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Theory of Optical Coherence Tomography

J.A. Izatt and M.A. Choma

2.1 Introduction

Several earlier publications have addressed the theory of optical coherence
tomography (OCT) imaging. These include original articles [1-12], reviews
[13,14], and books/book chapters [15,16]. Many of these publications were
authored before the major revolution that Fourier domain techniques (here
termed FDOCT) brought to OCT in the last few years, and thus were writ-
ten primarily from the perspective of time-domain OCT (TDOCT). Also,
relatively few prior publications have addressed lateral resolution in OCT
systems, which, from an end-user perspective is of equal importance to the
axial resolving power derived from low-coherence interferometry. The aim of
this chapter is to present a unified theory of OCT, which includes a discussion
of imaging performance in all three dimensions, and treats both Fourier and
time domain OCT on equal footing as specializations of the same underlying
principles.

A generic OCT system schematic is illustrated in Fig.2.1. Light from a
low-coherence source is directed into a 2 x 2 fiber—optic coupler implement-
ing a simple Michelson interferometer. The coupler is assumed to split the
incident optical power evenly into sample and reference arms, although many
practical OCT system designs take advantage of unbalanced power splitting,
as has been described theoretically and experimentally [8,9]. Light exiting the
reference fiber is incident upon a reference delay and redirected back into the
same fiber. Light exiting the sample fiber is incident upon a scanning mecha-
nism designed to focus the beam on the sample and to scan the focused spot
in one or two lateral directions, typically under computer control. Many spe-
cialized scanning systems have been developed for OCT imaging applications
in microscopy, ophthalmoscopy, endoscopy, etc. The light backscattered or
reflected from the sample is redirected back through the same optical scanning
system into the sample arm fiber, where it is mixed with the returning refer-
ence arm light in the fiber coupler, and the combined light is made to interfere
on the surface of a photoreceiver or detector. The electronic signals detected
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Fig. 2.1. Schematic of a generic fiber-optic OCT system. Bold lines represent fiber-
optic paths, red lines represent free-space optical paths, and thin lines represent
electronic signal paths

at the photoreceiver are processed into an A-scan, representing the depth-
resolved reflectivity profile of the sample at the focal spot of the sample beam
at a fixed lateral position of the scanning mechanism. As the scanning mech-
anism sweeps or steps the focused beam position across the sample, multiple
A-scans are acquired and assembled in the computer into a two-dimensional
cross-sectional image of the sample in the vicinity of the focal spot, termed as
B-scan. Optionally, various alternative combinations of multi-dimensional lat-
eral scanning and A-scan acquisition under computer control may be formed
to create repeated A-scans at the same location as a function of time (termed
M-scans), B-scans with lateral rather than depth priority, three-dimensional
OCT volume datasets, and/or image improvement from OCT signal averaging
in various combinations of dimensions.

In the case of TDOCT, the low-coherence source in Fig. 2.1 is broadband
and continuous-wave (cw), the reference arm delay is repetitively scanned in
length, a single-channel photoreceiver is employed, and the required signal
processing consists of detecting the envelope of the detected fringe burst pat-
tern corresponding to interference between the reference arm light and each
successive scattering site in the sample. FDOCT systems are subdivided into
spectral-domain (or spectrometer-based) systems referred to as SDOCT and
swept-source systems termed SSOCT (alternatively called optical frequency-
domain imaging or OFDI by some authors). In the case of SDOCT, the
source is broadband and cw, the reference arm length is fixed at a position
approximately corresponding to the position of the sample, and the spectral
interference pattern between the light returning from the reference arm and
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all depths in the sample is dispersed by a spectrometer and collected simul-
taneously on an array detector such as a photodiode array or charge-coupled
device (CCD). In the case of SSOCT, the source has narrow instantaneous
linewidth but is rapidly swept in wavelength, and the spectral interference
pattern is detected on a single or small number of photoreceivers as a func-
tion of time. The reference arm length is also fixed in SSOCT. In both SDOCT
and SSOCT forms of FDOCT, the spectral interference pattern encodes in its
spectral frequency content the entire depth-resolved structure of the sample
at the position of the focal spot, and the A-scan may be recovered as described
below, using an inverse Fourier transform. Additional signal processing steps
(such as interpolation) may also be required in FDOCT to prepare the spectral
interferogram for the inverse Fourier transform, so that the data is linearly
sampled in wavenumber, addition of phase terms to correct for dispersion
mis-matches between the sample and reference arms, and others.

2.2 Confocal Gating and Lateral Resolution
in OCT Systems

Some previous analyses have described the lateral resolution and axial field
of view of OCT systems as illustrated in Fig. 2.1 as the spot size and depth of
focus of an assumed Gaussian profile sample arm beam in the region of the
beam focus. This approach is a reasonable approximation and provides useful
insight into the trade-off between these quantities, specifically that spot size
is proportional to the numerical aperture (NA) of the sample arm focusing
optics, while depth of focus is proportional to NAZ. However, it is more correct
to treat the sample arm of an OCT system as a reflection-mode scanning
confocal microscope, in which the singlemode optical fiber serves as a pinhole
aperture for both illumination and collection of light from the sample. Even for
OCT systems that do not employ fiber optics, the antenna response function of
the homodyne wave mixing inherent to OCT can be shown to be equivalent to
confocality. Confocal microscopes using fiber optic delivery and detection have
been well described in the literature, including their lateral and axial point-
spread function behavior for single and multimode fiber operation [17-19].
For singlemode optical fibers such as those used in OCT, the expressions for
both lateral- and axial-detected intensity reduce to those for an ideal confocal
microscope with a diminishingly small pinhole aperture. Confocal microscopes
have the advantage of slightly improved lateral resolution over conventional
bright-field microscopes and the ability to perform “optical sectioning” due to
their peaked axial response (unlike conventional brightfield microscopes, for
which out-of-focus light is blurred, but not attenuated). A summary of results
characterizing these quantities in lateral and axial directions are presented in
Fig. 2.2. The optical system is assumed to be cylindrically symmetric, and so
only one lateral dimension is described.
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Fig. 2.2. Schematic of generic OCT sample arm optics. Formulas are provided for
axial field of view FOV ,xia1 and lateral resolution dz (assuming these quantities are
dominated by the confocal geometrical optics), axial resolution 0z (assuming it is
limited by the low-coherence interferometer), and for lateral field of view FOViateral
(assuming a simple f-theta scanning system)

