
Microcontroller and Smart
�Home Networks

M
icrocontroller and Sm

art
�H

om
e N

etw
orks

Microcontroller and Smart
�Home Networks

Dawoud Shenouda Dawoud and Peter Dawoud

D
aw

oud Shenouda D
aw

oud and
Peter D

aw
oud

Dawoud Shenouda Dawoud and Peter Dawoud

River Publishers Series in Communications

Over recent years industries have faced the problem of how to connect devices
to ‘speak’ to each other with minimum wiring. Philips Semiconductors faced this
problem when they needed to connect many ICs together. The Automotive Industry
faced the same problem when it needed to connect tens of microcontrollers in each
car. Recently, with smart homes, the problem has started to be part of each home.
For instance, you may want to build your smart home with accessories from different
manufacturers and you want the devices to ‘speak’ to each other. Added to that, you
may want to control them from a central App or voice assist.

Solutions for this problem started with the introduction of Inter Integrated Circuits
(IIC) and Controller Area Networks (CAN). Both solutions are wired networks that
allow ICs and microcontrollers to be connected in a network to communicate together.

In smart home automation, a number of common smart home automation protocols
that allow different devices to speak and communicate together have appeared during
the last few decades. Some of the smart home protocols come under the umbrella of
what is called the “Internet of Things (IoT)”. The proposed protocols can be grouped
into wired networks e.g. X10, UPB; wireless or radio networks as ZigBee, Z-Wave,
Bluetooth; or dual (wired and radio) such as Insteon.

This book introduces to the reader some of the most popular Microcontroller and
Smart home networks. The book covers in detail the following protocols:
∙ I2C
∙ 3C
∙ CAN
∙ ZigBee
∙ ZigBee Pro
∙ Z-Wave
∙ Bluetooth

Wi-Fi, WiMax and Insteon are part of our companion book “Serial Communication
Protocols and Standards”.

This book gives detailed comparisons between the various protocols. To complete
the knowledge of the reader, the book gives in the last chapter a short summary on the
protocols that we did not fully cover in this volume: Ethernet, Thread, Insteon, X10
and UPB.

River Publishers River PublishersRiver

Microcontroller and Smart
Home Networks

RIVER PUBLISHERS SERIES IN COMMUNICATIONS

Series Editors:

ABBAS JAMALIPOUR MARINA RUGGIERI
The University of Sydney University of Rome Tor Vergata
Australia Italy

JUNSHAN ZHANG
Arizona State University
USA

Indexing: All books published in this series are submitted to the Web of
Science Book Citation Index (BkCI), to SCOPUS, to CrossRef and to Google
Scholar for evaluation and indexing.

The “River Publishers Series in Communications” is a series of comprehen-
sive academic and professional books which focus on communication and
network systems. Topics range from the theory and use of systems involving
all terminals, computers, and information processors to wired and wireless
networks and network layouts, protocols, architectures, and implementations.
Also covered are developments stemming from new market demands in sys-
tems, products, and technologies such as personal communications services,
multimedia systems, enterprise networks, and optical communications.

The series includes research monographs, edited volumes, handbooks
and textbooks, providing professionals, researchers, educators, and advanced
students in the field with an invaluable insight into the latest research and
developments.

For a list of other books in this series, visit www.riverpublishers.com

Microcontroller and Smart
Home Networks

Dawoud Shenouda Dawoud
International University of East Africa

Uganda

Peter Dawoud
Microsoft

USA

River Publishers

Published, sold and distributed by:
River Publishers
Alsbjergvej 10
9260 Gistrup
Denmark

www.riverpublishers.com

ISBN: 978-87-7022-156-6 (Hardback)
978-87-7022-155-9 (Ebook)

©2020 River Publishers

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, mechanical,
photocopying, recording or otherwise, without prior written permission of
the publishers.

To Nadia, Dalia, Dina, Bahya, and Adam

D.S.D.

To Dajana

P.D

Contents

Preface xxv

Acknowledgment xxix

List of Figures xxxi

List of Tables xli

List of Abbreviations xliii

I Inter-integrated Circuits (IIC) 1

1 Inter-integrated Circuits (IIC/I2C) 3
1.1 Introduction . 3

1.1.1 I2C Revisions . 4
1.2 I2C Bus Terminology . 6
1.3 I2C Protocol . 6

1.3.1 Transaction Format–Message Format 6
1.3.2 Timing Diagram 7

1.4 The I2C Bus Hardware Structure 8
1.4.1 Electrical Consideration 9

1.4.1.1 Types of devices that can be connected to
I2C bus 9

1.4.1.2 Electrical considerations that limits I2C
bus length 10

1.5 The Physical Bus–I2C Bus Interface 13
1.6 SDA and SCL Signals . 15
1.7 Masters and Slaves . 15

1.7.1 Buffering and Multiplexing 16
1.8 I2C Data Validity . 17
1.9 Voltage Levels and Resistor Values 17

vii

viii Contents

1.10 Start/Stop Sequence . 18
1.11 Repeated START Condition 19
1.12 Addressing Structure . 19

1.12.1 7-bit Addressing 19
1.12.2 Acknowledge Scheme 20
1.12.3 I2C Addresses Standard: 10-bit Addressing 22

1.12.3.1 I2C bus transactions in case of 10-bit
address 23

1.12.4 I2C Addresses Standard: Special Addresses and
Exceptions in 7-bit Address Space 25
1.12.4.1 Reserved and none-reserved addresses in

7-bit address space 25
1.12.4.1.1 Reserved addresses in 7-bit

address space 25
1.12.4.2 Non-reserved addresses in 7-bit address

space 30
1.13 I2C Bus Transaction . 30

1.13.1 I2C Bus Events 1: Master (Transmitter) to Slave
(Receiver) Data Transfer 32

1.13.2 I2C Bus Events 2: Slave (Transmitter) to Master
(Receiver) Data Transfer 33

1.13.3 I2C Bus Events 3: Bidirectional Read and Write in
Same Data Transfer 35

1.14 Clock Stretching . 36
1.15 Possible Modifications on the Timing Diagram 37
1.16 Bus Clear . 38
1.17 Applicability of I2C Bus Features 39
1.18 I2C Modes: Bus Speeds 39

1.18.1 Low-speed Mode or Standard Mode 40
1.18.2 Enhanced I2C (Fast Mode) 40
1.18.3 Fast-mode plus (FM+) 41
1.18.4 High-speed Mode (HS mode) 42

1.18.4.1 Electrical characteristics of HS mode . . 42
1.18.4.2 Transmission format of high-speed

mode 44
1.18.5 Ultra-fast Mode (UFm) 46

1.19 I2C as a Multi-master Bus: Bus Arbitration 46
1.19.1 Arbitration . 47
1.19.2 Bus Monitoring 48

Contents ix

1.19.3 Possibility of Collision 49
1.19.4 Clock Synchronization and Handshaking 49

1.19.4.1 Clock synchronization 49
1.19.4.2 Handshaking: Using the clock synchro-

nizing mechanism as a handshake 50
1.20 I2C Interface: Connecting I2C Bus to a PC 52

2 Design of I2C Bus and Operation 55
2.1 Design of I2C Bus . 55

2.1.1 Open-drain Lines 55
2.1.1.1 Open-drain for Bidirectional

Communication 55
2.1.2 Calculation of the Pull-up Resistor 57

2.1.2.1 Supply voltage (Vcc) 58
2.1.2.2 Total bus capacitance (CBUS or Cb) and

Rp(max) 59
2.1.2.3 Total high-level input current (IIH):

Input leakage 63
2.1.2.4 Bus speed versus power consumption . . 64

2.1.3 Maximum Clock Frequency of I2C Bus 65
2.1.3.1 Using repeaters: Effect of increasing the

number of devices–use of repeaters . . . 65
2.1.3.2 I2C bus without a repeater 65
2.1.3.3 I2C bus with a repeater 67

2.1.4 Series Protection Resistors 71
2.1.4.1 Effect of the serial resistance on static

low level of I2C line 71
2.1.4.2 Serial resistance and debugging 73
2.1.4.3 Termination versus capacitance 74

2.1.5 Cross Channel Capacitance: Crosstalk between
SDA and SCL . 74

2.2 Operating above the Maximum Allowable Bus
Capacitance . 76
2.2.1 Reduced fSCL . 76
2.2.2 Higher Drive Outputs 78

2.3 Managing the Delays in Large Systems: Use of Buffers,
Repeaters, Multiplexers and Switches 80

2.4 Bus Buffers, Repeaters, Multiplexers, and Switches 82
2.4.1 Use of Buffers/Repeaters 82
2.4.2 Use of Multiplexors and Switches 83
2.4.3 Switched Pull-up Circuit 84

x Contents

2.5 Use of Multiplexor/Switches to Solve Address Conflict . . . 86
2.5.1 Use of Multiplexor to Solve Address Conflict . . . 86
2.5.2 Use of Switches to Solve the Slave Address

Conflict . 87
2.5.3 Control Register 89
2.5.4 Level Shifters . 90
2.5.5 Switches and Level Shifting 90

2.6 Advantages and Limitation of I2C Communication 91
2.7 Common Problems in I2C Bus Systems 94

2.7.1 Obscure Problems in Systems 94
2.7.1.1 Analyzing obscure problems 95

2.7.2 Typical Problems on the I2C Bus 95
2.7.2.1 Blocked I2C Bus 95
2.7.2.2 No acknowledge from I2C slave 96
2.7.2.3 Master reports arbitration lost 97
2.7.2.4 Data bytes from slave are 0xff 97

2.8 Case Study: I2C in AVR 97
2.8.1 AVR Atmega32 I2C Registers 98

2.8.1.1 TWBR (TWI bit rate register) 98
2.8.1.2 TWSR (TWI status register) 99
2.8.1.3 TWCR (TWI control register) 100
2.8.1.4 TWDR (TWI data register) 101
2.8.1.5 TWAR [TWI (slave) address

register] 102
2.8.2 Programming of the AVR TWI in Master Operating

Mode . 102
2.8.2.1 Initialize the TWI in master operating

mode 102
2.8.2.2 Transmit START Condition 102
2.8.2.3 Send Data 103
2.8.2.4 Receive Data 103
2.8.2.5 Transmit STOP Condition 103

2.8.3 Use I2C/TWI (Two-wire Interface) in AVR
ATmega32 . 103
2.8.3.1 Circuit diagram 104
2.8.3.2 Code explanation for MASTER

controller 104
2.8.3.3 Code explanation for slave

controller 109

Contents xi

3 Improved Inter-integrated Circuits (I3C) 113
3.1 Derivative Technologies 113
3.2 Improved Inter-integrated Circuits (I3C) 114

3.2.1 Challenges with Existing I2C-based
Architectures . 115

3.2.2 MIPI I3C Interface 117
3.2.3 I3C Bus Configuration and Device Roles 119
3.2.4 I3C Features . 120

3.2.4.1 Dynamic addressing 120
3.2.4.2 Provisional ID 122
3.2.4.3 Possibility of collision during dynamic

address assignment (DAA) 123
3.2.4.4 Rule of CCC in dynamic address

assignment 123
3.2.4.5 Hot-join 124
3.2.4.6 In-band Interrupt (IBI) 124

3.2.4.6.1 Interrupts 125
3.2.5 Multiple Masters 126
3.2.6 Increased Throughput 127
3.2.7 Power Consumption 128

3.2.7.1 Pull-up resistor 128
3.2.7.2 High-keeper 129

3.2.8 I3C Bus Activity States 129
3.2.9 I3C Bus Conditions When the Bus Is Considered

Inactive . 129
3.2.10 Time-stamping Capability Defined in the I3C

Bus . 130
3.2.11 Error Detection and Recovery Methods in I3C . . . 130
3.2.12 Maximum Capacitance Load Allowed on the I3C

Bus . 131
3.2.13 Maximum Wire Length for I3C Communication . 131
3.2.14 Repeaters and I3C 131
3.2.15 Resolving Communication Conflicts on the I3C

Bus . 131
3.2.16 Can I3C Devices Cause the Communication Bus to

“Hang”? . 132
3.2.17 MIPI I3C Specifications and Software

Development . 132

xii Contents

3.2.18 Expected New Features for MIPI I3C 133
Summary . 133
References . 134

II Controller Area Network (CAN) 135

4 Controller Area Network (CAN) 137
4.1 Introduction to CAN: Overview 137

4.1.1 What is CAN? 137
4.1.1.1 Meaning of Massage-based Protocol . . 138

4.1.2 The Benefits of CAN Bus in Automobile
Industry . 139

4.1.3 CAN History . 140
4.1.3.1 Higher layer implementations: Higher

layer protocols (HLPs) 142
4.1.4 Error Detection and Security in CAN 143
4.1.5 The Application of CAN Bus 143

4.2 CAN Standard . 144
4.2.1 CAN Architecture: OSI 7 layer reference model

and CAN model 144
4.2.2 Higher Layer Protocols (HLPs) 148

4.3 CAN Features and Characteristics 148
4.3.1 Some Features of CAN Bus 148
4.3.2 Key characteristics of CAN 149

4.4 CAN Physical Layer . 151
4.4.1 CAN Bus Description 151

4.4.1.1 Electrical consideration 153
4.4.1.1.1 Inverted logic of CAN bus . 154
4.4.1.1.2 Robustness 155
4.4.1.1.3 Bus lengths 155
4.4.1.1.4 Bit rates and bus lengths . . 156
4.4.1.1.5 Propagation delay 157
4.4.1.1.6 Cables 158
4.4.1.1.7 Shield termination 159
4.4.1.1.8 Grounding 159
4.4.1.1.9 Bus termination–line termi-

nation 159
4.4.1.1.10 Connectors 160

Contents xiii

4.4.2 CAN Node . 160
4.4.2.1 CAN nodes types 162

4.4.3 Sublayers of the CAN Physical Layer 164
4.4.3.1 The physical coding sublayer: Overview 164

4.4.3.1.1 Bit-timing setting for Stan-
dard CAN 165
4.4.3.1.1.1 The Can Bit

Time 165
4.4.3.1.1.2 Sample

point 167
4.4.3.1.1.3 Implementation

of bit segments
in practical CAN
controllers . . . 168

4.4.3.1.1.4 Information
processing time
(IPT) 168

4.4.3.1.2 Bit timing setting for
CAN FD 168

4.4.3.2 Calculation of baud-rate and sample
point 169

4.4.3.3 Synchronization jump width (SJW) . . . 171
4.4.3.4 Bit timing control registers 171
4.4.3.5 Synchronizing the bit time 171
4.4.3.6 Oscillator tolerance 173
4.4.3.7 Propagation delay 173
4.4.3.8 Synchronization: Synchronization

Mechanisms used in CAN 175
4.4.3.9 Calculating oscillator tolerance for

SJW 179
4.4.3.10 Configuring the bit 180
4.4.3.11 The physical media attachment

sublayer 182
4.4.3.12 The medium-dependent sublayer 183

4.4.4 Maximum Number of Nodes 185
4.5 CAN Transceiver . 185

4.5.1 CAN Transceiver Features 185
4.5.1.1 Supply voltage 185
4.5.1.2 High short-circuit protection 186

xiv Contents

4.5.1.3 High ESD protection 186
4.5.1.4 High input impedance 187
4.5.1.5 Controlled driver output transition

times 187
4.5.1.6 Low current standby and sleep

modes 187
4.5.1.7 Thermal shutdown protection 188
4.5.1.8 Glitch free power up and power down . . 188
4.5.1.9 Unpowered node does not disturb the

bus . 188
4.5.1.10 Reference voltage 188
4.5.1.11 V-Split 189
4.5.1.12 Loopback 189
4.5.1.13 Autobaud loopback 190

4.5.2 CAN Transceiver Example: MCP2551 CAN
TRANSCEIVER 190
4.5.2.1 General MCP2551 Operation 190

4.5.2.1.1 Transmit 190
4.5.2.1.2 Receive 191
4.5.2.1.3 Recessive STATE 191
4.5.2.1.4 Dominant STATE 191

4.5.2.2 Modes of operation 191
4.5.2.2.1 HIGH SPEED 191
4.5.2.2.2 SLOPE CONTROL 192
4.5.2.2.3 STANDBY 192

4.5.2.3 Permanent dominant detection on
transmitter 192
4.5.2.3.1 Power-on reset and

brown-out 193
4.5.2.3.2 Power-On Reset (POR) . . . 193
4.5.2.3.3 Brown-out detection

(BOD) 194
4.5.2.3.4 Ground offsets 194

5 CAN Data Link Layer 197
5.1 Data Link Layer . 197

5.1.1 CAN Communication Services 198
5.1.1.1 Communication services 198
5.1.1.2 Remote transmission requests (RTR):

Read object service 200

Contents xv

5.1.2 Multiple Bus Access 200
5.1.2.1 Meaning of CSMA/CD+AMP 201
5.1.2.2 Bus arbitration 203

5.1.3 Standard CAN or Extended CAN 205
5.1.3.1 The bit fields of standard CAN and

extended CAN 206
5.1.3.2 Standard (base) CAN frame 206
5.1.3.3 Extended frame format 212

5.1.4 CAN Messages 213
5.1.4.1 CAN Frames 213

5.1.4.1.1 Data frame 214
5.1.4.1.2 Remote data frame 215
5.1.4.1.3 Error frame 217
5.1.4.1.4 Overload frame 219
5.1.4.1.5 Bit stuffing 221

5.2 CAN Bus Error Handling 222
5.2.1 Error Detection Methods 223
5.2.2 Form Error . 224
5.2.3 CRC Error . 225
5.2.4 Acknowledge Error 226
5.2.5 Stuff Error . 226
5.2.6 Bit Error . 227
5.2.7 Local Errors in EOF 227
5.2.8 Message Doubling 228
5.2.9 Error States of CAN Node 229
5.2.10 Transmit Error Counter 231
5.2.11 Receive Error Counter 232
5.2.12 Recovery from Bus Off 232
5.2.13 Error Confinement Mechanisms 233
5.2.14 Bus Loading . 237
5.2.15 Time-triggered Protocols 238

5.3 CAN FD–The Basic Idea 239
5.4 ISO 11898 Review and Optional Modes 243

5.4.1 Bus Monitoring Mode 243
5.4.2 Time-Triggered Communication (TTC) 243

5.5 CAN in Action . 244
References . 247
External Links . 249

xvi Contents

III ZigBee 251

6 IEEE 802.15.4 and ZigBee 253
6.1 Introduction . 253

6.1.1 ZigBee General Description 253
6.1.2 ZigBee: Overview 253
6.1.3 Evolution of LR-WPAN Standardization 255
6.1.4 ZigBee History 256
6.1.5 ZigBee Application Profiles 257

6.2 ZigBee Wireless Sensor and Control Network 259
6.2.1 ZigBee Network Characteristics 259

6.2.1.1 ZigBee versus Bluetooth 260
6.2.2 ZigBee Device Types and Operating Modes 261

6.2.2.1 Operating modes 265
6.2.3 ZigBee Topologies 266

6.2.3.1 Forming the ZigBee network 267
6.2.3.2 Joining the ZigBee Network 267

6.2.4 End Device Addressing 268
6.2.5 Depth of a Network, Number of Children, and

Network Address Allocation 268
6.3 ZigBee Protocol Stack Overview 269

6.3.1 Application Layer (APL) 271
6.3.1.1 ZigBee Device Objects (ZDO) 271
6.3.1.2 APS (application support sublayer) . . . 272

6.3.1.2.1 ZigBee APS frame
format 273

6.3.1.2.2 APS Ack frames 273
6.3.1.2.3 APS command frames . . . 273

6.3.1.3 Application framework 273
6.3.2 Network Layer (NWK) 275

6.3.2.1 ZigBee network layer frame format . . . 276
6.3.3 Security Services 276

6.3.3.1 Basic security model 277
6.3.3.2 Security architecture 277
6.3.3.3 Network layer security 278
6.3.3.4 APL layer security 278
6.3.3.5 Trust center role 279

6.3.4 ZigBee Address Assignment 279

Contents xvii

6.4 IEEE 802.15.4 Standard 281
6.4.1 IEEE 802.15.4 Standard 282
6.4.2 Device Types . 283
6.4.3 Network Topology 283

6.4.3.1 Star topology 284
6.4.3.2 Mesh topology, also, peer-to-peer

topology 285
6.4.3.3 Tree topology 286
6.4.3.4 Cluster tree topology 287

6.4.4 802.14.5 Architecture 288
6.4.4.1 PHY layer 289

6.4.4.1.1 Function of physical layer in
ZigBee architecture 292

6.4.4.1.2 Frequency band, data rate,
and channel numbering . . . 293

6.4.4.1.3 IEEE 802.15.4 frequencies
and frequency bands 293

6.4.4.1.4 ZigBee frequency bands and
data rates 294

6.4.4.1.5 IEEE 802.15.4 modulation
formats 296

6.4.4.1.6 ZigBee physical layer frame
format-PPDU 297

6.4.4.2 Receiver energy detection (ED) 299
6.4.4.3 Link quality indication (LQI) 299
6.4.4.4 Clear channel assessment (CCA) 300

7 ZigBee Stack Layers 301
7.1 ZigBee Mac Layer . 301

7.1.1 Superframe Structure 302
7.1.1.1 Updating superframe configuration . . . 304

7.1.2 CSMA-CA Algorithm 305
7.1.3 Data Transfer Model 307
7.1.4 Network Formation: Starting a PAN 309
7.1.5 Network Joining 313

7.1.5.1 Network discovery 313
7.1.5.2 Network join 314

7.1.5.2.1 Network join–child 314
7.1.5.2.2 Network join–parent 315

xviii Contents

7.1.6 Association and Disassociation 315
7.1.6.1 Orphan notification 319

7.1.7 Synchronization 320
7.1.8 Transmission, Reception, and Acknowledgment . . 322
7.1.9 GTS Allocation and Management 323
7.1.10 MAC Layer Frame 325

7.1.10.1 Data frame 329
7.1.10.2 Beacon frame 330

7.1.10.2.1 Beacon generation 331
7.1.10.3 Acknowledgment frame 332
7.1.10.4 MAC command frame 332

7.1.11 Channel Access Mechanism 333
7.1.12 GTS Allocation and Management 334
7.1.13 Related MAC Standards 335

7.2 ZigBee Routing (Network) Layer 336
7.2.1 Broadcasting . 337
7.2.2 ZigBee Routing Protocols 340

7.2.2.1 AODV: Ad hoc on-demand distance
vector 340

7.2.2.2 AODVjr 345
7.2.2.3 Multicast route 345
7.2.2.4 Dynamic source routing (DSR) 345
7.2.2.5 Tree hierarchical routing protocol (HERA)

or ZBR (ZigBee Routing) 348
7.2.2.6 ZigBee cluster label (ZiCL) 353
7.2.2.7 ZigBee multipath hierarchical tree

routing (Z-MHTR) 353
7.2.2.8 Neighbor table-based routing

techniques 354
7.2.2.8.1 Neighbor table 355

7.2.2.9 Many-to-one routing 356
7.2.2.10 ZigBee RF4CE 356
7.2.2.11 RF4CE multi-star topology 357
7.2.2.12 ZigBee RF4CE pairing process 357
7.2.2.13 ZigBee smart energy V2 357

8 ZigBee PRO and ZigBee SECURITY 359
8.1 ZigBee and ZigBee PRO Feature Sets 359

8.1.1 Management and Addressing 360

Contents xix

8.1.1.1 Link management 360
8.1.1.2 Group addressing 360
8.1.1.3 Compatibility 360
8.1.1.4 Power management 360

8.1.2 Improved Security 361
8.1.2.1 Trust center 363

8.1.3 Scalability . 363
8.1.3.1 Stochastic addressing 363
8.1.3.2 Route aggregation 364

8.1.4 Improved Ease-of-Use and Operation 365
8.1.4.1 Fragmentation 366
8.1.4.2 Commissioning 366

8.1.5 Improved Resiliency 366
8.1.5.1 Asymmetric link 366
8.1.5.2 Frequency agility 367
8.1.5.3 PAN ID conflict resolution 368

8.2 ZigBee Security . 368
8.2.1 802.15.4 Security: Overview 370

8.2.1.1 802.15.4 Access control list 374
8.2.2 ZigBee Security 375

8.2.2.1 ZigBee security services 375
8.2.3 ZigBee Security Models 376

8.2.3.1 ZigBee security architecture 378
8.2.3.2 Network layer security 379
8.2.3.3 APL layer security 380
8.2.3.4 MAC Layer Security 381
8.2.3.5 Trust center role 382

8.2.4 ZigBee Security Keys 382
8.2.5 Key Management 386

8.2.5.1 Security key modification 388
8.2.6 ZigBee Stack Security Measures 389
8.2.7 ZigBee Vulnerabilities 393

8.2.7.1 Implementation vulnerabilities 394
8.2.7.2 Protocol Vulnerabilities 395
8.2.7.3 Security risks 399
8.2.7.4 Security key weaknesses 399

8.2.8 Measures for Maximizing ZigBee Security 400
8.2.8.1 Protecting the network key 400
8.2.8.2 Rolling the network key 402

xx Contents

8.2.8.3 Preventing spoof leave notifications
key . 403

8.2.8.4 Preventing rejoin security attacks 403
8.2.8.5 Persisting essential data when using

cloud services 404
8.2.8.6 Key establishment cluster and security

certificates 404
8.2.9 ZigBee Security–Conclusion 405

8.3 Applications of ZigBee Technology 406
8.4 Advantages of ZigBee Technology 407

8.4.1 ZigBee Technology Advantages 407
8.4.2 Disadvantages 408
8.4.3 Conclusion . 408

8.5 Future Scope Of ZigBee 409
References . 411

IV Bluetooth 413

9 Bluetooth 415
9.1 Introduction: Overview . 415

9.1.1 History of Bluetooth 416
9.1.2 Piconets and Scatternets 417
9.1.3 Bluetooth Spectrum 419
9.1.4 Bluetooth Frequency and Connectivity Ranges . . 419
9.1.5 Data Rate and Modulation 419

9.2 Bluetooth Stack Architecture 420
9.2.1 Relation between Classic Bluetooth, OSI model,

and 802.11 Wi-Fi 422
9.2.2 Classical Bluetooth Stack 424

9.2.2.1 Bluetooth stack as core and profile . . . 425
9.3 Bluetooth Stack Layers . 427

9.3.1 Bluetooth Radio 427
9.3.2 Baseband . 428
9.3.3 Link Manager Protocol (LMP) 430
9.3.4 Host Controller Interface (HCI) 431
9.3.5 Logical Link Control and Adaptation Protocol

(L2CAP) . 431
9.3.6 Radio Frequency Communications (RFCOMM) . . 432

Contents xxi

9.3.7 Adapted Protocols 432
9.3.8 Service Discovery Protocol 432
9.3.9 Server-Client Model 433

9.4 Device Discovery . 435
9.4.1 Inquiry . 435
9.4.2 Page . 438
9.4.3 Optional Paging Schemes 441

9.5 Service Discovery and Access 441
9.5.1 Bluetooth Service Discovery Protocol 442

9.5.1.1 Format 442
9.5.1.2 Service record 443
9.5.1.3 Representation of data 444
9.5.1.4 Searching and browsing services 445

9.5.2 Examples of SDP: Universal Plug and Play 446
9.5.2.1 Architecture overview 447
9.5.2.2 Operations overview 447

9.6 Bluetooth Security . 448
9.6.1 Basic Means of Providing Bluetooth Security . . . 449
9.6.2 Bluetooth Security and Trust Modes 451

9.6.2.1 Bluetooth security modes 451
9.6.2.1.1 Security mode 2 role 452

9.6.2.2 Bluetooth trust modes 455
9.6.3 Discoverability in Devices 455
9.6.4 Bluetooth Security Services 455
9.6.5 Built-in Security Features 457

9.7 Bluetooth Vulnerabilities and Threats 457
9.7.1 Vulnerabilities in Bluetooth Versions 457

9.8 Reasons for Bluetooth Vulnerabilities 458
9.8.1 Vulnerability to Eavesdropping 459
9.8.2 Potential Weaknesses 459

9.8.2.1 Encryption mechanisms 459
9.8.2.2 Association models of SSP 459
9.8.2.3 Device configuration 460
9.8.2.4 Bad coding during development of

RFCOMM stack implementation 460
9.8.2.5 Re-use of older services for different

protocols 460
9.8.2.6 IrMC permissions 460

9.9 Common Bluetooth Attacks 460

xxii Contents

9.10 Bluetooth Risk Mitigation and Countermeasures 470
9.10.1 Mitigation Techniques 470
9.10.2 Applications for Protecting Bluetooth Devices . . . 472

References . 472
Sources . 478

10 Z-Wave Technology 479
10.1 Introduction: What is Z-Wave? 479

10.1.1 Z-Wave Operating Characteristics 479
10.1.2 Technical Characteristics: Z-Wave frequency

bands . 480
10.1.3 Z-Wave Features 481
10.1.4 Z-Wave History 481

10.2 Z-Wave Protocol . 483
10.2.1 Overview . 483
10.2.2 Z-Wave Basic Device Classes: Controller and Slave

Nodes . 484
10.2.2.1 Controllers 485

10.2.2.1.1 Portable Controller 486
10.2.2.1.2 Static controller 486
10.2.2.1.3 Static update controller . . . 486
10.2.2.1.4 SUC ID server 486
10.2.2.1.5 Installer controller 487
10.2.2.1.6 Bridge controller 487

10.2.2.2 Slaves 487
10.2.2.2.1 Slave 487
10.2.2.2.2 Routing slave 487
10.2.2.2.3 Enhanced slave 488

10.2.2.3 Home ID and Node ID 489
10.2.2.4 Z-Wave chip 489
10.2.2.5 Z-Wave frame structure 490

10.2.2.5.1 Z-Wave messaging 491
10.2.3 Z-Wave Physical Layer 491
10.2.4 Z-Wave MAC Layer 493

10.2.4.1 Z-Wave MAC frame types 493
10.2.4.2 Collision avoidance 494

10.2.5 Z-Wave Transport Layer 496
10.2.5.1 Singlecast frame type 498
10.2.5.2 ACK frame type 499

Contents xxiii

10.2.5.2.1 Multicast frame type 499
10.2.5.2.2 Broadcast frame type 499

10.2.6 Z-Wave Network Layer (Routing Layer) 499
10.2.6.1 Frame Layout 501

10.2.6.1.1 Routed singlecast frame type 501
10.2.6.1.2 Routed acknowledge frame

type 501
10.2.6.2 Routing table 501
10.2.6.3 Route to node 501

10.2.7 Application Layer 503
10.2.7.1 Frame layout 504
10.2.7.2 Node information 506

10.2.7.2.1 Node information frame
flow 506

10.3 Z-Wave Network Operation 506
10.3.1 Z-Wave Network Setup 506

10.3.1.1 Including and removing device in the
network: ‘pairing’ operation 507

10.3.1.2 Z-wave network enrollment and button
associations 507

10.3.1.3 Button pairs versus on/off toggles 508
10.4 Z-Wave Security . 508

10.4.1 Vulnerabilities 510
10.4.1.1 Impersonation 510

Summary . 511
References . 512

11 Smart Home Protocols: Comparison 513
11.1 Introduction . 513
11.2 ZigBee versus Z-Wave . 514

11.2.1 ZigBee versus Z-Wave: Specifications and
Capabilities . 514

11.2.2 ZigBee versus Z-Wave: The Differences 516
11.2.3 Z-Wave versus ZigBee: The Devices 519

11.3 Z-Wave and ZigBee versus INSTEON 520
11.3.1 INSTEON Overview (www.insteon.com) 520
11.3.2 INSTEON Main Characteristics compared with

other Technologies 520

xxiv Contents

11.3.3 INSTEON versus Z-Wave and ZigBee:
Comparison . 523

11.3.4 Z-Wave, ZigBee, and INSTEON Compared:
Summary . 524

11.4 Z-Wave versus THREAD Protocol: Comparison 524
11.4.1 Internet of Things (IoT) 524
11.4.2 Thread Protocol 529
11.4.3 Thread General Characteristics 531

11.4.3.1 Network stack: Thread versus z-wave
stack 532

11.5 Wi-Fi versus INSTEON and Z-Wave 537
11.5.1 Wi-Fi Overview 537
11.5.2 Z-Wave Compared with Wi-Fi 539
11.5.3 INSTEON Compared with Wi-Fi 539

11.6 Bluetooth Compared with Z-Wave, ZigBee, Wi-Fi, and
INSTEON . 540

11.7 X10 Technology . 544
11.7.1 X10: Overview 544
11.7.2 INSTEON Compared with X10 546

11.8 Universal Powerline Bus (UPB) 546
11.8.1 UPB an Overview 547
11.8.2 INSTEON Compared with UPB 548

11.9 Intellon . 548
11.9.1 Intellon: Overview 548
11.9.2 Intellon Compared with INSTEON Technology . . 549

References . 549

Index 553

About the Authors 559

Preface

During the last few decades, industries faced the problem of how to connect
devices to speak together with minimum wiring. Philips Semiconductors
(now NXP Semiconductors) faced this problem when needing to connect
many integrated circuits (ICs) together, and Bosch, in the automotive indus-
try, faced similar problems when connecting tens of microcontrollers in
each car. Recently, with smart homes, the problem started to be part of
every home: you may want to build your smart home with accessories from
different manufacturers and you want these devices to speak together, that
is, to communicate with each other. This problem is compounded when you
consider central control through an app or a voice assistant.

Philips found the solution in late 1970s and introduced the Inter-
integrated Circuits (I2C) network protocol. I2C was designed as a method
to provide an interface between microprocessors and peripheral devices (like
keyboard, mouse, memory, and IO/serial/parallel ports) without wiring full
address, data, and control busses between devices.

Bosch solved the problem in 1986 by introducing Controller Area Net-
work (CAN) protocol as a multi-master, message broadcast robust vehicle
bus standard that allows microcontrollers and devices to communicate with
each other in applications without a host computer. I2C and CAN are wired
communication standards.

Concerning home automation, a number of common home automation
protocols that allow different devices to speak and communicate together
appeared during the last few decades. This is started by “Universal Powerline
Bus (UPB)” and reached to Z-Wave protocol and now Thread. Some of the
most popular protocols in use today include the following:

– Ethernet
– Wi-Fi
– WiMax
– Z-Wave
– ZigBee
– Bluetooth

xxv

xxvi Preface

– Thread
– Insteon
– X10
– Universal Powerline Bus (UPB).

Each technology has its own benefits and limitations.
Wi-Fi, WiMax and Insteon were part of our book “Serial Communication

Protocols and Standards”. This book introduces to the reader comprehen-
sive knowledge on the following protocols: I2C (IIC), I3C, CAN, ZigBee,
Bluetooth, and Z-Wave. To complete the knowledge of the reader, we give a
short summary for the remaining protocols: Ethernet, Thread, Insteon, X10,
and UPB.

The book is divided into sections; each consists of a number of chapters.
Each section covers one technology.

Section I: Inter-integrated Circuits (IIC)

This section covers IIC technology in three chapters:

Chapter 1: Inter-integrated Circuits (IIC)
Chapter 2: I2C Design and Operation
Chapter 3: Improved Inter-integrated Circuits (I3C)

Section 2: Controller Area Network (CAN)

This section covers Controller Area Network protocol in two chapters:

Chapter 4: Controller Area Network (CAN)
Chapter 5: CAN Data Link Layer

Section 3: ZigBee

This section covers ZigBee protocol in three chapters:

Chapter 6: IEEE 802.15.4 Standard and ZigBee
Chapter 7: ZigBee Stack Layers
Chapter 8: ZigBee Pro and ZigBee Security

Preface xxvii

Section 4: Bluetooth

This section covers Bluetooth technology in one chapter:

Chapter 9: Bluetooth

Section 5: Z-Wave

This section covers Z-Wave technology in one chapter:

Chapter 10: Z-Wave Technology

Section 6: Comparisons

The last chapter of the book gives a comprehensive comparison between the
different smart home protocols:

Chapter 11: Smart Home Protocols: Comparison

Acknowledgment

The authors of this book would like to express their special thanks of gratitude
to Microchip for giving them the permission and the opportunity to use
materials that came from Microchip scientific notes.

xxix

List of Figures

Figure 1.1 Example of I2C bus applications. 5
Figure 1.2 The I2C protocol format. 7
Figure 1.3 Data transfer timing diagram. 7
Figure 1.4 I2C hardware. 8
Figure 1.5 I2C bus and interface hardware: Case of connect-

ing two devices with the same supply voltage
(www.freescale.com). 10

Figure 1.6 Connecting two devices with different supply
voltage. 11

Figure 1.7 Basic configuration of I2C. 13
Figure 1.8 Application example showing I2C communication

between the different ICs on a system and with pull-
up resistors on I2C bus. 14

Figure 1.9 I2C data validity. 18
Figure 1.10 Start and stop conditions. 18
Figure 1.11 7-bit address. 19
Figure 1.12 I2C device addressing. 20
Figure 1.13 7-bit addressing structure. 20
Figure 1.14 I2C acknowledgment scheme (Assumption: Master

is the transmitter). 21
Figure 1.15 Data transfer on the I2C bus. 21
Figure 1.16 10-bit addressing. 22
Figure 1.17 10-bit addressing structure. 23
Figure 1.18 A master-transmitter addresses a slave-receiver with

a 10-bit address. 24
Figure 1.19 A master-receiver addresses a slave-transmitter with

a 10-bit address. 24
Figure 1.20 General call address format. 26
Figure 1.21 Data transfer from a hardware master-transmitter. . 27
Figure 1.22 Data transfer by a hardware-transmitter capable of

dumping data directly to slave devices. 28

xxxi

xxxii List of Figures

Figure 1.23 START byte procedure. 29
Figure 1.24 Device ID field. 29
Figure 1.25 Master-to-slave data transfer. 32
Figure 1.26 Slave-to-master data transfer. 33
Figure 1.27 Read event. 34
Figure 1.28 Bidirectional data transfer. 35
Figure 1.29 Read/write cycle. 37
Figure 1.30 Acknowledge extension (a) without and (b) with

extension. 37
Figure 1.31 Multiple address. 39
Figure 1.32 I2C bus configuration with HS devices. 43
Figure 1.33 Details of the first part of high speed transfer

format. 44
Figure 1.34 Data transfer format in HS-mode. 44
Figure 1.35 A complete HS-mode transfer. 45
Figure 1.36 I2C bus interface–multiple master. 47
Figure 1.37 Bus arbitration. 48
Figure 1.38 Clock synchronization. 50
Figure 1.39 Clock synchronization during the arbitration

procedure. 52
Figure 2.1 Basic internal structure of SDA/SCL lines. 56
Figure 2.2 I2C bus interface–a closer look (Image source

infoindustrielle.free.fr). 56
Figure 2.3 Pulling the bus low with an open-drain interface. . 57
Figure 2.4 Releasing the bus with an open-drain interface. . . 58
Figure 2.5 Specified voltage levels for logical high and low. . . 59
Figure 2.6 Open-collector topology and equivalent circuit.

(RDSON is the drain to source resistance when the
transistor is ON.) 59

Figure 2.7 Charge time for transition between logical low
to high. 60

Figure 2.8 Minimum pull-up resistance [RP (min)] versus pull-
up reference voltage (VCC). 62

Figure 2.9 Maximum pull-up resistance [RP (max)] versus bus
capacitance (Cb). 62

Figure 2.10 Total high-level input current as a function of the
maximum value of Rp with supply voltage as a
parameter. 64

List of Figures xxxiii

Figure 2.11 Timing diagram for an I2C system with the mas-
ter generating the SCL clock signal and a slave
responding with data on SDA. 66

Figure 2.12 Generic I2C bus system showing a bus master,
repeater, and a slave. 67

Figure 2.13 Timing diagram for an I2C system with the master
generating the SCL clock signal, an I2C repeater
providing capacitance buffering (and adding prop-
agation delay), and a slave responding with data on
SDA. 68

Figure 2.14 Series resistor (Rs) for protection against high-
voltage spikes. 71

Figure 2.15 Maximum value of Rs as a function of the value of
Rp with supply voltage as a parameter. The value of
the series resistance can be defined practically based
on the value of Rp used. 72

Figure 2.16 Simplified equivalent circuit diagram for an I2C
connection between two devices (master or slave)
containing all relevant factors for I2C. 72

Figure 2.17 SDA (a) and SCL (b) as measured at I2C device #1
(master). 73

Figure 2.18 SDA (a) and SCL (b) as measured at I2C device #2
(slave). 73

Figure 2.19 SDA and SCL measured at I2C device #2 (slave)
with increased Rp. 73

Figure 2.20 A complete master receiver transfer between an I2C
master and I2C slave device with Rs = 200 Ω,
measured at the slave device. 74

Figure 2.21 Effect of Cp and Rp (Images from: Tracii XL 2.0). . 75
Figure 2.22 Crosstalk between SDA and SCL. 76
Figure 2.23 Example of using Bidirectional drivers to reduce the

effects of WIRING capacitance. 79
Figure 2.24 Schematic for SCL/SDA delay generation to be

fitted at the master. 82
Figure 2.25 Schematic for SDA delay generation fitted at each

slave. 82
Figure 2.26 I2C bus utilizing I2C buffer, which allows more

slave devices. 83
Figure 2.27 Use of multiplexor/switches and repeater. 84

xxxiv List of Figures

Figure 2.28 Switched pull-up circuit. 85
Figure 2.29 Operation of an I2C voltage translator/level shifter. 86
Figure 2.30 Slave address conflict solved with I2C multiplexor. 88
Figure 2.31 I2C bus with multiple slave devices with the same

address. 88
Figure 2.32 Eight-channel I2C switch example. 89
Figure 2.33 AVR I2C. 98
Figure 2.34 Circuit diagram. 104
Figure 3.1 Typical application processor or sensor hub system

with various digital interfaces. 115
Figure 3.2 SMBus ARP commands. 122
Figure 3.3 Dynamic address assignment in I3C. 122
Figure 3.4 I2C system with external sideband GPIO signals. . 126
Figure 3.5 I3C system with in-band interrupt support. 126
Figure 3.6 Energy consumption and raw data rate: I3C versus

I2C (figure courtesy from https://www.synopsys.c
om/dw/doc.php/wp/mipi i3c wp.pdf). 128

Figure 4.1 Typical automotive networks. 139
Figure 4.2 The OSI 7-layer model and the ISO 11898 standard. 145
Figure 4.3 CAN layers and HLP. 145
Figure 4.4 The layered ISO 11898 standard architecture and its

reflection on CAN node requirements. 146
Figure 4.5 The four abstraction levels of CAN protocol. 146
Figure 4.6 Broadcast communication. 151
Figure 4.7 CAN bus (ISO-11898-2). 151
Figure 4.8 Differential signal: Advantage of using differential

balanced 2-wire interface in noise elimination. . . . 152
Figure 4.9 Basic CAN bus connection. 153
Figure 4.10 CAN bus electrical interface circuit. 153
Figure 4.11 The inverted logic of a CAN bus. 154
Figure 4.12 ISO11898 nominal bus levels. 155
Figure 4.13 One-way propagation delay. 158
Figure 4.14 Termination converts. 160
Figure 4.15 CANopen DSUB connector. 161
Figure 4.16 5-Pin mini-connector (ANSI/B.93.55M-1981). . . . 161
Figure 4.17 CAN node. 161
Figure 4.18 CAN node types. 163
Figure 4.19 Bit timing. 166
Figure 4.20 Bit segments. 168

https://www.synopsys.com/dw/doc.php/wp/mipi_i3c_wp.pdf
https://www.synopsys.com/dw/doc.php/wp/mipi_i3c_wp.pdf

List of Figures xxxv

Figure 4.21 Bit-timing for CAN FD. 169
Figure 4.22 TQ and the bit period. 170
Figure 4.23 CAN bit control registers (For MCP2510 CNF

Register). 172
Figure 4.24 Bit propagation delay. 174
Figure 4.25 One-way propagation delay. 174
Figure 4.26 Sample point of CAN bit. 176
Figure 4.27 Synchronizing the bit time. 178
Figure 4.28 Maximum time between synchronization edges. . . 180
Figure 4.29 Bit timing for maximum oscillator tolerance. 182
Figure 4.30 Bit-timing for maximum bit rate. 183
Figure 4.31 Pin description of 9-pin connector. 184
Figure 4.32 V-CAN transceiver power savings. 186
Figure 4.33 Common-mode noise coupled onto 4 twisted-pair

bus lines. 187
Figure 4.34 Split termination. 189
Figure 4.35 MCP2551 block diagram. 191
Figure 4.36 TXD permanent dominant detection. 192
Figure 4.37 Power-on reset and brown-out detection. 193
Figure 4.38 Receiving (node ground) below transmitting (node

ground). 194
Figure 4.39 Receiving (node ground) above transmitting (node

ground). 195
Figure 5.1 CAN data frame. 198
Figure 5.2 CAN communication services. 199
Figure 5.3 CAN broadcast communication. 199
Figure 5.4 Remote transmission request (RTR). 200
Figure 5.5 Multiple bus access. 201
Figure 5.6 Bus arbitration method. 202
Figure 5.7 CSMA/CD-CR example: Case of two nodes. 204
Figure 5.8 Synchronization and re-synchronization. 205
Figure 5.9 Arbitration field in case of standard and extended

formats. 206
Figure 5.10 CAN frame. 206
Figure 5.11 Base data frame format. 207
Figure 5.12 Standard CAN–The 11-bit identifier. 207
Figure 5.13 Control field: DLC field (d, dominant; r, recessive). 208
Figure 5.14 Data field. 209
Figure 5.15 CRC field. 209

xxxvi List of Figures

Figure 5.16 Acknowledge field. 211
Figure 5.17 End of frame (EOF). 211
Figure 5.18 Extended CAN: 29-bit identifier. 212
Figure 5.19 Data frame format. 214
Figure 5.20 Remote data frame. 217
Figure 5.21 Error frame. 218
Figure 5.22 Overload frame. 220
Figure 5.23 Bit stuffing rule. 221
Figure 5.24 Complete frame before and after stuffing. 222
Figure 5.25 Form error. 224
Figure 5.26 CRC error. 225
Figure 5.27 Acknowledge error. 226
Figure 5.28 Stuff error. 226
Figure 5.29 Bit error. 227
Figure 5.30 Local errors in EOF. 228
Figure 5.31 Error states of CAN node. 229
Figure 5.32 Passive error frame. 230
Figure 5.33 Suspend passive transmission. 231
Figure 5.34 Transmit error counter. 231
Figure 5.35 Receive error counter. 232
Figure 5.36 Example of error confinement. 236
Figure 5.37 CAN FD format. 240
Figure 5.38 CAN FD. 240
Figure 5.39 CAN FD frame. 241
Figure 5.40 FD base and extended frame format. 241
Figure 5.41 FBFF and FEFF. 242
Figure 5.42 CRC fields. 243
Figure 5.43 Global time producer. 244
Figure 5.44 CAN node. 245
Figure 5.45 CAN message. 246
Figure 5.46 CAN receiving message. 246
Figure 6.1 Wireless technologies compared. 258
Figure 6.2 Architecture of ZigBee node. 261
Figure 6.3 Types of network nodes in ZigBee architecture (Zig-

Bee stack) (https://mmbnetworks.atlassian.net/wi
ki/spaces/SKB/pages/39518242/Zigbee+Network+
Concepts). 262

Figure 6.4 Structure of ZigBee and IEEE 802.15.4 architecture. 269

https://mmbnetworks.atlassian.net/wiki/spaces/SKB/pages/39518242/Zigbee+Network+Concepts
https://mmbnetworks.atlassian.net/wiki/spaces/SKB/pages/39518242/Zigbee+Network+Concepts
https://mmbnetworks.atlassian.net/wiki/spaces/SKB/pages/39518242/Zigbee+Network+Concepts

List of Figures xxxvii

Figure 6.5 Outline of the ZigBee stack architecture (https://re
search.kudelskisecurity.com/2017/11/01/zigbee-se
curity-basics-part-1/). 270

Figure 6.6 APS sublayer model. 273
Figure 6.7 APS frame format. 274
Figure 6.8 APS Ack frame format. 274
Figure 6.9 APS command frame. 274
Figure 6.10 Network layer frame format. 276
Figure 6.11 APL layer security framework. 279
Figure 6.12 Network of Example 6.1. 280
Figure 6.13 The network with the addresses. 281
Figure 6.14 Star topology. 284
Figure 6.15 Mesh (peer-to-peer) topology. 285
Figure 6.16 Tree topology. 287
Figure 6.17 Formation of cluster tree network. 288
Figure 6.18 Cluster tree topology. 289
Figure 6.19 WPAN architecture. 290
Figure 6.20 Channelization and spectrum spacing. 295
Figure 6.21 PPDU format. 297
Figure 7.1 MAC sublayer. 302
Figure 7.2 Superframe structure. 302
Figure 7.3 Superframe format: Details of the active period of

the superframe. 303
Figure 7.4 If the BLE option is selected, the coordinator

receiver is active only for a limited time after the
IFS period. 305

Figure 7.5 Communication to a coordinator (a) in a beacon-
enabled network and (b) in a nonbeacon-enabled
network. 307

Figure 7.6 Communication from a coordinator to device (a) in
a beacon-enabled network and (b) in a nonbeacon-
enabled network. 308

Figure 7.7 Network formation sequence diagram. 310
Figure 7.8 Beacon NWK payload format. 313
Figure 7.9 NWK discovery sequence diagram. 314
Figure 7.10 NWK join sequence diagram–child side. 316
Figure 7.11 NWK sequence diagram–parent side. 317
Figure 7.12 Device association. 318
Figure 7.13 Device disassociation. 319

https://research.kudelskisecurity.com/2017/11/01/zigbee-security-basics-part-1/
https://research.kudelskisecurity.com/2017/11/01/zigbee-security-basics-part-1/
https://research.kudelskisecurity.com/2017/11/01/zigbee-security-basics-part-1/

xxxviii List of Figures

Figure 7.14 The sequence chart for orphan device notification. . 320
Figure 7.15 MAC frame. 325
Figure 7.16 MAC frame with detailed frame control field. . . . 326
Figure 7.17 A simple modulo 2 division example. 328
Figure 7.18 MAC inter-frame space. 329
Figure 7.19 Data frame structure. 330
Figure 7.20 Beacon frame format. 330
Figure 7.21 Acknowledgment frame structure. 332
Figure 7.22 MAC command frame structure. 333
Figure 7.23 MAC command frame format. 333
Figure 7.24 RREQ. 341
Figure 7.25 RREP. 342
Figure 7.26 Sample route request (broadcast) transmission

where R3 is trying to discover a route to R6. 342
Figure 7.27 Destination node received the rout request. 343
Figure 7.28 Node 1 requesting rout to node 10. 344
Figure 7.29 Multicast discovery. 346
Figure 7.30 Node 1 requesting route to node 10. 348
Figure 7.31 Tree of the example. 351
Figure 7.32 Example 2 on hierarchy routing. 352
Figure 7.33 Many-to-one routing. 356
Figure 7.34 RF4CE multi-star topology. 357
Figure 8.1 In larger networks, many routes to a centralized

mode may cause routing table overflows near the
central node. 364

Figure 8.2 Through shared many-to-one routes and source
routing, less routing table space is used. 365

Figure 8.3 Asymmetric link. 367
Figure 8.4 IEEE MAC frame. 371
Figure 8.5 MAC frame: Auxiliary security frame. 372
Figure 8.6 Data payload field. 374
Figure 8.7 The two ZigBee security models: Centralized and

distributed. 377
Figure 8.8 ZigBee frame with security at the NWK layer. . . . 380
Figure 8.9 ZigBee frame with security at the APS layer. 381
Figure 8.10 ZigBee frame with security at the MAC layer. . . . 381
Figure 8.11 ZigBee security commercial mode. 385
Figure 8.12 ZigBee security residential mode. 386

List of Figures xxxix

Figure 8.13 ZigBee security key summary for centralized
model. 387

Figure 8.14 Role of AES-CCM* in data authentication and
confidentiality. 389

Figure 8.15 Security problems start with pre-configured link key. 400
Figure 8.16 ZigBee 3.0 security starting with install code. . . . 401
Figure 8.17 Applications of ZigBee technology. 407
Figure 9.1 Two products communicating over a wireless Blue-

tooth radio link. 416
Figure 9.2 Bluetooth cards. 416
Figure 9.3 Piconets and scatternets. 418
Figure 9.4 Mapping classic Bluetooth (IEEE 802.11.5 v1.1)

and IEEE 802.11 (Wi-Fi) to the data link and
physical layers of the OSI model. 423

Figure 9.5 Bluetooth protocol stack. 424
Figure 9.6 Bluetooth protocol stack (Bluetooth 4). 425
Figure 9.7 Packet lengths supported by baseband. 428
Figure 9.8 Bluetooth components involved in service discovery. 434
Figure 9.9 State transitions during the inquiry process. 436
Figure 9.10 Timing of the inquiring device’s behavior. 436
Figure 9.11 Periodic inquiry and inquiry scan. 437
Figure 9.12 State transitions during the page process. 439
Figure 9.13 Page procedure. 441
Figure 9.14 Unlike an inquiry, a service search is only between

two devices. 442
Figure 9.15 Example of a data element containing a 16-bit

unsigned int. 444
Figure 9.16 SDP session messaging. 445
Figure 9.17 The UPnP protocol stack. 446
Figure 9.18 For two devices to complete the pairing process, a

common PIN must be entered. 450
Figure 9.19 Trigger points are located within RFCOMM and

L2CAP to invoke mode 2 security. 453
Figure 9.20 Link-key generation with PIN [19]. 456
Figure 9.21 Link-key establishment for SSP. 456
Figure 9.22 MAC spoofing attack. 463
Figure 9.23 PIN cracking attack. 464
Figure 9.24 Man-in-the-middle attack. 465
Figure 9.25 BlueSnarfing attack. 466

xl List of Figures

Figure 10.1 Z-Wave protocol stack. 483
Figure 10.2 Z-Wave network. 485
Figure 10.3 Z-Wave frames. 491
Figure 10.4 Z-Wave layer transmitter. 492
Figure 10.5 MAC frame. 493
Figure 10.6 Manchester coding. 494
Figure 10.7 MAC layer frame types. 494
Figure 10.8 Collision avoidance zone. 495
Figure 10.9 Z-Wave basic frame format. 497
Figure 10.10 Singlecast. 498
Figure 10.11 Case of multicast. 499
Figure 10.12 Case of broadcast. 500
Figure 10.13 Z-Wave frame format in different layers. 500
Figure 10.14 Routed singlecast. 501
Figure 10.15 Routed acknowledgment. 501
Figure 10.16 Network topology and routing table. 502
Figure 10.17 Routing in a Z-Wave network. 502
Figure 10.18 Route between controller and node 4 (a) through

node 3, (b) through node 2. 503
Figure 10.19 Alternative Z-Wave network routing. 504
Figure 10.20 Z-Wave application frame format. 504
Figure 10.21 Get node info frame flow. 506
Figure 10.22 Z-Wave key exchange protocol. 510
Figure 11.1 IoT system (Image from “International Journal on

Future Revolution in Computer Science & Com-
munication Engineering ISSN: 2454–4248 Volume:
3I”). 527

Figure 11.2 Thread protocol stack. 531
Figure 11.3 Network layer comparison. 533
Figure 11.4 Network security comparison. 533

List of Tables

Table 1.1 Reserved addresses (X = don’t care; 1 = high; 0 = low) 26
Table 1.2 Assigned manufacturer IDs 31
Table 1.3 Non-reserved addresses in the 7-bit address space . . 31
Table 1.4 Applicability of I2C bus protocol features 40
Table 2.1 Parametric from I2C specifications 61
Table 2.2 fSCL (max) calculation for I2C systems based on FM

or FM+ masters and slaves 66
Table 2.3 Relationship between tLOW (min), tVD;DAT, and

tSU;DAT . 67
Table 2.4 Maximum clock frequency (fSCL (max)) calcula-

tion based on I2C FM specifications and for FM
specifications with TCA9617B repeater characteristics 69

Table 2.5 Maximum clock frequency (fSCL (max)) calculation
based on I2C FM+ specifications and for FM+ speci-
fications with TCA9617B repeater
characteristics . 70

Table 4.1 Maximum bit rate versus bus length 156
Table 4.2 CAN bit rate versus bus length 179
Table 5.1 Standard CAN frame 212
Table 5.2 Extended CAN format 213
Table 5.3 CAN 2.0A message frame 215
Table 5.4 CAN 2.0B message frame (extended frame format) . 216
Table 5.5 Bus loading example 238
Table 6.1 ZigBee, Bluetooth, and Wi-Fi characteristics 260
Table 6.2 IEEE 802.15.4 standard summary 283
Table 6.3 Physical layer frequency band 293
Table 6.4 IEEE 802.15.4 RF channel details 293
Table 6.5 Summary of the frequency bands and data rates of

ZigBee PHY version 293
Table 6.6 ZigBee channels, 915 MHz ISM band 294
Table 6.7 ZigBee channels, 2.4 GHz ISM band 295

xli

xlii List of Tables

Table 6.8 Coding in case of 2.4 GHz 296
Table 6.9 Generic packet format 297
Table 6.10 Preamble field lengths and durations 298
Table 6.11 SFD field format (except for ASK PHYs) 298
Table 6.12 SFD field lengths 298
Table 6.13 Frame length values 299
Table 7.1 Frame control field 326
Table 7.2 Frame type subfield 327
Table 7.3 MAC command frames 334
Table 7.4 Broadcast transaction table (BTT) 339
Table 7.5 Route table when using DSR 349
Table 7.6 Neighbor table entry–mandatory 355
Table 7.7 Neighbor table entry–optional 356
Table 8.1 Comparison of ZigBee and ZigBee PRO feature sets 360
Table 8.2 ZigBee versions’ features 361
Table 8.3 Comparison of 2006, ZigBee, and ZigBee PRO

feature sets . 369
Table 8.4 ZigBee security levels 373
Table 9.1 Examples of bluetooth profiles 427
Table 9.2 Relationship between scan interval, train repetition

and paging modes 440
Table 9.3 Associated protocol service multiplexor specifying

the service it represents 453
Table 9.4 Bluetooth threat taxonomy 461
Table 10.1 Z-Wave frequency bands 481
Table 10.2 Z-Wave features 482
Table 10.3 Properties of the Z-Wave device models 488
Table 10.4 Typical applications for slaves 488
Table 10.5 Home ID and node ID comparison 490
Table 10.6 Z-Wave data rate and accuracy 492
Table 10.7 Modulation and coding format in Z-Wave physical

layer . 493
Table 10.8 Routing table for the Z-Wave network 503
Table 11.1 ZigBee and Z-Wave specifications and capabilities . 514
Table 11.2 Z-Wave versus ZigBee versus INSTEON comparison

table . 525

List of Abbreviations

ACK Acknowledge
AES Advanced Encryption Standard
AODV On-demand Distance Vector
AODVjr On-demand Distance Vector Junior
APL Application Layer
APS Application Support Sublayer
ARP Address Resolution Protocol
BOD Brown-Out Detection
CAN Controller Area Network
CCC Common Command Code
CD Collision Detection
CD Coordinator Device
CoAP Constrained Application Protocol
CR Collision Resolution
CRC Cyclic Redundancy Check
CSMA/CD Carrier Sense Multiple Access with Collision Detection
CSMA/CD
+AMP

CSMA/CD and Arbitration on Message Priority

CTS Conformance Test Suite
DDA Dynamic Address Assignment
DDC Display Data Channel
DDoS Distributed Denial-of-Service (attack)
DLC Data Length Code
DoS Denial–of-Service
DSR Dynamic Source Routing
DTLS Datagram Transport Layer Security
ED End Device
EMI Electromagnetic Interface
EOF End of Frame
ESD Electrostatic Discharge
ESI Electrostatic Interface

xliii

xliv List of Abbreviations

FFD Fully Functional Device
Fm Fast Mode
Fm+ Fast-mode Plus
GAP Generic Access Profile
GFSK Gaussian Frequency Shift Keying
HAN Home-Area Networks
HCI Host Controller Interface
HDR High Data Rate (a set of I3C bus modes)
HDR-DDR HDR Double Data Rate (an I3C bus mode)
HDR-TSP HDR Ternary Symbol for Pure Bus (an I3C bus mode)
HLP Higher Layer Protocol
Hs High-speed Mode
HSP Headset Profile
IBHR In-band Hardware Reset (an expected I3C bus feature)
IBI In-band Interrupt (an I3C bus feature)
IIC Inter-integrated Circuit
IID Interface Identifier
IIIC Improved Inter-integrated Circuit
IFS Inter Frame Space
IPMI Intelligent Platform Management Interface
IPT Information Processing Time
ISM Industrial, Scientific, and Medical (Radio frequency)
KEK Key Encryption Key
L2CAP Logical Link Control and Adaptation Protocol
LLL Logical Link Control
LMP Link Manager Protocol
LR-WPAN Low Rate Wireless Personal Area Network
LQI Link Quality Indication
MAC Medium Access Control (Media access control)
MAC Message Authentication Code
MANET Mobile Ad Hoc Network
MIC Message Integrity Code
MQTT Message Queuing Telemetry Transport
NIB Network Layer Information Base
NLME Network Layer Management Entity
NRZ Non-return to Zero
NWK Network Layer
OBEX Object Exchange Protocol
ODR Output Data Rate

List of Abbreviations xlv

PAN Personal Area Network
PHY Physical Layer
PLC Power-Line Communications
PMBus Power Management Bus
POR Power-on Reset
PPDU PHY Protocol Data Unit
PPP Point-to-point Protocol
PSDU PHY Service Data Unit
RFCOMM Radio Frequency Communication
RFD Reduced Functional Device
RTR Remote Transmission Request
SCL Serial Clock Line
SDA Serial Data (an I3C bus line)
SDDB Service Discovery Database
SDR Single Data Rate
SDL Serial Data Line
SDAP Service Discovery Application Protocol
SDP Service Discovery Protocol
SDR Single Data Rate (an I3C bus mode)
SFD Start-of-frame Delimiter
SJW Synchronous Jump Width
SKKE Symmetric-Key Key Establishment protocol
SMBus System Management Bus
SOF Start of Frame
SPI Serial Peripheral Interface (an interface specification)
SPP Serial Port Profile
SRR Substitute Remote Request
STP Shielded Twisted Pair
SUC Static Update Controller
TDC Transmitter Delay Compensation
TTC Time-triggered Communication
TTCAN Time-triggered CAN
TWI Two-wire Interface
UFm Ultra-fast Mode
UPB Universal Powerline Bus
UTP Un-shielded Twisted Pair
WPAN Wireless Personal Area Network
ZDO ZigBee Device Objects
ZiCL ZigBee Cluster Label
ZTC ZigBee Trust Center

Section I

Inter-integrated Circuits (IIC)

This section deals with IIC. It consists of three chapters:

Chapter 1: Inter-integrated Circuits (IIC)
Chapter 2: IIC Design and Operation
Chapter 3: Improved Inter-integrated Circuits (I3C)

Some of the topics covered in this section are:

• I2C protocol
• The I2C bus hardware structure
• Electrical consideration
• The physical bus–I2C bus interface
• Masters and slaves
• I2C data validity
• Voltage levels and resistor values
• Addressing–addressing standards
• I2C bus transaction
• Clock stretching
• Applicability of I2C bus features
• I2C modes: bus speeds
• I2C as a multi-master bus: bus arbitration
• Clock synchronization and handshaking
• I2C interface: connecting I2C bus to a PC
• Design of I2C bus
• Calculation of the pull-up resistor
• Maximum clock frequency of I2C bus
• Use of repeaters

1

2

• Series protection resistors
• Managing the delays in large systems
• Use of multiplexor/switches to solve address conflict
• Common problems in I2C bus systems
• Obscure problems in systems
• Typical problems on the I2C bus
• Derivative technologies
• Improved inter-integrated circuits (I3C)
• I3C bus configuration and device roles
• I3C features
• Dynamic addressing
• I3C bus activity states
• Error detection and recovery methods in I3C
• Resolving communication conflicts on the I3C bus
• MIPI I3C specifications and software development

1
Inter-integrated Circuits (IIC/I2C)

1.1 Introduction

The most popular form of serial bus protocol is the “Inter-integrated Circuit”
(IIC). Sometimes, the bus is called I2C bus (pronounced eye-to-see) or I2C
(pronounced eye-squared see). I2C was developed as a communication proto-
col to interact between different ICs on a motherboard, a simple internal bus
system. This standard was originally developed by Philips Semiconductors
(now NXP Semiconductors) in the late 1970s as a method to provide an
interface between microprocessors and peripheral devices (like keyboard,
mouse, memory, and IO/serial/parallel ports) without wiring full address,
data, and control busses between devices; more specifically, it was designed
to provide an easy way to connect a CPU to peripheral chips in a TV set. The
problem faced by the designers at that time until now is that the peripheral
devices in embedded systems are often connected to the microcomputer
unit (normally a microcontroller) as memory mapped I/O devices, using the
microcontroller’s parallel address and data bus. This results in lots of wiring
on the printed circuit boards (PCBs) to route the address and data lines.
The number of wires increases if we consider the need to connect also a
number of address decoders and glue logic to connect everything. In mass
production items such as TV sets, videocassette recorders (VCRs), and audio
equipment, this is not acceptable. In such applications, every component that
can be saved means increased profitability for the manufacturer and more
affordable products for the end customer. Another problem directly related
to the use of a lot of wires is the possible interference: lots of control lines
imply that the system is more susceptible to disturbances by electromagnetic
interference (EMI) and electrostatic discharge (ESD). The need for a more
effective and economical way of connecting different devices (normally ICs)
resulted in introducing the 2-wire communication bus that we call it now as

3

4 Inter-integrated Circuits (IIC/I2C)

I2C bus protocol. This protocol enables peripheral ICs in electronic systems
to communicate with each other using simple communication hardware. The
ICs can be on the same board or linked via cables. The length of the cable is
limited by the total bus capacitance and the noise generated on the bus.

Today, I2C has become a de facto world standard that is now implemented
in over 1000 different ICs and is licensed to more than 50 companies includ-
ing some of the leading chip manufacturers like Xicor, ST Microelectronics,
Infineon Technologies, Intel, Texas Instruments, Maxim, Atmel, Analog
Devices, and others.

Additionally, the versatile I2C bus is used in various control architec-
tures such as System Management Bus (SMBus), Power Management Bus
(PMBus), Intelligent Platform Management Interface (IPMI), Display Data
Channel (DDC), and Advanced Telecom Computing Architecture (ATCA).
Figure 1.1 shows an example of I2C bus applications.

Concerning SMBus, it is defined by Intel in 1995 and is a subset of I2C,
defining a stricter usage. One purpose of SMBus is to promote robustness
and interoperability. Accordingly, modern I2C systems incorporate some
policies and rules from SMBus, sometimes supporting both I2C and SMBus,
requiring only minimal reconfiguration either by commanding or by output
pin use.

The Power Management Bus (PMBus) is a variant of the SMBus which
is targeted at digital management of power supplies. Like SMBus, it is a
relatively slow-speed two-wire communication protocol based on I2C. Unlike
either of those standards, it defines a substantial number of domain-specific
commands rather than just saying how to communicate using commands
defined by the reader.

Since October 10, 2006, no licensing fees are required to implement
the I2C protocol. However, fees are required to obtain IšC slave addresses
allocated by NXP.

1.1.1 I2C Revisions

The history of I2C specification releases:

• In 1982, the original 100 kHz I2C system was created as a simple
internal bus system for building control electronics with various Philips
chips.

• In 1992, Version 1 added 400 kHz Fast mode (Fm) and a 10-bit
addressing mode to increase capacity to 1008 nodes. This was the first
standardized version.

1.1 Introduction 5

Figure 1.1 Example of I2C bus applications.

• In 1998, Version 2 added 3.4 MHz High-speed mode (Hs) with power-
saving requirements for electric voltage and current.

• In 2000, Version 2.1 clarified version 2, without significant functional
changes.

• In 2007, Version 3 added 1 MHz Fast mode plus (Fm+) (using 20 mA
drivers), and a device ID mechanism.

• In 2012, Version 4 added 5 MHz Ultra-fast mode (UFm) for new USDA
(data) and USCL (clock) lines using push–pull logic without pull-up
resistors, and added an assigned manufacturer ID table. It is only a
unidirectional bus.

• In 2012, Version 5 corrected mistakes.
• In 2014, Version 6 corrected two graphs. This is the most recent

standard.

This chapter helps the reader to understand this very popular protocol.
The knowledge given in the chapter will help device and system designers
to understand how the I2C bus works and to help them to implement a
working application. Various operating modes are described. It contains a
comprehensive introduction to the I2C bus data transfer, handshaking, and
bus arbitration schemes. Detailed sections cover the timing and electrical
specifications for the I2C bus in each of its operating modes.

The main reference of this chapter is the NXP Semiconductor (for-
mer Philips Semiconductors) note UM10204 I2C bus specification and user

6 Inter-integrated Circuits (IIC/I2C)

manual. Other references are used and given in the “Reference” section of the
chapter.

1.2 I2C Bus Terminology

Transmitter: The device which sends the data or message to the receiver.

Receiver: The device which receives the data or message from the bus.

Master: The device which generates clock signals, initiates a transfer, that is,
start condition, and terminates a transfer, that is, stop condition. It may also
act as a transmitter/receiver.

Slave: The device addressed by a master. Also it may act as a transmit-
ter/receiver.

Multi-master: More than one master can attempt to control the bus at the
same time without demeaning the data/message.

Arbitration: It is a procedure to ensure that if more than one master simul-
taneously try to control the bus, only one is allowed to do so and the data are
not corrupted.

Synchronization: It is a procedure to synchronize the clock signals of two or
more devices.

Serial data line (SDA): The serial data line (SDA) is the line on which all
the data transfer among the devices takes place.

Serial clock line (SCL): The serial clock line (SCL) is the serial clock.
I2C is a synchronous protocol, and hence, SCL is used to synchronize all the
devices and the data transfer together. We’ll learn how it works a little later
in this post.

1.3 I2C Protocol

The I2C protocol is a very simple protocol. The protocol describes the format
of a message, while communication between ICs connected to the bus. Also
it gives the timing diagram of an entire transaction–from start to stop.

1.3.1 Transaction Format–Message Format

An I2C transaction consists of one or more messages. Each message (Fig-
ure 1.2) begins with a start symbol, and the transaction ends with a stop

1.3 I2C Protocol 7

Figure 1.2 The I2C protocol format.

Figure 1.3 Data transfer timing diagram.

symbol. Start symbols after the first, which begin a message but not a
transaction, are referred to as repeated start symbols.

Each message is a read or a write. A transaction consisting of a single
message is called either a read or a write transaction. A transaction con-
sisting of multiple messages is called a combined transaction. The most
common form of the latter is a write message providing intra-device address
information, followed by a read message.

Many I2C devices do not distinguish between a combined transaction and
the same messages sent as separate transactions, but not all. The device ID
protocol requires a single transaction; slaves are forbidden from responding
if they observe a stop symbol. Configuration, calibration, or self-test modes
which cause the slave to respond unusually are also often automatically
terminated at the end of a transaction.

1.3.2 Timing Diagram

Figure 1.3 shows the real shape of the signals while changing state from high
to low and from low to high. Ideally, whenever a signal changes its state
(from high to low or vice versa), it is supposed to do so immediately. But in
real scenario, it is almost impossible for it to happen without a time lag. This
time lag is shown by the skew lines. The protocol is as follows:

• The transaction starts with a START sequence. During the start condi-
tion, the serial data line (SDA) switches from a high-voltage level to a

8 Inter-integrated Circuits (IIC/I2C)

Figure 1.4 I2C hardware.

low-voltage level before the serial clock line (SCL) switches from high
to low (see Figure 1.4 for SDA and SCL and also Section 1.6).

• After the START sequence, the Master has to send the address of
the Slave it wants to talk to, that is, the 7-bit ADDRESS (MSB first)
followed by R/W’ bit determining whether it is required to read from
the device or write into it. If the master wants to send data to the slave,
the read/write bit is a low-voltage level. If the master is requesting data
from the slave, the bit is a high-voltage level

• The Slave responds by acknowledging the address using ACK/NACK
bit. In case if there is no ACK, the Master will act as mentioned before.

• Once the Slave acknowledges the address, it means that it is now ready
to send/receive data to/from the Master. Thus begins the data transfer.
The DATA are always of 8 bits (MSB first), and the receiver has to send
the ACK signal after each byte of data received.

• When the transaction is over, the Master ends it by generating a
STOP sequence. Alternatively, Master could also begin with a repeated
START.

The above describes the standard format. Possible modification can take
place. Such modifications will be discussed in Section 1.15.

1.4 The I2C Bus Hardware Structure

The I2C bus physically consists of two active wires: a data line wire called
serial data line (SDA) and a clock wire called serial clock line (SCL), and a
ground connection, as shown in Figure 1.4. Sometimes, I2C is referred to as
Two-wire Interface or the TWI, since it consists of two active wires. Both
SDA and SCL are bidirectional. This means that in a particular device, these
lines can be driven by the IC itself or from an external device. To achieve

1.4 The I2C Bus Hardware Structure 9

this functionality, these signals use open-collector or open-drain outputs
(depending on the technology). The bus interface is built around an input
buffer and an open drain or open collector transistor (Figure 1.4). When the
bus is IDLE, the bus lines are in the logic HIGH state. This is achieved by
using an external pull-up resistor, which is a small current source. To put
a signal on the bus, the chip drives its output transistor, thus pulling the
bus to a LOW level. The two wires are acting accordingly as wired-AND.
This concept achieves a “built-in” bus mastering technique. If the bus is
“occupied” by a chip that is sending a 0, then all other chips lose their right
to access the bus. This will be used for “bus arbitration” (see Section 1.19 for
Bus Arbitration).

1.4.1 Electrical Consideration

Some electrical considerations must be taken by the designer of an I2C
system. The two main considerations are as follows:

• The electrical considerations when connecting different devices to I2C
bus

• The electrical considerations that limits the length of the bus

1.4.1.1 Types of devices that can be connected to I2C bus
The design of the I2C bus places no restrictions on the type of devices that
may be connected to the bus. Figure 1.5 represents the hardware needed to
connect two devices of the same logic family (e.g., both are using TTL or
CMOS) using I2C bus. The two devices use the same supply voltage. The
SCL is used to strobe data transmitted on SDL from or to the master that
currently has control over the bus. Because the devices are wired-ANDed,
this means that the bus is free if SDA and SCL are high and also that the
device output is ANDed with the signal on the bus. This, as mentioned before,
represents the basics of achieving the bus arbitration when there is more than
one master. It is possible, in general to configure a system with a mixture
of devices from different logic families, that is, a mixture of various TTL
and CMOS logic families. In this case, each device has its own different
supply voltage. To accommodate bidirectional communication with devices
operating on different voltages, for example, 5 V and 3.5 V, it is necessary to
incorporate into the SCL and SDA lines a form of buffering circuit as shown
in Figure 1.6. The two devices, operating at different voltage levels, are now
separated from one another.

10 Inter-integrated Circuits (IIC/I2C)

Figure 1.5 I2C bus and interface hardware: Case of connecting two devices with the same
supply voltage (www.freescale.com).

1.4.1.2 Electrical considerations that limits I2C bus length
There is no maximum length specified in the I2C specification. The limit
of the length is a function of several factors including capacitance (usual
maximum limit is 400 pF), the minimum value for Rp, propagation delays
along the cables, the type of cable used and the integrity of the logic signals in
the presence of noise. There are bus rise and fall times that must be met with
limits set by the static and dynamic sink capability of standard I2C devices

1.4 The I2C Bus Hardware Structure 11

Figure 1.6 Connecting two devices with different supply voltage.

(3 mA sink current). Here we briefly discuss the main factors that affect the
length of I2C bus which are as follows:

• Bus capacitance limitation
• Clock rise time limitation
• Noise pickup limitation

i. Limitation due to bus capacitance
The open-collector technique in use with I2C has a drawback that limits the
length of the bus. Long lines present a capacitive load for the output drivers.
Since the pull-up is passive, the RC constant of the bus will affect the wave
shape of the signals propagating on the bus, which in turn limits the speed
that the bus can handle; the higher the RC constant of the bus, the slower
the speed of the bus. This results because of the effect of the RC constant on
the slew rate of the edge of the signals. At a certain point, and because of
the slew rate, the ICs will not be able to distinguish clearly between logic 1
and logic 0. Increasing the length of the line has another effect: it increases
the possibility of getting reflections at high speed. The reflected waves can
corrupt the data on the bus to the extent that it becomes unreadable.

It is important to note here that the bus capacitance includes not only the
capacitance between each signal line (clock and data) to return but also the
input capacitance of each device attached to the bus. This input capacitance
can usually be found in a device’s data sheet. For common ICs made with a
CMOS process, the input capacitance is typically on the order of 10 pF. I2C
specifications allows up to a maximum of 400 pF for the bus capacitance, the
matter that put limitation on the maximum number to be connected to the bus.

To avoid such problems, a number of strict electrical specifications are to
be followed when using I2C bus. According to the specification, the length

12 Inter-integrated Circuits (IIC/I2C)

of the bus is limited by the total bus capacitance: the total capacitance of the
bus remains under 400 pF.

ii. Clock rise time limitation
The RC constant of the bus will affect the wave shape of the signals propa-
gating on the bus, which in turn limits the speed that the bus can handle; the
higher the RC constant of the bus, the slower the speed of the bus. This results
because of the effect of the RC constant on the slew rate of the edge of the
signals. At a certain point, and because of the slew rate, the ICs will not be
able to distinguish clearly between logic 1 and logic 0. Increasing the length
of the line has another effect: it increases the possibility of getting reflections
at high speed. The reflected waves can corrupt the data on the bus to the extent
that they become unreadable.

For standard mode, the maximum rise time of the clock and data signals
is 1000 ns. Note that the rise time is specified as the time the signal takes to
rise from 30% to 70% of the supply voltage.

There are some ways to improve the rise time by using, for example,
a switched pull-up circuit. In Section 2.4 of Chapter 2, some discussions
concerning improving the rise time is given.

iii. Noise pickup limitation
Another issue is that a lot of devices generally means a long bus (more than
about 20–25 cm), and a long bus often has problems with noise pickup. A
common problem on noisy I2C buses is that a spike on the data line when the
clock is high can cause the devices on the bus to see an improper START or
STOP condition. This confuses the devices on the bus and can cause the bus
to hang.

