret	by	computing	S	=	dP.
3.	 Use	a	key	derivation	scheme	(KDF)	to	derive	a	symmetric	key,	K,	from

S.
4.	 Encrypt	M	using	K	 and	a	 symmetric	authenticated	cipher,	obtaining	a

ciphertext,	C,	and	an	authentication	tag,	T.

The	 ECIES	 ciphertext	 then	 consists	 of	 the	 ephemeral	 public	 key	 Q



followed	by	C	and	T.	Decryption	is	straightforward:	the	recipient	computes
S	by	multiplying	R	with	their	private	exponent	to	obtain	S,	and	then	derives
the	key	K	and	decrypts	C	and	verifies	T.

Choosing	a	Curve
Criteria	used	to	assess	the	safety	of	an	elliptic	curve	include	the	order	of	the
group	 used	 (that	 is,	 its	 number	 of	 points),	 its	 addition	 formulas,	 and	 its
origins.

There	are	several	types	of	elliptic	curves,	but	not	all	are	equally	good	for
cryptographic	 purposes.	 When	 making	 your	 selection,	 be	 sure	 to	 choose
coefficients	 a	 and	 b	 in	 the	 curve’s	 equation	 y2	 =	 x3	 +	 ax	 +	 b	 carefully;
otherwise,	 you	may	 end	 up	with	 an	 insecure	 curve.	 In	 practice,	 you’ll	 use
some	de	facto	standard	curve	for	encryption,	but	knowing	what	makes	a	safe
curve	 will	 help	 you	 choose	 among	 the	 several	 available	 ones	 and	 better
understand	any	associated	risks.	Here	are	some	points	to	keep	in	mind:

The	 order	 of	 the	 group	 should	 not	 be	 a	 product	 of	 small	 numbers;
otherwise	solving	ECDLP	becomes	much	easier.
In	 “Adding	 and	 Multiplying	 Points”	 on	 page	 221,	 you	 learned	 that
adding	points	P	+	Q	 required	a	 specific	addition	 formula	when	Q	=	P.
Unfortunately,	 treating	 this	 case	differently	 from	the	general	one	may
leak	 critical	 information	 if	 an	 attacker	 is	 able	 to	 distinguish	 doublings
from	additions	between	distinct	points.	Some	curves	are	secure	because
they	use	a	single	formula	for	all	point	addition.	(When	a	curve	does	not
require	a	specific	formula	for	doublings,	we	say	that	 it	admits	a	unified
addition	law.)
If	the	creators	of	a	curve	don’t	explain	the	origin	of	a	and	b,	they	may	be
suspected	of	 foul	play	because	you	can’t	know	whether	 they	may	have
chosen	 weaker	 values	 that	 enable	 some	 yet-unknown	 attack	 on	 the
cryptosystem.

Let’s	review	some	of	the	most	commonly	used	curves,	especially	ones	used
for	signatures	or	Diffie–Hellman	key	agreement.

NOTE
You’ll	find	more	criteria	and	more	details	about	curves	on	the	dedicated	website



https://safecurves.cr.yp.to/.

NIST	Curves
In	2000,	the	NIST	curves	were	standardized	by	the	US	NIST	in	the	FIPS
186	 document	 under	 “Recommended	 Elliptic	 Curves	 for	 Federal
Government	 Use.”	 Five	 NIST	 curves	 work	 modulo	 a	 prime	 number	 (as
discussed	in	“Elliptic	Curves	over	Integers”	on	page	219),	called	prime	curves.
Ten	 other	 NIST	 curves	 work	 with	 binary	 polynomials,	 which	 are
mathematical	objects	that	make	implementation	in	hardware	more	efficient.
(We	won’t	cover	binary	polynomials	in	further	detail	because	they’re	seldom
used	with	elliptic	curves.)

The	most	 common	NIST	curves	 are	 the	prime	 curves.	Of	 these,	 one	of
the	most	 common	 is	 P-256,	 a	 curve	 that	works	 over	 numbers	modulo	 the
256-bit	number	p	=	2256	–	2224	+	2192	+	296	–	1.	The	equation	for	P-256	is	y2

=	x3	–	3x	+	b,	where	b	is	a	256-bit	number.	NIST	also	provides	prime	curves
of	192	bits,	224	bits,	384	bits,	and	521	bits.

NIST	 curves	 are	 sometimes	 criticized	 because	 only	 the	NSA,	 creator	 of
the	curves,	knows	the	origin	of	the	b	coefficient	in	their	equations.	The	only
explanation	 we’ve	 been	 given	 is	 that	 b	 results	 from	 hashing	 a	 random-
looking	constant	with	SHA-1.	For	example,	P-256’s	b	parameter	comes	from
the	following	constant:	c49d3608	86e70493	6a6678e1	139d26b7	819f7e90.

No	 one	 knows	 why	 the	 NSA	 picked	 this	 particular	 constant,	 but	 most
experts	don’t	believe	the	curve’s	origin	hides	any	weakness.

Curve25519
Daniel	J.	Bernstein	brought	Curve25519	(pronounced	curve-twenty-five-five-
nineteen)	 to	 the	 world	 in	 2006.	 Motivated	 by	 performance,	 he	 designed
Curve25519	to	be	faster	and	use	shorter	keys	than	the	standard	curves.	But
Curve25519	also	brings	security	benefits,	because	unlike	the	NIST	curves	it
has	no	suspicious	constants	and	can	use	the	same	unified	formula	for	adding
distinct	points	or	for	doubling	a	point.

The	 form	 of	Curve25519’s	 equation,	 y2	 =	 x3	 +	 486662x2	 +	 x,	 is	 slightly
different	from	that	of	the	other	equations	you’ve	seen	in	this	chapter,	but	it
still	belongs	to	the	elliptic	curve	family.	The	unusual	form	of	this	equation
allows	for	specific	implementation	techniques	that	make	Curve25519	fast	in

https://safecurves.cr.yp.to/


software.
Curve25519	works	with	numbers	modulo	the	prime	number	2255	–	19,	a

256-bit	prime	number	 that	 is	as	close	as	possible	 to	2255.	The	b	 coefficient
486662	 is	 the	 smallest	 integer	 that	 satisfies	 the	 security	 criteria	 set	 by
Bernstein.	 Taken	 together,	 these	 features	 make	 Curve25519	 more	 trust​-
worthy	than	NIST	curves	and	their	fishy	coefficients.

Curve25519	 is	 used	 everywhere:	 in	 Google	 Chrome,	 Apple	 systems,
OpenSSH,	and	many	other	 systems.	However,	because	Curve25519	 isn’t	 a
NIST	standard,	some	applications	stick	to	NIST	curves.

NOTE
To	 learn	 all	 the	 details	 and	 rationale	 behind	 Curve25519,	 view	 the	 2016
presentation	 “The	 first	 10	 years	 of	 Curve25519”	 by	 Daniel	 J.	 Bernstein,
available	at	http://cr.yp.to/talks.html#2016.03.09/.

Other	Curves
As	 I	 write	 this,	 most	 cryptographic	 applications	 use	 NIST	 curves	 or
Curve25519,	but	 there	are	other	 legacy	standards	 in	use,	and	newer	curves
are	being	promoted	and	pushed	within	standardization	committees.	Some	of
the	 old	 national	 standards	 include	 France’s	 ANSSI	 curves	 and	Germany’s
Brainpool	curves:	two	families	that	don’t	support	complete	addition	formulas
and	that	use	constants	of	unknown	origins.

Some	newer	curves	are	more	efficient	than	the	older	ones	and	are	clear	of
any	 suspicion;	 they	 offer	 different	 security	 levels	 and	 various	 efficiency
optimizations.	 Examples	 include	 Curve41417,	 a	 variant	 of	 Curve25519,
which	 works	 with	 larger	 numbers	 and	 offers	 a	 higher	 level	 of	 security
(approximately	 200	bits);	Ed448-Goldilocks,	 a	 448-bit	 curve	 first	 proposed
in	 2014	 and	 considered	 to	 be	 an	 internet	 standard;	 as	 well	 as	 six	 curves
proposed	 by	 Aranha	 et	 al.	 in	 “A	 note	 on	 high-security	 general-purpose
elliptic	curves”	(see	http://eprint.iacr.org/2013/647/),	though	these	curves	are
rarely	used.	The	details	specific	to	all	 these	curves	are	beyond	the	scope	of
this	book.

How	Things	Can	Go	Wrong
Elliptic	curves	have	their	downsides	due	to	their	complexity	and	large	attack

http://cr.yp.to/talks.html#2016.03.09/
http://eprint.iacr.org/2013/647/


surface.	Their	use	of	more	parameters	than	classical	Diffie–Hellman	brings
with	 it	 a	 greater	 attack	 surface	 with	 more	 opportunities	 for	 mistakes	 and
abuse—and	 possible	 software	 bugs	 that	might	 affect	 their	 implementation.
Elliptic	curve	software	may	also	be	vulnerable	to	side-channel	attacks	due	to
the	 large	 numbers	 used	 in	 their	 arithmetic.	 If	 the	 speed	 of	 calculations
depends	 on	 inputs,	 attackers	may	 be	 able	 to	 obtain	 information	 about	 the
formulas	being	used	to	encrypt.

In	the	following	sections,	I	discuss	two	examples	of	vulnerabilities	that	can
occur	with	elliptic	curves,	even	when	the	implementation	is	safe.	These	are
protocol	vulnerabilities	rather	than	implementation	vulnerabilities.

ECDSA	with	Bad	Randomness
ECDSA	 signing	 is	 randomized,	 as	 it	 involves	 a	 secret	 random	 number	 k
when	setting	s	=	(h	+	rd)	/	k	mod	n.	However,	if	the	same	k	is	reused	to	sign	a
second	message,	an	attacker	could	combine	the	resulting	two	values,	s1	=	(h1
+	rd)	/	k	and	s2	=	(h2	+	rd)	/	k,	to	get	s1	–	s2	=	(h1	–	h2)	/	k	and	then	k	=	(h1	–	h2)
/	 (s1	 –	 s2).	 When	 k	 is	 known,	 the	 private	 key	 d	 is	 easily	 recovered	 by
computing	the	following:

(ks1	−	h1)	/	r	=	((h1	+	rd)	−	h1)	/	r	=	rd	/	r	=	d

Unlike	 RSA	 signatures,	 which	 won’t	 allow	 the	 key	 to	 be	 recovered	 if	 a
weak	 pseudorandom	 number	 generator	 (PRNG)	 is	 used,	 the	 use	 of	 non-
random	 numbers	 can	 lead	 to	 ECDSA’s	 k	 being	 recoverable,	 as	 happened
with	the	attack	on	the	PlayStation	3	game	console	in	2010,	presented	by	the
fail0verflow	 team	 at	 the	 27th	 Chaos	 Communication	 Congress	 in	 Berlin,
Germany.

Breaking	ECDH	Using	Another	Curve
ECDH	 can	 be	 elegantly	 broken	 if	 you	 fail	 to	 validate	 input	 points.	 The
primary	reason	is	that	the	formulas	that	give	the	coordinates	for	the	sum	of
points	P	+	Q	never	 involve	the	b	coefficient	of	 the	curve;	 instead,	 they	rely
only	on	the	coordinates	of	P	and	Q	and	the	a	coefficient	 (when	doubling	a
point).	The	unfortunate	consequence	of	this	is	that	when	adding	two	points,
you	 can	never	be	 sure	 that	 you’re	working	on	 the	 right	 curve	because	you
may	 actually	 be	 adding	 points	 on	 a	 different	 curve	 with	 a	 different	 b



coefficient.	That	means	you	can	break	ECDH	as	described	in	the	following
scenario,	called	the	invalid	curve	attack.

Say	 that	Alice	 and	Bob	 are	 running	ECDH	and	have	 agreed	on	 a	 curve
and	a	base	point,	G.	Bob	sends	his	public	key	dBG	to	Alice.	Alice,	instead	of
sending	 a	 public	 key	 dAG	 on	 the	 agreed	 upon	 curve,	 sends	 a	 point	 on	 a
different	curve,	either	intentionally	or	accidentally.	Unfortunately,	this	new
curve	is	weak	and	allows	Alice	to	choose	a	point	P	for	which	solving	ECDLP
is	easy.	She	chooses	a	point	of	low	order,	for	which	there	is	a	relatively	small
k	such	that	kP	=	O.

Now	Bob,	believing	that	he	has	a	legitimate	public	key,	computes	what	he
thinks	 is	 the	 shared	 secret	 dBP,	 hashes	 it,	 and	 uses	 the	 resulting	 key	 to
encrypt	data	sent	to	Alice.	The	problem	is	that	when	Bob	computes	dBP,	he
is	unknowingly	computing	on	the	weaker	curve.	As	a	result,	because	P	was
chosen	to	belong	to	a	small	subgroup	within	the	larger	group	of	points,	the
result	dBP	will	 also	 belong	 to	 that	 small	 subgroup,	 allowing	 an	 attacker	 to
determine	the	shared	secret	dBP	efficiently	if	they	know	the	order	of	P.

One	way	to	prevent	this	is	to	make	sure	that	points	P	and	Q	belong	to	the
right	 curve	 by	 ensuring	 that	 their	 coordinates	 satisfy	 the	 curve’s	 equation.
Doing	so	would	prevent	this	attack	by	making	sure	that	you’re	only	able	to
work	on	the	secure	curve.

Such	 an	 invalid	 curve	 attack	 was	 found	 in	 2015	 on	 certain
implementations	 of	 the	 TLS	 protocol,	 which	 uses	 ECDH	 to	 negotiate
session	keys.	(For	details,	see	the	paper	“Practical	Invalid	Curve	Attacks	on
TLS-ECDH”	by	Jager,	Schwenk,	and	Somorovsky.)

Further	Reading
Elliptic	curve	cryptography	is	a	 fascinating	and	complex	topic	that	 involves
lots	of	mathematics.	 I’ve	not	discussed	 important	notions	 such	 as	 a	point’s
order,	a	curve’s	cofactor,	projective	coordinates,	torsion	points,	and	methods
for	solving	the	ECDLP	problem.	If	you	are	mathematically	 inclined,	you’ll
find	information	on	these	and	other	related	topics	in	the	Handbook	of	Elliptic
and	 Hyperelliptic	 Curve	 Cryptography	 by	 Cohen	 and	 Frey	 (Chapman	 and
Hall/CRC,	 2005).	 The	 2013	 survey	 “Elliptic	 Curve	 Cryptography	 in
Practice”	by	Bos,	Halderman,	Heninger,	Moore,	Naehrig,	and	Wustrow	also
gives	 a	 good	 illustrated	 introduction	 with	 practical	 examples



(https://eprint.iacr.org/2013/734/).
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13
TLS

The	Transport	Layer	Security	(TLS)	protocol,	also	known	as	Secure	Socket	Layer
(SSL),	 which	 is	 the	 name	 of	 its	 predecessor,	 is	 the	 workhorse	 of	 internet
security.	TLS	protects	connections	between	servers	and	clients,	whether	that
connection	 is	 between	 a	 website	 and	 its	 visitors,	 email	 servers,	 a	 mobile
application	and	its	servers,	or	video	game	servers	and	players.	Without	TLS,
there	would	 be	 no	 secure	 online	 commerce,	 secure	 online	 banking,	 or	 for
that	matter	secure	online	anything.

TLS	 is	 application	 agnostic;	 it	 doesn’t	 care	 about	 the	 type	 of	 content
encrypted.	This	means	 that	 you	 can	 use	 it	 for	web-based	 applications	 that
rely	 on	 the	 HTTP	 protocol,	 as	 well	 as	 for	 any	 system	 where	 a	 client
computer	or	device	needs	to	initiate	a	connection	with	a	remote	server.	For
example,	TLS	is	widely	used	for	machine-to-machine	communications	in	so-
called	internet	of	things	(IoT)	applications.

This	chapter	provides	you	with	an	abbreviated	view	of	TLS.	As	you’ll	see,
TLS	 has	 become	 increasingly	 complex	 over	 the	 years.	 Unfortunately,
complexity	and	bloat	brought	multiple	vulnerabilities,	and	bugs	found	in	its
cluttered	implementations	have	made	headlines—think	Heartbleed,	BEAST,
CRIME,	 and	 POODLE,	 all	 vulnerabilities	 that	 impacted	 millions	 of	 web
servers.