An expression for the detected intensity from a point reflector placed in the
focal plane of an ideal reflection confocal microscope as a function of lateral

position is given by
9 4
I(v) = ( Jt}(v)) : (2.1)

where J;(v) is a first-order Bessel function of the first kind and v is the
normalized lateral range parameter defined by v = 27rwsin(a)/Ag. Here, x
is the lateral distance from the optical axis, « is half the angular optical
aperture subtended by the objective, and Ag is the center wavelength of the
light source. Note that the numerical aperture of the objective is given by
NA = sin(«), assuming it is properly filled. We interpret (2.1) as the lateral
point-spread function of an OCT system at the position of its focal plane, and
characterize it by defining the lateral resolution dz as its full width at half
maximum power, which calculates to
Ao Ao

=037.°. (2.2)

0w = 0'37Sin(a) NA

The lateral field of view for an OCT system depends greatly upon the details
of the lateral scanning system employed. A particularly simple scanning sys-
tem employs some means to rotate the sample arm beam through the input
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aperture of the objective lens to a maximum one-sided scan angle y,,x. In
this case, the lateral field of view of the OCT system is simply given by
FOViateral = 2f9max~

We follow the convention in confocal microscopy [17,18] and describe the
axial response of the OCT sample arm optics as the confocal response to a
planar rather than point reflector. The detected intensity of an ideal confocal
microscope from a planar reflector as a function of the reflector position along

the optic axis is given by
 (sin(u/2)\?

where wu is the normalized axial range parameter defined by uw =
87z sin2(a /2)/Xo. The axially peaked response of a confocal microscope gives
it its well-known depth sectioning capability. This is also the response we
would expect by translating a mirror axially through the focus of an OCT
sample arm. If the length of this function is comparable to the axial response
of the OCT system arising from low-coherence interferometry (as described
below), then the overall axial response of the OCT system should properly be
described as the convolution of these two functions. OCT systems operating
in this regime have been referred to as optical coherence microscopy or OCM
systems [2, 20, 21]. In OCM, however, considerable effort must be expended
to align the “confocal” and “coherence” gates, and to keep them aligned as
depth scanning is performed. In most OCT applications designed for practical
clinical and research applications, a relatively low numerical aperture objec-
tive is used so that the lateral resolution dx is approximately matched to
the axial resolution 6z defined by the low-coherence interferometer (see (2.8)
below), and thus approximately isotropic resolution imaging is performed.
Under this condition, the confocal gate length is much larger than the lateral
resolution since it scales as the square of the numerical aperture. However, the
confocal gate length still limits the axial range over which the low-coherence
interferometric depth scanning may usefully operate. We define the full width
at half maximum power of the confocal axial response function as the axial
field-of-view FOV 4xja1 of the OCT system, which calculates to

0.565A 0.565\
FOVaxial = . 9 D) = . 9 [sin—1(NA) . (24)
sin” [/2]  gin [ 9 }

2.3 Axial Ranging with Low-Coherence Interferometry

The fundamental quality that differentiates optical coherence tomography
(OCT) from other forms of optical microscopy is that the predominant axial
component of image formation derives from a ranging measurement performed
using low-coherence interferometry. Consider the Michelson interferometer
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Fig. 2.3. Schematic of a Michelson interferometer used in OCT

illustrated in Fig.2.3. The interferometer is illuminated by a polychro-
matic plane wave whose electric field expressed in complex form is E; =
s(k,w) el*==wt) Here, s(k,w) is the electric field amplitude as a function of the
wavenumber k = 27 /X and angular frequency w = 27, which are respectively
the spatial and temporal frequencies of each spectral component of the field
having wavelength A. The wavelength \ and frequency v are coupled by the
index of refraction n(\) (which is wavelength-dependent in dispersive media)
and vacuum speed of light ¢ according to ¢/n(A) = Av. The beamsplitter
is assumed to have an achromatic (wavelength-independent) power splitting
ratio of 0.5. The reference reflector is assumed to have electric field reflectivity
rgr and power reflectivity Rr = |rr|?. The distance from the beamsplitter to
the reference reflector is zgr.

The sample under interrogation is characterized by its depth-dependent
electric field reflectivity profile along the sample beam axis rg(zs), where zg
is the pathlength variable in the sample arm measured from the beamsplit-
ter. In general rg (zg) is continuous, resulting from the continuously varying
refractive index of biological tissues and other samples. It may also be com-
plex, encoding the phase as well as the amplitude of each reflection. However,
for an illustrative example, we assume a series of N discrete, real delta-

N
function reflections of the form rg(zs) = Y. rsnd(zs — 2sn), each reflection

characterized by its electric field reﬂectivit; rs1, Ts2 ..., and pathlength from
the beamsplitter of zg1, zga ... (see Fig.2.4). The power reflectivity of each
reflector is given by the magnitude squared of the electric field reflectivity,
for example Rg; = |rs1|?. The reconstruction of the function V/Rs(zs) from
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Fig. 2.4. Exemplary model for a sample comprising a series of discrete reflectors

noninvasive interferometric measurements is the goal of low-coherence inter-
ferometry in OCT. The electric field passing through the beamsplitter after
returning from the sample arm is Fy = ?2 [TS (25) ® ei2kzs]7 where ® repre-
sents convolution, and the factor of 2 in the exponential kernel accounts for the
round-trip pathlength to each sample reflection. Note that for most samples
such as biological tissues imaged with OCT, sample reflectivities Rg1, Rss - ..
are typically very small (on the order of ~107* to 10~°); thus the returned
reference field typically dominates the reflected sample field. Indeed, published
studies have shown that selection of the appropriate reference reflectivity is
an important design criterion in OCT system design [8,9].