The original I2C specification allows a data transfer rates of up to
100 kbps and 7-bit addressing. Seven-bit addressing allows a total of 128
devices to communicate over a shared 1 bus. With increased data transfer
rate requirements, the I2C specification has been recently enhanced (Version
1.0–1992 and Version 2.0–1998) to include fast mode, 3.4 Mbps, with 10-
bit addressing. At present, I2C range includes more than 150 CMOS and
bipolar I2C bus compatible types for performing communication functions
between intelligent control devices (e.g., microcontrollers), general-purpose
circuits (e.g., LCD drivers, thermal sensors, remote I/O ports, RAM, flash,
and EPROM memories), and application-oriented circuits (e.g., digital tuning
and signal processing circuits for radio and video systems). Other common
devices capable of interfacing to an I2C bus include real-time clocks and
watchdog timers.

1.5 The Physical Bus–I2C Bus Interface 13

Figure 1.7 Basic configuration of I2C.

1.5 The Physical Bus–I2C Bus Interface

Figure 1.7 shows a typical I2C bus for an embedded system, where many
different peripherals, acting as multiple slave devices, are sharing the bus.
The microcontroller represents the I2C master, and controls the IO expanders,
various sensors, EEPROM, ADCs/DACs, and much more. All of which are
controlled with only 2 pins from the master. All the devices connected to the
bus are classified as either being Master or Slave (just like SPI). The number
of ICs that can be connected to the same bus is limited only by a maximum
bus capacitance. More capacitance may be allowed under some conditions.

The possibility that many different peripherals may share one bus is one
of the largest benefits that the I2C bus can give when compared to other
interfaces. I2C bus is bidirectional data transfer with data rate depends on
the mode of operation (standard mode, Fast mode, Fast-mode Plus).

Each device connected to the bus is software addressable by a unique
address and simple master/slave relationships exist at all times; masters can
operate as master-transmitters or as master-receivers.

Figure 1.8 highlights the master–slave and receiver–transmitter relation-
ships found on the I2C bus. Note that these relationships are not permanent,
but only depend on the direction of data transfer at that time. The transfer of
data would proceed as follows:

1. Suppose microcontroller A wants to send information to microcon-
troller B:

– Microcontroller A (master) addresses microcontroller B (slave).
– Microcontroller A (master-transmitter) sends data to microcon-

troller B (slave-receiver)–microcontroller A terminates the transfer.

14 Inter-integrated Circuits (IIC/I2C)

Figure 1.8 Application example showing I2C communication between the different ICs on
a system and with pull-up resistors on I2C bus.

2. If microcontroller A wants to receive information from microcon-
troller B:

– Microcontroller A (master) addresses microcontroller B (slave).
– Microcontroller A (master-receiver) receives data from microcon-

troller B (slave-transmitter).
– Microcontroller A terminates the transfer. Even in this case, the

master (microcontroller A) generates the timing and terminates the
transfer.

The possibility of connecting more than one microcontroller to the I2C
bus means that more than one master could try to initiate a data transfer at
the same time. To avoid the chaos that might ensue from such an event, I2C
includes collision detection and arbitration to prevent data corruption if two
or more masters simultaneously initiate data transfer.

Arbitration procedure relies on the wired-AND connection of all I2C
interfaces to the I2C bus. If two or more masters try to put information
onto the bus, the first to produce a “one” when the other produces a “zero”
loses the arbitration. The clock signals during arbitration are a synchronized
combination of the clocks generated by the masters using the wired-AND
connection to the SCL line (for more detailed information concerning arbi-
tration, see Section 1.19). Generation of clock signals on the I2C bus is
always the responsibility of master devices; each master generates its own
clock signals when transferring data on the bus. Bus clock signals from a
master can only be altered when they are stretched by a slow slave device
holding down the clock line or by another master device when arbitration
occurs.

1.7 Masters and Slaves 15

1.6 SDA and SCL Signals

Typically, both SDA and SCL are each connected to a 3.3 or 5 V power
line through a single “pull-up” resistor, one on each line. This is necessary,
because I2C devices have open-drain (or open-collector) lines to perform
wired-AND function: they can force the voltage on the line to 0 V or “low,”
but can’t raise it to 3.3 V or “high.” The pull-up resistor is used to ensure no
component-harming high currents are able to flow when two devices try and
signal simultaneously. High and low are the electrical representations of the
1s and 0s that are the fundamental components of digital information. Adding
these two resistors–and the bus needs only two, no matter how many devices
are connected to it–ensures the voltage rises back to 3.3 V without a short
circuit.

In most cases, the designer will be expected to add these pull-up resistors,
but some devices, typically those that operate at 3.3 V, include them in order
to be compatible with devices supplying 5 V. Remembering that only one pair
of pull-up resistors are needed per bus, it may be necessary to remove pull-up
resistors attached to other devices on the bus.

The value of the pull-up resistor has direct effect on the rise time of the
signals. Some companies like Texas Instrument introduced TCA980x Family
to replace the resistance and to improve the rise time (see Chapter 2, Sections
2.2 and 2.3 for detail).

Data on the I2C bus can be transferred at rates of up to 100 kbps in the
Standard mode, up to 400 kbps in the Fast mode, up to 1 Mbps in Fast mode
Plus, or up to 3.4 Mbps in the High-speed mode. The bus capacitance limits
the number of interfaces connected to the bus. For a single master application,
the master’s SCL output can be a push–pull driver design if there are no
devices on the bus which would stretch the clock.

1.7 Masters and Slaves

The I2C bus, as in case of ISP, separates devices into “masters” and “slaves.”
A master is the device which initiates a data transfer on the bus and generates
the clock signals to permit that transfer. All the other devices synchronize
their timings to the master and are thus considered slaves. The master and its
slaves can all transmit and receive data, but only the master can tell the slave
when to transmit data back.

Both lines are connected to a positive supply via a pull-up resistor and
remain HIGH when the bus is not busy. Each device is recognized by a unique

16 Inter-integrated Circuits (IIC/I2C)

address–whether it is a microcomputer, LCD driver, memory or keyboard
interface–and can operate as either a transmitter or receiver, depending on the
function of the device. A device generating a message or data is a transmitter,
and a device receiving the message or data is a receiver. Obviously, a passive
function like an LCD driver could only be a receiver, while a microcontroller
or a memory can both transmit and receive data. When a data transfer takes
place on the bus, a device can either be a master or a slave. The device
which initiates the transfer, and generates the clock signals for this transfer,
is the master. At that time any device addressed is considered a slave. It is
important to note that a master could either be a transmitter or a receiver; a
master microcontroller may send data to a RAM acting as a transmitter and
then interrogate the RAM for its contents acting as a receiver in both cases
performing as the master initiating the transfer. In the same manner, a slave
could be both a receiver and a transmitter. The I2C is a multi-master bus. It
is possible to have, in one system, more than one device capable of initiating
transfers and controlling the bus. A microcontroller may act as a master for
one transfer, and then be the slave for another transfer, initiated by another
processor on the network. The master/slave relationships on the bus are not
permanent and may change on each transfer.

Just like SPI, it is possible to have multiple Masters connected to the
same I2C bus. As more than one master may be connected to the bus, it
is possible that two devices will try to initiate a transfer at the same time.
Obviously, in order to eliminate bus collisions and communications chaos, an
arbitration procedure is necessary. The I2C design has an inherent arbitration
and clock synchronization procedure relying on the wired-AND connection
of the devices on the bus. In a typical multi-master system, a microcontroller
program should allow it to gracefully switch between master and slave
modes and preserve data integrity upon loss of arbitration. Figure 1.8 is an
application example of communication between different ICs.

1.7.1 Buffering and Multiplexing

When there are many I2C devices in a system, there can be a need to include
bus buffers or multiplexers (see Figure 1.8) to split large bus segments into
smaller ones. This can be necessary to keep the capacitance of a bus segment
below the allowable value or to allow multiple devices with the same address
to be separated by a multiplexer. Many types of multiplexers and buffers
exist and all must take into account the fact that I2C lines are specified to be
bidirectional. Multiplexers can be implemented with analog switches, which

1.10 Start/Stop Sequence 17

can tie one segment to another. Analog switches maintain the bidirectional
nature of the lines but do not isolate the capacitance of one segment from
another or provide buffering capability.

Buffers can be used to isolate capacitance on one segment from another
and/or allow I2C to be sent over longer cables or traces. Buffers for bidi-
rectional lines such as I2C must use one of several schemes for preventing
latch-up. I2C is open-drain, so buffers must drive a low on one side when they
see a low on the other. One method for preventing latch-up is for a buffer to
have carefully selected input and output levels such that the output level of its
driver is higher than its input threshold, preventing it from triggering itself.
For example, a buffer may have an input threshold of 0.4 V for detecting
a low, but an output low level of 0.5 V. This method requires that all other
devices on the bus have thresholds which are compatible and often means
that multiple buffers implementing this scheme cannot be put in series with
one another.

Alternatively, other types of buffers exist that implement current ampli-
fiers or keep track of the state (i.e., which side drove the bus low) to
prevent latch-up. The state method typically means that an unintended pulse
is created during a hand-off when one side is driving the bus low, then
the other drives it low, then the first side releases (this is common during
an I2C acknowledgment). Buffering and multiplexing will be considered in
Chapter 2.

1.8 I2C Data Validity

For the data to be valid on the SDA line, it must not change while the SCL
is high. The data on the SDA line should change only and only when the
SCL line goes low: Data on the SDA line must remain stable during the high
phase of the clock period (Figure 1.9). If this standard is not followed, the
data transfer becomes flawed, in which case it becomes a start/stop sequence.

1.9 Voltage Levels and Resistor Values

I2C supports a wide range of voltage levels, and hence, the designer can
provide +5 V or +3.3 V as Vcc easily. The levels of logical “0” (LOW) and
“1” (HIGH) are also not fixed and depend on the associated Vcc.

This gives the designer a wide range of choices for the values of the pull-
up resistors (Rp). Anything within the range of 1 k to 47 k should be fine;
however, values lower than 10 k are usually preferred.

18 Inter-integrated Circuits (IIC/I2C)

Figure 1.9 I2C data validity.

Figure 1.10 Start and stop conditions.

1.10 Start/Stop Sequence

All transactions on the bus begin with a START condition (S) and end with a
STOP condition (P). In order for the Master to start talking to the Slave(s), it
must notify the Slave(s) about it. This is done using a special start sequence.
While discussing I2C data validity, it was stated that the SDA should not
change while the SCL is high. This rule doesn’t hold for the start/stop
sequence, which makes the start/stop sequence a special sequence.

When the SCL is high and SDA goes from high to low (as shown in the
Figure 1.10), it marks the beginning of the transaction of Master with the
Slave(s).

And when the SDA goes from low to high while the SCL is still high (as
shown in Figure 1.10), it marks the end of the transaction of that Master with
the Slave(s).

Detection of START and STOP conditions by devices connected to the
bus is easy if they incorporate the necessary interfacing hardware. However,
microcontrollers with no such interface have to sample the SDA line at least
twice per clock period to sense the transition. START and STOP conditions
are always generated by the master.

In-between the start and stop sequences, the bus is busy and no other
Master(s) (if any) should try to initiate a transfer. The bus is considered to
be free again a certain time after the STOP condition. This bus free situation
is specified in I2C specifications. The bus stays busy if a repeated START

1.12 Addressing Structure 19

(Sr) is generated instead of a STOP condition. In this respect, the START
(S) and repeated START (Sr) conditions are functionally identical. For the
remainder of this document, therefore, the S symbol is used as a generic term
to represent both the START and repeated START conditions, unless Sr is
particularly relevant.

1.11 Repeated START Condition

A repeated START condition is similar to a START condition and is used in
place of a back-to-back STOP then START condition. It looks identical to
a START condition, but differs from a START condition because it happens
before a STOP condition (when the bus is not idle). This is useful for when
the master wishes to start a new communication, but does not wish to let the
bus go idle with the STOP condition, which has the chance of the master
losing control of the bus to another master (in multi-master environments).

1.12 Addressing Structure

1.12.1 7-bit Addressing

In order for one I2C device to communicate with another on a one-to-one
basis, both devices need to be uniquely identifiable. This identity is the
device’s I2C address. The address comes directly after the START condition.
I2C addresses are usually 7-bit numbers (Figure 1.11), so a bus can comprise
up to 127 devices in all. As will be discussed, 10-bit address is also used.

When the Master calls out to the Slave(s), it still needs to send out 8 bits
of data. In this case, the Master appends an extra Read/Write (R/W’) bit to
the 7 bits of address (note that W’ means Write complemented). The extra
bit is used to indicate whether the signal is being sent by the master to the
slave–a “write”–or in the other direction–a “read.” The R/W’ bit is added to
the LSB of the address byte. The 7-bit address is placed in bits one through

Figure 1.11 7-bit address.

20 Inter-integrated Circuits (IIC/I2C)

Figure 1.12 I2C device addressing.

Note: The legend shown at the bottom is only for SDA. SCL is always generated by the Master (whether
transmitter or receiver).

Figure 1.13 7-bit addressing structure.

seven of the address byte, and the data sent look as in Figure 1.12. The 7-bit
addressing structure is shown in Figure 1.13.

1.12.2 Acknowledge Scheme

I2C transfers 8 bits (1 byte) of data at a time. After the transfer of each byte
is complete, the receiver must acknowledge it. To acknowledge, the receiver
sends an ACK bit back to the transmitter. This goes as follows:

• The transmitter (could be either Master or Slave) transmits 1 byte of data
(MSB first) to the receiver during 8 clock pulses of SCL, after which it
releases the SDA line, that is, the SDA line becomes HIGH for the ACK
clock pulse.

• The receiver (could be either Master or Slave, it depends) is obliged to
generate an acknowledgment after each byte sent by the transmitter by
pulling the SDA line LOW for the ACK clock pulse (9th clock pulse) of
SCL.

1.12 Addressing Structure 21

Figure 1.14 I2C acknowledgment scheme (Assumption: Master is the transmitter).

Note: The legend shown at the bottom is only for SDA. SCL is always generated by the Master (whether
transmitter or receiver).

Figure 1.15 Data transfer on the I2C bus.

• So overall, there are 9 SCL clock pulses required to transmit a byte of
data. This is shown in Figure 1.14 with the assumption that Master is
the transmitter.

The number of bytes that can be transmitted per transfer is unrestricted.
As mentioned before, each byte must be followed by an Acknowledge bit
(see Figure 1.15).

Consider now the case of receiver fails to acknowledge receiving the data
sent to it. There are two cases to that situation.

Case 1: Slave is at the receiver’s end.
Under this case, it is possible to identify two possible cases:

• CASE 1A: The Slave-receiver does not acknowledge the Slave address
(see “Address” latter). In that case, it simply leaves the SDA line HIGH.
Now the Master-transmitter either generates a Stop sequence or attempts
a repeated Start sequence.

22 Inter-integrated Circuits (IIC/I2C)

• CASE 1B: The Slave-receiver acknowledges the Slave address, but after
some time it is unable to receive any data and leaves the SDA line HIGH
during the ACK pulse. Even in this case, the Master-transmitter does
the same–either generates a Stop sequence or attempts a repeated Start
sequence.

Case 2: Master is at the receiver’s end.
In this case, the Master is the one generating ACK, as well as responsible
for generating Start/Stop sequence. Now how does that work out, especially
when the transaction ends?

In this case, in order to signal the Slave-transmitter the end of data, the
Master-receiver does NOT generate any ACK on the last byte clocked out
of the Slave-transmitter. In this case, the Slave-transmitter must let go of the
SDA line to allow Master to generate a Stop or a repeated Start sequence.

1.12.3 I2C Addresses Standard: 10-bit Addressing

In order to prevent address clashes, due to the limited range of the 7-bit
addresses, a new 10-bit address scheme has been introduced. This enhance-
ment can be mixed with 7-bit addressing and increases the available address
range about ten times. The 10-bit address uses two bytes (Figure 1.16).
After the start condition, a leading “11110” introduces the 10-bit addressing
scheme. The last two address bits of the first byte concatenated with the
eight bits of the second byte of the whole 10-bit address. Devices which only
use 7-bit addressing simply ignore messages with the leading “11110.” The
following picture shows the first two bytes of a transfer with a 10-bit address.

A master transmitter addresses the slave with two address bytes as
described above with the R/W’ bit = “0” followed by data bytes from
the master. The master receiver transfer is only possible with a Combined
Transfer due to the fact that the second address byte can only be transmitted

Figure 1.16 10-bit addressing.

1.12 Addressing Structure 23

Figure 1.17 10-bit addressing structure.

if the R/W’ bit of the first address byte is “0.” Hence, the start of a master
receiver transfer will be the same as a master transmitter transfer followed
by a repeated start condition and the first byte of address byte with R/W’
bit = “1” (switching to slave transmitter mode). Please refer to the following
master receiver sequence:

• Start condition
• First address byte, R/W’ bit = “0,” ACK from the slave
• Second address byte, ACK from the slave
• Repeated start condition (no stop condition!)
• First address byte again, R/W’ bit = “1,” ACK from the slave, slave

switches to transmit mode
• Slave transmits data bytes, ACK from master
• After the last data byte, the master sends a NACK
• Stop condition

Figure 1.17 shows the 10-bit addressing structure.
Practically, the 10-bit addressing has the following impact on the I2C

protocol (refer to Figure 1.16):

• Two address words are used for device addressing instead of one.
• The first address word MSBs are conventionally coded as “11110” so

any device on the bus is aware that the master sends a 10-bit device
address.

1.12.3.1 I2C bus transactions in case of 10-bit address
All combinations of read/write formats previously described for 7-bit
addressing (Section 1.13) are possible with 10-bit addressing. Two are

24 Inter-integrated Circuits (IIC/I2C)

Figure 1.18 A master-transmitter addresses a slave-receiver with a 10-bit address.

Figure 1.19 A master-receiver addresses a slave-transmitter with a 10-bit address.

detailed here:

• Master-transmitter transmits to slave-receiver with a 10-bit slave
address.

The transfer direction is not changed (see Figure 1.18). When a 10-bit
address follows a START condition, each slave compares the first seven bits
of the first byte of the slave address (1111 0XX) with its own address and
tests if the eighth bit (R/W direction bit) is 0. It is possible that more than
one device finds a match and generate an acknowledge (A1). All slaves that
found a match compare the eight bits of the second byte of the slave address
(XXXX XXXX) with their own addresses, but only one slave finds a match
and generates an acknowledge (A2). The matching slave remains addressed
by the master until it receives a STOP condition (P) or a repeated START
condition (Sr) followed by a different slave address.

• Master-receiver reads slave-transmitter with a 10-bit slave address.

The transfer direction is changed after the second R/W bit (Figure 1.19).
Up to and including acknowledge bit A2, the procedure is the same as
that described for a master-transmitter addressing a slave-receiver. After the
repeated START condition (Sr), a matching slave remembers that it was
addressed before. This slave then checks if the first seven bits of the first
byte of the slave address following Sr are the same as they were after the
START condition (S) and tests if the eighth (R/W) bit is 1. If there is a match,
the slave considers that it has been addressed as a transmitter and generates
acknowledge A3. The slave-transmitter remains addressed until it receives a
STOP condition (P) or until it receives another repeated START condition
(Sr) followed by a different slave address. After a repeated START condition
(Sr), all the other slave devices will also compare the first seven bits of the
first byte of the slave address (1111 0XX) with their own addresses and test

1.12 Addressing Structure 25

the eighth (R/W) bit. However, none of them will be addressed because R/W
= 1 (for 10-bit devices), or the 1111 0XX slave address (for 7-bit devices)
does not match.

Slave devices with 10-bit addressing react to a “general call” in the same
way as slave devices with 7-bit addressing. Hardware masters can transmit
their 10-bit address after a “general call.” In this case, the “general call”
address byte is followed by two successive bytes containing the 10-bit address
of the master-transmitter. The format is as shown in Figure 1.21 where the
first DATA byte contains the eight least-significant bits of the master address.

The START byte 0000 0001 (01h) can precede the 10-bit addressing in
the same way as for 7-bit addressing.

1.12.4 I2C Addresses Standard: Special Addresses and
Exceptions in 7-bit Address Space

As mentioned before, the first byte of an I2C transfer contains the slave
address and the data direction. The address is 7 bits long, followed by the
direction bit (W/R bit). A 7-bit wide address allows, theoretically 128 I2C
addresses–however, some addresses are reserved for special purposes. Only
112 addresses are available with the 7-bit address scheme.

As a matter of fact, I2C gives a loose standard for the address. It uses the
most significant four bits to identify the type of the device and the next three
bits are used to specify one of eight devices of this type (or further specify
the device type). Also, some devices require certain patterns for the last three
bits, while others (such as large serial EEPROMs) use these bits to specify
an address inside the device. This shows the importance of mapping out the
devices to be put on the bus and all their addresses. In the I2C address map,
there are also what is called “reserved addresses.”

1.12.4.1 Reserved and none-reserved addresses in 7-bit address
space

1.12.4.1.1 Reserved addresses in 7-bit address space
In case of 7-bit, two groups of eight addresses (0000 XXX and 1111 XXX)
are reserved for the purposes shown in Table 1.1.

Assignment of addresses within a local system is up to the system
architect who must take into account the devices being used on the bus and
any future interaction with other conventional I2C buses. For example, a
device with seven user-assignable address pins allows all 128 addresses to
be assigned. If it is known that the reserved address is never going to be used
for its intended purpose, a reserved address can be used for a slave address.

26 Inter-integrated Circuits (IIC/I2C)

Table 1.1 Reserved addresses (X = don’t care; 1 = high; 0 = low)
Slave Address R/W’ Description
0000 000 0 General call address [1]

0000 000 1 START byte [2]

0000 001 X CBUS address [3]

0000 010 X Reserved for different bus format [4]

0000 011 X Reserved for future purposes

0000 1XX X HS mode master code

1111 1XX 1 Device ID

1111 0XX X 10-bit slave address
Notes:

[1] The general call address is used for several functions including software reset (see next).
[2] No device is allowed to acknowledge at the reception of the START byte.
[3] The CBUS address has been reserved to enable the inter-mixing of CBUS compatible and I2C

bus compatible devices in the same system. I2C bus compatible devices are not allowed to
respond on reception of this address.

[4] The address reserved for a different bus format is included to enable I2C and other protocols
to be mixed. Only I2C bus compatible devices that can work with such formats and protocols
are allowed to respond to this address.

Figure 1.20 General call address format.

i. General call address
The general call address is for addressing every device connected to the I2C
bus at the same time. However, if a device does not need any of the data
supplied within the general call structure, it can ignore this address by not
issuing an acknowledgment. If a device does require data from a general call
address, it acknowledges this address and behaves as a slave-receiver. The
master does not actually know how many devices are acknowledged if one
or more devices respond. The second and following bytes are acknowledged
by every slave-receiver capable of handling these data. A slave who cannot
process one of these bytes must ignore it by not acknowledging. Again, if
one or more slaves acknowledge, the not acknowledged will not be seen by
the master. The meaning of the general call address is always specified in the
second byte (see Figure 1.20).

1.12 Addressing Structure 27

Figure 1.21 Data transfer from a hardware master-transmitter.

There are two cases to consider:

• When the least significant bit B is a “zero.”
• When the least significant bit B is a “one.”

When bit B is a “zero,” the second byte has the following definition:

• 0000 0110 (06h): Reset and write programmable part of slave address
by hardware. On receiving this 2-byte sequence, all devices designed to
respond to the general call address reset and take in the programmable
part of their address. Precautions must be taken to ensure that a device is
not pulling down the SDA or SCL line after applying the supply voltage,
since these low levels would block the bus.

• 0000 0100 (04h): Write programmable part of slave address by hard-
ware. Behaves as above, but the device does not reset.

• 0000 0000 (00h): This code is not allowed to be used as the second byte.

Sequences of programming procedure are published in the appropriate
device data sheets. The remaining codes have not been fixed and devices must
ignore them.

When bit B is a “one,” the 2-byte sequence is a “hardware general call.”
This means that the sequence is transmitted by a hardware master device, such
as a keyboard scanner, which can be programmed to transmit a desired slave
address. Since a hardware master does not know in advance to which device
the message has to be transferred, it can only generate this hardware general
call and its own address–identifying itself to the system (see Figure 1.21).

The seven bits remaining in the second byte contain the address of the
hardware master. This address is recognized by an intelligent device (e.g.,
a microcontroller) connected to the bus which then accepts the information
from the hardware master. If the hardware master can also act as a slave, the
slave address is identical to the master address.

In some systems, an alternative could be that the hardware master trans-
mitter is set in the slave-receiver mode after the system reset. In this way, a
system configuring master can tell the hardware master-transmitter (which
is now in slave-receiver mode) to which address data must be sent (see

28 Inter-integrated Circuits (IIC/I2C)

Figure 1.22 Data transfer by a hardware-transmitter capable of dumping data directly to
slave devices.

Figure 1.22). After this programming procedure, the hardware master remains
in the master-transmitter mode.

ii. Software reset
Following a general call address (0000 0000), sending 0000 0110 (06h) as
the second byte causes a software reset. This feature is optional and not
all devices respond to this command. On receiving this 2-byte sequence, all
devices designed to respond to the general call address reset and take in the
programmable part of their address. Precautions must be taken to ensure that
a device is not pulling down the SDA or SCL line after applying the supply
voltage, since these low levels would block the bus.

iii. START byte
Microcontrollers can be connected to the I2C bus in two ways. A microcon-
troller with an on-chip hardware I2C bus interface can be programmed to be
only interrupted by requests from the bus. When the device does not have
such an interface, it must constantly monitor the bus via software. Obviously,
the more times the microcontroller monitors, or polls the bus, the less time it
can spend carrying out its intended function. There is therefore a speed dif-
ference between fast hardware devices and a relatively slow microcontroller
which relies on software polling. In this case, data transfer can be preceded
by a start procedure which is much longer than normal (see Figure 1.23). The
start procedure consists of:

• A START condition (S)
• A START byte (0000 0001)

1.12 Addressing Structure 29

Figure 1.23 START byte procedure.

Figure 1.24 Device ID field.

• An acknowledge clock pulse (ACK)
• A repeated START condition (Sr).

After the START condition S has been transmitted by a master which
requires bus access, the START byte (0000 0001) is transmitted. Another
microcontroller can therefore sample the SDA line at a low sampling rate
until one of the seven zeros in the START byte is detected. After the detection
of this LOW level on the SDA line, the microcontroller can switch to a higher
sampling rate to find the repeated START condition Sr which is then used
for synchronization. A hardware receiver resets upon receipt of the repeated
START condition Sr and therefore ignores the START byte. An acknowledge-
related clock pulse is generated after the START byte. This is present only to
conform with the byte handling format used on the bus. No device is allowed
to acknowledge the START byte.

iv. Device ID
The Device ID field (see Figure 1.24) is an optional 3-byte read-only (24 bits)
word giving the following information:

• Twelve bits with the manufacturer name, unique per manufacturer (e.g.,
NXP)

• Nine bits with the part identification, assigned by manufacturer (e.g.,
PCA9698)

30 Inter-integrated Circuits (IIC/I2C)

• Three bits with the die revision, assigned by manufacturer (e.g., RevX)

The Device ID is read-only, hard-wired in the device and can be accessed
as follows:

1. START condition
2. The master sends the Reserved Device ID I2C bus address followed by

the R/W bit set to “0” (write): “1111 1000.”
3. The master sends the I2C bus slave address of the slave device it

must identify. The LSB is a “Don’t care” value. Only one device must
acknowledge this byte (the one that has the I2C bus slave address).

4. The master sends a Re-START condition. Remark: A STOP condition
followed by a START condition resets the slave state machine and the
Device ID Read cannot be performed. Also, a STOP condition or a Re-
START condition followed by an access to another slave device resets
the slave state machine and the Device ID Read cannot be performed.

5. The master sends the Reserved Device ID I2C bus address followed by
the R/W bit set to “1” (read): “1111 1001.”

6. The Device ID Read can be done, starting with the 12 manufacturer bits
(first byte + four MSBs of the second byte), followed by the nine part
identification bits (four LSBs of the second byte + five MSBs of the third
byte), and then the three die revision bits (three LSBs of the third byte).

7. The master ends the reading sequence by NACKing the last byte, thus
resetting the slave device state machine and allowing the master to send
the STOP condition. Remark: The reading of the Device ID can be
stopped anytime by sending a NACK.

If the master continues to ACK the bytes after the third byte, the slave
rolls back to the first byte and keeps sending the Device ID sequence until a
NACK has been detected.

1.12.4.2 Non-reserved addresses in 7-bit address space
Table 1.3 shows the non-reserved addresses in the 7-bit address space.

Although MSB 1111 is reserved for Device ID and 10-bit slave address-
ing, it is also used by VESA DDC display-dependent devices such as pointing
devices.

1.13 I2C Bus Transaction

After discussing the I2C bus interface, it is important to explain how
the data transfer actually takes place through that interface. I2C supports

1.13 I2C Bus Transaction 31

Table 1.2 Assigned manufacturer IDs
Manufacturer Bits

11 10 9 8 7 6 5 4 3 2 1 Company
0 0 0 0 0 0 0 0 0 0 0 NXP Semiconductors

0 0 0 0 0 0 0 0 0 0 1 NXP Semiconductors (reserved)

0 0 0 0 0 0 0 0 0 1 0 NXP Semiconductors (reserved)

0 0 0 0 0 0 0 0 0 1 1 NXP Semiconductors (reserved)

0 0 0 0 0 0 0 0 1 0 0 Ramtron International

0 0 0 0 0 0 0 0 1 0 1 Analog Devices

0 0 0 0 0 0 0 0 1 1 0 STMicroelectronics

0 0 0 0 0 0 0 0 1 1 1 ON Semiconductor

0 0 0 0 0 0 0 1 0 0 0 Sprintek Corporation

0 0 0 0 0 0 0 1 0 0 1 ESPROS Photonics AG

0 0 0 0 0 0 0 1 0 1 0 Fujitsu Semiconductor

0 0 0 0 0 0 0 1 0 1 1 Flir

0 0 0 0 0 0 0 1 1 0 0 O2 Micro

0 0 0 0 0 0 0 1 1 0 1 Atmel

Table 1.3 Non-reserved addresses in the 7-bit address space
MSB (4-bit) Typical Usage
0001 Digital receivers, SMBus

0010 TV video line decoders, IPMB

0011 AV codecs

0100 Video encoders, GPIO expanders

0101 ACCESS bus, PMBus

0110 VESA DDC, PMBus

0111 Display controller

1000 TV signal processing, audio processing, SMBus

1001 AV switching, ADCs and DACs, IPMB, SMBus

1010 Storage memory, real-time clock

1011 AV processors

1100 PLLs and tuners, modulators and demodulators, SMBus

1101 AV processors and decoders, audio power amplifiers, SMBus

1110 AV color space converters

32 Inter-integrated Circuits (IIC/I2C)

unidirectional as well as bidirectional data transfer. There are three possible
cases of data transfer, normally called bus events:

• Unidirectional Data Transfer

◦ I2C Bus Events 1: Master-transmitter to Slave-receiver (Case 1)
◦ I2C Bus Events 2: Slave-transmitter to Master-receiver (Case 2)

• Bidirectional Data Transfer

◦ I2C Bus Events 3: Master to Slave and Slave to Master (Case 3)

1.13.1 I2C Bus Events 1: Master (Transmitter) to Slave
(Receiver) Data Transfer

This is the event when the master transmitting a byte to a slave device. In other
words, it is the case when the master writes to the slave. The transaction in
this case will be as in Figure 1.25.

To write to a slave, the write cycle is as follows:

• The master device initiates the transfer by a start condition. This acts as
an “Attention” signal to all of the connected devices. All ICs on the bus
will listen to the bus for incoming data.

• Once the start condition has sent, the master sends a byte to the slave.
This first byte is used to identify the slave on the bus and to select the
mode of operation. As shown in Figure 1.25, the 7 bits forming the
address of the slave starting with the most significant bit (MSB) is sent
at first followed by the eighth bit that defines the direction of the data.
The eighth bit is labeled R/W in the figure with 1 for “read” and 0 for
“write”. In this case, the eighth bit is set to zero because the Master is
writing to the slave. Here, the bit value is placed on the SDA line by
the master device, while the SCL line is low and maintained stable until
after a clock pulse on SCL.

Figure 1.25 Master-to-slave data transfer.

1.13 I2C Bus Transaction 33

• Having received the address, all the ICs will compare it with their
own address. If there is no match, the ICs will ignore the rest of this
transaction and wait for the next, that is, wait until the bus is released
by the stop condition. On the other hand, if the address matches, the
receiving device will respond by producing an acknowledge signal. The
receiving device produces this signal by holding the SDA line low during
the first ACK clock cycle.

• Once the Slave acknowledges the address, Master can now send data to
the Slave byte-by-byte. The Slave has to send the ACK bit after every
byte it receives. The master device transmits a byte of data starting with
the most significant bit down to the least significant bit. The receiving
device, in this case one of the slaves, acknowledges the reception of
data by holding the SDA line low during the second ACK clock cycle.
This means that for every 8 bits transferred, the device receiving the data
sends back an acknowledge bit, so there are actually 9 SCL clock pulses
to transfer each 8 bit byte of data. If the receiving device sends back a
low ACK bit, then it has received the data and is ready to accept another
byte.

• This goes on till Slave can no longer receive data and does NOT send
the ACK bit.

• This indicates that the slave cannot accept any further data and the
master should terminate the transfer by sending a stop sequence.

We see that the data transfer never changes its direction. Data always flow
from Master to Slave, which makes the setup quite easy.

An example of this case would be like performing page write operations
on an EEPROM chip.

1.13.2 I2C Bus Events 2: Slave (Transmitter) to Master
(Receiver) Data Transfer

This is the Bus Event when the master reads a byte from a slave device. The
transaction in this case is shown in Figure 1.26.

Figure 1.26 Slave-to-master data transfer.

34 Inter-integrated Circuits (IIC/I2C)

Figure 1.27 Read event.

To read from a slave device, the read cycle will be as follows:

• If performing a read operation, the master initiates the transfer by a start
condition, sends the address of the device that is being read, sends a
one (logic high on SDA line) requesting a read and waits to receive an
acknowledgment.

• The Slave acknowledges the address, thus ready to send data now.
• The protocol format is the same as in transmitting a byte to a slave,

except that now the master is not allowed to touch the SDA line. Prior
to sending the 8 clock pulses needed to clock in a byte on the SCL line,
the master releases the SDA line. The slave will now take control of this
line. The line will then go high if it wants to transmit a “1,” or if the slave
wants to send a “0,” the line will remain low.

• All the master has to do (see Figure 1.27) is to generate a rising edge on
the SCL line (2), read the level on SDA (3) and generate a falling edge on
the SCL line (4). The slave will not change the data during the time that
SCL is high. (Otherwise a Start or Stop condition might inadvertently
be generated.) During (1) and (5), the slave may change the state of the
SDA line.

• In total, this sequence has to be performed 8 times to complete the data
byte.

The meaning of all bytes being read depends on the slave. There is no
such thing as a “universal status register.” The user needs to consult the data
sheet of the slave being addressed to know the meaning of each bit in any
byte transmitted.

• Slave keeps on sending data to the Master, and the Master keeps on
sending ACK to the Slave after each byte until it can no longer accept
any more data.

1.14 Clock Stretching 35

Figure 1.28 Bidirectional data transfer.

• When the Master feels like ending the transaction, it does not send the
ACK, thus ending with the STOP sequence.

An example of this case could be an Analog to Digital Converter (ADC)
sending data to the microcontroller continuously. The microcontroller accepts
data as long as it wants to, after which it stops/finishes execution.

1.13.3 I2C Bus Events 3: Bidirectional Read and Write in Same
Data Transfer

The transaction is as in Figure 1.28.

• The Master sends out the START sequence, followed by the 7-bit Slave
address and the R/W’ bit.

• The Slave acknowledges the address.
• Depending upon the value of the R/W’ bit, read/write operations are

performed (like the above two cases).
• Whatever the case it may be, it always ends with the receiver not sending

the ACK.
• Until now, in the previous two cases, we have seen that the Master would

close the connection. But in this case, the Master attempts a repeated
START.

• And the entire process repeats again, until the Master decides to STOP.

As we can see, a change of direction of data transfer might happen
depending upon the R/W’ bits in the entire transaction.

An example of this case could be performing sequential read from an
EEPROM chip. It is bidirectional because the CPU first writes the address
from where it would like to start reading, followed by reading from the
device. It is like, unless you tell the device from where you would like to
start reading, how would it start sending you the data?

36 Inter-integrated Circuits (IIC/I2C)

1.14 Clock Stretching

The above discussion concerning timing is valid as the slave is able to return
to the Master the date needed. In some cases, the Slave is not ready yet to
return the data to the Master. With devices like ADC or EEPROM, this is not
an issue, but it is an issue with devices as microcontroller.

What if the Slave is a microcontroller, and the Master requests for a data
which is not there in its cache? This would require the microcontroller to
perform context switching, force it to search for it in the RAM, store it back
in cache and then send it to the Master. This could (and definitely would) take
a much longer time than the clock pulses of the SCL, and everything would
just go wrong!

To solve such situation, I2C introduces what is called “Clock Stretching.”
An addressed slave device may hold the clock line (SCL) low after receiving
(or sending) a byte, indicating that it is not yet ready to process more data.
The master communicating with the slave will try to raise the clock to transfer
the next bit but will verify that the clock line will remain low. The master will
then have to wait for the slave to release the line (SCL goes high) so that
the clock signal can be transmitted. Normally, the master waits an additional
minimum time of 4 µs for standard 100 kbps I2C before pulling the clock low
again. If a master wants to slow down the rate of data transfer, it just delays
the next clock edge.

Although the master may also hold the SCL line low for as long as it
desires (this is not allowed in newest Rev. 6 of the protocol–Section 3.1.1),
the term “clock stretching” is normally used only when slaves do it. Although
in theory any clock pulse may be stretched, generally it is the intervals before
or after the acknowledgment bit which are used. For example, if the slave is a
microcontroller, its I2C interface could stretch the clock after each byte, until
the software decides whether to send a positive acknowledgment or a NACK.

Clock stretching is the only instance in the entire I2C protocol where the
Slave drives the clock line SCL. In many processors and microcontrollers, the
low-level hardware does this for us, so that we don’t have to worry about it
while writing the code.

Many slaves do not need to clock stretch and thus treat SCL as strictly an
input with no circuitry to drive it. Some masters, such as those found inside
custom ASICs may not support clock stretching; often, these devices will be
labeled as a “two-wire interface” and not I2C.

To ensure a minimal bus throughput, SMBus places limits on how far
clocks may be stretched. Hosts and slaves adhering to those limits cannot

1.15 Possible Modifications on the Timing Diagram 37

Figure 1.29 Read/write cycle.

Figure 1.30 Acknowledge extension (a) without and (b) with extension.

block access to the bus for more than a short time, which is not a guarantee
made by pure I2C systems.

1.15 Possible Modifications on the Timing Diagram

Figure 1.29 depicts a timing diagram of a typical read/write cycle. Some-
times, this timing diagram may change. Some of the possible changes are
(see Figure 1.30):

• Acknowledge Extension: Under normal circumstances, following the
ACK bit time, the master will release the SCL line so that transmission
may continue with the next byte. If, however, the receiver (which is
usually a “slave device” or “master”) is temporarily unable to proceed,
it will hold the SCL line LOW, thereby extending the ACK interval. In
other words, it is allowed for the acknowledge bit to float high. When
the receiver is ready to proceed again, it will release the SCL line and
transmission continues. The timing diagram in Figure 1.30 illustrates the
ACK interval extension (see “Clock Stretching”).

38 Inter-integrated Circuits (IIC/I2C)

• Multi-register Slaves: While explaining the write/read cycle, we
assumed that the slave is simple and has only one register. In such a
case, just sending the address of the slave is enough. In many cases,
the slave has many registers, and each has its own address within the
slave device. If the master wants to write at specific register within the
slave, it must send this address. In such cases, having addressed the slave
device, the master must now send out the internal location or register
number inside the slave that it wishes to write to or read from. This
number is obviously dependent on what the slave actually is and how
many internal registers it has. In such a case, the master can continue
to send data bytes to the slave, and these will normally be placed in the
following registers because the slave will automatically increment the
internal register address after each byte. When the master has finished
writing all data to the slave, it sends a stop sequence which completes
the transaction.

• Repeated Start: During an I2C transfer, there is often the need to first
send a command and then read back an answer right away. This has
to be done without the risk of another (multi-master) device interrupting
this atomic operation. The I2C protocol defines a so-called repeated start
condition.
After having sent the address byte (address and read/write bit), the
master may send any number of bytes followed by a stop condition. If,
however, it wishes to establish a connection with a different slave, rather
than issue the Stop, the master will issue another Start, using the address
of the new device and then sends more data. This is defined recursively
allowing any number of start conditions to be sent. The purpose of this
is, in general, to allow combined write/read operations to one or more
devices without releasing the bus and thus with the guarantee that the
operation is not interrupted.

• Also we have to mention here that, in some devices, a start bit has to be
resent to reset the receiving device for the next command, for example,
in a serial EEPROM read, the first command sends the address to read
from, the second reads the data at that address. Multiple address is shown
in Figure 1.31.

1.16 Bus Clear

In the unlikely event where the clock (SCL) is stuck LOW, the preferential
procedure is to reset the bus using the HW reset signal if I2C devices in

1.18 I2C Modes: Bus Speeds 39

Figure 1.31 Multiple address.

use have HW reset inputs. If the I2C devices do not have HW reset inputs,
cycle power of the devices activate the mandatory internal Power-On Reset
(POR) circuit. In such cases, data line (SDA) is stuck LOW, the master should
send nine clock pulses. The device that held the bus LOW should release it
sometime within those nine clocks. If not, then use the HW reset or cycle
power to clear the bus.

1.17 Applicability of I2C Bus Features

The above sections discussed the main features of the I2C bus protocol.
Some of the features are mandatory and some are optional based on if
the bus is single master or multi-master. Table 1.4 summarizes the use of
mandatory and optional portions of the I2C bus specification and which
system configurations use them.

1.18 I2C Modes: Bus Speeds

The first I2C introduced by Philips is considered as the standard mode. It
refers to the initial transfer speed mode of the I2C specification which allows
up to 100 kbps. There are applications where the I2C transfer speed is a
limiting factor. To allow for higher transmission rates while retaining a certain
amount of compatibility, Philips in 1998 has introduced the high-speed (HS)
I2C standard and continued to introduce new standards. Currently, there are
five operating speed categories (modes):

1. Standard mode (Low-speed mode) with a bit rate up to 100 kbps
2. Fast mode (FM) with a bit rate up to 400 kbps
3. Fast-mode plus (FM+) with a bit rate up to 1 Mbps

40 Inter-integrated Circuits (IIC/I2C)

Table 1.4 Applicability of I2C bus protocol features
Configuration

Feature Single Master Multi-master Slave∗

START condition M M M

STOP condition M M M

Acknowledge M M M

Synchronization n/a M n/a

Arbitration n/a M n/a

Clock stretching O ∗∗ O ∗∗ O

7-bit slave address M M M

10-bit slave address O O O

General call address O O O

Software reset O O O

START byte n/a O∗∗∗ n/a

Device ID n/a n/a O
M = mandatory; O = optional; n/a = not applicable.
Notes: [*] Also refers to a master acting as a slave. [**] Clock stretching is a feature of some slaves. If
no slaves in a system can stretch the clock (hold SCL Low), the master need not be designed to handle
this procedure. [***] “Bit banging” (software emulation) multi-master systems should consider a START
byte.

4. High-speed mode (HS-mode) with a bit rate up to 3.4 Mbps
5. Ultra-fast mode (UFm) with a bit rate up to 5 Mbps

The first four are bidirectional and compatible: any device may be oper-
ated at a lower bus speed. Ultra-fast mode devices are not compatible with
the first four modes since the bus is unidirectional.

1.18.1 Low-speed Mode or Standard Mode

The very first specification of I2C dates back to the year 1982. It only covered
Standard mode: up to 100 kbps and 7-bit addressing.

1.18.2 Enhanced I2C (Fast Mode)

In the fast mode, the physical bus parameters are not altered. The protocol,
bus levels, capacitive load, etc., remain unchanged. However, the data rate
has been increased to 400 kbps and a constraint has been set on the level of
noise that can be present in the system. To accomplish this task, a number of
changes have been made to the I2C bus timing.

1.18 I2C Modes: Bus Speeds 41

The fast-mode I2C bus specification has the following additional features
compared with the standard mode:

• The maximum bit rate is increased to 400 kbps.
• Timing of the serial data (SDA) and serial clock (SCL) signals has been

adapted. There is no need for compatibility with other bus systems such
as CBUS because they cannot operate at the increased bit rate.

• The inputs of fast-mode devices incorporate spike suppression and a
Schmitt trigger at the SDA and SCL inputs.

• The output buffers of fast-mode devices incorporate slope control of the
falling edges of the SDA and SCL signals.

• If the power supply to a fast-mode device is switched off, the SDA and
SCL I/O pins must be floating so that they do not obstruct the bus lines.

1.18.3 Fast-mode plus (FM+)

FM+ devices introduced by Philips Semiconductors (now: NXP) in April
2006 can transfer information at rates up to 1 Mbps. The FM+ devices
are fully downward compatible with Fast- or Standard-mode devices for
bidirectional communication in a mixed-speed bus system. The same serial
bus protocol and data format is maintained as with the Fast- or Standard-mode
system.

The I2C fast mode was originally specified to run at 400 kHz. Ignoring
the 400 kilobit limit and running the same bus with the same logic at higher
speeds faces a couple of factors which limit the maximum speed on the bus.
First, there’s the capacitance which introduces a rise time for the signals. As
a “counter measure” the current on the bus can be increased by lowering the
resistor values for the termination pull-ups.

Second, the bus has some timing tolerances (tolerant of the 1 µs rise time),
and if the speed is increased, these tolerances need to be more restrictive.

In applications where only Fast-mode Plus parts are present, the high
drive strength and tolerance for slow rise and fall times allow the use of larger
bus capacitance as long as set-up, minimum LOW time and minimum HIGH
time for Fast-mode Plus are all satisfied, and the fall time and rise time do not
exceed the 300 ns tf and 1 µs tr specifications of Standard mode. Bus speed
can be traded against load capacitance to increase the maximum capacitance
by about a factor of ten.

Unlike the high speed, there is no additional logic to implement while
using FM+. Therefore, fast-mode plus devices are downward compatible with

42 Inter-integrated Circuits (IIC/I2C)

standard and fast-mode devices. In fact, many I2C slaves on the market like
RAMs and EEPROMs will already tolerate higher bus frequencies.

The specification for FM+ is now part of the current IšC-bus specification
and user manual.

1.18.4 High-speed Mode (HS mode)

High-speed mode (HS mode) devices offer a quantum leap in I2C bus transfer
speeds. HS-mode devices can transfer information at bit rates of up to 3.4
Mbps, yet they remain fully downward compatible with Fast- or Standard
mode (F/S-mode) devices for bidirectional communication in a mixed-speed
bus system. With the exception that arbitration and clock synchronization is
not performed during the HS-mode transfer, the same serial bus protocol and
data format is maintained as with the F/S-mode system. Depending on the
application, new devices may have a Fast- or Hs-mode I2C bus interface,
although HS-mode devices are preferred as they can be designed-in to a
greater number of applications.

1.18.4.1 Electrical characteristics of HS mode
To achieve a bit transfer of up to 3.4 Mbps, HS devices have the following
electrical characteristics:

• The high-speed variant of the I2C bus allows communication up to 3.4
Mbps.

• Both master and slave devices must be high-speed-enabled in order to
benefit from this increase.

• High-speed IC devices are downward compatible allowing for mixed bus
systems.

• In order to shorten signal rise time, HS-mode master devices have an
open-drain output buffer for the SDAH signal and a combination of
an open-drain pull-down and current-source pull-up circuit on the SCL
output. It also has an open-drain output buffer for SDA signal. Only the
current source of one master is enabled at any one time and only during
HS mode.

• HS IC masters can actually source current to the bus which is referred
to as boosting.

• This current source is enabled only during HS operation and just for one
master.

• HS-mode master devices generate a serial clock signal with a HIGH to
LOW ratio of 1 to 2. This relieves the timing requirements for set-up and
hold times.

1.18 I2C Modes: Bus Speeds 43

Figure 1.32 I2C bus configuration with HS devices.

• HS-mode master devices can have a built-in bridge to separate lower
speed devices from the bus during HS transfer. The main purpose of such
bridge is to reduce the capacitive load on the bus and to avoid conflicts
caused by low-speed devices.

• No arbitration or clock synchronization is performed during HS-mode
transfer in multi-master systems, which speeds-up bit handling capabil-
ities. The arbitration procedure always finishes after a preceding master
code transmission in F/S-mode.

Figure 1.32 shows the physical I2C bus configuration in a system with
only HS-mode devices. The pins, SDA and SCL, on the master devices are
only used in mixed-speed bus systems and are not connected in an Hs-mode
only system. In such cases, these pins can be used for other functions.

In Figure 1.32, an optional series resistor Rs is used. The optional series
resistors Rs protect the I/O stages of the I2C bus devices from high-voltage
spikes on the bus lines and minimize ringing and interference. Pull-up resis-
tors Rp maintain the SDAH and SCLH lines at a HIGH level when the bus is
free and ensure that the signals are pulled up from a LOW to a HIGH level
within the required rise time. For higher capacitive bus-line loads (>100 pF),
the resistor Rp can be replaced by external current source pull-ups to meet the
rise time requirements. Unless proceeded by an acknowledge bit, the rise time

44 Inter-integrated Circuits (IIC/I2C)

Figure 1.33 Details of the first part of high speed transfer format.

Figure 1.34 Data transfer format in HS-mode.

of the SCLH clock pulses in HS-mode transfers is shortened by the internal
current-source pull-up circuit MCS of the active master.

1.18.4.2 Transmission format of high-speed mode
Serial data transfer format in HS-mode meets the Standard-mode I2Cbus
specification. HS-mode can only commence after the following conditions
(all of which are in F/S-mode):

1. START condition (S)
2. 8-bit master code (0000 1XXX)
3. Not-acknowledged bit (A)

Figure 1.33 shows the beginning of a high-speed transfer. This master code
has two main functions:

• It allows arbitration and synchronization between competing masters at
F/S-mode speeds, resulting in one winning master.

• It indicates the beginning of an HS-mode transfer.

Figures 1.34 and 1.35 show the transmission format in more detail.
The format is as follows:

• Start condition is sent.
• After the start condition a so-called master code is transmit-

ted “00001XXX” (see Table 1.1), followed by a mandatory not-
acknowledge bit. The master code is sent in Fast- or Standard-mode (this
is with at most 400 kbps).

• The three lowest bits are used to identify different I2C masters on the
same bus–each one has its unique identifier. During transmission of the

1.18 I2C Modes: Bus Speeds 45

Figure 1.35 A complete HS-mode transfer.

master code, arbitration takes place (see arbitration latter), so that only
the winning master can perform the following high-speed transfer. The
winning master is the “active master.”

• The master codes are selectable by the designer and allow up to
eight high-speed masters to be connected in one system (master code
“00001000” should be reserved for test and diagnostic purposes).

• Active master switches to high-speed communication.
• Arbitration and clock synchronization only take place during master

code transmission, not during HS transfer.
• After the acknowledge phase following the master code, the high-speed

transfer begins with a repeated start condition, followed by the slave
address and the succeeding data, just like in Fast or Standard mode, but
with a higher bit rate.

• After each address, the slave must respond by ack or nack signal.
• The current source circuit is disabled after each repeated start condition

and after each ack or nack to give slaves a chance to stretch the clock.
• The high-speed mode remains active until a stop condition is transmit-

ted, on which the connected high-speed devices switch back to slow
transmission rates like Fast or Standard mode.

• All devices return to fast mode operation after a stop condition is sent.

46 Inter-integrated Circuits (IIC/I2C)

Note: Clock Stretching
Clock stretching during this mode has a special rule: It is only allowed

after the ACK bit (and before the 1st bit of the next byte). Stretching between
2 and 9 bits is illegal because the edges of these bits are boosted with an
additional current source.

1.18.5 Ultra-fast Mode (UFm)

The I2C Ultra-fast mode (UFm) is the fastest I2C mode available. It offers 5
MHz. This mode is pretty different to other I2C modes:

• UFm works unidirectionally, and data are sent in one direction only.
• Ultra-fast mode lines are driven in push–pull technology.
• Slaves do not send an acknowledge bit.
• There is a single master only.
• No arbitration for multi-master environment is available.

Nevertheless, multiple devices can be addressed sharing an I2C UFm bus;
112 nodes are available.

Currently, there are just a couple of devices supporting this mode. NXPs
PCU 9669 is a 3-channel bus controller with two 5 MHz UFm and one fast-
mode plus (FM+) interface. Variations are available.

Since the ultra-fast mode bus basically focuses on LED devices, NXP
comes with an LED controller PCU9655.

To have more information about UFm mode, NXP provides the appli-
cation note “AN11250 Practical guide for the use of ultra-fast mode I2C
bus.”

1.19 I2C as a Multi-master Bus: Bus Arbitration

So far we have seen the operation of the I2C bus from the master’s point
of view and using only one master on the bus. The I2C bus was originally
developed as a multi-master bus. This means that more than one device
initiating transfers can be active in the system.

When using only one master on the bus, there is no real risk of corrupted
data, except if a slave device is malfunctioning or if there is a fault condition
involving the SDA/SCL bus lines. This situation changes when using more
than one master, for example, use of the 2 microcontrollers units CPU1 and
CPU2 in Figure 1.36.

When CPU 1 issues a start condition and sends an address, all slaves will
listen (including CPU 2 which at that time is considered a slave as well). If

1.19 I2C as a Multi-master Bus: Bus Arbitration 47

Figure 1.36 I2C bus interface–multiple master.

the address does not match the address of CPU 2, this device has to hold back
any activity until the bus becomes idle again after a stop condition.

As long as the two CPUs monitor what is going on the bus (start and
stop) and as long as they are aware that a transaction is going on because
the last issued command was not a STOP, there is no problem. The problems
arise if the two CPUs decide to initiate the “start condition” at the same time
or if one of the CPUs miss the start condition and still think that the bus is
idle. As a fact this is not the only problem that may arise when a system has
multiple masters. A second problem that can arise is the case when having
multiple clocks in the system. The first problem is resolved by “arbitration”
and the second by “synchronization.” The two problems and their solution
are discussed next.

1.19.1 Arbitration

For proper functioning in case of multi-master, each device needs to be able
to cooperate with the fact that another device is currently talking and the bus
is therefore busy. This can be translated into (Figure 1.37):

• Being able to follow arbitration logic. If two devices start to commu-
nicate at the same time, the one writing more zeros to the bus (or the
slower device) wins the arbitration and the other device immediately
discontinues any operation on the bus.

• Bus busy detection. Each device must detect an ongoing bus communi-
cation and must not interrupt it. This is achieved by recognizing traffic
and waiting for a stop condition to appear before starting to talk on the
bus.

The physical I2C bus setup is designed not only to help the devices to
monitor what is going on the bus but more importantly, it is designed to
prevent any risk of data corruption that may arise from data collision. The
bus monitoring and collision avoidance are discussed next.

48 Inter-integrated Circuits (IIC/I2C)

Figure 1.37 Bus arbitration.

There is an undefined condition if the arbitration procedure is still in
progress at the moment when one master sends a repeated START or a STOP
condition while the other master is still sending data. In other words, the
following combinations result in an undefined condition:

• Master 1 sends a repeated START condition and master 2 sends a data
bit.

• Master 1 sends a STOP condition and master 2 sends a data bit.
• Master 1 sends a repeated START condition and master 2 sends a STOP

condition.

1.19.2 Bus Monitoring

The I2C bus structure is a wired AND. This means that if one device pulls a
line low, it stays low and accordingly any device can test if the bus is idle or
occupied. When a master (the sender) changes the state of a line to HIGH,
it MUST always check that the line really has gone to HIGH. If it stays low,
then this is an indication that the bus is occupied and some other device is
pulling the line low.

1.19 I2C as a Multi-master Bus: Bus Arbitration 49

Therefore, the general rule of thumb in I2C bus is: If a master (a sender)
cannot get a certain line to go high, it loses arbitration and needs to back off
and wait until a stop condition is seen before making another attempt to start
transmitting.

1.19.3 Possibility of Collision

Since the previous rule says that a master loses arbitration when it cannot get
either SCL or SDA to go high when needed, the problem of data corruption
(or data collision) does not exist. It is the device that is sending the “0” that
rules the bus. One master cannot disturb the transmission of other master
because if it cannot detect one of the lines to go high, it backs off, and if it is
the other master that cannot do so, it will behave the same.

This kind of back-off condition will only occur if the two levels trans-
mitted by the two masters are not the same. As an example, let us consider
Figure 1.30, where two CPUs start transmitting at the same time.

The two CPUs are accessing a slave in write mode at address 1111001.
The slave acknowledges this. So far, both masters are under the impression
that they “own” the bus. Now CPU1 wants to transmit 01010101 to the slave,
while CPU2 wants to transmit 01100110 to the slave. The moment the data
bits do not match anymore (because what the CPU sends is different than
what is present on the bus), one of them loses arbitration and backs off.
Obviously, this is the CPU which did not get its data on the bus. For as long
as there has been no STOP present on the bus, it won’t touch the bus and
leave the SDA and SCL lines alone (shaded zone). The moment a STOP was
detected, CPU2 can attempt to transmit again.

From the example above, we can conclude that it is the master that
is pulling the line LOW in an arbitration situation that always wins the
arbitration. The master which wanted the line to be HIGH when it is being
pulled low by the other master loses the bus. We call this a loss of arbitration
or a back-off condition. When a CPU loses arbitration, it has to wait for
a STOP condition to appear on the bus. Then, it knows that the previous
transmission has been completed.

1.19.4 Clock Synchronization and Handshaking

1.19.4.1 Clock synchronization
All masters generate their own clock on the SCL line to transfer messages
on the I2C bus. Data are only valid during the HIGH period of the clock. A

50 Inter-integrated Circuits (IIC/I2C)

Figure 1.38 Clock synchronization.

defined clock is therefore needed for the bit-by-bit arbitration procedure to
take place.

Clock synchronization is performed using the wired-AND connection of
I2C interfaces to the SCL line. This means that a HIGH-to-LOW transition
on the SCL line will cause the devices concerned to start counting off their
LOW period, and once a device clock has gone LOW, it will hold the SCL
line in that state until the clock HIGH state is reached. However, the LOW-
to-HIGH transition of this clock may not change the state of the SCL line if
another clock is still within its LOW period. The SCL line will therefore be
held LOW by the device with the longest LOW period. Devices with shorter
LOW periods enter a HIGH wait-state during this time, see Figure 1.38.

When all devices concerned have counted off their LOW period, the clock
line will be released and go HIGH. There will then be no difference between
the device clocks and the state of the SCL line, and all the devices will start
counting their HIGH periods. The first device to complete its HIGH period
will again pull the SCL line LOW. In this way, a synchronized SCL clock is
generated with its LOW period determined by the device with the longest
clock LOW period, and its HIGH period determined by the one with the
shortest clock HIGH period.

1.19.4.2 Handshaking: Using the clock synchronizing
mechanism as a handshake

The I2C protocol also includes a synchronization mechanism, which can be
used as a handshake mechanism between slow and fast devices or between
masters in a multi-master session.

When a slow slave (slow in terms of internal execution) is attached to the
bus, then problems may occur. Let us consider a serial EEPROM. The actual
writing process inside the EEPROM might take some time. Now if you send

1.19 I2C as a Multi-master Bus: Bus Arbitration 51

multiple bytes to such a device, the risk exists that you send new data to it
before it has completed the write cycle. This would corrupt the data or cause
data loss.

The slave must have some means to tell the master that it is busy. It could
of course simply not respond to the acknowledge cycle. This would cause
the master to send a stop condition and retry. (That is how it is done in
hardware in EEPROMs.) Other cases might not be so simple. Think about
an A/D converter.

It might take some time for the conversion to complete. If the master
would just go on, it would be reading the result of the previous conversion
instead of the newly acquired data.

Now the synchronization mechanism can come in handy. This mechanism
works on the SCL line only. The slave that wants the master to wait simply
pulls the SCL low as long as needed. This is like adding “wait states” to the
I2C bus cycle. The master is then not able to produce the acknowledge clock
pulse because it cannot get the SCL line to go high. Of course, the master
software must check this condition and act appropriately. In this case, the
master simply waits until it can get the SCL line to go HIGH and then just
goes on with whatever it was doing.

There are a number of minor drawbacks involved when implementing
this.

If the SCL gets stuck due to an electrical failure of a circuit, the master can
go into deadlock. Of course, this can be handled by timeout counters. Plus, if
the bus gets stuck like this, the communication is not working anyway.

Another drawback is speed. The bus is locked at that moment. If you
have rather long delays (long conversion time in our example above), then
this penalizes the total bus speed a lot. Other masters cannot use the bus at
that time either.

This technique does not interfere with the previously introduced arbitra-
tion mechanism because the low SCL line will lead to back-off situations in
other devices which possibly would want to “claim” the bus. So, there is no
real drawback to this technique except the loss of speed / bandwidth and some
software overhead in the masters.

It is possible to use this mechanism between masters in a multi-master
environment. This can prevent other master from taking over the bus. In a
two-master system, this is not useful. But as soon as the system has three or
more masters, this is very handy. A third master cannot interrupt a transfer
between master 1 and 2 in this way. For some mission-critical situations, this
can be a very nice feature.

52 Inter-integrated Circuits (IIC/I2C)

Figure 1.39 Clock synchronization during the arbitration procedure.

It is possible to make this technique more rigid by pulling not only the
SCL line low but also the SDA line. Then, any master other than the two
masters talking to each other will immediately back off. Before continuing,
the master must first let SDA go back high, and then SCL, representing a stop
condition.

Any master which attempted to communicate in the meantime would have
detected a back-off situation and would be waiting for a STOP to appear

1.20 I2C Interface: Connecting I2C Bus to a PC

The term “I2C interface” usually refers to means for connecting an I2C bus
to a PC. However, there are certainly other I2C interfaces which provide
connectivity for this universally used bus to non-PC devices.

There are a number of ways to attach the I2C lines to a PC. There is even
a zero-cost solution available which takes advantage of the PC parallel port
pins. A bit-banging driver is then used to toggle the signals to implement a
simple I2C single master device. Provided that the parallel port of the used
PC is tolerant enough with respect to various electrical characteristics, such
approach may well work for hobbyists. Since it is quite unreliable, a direct
(hardwareless) parallel port interface should never be applied in commercial
applications.

Philips provided schematics for an adapter called Single master, which
essentially works like a hardwareless solution but compensates for some
parallel port-related issues by using a driver chip between the PC port pins
and the I2C SDA and SCL lines. Such interface can only be operated as
single master, and the maximum speed highly depends on the drivers and
operating system of the PC. Since each bit is toggled individually, no timing

1.20 I2C Interface: Connecting I2C Bus to a PC 53

can be guaranteed under Windows or Linux with such connection. Another
disadvantage is the potential danger of damaging the PC with electronic
discharge or faulty connections of the external lines. This is particularly
annoying if the parallel port functionality is integrated into a multifunctional
non-replaceable chip as is the case with all modern PCs and notebooks.

A much more reliable, powerful and safe alternative are interfaces which
provide their own I2C logic such as Connii MM 2.0 or Tracii XL 2.0. These
devices are connected via USB; in addition to being able to operate in multi-
master mode, they provide a number of important and helpful additional
features. Since they communicate with the PC software on a more efficient
level than bit banging, the transfer speed is considerably higher and the load
on the PC is much lower.

It is important to discuss the considerations that the user has to look for
when choosing a professional I2C interface. Some of the considerations are
as follows:

• An I2C interface should not only consist of wiring to the parallel port of
a PC. This approach can cause damage to your PC or notebook and is
not very reliable.

• If the user is intending to use the interface with another I2C master
simultaneously, he/she should opt for a multi-master interface in order
to avoid arbitration conflicts on the bus.

• The interface that the user is going to choose should be capable of
running at the same speed as the other I2C devices in his/her system.

• If the application has slaves which are implemented using a microcon-
troller or if the user know that a slave device requires clock stretching,
he/she need to make sure that the selected interface supports it.

• Choose an interface which has a user interface and programming API
which you can easily use and which is supported.

• If possible, an USB interface is preferable over a plug-in card for the
user’s PC. This reduces the cable length you need extra on the I2C bus.

• Choose a vendor who offers reliable support and long-term market
commitment. As operating systems tend to change from time to time,
you will need upgrades in order to be able to use such new versions.

Summary

• IIC/I2C is an 8-bit bidirectional synchronous serial communication
protocol requiring only two wires for operation.

54 Inter-integrated Circuits (IIC/I2C)

• The I2C bus consists of two open-drain lines: SDA (data) and SCL
(clock).

• Several devices, being either Master or Slave, can be connected to the
bus. The Master device must initiate the transfer and drive the clock line
(SCL).

• I2C supports the standard speed of 100 kbps, up to a maximum speed of
3.4 Mbps.

• Master must generate unique Start and Stop conditions in order to mark
the beginning and end of a transaction.

• The receiver must send the ACK bit after every byte that it receives,
failing which the Master may either Stop the transaction or attempt a
repeated Start.

• Every device connected to the I2C bus has either 7-bit or 10-bit address.
An additional R/W’ bit is added to the address by the Master to
determine whether it wants to read or write from/to the device.

• Data transfer can be unidirectional (Master to Slave OR vice versa) or
bidirectional.

• Slave can hold the clock line low until it is ready with the result to be
sent to the Master, called Clock Stretching.

2
Design of I2C Bus and Operation

2.1 Design of I2C Bus

The two main parameters that needed to be calculated while designing I2C are
the Pull-up resistor and the clock frequency. In some cases, a series protection
resistor is needed to limit voltage spikes. In this section, we discuss at first
the open-drain lines and then the calculation of the pull-up resistor, clock
frequency limits, and the serial protection resistor are given.

2.1.1 Open-drain Lines

2.1.1.1 Open-drain for Bidirectional Communication
As mentioned before, SDA and SCL are open-drain (actually open drain/open
collector) lines pulled up with resistors. What does that mean? It means that
the devices connected to the I2C bus are capable of pulling any of these two
lines low, but they cannot drive them high. If any of the devices would ever
want to drive the lines high, they would simply need to let go of that line,
and it would be driven high by the pull-up resistors (Rp). In other words,
in the event of the bus being released by the master or a slave, the pull-
up resistor (RP) on the line is responsible for pulling the bus voltage up to
the power rail. Since no device may force a high on a line, this means that
the bus will never run into a communication issue where one device may
try to transmit a high, and another transmits a low, causing a short (power
rail to ground). I2C requires that if a master in a multi-master environment
transmits a high, but sees that the line is low (another device is pulling
it down), to halt communications because another device is using the bus.
Push–pull interfaces do not allow for this type of freedom, which is a benefit
of I2C.

Figure 2.1 shows a simplified view of the internal structure of the slave or
master device on the SDA/SCL lines, consisting of a buffer to read input data

55

56 Design of I2C Bus and Operation

Figure 2.1 Basic internal structure of SDA/SCL lines.

Figure 2.2 I2C bus interface–a closer look (Image source infoindustrielle.free.fr).

and a pull-down FET to transmit data. A device is only able to pull the bus
line low (provide short to ground) or release the bus line (high impedance to
ground) and allow the pull-up resistor to raise the voltage. This is an important
concept to realize when dealing with I2C devices, since no device may hold
the bus high. This property is what allows bidirectional communication to
take place.

Note: Actually, using open drain/open collector with an input buffer on the
same line allows a single data line to be used for bidirectional data flow.

Figure 2.2 gives a closer look of the internal structure. Figure 2.2 shows
the NMOS transistors inside the devices. In order for the device to pull any
of the two lines low, it needs to provide a high voltage to the gate of the
transistor (that’s how an NMOS transistor operates). If the gate voltage is

2.1 Design of I2C Bus 57

Figure 2.3 Pulling the bus low with an open-drain interface.

low, the NMOS transistor is not activated and the corresponding line is driven
high.

a. Open-drain pulling low
As described in the previous section, the Open-drain setup may only pull a
bus low, or “release” it and let a resistor pull it high. Figure 2.3 shows the
flow of current to pull the bus low. The logic wanting to transmit a low will
activate the pull-down FET, which will provide a short to ground, pulling the
line low.

b. Open-drain releasing bus
When the slave or master wishes to transmit a logic high, it may only release
the bus by turning off the pull-down FET. This leaves the bus floating, and
the pull-up resistor will pull the voltage up to the voltage rail, which will be
interpreted as high. Figure 2.4 shows the flow of current through the pull-up
resistor, which pulls the bus high.

2.1.2 Calculation of the Pull-up Resistor

As mentioned before, at the physical layer, both SCL and SCA lines are in
open drain, hence the pull-up resistors. Pull-up resistors need to be connected
from the I2C lines to the supply voltage to enable communication.

With regard to the capacitive load on the bus, there is a max resistance
value associated with the bus capacitance, while the minimum value is deter-
mined from the maximum allowed sink current (per I2C slave devices on the
bus), offset voltage, and supply voltage. Once the thresholds are determined,

58 Design of I2C Bus and Operation

Figure 2.4 Releasing the bus with an open-drain interface.

the system designer must determine if a stronger pull up is required to account
for the capacitance.

With a stronger pull up (lower resistance value), more current will be
used to make rise times faster for SCL and SDA and ensure that I2C rise
time specifications are met. At the same time, strong pull-up (small resistor)
prevents the I2C pin on an IC from being able to drive low.

The three considerations to be taken while determining the pull-up
resistor values (Rp) are discussed here:

• Supply voltage (Vcc)
• Total bus capacitance (Cb or Cbus)
• Total high-level input current (IIH)

2.1.2.1 Supply voltage (Vcc)
The I2C specification defines a voltage below VIL, or 30% of the supply
voltage, as a logical low and, likewise, above VIH, or 70% of the supply
voltage, as a logical high, as shown in Figure 2.5. A voltage between these
two levels leads to an undefined logic level. In reality, the pin will read
either logical high or low in this range, but it may vary between devices,
with temperatures, voltages, noise sources, and other environmental factors
influencing the logic levels.

The supply voltage limits the minimum Rp value for which the bus can be
pulled low. A strong pull up will prevent a device from being able to bring the
line sufficiently low, to ensure a logical low is detected. This is caused by the
potential divider formed between the pull-up resistor and the on-resistance of
the transistor to ground, as shown in Figure 2.6.

The on resistance of the transistor is not typically specified. Instead, a
maximum sink current (IOL) is given for which the voltage drop across the
transistor is below the output logical low-voltage level (VOL).

2.1 Design of I2C Bus 59

Figure 2.5 Specified voltage levels for logical high and low.

Figure 2.6 Open-collector topology and equivalent circuit. (RDSON is the drain to source
resistance when the transistor is ON.)

The VOL level that can be read as a valid logical low by the input
buffers of an IC determines the minimum pull-up resistance [Rp(min)].
Rp(min) is a function of Vcc, VOL(max), and IOL. Applying Ohm’s law gives
equation (2.1).

RP(min .) =
(Vcc−VOL(max .))

IOL
(2.1)

2.1.2.2 Total bus capacitance (CBUS or Cb) and Rp(max)
On the SCL and SDA lines, the capacitance includes all pins, connections,
PCB traces and wire. Combined, this is referred to as the bus capacitance

60 Design of I2C Bus and Operation

Figure 2.7 Charge time for transition between logical low to high.

and, for long traces and cabling, this can be significant. The open-collector
topology requires the external resistor to pull the line high when released.The
pull-up resistor, coupled with the bus capacitance, has an RC time constant,
which limits the rise time. This becomes significant with increasing clock
frequencies, as less time is available for the line to rise. If the selected resistor
value is too high, the line may not rise to a logical high before it is next pulled
low. This is an important consideration for designs that feature many devices
on a single bus, which often have higher bus capacitance.

Bus capacitance can be calculated from PCB trace lengths and published
pin capacitance, or measured using capacitance probes or smart tweezers. If a
precise calculation or measurement of the bus capacitance is not possible, an
overestimated worst-case reading should provide a safe maximum-resistance
value.

The maximum pull-up resistance is limited by the bus capacitance (Cb)
due to I2C standard rise time specifications. If the pull-up resistor value is
too high, the I2C line may not rise to a logical high before it is pulled low.
The response of an RC circuit to a voltage step of amplitude VCC, starting at
time t = 0, is characterized by time constant RC. The voltage waveform can
be written as:

V (t) = Vcc x(1 − e
−t
RC) (2.2)

2.1 Design of I2C Bus 61

For VIH = 0.7 × Vcc:

VIL = 0.7 x Vcc = Vccx(1 − e
−t1

RP . Cb) (2.3)

For VIL = 0.3 Vcc:

VIL = 0.3 x Vcc = Vccx(1 − e
−t2

RP . Cb) (2.4)

The rise time for the I2C bus can be written as:

tr = t2 − t1 = 0.8473 × RP × Cb (2.5)

The maximum pull-up resistance is a function of the maximum rise time
(tr):

RP (max) =
tr

(0.8473 × Cb)
(2.6)

where the parameters tr, Cb, and VOL as given from I2C specifications are
listed in Table 2.1.

From Table 2.1, the maximal rise times for 100 kHz, 400 kHz, and 1 MHz
I2C are 1 µs, 300 ns, and 120 ns, respectively.

Equation (2.6) can be re arranged to take the form:

Rp(max) = tr/0.8473 × Cb (2.7)

The Rp (min) is plotted as a function of Vcc in Figure 2.8. The RP
(max) is plotted as a function of Cb in Figure 2.9 for standard-mode and
fast-mode I2C.

Table 2.1 Parametric from I2C specifications
Standard Fast Fast-mode

Parameter Mode (Max) Mode (Max) Plus (Max) Unit
tr Rise time of both SDA and

SCL signals
1000 300 120 ns

Co Capacitive load for each bus
line

400 400 550 pF

VOL Low-level output voltage (at
3 mA current sink,
VCC > 2 V)

0.4 0.4 0.4 V

Low-level output voltage (at
2 mA current sink,
VCC ≤ 2 V)

– 0.2 × Vcc 0.2 × Vcc V

62 Design of I2C Bus and Operation

VOL = 0.2 × Vcc, IOL = 2 mA when Vcc ≤ 2V

VOL = 0.4 V, IOL = 3mA when Vcc > 2 V

Figure 2.8 Minimum pull-up resistance [RP (min)] versus pull-up reference voltage (VCC).

Standard mode: (fSCL = 100 kHz, tr = 1 µs)
Fast mode: (fSCL = 400 kHz, tr = 300 ns)

Figure 2.9 Maximum pull-up resistance [RP (max)] versus bus capacitance (Cb).

Example 2.1
For fast-mode I2C communication with the following parameters:

Cb = 200 pF, Ccc = 3.3 V

Calculate the pull-up resistor value.

2.1 Design of I2C Bus 63

Solution:
Taking the values from Table 2.1:

RP (max) =
tr

(0.8473 × Cb)
=

(300 × 10−9)

(0.8473 × 200 × 10−12)
= 1.77 kΩ

Rp(min) =
VCC − VOL(max .)

IOL
=

(3.3 − 0.4)

(3 × 10−3)
= 966.667 Ω

Therefore, we can select any available resistor value between 966.667 Ω
and 1.77 kΩ. The value of the pull-up resistor can be selected based on the
trade-off for the power consumption and speed.

2.1.2.3 Total high-level input current (IIH): Input leakage
Even when no device is pulling down the line and it is a logical high, current
continues to flow through the pull-up resistors. This current is caused by
the leakage of the digital inputs of the devices on the bus, from low-quality
PCB materials and possibly from soldering residues. Some of these cannot be
foreseen, but, assuming quality materials and good manufacturing practices,
the input pin leakage is dominant.

From Figure 2.5, the line needs to be above VIH to be regarded as logical
high, when there are no devices pulling the bus low. The leakage current
limits the maximum value of Rp, such that the voltage drop across it does not
prevent the line from being pulled above VIH.

It is also prudent to allow some guard margin on the VIH specification, to
prevent noise spikes from bringing the voltage below the VIH level. For robust
operation in a high-noise environment, the I2C specification recommends 0.2
Vcc as a suitable margin above VIH.

Equation (2.8) gives the additional margin over logical high input level:

VHMAR = 0.2 × Vcc VHMAR = 0.2 × 5 V VHMAR = 1 V (2.8)

The total HIGH-LEVEL input current, IIH, is shown as a function of
Rp(max) in Figure 2.10.

The leakage of digital inputs is normally given in the datasheet of devices,
and, for Microchip’s I2C EEPROM devices, the maximum input leakage
current (ILI−EE) is 1 µA. The minimum components for a system are a micro-
controller I2C master and an I2C slave device. For this example, assuming a
microcontroller with 1 µA input leakage (ILI−MCU) and four I2C EEPROM
devices, and allowing 100% margin, IIH is 10 µA.

64 Design of I2C Bus and Operation

Figure 2.10 Total high-level input current as a function of the maximum value of Rp with
supply voltage as a parameter.

Equation (2.9) gives the calculations of the leakage current due to pin
leakages for defined bus:

IIH = (1 +M argin) × (ILIMCU + (4 × ILIEE))

IIH = (1 + 1) × (1 + (4 × 1)))µA = 10 µA (2.9)

Applying Ohm’s law, we can determine the maximum value for Rp that
will meet these specifications. Equation 10 gives Maximum pull-up resistance
value to ensure logical high:

Rp ≤
(Vdd − (VIH + VHMAR)

IIH
Rp ≤

5.0 − (3.5 + 1.0)

10 × 10−6 Rp ≤ 50kΩ

(2.10)

2.1.2.4 Bus speed versus power consumption
The pull-up resistors must be reduced in size, when increasing the bus speed
or when there is significant bus capacitance. The lower-value resistors cause
increased current draw, as each logical low on the bus creates a path to
ground, negatively impacting power consumption.

The bus speed can become a trade-off between completing tasks quickly
and returning a system to a low-power idle state, versus the additional current
draw created by the higher bus speed requirements. For applications with

2.1 Design of I2C Bus 65

very low power budgets, SPI may be a better-suited bus protocol, since it
uses driven lines, instead of open collectors.

The next section discusses the maximum allowed clock frequency,
maximum speed, of I2C bus.

2.1.3 Maximum Clock Frequency of I2C Bus

2.1.3.1 Using repeaters: Effect of increasing the number of
devices–use of repeaters

The I2C standard limits the maximum allowed capacitance on the bus to 400
pF for I2C fast mode (FM) and 550 pF for I2C fast-mode plus (FM+). With
the ever-growing system complexity, more and more integrated circuits (ICs)
are added to the I2C bus, and complying with the I2C specifications capac-
itance limit has become a concern. Each IC added results in a capacitance
increase up to approximately 15 pF on the I2C bus. I2C repeaters are circuits
which provide a solution to the previously described problem by isolating the
capacitance between two I2C bus, hence, allowing greater capacitance on an
I2C bus for a given timing budget.