In	 2013,	 engineers	 tired	 of	 fixing	 new	 cryptographic	 vulnerabilities	 in
TLS	overhauled	 it	and	started	working	on	TLS	1.3.	As	you’ll	 learn	 in	 this
chapter,	 TLS	 1.3	 ditched	 unnecessary	 features	 and	 insecure	 ones,	 and
replaced	old	algorithms	with	state-of-the-art	ciphers.	The	result	is	a	simpler,
faster,	and	more	secure	protocol.

But	before	we	explore	how	TLS	1.3	works,	let’s	review	the	problem	that
TLS	aims	to	solve	in	the	first	place,	and	the	reason	for	its	very	existence.



Target	Applications	and	Requirements
TLS	is	best	known	for	being	the	S	in	HTTPS	websites,	and	the	padlock	in	a
browser’s	address	bar	indicating	that	a	page	is	secure.	The	primary	driver	for
creating	 TLS	 was	 to	 enable	 secure	 browsing	 in	 applications	 such	 as	 e-
commerce	or	e-banking	by	encrypting	website	connections	to	protect	credit
card	numbers,	user	credentials,	and	other	sensitive	information.

TLS	 also	 helps	 to	 protect	 internet-based	 communication	 in	 general	 by
establishing	 a	 secure	 channel	 between	 a	 client	 and	 a	 server	 that	 ensures	 the
data	transferred	is	confidential,	authenticated,	and	unmodified.

One	 of	 TLS’s	 security	 goals	 is	 to	 prevent	 man-in-the-middle	 attacks,
wherein	an	attacker	intercepts	encrypted	traffic	from	the	transmitting	party,
decrypts	the	traffic	to	capture	the	clear	content,	and	re-encrypts	it	to	send	to
the	 receiving	 party.	 TLS	 defeats	 man-in-the-middle	 attacks	 by
authenticating	 servers	 (and	optionally	 clients)	 using	 certificates	 and	 trusted
certificate	 authorities,	 as	 we’ll	 discuss	 in	 more	 detail	 in	 the	 section
“Certificates	and	Certificate	Authorities”	on	page	238.

To	ensure	wide	adoption,	TLS	needed	to	satisfy	four	more	requirements:
it	needed	to	be	efficient,	interoperable,	extensible,	and	versatile.

For	TLS,	efficiency	means	minimizing	the	performance	penalty	compared
with	unencrypted	connections.	This	 is	good	 for	both	 the	 server	 (to	 reduce
the	 cost	 of	 hardware	 for	 the	 service	 providers)	 and	 for	 clients	 (to	 avoid
perceptible	 delays	 or	 the	 reduction	 of	 mobile	 devices’	 battery	 life).	 The
protocol	needed	to	be	interoperable	so	that	it	would	work	on	any	hardware
and	 any	 operating	 system.	 It	was	 to	 be	 extensible	 so	 that	 it	 could	 support
additional	 features	 or	 algorithms.	 And	 it	 had	 to	 be	 versatile—that	 is,	 not
bound	 to	 a	 specific	 application	 (this	 parallels	 something	 like	 Transport
Control	Protocol,	which	doesn’t	care	about	the	application	protocol	used	on
top	of	it).

The	TLS	Protocol	Suite
To	 protect	 client–server	 communications,	 TLS	 is	 made	 up	 of	 multiple
versions	of	several	protocols	that	together	form	the	TLS	protocol	suite.	And
although	TLS	stands	for	Transport	Layer	Security,	it’s	actually	not	a	transport
protocol.	 TLS	 usually	 sits	 between	 the	 transport	 protocol	 TCP	 and	 an
application	layer	protocol	such	as	HTTP	or	SMTP,	in	order	to	secure	data



transmitted	over	a	TCP	connection.
TLS	 can	 also	 work	 over	 the	 User	 Datagram	 Protocol	 (UDP)	 transport

protocol,	which	 is	used	 for	“connectionless”	 transmissions	 such	as	voice	or
video	 traffic.	 However,	 unlike	 TCP,	 UDP	 doesn’t	 guarantee	 delivery	 or
correct	 packet	 ordering.	 The	 UDP	 version	 of	 TLS	 is	 therefore	 slightly
different	and	is	called	DTLS	(Datagram	Transport	Layer	Security).	For	more
on	TCP	 and	UDP,	 see	Charles	Kozierok’s	The	TCP/IP	Guide	 (No	 Starch
Press,	2005.)

The	TLS	and	SSL	Family	of	Protocols:	A	Brief	History
TLS	began	life	in	1995	when	Netscape,	developer	of	the	Netscape	browser,
developed	TLS’s	ancestor,	the	Secure	Socket	Layer	(SSL)	protocol.	SSL	was
far	 from	 perfect,	 and	 both	 SSL	 2.0	 and	 SSL	 3.0	 had	 security	 flaws.	 The
upshot	is	that	you	should	never	use	SSL,	you	should	always	use	TLS—what
adds	 to	 the	 confusion	 is	 that	 TLS	 is	 often	 referred	 to	 as	 “SSL,”	 even	 by
security	experts.

Moreover,	not	all	versions	of	TLS	are	secure.	TLS	1.0	(1999)	is	the	least
secure	 TLS	 version,	 though	 it’s	 still	 more	 secure	 than	 SSL	 3.0.	 TLS	 1.1
(2006)	 is	 better	 but	 includes	 a	 number	 of	 algorithms	 known	 today	 to	 be
weak.	TLS	1.2	(2008)	is	better	yet,	but	it’s	complex	and	only	gets	you	high
security	 if	 configured	 correctly	 (which	 is	 no	 simple	 matter).	 Also,	 its
complexity	 increases	 the	 risk	 of	 bugs	 in	 implementations	 and	 the	 risk	 of
incorrect	configurations.	For	example,	TLS	1.2	supports	AES	in	CBC	mode,
which	is	often	vulnerable	to	padding	oracle	attacks.

TLS	 1.2	 inherited	 dozens	 of	 features	 and	 design	 choices	 from	 earlier
versions	 of	 TLS	 that	 make	 it	 suboptimal,	 both	 in	 terms	 of	 security	 and
performance.	 To	 clean	 up	 this	 mess,	 cryptography	 engineers	 reinvented
TLS—keeping	only	the	good	parts	and	adding	security	features.	The	result
is	 TLS	 1.3,	 an	 overhaul	 that	 has	 simplified	 a	 bloated	 design	 and	made	 it
more	 secure,	 more	 efficient,	 and	 simpler.	 Essentially,	 TLS	 1.3	 is	 mature
TLS.

TLS	in	a	Nutshell
TLS	has	two	main	protocols:	one	determines	how	to	transmit	data,	and	the
other	what	 data	 to	 transmit.	The	 record	 protocol	 defines	 a	 packet	 format	 to
encapsulate	data	from	higher-level	protocols	and	sends	this	data	to	another



party.	It’s	a	simple	protocol	that	people	often	forget	is	part	of	TLS.
The	 handshake	 protocol—or	 just	 handshake—is	 TLS’s	 key	 agreement

protocol.	It’s	often	mistaken	for	“the”	TLS	protocol	but	the	record	protocol
and	the	handshake	can’t	be	separated.

The	handshake	is	started	by	a	client	to	initiate	a	secure	connection	with	a
server.	 The	 client	 sends	 an	 initial	 message	 called	 ClientHello	 with
parameters	 that	 include	 the	 cipher	 it	 wants	 to	 use.	The	 server	 checks	 this
message	 and	 its	 parameters	 and	 then	 responds	 with	 a	 message	 called
ServerHello.	Once	both	the	client	and	the	server	have	processed	each	other’s
messages,	 they’re	 ready	 to	 exchange	 encrypted	 data	 using	 session	 keys
established	through	the	handshake	protocol,	as	you’ll	see	in	the	section	“The
TLS	Handshake	Protocol”	on	page	241.

Certificates	and	Certificate	Authorities
The	most	critical	step	in	the	TLS	handshake,	and	the	crux	of	TLS’s	security,
is	 the	 certificate	 validation	 step,	 wherein	 a	 server	 uses	 a	 certificate	 to
authenticate	itself	to	a	client.

A	certificate	is	essentially	a	public	key	accompanied	by	a	signature	of	that
key	and	associated	 information	 (including	 the	domain	name).	For	example,
when	 connecting	 to	 https://www.google.com/,	 your	 browser	 will	 receive	 a
certificate	 from	 some	 network	 host	 and	 will	 then	 verify	 the	 certificate’s
signature,	which	reads	something	like	“I	am	google.com	and	my	public	key	is
[key].”	If	the	signature	is	verified,	the	certificate	(and	its	public	key)	are	said
to	be	trusted,	and	the	browser	can	proceed	with	establishing	the	connection.
(See	Chapters	10	and	12	for	details	about	signatures.)

How	does	the	browser	know	the	public	key	needed	to	verify	the	signature?
That’s	 where	 the	 concept	 of	 certificate	 authority	 (CA)	 comes	 in.	 A	 CA	 is
essentially	a	public	key	hard	coded	in	your	browser	or	operating	system.	The
public	 key’s	 private	 key	 (that	 is,	 its	 signing	 capability)	 belongs	 to	 a	 trusted
organization	that	ensures	the	public	keys	in	certificates	that	it	issues	belong
to	the	website	or	entity	that	claims	them.	That	is,	a	CA	acts	as	a	trusted	third
party.	Without	 CAs,	 there	 would	 be	 no	 way	 to	 verify	 that	 the	 public	 key
served	 by	 google.com	 belongs	 to	 Google	 and	 not	 to	 an	 eavesdropper
performing	a	man-in-the-middle	attack.

For	 example,	 the	 command	 shown	 in	 Listing	 13-1	 shows	what	 happens
when	we	use	the	OpenSSL	command-line	tool	to	initiate	a	TLS	connection

https://www.google.com/
http://google.com
http://google.com


to	www.google.com	on	port	443,	the	network	port	used	for	TLS-based	HTTP
connections	(that	is,	HTTPS.):

$	openssl	s_client	-connect	www.google.com:443
CONNECTED(00000003)
--snip--
---
Certificate	chain

❶	0	s:/C=US/ST=California/L=Mountain	View/O=Google	Inc/CN=www.google.com
			i:/C=US/O=Google	Inc/CN=Google	Internet	Authority	G2

❷	1	s:/C=US/O=Google	Inc/CN=Google	Internet	Authority	G2
			i:/C=US/O=GeoTrust	Inc./CN=GeoTrust	Global	CA

❸	2	s:/C=US/O=GeoTrust	Inc./CN=GeoTrust	Global	CA
			i:/C=US/O=Equifax/OU=Equifax	Secure	Certificate	Authority
---
Server	certificate
-----BEGIN	CERTIFICATE-----
MIIEgDCCA2igAwIBAgIISCr6QCbz5rowDQYJKoZIhvcNAQELBQAwSTELMAkGA1UE
BhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMxJTAjBgNVBAMTHEdvb2dsZSBJbnRl
--snip--
cb9reU8in8yCaH8dtzrFyUracpMureWnBeajOYXRPTdCFccejAh/xyH5SKDOOZ4v
3TP9GBtClAH1mSXoPhX73dp7jipZqgbY4kiEDNx+hformTUFBDHD0eO/s2nqwuWL
pBH6XQ==
-----END	CERTIFICATE-----
subject=/C=US/ST=California/L=Mountain	View/O=Google	Inc/CN=www.google.com
issuer=/C=US/O=Google	Inc/CN=Google	Internet	Authority	G2
--snip--

Listing	 13-1:	 Establishing	 a	 TLS	 connection	 with	 www.google.com	 and	 receiving	 certificates	 to
authenticate	the	connection

I’ve	 trimmed	 the	 output	 to	 show	 only	 the	 interesting	 part,	which	 is	 the
certificate.	Notice	that	before	the	first	certificate	(which	starts	with	the	BEGIN
CERTIFICATE	tag)	is	a	description	of	the	certificate	chain,	where	the	line	starting
with	s:	describes	the	subject	name	and	the	line	starting	with	i:	describes	the
issuer	of	the	signature.	Here,	certificate	0	is	the	one	received	by	google.com	❶,
certificate	1	❷	belongs	to	the	entity	that	signed	certificate	0,	and	certificate	2
❸	belongs	to	the	entity	that	signed	certificate	1.	The	organization	that	issued
certificate	2	(GeoTrust)	granted	permission	to	Google	Internet	Authority	to
issue	a	certificate	(certificate	1)	for	the	domain	name	www.google.com,	thereby
transferring	trust	to	Google	Internet	Authority.

Obviously,	 these	 CA	 organizations	 must	 be	 trustworthy	 and	 only	 issue
certificates	 to	trustworthy	entities,	and	they	must	protect	 their	private	keys
in	order	to	prevent	an	attacker	from	issuing	certificates	on	their	behalf	(for
example,	in	order	to	impersonate	a	legitimate	google.com	server).

http://www.google.com
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To	see	what’s	in	a	certificate,	we	enter	the	command	shown	in	Listing	13-
2	into	a	Linux	terminal	and	then	paste	the	first	certificate	shown	in	Listing
13-1.

$	openssl	x509	–text	–noout
-----BEGIN	CERTIFICATE-----
--snip--
-----END	CERTIFICATE-----
Certificate:
				Data:
								Version:	3	(0x2)
								Serial	Number:	5200243873191028410	(0x482afa4026f3e6ba)
				Signature	Algorithm:	sha256WithRSAEncryption
								Issuer:	C=US,	O=Google	Inc,	CN=Google	Internet	Authority	G2
								Validity
												Not	Before:	Dec	15	14:07:56	2016	GMT
												Not	After	:	Mar		9	13:35:00	2017	GMT
								Subject:	C=US,	ST=California,	L=Mountain	View,	O=Google	Inc,	CN=www.google.com
								Subject	Public	Key	Info:
												Public	Key	Algorithm:	rsaEncryption
																Public-Key:	(2048	bit)
																Modulus:
																				00:bc:bc:b2:f3:1a:16:3b:c6:f6:9d:28:e1:ef:8e:
																				92:9b:13:b2:ae:7b:50:8f:f0:b4:e0:36:8d:09:00:
--snip--
																				8f:e6:96:fe:41:41:85:9d:a9:10:9a:09:6e:fc:bd:
																				43:fa:4d:c6:a3:55:9a:9e:07:8b:f9:b1:1e:ce:d1:
																				22:49
																Exponent:	65537	(0x10001)
--snip--
				Signature	Algorithm:	sha256WithRSAEncryption
									94:cd:66:55:83:f1:16:7d:46:d8:66:21:06:ec:c6:9d:7c:1c:
									2b:c1:f6:4f:b7:3e:cd:01:ad:69:bd:a1:81:6a:7c:96:f5:9c:
									--snip--
									85:fa:2b:99:35:05:04:31:c3:d1:e3:bf:b3:69:ea:c2:e5:8b:
									a4:11:fa:5d

Listing	13-2:	Decoding	a	certificate	received	from	www.google.com

What	 you	 see	 in	 Listing	 13-2	 is	 the	 command	 openssl	 x509	 decoding	 a
certificate,	 originally	 provided	 as	 a	 block	 of	 base64-encoded	 data.	 Because
OpenSSL	 knows	 how	 this	 block	 of	 data	 is	 structured,	 it	 can	 tell	 us	what’s
inside	 the	 certificate,	 including	 a	 serial	 number	 and	 version	 information,
identifying	 information,	 validity	 dates	 (the	 Not	 Before	 and	 Not	 After	 lines),	 a
public	key	(here	as	an	RSA	modulus	and	its	public	exponent),	and	a	signature
of	the	preceding	information.

Although	 security	 experts	 and	 cryptographers	 often	 claim	 the	 whole
certificate	system	is	broken	by	design,	it’s	one	of	the	best	solutions	we	have,

http://www.google.com


along	 with	 the	 trust-on-first-use	 (TOFU)	 policy	 adopted	 by	 SSH,	 for
example.