For the example of discrete reflectors, the fields incident on the beam-
splitter after returning from the reference and sample arms are given by

N

Er = 5‘2 rr 2R and E, = 5‘2 > Tsn elZkzsn respectively. The return-

n=1
ing fields are halved in power upon passing through the beamsplitter again

and interfere at the square-law detector, which generates a photocurrent
proportional to the square of the sum of the fields incident upon it, given
by Ip(k,w) = ’2’<|ER+ES|2> = 2 ((Ex + Es) (Eg + Es)*). Here, p is the
responsivity of the detector (units Amperes/Watt), the factor of 2 reflects the
second pass of each field through the beamsplitter, and the angular brackets
denote integration over the response time of the detector. Arbitrarily setting
z = 0 at the surface of the beamsplitter, and expanding for the detector
current gives
)

In(k,w) = g <
(2.5)

Expanding the magnitude squared functions in (2.5) eliminates the terms
dependent upon the temporal angular frequency w = 27, which is reasonable
since v oscillates much faster than the response time of any practical detector.

N
s(k,w)  okep—wt) , S(k,w) i(2kzs, —wt)
rp el(2kzrR—wt) | r nel 2Sn —W

v2 Vo 227

n=1
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This leaves the temporally invariant terms

In(k) = " [S(k)(Rr + Rs1 + Rz +.)]

p

T4

N
S(k) Z \/RRRSn (ei2k(zszs,L) + ei2k(sz5n))‘| (26)

n=1

N
P i2k(2sn —28m) —i2k(zgn—2 m))
+ 1180 X VRsiBsn (e sn—zsm) y o~iZk(zsn—s

n#Em=1

Here, S(k) = (|s(k,w|?) is substituted, which encodes the power spectral
dependence of the light source. As an illustrative example, a Gaussian-shaped
light source spectrum is convenient to use in modeling OCT because it approx-
imates the shape of actual light sources and also has useful Fourier transform
properties. The normalized Gaussian function S(k) and its inverse Fourier
transform 7(z) are given by

1 7[0@;1’20)]2

_ —22AK? F _
1(z) =e S0 = e

(2.7)
and are illustrated in Fig. 2.5. Here, kg represents the central wavenumber of
the light source spectrum and Ak represents its spectral bandwidth, corre-
sponding to the half-width of the spectrum at 1/e of its maximum. As will
be seen below, the inverse Fourier transform of the source spectrum ~(z),
otherwise called the “coherence function,” dominates the axial point-spread
function (PSF) in OCT imaging systems (at least those employing a low
numerical aperture focusing objective, as pointed out in Sect.2.2). The PSF

is commonly characterized by its full width at half the maximum (FWHM)
value, and is the definition of the round-trip “coherence length” of the light

7(2) . Stk)
1 .O T T

Fig. 2.5. lllustration of Fourier transform relationship between the Gaussian-shaped
coherence function «(z) (characterized by the coherence length I.), and the light
source spectrum S(k) (characterized by the central wavenumber ko and wavenumber
bandwidth Ak)
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source [.. The coherence length is an explicit function of the light source
bandwidth, stated both in wavenumber and wavelength terms as

~2y/In(2)  2In(2) A3

le = Ak 1 AN (28)

Here, \g = 27/k¢ is the center wavelength of the light source and AN\ is its
wavelength bandwidth, defined as the FWHM of its wavelength spectrum (so

that Ak = \/1”(2) /\Ao)z‘) Note the inverse relationship between the coherence
n

length and the light source bandwidth.

Using Euler’s rule to simplify (2.6) generates a real result for the detec-
tor current as a function of wavenumber, commonly known as the “spectral
interferogram”

In(k) = Z [S(k)[Rr + Rs1 + Rsa +...]] “DC Terms”
N
+ g S(k) Z v/ Rg Rsn, (cos [2k(zg — zs")})} “Cross-correlation Terms”
n=1

N
S(k) Z v/ Rsn Ram cos [2k(zsn — 2sm)] “Auto-correlation Terms”.

n#Fm=1

p
+4

(2.9)

The result in (2.5) includes three distinct components:

1. A pathlength-independent offset to the detector current, scaled by the
light source wavenumber spectrum and with amplitude proportional to
the power reflectivity of the reference mirror plus the sum of the sample
reflectivities. This term is often referred to as “constant” or “DC” compo-
nent. This is the largest component of the detector current if the reference
reflectivity dominates the sample reflectivity.

2. A “cross-correlation” component for each sample reflector, which depends
upon both light source wavenumber and the pathlength difference between
the reference arm and sample reflectors. This is the desired component
for OCT imaging. Since these components are proportional to the square
root of the sample reflectivities, they are typically smaller than the DC
component. However, the square root dependence represents an important
logarithmic gain factor over direct detection of sample reflections.

3. “Autocorrelation” terms representing interference occurring between the
different sample reflectors appear as artifacts in typical OCT system
designs (exceptions occur in common-path system designs, in which the
autocorrelation component represents the desired signal). Since the auto-
correlation terms depend linearly upon the power reflectivity of the sample
reflections, a primary tool for decreasing autocorrelation artifacts is selec-
tion of the proper reference reflectivity so that the autocorrelation terms
are small compared to the DC and interferometric terms.
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Fig. 2.6. Important features of the spectral interferogram. For a single sample
reflector of field reflectivity rs1 = 0.1 (left) the cross-correlation component with
amplitude v/ Rr Rs1 and wavenumber period 7/(zr — zs1) rides on top of the DC
term of amplitude [Rr + Rs1]/2 (factors of pS(k) are left out for clarity). For
multiple reflectors, the cross-correlation component is a superposition of cosinusoids

Tt is useful to gain an intuitive understanding of the form of (2.9), as well as
the effect that different source spectra and different numbers of sample reflec-
tors and their distributions have upon it. For a single reflector, only DC and a
single interferometric term are present, and the source spectrum is modulated
by a simple cosinusoid whose period is proportional to the distance between
the sample and reference reflectors, as illustrated in Fig. 2.6. In addition, the
amplitude of spectral modulation or “visibility” of the spectral fringes is pro-
portional to the amplitude reflectivity of the sample reflector v/Rg;. For the
case of multiple reflectors, the spectrum is modulated by multiple cosinusoids,
each having a frequency and amplitude characteristic of the sample reflection
which gives rise to it. In addition, if more than one reflector is present in the
sample, autocorrelation components modulated according to the pathlength
difference between the sample reflectors and proportional to the product of
their amplitude reflectivities also appear. Since the sample amplitude reflec-
tivities are typically small, these terms are typically small, and also since
reflections in the sample tend to be clumped closely together compared to
the distance between the sample and the reference reflector, their modulation
frequencies tend to be small.