The maximum clock frequency (fSCL (max)) is specified to be up to
400 kHz for I2C FM and up to 1000 kHz for FM+ spec. With the increas-
ing number of devices, application requirements also tend to dictate faster
operating frequencies to improve overall system response time. Since I2C
repeaters typically buffer both the clock (SCL) and the data (SDA) lines,
an I2C system utilizing I2C repeaters must properly account for the propa-
gation delays through the repeater when determining the optimal operating
frequency.

In this section, we show the calculations that can be used to determine
the maximum clock frequency on an I2C bus-based on repeater propagation
delays. The trade-offs that need to be considered between system design
parameters and timing budget requirements are also discussed

2.1.3.2 I2C bus without a repeater
The timing diagram for an I2C bus with a master generating the SCL clock
signal and a slave responding with data on SDA is shown in Figure 2.11 (refer
to the I2C spec for a detailed description of the timing parameters).

The maximum clock frequency for this case can be calculated as:

fSCL(max) =
1

tLOW + tHIGH + tr + TF
(2.11)

66 Design of I2C Bus and Operation

Figure 2.11 Timing diagram for an I2C system with the master generating the SCL clock
signal and a slave responding with data on SDA.

Table 2.2 fSCL (max) calculation for I2C systems based on FM or FM+ masters and slaves
Based on I2C Based on I2C

Parameter FM Spec Limits FM+ Spec Limits
Low period of SCL clock (tLOW (min)) 1300 ns 500 ns

HIGH period of SCL clock (tHIGH(max)) 600 ns 260 ns

Rise time of both SDA and SCL signals (tR(max)) 300 ns 120 ns

Fall time of both SDA and SCL signals (tf (max)) 300 ns 120 ns

Maximum clock frequency (fSCL (max)) 400 kHz 1000 kHz

where:

tLOW = low period of the clock
tHIGH = high period of the clock
tR = rise time of the clock
tF = fall time of the clock

The timing parameters in Equation (2.11) and the fSCL (max) calculation
result based on these timing parameters for a system based on I2C FM and
FM+ spec is shown in Table 2.2. As expected, the fSCL (max) for FM spec
is 400 kHz, and for FM+ spec, it is 1000 kHz, as also mentioned in the I2C
spec.

From the timing diagram in Figure 2.11, tLOW (min) must be greater
than tVD;DAT (max) plus tSU;DAT to satisfy the data valid and setup time
requirement:

tLOW (min) > tV D;DAT + tSU ;DAT (2.12)

2.1 Design of I2C Bus 67

Table 2.3 Relationship between tLOW (min), tVD;DAT, and tSU;DAT

Based on FM Based on I2C FM+
Parameter Spec Limits FM+ Spec Limits
Low period of SCL clock (tLOW (min)) 1300 ns 500 ns

Data valid time (tVD;DAT(max)) 900 ns 450 ns

Data valid time (tSU;DAT(min)) 100 ns 50 ns

Timing margin (= tLOW (min) − tVD;DAT (max) −
tSU;DAT (min))

300 ns 0 ns

Figure 2.12 Generic I2C bus system showing a bus master, repeater, and a slave.

Based on numbers in Table 2.3, the FM spec has enough timing margin
to satisfy Equation (2.12); however, there is no timing margin in FM+ spec to
satisfy Equation (2.12). This can cause challenges when a repeater that adds
propagation delays is used on the I2C FM+ bus.

2.1.3.3 I2C bus with a repeater
Consider an I2C bus system where a repeater is used to isolate the capacitance
between the master and slave side similar to Figure 2.12.

The worst-case timing delay is seen for the case when the slave is sending
the data to the master as in this case the data valid time (tVD;DAT) and setup
time (tSU;DAT) have to be met with the repeater propagation delayed SCL
(Figure 2.13). The master generates the I2C clock signal (SCL) on the A-side
of the repeater.

This SCL is passed through the repeater and appears at the B-side with the
repeater propagation delay added (tPHL;AB). The data on the B-side (SDA)
must be valid within the data valid time (tVD;DAT) as per the I2C spec (note
that the tVD;DAT is referenced to the delayed SCL on B-side). After the data
become valid, they pass through the repeater from B-side to A-side and
a propagation delay (tPHL;BA) is added. For simplicity, we have assumed

68 Design of I2C Bus and Operation

Figure 2.13 Timing diagram for an I2C system with the master generating the SCL clock
signal, an I2C repeater providing capacitance buffering (and adding propagation delay), and a
slave responding with data on SDA.

that the rise/fall time on the A-side and B-side of the repeater is the same;
however, in practice they can differ. The data on the A-side must be available
at setup time (tSU;DAT) before the rising edge of SCL. For the LOW to HIGH
transition on SDA, adding all of the mentioned time corresponds to the LOW
period of the SCL as:

tLOW−LH = tPHL;AB + tV D;DAT + tPLH;BA + tSU ;DAT (2.13)

For the high-to-low transition on SDA, adding the previously mentioned
timings corresponds to the LOW period of the SCL as:

tLOW−LH = tPHL;AB + tV D;DAT + tPHL;BA + tSU ;DAT (2.14)

The maximum clock (SCL) frequency that can be used on an I2C bus with
a repeater can be calculated as:

fSCL(max) =
1

tLOW + tHIGH + tR + tF
(2.15)

Assuming the high-to-low transition on SDA results in greater timing
delay compared to the low-to-high transition:

fSCL(max) =
1

tLOW−HL + tHIGH + tR + tF

=
1

(tPHL;AB + tV D;DAT + tPHL;BA + tSU ;DAT)

+tHIGH + tR + tF

(2.16)

2.1 Design of I2C Bus 69

Table 2.4 Maximum clock frequency (fSCL (max)) calculation based on I2C FM specifica-
tions and for FM specifications with TCA9617B repeater characteristics

Based on I2C Based on I2C
FM Spec with TCA9617B FM Spec with TCA9617B

Propagation Propagation Delays
Parameter Delays and Rise/Fall Times
Data valid time (tVD;DAT(max)),
from I2C FM spec

900 ns 900 ns

Data setup time (tSU;DAT(min)),
from I2C FM spec

100 ns 100 ns

Repeater propagation delay from
B to A defined as 0.3 × Vcc on
A and B side (tPHL;BA), from
repeater datasheet (TCA9617B)

140 ns 140 ns

Repeater propagation delay from
A to B defined as 0.7 × Vcc on
A and B side (tPHL;AB), from
repeater datasheet (TCA9617B)

144 ns 144 ns

Fall time of SCL (tF(max)), from
I2C FM spec or repeater
datasheet (TCA9617B)

300 ns 13.8 ns

Rise time of SCL (tR(max)),
from I2C FM spec or repeater
datasheet (TCA9617B)

300 ns 88 ns

Maximum clock frequency
(fSCL(max))

402.6 kHz 503.6 kHz

Table 2.4 shows the values for the timing parameters shown in Equa-
tion (2.16) and the calculation result for the fSCL (max) based on I2C FM
spec and for I2C FM spec with TCA9617B repeater rise/fall time specs. The
calculation shows that it is possible to meet the 400 kHz I2C FM fSCL (max)
spec in both cases (fSCL (max) is higher than 400 kHz in both cases).

Table 2.4 shows the values for the timing parameters shown in Equation
(2.6) and the calculation result for the fSCL (max) based on I2C FM+ spec and
for I2C FM+ spec with TCA9617B repeater rise/fall time specs.

These calculation results show that with the TCA9617B repeater, it may
not be possible to meet the 1000 kHz I2C FM+ fSCL (max) spec under all
loading conditions (fSCL (max) is lower than 1000 kHz in both cases). For
smaller loading conditions than those specified in TCA9617B datasheet, the
repeater propagation delays and rise/fall times are smaller; hence, higher fSCL

(max) than those mentioned in Table 2.5 can be achieved. However, because

70 Design of I2C Bus and Operation

Table 2.5 Maximum clock frequency (fSCL (max)) calculation based on I2C FM+ specifi-
cations and for FM+ specifications with TCA9617B repeater characteristics

Based on I2C Based on I2C
FM+ Spec with TCA9617B FM+ Spec with TCA9617B

Propagation Propagation Delays
Parameter Delays and Rise/Fall Times
Data valid time
(tVD;DAT(max)), from I2C
FM+ spec

450 ns 450 ns

Data setup time
(tSU;DAT(min)), from I2C
FM+ spec

50 ns 50 ns

High period of SCL
(tHIGH(min)), from I2C FM+
spec

260 ns 260 ns

Repeater propagation delay
from B to A defined as
0.3 × Vcc on A and B side
(tPHL;BA), from repeater
datasheet (TCA9617B)

140 ns 140 ns

Repeater propagation delay
from A to B defined as
0.7 × Vcc on A and B side
(tPHL;AB), from repeater
datasheet (TCA9617B)

144 ns 144 ns

Fall time of SCL (tF(max)),
from I2C FM+ spec or
repeater datasheet
(TCA9617B)

120 ns 13.8 ns

Rise time of SCL (tR(max)),
from I2C FM+ spec or
repeater datasheet
(TCA9617B)

120 ns 88 ns

Maximum clock frequency
(fSCL(max))

778.8 kHz 872.8 kHz

of no timing margin on the I2C FM+ spec, it still is not possible to meet the
1000 kHz fSCL (max) spec.

If an experiment is carried out in the lab to measure the maximum
frequency on SCL when using a repeater, it may be possible to clock the
signals at a faster rate than what the calculations in Table 2.5 show. However,
the system designer should take these calculations into consideration as all

2.1 Design of I2C Bus 71

Figure 2.14 Series resistor (Rs) for protection against high-voltage spikes.

the slaves on the I2C bus may not be able to support that high frequency
over all possible temperature / voltage corners conditions, hence, leading to
yield fallout. The system designer has the flexibility to reduce the loading
conditions and achieve the highest clock frequency possible.

2.1.4 Series Protection Resistors

As shown in Figure 2.14, series resistors (Rs) of, for example, 300 Ω can be
used for protection against high-voltage spikes on the SDA and SCL lines
(resulting from the flash-over of a TV picture tube, for example). If series
resistors are used, designers must add the additional resistance into their
calculations for Rp and allowable bus capacitance. The required noise margin
of 0.1 VDD for the LOW level, limits the maximum value of Rs. Rs(max) as
a function of Rp is shown in Figure 2.15. Note that series resistors affect the
output fall time.

2.1.4.1 Effect of the serial resistance on static low level of I2C
line

(Pull-up Resistance versus Serial Resistance)
Usually, if the I2C bus is used solely on one board, serial resistors Rs are very
low or not existing at all. As mentioned before, in some circuits, for example,
if the I2C bus is externally accessible by a connector, it is desirable to add
serial resistors in the SDA and SCL line in order to protect the I2C devices
against overcurrent. Figure 2.16 shows a simplified equivalent circuit diagram
for an I2C connection between two devices (master or slave) containing all
relevant factors for I2C.

The serial protection resistance Rs, together with the pull-up resistance
Rp, affects the static low level of the I2C lines. Consider Figure 2.16 with
the serial resistances Rs1 = 250 Ω and Rs2 = 0 Ω, and a pull-up resistance
Rp = 1 kΩ. Figure 2.17 shows the transfer as measured at the clamps of I2C

72 Design of I2C Bus and Operation

Figure 2.15 Maximum value of Rs as a function of the value of Rp with supply voltage as a
parameter. The value of the series resistance can be defined practically based on the value of
Rp used.

Figure 2.16 Simplified equivalent circuit diagram for an I2C connection between two
devices (master or slave) containing all relevant factors for I2C.

device #1 (here: the master), and Figure 2.18 shows the transfer as measured
at the clamps of I2C device #2 (here: the slave). Note the different low-level
voltages; the low level measured at the slave is about Rs / (Rs + Rp) * Vcc =
∼1/5 * Vcc, while the low level measured at the master is nearly GND.

A high low level on SCL and SDA can lead to problems under certain
circumstances as some devices may not properly recognize this as a valid low
level. If Rs cannot be reduced for some reason, it helps to raise the termination
resistance Rp instead. Figure 2.19 shows the transfer at the slave clamps with
an increased termination resistance of Rp = 10 kΩ.

2.1 Design of I2C Bus 73

Figure 2.17 SDA (a) and SCL (b) as measured at I2C device #1 (master).

Figure 2.18 SDA (a) and SCL (b) as measured at I2C device #2 (slave).

Figure 2.19 SDA and SCL measured at I2C device #2 (slave) with increased Rp.

2.1.4.2 Serial resistance and debugging
Despite their obvious downsides mentioned above, serial resistances can be
useful sometimes when analyzing I2C bus traffic to track down I2C-related
problems. As stated before, serial resistances Rs lead to different voltage

74 Design of I2C Bus and Operation

Figure 2.20 A complete master receiver transfer between an I2C master and I2C slave device
with Rs = 200 Ω, measured at the slave device.

levels during the low phase, depending on which device currently pulls SDA
or SCL low. Thus, it is possible to recognize which I2C device is currently
active by analyzing the low level on the I2C lines. Figure 2.20 shows a
complete master receiver transfer between an I2C master and a slave device.
Due to serial resistors, the low level of the slave device is lower than one of the
master device. This applies for both lines, SDA and SCL. Thus, it is possible
to easily see that the slave device stretches the SCL line shortly during the
acknowledge clock cycle (marked with “!” in Figure 2.20).

2.1.4.3 Termination versus capacitance
Cp and Rp effectively limit the maximum data rate which can be transferred
over SDA and SCL. A high Cp can be compensated with a low Rp and vice
versa.

Figure 2.21a–c shows the same part of an I2C transfer. Compared to
Figure 2.21 part label (a), part label (b) shows the signals with a modified
Rp of 2 kΩ and part label (c) with a lower Cp of 150 pF.

Note: Long wires increase Cp dramatically. I2C connections should
always be as short as possible and connected by a suitable wiring pattern
(c.f. I2C specification, Section 1.7.3).

Note that the I2C standard limits Cp to the maximum value of 400 pF.
However, with an appropriate termination resistance, it is often possible
(although not recommended) to operate I2C buses with higher capacitance.

2.1.5 Cross Channel Capacitance: Crosstalk between SDA and
SCL

A simplified circuit diagram for an I2C connection between two devices
(master or slave) is given before (Figure 2.16). Beside the pull-up resistance

2.1 Design of I2C Bus 75

(a) SDA (above) and SCL (below) with Rp = 10 kΩ and Cp = 300 pF. The SCL clock runs
with 100 kHz (nominal).

(b) The same transfer as above, but this time with a reduced termination resistance (Rp = 2
kΩ, Cp = 300 pF).

(c) The same transfer as above, but this time with a reduced wire capacitance (Rp = 10 kΩ
and Cp = 150 pF).

Figure 2.21 Effect of Cp and Rp (Images from: Tracii XL 2.0).

Rp and the series resistance Rs, it shows a cross channel capacitance Cc. The
image shown in Figure 2.22 shows a typical I2C transmission. A closer look
at the signals discloses small spikes in the signals. These are consequences
arising out of cross channel capacitances Cc. In general, crosstalk should not
be a problem as long as the resulting spikes are not too large. Cc itself can
be minimized by using as short interconnections as possible. Increasing the

76 Design of I2C Bus and Operation

Figure 2.22 Crosstalk between SDA and SCL.

serial resistors Rs and termination Rp can help to reduce the effects of the
cross channel capacitances Cc.

2.2 Operating above the Maximum Allowable Bus
Capacitance

Bus capacitance limit is specified to limit rise time reductions and allow
operating at the rated frequency. Adding more I2C and SMBus devices on the
I2C bus may exceed the 400 pF limitation. Once the capacitance is exceeded,
the rise times on the I2C bus may violate the timing requirements.

While most designs can easily stay within the limit of 400 pF, some
applications may exceed it. There are several strategies available to system
designers to cope with excess bus capacitance.

• Reduced fSCL (see Section 2.1.3): The bus may be operated at a lower
speed (lower fSCL).

• Higher drive outputs (see Section 2.4.2): Devices with higher drive
current such as those rated for fast-mode plus can be used (PCA96xx).

• Bus buffers (see Section 2.4.1): There are a number of bus buffer devices
available that can divide the bus into segments so that each segment
has a capacitance below the allowable limit, such as the PCA9517 bus
buffer or the PCA9546A switch. Multiplexors, Switches, and Repeaters
are doing the same function, dividing the bus into segments, as repeaters.

• Switched pull-up circuit (see Section 2.4.3): A switched pull-up circuit
can be used to accelerate rising edges by switching a low value pull-up
alternately in and out when needed.

2.2.1 Reduced fSCL

Operating above the maximum allowable bus capacitance through reducing
the bus speed, fSCL, is possible without affecting the performance of the

2.2 Operating above the Maximum Allowable Bus Capacitance 77

system. This is due to two factors:

a. In a synchronous serial transmission like an RS-232 communication, the
clock speed is predetermined. Since the receiver does not get an explicit
clock signal, it has to rely on the accuracy of the sender’s timing. Any
deviation is almost fatal as it may cause errors sooner or later. This is
not the case with I2C.
In case of I2C bus, which is also a synchronous serial transmission, the
situation is much more relaxed. The clock is transmitted by the sender
and the receiver is always able to synchronize with that clock.

b. I2C specification defines several speed modes: 100 kbps for standard
mode, 400 kbps for full speed, 1 Mbps for fast mode and 3.2 Mbps for
high speed. The mentioned speed rates are maximum ratings. Compliant
hardware guarantees that it can handle transmission speed up to the
maximum clock rate specified by the mode. This does not imply that
a transmission may not take place at any lower speed or even at a
somewhat variable bit rate.
In fact, a bus master does not even have full control over the actual
timing. The reason for this is simple. The I2C bus uses open drain
technology. The bus is kept on a high level and writing to the bus means
to pull its level to ground. Depending on bus termination, serial resistors,
capacitance, cable length, bus voltage and other factors, this process of
pulling down the level and releasing it takes some time. It is therefore
good practice for any device to read back the logic level of a modified
line (both clock and data) before proceeding with further actions.
A master will write a zero on the bus by first enabling the circuit to pull
the bus low, then read back the state of the line and then proceed with
the next step.
As a consequence, a master set to clock at 100 kHz will most likely
produce a lower speed on the bus. As the impact of electrical latency
increases with higher clock rates, this effect shows more with higher
speeds.
In conclusion, since the timing can never be determined exactly and the
transmitted information is often short, the accuracy of the bus clock is
of very little relevance in most applications: it can be adjusted based on
the application. Here, we consider the application when it is required to
work with bus capacitance above that defined by I2C specification.

For the designer to determine a lower allowable bus operating frequency,
he begins by finding the tLOW and tHIGH of the most limiting device on the

78 Design of I2C Bus and Operation

bus. Refer to individual component data sheets for these values. Actual rise
time (tr) depends on the RC time constant. The most limiting fall time (tf)
depends on the lowest output drive on the bus. Be sure to allow for any devices
that have a minimum tr or tf (Refer Figure 2.11). Equation (2.17) defines the
resulting fmax.

fmax =
1

tLOW (min.) + tHIGH(min.) + tr(actual.) + tf(actual.)
(2.17)

Remark: Very long buses must also account for time of flight of signals.
Actual results are slower, as real parts do not tend to control tLOW and tHIGH

to the minimum from 30% to 70% or 70% to 30%, respectively.

2.2.2 Higher Drive Outputs

As mentioned above, tr depends on the RC time constant, while tf depends on
the output drive power. When using higher output drives as PCA96xx Fast-
mode Plus or the P82B bus buffers, the higher strength output drivers sink
more current which results in considerably faster edge rates, mainly reducing
tf . Considering equation (2.3), reducing tf allows increasing tr for the same
fmax. This, in turn, allows a higher bus capacitance.

An example of the drivers is P82B715. The P82B715 is a bidirectional
logic driver that increases the allowable total I2C system wiring capacitance
and requires no external directional control. It uses unidirectional analog
current amplification to increase the current sink capability of I2C devices by
a factor 10 and the theoretical load capacitance to 4000 pF (see Application
Note AN255 for more examples).

We refer the reader to Phillips Application Note AN255 for more
examples of such drivers.

Example 2.2: Use of Drivers with Higher drive outputs to
Increase the Total Allowable Bus Capacitance
Normally the drivers are used only to reduce the effects of WIRING capaci-
tance without changing the total I2C bus capacitance limit, which is 400 pF.
In case if there is no large wiring capacitance component in the system, the
drivers can be used to crease the total I2C bus system capacitance. Figure 2.23
gives a general block diagram for such method; using drivers with higher
drive output.

In this method, the system capacitance is divided into a number of seg-
ments with roughly the same capacitance per segment. The effective pull-up

2.2 Operating above the Maximum Allowable Bus Capacitance 79

Figure 2.23 Example of using Bidirectional drivers to reduce the effects of WIRING
capacitance.

load on any one of the I2C buses will be function: the local pull-up resistance,
all other pull-ups and the buffer action.

Total load = Local pull-up resistance in parallel with

[(all other pull-ups connected in parallel) × (buffer action)]

In case of the circuit of Figure 2.23, we have 6 buses. Accordingly, besides
the local R, we have 6 resistance connected in parallel. The 6 resistance in
parallel have an equivalent resistance of R/6. The total load will be:

R in parallel with [(R/6) × (buffer factor)]

As an example, if we are using the driver P82B715, the buffer action is 10.
Substituting in the above equation, the total load resistance = 2.7 kΩ.

For a bus rise time of 1.18 µs, the allowable capacitance with 2.7 kΩ is
430 pF. But the I2C specification limit is 400 pF, so in this example with 7
segments, this system allows a total capacitance of 7 × 400 pF = 2800 pF.

80 Design of I2C Bus and Operation

Using P82B715 driver with this arrangement is useful in systems that include
TTL logic levels because P82B715 does not affect any of the logic thresholds
in the system.

In the configuration of Figure 2.23, the effect of the failure of any VCC
supply to any of the devices depends on internal structure of the driver.
For example if we are using P82B715, the failure of any VCC will let
the system hold the bus low because P82B715 has internal diodes from all
I/Os to VCC. Other buffers/extenders (e.g., PCA9511/12/13/14/15/16/18 and
P82B96) open circuit their I/Os if their supply is removed.

2.3 Managing the Delays in Large Systems: Use of Buffers,
Repeaters, Multiplexers and Switches

The delays introduced at the Master and Slave need to be adjusted to avoid
the following possible conditions:

1. At the START, the Master drives SDA LOW while SCL is HIGH, and
then, after a required set-up time, it drives SCL LOW. If the Master
is Fast-mode Plus compatible, then the set-up time generated could be
just 260 ns. In a system with, say, 100 series buffers, it is possible that
there will be some small ‘skew’ between the delays through the SDA
and the SCL buffers. A skew of just 3 ns per buffer could mean that the
Master SCL falling edge reaches a distant Slave before the SDA falling
edge and it will not receive the START condition. If a hardware delay
of around 10 ns per series buffer is added to the SCL falling edge at
the Master, relative to the Master SDA falling edge during the START,
that will ensure, after allowing for 10 ns skew/buffer, a correct START
is delivered to even the most remote Slave. (As will be shown, the actual
delays need to be slightly different because the hardware adds its own
minimum delays.)

2. When the Master addresses a Slave, it is allowed to provide the data bits
on SDA with minimal set-up or hold time relative to the falling edges
of its SCL. If the Master is changing a data bit, then it can do that at
essentially the same time as its SCL falls.
This is especially the case if the bus is bit-bashed, and anyway for Fast-
mode Plus (Fm+), this delay may be as short as 120 ns.
If the Master data bit is changing from a HIGH to a LOW, then the
situation is very similar to a START. Both Master SCL and SDA are
driven LOW at nearly the same time, and “skew” might cause their
intended relative timing to reverse after passing through many buffers.

2.3 Managing the Delays in Large Systems 81

To ensure the correct timing of data falling edges, the master hardware
will delay all SDA falling edges by around 10 ns/series buffer, relative
to the already delayed Master’s SCL falling edges.
When the Master’s transmitted data bit is changing from a LOW to a
HIGH, then it can release the SDA line at essentially the same time as it
drives its SCL LOW. The slew on the SCL falling edge means the SCL
will be delayed by 70 ns/buffer more than the reach a distant Slave 7
µs before the Master’s SCL falling edge. The consequent rising of SDA,
while SCL is still HIGH, represents a STOP condition for that Slave.
In this example, the hardware at the Master must therefore delay the
Master’s SDA rising edges by more than 70 ns/series buffer (in addition
to the 10 ns delay of the Master’s SCL falling edges) to ensure its SCL
falling edges reach every Slave before the rise of its SDA signal. For 100
series buffers, the delay becomes 8 µs, and it becomes clear that this can
be a significant factor limiting the possible bus speed.

3. In a large system, a Slave located close to the Master will generate data
bits on its bus section with closely the same timing as the Master would
generate. Its data edges will be delayed only by the Slave’s tVD response
delay relative to the received Master’s SCL falling edges. For Fm+ parts
that is typically only 200 ns. It is therefore necessary to delay the Slave’s
SDA signals in closely the same way as the Master’s SDA above. The
Slave SDA falling edges need to be delayed by > 10 ns/series buffer in
the system, and its rising edges need to be delayed 100 ns/series buffer.

Delaying the Slave’s “output” data bit timing, while allowing undelayed
input signals, requires the inclusion of a buffer with the capability to “split”
the bidirectional SDA signals into their unidirectional components. Possible
buffers are P82B96 and PCA9600 and either may be used at the Master, but
because only one half of a buffer is required at a Slave, only P82B96 should be
used at Slaves because only its Sx/Sy characteristic will allow its remaining
half to be used to generate the delays.

As example for the hardware that can be used to generate delays at the
master and at the slave, we introduce here the hardware of Figures 2.24
and 2.25 given in Application note NXP AN11084. Figure 2.24 shows the
hardware for generating the delays at the Master while Figure 2.25 shows
the hardware for the Slaves. While no delay would actually be needed at
the slaves that have the largest number of series buffers, that is, are furthest
from the Master, and mid-system Slaves could have smaller delays, the most
practical system solution, for service and maintenance, will be to fit the same
delay hardware at every Slave.

82 Design of I2C Bus and Operation

Figure 2.24 Schematic for SCL/SDA delay generation to be fitted at the master.

Figure 2.25 Schematic for SDA delay generation fitted at each slave.

2.4 Bus Buffers, Repeaters, Multiplexers, and Switches

Another approach to coping with excess bus capacitance is to divide the bus
into smaller segments using bus buffers, multiplexers, or switches. Using
repeaters on the I2C is dividing, also, the bus into segments, that is, allowing
working with excess capacitance.

2.4.1 Use of Buffers/Repeaters

I2C buffers/repeaters provide capacitive isolation from the I2C bus, so they
are used to go beyond the maximum capacitive load allowed in the bus 400
pF (specified for standard and fast I2C mode).

2.4 Bus Buffers, Repeaters, Multiplexers, and Switches 83

Figure 2.26 I2C bus utilizing I2C buffer, which allows more slave devices.

Buffers/repeaters allow for more slave devices to be added to the I2C bus
in applications that have a heavily loaded I2C bus. In applications utilizing
the I2C bus, slave devices and trace length are major contributors to the
total capacitance of the I2C bus. A quick way to estimate the amount of bus
capacitance is to account about 10 pF/slave device. If the total capacitance
nears the maximum load of 400 pF, there could be issues with the rise time
falling out of the I2C specification.

Figure 2.26 shows an example of a bus that uses a PCA9515 buffer
to deal with high bus capacitance. Each segment is then allowed to have
the maximum capacitance so the total bus can have twice the maximum
capacitance. Keep in mind that adding a buffer always adds delays–a buffer
delay plus an additional transition time to each edge, which reduces the
maximum operating frequency and may also introduce special VIL and VOL

considerations.

2.4.2 Use of Multiplexors and Switches

The I2C multiplexor splits, exactly as buffers are doing, the I2C bus into
I2C bus sub-branches or subsections. I2C multiplexors allow the I2C master
to communicate with only one of the multiple devices connected. I2C mul-
tiplexors are used to solve address conflicts, besides using them to reduce
the load capacitance. They isolate devices that are not needed to reduce the
overall system loading. When one of the connected devices is selected, the
I2C multiplexor acts as a wire. The cumulative capacitive loading of the main
I2C bus and the other active I2C sub-branches must be considered; so, care
must be taken that each branch does not exceed the 400 pF specified (beyond
this, the rising and falling times specifications would be violated).

I2C switches are like I2C multiplexors but more than one device can be
selected simultaneously.

84 Design of I2C Bus and Operation

Figure 2.27 Use of multiplexor/switches and repeater.

Figure 2.27 gives a general I2C application in which multiplexer/switches
are used to solve the capacitance load.

Not only multiplexors, switches, and buffers are used to solve the problem
of bus capacitance but also they have other applications; one of them is to
solve the address conflict that may happen when using many devices on the
bus. Multiplexors, switches, and buffers are discussed again in Section 2.5.

Refer to application notes AN255, I2C / SMBus Repeaters, Hubs and
Expanders; and AN262, PCA954x Family of I2C / SMBus Multiplexers and
Switches for more details on this subject and the devices available from NXP
Semiconductors.

2.4.3 Switched Pull-up Circuit

The supply voltage (Vcc) and the maximum output LOW level determine the
minimum value of pull-up resistor Rp. For example, with a supply voltage of
Vcc = 5 V ± 10% and VOL(max) = 0.4 V at 3 mA, Rp(min) = (5.5–0.4) /
0.003 = 1.7 kΩ. As shown in Figure 2.28, this value of Rp limits the maximum
bus capacitance to about 200 pF to meet the maximum tr requirement of 300
ns. If the bus has a higher capacitance than this, a switched pull-up circuit (as
shown in Figure 2.28) can be used.

The switched pull-up circuit in Figure 2.28 is for a supply voltage of Vcc

=5 V ± 10% and a maximum capacitive load of 400 pF. Since it is controlled
by the bus levels, it needs no additional switching control signals. During
the rising/falling edges, the bilateral switch in the HCT4066 switches pull-up
resistor Rp2 on/off at bus levels between 0.8 V and 2.0 V. Combined resistors
Rp1 and Rp2 can pull up the bus line within the maximum specified rise time
(tr) of 300 ns. Series resistors Rs are optional. They protect the I/O stages of
the I2C bus devices from high-voltage spikes on the bus lines and minimize

2.4 Bus Buffers, Repeaters, Multiplexers, and Switches 85

Figure 2.28 Switched pull-up circuit.

crosstalk and undershoot of the bus line signals. The maximum value of Rs

is determined by the maximum permitted voltage drop across this resistor
when the bus line is switched to the LOW level in order to switch off Rp2.
Additionally, some bus buffers contain integral rise time accelerators. Stand-
alone rise time accelerators are also available.

Static Voltage Offset: Certain devices within the I2C buffer/repeater portfo-
lio, such as TCA9517/A and TCA9617/A/B, contain a static voltage offset.
The type of buffer design on the B-side prevents these devices from being
used in series with devices that use a static voltage offset. When a static volt-
age offset is present on the B-side of these TCA devices, they will be unable
to recognize buffered low signals as a valid low and do not propagate it as a
buffered low again. An example of this would include taking two TCA9517A
devices and placing them in an A-B B-A configuration. By having both B-
sides in series, the design runs the risk of miscommunicating low signals as
the device will be unable to recognize this and result in transmitting a high.

Level Shifting: Many of the devices in the I2C buffer/repeater portfolio
have the ability to level-translate from master voltages to slave voltages
to ensure communication between the voltage mismatch. For example, the
TCA9517/A is an example of a level-translating buffer that has two volt-
age rails which allows for the mismatched master and slave voltages to
appropriately communicate to each other through the I2C bus.

86 Design of I2C Bus and Operation

Figure 2.29 Operation of an I2C voltage translator/level shifter.

I2C Voltage Translation: While TI’s I2C buffers/repeaters offer level shift-
ing for master and slave voltage mismatches, TI also offers level shifting
on the I2C bus if buffering is not needed. PCA9306 and TCA9406 are two
devices in TI’s portfolio that offer level shifting. The internal structure of
both devices is similar to that of a switch which allows the bidirectional open-
drain bus to pass through while level-shifting to ensure proper communication
through I2C. The operation of the I2C level-shifting is the same as the voltage
translation performed by I2C buffers/repeaters (Figure 2.29).

2.5 Use of Multiplexor/Switches to Solve Address Conflict

2.5.1 Use of Multiplexor to Solve Address Conflict

The multiplexor is used in Figure 2.27 to solve the problem capacitance load.
As a matter of fact, multiplexors can be used to solve another serious problem
that may happen on I2C bus: address conflict. Address conflict occurs when
more than one device with the same slave address is connected to the same
I2C bus.

Some devices have slave address that has one part fixed/hardware
and one part programmable. Examples of such devices are the Texas
devices CDCE(L)949, CDCE(L)937, CDCE(L)925, and CDCE(L)913.
Those devices belong to the same family of products with the same perfor-
mance but having different outputs.

CDCE(L)949 and CDCE(L)937 share the same hardwired address. The
same situation applies to CDCE(L)925 and CDCE(L)913. For this reason,
if the slave address programmable part changes within each of the defined
groups, it is possible to reprogram them to have the same slave address. That

2.5 Use of Multiplexor/Switches to Solve Address Conflict 87

is, CDCE(L)949 can be programmed to have the same address as that of the
CDCE(L)937. But in this situation, when connected to the same I2C bus, a
conflict arises.

To avoid such address conflict, some devices can re-program the last
few bits (normally the last two) of their default slave address. For example,
CDCE(L)949, CDCE(L)937, CDCE(L)925, and CDCE(L)913 can reprogram
the last two bits of their default slave address. Therefore, up to four devices
of each can be plugged into the I2C bus.

The default setups of each of these devices are set to have different slave
address. Therefore, with the default setup, each of them has to be able to share
the same I2C bus with no conflict.

Some other devices offer the possibility to fix the slave address with
control signals. Thus, the same device can overwrite its slave address with
control pins, and it is unnecessary to preprogram the device.

If the slave device has a fixed address or if the preceding options are not
preferred, then an I2C multiplexor or I2C buffers can be used.

I2C multiplexors split the I2C bus into several subbranches and allow
the I2C master to select and address one of multiple identical devices, thus
resolving address conflict. The multiplexor connects the main I2C bus to the
selected slave device and removes electrically the nonselected devices. This
device is programmable via I2C protocol, and therefore, no additional pins
or control logics are required. TI’s PCA9544A can multiplex up to four slave
devices with the same slave address, as can be seen in Figure 2.30.

2.5.2 Use of Switches to Solve the Slave Address Conflict

I2C Switches: I2C switches are slave devices controlled by the I2C bus that
fans out multiple I2C channels to enable more control over your bus.

Applications with slave devices that share the same address can use an
I2C switch to prevent slave address conflicts. By having the same slave
address, the I2C master will be unable to tell which slave device it is speaking
to, and most importantly, it may communicate commands to the wrong slave
device. A solution is to incorporate an I2C switch (Figures 2.31 and 2.32).
An I2C switch has the capability of isolating slave devices with the same
addresses to prevent corruption.

Switches are also used to isolate portions of an I2C bus which have legacy
slave devices that cannot handle higher speed bus transactions. Also switches
can be used to turn off portions of the bus which are not powered constantly,
or are shut down temporarily, to save power.

88 Design of I2C Bus and Operation

Figure 2.30 Slave address conflict solved with I2C multiplexor.

Figure 2.31 I2C bus with multiple slave devices with the same address.

A common misconception about I2C switches is that they are often
confused as a multiplexer. The difference between a switch and multiplexer
is that a multiplexer utilizes a selection bit to enable a specific channel while
a switch can enable one or many channels.

2.5 Use of Multiplexor/Switches to Solve Address Conflict 89

Figure 2.32 Eight-channel I2C switch example.

2.5.3 Control Register

I2C switches determine which channels are connected internally through their
control register. Following the successful acknowledgment of the address
byte, the bus master sends a command byte that is stored in the control register
of the I2C switch. This register can be written and read via the I2C bus. Each
bit in the command byte corresponds to an SCn or SDn (SCn/SDn) channel
and a high (or 1) selects this channel. Multiple SCn/SDn channels may be
selected at the same time. When a channel is selected, the channel becomes
active after a stop condition has been placed on the I2C bus. This ensures that
all SCn/SDn lines are in a high state when the channel is made active, so that
no false conditions are generated at the time of connection. A stop condition

90 Design of I2C Bus and Operation

always must occur immediately after the acknowledge cycle. If multiple bytes
are received by the I2C switch, it saves the last byte received

2.5.4 Level Shifters

As mentioned before under “Level Shifting,” I2C buses are not limited to
a defined voltage. In some applications, different I2C reference voltages are
used for different ICs. Sometimes, it is necessary to have all of them sharing
the same bus. To be able to recognize what a logical zero and logical one is,
a level-shifter is necessary. Different to most interfaces, the I2C bus does not
have a dedicated direction, for example, multiple devices may pull the SCL
line to ground.

This causes serious problems building level shifters since they have to
take care of moving a request from one side to the other and vice versa
without introducing back coupling and oscillation. The basic idea to handle
this is to limit the bandwidth on the bus. This gives poor transfer rates of
course.

Many of the devices in the I2C buffer/repeater portfolio have the ability
to level-translate from master voltages to slave voltages to ensure commu-
nication between the voltage mismatch. For example, the TCA9517/A is an
example of a level-translating buffer that has two voltage rails which allows
for the mismatched master and slave voltages to appropriately communicate
to each other through the I2C bus. If the I2C buffer/repeater does not have the
ability for level-shifting, a level shifter has to be used.

Commercial level shifters as Levii and Optii are using different
approaches providing higher bandwidths. Optii has some additional outstand-
ing feature: it separates the I2C buses galvanically, so two I2C buses can be
logically connected but electrically insulated.

2.5.5 Switches and Level Shifting

I2C switches allow level shifting between the master side and slave side to
ensure compatibility betweenI2C master and I2C slave as well as between
multiple slave devices operating at different voltages.

Mismatched voltages are a concern with voltages of master and slave
devices moving towards lower voltages. For example, it is possible for a 1.8-V
master I2C bus to communicate with a 3.3-V slave device on another channel.
All channels may be at different voltages, with the only requirement being
that the VCC pin must be connected to the lowest bus supply voltage that the
switch will see.

2.6 Advantages and Limitation of I2C Communication 91

2.6 Advantages and Limitation of I2C Communication

a. Advantages of I2C Communication

I2C communication or protocol has a significant edge over its peers such
as serial port communication and SPI. Let us have a look into the various
advantages that renders the I2C protocol so effective for short distance intra-
board communication.

1. Flexibility–The I2C protocol supports multi-master, multi-slave commu-
nication, which implies the possibility of adding a lot of functionality to any
design. More than one master IC controlling and communicating with the
slave ICs can speed things up and add functionalities to the embedded system.

ICs can be added or removed from the hardware without affecting any
other circuits on bus.

It uses open collector bus design and hence there is flexibility to use
voltage on the bus. Moreover slew rates are limited.

2. Addressing feature–The addressing is very simple and does not need any
CS (Chip Select) lines to add extra devices like SPI. Adding any extra device
is very easy.

3. Simplicity–I2C protocol doesn’t complicate the design. It requires only
two bidirectional signal lines to establish communication among multiple
devices unlike SPI which requires four. Hence, it minimizes interconnections
between ICs due to fewer pins and also fewer PCB tracks. This results into
smaller and less expensive PCBs. Further, the pin count is low as well; I2C
requires least number of pins (just two pins) to perform serial data transfer.

4. Better error handling mechanism–To improve the error detection and
correction mechanism, the I2C protocol relies on ACK/NACK feature, which
is a robust error correction feature. ACK stands for Acknowledgment,
whereas NACK means No Acknowledgment. It is easy to perform diagnosis
and debugging. Hence, it is easy to trace malfunctionalities.

5. Adaptable–The I2C protocol is adaptable in the sense that it can work well
with both slow ICs and fast ICs.

b. Disadvantages and Limitation

I2C communication doesn’t have too many disadvantages. The fact that the
protocol has been in use for over 30 years highlights this fact. However, it
suffers from a few minor limitations.

92 Design of I2C Bus and Operation

• Conflicts–Address Limitation

The assignment of slave addresses is one weakness of I2C. Seven bits is
too few to prevent address collisions between the many thousands of available
devices. What alleviates the issue of address collisions between different
vendors and what allows to connect to several identical devices are that
manufacturers dedicate pins that can be used to set the slave address to one
of a few address options per device. Two or three pins are typical, and with
many devices, there are three or more wiring options per address pin.

10-bit I2C addresses are not yet widely used, and many host operating
systems do not support them. Neither is the complex SMBus ”ARP” scheme
for dynamically assigning addresses (other than for PCI cards with SMBus
presence, for which it is required).

• Bus Configuration

Automatic bus configuration is a related issue. A given address may
be used by a number of different protocol-incompatible devices in various
systems, and hardly any device types can be detected at runtime. For example,
0x51 may be used by a 24LC02 or 24C32 EEPROM, with incompatible
addressing, or by a PCF8563 RTC, which cannot reliably be distinguished
from either (without changing device state, which might not be allowed).
The only reliable configuration mechanisms available to hosts involve out-
of-band mechanisms such as tables provided by system firmware, which list
the available devices. Again, this issue can partially be addressed by ARP in
SMBus systems, especially when vendor and product identifiers are used, but
that has not really caught on. The rev. 03 version of the I2C specification adds
a device ID mechanism.

• Slower Speeds–Speed Limitation

I2C protocol uses pull-up resistors rather than the push-pull ones used by
its peers. Due to the open-drain design, the speed is limited.

Actually, I2C supports a limited range of speeds. Hosts supporting the
multi-megabit speeds are rare. Support for the Fm+ 1 Mbps speed is more
widespread, since its electronics are simple variants of what is used at lower
speeds. Many devices do not support the 400 kbps speed (in part because
SMBus does not yet support it). I2C nodes implemented in software (instead
of dedicated hardware) may not even support the 100 kbps speed; so the
whole range defined in the specification is rarely usable. All devices must
at least partially support the highest speed used or they may spuriously detect
their device address.

2.7 Common Problems in I2C Bus Systems 93

Devices are allowed to stretch clock cycles to suit their particular needs,
which can starve bandwidth needed by faster devices and increase latencies
when talking to other device addresses. Bus capacitance also places a limit on
the transfer speed, especially when current sources are not used to decrease
signal rise times. Meaning longer I2C bus traces will limit the bus speed.
Additionally, the protocol is managed by software stack. This increases
processing overheads on the µP and µC.

• Potential Fault

Because I2C is a shared bus, there is the potential for any device to
have a fault and hang the entire bus. For example, if any device holds the
SDA or SCL line low, it prevents the master from sending START or STOP
commands to reset the bus. Thus, it is common for designs to include a reset
signal that provides an external method of resetting the bus devices. However
many devices do not have a dedicated reset pin, forcing the designer to put in
circuitry to allow devices to be power cycled if they need to be reset.

Because of these limits (address management, bus configuration, potential
faults, speed), few I2C bus segments have even a dozen devices. It is common
for systems to have several such segments. One might be dedicated to use with
high-speed devices, for low-latency power management. Another might be
used to control a few devices where latency and throughput are not important
issues; yet, another segment might be used only to read EEPROM chips
describing add-on cards (such as the SPD standard used with DRAM sticks).

• Debugging

Since the bus is shared by many devices, debugging an I2C bus (detecting
which device is misbehaving) for issues is pretty difficult.

• Requires More Space

Now, as an embedded system engineer, you know how valuable PCB real
estate is. So, it isn’t such a positive attribute that the I2C protocol requires so
much space for its pull-up resistors. Added to that, the hardware complexity
increases when number of master/slave devices are more in the circuit which
may need more space.

One possible additional disadvantage is the fact that I2C is half duplex
communication: At a time, data are transmitted only in one direction.

Despite these minor limitations, I2C is a robust and desirable protocol.
It achieves exactly what it was meant to facilitate low-speed communication.
So, if you are designing an entry-level embedded system, I2C communication
may be the right choice for you.

94 Design of I2C Bus and Operation

2.7 Common Problems in I2C Bus Systems

Often, problems in I2C bus systems have a simple cause and can easily be
verified by checking with simple equipment.

• Is there a stable supply voltage Vcc? Often, external I2C devices (like
I2C masters or monitors) must be provided with Vcc.

• Are appropriate termination resistances attached between SDA, SCL
and Vcc? The voltage level on SDA and SCL must be Vcc as long as
the bus is idle and drop near GND if shorted to GND. [Note: Very few
I2C masters exist which drive SCL high and low, that is, the SCL line
is not open-drain. In this case, a termination resistor is not needed and
SCL cannot be pulled low. These masters will not work together with
other masters (as they have no multi-master support) and may not be
used with devices which stretch SCL during transfers.]

• Are SDA and SCL mixed up? This may accidentally happen, for example,
when connecting I2C buses with cables or connectors.

• Do all I2C devices support the I2C supply voltage used on the bus?
• Do all I2C devices support the maximum SCL clock rate used on the

bus?
• If more than one I2C master is connected to the bus: do all masters

provide multi-master support?

Further diagnostics is possible with Vcc, SCL and SDA connected to an
oscilloscope and/or an appropriate I2C monitor device:

• Are the high- and low-level voltages on SDA and SCL correct during I2C
transfers? The I2C standard defines the low-level threshold with 0.3 Vcc
and the high-level threshold with 0.7 Vcc. Modifying the termination
resistance Rp and the serial resistors Rs or lowering the SCL clock rate
could help here.

• Are there spikes or noise on SDA, SCL, or even Vcc? They may result
from interferences from other components or because the capacitances
Cp and/or Cc are too high. The effects can often be reduced by using
shorter interconnections.

2.7.1 Obscure Problems in Systems

Additional problems may arise if I2C devices which do not fully conform
to the I2C specification are used on the bus. They are often hard to find
without appropriate equipment like sophisticated I2C monitors or logic

2.7 Common Problems in I2C Bus Systems 95

analyzers, especially if they are not easily reproducible. Potential sources for
non-obvious problems are:

• Some I2C masters (especially if implemented in software) have no
multi-master support and/or cannot be used with certain devices which
stretch SCL during transfers. Note that fully functioning multi-master
support in software-implemented I2C masters is not trivial.

• Very simple I2C master implementations may not even recognize error
conditions like negative acknowledges from slave devices.

• Some I2C devices do not use the correct voltage thresholds to recog-
nize high and low levels on SDA and SCL, leaving them especially
vulnerable to wrong combinations of serial and termination resistors.

• Some I2C devices do not have Schmitt trigger inputs and/or spike filters,
which makes them especially susceptible to crosstalk and noise.

• Some I2C devices cancel an I2C transfer after a certain period of
inactivity on the I2C bus and consider the bus idle afterwards. The I2C
specification does not specify any timeout conditions–an I2C device can
occupy the bus for an arbitrary time period.

2.7.1.1 Analyzing obscure problems
As already mentioned, the causes for some problems are hard to track down.
In general, these problems only occur occasionally and often are difficult to
reproduce and analyze without adequate tools like I2C monitors.

Tracii XL 2.0 is an I2C monitor which can detect I2C error conditions
that are very hard or even nearly impossible to find with usual oscilloscopes;
it helps to analyze them by triggering oscilloscopes or recording digital and
even analog traces of SDA and SCL.

2.7.2 Typical Problems on the I2C Bus

In this section, some examples of typical problems on the I2C bus are
discussed. The problems are:

• Blocked I2C Bus
• No Acknowledge From I2C Slave
• Master Reports Arbitration Lost
• Data Bytes From Slave Are 0xff

2.7.2.1 Blocked I2C Bus
Blocked I2C bus is the case when there is no communication after reset.

96 Design of I2C Bus and Operation

There are many reasons for a microcontroller to go through a reset
condition. Watchdog triggering, user events and intentional reconfiguration
are only some examples.

For systems which employ an I2C bus, such reset of a microcontroller
may have rather unexpected side effects if other components continue to
operate during the reset phase.

I2C slaves work as a state machine. After they have been addressed, they
keep receiving bytes until they see another start condition or a stop condition
sent by the I2C bus master.

But what if the I2C master goes through a reset right in the middle of
transmitting or receiving a byte from the I2C bus slave?

The slave is not aware of the reset and since I2C doesn’t really define
timeouts, it may well wait for the next clock event to send or receive a bit, not
listening to any start condition which is likely to occur after a reset as startup
sequence.

In other words, the bus is stuck, and your I2C bus is blocked.
One rather clumsy but easy to implement solution is to toggle the clock

line multiple (16) times before doing any I2C operation after power-up of the
microcontroller, that is, after it has possibly gone through reset. This sequence
can be followed by a stop condition.

In many cases, this will advance the state machine of any blocked slave
to a point where it accepts the next start condition again.

A safer but more complex solution is to power cycle all I2C devices after
a reset condition.

The key point to keep in mind is that an I2C slave is not stateless and
therefore may not function properly out of the box after reset or–equally
common–a spike caused by EMC influence interpreted as clock signal.

2.7.2.2 No acknowledge from I2C slave
During a master transmitter transfer, the slave suddenly does not acknowledge
the bytes from the master anymore. This may happen directly after the address
byte or later during the data transfer stage. Possible reasons are as follows:

• The I2C slave could not correctly interpret the data on SDA because
the SDA high- or low-level voltages do not reach its appropriate input
thresholds.

• The I2C slave missed an SCL cycle because the SCL high- or low-level
voltages do not reach its appropriate input thresholds.

• The I2C slave accidently interpreted a spike as an SCL cycle.

2.8 Case Study: I2C in AVR 97

With adequate serial resistors between master and slave, an analog shot
of the signals at the slave’s SDA and SCL pins provides a clue whether the
slave acknowledges and to which SCL clock pulse. The different SDA low
levels due to the serial resistor make it possible to distinguish acknowledges
from the slave from data bits from the master.

2.7.2.3 Master reports arbitration lost
Sometimes during an I2C transfer, the master reports “arbitration lost” or
something similar and cancels the transfer, although there is no other active
master on the bus.

Possible reasons are the same as the ones described in “No Acknowledge
from I2C Slave,” but here they provoke the slave to pull down SDA when it
should not. The master detects this as an arbitration lost event and stops the
transfer.

2.7.2.4 Data bytes from slave are 0xff
A slave addressed by a master receiver transfer acknowledges the address
byte and starts to send its data correctly, but suddenly all bytes sent by the
slave are 0xff. Possible reasons are as follows:

• The I2C slave missed an SCL cycle because the SCL high- or low-level
voltages do not reach its appropriate input thresholds.

• The I2C slave accidently interpreted a spike as an SCL cycle.

After having received the last byte during a master receiver transfer, the
master leaves SDA high during the acknowledge clock cycle–this causes the
slave to not send data anymore, regardless whether a stop condition follows
or not. Here, the slave is not synchronized anymore with the master and
interprets a high SDA as a “not acknowledge” from the master.

2.8 Case Study: I2C in AVR

This section discusses I2C in AVR microcontroller, taking Atmega 32 as
reference. In AVR, this I2C module is called two-wire interface (TWI). The
TWI module in the AVR is composed of four submodules (Figure 2.33):

– Bit rate generation unit
– Bus interface unit
– Address match unit
– Control unit

98 Design of I2C Bus and Operation

Figure 2.33 AVR I2C.

2.8.1 AVR Atmega32 I2C Registers

In the AVR microcontroller, five major registers are associated with the TWI:

– TWBR (TWI Bit rate Register)
– TWCR (TWI Control Register)
– TWSR (TWI Status Register)
– TWAR (TWI Address Register)
– TWDR (TWI Data Register)

2.8.1.1 TWBR (TWI bit rate register)
This register is used in master mode to set the division factor for bit rate
generator (SCL clock frequency). The bit rate generator unit controls the time
period of SCL. The SCL clock frequency is decided by the Bit Rate Register
(TWBR) and the prescaler bits of TWSR register (explained next).

2.8 Case Study: I2C in AVR 99

TWBR
7 6 5 4 3 2 1 0

TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0

Bits [7:0]–Bit Rate
It selects the division factor for the bit rate generator. The bit rate gener-

ator is basically a frequency divider. It generates the SCL clock frequency in
the Master modes.

2.8.1.2 TWSR (TWI status register)
TWSR

7 6 5 4 3 2 1 0
TWS7 TWS6 TWS5 TWS4 TWS3 - TWPS1 TWPS0

• Bits [7:3]–TWS: TWI Status

These five bits reflect the status of the TWI logic and the two-wire serial bus.
Bit 2–Reserved Bit

• This bit is reserved and will always read as zero.

Bits [1:0]–TWPS: TWI Prescaler Bits
These bits are used to set the prescaler of the “Bit Rate generator unit.

These bits can be read and written.

Value of prescaler according to TWPS bits
TWPS1 TWPS0 Prescaler Value
0 0 1

0 1 4

1 0 16

1 1 64

The formula for calculating SCL clock frequency is as follows:

SCL frequency =
CPU clock frequency

16 + 2(TWBR).(4TWPS)

Example 2.3
Calculate the SCL frequency if the value of TWPS bits in TWSR is 01
(decimal 1) and the value of TWBR is 0010 0110 (38 decimal). Assume that
CPU clock frequency is 8 MHz.

100 Design of I2C Bus and Operation

Solution
Using the above formula and the given values, the SCL frequency will be:

8 MHz/((16 + 2(38) × 41) = 25 kHz

2.8.1.3 TWCR (TWI control register)
This register is used to control all TWI operations.

TWCR
7 6 5 4 3 2 1 0

TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

R/W R/W R/W R/W R R/W R R/W

0 0 0 0 0 0 0 0

• Bit 7–TWINT: TWI Interrupt Flag

This bit is used to monitor the current status of the TWI. This bit is set by
hardware when the TWI has finished its current job and expects application
software response. SCL will be low till the time TWINT bit is set. It is not
automatically cleared by hardware when executing the interrupt routine. So,
you must clear TWINT Flag by writing a logic one to it.

Also note that clearing this flag starts the operation of the TWI. So before
clearing this flag, all accesses to the other TWI registers must be complete.

• Bit 6–TWEA: TWI Enable Acknowledge Bit

It controls the generation of the acknowledge pulse. If the TWEA bit is
written to one, the ACK pulse is generated on the TWI bus if the following
conditions are met:

1. The device’s own slave address has been received.
2. A general call has been received, while the TWGCE bit in the TWAR is

set.
3. A data byte has been received in Master Receiver or Slave Receiver

mode.

On the other hand, if TWEA bit is zero, the device can be virtually
disconnected from the two wire serial bus temporarily. And to resume address
recognition write one to it.

Note: The TWI status values are different when data are transferred on the
basis of receive the ACK (TWEA is set) or the NOT ACK (TWEA is clear)
pulse.

• Bit 5–TWSTA: TWI START Condition Bit

2.8 Case Study: I2C in AVR 101

By writing one to this bit, the device becomes master controller on the
Two-wire Serial Bus. It checks if the bus is available (bus is not busy in
transmission for other masters) and then generates the start condition on the
bus. If the bus is not free, the TWI waits until a STOP condition is detected,
and then generates a new START condition to claim for being the master of
the bus.

• Bit 4–TWSTO: TWI STOP Condition Bit

In Master mode, write the one TWSTO bit to generate a STOP condition.
This bit is cleared automatically when the STOP condition is executed on the
bus.

In slave mode, setting the TWSTO bit can be used to recover from an
error condition.

• Bit 3–TWWC: TWI Write Collision Flag

This bit is used to avoid the collision in writing to TWDR. The TWWC bit
will get set when TWDR is attempting to write (TWINT flag is low). The
TWWC flag is cleared by writing TWDR when TWINT is high.

• Bit 2–TWEN: TWI Enable Bit

The TWEN bit is used to enable/disable the TWI interface. When this bit is
written to one, the TWI operation is enabled. If this bit is written to zero, the
TWI is switched off and the TWI transmission gets terminated.

• Bit 1–Reserved Bit

This bit is a reserved bit and will always read as zero.

• Bit 0–TWIE: TWI Interrupt Enable Bit

When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt
request will be activated for as long as the TWINT Flag is high.

2.8.1.4 TWDR (TWI data register)
In Transmit mode, this register contains the next byte to be transmitted in
transmission mode, and in case of receive mode, it has last byte received.
Note that, it is writable only when the TWI is not in the process of shifting a
byte.

TWDR
7 6 5 4 3 2 1 0

TWD7 TWD6 TWD5 TWD4 TWD3 TWDD2 TWD1 TWD0

102 Design of I2C Bus and Operation

2.8.1.5 TWAR [TWI (slave) address register]
7 6 5 4 3 2 1 0

TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWCE

R/W R/W R/W R/W R/W R/W R/W R/W

1 1 1 1 1 1 1 0

• Bits 7.1–TWA: TWI (slave) Address Bits

These bits are used to store 7-bit slave address to which TWI responds when
programmed as Slave Transmitter or Receiver.

• Bit 0–TWGCA: TWI General call Recognition Enable Bit

This bit is used to enable the slave to acknowledge for the general call address
(0x00).

The general call addresses all devices on the bus using the I2C address 0.
If a device does not need the information provided, it simply does nothing.

Devices processing the message acknowledge this address and behave as
slave receiver.

The master cannot detect how many devices are using the message. The
second byte contains a command.

2.8.2 Programming of the AVR TWI in Master Operating Mode

• We must be able to

– Initialize the TWI
– Transmit a START condition
– Send or receive data
– Transmit a STOP condition.

2.8.2.1 Initialize the TWI in master operating mode
• Set the TWI module clock frequency by setting the values of the TWBR

register and the TWPS bits in the TWSR register
• Enable the TWI module by setting the TWEN bit in the TWCR register

to one

2.8.2.2 Transmit START Condition
• Set the TWSTA bit to one to tell the TWI to initiate a START condition

when the bus is free

2.8 Case Study: I2C in AVR 103

• Set the TWINT bit to one to clear the interrupt flag to initiate operation
of the TWI module to transmit the START condition

• Poll the TWINT flag in the TWCR register to see whether the START
condition is transmitted completely

2.8.2.3 Send Data
• Copy the data byte to the TWDR
• Set the TWEN and TWINT bits of the TWCR register to one to start

sending the byte
• Poll the TWINT flag in the TWCR register to see whether the byte is

transmitted completely

2.8.2.4 Receive Data
• Set the TWEN and TWINT bits of the TWCR register to one to start

receiving a byte
• If you want to return ACK after receiving data you should also set the

TWEA bit of the TWCR register to one
• Poll the TWINT flag in the TWCR register to see whether a byte has

been received completely
• Copy the received byte from the TWDR to another register to save it

2.8.2.5 Transmit STOP Condition
• Set the TWEN, TWSTO, and TWINT bits of the TWCR register to one

2.8.3 Use I2C/TWI (Two-wire Interface) in AVR ATmega32

This section explores the TWI interfacing between two ATmega32 con-
trollers. As discussed before, I2C, and accordingly, TWI works in four
modes:

1. MASTER as a transmitter.
2. MASTER as a receiver.
3. SLAVE as a receiver.
4. SLAVE as a transmitter.

The objective of this section is to establish the communication between
two ATmega32 using TWI/I2C interface. Two cases will be considered:

• Master is transmitting and slave is receiving.
• Master is receiving and slave is transmitting.

104 Design of I2C Bus and Operation

Figure 2.34 Circuit diagram.

First the Master starts by sending data, then the slave transmits com-
plement of the received data to the master. When the Master receives the
complemented data, it shifts the original data to left. This process of trans-
mitting and receiving continues. As the data value reaches 0x80, the whole
process is repeated. At the starting, value of the original data is 0x01. The
received value is displayed on PORTB at both the ends.

2.8.3.1 Circuit diagram
The circuit is shown in Figure 2.34.

2.8.3.2 Code explanation for MASTER controller
Step 1: Initialization of master
Initialization of MASTER means to set the TWI clock frequency (SCL). It is
done by setting bit rate in TWBR and prescaler bits in TWSR.

SCL freq =
CPU clock freq.

16 + 2(TWBR).(4TWPS)
(2.18)

Equation Of TWI Clock Frequency to initialize the Master in AVR

**

void TWI_init_master(void) // Function to initialize master
{

TWBR=0x01; // Bit rate
TWSR=(0<<TWPS1) | (0<<TWPS0); // Setting prescaler bits

// SCL freq= F_CPU/(16+2(TWBR).4ˆTWPS)
}

**

2.8 Case Study: I2C in AVR 105

Step 2: Send start condition
The start condition in TWI is explained before. The AVR microcontroller has
in-built registers which makes this job much easier.

1. Clear TWINT flag by writing a logic one to it.
2. Set TWSTA bit to send start condition.
3. Set TWEN bit to initialize the TWI.
4. Monitor the status of TWINT flag.
5. Check the ACK byte (using while condition since the SCL frequency is

very small as compared to micro controller clock frequency). The ACK
byte can be compared by monitoring the status of TWSR.

**

void TWI_start(void)
{

// Clear TWI interrupt flag, Put start condition on SDA,Enable TWI
TWCR= (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
while(!(TWCR & (1<<TWINT)));// Wait till start condition is
transmitted
while((TWSR & 0xF8)!= 0x08); // Check for the acknowledgment

}

**

Step 3: Send the slave address, data direction bit (write) and
wait for the ACK signal

START condition 7 bit slave address Data direction bit Slave ACK

Start condition bit in TWI

These three processes are controlled by AVR’s TWI registers:

1. Put the seven bit slave address and the direction control bit in TWDR.
2. Clear TWINT flag.
3. Enable TWI by writing logic one to TWEN bit.
4. Monitor the status of TWINT flag, the TWINT flag will get cleared when

the data in TWDR is been transmitted.
5. Check for the correct acknowledgment.

**

void TWI_read_address(unsigned char data)
{

TWDR=data; // Address and read instruction

106 Design of I2C Bus and Operation

TWCR=(1<<TWINT) | (1<<TWEN); // Clear TWI interrupt flag,Enable TWI
while (!(TWCR & (1<<TWINT))); // Wait till complete TWDR byte
received
while((TWSR & 0xF8)!= 0x40); // Check for the acknowledgment

}

**

Step 4: Send the 8-bit data and wait for the ACK

START
condition

7 bit slave
address

Data
direction bit

Slave
ACK

8 bit data
transmission

Receiver
ACK

Data transfer in TWI of AVR

1. Put the 8 bit data in TWDR.
8 bits = 7 bit slave address + Data direction bit (write = 0).

2. Clear TWINT flag.
3. Set TWEN bit to enable TWI.
4. Monitor the status of TWINT flag to get data transmission completed.
5. Check for the acknowledgment.

**

void TWI_write_data(unsigned char data)
{

TWDR=data; // put data in TWDR
TWCR=(1<<TWINT) | (1<<TWEN); // Clear TWI interrupt flag,Enable TWI
while (!(TWCR & (1<<TWINT)));// Wait till complete TWDR byte
transmitted
while((TWSR & 0xF8) != 0x28); // Check for the acknowledgment

}

**

Step 5: Send the STOP condition

START
condition

7 bit
slave
address

Data
direction
bit

Slave
ACK

8 bit data
transmission

Receiver
ACK

STOP
condition

TWI STOP condition bit

To send the stop condition use TWSTO:

1. Clear TWINT flag.
2. Set TWEN bit.

2.8 Case Study: I2C in AVR 107

3. Write logic one to TWSTO bit so send STOP condition on SDA and
SCL line.

4. Monitor the status of TWSTO bit, as TWSO bit get cleared means the
stop condition has been transmitted.

**

void TWI_stop(void)
{

// Clear TWI interrupt flag, Put stop condition on SDA,Enable TWI
TWCR= (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
while(!(TWCR & (1<<TWSTO))); // Wait till stop condition is
transmitted

}

**

Up till here the data transmission from slave side is complete, the
MASTER is working in mode one. As per the objective, the data received
by MASTER is displayed on PORTB. The flow chart for MASTER as a
Transmitter (mode one) is given below.

Flow chart of MASTER as transmitter in TWI interfacing using AVR

From here, the MASTER would be working in mode two, that is,
MASTER becomes a receiver. The AVR TWI works in mode 2.

Step 6: Send the START condition on bus lines
This step is as similar to the previous one.
Note: In Step 6, the START condition is sent after the STOP condition. If one
more start condition is sent before the STOP condition in–between, then it is
called as repetitive start condition. The repetitive start condition is same as the

108 Design of I2C Bus and Operation

START condition but the only difference is between the acknowledgments.
For more details about repetitive start refer to the data sheet. If the data are
sent continuously in the same direction, then there would be no need of start
condition, repetitive start or stop condition in-between. The second data can
be transmitted just after receiving the acknowledgment of first data byte (as
shown in the above flow chart).

Step 7: Send the slave address and data direction bit (read) and
wait for the ACK signal

1. Put the 8 bit data in TWDR.
8 bits = 7 bit slave address + Data direction bit (read = 1).

2. Clear TWINT flag.
3. Set TWEN bit to enable TWI.
4. Monitor the status of TWINT flag to get data transmission completed.
5. Check acknowledgment.

**

void TWI_read_address(unsigned char data)
{

TWDR=data; // Address and read instruction
TWCR=(1<<TWINT) | (1<<TWEN); // Clear TWI interrupt flag,
Enable TWI
while (!(TWCR & (1<<TWINT))); // Wait till complete TWDR byte
received
while((TWSR & 0xF8)!= 0x40); // Check for the acknowledgment

}

**

Step 8: Read the data from SDA bus
1. Clear TWINT flag.
2. Set TWEN bit to enable TWI.
3. Monitor the status of TWINT flag, as the TIWNT flag get set indicates

that the value in TWDR has been received.
4. Check for the acknowledgment. If the master wants to receive the

last byte from slave, the status of TWSR register will be 0x58. After
receiving the last byte either a repetitive start condition is issued by the
master to continue the communication or a stop condition must be given
by the master to stop the communication process. Else if the master
wants to keep on receiving more byte from slave, the status of TWSR
register will be 0x50.

2.8 Case Study: I2C in AVR 109

To acknowledge slave about last byte, TWEA bit is used while transmit-
ting the data. If TWEA bit is set, reception continues from the MASTER
side. And if TWEA bit is low, MASTER orders slave to send the last
byte.

5. Get the received data and send it on PORTB.

**

void TWI_read_data(void)
{

TWCR=(1<<TWINT) | (1<<TWEN); // Clear TWI interrupt flag,
Enable TWI
while (!(TWCR & (1<<TWINT))); // Wait till complete TWDR byte
transmitted
while((TWSR & 0xF8) != 0x58); // Check for the acknowledgment
recv_data=TWDR;
PORTB=recv_data;

}

**

Step 9: Send STOP condition
The stop condition is already explained.

Flow chart of MASTER as receiver in TWI interfacing using AVR

2.8.3.3 Code explanation for slave controller
Step 1: Initialization of the slave controller
Initialization of the slave controller is done by assigning address to the slave.
The seven bit slave address is filled in TWI Slave Address Register (TWAR).
The LSB of TWAR, that is, TWGCE bit is used to enable the slave to
acknowledge for the general call address (0x00).

110 Design of I2C Bus and Operation

**

void TWI_init_slave(void) // Function to initialize slave
{

TWAR=0x20; // Fill slave address to TWAR
}

**

Step 2: Check the status of TWSR register
If the value of TWSR is 0x60, it means the data sent by the master in the
next step is meant to read by this particular slave only and the slave sends
back the acknowledgment to the master corresponding to the read operation.
If the TWSR status is 0x70, the SLAVE is requested to read the data at the
general call (0x00). At this stage, the SLAVE acts as receiver. The AVR TWI
is working in mode 3.

1. Clear TWIN flag.
2. Enable TWI.
3. Set TEWA to receive acknowledgment.
4. Monitor the status of TWINT flag.
5. Match the status of TWSR. If the status is 0x60 read data or else jump

to (1).

**

void TWI_match_read_slave(void) //Function to match the slave address
and

//slave direction bit(read)
{

while((TWSR & 0xF8)!= 0x60) // Loop till correct acknowledgment
// have been received

{
// Get acknowledgment, Enable TWI, Clear TWI interrupt flag
TWCR=(1<<TWEA) | (1<<TWEN) | (1<<TWINT);
while (!(TWCR & (1<<TWINT))); // Wait for TWINT flag

}
}

**

Step 3: Read data
Read the data sent by the MASTER.

1. Clear TWINT flag.
2. Enable TWI.
3. Set TWEA for receiving ACK.
4. Get the data form TWDR, display it on PORTB.

2.8 Case Study: I2C in AVR 111

**

void TWI_read_slave(void)
{

// Clear TWI interrupt flag,Get acknowledgment, Enable TWI
TWCR= (1<<TWINT)|(1<<TWEA)|(1<<TWEN);
while (!(TWCR & (1<<TWINT))); // Wait for TWINT flag
while((TWSR & 0xF8)!=0x80); // Wait for acknowledgment
recv_data=TWDR; // Get value from TWDR
PORTB=recv_data; // send the receive value on
PORTB

}

**

Slave as receiver in TWI interfacing using AVR

From here, the slave becomes a transmitter on the request of master to
send data. The AVR TWI works in mode 4.

Step 4: Check the status of TWSR register
If the value of TWSR is 0xA8, it means the master wants to receive data
from the particular slave and the slave sends back the acknowledgment to the
master corresponding to the write operation.

1. Clear TWIN flag.
2. Enable TWI.
3. Set TEWA to receive acknowledgment.
4. Monitor the status of TWINT flag.
5. Match the status of TWSR. If the status is 0xA8, send data or else jump

to (1).

**

void TWI_match_write_slave(void) //Function to match the slave address
and
// slave direction bit(write)

{
while((TWSR & 0xF8)!= 0xA8) // Loop till correct acknowledgment

// have been received

112 Design of I2C Bus and Operation

{
// Get acknowledgment, Enable TWI, Clear TWI interrupt flag
TWCR=(1<<TWEA) | (1<<TWEN) | (1<<TWINT);
while (!(TWCR & (1<<TWINT))); // Wait for TWINT flag

}
}

**

Step 5: Write the data on SDA bus
1. Put the data in TWDR.
2. Enable TWI.
3. Cleat the TWINT flag.
4. Monitor the TWINT flag. As it get cleared signifies the data has been

send.
5. Check for the ACK. Since the TWEA bit was not set during writing data

on SDA bus, it signifies master that this is the last data to be sent, and in
turn, it receives a NOT ACK, and the status of TWSR becomes 0xC0.
And if the TWEA bit was set during the data transmission, it receives an
ACK and the status of TWSR is becomes 0xB8. For more details refer
to the data sheet.

**

void TWI_write_slave(void) // Function to write data
{

TWDR= write_data; // Fill TWDR register with the data to be
sent
TWCR= (1<<TWEN) | (1<<TWINT); // Enable TWI, Clear TWI interrupt
flag
while((TWSR & 0xF8) != 0xC0); // Wait for the acknowledgment

}

**

Slave as transmitter in TWI interfacing using AVR

3
Improved Inter-integrated Circuits (I3C)

3.1 Derivative Technologies

Because of I2C simplicity and flexibility, I2C and its derivatives are widely
employed by control applications to manage sensors. I2C is the basis of
many platform-based applications such as system management and power
management solutions and others. Most of these applications and system
architectures have had to develop a protocol layer of their own on top of
I2C to define a set of application-specific command to extend the use of I2C
protocol to suit the specific needs of the function being performed. Some of
such protocols are:

1. ACCESS.bus, or A.b for short, is a peripheral-interconnect computer
bus developed by Philips and DEC in the early 1990s, based on Philips’
I2C system. It is similar in purpose to USB, in that it allows low-speed
devices to be added or removed from a computer on the fly. While it
was made available earlier than USB, it never became popular as USB
gained in popularity.

2. System Management Bus (SMBus) is an architecture developed based
on the principles of I2C and is used as a control bus for system related
tasks. SMBus is used to pass commands or messages to and from devices
instead of tripping individual control lines.

3. The Power Management Bus (PMBus) is developed as a protocol
over SMBus and is used as a control bus for power management tasks
in a system. The system uses PMBus to communicate between power
converters and a system host. It makes intelligent control of the power
converters possible.

4. Intelligent Platform Management Interface (IPMI) is developed
by IPMI based on the principles of I2C to define a standardized
message-based interface for platform management hardware. IPMI

113

114 Improved Inter-integrated Circuits (I3C)

provides general system management functions such as automatic alerts,
automatic system shutdown, and restart.

5. The VESA Display Data channel (DDC) is yet another protocol devel-
oped based on I2C and is used for communication between Host and
Display to enable display control functions. Communication with graph-
ics adapter in display devices (monitors, television, etc.) is managed by
Display Data Channel circuitry.

6. The Camera Command Interface (CCI) is a command interface pro-
tocol for camera controllers that defines a communication protocol and
physical layer interface based on I2C specification.

7. High-availability systems (AdvancedTCA, MicroTCA) use 2-way
redundant I2C for shelf management. Multi-master I2C capability is a
requirement in these systems.

8. Improved Inter-integrated Circuit (I3C): This is the newest devel-
opment in I2C. It is recently developed, 2017, by IPMI to fulfill the
requirements of sensor networks. It is the subject of the next section.

Notes: The above-mentioned variants have differences in voltage and clock
frequency ranges and may have interrupt lines.

TWI (Two-wire Interface) or TWSI (Two-wire Serial Interface): TWI
(Two-wire Interface) or TWSI (Two-wire Serial Interface) is not a derivative
of I2C; it is essentially the same bus implemented on various system-on-
chip processors from Atmel and other vendors. Vendors use the name TWI,
even though I2C is not a registered trademark as of 2014-11-07. Trademark
protection only exists for the respective logo (see upper right corner), and
patents on IšC have now lapsed.

In some cases, use of the term “two-wire interface” indicates incomplete
implementation of the I2C specification. Not supporting arbitration or clock
stretching is one common limitation, which is still useful for a single master
communicating with simple slaves that never stretch the clock.

3.2 Improved Inter-integrated Circuits (I3C)

The I2C derivatives mentioned above are based on the assumptions that the
volume of data flowing between devices is relatively low. This is a drawback
if we consider the integration of sensors into almost all electronic devices
of today and applications built around them, advent of 3D graphics, highly
power aware devices, smart mobile devices, wearables, industrial control,
automotive systems, smart home and health-care equipment.

3.2 Improved Inter-integrated Circuits (I3C) 115

Another drawback that has become apparent to designers and users of
serial communication systems is the heterogeneous use of protocols such as
SPI, UART along with I2C to create practical solutions.

These drawbacks became more serious as we consider the fact that the
sensor world itself has been evolving from controlling discrete sensors to
managing multiple sensors. The sensor technology is beginning to closely
mimic the ultimate sensing machine–the human being. At the heart of this
technology is a microcontroller (a “brain”) that collates and fuses data
collected from multiple sensors to derive a more holistic and meaningful
interpretation of the collected data than what one would get by using the
data from each discrete sensors in isolation. This is heading the direction of
“Sensor Fusion” where in the whole system is much greater than the sum of
its individual parts.

The use of the existing I2C-based architectures with such growing world
of sensors faces many challenges, and some of them are mentioned next.

3.2.1 Challenges with Existing I2C-based Architectures

Scalability: With the increase in the numbers of sensors that are employed
by applications, the number of logic pins used for sensor communication and
control has increased in direct proportion. It requires application processors
and/or sensor hubs to interact with these multitude of sensors. In a typical
application as shown in Figure 3.1, multiple digital communication interfaces

Figure 3.1 Typical application processor or sensor hub system with various digital inter-
faces.

116 Improved Inter-integrated Circuits (I3C)

are used along with supporting logic lines for dedicated interrupt and sleep
signals.

• Integration challenges with heterogeneous interfaces: There is no
consistent method to interface with sensors as the digital interfaces
are fragmented with I2C, SPI, and UART interfaces. This also causes
considerable integration challenges. Further, the digital interfaces do not
have the scalability and flexibility to support advanced sensors features
such as batching (buffering sensor samples in sensor hardware and
delivering them in a batches instead of delivering continuously), power
management, and so on.

• Application-specific extensions to I2C: Furthermore, I2C bus is used
as the underlying communication protocol for system architectures like
SMBus, PMBus, IPMI, and CCI. These architectures have defined their
own extensions and modifications to physical layer interface of I2C
protocol to build application-specific control management systems. For
example:

• Address Resolution Protocol introduced in SMBus protocol which
allows the devices to be “hot-plugged” and used immediately, without
restarting the system. The devices are recognized automatically and
assigned unique addresses. This advantage results in a plug-and-play
user interface.

• Group command protocol introduced in PMBus specification is used
to send commands to more than one device. This helps the Master to
instruct all the targeted devices in one transfer.

The challenges, drawbacks, and limitations of I2C necessitate finding
an improved version of I2C that can handle the sensor networks and other
systems that need large amount of data to flow between devices at the same
time to be compatible with I2C.

The most recent solution has been introduced by MIPI on 2017 and
is called “Improved Inter-integrated Circuits (I3C).” MIPI I3C is the
digital control and data communication interface. The purpose of developing
MIPI I3C Interface is to standardize the sensor and control communication,
reducing the number of physical pins, and to support low-power, high-speed
interfaces which are lacking in the existing standard digital communication
interfaces.

MIPI I3C standard retains the attributes of I2C while improving upon
its capabilities and performance. It also provides a scalable interface archi-
tecture. The I3C Specification anticipates the needs of sensors and control

3.2 Improved Inter-integrated Circuits (I3C) 117

interface solutions that embedded-system industry might need in the future.
The provisions in I3C standard allow for heterogeneous solutions to be
unified under a single protocol. The standardized Host Controller Interface
as defined by the I3C standard also holds a great deal of promise in enabling
easier adoption of I3C-based solutions. Because of these merits, I3C seems
to emerge as a natural successor to I2C.

3.2.2 MIPI I3C Interface

I3C–an Overview
Improved Inter-integrated Circuit, I3C, is the next generation of the I2C. I3C
is under development, hosted by the Sensor Working Group at the MIPI
Alliance. The Improved Inter-integrated Circuit (I3C) (pronounced “Eye-
three-See”) is backward compatible with I2C but will be better suited for
handling an abundance of sensors.

I3C was initially intended for mobile applications as a single interface that
can be used for all digitally interfaced sensors. However, it is now intended for
all mid-speed embedded and deeply embedded applications across sensors,
actuators, power regulators, MCUs, FPGAs, etc. The interface is useful for
other applications, as it offers high-speed data transfer at very low power
levels while allowing multi-drop, which is highly desirable for any embedded
system.