The	Record	Protocol
All	 data	 exchanged	 through	 TLS	 1.3	 communications	 is	 transmitted	 as
sequences	 of	TLS	 records,	 the	 data	 packets	 used	 by	TLS.	The	TLS	 record
protocol	(the	record	 layer)	 is	essentially	a	transport	protocol,	agnostic	of	the
transported	 data’s	 meaning;	 this	 is	 what	 makes	 TLS	 suitable	 for	 any
application.

The	TLS	record	protocol	is	first	used	to	carry	the	data	exchanged	during
the	 handshake.	 Once	 the	 handshake	 is	 complete	 and	 both	 parties	 share	 a
secret	key,	application	data	is	fragmented	into	chunks	that	are	transmitted	as
part	of	the	TLS	records.

Structure	of	a	TLS	Record
A	 TLS	 record	 is	 a	 chunk	 of	 data	 of	 at	 most	 16	 kilobytes,	 structured	 as
follows:

The	first	byte	represents	 the	type	of	data	transmitted	and	 is	set	 to	the
value	22	for	handshake	data,	23	for	encrypted	data,	and	21	for	alerts.	In
the	TLS	1.3	specifications,	this	value	is	called	ContentType.
The	second	and	third	byte	are	set	to	3	and	1,	respectively.	These	bytes
are	fixed	for	historical	reasons	and	are	not	unique	to	TLS	version	1.3.
In	the	specifications,	this	2-byte	value	is	called	ProtocolVersion.
The	fourth	and	fifth	bytes	encode	the	length	of	the	data	to	transmit	as	a
16-bit	integer,	which	can	be	no	larger	than	214	bytes	(16KB).
The	rest	of	the	bytes	are	the	data	to	transmit	(also	called	the	payload),	of
a	 length	 equal	 to	 the	 value	 encoded	 by	 the	 record’s	 fourth	 and	 fifth
bytes.

NOTE
A	TLS	record	has	a	relatively	 simple	 structure.	As	we’ve	 seen,	a	TLS	record’s
header	 includes	 only	 three	 fields.	 For	 comparison,	 an	 IPv4	 packet	 includes	 14
fields	before	its	payload	and	a	TCP	segment	includes	13	fields.



When	 the	 first	byte	of	 a	TLS	1.3	 record	 (ContentType)	 is	 set	 to	23,	 its
payload	 is	 encrypted	 and	 authenticated	using	 an	 authenticated	 cipher.	The
payload	consists	of	a	ciphertext	followed	by	an	authentication	tag,	which	the
receiving	 end	 will	 decrypt.	 But	 then	 how	 does	 the	 recipient	 know	 which
cipher	and	key	to	decrypt	with?	That’s	the	magic	of	TLS:	if	you	receive	an
encrypted	TLS	record,	you	already	know	the	cipher	and	key,	because	 they
are	established	when	the	TLS	handshake	protocol	is	executed.

Nonces
Unlike	many	other	protocols	such	as	IPsec’s	Encapsulating	Security	Payload
(ESP),	TLS	records	don’t	specify	the	nonce	to	be	used	by	the	authenticated
cipher.

The	 nonces	 used	 to	 encrypt	 and	 decrypt	TLS	 records	 are	 derived	 from
64-bit	sequence	numbers,	maintained	locally	by	each	party,	and	incremented
for	 each	new	 record.	When	 the	 client	 encrypts	 data,	 it	 derives	 a	nonce	by
XORing	 the	 sequence	 number	 with	 a	 value	 called	 client_write_iv,	 itself
derived	from	the	shared	secret.	The	server	uses	a	similar	method	but	with	a
different	value,	called	server_write_iv.

For	 example,	 if	 you	 transmit	 three	 TLS	 records,	 you’ll	 derive	 a	 nonce
from	0	for	the	first	record,	from	1	for	the	second,	and	from	2	for	the	third;	if
you	 then	 receive	 three	 records,	 you’ll	 also	 use	 nonces	 0,	 1,	 and	 2,	 in	 this
order.	 Reuse	 of	 the	 same	 sequence	 numbers	 values	 for	 encrypting	 trans​-
mitted	data	and	decrypting	receiving	data	isn’t	a	weakness	because	they	are
XORed	 with	 different	 constants	 (client_write_iv	 and	 server_write_iv)	 and
because	you	use	different	secret	keys	for	each	direction.

Zero	Padding
TLS	1.3	records	support	a	nice	feature	known	as	zero	padding	that	mitigates
traffic	analysis	attacks.	Traffic	analysis	is	a	method	that	attackers	use	to	extract
information	 from	 traffic	 patterns	using	 timing,	 volume	of	 data	 transferred,
and	so	on.	For	example,	because	ciphertexts	are	approximately	the	same	size
as	plaintexts,	even	when	strong	encryption	 is	used,	attackers	can	determine
the	 approximate	 size	 of	 your	messages	 simply	 by	 looking	 at	 the	 length	 of
their	ciphertext.

Zero	padding	adds	zeros	to	the	plaintext	in	order	to	inflate	the	ciphertext’s
size,	 and	 thus	 to	 fool	observers	 into	 thinking	 that	 an	 encrypted	message	 is



longer	than	it	really	is.

The	TLS	Handshake	Protocol
The	handshake	is	the	key	TLS	agreement	protocol—the	process	by	which	a
client	 and	 server	 establish	 shared	 secret	 keys	 in	 order	 to	 initiate	 secure
communications.	 During	 the	 course	 of	 a	 TLS	 handshake,	 the	 client	 and
server	 play	 different	 roles.	 The	 client	 proposes	 some	 configurations	 (the
TLS	 version	 and	 a	 suite	 of	 ciphers,	 in	 order	 of	 preference)	 and	 the	 server
chooses	 the	configuration	to	be	used.	The	server	should	 follow	the	client’s
preferences,	 but	 it	 may	 do	 otherwise.	 In	 order	 to	 ensure	 interoperability
between	 implementations	 and	 to	 guarantee	 that	 any	 server	 implementing
TLS	1.3	will	be	able	to	read	TLS	1.3	data	sent	by	any	client	implementing
TLS	1.3	(even	if	it’s	using	a	different	library	or	programming	language),	the
TLS	1.3	specifications	also	describe	the	format	in	which	data	should	be	sent.

Figure	 13-1	 shows	 how	 data	 is	 exchanged	 in	 the	 handshake	 process,	 as
described	 in	 the	 TLS	 1.3	 specifications.	 As	 you	 can	 see,	 in	 the	 TLS	 1.3
handshake,	 the	 client	 sends	 a	 message	 to	 the	 server	 saying,	 “I	 want	 to
establish	a	TLS	connection	with	you.	Here	are	the	ciphers	that	I	support	to
encrypt	TLS	records,	and	here	is	a	Diffie–Hellman	public	key.”	The	public
key	must	be	generated	specifically	for	this	TLS	session,	and	the	client	keeps
the	associated	private	key.	The	message	sent	by	the	client	also	includes	a	32-
byte	 random	 value	 and	 optional	 information	 (additional	 parameters	 and
such).	This	 first	message	 is	 called	ClientHello,	 and	 it	must	 follow	a	 specific
format	 when	 transmitted	 as	 a	 series	 of	 bytes,	 as	 defined	 in	 the	 TLS	 1.3
specification.



Figure	13-1:	The	TLS	1.3	handshake	process	when	connecting	to	HTTPS	websites

But	note	 that	 the	 specifications	also	describe	 in	what	 format	data	 should
be	 sent,	 in	 order	 to	 ensure	 interoperability	 between	 implementations	 by
guaranteeing	that	any	server	implementing	TLS	1.3	will	be	able	to	read	TLS
1.3	data	sent	by	any	client	implementing	TLS	1.3,	possibly	using	a	different
library	or	programming	language.

The	 server	 receives	 the	 ClientHello	 message,	 verifies	 that	 it’s	 correctly
formatted,	and	responds	with	a	message	called	ServerHello.	The	ServerHello
message	 is	 loaded	 with	 information:	 it	 contains	 the	 cipher	 to	 be	 used	 to
encrypt	TLS	records,	a	Diffie–Hellman	public	key,	a	32-byte	random	value
(discussed	in	“Downgrade	Protection”	on	page	244),	a	certificate,	a	signature
of	 all	 the	 previous	 information	 in	 ClientHello	 and	 ServerHello	 messages
(computed	using	the	private	key	associated	with	the	certificate’s	public	key),
a	MAC	of	that	same	information	plus	the	signature.	The	MAC	is	computed
using	a	symmetric	key	derived	from	the	Diffie–Hellman	shared	secret,	which
the	 server	 computes	 from	 its	 Diffie–Hellman	 private	 key	 and	 the	 client’s
public	key.

When	 the	 client	 receives	 the	 ServerHello	 message,	 it	 verifies	 the
certificate’s	 validity,	 verifies	 the	 signature,	 computes	 the	 shared	 Diffie–



Hellman	 secret	 and	 derives	 symmetric	 keys	 from	 it,	 and	 verifies	 the	MAC
sent	by	the	server.	Once	everything	has	been	verified,	the	client	is	ready	to
send	encrypted	messages	to	the	server.

Note,	however,	that	TLS	1.3	supports	many	options	and	extensions,	so	it
may	 behave	 differently	 than	 what	 has	 been	 described	 here	 (and	 shown	 in
Figure	 13-1).	 You	 can,	 for	 example,	 configure	 the	 TLS	 1.3	 handshake	 to
require	a	client	certificate	so	that	the	server	verifies	the	identity	of	the	client.
TLS	1.3	also	supports	a	handshake	with	pre-shared	keys.

NOTE
TLS	1.3	supports	many	options	and	extensions,	so	it	may	behave	differently	than
what	has	been	described	here	(and	shown	in	Figure	13-1).	You	can,	for	example,
configure	the	TLS	1.3	handshake	to	require	a	client	certificate	so	that	the	server
verifies	the	identity	of	the	client.	TLS	1.3	also	supports	a	handshake	with	pre-
shared	keys.

Let’s	 look	 at	 this	 in	 practice.	 Say	 you’ve	 deployed	 TLS	 1.3	 to	 provide
secure	access	to	the	website	https://www.nostarch.com/.	When	you	point	your
browser	(the	client)	to	this	site,	your	browser	sends	a	ClientHello	message	to
the	 site’s	 server	 that	 includes	 the	 ciphers	 that	 it	 supports.	 The	 website
responds	with	a	ServerHello	message	and	a	certificate	that	includes	a	public
key	 associated	 with	 the	 domain	 www.nostarch.com.	 The	 client	 verifies	 the
certificate’s	validity	using	one	of	the	certificate	authorities	embedded	in	the
browser	 (the	 received	 certificate	 should	 be	 signed	 by	 a	 trusted	 certificate
authority,	 whose	 certificate	 should	 be	 included	 in	 the	 browser’s	 certificate
store	 in	 order	 to	 be	 validated).	 Once	 all	 checks	 are	 passed,	 the	 browser
requests	the	site’s	initial	page	from	the	www.nostarch.com	server.

Upon	 a	 successful	TLS	 1.3	 handshake,	 all	 communications	 between	 the
client	and	the	server	are	encrypted	and	authenticated.	An	eavesdropper	can
learn	that	a	client	at	a	given	IP	address	is	talking	to	a	server	at	another	given
IP	address,	and	can	observe	the	encrypted	content	exchanged,	but	won’t	be
able	 to	 learn	the	underlying	plaintext	or	modify	 the	encrypted	messages	 (if
they	 do,	 the	 receiving	 party	 will	 notice	 that	 the	 communication	 has	 been
tampered	 with,	 because	 messages	 are	 not	 only	 encrypted	 but	 also
authenticated).	That’s	enough	security	for	many	applications.

https://www.nostarch.com/
http://www.nostarch.com
http://www.nostarch.com


TLS	1.3	Cryptographic	Algorithms
We	 know	 that	 TLS	 1.3	 uses	 authenticated	 encryption	 algorithms,	 a	 key
derivation	 function	 (a	hash	 function	 that	derives	 secret	 keys	 from	a	 shared
secret),	 as	 well	 as	 a	 Diffie–Hellman	 operation.	 But	 how	 exactly	 do	 these
work,	what	algorithms	are	used,	and	how	secure	are	they?

With	regard	to	the	choice	of	authenticated	ciphers,	TLS	1.3	supports	only
three	algorithms:	AES-GCM,	AES-CCM	(a	slightly	less	efficient	mode	than
GCM),	and	the	ChaCha20	stream	cipher	combined	with	the	Poly1305	MAC
(as	 defined	 in	 RFC	 7539).	 Because	 TLS	 1.3	 prevents	 you	 from	 using	 an
unsafe	key	length	such	as	64	or	80	bits	(which	are	both	too	short),	the	secret
key	 can	 be	 either	 128	 bits	 (AES-GCM	 or	 AES-CCM)	 or	 256	 bits	 (AES-
GCM	or	ChaCha20-Poly1305).

The	key	derivation	operation	(KDF)	in	Figure	13-1	is	based	on	HKDF,	a
construction	based	on	HMAC	(discussed	in	Chapter	7)	and	defined	in	RFC
5869	that	uses	either	the	SHA-256	or	the	SHA-384	hash	function.

Your	 options	 for	 performing	 the	Diffie–Hellman	 operation	 (the	 core	 of
the	 TLS	 1.3	 handshake)	 are	 limited	 to	 elliptic	 curve	 cryptography	 and	 a
multiplicative	 group	 of	 integers	modulo	 a	 prime	 number	 (as	 in	 traditional
Diffie–Hellman).	 But	 you	 can’t	 use	 just	 any	 elliptic	 curve	 or	 group:	 the
supported	 curves	 include	 three	 NIST	 curves	 as	 well	 as	 Curve25519
(discussed	 in	Chapter	 12)	 and	Curve448,	 both	defined	 in	RFC	7748.	TLS
1.3	also	supports	DH	over	groups	of	integers,	as	opposed	to	elliptic	curves.
The	groups	supported	are	 the	 five	groups	defined	 in	RFC	7919:	groups	of
2048,	3072,	4096,	6144,	and	8192	bits.

The	 2048-bit	 group	may	be	TLS	1.3’s	weakest	 link.	Whereas	 the	 other
options	provide	at	least	128-bit	security,	2048-bit	Diffie–Hellman	is	believed
to	 provide	 less	 than	 100-bit	 security.	 Supporting	 a	 2048-bit	 group	 can
therefore	be	seen	as	inconsistent	with	other	TLS	1.3	design	choices.

TLS	1.3	Improvements	over	TLS	1.2
TLS	1.3	is	very	different	from	its	predecessor.	For	one	thing,	 it	gets	rid	of
weak	 algorithms	 like	 MD5,	 SHA-1,	 RC4,	 and	 AES	 in	 CBC	 mode.	 Also,
whereas	TLS	 1.2	 often	 protected	 records	 using	 a	 combination	 of	 a	 cipher
and	 a	 MAC	 (such	 as	 HMAC-SHA-1)	 within	 a	 MAC-then-encrypt
construction,	 TLS	 1.3	 only	 supports	 the	 more	 efficient	 and	 more	 secure



authenticated	 ciphers.	 TLS	 1.3	 also	 ditches	 elliptic	 curve	 point	 encoding
negotiation,	and	defines	a	single	point	format	for	each	curve.

One	of	the	main	development	goals	of	TLS	1.3	was	to	remove	features	in
1.2	 that	 weakened	 the	 protocol	 and	 to	 reduce	 the	 protocol’s	 overall
complexity	 and	 thereby	 its	 attack	 surface.	 For	 example,	 TLS	 1.3	 ditches
optional	data	compression,	a	feature	that	enabled	the	CRIME	attack	on	TLS
1.2.	This	attack	exploited	the	fact	that	the	length	of	the	compressed	version
of	a	message	leaks	information	on	the	content	of	the	message.

But	TLS	1.3	also	brings	new	features	that	make	connections	either	more
secure	 or	 more	 efficient.	 I’ll	 discuss	 three	 of	 these	 features	 briefly:
downgrade	 protection,	 the	 single	 round-trip	 handshake,	 and	 session
resumption.