2.4 Fourier Domain Low Coherence Interferometry

In Fourier domain OCT (FDOCT), the wavenumber-dependent detector
current Ip(k) in (2.9) is captured and processed using Fourier analysis
to reconstruct an approximation of the internal sample reflectivity profile
\/ Rs(zs). The process for capturing Ip(k) depends upon the experimen-
tal details of the detection apparatus. In spectral domain OCT (SDOCT,
also called spectrometer-based OCT), a broadband light source is used, and
all spectral components of Ip (k) are captured simultaneously on a detector
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array placed at the output of a spectrometer [22-24]. In swept-source OCT
(SSOCT, also called optical frequency-domain imaging or OFDI), the spectral
components of I (k) are captured sequentially by recording the signal in a sin-
gle detector while synchronously sweeping the wavenumber of a narrowband
swept-laser source [25-28].

The sample reflectivity profile rg(zg) is estimated from the inverse Fourier
transform of Ip(k). Making use of the Fourier transform pair } [5(z + 20)

+6(z — 20)] L coskzy and the convolution property of Fourier transforms

x(2) ® y(z) RN X (k)Y (k), the inverse Fourier transform of (2.9) may be
calculated as

P

ip(z) = < [v(z) [Rr + Rs1 + Rs2 + .. .]] “DC Terms”
r N
+ 1112 @ Y- VRrRsn (3( % 2z — 250)))

“Cross-correlation Terms”

N
+ g 1(z) ® ng;_l V RsnRsm (6(2 £ 2(28n — 25m)))

“Auto-correlation Terms”. (2.10)

N
Note that the desired sample field reflectivity profile \/ Rs(zs) = . V/Rsn
n=1

d(zs — zsp) is indeed embedded within the cross-correlation terms of (2.10),
although it is surrounded by several confounding factors. Carrying out the
convolutions by taking advantage of the sifting property of the delta function,
we obtain the result of the interferometric measurement, referred to as the
“A-scan”:

in(z) = ’8’ [7(2) [Rg + Rs1 + Rz + .. ]

N
+Z;;vRR&mhm@R—zwn+vk2@R—%wu (2.11)

N
tg 2 VRsBsm 12z — zsm)] +11-2(z8n — z5m)])

n#m=1

The results in (2.10) and (2.11) for the example of discrete sample reflec-
tors and a Gaussian-shaped source spectrum are plotted in Fig.2.7. As
can be seen in the figure, the sample field reflectivity profile \/ Rs(zs) =

N
> V/Rsnd(zs — zsp) is reproduced in the cross-correlation terms with the fol-
n=1

lowing modifications. First, the zero position of the reflectivity profile appears
at the position of the reference reflector zr, rather than the position of the
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domain low-coherence interferometry

beamsplitter. Second, the apparent displacement of each sample reflector from
the reference position is doubled (which can be understood from the fact
that the interferometer measures the round-trip distance to each reflector).
We accommodate this by defining a new single-pass depth variable z = 2z.
Third, each reflector appears broadened or blurred out to a width of about
a coherence length by convolution with the function ~y(z). This is precisely
the definition of an imaging system PSF. Given the inverse relationship of the
coherence length to the light source bandwidth, the clearest path to increase
the fidelity of the estimate of \/Rg(zs) is to use as broad bandwidth sources
as possible. Fourth, the magnitude of the detected sample reflectivity, which
can be very small, is amplified by the large homodyne gain factor represented
by the strong reference reflectivity v/ Rr. All the modifications listed so far
can be dealt with through proper interpretation of the data, i.e., realization
that the zero position corresponds to the position of the reference reflector,
relabeling axial distances to account for the factor of 2, and accounting for
the homodyne gain factor.

A number of additional modifications to the field reflectivity profile are
termed artifacts and are more serious. First, as seen in the cross-correlation
terms in (2.10) and (2.11), a mirror image of the blurred version of \/Rs(zs)
appears on the opposite side of zero pathlength, i.e., the reference reflector
position. This is termed the complex conjugate artifact in FDOCT, and is sim-
ply understood from the fact that since the detected interferometric spectrum
is necessarily real, its inverse Fourier transform must be Hermitian symmetric,
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i.e., its positive and negative distances are complex conjugates of each other
and therefore if they are real, they must be identical. This artifact is not seri-
ous so long as the sample can be kept entirely to one side of zero path length,
in which case it can be dealt with by simply displaying only the positive or
negative distances. However, if the sample strays over the zero pathlength bor-
der, it begins to overlap its mirror image, an effect that cannot be removed
by image processing alone. A number of approaches are under development
for removing this complex conjugate artifact ([29-36], see also Sect. 2.6.2).

Additional image artifacts also arise from the DC and auto-correlation
terms in (2.10) and (2.11). The DC terms give rise to a large artifactual
signal centered at zero pathlength difference. The FWHM value of the DC
artifact is only one coherence length wide; however, the signal amplitude is
so much larger than the desired cross-correlation terms that the wings of the
Gaussian-shaped PSF from (2.7) can overwhelm desired signal components
much farther away. Since the largest component of the DC artifact comes from
the reference reflector (with reflectivity near 1), a simple method to eliminate
that component is to record the amplitude of the spectral interferometric
signal (2.9) with the reference reflector but no sample present, then to subtract
this signal component from each subsequent spectral interferometric signal
acquired. The autocorrelation terms in (2.10) and (2.11) also give rise to
artificial signals at and near the zero pathlength position, since the distance
between reflectors in a sample is typically much smaller than the distance
between the sample reflectors and the reference arm path length. The best
method to eliminate the autocorrelation signals is to ensure that the reference
reflectivity is sufficient so that the amplitude of the autocorrelation terms is
very small compared to the cross-correlation terms.