The MIPI I3C interface uses an I2C-like interface and supports multiple
classes of devices including main master, secondary master, slave and I2C
slave. I3C offers major improvements in terms of use, power consumption
and performance. The Core uses just two pins and consumes a fraction of
energy, reducing cost and complexity while allowing multiple sensors from
different vendors to be easily interfaced to a controller or application proces-
sor. It gives developers unprecedented opportunity to craft innovative designs
for any mobile product, from smartphones, to wearables, to safety systems
in automobiles. MIPI I3C can integrate mechanical, motion, biometric and
environmental, and any other type of sensor. It incorporates key attributes
of the traditional I2C SPI, or UART interfaces to provide a new, unified,
high-performing, very low power solution. It will be used to connect many
components such as sensors, displays, always-on (low resolution) cameras,
controllers, capacitive sensors, mobile applications, transducers, acoustics,
and other peripherals. The technology is implemented on a standard CMOS
I/O. It uses a two-wire interface, which reduces pin count and signal paths
to offer system designers less complexity and more flexibility. It can also be

118 Improved Inter-integrated Circuits (I3C)

used as a sideband interface to further reduce pin count. MIPI I3C supports a
minimum data rate of 10 Mbps with options for higher performance high data
rate modes, offering a substantial leap in performance and power efficiency
compared with previous options.

Additional technical highlights include multi-master support, dynamic
addressing, command-code compatibility, and a uniform approach for
advanced power management features, such as sleep mode. It provides
synchronous and asynchronous time-stamping to improve the accuracy of
applications that use signals from various sensors. It can also batch and
transmit data quickly to minimize energy consumption of the host processor.

The I3C interface, as mentioned before, uses an I2C-like interface with
data line (SDA) and clock line (SCL). The open-drain SDA line allows
for slaves to take control of the data bus and initiate interrupts. The push-
pull SCL line is used by the master to clock the communication bus up to
12.5 MHz. The master can dynamically assign 7-bit addresses to all I3C
devices while supporting the static addresses of legacy I2C devices. This
ensures full compatibility between MIPI I3C and I2C. The Dynamic Address
Assignment (DAA) is introduced in the physical layer, and the master can
support the dynamic addresses of all MIPI I3C devices while supporting the
static addresses of legacy I2C devices. This ensures backward compatibility
between MIPI I3C and I2C.

MIPI I3C introduces the capabilities in the masters for request and han-
dover of bus ownership between the masters in the system (a feature that is
lacking in the I2C Protocol).

A set of Common Command Codes (CCCs) has been defined for standard
operations like enabling and disabling events, managing MIPI I3C-specific
features (dynamic addressing, timing control, and so on). These CCCs can
be broadcasted (sent to all devices) or directed at a specific device on the
bus. MIPI I3C specification also allows for defining user-specific common
command codes based on the application needs.

A very useful feature allows MIPI I3C slaves to initiate in-band inter-
rupts (which currently requires a dedicated signal line for both I2C and SPI
devices). The in-band interrupt feature enables the slaves to interrupt the
master whenever they require to communicate with the master.

The MIPI I3C interface provides several communication protocols includ-
ing I2C-like single data rate (SDR) messaging mode (up to 12.5 Mbps), and
high data rate (HDR) messaging modes (up to 33 Mbps). There are two
main HDR modes, HDR-DDR (double data rate) and HDR-TSL/TSP (ternary
symbol). These modes offer bit rates over 33 Mbps at a fraction of the per bit

3.2 Improved Inter-integrated Circuits (I3C) 119

power of I2C (400 kHz, fast mode). Both SDR and HDR formats share a two-
wire interface with a bidirectional data pin. The SDR format supports a mix
of various message types like standard I2C messages, broadcast and CCC
messages and slave-initiated requests (e.g., in-band interrupts or requests to
assume the master role).

In conclusion, I3C introduces solutions for all the challenges that the
current I2C faces and which mentioned in 9.28.1. Actually, the main purpose
of MIPI I3C is threefold:

1. To standardize sensor communication;
2. To reduce the number of physical pins used in sensor system integration;

and
3. To support low power, high speed, and other critical features that are

currently covered by I2C and SPI.

In the following section, we will examine how some of the features
currently used by legacy implementations can be made more efficient by
transitioning to MIPI I3C.

3.2.3 I3C Bus Configuration and Device Roles

The I3C standard defines five device roles:

• Main master, which controls the I3C bus and function and includes bus
ownership control and handoff to secondary masters.

• Secondary master, which takes temporary control of the I3C bus, needs
permission from the main master, and passes control back to the main
master once control tasks are exercised.

• Slave, which responds to either common or individual commands from
the I3C master.

• Peer-to-peer slave, which can write to or read from another slave without
the interaction of the master.

• I2C slave, for legacy I2C devices present in an I3C bus, to which I3C
master devices can communicate but whose speed and capabilities are
constrained.

The MIPI I3C specification defines different responsibilities for each type
of device, such as managing SDA arbitration, dynamic address assignment,
hot-join features, and HDR master and slave capability. Such, and other,
capabilities will be discussed in detail in the next section. Summary of some
of them is given here:

120 Improved Inter-integrated Circuits (I3C)

• SDA arbitration: It resolves bus ownership when multiple devices are
transmitting at once. I3C uses the SDA line during the arbitration pro-
cess and follows the common open-drain approach. The master typically
manages the SDA arbitration.

• Dynamic address assignment: The I3C main master assigns each device
a unique address, either when the bus is initialized or when a new device
is connected to a configured I3C bus.

• Hot-join feature: Slaves don’t have to be activated when the I3C bus is
powered up, and could be connected but not activated, or added later on.
Activating such slaves is known as hot-join and enables the master to
assign a dynamic address to the slave when it asks for one.

• HDR master and slave capability: Masters and slaves capable of sup-
porting high data rates of 16.84 Mbps and above are defined as HDR
master/slave capability.

3.2.4 I3C Features

3.2.4.1 Dynamic addressing
I2C uses static addressing. One of the problems here is that a vendor might
use the same address as another vendor for a product that uses the I2C bus,
causing issues during integration. I3C removes this problem by providing
addressing for devices on the I3C bus. Dynamic Addressing is a development
of the “Dynamic Address Resolution (ARP)” introduced in the SMBus.

• Dynamic Address Resolution (ARP)

Dynamic Address Resolution (ARP) is a concept introduced in the SMBus
that allows the bus devices to be “hot-plugged” and used immediately,
without restarting the system.

A limitation in the I2C is the limited 7-bit address space. With all the
different types of devices available, we are running out of address space that
can be assigned to device categories. Also, to be able to have several identical
instances of the same device on the bus I2C controller, implementations allow
the user to set few address bits to obtain unique address for these identical
instances. This use model further reduces the available address space and
also creates a potential problem of conflicting address wherein two different
device types have the same address. The standard method to resolve address
conflicts is the use of Multiplexors/Switches to split the bus into several

3.2 Improved Inter-integrated Circuits (I3C) 121

segments and enable one segment at a time under software control. Besides
adding extra hardware, multiplexors/switches, this segmentation complicates
the application firmware. The lack of an enumeration function makes it more
involved to bring up an I2C system comprising of slaves from different
vendors. SMBus has defined “Address Resolution Protocol” to address the
challenges outlined above such that devices are recognized automatically and
assigned unique addresses. This mimics Plug-and-Play capability.

This mechanism requires SMBus Master to generate a minimum of four
transfers to assign dynamic address to a slave. The Master will issue “Prepare
to ARP” as an initiator to prepare the slave for the address assignment
procedure followed by “Reset Device” command to reset dynamic address
if already assigned. The Master will then issue “Get UDID” command
to receive the Unique identifier value from the device which is used for
assigning the dynamic address in the following and final “Assign address”
command. The SMBus Master repeats the outlined steps for every slave in
the system to make sure all slaves have non-conflicting addresses.

Since ARP is built using I2C messaging primitives, it is not the most
efficient way of handling address assignment. For example, the sequence
of four consecutive commands that constitute ARP requires 445 ms at the
highest speed (1 MHz) possible in SMBus to assign address to one slave.
Once assigned, there is no easy mechanism to re-assign the dynamic address
without performing address assignment procedure all over again for all slaves.

• I3C Dynamic Addressing

In contrast to ARP, I3C defines a set of commands to manage different
scenarios under which address assignment can happen. The mechanism for
Dynamic Address Assignment outlined by I3C protocol effectively achieves
what is achieved by the four-step ARP mechanism of SMBus by a single
Dynamic Address Assignment procedure. A single transfer is sufficient for
assigning dynamic address to multiple devices. The analysis indicates that
this can bring about an improvement of 99% (over the 445 ms of SMBus
Protocol) in assigning a dynamic address. The I3C protocol also includes a
command to assign dynamic address to devices that have a static address.
This procedure consumes fewer cycles than Dynamic Address Assignment
procedure. I3C also supports a command to Set New Dynamic Address
directly to devices that already have a dynamic address without having to
participate in Dynamic Address Assignment procedure all over again.

122 Improved Inter-integrated Circuits (I3C)

Figure 3.2 SMBus ARP commands.

Figure 3.3 Dynamic address assignment in I3C.

3.2.4.2 Provisional ID
During bus initialization, the I3C Master assigns a 7-bit dynamic address to
each device on the bus. For this to happen, each Slave device must have a
48-bit Provisional ID (i.e., provisioned with its ID). The Provisional ID has
multiple fields, including MIPI Manufacturer ID and a vendor-defined part
number. The I3C Slave may also have a static address, which, if the Master
knows it, allows for faster assignment of the dynamic address.

Concerning the 48-bit Provisional ID, it is divided into two parts:

• The first part of the ID contains a unique manufacturer ID. Companies
do not have to be MIPI Alliance members to be assigned a unique
manufacturer ID.

• The second part of the ID normally contains a part number (which is nor-
mally divided up into general and specific part info for that vendor), as

3.2 Improved Inter-integrated Circuits (I3C) 123

well as possibly an instance number which allows for multiple instances
of the same device on the same bus. The instance ID is usually fed from
a pin-strap, or fuse(s), or non-volatile memory (NVM).

A random number may be used for the part number, although normally
only for test mode, as set by the Master using the ENTTM (Enter Test Mode)
CCC. When a device that supports random values enters the test mode, the
PID[31:0] bits are randomized. When the Master exits the test mode, the
devices reset bits PID[31:0] to their default value. The use of a random
number allows for many instances of the same device to be attached to a gang
programmer/tester, relying on the random number to uniquely give each a
dynamic address.

3.2.4.3 Possibility of collision during dynamic address
assignment (DAA)

With most configurations, collision is not possible; each device will have
its own manufacturer ID and part number, so no collisions are possible. If
more than one instance of the same device is used on the same bus, then
each instance must have a separate instance ID; otherwise, there would be
a collision. Likewise, if any device is using a random number for its part
number, then multiple instances from that manufacturer could collide (i.e.,
could have the same random value that time).

If the Master knows the number of devices on the bus, then it can detect
this condition, since the number of dynamic addresses assigned would be
less than the number of devices. Once detected, the I3C Master can take steps
to resolve such collisions, for example, by resetting DAA and restarting the
process, or by declaring a system error after a set maximum number (e.g., 3)
of such attempts fail.

3.2.4.4 Rule of CCC in dynamic address assignment
The CCCs are the commands that an I3C Master uses to communicate to
some or all of the Slaves on the I3C bus. The CCCs are sent to the I3C broad-
cast address (which is 7’h7E) so as not to interfere with normal messages sent
to a Slave. The CCCs are used for standard operations like enabling/disabling
events, managing I3C-specific features and other bus operations. CCCs can
be either broadcasted (sent to all the devices on the bus) or directed at specific
devices on the bus. All CCCs (i.e., the command numbers) are allocated by
MIPI Alliance, with some reserved for specific purposes that include MIPI
Alliance enhancements and vendor extensions.

124 Improved Inter-integrated Circuits (I3C)

All I3C devices must be able to process broadcast CCCs at any time,
whether or not they have been assigned a dynamic address (DA). For exam-
ple, an I3C device may act as an I2C device before it gets its DA assigned.
However, it is expected to ACK the START with 7′h7E; the only exception
would be if this device choosing to remain only as an I2C device, in which
case, it would leave any 50 ns spike filter enabled. For those devices that
do recognize START and address 7′h7E, those may see any CCC and not just
ENTDAA (Enter DA Assignment) or SETDASA (Set Dynamic Address from
Static Address). See the I3C specification for the required CCCs. The device
can determine the effect of each CCC based on whether or not it has the DA
assigned (e.g., the RSTDAA CCC [Reset DA Address] will probably have no
effect before the DA has been assigned).

3.2.4.5 Hot-join
Hot-join describes an event where I3C slaves are allowed to join the I3C bus
after the bus has been configured, enabling sensors to be shut down until
needed.

Hot-join is also a concept used in SMBus. SMBus requires a separate
side band (“SMBALERT”) from all such hot-join aspiring slaves to notify the
host when it attempts to hot-join. This adds to the hardware complexity and
is not a very scalable solution. Devices that do not have the sideband signal
implemented are expected to join as a Master and then issue “Host-notify”
protocol to the Host to announce its intent to join the system as a slave. The
Host will in turn assign the dynamic address to the device through ARP. The
reduced complexity of not having a sideband implementation is compensated
by increased complexity in having to support the Master role of operation by
Slaves.

3.2.4.6 In-band Interrupt (IBI)
The 2-wire I3C interface uses a push–pull clock line (SCL) and an open-drain
data line (SDA). The SDA allows slaves to take control of the data line and
initiate interrupts. (SPI and I2C can only provide slave interrupts by using a
third dedicated wire.) I3C slaves can request an interrupt when the bus is idle.
I3C arbitrates conflicts from multiple slaves by allowing the lowest assigned
address to win. An I3C slave can issue the IBI in the following two ways:

• Following a START (but not a Repeated START)
• If no START is forthcoming within the bus available condition, then an

I3C slave can issue a START request by pulling the SDA line low. The

3.2 Improved Inter-integrated Circuits (I3C) 125

I3C Master would then complete the START condition by pulling the
SCL clock line low and taking over the SDA.

When the device joins system dynamically and requires a dynamic
address, the device generates a Hot-join request through In-band Interrupt
message, and master will perform Dynamic Address Assignment procedure
to assign the dynamic address for the newly joined device.

The inbuilt provisions of I3C protocol provides for better and efficient
alternatives to ARP and hot-Join of SMBus and obviates the need for
sideband implementation and reduces the overhead of Master functionality
having to be available in the slave just to be able to hot-join.

3.2.4.6.1 Interrupts
I2C and SPI are typically used to support multiple sensors, but they both have
drawbacks for sensor interconnections. Neither of them have a method to
notify the master about a change in their state or to initiate a data transfer from
the sensor to the master. These notifications are currently being performed
by additional logic using general purpose input and output (GPIO) signals. A
fallout of this mechanism is that Slaves cannot be easily re-deployed in newer
systems without porting the Slave-specific “interrupt handling” capability of
the Master over to the new system.

MIPI I3C has the potential to replace both I2C and SPI with a more
power efficient two-wire interface. The in-band interrupts mechanism of
MIPI I3C interface eliminates or reduces the need for external GPIOs. By
being able to interrupt the Master based on sensor functionality, I3C slaves
can potentially operate in a more “Sensor Aware” manner and reduce the
overhead of polling and servicing interrupts from the Master. This translates
to reduced complexity of Master implementation and reduction in power
consumption.

The slave initiates an interrupt via an in-band message. The payload
of the message may be utilized to specify slave-specific information/action
to be performed by the Master or interrupt data. Introduction of in-band
interrupts in a multi-drop environment enables sensors to be pro-active in
it their interaction with the Master rather than having to depend on Master
to poll and service them. Polling mechanism burdens a Master with the
responsibility to having to service interrupts from any slave; this makes the
implementation inflexible. In-band interrupts are broadcast messages which
can be serviced by “any” Master capable of doing so. The slaves can also be
agnostic of the Master servicing the interrupt. This allows for a more flexible

126 Improved Inter-integrated Circuits (I3C)

Figure 3.4 I2C system with external sideband GPIO signals.

Figure 3.5 I3C system with in-band interrupt support.

implementation that does not call for a tight coupling between the Master and
Slave w.r.t interrupt handling that existed in legacy systems. Thus the use of
in-band interrupts results in a simpler and scalable implementation.

3.2.5 Multiple Masters

I3C allows for multiple masters on the same bus. I3C has one Main Master
that initially configures the bus and act as an initial current Master. Optionally,
the bus can have multiple Secondary Master devices that initially act as

3.2 Improved Inter-integrated Circuits (I3C) 127

Slaves. Any Secondary Master device can request to become the current
Master. Once the current Master agrees, and transfers the current Master
control to a given Secondary Master device, then that device becomes the
current Master.

How Can Masters and Slaves Communicate on the I3C Bus?
The basic byte-based messaging schemes of I2C and SPI map easily onto
I3C. Additionally, a set of common command codes (CCCs) has been defined
for standard operations like enabling and disabling events, managing I3C-
specific features (dynamic addressing, timing control, etc.) and others. CCCs
can be either broadcasted (sent to all devices on the bus) or directed at a
specific device on the bus.

CCCs do not interfere with, and do not use up any of the message space of,
normal Master-to-Slave communications. I3C provides a separate namespace
for CCCs.

CCCs (Common Command Codes)
The CCCs are the commands that an I3C Master uses to communicate to
some or all of the Slaves on the I3C bus. The CCCs are sent to the I3C broad-
cast address (which is 7’h7E) so as not to interfere with normal messages sent
to a Slave. The CCCs are used for standard operations like enabling/disabling
events, managing I3C-specific features and other bus operations. CCCs can
be either broadcasted (sent to all the devices on the bus) or directed at specific
devices on the bus. All CCCs (i.e., the command numbers) are allocated by
MIPI Alliance, with some reserved for specific purposes that include MIPI
Alliance enhancements and vendor extensions.

3.2.6 Increased Throughput

The I3C protocol supports higher-speed transfers compared to I2C with
the same two-wire interface. The master clock uses the SCL to clock the
communication bus to 12.5 MHz. There are two main HDR modes, HDR-
DDR (double data rate) and HDR-TSL/TSP (ternary symbol). These HDR
modes support speeds of up to 33 Mbps at a fraction of the per bit power of
I2C (400 kHz, fast mode). As a matter of fact I3C offers four data transfer
modes that effectively provide data bit rates at 11.1, 20, 23.5, and 33.3 Mbps,
including I3C bit rate error detection. The increased speeds of operation of
I3C allows I3C-based implementations to replace SPI-based legacy systems
due to its ability to evacuate accumulated data quickly in batches.

128 Improved Inter-integrated Circuits (I3C)

Figure 3.6 Energy consumption and raw data rate: I3C versus I2C (figure courtesy from
https://www.synopsys.com/dw/doc.php/wp/mipi_i3c_wp.pdf).

3.2.7 Power Consumption

Increased speed of operation of MIPI I3C interface has resulted in significant
reduction of per bit power consumption. As a fact, the power consumption
per bit transfer in all I3C modes is more efficient than I2C, due to the use of
push–pull (vs. open-drain) and strong pull-up signaling.

Further, I3C can save considerable device power through higher data rates
(because the device can be put back to sleep sooner), built-in configuration
and control (without intruding on the main communication protocols), in-
band interrupt (IBI) as a low-cost wake mechanism, and the ability for Slaves
to shut down all internal clocks while still operating correctly on the I3C bus.

The bar charts in Figure 3.6 compare the energy consumption (per bit) of
the various MIPI I3C modes with I2C (left) and the corresponding data rates
(right). These numbers conclusively demonstrate that I3C is a more power
efficient interface as compared to I2C.

3.2.7.1 Pull-up resistor
In general, I3C does not need pull-up resistor. I3C Masters control an active
pull-up resistance on SDA, which they can enable and disable. This may be a
board-level resistor controlled by a pin, or it may be internal to the Master.

Much of the activity on the I3C bus is in push–pull mode (i.e., with
the pull-up resistor disabled) in order to achieve higher data rate. How-
ever, for some bus management activities, and for backwards compatibility

https://www.synopsys.com/dw/doc.php/wp/mipi_i3c_wp.pdf

3.2 Improved Inter-integrated Circuits (I3C) 129

with I2C, pull-up-resistor-based open-drain mode is enabled, for example,
arbitration during dynamic address assignment, and in-band interrupt. Also,
the ACK/NACK during the 9th bit is done using pull-up resistor. With few
exceptions, it is the responsibility of the I3C Master to provide open-drain
class pull-up resistor when the bus is in the open drain mode.

3.2.7.2 High-keeper
A high-keeper is used for Master-to-Slave and Slave-to-Master bus hand-off,
as well as optionally when the bus is idle. The high-keeper may be a passive
weak pull-up resistor on the bus, or an active weak pull-up or equivalent in
the Master. The high-keeper only has to be strong enough to prevent system-
leakage from pulling the bus low. At the same time, the high-keeper has to be
weak enough that a Slave with a normal IOL driver is able to pull the bus line
low within the minimum period.

3.2.8 I3C Bus Activity States

The I3C bus activity states provide a mechanism for the Master to inform
the Slaves about the expected upcoming levels of activity or inactivity on the
bus, in order to help Slaves better manage their internal states (e.g., to save
power). I3C bus has four activity states.

The four activity states (and their expected activity interval) are:

• Activity State 0: Normal activity.
• Activity State 1: Expect quiet for at least 100 µs.
• Activity State 2: Expect quiet for at least 2 ms.
• Activity State 3: Expect quiet for at least 50 ms.

3.2.9 I3C Bus Conditions When the Bus Is Considered Inactive

In addition to open drain, pull-up, and high-keeper, the I3C bus has three
distinct conditions under which the bus is considered inactive: Bus Free, Bus
Available, and Bus Idle.

• Bus Free condition is defined as a period occurring after a STOP and
before a START and for a given duration (e.g., tCAS and tBUF timing).

• Bus Available condition is defined as a Bus Free condition for at least
tAVAL duration. A Slave may only issue a START request (e.g., for In-
Band Interrupt or Master Handoff) after a bus available condition.

• Bus Idle condition is defined to help ensure bus stability during hot-
join events. This condition is defined as a period during which the Bus

130 Improved Inter-integrated Circuits (I3C)

Available condition is sustained continuously for a duration of at least
tIDLE .

3.2.10 Time-stamping Capability Defined in the I3C Bus

The I3C bus supports an optional time control mechanism. One mode is
synchronous (from the synchronized timing reference) and four modes are
asynchronous (Slave provides timestamp data). All I3C Masters are expected
to support at least Async Mode 0.

• Synchronous: The Master emits a periodic time sync that allows Slaves
to set their sampling time relative to this sync. This may be used in
conjunction with one of the Asynchronous modes.

• Asynchronous: The Slaves apply their own timestamp to the data at
the time they acquire samples, permitting the Master to time-correlate
samples received from multiple different Slaves or sensors.

There are four types of asynchronous time controls:

• Async Mode 0: Basic mode that assumes that a Slave has access to a
reasonably accurate and stable clock source to drive the time stamping–
at least accurate for the duration of the time it has to measure (i.e., from
event to IBI). A set of counters, in conjunction with IBI, are used to
communicate time-stamping information to the Master.

• Async Mode 1: Advanced mode extends the basic mode by using some
mutually identifiable bus events like I3C START.

• Async Mode 2: High precision mode that uses SCL falling edges (for
SDR and HDR-DDR modes) as a common timing reference for Master
and Slave. A burst oscillator is used to interpolate the time between a
detected event and next SCL falling edge. For HDR-TSL and HDR-TSP
modes, the mode uses both SDA transitions and SCL transitions as a
timing reference.

• Async Mode 3: Highest-precision triggerable mode that supports
precise time triggering and measurement across multiple transducers
applications like beam forming.

3.2.11 Error Detection and Recovery Methods in I3C

The I3C bus has elaborate error detection and recovery methods. Seven Slave
error types (S0 to S6) and three Master error types (M0 to M2) are defined
for the SDR mode, along with suggested recovery methods. Similarly, a set
of errors are defined for each of the HDR modes.

3.2 Improved Inter-integrated Circuits (I3C) 131

3.2.12 Maximum Capacitance Load Allowed on the I3C Bus

The I3C specification lists the maximum per device capacitance on SCL
and SDA, but the goal is that most or all devices will be well below that.
Capacitance alone is not sufficient to determine maximum frequency on the
I3C bus (as with any bus). It is important to consider maximum propagation
length, effect of stubs, internal clock-to-data (tSCO) of the Slaves, as well as
capacitive load.

3.2.13 Maximum Wire Length for I3C Communication

The maximum wire length would be a function of speed, as all the reflections
and bus turnaround must complete within one cycle. Larger distances can be
achieved at the lower speeds than at the higher ones. For example at 1 meter
(between Master and Slave), the maximum effective speed is around 6 MHz
for read, to allow for clock propagation time to Slave and SDA return time to
Master.

It is not, directly, possible to use I2C repeaters with I3C bus to solve
the problem of bus length limitation, for the following two reasons: (1) The
I3C bus works with push–pull modes (in addition to the open drain for some
transfers) and (2) with much higher speeds. Most of such devices are quite
limited in speed, because of the lag effect of changing states on SCL and
SDA due to both series resistance and assumptions about open drain.

3.2.14 Repeaters and I3C

The I2C repeaters cannot be used directly for I3C for a couple of reasons: (1)
The I3C bus works with push–pull modes (in addition to the open drain for
some transfers) and (2) with much higher speeds. Most of such devices are
quite limited in speed, because of the lag effect of changing states on SCL
and SDA due to both series resistance and assumptions about open drain.
Long-wire approaches are being evaluated for a future version of the I3C
specification.

3.2.15 Resolving Communication Conflicts on the I3C Bus

The I3C slaves are only allowed to drive the bus under certain situations.
Besides during a read and when ACKing their own address, they may also
drive after a START (but not Repeated START). After a START, the I3C
bus reverts back to open-drain pull-up resistor mode, and thus, the slave that
drives a low value (logic 0) would win.

132 Improved Inter-integrated Circuits (I3C)

3.2.16 Can I3C Devices Cause the Communication Bus to
“Hang”?

Unlike I2C, there is no natural way to “hang” the bus. In I2C, clock stretching
(where the slave holds the clock low, stopping it from operating) often causes
serious problems with no fix: there is simply no way to get the Slave’s
attention if it has hung the bus. By contrast, in I3C only the Master drives
the clock, and so the Slave performs all actions on SDA relative to that clock,
thereby eliminating the normal causes of such hangs.

Further, since I3C is designed to ensure that I3C Slaves can operate their
back-end I3C peripheral off the SCL clock (vs. oversampling), problems
elsewhere in the Slave will not translate into bus hangs.

If a system implementer is highly concerned about a Slave accidently
locking itself, then a separate hard-reset line could be used. For the next revi-
sion of the I3C specification, a feature called in-band hardware reset (IBHR)
is under consideration to reset non-responsive I3C slaves (i.e., if a Master
emits a certain pattern that does not occur during regular communication,
then the devices on the bus would treat it just like a hardwired reset line).

3.2.17 MIPI I3C Specifications and Software Development

MIPI specifications can help the software designers to develop their applica-
tion software. The following MIPI specifications are expected to help with
software development:

• MIPI specification for I3C Host Controller Interface (I3C HCI), v1.0
[MIPI02] (In development) creates a standard definition that allows
a single OS driver (aka “in-box driver”) to support I3C hardware
from several vendors, while also allowing vendor-specific extensions or
improvements. The target audience of the HCI specification is applica-
tion processor host controllers, in particular developers of host controller
(i.e., I3C main Master) hardware and developers of I3C host controller
software.

• MIPI specification for Discovery and Configuration (DisCo), v1.0
[MIPI03] describes a standardized device discovery and configuration
mechanism for interfaces based on MIPI specifications, which can
simplify component design and system integration, also oriented to
application processors.

• MIPI DisCoSM specification for I3CSM, v1.0 [MIPI04] (In devel-
opment) allows operating system software to use ACPI (Advanced
Configuration and Power Interface) structures to discover and configure

3.2 Improved Inter-integrated Circuits (I3C) 133

the I3C host controller and attached devices in ACPI-compliant systems,
also oriented to application processors.

• In addition, an MIPI Application Note for I3CSM [MIPI05] is being
developed to help ASIC hardware developers, system designers, and
others working in the more deeply embedded I3C devices.

We note here that core I3C infrastructure is being added to the Linux
Kernel via patchwork.kernel.org.

3.2.18 Expected New Features for MIPI I3C

While not finalized yet, the following features are under consideration:

• Grouped addressing
• Additional slave error detection/recovery
• CCC support in HDR-DDR/TSP
• HDR-DDR end write
• HDR-TSP end transfer
• Clock-to-data refinement
• Timing control disable
• New minimum tIDLE
• In-band hardware reset (IBHR)
• Multi-lane, for speed
• HDR-DDR-end CRC

Summary

• I3C simplifies system design to a true two-wire interface
• Backward compatible to existing I2C devices (supports legacy I2C

messaging)
• Reduces device die size
• Lowers power consumption
• Supports in-bound error checking and CRC
• Supports peer-to-peer slave communication
• Supports hot-plug capability
• Dynamic addressing while supporting static addressing for legacy I2C

devices
• Supports I2C-like SDR messaging and optional HDR messaging (up to

30 Mbps)
• Supports multi-master and multi-drop capabilities

134 Improved Inter-integrated Circuits (I3C)

References

[MIPI01] MIPI Alliance Specification for I3CSM (Improved Inter Integrated
Circuit), version 1.0, MIPI Alliance, Inc., MIPI Board adopted 31
December 2016.

[MIPI02] MIPI Alliance Specification for I3C Host Controller Interface (I3C
HCISM), version 1.0, MIPI Alliance, Inc., In press.

[MIPI03] MIPI Alliance Specification for Discovery and Configuration (Dis-
CoSM), version 1.0, MIPI Alliance, Inc., MIPI Board adopted 28
December 2016.

[MIPI04] MIPI Alliance DisCoSM Specification for I3CSM, version 1.0,
MIPI Alliance, Inc., In press.

[MIPI05] MIPI Alliance Application Note for I3CSM, version 1.0, MIPI
Alliance, Inc., In press.

[MIPI06] MIPI Alliance Specification for Camera Serial Interface 2 (CSI-
2SM), version 2.1, MIPI Alliance, Inc., In press.

[MIPI07] MIPI Alliance Specification for Debug for I3CSM, version 1.0,
MIPI Alliance, Inc., In press.

[MIPI08] MIPI Alliance Specification for Virtual GPIO Interface (VGISM),
version 1.0, MIPI Alliance, Inc., In press.

[MIPI09] MIPI Alliance Conformance Test Suite (CTS) for I3CSM v1.0, CTS
version 1.0, MIPI Alliance, Inc., In press.

Section II

Controller Area Network
(CAN)

This section deals with “Controller Area Network”. The section consists
of two chapters:

Chapter 4: Controller Area Network (CAN)
Chapter 5: CAN Data Link

The two chapters give enough knowledge for the reader to let him design
CAN bus.

135

4
Controller Area Network (CAN)

There are a number of methods of networking microcontrollers. These
include the I2C (or Two-wire Serial Interface (TWI)), the Controller Area
Network (CAN) protocol, and the ZigBee wireless interface.

Inter Integrated Circuit (IIC or I2C) protocol considered in Section 1
of this book (Chapters 1 to 3). This section (Chapters 4 and 5) handles the
Controller Area Network (CAN) protocol.

4.1 Introduction to CAN: Overview

4.1.1 What is CAN?

The controller area network (CAN) bus is a broadcast serial communication
standard for real-time applications that allows multiple processors in a sys-
tem, possibly connected over a twisted pair multidrop cable, to communicate
efficiently with each other.

Controller Area Network (CAN bus) is developed by Robert Bosch
in 1986 as a multi-master, message broadcast robust vehicle bus standard
that allows microcontrollers and devices to communicate with each other
in applications without a host computer. It is a message-based protocol,
designed originally for multiplex electrical wiring within automobiles to save
on copper, but is also used in many other contexts. Unlike a traditional
network such as USB or Ethernet, CAN does not send large blocks of data
point-to-point from node A to node B under the supervision of a central bus
master. In a CAN network, many short messages like temperature or RPM
are broadcast to the entire network, which provides for data consistency in
every node of the system.

137

138 Controller Area Network (CAN)

Vehicle Bus

A vehicle bus is a specialized internal communications network that
interconnects components inside a vehicle (e.g., automobile, bus, train,
industrial or agricultural vehicle, ship, or aircraft). Special requirements
for vehicle control such as assurance of message delivery, of non-
conflicting messages, of minimum time of delivery, of low cost, and
of Electro Magnetic Field (EMF) noise resilience, as well as redundant
routing and other characteristics mandate the use of less common net-
working protocols. Protocols include Controller Area Network (CAN),
Local Interconnect Network (LIN) and others. Conventional computer
networking technologies (such as Ethernet and TCP/IP are rarely used,
except in aircraft, where implementations of the ARINC 664 such as
the Avionics Full-Duplex Switched Ethernet are used. Aircraft that use
AFDX include the B787, the A400M and the A380.

(Source: Wikipedia)

4.1.1.1 Meaning of Massage-based Protocol
(See also “Key Characteristics of CAN)
CAN as message-based protocol does not use the conventional address
scheme for identifying the devices. Data messages transmitted from any
node on a CAN bus do not contain addresses of either the transmitting
node (data source), or of any intended receiving node (destination node).
Instead, CAN broadcasts the messages to all the nodes in the network using
a unique identifier for the contents of the message. The identifier is unique
throughout the network. All the nodes receive the message and each node
runs an acceptance test on the identifier to determine if the contents of the
message are relevant to it or not. Any node finds that the contents are relevant
to it, this node processes the message otherwise it ignores the message.

For example, an automotive airbag sensor can be connected via CAN to a
safety system router node only. This router node takes in other safety system
information and routes it to all other nodes on the safety system network.
Then all the other nodes on the safety system network can receive the latest
airbag sensor information from the router at the same time, acknowledge
if the message was received properly, and decide whether to utilize this
information or discard it.

CAN uses the identifier also to determine the priority of the message
in terms of competition for bus access. The lower the numerical value of
the identifier, the higher the priority of the message. CAN standards use the

4.1 Introduction to CAN: Overview 139

identifier to avoid collision on the bus. This technique is used by CAN to
achieve what is called “non-destructive arbitration”. It guarantees that in
situations where two or more nodes attempt to transmit at the same time, the
messages are sent in order of priority and that no messages are lost. In the
following sections the principle of using identifier is given in detail.

4.1.2 The Benefits of CAN Bus in Automobile Industry

Robert Bosch, German automotive system supplier, released CAN protocol
to the Society of Automotive Engineers congress in 1986. Bosch introduced
CAN as a method for enabling robust serial communication. The goal was
to make automobiles more reliable, safe and fuel-efficient while decreasing
wiring harness weight and complexity. His company promoted the manu-
facture of the BMW 850 coupe that year as the first vehicle featuring the
CAN bus system. Since the wiring of the electronics in the vehicle was
drastically reduced because of using CAN bus, the coupe itself weighed over
100 pounds less than previous models of the automobile, and the sensors
worked significantly faster: This achievement considered as the first benefit
gained by using CAN bus (see Figure 4.1).

Figure 4.1 Typical automotive networks.

140 Controller Area Network (CAN)

Since that time, the Society of Automotive Engineers has required that
100 percent of all automobiles sold in the United States be outfitted with the
CAN bus protocol since 2008, and a similar mandate has been instituted in
Europe.

In addition to creating lighter vehicles, the CAN bus protocol has many
other significant benefits. By connecting all the modules in a vehicle to
one central line, the control system is simplified and more easily regulated.
This design allows any connected module to alert the main controller to an
event that as it occurs which will cause the rest of the system to respond
accordingly. The shared data line allows multiple modules to be attached with
less invasive efforts, making the potential for error much lower.

If one module (node) on the CAN bus fails, it does not necessarily cause
the failure of other modules. Unless the two systems are directly related
and one cannot run without the other, the healthy modules will continue to
function perfectly despite the loss of one bad module. This makes the entire
system safer.

Additionally, diagnostics of the vehicle are simpler and more specific due
to the specialized and self-contained nature of the modules. Diagnostics can
now pinpoint the exact cause of the module failure with accuracy and speed.
When one module needs maintenance, that module can simply be targeted
and replaced rather than tearing apart the entire vehicle.

One of the most significant benefits of CAN bus technology is the ratio
it offers of price to performance. Currently CAN bus is one of the most
affordable network systems in addition to being one of the most reliable,
making it the main cost-effective choice of automobile manufacturers around
the world.

CAN bus offers a simple interface for attaching an additional node (mod-
ule). The node can be used for diagnostics, reprogramming, monitoring, and
more. Many tools have been created to tie into the CAN bus. Currently, there
are solutions to do USB to CAN, wireless to CAN, PCIx to CAN and even a
CAN bus logger.

4.1.3 CAN History

Controller area network was first developed by Robert Bosch in 1986. Bosch
published several versions of the CAN specification and the latest is CAN 2.0
published in 1991. This specification has two parts; part A is for the standard
format with an 11-bit identifier, and part B is for the extended format with
a 29-bit identifier. A CAN device that uses 11-bit identifiers is commonly

4.1 Introduction to CAN: Overview 141

called CAN 2.0A and a CAN device that uses 29-bit identifiers is commonly
called CAN 2.0B. The CAN frame uses 11-bit identifier is called “Standard
Frame Format” and that uses 29-bit is called “Extended Frame Format”. In
1993, the International Organization for Standardization (ISO), documented
it as CAN standard ISO 11898 (for applications up to 1 Mbps) and ISO 11519
(for applications up to 125 kbps).

ISO 11898 is actually a family of specifications that cover two layers: The
Physical Layer and the Data Link Layer.

ISO 11898 covers the following link and physical layers standards:

• ISO 11898-1: CAN Data Link Layer and Physical Signaling
• ISO 11898-2: CAN High-Speed Medium Access Unit
• ISO 11898-3: CAN Low-Speed, Fault-Tolerant, Medium-Dependent

Interface
• ISO 11898-4: CAN Time-Triggered Communication
• ISO 11898-5: CAN High-Speed Medium Access Unit with Low-Power

Mode
• ISO 11898-6: CAN High-speed medium access unit with selective

wake-up functionality

Other standards are:

• ISO 11992-1: CAN fault-tolerant for truck/trailer communication
• ISO 11783-2: 250 kbps, Agricultural Standard
• SAE J1939-11: 250 kbps, Shielded Twisted Pair (STP)
• SAE J1939-15: 250 kbps, Unshielded Twisted Pair (UTP) (reduced

layer)
• SAE J2411: Single-wire CAN (SWC) ISO 11898-2 uses a two-wire

balanced signaling scheme. It is the most used physical layer in car
powertrain applications and industrial control networks.

Notes:

• The physical layer standards ISO 11898-2 and ISO 11898-3 are not part
of the Bosch CAN 2.0 specification. These standards may be purchased
from the ISO.

• ISO 11898-2 uses a two-wire balanced signaling scheme. It is the most
used physical layer in car powertrain applications and industrial control
networks.

• ISO 11898-4 standard defines the time-triggered communication on
CAN (TTCAN). It is based on the CAN data link layer protocol
providing a system clock for the scheduling of messages.

142 Controller Area Network (CAN)

• SAE J1939 standard uses a two-wire twisted pair, −11 has a shield
around the pair while −15 does not.

• SAE 1939 is widely used in heavy-duty (truck) and autobus industry as
well as in agricultural & construction equipment.

• ISO 11783-2 uses four unshielded twisted wires: two for CAN and two
for terminating bias circuit (TBC) power and ground. This bus is used
on agricultural tractors. This bus is intended to provide interconnectivity
with any implementation adhering to the standard.

4.1.3.1 Higher layer implementations: Higher layer protocols
(HLPs)

As the CAN standard does not include tasks of application layer proto-
cols, such as flow control, device addressing, and transportation of data
blocks larger than one message, and above all, application data, many
implementations of higher layer protocols were created. Among these are:

• DeviceNet (used for industrial automation)
• CANopen (used for industrial automation)
• Smart Distributed System (SDS)
• CANaerospace (for the aviation industry)
• SAE J1939 (heavy road vehicles)
• ISO 15765-4
• ISO 11783 or ISOBUS (agriculture)
• SmartCraft
• NMEA 2000 (marine industry)
• CAN Kingdom
• SafetyBUS p (used for industrial automation)
• EnergyBus (used for electrical vehicles)
• MilCAN
• RV-C (used for recreational vehicles)
• ARINC 825 (for the aviation industry)

For passenger cars, manufacturers have preferred to develop each their
own standard. Examples:

• GMLAN (for General Motors)
• CCP/XCP
• ISO14229

In 2012, Bosch released CAN FD 1.0 or CAN with Flexible Data Rate.
This specification uses a different frame format that allows a different data

4.1 Introduction to CAN: Overview 143

length as well as optionally switching to a faster bit rate after the arbitration
is decided. CAN FD is compatible with existing CAN 2.0 networks so new
CAN FD devices can coexist on the same network with existing CAN devices.

4.1.4 Error Detection and Security in CAN

CAN includes a number of error detection mechanisms that can be used to
detect any error in the data on the message and on the bit level and force
the message to be destroyed and retransmitted in case of detecting an error.
The use of the detection mechanisms ensures that the message a node does
receive is error free and contains valid data. The error detection mechanisms,
also, guarantee that the nodes will not miss any message.

Concerning security, CAN as a low-level protocol does not support any
security features intrinsically. Applications are expected to deploy their own
security mechanisms, for example, to authenticate each other. Failure to do
so may result in various sorts of attacks, if the opponent manages to insert
messages on the bus. Password mechanisms exist for data transfer that can
modify the control unit software, like software download or ignition key
codes, but usually not for standard communication.

4.1.5 The Application of CAN Bus

Although the CAN bus protocol was introduced for automotive use, today
the system is used in several other networking applications. With the sim-
ple system of networking individual modules into a single central line of
control, many companies are taking advantage of the CAN bus protocol
in assembly lines, industrial vehicles, medical equipment, test equipment
mobile machines and any other machinery that uses multiple modules that
must communicate with each other.

Autonomous industrial machinery, as well as mobile machines, have been
increasingly integrating CAN bus protocol because of the embedded control
in the system. Based on the reliability and efficiency of the protocol, medical
and military equipment have also seen a rise in the application of CAN bus.
As machinery becomes increasingly complex, the application of the CAN bus
system is likely to rise with the technology.

Applications: Automotive

A modern automobile may have as many as 70 electronic control units (ECU)
for various subsystems [3]. Typically the biggest processor is the engine

144 Controller Area Network (CAN)

control unit (also engine control module/ECM or Powertrain Control Mod-
ule/PCM in automobiles); others are used for transmission, airbags, antilock
braking/ABS, cruise control, electric power steering/EPS, audio systems,
windows, doors, mirror adjustment, etc. Some of these form independent
subsystems, but communications among others are essential. A subsystem
may need to control actuators or receive feedback from sensors. The CAN
standard was devised to fill this need. The CAN bus may be used in vehicles
to connect engine control unit and transmission, or (on a different bus) to con-
nect the door locks, climate control, seat control, etc. (see Figure 4.1). Today
the CAN bus is also used as a fieldbus in general automation environments,
primarily due to the low cost of some CAN Controllers and processors. Bosch
holds patents on the technology, and manufacturers of CAN-compatible
microprocessors pay license fees to Bosch, which are normally passed on to
the customer in the price of the chip. Manufacturers of products with custom
ASICs or FPGAs containing CAN-compatible modules may need to pay a
fee for the CAN Protocol License.

4.2 CAN Standard

4.2.1 CAN Architecture: OSI 7 layer reference model and CAN
model

Figure 4.2 shows the OSI/ISO 7 layer reference model. This model is a
guideline for network developers that defines different levels that data should
pass through to travel between two devices on the network. CAN covers
the lowest two layers of the OSI/ISO model: Physical Layer and Data Link
Layer as shown in Figure 4.2. Figure 4.3 gives the two layers in more detail.
Figure 4.4 links the model layers with the components needed to be included
in any CAN Node. Figure 4.4 is based on Figure 4.3 that reflects the CAN
BUS (ISO-11898-2).

The ISO 11898-1 doesn’t cover HLPs which, generally, map the upper
5 layers of the 7 layer model (Figure 4.2). It also does not specify what
transceivers or connectors should be used for a CAN network. Considering
this fact, CAN protocol exists in the lower two layers (Data link and part of
the Physical layer).

Many Higher Layer Protocols (HLPs) were developed for and standard-
ized on CAN: Both proprietary and non-proprietary protocols exist. Some of
high level protocols are given before in Section 4.1.3.1.

From the above discussions, it is possible to say that the CAN protocol
can be described in terms of four levels of abstractions: application, object,

4.2 CAN Standard 145

Figure 4.2 The OSI 7-layer model and the ISO 11898 standard.

Figure 4.3 CAN layers and HLP.

data-link (or transfer) and physical levels. CAN specifications describe the
physical and data-link layers while all the remaining layers are managed
by the microprocessor in software as appropriate. The four layers are (see
Figure 4.5):

1. Application Layer:

Many applications of CAN require services that are beyond the basic func-
tionality specified by the Data-Link Layer but which may be implemented
at the Application Layer. To meet such needs, several organizations have
developed Application Layers.

146 Controller Area Network (CAN)

Figure 4.4 The layered ISO 11898 standard architecture and its reflection on CAN node
requirements.

Figure 4.5 The four abstraction levels of CAN protocol.

2. Object Layer:

This includes the following functions:

• Message Filtering:

i. Deciding which messages received by the transfer layer (Data-Link
Layer) are actually to be used,

4.2 CAN Standard 147

• Message and Status Handling,
• Providing an interface to application layer related hardware.

3. Data-Link Layer or Transfer Layer

This layer is the kernel of the protocol. It recognizes and understands the
format of messages. It presents messages received to the object layer and
accepts messages to be transmitted from the object layer. It constructs the
messages to be sent to the Physical Layer, and decodes messages received
from the Physical Layer. The data-link layer is responsible for:

• Fault Confinement
• Error Detection
• Message Validation
• Acknowledgment
• Arbitration
• Message Framing
• Transfer Rate and Bit Timing
• Information Routing

In CAN controllers, hardware is usually used to implement the data-link
layer. The functions, operations and implementation of the data-link layer are
considered latter.

4. Physical Layer

The physical layer is responsible for defining how the signals are actually
transmitted. Some of the tasks of the physical layer are:

• Transmission Medium: The physical layer specifies the physical and
electrical characteristics of the bus.

• Signal Level and Bit Representation: This includes the hardware
required to convert the characters of a message into electrical signals for
transmitted messages and electrical signals into characters for received
messages.

The physical layer is all the time a “real” hardware. The physical layer
and the data-link layer will be discussed after presenting some of the features
and the characteristics of CAN BUS

Today, CAN is found in almost every market while development is still
continuing in the area of HLPs to support the needs of existing and new
developers. CAN continues to be widely popular mainly because it is an
extremely robust, but also because the sheer volumes in the automotive
market have driven the costs of a CAN node down. This has allowed the

148 Controller Area Network (CAN)

protocol to grow rapidly since 1985 while expanding into other Markets
like marine, industrial, and medical, Agricultural and construction, Military,
Factory and Building automation.

4.2.2 Higher Layer Protocols (HLPs)

As mentioned before (Section 4.1.2), CAN standard does not include tasks
of application layer protocols, such as flow control, device addressing, and
transportation of data blocks larger than one message, and above all, appli-
cation data, many implementations of higher layer protocols were created,
some of them are mentioned in Section 4.1.2.

Next, and after discussing the features and characteristics of the CAN bus,
the details of the Physical and Data Link Layers are given.

4.3 CAN Features and Characteristics

4.3.1 Some Features of CAN Bus

Some of the features and uses of CAN bus are:

• To make the communication between different microprocessors more
efficient without increasing the wiring needed, CAN does not use central
control. Any processor in the system can send and receive messages
directly without relying on any central control (central processor). This
reduces the wiring, in some cases, by 90 percent. The non-destructive
arbitration technique used by CAN guarantee the arrival of the messages
without any collisions.

• Measurements needed by several controllers can be transmitted via the
bus, thereby removing the need for each controller to have its own
individual sensor.

• Flexibility and expansion: The use of message identifier technique
instead of using addressing, simplifying the system configuration and
gives its high degree of flexibility. The CAN specification does not
specify the actual layout and structure of the physical bus itself. This
gives the design engineers the possibility to reconfigure CAN systems
by adding or removing network nodes easily. In the cases when the new
nodes are purely receivers, and which need only existing transmitted
data, it is possible to add them to the network without the need to make
any changes to existing hardware or software. In general, any new node
can be connected to CAN bus as it is able to transmit, or detect, on
the physical bus, one of two signals called dominant or recessive. For

4.3 CAN Features and Characteristics 149

example, a dominant signal may be represented as logic ‘0’ and recessive
as logic ‘1’ on a single data wire. Furthermore, the physical CAN bus
must guarantee that if one of two devices asserts a dominant signal and
another device simultaneously a recessive signal, the dominant signal
prevails.

• Due to flexibility, expandability and content-oriented nature of CAN
bus, it is easy to use by any project manager. Each unit in CAN system
can be developed and tested separately. If all the individual functional
units are proved to work independently, there is a very high probability
that when all of them connected together to form a CAN system they
will work correctly as a system.

• The individual nodes of a CAN system are connected together in a daisy
chain. All the nodes are equal. Any processor can send a message to
any other processor, and if any processor fails, the other systems in the
machine will continue to work properly and communicate with each
other.

• CAN messages are short, no more than eight bytes long. It is gener-
ally used for sending signals to trigger events, such as to lock seat
belts during heavy braking, and measurement values, such as temper-
ature and pressure readings. The content-oriented nature of CAN and
the non-destructive arbitration technique used guarantee interrupt-free
transmission. The message identifier defines the priority of the message
which will prevent any conflicts. It also guarantees that the urgent
messages (with the highest priority) will be delivered first.

• In order to increase the traffic reliability, CAN protocol include extensive
error checking mechanisms. This is one of the features that lets CAN be
extremely robust (see key characteristics of CAN)

• CAN system is able to transmit up to 7600 8-byte messages per seconds.
• The devices that are connected by a CAN network are typically sensors,

actuators and control devices. A CAN message never reaches these
devices directly, but instead a host-processor and a CAN Controller is
needed between these devices and the bus.

4.3.2 Key characteristics of CAN

Some of the key characteristics of CAN protocol that will be discussed, with
others, in detail in this chapter are as follows:

• CAN is an extremely robust serial communication protocol.
• CAN is Message based, not address base.

150 Controller Area Network (CAN)

• Distributed control across the CAN network that allows peer to peer or
master to slave style of communications.

a. CAN is an extremely robust communication protocol

Here are three examples why:

• Any CAN node on the BUS can detect errors in the message, and force
the message to be destroyed and retransmitted. This feature helps to
ensure that the message a node does receive contains valid data.

• The CAN Frame requires that every node “acknowledge” the message
before it can be processed by that node. This acknowledge can only
come after various error condition checks, including a 15-bit CRC on the
message. If one CAN node finds an error with the message, the message
is destroyed and retransmitted.

• The specification defines three different error states for a CAN node to
be in, with each error state giving the CAN node different levels of bus
access. That was designed to limit faulty nodes from permanently taking
down the CAN bus.

CAN is Serial communication in which All nodes on the CAN bus are
attach to common connection using the same bit rate.

The implementation of the above three examples will be considered in
detail while discussing the data-link layer.

b. CAN is message based, not address based

This means that Messages are NOT transmitted from one node to another
node based on the address of a CAN Node, instead a CAN node will broadcast
its message to all nodes on the bus (Broadcast Communication concept), and
it is up to the receiving node to determine it should act on that message.

The CAN concept of Broadcast Communication is shown in Figure 4.6.
In Figure 4.6, station 2 is the transmitting station. After receiving the frame,
it is the task of every node to decide if the message has to be accepted or
not. So Acceptance Filtering has to be implemented in every CAN node
(part of the data link layer discussion). The CAN Broadcast Communication
can be compared with a radio station transmitting information about traffic
accumulation for vehicle drivers. Every driver has to decide if the messages
are important for him dependent on the motorway he wants to use.

It is possible to add new nodes to a CAN bus without having to update all
of nodes with addressing information.

c. CAN allows for distributed control across a Network: This is because
of the reliability of the data. This allows designers the flexibility to setup
Master/Slave or Peer/Peer also called Consumer producer/networks.

4.4 CAN Physical Layer 151

Figure 4.6 Broadcast communication.

Figure 4.7 CAN bus (ISO-11898-2).

4.4 CAN Physical Layer

CAN physical layer is described by ISO-11898. ISO 11898-2 specifies the
PMA and MDA (see Figure 4.2) sublayers of the physical layer. ISO 11898
and ISO 11898-2 are the basis of the discussions in this section.

4.4.1 CAN Bus Description

CAN Network is made of a group of nodes. Figure 4.7 gives a representation
of a common CAN node/bus as described by ISO-11898.The smallest work-
ing CAN network contains at least two active nodes to allow that one to act
as transmitting Node and the second to be receiving Node that will “ack” a

152 Controller Area Network (CAN)

Figure 4.8 Differential signal: Advantage of using differential balanced 2-wire interface in
noise elimination.

transmitted message. The complexity of the node can range from a simple I/O
device up to an embedded computer with a CAN interface and sophisticated
software. The node may also be a gateway allowing a standard computer to
communicate over a USB or Ethernet port to the devices on a CAN network.
The main types of CAN nodes are given in Section 4.4.2.1.

All nodes are connected to each other through a two wire bus. The wires
are a twisted pair with a 120 Ω (nominal) characteristic impedance.

The CAN bus is a differential balanced 2-wire interface running over
either a shielded twisted pair (STP), unshielded twisted pair (UTP), or ribbon
cable. Each node uses a Male 9-pin D connector (see Section 4.4.1.1.10). The
use of differential signal tends to eliminate the effect of the noise generated
on the bus (Figure 4.8). For data communication on the differential wire bus,
CAN uses for bit encoding the “Non Return to Zero (NRZ)” encoding tech-
nique (with bit-stuffing). NRZ encoding is used to ensure compact messages
that have a minimum number of transitions and high resilience to external
disturbance.

Figure 4.9 shows the configuration of CAN basic system. In this figure,
CAN network is made of a number of nodes (n nodes) that are connected to
a physical layer, which is a differential bus with termination Rt. Even though
we are using a differential bus in this figure, but we must keep in mind that
other possible physical layers exist. Unlike the 12C bus, the CAN bus does not
require that one of the nodes is a master. Nodes can be added to the network at
any time; it is not necessary to power the system down. The standard specifies
that up to 30 nodes can be added to the bus.

The communication between nodes in Controller Area Network protocol
is a synchronous. This means that all the nodes connected to the bus while

4.4 CAN Physical Layer 153

Figure 4.9 Basic CAN bus connection.

Figure 4.10 CAN bus electrical interface circuit (Ref. www.interfacebus.com).

receiving or transmitting must use the same clock rate and that all the clock
rates in the network are based on the same reference (single) point. The use of
synchronous serial communication results in more efficient data transmission.
On the other hand, to keep any two clocks synchronized for long time
represents a difficult task and needs some sort of fixed reference signal. With
time, it is very common that the clocks lose their synchronization due to
oscillator drift, propagation delays, and phase errors (see Section 4.4.1.2).

4.4.1.1 Electrical consideration
Electrically, the CAN bus utilizes balanced differential signaling; the cur-
rent in each signal line is equal and opposite. Such a scheme significantly
enhances noise immunity, increases common mode noise rejection, and
improves fault tolerance over single-ended drive models. For bus interfacing,
CAN uses the circuit shown in Figure 4.10.

154 Controller Area Network (CAN)

Figure 4.11 The inverted logic of a CAN bus.

The two serial lines that make up the CAN Bus are designated CANH
and CANL. The bus signaling protocol defines two states, dominant and
recessive. Similar to the wired AND configuration in the I2C bus, dominant
will override recessive. When the transmitted data, TXD, is a logical 0, the
bus is in the dominate state; the CANH signal line can be taken to voltage
between 2.75 and 4.5 V (e.g., 3.5 V), and the CANL is taken to voltage
between 0.5 and 2.25 V (e.g., 1.5 V), giving normally a difference of 2.0 V.
When the transmitted data is a logical 1, the bus is in the recessive (quiescent)
state, which is set to 2.5 V.

4.4.1.1.1 Inverted logic of CAN bus
Inverted logic of CAN bus is a fundamental CAN characteristic. Inverted
logic shown in Figure 4.11 represents the opposite logic state between the bus,
and the driver input and receiver output. Normally, a logic-high is associated
with a one, and a logic-low is associated with a zero–but not so on a CAN
bus. This is why, for example, Texas Instrument CAN (TI CAN) transceivers
have the driver input and receiver output pins passively pulled high internally,
so that in the absence of any input, the device automatically defaults to a
recessive bus state on all input and output pins.

In the recessive state (i.e., logic ‘1’ on the input), the differential voltage
on CANH and CANL is less than the minimum threshold (<0.5 V receiver
input or <1.5 V transmitter output) (see Figure 4.12).

In the dominant state (i.e., logic ‘0’ on the input), the differential voltage
on CANH and CANL is greater than the minimum threshold. A dominant
bit overdrives a recessive bit on the bus to achieve nondestructive bitwise
arbitration.

4.4 CAN Physical Layer 155

Figure 4.12 ISO11898 nominal bus levels.

4.4.1.1.2 Robustness
The ISO11898-2 specification requires that a compliant or compatible
transceiver must meet a number of electrical specifications. Some of these
specifications are intended to ensure the transceiver can survive harsh electri-
cal conditions, thereby protecting the communications of the CAN node. The
transceiver must survive short circuits on the CAN bus inputs from −3 V to
+32 V and transient voltages from −150 V to +100 V.

The robustness of CAN may also be attributed in part to its abundant
error checking procedures. CAN achieves utmost safety of data transfer. The
error detection techniques used guarantee that the residual error probability
for undetected corrupted message is less than:

message error rate * 4.7 * 10−11

Also the system guarantees that any node will not miss (or loose) any
message.

4.4.1.1.3 Bus lengths
ISO11898 specifies that a transceiver must be able to drive a 40 m bus at
1 Mbps. A longer bus length can be achieved by slowing the data rate. The
biggest limitation to bus length is the transceiver’s propagation delay.

156 Controller Area Network (CAN)

4.4.1.1.4 Bit rates and bus lengths
Many factors are affecting the allowed bit rate to be used on a CAN Bus. The
factors include:

Bus Length: The rate of data transmission depends on the total overall length
of the bus (the total actual length of the wiring in the network) and the delays
associated with the transceivers. This is a physical limitation and not set by
CAN protocol. The length of the bus is limited by two factors:

• The propagation delay time: which is the time period necessary for a
signal to go from one end of the bus to the other back again before the
next signal is transmitted. This can be explained as follows: The basics
of arbitration require that the front wave of the first bit of a message
travel to the most remote node on a network and back again before
the bit is designated by the receiver of the sending node as dominant
or recessive (typically this sample is made at about two–thirds the bit
width). With this limitation, the maximum bus length and signaling rate
are determined by network parameters.

• Time needed by the electronic circuitry to transmit and receive these
signals.

Increasing the length of the bus increases the sum of the propagation
delay and the time needed by the transmitting and receiving devices. This, in
turn, increases the nominal bit time and, accordingly, decreases the possible
transmission bit rate. As a result, every CAN system must trade bus length
for bit speed. For example, to have 1 Mbps speed, the maximum possible
bus length is specified as 25 meters, for longer bus lengths it is necessary to
reduce the bit rate. Table 4.1 gives some indication of the bit rates and the
corresponding maximum bus length.

Table 4.1 Maximum bit rate versus bus length
Bit Rate Length
1 Mbps 25 m

800 kbps 50 m

500 kbps 100 m

250 kbps 250 m

125 kbps 500 m

50 kbps 1000 m

20 kbps 2500 m

10 kbps 5000 m

4.4 CAN Physical Layer 157

The bit rate can always be slower than the maximum possible speed for a
given bus length. Conversely, the bus length can be shorter than the maximum
possible bus length for a given transmission speed. The CAN system designer
needs to keep in mind that transmissions tend to become more reliable with a
slower bit speed and shorter bus lengths.

Cable Bandwidth Limitation: Cable bandwidth limitations, which degrade
the signal transition time and introduce inter-symbol interference (ISI), are
primary factors reducing the achievable signaling rate when transmission
distance is increased.

System Delay: For a CAN bus, the signaling rate is also determined from the
total system delay–down and back between the two most distant nodes of a
system and the sum of the delays into and out of the nodes on a bus with the
typical 5ns/m prop delay of a twisted-pair cable.

Signal Amplitude Loss: Consideration must be given to the signal amplitude
loss due to resistance of the cable and the input resistance of the transceivers.
Under strict analysis, skin effects, proximity to other circuitry, dielectric loss,
and radiation loss effects all act to influence the primary line parameters and
degrade the signal.

A conservative rule of thumb for bus lengths over 100 m is derived from
the product of the signaling rate in Mbps and the bus length in meters, which
should be less than or equal to 50:

Signaling rate (Mbps) × Bus length (m) ≤ 50

If a 1000 m bus is required by an application, then by this approximation a 50
kbps signaling rate may safely be used. Lab experiments show that an actual
safe signaling rate with 1000 m of 120-W characteristic impedance twisted-
pair cable is indeed approximately 50 kbps. By providing this extra margin
of safety, a lot of system variation can still take place without disruptions in
communication.

A long cable length with a higher number of nodes than the Standard’s
recommended 30 nodes may require the use of higher cable quality, a CAN
bus repeater, and tighter operating tolerances such as a 5% voltage supply
regulation. In practice, however, almost any type of cable works to a certain
degree, even a cheap phone line for short distances.

4.4.1.1.5 Propagation delay
The CAN protocol has defined a recessive (logic ‘1’) and dominant (logic
‘0’) state to implement a nondestructive bit-wise arbitration scheme. It is this

158 Controller Area Network (CAN)

Figure 4.13 One-way propagation delay.

Note: Propagation delay will be discussed in detail in Section 4.4.3.1 while discussing “Bit Timing.”

arbitration methodology that is affected most by propagation delays. Each
node involved with arbitration must be able to sample each bit level within
the same bit time.

For example, if two nodes at opposite ends of the bus start to transmit their
messages at the same time, they must arbitrate for control of the bus. This
arbitration is only effective if both nodes are able to sample during the same
bit time. Figure 4.13 (see also Figure 4.24) shows a one-way propagation
delay between two nodes. Extreme propagation delays (beyond the sample
point) will result in invalid arbitration. This implies that bus lengths are
limited at given CAN data rates. In Section 4.4.3.1.1, bit timing is considered
in more detail.

A CAN system’s propagation delay is calculated as being a signal’s
round-trip time on the physical bus (tbus), the output driver delay (tdrv) and
the input comparator delay (tcmp). Assuming all nodes in the system have
similar component delays, the propagation delay is explained mathematically
by equation (4.1).

tprop = 2 · (tbus + tcmp + tdrv) (4.1)

4.4.1.1.6 Cables
Although unshielded 120-W cable is used in many applications, data trans-
mission circuits employing CAN transceivers are used for jobs requiring a
rugged interconnection with a wide common-mode voltage range. Therefore,
shielded cable such as Belden Cable 3105A is recommended in these elec-
tronically harsh environments. Shielded cable and the Standard’s 2 V to 7 V
common-mode range of tolerable ground off-set, help to ensure data integrity.

4.4 CAN Physical Layer 159

Note that the HVD1050 CAN transceiver has an extended common-mode
range of −12 V to 12 V.

While prefabricated cables for CAN applications are more expensive,
they are more easily installed and verified, and may, therefore, reduce overall
installation cost and time-to-market.

4.4.1.1.7 Shield termination
If a shield must be used, it is recommended that a short pig-tail be crimped
to the shield end at each connector and then brought through a separate
connector pin to a ground pin located as close to the connector as possible.
Note that the network should be grounded at a single point at the source
location.

This prevents parasitic currents from flowing in the shield between ground
connections. If individual shielding of the signal pairs is used, use the same
terminating technique as for the overall shield.

4.4.1.1.8 Grounding
There should be only one path for return current between the host and
receiving nodes. This follows the same discussion in the shielding section. If
a network is grounded in more than one location, parasitic current will flow.
By grounding a network only at the source, potentially hazardous ground
loops are avoided. The use of digital isolators such as the ISO721 (SLLS629)
is recommended if it becomes necessary to connect the grounds of different
sources.

Unused pins in connectors as well as unused wires in cables should be
single-point grounded at the connector. Unused wires should be grounded at
alternate ends to nearby ground pins.

4.4.1.1.9 Bus termination–line termination
Bus termination is used to minimize signal reflection on the bus. ISO-11898
requires that the CAN bus have a nominal characteristic line impedance of
120Ω. Therefore, the typical terminating resistor value for each end of the bus
is 120Ω. There are a few different termination methods used to help increase
EMC performance (see Figure 4.14).

1. Standard Termination
2. Split Termination
3. Biased Split Termination

160 Controller Area Network (CAN)

Figure 4.14 Termination converts.

Standard Termination: As the name implies, this termination uses a single
120 resistor at each end of the bus. This method is acceptable in many CAN
systems.

Split Termination: Split termination is a concept that is growing in popular-
ity because emission reduction can be achieved very easily. Split termination
is a modified standard termination in which the single 120Ω resistor on each
end of the bus is split into two 60Ω resistors, with a bypass capacitor tied
between the resistors and to ground. The two resistors should match as close
as possible.

4.4.1.1.10 Connectors
ISO-11898-2 does not specify the mechanical wires and connectors. Con-
nectors, while not specified by the Standard, should have a characteristic
impedance matching that of the bus line and terminators, and it should not
affect standard operating parameters such as the minimum VOD.

The higher layer protocols such as CANopen and DeviceNet define
the specific hardware required for implementation, including bus wire and
connectors. Recommended products may be found on organization web-sites
such as the CiA’s CAN-cia.com which list connector and pin-out specifi-
cations for use in CANopen applications. These include the 9-pin DSUB
shown in Figure 4.15, Multipole, RJ10, RJ45, M12, the 5-pin mini-style
in Figure 4.16 and more micro-style connectors in the CiA specification
document DR 303-1, V1-3.

4.4.2 CAN Node

Consider Figure 4.2 again, CAN BUS (ISO-11898-2). The figure shows the
components needed for any CAN node. This is shown in more detail in
Figure 4.17.

4.4 CAN Physical Layer 161

Figure 4.15 CANopen DSUB connector.

Figure 4.16 5-Pin mini-connector (ANSI/B.93.55M-1981).

Figure 4.17 CAN node.

162 Controller Area Network (CAN)

From Figures 4.7 and 4.17, each CAN node requires a:

• Central processing unit, microprocessor, or host processor:

◦ The host processor decides what the received messages mean and
what messages it wants to transmit.
◦ Sensors, actuators and control devices can be connected to the host

processor.

• CAN controller: Often an integral part of the microcontroller

◦ Receiving: the CAN controller stores the received serial bits from
the bus until an entire message is available, which can then be
fetched by the host processor (usually by the CAN controller
triggering an interrupt) (see Section 4.4.2.1).
◦ Sending: the host processor sends the transmit message(s) to a

CAN controller, which transmits the bits serially onto the bus when
the bus is free.

• Transceiver: Defined by ISO 11898-2/3 Medium Access Unit [MAU]
standards

◦ Receiving: it converts the data stream from CANbus levels to levels
that the CAN controller uses. It usually has protective circuitry to
protect the CAN controller.
◦ Transmitting: it converts the data stream from the CAN controller

to CANbus levels.

Each node is able to send and receive messages, but not simultaneously. A
message or Frame, as discussed latter, consists primarily of the ID (identifier),
which represents the priority of the message, and up to eight data bytes.
A CRC, acknowledge slot [ACK] and other overhead are also part of the
message. The improved CAN FD extends the length of the data section
to up to 64 bytes per frame. The message is transmitted serially onto the
bus using a non-return-to-zero (NRZ) format and may be received by all
nodes.

The devices that are connected by a CAN network are typically sensors,
actuators, and other control devices. These devices are connected to the bus
through a host processor, a CAN controller, and a CAN transceiver.

4.4.2.1 CAN nodes types
The analyses of Figures 4.8 and 4.17 and the discussions given in the above
section show the possibility of three CAN Node types (Figure 4.18).

4.4 CAN Physical Layer 163

Figure 4.18 CAN node types.

1. A node that does not have an integrated CAN module:
The node on the left of Figure 4.18 is an example of such a node: a
microcontroller that does not have an integrated CAN module, but the
application requires that it still needs to connect to the CAN bus.
This is the case when the network designer needs that the application
under consideration to be connected to the CAN bus, but, at the same
time, the application requires a certain microcontroller that does not
come with an integrated CAN module.
The simplest solution in such cases is to use a standalone CAN module.
The CAN module, now, replaces that which not integrated within the
node.

2. A node with integrated CAN module:
The node at the center of Figure 4.18 is an example: The node in
this example is a microcontroller with an integrated CAN module.
Such microcontroller allows for a faster internal connection between
the CAN module and microcontroller. This is the most common type
of nodes used on the CAN bus. Many microcontroller manufacturers
provide microcontroller integrated within it CAN module. Microchip,
for example, currently provides 8/16/32 bit PIC micros with the CAN
module integrated.

3. Node with CAN I/O expander

The node on the right side of Figure 4.18 is an example. This integrate
circuit provides I/O expansion for a CAN network without a microcontroller.
This device would have peripheral like GPIO, A2D, or PWM. Such Node can
be configured with defaults to send out messages periodic or event driven on

164 Controller Area Network (CAN)

thresholds. Also other nodes can interact to read I/O or change Outputs. This
node requires no microcontroller firmware to write or debug, but then lacks
some flexibility with nonproprietary High Layer Protocols.

Such devices were designed for low cost simple sensor applications.

4.4.3 Sublayers of the CAN Physical Layer

Let us consider Figure 4.2 again. The figure shows that the CAN physical
layer is divided into three parts (sublayers): The physical coding (PCS)
implemented in the CAN controller chips, the physical media attachment
(PMA) specifying the transceiver characteristics, and the physical media-
dependent sublayers (PMS). The PMS is application-specific and is not
generally standardized.

The figure shows also two interfaces: The AUI (attachment unit interface)
is the interface between CAN controller and CAN transceiver chip; the MDI
(medium-dependent interface) is the interface to physical bus lines.

The PCS comprises the bit encoding and bit decoding, the (re-
)synchronization as well as the bit timing. This sublayer provides the
attachment unit interface (AUI), which is the interface to the transceiver
chips. The AUI are realized by means of the TxD and RxD pins. There are
two implementations: the 5-V version and the 3.3-V version.

4.4.3.1 The physical coding sublayer: Overview
Controller Area Network (CAN) protocol, as mentioned before, is an asyn-
chronous serial bus with Non-Return to Zero (NRZ) bit coding designed
for fast, robust communications in harsh environments, such as automotive
and industrial applications. The use of NRZ encoding, and in contrast to the
Manchester coding, not every bit contains a falling or a rising edge. NRZ
ensures a minimum number of transitions and high resilience to external
disturbance. The two bits are encoded in medium states defined as “recessive”
and “dominant”. (0 is typically assumed as associated to the “dominant”
state). The protocol allows multimaster access to the bus with deterministic
collision resolution. At the very lowest level, this means that if multiple
masters try to drive the bus state, the “dominant” configuration also prevails
upon the “recessive”.

During one bit, the voltage (0 V or +5 V resp. 3.3 V) is constant. In case
of NRZ coding, the signal level can remain constant over a longer period of
time if the transmitted bits have the same logical value. Therefore, measures
must be taken to ensure that the maximum permissible interval between two

4.4 CAN Physical Layer 165

signal edges is not exceeded. This is important for synchronization purposes.
Hence, the CAN protocol uses so-called stuff-bits: After five bits of the same
value, the transmitting CAN controller automatically includes a bit of the
opposite value. The receiving CAN nodes de-stuff the bit sequence, meaning
after five bits of the same value they automatically delete the following one.
This way it is guaranteed that the original bit sequence is the same as the
sequence forwarded to the host controller. Of course, these stuff-bits are
visible on the bus lines.

If the bus is idle (recessive state for at least three bit-times), the first
falling edge (recessive-to-dominant) is used to globally synchronize (hard
synchronization) all CAN controllers. Every following recessive-to-dominant
edge is used to locally synchronize (soft synchronization) the nodes. The
re-synchronization is limited by the bit-timing settings.

On the bit-level–the OSI physical layer–Classical (standard) CAN uses
synchronous bit transmission. This enhances the transmitting capacity but
also means that a sophisticated method of bit synchronization is required.
While in a character-oriented transmission (asynchronous) bit synchroniza-
tion is performed upon the reception of the start bit available with each
character, in a synchronous transmission protocol only one start bit is avail-
able at the beginning of a frame. To enable the receiver to correctly read the
messages, continuous re-synchronization is required. Phase buffer segments
are therefore inserted before and after the nominal sample point within a bit
interval.

The details of bit timing, synchronization, bit rate, bus delay and other
parameters are given next. The CAN protocol allows the user to program
the bit timing parameters as the bit rate, the sample point of the bit, and the
number of times the bit is sampled. With these features, the network can be
optimized for a given application.

There are relationships between bit timing parameters, the physical bus
propagation delays, and the oscillator tolerances throughout the system. This
section of the chapter investigates these relationships as they are given in the
original Bosh Standard and used in many CAN modules and how this assists
in optimizing the bit timing for given physical system attributes.

4.4.3.1.1 Bit-timing setting for Standard CAN
4.4.3.1.1.1 The Can Bit Time
CAN has advanced features for coping with the time delays found in long bus
lengths (in comparison to the bit rate) and coping with differences in clock
Crystal frequencies for nodes on the bus.

166 Controller Area Network (CAN)

Figure 4.19 Bit timing.

The choice of bit timing is very important since it decides the bit rate, the
sample point and the ability to resynchronize.

The CAN bit time is made up of non-overlapping segments. Each of these
segments are made up of integer units called Time Quanta (TQ) (explained
later). The Nominal Bit Rate (NBR) is defined in the CAN specification as
the number of bits per second transmitted by an ideal transmitter with no
resynchronization and can be described with the equation:

NBR = fbit =
1

tbit

The CAN bit is logically divided into four nonoverlapping segments
(Figure 4.19): synchronization segment, propagation segment, phase-segment
1, and phase-segment 2. Each segment consists of one or more time quanta
(TQ). The synchronization segment has always a length of 1 TQ (one time
quanta). The following propagation segment and phase-segment 1 are not
distinguishable for the user. It is configured as one value. The forth part is
the phase-segment 2. Between the two phase-segments, the sample-point is
located. If the bit-timing settings move the sample-point to the end of the bit,
the propagation segment is enlarged, so that you can realize longer networks.
If the sample-point is configured in the other direction, the re-synchronization
capability is increased.

The nominal bit time (NBT), accordingly, is the summation of the
following four segments:

tbit = tSyncSeg + tPropSeg + tPS1 + tPS2

Associated with the NBT are the Sample Point, Synchronization Jump Width
(SJW), and Information Processing Time (IPT), which are explained later,
after defining the four segments.

4.4 CAN Physical Layer 167

(a) Synchronization segment (SynchSeg)
The synchronization segment (SyncSeg or Synch Seg) is used to synchronize
the various nodes on the bus. When a bit is sent on the bus, the leading edge
is expected to be within this segment.

This segment is always one time quantum long.

(b) Propagation segment (PropSeg)
The Propagation Segment (PropSeg) exists to compensate for physical delays
between nodes. The propagation delay is defined as twice the sum of the
signal’s propagation time on the bus line, including the delays associated
with the bus driver. Equation (4.1) gives the relation. The PropSeg is
programmable from 1–8 TQ.

(c) Phase Segment 1 (PhaseSeg1), Phase Segment 2
(PhaseSeg2)
The two phase segments, PS1 and PS2 are used to compensate for edge
phase errors on the bus. PS1 can be lengthened or PS2 can be shortened
by resynchronization. PS1 is programmable from 1TQ to 8TQ and PS2 is
programmable from 2TQ to 8TQ.

4.4.3.1.1.2 Sample point
The sample point is the point in the bit time in which the logic level is read
and interpreted. The sample point is located at the end of phase segment 1,
that is, the edge between TSEG1 and TSEG2.. The exception to this rule is,
if the sample mode is configured to sample three times per bit. In this case,
the bit will be sampled three quanta in a row, with the last sample being taken
in the edge between TSEG1 and TSEG2. In such case, the value of the bit
is determined by a majority decision. Three samples should only be used for
relatively slow baud rates.

The sample point should be the same in all connected CAN nodes, as
shown in Figure 4.20. However, in practice it is sufficient if the sample
points do not vary too much. The automotive industry has specified some
recommendations for the bit timing settings in the SAE J2284 series. For
CANopen networks, the recommendations given in CiA 301 should be used
(CiA is abbreviation of “Controller in Automotive”). The sample points
should be at 87,5 percent of the bit time. For most of the specified bit rates
a range of 85 percent to 90 percent is allowed. Of course, the larger the
tolerance range, the shorter the maximum possible length of the network.

168 Controller Area Network (CAN)

Figure 4.20 Bit segments.

4.4.3.1.1.3 Implementation of bit segments in practical CAN
controllers

In most implementations of CAN controllers the segments seem to be imple-
mented in a different way than described in the standard. The synch segment
looks as in the standard and consists of one time quantum. The big difference
is that the propagation segment and the phase segment 1 in the standard have
been combined into one segment, TSEG1. Phase segment 2 is left untouched,
but is renamed to TSEG2.

4.4.3.1.1.4 Information processing time (IPT)
The Information Processing Time (IPT) is the time required for the logic to
determine the bit level of a sampled bit. The IPT begins at the sample point.
It is measured in TQ and is fixed. For many CAN modules, for example,
Microchip CAN module, it begins at 2TQ. Since phase segment 2 also begins
at the sample point and is the last segment in the bit time, it is required that
the minimum value of Phase Segment 2 (PS2) to be not less than the IPT.
Therefore:

PS2min = IPT = 2TQ

4.4.3.1.2 Bit timing setting for CAN FD
For each node, the distance (time) between the detected and the expected
position of a falling or raising edge is called the phase error of that edge.