Downgrade	Protection
TLS	 1.3’s	 downgrade	 protection	 feature	 is	 designed	 as	 a	 defense	 against
downgrade	 attacks,	wherein	 an	 attacker	 forces	 the	 client	 and	 server	 to	use	 a
weaker	 version	 of	 TLS	 than	 1.3.	 To	 carry	 out	 a	 downgrade	 attack,	 an
attacker	forces	the	server	to	use	a	weaker	version	of	TLS	by	intercepting	and
modifying	the	ClientHello	message	to	tell	the	server	that	the	client	doesn’t
support	 TLS	 1.3.	 Now	 the	 attacker	 can	 exploit	 vulnerabilities	 in	 earlier
versions	of	TLS.

In	 an	 effort	 to	 defeat	 downgrade	 attacks,	 the	TLS	 1.3	 server	 uses	 three
types	of	patterns	 in	 the	32-byte	 random	value	 sent	within	 the	ServerHello
message	 to	 identify	 the	 type	 of	 connection	 requested.	The	 pattern	 should
match	the	client’s	request	for	a	specific	type	of	TLS	connection.	If	the	client
receives	the	wrong	pattern,	it	knows	that	something	is	up.

Specifically,	 if	the	client	asks	for	a	TLS	1.2	connection,	the	first	eight	of
the	32	bytes	are	set	to	44	4F	57	4E	47	52	44	01,	and	if	it	asks	for	a	TLS	1.1
connection,	they’re	set	to	44	4F	57	4E	47	52	44	00.	However,	 if	 the	client
requests	a	TLS	1.3	connection,	these	first	eight	bits	should	be	random.	For
example,	if	a	client	sends	a	ClientHello	asking	for	a	TLS	1.3	connection,	but
an	 attacker	 on	 the	 network	 modifies	 it	 to	 ask	 for	 a	 TLS	 1.1	 connection,
when	 the	 client	 receives	 the	 ServerHello	 with	 the	 wrong	 pattern,	 it	 will
know	 that	 its	 ClientHello	 message	 was	 modified.	 (The	 attacker	 can’t
arbitrarily	 modify	 the	 server’s	 32-byte	 random	 value	 because	 this	 value	 is
cryptographically	signed.)



Single	Round-Trip	Handshake
In	 a	 typical	TLS	 1.2	 handshake,	 the	 client	 sends	 some	 data	 to	 the	 server,
waits	 for	 a	 response,	 and	 then	 sends	more	 data	 and	 waits	 for	 the	 server’s
response	before	sending	encrypted	messages.	The	delay	is	that	of	two	round-
trip	times	(RTT).	In	contrast,	TLS	1.3’s	handshake	takes	a	single	round-trip
time,	 as	 shown	 in	Figure	 13-1.	The	 time	 saved	 can	 be	 in	 the	 hundreds	 of
milliseconds.	 That	may	 sound	 small,	 but	 its	 actually	 significant	 when	 you
consider	that	servers	of	popular	services	handle	thousands	of	connections	per
second.

Session	Resumption
TLS	1.3	 is	 faster	 than	1.2,	but	 it	can	be	made	even	 faster	 (on	 the	order	of
hundreds	 of	 milliseconds)	 by	 completely	 eliminating	 the	 round	 trips	 that
precede	an	encrypted	session.	The	trick	is	to	use	session	resumption,	a	method
that	leverages	the	pre-shared	key	exchanged	between	the	client	and	server	in
a	previous	session	to	bootstrap	a	new	session.	Session	resumption	brings	two
major	benefits:	 the	client	can	start	encrypting	 immediately,	and	there	 is	no
need	to	use	certificates	in	these	subsequent	sessions.

Figure	13-2	shows	how	session	resumption	works.	First,	the	client	sends	a
ClientHello	message	 that	 includes	 the	 identifier	 of	 the	 key	 already	 shared
(denoted	 PSK	 for	 pre-shared	 key)	 with	 the	 server,	 along	 with	 a	 fresh	 DH
public	key.	The	client	can	also	 include	encrypted	data	 in	 this	 first	message
(such	 data	 is	 known	 as	 0-RTT	 data).	 When	 the	 server	 responds	 to	 a
ClientHello	message,	it	provides	a	MAC	over	the	data	exchange.	The	client
verifies	 the	MAC	 and	 knows	 that	 it’s	 talking	 to	 the	 same	 server	 as	 it	 did
previously,	 thus	rendering	certificate	validation	somewhat	superfluous.	The
client	 and	 the	 server	 perform	 a	 Diffie–Hellman	 key	 agreement	 as	 in	 the
normal	handshake,	 and	 subsequent	messages	 are	 encrypted	using	keys	 that
depend	 on	 both	 the	PSK	 and	 the	 newly	 computed	Diffie–Hellman	 shared
secret.



Figure	 13-2:	 The	 TLS	 1.3	 session	 resumption	 handshake.	 The	 0-RTT	 data	 is	 the	 session
resumption	data	sent	along	with	the	ClientHello.

The	Strengths	of	TLS	Security
We’ll	 evaluate	 the	 strengths	of	TLS	1.3	with	 respect	 to	 two	main	 security
notions	discussed	in	Chapter	11:	authentication	and	forward	secrecy.

Authentication
During	the	TLS	1.3	handshake,	the	server	authenticates	to	the	client	using
the	 certificate	 mechanism.	 However,	 the	 client	 is	 not	 authenticated,	 and
clients	may	authenticate	with	a	server-based	application	(such	as	Gmail)	by
providing	 a	 username	 and	password	 in	 a	TLS	 record	 after	 performing	 the
handshake.	 If	 the	 client	 has	 already	 established	 a	 session	 with	 the	 remote
service,	 it	may	authenticate	by	 sending	a	 secure	 cookie,	one	 that	can	only	be
sent	through	a	TLS	connection.

In	 certain	 cases,	 clients	 can	 authenticate	 to	 a	 server	 using	 a	 certificate-
based	mechanism	similar	to	what	the	server	uses	in	order	to	authenticate	to
the	 client:	 the	 client	 sends	 a	 client	 certificate	 to	 the	 server,	 which	 in	 turn
verifies	 this	 certificate	 before	 authorizing	 the	 client.	 However,	 client
certificates	 are	 rarely	 used	 because	 they	 complicate	 things	 for	 both	 clients
and	 the	 server	 (that	 is,	 the	 certificate	 issuer):	 clients	 need	 to	 perform
complex	operations	in	order	to	integrate	the	certificate	into	their	system	and
to	 protect	 its	 private	 key,	 while	 the	 issuer	 needs	 to	 make	 sure	 that	 only
authorized	clients	received	a	certificate,	among	other	requirements.



Forward	Secrecy
Recall	from	“Key	Agreement	Protocols”	on	page	205	that	a	key	agreement	is
said	 to	 provide	 forward	 secrecy	 if	 previous	 sessions	 aren’t	 compromised
when	 the	 present	 session	 is	 compromised.	 In	 the	 data	 leak	 model,	 only
temporary	secrets	are	compromised,	whereas	in	the	breach	model,	long-term
secrets	are	exposed.

Thankfully,	TLS	1.3	forward	secrecy	holds	up	 in	the	face	of	both	a	data
leak	and	a	breach.	In	the	case	of	 the	data	 leak	model,	 the	attacker	recovers
temporary	secrets	such	as	the	session	keys	or	Diffie–Hellman	private	keys	of
a	specific	session	(the	values	c,	s,	secret,	and	keys	in	Figure	13-1	on	page	242).
However,	 they	 can	 only	 use	 these	 values	 to	 decrypt	 communications	 from
the	present	session,	but	not	from	previous	sessions,	because	different	values
of	c	and	s	were	used	(thus	yielding	different	keys).

In	the	breach	model,	the	attacker	also	recovers	long-term	secrets	(namely,
the	 private	 key	 that	 corresponds	 to	 the	 public	 key	 in	 the	 certificate).
However,	 this	 is	 no	 more	 useful	 when	 decrypting	 previous	 sessions	 than
temporary	 secrets,	 because	 this	 private	 key	 only	 serves	 to	 authenticate	 the
server,	and	forward	secrecy	holds	up	again.

But	 what	 happens	 in	 practice?	 Say	 an	 attacker	 compromises	 a	 client’s
machine	and	gains	access	to	all	of	its	memory.	Now	the	attacker	may	recover
the	 client’s	 TLS	 session	 keys	 and	 secrets	 for	 the	 current	 session	 from
memory.	 But	 more	 importantly,	 if	 previous	 keys	 are	 still	 in	 memory,	 the
attacker	 may	 be	 able	 to	 find	 them	 too	 and	 use	 them	 to	 decrypt	 previous
sessions,	 thereby	 bypassing	 the	 theoretical	 forward	 secrecy.	 Therefore,	 in
order	for	a	TLS	implementation	to	ensure	forward	secrecy,	it	must	properly
erase	keys	from	memory	once	they	are	no	longer	used,	typically	by	zeroing
out	the	memory.

How	Things	Can	Go	Wrong
TLS	1.3	fits	 the	bill	as	a	general-purpose	secure	communications	protocol,
but	 it’s	 not	 bulletproof.	 Like	 any	 security	 system,	 it	 can	 fail	 under	 certain
circumstances	 (for	 example,	 when	 the	 assumptions	 made	 by	 its	 designers
about	 real	 attacks	 turn	 out	 to	 be	 wrong).	 Unfortunately,	 even	 the	 latest
version	 of	 TLS	 1.3,	 configured	 with	 the	most	 secure	 ciphers,	 can	 still	 be
compromised.	For	example,	TLS	1.3	security	relies	on	the	assumption	that
all	 three	 parties	 (the	 client,	 the	 server,	 and	 the	 certificate	 authority)	 will



behave	 honestly,	 but	 what	 if	 one	 party	 is	 compromised	 or	 the	 TLS
implementation	itself	is	poorly	implemented?

Compromised	Certificate	Authority
Root	certificate	authorities	 (root	CAs)	are	organizations	that	are	trusted	by
browsers	to	validate	certificates	served	by	remote	hosts.	For	example,	if	your
browser	accepts	the	certificate	provided	by	www.google.com,	the	assumption	is
that	 a	 trusted	CA	has	 verified	 the	 legitimacy	of	 the	 certificate	owner.	The
browser	 verifies	 the	 certificate	 by	 checking	 its	 CA-issued	 signature.	 Since
only	 the	 CA	 knows	 the	 private	 key	 required	 to	 create	 this	 signature,	 we
assume	that	others	can’t	create	valid	certificates	on	behalf	of	 the	CA.	Very
often	a	website’s	 certificate	won’t	be	 signed	by	a	 root	CA	but	by	an	 inter​-
mediate	CA,	which	is	connected	to	the	root	CA	through	a	certificate	chain.

But	let’s	say	that	a	CA’s	private	key	is	compromised.	Now	the	attacker	will
be	able	to	use	the	CA’s	private	key	to	create	a	certificate	 for	any	URLs	in,
say,	the	google.com	domain	without	Google’s	approval.	What	happens	then?
The	attacker	can	use	those	certificates	to	pretend	to	host	a	legitimate	server
or	 subdomain	 like	 mail.google.com	 and	 intercept	 a	 user’s	 credentials	 and
communications.	 That’s	 exactly	 what	 happened	 in	 2011	 when	 an	 attacker
hacked	 into	 the	 network	 of	 the	Dutch	 certificate	 authority	DigiNotar	 and
was	 able	 to	 create	 certificates	 that	 appeared	 to	 have	 been	 legitimate
DigiNotar	 certificates.	 The	 attacker	 then	 used	 these	 fake	 certificates	 for
several	Google	services.

Compromised	Server
If	a	server	is	compromised	and	fully	controlled	by	an	attacker,	all	is	lost:	the
attacker	will	be	able	to	see	all	transmitted	data	before	it’s	encrypted,	and	all
received	data	once	it	has	been	decrypted.	They	will	also	be	able	to	get	their
hands	on	the	server’s	private	key,	which	could	allow	them	to	impersonate	the
legitimate	 server	 using	 their	 own	malicious	 server.	 Obviously,	 TLS	 won’t
save	you	in	this	case.

Fortunately,	 such	 security	 disasters	 are	 rarely	 seen	 in	 high-profile
applications	 such	 as	 Gmail	 and	 iCloud,	 which	 are	 well	 protected	 and
sometimes	 have	 their	 private	 keys	 stored	 in	 a	 separate	 security	 module.
Attacks	 on	 web	 applications	 via	 vulnerabilities	 such	 as	 database	 query
injections	 and	 cross-site	 scripting	 are	 more	 common,	 because	 they	 are

http://www.google.com
http://google.com
http://mail.google.com


mostly	independent	of	TLS’s	security	and	are	carried	out	by	attackers	over	a
legitimate	 TLS	 connection.	 Such	 attacks	 may	 compromise	 usernames,
passwords,	and	so	on.

Compromised	Client
TLS	 security	 is	 also	 compromised	 when	 a	 client,	 such	 as	 a	 browser,	 is
compromised	 by	 a	 remote	 attacker.	 Having	 compromised	 the	 client,	 the
attacker	will	be	able	to	capture	session	keys,	read	any	decrypted	data,	and	so
on.	They	could	even	install	a	rogue	CA	certificate	in	the	client’s	browser	to
have	it	silently	accept	otherwise	invalid	certificates,	thereby	letting	attackers
intercept	TLS	connections.

The	big	difference	between	the	compromised	CA	or	server	scenarios	and
the	 compromised	 client	 scenario	 is	 that	 in	 the	 case	 of	 the	 compromised
client,	only	the	targeted	client	will	be	affected,	instead	of	potentially	all	the
clients.

Bugs	in	Implementations
As	with	any	cryptographic	 system,	TLS	can	 fail	when	 there	are	bugs	 in	 its
implementation.	The	poster	 child	 for	TLS	bugs	 is	Heartbleed	 (see	Figure
13-3),	 a	 buffer	 overflow	 in	 the	OpenSSL	 implementation	of	 a	minor	TLS
feature	 known	 as	 heartbeat.	 Heartbleed	 was	 discovered	 in	 2014,
independently	by	 a	Google	 researcher	 and	by	 the	Codenomicon	company,
and	affected	millions	of	TLS	servers	and	clients.

As	 you	 can	 see	 in	Figure	 13-3,	 a	 client	 first	 sends	 a	 buffer	 along	with	 a
buffer	 length	 to	 the	 server	 to	 check	 whether	 the	 server	 is	 online.	 In	 this
example,	 the	 buffer	 is	 the	 string	BANANAS,	 and	 the	 client	 explicitly	 says
that	 this	word	 is	 seven	 letters	 long.	The	server	reads	 the	seven-letter	word
and	returns	it	to	the	client.



Figure	13-3:	The	Heartbleed	bug	in	OpenSSL	implementations	of	TLS

The	problem	is	that	the	server	doesn’t	confirm	that	the	length	is	correct,
and	 will	 attempt	 to	 read	 as	 many	 characters	 as	 the	 client	 tells	 it	 to.
Consequently,	if	the	client	provides	a	length	that	is	longer	than	the	string’s
actual	length,	the	server	reads	too	much	data	from	memory	and	will	return	it
to	 the	 client,	 together	 with	 any	 extra	 data	 that	 may	 contain	 sensitive
information,	such	as	private	keys	or	session	cookies.

It	won’t	surprise	you	to	hear	that	the	Heartbleed	bug	came	as	a	shock.	To
avoid	similar	future	bugs,	OpenSSL	and	other	major	TLS	implementations
now	perform	rigorous	code	reviews	and	use	automated	tools	such	as	fuzzers
in	order	to	identify	potential	issues.

Further	Reading
As	I	stated	at	the	outset,	this	chapter	is	not	a	comprehensive	guide	to	TLS,
and	 you	may	want	 to	 dig	 deeper	 into	TLS	1.3.	 For	 starters,	 the	 complete
TLS	 1.3	 specifications	 include	 everything	 about	 the	 protocol	 (though	 not
necessarily	 about	 its	 underlying	 rationale).	You	 can	 find	 that	 on	 the	home
page	of	the	TLS	Working	Group	(TLSWG)	here:	https://tlswg.github.io/.