2.5 Time Domain Low Coherence Interferometry

In traditional or time-domain OCT (TDOCT), the wavenumber-dependent
detector current I'p (k) in (2.9) is captured on a single receiver while the ref-
erence delay z, is scanned to reconstruct an approximation of the internal
sample reflectivity profile \/ Rs(zs). The result is obtained by the integration
of (2.9) over all &:

In(zr) = Z [So [Rr + Rs1 + Rsz +...]] “DC Offset”
N 2 2
+ ’2’ So > v/ RrRsy e Crms’ 8 cog 9k (2 — zs,)] | (2.12)
n=1

“Fringe Bursts”.

Here, Sy = [ S(k)dk is the spectrally integrated power emitted by the
0

light source. The resulting time-domain “A-scan” resulting from such a mea-
surement is illustrated in Fig.2.8. Note that the sample reflectivity profile
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convolved with the source coherence function is again recapitulated in the
result, resident on a DC offset proportional to the sum of the reference and
sample power reflectivities. In addition, the convolved sample reflectivity pro-
file is modulated by a cosinusoidal carrier wave modulation at a frequency
proportional to the source center wavenumber ky and the difference between
reference and sample arm lengths zg — zg,. Since the reference arm length
zR is typically scanned as a function of time in TDOCT systems, this carrier
provides a convenient modulation frequency for lock-in detection, which pro-
vides for high sensitivity detection of the reflectivity envelope and rejection
of the DC offset.

2.6 Practical Aspects of FDOCT Signal Processing

2.6.1 Sensitivity Falloff and Sampling Effects in FDOCT

While the FDOCT spectral interferogram of (2.9) and its continuous-time
inverse Fourier transform (2.11) illustrate the fundamental principle under-
lying spectrometer-based (SD) and swept-source (SS) OCT, in practical
implementations of these devices, several additional factors must be taken
into account. The spectral interferogram data is generated by instrumenta-
tion having real-world limitations, and is typically acquired by a sampling
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Fig. 2.9. Conceptual basis for sensitivity falloff and maximum imaging depth in
FDOCT. Note that the depth-dependent falloff in sensitivity is directly related to the
resolution of the interference spectrum, which is dominated by the source linewidth
in SSOCT and the spectrometer resolution in FDOCT

operation for rapid digital signal computation of its inverse Fourier transform.
Figure 2.9 illustrates conceptually the effects of finite spectral resolution and
sampling upon the spectral interferogram and its inverse Fourier transform.
First, the instrumentation for acquiring the spectral interferogram always
has limited spectral resolution, here denoted by d,k. In SSOCT, 4.k is limited
by the instantaneous lineshape of the swept laser source, while in SDOCT, 4,k
is the spectral resolution of the spectrometer (including the finite spacing of
the CCD pixels, whose effect on resolution in SDOCT has also been modeled
explicitly [10,37]). We model the effect of finite spectral resolution by con-
volving the ideal spectral interferogram from (2.9) with a Gaussian function
having half-maximum width 6.k, which we interpret as the FWHM spectral
resolution. Via the convolution property, the A-scan data is thus multiplied
by a sensitivity “falloff” factor whose shape is given by the inverse Fourier
transform of the Gaussian-shaped resolution factor, which is also a Gaussian:

226,k

= 41n(2) (2.13)

] 5 In (k) ® exp [_41n(2) kz]

ip(2) e exp [ 5,12
Use here of the re-scaled depth variable Z = 2z removes the apparent depth-
doubling factor in FDOCT and allows processed A-scan data to be compared
directly to sample structure. The exponential falloff of sensitivity with depth
can be understood as the decreasing visibility of higher fringe frequencies
corresponding to large sample depths. It may be characterized by defining the
one-sided depth at which the sensitivity falls off by a factor of 1/ or 6dB in
optical SNR units:

. 2In(2)  In(2) A

- _ . 2.14
4B = 5k T A (2.14)



62 J.A. Izatt and M.A. Choma

Here Zggp is given in terms of the FWHM spectral resolution in both
wavenumber (0,k) and wavelength (0,\) terms, the latter of which is rec-
ognizable as one-half of the coherence length corresponding to the spectral
resolution.

The second major consideration in real-world processing of FDOCT data
is that computer-based detection involves sampling the spectral interferogram.
We assume the interferogram is sampled with spectral sampling interval dsk
into M spectral channels linearly spaced in k. The total wavenumber range
collected is thus Ak = Mk, and this in turn sets the sampling interval in
the z-domain 652 = 27 /(2Ak), where the extra factor of 2 in the denomi-
nator arises from use of the rescaled depth parameter zZ. The maximum and
minimum depth samples are thus given by the Nyquist criterion as
™ A3

==+

imax::l: .
- 2.0k 4.5\

(2.15)

A summary of the results of this section is provided in Table 2.1. In addi-
tion to these limitations imposed by spectral resolution and sampling which
are difficult to overcome, additional real-world complications arise, which
can be handled with appropriate digital signal processing. First, the spec-
tral interferogram data may not be acquired as a linear function of optical
wavenumber, which is the required conjugate variable for imaging depth in
the inverse Fourier transform operation underlying FDOCT. For example,
grating-based spectrometers typically disperse spectra approximately linearly
in wavelength rather than wavenumber, and swept-wavelength laser sources
may be subject to any number of nonlinearities. For each of these cases, solu-
tions involving clever spectrometer designs, clever k-triggering schemes, or
as a last resort digital spectral resampling after acquisition have all been
described. In addition, dispersion effects due to mis-matched glass or tissue
lengths in the sample and reference arms may also be corrected by the addition

Table 2.1. Effects of sampling and finite spectral resolution in Fourier-Domain
OCT (FDOCT) systems

Maximum one-sided 6dB SNR falloff point

imaging depth Ze6dB
Emax
Wavenumber units T 21n(2)
2.6, :
(k =21/ dsk Sck
o In(2) A3
Wavelength units A -/\((;s)\ H7E— ) ;:(;\

0s and 0, represent the spectral sampling interval and FWHM spectral resolution,
respectively. The maximum imaging depth zmax may be doubled by the use of
methods for removing the complex conjugate ambiguity artifact
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of appropriate phase factors to the spectral interferometric data prior to
inverse Fourier transformation.