CAN FD uses two bit rates. The bit timing setting for the arbitration phase
follows the same rules as in Classical CAN. In addition, the time quantum
should be as short as possible, in order to reduce the quantization error in
the data phase. This means a bit should be made of as many time quanta as
possible. Some chipmakers provide a maximum of 385 tq for the arbitration
phase.

4.4 CAN Physical Layer 169

Figure 4.21 Bit-timing for CAN FD.

The data phase bit timing is independent of the arbitration phase bit
timing. In the CAN FD data phase, the same parameters are to be set as in the
arbitration phase (bit rate prescaler, length of propagation + phase-segment
1, phase-segment 2, and the synchronization jump width). Additionally, you
need to configure the transmitter delay compensation (TDC) and its offset (up
to two bits). This is necessary especially for higher bit rates. The CiA 601-1
document gives hints and guidelines to calculate appropriate values. There
are bit rate depended effects to be considered as well as effects not dependent
on the bit rate.

Because in the data phase the nodes are not synchronized, the time quanta
in all nodes should be the same or multiple of the others. This is why only
oscillator frequencies of 20 MHz, 40 MHz, or 80 MHz are allowed. The
sample point should be at the same point in all nodes.

4.4.3.2 Calculation of baud-rate and sample point
(a) Calculation of baud rate
The baud rate of the bus can be calculated from:

Baud rate = fcrystal/(2 ∗ n ∗ (BRP + 1))

Where

– n is the number of time quanta for one bit and is defined as :

n = SYNCHSEG+TSEG1+TSEG2

– BRP is the value of the Baud Rate Prescaler.

Important Note: Some CAN controllers (like Intel 526) has another way of
calculating the number of time quantas in a bit. In general, it is recommended
for the designer to consult the user’s manual of the CAN Controller that
he/she is using in the application.

170 Controller Area Network (CAN)

(b) Calculation of Sample point

Quantabefore sample = TSEG1 + 1

Quantaafter sample = TSEG2

Often the sample point is given in percent of the bit time. This is:

(TSEG1+1)/(TSEG1+1+TSEG2)

Important note: Some CAN controllers (like the C167CR) use another way
of calculating Quantaafter sample. It is recommended for the user to consult
the manual of the controller he/she is using.

Definition: Time quantum
Each of the four segments that make up a bit time is made up of integer units
called Time Quanta (TQ). The length of each Time Quantum is based on
the oscillator period (tOSC). The base TQ equals twice the oscillator period.
Figure 4.22 shows how the bit period is derived from TOSC and TQ. The
TQ length equals one TQ Clock period (tBRPCLK), which is programmable
using a programmable prescaler named the Baud Rate Prescaler (BRP). This
is shown in the following equation:

TQ = 2 ·BRP · TOSC =
2 ·BRP
fOSC

The value of BRP depends on the configuration as shown in Figure 4.22.

Figure 4.22 TQ and the bit period.

4.4 CAN Physical Layer 171

4.4.3.3 Synchronization jump width (SJW)
The Synchronization Jump Width (SJW) adjusts the bit clock as necessary by
1TQ–4TQ to maintain synchronization with the transmitted message.

The value of SJW is configured (adjusted) by the two bits SJW.0 and
SJW.1 of one of the Bit timing Control Registers, SNF1, as follows:

<SJW.0, SJW.1> 00 01 10 11
Value of SJW in TQ 1 TQ 2 TQ 3 TQ 4 TQ

The calculation of the minimum value of SJW is given in Example 1 and
the Bit Timing Control Register is given next.

4.4.3.4 Bit timing control registers
As mentioned before and as it is shown in Figure 4.22, the three segments
PropSeg, PS1 and PS2 are programmable, that is, the number of quanta in
each can be adjusted according to the application. This is achieved by using
special register called “Bit Timing Control Register.” The CAN Bit Timing
Control (CNF) registers are the three registers that configure the CAN bit
time. Figure 4.23 details the function of the CNF registers.

By adjusting the length of the TQ (tTQ) and the number of TQs in
each segment, both the nominal bit time and the sample point can easily be
configured as desired.

Programming the Timing Segments: There are several requirements for
programming the CAN bit timing segments.

1. PropSeg + PS1 = PS2
2. PropSeg + PS1 = tPROP

3. PS2 > SJW

4.4.3.5 Synchronizing the bit time
All nodes on the CAN bus must have the same nominal bit rate. Noise, phase
shifts, and oscillator drift create situations where the nominal bit rate does
not equal the actual bit rate in a real system. Therefore, the nodes must have
a method for achieving and maintaining synchronization with bus messages.

Nodes are synchronized on the bit edges so that every node agrees on
the value of the bit currently transmitted on the bus. To do so, each node
implements a synchronization protocol that keeps the receiver bit rate aligned
with the actual rate of the transmitted bits. The synchronization protocol uses
transition edges to resynchronize nodes. Hence, long sequences without bit
transitions should be avoided to avoid drifts in the node bit clocks. This is

172 Controller Area Network (CAN)

Figure 4.23 CAN bit control registers (For MCP2510 CNF Register).

4.4 CAN Physical Layer 173

the reason why the CAN protocol employs the so called ”bit stuffing” or ”bit
padding” technique, which forces a complemented bit in the stream after 5
bits of the same type have been transmitted. Stuffing bits are automatically
inserted by the transmission node and removed at the receiving side before
processing the frame contents.

Synchronous bit transmission enables the CAN arbitration protocol and
simplifies data-flow management, but also requires a sophisticated synchro-
nization protocol. Bit synchronization is performed first upon the reception of
the start bit available with each asynchronous transmission. Later, to enable
the receiver(s) to correctly read the message content, continuous resynchro-
nization is required. Other features of the protocol influence the definition of
the bit timing. For the purpose of bus arbitration, message acknowledgment
and error signaling, the protocol requires that nodes can change the status
of a transmitted bit from recessive to dominant, with all the other nodes in
the network being informed of the change in the bit status before the bit
transmission ends. This means that the bit time must be at least large enough
to accommodate the signal propagation from any sender to any receiver and
back to the sender.

4.4.3.6 Oscillator tolerance
The bit timing for each node in a CAN system is derived from the reference
frequency (fOSC) of its node. This creates a situation where phase shifting
and oscillator drift will occur between nodes due to less than ideal oscillator
tolerances between the nodes. The CAN specification indicates that the worst
case oscillator tolerance is 1.58% and is only suitable for low bit rates (125
kbps or less). The details of the effect of oscillator tolerances can be found in
some of the references of this chapter.

4.4.3.7 Propagation delay
The CAN protocol has defined a recessive (logic ‘1’) and dominant (logic
‘0’) state to implement a nondestructive bit-wise arbitration scheme. It is this
arbitration methodology that is affected most by propagation delays. Each
node involved with arbitration must be able to sample each bit level within
the same bit time.

For example, if two nodes at opposite ends of the bus start to transmit their
messages at the same time, they must arbitrate for control of the bus. This
arbitration is only effective if both nodes are able to sample during the same
bit time. Figures 4.24 and 4.25 show a one-way propagation delay between
two nodes. Extreme propagation delays (beyond the sample point) will result

174 Controller Area Network (CAN)

Figure 4.24 Bit propagation delay.

Figure 4.25 One-way propagation delay.

in invalid arbitration. This implies that bus lengths are limited at given CAN
data rates. In Section 4.4.3.1.1, bit timing is considered.

A CAN system’s propagation delay (tprop)is calculated as being a signal’s
round-trip time on the physical bus (tbus), the output driver delay (tdrv) and
the input comparator delay (tcmp). Assuming all nodes in the system have
similar component delays, the propagation delay is explained mathematically
by equation (4.1).

tprop = 2 · (tbus + tcmp + tdrv)

4.4 CAN Physical Layer 175

4.4.3.8 Synchronization: Synchronization Mechanisms used in
CAN

(a) Overview
All nodes on the CAN bus must have the same nominal bit rate. Noise, phase
shifts, and oscillator drift create situations where the nominal bit rate does
not equal the actual bit rate in a real system. Therefore, the nodes must have
a method for achieving and maintaining synchronization with bus messages.

Nodes are synchronized on the bit edges so that every node agrees on
the value of the bit currently transmitted on the bus. To do so, each node
implements a synchronization protocol that keeps the receiver bit rate aligned
with the actual rate of the transmitted bits. The synchronization protocol uses
transition edges to resynchronize nodes. Hence, long sequences without bit
transitions should be avoided to avoid drifts in the node bit clocks. This is
the reason why the CAN protocol employs the so called ”bit stuffing” or ”bit
padding” technique, which forces a complemented bit in the stream after 5
bits of the same type have been transmitted. Stuffing bits are automatically
inserted by the transmission node and removed at the receiving side before
processing the frame contents.

Synchronous bit transmission enables the CAN arbitration protocol and
simplifies data-flow management, but also requires a sophisticated synchro-
nization protocol. Bit synchronization is performed first upon the reception of
the start bit available with each asynchronous transmission. Later, to enable
the receiver(s) to correctly read the message content, continuous resynchro-
nization is required. Other features of the protocol influence the definition of
the bit timing. For the purpose of bus arbitration, message acknowledgment
and error signaling, the protocol requires that nodes can change the status
of a transmitted bit from recessive to dominant, with all the other nodes in
the network being informed of the change in the bit status before the bit
transmission ends. This means that the bit time must be at least large enough
to accommodate the signal propagation from any sender to any receiver and
back to the sender.

(b) Synchronization Mechanisms used in CAN
Any node receiving a frame has to be synchronized with the transmitter. The
NRZ bit coding used in CAN does not encode a clock into the message. In
other words, CAN system has no explicit clock signal that can be used by the
receiver and the transmitter as reference to achieve synchronization. In spite
of that, the receivers must synchronize to the transmitted data stream to insure

176 Controller Area Network (CAN)

messages are properly decoded. CAN nodes use two different mechanisms to
synchronize their clocks, “hard synchronization” and “re-synchronization”:

• Hard synchronization

Hard synchronization occurs only once during a message transmission. It
only occurs on the first recessive-to-dominant (logic “1” to “0”) edge during
a bus idle condition, which indicates a Start-of-Frame (SOF) condition. The
Start of Frame is the first bit of the frame and it is transmitted dominantly.
Before it the CAN bus is in a recessive state. All the nodes connected to the
bus automatically synchronize its clock using the transition created by the
SOF bit. Hard synchronization causes the bit timing counter to be reset to the
SyncSeg which causes the edge to lie within the SyncSeg. At this point, all of
receivers will be synchronized to the transmitter.

Synchronization takes place during transmission. The phase segments
are shortened or lengthened so that the following bit starts within the SyncSeg
portion of the following bit time. In detail, PhaseSeg1 may be lengthened
or PhaseSeg2 may be shortened. Damping is applied to the synchronization
protocol. The amount of lengthening or shortening of the PHASE BUFFER
SEGMENTs has an upper bound given by a programmable parameter Resyn-
chronization Jump Width (RJW) (between 1 and min (4, PhaseSeg1) Time
Quanta).

Synchronization information may be only be derived from transitions
from one bit value to the other. Therefore, the possibility of resynchronizing
a bus unit to the bit stream during a frame depends on the property that a
maximum interval of time exists between any two bit transitions (enforced by
the bit stuffing protocol).

Figure 4.26 Sample point of CAN bit.

4.4 CAN Physical Layer 177

The device designer may program the bit-timing parameters in the CAN
controller by means of the appropriate registers. We note here that depending
on the size of the propagation delay segment the maximum possible bus
length at a specific data rate (or the maximum possible data rate at a specific
bus length) can be determined.

We note here that an SOF bit can be received both during Bus Idle, and
also during Suspend Transmission and at the end of Interframe Space. This
is why the Bosch CAN Reference Model enables Hard Synchronization not
only for Bus Idle state, but also for Suspend state and the last bit of Interframe
Space. Any node disables Hard Synchronization if it samples an edge from
recessive to dominant or if it starts to send the dominant SOF bit.

Since synchronization on edges from dominant to recessive has become
obsolete with the upgrade from CAN specification 1.1 to version 1.2, the
Bosch CAN Reference Model does not support this kind of synchronization!

• Resynchronization:

Hard synchronization mechanism achieves the synchronization at the begin-
ning of the message but it is not enough to compensate for oscillator drift,
and phase differences between transmitter and receiver oscillators during
the entire time of the frame. This makes the clocks to be not able to
remain synchronized throughout the entire frame. To keep the clock con-
tinually resynchronize, CAN uses an additional synchronization mechanism:
“resynchronization”

– Resynchronization occurs every time the bus transitions from recessive
to dominant. The bit stuffing used in CAN (see latter)guarantee that
a transition will occur in the bit stream even if the original message
is a string of “0”s or “1”s. Bit stuffing does not allow the contents
of the frame to has more than five consecutive identical bit levels. If
it happened, the transmitter will automatically add (stuff) a bit of the
opposite polarity into the bit stream.

– Resynchronization is automatically invoked if the system does not rec-
ognize the occurrence of an edge at the “Synchronization Segment” of
any of the bit that follow the SOF bit of any received frame. These
results in either shorten or lengthen the current bit time depending on
where the edge occurs. The maximum amount by which the bit time is
lengthened or shortened is determined by a user-programmable number
of time quanta known as the Synchronization Jump Width (SJW).

Resynchronization is achieved by implementing a Digital Phase
Lock Loop (DPLL) function which compares the actual position of a

178 Controller Area Network (CAN)

Figure 4.27 Synchronizing the bit time.

recessive-to-dominant edge on the bus to the position of the expected edge
(within the SyncSeg) and adjusting the bit time as necessary. The phase error
(e) of a bit is given by the position of the edge in relation to the SyncSeg,
measured in TQ, and is defined as follows:

• e = 0; the edge lies within the SyncSeg.
• e > 0; the edge lies before the sample point. (TQ added to PS1).
• e < 0; the edge lies after the sample point of the previous bit. (TQ

subtracted from PS2).

Figure 4.27 shows the synchronization of the Bit Time.

4.4 CAN Physical Layer 179

Table 4.2 CAN bit rate versus bus length
Bit Rate (kbps) Bus Length
1000 30

500 100

250 250

125 500

62.5 1000

Figure 4.27 shows how phase errors, other than zero, cause the bit time to
be lengthened or shortened. Synchronization Rules:

1. Only recessive-to-dominant edges will be used for synchronization.
2. Only one synchronization within one bit time is allowed.
3. An edge will be used for synchronization only if the value at the previous

sample point differs from the bus value immediately after the edge.
4. A transmitting node will not resynchronize on a positive phase error

(e > 0). This implies that a transmitter will not resynchronize due to
propagation delays of it is own transmitted message. The receivers will
synchronize normally.

5. If the absolute magnitude of the phase error is greater than the SJW,
then the appropriate phase segment will be adjusted by an amount equal
to the SJW.

Putting It All Together: As indicated previously, the CAN protocol imple-
ments a non-destructive bitwise arbitration scheme that allows multiple nodes
to arbitrate for control of the bus. Therefore, it is necessary for all the nodes
to detect/sample the bits within the same bit time. The relationship between
propagation delay and oscillator tolerance effects both the CAN data rate and
the bus length. Table 4.2 shows some commonly accepted bus lengths versus
data rates.

This application note does not cover all of the details for configuring
the bit time for all scenarios; however, some general methodologies for
configuring the CAN bit time are covered.

4.4.3.9 Calculating oscillator tolerance for SJW
The bit stuffing rule guarantees that no more than five like bits in a row will
be transmitted during a message frame. The only exception is at the end of
the message that includes ten recessive bits (one ACK delimiter, seven end-
of-frame bits, and three inter frame space bits).

180 Controller Area Network (CAN)

Figure 4.28 Maximum time between synchronization edges.

Resynchronization can only occur on recessive-to-dominant edges. This
implies that there can be a maximum of ten bits between resynchronization
due to bit stuffing (Figure 4.28).The oscillator tolerance between the slowest
node and the fastest node can be used to determine the minimum SJW.
Assuming Node A is the slow node (longest bit time) and Node B is the
fast node (shortest bit time):

10 tbit(A) > 10 tbit(B) + tSJW (B) (4.2)

Where

tbit(n) = bit time of node “n”

tSJW (n) = SJW of node “n”

4.4.3.10 Configuring the bit
In general, the longer the bus, the slower the maximum data rate due to
propagation delays on the line. Increasing the oscillator tolerances between
nodes can greatly amplify the relationship. CAN system designers must
take this relationship into consideration when defining the network. The fol-
lowing examples demonstrate bit timings for achieving maximum oscillator
tolerance or maximum bit rate.

Example 4.1: How to find Minimum SJW
Given the following:

Nominal Bit Time = 1 µs
Oscillator tolerance = 1.25%
Number of TQ per bit = 8

Find SJW minimum

tbit(A) = 1.01200 µs

4.4 CAN Physical Layer 181

tbit(B) = 0.98875 µs

TQ(A) = 126.563 ns

TQ(B) = 123.438 ns

Using Equation (4.2) we get

tSJW (B) > 10 tbit(A) − 10 tbit(B) = 0.2325. We take it = 0.250 µs

Number TQSJW >
tSJW (B)

TQ(B)

=
250ns

123.44ns
= 2.025

Number TQSJW = 3

Alternatively, the following equation can be used to maintain synchronization
during normal bus operation: Solving for Oscillator Tolerance (∆f),

SJW > (24f)(10NBT)

Solving for Oscillator Tolerance4f , we get

4f < SJW/20NBT

Example 4.2: Calculation of the Maximum Oscillator Tolerance.
The maximum oscillator tolerance for a maximum data rate is achieved

when the phase segments 1 and 2 are equal to the maximum synchronization
jump width (4 TQ). Also, the propagation segment is minimum, indicating a
short bus and fast transceiver.

As mentioned before and given by equation (1), the propagation delay is
twice the delays of the bus, the receiver circuitry, and the driver:

tprop = 2 · (tbus + tcmp + tdrv)

Assume that the bus length is 50 m and the bus propagation delay is 5.5 ns/m:

tBUS = 50 m× 5.5 ns/m = 275 ns

tCMP = 40 ns

tDRV = 60 ns

Then:
tprop = 2 · (tbus + tcmp + tdrv) = 750 ns

Since the propagation segment is used to compensate for propagation
delays and must be set to the minimum of 1QT, the implied time quantum
= tPROP = 750 ns

Figure 4.29 shows the bit timing in this case.

182 Controller Area Network (CAN)

Figure 4.29 Bit timing for maximum oscillator tolerance.

Example 4.3: Calculation of Maximum Bit Rate.
The previous example showed that for a given bus length, the maximum data
rate is inversely affected, due to oscillator tolerance (as oscillator tolerance
goes up, the data rate goes down). To achieve the maximum bit rate for
a given bus length, the emphasis is placed on configuring the bit time for
the propagation delays (i.e., adjusting PropSeg to maximum). The oscillator
tolerance must be minimized. Given the same delays as the previous example:

tBUS = 50 m @ 5.5 ns/m = 275 ns
tCMP = 40 ns
tDRV = 60 ns
tprop = 2 · (tbus + tcmp + tdrv) = 750 ns

Since the oscillator tolerance is minimum, the phase segments and SJW
can be set to the minimum. Assuming the bit time is 10TQ total, the PropSeg
can be set to 6TQ which sets TQ = 125 ns. Figure 4.30 shows the bit timing
for maximum bit rate.

4.4.3.11 The physical media attachment sublayer
The PMA sublayer is normally implemented in the transceiver chip. The
inputs are the TxD and RxD signals from the CAN controller. The outputs
drive the bus-lines. There are different solutions available:

• Most important is the CAN high-speed transmission as specified in ISO
11898-2.

• Increasingly in use are high-speed transceivers with low-power function-
ality also specified in ISO 11898-2 (formerly in ISO 11898-5).

4.4 CAN Physical Layer 183

Figure 4.30 Bit-timing for maximum bit rate.

• In some automotive applications, high-speed transceivers with an addi-
tional selective wake-up capability as specified in ISO 11898-2 (for-
merly in ISO 11898-6) are used.

• The low-speed (up to 125 kbps), fault-tolerant, and low-power
transceivers standardized in ISO 11898-3 will be increasingly substi-
tuted by high-speed transceivers with low-power functionality.

• The low-speed (up to 125 kbps) transceivers providing a higher voltage
level as the others are required in Europe for truck-trailer point-to-point
CAN communication (ISO 11992-1).

• Transceivers for single-wire communication (SWC) as specified in SAE
J2411 provide a low-speed transmission and are rarely used.

The high-speed transceivers are qualified for different bit rates (e.g.,
1 Mbps, 2 Mbps, 5 Mbps, and 8 Mbps). Components for Classical CAN
transmissions up to 1 Mbps don’t need to fulfill asymmetry requirements.
Transceivers for bit rates above 1 Mbps do. Of course, you can use chips
qualified for a higher bit rate than actually used in the network.

4.4.3.12 The medium-dependent sublayer
There are only a few general requirements for this sublayer. It is highly
application-specific. Of course, if you use a high-speed transmission, a line
topology is recommended (daisy chained or with very short stubs). Star
(single or double) topologies with terminations in the center are often used for
Classical CAN. For CAN FD networks they can’t be recommended though.
The same is true for hybrid topologies, made of a star and a line.

184 Controller Area Network (CAN)

Figure 4.31 Pin description of 9-pin connector.

As early as 1992, CiA recommended a pinning for 9-pin D-sub connectors
(DIN 41652) (Figure 4.31).

In case of high-speed transmissions, both ends are terminated nominally
with 120 Ohm matching the impedance of all physical layer components
(cable, connector, optional galvanic isolation circuitry). In order to achieve
a maximum network length, the physical layer components should not
cause delays. For the high-speed transmission cable, a delay of 5 ns/m is
suitable.

Also, the standardization for pin-assignment for different connectors
belongs to the medium-dependent sublayer. CiA has recommendations for
the pinning of many connector types. The very first one for 9-pin D-sub con-
nectors was already specified in 1992. Most companies use this pinning. Only
CAN shields with a 9-pin D-sub connector for Raspberry have a different one.

For CAN open networks, the CiA 303-1 document provides more recom-
mendations for the cabling and the other electro-mechanical components.

4.5 CAN Transceiver 185

4.4.4 Maximum Number of Nodes

In practice, up to 64 nodes may be connected to a DeviceNet bus, 127
on a CANopen bus and up to 255 nodes may be connected together on a
CANKingdom bus. When more than the standard 30 nodes are used on a bus,
it is recommended that a transceiver with a high bus-input impedance, such
as an HVD230 or HVD251 be used.

A problem may develop when too many transceivers source or sink
current onto or from the bus. When a device begins to transmit a message,
it has to sink or source all of the leakage current on the bus, plus drive the
standard signal voltage levels across the termination resistance. If the current
demand is too great, the device may be driven into thermal shut-down or
destroyed.

To prevent transceiver damage, the voltage difference between refer-
ence grounds of the nodes on a bus should be held to a minimum. This
is the common-mode voltage across the entire system and although many
transceivers such as the HVD251 are designed to operate over an extended
common-mode range, the cumulative current demand of too many devices
at a common-mode voltage extreme may jeopardize network security. To
enhance this common-mode security, most of the higher layer protocols
like DeviceNet specify that power and ground wires be carried along with
the signaling pair of wires. Several cable companies have developed 4-wire
bundled cables specifically for these applications.

4.5 CAN Transceiver

In this section, the general features of CAN Transceiver are introduced. While
explain the features refer will take place to SN65HVD251 as example and
MCP2551 is taken as an example.

4.5.1 CAN Transceiver Features

4.5.1.1 Supply voltage
Most CAN transceivers like the SN65HVD251 require a 5-V power supply to
reach the signal levels required by the ISO 11898 Standard. Other transceiver,
for example, Texas Instrument SN65HVD23x family, requires 3.3 V. Shifting
to 3.3 V allows designers to reduce total node power by 50% or more
(Figure 4.32).

For applications using 3.3-V technology, such as the Texas Instruments
TMS320C240x family of DSPs with integrated CAN controllers, the need

186 Controller Area Network (CAN)

Figure 4.32 V-CAN transceiver power savings.

for a 5 V power supply can be eliminated. In addition to the inherent power
savings of using a 3.3-V transceiver, this lowers the overall part count for the
node, thereby reducing system cost and increasing system reliability.

4.5.1.2 High short-circuit protection
The CAN standard recommends that a transceiver survive bus wire short-
circuits to each other, to the power supply, and to ground. This ensures that
transceivers are not damaged by bus cable polarity reversals, cable crush,
and accidental shorts to high power supplies. As an example, the ‘HVD23x
can survive short-circuits to voltages in the range of −4 V to 16 V while,
the ‘HVD251 provides an extended short-circuit protection to voltages in the
−36 V to 36 V range.

4.5.1.3 High ESD protection
Static charge is an unbalanced electrical charge at rest, typically created by
the physical contact of different materials. One surface gains electrons, while
the other surface loses electrons. This results in an unbalanced electrical con-
dition known as a static charge. When a static charge moves from one surface
to another, it is referred to as an electrostatic discharge (ESD). It can occur
only when the voltage differential between the two surfaces is sufficiently
high to break down the dielectric strength of the medium separating the two
surfaces.

In case if the CAN transceiver was not specifically designed to reject this
coupled noise, the transceiver can respond to common-mode noise as if it
were data on a bus and send meaningless data to a controller.

4.5 CAN Transceiver 187

Figure 4.33 Common-mode noise coupled onto 4 twisted-pair bus lines.

The Texas Instrument transceivers, HVD23x and HVD251, for example,
are specifically designed and tested for their ability to reject this common-
mode noise.

4.5.1.4 High input impedance
A high-bus input impedance increases the number of nodes that can be added
to a bus above the standard 30 nodes. The high impedance restricts the amount
of current that a receiver sinks or sources onto a bus over common-mode
voltage conditions. This ensures that a driver transmitting a message into such
a condition is not required to sink or source an excessive amount of current
from the sum of the receiver currents on the bus.

4.5.1.5 Controlled driver output transition times
Controlling driver output slew-rate dampens the rise-time of a dominant bit
to improve signal quality and provides for longer stub lengths and a better
bit-error rate.

4.5.1.6 Low current standby and sleep modes
Many applications are looking to lower-power opportunities as more elec-
tronics are added to designs. To achieve the low-power consumption, some

188 Controller Area Network (CAN)

transceivers, for example, “HVD230”, has a standby mode. The standby
mode is generally referred to as “listen only mode”, since in this mode
driver circuitry is switched off while the receiver continues to monitor bus
activity. In the occurrence of a dominant bit on the bus, the receiver passes
this information along to its DSP/CAN controller which in turn activates
the circuits that are in standby. In some transceiver, for example, HVD231
both driver and receiver circuits can be switched off to create an extremely
low-power sleep mode.

4.5.1.7 Thermal shutdown protection
Another safety feature that is recommended for transceiver is to poses
“thermal shutdown circuitry.” Another desirable safety feature for a CAN
transceiver is the thermal shutdown circuitry. This safety feature exists in
‘HVD23x and ‘HVD251. This feature protects a device against the destruc-
tive currents and resulting heat that can occur in a short-circuit condition.
Once thermal shutdown is activated, the device remains shut down until the
circuitry is allowed to cool.

4.5.1.8 Glitch free power up and power down
This feature needed for hot-plugging onto a powered bus without disturbing
the network. In case of TI transceiver, ‘HVD23x’s and ‘HVD251’s driver
and receiver pins are passively pulled high internally, while the bus pins are
biased internally to a high-impedance recessive state. This provides for a
power-up into a known recessive condition without disturbing ongoing bus
communication.

4.5.1.9 Unpowered node does not disturb the bus
Several CAN transceivers on the market today have very low output
impedance when un–powered. This low impedance causes the device to sink
any signal present on the bus and shuts down all data transmission. Other
transceivers, for example, ‘HVD23x and ‘HVD251, have a very high output
impedance in powered and unpowered conditions, and maintain the integrity
of the bus when power or ground is removed from the circuit.

4.5.1.10 Reference voltage
Reference voltage on a CAN transceiver is the Vref pin (pin 5) of what is
considered to be the standard. CAN transceiver footprint. This is the footprint
of the first CAN transceiver to market, the NXP PCA82C250. When first

4.5 CAN Transceiver 189

Figure 4.34 Split termination.

introduced, the Vcc/2 Vref pin served a particular NXP CAN controller as
a voltage reference used to compare the bus voltage of a remaining single
bus line in the event of an accident. If the voltages were the same, it was a
recessive bit; if different, it was a dominant bit. Although some users consider
it handy for use as an actual voltage reference at the node, it is typically
unused.

4.5.1.11 V-Split
V-split is a fortified Vcc/2 Vref pin with the same ESD protection rating,
short-circuit protection, and common-mode operating range as the bus pins.
It is used to stabilize bus voltage at Vcc/2 and prevent it from drifting to a
high common-mode voltage during periods of inactivity.

It also filters unwanted high-frequency noise from bus lines with the
termination technique of Figure 4.34.

This is accomplished with a coupling capacitor between two ∼60 O
±1% termination resistors to couple high-frequency noise to a solid ground
potential. Care must be taken to match the two resistors carefully so as not to
reduce the effective immunity. This technique improves the electromagnetic
compatibility of a network. A typical value of CL for a high-speed CAN
is 4.7 nF, which generates a 3-dB point at 1.1 Mbps. This, of course, is a
signaling-rate-dependent value.

4.5.1.12 Loopback
This function places the bus input and output in a high-impedance state.
The remaining transceiver circuitry remains active and available for driver-
to-receiver loopback and self-diagnostic node functions without disturbing
the bus.

190 Controller Area Network (CAN)

4.5.1.13 Autobaud loopback
In autobaud loopback, the “bus-transmit” function of the transceiver is dis-
abled, while the “bus-receive” function and all of the normal operating
functions of the device remain intact. With the autobaud function engaged,
normal bus activity can be monitored by the device.

Autobaud detection is best suited to applications that have a known
selection of baud rates. For example, a popular industrial application has
optional settings of 125 kbps, 250 kbps, or 500 kbps. Once a logic high has
been applied to pin 5 (AB) of the HVD235, assume a baud rate such as 125
kbps, then wait for a message to be transmitted by another node on the bus.
If the wrong baud rate has been selected, an error message is generated by
the host CAN controller. However, because the “bus-transmit” function of
the device has been disabled, no other nodes receive the error message of the
controller.

This procedure makes use of the CAN controller’s status register indi-
cations of message received and error warning status to signal if the current
baud rate is correct or not. The warning status indicates that the CAN chip
error counters have been incremented. A message-received status indicates
that a good message has been received.

If an error is generated, reset the CAN controller with another baud rate
and wait to receive another message. When an error-free message has been
received, the correct baud rate has been detected.

4.5.2 CAN Transceiver Example: MCP2551 CAN TRANSCEIVER

The MCP2551 is a CAN Transceiver that implements the ISO-11898-2
physical layer specification. It supports a 1 Mbps data rate and is suitable
for 12 V and 24 V systems. The MCP2551 provides short-circuit protection
up to ±40 V and transient protection up to ±250 V.

In addition to being ISO-11898-2-compatible, the MCP2551 provides
power-on reset and brown-out protection, as well as permanent dominant
detection to ensure an unpowered or faulty node will not disturb the bus. The
device implements configurable slope control on the bus pins to help reduce
RFI emissions. Figure 4.35 shows the block diagram of the MCP2551.

4.5.2.1 General MCP2551 Operation
4.5.2.1.1 Transmit
The CAN protocol controller outputs a serial data stream to the logic TXD
input of the MCP2551. The corresponding recessive or dominant state is
output on the CANH and CANL pins.

4.5 CAN Transceiver 191

Figure 4.35 MCP2551 block diagram.

4.5.2.1.2 Receive
The MCP2551 receives dominant or recessive states on the same CANH and
CANL pins as the transmit occurs. These states are output as logic levels on
the RXD pin for the CAN protocol controller to receive CAN frames.

4.5.2.1.3 Recessive STATE
A logic ‘1’ on the TXD input turns off the drivers to the CANH and CANL
pins and the pins “float” to a nominal 2.5 V via biasing resistors.

4.5.2.1.4 Dominant STATE
A logic ‘0’ on the TXD input turns on the CANH and CANL pin drivers.
CANH drives ∼1 V higher than the nominal 2.5 V recessive state to ∼3.5 V.
CANL drives ∼1 V less than the nominal 2.5 V recessive state to ∼1.5 V.

4.5.2.2 Modes of operation
There are three modes of operation that are externally controlled via the RS
pin:

1. High Speed
2. Slope Control
3. Standby

4.5.2.2.1 HIGH SPEED
The high-speed mode is selected by connecting the RS pin to VSS. In
this mode, the output drivers have fast rise and fall times that support the

192 Controller Area Network (CAN)

Figure 4.36 TXD permanent dominant detection.

higher bus rates up to 1 Mbps and/or maximum bus lengths by providing the
minimum transceiver loop delays.

4.5.2.2.2 SLOPE CONTROL
If reduced EMI is required, the MCP2551 can be placed in slope control mode
by connecting a resistor (REXT) from the RS pin to ground. In slope control
mode, the single-ended slew rate (CANH or CANL) is basically proportional
to the current out of the RS pin. The current must be in the range of 10 µA <
−IRS < 200 µA, which corresponds to a voltage on the pin of 0.4 VDD <
VRS < 0.6 VDD respectively (or 0.5 VDD typical).

The decreased slew rate implies a slower CAN data rate at a given bus
length, or a reduced bus length at a given CAN data rate.

4.5.2.2.3 STANDBY
Standby (or sleep) mode is entered by connecting the RS pin to VDD. In sleep
mode, the transmitter is switched off and the receiver operates in a reduced
power mode. While the receive pin (RXD) is still functional, it will operate
at a slower rate.

Standby mode can be used to place the device in low power mode and
to turn off the transmitter in case the CAN controller malfunctions and sends
unexpected data to the bus.

4.5.2.3 Permanent dominant detection on transmitter
The MCP2551 will turn off the transmitter to CANH and CANL if an
extended dominant state is detected on the transmitter. This ability prevents a

4.5 CAN Transceiver 193

Figure 4.37 Power-on reset and brown-out detection.

faulty node (CAN controller or MCP2551) from permanently corrupting the
CAN bus.

The drivers are disabled if TXD is low for more than ∼1.25 ms (mini-
mum). The drivers will remain disabled as long as TXD remains low. A rising
edge on TXD will reset the timer logic and enable the drivers.

4.5.2.3.1 Power-on reset and brown-out
The MCP2551 incorporates both Power-On Reset (POR) and Brown-Out
Detection (BOD) (see Figure 4.37).

4.5.2.3.2 Power-On Reset (POR)
When the MCP2551 is powered on, the CANH and CANL pins remain in the
high impedance state until VDD reaches the POR high voltage (VPORH).

Additionally, if the TXD pin is low at power-up, the CANH and CANL
pins will remain in high impedance until TXD goes high. After which, the
drivers will function normally.

194 Controller Area Network (CAN)

Figure 4.38 Receiving (node ground) below transmitting (node ground).

4.5.2.3.3 Brown-out detection (BOD)
BOD occurs when VDD goes below the power-on reset low voltage
(VPORL). At this point, the CANH and CANL pins enter a high impedance
state and will remain there until VPORH is reached.

4.5.2.3.4 Ground offsets
Since it is not required to provide a common ground between nodes, it is
possible to have ground offsets between nodes. That is, each node may
observe different single-ended bus voltages (common mode bus voltages)
while maintaining the same differential voltage.

While the MCP2551 is specified to handle ground offsets from −12 V to
+12 V, the ISO-11898 specification only requires −2 V to +7 V. Figure 4.38
and Figure 4.39 demonstrate how ground offsets appear between nodes.

Figure 4.39 shows the transmitting node with a positive ground offset
with respect to the receiving node. The MCP2551 receiver can operate with
CANH = +12 V.

The maximum CAN dominant output voltage (VO(CANH)) from the
transmitting node is 4.5 V. Subtracting this maximum yields an actual ground
offset (with respect to the receiving node) of 7.5 V for the transmitting node.

4.5 CAN Transceiver 195

Figure 4.39 Receiving (node ground) above transmitting (node ground).

In the recessive state, each node attempts to pull the CANH and CANL pins
to their biasing levels (2.5 V typical). However, the resulting common mode
voltage in the recessive state becomes 6.25 V for the receiving node and
−1.25 V for the transmitting node.

Figure 4.39 shows the transmitting node with a negative ground offset
with respect to the receiving node. The MCP2551 receiver can operate with
CANL = −12 V. The minimum CAN dominant output voltage (VO(CANL))
from the transmitting node is 0.5 V. Subtracting this minimum yields an actual
ground offset, with respect to the receiving node, of −12.5 V. The common
mode voltage for the recessive state is −6.25 V for the receiving node and
6.25 V for the transmitting node.

Since all nodes act as a transmitter for a portion of each message (i.e., each
receiver must acknowledge (ACK) valid messages during the ACK slot), the
largest ground offset allowed between nodes is 7.5 V, as shown in Figure 4.39.

Operating a CAN system with large ground offsets can lead to increased
electromagnetic emissions. Steps must be taken to eliminate ground offsets if
the system is sensitive to emissions.

5
CAN Data Link Layer

This Chapter is part of CAN bus. It concentrates on the Data Link Layer.
The chapter will introduce the reader to many related subjects as: CAN
Communication Services, Multi Buss Access, Standard and Extended CAN,
CAN Messages and CAN bus Error Handling.

5.1 Data Link Layer

The CAN data link layer comprises two protocols: Classical CAN introduced
in 1986 and implemented for the first time in 1988 and CAN FD launched
in 2012 and internationally standardized in 2015 in ISO 11898-1. For a
transitional period there are also non-ISO compliant implementations on the
market. They are application-transparent, meaning they can be used for soft-
ware development and designing prototype networks. However, CiA doesn’t
recommend using them for serial production.

The two CAN data link layer protocols have some common features. Any
node has the right to request transmission rights at any time. The necessary
bus arbitration method to avoid transmission conflicts is the same: Frames
with the highest assigned identifier get bus access without delay. All frame
types (data, remote, error, and overload frame) are transmitted in broadcast.
The data frame structure comprising several fields is the same.

One of the unique features of the CAN data link layers is that all single-
bit errors are detected. Multi-bit errors are detected with a high probability.
In order to provide data consistency in all nodes, local errors are globalized.
Additionally, the fault confinement implemented in the CAN data link layers
precludes a single node from corrupting the communication of the others
permanently.

197

198 CAN Data Link Layer

Figure 5.1 CAN data frame.

Note: The structure of CAN data frames are the same for Classical CAN and CAN FD, just the field details
are different.

The Classical CAN protocol uses just one bit rate in the arbitration and the
data phase. The transmission speed is limited to 1 Mbps for short networks
(theoretically up to 40 m). However, the achievable bit rate depends on the
network length and the used physical layer elements such as cable, connector,
and transceiver. The payload, the data field, is limited to 8 byte.

The CAN FD protocol allows payloads up to 64 byte. Additionally, it
supports an optional second bit rate for the data-phase. The limitation of
the speed in the arbitration phase is the same as for Classical CAN. In the
data phase, the speed is limited by transceiver characteristic, the oscillator
tolerance, and the topology (ringing). Data phase bit rates up to 8 Mbps are
realistic when using a bus-line topology with very short, not terminated stubs.

The CAN data link layer is standardized in ISO 11898. The data
link layer services are implemented in the Logical Link Control (LLC)
and Medium Access Control (MAC) sublayers of a CAN controller (see
Figure 4.3). The LLC provides acceptance filtering, overload notification
and recovery management. The MAC is responsible for data encapsulation
(de-capsulation), frame coding (stuffing/de-stuffing), medium access man-
agement, error detection, error signaling, acknowledgment, and serialization
(de-serialization).

5.1.1 CAN Communication Services

5.1.1.1 Communication services
The CAN protocol provides two communication services:

• Write Object service: CAN Broadcast Communication.
• Read Object service: Remote Transmission Request (RTR)

CAN Broadcast Communication: Write Object Service
Write Object service transmits a Data Frame from one node (the producer)
to one or more receiving nodes (consumers). This do not implies that one
node will accept the message meaning that someone is interested in this

5.1 Data Link Layer 199

Figure 5.2 CAN communication services.

Figure 5.3 CAN broadcast communication.

information. This service is the classic CAN communication service: CAN
Broadcast Communication (Figure 5.3).

The CAN concept of Broadcast Communication means that every station
of the network can listen to the frames of the transmitting station (here: station
2, Figure 5.3). After receiving the frame it is the task of every node to decide
if the message has to be accepted or not. So Acceptance Filtering has to be
implemented in every CAN node.

200 CAN Data Link Layer

Figure 5.4 Remote transmission request (RTR).

The CAN Broadcast Communication can be compared with a radio sta-
tion transmitting information about traffic accumulation for vehicle drivers.

Every driver has to decide if the messages are important for him
dependent on the motorway he wants to use.

5.1.1.2 Remote transmission requests (RTR): Read object
service

The second communication service is to request a specific message
(Figure 5.4). This Read Object service is initiated by one or more consumers.
Therefore these nodes will transmit a so-called Remote Frame (RTR). The
node, which owns the requested information will transmit the corresponding
Data Frame.

Remote Transmission Requests (RTR) are like questions. The node that
has the answer will produce in a second communication the requested data.
This data frame can be received also by other consumers, which are interested
in this object Remote frames and data frames are identified by a specific field,
called Identifier.

5.1.2 Multiple Bus Access

The CAN protocol allows simultaneous bus access from different nodes. If
more than one node is accessing the bus, an arbitration is required. The bus
access method used in CAN is a non-destructive, bit-wise arbitration, called
Carrier Sense Multiple Access with Collision Detection and Arbitration on

5.1 Data Link Layer 201

Figure 5.5 Multiple bus access.

Message Priority (CSMA/CD + AMP). CSMA means that each node on a
bus must wait for a prescribed period of inactivity before attempting to send
a message. CD+AMP means that collisions are resolved through a bit-wise
arbitration, based upon a preprogrammed priority of each message in the
identifier field of a message. The higher priority identifier always wins bus
access.

The message priority is decoded in the CAN identifier.
When the bus is in Idle state, several nodes can start transmission of a

frame. Every node reads back, bit by bit, from the bus during the complete
message and compares the transmitted bit value with the received bit value.

Per definition the bits with a dominant value overwrites those with a
recessive value (this has to be provided by the transceiver).

5.1.2.1 Meaning of CSMA/CD+AMP
Carrier Sense (CS): Every node must monitor bus for a period of no activity
before sending a message. This period of no activity is called “inter-frame”
space.

Multiple Access (MA): Once a period of no activity occurs, every node has
an equal opportunity to transmit a message. This starts the arbitration period
at the SOF.

Collision Detection (CD): If 2 nodes transmit at the same time, a collision
occurs and is detected by the node transmitting a recessive bit.

202 CAN Data Link Layer

Collision Resolution (CR): Collision resolution refers to “non-destructive
bitwise arbitration.”

• Messages remain intact even after collision occurs.
• All arbitration takes place without corruption or delay of the highest

priority message.
• Any message that loses the CAN BUS in arbitration is automatically

retransmitted at the next available time.

Nondestructive, accordingly, means that the node winning arbitration just
continues on with the message, without the message being destroyed or
corrupted by another node.

In other, words CSMA means that each node on a bus must wait for a pre-
scribed period of inactivity before attempting to send a message. CD+AMP
means that collisions are resolved through a bit-wise arbitration, based on a
preprogrammed priority of each message in the identifier field of a message.
The higher priority identifier always wins bus access. That is, the last logic-
high in the identifier keeps on transmitting because it is the highest priority.
Since every node on a bus takes part in writing every bit “as it is being
written,” an arbitrating node knows if it placed the logic-high bit on the bus.

Example: Consider Figure 5.6 that shows a bus connected to it three nodes.
As mentioned before, the message priority is decoded in the CAN identifier.
When the bus is in “Idle” state, several nodes can start transmission of a
frame. Every node reads back, bit by bit, from the bus during the complete

Figure 5.6 Bus arbitration method.

5.1 Data Link Layer 203

message and compares the transmitted bit value with the received bit value.
Per definition the bits with a dominant value overwrites those with a recessive
value (this has to be provided by the transceiver).

5.1.2.2 Bus arbitration
Bus access is event-driven and takes place randomly. If two nodes try to
occupy the bus simultaneously, access is implemented with a nondestructive,
bit-wise arbitration. Nondestructive means that the node winning arbitration
just continues on with the message, without the message being destroyed
or corrupted by another node. Collision of the messages is avoided by the
implemented CMSA/CA + AMP bus access method. Each node sends the
bits of its message identifier and monitors the bus level. As long as the bits
from all transmitters are identical nothing happens.

The allocation of priority to messages in the identifier is a feature of
CAN that makes it particularly attractive for use within a real-time control
environment. The lower the binary message identifier number, the higher
its priority. An identifier consisting entirely of zeros is the highest priority
message on a network since it holds the bus dominant the longest. Therefore,
if two nodes begin to transmit simultaneously, the node that sends a zero
(dominant) while the other nodes send a one (recessive) gets control of
the CAN bus and goes on to complete its message. A dominant bit always
overwrites a recessive bit on a CAN bus.

Figure 5.6 displays the arbitration process. At bit 5 nodes 1 and 3 send
a dominant identifier bit. Node 2 sends a recessive identifier bit but reads
back a dominant one. Node 2 loses bus arbitration and switches to listening
only mode that is transmitting recessive bits. At bit 2 node 1 loses arbitration
against node 3. This means that the message identifier of node 3 has a lower
binary value and therefore a higher priority than the messages of nodes 1 and
2. In this way, the bus node with the highest priority message wins arbitration
without losing time by having to repeat the message. Nodes 1 and 2 will send
their messages after node 2 has finished his transmission.

The allocation of message priority is up to a system designer, but indus-
try groups mutually agree upon the significance of certain messages. For
example, a manufacturer of motor drives may specify that message 0010 is
a winding current feedback signal from a motor on a CAN network and that
0011 is the tachometer speed. Since 0010 has the lowest binary identifier,
messages relating to current values always have a higher priority on the bus
than those concerned with tachometer readings.

204 CAN Data Link Layer

Figure 5.7 CSMA/CD-CR example: Case of two nodes.

CSMA/CD-CR: an Example
Figure 5.7 is a screenshot showing an example of two nodes attempting to
transmit a message at the same time This screen shot shows the communi-
cation between the transceiver and the CAN module which is going to be
digital.

The two signals on the top of the screen shot belong to Node 1, and they
are the TX and RX digital lines between the transceiver and microcontroller.
And the two signals on the bottom of the screen are the digital connections
between Node 2’s transceiver and microcontroller.

So starting at the left of the screen shot, we can see that both nodes started
transmitting a 11-bit CAN frame with the dominant SOF. And if you can
recall, the next portion of the CAN frame is the arbitration field in which the
nodes will transmit out the ID for the data frame.

Both nodes will continue to transmit until there is a mismatch. We can
see that Node 1 transmits a 1 (which is a recessive) while Node 2 transmits a
0 (which is a dominant). At this point, Node 2 “wins” arb and gains access to
be the sole transmitter on the CAN bus, while Node 1, the losing node, stops
transmitting and becomes a receiver.

Node 2 continues transmitting out the rest of the ID, Control field, Data (if
there is any), and then the CRC field. At the ACK field, Node 2 will transmit
out a recessive, and we can see that Node 1 transmits out a dominant which
means that the CAN frame contained no errors.

5.1 Data Link Layer 205

Figure 5.8 Synchronization and re-synchronization.

After the end of frame and a required 3-bit interframe space wait, Node 1
will transmit out its pending message, while Node 2 listens.

Each node has its own oscillator and internal CAN clock, so the question
might arise, how is it possible that many nodes across a network can stay in
synchronization without a clock line.

This is achieved by the receivers synchronizing on recessive to dominant
edges.

CAN implements non-return to zero (NRZ) on the physical bus signal,
which means there will be no edge between two like bits.

• Hard synchronization occurs at SOF and resets bit clock.
• Resynchronization occurs at recessive to dominant (1 to 0) edges and

adjusts the bit clock as necessary.

5.1.3 Standard CAN or Extended CAN

As any serial communication system, the data exchange takes the form
of frames. A CAN network can be configured to work with two different
message (or “frame”) formats: the standard or base frame format (described
in CAN 2.0 A and CAN 2.0 B), and the extended frame format (only
described by CAN 2.0 B). The only difference between the two formats is
that the “CAN base frame” supports a length of 11 bits for the identifier,
and the “CAN extended frame” supports a length of 29 bits for the identifier,
made up of the 11-bit identifier (“base identifier”) and an 18-bit extension
(“identifier extension”). The distinction between CAN base frame format and
CAN extended frame (Figure 5.9) format is made by using the IDE bit, which
is transmitted as dominant in case of an 11-bit frame and transmitted as
recessive in case of a 29-bit frame. CAN controllers that support extended
frame format messages are also able to send and receive messages in CAN
base frame format. All frames begin with a start-of-frame (SOF) bit that
denotes the start of the frame transmission.

206 CAN Data Link Layer

Figure 5.9 Arbitration field in case of standard and extended formats.

5.1.3.1 The bit fields of standard CAN and extended CAN
The bit fields of standard CAN and extended CAN are summarized in
Figure 5.10.

Figure 5.10 CAN frame.

5.1.3.2 Standard (base) CAN frame
The standard CAN Frame is shown in Figures 5.11 and 5.12. The frame
consists of the following fields:

5.1 Data Link Layer 207

Figure 5.11 Base data frame format.

Figure 5.12 Standard CAN–The 11-bit identifier.

The standard data frame consists of the following fields:

• SOF Field: The data frame starts with a Start of Frame (SOF) which is
a dominant bit. The SOF bit marks the start of a message and is used to
synchronize the nodes on a bus after being idle.

• Arbitration Field: It contains 12 bits divided into two parts: ID Field
of 11 bits and RTR of 1 bit.

◦ ID field or Identifier Field: In Standard CAN, it contains 11 bits.
The ID field is where the arbitration (arb) occurs and the node
with the highest priority id (Lowest ID Number) wins the BUS.
So in other words, a Node transmitting out a data frame with ID
0 will always “win” access to the BUS. A nondestructive bitwise
arbitration method is used to allow multiple nodes to contend
for the BUS. This process allows the highest priority message
to remain intact even though there were collisions detected. And
this process takes place without corruption or delay of the highest
priority message.
This is one reason why CAN works great in safety critical
applications. (Arbitration will be discussed in more detail later.)

208 CAN Data Link Layer

Figure 5.13 Control field: DLC field (d, dominant; r, recessive).

The node that wins arb will continue to transmit while all other
transmitters will stop transmitting and revert to receiving nodes.
Every node on the bus is responsible to check the message for
errors that range from bit stuffing to CRCs error.

◦ RTR: The single remote transmission request (RTR) bit is dom-
inant when information is required from another node. All nodes
receive the request, but the identifier determines the specified node.
The responding data are also received by all nodes and used by
any node interested. In this way, all data being used in a system is
uniform.

• Control Field: 6 bits (Figure 5.13). The Control Field in Standard
Format includes four bits for the Data Length Code (DLC), and two
reserved bits: IDE bit, which is transmitted dominant, and the reserved
bit r0, which is also transmitted dominant.

◦ IDE bit: Lets the receivers know if the message is standard or
extended

◦ r0: Reserved bit (for possible use by future standard amendment)
◦ DLC: The 4-bit data length code (DLC) contains the number of

bytes of data being transmitted. It lets the receivers know if the
message has between 0 and 8 data bytes.

The admissible number of data bytes for a data frame ranges from 0 to 8.
DLCs in the range of 0 to 7 indicate data filed length of 0 to 7 bytes. All other

5.1 Data Link Layer 209

Figure 5.14 Data field.

Figure 5.15 CRC field.

DLCs indicate that the data filed is 8 bytes long. That means DLCs ranging
from 9 to 15 may be used for application-specific purposes. The full range of
possible DLCs is not required to be implemented.

• Data Field: Between 0 and 8 bytes (Figure 5.14): Next the transmitting
node will transmit out the data.
In some applications, it makes sense to transmit no data, for example,
the case of indicating an event without any variable data. The event is
identified by the identifier of the Data Frame, so it may be sufficient to
transmit no data field.

• CRC: The CRC contains the 15-bit CRC sequence and the recessive 1-
bit CRC Delimiter (Figure 5.15). The frame check sequence is derived
from a cyclic redundancy code best suited for frames with bit counts less
than 127 bit (BCH Code). The CRC is calculated from the SOF to the
Data Field. The CRC code provides a Hamming distance of 6, meaning
that 5 bit errors randomly distributed in the SOF, Arbitration, Control
and Data Fields can be detected. In addition, burst errors up to a length
of 15 bit can be detected.

210 CAN Data Link Layer

CRC Generation

A generator polynomial is used to get the CRC. Linear Feedback Shift
register is used for implementation.

CRC Polynomial Generation

The receivers calculate the CRC in the same way as the transmitter
as follows:

1. The message is regarded as polynomial and is divided by the
generator polynomial: x15 + x14 + x10 + x8 + x7 + x4 + x3 + 1.

2. The division rest of this modulo 2 division is the CRC sequence
which is transmitted together with the message.

3. The receiver divides the message inclusive the CRC sequence by
the generator polynomial. A CRC error has to be detected, if the cal-
culated result is not the same as that received in the CRC sequence.
In this case, the receiver discards the message and transmits an
Error Frame to request retransmission.

• ACK field (Figure 5.16): It contains 2 bits. The ACK Field is two
bits long and contains the ACK Slot and the ACK Delimiter. The
transmitter of a frame transmits both bits of the ACK Field recessive.
A Receiver, which has received a valid message correctly, reports this
to the Transmitter by sending a dominant bit during the ACK Slot.
If the Transmitter detects a positive acknowledge, that is, a dominant

5.1 Data Link Layer 211

Figure 5.16 Acknowledge field.

Figure 5.17 End of frame (EOF).

ACK Slot, the Transmitter knows that in minimum one node has got his
message correctly.
A receiving node may transmit a recessive to indicate that it did not
receive a valid frame, but another node that did receive a valid frame may
override this with a dominant. The transmitting node cannot know that
the message has been received by all of the nodes on the CAN network.

• EOF: This is end-of-frame (EOF) (Figure 5.17).
Each Data and Remote Frame is delimited by a flag sequence of seven
recessive bits. The EOF field marks the end of a CAN frame (message)
and disables bit stuffing, indicating a stuffing error when dominant. This
EOF was introduced because an Error Frame caused by a global CRC
failure should be transmitted within the length of Data or Remote Frame.

• Interframe Spacing (IFS): This 7-bit interframe space (IFS) contains
the time required by the controller to move a correctly received frame to
its proper position in a message buffer area (see Section 4.4).

Data frames and remote frames are separated from preceding frames by
a bit field called interframe space. Interframe space consists of at least three
consecutive recessive (1) bits. Following that, if a dominant bit is detected,
it will be regarded as the “Start of frame” bit of the next frame. Overload
frames and error frames are not preceded by an interframe space and multiple
overload frames are not separated by an interframe space. Interframe space
contains the bit fields intermission and bus idle, and suspends transmission for
error passive stations, which have been transmitter of the previous message.

The standard frame fields are summarized in Table 5.1. The bit values are
described for CAN-LO signal.

212 CAN Data Link Layer

Table 5.1 Standard CAN frame
Field Name Length (Bits) Purpose
Start-of-frame 1 Denotes the start of frame transmission

Identifier 11 A (unique) identifier which also represents
the message priority

Remote transmission
request (RTR)

1 Must be dominant (0) for data frames and
recessive (1) for remote request frames
(see Remote Frame, below)

Identifier extension bit
(IDE)

1 Must be dominant (0) for base frame
format with 11-bit identifiers

Reserved bit (r0) 1 Reserved bit. Must be dominant (0), but
accepted as either dominant or recessive.

Data length code (DLC) 4 Number of bytes of data (0–8 bytes)

Data field 0–64 (0-8 bytes) Data to be transmitted (length in bytes
dictated by DLC field)

CRC 15 Cyclic redundancy check

CRC delimiter 1 Must be recessive (1)

ACK slot 1 Transmitter sends recessive (1) and any
receiver can assert a dominant (0)

ACK delimiter 1 Must be recessive (1)

End-of-frame (EOF) 7 Must be recessive (1)

Figure 5.18 Extended CAN: 29-bit identifier.

5.1.3.3 Extended frame format
Extended CAN
As shown in Figure 5.18, the Extended CAN message is the same as the
Standard message with the addition of:

• SRR: The substitute remote request (SRR) bit replaces the RTR bit in
the standard message location as a placeholder in the extended format.

• IDE: A recessive bit in the identifier extension (IDE) indicates that more
identifier bits follow. The 18-bit extension follows IDE. The identifier in
the extended format consists of two parts: A of 11 bits and B of 18 bits.
The two parts are combined to form the 29 bits of the identifier.

• r0 and r1 bits: r1 following the RTR and r0 bits, an additional reserve bit
has been included ahead of the DLC bit.

5.1 Data Link Layer 213

Table 5.2 Extended CAN format
Field Name Length (Bits) Purpose
Start-of-frame 1 Denotes the start of frame transmission

Identifier A (green) 11 First part of the (unique) identifier which
also represents the message priority

Substitute remote request
(SRR)

1 Must be recessive (1)

Identifier extension bit
(IDE)

1 Must be recessive (1) for extended frame
format with 29-bit identifiers

Identifier B 18 Second part of the (unique) identifier
which also represents the message priority

Remote transmission
request (RTR)

1 Must be dominant (0) for data frames and
recessive (1) for remote request frames
(see Remote Frame, below)

Reserved bits (r1, r0) 2 Reserved bits which must be set dominant
(0), but accepted as either dominant or
recessive

Data length code (DLC) 4 Number of bytes of data (0–8 bytes)[a]

Data field 0–64 (0-8 bytes) Data to be transmitted (length dictated by
DLC field)

CRC 15 Cyclic redundancy check

CRC delimiter 1 Must be recessive (1)

ACK slot 1 Transmitter sends recessive (1) and any
receiver can assert a dominant (0)

ACK delimiter 1 Must be recessive (1)

End-of-frame (EOF) 7 Must be recessive (1)
The two identifier fields (A & B) combine to form a 29-bit identifier.
*It is physically possible for a value between 9 and 15 to be transmitted in the 4-bit DLC, although the data
are still limited to 8 bytes. Certain controllers allow the transmission and/or reception of a DLC greater
than 8, but the actual data length is always limited to 8 bytes.

The frame format is given in Table 5.2.

5.1.4 CAN Messages

5.1.4.1 CAN Frames
CAN bus has four frame types. If we consider the above discussions, CAN
frames will be:

• Data Frame (Standard, Extended): A standard message used to transmit
data over the network

214 CAN Data Link Layer

Figure 5.19 Data frame format.

• Remote Frame (Standard, Extended): A message sent by a receiver to
request data from another node on the network: request the transmission
of a specific identifier.

• Error Frame (Passive, Active): A frame transmitted by any node detect-
ing an error. It is a message sent out by a receiver to destroy a frame that
contains errors. The Error Frame tells the transmitter to send the message
again.

• Overload Frame: An Overload Frame is similar to an error frame. A
receiver would typically send out an Overload Frame to ask a transmitter
to delay the next message sent. In other words, Overload Frame is used
to inject a delay between data and/or remote frame.

5.1.4.1.1 Data frame
The data frame is the only frame for actual data transmission. There are
two message formats. The major difference between the two formats is the
Arbitration field. The two formats are:

• The standard (or Base) frame has an 11-bit ID in the arbitration field that
allows up to 2048 unique messages onto the BUS.

• The extended frame has a 29-bit ID that allows up over 536 million
unique messages onto the BUS.

The CAN standard requires that the implementation must accept the base
frame format and may accept the extended frame format, but must tolerate
the extended frame format.

Both standard (base) and extended data frames can coexist on the same
CAN BUS. The standard 11 bit data frame will always have priority over the
same extended 29-bit frame with identical 11-bit base ID.

It is recommended that no two nodes transmit the same data frame in
terms of ID because this would break the arbitration process.

The Data Frame begins with a dominant Start of Frame (SOF) bit for
hard synchronization of all nodes. The SOF bit is followed by the Arbitration
Field reflecting content and priority of the message. The next field is the
Control Field which specifies mainly the number of bytes of data contained

5.1 Data Link Layer 215

Table 5.3 CAN 2.0A message frame
Field Length (Bits) Description
Start of Frame (SOF) 1 Must be dominant

Identifier 11 Unique identifier indicates priority

Remote Transmission
Request (RTR)

1 Dominant in data frames; recessive in
remote frames

Reserved 2 Must be dominant

Data Length Code (DLC) 4 Number of data bytes (0–8)

Data Field 0–8 bytes Length determined by DLC field

Cyclic Redundancy Check
(CRC)

15

CRC Delimiter 1 Must be recessive

Acknowledge (ACK) 1 Transmitter sends recessive; receiver
asserts dominant

ACK Delimiter 1 Must be recessive

End of Frame (EOF) 7 Must be recessive

in the message. The Cyclic Redundancy Check (CRC) Field is used to detect
possible transmission errors. It consists of a 15-bit CRC sequence completed
by the recessive CRC delimiter bit. During the Acknowledgment (ACK)
Field, the transmitting node sends out a recessive bit. Any node that has
received an error-free frame acknowledges the correct reception of the frame
by sending back a dominant bit. The recessive bits of the End of Frame
end the Data Frame. Between two frames, there must be an recessive 3-bit
Intermission field.

The standard and the extended frame formats are as shown in Tables 5.3
and 5.4.

5.1.4.1.2 Remote data frame
Generally data transmission is performed on an autonomous basis with the
data source node (e.g., a sensor) sending out a Data Frame. It is also possible,
however, for a destination node to request the data from the source by sending
a Remote Frame. The intended purpose of the remote frame is to solicit the
transmission of data from another node.

Remote Frames can come in either standard or extended formats and
contain No data payload. Remote frames are used when one node needs
to request data from another node. So for example Node A will transmit a
remote frame request (RTR) onto the BUS with an Identifier that matches a

216 CAN Data Link Layer

Table 5.4 CAN 2.0B message frame (extended frame format)
Field Length (Bits) Description
Start of Frame (SOF) 1 Must be dominant

Identifier–Standard and
Extended Formats

11 Unique identifier corresponds to Base ID in
Extended Format

Identifier–Extended
Format

29 Comprised of 11-bit Base ID and 18-bit
Extended ID

Remote Transmission
Request (RTR)–Standard
and Extended Formats

1 Dominant in data frames; recessive in remote
frames. In Standard Format, the 11-bit
identifier is followed by the RTR bit.

Substitute Remote
Request (SRR)–Extended
Format

1 Must be recessive. SRR is transmitted in
Extended Frames at the position of the RTR
bit in Standard Frames. In arbitration between
standard and extended frames, recessive SRR
guarantees the standard message frame
prevails.

IDE–Standard and
Extended Frames

1 Must be recessive for Extended Format;
dominant for Standard Format.

Reserved r0–Standard
Format

1 Must be dominant

Reserved r1, r0–Extended
Format

2 Must be recessive

Data Length Code (DLC) 4 Number of data bytes (0–8)

Data Field 0–8 bytes Length determined by DLC field

Cyclic Redundancy Check
(CRC)

15

CRC Delimiter 1 Must be recessive

Acknowledge (ACK) 1 Transmitter sends recessive; receiver asserts
dominant

ACK Delimiter 1 Must be recessive

End of Frame (EOF) 7 Must be recessive
The two identifier fields (A & B) combine to form a 29-bit identifier.
*Note: It is physically possible for a value between 9 and 15 to be transmitted in the 4-bit DLC although
the data are still limited to 8 bytes. Certain controllers allow the transmission and/or reception of a DLC
greater than 8, but the actual data length is always limited to 8 bytes.

data frame that typically sent by Node B. Upon seeing the RTR request Node
B will transmit the data frame matching ID and data.

There are 2 differences between a Data Frame and a Remote Frame. First,
the RTR bit is transmitted as a dominant bit in the Data Frame, and second,

5.1 Data Link Layer 217

Figure 5.20 Remote data frame.

in the Remote Frame, there is no Data Field, that is,

RTR = 0; DOMINANT in data frame
RTR = 1; RECESSIVE in remote frame

In the very unlikely event of a Data Frame and a Remote Frame with
the same identifier being transmitted at the same time, the Data Frame wins
arbitration due to the dominant RTR bit following the identifier. In this
way, the node that transmitted the Remote Frame receives the desired data
immediately.

Remote frames are not typically used in Non-propriety HLP protocols,
but can be found in some propriety protocols.

5.1.4.1.3 Error frame
The error frame is a special message that violates the formatting rules of a
CAN message. It is transmitted when a node detects an error in a message,
and causes all other nodes in the network to send an error frame as well. The

218 CAN Data Link Layer

Figure 5.21 Error frame.

original transmitter then automatically retransmits the message. An elaborate
system of error counters in the CAN controller ensures that a node cannot tie
up a bus by repeatedly transmitting error frames.

Error frames are transmitted by any nodes when they detect an error with
the CAN Data or Remote Frame. The error frame consists of two different
fields:

• The first field is given by the superposition of ERROR FLAGS (6–12
dominant/recessive bits) contributed from different stations.

• The following second field is the ERROR DELIMITER (8 recessive
bits).

There are two types of error flags: Active error flag and Passive error
flag. If the node is in the error active state, it will transmit out an active error
frame. If the node is in the passive error state, it will transmit out a passive
error frame.

Active Error Flag
It contains six dominant bits transmitted by a node detecting an error on the
network that is in error state “error active.”

5.1 Data Link Layer 219

Passive Error Flag
It contains six recessive bits transmitted by a node detecting an active error
frame on the network that is in error state “error passive.”

The error frame can vary in length because it is possible for some noise
localized next to a CAN node on the bus will flip a bit in data frame. If this
occurs that node might see the bit flip while other nodes on the bus will not.
Because of this “bit flip” the CRC calculation should be wrong, and it is
possible that the bit stuffing rule may be violated. If that is the case that node
will transmit out an error frame, and soon after the other nodes on the bus
will start to see the bit stuffing rule being violated and they too will transmit
out echoing error flags.

These error frames will “destroy” the current data or remote frame on
the bus. The transmitting node will know that its message wasn’t received
properly by all nodes and will automatically attempt a retransmission at the
next available quiet time on the bus.

How the node defines the error state: “Error Passive” or “Error
Active”
There are two error counters in CAN:

1. Transmit error counter (TEC)
2. Receive error counter (REC)

• When TEC or REC is greater than 127 and lesser than 255, a
Passive Error frame will be transmitted on the bus.

• When TEC and REC is lesser than 128, an Active Error frame will
be transmitted on the bus.

• When TEC is greater than 255, then the node enters into Bus Off
state, where no frames will be transmitted.

More details are provided in Section 5.2.

5.1.4.1.4 Overload frame
The Overload Frame is originally introduced to gain more time for processing
the received data, today no CAN controller sends them actively. All CAN
controllers are fast enough to store the received data.

The overload frame contains the two bit fields Overload Flag and Over-
load Delimiter. An overload frame is special version of the Error Frame that
will not cause a retransmission of the last “destroyed” message. Instead the
overload frame is used by a Node in two kinds of overload conditions:

220 CAN Data Link Layer

Figure 5.22 Overload frame.

1. To request a delay between data or remote frames during the “inter-
frame” space or quiet time on the CAN bus. In other words, the internal
condition of a receiver requires a delay of the next data frame or remote
frame.
If a node needs more time to process the message at the protocol level, it
has the ability to transmit out up to two Overload frames before the next
data or remote is present on the bus. What this does is request all nodes
on the network to delay sending out the next Data or Remote Frames
thus given that node more time to process the current message.

2. Detection of a dominant bit during intermission.

Another overload condition is that a message is valid for receivers, even
when the last bit of EOF is received as dominant. Therefore, this dominant
bit is not regarded as an error. On the other hand, the fixed-form bit filed
EOF contains an illegal bit and the receiver of the dominant bit may have
lost synchronization, which requires a reaction. The Reference CAN Model
follows the example of a dominant bit as the last bit of Error or Overload
Delimiter which are responded with an Overload Frame.

5.1 Data Link Layer 221

The start of an overload frame due to case 1 is only allowed to be started
at the first bit time of an expected intermission, whereas overload frames due
to case 2 start one bit after detecting the dominant bit. Overload Flag consists
of six dominant bits. The overall form corresponds to that of the active error
flag. The overload flag’s form destroys the fixed form of the intermission
field. As a consequence, all other stations also detect an overload condition
and on their part start transmission of an overload flag. Overload Delimiter
consists of eight recessive bits. The overload delimiter is of the same form as
the error delimiter.

With an Overload Frame the transmitter is requested to delay the start of
the next transmission.

The Overload Frame is identical to an Active Error Frame. The only
difference is that an Overload Frame does not increase the error counters (see
error confinement) and does not causes a retransmission of a frame. Every
node may transmit consecutively only 2 Overload Frames.

5.1.4.1.5 Bit stuffing
To ensure enough transitions to maintain synchronization, a rule called “Bit
Stuffing” is used. In Bit Stuffing, a bit of opposite polarity is inserted after five
consecutive bits of the same polarity (see Figure 5.23). This practice is called
bit stuffing and is necessary due to the non-return to zero (NRZ) coding used
with CAN. This stuffed bit is added by the CAN node transmitting out the
message at the protocol level and is expected and removed by the receivers at
the protocol level so the user application is never aware of any stuffed bits.

All fields in the frame are stuffed with the exception of the CRC delimiter,
ACK field and end of frame which are of fixed size and are not stuffed. In the
fields where bit stuffing is used, six consecutive bits of the same polarity
(111111 or 000000) are considered an error. An active error flag can be
transmitted by a node when an error has been detected. The active error flag
consists of six consecutive dominant bits and violates the rule of bit stuffing.

Figure 5.23 Bit stuffing rule.

222 CAN Data Link Layer

Figure 5.24 Complete frame before and after stuffing.

Bit stuffing means that data frames may be larger than one would expect
by simply enumerating the bits shown in the tables above. The maximum
increase in size of a CAN frame (base format) after bit stuffing is in
the case 11111000011110000. . . which is stuffed as (stuffing bits in bold):
111110000011111000001. . . .

The stuffing bit itself may be the first of the five consecutive identical bits,
so in the worst case there is one stuffing bit per four original bits.

The size is bounded by

8n+ 44 +

⌊
34 + 8n− 1

4

⌋
since 8n+44 is the size of the frame before stuffing, in the worst case one bit
will be added every four original bits after the first one (hence the −1 at the
numerator) and, because of the layout of the bits of the header, only 34 out of
44 of them can be subject to bit stuffing.

The bit stuffing rule implies that the maximum time between synchro-
nization edges is 10 bits.

Figure 5.24 shows a complete frame before and after stuffing.

5.2 CAN Bus Error Handling

How CAN Handles Errors

Error handling is built into in the CAN protocol and is of great importance
for the performance of a CAN system. The error handling aims at detecting
errors in messages appearing on the CAN bus, so that the transmitter can
retransmit an erroneous message. Every CAN controller along a bus will try

5.2 CAN Bus Error Handling 223

to detect errors within a message. If an error is found, the discovering node
will transmit an Error Flag, thus destroying the bus traffic. The other nodes
will detect the error caused by the Error Flag (if they haven’t already detected
the original error) and take appropriate action, that is, discard the current
message.

Within the environment where CAN nodes are working, there can be
many sources of an error on a CAN bus. Since it is used in critical applica-
tions, it is important that it continues to operate at all times. This is achieved
at the physical layer by a transceiver which operates when one of the wires is
broken. At the data link layer, the protocol mandates that the defective node
withdraws from communication. Fault confinement is a critical aspect of the
CAN which is achieved by a defective node identifying itself and switching
to the bus-off state.

5.2.1 Error Detection Methods

The CAN data link layers are very reliable. All single-bit errors are detected.
Multi-bit errors are detected with a high probability; the CAN FD protocol is
even a little bit more reliable than the Classical CAN protocol.

The CAN data link layers comprise five error detection mechanisms: three
at the message level and two at the bit level. Unlike other communication
systems, they do not use acknowledgment messages but instead signals any
occurring errors.

CAN protocol implements three detection mechanisms at the message
level:

• Cyclic Redundancy Check: The CRC safeguards the information in the
data and remote frame by adding redundant check bits at the transmis-
sion end. At the receiver end, these bits are re-computed and tested
against the received bits. If they do not agree, a CRC error has occurred.
There is an additional safeguard in the CAN FD protocol: the stuff error
counter with parity bit protection.

• Frame Check Form Error: This mechanism verifies the structure of the
transmitted data and remote frame by checking the bit fields against the
fixed format and the frame size. Errors detected by frame checks are
designated “format errors.”

• ACK errors: As mentioned above, all nodes acknowledge received data
and remote frames by positive acknowledgment (driving the bus to
dominant bit-level during the ACK bit). If the transmitter does not see a
dominant bit-level during the ACK bit, this can either mean that there is

224 CAN Data Link Layer

Figure 5.25 Form error.

a transmission error which has only been detected by the recipients, that
the ACK field has been corrupted, or that there are no receivers.

The CAN protocol also implements two mechanisms for error detection
at the bit level:

• Monitoring Bit error: The ability of the transmitter to detect errors is
based on the monitoring of bus signals. Each node transmits and also
observes the bus level and thus detects differences between the bit sent
and the bit received. This permits reliable detection of all global errors
and errors local to the transmitter.

• Bit stuffing: The coding of the individual bits is tested at bit level. The
bit representation used by CAN is NRZ (non-return-to-zero) coding,
which guarantees maximum efficiency in bit coding. The synchroniza-
tion edges are generated by means of bit stuffing, that is, after five
consecutive equal bits the sender inserts a stuff bit into the bit stream
with the complementary value, which is removed by the receivers. The
code check is limited to checking the adherence to the stuffing rule.

Detected errors are indicated by means of an Error Frame. It consists of
the Error Flag made of six bits of the same bit level and eight bits of recessive
value called Error Delimiter.

As it is given latter, if a message fails with any one of these error detection
methods, it is not accepted and an error frame is generated from the receiving
nodes, causing the transmitting node to resend the message until it is received
correctly. However, if a faulty node hangs up a bus by continuously repeating
an error, its transmit capability is removed by its controller after an error limit
is reached (see Section 5.2.11).

The different errors including Local Errors in EOF and Error Confinement
are considered next.

5.2.2 Form Error

Some parts of the CAN message have a fixed format, that is, the standard
defines exactly what levels must occur and when. (Those parts are the CRC

5.2 CAN Bus Error Handling 225

Figure 5.26 CRC error.

Delimiter, ACK Delimiter, End of Frame, and also the Intermission, but there
are some extra special error checking rules for that.)

The form error occurs when the “recessive” slots in a CAN message (CRC
Delimiter, ACK Delimiter, End of Frame, EOF) field or interframe Space)
become “dominant.” Any node detecting this will need to transmit out an error
frame, thus destroying the current message, and the transmitter will need to
retransmit at the next available time.

5.2.3 CRC Error

All messages on the CAN BUS contain a 15-bit field called CRC field. CRC,
which is the abbreviation of Cyclic Redundancy Code or Cyclic Redundancy
Check, is acting as signature for the transmitted data. It is, except very special
cases, unique for each data.

With the Cyclic Redundancy Check the Transmitter calculates a check
sum for the CRC bit sequence from the Start of Frame bit until the end of
the Data Field. This CRC sequence is transmitted in the CRC Field of the
Data or Remote Frame. When the source sends a message on the BUS, all
nodes receive the message and immediately start to calculate the CRC of the
received data and compare it with that in the received message. If CRCs do
not match, a CRC error occurs and an Error Frame is generated. This causes
the message to be destroyed and prevents any nodes from using that data. The
transmitting node sees the error frame and will then retransmit the original
message at the next available time.

The CRC checksum will be used for error detection only. It is not used
for error correction. The Hamming Distance of this CRC code is theoretically
6. With this, it is possible to detect up to 5 single bit errors that are randomly
scattered about the message or so-called burst errors up to a length of 15 bit.

226 CAN Data Link Layer

Figure 5.27 Acknowledge error.

Figure 5.28 Stuff error.

5.2.4 Acknowledge Error

All nodes on the bus that correctly receives a message (regardless of their
being “interested” of its contents or not) are expected to send a dominant
level in the so-called Acknowledgement Slot in the message.

The Acknowledge errors occurs when the transmitting node checks the
ACK Slot bit, which it has sent as a recessive and checks for a dominant.

• If a dominant bit occurs, at least one node received the message
correctly.

• If not, an ACK Error occurred, and the transmitter will then transmit
out Error Frame to destroy the message it just transmitted and will then
retransmit the original message at the next available time.

5.2.5 Stuff Error

The part of the CAN frame between the Start of Frame (SOF) and the
CRC delimiter is covered by bit stuffing rules. The CAN bus does not have
synchronization information. The nodes synchronize themselves by changes
in the bit levels. Therefore, the CAN frame follows the NRZ-5 coding rule.
By this rule the bus level cannot have more than 5 bits of the same level. When
five consecutive bits of the same level have been transmitted by a node, it will
add a sixth bit of the opposite level to the outgoing bit stream. The receivers
will remove this extra bit. This is done to avoid excessive DC components on
the bus, but it also gives the receivers an extra opportunity to detect errors.

The Stuff error occurs when any node detects 6 consecutive bit of the
same polarity between the SOF and end of CRC field. When the error is

5.2 CAN Bus Error Handling 227

Figure 5.29 Bit error.

detected the node will transmit out an error frame, thus destroying the current
message, and then the original message should be repeated by the transmitter
at the next available time Keep in mind that error frames intentionally violate
the bit stuffing rule.

5.2.6 Bit Error

All nodes perform bit monitoring. A bit error occurs when the transmitter
monitors a signal on the bus different from what it sent. In other words, a bit
error occurs if a transmitter sends a dominant bit but detects a recessive bit
on the bus line or sends a recessive bit but detects a dominant bit on the bus
line. An Error Frame is generated and starts with the next bit time.

This error is NOT checked during the ARB or the ACK field that is
because during those times, all nodes have equal access to the bus. When the
transmitter detects this error, it will transmit out an error frame, thus destroy-
ing the current message, and then, the transmitter will need to retransmit that
original message at the next available time.

Exceptions:

• During arbitration (standard arbitration procedure)
• In ACK Slot bit (due to valid message acknowledgment)

5.2.7 Local Errors in EOF

If one of the EOF (End of Frame) bits 1 to 6 is detected locally as dominant
bits, the node will send an Error Flag to globalize this failure. The CAN

228 CAN Data Link Layer

Figure 5.30 Local errors in EOF.

specification reads as follows: The point of time at which a message is taken
to be valid is different for the transmitter and the receivers of the message.