In	addition,	let	me	cite	two	important	TLS	initiatives:

SSL	 Labs	 TLS	 test	 (https://www.ssllabs.com/ssltest/)	 is	 a	 free	 service	 by
Qualys	 that	 lets	 you	 test	 a	 browser’s	 or	 a	 server’s	TLS	 configuration,
providing	a	 security	 rating	as	well	 as	 improvement	 suggestions.	 If	 you

https://tlswg.github.io/
https://www.ssllabs.com/ssltest/


set	up	your	own	TLS	server,	use	this	test	to	make	sure	that	everything	is
safe	and	that	you	get	an	“A”	rating.
Let’s	Encrypt	(https://letsencrypt.org/)	 is	a	nonprofit	that	offers	a	service
to	 “automagically”	 deploy	 TLS	 on	 your	 HTTP	 servers.	 It	 includes
features	 to	 automatically	generate	 a	 certificate	 and	 configure	 the	TLS
server,	 and	 it	 supports	 all	 the	 common	 web	 servers	 and	 operating
systems.

https://letsencrypt.org/


14
QUANTUM	AND	POST-QUANTUM

Previous	 chapters	 focused	 on	 cryptography	 today,	 but	 in	 this	 chapter	 I’ll
examine	the	future	of	cryptography	over	a	time	horizon	of,	say,	a	century	or
more—one	 in	 which	 quantum	 computers	 exist.	 Quantum	 computers	 are
computers	 that	 leverage	phenomena	from	quantum	physics	 in	order	to	run
different	 kinds	 of	 algorithms	 than	 the	 ones	 we’re	 used	 to.	 Quantum
computers	don’t	exist	yet	and	look	very	hard	to	build,	but	if	they	do	exist	one
day,	 then	 they’ll	 have	 the	 potential	 to	 break	 RSA,	 Diffie–Hellman,	 and
elliptic	 curve	 cryptography—that	 is,	 all	 the	 public-key	 crypto	 deployed	 or
standardized	as	of	this	writing.

To	 insure	 against	 the	 risk	 posed	 by	 quantum	 computers,	 crypto​graphy
researchers	 have	 developed	 alternative	 public-key	 crypto	 algorithms	 called
post-quantum	algorithms	that	would	resist	quantum	computers.	In	2015,	the
NSA	called	for	a	transition	to	quantum-resistant	algorithms	designed	to	be
safe	 even	 in	 the	 face	 of	 quantum	 computers,	 and	 in	 2017	 the	 US
standardization	 agency	 NIST	 began	 a	 process	 that	 will	 eventually
standardize	post-quantum	algorithms.

This	chapter	will	thus	give	you	a	nontechnical	overview	of	the	principles
behind	quantum	computers	as	well	as	a	glimpse	of	post-quantum	algorithms.
There’s	 some	math	 involved,	 but	 nothing	more	 than	 basic	 arithmetic	 and
linear	algebra,	so	don’t	be	scared	by	the	unusual	notations.

How	Quantum	Computers	Work
Quantum	computing	is	a	model	of	computing	that	uses	quantum	physics	to
compute	 differently	 and	 do	 things	 that	 classical	 computers	 can’t,	 such	 as
breaking	 RSA	 and	 elliptic	 curve	 cryptography	 efficiently.	 But	 a	 quantum
computer	is	not	a	super-fast	normal	computer.	In	fact,	quantum	computers



can’t	 solve	 any	 problem	 that	 is	 too	 hard	 for	 a	 classical	 computer,	 such	 as
brute	force	search	or	NP-complete	problems.

Quantum	 computers	 are	 based	 on	 quantum	 mechanics,	 the	 branch	 of
physics	that	studies	the	behavior	of	subatomic	particles,	which	behave	truly
randomly.	Unlike	classical	computers,	which	operate	on	bits	that	are	either	0
or	1,	quantum	computers	are	based	on	quantum	bits	(or	qubits),	which	can	be
both	 0	 and	 1	 simultaneously—a	 state	 of	 ambiguity	 called	 superposition.
Physicists	 discovered	 that	 in	 this	 microscopic	 world,	 particles	 such	 as
electrons	 and	photons	 behave	 in	 a	 highly	 counterintuitive	way:	 before	 you
observe	an	electron,	the	electron	is	not	at	a	definite	location	in	space,	but	in
several	 locations	 at	 the	 same	 time	 (that	 is,	 in	 a	 state	of	 superposition).	But
once	you	observe	it—an	operation	called	measurement	in	quantum	physics—
then	 it	 stops	at	a	 fixed,	 random	location	and	 is	no	 longer	 in	 superposition.
This	 quantum	magic	 is	 what	 enables	 the	 creation	 of	 qubits	 in	 a	 quantum
computer.

But	 quantum	 computers	 only	 work	 because	 of	 a	 crazier	 phenomenon
called	entanglement:	two	particles	can	be	connected	(entangled)	in	a	way	that
observing	 the	 value	 of	 one	 gives	 the	 value	 of	 the	 other,	 even	 if	 the	 two
particles	are	widely	separated	(kilometers	or	even	light-years	away	from	each
other).	 This	 behavior	 is	 illustrated	 by	 the	 Einstein–Podolsky–Rosen	 (EPR)
paradox	 and	 is	 the	 reason	why	 Albert	 Einstein	 initially	 dismissed	 quantum
mechanics.	 (See	 https://plato.stanford.edu/entries/qt-epr/	 for	 an	 in-depth
explanation	of	why.)

To	 best	 explain	 how	 a	 quantum	 computer	works,	we	 should	 distinguish
the	 actual	 quantum	 computer	 (the	 hardware,	 composed	 of	 quantum	 bits)
from	 quantum	 algorithms	 (the	 software	 that	 runs	 on	 it,	 composed	 of
quantum	gates).	The	next	two	sections	discuss	these	two	notions.

Quantum	Bits
Quantum	 bits	 (qubits),	 or	 groups	 thereof,	 are	 characterized	 with	 numbers
called	 amplitudes,	 which	 are	 akin	 to	 probabilities	 but	 aren’t	 exactly
probabilities.	 Whereas	 a	 probability	 is	 a	 number	 between	 0	 and	 1,	 an
amplitude	is	a	complex	number	of	the	form	a	+	b	×	i,	or	simply	a	+	bi,	where
a	and	b	are	real	numbers,	and	i	is	an	imaginary	unit.	The	number	i	is	used	to
form	 imaginary	 numbers,	 which	 are	 of	 the	 form	 bi,	 with	 b	 a	 real	 number.
When	 i	 is	multiplied	by	a	 real	number,	we	get	another	 imaginary	number,

https://plato.stanford.edu/entries/qt-epr/


and	when	it	is	multiplied	by	itself	it	gives	–1;	that	is	i2	=	–1.
Unlike	real	numbers,	which	can	be	seen	as	belonging	to	a	line	(see	Figure

14-1),	complex	numbers	can	be	seen	as	belonging	to	a	plane	(a	space	with	two
dimensions),	 as	 shown	 in	 Figure	 14-2.	 Here,	 the	 x-axis	 in	 the	 figure
corresponds	to	the	a	in	a	+	bi,	the	y-axis	corresponds	to	the	b,	and	the	dotted
lines	 correspond	 to	 the	 real	 and	 imaginary	 part	 of	 each	 number.	 For
example,	the	vertical	dotted	line	going	from	the	point	3	+	2i	down	to	3	is	two
units	long	(the	2	in	the	imaginary	part	2i).

Figure	14-1:	View	of	real	numbers	as	points	on	an	infinite	straight	line

Figure	14-2:	A	view	of	complex	numbers	as	points	in	a	two-dimensional	space

As	you	can	 see	 in	Figure	14-2,	you	can	use	 the	Pythagorean	 theorem	to
compute	the	length	of	the	line	going	from	the	origin	(0)	to	the	point	a	+	bi
by	viewing	this	line	as	the	diagonal	of	a	triangle.	The	length	of	this	diagonal
is	 equal	 to	 the	 square	 root	 of	 the	 sum	 of	 the	 squared	 coordinates	 of	 the
point,	or	√(a2	+	b2),	which	we	call	the	modulus	of	the	complex	number	a	+	bi.
We	denote	the	modulus	as	|a	+	bi|	and	can	use	it	as	the	length	of	a	complex
number.

In	a	quantum	computer,	registers	consist	of	1	or	more	qubits	in	a	state	of



superposition	characterized	by	a	set	of	 such	complex	numbers.	But	as	we’ll
see,	these	complex	numbers—the	amplitudes—can’t	be	any	numbers.

Amplitudes	of	a	Single	Qubit
A	single	qubit	is	characterized	by	two	amplitudes	that	I’ll	call	α	(alpha)	and	β
(beta).	We	can	then	express	a	qubit’s	state	as	α	|0〉	+	β	|1〉,	where	the	“|
〉”	notation	is	used	to	denote	vectors	in	a	quantum	state.	This	notation	then
means	that	when	you	observe	this	qubit	it	will	appear	as	0	with	a	probability	
|α|2	and	1	with	a	probability	|β|2.	Of	course,	in	order	for	these	to	be	actual
probabilities,	|α|2	and	|β|2	must	be	numbers	between	0	and	1,	and	|α|2	+	
|β|2	must	be	equal	to	1.

For	example,	 say	we	have	 the	qubit	 	 (psi)	with	 amplitudes	of	α	 =	1/√2
and	β	=	1/√2.	We	can	express	this	as	follows:

This	notation	means	that	in	the	qubit	 ,	the	value	0	has	an	amplitude	of	
1/√2,	 and	 the	 value	 1	 has	 the	 same	 amplitude,	 1/√2.	 To	 get	 the	 actual
probability	from	the	amplitudes,	we	compute	the	modulus	of	1/√2	(which	is
equal	to	1/√2,	because	it	has	no	imaginary	part),	then	square	it:	(1/√2)2	=	1/2.
That	 is,	 if	you	observe	the	qubit	 ,	you’ll	have	a	1/2	chance	of	seeing	a	0,
and	the	same	chance	of	seeing	a	1.

Now	consider	the	qubit	Φ	(phi),	where

The	 qubit	Φ	 is	 fundamentally	 distinct	 from	 	 because	 unlike	 ,	 where
amplitudes	have	equal	values,	the	qubit	Φ	has	distinct	amplitudes	of	α	=	i/√2
(a	 positive	 imaginary	 number)	 and	β	 =	 –1/√2	 (a	 negative	 real	 number).	 If,
however,	you	observe	Φ,	the	chance	of	your	seeing	a	0	or	1	is	1/2,	the	same
as	 it	 is	 with	 .	 Indeed,	 we	 can	 compute	 the	 probability	 of	 seeing	 a	 0	 as
follows,	based	on	the	preceding	rules:



NOTE
Because	α	=	 i/√2,	α	 can	be	written	as	 a	+	bi	with	 a	=	0	and	b	=	1/√2,	and
computing	|α|	=	√(a2	+	b2)	yields	1/√2.

The	 upshot	 is	 that	 different	 qubits	 can	 behave	 similarly	 to	 an	 observer
(with	the	same	probability	of	seeing	a	0	 for	both	qubits)	but	have	different
amplitudes.	This	tells	us	that	the	actual	probabilities	of	seeing	a	0	or	a	1	only
partially	 characterize	 a	 qubit;	 just	 as	 when	 you	 observe	 the	 shadow	 of	 an
object	on	a	wall,	the	shape	of	the	shadow	will	give	you	an	idea	of	the	object’s
width	 and	 height,	 but	 not	 of	 its	 depth.	 In	 the	 case	 of	 qubits,	 this	 hidden
dimension	is	the	value	of	its	amplitude:	Is	it	positive	or	negative?	Is	it	a	real
number	or	an	imaginary	number?

NOTE
To	simplify	notations,	a	qubit	is	often	simply	written	as	its	pair	of	amplitudes	(α,
β).	Our	previous	example	can	then	be	written	| 〉	=	(1/√2,	1/√2).

Amplitudes	of	Groups	of	Qubits
We’ve	 explored	 single	 qubits,	 but	 how	 do	we	 understand	multiple	 qubits?
For	example,	a	quantum	byte	 can	be	 formed	with	8	qubits,	when	put	 into	a
state	where	the	quantum	states	of	these	8	qubits	are	somehow	connected	to
each	other	(we	say	that	the	qubits	are	entangled,	which	is	a	complex	physical
phenomenon).	Such	a	quantum	byte	can	be	described	as	follows,	where	the
αs	are	the	amplitudes	associated	with	each	of	the	256	possible	values	of	the
group	of	8	qubits:

Note	 that	 we	must	 have	 |α0|2	 +	 |α1|2	 +	…	 +	 |α255|2	 =	 1,	 so	 that	 all
probabilities	sum	to	1.

Our	 group	 of	 8	 qubits	 can	 be	 viewed	 as	 a	 set	 of	 28	 =	 256	 amplitudes,
because	 it	has	256	possible	configurations,	each	with	 its	own	amplitude.	 In
physical	 reality,	 however,	 you’d	 only	 have	 eight	 physical	 objects,	 not	 256.
The	256	amplitudes	are	an	 implicit	 characteristic	of	 the	group	of	8	qubits;
each	of	these	256	numbers	can	take	any	of	 infinitely	many	different	values.



Generalizing,	 a	 group	 of	 n	 qubits	 is	 characterized	 by	 a	 set	 of	 2n	 complex
numbers,	a	number	that	grows	exponentially	with	the	numbers	of	qubits.

This	encoding	of	exponentially	many	high-precision	complex	numbers	is	a
core	reason	why	a	classical	computer	can’t	simulate	a	quantum	computer:	in
order	to	do	so,	it	would	need	an	unfathomably	high	amount	of	memory	(of
size	around	2n)	to	store	the	same	amount	of	information	contained	in	only	n
qubits.

Quantum	Gates
The	 concepts	 of	 amplitude	 and	 quantum	 gates	 are	 unique	 to	 quantum
computing.	 Whereas	 a	 classical	 computer	 uses	 registers,	 memory,	 and	 a
microprocessor	 to	 perform	 a	 sequence	 of	 instructions	 on	 data,	 a	 quantum
computer	 transforms	 a	 group	 of	 qubits	 reversibly	 by	 applying	 a	 series	 of
quantum	 gates,	 and	 then	 measures	 the	 value	 of	 one	 or	 more	 qubits.
Quantum	 computers	 promise	more	 computing	 power	 because	with	 only	n
qubits,	they	can	process	2n	numbers	(the	qubits’	amplitudes).	This	property
has	profound	implications.

From	 a	 mathematical	 standpoint,	 quantum	 algorithms	 are	 essentially	 a
circuit	 of	 quantum	 gates	 that	 transforms	 a	 set	 of	 complex	 numbers	 (the
amplitudes)	before	a	final	measurement	where	the	value	of	1	or	more	qubits
is	observed	(see	Figure	14-3).	You’ll	also	see	quantum	algorithms	referred	to
as	quantum	gate	arrays	or	quantum	circuits.

Figure	14-3:	Principle	of	a	quantum	algorithm

Quantum	Gates	as	Matrix	Multiplications
Unlike	the	Boolean	gates	of	a	classical	computer	(AND,	XOR,	and	so	on),	a
quantum	gate	acts	on	a	group	of	amplitudes	just	as	a	matrix	acts	when	multi​-



plied	 with	 a	 vector.	 For	 example,	 in	 order	 to	 apply	 the	 simplest	 quantum
gate,	the	identity	gate,	to	the	qubit	Φ,	we	see	I	as	a	2	×	2	matrix	and	multiply
it	with	 the	column	vector	consisting	of	 the	 two	amplitudes	of	Φ,	 as	 shown
here:

The	 result	of	 this	matrix–vector	multiplication	 is	 another	 column	vector
with	two	elements,	where	the	top	value	is	equal	to	the	dot	product	of	the	I
matrix’s	first	 line	with	the	input	vector	(the	result	of	adding	the	product	of
the	first	elements	1	and	i/√2	to	the	product	of	the	second	elements	0	and	–1/
√2),	and	likewise	for	the	bottom	value.