2.6.2 Artifact Removal in FDOCT by Phase Shifting

The DC, autocorrelation, and complex conjugate artifacts in FDOCT may
in principle be removed by utilizing principles and techniques borrowed from
phase-shift interferometry [30,31, 38, 39]. If the interferometer is modified to
provide for the introduction of a variable single-pass phase delay ¢ (round-
trip phase delay 2¢) between the reference and sample arms, then a set of
spectral interferograms may be acquired with different phase delays, which
can be combined in signal processing to eliminate the undesired artifacts. For
example, Fig. 2.10 illustrates an FDOCT interferometer with a variable phase
modulator placed in the reference arm, such that the reference field returning
from the reference arm is modified to Fr = 5;7’1% el(2k2r+20)  There are a
number of approaches for introducing such phase delays. Phase modulators
based on electro-optic, acousto-optic, and photoelastic modulators may be
utilized, or the reference mirror itself may be dithered by mounting it on a
piezoelectric transducer. Such transducers have the advantage of relative sim-
plicity; however, their use requires that phase-shifted spectral interferograms
be acquired sequentially; thus the resulting artifact reduction occurs at the
cost of increased acquisition time. Phase-shifted spectral interferograms may
also be acquired simultaneously on separate detectors by employing inter-
ferometer topologies, which intrinsically separate phase-shifted signals into
different detector channels. Such simultaneous phase-shifted interferometers,

Reference Reflector

Phase Modulator
E

i i(2kozp+2 N
E, ==t 7 E = E Zr o207
\/E R K J_ Sn
2 n=1

L ilk—ar)
E =42 | 4—@ Sample

Light Source E— T > Reflections

Beamsplitter
(50/50)

T b=ple )

Detector

Fig. 2.10. FDOCT interferometer with addition of variable round-trip phase delay
¢ in the reference arm
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which use orthogonal polarization states to carry phase-shifted signals, or
which employ 3 x 3 or higher order fiber couplers to separate phase channels,
have been constructed. While the analysis to follow assumes that the phase
delay is inserted in the reference arm, it is the phase difference between ref-
erence and sample arms that matters, thus phase-shifting elements may be
placed in either arm.

Rewriting the spectral interferogram from (2.5) with this additional phase
delay explicitly included, yields

In(k,2¢) = Z [S(k) [Rr + Rs1 + Rgz + ...] ] “DC Terms”
B N
+ g S(k) ; V/ RrRs, (cos [2k(zr — zsn) + 2¢])

“Cross-correlation Terms”

N
+215(k) S V/RsuRsm cos [2k(zsn — z5m]
4 n#m=1

“Auto-correlation Terms”. (2.16)

Stepped Phase Shifting Interferometry Approach

If a spectral interferogram with round-trip phase delay 2¢ = 7 is acquired and
subtracted from a spectral interferogram acquired with no phase delay, then it
follows from (2.16) that the DC and autocorrelation terms will be eliminated
and the cross-correlation terms doubled:

N
In(k,2¢ = 0) — In(k,2¢ = 7) = p | S(k) > v/RrRsn(cos[2k(zr — 2s,)])

(2.17)

The reversal of the sign of the cosine that gives rise to this result clearly
depends only upon the 2¢ = 7 phase difference between the spectral inter-
ferograms and not upon any arbitrary phase offset to both of them; thus
it is important for this and all the following results in this section that the
phase-shifted interferograms be acquired either simultaneously, or else quickly,
compared to any substantial phase drifting time in the interferometer. The
A-scan that results from the inverse Fourier transform of (2.17) also con-
tains only cross-correlation terms; thus the DC and autocorrelation artifacts
(but not the complex conjugate artifact) may be eliminated using this 2-step
algorithm:

N
in(2,260 = 0) —ip(z,2¢ = 1) = ’2’ ; VRrRsn [1[2(2r — 250)]

+7[=2(2r — 2s0)]] - (2.18)
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To remove the complex conjugate artifact, at least two spectral interferograms
with noncomplementary phase delays (i.e., with 2¢ different from 7 radians)
must be acquired. For example, if a spectral interferogram with round-trip
phase delay 2¢ = 37/2 is subtracted from a spectral interferogram acquired
with round-trip phase delay 2¢ = 7/2, the result is a spectral interferogram
containing only cross-correlation terms, which is in phase quadrature with the
previous result:

In(k,2¢ = 3n/2) — Ip(k,2¢ = 7/2)
N
=p [S(k) > V/RrRsy (—sin [2k(zr — zSn)])‘| . (2.19)
n=1

Combining all four phase-shifted interferograms yields the result

In(k,2¢ =0) — Ip(k,2¢ = 7) + j [Ip(k,2¢ = w/2) — Ip(k,2¢ = 37/2)]

N
=p [S(k) Z V/RiRsn (cos [2k(zr — 2s5)] — j sin [2k(zg — zgn)])l )

n=1

(2.20)

This 4-step combination of phase-shifted spectral interferograms inverse trans-
forms to an A-scan free of DC, autocorrelation, and complex conjugate
artifacts:

in(z,2¢ =0) —ip(z,2¢ =) + j[in(z,2¢ = 7/2) —ip(z,2¢ = 37/2)]
N
=p Y VRrRsn [7[2(zr — 280)] + 7[-2(2r — 28]
+7[2(2r — 280)] — V[—2(2r — 250n)]]

N
=P Z \/RRRSn”}/[Q(ZR — an)] (2.21)
n=1

It should be noted that if the DC and autocorrelation artifacts are removed
through some independent means, i.e., by subtracting pre-acquired averaged
spectral interferogram data as described above, then only two phase steps
separated by 2¢ = 7/2 are required, i.e.,

N
ip(2,2¢ =0) +jlin(2,20 =7/2)] = p Y _ VRrRsnV[2(2r — 2sn)]  (2.22)

n=1

is also true if the component A-scans contain only cross-correlation terms.