• Transmitter: The message is valid for the transmitter, if there is no error
until the end of End of Frame. If a message is corrupted, retransmission
will follow automatically.

• Receiver: The message is valid for the receiver, if there is no error until
the last but one bit of End of Frame. A Receiver, which has sampled a
dominant value during the 7th EOF bit, does not regard this as an error.
On the other hand, the fixed-form bit contains an illegal bit, and the
Receiver may have lost synchronization; therefore, an Overload Frame
is transmitted. As the Receiver can inform the sender at the earliest
during the next bit time, it’s obvious that the Transmitter must wait one
additional bit time for his message validation. This is independent of
which bit is defined as the validation bit. It does not help to introduce
(one or more) additional bits at the end of the message frame.

5.2.8 Message Doubling

The CAN protocol assures with an extreme high probability that no messages
are falsified or lost. But it is possible that a message is doubled by a single
bit error near the end of End of Frame (EOF). Message doubling can be
explained as follows:

If a Transmitter samples a dominant bus level during the last bit of EOF,
it must retransmit that message. The dominant bus level can result from:

5.2 CAN Bus Error Handling 229

Figure 5.31 Error states of CAN node.

1. a receivers Error Flag reporting a local error in the last but one bit of
EOF

2. a disturbance of the last bit of EOF

In case 1, it is likely that there are other receivers which have not been
affected by the local error and therefore have already accepted the first
message.

In case 2, all receivers have already accepted the first message. After the
retransmission, they have got the same message twice.

Therefore, if CAN is used in a disturbed environment:

• Do not use toggle messages
• Do not transmit messages carrying relative data (like angle increments

or delta counts)
• Use protected protocols or sequence numbers for data or program

segmentation

5.2.9 Error States of CAN Node

Figure 5.31 reflects the error states of CAN node. Three possible states can
be identified:

• Error Passive
• Error Active
• Buss Off

To distinguish between temporary and permanent failures, every CAN
controller has two Error Counters: The REC (Receive Error Counter) and the
TEC (Transmit Error Counter). The counters are incremented upon detected
errors respectively are decremented upon correct transmissions or receptions.

230 CAN Data Link Layer

Figure 5.32 Passive error frame.

Depending on the counter values the state of the node is changed: The
initial state of a CAN controller is Error Active that means the controller
can send active Error Flags. The controller gets in the Error Passive state if
there is an accumulation of errors. On CAN controller failure or an extreme
accumulation of errors, there is a state transition to Bus Off. The controller
is disconnected from the bus by setting it in a state of high resistance. The
Bus Off state should only be left by a software reset. After software reset, the
CAN controller has to wait for 128 x 11 recessive bits to transmit a frame.
This is because other nodes may have pending transmission requests. It is
recommended not to start a hardware reset because the wait time rule will not
be followed then.

By using these counters, the node is able to recognize if it is the source of
the BUS problems and subsequently disconnect itself from the CAN Bus.

This action prevents a single node from commandeering the CAN bus
with error frames thus preventing any valid data frames onto the bus.

Using the error counters, a CAN node can not only detect faults but also
perform error confinement (see latter).

In order to prevent the bus from being blocked by the Error Frames sent
from a faulty or heavily disturbed node, the error indication ability can be
restricted for this node. An Error Active node can send a dominant Error Flag
while an Error Passive node is only able to send a recessive one. During the
transmission of the Error Delimiter a node can detect whether it was the first
one in the network reporting the error and thus stopping the data transfer.
Error Passive receivers can no longer interrupt the data transfer as a recessive
Error Flag does not influence the bus levels. An Error Passive transmitter can
still interrupt its own message by sending a passive Error Flag. It is necessary
to note here that if one Receiver is in error passive mode no data consistency
is guaranteed any more.

5.2 CAN Bus Error Handling 231

Figure 5.33 Suspend passive transmission.

Figure 5.34 Transmit error counter.

To avoid blocking the bus by a disturbed node sending high priority
messages a transmission delay was introduced for nodes in Error Passive
state. After transmission, an Error Passive node must wait 3 + 8 recessive
bits before starting transmission again (additional wait state).

5.2.10 Transmit Error Counter

0–96: The node is in the Error Active state below the warning limit. If it
exceeds the counter a value of 96, the CAN controller generates a warning
(set error flag, generating interrupt).

97–127: The node is Error Active. If the counter is in this area, it must be
assumed that the bus is heavily disturbed.

128–255: In this area, the node is Error Passive. Unfortunately, some of the
CAN controllers do not inform the microcontroller about this change of state.

> 255: After reaching this counter value, the node is switched to Bus Off
state. In this state, it does not take part in bus activities. The microcontroller
is informed by an interrupt on this change of states.

232 CAN Data Link Layer

Figure 5.35 Receive error counter.

5.2.11 Receive Error Counter

Theoretically, the CAN Fault Confinement rules could increment REC‘s
value over all limits when a receiver in Error Passive mode detects additional
errors without receiving any error-free message. This cannot be implemented
in hardware and the REC‘s value is limited by its actual number of digits.
In the Bosch Reference Model, the REC has a resolution of 8 bits. So REC
cannot be increased in Passive Error mode.

5.2.12 Recovery from Bus Off

All the error conditions we just discussed generate error frames, and these
error frames increment internal transmit and receive Error counters. And in
some scenarios, these counters can increment at different rates. Refer to the
ISO11898 specification to learn more details.

There are two methods to recover.

• The CAN node can change to configuration then back to Normal Bus
mode which clears out the transmit and receive error counters, or

• Detect 128 occurrences of 11 consecutive recessive bits (i.e., long bus
idle or 128 valid messages, or a combination of both).

In the following, we discuss the second methods.
Every CAN node will use the state diagram given in Figure 5.31 when

connected to the CAN BUS.
Each node starts off in Error active state. This is the state a normal CAN

node should be in for normal bus activity. In this state, the CAN node is able to

5.2 CAN Bus Error Handling 233

transmit normal data, remote, overload and active error frames. When either
the receive error or the transmit error counters increment to greater than 127,
the node will enter the Error Passive State. In this state, the CAN node can still
transmit out data, remote, and overload frames. But now the node can only
transmit passive error frames. Recall the passive error frame (Figure 5.32)
consists of all ones, so if the node is still detecting and transmitting error
frames, these error frames will be passive and should not cause the other
nodes on the network to increment their receive counters.

Once in Error Passive state the Node still have a chance to enter back
into error active, which will happen when the error counters drop below 127
and below. The error counters will decrement every time there is a valid
message on the bus. If the node continues to increment the Transmit error
counter to greater than 255 it will enter bus off. At this point the CAN module
disconnects from the bus. In order words, other than sensing the bus levels, it
will not transmit or receive any message or error frames. Once in the Bus off
state the node can only enter Error Active.

5.2.13 Error Confinement Mechanisms

Fault confinement
The CAN data link layers detect all communication errors with a very high
probability. A node detecting an error condition sends an Error Flag and
discards the currently transmitted frame. All nodes receiving an Error Flag
discard the message, too. In case of local failures, all other nodes recognize
the Error Frame sent by the node(s) that detected it and sent by themselves
a second time, which results in an eventually overlapping Error Frame. The
active Error Frame is made of six dominant bits and an 8-bit recessive delim-
iter followed by the IMF. This local error globalization method guarantees
network-wide data consistency, an important feature in distributed control
systems.

If all errors are detected with a very high probability, permanent errors
may lead to an unacceptable delay in transmitting messages. In the worst-
case, all communication is aborted by means of Error Frames. In order to
avoid this, the CAN protocol, as mentioned before, introduces two error
counters: one for received messages–Receive Error Counter (REC), and one
for transmitted messages–Transmit Error Counter (TEC). They are increased
and decreased according to the rules as specified in ISO 11898-1, the standard
of the CAN data link layer protocols. Using the error counters, a CAN node
can not only detect faults but also perform error confinement.

234 CAN Data Link Layer

A node starts out in Error Active mode. When any one of the two Error
Counters raises above 127, the node will enter a state known as Error Passive
and when the Transmit Error Counter raises above 255, the node will enter
the Bus Off state.

• Error Active node will transmit Active Error Flags when it detects errors.
• An Error Passive node will transmit Passive Error Flags when it detects

errors.
• A node which is Bus Off will not transmit anything on the bus at all.

The rules for increasing and decreasing the error counters are somewhat
complex, but the principle is simple: transmit errors give 8 error points,
and receive errors give 1 error point. Correctly transmitted and/or received
messages causes the counter(s) to decrease.

Example (slightly simplified): Let’s assume that node A on a bus has
a bad day. Whenever A tries to transmit a message, it fails (for whatever
reason). Each time this happens, it increases its Transmit Error Counter by
8 and transmits an Active Error Flag. Then it will attempt to retransmit the
message, and the same thing happens.

When the Transmit Error Counter raises above 127 (i.e., after 16
attempts), node A goes Error Passive. The difference is that it will now
transmit Passive Error Flags on the bus. A Passive Error Flag comprises 6
recessive bits, and will not destroy other bus traffic–so the other nodes will
not hear A complaining about bus errors. However, A continues to increase
its Transmit Error Counter. When it raises above 255, node A finally gives in
and goes Bus Off.

What does the other nodes think about node A?–For every active error flag
that A transmitted, the other nodes will increase their Receive Error Counters
by 1. By the time that A goes Bus Off, the other nodes will have a count in
their Receive Error Counters that is well below the limit for Error Passive, that
is, 127. This count will decrease by one for every correctly received message.
However, node A will stay bus off.

Most CAN controllers will provide status bits (and corresponding inter-
rupts) for two states:

• “Error Warning”–one or both error counters are above 96
• Bus Off, as described above.

Some, but not all, controllers also provide a bit for the Error Passive state.
A few controllers also provide direct access to the error counters.

5.2 CAN Bus Error Handling 235

The CAN controller’s habit of automatically retransmitting messages
when errors have occurred can be annoying at times. There is at least one
controller on the market (the SJA1000 from Philips) that allows for full
manual control of the error handling.

Fault Confinement Rules
The above discussion can be summarized in the following steps:

1. When a receiver detects an error, the REC will be increased by 1, except
when the detected error was a Bit Error during the sending of an Active
Error Flag or an Overload Flag.

2. When a receiver detects a dominant bit as the first bit after sending an
Error Flag, the REC will be increased by 8.

3. When a transmitter sends an Error Flag, the TEC is increased by 8.
Exception 1: If the transmitter is Error Passive and detects an ACK Error
because of not detecting a dominant ACK and does not detect a dominant
bit while sending its Passive Error Flag. Exception 2: If the transmitter
sends an Error Flag because a Stuff Error occurred during arbitration,
and should have been recessive, and has been sent as recessive but
monitored as dominant.

4. If the transmitter detects a Bit Error while sending an Active Error Flag
or an Overload Frame, the TEC is increased by 8.

5. If a receiver detects a Bit Error while sending an Active Error Flag or an
Overload Flag, the REC is increased by 8.

6. Any node tolerates up to 7 consecutive dominant bits after sending an
Active Error Flag, Passive Error Flag, or Overload Flag. After detecting
the fourteenth consecutive dominant bit (in case of an Active Error Flag
or an Overload Flag) or after detecting the eighth consecutive dominant
bit following a Passive Error Flag, and after each sequence of additional
eight consecutive Ďdominant“ bits, every transmitter increases its TEC
by 8 and every receiver increases its REC by 8.

7. After successful transmission of a frame (getting ACK and no error until
EOF is finished), the TEC is decreased by 1 unless it was already 0.

8. After the successful reception of a frame (reception without error up to
the ACK Slot and the successful sending of the ACK bit), the REC is
decreased by 1, if it was between 1 and 127. If the REC was 0, it stays
0, and if it was greater than 127, then it will be set to a value between
119 and 127.

236 CAN Data Link Layer

Figure 5.36 Example of error confinement.

9. A node is Error Passive when the TEC equals or exceeds 128, or when
the REC equals or exceeds 128. An error condition letting a node
become Error Passive causes the node to send an Active Error Flag.

10. A node is Bus Off when the TEC is greater than or equal to 256.
11. An Error Passive node becomes Error Active again when both the TEC

and the REC are less than or equal to 127.
12. A node which is Bus Off is permitted to become Error Active (no longer

Bus Off) with its error counters both set to 0 after 128 occurrences of 11
consecutive recessive bits have been monitored on the bus

Example of Error Confinement
In this example, we have three nodes that are all in the “Error Active” state
which means they are able to interact with the bus normally. By transmitting
data/remote/or error active frames.

At some point in the future, it possible for some node to detect error
conditions and start transmitting out error frames; either there is noise in the
environment, there is a short, or the node has become faulty in some way. PIC
microcontrollers with the CAN module come with an internal “error counter
warning” interrupt that will trigger when either error counters exceed 95.
These features give the CAN node an early warning that the bus might be
experiencing an issue. We can see that the node on the left has received this
“error counter warning interrupt”. Whereas the node in the middle has entered
into Error Passive state because it’s transmit error counter has become greater
than 127. At this point, the node in the middle can still transmit data and
remote frames, but is unable to transmit error active frames. Instead, it will
need to transmit error passive frames to limit its disturbance of the CAN BUS.

5.2 CAN Bus Error Handling 237

Example of Error Confinement (cont.)

Now we can see that the Node on the left has entered Error Passive, and
the node in the middle has entered “Bus Off”. The node in the middle now
has removed itself from the BUS and will no longer be able to transmit out
CAN data or remote frames. Also this “Bus off” node cannot transmit Active
or Passive error frames. By allowing this Node to drop off the BUS, the CAN
protocol has effectively guaranteed that bandwidth will always be available
for critical messages to be transmitted by other nodes on the BUS. Higher
Layer Protocol that implements Network Management/Diagnostics should
be able to notified the user of such a condition to allow them the chance
to service their product. Now, it is possible to ask a question about why the
node on the right didn’t increment its error counters the entire time through
this example. There could be several legitimate reasons why. Maybe this node
has been power cycled every time we decide to get a snapshot of the BUS, or
??? Maybe the node is in a “listen Only State” in which it only receives and
doesn’t transmit anything on the BUS.

5.2.14 Bus Loading

CAN provides a robust, simple, and flexible network solution for manu-
facturing, automotive and many other applications. The major drawback to
CAN is that message latency is non-determinant (due to the existence of
Error Frames, Overload Frames and retransmissions), and latency increases
with the amount of traffic on the bus. In general, bus utilization should
not exceed 30% of the bus capacity to assure that low priority messages
do not experience unacceptable delay. Bus utilization is defined as total bit
consumption / total bits available, and is calculated as follows:

238 CAN Data Link Layer

Table 5.5 Bus loading example
Data Message Rate Message

Message (Bytes) Size (Bits) and Period Bits Consumed
MsgA 0 47 10 trx/s: 100 ms 10 ů 47 = 470 bps

MsgB 5 5 ů 8 + 47 = 87 2 trx/s: 500 ms 87 ů 2 = 174 bps

MsgC 8 8 ů 8 + 47 = 111 1 trx/s: 1 s 111 ů 1 = 111 bps

.

Total periodic bits consumed 10000 bps

Total bits consumed = 1.1(Total periodic bits consumed) = 11000 bps
Bandwidth consumption = 11000/125000 = 8.8%

Step 1: Choose a time unit = the slowest fixed periodic message on network
(usually 1 second).

Step 2: Identify all periodic messages.

Step 3: For each of these messages approximate the total bit size of the
message by adding 47 bits to the size of each data field (SOF + Arbitration +
RTR + Control + CRC + Acknowledgment + EOF + Interframe Space = 1 +
11 + 1 + 6 + 16 + 2 + 7 + 3 = 47 bits).

Step 4: Calculate the message bits consumed by multiplying the message bit
size by the number of transmissions performed in one time unit.

Step 5: Sum all the message bits consumed to estimate the total periodic bits
consumed. Multiply this number by a safety factor of 1.1 to account for worst
case traffic.

Step 6: Finally, divide the total periodic bits consumed by the total bits
available (e.g., 125 kbps or 500 kbps multiplied by the time unit) to arrive
at the estimated bandwidth consumption percentage for the network.

5.2.15 Time-triggered Protocols

For real-time control over a network it may be advisable to implement a
communication protocol that guarantees that messages meet timing deadlines
regardless of the load on the bus. One such protocol that retains the CAN data
link layer protocol is “time-triggered CAN,” or TTCAN (ISO 11898-4) [9]. A
TTCAN message frame incorporates two types of “time windows”: exclusive
time windows, and arbitrating time windows. Exclusive time windows are
assigned to specific messages that are transmitted periodically. Thus, exclu-
sive window messages do not compete for bus access. Arbitrating windows

5.3 CAN FD–The Basic Idea 239

are used for messages that are not time critical. Arbitrating window messages,
like normal CAN messages, compete for bus access based on priority through
arbitration. Time-triggered CAN requires the existence of a “master node”
that periodically broadcasts its time (referred to as global time) in a reference
message. For fault tolerance, there must be multiple potential master nodes on
the network. If the master node fails (detected by the absence of a reference
message), the other potential masters compete for the bus by arbitration,
with the highest priority node becoming the new master and broadcasting
reference messages. Time-triggered CAN does not re-broadcast corrupted
messages, nor does it invoke Error Frames.

A competitive protocol to TTCAN is FlexRay, developed by a consortium
of automotive manufacturers and suppliers [10]. The FlexRay communication
frame consists of periodically triggered “static” and “dynamic” parts. The
static segment is made up of identical length time slots assigned to connected
nodes. Each node transmits its messages synchronously in its reserved slot.
The static segment also transmits a “synch” frame to provide a global time-
base for the network. Unlike CAN, there is no arbitration for the bus. The
dynamic segment is essentially a “polling” mechanism wherein each node
is given the opportunity to put an event-triggered or asynchronous message
on the bus in priority order using a “mini-slotting” timing mechanism. That
is, the slot counter increments through each identifier, but whereas in the
static segment the counter increments at a periodic rate whether or not there
is a message in each slot, in the dynamic segment the counter waits only a
brief period for each node to request transmission. If there is no transmission
request for a message with a particular slot identifier, the counter continues
to increment; if a transmission request occurs, the counter idles until the
transmission is complete.

For redundant fault tolerance, FlexRay nodes may be connected to two
buses or channels simultaneously.

5.3 CAN FD–The Basic Idea

Because of the bandwidth requirements of the automotive industry, the CAN
data link layer protocol needed to be improved. In 2011, Bosch started the
CAN FD (flexible data-rate) development in close cooperation with carmak-
ers and other CAN experts. The improved protocol overcomes to CAN limits:
You can transmit data faster than with 1 Mbps and the payload (data field) is
now up to 64 byte long and not limited to 8 byte anymore. In general, the idea
is simple: When just one node is transmitting, the bit rate can be increased,

240 CAN Data Link Layer

Figure 5.37 CAN FD format.

Figure 5.38 CAN FD.

because no nodes need to be synchronized. Of course, before the transmission
of the ACK slot bit, the nodes need to be re-synchronized.

CAN FD data frames can be transmitted with two different bit rates: In
the arbitration phase, the bit rate depends on the network topology and is
limited to 1 Mbps; in the data phase, the bit rate is limited by the transceiver
characteristics.

Using a ratio of 1:8 for the bit rates in the arbitration and data phase leads
to an approximately six-times higher throughput considering that the CAN
FD frames use more bits in the header (control field) and in the CRC field.

Faster and longer: Larger payloads improve the protocol efficiency and
lead to a higher throughput.

CAN FD–Some protocol details
In order to distinguish between Classical data frames and CAN FD data
frames, one of the formerly reserved bits is used. This bit is called FDF (FD

5.3 CAN FD–The Basic Idea 241

Figure 5.39 CAN FD frame.

Figure 5.40 FD base and extended frame format.

frame) bit. If it is of recessive value, the following bit sequence is interpreted
as a CAN FD data frame. If it is of dominant value, it is a Classical data or
remote frame. In the newly introduced BRS (bit rate switch) bit, the second
bit rate is applied, when it is of recessive (r) value. If it is of dominant (d)
value, the arbitration phase bit-time setting is used in the data phase, too.

Structure of CAN FD data frames: The fields, as shown in Figure 5.39, are
the same as in Classical CAN data frames, but some extensions have been
introduced (* stuff-bits are not considered; ** with fixed stuff-bits):

SOF = start-of-frame, CRC = cyclic redundancy check, ACK = acknowledg-
ment, EOF = end-of-frame, IMF = intermission field

Classic and Extended Frame Format: The CAN FD protocol controller has
to also support Classical CAN frames. Both CAN protocols (Classical as well
as CAN FD) (Figure 5.40) are internationally standardized in ISO 11898-
1:2015. CAN FD data frames with 11-bit identifiers use the FBFF (FD base
frame format) and those with 29-bit identifiers use the FEFF (FD extended
frame format). The CAN FD protocol doesn’t support remotely requested
data frames.

242 CAN Data Link Layer

Figure 5.41 FBFF and FEFF.

Two CAN FD frame formats: The IDE bit is recessive in FEFF, the RRS bit
is always dominant, and the value of the SRR bit doesn’t matter.

RRS = remote request substitution, SRR = substitute remote request, IDE
= identifier extension, FDF = flexible data rate format, d = dominant, r =
recessive, r0 = reserved

The control field comprises additional bits not provided by the Classical
CAN data frames. The FDF (FD format) bit indicates the usage of FD
frame formats. At the sample-point of the BRS (bit rate switch) bit, the bit
rate switch is performed. This guarantees a maximum of robustness. The
following ESI (error state indicator) bit provides information about the error
status: a dominant value indicates an error active state.

Extended control field: The DLC (data length code) values not used by
the Classical CAN protocol are shown as used by the CAN FD protocol.

IDE (identifier extension), FDF (flexible data rate format), BRS (bit rate
switch; recessive, if alternate bit rate), ESI (error state indicator; recessive, if
error passive), d = dominant, r = recessive

During the standardization process of the CAN FD protocol, some addi-
tional safe guards were introduced in order to improve the communication
reliability. This is why the CRC field comprises 17-bit (for frames with
payloads up to 16 byte) or 21-bit (for frames larger than 16 byte) polynomials
and an 8-bit stuff-bit counter plus a parity bit. The CRC field use fixed-stuff
bits (FSB) with an opposite value of the previous bit. All these safe guards

5.4 ISO 11898 Review and Optional Modes 243

Figure 5.42 CRC fields.

guarantee that all single failures are detected under all conditions. Even the
possibility to detect multiple failures has been improved.Medium-term, non-
ISO CAN FD controllers might also be on the market–these are not compliant
to the ISO 11898-1 standard. They don’t implement the above-mentioned
additional safe guard features.

Stuff-bit counter: The 3-bit stuff-bit counter is grey-coded and it is protected
by a parity bit as well as by the following fixed stuff-bit (FSB)

5.4 ISO 11898 Review and Optional Modes

5.4.1 Bus Monitoring Mode

In an optional bus monitoring mode, the CAN node is able to receive valid
data frames and remote frames, but it sends only “recessive” bits on the CAN
bus and it cannot start a transmission.

If the optional bus monitoring mode is supported, the MAC sublayer is
required to transmit “dominant” bits (ACK bit, overload flag, active error
flag), but the bit is rerouted internally so that the MAC sublayer monitors
these “dominant” bits, although the CAN bus may remain in recessive state.

The use of the time-triggered communication option requires a single-
shot mode. In this mode, the CAN node do not transmit overload and error
flags.

The automatic retransmission is disabled.

5.4.2 Time-Triggered Communication (TTC)

In order to guarantee a specific latency time for each transmitted message, an
optional scheduling function may be implemented.

The time-triggered communication (TTC) option describes the prereq-
uisites needed for the synchronization of all nodes in the network. With
the synchronization of node any message can be transmitted at a specific

244 CAN Data Link Layer

Figure 5.43 Global time producer.

time slot, where it has not to compete for the bus with other messages thus
providing predictable latency times by avoiding the loss of arbitration. In
order to synchronize the activities of the nodes within the network a common
reference point is needed. The SOF bit or the sample point of the last bit of
EOF of any message is used as the reference point. The individual presence
of a single message at a time is referred to as frame scheduling.

Based on the synchronization of the nodes, the TTC facilitates also the
establishment of a global time system in higher-layer protocols. The hardware
needed to establish TTC is included between LLC and MAC.

Any node that supports TTC option needs to provide a time base, which
is a cyclic up counter of at least 16 bit with either an internal or an external
clock. Any message received or transmitted invokes a capture of the time
base taken at the SOF recognition of the respective message or at the sample
point of the last bit of EOF. After successful message reception, the capture
value is provided to the CPU for at least one message and it is readable until
the next message is received. It has to be possible to generate at least one
programmable event trigger from the above mentioned time base. The trigger
should be freely programmable by the CPU in the range of at least 0 to (216−
1) × timer clocks.

5.5 CAN in Action

In the following, we will be using the Node with the CAN Module built into
the PIC microcontroller as reference to show about the steps a CAN Node

5.5 CAN in Action 245

Figure 5.44 CAN node.

will need to go through to transmit out a CAN message and show how CAN
works.

1. Transmitting a CAN Message.
2. First, the user software will need to confirm the CAN module is in

configuration mode. Then initialize the CAN module bit rate settings
so that the module is using the same bit rate as all other nodes on the
bus.

3. Then the user should place the CAN module from configuration mode
to normal mode.

4. Second, the user software will need load the TXB with the Message
ID, DLC, and Data bit, now the user software will “set” the “transmit
request bit.” This will lock that TX buffer from being written to by the
user software. . .

5. At this point the CAN module takes over.
6. The message is assembled and stuff bits are added where needed Next

the CAN module senses the CAN bus looking for the next “quiet time.

When there is quiet time, the module will start transmitting the message
while checking for error frames. The CAN transceiver will translate the
digital signals from the PICmicro to the transceiver to differential signals
to go out onto the BUS Actually the Physical layer bus signal depends on
what transceiver is being used (differential was just mentioned because it is
common).

If the CAN message is successfully sent onto the CAN bus, meaning there
were NO error frames that forced a retransmit, the TX Buffer will unlocks for
the next user software writes.

246 CAN Data Link Layer

Figure 5.45 CAN message.

Figure 5.46 CAN receiving message.

1. Receiving a CAN Message

Let’s talk about the steps a CAN Node will need to go through to receive
CAN message from the CAN bus.

First, the user software will need to confirm whether the CAN module is
in configuration mode, and then, the user software will need to initialize the

5.5 CAN in Action 247

CAN modules bit rate settings so that the module is using the same bit rate as
all other nodes on the bus. The user software should also initialize the mask
and filter settings as well. Then, the user should place the CAN module from
configuration mode to normal mode.

Next the CAN module will wait until another node on the CAN Bus
transmits out a CAN message, it senses a CAN message on the BUS starting
with the SOF.

The CAN transceiver will translate the differential signal from the bus into
digital signal and pass it along to the CAN module on the Microcontroller.
The CAN module will de-stuff the stuff bits and check for message Errors
while it is loading the message into the MAB.

If there are no Errors and the entire message has been loaded the message
in the MAB, the CAN module will check the received messages ID against
the Mask and Filter settings.

If the message ID is a match, then the message will then get stored into
the Receiver Buffer, and at that point, the PIC microcontroller (i.e., the User’s
application) is notified.

If the message DOES Not match the Mask and Filters, the PIC microcon-
troller would never get notified in other words precious microcontroller cycles
would not be wasted on unwanted messages which is why it is important to
setup and use the Mask and Filter settings correctly.

DLC = Data Length Code

References

[1] Controller Area Network, Basics Protocols, Chips and Applications; Dr.
Konrad Etschberger; ISBN 3 00-007376-0 (www.ixxat.com)

[2] CAN Systems Engineering, From Theory to Practical Applications;
Wolfhard Lawrenz, ISBN 0-387-94939-9

[3] Nicolas Navet, Yeqiong Song, Franÿcoise Simonot-Lion, and Cedric
Wilwert, “Trends in Automotive Communication Systems,” Proceedings
of the IEEE, Vol. 93, NO. 6, June 2005 Page(s):1204–1223

[4] Gabriel Leen and Donal Heffernan, “Expanding Automotive Electronic
Systems,” IEEE Computer Volume 35, Issue 1, Jan. 2002 Page(s):88–93

[5] Jeffrey Cook, Ilya Kolmanovsky, David McNamara, Edward Nelson and
K. Venkatesh Prasad, “Control, Computing and Comm

[6] J.M. Eklund, J. Sprinkle, S. Sastry and T.R. Hansen, “Information Tech-
nology for Assisted Living at Home: building a wireless infrastructure

248 CAN Data Link Layer

for assisted living,” IEEE-EMBS 2005 27th Annual International Con-
ference of the Engineering in Medicine and Biology Society, Sept. 2005
page(s): 3931–3934.

[7] CAN in Automation Website, h t tp : / /www.can- c ia .o rg, viewed
September 2006.

[8] Robert Bosch GmbH, “CAN Specification 2.0,” 1991.
[9] Holger Zeltwanger, “Time-Triggered Communication on CAN,” SAE

Paper 2002-01-0437, 2002.
[10] Thomas Fuehrer, Robert Hugel, Florian Hartwich and Harald Weiler,

“FlexRay–The Communication System for Future Control Systems in
Vehicles,” SAE Paper 2003-01-0110, 2003.

[11] “CAN History” (http://www.can-cia.de/index.php?id=161). CAN in
Automation.

[12] Building Adapter for Vehicle On-board Diagnostic (http://www.obddia
g.net/adapter.html), obddiag.net, accessed 2009-09-09

[13] Comparison of Event-Triggered and Time-Triggered Concepts with
Regard to Distributed Control Systems A. Albert, Robert Bosch GmbH
Embedded World, 2004, Nürnberg

[14] http://www.semiconductors.bosch.de/en/20/can/2-license.asp
[15] “CAN BUS MESSAGE FRAMES–Overload Frame, Interframe Space”

(http://rs232-rs485.blogspot.com/2009/11/can-bus-message-frames-ov
erload.html).

[16] Controller Area Network, Basics Protocols, Chips and Applications; Dr.
Konrad Etschberger; ISBN 3–00–007376–0 (www.ixxat.com)

[17] CAN Systems Engineering, From Theory to Practical Applications;
Wolfhard Lawrenz, ISBN 0–387–94939–9

[18] MCP2551 Data Sheet, “High Speed CAN Transceiver”, DS21667,
Microchip Technology, Inc.
AN754, “Understanding Microchip’s CAN Module Bit Timing”,
DS00754, Microchip Technology, Inc.

[19] ISO-11898-2, “Road Vehicles–Interchange of Digital Information–Part
2: High Speed Medium Access Unit and Medium Dependant Interface”,
International Organization for Standardization.

[20] CAN System Engineering, “From Theory to Practical Applications”,
Wolfhard Lawrenz, Springer.

http://www.can-cia.org
http://www.can-cia.de/index.php?id=161
http://www.obddiag.net/adapter.html
http://www.obddiag.net/adapter.html
http://www.semiconductors.bosch.de/en/20/can/2-license.asp
http://rs232-rs485.blogspot.com/2009/11/can-bus-message-frames-overload.html
http://rs232-rs485.blogspot.com/2009/11/can-bus-message-frames-overload.html

5.5 CAN in Action 249

External Links

• Bosch specification
(http://www.semiconductors.bosch.de/media/pdf/canliteratur/can
2spec.pdf) (old document–slightly ambiguous/unclear in some points,
superseded by the standard ISO 11898 (http://www.iso.org/iso/search.h
tm?qt=Controller+Area+Network&searchSubmit=Search&sort=rel&t
ype=simple&published=true))

• Controller Area Network (CAN) Schedulability Analysis: Refuted,
Revisited and Revised (http://www.springerlink.com/content/8n327
20737877071/)

• Pinouts for common CAN-bus connectors (http://www.interfacebus.c
om/Can_Bus_Connector_Pinout.html)

• Independent discussion platform CANLIST (http://www.canlist.org/)
• A webpage about CAN in automotive (http://marco.guardigli.it/2010/10

/hacking-your-car.html)
• Controller Area Network (CAN) Schedulability Analysis with FIFO

Queues (http://www.cs.york.ac.uk/ftpdir/reports/2011/YCS/462/YC
S-2011-462.pdf)

http://www.semiconductors.bosch.de/media/pdf/canliteratur/can2spec.pdf
http://www.semiconductors.bosch.de/media/pdf/canliteratur/can2spec.pdf
http://www.iso.org/iso/search.htm?qt=Controller+Area+Network&searchSubmit=Search&sort=rel&type=simple&published=true
http://www.iso.org/iso/search.htm?qt=Controller+Area+Network&searchSubmit=Search&sort=rel&type=simple&published=true
http://www.iso.org/iso/search.htm?qt=Controller+Area+Network&searchSubmit=Search&sort=rel&type=simple&published=true
http://www. springerlink.com/content/8n32720737877071/
http://www. springerlink.com/content/8n32720737877071/
http://www.interfacebus.com/Can_Bus_Connector_Pinout.html
http://www.interfacebus.com/Can_Bus_Connector_Pinout.html
http://www.canlist.org/
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://www.cs.york.ac.uk/ftpdir/reports/2011/YCS/462/YCS-2011-462.pdf
http://www.cs.york.ac.uk/ftpdir/reports/2011/YCS/462/YCS-2011-462.pdf

Section III

ZigBee

The section consists of the following three chapters:

Chapter 6: IEEE 802.15.4 Standard and ZigBee
Chapter 7: ZigBee Stack Layer
Chapter 8: ZigBee Pro and ZigBee Security

Summary

This section of the book presents an overview of ZigBee, its applications,
characteristics, and security. The following are the key concepts that will be
described in the three chapters forming the section:

• ZigBee, a wireless sensor and control network, was developed by the
ZigBee Alliance.

• ZigBee applications can be used in home automation, commercial build-
ing automation, personal home health care, smart energy, and industrial
process monitoring.

• The first ZigBee specification was published in 2004 and supported
home control lighting; the ZigBee Alliance no longer supports the 2004
specification.

• In 2006, the ZigBee Alliance published the ZigBee 2006 specification,
which was a modification of ZigBee 2004 specification.

• In 2007, ZigBee published ZigBee and ZigBee PRO feature sets.
• ZigBee defines three main types of devices: the coordinator, router, and

end device. In addition, devices can act as a trust center or gateway.

251

252

• The coordinator is a full-function device (FFD). It performs the critical
function of controlling the network, starting a network, and permitting
other devices to join or leave the network.

• The trust center performs authentication of devices joining the network,
security management, and key distribution.

• ZigBee offers star, tree, and mesh topologies.
• It uses layer architecture for its protocol.
• It uses IEEE 802.15.4 for its physical and MAC layers.
• ZigBee protocol architecture consists of the application, application

support sublayer, and network layers
• It offers direct, group, and broadcast addressing.
• A ZigBee end device can have 240 endpoints, where each endpoint may

represent different application.
• ZigBee PRO uses a mesh topology, and it is a beaconless network.
• ZigBee PRO offers stochastic addressing, group addressing, asymmetric

links, fragmentation, and frequency agility.
• Frequency agility can be used to combat interference.
• ZigBee PRO offers many-to-one routing and multicast routing.
• ZigBee PRO offers standard and high-security modes.
• ZigBee PRO security level is set to 5.
• ZigBee PRO provides link management.
• ZigBee PRO end devices are only powered by battery.
• The ZigBee 2007 specification supports tree and mesh topologies.
• ZigBee PRO selects the best channel at startup and during operation.
• Preventing Spoof Leave Notifications Key.
• Rolling the Network Key.
• Preventing Rejoin Security Attacks.
• Protecting the Network Key.
• Future Scope of ZigBee.
• Advantages of ZigBee Technology.

6
IEEE 802.15.4 and ZigBee

6.1 Introduction

6.1.1 ZigBee General Description

• Over-the air data rates of 250 kbps, 40 kbps, and 20 kbps
• Star or peer-to-peer (mesh) operation
• Allocated 16 bit short or 64 bit extended addresses
• Allocation of guaranteed time slots (GTSs)
• Carrier Sense Multiple Access with Collision Avoidance (CSMA-CA)

channel access
• Fully acknowledged protocol for transfer reliability
• Low power consumption
• Energy detection (ED)
• Link quality indication (LQI)
• 16 channels in the 2450 MHz band, 10 channels in the 915 MHz band,

and 1 channel in the 868 MHz band
• Aimed to a Low-rate Wireless Personal Area Network (LR-WPAN)

6.1.2 ZigBee: Overview

ZigBee is an open global standard for wireless technology designed by
ZigBee Alliance to use low-rate/low-power digital radio signals for personal
area networks (PAN). ZigBee operates on the IEEE 802.15.4 specification
and is used to create wireless networks that require a low data transfer rate,
energy efficiency, and secure networking.

ZigBee is designed for small-scale projects which need wireless connec-
tion such as for home automation, medical device data collection, wireless
light switches, home energy monitors, traffic management systems, heat-
ing and cooling control, and other consumer, industrial equipment that
requires short-range low-rate wireless data transfer and other low-power

253

254 IEEE 802.15.4 and ZigBee

low-bandwidth needs. Such applications use, normally, low-power digital
radios for communication. Hence, ZigBee is a low-power, low-data rate and
close proximity (i.e., personal area) wireless ad hoc network. The technology
defined by the ZigBee specification is intended to be simpler and less expen-
sive than other wireless personal area networks (WPANs), such as Bluetooth
or more general wireless networking such as Wi-Fi.

ZigBee employs mesh network topology (actually it is one of the main
features of ZigBee), allowing it provides high reliability and a reasonable
range.

Its low power consumption limits transmission distances to 10–100 m
line-of-sight, depending on power output and environmental characteristics.
ZigBee devices can transmit data over long distances by passing data through
a mesh network of intermediate devices to reach more distant ones. ZigBee
is typically used in low data rate applications that require long battery life
and secure networking. ZigBee has a defined rate of 250 kbps, best suited for
intermittent data transmissions from a sensor or input device.

One of ZigBee’s defining features is the secure communications it is able
to provide. This is accomplished through using AES (Advanced Encryption
Standard) to encrypt the transactions using 128-bit cryptographic keys (use
of AES128 for encryption). This system is based on symmetric keys, which
means that both the recipient and originator of a transaction need to share the
same key. These keys are either pre-installed, transported by a ”trust center”
designated within the network or established between the trust center and a
device without being transported. Security in a personal area network is most
crucial when ZigBee is used in corporate or manufacturing networks.

The ZigBee protocol stack, as mentioned before, is built on top of IEEE
802.15.4, which defines the Media Access Control (MAC) and physical
layers for low-rate wireless personal-area network (LR-WPAN). The ZigBee
standard offers a stack profile that defines the network, security, and appli-
cation layers. Developers are responsible for creating their own application
profiles or integrating with the public profiles that were developed by the
ZigBee Alliance. The ZigBee specification is an open standard that allows
manufacturers to develop their own specific applications that require low cost
and low power.

The ZigBee Alliance has three network specifications: ZigBee Pro, Zig-
Bee RF4CE, and ZigBee IP. The ZigBee Alliance also publishes application
profiles like ZigBee Home Automation, ZigBee Smart Energy, etc., to allow
different device classes to interoperate.

6.1 Introduction 255

Note: ZigBee Alliance consists of more than 270 companies (including
Freescale, Ember, Mitsubishi, Philips, Honeywell, and Texas Instruments).

ZigBee Definition: ZigBee is a standards-based wireless technology
designed specifically for low-cost, low- power wireless sensor and con-
trol networks, particularly Personal Area Networks. Based on an IEEE
802.15 standard, ZigBee operates in the 2.4 GHz band and is intended to
be cheaper and simpler to implement than Bluetooth or Wi-Fi.

ZigBee Metaphor: One of the key characteristics of the ZigBee standard
is its mesh networking capability. In a large distributed mesh network, a
message is relayed from one device to another until it reaches its faraway
destination. Similarly, when a group of honey bees, distributed in a large
field, want to communicate a message all the way back to their hive,
they use message relaying. Each bee performs a specific zigzag dance,
which is repeated by the next bee that is slightly closer to the hive. This
process is repeated until the message gets to the hive. The name ZigBee
was selected as a metaphor for the way devices on the network find and
interact with one another.

6.1.3 Evolution of LR-WPAN Standardization

The cellular network was a natural extension of the wired telephony network
that became pervasive during the mid-20th century. As the need for mobility
and the cost of laying new wires increased, the motivation for a personal
connection independent of location to that network also increased. Coverage
of large area is provided through (1–2 km) cells that cooperate with their
neighbors to create a seemingly seamless network. Examples of standards are
GSM, IS-136, IS-95. Cellular standards basically aimed at facilitating voice
communications throughout a metropolitan area.

1. IEEE 802.11 Working Group: During the mid-1980s, the IEEE 802.11
working group for WLANs is formed to create a wireless local area
network standard. This was formed to cover the growing need of smaller
area coverage that is needed for higher user densities and the emergent
data traffic.
Whereas IEEE 802.11 was concerned with features such as Ethernet
matching speed, long range (100 m), complexity to handle seamless
roaming, message forwarding, and data throughput of 2–11 Mbps,
WPANs are focused on a space around a person or object that typically

256 IEEE 802.15.4 and ZigBee

extends up to 10 m in all directions. The focus of WPANs is low cost,
low power, short range, and very small size.

• The IEEE 802.15 Working Group: It is formed to create WPAN
standard. This group has currently defined three classes of WPANs
that are differentiated by data rate, battery drain, and quality of
service (QoS).

• The high data rate WPAN (IEEE 802.15.3): This class is suitable
for multi-media applications that require very high QoS.

• Medium rate WPANs (IEEE 802.15.1/Bluetooth): This is handling
a variety of tasks ranging from cell phones to PDA communications
and has QoS suitable for voice communications.

• The low data rate WPAN (IEEE 802.15.4/LR-WPAN): This class is
intended to serve a set of industrial, residential, and medical appli-
cations with very low power consumption and cost requirement not
considered by the above WPANs and with relaxed needs for data
rate and QoS. The low data rate enables the LR-WPAN to consume
very little power. This was the base of ZigBee.

• IEEE 802.15.4 defines two layers: Physical Layer and Medium
Access Control (MAC) layer. The two layers are the foundation
that ZigBee build on to form the ZigBee protocol by adding the
Network layer (NWK) and Application layer (APL).

6.1.4 ZigBee History

ZigBee was conceived in 1998, standardized in 2003, and revised in 2006.
The ZigBee specification has undergone multiple modifications. The major
milestones in its revision history are listed here:

• In 2004, the ZigBee Alliance published its first specification, which
supported a home control lighting profile. However, the ZigBee Alliance
no longer supports the 2004 specification.

• In February 2006, the ZigBee Alliance published the ZigBee Stack 2006,
which contained modifications to ZigBee 2004.

• In October 2007, the ZigBee Alliance published two feature sets called
ZigBee and ZigBee PRO. The ZigBee feature set is interoperable with
ZigBee PRO. If a network is based on the ZigBee PRO stack, devices
from the ZigBee feature set stack can join the network as end devices.
Likewise, if a network is based on the ZigBee stack, ZigBee PRO
devices can join the network as end devices.

6.1 Introduction 257

The ZigBee feature set is backward compatible with ZigBee 2006; a
ZigBee feature set device can join in a ZigBee 2006 network and vice versa.

6.1.5 ZigBee Application Profiles

The ZigBee Alliance developed the following application profiles:

• Smart energy: ZigBee can be used to quickly read electrical, gas, and
water meters. The ZigBee smart energy network enables wireless com-
munication between the advanced metering infrastructure (AMI) and the
home-area network; that is, the smart energy network will connect home
appliances with the utility company for improving energy efficiency and
managing peak demand.

• Commercial building automation: In a commercial building, ZigBee
can be an integral tool in building maintenance. ZigBee wireless can
be used to monitor smoke-detector operation and fire-door position.
Suppose that a high-rise building contains 50 floors, with each floor
having 50 rooms, and each room is equipped with a smoke detector.
For safety reasons, each smoke detector must be tested every month.
This requires checking 2,500 rooms! Instead of requiring that someone
manually test the 2,500 smoke detectors, ZigBee allows a central station
to remotely monitor each smoke detector. A ZigBee device may also be
used to turn on and off a light without using any wire.

• Home automation: ZigBee home automation profile defines devices
that are used for residential and commercial applications. ZigBee can
be used to remotely control lighting, heating, cooling, and door-locking
mechanisms. It can also remotely monitor smoke detectors and home
security systems.

• Personal, home, and hospital care (PHHC): This profile is used for
monitoring the personal health of a patient at home without limiting a
patient’s mobility. For example, it can remotely monitor blood pressure
and heart rate.

• Telecom applications: Embedding a ZigBee device into a mobile phone
or PDA creates a new device called a ZigBee mobile device. A ZigBee
mobile device can be used to communicate with other ZigBee devices.
Users of ZigBee mobile devices can send and receive messages and
share ring tones, contacts and images. More important, the ZigBee
mobile device can even communicate with ZigBee devices that use
different application profiles. For example, a ZigBee mobile device

258 IEEE 802.15.4 and ZigBee

can be used to alert emergency services when a PHHC-enabled device
detects a critical problem with the patient’s health.

• Remote control for consumer electronics (ZigBee RF4CE): Cur-
rently, most remote controllers are using infrared (IR) technology, which
requires line of sight; ZigBee RF4CE is a protocol that uses radio
frequency (RF) to replace IR technology for remote controllers used in
consumer electronics.

• Industrial process monitoring and control: ZigBee offers solutions
for wireless sensor and control. Therefore, it can be used for monitoring
and controlling industrial processes without using wire. For example,
in inventory tracking, each piece of equipment can be tagged with a
wireless sensor and can then be located by a ZigBee node. This process
is called radio frequency identification (RFID). ZigBee can monitor
machine condition and the performance of operating equipment within
a plant. ZigBee can record and transmit such critical information as
temperature, pressure, flow, tank level, humidity, and vibration.

In conclusion and concerning ZigBee applications, ZigBee standard may
be used into a market that is usually not covered by another wireless technolo-
gies (Figure 6.1). ZigBee provides cut down in data rates, while most wireless
standards are striving to go faster and ZigBee fits on 8-bit microcontrollers,
while other wireless protocols add more and more features. ZigBee looks to
control a light or send temperature data to a thermostat, while other wireless
technologies aim to deliver streaming high-definition media or to provide the
last mile to the Internet. ZigBee is designed to run for years, while other such

Figure 6.1 Wireless technologies compared.

6.2 ZigBee Wireless Sensor and Control Network 259

technologies may work for hours or perhaps days with batteries and ZigBee
products can typically provide decades or more of use, while other wireless
technologies provide 12 to 24 months of shelf life for a product. Moreover, the
slogan for ZigBee is also indicates the Wireless Control That Simply Work.

Low-power wireless mesh networking is provided by ZigBee and it can
support up to thousands of devices in a network, different from Bluetooth,
UWB, and Wireless USB, which are some other personal area network
standards. Technologically controlled home construction and its automation,
health care sector, smart power and energy, communication department, and
other services such as retail sector are the diverse application areas to which
ZigBee Alliance has wide advantages based on these characteristics. Home
patient monitoring is one of the applications of ZigBee and by wearable
devices, for example, a patient can measure the blood pressure and heart rate.
The patient wears a ZigBee device that incorporates with a sensor that collects
information related to health on a periodic basis. The data are now wirelessly
transmitted to a local server, and initial analysis is performed there. The vital
information is finally sent to the patient’s nurse or physician via the Internet
for further analysis. The ZigBee standard was introduced and developed by
ZigBee Alliance.

6.2 ZigBee Wireless Sensor and Control Network

6.2.1 ZigBee Network Characteristics

Several standards currently exist for wireless networks, including Bluetooth,
Wi-Fi, and WiMax. ZigBee is a new standard for wireless sensor and control
networks. It has the following characteristics:

• Low battery consumption. A ZigBee end device should operate for
months or even years without needing its battery replaced.

• Low cost.
• Low data rate. The maximum data rate for a ZigBee device is 250 kbps.
• Easy to implement.
• Supports up to 65,000 nodes connected in a network.
• ZigBee can automatically establish its network.
• ZigBee uses small packets compared with Wi-Fi and Bluetooth.

Table 6.1 shows a comparison of ZigBee characteristics with those of
Wi-Fi and Bluetooth.

Table 6.1 shows that Bluetooth, while similar in functionality to ZigBee,
does not offer the range of topologies, and its standby current is nearly 70

260 IEEE 802.15.4 and ZigBee

Table 6.1 ZigBee, Bluetooth, and Wi-Fi characteristics
Wi-Fi IEEE 802.11 Bluetooth IEEE 802.15.1 ZigBee IEEE

802.15.4
Application Wireless LAN Cable replacement Control and

monitor

Frequency bands 2.4 GHz 2.4 GHz 2.4 GHz, 868
MHz, 915 MHz

Battery life (days) 0.1–5 1–7 100–7,000

Nodes per network 30 7 65,000

Bandwidth 2–100 Mbps 1Mbps 20–250 kbps

Range (m) 1–100 1–10 1–75 and more

Topology Tree Tree Star, tree,
cluster tree, and
mesh

Standby current 20 * 10–3 amps 200 * 10–6 amps 3 * 10–6 amps

Memory 100 KB 100 KB 32–60 KB

times more than ZigBee. Of the three wireless networks under comparison,
ZigBee is the only one that offers mesh topology. In addition, a ZigBee end
device can be in sleep mode and still keep its association with its network.
ZigBee is considered a more sophisticated network when compared to either
Bluetooth or Wi-Fi.

6.2.1.1 ZigBee versus Bluetooth
ZigBee looks rather like Bluetooth but is simpler, has a lower data rate and
spends most of its time snoozing. This characteristic means that a node on
a ZigBee network should be able to run for 6 months to 2 years on just two
AA batteries. The operational range of ZigBee is 10–75 m compared to 10
m for Bluetooth (without a power amplifier). ZigBee sits below Bluetooth
in terms of data rate (see Figure 6.1). The data rate of ZigBee is 250 kbps
at 2.4 GHz, 40 kbps at 915 MHz and 20 kbps at 868 MHz whereas that of
Bluetooth is 1 Mbps. ZigBee uses a basic master-slave configuration suited
to static star networks of many infrequently used devices that talk via small
data packets. It allows up to 254 nodes. Bluetooth’s protocol is more complex
since it is geared towards handling voice, images and file transfers in ad hoc
networks. Bluetooth devices can support scatternets of multiple smaller non-
synchronized networks (piconets). It only allows up to 8 slave nodes in a
basic master-slave piconet set-up. When ZigBee node is powered down, it

6.2 ZigBee Wireless Sensor and Control Network 261

Figure 6.2 Architecture of ZigBee node.

can wake up and get a packet in around 15 ms, whereas a Bluetooth device
would take around 3 s to wake up and respond.

6.2.2 ZigBee Device Types and Operating Modes

A ZigBee network consists of ZigBee nodes (devices). The node architecture
is shown in Figure 6.2. A node consists of a microcontroller, a transceiver,
and an antenna. A ZigBee node uses stack profiles, which are developed by
software. A node can be used for a wide variety of applications–for example,
lighting control, smoke-detector, and home-security monitoring. Therefore,
a node can support multiple subunits, and each subunit has an application
object that describes the subunit function.

The nodes can be classified from two points of views: physical and
logical.

a. ZigBee Devices–Physical Classification
A node can operate as either a full-function device (FFD) or reduced-function
device (RFD).

i. Fully functional devices (FFD): Full Function Devices can perform
all existed operations within the standard, involving routing techniques,
coordination tasks and sensing task. The FFD can support as router,
coordinator or an end device (It can be either RFD or FFD based on
its targeted application). A normal FFD in a ZigBee network will be
powered from an AC-fed main supply, as it must always be active and
hearing to the network.

ii. Reduced functional devices (RFD): This is a device that has a reduced
level of functionality. It has the minimum computing ability. The pri-
mary objective of RFD is to find an existed network for transferring
the data, examine if there is any pending data, and forward request to

262 IEEE 802.15.4 and ZigBee

the network coordinator for the data. The RFD’s usually go to the sleep
mode when they are not transferring any data and this decreases the
battery consumption. The RFDs do not send packets and must be related
with an FFD. In other words RFDs can only talk to FFDs as they contain
no routing functionality. RFD is typically an end node (device), that is,
sensors and actuators which perform specific tasks, that is, monitoring
lighting conditions, recording temperature data, and having control over
the external devices.

RFDs are often known as child devices as they need other parent devices
with which to communicate.

From the given definitions, an FFD can perform all the tasks that are
defined by the ZigBee standard, and it operates in the full set of the IEEE
802.15.4 MAC layer. An RFD performs only a limited number of tasks.

b. ZigBee Devices: Logical Devices
ZigBee Device Object defines three types of logical devices, each having a
specific role as illustrated (Figure 6.3). The three types are:

• Coordinator (C) or Coordinator Device (CD): A coordinator device
(CD) is an FFD and responsible for establishing, executing and man-
aging the overall ZigBee network. CD is responsible for configuring
the security level of the network and configuring the address of the

Figure 6.3 Types of network nodes in ZigBee architecture (ZigBee stack) (https://mmbnet
works.atlassian.net/wiki/spaces/SKB/pages/39518242/Zigbee+Network+Concepts).

https://mmbnetworks.atlassian.net/wiki/spaces/SKB/pages/39518242/Zigbee+Network+Concepts
https://mmbnetworks.atlassian.net/wiki/spaces/SKB/pages/39518242/Zigbee+Network+Concepts

6.2 ZigBee Wireless Sensor and Control Network 263

“Trust Center” (The default value of this address is the ZigBee coor-
dinator’s own address; otherwise, the ZigBee coordinator may designate
an alternate Trust Center). The ZigBee coordinator also maintains a list
of currently associated devices and facilitates support of orphan scan
and rejoin-processing to enable previously associated devices to rejoin
the network. Each network has exactly one coordinator. The coordinator
performs, in general, the following functions:

◦ Starts the Network: Always first coordinator need to be installed
for establishing ZigBee network service, it starts a new PAN (Per-
sonal Area Network), and once started other ZigBee components
as router (R) and End devices (E) can join the network (PAN).
◦ Selects the channel to be used by the network and also PAN ID
◦ Assigns how addresses are allocated to nodes or routers
◦ Permits other devices to join or leave the network
◦ Holds a list of neighbors and routers
◦ Transfers application packets
◦ It will not go to sleep mode.
◦ It is mains powered (AC) and support child devices.
◦ Stores information about the network, including acting as the Trust

Center and repository for security keys (see “Trust Center”).

• End device (E or ED): A ZigBee End Device (ZED or ED) can be
an RFD. An RFD operates within a limited set of the IEEE 802.15.4
MAC layer, enabling it to consume less power. The end device (child)
can be connected to a router or coordinator (parent). These devices do
not have to stay awake the entire time, while the devices relating to the
other two categories have to. In other words, it operates at low duty-cycle
power, meaning it consumes power only while transmitting information.
ZigBee architecture is designed so that an end device transmission time
is short. The end device performs the following functions:

◦ Joins or leaves a network
◦ Transfers application packets

ZigBee End Device (ZED) requires the least amount of memory, and,
therefore, can be less expensive to manufacture than a ZigBee Router
(ZR) or ZigBee Coordinator (ZC).

• Router (R): A router is an FFD. ZigBee router is an intermediary device
in a network which sends the data from the source node to the destination
node. These devices forward the data as well as sense the data from their

264 IEEE 802.15.4 and ZigBee

surrounding atmosphere. Routers need the Coordinator’s (in general the
Trust Center’s) permission to join the network if security is enabled on
the network and can also double-up as end devices. A router is used in
tree and mesh topologies to expand network coverage. The function of a
router is to find the best route to the destination over which to transfer a
message. A router performs all functions similar to a coordinator except
the establishing of a network. This means that at certain occasions,
routers can allow other routers and end devices to join the network and
will maintain a list of currently associated devices and facilitate support
of orphan scan and rejoin processing to enable previously associated
devices to rejoin the network. Since routers link multiple sections of a
network, they cannot be put to sleep. The Router is mains powered (AC)
and support child devices.

Besides the three logical types of nodes, the network also has the
following:

• ZigBee Trust Center (ZTC): It is a device trusted by devices within
a network to distribute keys for the purpose of network. It is also
responsible for end-to-end application configuration management and
on device authentication. The Trust center could be the coordinator
device or a device designated as the Trust center by the coordinators
of the ZigBee Network.
All members of the network recognize exactly one Trust Center, and
there is exactly one Trust Center in each secure network. It is configured
to operate in either standard or high security mode and may be used
to help establish end-to-end application keys either by sending out link
keys directly (i.e., key-escrow capability) or by sending out master keys.
These keys are generated at random.
Role of Trust Center in Key Generation and Distribution:
For purpose of trust management, a device accepts an initial master
or active network key originating from its Trust Center via unsecured
communication channel. For purposes of network management, a device
accepts an initial active network key and updated network keys only
from its Trust Center. For purposes of configuration, a device accepts
master keys or link keys intended for establishing end-to-end security
between two devices only from its Trust Center. Aside from the initial
master key or network key, additional link, master, and network keys are
generally only accepted if they originate from a device’s Trust Center
via secured key transport.

6.2 ZigBee Wireless Sensor and Control Network 265

– Standard Security Mode: It is designed for residential applica-
tions. In this mode, the Trust Center maintains a list of devices,
master keys, link keys and network keys with all the devices in the
network; however, it maintains a standard network key and controls
policies of network admittance. In this mode, each device that joins
the network securely shall either have a global link key or a unique
link key depending upon the application in use. It is required that
the trust center have prior knowledge of the value of the link key
and the type (global or unique) in order to securely join the device
to the network.

– High security mode: It is designed for high-security commercial
applications. In this mode, the Trust Center maintains a list of
devices, master keys, link keys and network keys that it needs
to control and enforce the policies of network key updates and
network admittance. It also mandates the implementation of key
establishment using SKKE and entity authentication.

Standard and high-security modes will be discussed in detail in Chap-
ter 8.

• ZigBee gateway: The ZigBee gateway is used to connect the ZigBee
network to another network, such as a LAN, by performing protocol
conversion.

6.2.2.1 Operating modes
The current ZigBee protocols support beacon-enabled and non-beacon-
enabled networks. In non-beacon-enabled networks, an unslotted CSMA/CA
channel access mechanism is used. In this type of network, ZigBee Routers
typically have their receivers continuously active, requiring a more robust
power supply. However, this allows for heterogeneous networks in which
some devices receive continuously while others only transmit when an exter-
nal stimulus is detected. The typical example of a heterogeneous network is
a wireless light switch: The ZigBee node at the lamp may constantly receive,
since it is connected to the AC mains supply, while a battery-powered light
switch would remain asleep until the switch is thrown. The switch then wakes
up, sends a command to the lamp, receives an acknowledgment, and returns
to sleep. In such a network, the lamp node will be at least a ZigBee Router,
if not the ZigBee Coordinator; the switch node is typically a ZigBee End
Device.

266 IEEE 802.15.4 and ZigBee

In beacon-enabled networks, the ZigBee Routers transmit periodic bea-
cons to confirm their presence to other network nodes. Nodes may sleep
between beacons, thus lowering their duty cycle and extending their battery
life. Beacon intervals depend on data rate; they may range from 15.36 ms
to 251.65824 s at 250 kbps, from 24 ms to 393.216 s at 40 kbps, and from
48 ms to 786.432 s at 20 kbps. However, low duty cycle operation with long
beacon intervals requires precise timing, which can conflict with the need for
low product cost.

In general, the ZigBee protocols minimize the time the radio is on, to
reduce power use. In beaconing networks, nodes only need to be active
while a beacon is being transmitted. In non-beacon-enabled networks, power
consumption is decidedly asymmetrical: Some devices are always active
while others spend most of their time sleeping.

Except for the Smart Energy Profile 2.0, ZigBee devices are required
to conform to the IEEE 802.15.4 2003 Low-rate Wireless Personal Area
Network (LR-WPAN) standard. The standard specifies the lower protocol
layers–the physical layer (PHY) and the Media Access Control portion of
the data link layer (DLL). The basic channel access mode is ”carrier sense,
multiple access/collision avoidance” (CSMA/CA). That is, the nodes talk in
the same way that humans converse; they briefly check to see that no one is
talking before he or she start, with three notable exceptions. Beacons are sent
on a fixed timing schedule and do not use CSMA. Message acknowledgments
also do not use CSMA. Finally, devices in beacon-enabled networks that
have low latency real-time requirements may also use Guaranteed Time Slots
(GTS), which, by definition, do not use CSMA.

6.2.3 ZigBee Topologies

Network topology is the design of the elements such as links or nodes
of a communication network. It can be used to illustrate various types of
telecommunication networks.

ZigBee uses the IEEE 802.15.4 2003 specification for its physical layer
and MAC layer. IEEE 802.15.4 offers star, tree, cluster tree, and mesh topolo-
gies (called also peer-to-peer topology); however, ZigBee supports only star,
tree, and mesh topologies. It uses an association hierarchy; a device joining
the network can either be a router or an end device, and routers can accept
more devices. While building ZigBee network, the choice of topology must
take into consideration which nodes are line-powered or battery-powered,

6.2 ZigBee Wireless Sensor and Control Network 267

expected battery lifetime, amount of network traffic required, latency require-
ments, the cost of the solution, etc. The details of the ZigBee topologies are
given in Section 6.3 while discussing IEEE 802.15.4 topologies.

6.2.3.1 Forming the ZigBee network
The following steps describe the method of forming ZigBee network:

• Coordinator searches for suitable RF channel which is usable and not
interfering with Wireless LAN frequencies in use. This is because
WLAN also operates in the same 2.4 GHz bands. This is done on all
the 16 channels. It is also referred as energy scan.

• Coordinator starts the network by assigning a PAN ID to the network.
Assignment is done in two ways: Manual (pre-configured) and dynamic
(obtained by checking other PAN IDs of networks already in the opera-
tion nearby so that PAN ID does not conflict with other networks). Here
Coordinator also assigns network address to itself, that is, 0x0000.

• The coordinator at this stage completes its configuration and is ready
to accept network joining request queries from routers and end devices
who wish to join the PAN.

• In addition to above, Coordinator(C) sends broadcast beacon request
frame on remaining quiet channel (see Section 6.4). This is also referred
as beacon scan or PAN scan. By this, Coordinator receives PAN ID of
routers(R) and end devices(E) present nearby. It also comes to know
whether R/E allow join or not.

• At this stage, Routers and End devices can join the network by sending
association request to Coordinator (C). C will respond with association
response.

6.2.3.2 Joining the ZigBee Network
This section discusses how a router or end device joins ZigBee network.
There are two ways to join a ZigBee network: MAC association and network
re-join.

• First one is implemented by device underlying MAC layer and second
one is implemented by network layer, despite the name may also be used
to join a network for the first time.

• MAC association can be performed between Coordinator (C) and Router
(R)/End device (E) or Router (R) and End device (E) or Router (R) and
another Router (R).

268 IEEE 802.15.4 and ZigBee

• Let us assume that Coordinator(C) has already established the PAN
network. Hence next step for R or E is to find out whether C is allowing
joining or not. So they do PAN scan or send beacon request frame.

• After they come to know that they can join the network, they will send
association request frame and will join the network as soon as they
receive the association response.

• As mentioned above whether or not C or R allows a new device to join
depends on two main factors:

– Permit joining attribute
– Number of end device children it already has.

6.2.4 End Device Addressing

When a device joins a ZigBee network, the ZigBee coordinator or router
assigns a logical 16-bit address to the device. Also, each device has a 64-
bit IEEE address, and no two devices can have the same IEEE address in the
entire world. Short addresses (16 bits) can be used by devices in a network.
The advantage of using the 16-bit address is to extend the life of the battery.
A 16-bit address reduces the size of the frame. A smaller frame size results in
shorter transmission time. Less transmission time means greater battery life.
The disadvantage of using the 16-bit address is that two nodes in different
networks can have the same address.

The methods of assigning addresses for routers and end devices are given
in Chapter 8.

6.2.5 Depth of a Network, Number of Children, and Network
Address Allocation

• Depth of a network: The depth of a network is determined by the
number of routers (hops) from the coordinator to the farthest device,
where farthest is defined by number of hops. In a star topology, the depth
of a network is one.

• Number of children: The number of end devices (children) that are
connected to a router or coordinator. The coordinator sets the maximum
number of children connected to a router.

• Address allocation: In a tree topology, each coordinator holds informa-
tion about the network, such as the maximum number of children (the
number of end devices connected to each router), maximum number of
routers, and uses this information to assign an address to each router.

6.3 ZigBee Protocol Stack Overview 269

Figure 6.4 Structure of ZigBee and IEEE 802.15.4 architecture.

The routers, then, assign the addresses to their respective end devices
(children). In a mesh topology, however, each router assigns a random
address to its respective end devices. Address allocation is given in
Chapter 8.

6.3 ZigBee Protocol Stack Overview

The ZigBee protocol stack consists of four layers–Physical layer, Medium
access control (MAC) layer, Network layer (NWK) and Application layer
(APL)–as shown in Figures 6.4 and 6.5. Each layer provides a set of services
exposed to the upper layer via a service access point (SAP). Each SAP
supports a number of service primitives to achieve the required functionality.
The two lower layers, the physical and MAC layers, are governed by IEEE
802.15.4 standard and the network and application layers are governed by the
ZigBee standard. The application layer framework consists of APS (appli-
cation support sublayer) and the ZDO (ZigBee device objects). Application
objects defined by the manufacturers use the framework and share APS and
security with the ZDO. IEEE 802.15.4 has two PHY layers that operate in two
separate frequency ranges, 868/915 MHz and 2.4 GHz. The lower frequency
PHY layer covers both the 868 MHz European band and the 915 MHz band,

270 IEEE 802.15.4 and ZigBee

Figure 6.5 Outline of the ZigBee stack architecture (https://research.kudelskisecurity.com/
2017/11/01/zigbee-security-basics-part-1/).

used in countries such as USA and Australia. The higher frequency PHY
layer is used virtually worldwide. The IEEE 802.15.4 MAC controls access
to the radio channel using a CSMA-CA mechanism. Its responsibilities may
also include transmitting beacon frames, synchronization, and providing a
reliable transmission mechanism.

The structure of ZigBee and IEEE 802.15.4 architecture is repeated in
more detail in Figure 6.4, in order to explain the different locks.

Figures 6.4 and 6.5 show the ZigBee stack as three sections:

• Foundation layers (this is PHY and MAC layers defined by IEEE 802.
15. 4)

• Application and Interface Section (or ZigBee layers). The layers are
built on the 802.15.4 to form ZigBee. This consists of the network layer,
the ZigBee device object (ZDO), the application sublayer, and security
management

• Manufacturer application: Manufacturers of ZigBee devices can use the
ZigBee application profile or develop their own application profile.

The physical layer and the MAC layer will be discussed in Section 6.4.4
while discussing 802.15.4. The network and application layers are discussed
next.

https://research.kudelskisecurity.com/2017/11/01/zigbee-security-basics-part-1/
https://research.kudelskisecurity.com/2017/11/01/zigbee-security-basics-part-1/

6.3 ZigBee Protocol Stack Overview 271

6.3.1 Application Layer (APL)

The Application layer (APL), consists of ZigBee device objects (ZDOs),
Application support sublayer (APS), and the Application Framework (man-
ufacturer application objects). The ZigBee application layer consists of the
APS sublayer, ZDO and the defined by the manufacturer application objects.

6.3.1.1 ZigBee Device Objects (ZDO)
ZigBee Device Objects (ZDO) are applications which employ network and
application support layer primitives to implement ZigBee End Devices, Zig-
Bee Routers, and ZigBee Coordinators. It provides an interface between the
application objects, the device profile, and the APS. The ZDO is located
between the application framework and the application support sublayer. The
ZDO is responsible for the following:

• Initializing the application support sublayer (APS), the network layer
(NWK), and the security service provider.

• Assembles configuration information from the end applications to deter-
mine and implement device and service discovery, security management
(key loading, key establishment, key transport and authentication),
network management (network discovery, leaving/joining a network,
resetting a network connection and creating a network), binding, node,
and group management.

ZigBee Device Object (ZDO) manages the security policies and the
security configuration of a device. Objects listed as mandatory in the
specifications document reside on all ZigBee devices.

The ZDO presents public interface to the application objects in the appli-
cation framework layer for control of device and network functions by the
application objects. The ZDO interfaces with the lower portions of the ZigBee
protocol stack, on endpoint 0, through the ASPDE-SAP for data, and through
the ASPME-SAP and NLME-SAP for control messages. The public interface
provides address management to the device, discovery, binding, and security
functions within the application framework layer for the ZigBee protocol
stack

Endpoints and ZDO
The endpoints are what most people associate with ZigBee. Each endpoint
houses what’s called an application object which is basically a device pro-
file with whatever extra functionality you decide to add. When the device
is started, all the endpoints will register themselves with the application

272 IEEE 802.15.4 and ZigBee

framework and provide descriptions of their device profile and their capabili-
ties. Endpoint 0 is a special endpoint and always contains the ZigBee Device
Object (ZDO). This object implements the ZigBee Device Profile which has
multiple functions, one of them being the network manager.

The user application can manage the network by making requests and
handling callbacks to this object, which is why it’s important to know about
it. In general, the ZigBee endpoints are going to be the main interface between
the user application and the stack.

When mentioning that the network management deviates slightly from
the stack’s layer hierarchy, it means that the ZDO’s network manager object
bypasses the APS and interfaces directly to the networking layer. This is clear
from Figure 6.5 where the ZDO wraps around the APS and the NWK layers.

6.3.1.2 APS (application support sublayer)
The APS sublayer provides an interface between a NHLE (next higher layer
entity) and the network layer.

The APS provides an interface between the network layer (NWK) and
application layer (APL) through a general set of services for use by both
the ZigBee device object and the defined by manufacturer application object.
It provides services for the establishment and maintenance of security
relationships.

The APS sublayer provides two services accessed through two SAPs
(Service Access Points). These are the APS data service (APS data entity),
accessed through the APSDE-SAP (APS sublayer data entity SAP), and
the APS management service (APS management entity), accessed through
the APSME-SAP (APS Management Entity SAP). APSDE: provides data
transmission services between application entities and APMSE: provides
security services, binding of devices and group management). APSME-ASP
maintains a database of managed objects known as the AIB (APS Information
Base). The APS layer allows frame security to be based on link keys or the
network key. The APS layer is responsible for the processing steps needed
to securely transmit outgoing frames, securely receive incoming frames, and
securely establish and manage cryptographic keys. Upper layers control the
management of cryptographic keys by issuing primitives to the APS layer.
Figure 6.6 shows the APS sublayer model.

• APSDE: The APSDE provides data service to the network layer and
both ZDO and application objects to enable the transport of application
PDUs between two or more devices. The devices themselves must be
located on the same network.

6.3 ZigBee Protocol Stack Overview 273

Figure 6.6 APS sublayer model.

• APSME: The APSME provides a management services to allow an
application to interact with the stack. The APSME shall provide the
ability to match two devices together based on their services and their
needs. This service is called binding service, and the APSME shall be
able to construct and maintain a table to store this information. This
database is referred to as the APS sublayer information base (AIB).

In summary, the Application Sublayer interfaces the ZigBee application
layer to the ZigBee networking layer, and it provides a common set of data
transport services to all the endpoints. There are also a couple of other
services that the APS provides and we’ll get into that when we discuss the
app layer in more detail.

6.3.1.2.1 ZigBee APS frame format
Figure 6.7 represents the APS Frame Format.

6.3.1.2.2 APS Ack frames
APS Ack frames do not have group address field, have extended header, and
no payload as shown in Figure 6.8.

6.3.1.2.3 APS command frames
APS Command Frames (Figure 6.9) are used for key establishment and
switching, removing a device from the network.

6.3.1.3 Application framework
The ZigBee application framework is the environment in which application
objects are hosted on ZigBee devices. Up to 240 distinct application objects

274 IEEE 802.15.4 and ZigBee

Figure 6.7 APS frame format.

Figure 6.8 APS Ack frame format.

Figure 6.9 APS command frame.

can be defined. These are usually manufacturer defined application objects.
It defines application profiles (agreements for messages, message formats,
and processing actions that enable developers to create an interoperable,
distributed application employing application entities that reside on separate
devices) and clusters. Each object is identified by an endpoint address from
1 to 240. Two additional endpoints are defined for APSDE-SAP usage. The
endpoint 0 is reserved for the data interface to the ZDO, and endpoint 255
is reserved for the data interface function to broadcast data to all application
objects. Endpoints 241-245 are reserved for future use.

• Application profiles: Application profiles are agreements for messages,
message formats, and processing actions that enable developers to create
and interoperable, distributed application employing applications enti-
ties that reside on separate devices. These applications profiles enable

6.3 ZigBee Protocol Stack Overview 275

applications to send commands, request data and process commands and
requests.

• Clusters: Clusters are identified by a cluster identifier, which is associ-
ated with data flowing out of, or into, the device. Cluster identifiers are
unique within the scope of a particular application profile.

In summary, the Application Framework is just a glorified multiplexer
and container for all of the endpoints. All of the endpoints register themselves
with the AF, and when a data frame comes into the application layer, the AF
will check its destination endpoint and forward it there.

6.3.2 Network Layer (NWK)

The network layer ensures correct operation of the IEEE 802.15.4-2003 MAC
sublayer and provides a suitable service interface to the application layer.
Its capabilities and structure are those typically associated to such network
layers, including routing. It interfaces with application layer via data entity
(NLDE: generates network level PDU, provides topology-specific routing
and security) and the management entity (NLME: configures a new device,
starts a network, performs joining, rejoining and leaving a network function-
ality, provides addressing capabilities, neighbor discovery, route discovery,
reception control and routing). The NWK layer is responsible for the process-
ing steps needed to securely transmit outgoing frames and securely receive
incoming frames. The NWK layer’s frame-protection mechanism uses the
Advanced Encryption Standard (AES) and CCM* (Enhanced counter with
CBC-MAC mode of operation) for authentication and confidentiality.

In general, the Network Layer has the following components:

• Network Layer Data Entity (NLDE): Makes NPDU from NSDU
• Network Layer Management Entity (NLME): Configure new device,

neighbor discovery, route discovery, joining/leaving a network, . . .
• Network Layer Information Base (NIB): Capabilities (RFD/FFD), Secu-

rity level, protocol version, route discovery time, max retries for route
discovery, neighbor table, . . .

The routing protocol used by the network layer is AODV. In AODV, to
find the destination device, AODV broadcasts out a route request to all of its
neighbors. The neighbors then broadcast the request to their neighbors and
onward until the destination is reached. Once the destination is reached, it
sends its route reply via unicast transmission following the lowest cost path
back to the source. Once the source receives the reply, it will update its routing
table for the destination address of the next hop in the path and the path cost.

276 IEEE 802.15.4 and ZigBee

Figure 6.10 Network layer frame format.

Chapter 7 deals with this layer.

6.3.2.1 ZigBee network layer frame format
This is given in Figure 6.10.

In Figure 6.10:

Radius: Defines the hop limit
Multicast Flag: If “1”, Multicast control present.
Source Rout: The Header contains route
Destination/Source IEEE Address: This is the IEEE address given to
the node
Broadcast Frame Address:

◦ FFFF→ means All devices
◦ FFFD→Means Devices with Receiver ON
◦ FFFC→Means Coordinator/Routers
◦ FFFB→Means Low-Power Routers

6.3.3 Security Services

As one of its defining features, ZigBee provides facilities for carrying
out secure communications, protecting establishment and transport of cryp-
tographic keys, cyphering frames (frame protection), and controlling and
managing devices. It builds on the basic security framework defined in IEEE
802.15.4. This part of the architecture relies on the correct management
of symmetric keys and the correct implementation of methods and security
policies.

ZigBee security is the subject of Chapter 8. In this section, as part of
describing the ZigBee stack, brief idea about security services offered by
ZigBee is given.

6.3 ZigBee Protocol Stack Overview 277

6.3.3.1 Basic security model
The basic mechanism to ensure confidentiality is the adequate protection of
all keying material. Trust must be assumed in the initial installation of the
keys, as well as in the processing of security information. For an imple-
mentation to globally work, its general conformance to specified behaviors
is assumed.

Keys are the cornerstone of the security architecture; as such their pro-
tection is of paramount importance, and keys are never supposed to be
transported through an insecure channel. A momentary exception to this rule
occurs during the initial phase of the addition to the network of a previously
unconfigured device. The ZigBee network model must take particular care
of security considerations, as ad hoc network may be physically accessible
to external devices. Also the state of the working environment cannot be
predicted.

Within the protocol stack, different network layers are not cryptograph-
ically separated, so access policies are needed, and conventional design
assumed. The open trust model within a device allows for key sharing, which
notably decreases potential cost. Nevertheless, the layer which creates a frame
is responsible for its security. If malicious devices may exist, every network
layer payload must be ciphered, so unauthorized traffic can be immediately
cut off. The exception, again, is the transmission of the network key, which
confers a unified security layer to the grid, to a new connecting device.

6.3.3.2 Security architecture
The security architecture includes security mechanisms at two layers of
the stack: the network and the APS layers. The two layers are responsible
for secure transport of their frames. APS, also, provides services for the
establishment and maintenance of security relationships. The ZDO manages
the security policies and the security configuration of a device.

ZigBee uses 128-bit keys to implement its security mechanisms. A key
can be associated either to a network, being usable by both ZigBee layers and
the MAC sublayer, or to a link, acquired through pre-installation, agreement
or transport. Establishment of link keys is based on a master key which
controls link key correspondence. Ultimately, at least, the initial master key
must be obtained through a secure medium (transport or pre-installation), as
the security of the whole network depends on it. Link and master keys are
only visible to the application layer. Different services use different one-way
variations of the link key to avoid leaks and security risks.

278 IEEE 802.15.4 and ZigBee

Key distribution is one of the most important security functions of the net-
work. A secure network will designate one special device which other devices
trust for the distribution of security keys: the trust center. Ideally, devices will
have the center trust address and initial master key preloaded; if a momentary
vulnerability is allowed, it will be sent as described above. Typical applica-
tions without special security needs will use a network key provided by the
trust center (through the initially insecure channel) to communicate.

Thus, the trust center maintains both the network key and provides point-
to-point security. Devices will only accept communications originating from
a key supplied by the trust center, except for the initial master key. The
security architecture is distributed among the network layers as follows:

• The MAC sublayer is capable of single-hop reliable communications.
As a rule, the security level it is to use is specified by the upper layers.

• The network layer manages routing, processing received messages and
being capable of broadcasting requests. Outgoing frames will use the
adequate link key according to the routing if it is available; otherwise, the
network key will be used to protect the payload from external devices.