NOTE
In	 practice,	 a	 quantum	 computer	 wouldn’t	 explicitly	 compute	 matrix–vector
multiplications	 because	 the	 matrices	 would	 be	 way	 too	 large.	 (That’s	 why
quantum	 computing	 can’t	 be	 simulated	 by	 a	 classical	 computer.)	 Instead,	 a
quantum	computer	would	transform	qubits	as	physical	particles	through	physical
transformations	 that	 are	 equivalent	 to	 a	 matrix	 multiplication.	 Confused?
Here’s	what	Richard	Feynman	had	to	say:	“If	you	are	not	completely	confused	by
quantum	mechanics,	you	do	not	understand	it.”

The	Hadamard	Quantum	Gate
The	only	quantum	gate	we’ve	seen	so	far,	the	identity	gate	I,	is	pretty	useless
because	 it	 doesn’t	 do	 anything	 and	 leaves	 a	 qubit	 unchanged.	 Now	 we’re
going	to	see	one	of	the	most	useful	quantum	gates,	called	the	Hadamard	gate,
usually	 denoted	 H.	 The	 Hadamard	 gate	 is	 defined	 as	 follows	 (note	 the
negative	value	in	the	bottom-right	position):



Let’s	see	what	happens	if	we	apply	this	gate	to	the	qubit	| 〉	=	(1/√2,	1/
√2):

By	applying	the	Hadamard	gate	H	to	| 〉,	we	obtain	the	qubit	|0〉	for
which	the	value	|0〉	has	amplitude	1,	and	|1〉	has	amplitude	0.	This	tells
us	 that	 the	 qubit	 will	 behave	 deterministically:	 that	 is,	 if	 you	 observe	 this
qubit,	you	would	always	see	a	0	and	never	a	1.	In	other	words,	we’ve	lost	the
randomness	of	the	initial	qubit	| 〉.

What	happens	if	we	apply	the	Hadamard	gate	again	to	the	qubit	|0〉?

This	brings	us	back	to	the	qubit	| 〉	and	a	randomized	state.	Indeed,	the
Hadamard	 gate	 is	 often	 used	 in	 quantum	 algorithms	 to	 go	 from	 a
deterministic	state	to	a	uniformly	random	one.

Not	All	Matrices	are	Quantum	Gates
Although	 quantum	 gates	 can	 be	 seen	 as	 matrix	 multiplications,	 not	 all
matrices	 correspond	 to	 quantum	 gates.	 Recall	 that	 a	 qubit	 consists	 of	 the
complex	numbers	α	 and	β	 and	 the	amplitudes	of	 the	qubit,	 such	 that	 they
satisfy	the	condition	|α|2	+	|β|2	=	1.	If	after	multiplying	a	qubit	by	a	matrix
we	get	two	amplitudes	that	don’t	match	this	condition,	the	result	can’t	be	a
qubit.	 Quantum	 gates	 can	 only	 correspond	 to	 matrices	 that	 preserve	 the
property	|α|2	+	|β|2	=	1,	and	matrices	that	satisfy	this	condition	are	called
unitary	matrices.

Unitary	matrices	(and	quantum	gates	by	definition)	are	invertible,	meaning
that	 given	 the	 result	 of	 an	 operation,	 you	 can	 compute	 back	 the	 original
qubit	 by	 applying	 the	 inverse	 matrix.	 This	 is	 the	 reason	 why	 quantum
computing	is	said	to	be	a	kind	of	reversible	computing.

Quantum	Speed-Up



A	 quantum	 speed-up	 occurs	 when	 a	 problem	 can	 be	 solved	 faster	 by	 a
quantum	computer	than	by	a	classical	one.	For	example,	 in	order	to	search
for	an	item	among	n	items	of	an	unordered	list	on	a	classical	computer,	you
need	on	average	n/2	operations,	because	you	need	to	look	at	each	item	in	the
list	before	 finding	the	one	you’re	 looking	 for.	 (On	average,	you’ll	 find	that
item	 after	 searching	 half	 of	 the	 list.)	No	 classical	 algorithm	 can	 do	 better
than	n/2.	However,	a	quantum	algorithm	exists	to	search	for	an	item	in	only
about	 √n	 operations,	 which	 is	 orders	 of	 magnitude	 smaller	 than	 n/2.	 For
example,	if	n	is	equal	to	1000000,	then	n/2	is	500000,	whereas	√n	is	1000.

We	 attempt	 to	 quantify	 the	 difference	 between	 quantum	 and	 classical
algorithms	in	terms	of	time	complexity,	which	is	represented	by	O()	notation.
In	the	previous	example,	the	quantum	algorithm	runs	in	time	O(√n)	but	the
classical	algorithm	can’t	be	faster	than	O(n).	Because	the	difference	 in	time
complexity	here	is	due	to	the	square	exponent,	we	call	this	quadratic	speed-up.
But	while	such	a	speed-up	will	likely	make	a	difference,	there	are	much	more
powerful	ones.

Exponential	Speed-Up	and	Simon’s	Problem
Exponential	speed-ups	are	the	Holy	Grail	of	quantum	computing.	They	occur
when	 a	 task	 that	 takes	 an	 exponential	 amount	 of	 time	 on	 a	 classical
computer,	 such	 as	O(2n),	 can	 be	 performed	 on	 a	 quantum	 computer	 with
polynomial	 complexity—namely	 O(nk)	 for	 some	 fixed	 number	 k.	 This
exponential	 speed-up	 can	 turn	 a	 practically	 impossible	 task	 into	 a	 possible
one.	 (Recall	 from	Chapter	 9	 that	 cryptographers	 and	 complexity	 theorists
associate	 exponential	 time	 with	 the	 impossible,	 and	 they	 associate
polynomial	time	with	the	practical.)

The	 poster	 child	 of	 exponential	 speed-ups	 is	 Simon’s	 problem.	 In	 this
computational	 problem,	 a	 function,	 f(),	 transforms	 n-bit	 strings	 to	 n-bit
strings,	such	that	the	output	of	f()	looks	random	except	that	there	is	a	value,
m,	such	that	any	two	values	x,	y	that	satisfies	f(x)	=	f(y),	then	y	=	x	⊕	m.	The
way	to	solve	this	problem	is	to	find	m.

The	 route	 to	 take	 when	 solving	 Simon’s	 problem	 with	 a	 classical
algorithm	boils	down	to	 finding	a	collision,	which	takes	approximately	2n/2

queries	 to	 f().	However,	 a	 quantum	 algorithm	 (shown	 in	 Figure	 14-4)	 can
solve	 Simon’s	 problem	 in	 approximately	 n	 queries,	 with	 the	 extremely
efficient	time	complexity	of	O(n).



Figure	14-4:	The	circuit	of	the	quantum	algorithm	that	solves	Simon’s	problem	efficiently

As	 you	 can	 see	 in	 Figure	 14-4,	 you	 initialize	 2n	 qubits	 to	 |0〉,	 apply
Hadamard	gates	(H)	to	the	first	n	qubits,	then	apply	the	gate	Qf	to	the	two
groups	 of	 all	 n	 qubits.	 Given	 two	 n-qubit	 groups	 x	 and	 y,	 the	 gate	 Qf
transforms	the	quantum	state	|x〉|y〉	to	the	state	|x〉|f(x)	⊕	y〉.	That	is,
it	computes	the	function	f()	on	the	quantum	state	reversibly,	because	you	can
go	 from	the	new	state	 to	 the	old	one	by	computing	 f(x)	 and	XORing	 it	 to
f(x)	⊕	y.	(Unfortunately,	explaining	why	all	of	this	works	is	beyond	the	scope
of	this	book.)

The	 exponential	 speed-up	 for	 Simon’s	 problem	 can	 be	 used	 against
symmetric	ciphers	only	 in	very	specific	cases,	but	 in	 the	next	 section	you’ll
see	some	real	crypto-killer	applications	of	quantum	computing.

The	Threat	of	Shor’s	Algorithm
In	 1995,	 AT&T	 researcher	 Peter	 Shor	 published	 an	 eye-opening	 article
titled	 “Polynomial-Time	 Algorithms	 for	 Prime	 Factorization	 and	Discrete
Logarithms	 on	 a	 Quantum	 Computer.”	 Shor’s	 algorithm	 is	 a	 quantum
algorithm	 that	 causes	 an	 exponential	 speed-up	when	 solving	 the	 factoring,
discrete	 logarithm	 (DLP),	 and	 elliptic	 curve	 discrete	 logarithm	 (ECDLP)
problems.	You	can’t	solve	these	problems	with	a	classical	computer,	but	you
could	with	a	quantum	computer.	That	means	that	you	could	use	a	quantum
computer	 to	 solve	 any	 cryptographic	 algorithm	 that	 relies	 on	 those
problems,	 including	RSA,	Diffie–Hellman,	elliptic	curve	crypto​graphy,	and



all	currently	deployed	public-key	cryptography	mechanisms.	In	other	words,
you	could	reduce	the	security	of	RSA	or	elliptic	curve	crypto​graphy	to	that
of	Caesar’s	cipher.	 (Shor	might	as	well	have	 titled	his	article	“Breaking	All
Public-Key	Crypto	on	a	Quantum	Computer.”)	Shor’s	 algorithm	has	been
called	“one	of	the	major	scientific	achievements	of	the	late	20th	century”	by
renowned	complexity	theorist	Scott	Aaronson.

Shor’s	 algorithm	 actually	 solves	 a	 more	 general	 class	 of	 problems	 than
factoring	 and	discrete	 logarithms.	 Specifically,	 if	 a	 function	 f()	 is	periodic—
that	is,	if	there’s	a	ω	(the	period)	such	that	f(x	+	ω)	=	f(x)	for	any	x,	Shor’s
algorithm	 will	 efficiently	 find	 ω.	 (This	 looks	 very	 similar	 to	 Simon’s
problem	 discussed	 previously,	 and	 indeed	 Simon’s	 algorithm	 was	 a	 major
inspiration	 for	 Shor’s	 algorithm.)	 The	 ability	 of	 Shor’s	 algorithm	 to
efficiently	compute	the	period	of	a	 function	is	 important	to	cryptographers
because	 that	 ability	 can	 be	 used	 to	 attack	 public-key	 cryptography,	 as	 I’ll
discuss	next.

A	discussion	of	the	details	of	how	Shor’s	algorithm	achieves	its	speed-up	is
far	 too	 technical	 for	 this	book,	but	 in	 this	 section	 I’ll	 show	how	you	could
use	Shor’s	algorithm	to	attack	public-key	cryptography.	Let’s	see	how	Shor’s
algorithm	 could	 be	 used	 to	 solve	 the	 factoring	 and	 discrete	 logarithm
problems	 (as	 discussed	 in	 Chapter	 9),	 which	 are	 respectively	 the	 hard
problems	behind	RSA	and	Diffie–Hellman.

Shor’s	Algorithm	Solves	the	Factoring	Problem
Say	you	want	to	factor	a	large	number,	N	=	pq.	It’s	easy	to	factor	N	if	you	can
compute	 the	period	of	ax	mod	N,	 a	 task	 that	 is	hard	 to	do	with	 a	 classical
computer	but	easy	to	do	on	a	quantum	one.	You	first	pick	a	random	number
a	less	than	N,	and	ask	Shor’s	algorithm	to	find	the	period	ω	of	the	function
f(x)	=	ax	mod	N.	Once	you’ve	found	the	period,	you’ll	have	ax	mod	N	=	ax	+	ω

mod	N	(that	is,	ax	mod	N	=	axaω	mod	N),	which	means	that	aω	mod	N	=	1,
or	aω	–	1	mod	N	=	0.	In	other	words,	aω	–	1	is	a	multiple	of	N,	or	aω	–	1	=	kN
for	some	unknown	number	k.

The	key	observation	here	is	that	you	can	easily	factor	the	number	aω	–	1	as
the	product	of	two	terms,	where	aω	–	1	=	(aω	/	2	–	1)(aω	/	2	+	1).	You	can	then
compute	 the	 greatest	 common	divisor	 (GCD)	between	 (aω	 /	 2	 –	 1)	 and	N,
and	check	to	see	if	you’ve	obtained	a	nontrivial	factor	of	N	 (that	 is,	a	value
other	 than	 1	 or	 N).	 If	 not,	 you	 can	 just	 rerun	 the	 same	 algorithm	 with



another	 value	of	a.	After	 a	 few	 trials,	 you’ll	 get	 a	 factor	of	N.	You’ve	now
recovered	 the	 private	 RSA	 key	 from	 its	 public	 key,	 which	 allows	 you	 to
decrypt	messages	or	forge	signatures.

But	 just	 how	 easy	 is	 this	 computation?	 Note	 that	 the	 best	 classical
algorithm	to	use	to	factor	a	number	N	runs	in	time	exponential	in	n,	the	bit
length	 of	N	 (that	 is,	n	 =	 log2	N).	However,	 Shor’s	 algorithm	 runs	 in	 time
polynomial	in	n—namely,	O(n2(log	n)(log	log	n)).	This	means	that	if	we	had	a
quantum	computer,	we	could	run	Shor’s	algorithm	and	see	the	result	within
a	 reasonable	 amount	 of	 time	 (days?	 weeks?	 months,	 maybe?)	 instead	 of
thousands	of	years.

Shor’s	Algorithm	and	the	Discrete	Logarithm	Problem
The	 challenge	 in	 the	 discrete	 logarithm	problem	 is	 to	 find	 y,	 given	 y	 =	 gx
mod	 p,	 for	 some	 known	 numbers	 g	 and	 p.	 Solving	 this	 problem	 takes	 an
exponential	 amount	 of	 time	 on	 a	 classical	 computer,	 but	 Shor’s	 algorithm
lets	you	find	y	easily	thanks	to	its	efficient	period-finding	technique.

For	example,	consider	the	function	f(a,	b)	=	gayb.	Say	we	want	to	find	the
period	of	this	function,	the	numbers	ω	and	ω′,	such	that	f(a	+	ω,	b	+	ω′)	=
f(a,	b)	for	any	a	and	b.	The	solution	we	seek	is	then	x	=	–ω	/	ω′	modulo	q,
the	order	of	g,	which	is	a	known	parameter.	The	equality	f(a	+	ω,	b	+	ω′)	=
f(a,	b)	 implies	gωyω′	mod	p	 =	1.	By	 substituting	y	with	gx,	we	have	gω	 +	 xω′

mod	p	=	1,	which	is	equivalent	to	ω	+	xω′	mod	q	=	0,	from	which	we	derive	x
=	–	ω	/	ω′.

Again,	 the	 overall	 complexity	 is	O(n2(log	 n)(log	 log	 n)),	 with	 n	 the	 bit
length	 of	 p.	 This	 algorithm	 generalizes	 to	 find	 discrete	 logarithms	 in	 any
commutative	group,	not	just	the	group	of	numbers	modulo	a	prime	number.

Grover’s	Algorithm
After	 Shor’s	 algorithm	 exponential	 speed-up	 for	 factoring,	 another
important	form	of	quantum	speed-up	is	the	ability	to	search	among	n	items
in	time	proportional	to	the	square	root	of	n,	whereas	any	classical	algorithm
would	 take	 time	 proportional	 to	 n.	 This	 quadratic	 speed-up	 is	 possible
thanks	to	Grover’s	algorithm,	a	quantum	algorithm	discovered	in	1996	(after
Shor’s	algorithm).	I	won’t	cover	the	internals	of	Grover’s	algorithm	because
they’re	essentially	a	bunch	of	Hadamard	gates,	but	I’ll	explain	what	kind	of
problem	Grover	 solves	 and	 its	 potential	 impact	 on	 cryptographic	 security.



I’ll	 also	 show	 why	 you	 can	 salvage	 a	 symmetric	 crypto	 algorithm	 from
quantum	 computers	 by	 doubling	 the	 key	 or	 hash	 value	 size,	 whereas
asymmetric	algorithms	are	destroyed	for	good.

Think	of	Grover’s	algorithm	as	a	way	to	find	the	value	x	among	n	possible
values,	 such	 that	 f(x)	 =	 1,	 and	 where	 f(x)	 =	 0	 for	most	 other	 values.	 If	m
values	of	x	 satisfy	 f(x)	=	1,	Grover	will	 find	a	 solution	 in	 time	O(√(n	 /	m));
that	 is,	 in	 time	 proportional	 to	 the	 square	 root	 of	 n	 divided	 by	 m.	 In
comparison,	a	classical	algorithm	can’t	do	better	than	O(n	/	m).