Quadrature Projection Phase Correction

In many practical implementations, the phase shifts imposed through exter-
nal means may not be achievable exactly or may be achromatic. For example,
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the phase shift imposed on reference arm light by physical modulation of
the reference arm delay by, for example, a piezo-electric modulator, depends
upon wavenumber. In this case, an additional signal processing step may be
introduced to ensure that the supposedly orthogonal signal components are in
fact exactly orthogonal, independent of wavenumber. Sarunic has introduced
a technique termed quatradure projection phase correction for complex con-
jugate resolution in FDOCT, which achieves this goal by simply taking the
projection of phase-separated signal components upon orthogonal basis vec-
tors [40]. For the example of the simplest two-phase techniques described in
the last section, this procedure proceeds as follows.

First, the inverse Fourier transforms of the ostensibly real and imaginary
phase-separated signal vectors are separately computed, creating intermediary
complex functions A and B:

A=1F.T[-E\ + Ey + E3 — E4]

B=1F.T [—El + By — B3 + E4] ’ (223)

Second, the vectors A and B are rotated to lie exactly on the real and imagi-
nary axes. This is done by zeroing out the phase of vector A and subtracting
the phase of vector A from that of vector B:

A= |A]

B = |B| eéB—LA . (224)

Finally, the completely complex conjugate resolved output is computed from
the following combination of A’ and B’:

Output = Im [Re(4") + jIm(B")]. (2.25)

2.7 Sensitivity and Dynamic Range in OCT Systems

One of the advantages of OCT among biophotonic sensing techniques is
that, since it borrows so heavily from optical communication technologies,
well-developed and inexpensive methodologies for signal optimization are
available to approach the quantum detection limit of a single reflected pho-
ton. Sensitivity, signal-to-noise ratio (SNR), and dynamic range are often used
interchangeably in OCT literature to denote the minimum detectable reflected
optical power compared to a perfect reflector, usually expressed in decibel
units. Here, we concur with the first two definitions but reserve dynamic
range to refer to the range of optical reflectivities observable within a single
acquisition or image.

2.7.1 SNR Analysis for Time-Domain OCT

The signal-to-noise ratio for any system is defined as the signal power divided
by the noise process variance. We follow the historical development of SNR
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analysis in OCT by first deriving expressions for TDOCT, then extending
the analysis to FDOCT. SNR analysis in TDOCT followed directly from its
predecessor technique of optical low-coherence domain reflectometry [41]. To
simplify the analysis, we consider only a single sample reflector at position zg
and neglect autocorrelation terms. In this case, we can write the total detected
photocurrent in a TDOCT system from (2.12) as

S 2 2
In(zr) = POTDOCT Rr + Rs + 2\/RRRS e~ (r—28)"AKT (g [2ko(2r — zs)]}

2

(2.26)
Here, Stpoct = 320 is the instantaneous source power incident in the sam-
ple and reference arms, and is thus the quantity limited by ocular or skin
maximum permissible exposure and other safety considerations. The desired
OCT signal resides in the third term, whose mean-square peak signal power
occurs at zr = zg and is given by <ID>2TDOCT = ”2ST’§°CT2 [RrRs]. Complete
SNR analysis for OCT systems requires consideration of many possible noise
sources in addition to shot noise (i.e., bandlimited quantum noise), which
is the fundamental limiting noise process for optical detection. The contri-
butions of these noise sources to OCT system performance including design
approaches for obtaining shot noise-limited operation have been described
in detail for both TDOCT and FDOCT systems. Here we derive expres-
sions for shot noise limited performance. Shot noise variance in an optical
receiver is given by 0311 = 2elB, where e is the electronic charge, I is the
mean detector photocurrent, and B is the electronic detection bandwidth. In
a TDOCT system whose reference arm scans over a depth range 2y, during
an A-scan acquisition time At with velocity vref = 2Zmax/At, the reference
light frequency is Doppler shifted by fp = 205t/ Ao = ko2max/ (TAL), and the
resulting FWHM signal power bandwidth is A fp = AkpwiM2Zmax/ (TA) (in
Hz). The optimal detection bandwidth is approximately twice this value, or
Brpoct &~ 2AkrwiMZmax/ (TAt) [41]. Assuming the light intensity backscat-
tered from the sample is much smaller than that reflected from the reference,
the mean detector photocurrent is dominated by the reference arm power and
thus J%DOCT = peStpoctRrBrpoct. The well-known expression for the
SNR of a TDOCT system is thus given by

2
SNRrpoct = <ID2>TDOCT _ PSDocTRs (2.27)
TTpOCT 2eBrpoct

This result, that the SNR is proportional to the detector responsivity p and to
the power returning from the sample (=StpocT Rs), but is independent of the
reference arm power level, is reasonable. Note that the detection bandwidth
must be increased to accommodate either increased image depth for a given
resolution or increased resolution for a given scan depth for a given A-scan
acquisition time; thus these modifications are penalized in TDOCT.
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2.7.2 SNR Analysis for Fourier-Domain OCT

The first indication that the techniques of Fourier-domain OCT may provide a
significant SNR advantage over TDOCT was apparently published by Hausler
et al. in 1997 [42]. The analysis was not experimentally confirmed, and as a
conference proceedings paper was not widely available. It was not until late
2003 that the publication of three papers in quick succession by independent
groups confirmed the advantage both theoretically and experimentally in the
case of spectrometer-based FDOCT or SDOCT [10-12]. One of these papers
was also the first to recognize the inherent connection between swept-source
and spectrometer-based systems, and to demonstrate the identical advantage
both theoretically and experimentally for both implementations [11].