• The application layer offers key establishment and transport services to
both ZDO and applications.

The security levels infrastructure is based on CCM*, which adds
encryption- and integrity-only features to CCM.

6.3.3.3 Network layer security
When a frame originating at the network layer needs to be secured, or when
a frame originates at a higher layer and the NWK secure all frame attribute in
the NIB is TRUE, ZigBee shall use the frame-protection mechanism, unless
the security enable parameter of the NLDE-DATA. Request primitive is
FALS, explicitly prohibiting security. The Network layer’s frame-protection
mechanism shall make use of the AES (Advanced Encryption Standard) and
use CCM as specified. The security level applied to a network frame shall
be determined by the NWK security level attributed in NIB. Upper layers
manage network layer security by setting up active and alternate network
keys and by determining which security level to use.

6.3.3.4 APL layer security
When a frame originating at the APL LAYER needs to be secured, the APS
sublayer shall handle security. The APS layer allows frame security to be
based on link keys or the network key. Figure 6.11 shows an example of the

6.3 ZigBee Protocol Stack Overview 279

Figure 6.11 APL layer security framework.

security fields they may be included in an APL frame. The APS layer is also
responsible for providing applications and the ZDO within key establishment,
key transport, and device management services.

6.3.3.5 Trust center role
For security purposes, ZigBee defines the role of Trust Center. The trust
center is the device trusted by devices within a network to distribute keys for
the purposes of network and end-to-end application configuration manage-
ment. All members of the network shall recognize exactly one Trust center,
and there shall be exactly one trust center in each secure network. In high
security, commercial applications a device can be pre-loaded with the Trust
center address and initial master key. Alternatively, if the application can
tolerate a moment of vulnerability, the master key can be sent via an in-band
unsecured key transport. If not pre-loaded, a device’s Trust center defaults to
the ZigBee coordinator or a device is designated by the ZigBee Coordinator.
In low security, residential applications a device securely communicates with
its Trust Center using the current networks key, which can be preconfigured
or sent via an in-band unsecured key transport. For purposes of trust man-
agement, a device accepts an initial master or active network key originating
from its trust center via unsecured key transport. For purposes of network
management, a device accepts initial active network key and updated network
keys only from its Trust Center. For purposes of configuration, a device
accepts master keys or link keys intended for establishing end-to-end security
between two devices only form its Trust Center. Aside from the initial master
key or network key, additional link, master, and network keys are generally
only accepted if the originate form a device’s Trust Center via secured key
transport.

6.3.4 ZigBee Address Assignment

ZigBee allocate 16-bit address for each node. Two schemes are in use for
allocating the address:

• Distributed Scheme
• Stochastic Scheme

280 IEEE 802.15.4 and ZigBee

Figure 6.12 Network of Example 6.1.

a. Distributed Scheme
In this scheme, which is good for tree topology, each child is allocated a sub-
range of addresses. The scheme limits the maximum depth L, the maximum
number of children per parent C, and the maximum number of routers R. The
address of any child, the nth child, is a function of the parent address and the
limits (L, C, and R) as follows:

Address of the nth child = Address of parent + (n-1) S(d) + 1, where

S(d) =


1 + C(L− d) if R = 1

CRL−d−1 − 1− C +R

R− 1
if R > 1

Example 6.1: Distributed Scheme
Consider a network given in Figure 6.12 with the following parameters:

• Maximum depth L =2
• Maximum number of Routers R = 4
• Maximum number of Children per parent: C = 3
• Coordinator: d = 0. Skip

Assume that the address of the coordinator is 10 (decimal), calculate the
addresses of the different devices (R1 to R4) and all end devices.

Let us start by calculating S(0), and S(1):

S(0) =
C RL−d−1 − 1− C +R

R− 1
=

3 X 42−0−1 − 1− 3 + 4

4− 1
= 4

S(1) =
3x 42−1−1 − 1− 3 + 4

4− 1
= 1

6.4 IEEE 802.15.4 Standard 281

Figure 6.13 The network with the addresses.

Considering the equation:

Address of the nth child = Address of parent + (n−1) * S(d) + 1

The address will be as follows:
Address of R1 = 10 + 1 = 11
Address of R2 = 10 + 1 + 1× 4 = 15
Address of R3 = 10 + 1 + 2× 4 = 19
Address for R3 = 10 + 1 + 3× 4 = 23
Similarly for the next level, we use S(1) = 1
Children of R1 are assigned addresses 12 and 13
Children of R2 are assigned addresses 16 and 17
Children of R3 are assigned addresses 20 and 21
Children of R4 are assigned addresses 24 and 25

Figure 6.13 shows the network with the allocated addresses.

b. Stochastic Address Assignment
In this scheme, the parent draws a 16-bit random number between 1 and
216 -1 and assign it to the new child. To avoid any address conflict, the
parent advertises the assigned number to the network. If another node has
that address, an address conflict message is returned, and the parent draws
another number and repeat (see Section 8.3.1).

6.4 IEEE 802.15.4 Standard

IEEE 802.15.4 standard describes Wireless Personal Area Network (WPAN).
WPANs are used to convey information over relatively short distance. Unlike
WLAN (Wireless local area networks), connections effected via WPANs

282 IEEE 802.15.4 and ZigBee

involve little or no infrastructure. This feature allows small, power-efficient,
inexpensive solutions to be implemented for a wide range of devices. The
IEEE 802.15.4 standards’ scope is to define the physical layer and medium
access control sublayer specification for low data rate wireless connectivity
with fixed portable, and moving devices with no battery or very limited
battery consumption requirements typically operating in the POS (personal
operating space) of 10 m. It is foreseen that, depending on the application,
a longer range at a lower data rate may be an acceptable trade-off. It is the
intent of this project to work toward a level of coexistence with other wireless
device in conjunction with coexistence task Groups, such as 802.15.2 and
802.11/ESTI-BRAN/MMAC 5GSG.

Overview
A LR-WPAN is a simple, low-cost communication network that allows wire-
less connectivity in application with limited power and relaxed throughput
requirements. The main objectives of an LR-WPAN are ease of installation,
reliable data transfer, short-range operation, extremely low cost, and a rea-
sonable battery life, while maintaining a simple and flexible protocol. Some
of the characteristics include:

• Over-the-air (OTA) data rates of 250 kbps, 40 kbps, and 20 kbps
• Star or peer-to-peer operation (also called Mesh operation)
• Allocated 16-bit short or 64-bit extended addresses
• Allocation of GTS (Guaranteed Time Slots)
• CSMA-CA (Carrier Sense Multiple Access with Collision Avoidance

channel access)
• Fully acknowledged protocol transfer reliability
• Low power consumption
• ED (Energy Detection)
• LQI (Link Quality Indication)
• 16 channels in the 2450 MHz band, 10 channels in the 915 MHz band,

and 1 channel in the 868 MHz band

6.4.1 IEEE 802.15.4 Standard

The IEEE 802.15.4 standard has undergone a number of releases. In addition
to this there are a number of variants of the IEEE 802.15.4 standard to cater
for different forms of physical layer, etc. These are summarized below in
Table 6.2.

6.4 IEEE 802.15.4 Standard 283

Table 6.2 IEEE 802.15.4 standard summary
IEEE 802.15.4 Standard Summary

IEEE 802.15.4 Version Details and comments
IEEE 802.15.4–2003 This was the initial release of the IEEE 802.15.4 standard. It

provided for two different PHYs–one for the lower frequency
bands of 868 and 915 MHz, and the other for 2.4 GHz.

IEEE 802.15.4–2006 This 2006 release of the IEEE 802.15.4 standard provided for an
increase in the data rate achievable on the lower frequency bands.
This release of the standard updated the PHY for 868 and 915
MHz. It also defined four new modulation schemes that could be
used–three for the lower frequency bands, and one for 2.4 GHz.

IEEE 802.15.4a This version of the IEEE 802.15.4 standard defined two new
PHYs. One used UWB technology and the other provided for
using chirp spread spectrum at 2.4 GHz.

IEEE 802.15.4c Updates for 2.4 GHz, 868 MHz and 915 MHz, UWB and the
China 779-787 MHz band.

IEEE 802.15.4d 2.4 GHz, 868 MHz, 915 MHz and Japanese 950–956 MHz band.

IEEE 802.15.4e This release defines MAC enhancements to IEEE 802.15.4 in
support of the ISA SP100.11a application.

IEEE 802.15.4f This will define new PHYs for UWB, 2.4 GHz band and also 433
MHz

IEEE 802.15.4g This will define new PHYs for smart neighborhood networks.
These may include applications such as smart grid applications for
the energy industry. It may include the 902–928 MHz band.

Although new versions of the standard are available for use by any of the
higher layer standards, ZigBee still uses the initial 2003 release of the IEEE
802.15.4 standard.

6.4.2 Device Types

Two different device types can participate in the LR-WPAN network: FFD
(fully functioning device) and RFD (reduced-function-device). The details of
the two types are given in Section 6.2.2.

6.4.3 Network Topology

IEEE 802.15.4 offers star, tree, cluster tree, and mesh topologies; however,
ZigBee supports only star, tree, and mesh topologies. Some references state
that 802.15.4 may operate in either of two topologies: the star topology or

284 IEEE 802.15.4 and ZigBee

Figure 6.14 Star topology.

peer-to-peer topology (which is also called the mesh topology). Next we
introduce all these topologies starting with those supported by 802.15.4.

6.4.3.1 Star topology
Star topology is defined by the underlying 802.15.4 specification which Zig-
Bee builds on. The star topology is the simplest and most limited one in the
802.15.4 and accordingly in ZigBee. It consists of a coordinator positioned in
the center and several end devices (nodes), as shown in Figure 6.14.

After an FFD is activated for the first time, it may establish its own net-
work and become the PAN coordinator. In the star topology communication
is established between devices and a single central controller (Figure 6.14),
called the PAN coordinator. PAN coordinator may also have specific applica-
tion, but it can be used to initiate, terminate, or route communication around
the network. Any packet exchange between end devices must go through
the coordinator. The PAN coordinator is the primary controller of the PAN.
All devices operating on a network of any of the stare or the peer-to-peer
topologies shall have unique 64-bit extended addresses. This address can be
used for direct communication within the PAN, or it can be exchanged for a
short address allocated by the PAN coordinator when the device associates.

All-star networks operate independently from all other star networks
currently in operation. This is achieved by choosing PAN identifier, which is
not currently used by any other network within the radio sphere of influence.
Once the PAN identifier is chosen, the PAN coordinator can allow other
device to join its network. Both FFDs and RFDs may join the network.

The PAN coordinator may be main powered, while the devices will
be more likely be battery powered. Applications that benefit from the star

6.4 IEEE 802.15.4 Standard 285

topology include home automation, personal computers (PC) peripherals,
toys and games, and personal health care.

The peer-to-peer topology also has a PAN coordinator. But it differs for
the star topology in that a device can communicate with any other device as
long as they are in range of one another.

The disadvantage of this topology is the operation of the network depends
on the coordinator of the network, and because all packets between devices
must go through coordinator, the coordinator may become bottlenecked (Fail-
ure of the coordinator can shut-down the whole network). Also, the star hub
can become bottlenecked with network bandwidth. On the other hand, having
a star network topology will limit the overall distances that can be covered
because of the limited number of hops.

6.4.3.2 Mesh topology, also, peer-to-peer topology
A key component of the ZigBee protocol is the ability to support mesh
networking. In a mesh network, nodes are interconnected with other nodes
so that multiple pathways connect each node. Mesh topology, also referred
to as a peer-to-peer network, and consists of one coordinator, several routers,
and end devices, as shown in Figure 6.15.

Connections between nodes are dynamically updated and optimized
through sophisticated, built-in mesh routing table. It is possible to expand
the network range by adding more devices into the network. If during the

Figure 6.15 Mesh (peer-to-peer) topology.

286 IEEE 802.15.4 and ZigBee

transmission one of the paths fail, the node will find the alternate path to
reach to the destination therefore eliminating dead zones. Using this mesh
topology, it is easier for user to add or remove the device because they can
communicate with any destination device in the network.

Mesh networks are decentralized in nature; each node is capable of
self-discovery on the network. Also, as nodes leave the network, the mesh
topology allows the nodes to reconfigure routing paths based on the new
network structure. The characteristics of mesh topology and ad hoc routing
provide greater stability in changing conditions or failure at single nodes.

Applications such as industrial control and monitoring, wireless sensor
networks, asset and inventory tracking would benefit from such a topology.

The following are the characteristics of a mesh topology:

1. A mesh topology is a multihop network; packets pass through multiple
hops to reach their destination.

2. The range of a network can be increased by adding more devices to the
network.

3. It can eliminate dead zones.
4. A mesh topology is self-healing, meaning during transmission, if a path

fails, the node will find an alternate path to the destination.
5. A peer-to-peer network can be ad hoc, self-organizing and self-healing.
6. Devices can be close to each other so that they use less power.
7. Adding or removing a device is easy.
8. Any source device can communicate with any destination device in the

network.
9. Compared with star topology, mesh topology requires greater overhead.

10. Mesh routing uses a more complex routing protocol than a star topology.
11. It also allows multiple hops to route messages from any device to any

other device in the network. It can provide reliability by multipath
routing.

6.4.3.3 Tree topology
In this topology, the network consists of a central node (root tree), which
is a coordinator, several routers, and end devices, as shown in Figure 6.16.
The function of the router is to extend the network coverage. The end nodes
that are connected to the coordinator or the routers are called children. Only
routers and the coordinator can have children. Each end device is only able
to communicate with its parent (router or coordinator). The coordinator and
routers can have children and, therefore, are the only devices that can be

6.4 IEEE 802.15.4 Standard 287

Figure 6.16 Tree topology.

parents. An end device cannot have children and, therefore, may not be a
parent. An end device can interact with another end device only through its
parent node and there is no direct link among end devices. A special case of
tree topology is called a cluster tree topology.

Tree networks may employ beacon-oriented communication as per the
IEEE 802.15.4 standard.

The disadvantages of tree topology are:

• If one of the parents becomes disabled, the children of the disable parent
cannot communicate with other devices in the network.

• Even if two nodes are geographically close to each other, they cannot
communicate directly.

6.4.3.4 Cluster tree topology
The cluster-tree network is a special case of the peer-to-peer network in
which most devices of the FFDs. An RFD may connect to a cluster tree
network as a leaf node at the end of a branch, because it may only associate
with one FFD at a time. Any of the FFDs may act as a coordinator and
provide synchronization services to other devices or other coordinators. Only
one of these coordinators can be the overall PAN coordinator, which may
have greater computational resources than any other device in the PAN.
The coordinator forms the first cluster by establishing itself as the CLH
(cluster head) with a CID (Cluster Identifier) of zero, choosing an unused
PAN identifier, and broadcasting beacon frames to neighboring devices. A
candidate device receiving a beacon frame may request to join the network

288 IEEE 802.15.4 and ZigBee

Figure 6.17 Formation of cluster tree network.

Note: It is also possible to consider that the cluster tree topology is a special case of tree topology in which
a parent with its children is called a cluster, as shown in Figure 6.18. Each cluster is identified by a cluster
ID. ZigBee does not support cluster tree topology, but IEEE 802.15.4 does support it.

at the CLH if the PAN coordinator permits the device to join, it will add the
nee device as a child device in its neighbor list. Then the newly joined device
will add the CLH parent in its neighbor list and begin transmitting periodic
beacons. Other candidate devices may then join the network at that device. If
the original candidate device is not able to join the network at the CLH, it will
search for another parent device. The simplest form of a cluster tree network
is a single cluster network, but larger networks are possible by forming a mesh
of multiple neighboring clusters. Once predetermined application or network
requirements are met, the PAN coordinator may instruct a device to become
the CLH of a new cluster adjacent to the first one. Other devices gradually
connect and form a multi cluster network structure.

The formation of the cluster tree is shown in Figure 6.17.

6.4.4 802.14.5 Architecture

The LR-WPAN architecture is defined in terms of a number of blocks in
order to simplify the standard. These blocks are called layers. Each layer
responsible for one part of the standard offers services to the higher layers.

6.4 IEEE 802.15.4 Standard 289

Figure 6.18 Cluster tree topology.

The interfaces between the layers serve to define the logical links that are
describes in this standard. An LR-WPAN device comprises of a PHY, which
contains the RF (radio frequency) transceiver along with its low level control
mechanism, and a MAC sublayer that provides access to the physical channel
for all types of transfer. Figure 6.19 shows these blocks in graphical represen-
tation. The upper layer consists of a network layer, which provides network
configuration, manipulation, and message routing, and an application layer,
which provides the intended function of the device. The definition of these
upper layers is outside the scope of this standard. An IEEE 802.2 Type 1
LLC (logical link control) can access the MAC sublayer through the SSCS
(service specific convergence sublayer). The LR-WPAN architecture can be
implemented either as embedded device or as devices requiring the support
of an external device such as a PC.

As shown in Figures 6.4 and 6.5, the IEEE 802 15.4 physical layer
together with Medium Access Control (MAC) layer act as foundation layers
for ZigBee Architecture.

6.4.4.1 PHY layer
The physical and electrical characteristics are defined by the Physical Layer.
This layer is responsible for data transmission and reception. Mapping bits
of information permits them to travel through the air by modulation, and
spreading techniques are the basic task of physical layer.

290 IEEE 802.15.4 and ZigBee

SSCS: Service Specific Convergence Sublayer

Figure 6.19 WPAN architecture.

The PHY provides, in general, two services: the PHY data service and the
PHY management service interfacing to the PLME (physical layer manage-
ment entity). The PHY data service enables the transmission and reception of
the PPDU (PHY protocol data units) across the physical radio channel. The
features of the PHY are activation and deactivation of the radio transceiver,
ED (Receiver Energy Division), LQI, channel selection, CCA (clear channel
assessment), and transmitting as well as receiving packets across the physical
medium. The standard offers two PHY options based on the frequency band.
Both are based on direct sequence spread spectrum (DSSS). The radio shall
operate at one of the following license-free band:

• 868–868.6 MHz (Europe)
• 902–928 MHz (North America)
• 2400–2483.5 MHz (Worldwide)

The data rate is 250 kbps at 2.4 GHz, 40 kbps at 915 MHz and 20 kbps at
868 MHz.

The receiver ED measurement is intended for use by a network layer as
part of channel selection algorithm. It is an estimate of the received signal
over power within the band width of an IEEE 802.15.4 channel. No attempt

6.4 IEEE 802.15.4 Standard 291

is made to identify or decode signals on the channel. The ED time should be
equal to 8 symbols periods. Upon reception of a packet, the PHY the PSDU
length, PSDU itself and link quality in the PD-DATA, indication primitive.
The LQI measurement is a characterization of strength and/ or quality of a
received packet. The measurement may be implemented using receiver ED, a
signal-to-noise estimation or a combination of these methods.

The use of LQI result is up to the network or application layers. CCA is
performed according to at least one of the following three methods.

• Energy above threshold. CCA shall report a busy medium upon detect-
ing any energy above the ED threshold.

• Carrier sense only. CCA shall report a busy medium only upon the
detection of a signal with the modulation and spreading characteristics
of IEEE 802.15.4. This signal may be above or below the ED threshold.

• Carrier sense with energy above threshold. CCA shall report a busy
medium only upon the detection of a signal with the modulation and
spreading characteristics of the IEEE 802.15.4 with energy above the
ED threshold.

During operation, the physical layer receives the MAC protocol data units
and processes them through channel coding, interleaving, baseband modula-
tion, multi-antenna encoding, precoding, resource and antenna mapping. The
choice of an appropriate modulation and coding scheme, as well as multi-
antenna transmission mode, is critical to achieve the desired reliability and
system throughput in mobile wireless data communications. Typical mobile
radio channels tend to be dispersive and time-variant and exhibit severe
Doppler effects, multipath delay variation, intra-cell and inter-cell interfer-
ence, and fading. A good and robust design of the physical layer ensures that
the system can normally operate and overcome the above deleterious effects
and can provide the maximum throughput and lowest latency under various
operating conditions.

PHY Constants
Constant Description Value
aMaxPHYPacketSize The maximum PSUD size (in

octets) the PHY shall be able to
receive

127

aTurnaroundTime RX-to-TX or TX-to-RX
maximum turnaround time

12 symbol
periods

292 IEEE 802.15.4 and ZigBee

PHY PIB (PIB: PAN Information Base) Attributes
Attribute Identifier Type Range Description
phyCurrent
Channel

0 x 00 Integer 0-26 The RF channel to use for all
following transmissions and
receptions

phyChannels
Supported

0 x 01 Bitmap See
descrip-
tion

The 5 most significant bits
(MSB) (b27 . . . b31) of
phyChannelsSupported shall
be reversed and set to 0, and
the27 LSBs (b0 . . . b26) shall
indicate the status (1 =
available, 0 = unavailable) for
each of the 27 valid channels
(bk shall indicate the status of
channel k).

phyTransmit
Power

0 x 02 Bitmap 0x00–
0xbf

The 2 MSBs represent the
tolerance on transmit power:
00 = ± 1 dB
01 = ± 3 dB
10 = ± 6 dB
The 6 LSBs represent a signed
integer in twos complement
format, corresponding to the
nominal transmit power of the
device in decibels relative to 1
mW. The lowest value of
phyTransmitPower shall be
interpreted as less than or
equal to -32 dBm.

phyCCAMode0 x 03 Integer 1–3 The CCA mode

6.4.4.1.1 Function of physical layer in ZigBee architecture
Physical Layer is responsible for the following functions:

• Activation and deactivation of transmission and reception.
• Channel selection and its assessment.
• Sending and receiving of packets.
• Energy detection within the channel.

6.4 IEEE 802.15.4 Standard 293

Table 6.3 Physical layer frequency band
Frequency Band Country Data Rate Channel Numbers
868.3 MHz European countries 20 kbps 0

902–928 MHz United States 40 kbps 1–10

2.405 GHz Worldwide 250 kbps 11–26

Table 6.4 IEEE 802.15.4 RF channel details
Frequency Channels Throughput Region
Band (MHz) Available Available (kbps) Use Allowable
868–868.6 1 20 Europe

902–928 10 (2003 rel)30 (2006 rel) 30 USA

2 400 16 250 Global

Table 6.5 Summary of the frequency bands and data rates of ZigBee PHY version
ZigBee Frequency Chip Bit Symbol
PHY Band Rate Modulation Rate Rate
Version (MHz) (kchip/s) Type (kbps) (ksymbol/s) Symbols
868 MHz
band

868–868.6 300 BPSK 20 20 Binary

915 MHz
band

902–928 600 BPSK 40 40 Binary

2450
MHz
band

2400–2483.5 2000 OQPSK 250 62.5 16-ary
orthogo-
nal

6.4.4.1.2 Frequency band, data rate, and channel numbering
The physical layer performs modulation on outgoing signals and demodula-
tion on incoming signals. It transmits information and receives information
from a source. Table 6.3 shows the physical layer frequency band, data rate,
and channel numbers.

The higher data rate at 2.4 GHz is attributed to a higher-order modulation
scheme. Lower frequency provides longer range due to lower propagation
losses. Low rate can be translated into better sensitivity and larger coverage
area. Higher rate means higher throughput, lower latency or lower duty cycle.
This information is summarized in Table 6.5.

6.4.4.1.3 IEEE 802.15.4 frequencies and frequency bands
The IEEE 802.15.4 frequency bands align with the license free radio bands
that are available around the globe. Of the bands available, the 2.4 GHz (2
400 MHz) band is the most widely used in view of the fact that it is available
globally and this brings many economies of scale.

294 IEEE 802.15.4 and ZigBee

With new allocations arising as a result of issues such as the digital
dividend and other countries adopting and using IEEE 802.15.4, other fre-
quencies and bands are being considered. These include: 314-316 MHz,
430-434 MHz, and 779-787 MHz frequency bands in China and the 950
MHz-956 MHz band in Japan. Other frequencies are also being considered
for UWB variants of IEEE 802.15.4.

6.4.4.1.4 ZigBee frequency bands and data rates
Concerning ZigBee, it has two bands of operation 868/915 MHz and 2450
MHz; 868/915 band provides about 20–40 kbps, and 2450 MHz band pro-
vides about 250 kbps data rates. Tables 6.5–6.7 cover in detail the ZigBee
frequency bands 868, 915, 2450 MHz range and provides data rates supported
by each. Figure 6.20 shows channelization and spectrum spacing.

Channelization and Spectrum Spacing
A total of 27 channels, numbered from 0 to 26, are available across the three
frequency bands. 16 channels are available in the 2450 MHz band, 10 in the
915 MHz band, and 1 in the 868 MHz band. The center frequency of these
channels is defined as follows:

Fc = 868.3
Fc = 906 + 2 (k-1) k from 1 to 10, and
Fc = 2405 + 5 (k-11) k from 11 to 26

This is given in Tables 6.6 and 6.7.
Following are 11–26 ZigBee channels in the 2400 MHz band.

Table 6.6 ZigBee channels, 915 MHz ISM band
ZigBee Channels (1–10) Center Frequency (MHz)
1 906

2 908

3 910

4 912

5 914

6 916

7 918

8 920

9 922

10 924

6.4 IEEE 802.15.4 Standard 295

Table 6.7 ZigBee channels, 2.4 GHz ISM band
ZigBee Channels (11–26) Center Frequency (MHz)
11 2405

12 2410

13 2415

14 2420

15 2425

16 2430

17 2435

18 2440

19 2445

20 2450

21 2455

22 2460

23 2465

24 2470

25 2475

26 2480

Figure 6.20 Channelization and spectrum spacing.

296 IEEE 802.15.4 and ZigBee

6.4.4.1.5 IEEE 802.15.4 modulation formats
There were two different modulation schemes defined for IEEE 802.15.4
in the original standard released in 2003. Both these air interface or radio
interface configurations are based on direct sequence spread spectrum, DSSS
techniques. The one for the lower frequency bands provides a lower data rate
in view if the smaller channel width, whereas the format used at 2.4 GHz
enables data to be transferred at rates up to 250 kbps.

The 2006 release of the 802.15.4 standard upgraded the number of areas
of the air interface and the modulation schemes. There were four different
physical layers that were defined. Three used the DSS approach using either
binary or offset quadrature phase shift keying, BPSK and OQPSK. An
optional physical layer approach was defined using amplitude sift keying,
ASK.

In case of 2.4 GHz every 4 bits are mapped into one symbol and encoded
into one of 16 32-bit quasi orthogonal PN codes. The coding is shown in
Table 6.8. O-QPSK modulation is used with the 2.4 GHz.

Table 6.8 Coding in case of 2.4 GHz
Data Data Symbol
Symbol (Binary)
(Decimal) (b0,b1, b2, b4) Chip values c0c1 − c30c31
0 0 0 0 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0

1 1 0 0 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0

2 0 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0

3 1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1

4 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1

5 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0

6 0 1 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1

7 1 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1

8 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1

9 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1

10 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1

11 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0

12 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0

13 1 0 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1

14 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0

15 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0

6.4 IEEE 802.15.4 Standard 297

Table 6.9 Generic packet format
Octets:4 1 1 Variable
Preamble SFD Frame length (7 bits) reserved(1 bit) PSDU

SHR PHR PHY payload

Figure 6.21 PPDU format.

Pulse Shaping
The half-sine pulse shape used to represent each baseband chip is:

p(t) =

sin

(
π
t

2Tc

)
, 0 ≤ t ≤ 2 Tc

0, otherwise

6.4.4.1.6 ZigBee physical layer frame format-PPDU
ZigBee PHYSICAL layer (PHY) frame format consists of subfields:
preamble, SFD, frame length, and PSDU field descriptions.

The PHY Protocol Data Unit (PPDU) format is shown in Figure 6.21
and Table 6.9. The PPDU consists of three components: the Synchronization
header (SHR), the PHY header (PHR), and the PHY payload.

The SHR enables the receiver to synchronize and lock into the bit stream.
The PHR contains frame length information. The PHY payload is provided
by upper layers and includes data or commands that need to be transmitted to
another device.

The SHR consists of a preamble and a start-of-frame delimiter (SFD), see
Table 6.10.

Preamble field
The preamble field is used by the receiver to obtain chip and symbol syn-
chronization. The bits in the preamble field in all PHYs, except for the ASK

298 IEEE 802.15.4 and ZigBee

Table 6.10 Preamble field lengths and durations
PHY Option Length Duration (µs)
868 MHz BPSK 4 octets 32 symbol 1600

915 MHz BPSK 4 octets 32 symbol 800

868 MHz ASK 5 octets 2 symbol 160

915 MHz ASK 3.75 octets 6 symbol 120

868 MHz O-QPSK 4 octets 8 symbol 320

915 MHz O-QPSK 4 octets 8 symbol 128

2.4 GHz O-QPSK 4 octets 8 symbol 128

Table 6.11 SFD field format (except for ASK PHYs)
Bits 0 1 2 3 4 5 6 7

Values 1 1 1 0 0 1 0 1

PHYs, are binary zeros (There are 32 zeros in the preamble field and used for
synchronization). The preamble in an 868 MHz ASK PHY is generated by
repeating certain sequence twice. The duration of this preamble is 160 µs. In
a 915 MHz ASK PHY, a specific sequence is repeated six times and takes 120
µs. The lengths and durations of the preambles in all PHY options are listed
in Table 6.10.

Start-of-Frame Delimiter (SFD)
The SFD field indicates the end of the SHR and start of the PHR. The SFD is
an 8-bit field shown in Table 6.11. The lengths of SFD fields are provided in
Table 6.12.

Table 6.12 SFD field lengths
PHY Option Length
868 MHz BPSK 1 octets 8 symbol

915 MHz BPSK 1 octets 8 symbol

868 MHz ASK 2.5 octets 1 symbol

915 MHz ASK 0.625 octets 1 symbol

868 MHz O-QPSK 1 octets 2 symbol

915 MHz O-QPSK 1 octets 2 symbol

2.4 GHz O-QPSK 1 octets 2 symbol

6.4 IEEE 802.15.4 Standard 299

Table 6.13 Frame length values
Frame Length Values PHY Payload
0 to 4 Reserved

5 Acknowledgment MPDU

6 to 8 Reserved

9 to aMaxPHYPacketSize Any other MPDU

Frame Length
The next field in a PHY packet is the frame length, which specifies the total
number of octets in the PHY payload (PSDU). The PSDU length can be any
value from 0 to 127 octets. But practically, based on IEEE 802.15.4-2006, the
PSDU length is either 5 octets for a MAC acknowledgment frame or 9–127
for any other MPDU. The frame length values of 0–4 and 6–8 are reserved
for potential future applications (Table 6.13).

PHY Service Data Unit (PSDU)
The last field is the PHY Service Data Unit (PSDU). The content of the PSDU
is provided by the MAC as a MAC frame. In IEEE 802.15.4, the first bit that
will be transmitted is the leas significant bit (LSB) of the SHR. The most
significant bit (MSB) of the last octet of the PHY payload is transmitted last.

6.4.4.2 Receiver energy detection (ED)
The receiver energy detection (ED) measurement is intended for use by a
network layer as part of channel selection algorithm. It is an estimate of the
received signal power within the bandwidth of an IEEE 802.15.4 channel.
No attempt is made to identify or decode signals on the channel. The ED
time should be equal to 8 symbol periods. The ED result shall be reported
as an 8-bit integer ranging from 0x00 to 0xff. The minimum ED value (0)
shall indicate received power less than 10dB above the specified receiver
sensitivity. The range of received power spanned by the ED values shall be
at least 40dB. Within this range, the mapping from the received power in
decibels to ED values shall be linear with an accuracy of +− 6 dB.

6.4.4.3 Link quality indication (LQI)
Upon reception of a packet, the PHY sends the PSDU length, PSDU itself and
link quality (LQ) in the PD-DATA.indication primitive. The LQI measure-
ment is a characterization of the strength and/or quality of a received packet.
The measurement may be implemented using receiver ED, a signal-to-noise

300 IEEE 802.15.4 and ZigBee

estimation or a combination of these methods. The use of LQI result is up
to the network or application layers. The LQI result should be reported as an
integer ranging from 0x00 to 0xff. The minimum and maximum LQI values
should be associated with the lowest and highest quality IEEE 802.15.4 sig-
nals detectable by the receiver and LQ values should be uniformly distributed
between these two limits.

6.4.4.4 Clear channel assessment (CCA)
The clear channel assessment (CCA) is performed according to at least one
of the following three methods:

• Energy above threshold. CCA shall report a busy medium upon detect-
ing any energy above the ED threshold.

• Carrier sense only. CCA shall report a busy medium only upon the
detection of a signal with the modulation and spreading characteristics
of IEEE 802.15.4. This signal may be above or below the ED threshold.

• Carrier sense with energy above threshold. CCA shall report a busy
medium only upon the detection of a signal with the modulation and
spreading characteristics of IEEE 802.15.4 with energy above the ED
threshold.

7
ZigBee Stack Layers

This chapter concentrates on the ZigBee Stack Layers. It starts by introducing
the details of the MAC layer followed by the Routing Layer. The information
given are enough to help any engineer developing ZigBee network.

7.1 ZigBee Mac Layer

The MAC sublayer (Figure 7.1) provides two services: the MAC data ser-
vice and the MAC management service. Interfacing to the MAC sublayer
management entity (MLME) service access point (SAP) (MLME-SAP). The
MAC data service enables the transmission and reception of MAC protocol
data units across the PHY data service. The features of the MAC sublayer are
beacon management, channel access, GTS management, frame validation,
acknowledged frame delivery, association, and disassociation.

In addition, the MAC sublayer provides means for implementing applica-
tion appropriate security mechanisms. The slotted CSMA-CA shall be used
if superframe structure is used in PAN. If beacons are not being used in the
PAN or a beacon cannot be located in a beacon-enabled network, an unslotted
CSMA-CA algorithm is used.

• Slotted CSMA-CA: the back off period boundaries of every device in
the PAN are aligned with the superframe slot boundaries of the PAN
coordinator. Each time a device wishes to transmit data frames during
the CAP, it shall locate the 11 boundary of the next back off period.

• Unslotted CSMA-CA: The back off period of one device is not required
to be synchronized to the back off period of another device.

After introducing the MAC superframe, brief discussion on CSMA-CA will
be given.

301

302 ZigBee Stack Layers

MLME: MAC Layer Management Entity PLME: Physical Layer Management Entity
MCPS: MAC Common Part Sublayer

Figure 7.1 MAC sublayer.

Figure 7.2 Superframe structure.

7.1.1 Superframe Structure

The LR-WPAN standard allows the optional use of a superframe structure.
The format of the superframe is defined by the coordinator. The superframe
is bounded by network beacons and is divided into 16 equally sized slots.
The beacon frame is sent in the first slot of each superframe. If a coordinator
does not want to use the superframe structure, it may turn off the beacon
transmissions. The beacons are used to synchronize the attached devices, to
identify the PAN and to describe the structure of superframes.

The superframe can have an active and an inactive portion (see Fig-
ure 7.2). During the inactive portion, the coordinator shall not interact with
its PAN and may enter a low-power mode.

The active portion consists of contention access period (CAP) and
contention free period (CFP). Any device wishing to communicate dur-
ing the CAP shall compete with other devices using a slotted CS MACA

7.1 ZigBee Mac Layer 303

Figure 7.3 Superframe format: Details of the active period of the superframe.

mechanism. On the other hand, the CFP contains guaranteed time slots
(GTSs) (Figure 7.3). The GTSs always appear at the end of the active
superframe starting at a slot boundary immediately following the CAP.
The PAN coordinator may allocate up to seven of these GTSs and a GTS
can occupy more than one slot period. The duration of different portions
of the superframe are described by the values of “macBeaconOrder” and
“macSuperFrameOrder”. macBeaconOrder describes the interval at which
the coordinator shall transmit its beacon frames. The beacon interval (BI) is
related to the macBeaconOrder, BO, as follows:

BI = aBaseSuperFrameDuration ∗ 2BO, 0 ≤ BO ≤ 14.

The superframe is ignored if BO = 15. The value of macSuperFrameOrder
describes the length of the active portion of the superframe. The superframe
duration, SD, is related to macSuperFrameOrder, SO, as follows:

SD = aBaseSuperFrameDuration ∗ 2SO, 0 ≤ SO ≤ 14.

If SO = 15, the superframe should not remain active after the beacon. The
active portion of each superframe is divided into a “aNumSuperFrameSlots”

304 ZigBee Stack Layers

equally spaced slots of duration 2SO * aBaseSlotDuration and is composed
of three parts: a beacon, a CAP and CFP. The beacon is transmitted at the
start of slot 0 without the use of CSMA. The CAP starts immediately after the
beacon. The CAP shall be at least aMinCAPLength symbols unless additional
space is needed to temporarily accommodate the increase in the beacon frame
length to perform GTS maintenance. All frames except acknowledgment
frames or any data frame that immediately follows the acknowledgment of
a data request command that are transmitted in the CAP shall use slotted
CSMA-CA to access the channel. A transmission in the CAP shall be com-
plete one IFS period before the end of the CAP. If this is not possible, it defers
its transmission until the CAP of the following superframe.

An example of superframe structure is shown in Figure 7.3. The CFP, if
present, shall start on a slot boundary immediately following the CAP and
extends to the end of the active portion of the superframe. The length of
the CFP is determined by the total length of all of the combined GTSs. No
transmissions within the CFP shall use a CSMA-CA mechanism. A device
transmitting in the CFP shall ensure that its transmissions are complete
one IFS period before the end of its GTS. IFS time is the amount of time
necessary to process the received packet by the PHY. Transmitted frames
shall be followed by an IFS period. The length of IFS depends on the size
of the frame that has just been transmitted. Frames of up to aMaxSIFS-
FrameSize in length shall be followed by a SIFS whereas frames of greater
length shall be followed by a LIFS. The PANs that do not wish to use
the superframe in a nonbeacon-enabled shall set both macBeaconOrder and
macSuperFrameOrder to 15. In this kind of network, a coordinator shall not
transmit any beacons, all transmissions except the acknowledgment frame
shall use unslotted CSMA-CA to access channel, and GTSs shall not be
permitted.

7.1.1.1 Updating superframe configuration
In a beacon-enabled network, the NWK layer can request the MLME to start
a superframe structure. The NWK layer provides the necessary parameters,
including but not limited to the length of the active period and how often the
beacons must be transmitted.

One of the parameters in the superframe configuration is the BLE option
(see Figure 7.4). This option allows the beaconing coordinator to turn off its
receiver for a period of time equal to macBattLifeExtPeriods after transmit-
ting its beacon frame to conserve battery energy. This period is in addition to
the required IFS period after transmitting any frame.

7.1 ZigBee Mac Layer 305

Figure 7.4 If the BLE option is selected, the coordinator receiver is active only for a limited
time after the IFS period.

If the BLE option is set to false, the beaconing coordinator must keep its
receiver active for the entire CAP.

QoS by Superframe
• A coordinator may reserve some time slots as Guaranteed Time Slots

(GTS)
• GTSs form contention-free period (CFP), which is always behind

contention access period (CAP)

7.1.2 CSMA-CA Algorithm

As mentioned above, if superframe structure is used in the PAN, then slotted
CSMA-CA (Carrier Sense Multiple Access/Collision Avoidance) shall be
used. If beacons are not being used in the PAN or a beacon cannot be located
in a beacon-enabled network, unslotted CSMA-CA algorithm is used. In
both cases, the algorithm is implemented using units of time called backoff
periods, which is equal to “aUnitBackoffPeriod” symbols. In slotted CSMA-
CA channel access mechanism, the backoff period boundaries of every device
in the PAN are aligned with the superframe slot boundaries of the PAN
coordinator. In slotted CSMA-CA, each time a device wishes to transmit data
frames during the CAP, it shall locate the boundary of the next backoff period.
In unslotted CSMA-CA, the backoff periods of one device do not need to
be synchronized to the backoff periods of another device. Each device has
3 variables: NB, CW and BE. NB is the number of times the CSMA-CA
algorithm was required to backoff while attempting the current transmission.
It is initialized to 0 before every new transmission. CW is the contention
window length, which defines the number of backoff periods that need to
be clear of activity before the transmission can start. It is initialized to 2
before each transmission attempt and reset to 2 each time the channel is

306 ZigBee Stack Layers

assessed to be busy. CW is only used for slotted CSMA-CA. BE is the backoff
exponent, which is related to how many backoff periods a device shall wait
before attempting to assess the channel. Although the receiver of the device
is enabled during the channel assessment portion of this algorithm, the device
shall discard any frames received during this time.

In slotted CSMA-CA, NB, CW and BE are initialized and the boundary
of the next backoff period is located.

The CSMA-CA algorithm works as follows:

1. Initialization: If a device wishes to transmit a frame using CSMA-CA,
it first initializes the local variables BE:=macMinBE for the backoff
exponent and NB:=0 for the number of successive backoffs before the
current transmission.

2. Backoff : Before a station attempts to send a frame, it waits for a random
integer number between 0 and 2ˆBE-1 complete backoff periods of
length aUnitBackoffPeriod. If slotted CSMA-CA is used, transmissions
are synchronized with the beacon, and therefore the backoff starts at the
beginning of the next backoff period; if unslotted CSMA-CA is used, the
backoff starts immediately. The first backoff period of each superframe
starts with the transmission of the beacon. If the backoff has not been
completed at the end of the CAP, it resumes at the start of the next
superframe.

3. Clear Channel Assessment: After completing its backoff, the station
performs a clear channel assessment (CCA). If, after eight symbol peri-
ods, the channel is assessed to be busy, both BE and NB are incremented
by one, up to a maximum of aMaxBE for BE and macMaxCSMABack-
offs+1 for NB. If NB exceeds macMaxCSMABackoffs, the protocol
terminates with a channel access failure; if not, the protocol returns to
the backoff step. If the channel is assessed to be free, the data frame can
be transmitted. In slotted CSMA-CA, two CCAs, each starting at the
beginning of a backoff period, have to be performed.

4. Starting the transmission: In slotted CSMA-CA, a transmission can
only start at a backoff period boundary, only if all steps (two CCAs,
frame transmission, and acknowledgment) can be completed at least one
interframe space (IFS) period before the end of the CAP. If the MAC
sublayer cannot proceed, it shall wait until the start of the CAP in the
next superframe and repeat the evaluation.

5. Channel is Busy: If the channel is assessed to be busy (step 4), the MAC
sublayer shall increment both NB and BE by one, ensuring that BE shall

7.1 ZigBee Mac Layer 307

be no more than aMaxBE. In slotted CSMA-CA, CW can also be reset
to 2. If the value of NB is less than or equal to macMaxCSMABackoffs,
the CSMA-CA shall return to step 2, else the CSMA-CA shall terminate
with a Channel Access Failure status.

6. Channel Assessed Idle: If the channel is assessed to be idle (step 5),
in a slotted CSMA-CA, the MAC sublayer shall ensure that contention
window is expired before starting transmission. For this, the MAC
sublayer first decrements CW by one. If CW is not equal to 0, go to step 3
else start transmission on the boundary of the next backoff period. In the
unslotted CSMA-CA, the MAC sublayer start transmission immediately
if the channel is assessed to be idle.

7.1.3 Data Transfer Model

Three types of data transfer transactions exist: from a coordinator to a device,
from a device to a coordinator and between two peer devices. The mech-
anism for each of these transfers depend on whether the network supports
the transmission of beacons. When a device wishes to transfer data in a
nonbeacon-enabled network, it simply transmits its data frame, using the
unslotted CSMA-CA, to the coordinator. There is also an optional acknowl-
edgment at the end as shown in Figure 7.5a. When a device wishes to
transfer data to a coordinator in a beacon-enabled network, it first listens
for the network beacon. When the beacon is found, it synchronizes to the

Figure 7.5 Communication to a coordinator (a) in a beacon-enabled network and (b) in a
nonbeacon-enabled network.

308 ZigBee Stack Layers

Figure 7.6 Communication from a coordinator to device (a) in a beacon-enabled network
and (b) in a nonbeacon-enabled network.

superframe structure. At the right time, it transmits its data frame, using
slotted CSMA-CA, to the coordinator. There is an optional acknowledgment
at the end as shown in Figure 7.5b. The applications transfers are completely
controlled by the devices on a PAN rather than by the coordinator. This
provides the energy-conservation feature of the ZigBee network. When a
coordinator wishes to transfer data to a device in a beacon-enabled network,
it indicates in the network beacon that the data message is pending. The
device periodically listens to the network beacon, and if a message is pending,
transmits a MAC command requesting this data, using slotted CSMA-CA.
The coordinator optionally acknowledges the successful transmission of this
packet. The pending data frame is then sent using slotted CSMA-CA. The
device acknowledged the successful reception of the data by transmitting an
acknowledgment frame. Upon receiving the acknowledgment, the message
is removed from the list of pending messages in the beacon as shown in
Figure 7.6a. When a coordinator wishes to transfer data to a device in a
nonbeacon-enabled network, it stores the data for the appropriate device to
make contact and request data. A device may make contact by transmitting
a MAC command requesting the data, using unslotted CSMA-CA, to its
coordinator at an application-defined rate. The coordinator acknowledges this
packet. If data are pending, the coordinator transmits the data frame using
unslotted CSMA-CA. If data are not pending, the coordinator transmits a
data frame with a zero-length payload to indicate that no data were pending.
The device acknowledges this packet as shown in Figure 7.6b. In a peer-to-
peer network, every device can communicate with any other device in its

7.1 ZigBee Mac Layer 309

transmission radius. There are two options for this. In the first case, the node
will listen constantly and transmit its data using unslotted CSMA-CA. In the
second case, the nodes synchronize with each other so that they can save
power.

7.1.4 Network Formation: Starting a PAN

A PAN shall be started when the user app decides to form a network instead of
joining an existing one, it will instruct the ZDO to call the network formation
function. Only a router that is coordinator-capable can form a network and
this is indicated in the application layer’s information base. It is just a fancy
term for the app layer’s configuration table.

When the network formation function is called, a list of allowed channels
needs to be supplied to which may be limited to a subset of the total available
channels (16 channels at 2.4 GHz). It is usually based on certain requirements
like avoiding channels that overlap with an existing 802.11 network. To avoid
any interference it is recommended, in all cases, to locate any routine node a
few feet away from an 802.11 access point.

The network formation function will call the MAC’s “energy detection
scan” and active scan services and perform scans on the supplied channel list.
When the scans are finished, the MAC’s scan confirm function will return the
energy readings and network scan descriptors to the function via the MAC’s
scan confirmation. From there, the network formation function will need to
decide on the channel to join. The usual criterion is to choose a channel with
the lowest energy reading (lowest amount of traffic) and the fewest networks.
If you have access to the source code, you can also modify the channel
decision function to add additional criteria.

Once the channel is decided on, the newly crowned coordinator will
decide on a PAN ID and set the channel in the radio. The final step is for the
NWK layer to call the MAC start service which configures the MAC layer.
After that, confirmations go back all the way up to the user app (Figure 7.7).

The Energy Detection Scan and Assigning a PAN ID are given next in
detail.

a. Energy Detection Scan
A PAN starts by an Energy Detection Scan in which the FFD/coordinator
searches for suitable RF channel which is not usable and not interfering with
Wireless LAN frequencies in use. The reason of this step is because WLAN
also operates in the same 2.4 GHz bands.

310 ZigBee Stack Layers

Figure 7.7 Network formation sequence diagram.

The active scan allows the FFD to locate any coordinator transmitting
beacon frames within its POS (personal operating space). An active channel
scan is requested over a specified set of logical channels. For each logical
channel, the device shall first switch to the channel and send a beacon request
command. The device shall then enable its receiver for at most aBaseSuper-
frameDuration ∗ (2n +1) symbols, where n is between 0 and 14. During this
time, the device shall reject all nonbeacon frames and record the information
contained in all unique beacons in a PAN descriptor structure. If the coor-
dinator of a beacon-enabled PAN receives the beacon request command, it
shall ignore the command and continue transmitting its beacons as usual. If
the coordinator of a nonbeacon-enabled PAN receives this command, it shall
transmit a single beacon frame using unslotted CSMACA.

7.1 ZigBee Mac Layer 311

The active scan on a particular channel terminates when the number of
PAN descriptors stored equals this implementation-specified maximum or
aBaseSuperframeDuration ∗ (2n + 1) symbols, where n is between 0 and
14, have elapsed. The entire scan shall terminate when the number of PAN
descriptors stored equals the implementation-specified maximum or every
channel in the set of available channels has been scanned.

b. Assigning a PAN ID
In this step, the coordinator starts the network by assigning a PAN ID to
the network. Assignment the PAN ID is done by two ways: Manual (pre-
configured) and dynamic (Obtained by checking other PAN IDs of networks
already in operation nearby so that PAN ID does not conflict with other
networks) or from the list of PAN descriptors returned from the active channel
scan (step a above). An ED scan allows the FFD obtain a measure of the peak
energy in each requested channel. During the ED scan, the MAC sublayer
shall discard all frames received over the PHY data service. An ED scan is
performed over a set of logical channels. For each logical channel, repeatedly
perform an ED measurement for aBaseSuperframeDuration ∗ (2n + 1) where
n is the value of the scanDuration. The maximum ED measurement obtained
during this period shall be noted before moving onto the next channel in the
channel list. The ED scan shall terminate when either the number of channel
ED measurements stored equals the implementation-specified maximum or
energy has been measured on each of the specified logical channels.

Case of conflict
In some instances, a situation could occur in which two PANs exist in
the same POS with the same PAN identifier. If this conflict happens, the
coordinator and its devices shall perform PAN identifier conflict resolution
procedure. The PAN coordinator shall conclude that a PAN identifier conflict
is present if either a beacon frame is received by the PAN coordinator with the
PAN coordinator subfield set to 1, that is, transmitted by the PAN coordinator,
and the PAN identifier is equal to macPANId or a PAN ID conflict notification
command is received by the PAN coordinator from a device on its PAN. A
device shall conclude that a PAN identifier conflict is present if a beacon
frame is received by the device with the PAN coordinator subfield set to 1,
the PAN identifier equal to macPANId, an address that is not equal to both
macCoordShortAddress and macCoordExtendedAddress. On the detection of
the PAN identifier conflict by a device, it shall generate the PAN ID conflict
notification command and send it to the PAN coordinator. If the PAN ID

312 ZigBee Stack Layers

conflict notification command is received correctly, the PAN coordinator shall
send an ack and resolve the conflict. On the detection of the PAN identifier
conflict by a coordinator, the coordinator shall first perform an active scan
and then select a new PAN identifier based on the information from the scan.
The coordinator shall then broadcast the coordinator realignment command
containing the new PAN identifier with the source PAN identifier field equal
to the value in macPANId. Once the coordinator realignment field has been
sent, the coordinator shall set macPANId to the new PAN identifier.

c. Broadcasting Beacon Request
The coordinator at this stage completes its configuration and is ready to accept
network joining request queries from routers and end devices who wish to
join the PAN.

In addition to above, Coordinator(C) sends broadcast beacon request
frame on remaining quiet channel. This is also referred as beacon scan or PAN
scan. By this Coordinator receives PAN ID of routers(R) and end devices (E)
present nearby. It also comes to know whether R/E allow join or not.

d. Routers and End Device Joining the network
At this stage Routers and End devices can join the network. There are two
ways to join a ZigBee network: MAC association and network re-join.

• First one is implemented by device underlying MAC layer and second
one is implemented by network layer, despite the name may also be used
to join a network for the first time.

• MAC association can be performed between Coordinator (C) and Router
(R)/End device (E) or Router (R) and End device (E) or Router (R) and
other Router (R).

– Let us assume that Coordinator(C) has already established the PAN
network. Hence next step for R or E is to find out whether C
is allowing joining or not. So they do PAN scan or send beacon
request frame.

– After they come to know that they can join the network, they will
send association request frame and will join the network as soon
as they receive the association response.

• As mentioned above whether or not C or R allow a new device to join
depends on two main factors:

– Permit joining attribute
– Number of end device children it already has.

7.1 ZigBee Mac Layer 313

Figure 7.8 Beacon NWK payload format.

7.1.5 Network Joining

After forming the network, Routers and End devices can join the network.

7.1.5.1 Network discovery
As the name implies, the ZigBee network discovery service is used to dis-
cover the existing networks on the current channel. It is mostly just used
when the device is started to find out if there are any suitable networks to
join, although it can also be called at any time via the user app.

When a network discovery is requested by the ZDO (or user app), the
discovery function will call the MAC’s active scan service which, in turn,
will broadcast a beacon request. When other devices see the beacon request,
they will respond with an 802.15.4 beacon frame. Considering Figure 7.8
an 802.15.4 beacon frame contains MAC information about the responding
device as well as a beacon payload for generic data. Within that payload,
the responding device will include ZigBee network information such as the
protocol ID and version, amount of routers and end devices allowed to join,
the device profile that is being used, and other somewhat useful information.

When the beacons from the scan request are received, the device will
add both the MAC and NWK info to its scan descriptor list and its neighbor
table. After all of the beacons have been collected, a network discovery
confirmation will be sent to the ZDO along with the list containing all the
scan descriptors. The ZDO or the user app would then need to decide which
network to join based on certain join criteria. It’s here that the user can specify
if they only want their device to join certain networks or even if there is a
specific device they’d like to join to.

314 ZigBee Stack Layers

Figure 7.9 NWK discovery sequence diagram.

7.1.5.2 Network join
Joining a device or allowing a device to join is probably one of the most
complicated processes in ZigBee. There are actually two sides to the network
join function: the child side which sends the request and the parent side which
processes the request and sends the response. To get a thorough understanding
of the join process, each sequence will be treated separately and also we refer
the reader to Section 7.1.6 which gives details of the 802.15.4 association
sequence.

7.1.5.2.1 Network join–child
The first part of the join process for the child is to do a network discovery.
This is usually done when the device is first started and is not associated with
any network as mentioned previously. Once the network discovery is finished
and the potential parent has been decided on according to the join criteria,
then it is time for the network join process to start.

When the potential parent has been chosen, a network join request is
called by the ZDO. The network join request will call the MAC’s association

7.1 ZigBee Mac Layer 315

service and issue an association request to the potential parent. From there,
the procedure follows the MAC’s association sequence until the association
response is received from the potential parent.

When this response is received, it will get passed up to the network layer
via the MAC’s association response. If the join was successful, the device will
update it as NWK and MAC information tables to include the new network
address, PAN ID, and also update the neighbor table to specify its parent.
Once the administrative work is taken care of, the network join confirmation
is sent up to the ZDO where it can inform the application about the join status.
If the join status was unsuccessful, then the ZDO/user app will choose another
potential parent from the neighbor table and retry the join procedure until it
eventually joins a network or runs out of potential parents.

One of the last things that occur after a successful join is that the device
will broadcast a device announcement informing everyone on the network
that it has joined the network as well as it is 16-bit network address and
64-bit IEEE address. This is important because if the device was previously
joined to the network with a different network address, the other devices will
be able to find out from it is IEEE address and can clear all references to
the old network address. Also, the address info will be added to everyone’s
address map which tracks all the devices on the network. Figure 7.10 shows
the sequence.

7.1.5.2.2 Network join–parent
The parent side of the join process is slightly easier. When a MAC association
request arrives at the potential parent, it sends an indication to the network
layer that a device is trying to join. The potential parent will then search its
neighbor table to see if the 64-bit IEEE address already exists. If it does, then
that means that the device was already previously joined and the parent will
just issue the same network address to it. If not, and the parent is allowing
devices to join it, then it will simply add the device to its neighbor table
specifying that it’s a child device and generate a new network address for it.
This all gets packaged up and sent out as a MAC association response. Again
the rest goes according to the MAC’s association service.

7.1.6 Association and Disassociation

Association refers to the relationship of a station to an access point; reas-
sociation allows an association to be moved to a different access point;
disassociation allows an association to be terminated. Every station must

316 ZigBee Stack Layers

Figure 7.10 NWK join sequence diagram–child side.

provide authentication, deauthentication, privacy, and MAC service data unit
(MSDU) delivery.

Device Association

An FFD may indicate its presence on a PAN to other devices by transmitting
beacon frames. This allows other devices to perform device discovery. An
FFD that is not a PAN coordinator shall begin transmitting beacon frames
only when it has successfully associated with a PAN. Association of a device
starts after having completed either an active channel scan or a passive
channel scan. The passive scan, like an active scan, allows a device to locate
any coordinator transmitting beacon frames within its POS whereas there
beacon request command is not required for passive scan. The results of
the channel scan are then used to choose a suitable PAN. A device shall
attempt to associate only with a PAN that is currently allowing association.

7.1 ZigBee Mac Layer 317

Figure 7.11 NWK sequence diagram–parent side.

How to choose a suitable pan with which to associate from the list of pan
descriptors returned from the channel scan is up to application. Following
the selection of a PAN with which to associate, the next higher layers
request that MLME configures the phyCurrentChannel to the appropriate
logical channel on which to associate, macPANId to the identifier of the
PAN with which to associate and macCoordExtendedAddress or macCo-
ordShortAddress to the address of the coordinator with which it associates.
An unassociated device shall initiate the association procedure by sending
an associate request command to the coordinator of an existing PAN. If
the association request command is received correctly, the coordinator shall
send an acknowledgment. This acknowledgment, however, does not mean
that the device has associated. The coordinator needs time to determine
whether the current sources available on a PAN are sufficient to allow another
device to associate. This decision should be made within aResponseWaitTime
symbols. If already associated, remove all information. If sufficient resources
are available, the coordinator shall allocate a short address to the device and
generate an association response command containing the new address and a
status indicating the successful association. If there are not enough resources,
the coordinator shall generate an association response command containing
a status indicating failure. This response is sent to the device using indirect
transmission (pending, request,...). On the other side, the device, after getting
the acknowledgment frame, waits for the response for aResponseWaitTime

318 ZigBee Stack Layers

Figure 7.12 Device association.

symbols. It either checks the beacons in the beacon-enabled network or
extract the association response command from the coordinator after aRe-
sponseWaitTime symbols. On reception of association response command,
the device shall send an acknowledgment. If the association is successful,
store the addressed of the coordinator with which it has associated. The
association procedure is shown in Figure 7.12.

Device Disassociation

When a coordinator wants one of its associated devices to leave the PAN,
it shall send the disassociation notification command to the device using
indirect transmission. Upon reception of the packet, the device should send
the acknowledgment frame. Even if the ack is not received, the coordinator
shall consider the device disassociated. If an associated device wants to
leave the PAN, it shall send a disassociation notification command to the
coordinator. Upon reception, the coordinator sends ack. Even if the ack is not
received, the device shall consider itself disassociated. An associated device
shall disassociate itself by removing all references to the PAN. A coordinator
shall disassociate a device by removing all references to that device (see
Figure 7.13).

7.1 ZigBee Mac Layer 319

Figure 7.13 Device disassociation.

7.1.6.1 Orphan notification
As mentioned before, a device must be associated with a network to be
able to communicate with other devices in the network. A device that was
previously associated with a network but has lost its association is considered
an orphaned device. A device that leaves a network using the disassociation
procedure is not considered an orphaned device. If the NWK layer of a device
faces repeated communications failures, it may conclude that the device has
been orphaned.

For example, if the device transmits a frame that requires an acknowledg-
ment and does not receive the acknowledgment after waiting for macAck-
WaitDuration symbols, the device may repeat the data transmission up
to macMaxFrameRetires. If still, after macMaxFrameRetires attempts, no
acknowledgment is received, the device counts this as a single communi-
cation failure. The application developer decides on the number of com-
munication failures that will be tolerated before declaring the device an
orphan.

The NWK layer of an orphaned device can instruct its MLME to perform
either one of the following procedures:

• Reset the MAC and then perform the association procedure.
• Perform the orphaned device realignment procedure.

The reset and association procedures were discussed in the preceding sec-
tions. The realignment procedure (shown in Figure 7.14) starts with a device
sending an orphan notification command to the coordinator. The MLME of
the coordinator notifies the NWK layer of the presence of an orphaned device
using the MLME-ORPHAN.indication primitive.

320 ZigBee Stack Layers

Figure 7.14 The sequence chart for orphan device notification.

The NWK layer of the coordinator verifies the address of the orphan
device, and in its response (using the MLME-ORPHAN.response primitive)
the NWK layer confirms whether the device was previously associated with
this coordinator.

If the device was previously associated with this coordinator, the MLME
of the coordinator sends the realignment command to the orphaned device.
The realignment command is used to deliver network settings. When the
command is successfully transmitted to the orphaned device, the MLME uses
the MLME-COMM-STATUS.indication primitive to report its success to the
NWK layer.

If the device was not associated with this coordinator, the MLME of
the coordinator does not perform any action. The orphaned device waits for
macResponseWaitTime symbols (a MAC attribute) and if it does not receive
any realignment command, the orphaned device assumes it is not associated
with any coordinator in its range.

7.1.7 Synchronization

For PANs supporting beacons, synchronization is performed by receiving and
decoding beacon frames. For PANs not supporting beacons, the synchroniza-
tion is performed by polling the coordinator for data. In a beacon enabled
network, devices shall be permitted to acquire synchronization only with
beacons containing the PAN Identifier specified in macPANId. If tracking is
specified in the MLMESYNC.request primitive, the device shall attempt to

7.1 ZigBee Mac Layer 321

acquire the beacon and keep track of it by regular and timely activation of its
receiver. It shall enable its receiver at a time prior to the next expected beacon
frame transmission, that is, just before the known start of the next superframe.
If tracking is not specified, the device shall attempt to acquire the beacon only
once.

To acquire beacon synchronization, a device shall enable its receiver and
search for at most aBaseSuperframeDuration ∗ (2n + 1) symbols, where n is
the macBeaconOrder. If a beacon frame containing the current PAN identifier
of the device is not received, the MLME shall repeat the search. Once the
number of missed beacons reached aMaxLostBeacons, the MLME notifies
the next upper layer by issuing MLME-SYNC-LOSS.indication with a reason
BEACON-LOSS. The MLME shall timestamp each received beacon frame
at the same symbol boundary within each frame, the location of which is
implementation specific. In a nonbeacon-enabled network, the devices shall
be able to poll the coordinator for data at the discretion of the next higher
layer. On receipt of MLME-POLL.request primitive, the MLME follow the
procedure for extracting pending data from the coordinator. Another problem
with synchronization is orphaned device. If the next higher layer receives
repeated communication failures following its requests to transmit data, it
may conclude that it has been orphaned. A single communications failure
occurs when a device transaction fails to reach the coordinator, that is, an
acknowledgment is not received after aMaxFrameRetries attempts at sending
data. If the next higher layer concluded that the device has been orphaned, it
may either reset the MAC sublayer and perform the association procedure or
perform the orphaned device realignment procedure. If the decision is for
orphaned device alignment, orphan scan is performed. During the orphan
scan, the MAC sublayer shall discard all frames received over the PHY data
service that are not coordinator realignment MAC command frames. For each
logical channel over a specified set of logical channels, the device sends an
orphan notification command. The device shall then enable its receiver for
at most aResponseWaitTime symbols. If the device successfully receives a
coordinator realignment command within this time, the device shall disable
its receiver.

If a coordinator receives the orphan notification command, it searches
its device list for the device sending the command. If the coordinator finds
a record of the device, it shall send a coordinator realignment command to
the orphaned device. Otherwise, it shall ignore the packet. The orphan scan
terminates when the device receives a coordinator realignment command or
the specified set of logical channels has been scanned.

322 ZigBee Stack Layers

7.1.8 Transmission, Reception, and Acknowledgment

In order to transmit a data or a beacon or a MAC command frame, the MAC
sublayer shall copy the value of masDSN into the sequence number field of
the MHR of the outgoing frame and then increment it by one. The source
address field shall contain the address of the device sending the frame. If
the device has been allocated a short address, it shall use that address in
preference to its 64-bit extended address. If the source address field is not
present, the originator of the frame shall be assumed to be a PAN coordinator
and the destination address shall contain the address of the recipient. The
destination address shall contain the intended recipient of the frame, which
may be either a 16-bit short address or a 64-bit extended address. If the
destination address field is not present, the recipient of the frame shall be
assumed to be the PAN coordinator. The destination and source address may
be in different PANs, which is identified by the PAN identifier fields. In
beacon-enabled PAN, the transmitting device shall attempt to find the beacon
before transmitting. If it cannot find the beacon, it shall use unslotted CSMA-
CA. Once the beacon is found, it transmits in the appropriate portion of the
superframe. Transmission in the CAP shall use slotted CSMA-CA and those
in GTS shall not use CSMA-CA. In a nonbeacon-enabled network, the frames
are transmitted using unslotted CSMA-CA. Upon reception of packets, the
MAC sublayer shall discard all its received frames that do not contain a
correct value in their FCS field in the MFR. Receiver is important in terms
of energy consumption. Each device may choose whether the MAC sublayer
is to enable its receiver during idle periods. During these idle periods, the
MAC sublayer shall still service transceiver task requests from the next
higher layer. On completion of each transceiver task, the MAC sublayer
shall request that the PHY enables or disables its receiver, depending on
whether macRxOnWhenIdle is set to TRUE or FALSE, respectively. If beacon
is enabled, the value of macRxOnWhenIdle shall be considered only during
idle periods of the CAP. Another energy conserving feature of the standard
is the indirect transmission feature. The transactions start by the devices
themselves rather than the coordinator. In other words, either the coordinator
needs to indicate in its beacon when messages are pending for devices or
the devices themselves need to poll the coordinator to determine whether
they have any messages pending. A device on a beacon-enabled PAN can
determine whether any frames are pending for it by examining the contents
of the received beacon frame. If the address of the device is contained in the
address list field of the beacon frame, the MLME of the device shall send a

7.1 ZigBee Mac Layer 323

data request command to the coordinator during the CAP. Upon reception of
this command, the coordinator shall send an ack. It indicates whether any
data are pending for that device in the ack frame. On receipt of the ack,
the device shall enable its receiver for at most aMaxFrameResponseTime
CAP symbols in a beacon-enabled PAN or symbols in a nonbeacon-enabled
PAN to receive the corresponding frame from the coordinator. If there is data
pending, the coordinator should send the frame else send a frame containing
zero length payload, indicating that no data are present. The data frame is
transmitted without using CSMA-CA if the MAC sublayer can commence
transmission of the data frame between aTurnaroundTime and aTurnaround-
Time + aUnitBackoffPeriod symbols and there is time remaining in the CAP
for the message, appropriate IFS and acknowledgment and using CSMA-
CA otherwise. A frame transmitted with the acknowledgment request field
set to 1 shall be acknowledged by the recipient. If the intended recipient
correctly receives the frame, it shall generate and send an acknowledgment
frame containing the same DSN from the data or MAC command frame that
is being acknowledged. The transmission of the ack shall commence between
aTurnaroundTime and aTurnaroundTime + aUnitBackoffPeriod symbols after
the reception of the last symbol of the data or MAC command frame.

7.1.9 GTS Allocation and Management

A GTS allows a device to operate on the channel within a portion of the
superframe that is dedicated exclusively to that device. A device shall attempt
to allocate and use a GTS only if it is currently tracking the beacons. A GTS
shall be allocated only by the PAN coordinator and it shall be used only
for communications between the PAN coordinator and a device. A single
GTS can extend over one or more superframe slots. The PAN coordinator
may allocate up to seven GTSs at the same time, provided there is sufficient
capacity in the superframe. A GTS shall be allocated before use, with the PAN
coordinator deciding whether to allocate a GTS based on the requirements
of the GTS request and the current available capacity in the superframe.
GTS shall be allocated on a first-come-first-serve basis and all GTSs shall
be placed contiguously at the end of the superframe and after the CAP. Each
GTS shall be deallocated when the GTS is no longer required, and a GTS can
be deallocated at any time at the discretion of the PAN coordinator or by the
device that originally requested the GTSs. A device that has been allocated
GTS may also operate in the CAP. The management of the GTSs shall be
undertaken by the PAN coordinator only. For each GTS, the PAN coordinator

324 ZigBee Stack Layers

shall be able to store its starting slot, length, direction and associated device
address. The GTS direction is specified as either transmit or receive. Each
device may request one transmit GTS and/or one receive GTS. For each
allocated GTS, the device shall be able to store its starting slot, length and
direction. If a device has been allocated a receive GTS, it shall enable its
receiver for the entirety of the GTS. In the same way, a PAN coordinator shall
enable its receiver for the entirety of the GTS if a device has been allocated
a transmit GTS. A device is instructed to request the allocation of a new
GTS through the GTS request command, with GTS characteristics (direction,
length,...) set according to the requirements of the intended application. On
receipt of this command, the PAN coordinator shall send an acknowledgment
frame. Following the ack transmission, the PAN coordinator shall first check
if there is available capacity in the current superframe based on the remaining
length of the CAP and the desired length of the requested GTS. The super-
frame shall have available capacity if the maximum number of GTSs has not
been reached and allocating a GTS of the desired length would not reduce
the length of the CAP to less than aMinCAPLength. The PAN coordinator
shall make its decision within aGTSDescPersistenceTime superframes. On
receipt of the ack from the coordinator, the device shall continue to track the
beacons and wait for at most aGTSDescPersistenceTime superframes. If no
GTS descriptor in the superframe, notify the next upper layer of failure. When
the coordinator determines whether capacity is available for the requested
GTS, it shall generate a GTS descriptor with the requested specifications and
the short address of the requested device. It indicates the length and the start
of the GTS in the superframe and notifies the next upper layer of the new
GTS allocation. If there was not sufficient capacity to allocate the requested
GTS, the start slot shall be set to 0 and the length to the largest GTS length
that can currently be supported.

This GTS descriptor shall remain in the beacon frame for aGTSPersis-
tenceTime superframes. On receipt of the beacon frame, the device shall
process the descriptor and notify the next upper layer of the success. In the
same way, a device is instructed to request the deallocation of an existing
GTS through the GTS request command using the characteristics of the GTS
it wishes to deallocate. From this point on, the GTS to be deallocated shall not
be used by the device and then an ack from the PAN coordinator to the device.
The PAN coordinator then deallocates the request of the GTS characteristics
in the packet matches those in its allocation. The PAN coordinator shall also
ensure that any gaps occurring in the CFP, appearing due to the deallocation
of a GTS, are removed to maximize the length of the CAP. The MLME of

7.1 ZigBee Mac Layer 325

the PAN coordinator shall also attempt to detect when a device has stopped
using a GTS using the following rules: For a transmit frame GTS, the MLME
of the PAN coordinator shall assume that the device is no longer using the
GTS if a data frame is not received for at least 2 ∗ n superframes. For receive
GTSs, the MLME of the PAN coordinator shall assume that the device is
no longer using its GTS if an acknowledgment frame is not received for at
least 2 ∗ n superframes. The value of n is equal to 28-macBeaconOrder if
0 ≤ macBeaconOrder ≤ 8 and 1 if 9 ≤ macBeaconOrder ≤ 14.

7.1.10 MAC Layer Frame

As mentioned in the ZigBee protocol stack that ZigBee MAC layer frame
composed of MAC header, MAC payload and FCS. Each MAC frame will
contain Frame control field (16 bit), which carry frame type, addressing fields
and other control flags. This MAC control field contain frame type field,
which is the main differentiating factor in identifying one MAC frame with
the other. It is 3 bit in length.

The MAC frames are divided into following four major categories, which
is used by ZigBee devices to establish connection to the PAN by exchanging
system information:

1. Beacon
2. Data
3. Acknowledgment
4. MAC command

In the following, we discuss the different types of frames and the different
fields.

General MAC Frame Format
The general MAC frame is shown in Figure 7.15 adopted in ZigBee technol-
ogy at MAC layer. It consists of three sections: the MAC header (MHR), the
MAC payload, and the MAC footer (MFR). The size of each field is shown in

Generic MAC Frame format:

Figure 7.15 MAC frame.

326 ZigBee Stack Layers

Figure 7.16 MAC frame with detailed frame control field.

Table 7.1 Frame control field
Bits:
0–2

3 4 5 6 7–9 10–11 12–13 14–15

Frame
type

Security
enabled

Frame
pend-
ing

Ack.
request

Intra-
PAN

Reserved Dest.
address-
ing
mode

Reserved Source
address-
ing
mode

octets. This part is also referred as MPDU or MAC Protocol Data Unit. This
gets embedded into PPDU (physical PDU) frame of ZigBee.

Generic MAC layer frame has frame control field of 2 bytes (octets).
Figure 8xx shows the details of 16 bits of the frame control field. The contents
carry useful information such as frame type, source and destination address-
ing modes. Frame type specifies whether the frame is beacon frame, data
frame, ACK of data, MAC command frame etc. Figure 7.16b and Table 7.1
outline the “Frame-type subfield” with 3 bits.

Next the definitions of the different subfields are given:

Frame-type Subfield: The first field is the frame control (Figure 7.16b) that
defines the frame type (beacon, data, acknowledgment, and MAC command).
Table 7.2 gives the possible types.

Security-enabled Subfield: The second part of the frame control field is the
“Security-enabled” subfield. If this subfield is set to 1, this frame has security
protection and the auxiliary header will be part of the MAC frame. Otherwise,
the size of the auxiliary header is zero.

Frame Pending Subfield: The “frame pending” subfield is used as part of
the indirect data transmission method and, if it is set to 1, it means that
there is data pending at the transmitting device for the recipient device. If

7.1 ZigBee Mac Layer 327

Table 7.2 Frame type subfield
Frame type value (b2,b2,b0) Description
000 Beacon frame

001 Data frame

010 Acknowledgment

011 MAC command

100–111 Reserved

the acknowledgment request subfield is set to 1, the recipient device must
send an acknowledgment frame back.

PAN ID Subfield: When communicating within the same PAN, the PAN
identifier will be the same for both source and destination devices; therefore,
it is unnecessary to repeat them both in one frame. The PAN ID compression
subfield helps avoid the unnecessary repeat of the PAN identifier. If the PAN
ID compression field is set to 1, only the destination PAN identifier will be
included in the frame, and the source PAN identifier is assumed to be the
same as the destination.

Destination and Source Subfields: The destination and source addressing
mode subfields determine the addressing mode (16-bit short address or 64-
bit extended address). The length of the destination and address fields in the
MAC frame depends on the addressing mode.

Frame Version: The next subfield is the frame version. The IEEE 802.15.4
standard may be updated over time, and the frame version subfield determines
what version of the IEEE 802.15.4 is used to construct the frame.

Sequence Number Subfield: The next field in the MAC frame, the sequence
number, can contain either a beacon sequence number (BSN) ore a data
sequence number (DSN). The sequence numbering helps distinguishing
between various sequences. For example, if two received frames have the
same sequence number, it means that the same frame was retransmitted. If
the first frame was detected successfully, the second frame (with the same
sequence number) can be ignored.

The values of BSN and DSN are stored as MAC PIB attributes (macBSN
and macDSN, correspondingly). The BSN is used only in the beacon frames.
The DSN is used in any type of frame other than a beacon frame. A device
initializes the macDSN value (or macBSN value if it is a beacon frame) to a
random number and increment it once after each transmission.

328 ZigBee Stack Layers

Figure 7.17 A simple modulo 2 division example.

Auxiliary Security Header: The auxiliary security header is an optional field
in the MAC frame and contains information such as security level and the type
of security keys used to protect the MAC frame.

FCS Subfield: The last field in the MAC frame is always the Frame Check
Sequence (FCS) field, which the receiver uses to check for any possible error
in the received frame. The details of the FCS are provided in the following
section.

Calculation of the Frame Check Sequence: The IEEE 802.15.4 uses 16-
bit FCS based on the International Telecommunication Union (ITU) Cyclic
Redundancy Check (CRC) to detect possible errors in the data packet. The
basic concept of CRC is as follows. In the transmitting device, all the bits in
the MHR and the MAC payload are treated as coefficients of a polynomial.
This polynomial is then divided by another polynomial, which is known by
both the receiver and transmitter. The remainder of this division is called FCS
and is added to the end of the frame as the MAC footer (MFR). The recipient
device will perform the same division and expects to get the same remainder.
If the remainder calculated by the recipient device is not the same as the
remainder provided by the transmitting device in MFR, the recipient device
will conclude that the frame is received with errors.

A very simple example of polynomial division is shown in Figure 7.17.
The division is based on modulo 2 binary arithmetic. The numerator is binary
number 10011, which is equivalent to x4 + x+ 1 polynomial:

10011→ 1× x4 + 0× x3 + 0× x2 + 1× x1 + 1× x0 = x4 + x+ 1

If 10011 is divided by 101, the remainder will be 010.
The FCS in IEEE 802.15.4 is generated by going through the following

steps:

• Define the polynomial M(x) to represent the MHR and MAC payload
sequence of bits.

7.1 ZigBee Mac Layer 329

Figure 7.18 MAC inter-frame space.

• Multiply M(x) by x16 to create M(x)×x16.
• Divide the M(x)×x16 polynomial by the following polynomial:

G16(x) = x16 + x12 + x5 + 1

The remainder of this division is placed in the MFR as the frame check
sequence.

MAC Inter-frame Space IFS: The MAC Inter-frame spaces (IFS) are shown
in Figure 7.18.

7.1.10.1 Data frame
The data frame format is shown in Figure 7.19. As discussed above, the data
payload is passed to the MAC sublayer and is referred to as the MSDU (MAC
Service Data Unit). The MSDU is prefixed with an MHR and appended
with an MFR. The MHR contains the frame control, sequence number, and
addressing information fields. The MFR is composed of a 16 bit FCS. The
MHR, MSDU and MFR together form the MAC data frame. The MPDU is
passed to the PHY as the PHY data frame payload. The PSDU is prefixed
with an SHR, containing the preamble sequence and SFD fields, and a PHR
containing the Length of the PSDU in octets. The preamble sequence and
data SFD enables the receiver to achieve symbol synchronization. The SHR,
PHR and PSDU together form the PHY data packet.

330 ZigBee Stack Layers

Figure 7.19 Data frame structure.

Figure 7.20 Beacon frame format.

7.1.10.2 Beacon frame
Depending on the parameters of the MLME-START request primitive, the
FFD may either operate in a beaconless mode or may begin beacon transmis-
sions either as the PAN coordinator or as a device on a previously established
PAN. Figure 7.20 shows the structure of a beacon frame, which originates
from the MAC sublayer. The entire MAC frame is used as a payload in a
PHY packet. The content of the PHY payload is referred to as the PHY
Service Data Unit (PSDU). A coordinator can transmit network beacons in
a beacon-enabled network. The MSDU (MAC service data unit) contains
the superframe specification, pending address specification, address list, and
beacon payload fields.