Now	 consider	 the	 fact	 that	 f()	 can	 be	 any	 function.	 It	 could	 be,	 for
example,	“f(x)	=	1	if	and	only	if	x	is	equal	to	the	unknown	secret	key	K	such
that	E(K,	P)	=	C”	for	some	known	plaintext	P	and	ciphertext	C,	and	where
E()	is	some	encryption	function.	In	practice,	this	means	that	if	you’re	looking
for	a	128-bit	AES	key	with	a	quantum	computer,	you’ll	find	the	key	in	time
proportional	to	264,	rather	than	2128	if	you	had	only	classical	computers.	You
would	need	a	large	enough	plaintext	to	ensure	the	uniqueness	of	the	key.	(If
the	plaintext	and	ciphertext	are,	say,	32	bits,	many	candidate	keys	would	map
that	plaintext	 to	 that	 ciphertext.)	The	complexity	264	 is	much	 smaller	 than
2128,	meaning	that	a	secret	key	would	be	much	easier	to	recover.	But	there’s
an	easy	solution:	to	restore	128-bit	security,	 just	use	256-bit	keys!	Grover’s
algorithm	will	then	reduce	the	complexity	of	searching	a	key	to	“only”	2256	/

2	=	2128	operations.
Grover’s	 algorithm	 can	 also	 find	 preimages	 of	 hash	 functions	 (a	 notion

discussed	in	Chapter	6).	To	find	a	preimage	of	some	value	h,	the	f()	function
is	defined	as	“f(x)	=	1	if	and	only	if	Hash(x)	=	h,	otherwise	f(x)	=	0.”	Grover
thus	 gets	 you	 preimages	 of	 n-bit	 hashes	 at	 the	 cost	 of	 the	 order	 of	 2n/2

operations.	As	with	encryption,	 to	ensure	2n	post-quantum	 security,	 just	use
hash	values	twice	as	large,	since	Grover’s	algorithm	will	find	a	preimage	of	a
2n-bit	value	in	at	least	2n	operations.

The	bottom	line	is	that	you	can	salvage	symmetric	crypto	algorithms	from
quantum	 computers	 by	 doubling	 the	 key	 or	 hash	 value	 size,	 whereas
asymmetric	algorithms	are	destroyed	for	good.

NOTE
There	 is	 a	 quantum	 algorithm	 that	 finds	 hash	 function	 collisions	 in	 time
O(2n/3),	 instead	 of	 O(2n/2),	 as	 with	 the	 classic	 birthday	 attack.	 This	 would



suggest	that	quantum	computers	can	outperform	classical	computers	for	finding
hash	 function	 collisions,	 except	 that	 the	O(2n/3)-time	 quantum	algorithm	also
requires	 O(2n/3)	 space,	 or	 memory,	 in	 order	 to	 run.	 Give	 O(2n/3)	worth	 of
computer	 space	 to	 a	 classic	 algorithm	and	 it	 can	 run	a	 parallel	 collision	 search
algorithm	with	a	 collision	time	of	only	O(2n/6),	which	 is	much	faster	 than	the
O(2n/3)	 quantum	 algorithm.	 (For	 details	 of	 this	 attack,	 see	 “Cost	Analysis	 of
Hash	 Collisions”	 by	 Daniel	 J.	 Bernstein	 at
http://cr.yp.to/papers.html#collisioncost.)

Why	Is	It	So	Hard	to	Build	a	Quantum	Computer?
Although	quantum	computers	can	in	principle	be	built,	we	don’t	know	how
hard	it	will	be	or	when	that	might	happen,	if	at	all.	And	so	far,	it	looks	really
hard.	As	of	early	2017,	the	record	holder	is	a	machine	that	is	able	to	keep	14
(fourteen!)	 qubits	 stable	 for	only	 a	 few	milliseconds,	whereas	we’d	need	 to
keep	millions	of	qubits	 stable	 for	weeks	 in	order	 to	break	any	crypto.	The
point	is,	we’re	not	there	yet.

Why	 is	 it	 so	 hard	 to	 build	 a	 quantum	 computer?	 Because	 you	 need
extremely	small	things	to	play	the	role	of	qubits—about	the	size	of	electrons
or	 photons.	 And	 because	 qubits	 must	 be	 so	 small,	 they’re	 also	 extremely
fragile.

Qubits	must	also	be	kept	at	extremely	low	temperatures	(close	to	absolute
zero)	in	order	to	remain	stable.	But	even	at	such	a	freezing	temperature,	the
state	 of	 the	 qubits	 decays,	 and	 they	 eventually	 become	 useless.	 As	 of	 this
writing,	we	don’t	yet	know	how	to	make	qubits	that	will	last	for	more	than	a
couple	of	seconds.

Another	challenge	is	that	qubits	can	be	affected	by	the	environment,	such
as	heat	and	magnetic	fields,	which	can	create	noise	in	the	system,	and	hence
computation	errors.	In	theory,	it’s	possible	to	deal	with	these	errors	(as	long
as	 the	 error	 rate	 isn’t	 too	 high),	 but	 it’s	 hard	 to	 do	 so.	Correcting	 qubits’
errors	 requires	 specific	 techniques	 called	 quantum	 error-correcting	 codes,
which	in	turn	require	additional	qubits	and	a	low	enough	rate	of	error.	But
we	don’t	know	how	to	build	systems	with	such	a	low	error	rate.

At	 the	moment,	 there	 are	 two	main	 approaches	 to	 forming	 qubits,	 and
therefore	to	building	quantum	computers:	superconducting	circuits	and	ion
traps.	Using	 superconducting	 circuits	 is	 the	 approach	 championed	 by	 labs	 at
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Google	and	IBM.	It’s	based	on	forming	qubits	as	tiny	electrical	circuits	that
rely	on	quantum	phenomena	 from	superconductor	materials,	where	charge
carriers	are	pairs	of	electrons.	Qubits	made	of	superconducting	circuits	need
to	be	kept	at	temperatures	close	to	absolute	zero,	and	they	have	a	very	short
lifetime.	The	 record	 as	 of	 this	writing	 is	 nine	 qubits	 kept	 stable	 for	 a	 few
microseconds.

Ion	 traps,	 or	 trapped	 ions,	 are	made	 up	 of	 ions	 (charged	 atoms)	 and	 are
manipulated	 using	 lasers	 in	 order	 to	 prepare	 the	 qubits	 in	 specific	 initial
states.	Using	ion	traps	was	one	of	the	first	approaches	to	building	qubits,	and
they	tend	to	be	more	stable	than	superconducting	circuits.	The	record	as	of
this	 writing	 is	 14	 qubits	 stable	 for	 a	 few	 milliseconds.	 But	 ion	 traps	 are
slower	to	operate	and	seem	harder	to	scale	than	superconducting	circuits.

Building	a	quantum	computer	 is	really	a	moonshot	effort.	The	challenge
comes	down	to	1)	building	a	system	with	a	handful	of	qubits	 that	 is	 stable,
fault	 tolerant,	 and	 capable	 of	 applying	 basic	 quantum	gates,	 and	 2)	 scaling
such	a	 system	to	 thousands	or	millions	of	qubits	 to	make	 it	useful.	From	a
purely	 physical	 standpoint,	 and	 to	 the	 best	 of	 our	 knowledge,	 there	 is
nothing	to	prevent	 the	creation	of	 large	 fault-tolerant	quantum	computers.
But	 many	 things	 are	 possible	 in	 theory	 and	 prove	 hard	 or	 too	 costly	 to
realize	in	practice	(like	secure	computers).	Of	course,	the	future	will	tell	who
is	 right—the	 quantum	 optimists	 (who	 sometimes	 predict	 a	 large	 quantum
computer	in	ten	years)	or	the	quantum	skeptics	(who	argue	that	the	human
race	will	never	see	a	quantum	computer).

Post-Quantum	Cryptographic	Algorithms
The	 field	 of	 post-quantum	 cryptography	 is	 about	 designing	 public-key
algorithms	 that	 cannot	 be	 broken	 by	 a	 quantum	 computer;	 that	 is,	 they
would	 be	 quantum	 safe	 and	 able	 to	 replace	 RSA	 and	 elliptic	 curve–based
algorithms	 in	a	 future	where	off-the-shelf	quantum	computers	 could	break
4096-bit	RSA	moduli	in	a	snap.

Such	algorithms	should	not	rely	on	a	hard	problem	known	to	be	efficiently
solvable	 by	 Shor’s	 algorithm,	 which	 kills	 the	 hardness	 in	 factoring	 and
discrete	 logarithm	 problems.	 Symmetric	 algorithms	 such	 as	 block	 ciphers
and	hash	functions	would	lose	only	half	their	theoretical	security	in	the	face
of	a	quantum	computer	but	would	not	be	badly	broken	as	RSA.	They	might
constitute	the	basis	for	a	post-quantum	scheme.



In	 the	 following	sections,	 I	explain	 the	 four	main	 types	of	post-quantum
algorithms:	 code-based,	 lattice-based,	 multivariate,	 and	 hash-based.	 Of
these,	hash-based	is	my	favorite	because	of	its	simplicity	and	strong	security
guarantees.

Code-Based	Cryptography
Code-based	 post-quantum	 cryptographic	 algorithms	 are	 based	 on	 error-
correcting	 codes,	which	are	 techniques	designed	 to	 transmit	bits	over	a	noisy
channel.	The	basic	theory	of	error-correcting	codes	dates	back	to	the	1950s.
The	 first	 code-based	 encryption	 scheme	 (the	 McEliece	 cryptosystem)	 was
developed	in	1978	and	is	still	unbroken.	Code-based	crypto	schemes	can	be
used	for	both	encryption	and	signatures.	Their	main	limitation	is	the	size	of
their	public	key,	which	is	typically	on	the	order	of	a	hundred	kilobytes.	But	is
that	 really	 a	 problem	when	 the	 average	 size	 of	 a	 web	 page	 is	 around	 two
megabytes?

Let	 me	 first	 explain	 what	 error-correcting	 codes	 are.	 Say	 you	 want	 to
transmit	 a	 sequence	 of	 bits	 as	 a	 sequence	 of	 (say)	 3-bit	 words,	 but	 the
transmission	is	unreliable	and	you’re	concerned	that	1	or	more	bits	may	be
incorrectly	transmitted:	you	send	010,	but	the	receiver	gets	011.	One	simple
way	 to	 address	 this	 would	 be	 to	 use	 a	 very	 basic	 error-correction	 code:
instead	of	 transmitting	010	you	would	 transmit	000111000	 (repeating	each
bit	three	times),	and	the	receiver	would	decode	the	received	word	by	taking
the	majority	value	for	each	of	the	three	bits.	For	example,	100110111	would
be	decoded	 to	011	because	 that	 pattern	 appears	 twice.	But	 as	 you	 can	 see,
this	particular	error-correcting	code	would	allow	a	receiver	 to	correct	only
up	to	one	error	per	3-bit	chunk,	because	if	two	errors	occur	in	the	same	3-bit
chunk,	the	majority	value	would	be	the	wrong	one.

Linear	 codes	 are	 an	 example	 of	 less	 trivial	 error-correcting	 codes.	 In	 the
case	 of	 linear	 codes,	 a	 word	 to	 encode	 is	 seen	 as	 an	 n-bit	 vector	 v,	 and
encoding	consists	of	multiplying	v	with	an	m	×	n	matrix	G	 to	compute	the
code	word	w	=	vG.	 (In	 this	example,	m	 is	greater	 than	n,	meaning	that	 the
code	word	is	longer	than	the	original	word.)	The	value	G	can	be	structured
such	 that	 for	a	given	number	 t,	 any	 t-bit	error	 in	w	 allows	 the	recipient	 to
recover	 the	 correct	v.	 In	other	words,	 t	 is	 the	maximum	number	of	 errors
that	can	be	corrected.

In	 order	 to	 encrypt	 data	 using	 linear	 codes,	 the	McEliece	 cryptosystem



constructs	 G	 as	 a	 secret	 combination	 of	 three	 matrices,	 and	 encrypts	 by
computing	w	=	vG	plus	some	random	value,	e,	which	is	a	fixed	number	of	1
bit.	 Here,	 G	 is	 the	 public	 key,	 and	 the	 private	 key	 is	 composed	 of	 the
matrices	A,	B,	and	C	such	that	G	=	ABC.	Knowing	A,	B,	and	C	allows	one	to
decode	 a	 message	 reliably	 and	 retrieve	 w.	 (You’ll	 find	 the	 decoding	 step
described	online.)

The	security	of	the	McEliece	encryption	scheme	relies	on	the	hardness	of
decoding	a	linear	code	with	insufficient	information,	a	problem	known	to	be
NP-complete	and	therefore	out	of	reach	of	quantum	computers.

Lattice-Based	Cryptography
Lattices	are	mathematical	structures	that	essentially	consist	of	a	set	of	points
in	 an	 n-dimensional	 space,	 with	 some	 periodic	 structure.	 For	 example,	 in
dimension	two	(n	=	2),	a	lattice	can	be	viewed	as	the	set	of	points	shown	in
Figure	14-5.

Figure	14-5:	Points	of	a	two-dimensional	lattice,	where	v	and	w	are	basis	vectors	of	the	lattice,	and
s	is	the	closest	vector	to	the	star-shaped	point

Lattice	 theory	 has	 led	 to	 deceptively	 simple	 cryptography	 schemes.	 I’ll
give	you	the	gist	of	it.

A	first	hard	problem	found	in	lattice-based	crypto	is	known	as	short	integer
solution	(SIS).	SIS	consists	of	finding	the	secret	vector	s	of	n	numbers	given
(A,	b)	such	that	b	=	As	mod	q,	where	A	is	a	random	m	×	n	matrix	and	q	is	a
prime	number.

The	second	hard	problem	in	lattice-based	cryptography	is	called	 learning
with	errors	(LWE).	LWE	consists	of	finding	the	secret	vector	s	of	n	numbers



given	(A,	b),	where	b	=	As	+	e	mod	q,	with	A	being	a	random	m	×	n	matrix,	e	a
random	vector	of	noise,	and	q	a	prime	number.	This	problem	looks	a	lot	like
noisy	decoding	in	code-based	cryptography.

SIS	and	LWE	are	somewhat	equivalent,	and	can	be	restated	as	instances	of
the	 closest	 vector	 problem	 (CVP)	 on	 a	 lattice,	 or	 the	 problem	 of	 finding	 the
vector	in	a	lattice	closest	to	a	given	point,	by	combining	a	set	of	basis	vectors.
The	 dotted	 vector	 s	 in	 Figure	 14-5	 shows	 how	we	 would	 find	 the	 closest
vector	to	the	star-shaped	point	by	combining	the	basis	vectors	v	and	w.

CVP	and	other	lattice	problems	are	believed	to	be	hard	both	for	classical
and	 quantum	 computers.	 But	 this	 doesn’t	 directly	 transfer	 to	 secure
cryptosystems,	because	some	problems	are	only	hard	in	the	worst	case	(that
is,	for	their	hardest	instance)	rather	than	the	average	case	(which	is	what	we
need	 for	 crypto).	 Furthermore,	while	 finding	 the	 exact	 solution	 to	CVP	 is
hard,	finding	an	approximation	of	the	solution	can	be	considerably	easier.

Multivariate	Cryptography
Multivariate	cryptography	is	about	building	cryptographic	schemes	that	are	as
hard	to	break	as	it	is	to	solve	systems	of	multivariate	equations,	or	equations
involving	multiple	 unknowns.	Consider,	 for	 example,	 the	 following	 system
of	equations	involving	four	unknowns	x1,	x2,	x3,	x4:

These	 equations	 consist	 of	 the	 sum	 of	 terms	 that	 are	 either	 a	 single
unknown,	 such	 as	 x4	 (or	 terms	 of	 degree	 one),	 or	 the	 product	 of	 two
unknown	values,	 such	as	x2x3	 (terms	of	degree	 two	or	quadratic	 terms).	To
solve	this	system,	we	need	to	 find	the	values	of	x1,	x2,	x3,	x4	 that	satisfy	all
four	 equations.	 Equations	may	 be	 over	 all	 real	 numbers,	 integers	 only,	 or
over	 finite	 sets	 of	 numbers.	 In	 cryptography,	 however,	 equations	 are
typically	over	numbers	modulo	some	prime	numbers,	or	over	binary	values
(0	and	1).