To obtain comparable expressions to that of (2.27) for SSOCT and SDOCT
systems, we must understand how both signal and noise propagate through
the spectral sampling and inverse Fourier transform processes. Under the
same assumptions of a single sample reflector and no autocorrelation terms,
the sampled version of the spectral interferogram in FDOCT systems (from
(2.16)) is

Ip [/ﬂm] = gSFDOCT[km] Rpr + Rs + 2\/RRRS cos [2/€m(ZR — Zs)]:| . (2.28)

SR ey . . .
Here, Srpoct|km] = ( )|2’“*"m is that portion of the instantaneous power

incident on the sample that corresponds to spectral channel m of the detec-
tion system, whether time-multiplexed in SSOCT or on separate detectors
in SDOCT. In the discrete case, the inverse Fourier transform operation is
implemented as an inverse discrete Fourier transform:

M
ip[2m] = Y Ip[km] etFmzm/M, (2.29)
m=1

Again for the special case of a single sample reflector located at depth zg = zg,
the peak value of the interferometric term in (2.28) inserted into (2.29) is

M
g\/RRRS > Sepoct(km]

m=1

= g\/RRRSSFDOCT [lﬂm]M; (2.30)

ip[zm = (zr — 25) = 0]

the latter expression under the assumption that each spectral channel has
equal power in it (i.e., for a rectangular shaped source spectrum). For a more
realistic Gaussian-shaped source spectrum centered at pixel M /2 and clipped
at its 1/62 points, i.e., SFDOCT[km] = SFDOCT[/CM/Q] exp[—2(km — kM/2)2/

M
(ch/2)2]7 the last factor is Y. Srpoct (k2] = Sepoct|kar/e]-M-0.598. The

m=1
interpretation of (2.30) is that the cosinusoidal spectral interference pattern in
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each separate detection channel from a single reflector adds coherently to give
a peak signal power much greater than the signal power in each channel alone.
Each detection channel in FDOCT senses interference over a much longer
coherence length than the single detection channel in TDOCT, due to its
restricted spectral extent. This coherent addition of signal power in FDOCT
is not isolated to the trivial choice of z,, = (zr — z5) = 0 in (2.30); any
other choice of z,, = (zr — zs) would give rise to phase factors in the Fourier
kernel, which would still coherently sum to an equivalent combined signal
peak. The mean-square peak signal power in FDOCT is thus <iD>%DOCT =
pzsg‘D(iCT[km] [RRRs]MQ.

To complete the calculation of the SNR of FDOCT, we must address the
issue of how noise transforms from the k-domain to the z-domain. Ip[k,,]
can be generalized to include an additive, uncorrelated Gaussian white noise
term alk,,]. alk,] has a mean of zero, a standard deviation olk,,], and a
lower limit set by shot noise. Again assuming Rr >> Rg, in the shot noise
limit, O'IQTDOCT[km] = €pSFDOCT[l€m]RRBFDOCT~ In this case, however, the
noise in each spectral channel is uncorrelated; thus the noise variances add
incoherently in the inverse discrete Fourier summation to give 020y [2m] =

M
Z UI%“DOCT[km] == epSFDOCT[km]RRBFDOCTM~ ThUS, the SNR of FDOCT
m=1

in general is given by

. 2
SNRrpocr = DJrpoct _ pSrpoctlknlRs (2.31)

OEpoCT deBrpoct

To specialize this general expression for SDOCT and SSOCT specifically
and to compare the resulting sensitivities to that of TDOCT, we assume
an identical A-scan length zp.x and acquisition time At for all three sys-
tems, and that the instantaneous sample arm power (which is limited by
safety or source availability considerations in practice) is the same. We also
assume a source with rectangular-shaped spectrum, at least initially. A sum-
mary of the results of this section is provided in Table 2.2. For an SSOCT
system, the allowable sample illumination power for each spectral channel is
the same as the total illumination power in TDOCT, since only one chan-
nel is illuminated at a time. Thus, SSSOCT[km] = Stpoct. The detection
bandwidth in SSOCT is limited by the analog-to-digital sampling frequency
fs = MJAt = 1/(27)4zmax Ak /AL = 2Akzmax/(TAL), where (2.22) relates
Zmax t0 0sk and Ak = Mgk is the entire range of wavenumbers scanned.
Assuming a scanning range of Ak = 2kpwpum is chosen and that an anti-
aliasing filter is used to limit the detection bandwidth to Bssoct = fs/2,
then Bssoctr = Brpoct. For an SDOCT system, where all spectral channels
are illuminated and detected simultaneously, the allowable power per spectral
channel is decreased by the factor M, i.e., Sspoct|[km] = StpocT/M. Also
the SDOCT detection bandwidth Bspoct = Brpoct/M, since the signals
from each channel are integrated over the entire A-scan time. Thus, we can
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write expressions for the SNR of both SSOCT and SDOCT systems compared
to TDOCT:

pStpocTRs
4eBrpocT

The factor of M /2 improvement in both SSOCT and SDOCT over TDOCT
can be simply understood from the fact that both FDOCT methods sample
all depths all the time, giving rise to a potential SNR improvement by a factor
M; however, both FDOCT methods generate redundant data for positive and
negative sample displacements relative to the reference position, decreasing
the SNR improvement by a factor of 2 [11]. The factor of M in (2.32) also
depends upon the assumption of the source having equal power in all spectral
channels, which is unrealistic and would lead to undesirable ringing in the
inverse transformed data in any case. More realistic spectral shapes, such as
the Gaussian shape discussed earlier, would decrease the SNR by an additional
factor of about 2. It is clear, however, that filling the spectral channels with as
much power as possible translates directly into increased SNR. Taking these
factors into account and assuming that M = 103 for a realistic swept-source
laser or detector array, we conclude that FDOCT systems are theoretically
capable of up to 20dB greater sensitivity than TDOCT systems.

It is also important to note that the theoretical SNR gain of SDOCT and
SSOCT compared to TDOCT derived above rests upon the assumption of shot
noise-limited detection in each detection channel. As has been addressed in
earlier publications for the case of TDOCT, achievement of this limit requires
sufficient reference arm power to assure shot noise dominance, but usually
requires significant reference arm attenuation to minimize excess noise. In
the case of SSOCT, the SNR of the spectral domain interferometric signal
output by the photodetector is equal to the SNR of a time-domain OCT
system photodetector output operating at the same line rate and reference
arm power; thus the optimal reference arm power level for SSOCT is expected
to be similar to that for TDOCT. In SDOCT, where the reference arm power is
dispersed onto M photodetectors, the total reference power required to achieve
shot noise-limited detection on all receivers simultaneously is more than that
required for SSOCT and TDOCT by a factor of M. However, whether or not
this requires redesign of the interferometer coupling ratio depends upon the
desired A-scan rate and the noise performance of the detectors used.

M
SNRspoct = SNRssocT = M = SNRtpocT g " (2.32)
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