The	 problem	 here	 is	 to	 find	 a	 solution	 that	 is	NP-hard	 given	 a	 random
quadratic	 system	 of	 equations.	 This	 hard	 problem,	 known	 as	multivariate



quadratics	 (MQ)	 equations,	 is	 therefore	 a	 potential	 basis	 for	 post-quantum
systems	 because	 quantum	 computers	 won’t	 solve	 NP-hard	 problems
efficiently.

Unfortunately,	 building	 a	 cryptosystem	 on	 top	 on	 MQ	 isn’t	 so
straightforward.	 For	 example,	 if	 we	 were	 to	 use	 MQ	 for	 signatures,	 the
private	key	might	consist	of	three	systems	of	equations,	L1,	N,	and	L2,	which
when	 combined	 in	 this	 order	would	 give	 another	 system	of	 equations	 that
we’ll	 call	 P,	 the	 public	 key.	 Applying	 the	 transformations	 L1,	 N,	 and	 L2
consecutively	 (that	 is,	 transforming	 a	 group	 of	 values	 as	 per	 the	 system	of
equations)	is	then	equivalent	to	applying	P	by	transforming	x1,	x2,	x3,	x4	to
y1,	y2,	y3,	y4,	defined	as	follows:

In	such	a	cryptosystem,	L1,	N,	and	L2	are	chosen	such	that	L1	and	L2	are
linear	transformations	(that	is,	having	equations	where	terms	are	only	added,
not	 multiplied)	 that	 are	 invertible,	 and	 where	N	 is	 a	 quadratic	 system	 of
equations	that	is	also	invertible.	This	makes	the	combination	of	the	three	a
quadratic	 system	 that’s	 also	 invertible,	 but	 whose	 inverse	 is	 hard	 to
determine	without	knowing	the	inverses	of	L1,	N,	and	L2.

Computing	a	signature	then	consists	of	computing	the	inverses	of	L1,	N,
and	L2	applied	to	some	message,	M,	seen	as	a	sequence	of	variables,	x1,	x2,	…
.

S	=	L2−1(N−1(L1−1(M)))

Verifying	a	signature	then	consists	of	verifying	that	P(S)	=	M.
Attackers	could	break	such	a	cryptosystem	if	they	manage	to	compute	the

inverse	of	P,	or	to	determine	L1,	N,	and	L2	from	P.	The	actual	hardness	of
solving	such	problems	depends	on	the	parameters	of	the	scheme,	such	as	the
number	of	equations	used,	the	size	and	type	of	the	numbers,	and	so	on.	But
choosing	secure	parameters	is	hard,	and	more	than	one	multivariate	scheme
considered	safe	has	been	broken.



Multivariate	cryptography	isn’t	used	in	major	applications	due	to	concerns
about	 the	 scheme’s	 security	 and	because	 it’s	often	 slow	or	 requires	 tons	of
memory.	A	practical	 benefit	 of	multivariate	 signature	 schemes,	however,	 is
that	it	produces	short	signatures.

Hash-Based	Cryptography
Unlike	the	previous	schemes,	hash-based	cryptography	is	based	on	the	well-
established	 security	 of	 cryptographic	 hash	 functions	 rather	 than	 on	 the
hardness	 of	 mathematical	 problems.	 Because	 quantum	 computers	 cannot
break	hash	functions,	they	cannot	break	anything	that	relies	on	the	difficulty
of	finding	collisions,	which	is	the	key	idea	of	hash	function–based	signature
schemes.

Hash-based	cryptographic	schemes	are	pretty	complex,	so	we’ll	just	take	a
look	 at	 their	 simplest	 building	 block:	 the	 one-time	 signature,	 a	 trick
discovered	 around	 1979,	 and	 known	 as	 Winternitz	 one-time	 signature
(WOTS),	after	its	inventor.	Here	“one-time”	means	that	a	private	key	can	be
used	 to	 sign	 only	 one	 message;	 otherwise,	 the	 signature	 scheme	 becomes
insecure.	 (WOTS	 can	 be	 combined	 with	 other	 methods	 to	 sign	 multiple
messages,	as	you’ll	see	in	the	subsequent	section.)

But	 first,	 let’s	 see	 how	WOTS	 works.	 Say	 you	 want	 to	 sign	 a	 message
viewed	as	a	number	between	0	and	w	–	1,	where	w	is	some	parameter	of	the
scheme.	The	private	key	is	a	random	string,	K.	To	sign	a	message,	M,	with	0
≤	M	<	w,	you	compute	Hash(Hash(…(Hash(K))),	where	 the	hash	 function
Hash	 is	 repeated	M	 times.	We	denote	this	value	as	HashM(K).	The	public
key	is	Hashw(K),	or	the	result	of	w	nested	iterations	of	Hash,	starting	from
K.

A	WOTS	signature,	S,	 is	verified	by	checking	that	Hashw	–	M(S)	is	equal
to	the	public	key	Hashw(K).	Note	that	S	is	K	after	M	applications	of	Hash,
so	if	we	do	another	w	–	M	applications	of	Hash,	we’ll	get	a	value	equal	to	K
hashed	M	+	(w	–	M)	=	w	times,	which	is	the	public	key.

This	scheme	looks	rather	dumb,	and	it	has	significant	limitations:

Signatures	can	be	forged
From	HashM(K),	the	signature	of	M,	you	can	compute	Hash(HashM(K))
=	HashM	 +	 1(K),	 which	 is	 a	 valid	 signature	 of	 the	message	M	 +	 1.	This
problem	 can	 be	 fixed	 by	 signing	 not	 only	M,	 but	 also	w	 –	M,	 using	 a



second	key.

It	only	works	for	short	messages
If	messages	are	8	bits	long,	there	are	up	to	28	–	1	=	255	possible	messages,
so	 you’ll	 have	 to	 compute	Hash	 up	 to	 255	 times	 in	 order	 to	 create	 a
signature.	That	might	work	for	short	messages,	but	not	 for	 longer	ones:
for	 example,	with	128-bit	messages,	 signing	 the	message	2128	 –	1	would
take	forever.	A	workaround	is	to	split	longer	messages	into	shorter	ones.

It	works	only	once
If	 a	 private	 key	 is	 used	 to	 sign	more	 than	 one	message,	 an	 attacker	 can
recover	 enough	 information	 to	 forge	 a	 signature.	 For	 example,	 if	w	 =	 8
and	you	sign	the	numbers	1	and	7	using	the	preceding	trick	to	avoid	trivial
forgeries,	 the	 attacker	 gets	Hash1(K)	 and	Hash7(K′)	 as	 a	 signature	 of	 1,
and	Hash7(K)	 and	Hash1(K′)	 as	a	 signature	of	7.	From	these	values,	 the
attacker	can	compute	Hashx(K)	and	Hashx(K′)	for	any	x	in	[1;7]	and	thus
forge	a	signature	on	behalf	of	the	owner	of	K	and	K′.	There	is	no	simple
way	to	fix	this.

State-of-the-art	 hash-based	 schemes	 rely	 on	 more	 complex	 versions	 of
WOTS,	 combined	 with	 tree	 data	 structures	 and	 sophisticated	 techniques
designed	 to	 sign	different	messages	with	different	 keys.	Unfortunately,	 the
resulting	 schemes	 produce	 large	 signatures	 (on	 the	 order	 of	 dozens	 of
kilobytes,	 as	with	 SPHINCS,	 a	 state-of-the-art	 scheme	 at	 the	 time	 of	 this
writing),	and	 they	sometimes	have	a	 limit	on	 the	number	of	messages	 they
can	sign.

How	Things	Can	Go	Wrong
Post-quantum	 cryptography	 may	 be	 fundamentally	 stronger	 than	 RSA	 or
elliptic	 curve	 cryptography,	 but	 it’s	 not	 infallible	 or	 omnipotent.	 Our
understanding	 of	 the	 security	 of	 post-quantum	 schemes	 and	 their
implementations	 is	more	 limited	 than	 for	 not-post-quantum	 cryptography,
which	brings	with	it	increased	risk,	as	summarized	in	the	following	sections.

Unclear	Security	Level
Post-quantum	 schemes	 can	 appear	 deceptively	 strong	 yet	 prove	 insecure
against	both	quantum	and	classical	attacks.	Lattice-based	algorithms,	such	as



the	 ring-LWE	 family	 of	 computational	 problems	 (versions	 of	 the	 LWE
problem	 that	 work	 with	 polynomials),	 are	 sometimes	 problematic.	 Ring-
LWE	 is	 attractive	 for	 cryptographers	 because	 it	 can	 be	 leveraged	 to	 build
crypto​systems	 that	 are	 in	 principle	 as	 hard	 to	 break	 as	 it	 is	 to	 solve	 the
hardest	instances	of	Ring-LWE	problems,	which	can	be	NP-hard.	But	when
security	looks	too	good	to	be	true,	it	often	is.

One	 problem	 with	 security	 proofs	 is	 that	 they	 are	 often	 asymptotic,
meaning	that	they’re	true	only	for	a	large	number	of	parameters	such	as	the
dimension	 of	 the	 underlying	 lattice.	However,	 in	 practice,	 a	much	 smaller
number	of	parameters	is	used.

Even	when	 a	 lattice-based	 scheme	 looks	 to	 be	 as	 hard	 to	 break	 as	 some
NP-hard	 problem,	 its	 security	 remains	 hard	 to	 quantify.	 In	 the	 case	 of
lattice-based	 algorithms,	 we	 rarely	 have	 a	 clear	 picture	 of	 the	 best	 attacks
against	 them	 and	 the	 cost	 of	 such	 an	 attack	 in	 terms	 of	 computation	 or
hardware,	 because	 of	 our	 lack	 of	 understanding	 of	 these	 recent
constructions.	 This	 uncertainty	 makes	 lattice-based	 schemes	 harder	 to
compare	 against	 better-understood	 constructions	 such	 as	 RSA,	 and	 this
scares	potential	users.	However,	 researchers	have	been	making	progress	on
this	 front	 and	 hopefully	 in	 a	 few	 years,	 lattice	 problems	 will	 be	 as	 well
understood	as	RSA.	(For	more	technical	details	on	the	Ring-LWE	problem,
read	Peikert’s	excellent	survey	at	https://eprint.iacr.org/2016/351/.)

Fast	Forward:	What	Happens	if	It’s	Too	Late?
Imagine	this	CNN	headline:	April	2,	2048:	“ACME,	Inc.	reveals	its	secretly
built	 quantum	 computer,	 launches	 break-crypto-as-a-service	 platform.”
Okay,	RSA	and	elliptic	curve	crypto	are	screwed.	Now	what?

The	bottom	line	is	that	post-quantum	encryption	is	way	more	critical	than
post-quantum	 signatures.	 Let’s	 look	 at	 the	 case	 of	 signatures	 first.	 If	 you
were	still	using	RSA-PSS	or	ECDSA	as	a	signature	scheme,	you	could	 just
issue	 new	 signatures	 using	 a	 post-quantum	 signature	 scheme	 in	 order	 to
restore	your	signatures’	trust.	You	would	revoke	your	older,	quantum-unsafe
public	keys	and	compute	fresh	signatures	for	every	message	you	had	signed.
After	a	bit	of	work,	you’d	be	fine.

You	would	only	need	to	panic	if	you	were	encrypting	data	using	quantum-
unsafe	 schemes,	 such	as	RSA-OAEP.	In	 this	case	all	 transmitted	ciphertext
could	 be	 compromised.	 Obviously,	 it	 would	 be	 pointless	 to	 encrypt	 that

https://eprint.iacr.org/2016/351/


plaintext	 again	 with	 a	 post-quantum	 algorithm	 since	 your	 data’s
confidentiality	is	already	gone.

But	what	about	key	agreement,	with	Diffie–Hellman	(DH)	and	its	elliptic
curve	counterpart	(ECDH)?

Well,	 at	 first	glance,	 the	 situation	 looks	 to	be	as	bad	as	with	encryption:
attackers	who’ve	 collected	 public	 keys	 ga	 and	 gb	 could	 use	 their	 shiny	 new
quantum	computer	to	compute	the	secret	exponent	a	or	b	and	compute	the
shared	 secret	 gab,	 and	 then	 derive	 from	 it	 the	 keys	 used	 to	 encrypt	 your
traffic.	But	in	practice,	Diffie–Hellman	isn’t	always	used	in	such	a	simplistic
fashion.	The	 actual	 session	keys	used	 to	 encrypt	 your	data	may	be	derived
from	both	the	Diffie–Hellman	shared	secret	and	some	internal	state	of	your
system.

For	example,	that’s	how	state-of-the-art	mobile	messaging	systems	work,
thanks	to	a	protocol	pioneered	with	the	Signal	application.	When	you	send	a
new	message	 to	 a	 peer	with	Signal,	 a	 new	Diffie–Hellman	 shared	 secret	 is
computed	 and	 combined	 with	 some	 internal	 secrets	 that	 depend	 on	 the
previous	messages	 sent	within	 that	 session	 (which	can	span	 long	periods	of
time).	Such	advanced	use	of	Diffie–Hellman	makes	the	work	of	an	attacker
much	harder,	even	one	with	a	quantum	computer.

Implementation	Issues
In	 practice,	 post-quantum	 schemes	 will	 be	 code,	 not	 algorithms;	 that	 is,
software	 running	 on	 some	 physical	 processor.	 And	 however	 strong	 the
algorithms	 may	 be	 on	 paper,	 they	 won’t	 be	 immune	 to	 implementation
errors,	 software	 bugs,	 or	 side-channel	 attacks.	 An	 algorithm	 may	 be
completely	 post-quantum	 in	 theory	 but	 may	 still	 be	 broken	 by	 a	 simple
classical	 computer	 program	 because	 a	 programmer	 forgot	 to	 enter	 a
semicolon.

Furthermore,	 schemes	 such	 as	 code-based	 and	 lattice-based	 algorithms
rely	heavily	on	mathematical	operations,	the	implementation	of	which	uses	a
variety	of	tricks	to	make	those	operations	as	fast	as	possible.	But	by	the	same
token,	the	complexity	of	the	code	in	these	algorithms	makes	implementation
more	vulnerable	to	side-channel	attacks,	such	as	timing	attacks,	which	infer
information	 about	 secret	 values	based	on	measurement	of	 execution	 times.
In	fact,	such	attacks	have	already	been	applied	to	code-based	encryption	(see
https://eprint.iacr.org/2010/479/)	 and	 to	 lattice-based	 signature	 schemes	 (see

https://eprint.iacr.org/2010/479/


https://eprint.iacr.org/2016/300/).
The	upshot	is	that,	ironically,	post-quantum	schemes	will	be	less	secure	in

practice	at	first	than	non-post-quantum	ones,	due	to	vulnerabilities	in	their
implementations.

Further	Reading
To	 learn	 the	 basics	 of	 quantum	 computation,	 read	 the	 classic	 Quantum
Computation	and	Quantum	Information	by	Nielsen	and	Chuang	(Cambridge,
2000).	Aaronson’s	Quantum	Computing	Since	Democritus	 (Cambridge,	2013),
a	 less	 technical	 and	 more	 entertaining	 read,	 covers	 more	 than	 quantum
computing.

Several	 software	 simulators	 will	 allow	 you	 to	 experiment	 with	 quantum
computing.	 The	 Quantum	 Computing	 Playground	 at
http://www.quantumplayground.net/	 is	 particularly	 well	 designed,	 with	 a
simple	programming	language	and	intuitive	visualizations.

For	 the	 latest	 research	 in	 post-quantum	 cryptography,	 see
https://pqcrypto.org/	and	the	associated	conference	PQCrypto.

The	 coming	 years	 promise	 to	 be	 particularly	 exciting	 for	 post-quantum
crypto	thanks	to	NIST’s	Post-Quantum	Crypto	Project,	a	community	effort
to	develop	the	future	post-quantum	standard.	Be	sure	to	check	the	project’s
website	 http://csrc.nist.gov/groups/ST/post-quantum-crypto/	 for	 the	 related
algorithms,	research	papers,	and	workshops.
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