The MSDU is prefixed with a MHR (MAC header) and appended with
a MFR (MAC footer). The MHR contains the MAC frame control fields,
BSN (beacon sequence Number), and addressing information fields. The
MFR contains a 16 nit FCS (frame Check sequence). The MHR, MSDU and
MFR together form the MAC beacon frame. The MPDU passed to the PHY

7.1 ZigBee Mac Layer 331

as the PHY beacon packet payload. The PSDU is prefixed with the SHR
(synchronization header), containing the preamble sequence and SDF (start
of frame delimiter), fields, and a PHR containing the length of the PSDU
in octets. The preamble sequence enables the receiver to achieve symbol
synchronization. The SHR, PHR and PSDU together form the PHY beacon
packet.

The role of the subfields of the MAC layer format and the physical layer
PHY format is as follows:

In the PHY packet, the preamble field is used by the receiver for syn-
chronization. The start-of-frame delimiter (SDF) indicates the end of SHR
and start of PHR. The frame length specifies the total number of octets in the
PHY payload (PSDU).

The MAC frame consists of three sections: the MAC header (MHR),
the MAC payload, and the MAC footer (MFR). The frame control field in
the MHR contains information defining the frame type, addressing fields,
and other control flags. The sequence number specifies the beacon sequence
number (BSN). The addressing field provides the source and destination
addresses. The auxiliary security header is optional and contains information
required for security processing.

The MAC payload is provided by the NWK layer. The superframe is a
frame bounded by two beacon frames. The superframe is optionally used in a
beacon-enabled network and helps define GTSs. The GTS field in the MAC
payload determines whether a GTS is used to receive or transmit.

The beacon frame is not only used to synchronize the devices in a network
but is also used by the coordinator to let a specific device in a network know
there is data pending for that device in the coordinator. The device, at its
discretion, will contact the coordinator and request that it transmit the data to
the device. This is called indirect transmission. The pending address field in
the MAC payload contains the address of the devices that have data pending
in the coordinator. Every time a device receives a beacon, it will check the
pending address field to see if there is data pending for it.

The beacon payload field is an optional field that can be used by the NWK
layer and is transmitted along with the beacon frame. The receiver uses the
Frame Check Sequence (FCS) field to check for any possible error in the
received frame.

7.1.10.2.1 Beacon generation
An FFD that is not the PAN coordinator shall begin transmitting beacon
frames only when it has successfully associated with a PAN. This primitive

332 ZigBee Stack Layers

Figure 7.21 Acknowledgment frame structure.

also includes macBeaconOrder and macSuperFrameOrder parameters that
determine the duration of the beacon interval and the duration of the active
and inactive portions. The time of the transmission of the most recent beacon
shall be recorded in macBeaconTxTime and shall be computed so that its
value is taken at the same symbol boundary in each beacon frame, the location
of which is implementation specific.

7.1.10.3 Acknowledgment frame
The MAC acknowledgment frame, shown in Figure 7.21, is the simplest
MAC frame format and does not carry any MAC payload. The frame
originates from the MAC sublayer. The MAC acknowledgment frame is
constructed form an MHR and an MFR. The MFR contains the MAC frame
control and data sequence number fields. The MFR is composed of a 16-bit
FCS. The MHR and MFR together form the MAC acknowledgment frame.
The MPDU is passed to the PHY as the PHY acknowledge frame payload.
The PSDU is prefixed with the SHR, containing the preamble sequence and
SFD fields, and the PHR containing the length of the PSDU in octets. The
SHR, PHR and PSDU together form the PHY acknowledgment packet.

The acknowledgment frame is sent by one device to another to confirm
successful reception of a packet.

7.1.10.4 MAC command frame
The MAC commands such as requesting association or disassociation with a
network are transmitted using the MAC command frame.

Figures 7.22 and 7.23 show the structure of the MAC command frame,
which originates from the MAC sublayer. The MSDU contains the command
type (e.g., association request or data request) filed and command specific

7.1 ZigBee Mac Layer 333

MAC command Frame format

Figure 7.22 MAC command frame structure.

MAC command Frame format

Figure 7.23 MAC command frame format.

data, called the command payload. The MSDU is prefixed with an MHR
and appended with an MFR. The MHR contains the MAC frame control,
data sequence number, and addressing information fields. The MFR contains
16 bit FCS. The MHR, MSDU and MFR together form the MAC command
frame. The MPDU is passed to the PHY as the PHY command frame payload.
The PSDU is prefixed with the SHR, containing the preamble sequence and
SFD fields, and the PHR containing the length of the PSDU in octets. The
SHR, PHR and PSDU together form the PHY command packet.

ZigBee protocol supports different command frames for difference use
case as shown in the following table “MAC command frames”. Command
frame identifier defines the frame type as given in Table 7.3.

7.1.11 Channel Access Mechanism

The LR-WPAN uses two types of channel access mechanism, depending on
the network configuration. Non beacon enabled networks use an unslotted
CSMA-CA channel access mechanism. Each time a device wishes to transmit
data frames or MAC commands, it shall wait for a random period. If the
channel is found to be idle, following the random back off, the device shall
transmit its data. If the channel is found to be busy, following the random

334 ZigBee Stack Layers

Table 7.3 MAC command frames
RFD

Command Frame ID Command Name Tx Rx
0x01 Association request (Tx) X

0x02 Association response (Rx) X

0x03 Disassociation notification (Tx, Rx) X X

0x04 Data request (Tx) X

0x05 PAN ID conflict notification (Tx) X

0x06 Orphan notification (Tx) X

0x07 Beacon request (Tx) X

0x08 coordinator realignment (Rx) X

0x09 GTS request

0x0A–0xFF Reserved

back off, the device shall wait for another random period before trying to
access the channel again. Acknowledgment frames shall be sent without using
a CSMA-CA mechanism. Beacon-enabled networks use a slotted CSMA-CA
channel access mechanism, where the back-off slots are aligned with start of
the beacon transmission. Each time a device wishes to transmit data frames
during the CAP, it shall locate the boundary of the next back off slot and then
wait for a random number of back off slots. If the channel is busy, following
this random back off, the device shall wait for another random number back
off slots before trying to access the channel again. If the channel is idle, the
device can begin transmitting on the next on the next available back off slot
boundary. Acknowledgment and beacon frames shall be sent without using a
CSMA-CA mechanism.

7.1.12 GTS Allocation and Management

The GTS allows a device to operate on the channel within a portion of the
superframe. It is dedicated exclusively to that device. If it is currently tracking
the beacons, a device shall attempt to allocate and use a GTS only. The GTS
shall be allocated only by the PAN coordinator and it shall be used only
for communication between the PAN coordinator and a device. Single GTS
can extend over one or more super frame slots. The PAN coordinator may
allocate up to seven GTSs at the time, provide there is sufficient capacity in
the super frame. The PAN coordinator must store this information, and these

7.1 ZigBee Mac Layer 335

parameters are included in the GTS request command. In radical state, PAN
coordinator deallocates one or more GTS to keep minimum CAP length.

• Staring slot
• Length
• Direction; direction of data flow, from device to coordinator, from

coordinator to device
• Associated device address

Each device can transmit GTS or receive GTS and device can allocate and
use GTS when tracking beacon. If synchronization with all PAN coordination
is broken, all GTS allocations are lost, too.

7.1.13 Related MAC Standards

In this chapter, we see the trends of Current ZigBee research. Especially
there are several important standards and working groups. First IEEE
802.15.4 is researched for mesh network. Next there are many task groups:
802.15.4e research WPAN enhancements, 802.15.4f task group made for
RFID, 802.15.4g is working for smart utility, etc.

The IEE 802.15 task group 5 is chartered to determine the necessary
mechanism that must be present in the PHY and MAC layer of WPANs to
enable mesh networking.

IEE 802.15.15.5: The mesh network is a PAN that employs one of two
connection arrangements, full mesh topology or partial mesh topology. In
full mesh topology, each node is connected directly to each of the other, but
some of the nodes are connected only to those other nodes with which they
exchange the most data. Mesh networks have the capability to provide:

• Extension of network coverage without increasing transmit power or
receive sensitivity

• Enhanced reliability via route redundancy
• Easier network configuration
• Better device battery life due to fewer retransmissions

IEEE 802.15.4e WPAN Enhancement: The IEEE 802. 15.4e is chartered
to define MAC enhancement to the existing standard 802.15.4-2006. The
intent of this amendment is to enhance and add functionality to the 802.15.4-
2006 MAC to better support the industrial markets and permit compatibility
with no modification being proposed within the Chinese WPAN. This group
has defined the application spaces that it will address along with the MAC

336 ZigBee Stack Layers

behavior changes and addition that are required to enable those applications
spaces. The application spaces are Factory Automation, Process Automation,
Asset Tracking, General sensor Control, Home medical Health and Monitor,
telecom Application Neighborhood Area Networks, Audio.

IEEE 802.15.4F for RFID: The IEEE 802.15.4f is chartered to define new
wireless physical layer and enhancements to the 802.15.4-2006 mac layer
which are required to support new PHY for active RFID system. An RFID
tag is a device which is typically attached to an asset or person with a unique
identification and the ability to produce its own radio signal not derived from
an external radio signal. Tag applications include wireless sensor telemetry,
control, and location determination. To generate a radio signal, active RFID
tags must employ some source of power. Traditionally, this has been accom-
plished by integrated batteries, although designs exist for such devices that
harvest ambient energy from the surrounding environment.

IEEE 802.15.4g for Smart Utility: The role of IEEE 802.15. Smart Utility
Networks is to create a PHY amendment to 802.15.4 to provide a global
standard that facilitates very large scale process control applications such
as the utility smart-grid network capable of supporting large, geographically
diverse networks with minimal infrastructure, with potentially millions of
fixed endpoints. There are other task groups. TG6 (Task Group 6) is research-
ing for body area network, TG7 was made for visible light communication
and 1 GHz has been chartered to explore the feasibility of terahertz for
wireless communication.

7.2 ZigBee Routing (Network) Layer

Nowadays wireless sensor networks are widely employed to improve busi-
ness process models of industries, web service applications, defense sector,
Internet of Things (IoT), space exploration, medical sector, etc. Mobile ad
hoc networks (MANET) and wireless sensor networks (WSN) are the two
major categories of wireless ad hoc network. In both types, there is no fixed
topology and there is no centralized management system. The two networks
are self-configured dynamic networks in which nodes are free to move and
will therefore alter its linkage to any other devices at any point of time.
Routing among the nodes is one among the most important function in data
communication networks. The routing techniques (protocols) that are in use
with fixed topology networks or those having centralized management cannot
be used with ad hoc networks. MANET and WSN are, accordingly, in the

7.2 ZigBee Routing (Network) Layer 337

need for different types of protocols that are designed especially for routing
wireless ad hoc networks.

MANET routing Protocols: Concerning MANET, the routing protocols in
use can be classified in many ways. One of them is directly related to the
capabilities of the nodes forming the network: MANET composed of high
capabilities mobile devices for data communication and supports different
protocol like unicast, multicast and hybrid routing. MANET routing protocols
can be further classified as proactive and reactive routing protocols.

Proactive Routing: The topology information will be periodically updated
by the proactive routing protocol, so this always has an optimized as well as
updated routing scheme. OLSR and DSDV are the typical routing protocols
which are proactive in nature. In short, the data transmission request is
received through an application, routing protocol will be reactive and involves
in the route-finding scheme. Similarly, when it leads to delay in process to
find out a path, it will not produce the control packet overhead, since no data
will be there for transmission.

Reactive Routing: Reactive routing protocols include AODV, DSR, as well
as TORA. MANET routing protocols gives the optimal routing path where
if there is proactive or reactive routing to the provided starting and reaching
destination pair. But also, the necessary specified capacity of routing may be
very high to save completely with provided routing paths in a device which
is limited for resources. In addition, it should exchange the control packets to
furnish and to find out the proper routing as well as other transmissions of the
same packets, the interferences of these packets may cause severe low rat and
narrow bandwidth channels.

Before discussing the ZigBee routing protocols, a forwarding tech-
nique that are commonly used with many protocols will be introduced:
Broadcasting and the neighbor table.

7.2.1 Broadcasting

Broadcasting plays an important role in ZigBee and is used for many
functions. Two of the most prominent are route discovery and group trans-
missions. Route discovery is the process of locating a path to a destination
address whose route is unknown. ZigBee uses a modified form of AODV (Ad
hoc On-demand Distance Vector) which is based on flooding the network
with rout request. The flooding part occurs by broadcasting route requests
and have them propagate through the network until the destination is reached.

338 ZigBee Stack Layers

Group transmissions are a method of transmitting data to all devices within a
certain group. A broadcast is used to transmit the data and the frame will be
discarded by any members that do not belong to the group. Along with those
functions, there are numerous other smaller functions that utilize broadcasts
in both the ZDO (ZigBee Device Object or endpoint 0 on all ZigBee devices)
and the ZCL (ZigBee Cluster Library).

Broadcasting: To understand broadcasts, we at first remind the reader with
the different device types that mentioned in Section 6.2.2. There are three
types of ZigBee devices: the coordinator, routers, and end devices. The
coordinator is just a router that starts the network. It always has a network
address of 0 and mainly performs the function of scanning the network and
selecting the channel and ID for the network. A router is a device that has
the capability to forward frames and usually, is able to accept child devices.
An unfortunate attribute of routers and coordinators in ZigBee is that they
are unable to sleep which is a standard complaint among users that are
investigating using ZigBee for wireless sensor networking. This limitation
means that ZigBee routers usually need to be attached to a MAINs power
supply.

An end device has no resources to forward frames and can only join and
communicate with a parent router. The simplified communication capabilities
allow most of the MAC, NWK, and APS management functions to be stripped
out and should result in a very small memory footprint. Sleepy end devices
are able to be duty-cycled where they sleep most of the time and awaken
periodically to poll its parent for any buffered messages. It uses 802.15.4
indirect transmission for the polling. Duty cycling the end device allows it to
consume very little power, thus increasing the battery life which is one of the
most important factors in wireless sensor networking.

As a fact it is possible to target broadcasts based on the device type. There
are four broadcast addresses that can be used depending on the receiving
devices. The addresses are shown in the table below.

Address Audience
0xFFFF All devices
0xFFFD All devices with receiver on permanently
0xFFFC Routers and coordinators
0xFFFB Low-power routers

Transmitting a network broadcast frame in ZigBee actually sets off a
chain of events. If a new broadcast is received, either from another device

7.2 ZigBee Routing (Network) Layer 339

Table 7.4 Broadcast transaction table (BTT)
Field Description
Src Address 16-bit network address of broadcast initiator

Sequence Number Network layer frame sequence number

Expiration Time Amount of time before this entry expires

or from a higher layer, a broadcast transaction record is created. If the frame
was received from another device, a copy of the frame is also made and sent
up to the next layer for processing.

The broadcast transaction record is used to track the source address and
sequence number of the broadcast. These two pieces of information are used
to uniquely identify a broadcast frame. This is important because once the
broadcast frame is forwarded, all neighbors within the transmission range
will re-send the broadcast frame and each device will get multiple copies of
it. As long as the device has the broadcast transaction record, the device will
know that it has already received and processed the frame so the device can
discard the copies.

Broadcast Transaction Record Entry: The record that was created actually
goes into a table called the Broadcast Transaction Table, or BTT (Table 7.4).

The BTT implements what is called a passive acknowledgment system,
and is used to ensure that all known neighbors have received the broadcast
sent by the device. As mentioned before, when a broadcast is transmitted,
all devices that receive it will broadcast a copy. Each time a copy of the
broadcast arrives, the address of the sender will be added to the BTT to mark
that it has relayed the broadcast. After a broadcast timeout, if all neighbors
haven’t relayed the broadcast, meaning they aren’t present in the BTT, then
the original sender will need to do a broadcast retry. This happens until the
max retries (usually 3) or all the neighbors show up in the BTT.

The problem with the BTT is that it is not very deterministic. If there are
a lot of neighbors, that is, the network is dense, then the broadcast transaction
table has the potential to become large, and accordingly, it takes a large
part of the space of the RAM (the memory). Thus there is an option in the
ZigBee specification to forgo the broadcast transaction table. The tradeoff
is that the device will need to broadcast the frame the maximum amount of
retries for any broadcast. At first glance, this would be desirable because you
can get rid of the BTT which has an unknown number of entries. However,
this also means that each broadcast will be retried three times (the default
retry number), taking a toll on all devices on the network. Each received

340 ZigBee Stack Layers

frame, whether a duplicate or not, requires RAM since it needs to get to the
network layer before it can be checked and discarded. If many devices on the
network have no broadcast table, then each broadcast would generate a huge
amount of traffic, possibly triggering some devices to run out of memory.
This let the ZigBee designer (or user) to be careful while using the broadcast
transmissions

7.2.2 ZigBee Routing Protocols

This chapter is mainly concentrating on ZigBee, which comes under the cat-
egory of wireless sensor networks, accordingly this section is concentrating
on ZigBee routing protocols. ZigBee routing algorithm can be thought of an
hierarchical routing strategy with table-driven optimizations applied where
possible.

ZigBee routing techniques mainly falls into two categories:

1. The reactive routing protocol Ad hoc On-demand Distance Vector
(AODV), or its modification AODVjr, (AODV junior).

2. ZigBee hierarchical algorithm which also called tree routing protocol or
Cluster-Tree algorithm.

Many other routing algorithms are known, but all of them have their roots
in these basic categories. Some of the ZigBee routing protocols are:

1. Ad hoc on-demand distance vector (AODV)
2. AODVjr (AODV junior)
3. Dynamic source routing (DSR)
4. Cluster tree algorithm
5. Tree hierarchical routing
6. Many-to-one routing or multipath routing
7. Neighbor table-based routing techniques, etc.

Next subsections discuss in detail the two main algorithms, AVOD and
Cluster tree, and the other algorithms are briefly given.

7.2.2.1 AODV: Ad hoc on-demand distance vector
The AODV (Ad Hoc On-demand Distance Vector) routing is a pure on
demand route acquisition algorithm: nodes that do not lie on active paths
neither maintain any routing information nor participate in any periodic rout-
ing table exchanges. Further, a node does not have to discover and maintain
a rout to another node until the two need to communicate, unless the former
node is offering services as an intermediate forwarding station to maintain
connectivity between two other nodes.

7.2 ZigBee Routing (Network) Layer 341

The primary objectives of the algorithm are to broadcast discovery
packets only when necessary, to distinguish between local connectivity man-
agement and general topology maintenance and to disseminate information
about changes in local connectivity to those neighboring mobile nodes that
are likely to need the information.

The node which needs the connection broadcasts a route request RREQ
to its neighbors who re-route the message and safeguard the node from which
they received the message. Along with its own sequence number and the
Route Request ID, the source node includes in the RREQ the most recent
sequence number it has for the destination. The path cost comparison of
packets with the same RREQ allows choosing best path at the moment and
discarding anything worse. When a node receives a message and it has an
entry corresponding to the destination in its routing table, it returns a RREP
through the reverse path to the requesting node. So, the source sends its data
through this path to the destination with the minimum number of hops.

It is possible to summarize the rout finding using AOVD in the following
steps and example:

1. Ad hoc On-demand Distance Vector Routing
2. On-demand→ Reactive→ Construct a route when needed
3. Routing table: Path is not stored. Only next hop.

• Entry = <destination, next node, “sequence #” (timestamp)>

4. Route Discovery: Flood a route request (RREQ) to all neighbors
(Figure 7.24). Neighbors broadcast to their neighbors.

5. Request ID is the RREQ serial number. Used to discard duplicates.
Source sequence # is a clock counter incremented when RREQ is sent.
Destination sequence # is the most recent sequence from the destination
that the source has seen. Zero if unknown.

6. Intermediate nodes can reply to RREQ only if they have a route to
destination with higher destination sequence #

7. Route reply (RREP) comes back “unicast” on the reverse path (Fig-
ure 7.25).

8. Destination Sequence # is from Destination’s counter. Lifetime indicates
how long the route is valid.

Figure 7.24 RREQ.

342 ZigBee Stack Layers

Figure 7.25 RREP.

Figure 7.26 Sample route request (broadcast) transmission where R3 is trying to discover a
route to R6.

9. Intermediate nodes record node from both RREP and RREQ if it has a
lower cost path the reverse path.

10. Backward route to Destination is recorded if sequence number is higher
or if sequence number is same and hops are lower.

11. Old entries are timed out.

AODV supports only symmetric links.

Example 7.1: AODV: Rout Discovery
Consider the network of Figure 7.26. In this network, R3 is trying to discover
a rout to R6.

As mentioned before, when a source node must discover a route to a
destination node, it sends a broadcast route request command. The route
request command contains the source network address, the destination net-
work address and a path cost field (a metric for measuring route quality). As
the route request command is propagated through the network (refer to the
Broadcast Transmission), each node that re-broadcasts the message updates
the path cost field and creates a temporary entry in its route discovery table.

Node Destination Address Next Hop Address
R3 Router 6 Coordinator

C Router 6 Router 5

R5 Router 6 Router 6

7.2 ZigBee Routing (Network) Layer 343

Figure 7.27 Destination node received the rout request.

When the destination node receives a route request, it compares the
‘path cost’ field against previously received route request commands. If
the path cost stored in the route request is better than any previously
received, the destination node will transmit a route reply packet to the node
that originated the route request. Intermediate nodes receive and forward
the route reply packet to the source node (the node that originated route
request).

Retries and Acknowledgments: Here R6 can send multiple replies if it
identifies a better route. ZigBee includes acknowledgment packets at both
the Mac and Application Support (APS) layers. When data are transmitted to
remote device, it may traverse multiple hops to reach the destination. As data
are transmitted from one node to its neighbor, an acknowledgment packet
(Ack) is transmitted in the opposite direction to indicate that the transmission
was successfully received. If the Ack is not received, the transmitting device
will retransmit the data, up to 4 times. This Ack is called the Mac layer
acknowledgment.

In addition, the device that originated the transmission expects to receive
an acknowledgment packet (Ack) from the destination device. This Ack will
traverse the same path that the data traversed, but in the opposite direction.
If the originator fails to receive this Ack, it will retransmit the data, up to
2 times until an Ack is received. This Ack is called the ZigBee APS layer
acknowledgment.

Example 7.2: AOVD
Consider the network of Figure 7.28 in which node 1 is requesting rout to
node 10.

344 ZigBee Stack Layers

Figure 7.28 Node 1 requesting rout to node 10.

The following steps will be followed.

1. Node 1 broadcasts RREQ to nodes 2, 3, and 4. The request message
looks as follows:

“Any one has a rout to 10 fresher than 1. This is my broadcast #1.”

2. Node 2 broadcasts RREQ to nodes 1, 5, and 7.
3. Node 3 broadcasts RREQ to nodes 1 and 5.
4. Node 4 broadcast RREQ to nodes 1 and 6.
5. Node 7 broadcast RREQ to nodes 2 and 9.
6. Node 5 broadcast RREQ to nodes 3, 2, 9, and 8.
7. Node 6 broadcast RREQ to nodes 6 and 8.
8. Node 9 broadcast RREQ to nodes 8, 5, 7, and 10.
9. Node 8 broadcast RREQ to nodes 6, 5, and 9.

Rout Replay

10. Node 10 broadcast PREP to node 9.
11. Node 9 broadcast PREP to node 7.
12. Node 7 broadcast PREP to node 2.
13. Node 2 broadcast PREP to node 1.

Now node 1 has the fresh rout to node 10.

Route Maintenance in AODV
The following sequence are used for route maintenance in AODV:

1. Each node keeps a list of active neighbors (replied to a hello within a
timeout).

2. If a link in a routing table breaks, all active neighbors are informed by
“Route Error (RERR)” messages.

3. RERR is also sent if a packet transmission fails.
4. RERR contains the destination sequence # that failed.

7.2 ZigBee Routing (Network) Layer 345

5. When a source receives an RERR, it starts route discovery with that
sequence number.

Disadvantage of this technique: Intermediate nodes may send more up
to-date but still stale routes.

7.2.2.2 AODVjr
AODVjr removes form the AODV specification the sequence numbers, gratu-
itous RREP, hop count, Hello message, RREP, precursor lists. In AODVjr, if
communications are unidirectional, the destination sends Connect messages
to the source. If data traffic is bidirectional, no additional messages are used.
In any case, a source detects a link break in a route when it receives no
messages from the destination. An AODVjr routing protocol with multiple
feedback policy by means of processing main message during route discov-
ery. The source node starts the route discovery, the destination node processes
every Route Request (RREQ) and sends every Route Reply (RREP) as feed-
back information to the source node, and the source node processes multiple
RREP messages for routing decision. The improved AODVjr changes the
routing decision commander from destination to source and make a proactive
routing decision on the basis of multiple feedback information.

7.2.2.3 Multicast route
• Similar to unicast route discovery
• If a node receives an RREQ but is not a member of the group or does

not have the route to any member of the group, it creates a reverse-route
entry and broadcasts the request to other neighbors.

• If the node is a member of the group, it sends a RREP message to the
source and forwards to other neighbors. Intermediate nodes make a note
of this and set up a forward path.

Multicast discovery examples are as follows:

• D and E are members
• A concludes that the paths are ABD and ACE

7.2.2.4 Dynamic source routing (DSR)
Dynamic Source Routing (DSR) is a routing protocol for wireless mesh
networks. It is similar to AODV in that it forms a route on-demand when a
transmitting node requests one. However, it uses source routing instead of
relying on the routing table at each intermediate device.

346 ZigBee Stack Layers

Figure 7.29 Multicast discovery.

To avoid using source routing, DSR optionally defines a flow id option
that allows packets to be forwarded on a hop-by-hop basis.

DSR is based on source routing whereby all the routing information is
maintained (continually updated) at mobile nodes. It has only two major
phases, which are Route Discovery and Route Maintenance. Route Reply
would only be generated if the message has reached the intended destination
node (route record which is initially contained in Route Request would be
inserted into the Route Reply).

To return the Route Reply, the destination node must have a route to
the source node. If the route is in the Destination Node’s route cache, the
route would be used. Otherwise, the node will reverse the route based on the
route record in the Route Request message header (this requires that all links
are symmetric). In the event of fatal transmission, the Route Maintenance
Phase is initiated whereby the Route Error packets are generated at a node.
The erroneous hop will be removed from the node’s route cache; all routes
containing the hop are truncated at that point. Again, the Route Discovery
Phase is initiated to determine the most viable route.

DSR is designed to restrict the bandwidth consumed by control packets in
ad hoc wireless networks by eliminating the periodic table-update messages
required in the table-driven approach. The major difference between this and
the other on-demand routing protocols is that it is beacon-less and hence
does not require periodic hello packet (beacon) transmissions, which are used
by a node to inform its neighbors of its presence. The basic approach of
this protocol (and all other on-demand routing protocols) during the route
construction phase is to establish a route by flooding RouteRequest packets
in the network. The destination node, on receiving a RouteRequest packet,
responds by sending a RouteReply packet back to the source, which carries
the route traversed by the RouteRequest packet received.

The main characteristics of DSR are:

• On-demand (reactive) routing using “Source Route.”
• Source Route = List of routers along the path in the packet.

7.2 ZigBee Routing (Network) Layer 347

• Routing database: Complete route to recent destinations.
• Each entry has an expiration period and is timed out.
• If a route is not available, send “route request” to all neighbors.

• Each neighbor adds itself to the route in the request and forward to all
its neighbors (only first receipt). Does not change source address.

• If a node knows the route it appends the rest of the route and returns the
“route reply (RREP)”

• RREP goes back along the recorded path.
• All nodes record paths in RREP and RREQ. Multiple routes cached.

Advantages and Disadvantages of DSR: This protocol uses a reactive
approach which eliminates the need to periodically flood the network with
table update messages which are required in a table-driven approach. In a
reactive (on-demand) approach such as this, a route is established only when
it is required and hence the need to find routes to all other nodes in the
network as required by the table-driven approach is eliminated. The inter-
mediate nodes also utilize the route cache information efficiently to reduce
the control overhead. The disadvantage of this protocol is that the route
maintenance mechanism does not locally repair a broken link. Stale route
cache information could also result in inconsistencies during the route recon-
struction phase. The connection setup delay is higher than in table-driven
protocols. Even though the protocol performs well in static and low-mobility
environments, the performance degrades rapidly with increasing mobility.
Also, considerable routing overhead is involved due to the source-routing
mechanism employed in DSR. This routing overhead is directly proportional
to the path length.

Example 7.3: DSR
Consider the same network of the AODV example (given again in Fig-
ure 7.30). In this case, the route discovery will be as follows:

1. Node 1 sends RREQ to 2, 3, 4: “Any one has a route to 10.”
2. Nodes 2 send RREQ to 5, 7. Note: RREQ not sent to 1.
3. Node 3 sends RREQ to 5.
4. Node 4 sends RREQ to 6.

348 ZigBee Stack Layers

Figure 7.30 Node 1 requesting route to node 10.

The steps will continue as given in Table 7.5.

Route Maintenance in DSR
• If a transmission fails, route error (RERR) is sent to the source. It

contains hosts at both ends of the link.
• Intermediate nodes remove or truncate all routes with that link.
• Source may re-initiate the route discovery.
• Caching multiple routes results in a faster recovery but the routes may

be stale resulting in cache poisoning at other nodes.
• Not suitable for high-mobility environments.
• Source-route overhead in each packet.

AODV versus DSR
• In DSR a single RREQ can result in routes to several destination.
• In DSR RERR messages are sent to the source not broadcast Many nodes

are unaware of failure.
• In DSR, route discovery is delayed until all cached entries have been

tried Not good for high mobility.

Feature DSR AOVD
Routing table Rout Next hop

Packet Rout No rout

Replies Multiple First only

Rout deletion Fast Slow

Local Global

7.2.2.5 Tree hierarchical routing protocol (HERA) or ZBR (ZigBee
Routing)

In Section 6.3.4 “ZigBee Address Assignment” we mentioned that two
schemes are in use for allocating the addresses of the nodes: Distributed

7.2 ZigBee Routing (Network) Layer 349
T

ab
le

7.
5

R
ou

te
ta

bl
e

w
he

n
us

in
g

D
SR

Pk
t#

Pk
t#

Fr
om

To
M

es
sa

ge
In

O
ut

N
od

e
N

od
e

Ty
pe

R
eq

ID
H

op
s

A
ct

io
n

at
R

ec
ei

pi
en

t
R

ou
te

R
ec

or
d

in
Pa

ck
et

1
1

2
R

R
E

Q
1

1
N

ew
R

R
E

Q
.R

ec
or

d
an

d
fo

rw
ar

d.
1-

2

2
1

3
R

R
E

Q
1

1
N

ew
R

R
E

Q
.R

ec
or

d
an

d
fo

rw
ar

d.
1-

3

3
1

4
R

R
E

Q
1

1
N

ew
R

R
E

Q
.R

ec
or

d
an

d
fo

rw
ar

d.
1-

4

1
4

2
5

R
R

E
Q

1
2

N
ew

R
R

E
Q

.R
ec

or
d

an
d

fo
rw

ar
d.

1-
2-

5

1
5

2
7

R
R

E
Q

1
2

N
ew

R
R

E
Q

.R
ec

or
d

an
d

fo
rw

ar
d.

1-
2-

7

2
6

3
5

R
R

E
Q

1
2

D
up

lic
at

e
ID

.S
am

e
ho

ps
.R

ec
or

d
an

d
fo

rw
ar

d.
1-

3-
5

3
7

4
6

R
R

E
Q

1
2

N
ew

R
R

E
Q

.R
ec

or
d

an
d

fo
rw

ar
d.

1-
4-

6

4
8

5
8

R
R

E
Q

1
3

N
ew

R
R

E
Q

.R
ec

or
d

an
d

fo
rw

ar
d.

1-
2-

5-
8

4
9

5
9

R
R

E
Q

1
3

N
ew

R
R

E
Q

.R
ec

or
d

an
d

fo
rw

ar
d.

1-
2-

5-
9

5
10

7
9

R
R

E
Q

1
3

N
ew

R
R

E
Q

.S
am

e
ho

ps
.R

ec
or

d
an

d
fo

rw
ar

d.
1-

2-
7-

9

6
11

5
8

R
R

E
Q

1
3

D
up

lic
at

e
ID

.L
on

ge
r

Pa
th

.D
is

ca
rd

.
1-

3-
5-

8

6
12

5
9

R
R

E
Q

1
3

N
ew

R
R

E
Q

.R
ec

or
d

an
d

fo
rw

ar
d.

1-
3-

5-
9

7
13

6
8

R
R

E
Q

1
3

N
ew

R
R

E
Q

.S
am

e
ho

ps
.R

ec
or

d
an

d
fo

rw
ar

d.
1-

4-
6-

8

8
14

8
5

R
R

E
Q

1
4

D
up

lic
at

e
ID

.L
on

ge
r

Pa
th

,D
is

ca
rd

.
1-

2-
5-

8-
6

8
15

8
9

R
R

E
Q

1
4

D
up

lic
at

e
ID

.L
on

ge
r

Pa
th

.D
is

ca
rd

.
1-

2-
5-

8-
9

9
16

9
3

R
R

E
Q

1
4

D
up

lic
at

e
ID

.L
on

ge
r

Pa
th

.D
is

ca
rd

.
1-

2-
5-

5-
9

9
17

9
7

R
R

E
Q

1
4

D
up

lic
at

e
ID

.L
on

ge
r

Pa
th

.D
is

ca
rd

.
1-

2-
5-

9-
7

9
18

9
10

R
R

E
Q

1
4

N
ew

R
R

E
Q

.R
es

po
nd

th
ro

ug
h

ro
ut

e
10

-9
-5

-2
-1

1-
2-

5-
9-

7

10
19

9
10

R
R

E
Q

1
4

N
ew

R
R

E
Q

.R
es

po
nd

th
ro

ug
h

ro
ut

e
10

-9
-7

-2
-1

1-
2-

7-
9-

10

(C
on

ti
nu

ed
)

350 ZigBee Stack Layers
T

ab
le

7.
5

C
on

tin
ue

d
Pk

t#
Pk

t#
Fr

om
To

M
es

sa
ge

In
O

ut
N

od
e

N
od

e
Ty

pe
R

eq
ID

H
op

s
A

ct
io

n
at

R
ec

ei
pi

en
t

R
ou

te
R

ec
or

d
in

Pa
ck

et
10

20
9

8
R

R
E

Q
1

4
D

up
lic

at
e

ID
.L

on
ge

r
Pa

th
.D

is
ca

rd
1-

2-
7-

9-
8

10
21

9
5

R
R

E
Q

1
4

D
up

lic
at

e
ID

.L
on

ge
r

Pa
th

.D
is

ca
rd

.
1-

2-
7-

9-
5

12
22

9
10

R
R

E
Q

1
4

N
ew

R
R

E
Q

.R
es

po
nd

th
ro

ug
h

ro
ut

e
10

9
5

3
1

1-
3-

5-
9-

10

12
23

9
8

R
R

E
Q

1
4

D
up

lic
at

e
ID

.L
on

ge
r

Pa
th

.D
is

ca
rd

.
1-

3-
5-

9-
8

12
24

9
7

R
R

E
Q

1
4

D
up

lic
at

e
ID

.L
on

ge
r

Pa
th

.D
is

ca
rd

.
1-

3-
5-

9-
7

13
25

8
5

R
R

E
Q

1
4

D
up

lic
at

e
ID

.L
on

ge
r

Pa
th

.D
is

ca
rd

1-
4-

6-
8-

5

13
26

8
9

R
R

E
Q

1
4

D
up

lic
at

e
ID

.L
on

ge
r

Pa
th

.D
is

ca
rd

.
1-

4-
6-

5-
9

18
27

10
9

R
R

E
P

1
1

R
ec

or
d

an
d

fo
rw

ar
d

al
on

g
re

tu
rn

pa
th

10
-9

(1
-2

-5
-9

-1
0)

19
28

10
9

R
R

E
P

1
1

R
ec

or
d

an
d

fo
rw

ar
d

al
on

g
re

tu
rn

pa
th

10
-9

(1
-2

-7
-9

-1
0)

22
29

10
9

R
R

E
P

1
1

R
ec

or
d

an
d

fo
rw

ar
d

al
on

g
re

tu
rn

pa
th

10
-9

(1
-3

-5
-9

-1
0)

27
30

9
5

R
R

E
P

1
2

R
ec

or
d

an
d

fo
rw

ar
d

al
on

g
re

tu
rn

pa
th

10
-9

-5
(1

-2
-5

-9
-1

0)

28
31

9
7

R
R

E
P

1
2

R
ec

or
d

an
d

fo
rw

ar
d

al
on

g
re

tu
rn

pa
th

10
-9

-7
(1

-2
-7

-9
-1

0)

29
32

9
5

R
R

E
P

1
2

R
ec

or
d

an
d

fo
rw

ar
d

al
on

g
re

tu
rn

pa
th

10
-9

-5
(1

-3
-5

-9
-1

0)

30
33

5
2

R
R

E
P

1
3

R
ec

or
d

an
d

fo
rw

ar
d

al
on

g
re

tu
rn

pa
th

10
-9

-5
-2

(1
-2

-5
-9

-1
0)

31
34

7
2

R
R

E
P

1
3

R
ec

or
d

an
d

fo
rw

ar
d

al
on

g
re

tu
rn

pa
th

10
-9

-7
-2

(1
-2

-7
-9

-1
0)

32
35

5
3

R
R

E
P

1
3

R
ec

or
d

an
d

fo
rw

ar
d

al
on

g
re

tu
rn

pa
th

10
-9

-5
-3

(1
-3

-5
-9

-1
0)

33
36

2
1

R
R

E
P

1
4

R
ec

or
d

an
d

fo
rw

ar
d

al
on

g
re

tu
rn

pa
th

10
-9

-5
-2

-1
(1

-2
-5

-9
-1

0)

34
37

2
1

R
R

E
P

1
4

R
ec

or
d

an
d

fo
rw

ar
d

al
on

g
re

tu
rn

pa
th

10
-9

-7
-2

-1
(1

-2
-7

-9
-1

0)

35
38

3
1

R
R

E
P

1
4

R
ec

or
d

an
d

fo
rw

ar
d

al
on

g
re

tu
rn

pa
th

10
-9

-5
-3

-1
(1

-3
-5

-9
-1

0)

7.2 ZigBee Routing (Network) Layer 351

scheme and Stochastic scheme. Hierarchical Routing Protocol (HERA)
is based on distributed scheme of assigning the nodes addresses. In the
distributed scheme, during the establishment of the network, the ZigBee
coordinator determines maximum number of children routers a parent may
have as children. In addition, each node has a “depth” which is the minimum
number of hops to reach the coordinator using only parent-child link. For
constructing the path, the source node checks if the recipient is one of its
descendants because it knows the network address in the block of its child
node. Otherwise, the source sends the data to its parent. The parent node also
sends the data to its parent until we get to a parent node of the destination
node. The downlink of information is provided through a technique for
determining the successor based on the ZigBee router address, depth and
address of the node. In the integrated routing, a node falls into one of the
following two classes: routing node plus (RN+), which has enough memory
to perform AODVjr routing; routing node minus (RN−), which has limited
memory and only performs cluster-tree routing. While an RN node always
follows the cluster-tree, an RN+ node can either follow the cluster-tree or
dynamically discover an AODV route, depending on various factors such as
session duration and tolerable route discovery delay.

Example 7.4: Hierarchical Routing
Consider the tree topology shown in Figure 7.31 what is the sequence to get
the rout between A12 to A30.

In this routing protocol:

• All leaf nodes send the request packet to their parent
• Each parent checks the address to see if it is in its subrange:

◦ If yes, it sends to the appropriate child.
◦ If not, it sends to its parent.

Figure 7.31 Tree of the example.

352 ZigBee Stack Layers

Figure 7.32 Example 2 on hierarchy routing.

Accordingly, the rout between A12 to A30 will be:
Rout from A12 to A30:

1. A12→ R1
2. R1→ Coordinator
3. Coordinator→ R4
4. R4→ R30

Example 7.5: Hierarchical Routing
This example is for a frame originating from device 2 with a destination
address of 6. Each of the arrows are based on comparing the destination
address with the device’s address space (except the horizontal one that used
to show the flow). If the destination address lies outside the device’s address
space, the frame gets routed up. Otherwise it gets routed down.

The Problems with Tree Routing: Tree routing is an effective and simple
way of routing frames without a complex mechanism like AODV or some of
the other routing algorithms mentioned in this section. The big benefit is that
it doesn’t require tables so it is possible to use tree routing in networks where
the devices are very contained on resources, that is, memory. However, there
is a fatal flaw in tree routing that renders it almost completely useless in a real
world network.

The big problem is that this routing mechanism is fundamentally unreli-
able because the addresses are static. The position in the tree hierarchy of a
device is set once that device joins the network and receives its address and
afterwards, it is fairly inflexible to any changes to the network structure. So

7.2 ZigBee Routing (Network) Layer 353

if a device joins the network and fails or moves out of range, then it will also
take out all the devices underneath it in the hierarchy. It is possible to recover
from this situation if all of the devices are able to rejoin the network with
another parent successfully; however, this can be a painful and error-prone
process and potentially involve many devices.

Another fatal flaw is that there is no way to recover if the coordinator fails.
It is the single point of failure for this routing method. In mesh routing, if the
coordinator fails, things are still okay because from a mesh point of view, the
coordinator is just another router in the routing tables.

However in tree routing, the coordinator is the vertex of the tree, where all
frames must pass if the destination device is not located on the same branch as
the source device. If the coordinator fails, then all the main branches become
isolated and your network is pretty much useless. Currently, there’s no place
in the ZigBee spec (that I’m aware of) that describes how to recover from this
failure.

From a reliability standpoint, tree routing is fairly dangerous. In fact, it
was probably dangerous enough that the ZigBee Alliance decided to remove
tree routing and addressing in the ZigBee Pro spec.

7.2.2.6 ZigBee cluster label (ZiCL)
In ZiCL (ZigBee Cluster Label), the ZigBee network is divided into one or
more logical clusters and then a unique Cluster Label is assigned to each
cluster where the Cluster Label represents addresses of all nodes in a logical
cluster. Within each cluster, nodes can communicate with each other in at
most four hops. Every node is associated with a Cluster Label and cluster
heads are connected with each other via gateway nodes, which are used
to communicate with an adjacent cluster. According to one hop neighbor
information, nodes which are connected with other clusters can identify
own role as a gateway. In the shortcut tree routing, remaining hops from
an arbitrary source to the destination are calculated using the hierarchical
addressing scheme in ZigBee, and each source or intermediate node forwards
a packet to the neighbor node with the smallest remaining hops in its neighbor
table.

7.2.2.7 ZigBee multipath hierarchical tree routing (Z-MHTR)
ZigBee Multipath Hierarchical Tree Routing (Z-MHTR) is a multipath exten-
sion of the ZBR and the built paths are node disjoint, used simultaneously
to route data. Data packets are routed to the sink (tree root) on up to three
disjoint paths. These routing decisions are performed on-the-fly thanks to the

354 ZigBee Stack Layers

ZigBee tree topology properties without requiring the traditional discovery
phase using RREQs.

7.2.2.8 Neighbor table-based routing techniques
A shortcut tree routing (SCT) algorithm is which reduces the routing cost
of ZigBee tree routing with the help of a neighbor table, originally defined
in ZigBee standards. While following the ZigBee tree routing algorithm,
the algorithm suggests, if one can decrease the expense of the routing to
particular destination, the most preferred method is forwarding the packet
usually to the very near and closest node. However, the links in their method
were still invariable and may lead to rapid decline of energy for some nodes.
An enhanced routing protocol for ZigBee/IEEE 802.15.4 wireless networks
is proposed. For making the ZigBee Tree-based routing algorithm much more
efficient, neighbor nodes are considered from where a local shortest path to
the destination are calculated and the specific node having the shortest value
is selected as next hop node. So, such model is taken on the basis of Greedy
algorithm, which is never become mandatory for us to make that we will
receive altogether a very shortest path finally. The problem associated with
this method is that the lifetime of nodes is not considered and load balancing
over nodes is not evaluated. A novel modified tree routing mechanism distin-
guished with an introduction of neighbor table. A successive improvement on
the routing path is done by estimating the cost via each neighbor. It shows a
comparable good performance system and commendably very low per packet
transfer consumption and an excellent durability. But as this is also on the
basis of two-hop neighbor scenario, same cannot be guaranteed in ZigBee
networks; so this may lead to high memory overhead and energy.

The DFG-TR (Destination Family Group Tree Routing) was introduced
to determine the relationship of forwarding and destination nodes that are
closely neighbors. To decrease the routing cost to the definite destination, this
technique will suggest the neighbor node as the next hop node. Since it can
find neighbor node from which the destination family group exists. However,
the life time of nodes and load balancing over nodes are still questionable.
Another routing system called ESTR (Energy-Efficient Shortcut Tree Rout-
ing) which also a tree based new type is suggested to reduce hop counts as
well as to energy balancing in a network with the aid from the available
neighbor tables. This also gives optimum low delay route on the basis of
balancing load with the associated nodes. But this may lead to computational
overhead25. The shortcut tree routing (STR) claims to significantly enhance
the ZTR path efficiency with addition of a simple one-hop neighbor data. At

7.2 ZigBee Routing (Network) Layer 355

the same time, ZTR uses tree links connecting the parent and child nodes only,
STR exploits the neighbor nodes by allowing them for shortcut the routing
pathway of tree model. Putting in other way, the smaller tree hops which are
remained in the next hop node to the destination, which ever may be the type,
as is a parent one, the children and or neighbor nodes, is always selected
by a source or an intermediate node. This path selection in STR is done in
sequential method by individual node and completely compatible with the
standards for ZigBee. That accepts various routing protocols according to
each node current condition. Another highlight being the feature that it does
not requires any extra cost or any alteration in ZigBee standards like creation
and maintenance mechanism of one-hop neighbor details, etc.. . .

7.2.2.8.1 Neighbor table
The neighbor table contains a list of the devices that are within transmis-
sion/reception range and provide a convenient single hop transmission to
the destination. It is also used during the discovery or rejoin process to see
if the joining device was previously a child of the node (Tables 7.6 and
7.7). According to the specification, the neighbor structure contains both
mandatory and optional fields. However in actual usage, the optional fields
are required since they will be needed by some of the ZDO functions. Just a
little gotcha for those implementing their own stack:

The neighbor table is initially populated during device discovery when a
device is searching for a parent to join to get on the network. As mentioned
in Section 7.1.5, when a device tries to join a network, it will first perform

Table 7.6 Neighbor table entry–mandatory
Field Description
Extended Address 64-bit device address

Network Address 16-bit network address

Device Type Coordinator, router, end device

Rx On When Idle Flag to mark sleepy end devices

Relationship Parent, child, sibling, no relationship

Transmit Failure Transmission failure counter

LQI Link quality indicator

Outgoing Cost Cost of outgoing link as measured by neighbor. Only required if
symmetrical links are used

Age Time since link status command was received. Only required if
symmetrical links are used

356 ZigBee Stack Layers

Table 7.7 Neighbor table entry–optional
Field Description
Extended PAN ID 64-bit unique PAN ID

Channel Operating channel

Depth Tree depth of device

Beacon order 802.15.4 Beacon order. ZigBee uses no beacons so this should be 0x0F

Permit joining Flag to indicate whether device is accepting join requests

Potential parent Flag to indicate if neighbor satisfies parent criteria

Figure 7.33 Many-to-one routing.

a device discovery where it broadcasts a beacon request. All routers within
earshot will respond with a beacon frame containing information about them-
selves. This information will get stored into the neighbor table. Unfortunately,
the spec is a bit light on details about populating the neighbor table after the
initial join procedure. In order to keep the table up-to-date, any beacons that
are seen should be compared to the neighbor table and added to it if an entry
doesn’t exist.

7.2.2.9 Many-to-one routing
• Used for sensor data collection. All data goes to a concentrator or a

gateway.
• Gateway has a large memory and can hold complete routes to all nodes.
• But each node only remembers the next hop towards gateway (Fig-

ure 7.33).

7.2.2.10 ZigBee RF4CE
• Radio Frequency for Consumer Electronics (RF4CE) consortium devel-

oped a protocol for remote control using wireless (rather than infrared
which requires line of sight).

• RF4CE merged with ZigBee and produced ZigBee RF4CE protocol.
• Operates on channels 15, 20, and 25 in 2.4 GHz.

7.2 ZigBee Routing (Network) Layer 357

Figure 7.34 RF4CE multi-star topology.

• Maximum PHY payload is 127 bytes.
• Two types of devices: Remotes and Targets (TVs, DVD Player,. . .).
• Status Display: Remote can show the status of the target.
• Paging: Can locate remote control using a paging button on the target.
• Pairing: A remote control works only with certain devices.

7.2.2.11 RF4CE multi-star topology
• Each target device (TV, CD, . . .) forms a PAN with its remote.
• Example: 3 PANs. Multi-function remote can control all 3 devices and

is a member of all 3 PANs.

7.2.2.12 ZigBee RF4CE pairing process
• Allows a remote to be associated with the target
• Ensures specific remote will work with only specific TV
• Each remote and the target has a device ID, profiles that it supports,

vendor ID
• When target receives a pairing command, it checks if the remote is listed

in its pairing table. If yes, it accepts the pairing request.

7.2.2.13 ZigBee smart energy V2
• Monitor, control, automate the delivery and use of energy and water
• Adds plug-in vehicle charging, configuration, and firmware download
• Developed in collaboration with other smart grid communication tech-

nologies: HomePlug, Wi-Fi, . . .
• IP based Incompatible with previous ZigBee.

8
ZigBee PRO and ZigBee SECURITY

This chapter considers in detail two topics: ZigBee Pro Feature sets and Zig-
Bee security. Besides the two main topics, the chapter discusses: Applications
of ZigBee technology, Advantages of ZigBee Technology and Future Scope
of ZigBee.

8.1 ZigBee and ZigBee PRO Feature Sets

(Reference: Microchip Note AN1255)
On October 2007, the ZigBee Alliance introduced an important update to the
ZigBee specification leveraging the experience gained from the millions of
ZigBee nodes deployed by multiple vendors since the specification was first
published in 2004.

The specification now includes two distinct Feature Sets– “ZigBee” and
“ZigBee PRO”–that define key aspects of how a mesh network operates. The
new ZigBee PRO Feature Set offers significant improvements in network
scalability, resiliency, security, and ease-of-use, especially for larger, more
complex networks.

The ZigBee Feature Set is essentially the same as the 2006 version ZigBee
specification, with some new optional features adopted from the ZigBee PRO
capabilities. Networks are generally built using one Feature Set or the other,
though end devices implementing either Feature Set may operate in any
ZigBee network.

ZigBee PRO offers several significant improvements such as network
scalability, resiliency, security and the capability to self-form and self-heal the
network. It is targeted for use in building automation and environmental and
industrial applications that contain more than 30 nodes. ZigBee PRO is based
on a mesh topology and is a beaconless network. Networks are generally built
using one Feature Set or the other, though end devices implementing either
Feature Set may operate in any ZigBee network.

359

360 ZigBee PRO and ZigBee SECURITY

Table 8.1 Comparison of ZigBee and ZigBee PRO feature sets
Feature ZigBee Feature Set ZigBee PRO Feature Set
Addressing Tree-based Stochastic

Routing Tree and Mesh Mesh

Rout Aggregation (i.e.,
may-to-one and Source Routing)

NO YES

Asymmetric Link Handling NO YES

Frequency Agility Optional YES

PAN ID Conflict Resolution NO YES

Basic Security included: Residential Standard

APS-level encryption Optional Optional

“High Security” mode NO Optional

Fragmentation Optional Optional

Commissioning Cluster YES YES

Secure Commissioning NO YES

Table 8.1 compares between ZigBee and ZigBee PRO feature sets. This
is followed by detailed discussion.

The following are the details of ZigBee PRO feature set characteristics.

8.1.1 Management and Addressing

8.1.1.1 Link management
In a mesh topology, each node can communicate with its neighbor. The node
has the ability to evaluate the quality of its neighbor’s links and to select the
best one for transmission of the packet.

8.1.1.2 Group addressing
ZigBee PRO provides group addressing; a single packet can reach a group of
devices.

8.1.1.3 Compatibility
The ZigBee PRO stack identifier is two and is advertised in its beacon frame.
Any end device can join ZigBee PRO if it uses the standard security mode.

8.1.1.4 Power management
In ZigBee PRO, only the end devices are powered by batteries; the routers and
coordinator use main power. ZigBee PRO allows end devices to go into sleep

8.1 ZigBee and ZigBee PRO Feature Sets 361

Table 8.2 ZigBee versions’ features
ZigBee ZigBee ZigBee

Feature 2006 Feature Set PRO
Coordinator can change channel during
operation

No Yes Yes

Distributed Address Assignment Yes Yes No

Stochastic Address Assignment No No Yes

Group Addressing Yes Yes Yes

Many-to-one routing No No Yes

AES-128 Yes Yes Yes

Trust Center Coordinator Coordinator Any device

Network Scale limited by address
assignment scheme

Yes Yes No

Fragmentation and Reassembly No Yes Yes

Commissioning Tool Yes Yes Yes

Keep Neighbor Link Quality No No Yes

High Security Mode No No Yes

Topologies Tree & Mesh Tree & Mesh Mesh
Ref. A Elahi and A. Gschwender, “ZigBee Wireless Sensor and Control Network,” Prentice Hall, 2009,
ISBN: 0137134851, Safari Book.

mode so that they consume less power. While the end device is in sleep mode,
the node will miss any network key updates from the trust center. When the
device wakes up, it uses its link key to send a message to the trust center to
obtain an updated network key.

8.1.2 Improved Security

Security: Since the beginning, ZigBee has included integrated security func-
tions leveraging AES128 encryption for protecting network communications.
ZigBee PRO now provides significant enhancements to the security choices
available for secure wireless networks. ZigBee PRO offers two different
security modes: “Standard” security and “High” security, as follows:

Standard mode: In standard mode, the device is permitted to use the network
key and link key.

Network Key: The “network key” is a single network-wide key and all
devices share it. It is a standard 128-bit key used to encrypt all network

362 ZigBee PRO and ZigBee SECURITY

communications using AES128 algorithm. Devices in the network may have
the network key pre-configured, individually commissioned, or distributed by
a centralized trust center.

Link keys: The ZigBee PRO Standard Security mode further provides for
the additional encryption of application-level communications between node
pairs through the use of individual “link keys”. While this is also optional
in the ZigBee Feature Set as well the earlier 2006 ZigBee specification, it is
expected to be more widely deployed going forward.

This allows specific node-to-node application level data to be protected
from other nodes in the network. This is important for the collection of
potentially sensitive private data or the validation of potentially disruptive
commands.

Link keys and sleeping nodes: The security enhancements in ZigBee PRO
are also important to providing secure basic network operation. For example,
certain types of ZigBee nodes can “sleep” (power down for a period of time to
conserve power use), and hence miss a “change network key” message from
the security Trust Center.

When a sleeping device wakes up, it will try to communicate with the
network using its old network key, and will be unable to participate in the
network. ZigBee PRO provides the ability for the newly awoken node to use
a specific link key to encrypt a message that validates itself with the Trust
Center and gets the new network key in a similarly encrypted message.

Otherwise, the validation message and network key would need to be
sent “in the clear”, potentially compromising the security of the overall
network. These same mechanisms can be used to wirelessly commission (i.e.,
configure for use) individual devices securely, never requiring important data
to be transmitted without some level of encrypted protection.

In the standard security mode, devices do not require authentication to
join a network. The trust center, master key, and SKKE are optional. The
trust center for ZigBee PRO standard security mode is used for transporting
the network key.

High-security mode: This mode adds some further protections for device
authentication and key management and distribution including the use of
SKKE. In this mode, three keys are permitted for use: the network, link,
and master keys. The trust center and SKKE are mandatory. The trust center
uses the transport key command to transport the link and network keys to the
devices in the network. The device is required to perform authentication with
its parent, and it is required to perform authentication between neighbors.

8.1 ZigBee and ZigBee PRO Feature Sets 363

This mode also provides some additional protections against security
replay attacks.

Note: It is important to say here that the additional security capabilities
inherent in ZigBee PRO are critical as ZigBee is used in increasingly impor-
tant applications. The control of critical systems infrastructure, whether in a
commercial building, utility grid, industrial plant, or a home security system,
must not be compromised.

8.1.2.1 Trust center
ZigBee PRO should have a trust center; the trust center can be a router,
coordinator, concentrator, or specific device.

8.1.3 Scalability

One of ZigBee’s greatest merits is scalability, allowing networks of thousands
of nodes. While this capability is obviously important for large building
automation and neighborhood utility metering networks, it has also proven
important in home-oriented networks that may grow to 100 nodes or more.

ZigBee has emerged as the choice for advanced Home Automation net-
works in large part because proprietary wireless technologies aimed at the
home have failed to deliver such scalability. The ZigBee PRO Feature Set
significantly improves ZigBee’s ability to scale through a number of new
capabilities, including:

• Stochastic Addressing and
• Route Aggregation.

8.1.3.1 Stochastic addressing
Stochastic Addressing is a new method for assigning the addresses used by
individual nodes for routing in the network. The original ZigBee scheme used
a “cluster-tree” routing algorithm where a single ZigBee Coordinator node
acts as the root of a network and address tree, and each node’s address is
assigned based on its position within the tree.

While having the node’s location implicit in the address can allow rela-
tively simple routing algorithms, this also limits the practical address space,
leading to the possibility of address exhaustion down long branches of the tree
structure. Also, changes to the tree topology may cause potentially disruptive
re-addressing of significant portions of the network.

By contrast, ZigBee PRO uses a mesh topology. Any device joining the
network requires a network address. ZigBee PRO uses a stochastic addressing

364 ZigBee PRO and ZigBee SECURITY

method, which means a ZigBee device randomly picks up an address when
joining the network. Also, the device announces its address on the network by
using the device-annc command. The ZigBee network layer provides address
conflict resolution based on the MAC address if two nodes have the same
network addresses.

Thus the entire 16-bit address space is available to all nodes, anywhere
in the network, and the assignment is persistent even if RF conditions change
(such as placement of new obstacles in a building or if a node moves).

Stochastic addressing eliminates the need for the parent to maintain an
address table for assignment to children.

8.1.3.2 Route aggregation
Another new ZigBee PRO scalability feature is the ability to aggregate routes
in the network through the use of new two types of routing: many-to-one
routing and multicast (source) routing techniques.

In most wireless sensor networks, many or most nodes in the network
need to communicate with one or more centralized nodes, such as a cen-
tralized home automation controller, a sensor data collection gateway, or a
security trust center.

For illustration purposes, assume many devices are communicating to a
centralized gateway. Each device issues a route discovery broadcast to find
the gateway, and all the intervening nodes form a routing table entry for each
device (see Figure 8.1).

Figure 8.1 In larger networks, many routes to a centralized mode may cause routing table
overflows near the central node.

8.1 ZigBee and ZigBee PRO Feature Sets 365

Figure 8.2 Through shared many-to-one routes and source routing, less routing table space
is used.

The nodes near the gateway will see many, many such requests, likely
overflowing the relatively constrained routing tables available within the
small RAMs typical of low-cost ZigBee silicon. Such overflows cause the
devices to issue new route request broadcasts, causing continued routing table
churn and additional network broadcast traffic.

ZigBee PRO mitigates this behavior through a “many-to-one” route dis-
covery mechanism that allows each device seeking a route to the gateway
(continuing the example above) to share the same route and associated routing
table entry.

For traffic returning from the gateway to the devices, a source routing
technique is used, where the gateway remembers the path used from the
device to the gateway, and embeds that path in the returning packets enabling
the intervening nodes to forward the packets without requiring a routing table
entry (see Figure 8.2).

These mechanisms dramatically improve the efficiency and stability of
the routing tables and lower the amount of broadcast traffic in the network.

8.1.4 Improved Ease-of-Use and Operation

The ZigBee PRO Feature Set also provides some additional features that
simplify the use and deployment of ZigBee applications. Two features are
sharing in improving ZigBee operation:

• Fragmentation
• Commissioning

366 ZigBee PRO and ZigBee SECURITY

8.1.4.1 Fragmentation
The IEEE 802.15.4 defines a maximum packet size of 128 bytes, which is
optimum for short, efficient control and sensor data messaging. However,
there may be times where an application desires to send a larger message.

ZigBee PRO and also ZigBee feature set now provides a means, fragmen-
tation, for the stack to automatically fragment a larger message into smaller
ZigBee packets and reassemble the message at the receiving node, relieving
the application of this task.

8.1.4.2 Commissioning
It is a tool that is used by the ZigBee device installer to install ZigBee devices:

Commissioning a ZigBee network (like any control network), refers to
the task of configuring the individual control or sensor devices with the
information they need to perform the desired function. This information may
include: what network to join, what ZigBee Feature Set is in use, provision of
security keys, and establishing command/control binding relationships (i.e.,
what lights a given switch turns on or off).

Commissioning typically takes place using a dedicated tool (laptop, PDA,
etc.) or through a physical interface on the device (perhaps a simple button).

The updated ZigBee specification provides a new “Commissioning Clus-
ter” that standardizes command sets for usual configuration parameters. Zig-
Bee PRO, with its additional security capabilities, allows this commissioning
to be performed in a secure manner.

8.1.5 Improved Resiliency

ZigBee-based networks are inherently self-forming and self-healing in their
operation. ZigBee PRO provides a number of new features that enhance
network resiliency in certain situations. The new features are:

• Asymmetric link handling
• frequency agility
• PAN ID conflict resolution

8.1.5.1 Asymmetric link
The link between two nodes is usually asymmetric, meaning the quality of the
link in both directions is not the same. The quality of the link is represented
by the link cost. Figure 8.3 shows a ZigBee network. The link cost from node
A to B is different from B to A (asymmetric link) because A and B do not
have the same transmission powers and receiver sensitivities. When the nodes

8.1 ZigBee and ZigBee PRO Feature Sets 367

Figure 8.3 Asymmetric link.

A and E use the same route B–D to exchange information, it is considered
symmetric. In asymmetric routing, the destination node uses a different path
to transmit to the source. In Figure 8.3, the source A uses the B–D path to
send a packet to E, and E use the path C to send the packet to A.

8.1.5.2 Frequency agility
One of the advantages of 2.4 GHz-based ZigBee networks is the choice of
16 different operating channels, compared with a single channel for some
competing lower-frequency proprietary systems.

ZigBee PRO’s Frequency Agility function makes utilization of these
channels easier. It selects the best available channel during startup of a
network but, during network operation, if any node detects interference due
to frequency conflict or noise, it will report the occurrence to the channel
manager. (A channel manager can be a dedicated device or trust center.)
When the channel manger receives the reports from several nodes on the
network, it selects another channel for network operation and informs the
nodes of the switch.

Frequency Agility to Combat Interference
Frequency agility can be used to combat interference and accordingly helps to
stop loosing of service in the radio channel of operation or across the whole
frequency band. To achieve that, it is worthwhile implementing a network
manager application on the network coordinator, where this application is
responsible for periodically assessing the operating channel and traffic by
means of various ZigBee messages, such as Management Network Update
notifications. If interference is present in the operating channel, the network

368 ZigBee PRO and ZigBee SECURITY

manager can initiate a channel scan to find a safe channel and move the
network to this channel (frequency agility). If no suitable channel is found,
the network manager node may declare a loss of service.

8.1.5.3 PAN ID conflict resolution
When a coordinator attempts to establish a ZigBee network, an energy scan
is initiated to find the best RF channel for its new network. When a channel
has been chosen, the coordinator assigns a PAN-ID which will be applied to
all the devices that join the network.

PAN-ID is a 16-bit number that is used as a network identifier. A node is
allowed to communicate on a network only when it undergoes the association
process. The association function is used to join a node to a parent.

PAN-ID Conflict Resolution: ZigBee networks use the IEEE 802.15.4 PAN
ID as their basic identifier, allowing different logical ZigBee networks even
on the same channel. However, if two networks overlap with the same PAN
ID (such as devices using the same defaults), confusion may result. ZigBee
PRO provides automatic detection and resolution of conflicting PAN IDs,
including application notification.

Table 8.3 shows a comparison of ZigBee 2006, ZigBee, and ZigBee PRO
feature sets.

8.2 ZigBee Security

ZigBee protocol found its way in many applications and is growing more and
more over the years. In parallel, security attacks on ZigBee-enabled devices
have grown incrementally as well. The adoption of ZigBee in personal home
and hospital care, commercial building automations, and many others, let
the need for assessing and strengthen the security of ZigBee protocol to be
crucial. Such high need for assessing the security of ZigBee is clear if we
remember that a hack on a critical device such as the pacemaker can be life
threatening. The previous sections of the chapter provided an overview of the
ZigBee protocol and its network components, a knowledge that serves as a
pre-requisite to understanding ZigBee security which is the subject of this
section.

ZigBee security architecture is built on the security services provided by
IEEE 802.15.4 standard. The IEEE 802.15.4 MAC layer implements several
features which are used by the ZigBee protocol in the network and application
layers. One of these features is the security services. IEEE 802.15.4 sets the
encryption algorithm to use when cyphering the data to transmit; however,

8.2 ZigBee Security 369

Table 8.3 Comparison of 2006, ZigBee, and ZigBee PRO feature sets
2006 ZigBee Feature ZigBee PRO Feature

ZigBee Features Specification Set Specification Set Specification
Network coordinator selects
best channel at startup.

Yes Yes Yes

During operation can detect
interference and change
channel operation.

No Yes Yes

Distributed address
assignment.

Yes Yes No

Stochastic address
assignment.

No No Yes

Supports group addressing. Yes Yes Yes

Many-to-one routing. No No Yes

128-bit Advanced Encryption
Standard (AES) with message
integrity code (MIC).

Yes Yes Yes

Trust center can be any
device or coordinator in the
network.

Coordinator Coordinator Any device

Network scale up limited to
address assignment scheme.

Yes Yes No

Message fragmentation is
permitted.

No Yes Yes

Supports buffering for
message fragmentation.

No Yes Yes

Supports commissioning tool. Yes Yes Yes

Device keeps information
about its neighbor devices.

No No Yes

Offers high-security mode. No No Yes

Network topologies. Tree and mesh Tree and mesh Mesh

the standard does not specify how the keys have to be managed or what kind
of authentication policies have to be applied. These issues are treated in the
upper layers of the ZigBee stack.

Security services provided by ZigBee range from secure key establish-
ment, secure key transportation, frame protection via symmetric cryptogra-
phy, to secure device management.

370 ZigBee PRO and ZigBee SECURITY

This section starts by discussing the security services offered by 802.15.4
followed by the security services offered by ZigBee.

8.2.1 802.15.4 Security: Overview

IEEE 802.15.4 uses AES (Advanced Encryption Standard) with a 128-
bit key length (16 Bytes) as encryption algorithm. The algorithm is used to
achieve Data Security (Data Confidentiality), Data Integrity and authenticity.

Data Security (Data Confidentiality): This term covers two related
concepts:

• Data confidentiality: Assuring that private or confidential information
is not made available or disclosed to unauthorized individual/node.

• Privacy: Assures that individuals control or influence what information
related to them may be collected and stored and by whom and to whom
that information may be disclosed.

The importance of confidentiality is crucial in some fields as health care
where the records of the patient must be kept secret and private.

Data confidentiality is performed by encrypting the data payload field
with the 128-bit Key.

Data Integrity and Authenticity: This is used to validate the data sent,
mainly the integrity of the MAC header and payload data attached. Data
integrity covers:

• Data integrity: Assures that information is changed only in a specified
and authorized manner.

• System integrity: Assures that a system (the network) performs its
intended function in an unimpaired manner, free from deliberate or
inadvertent unauthorized manipulation of the system.

Concerning Authenticity, it means:

• Authenticity: The property of being genuine and being able to be veri-
fied and trusted: confidence in the validity of a transmission, a message,
or message originator.

Data Integrity is achieved using a Message Integrity Code (MIC) and
data authenticity is achieved by Message Authentication Code (MAC). The
MAC is appended to the message. This code ensures integrity of the MAC
header and payload data attached. The system uses the network key to gen-
erate the MAC. Upon receiving message, the receiving side generates MAC
for the received message using the same key and compares the calculated

8.2 ZigBee Security 371

Figure 8.4 IEEE MAC frame.

MAC with that attached with received message. If the two values match, the
receiver accepts the message, if the two values does not match the receiver
discard the message.

The MAC can have different sizes: 32, 64, and 128 bits; however, it is
always created using the 128-bit AES algorithm. Its size is just the bits length
which is attached to each frame. Larger size means more secure. However,
increasing the MAC size will be reflected on the payload: larger MAC size
means less payload the message can take (Figure 8.4).

MAC Frame
Figure 8.4 shows the MAC frame. There are three fields in the IEEE 802.15.4
MAC frame which are related to security issues:

• Frame Control (located in the MAC Header)
• Auxiliary Security Control (in the MAC Header)
• Data Payload (in the MAC Payload field)

a. Auxiliary Security Frame
The Auxiliary Security Frame is only enabled if the Security Enabled
subfield of the Frame Control Frame is turned on. This special header has
3 fields (Figure 8.5):

• Security Control field. It is 1B (1 Byte) length. This field specifies
which kind of protection is used (see Table 8.3).

• Frame Counter field. It is 4B (4 Bytes = 32 bits) length. This field is a
counter given by the source of the current frame in order to protect the
message from replaying protection. For this reason, each message has a
unique sequence ID represented by this field. This means that this field
is used to protect from the replay attack.

• Key Identifier: The length of this field varies 0B and 9B (0 bit to 72
bits). The field specifies the information needed to know what key we
are using with the node we are communicating with.

372 ZigBee PRO and ZigBee SECURITY

(http://www.sensor-network.org)

Figure 8.5 MAC frame: Auxiliary security frame.

i. Security Control Subfield: Security Control specifies the type
of protection provided by the network. It is the place where global
Security Policy is set. The choice of security level determines the
length of the key and what is to be encrypted, that is, each security
level provides a certain degree of frame encryption and integrity
checks. ZigBee defines 8 different security levels available to the
NWK and APS Layer as summarized in Table 8.4.

The security level identifiers in the table mean:

◦ The 0x00 value sets no encryption. This means that (1) data will not be
encrypted: no data confidentiality, (2) the data authenticity will not be
validated.
◦ From the 0x01 to 0x03, the data are authenticated using the encrypted

Message Authentication Code (MAC).
◦ The value 0x04 encrypts the payload ensuring Data Confidentiality.
◦ The 0x05 to 0x07 range ensures both data confidentiality and authentic-

ity.
ii. Key Identifier Subfield: The Key Identifier Mode subfield sets the

kind of key (implicit or explicit) which should be used by the sender
and the receiver. Possible values are:

• 0–the key id is known implicitly by the sender and the receiver (It is not
specified in the message)

• 1–the key id is determined explicitly by the 1Byte Key Index from the
Key Identifier Field and the macDefaultKeySource.

http://www.sensor-network.org

8.2 ZigBee Security 373

Table 8.4 ZigBee security levels
Security Security Frame Integrity
Identifier Attributes Data Encryption (length of MIC)
0x00 None OFF: Data are not encrypted. Data

authenticity is not validated.
NO (M = 0)

0x01 MIC-32 OFF: Data are not encrypted. Data
authenticity is validated.

YES (M = 4)

0x02 MIC-64 OFF: Data are not encrypted. Data
authenticity is validated.

YES (M = 8)

0x03 MIC-128 OFF: Data are not encrypted. Data
authenticity is validated.

YES (M = 16)

0x04 ENC ON: Data are encrypted. Data
authenticity is not validated.

NO (M = 0)

0x05 ENC-MIC-32 ON: Data are encrypted. Data
authenticity is validated.

YES (M = 4)

0x06 ENC-MIC-64 ON: Data are encrypted. Data
authenticity is validated.

YES (M = 8)

0x07 ENC-MIC-128 ON: Data are encrypted. Data
authenticity is validated.

YES (M = 16)

• 2–the key id is determined explicitly by the 1Byte Key Index and the
4Byte Key Source both subfields from the Key Identifier Field.

• 3–the key id is determined explicitly by the 1Byte Key Index and the
8Byte Key Source both subfields from the Key Identifier Field.

As pointed before, the Key Identifier field is set when the Key Identifier
Mode subfield is not zero. The Key Source subfield specifies the group Key
originator. The Key Index subfield helps to identify different Keys from an
specific Key Source.

b. Data Payload Field
The Data Payload field can have three different configurations depending on
the previously defined security fields:

• AES-CTR: All the data are encrypted using the defined 128b key and
the AES algorithm. The Frame Counter sets the unique message ID, and
the Key Counter (Key Control subfield) is used by the application layer
if the Frame Counter max value is reached.

• AES-CBC-MAC: The Message Authenticity Code (MAC) is attached
to the end of the data payload. Its length depends on the level of security

374 ZigBee PRO and ZigBee SECURITY

Figure 8.6 Data payload field.

specified in the Security Policy field. The MAC is created encrypting
information from the 802.15.4 MAC header and the data payload.

• AES-CCM: It is the mixture of the previously defined methods. The
subfields correspond with the AES-CTR mode plus the extra AEX-
CBC-MAC subfield encrypted.

iii. Frame Counter: Frame counter is a counter given by the source of the
current frame in order to protect the message from replaying protection.

8.2.1.1 802.15.4 Access control list
Each 802.15.4 transceiver has to manage a list to control its “trusted broth-
ers” along with the security policy. For this reason, each node has to control
its own Access Control List (ACL) which stores the following fields:

• Address: The address of the node we want to communicate with.
• Security Suite: The security police which is being used (AEC-CTR,

AES-CCM-64, AES-CCM-128,. . .).
• Key: The 128b key used in the AES algorithm.
• Last Initial Vector (IV) and Replay Counter: Both are the same field.

The Last IV is used by the source and the Replay Counter by the
destination as a message ID in order to avoid reply attacks.

When a node wants to send a message to a specific node or receives a
packet, it looks at the ACL to see if it is a trusted brother or not. In the

8.2 ZigBee Security 375

case it is, the node uses de data inside the specific row apply the security
measures. In the case the node is not in the list or its message is rejected or
an authentication process starts.

The ACL is used to prevent unauthorized devices from participating in
the network. The ACL is stored in MAC PAN Information Base (PIB) and is
accessed and modified similar to other MAC attributes.

8.2.2 ZigBee Security

The security measures provided by IEEE 802.15.4 and the use of ACL have
a main shortage: they do not specify how the keys have to be managed or
the type of authentication policies to be applied. These issues are managed
by ZigBee. ZigBee handled all these issues by the two extra security layers
on top of the 802.15.4 one: The Network and Application security layers.
The ZigBee security provided includes methods for key establishments, key
transport, frame protection, and device management. These services form the
building blocks for implementing security policies within a ZigBee device.

All the security policies rely on the AES 128-bit encryption algorithm so
the hardware architecture previously deployed for the link level (MAC layer)
is still valid.

8.2.2.1 ZigBee security services
As one of its defining features, ZigBee provides facilities for carrying
out secure communications, protecting establishment and transport of cryp-
tographic keys, cyphering frames (frame protection), and controlling and
managing devices. It builds on the basic security framework defined in IEEE
802.15.4. This part of the architecture relies on the correct management
of symmetric keys and the correct implementation of methods and security
policies.

The ZigBee standard supports many optional security services as (will be
discussed in detail latter):

• Encryption/decryption
• Replay Protection
• Device Authentication
• Secure over-the-air (OTA) firmware upgrades
• Logical link-based encryption
• Runtime key updates
• Network interference protection

376 ZigBee PRO and ZigBee SECURITY

The security features of ZigBee are based on certain inherent assumptions:

• ZigBee assumes an “open trust” model; that is, the protocol stack layers
trust each other and that the layer that originates a frame is responsible
for initially securing it.

• The security services cryptographically protect the interfaces between
different devices only.

• Interfaces between different stack layers on the same devices are
arranged non-cryptographically.

• The secret keys are not inadvertently revealed during key-transport. (An
exception to this is during pre-configuration of a new device, in which a
single key may be sent unprotected.)

• Availability of almost perfect random number generators.
• Availability of tamper-resistant hardware.

Based on the above assumptions, in the following we are going to explore
the security models provided by the ZigBee standard, the various keys
used for secure communication, key management methodologies suggested
by ZigBee, and other inherent security mechanisms such as authentication,
replay protection, etcetera.

8.2.3 ZigBee Security Models

The basic mechanism to ensure confidentiality is the adequate protection of
all keying material. Trust must be assumed in the initial installation of the
keys, as well as in the processing of security information. For an imple-
mentation to globally work, its general conformance to specified behaviors
is assumed.

Keys are the cornerstone of the security architecture; as such their pro-
tection is of paramount importance, and keys are never supposed to be
transported through an insecure channel. A momentary exception to this rule
occurs during the initial phase of the addition to the network of a previously
unconfigured device. The ZigBee network model must take particular care
of security considerations, as ad hoc network may be physically accessible
to external devices. Also, the state of the working environment cannot be
predicted.

Within the protocol stack, different network layers are not cryptograph-
ically separated, so access policies are needed, and conventional design
assumed. The open trust model within a device allows for key sharing, which
notably decreases potential cost. Nevertheless, the layer which creates a frame

8.2 ZigBee Security 377

Figure 8.7 The two ZigBee security models: Centralized and distributed.

is responsible for its security. If malicious devices may exist, every network
layer payload must be ciphered, so unauthorized traffic can be immediately
cut off. The exception, again, is the transmission of the network key, which
confers a unified security layer to the grid, to a new connecting device.

In general, ZigBee standard supports two types of security models as
shown in Figure 8.7:

– Centralized security model
– Distributed security model.

The two models mainly differ in how they admit new devices into the
network and how they protect the messages on the network.

Centralized Security model: This model is complex but, it is the most
secure model and involves a third logical device, the Trust center (network
coordinator). The Trust center, as mentioned in Section 8.1.2.1 could be
the coordinator device, or a device designated as the Trust center by the
coordinators of the ZigBee Network. The role of the trust center is given
before while discussing the nodes type (Section 6.4.2). The Trust center, as
discussed before, is responsible for:

• Configuring and authenticating routers and end devices that join the
network,

• Generating network key to be used for encrypted communication across
the network,

• Periodically or as required switching to a new network key. Thus, if an
attacker acquires a network key, it will have a limited lifetime before
expiring,

• Establishing a unique Trust Center link key for each device as they join
the network to securely communicate with the Trust Center, and

• Maintaining the overall security of the network.

378 ZigBee PRO and ZigBee SECURITY

Distributed security model: This model is simple, but less secure. This
model supports only routers and end devices. Routers form the distributed
network and are responsible for enrolling other routers and end devices.
Routers issue network keys (used to encrypt messages) to newly joined
routers and end-devices. All the nodes in the network use the same network
key for encrypting messages. Also, all nodes are pre-configured with a link
key (used to encrypt the network key) prior to being enrolled in the network.

Security Assumptions
Aside from the open trust model between layers, the security of ZigBee
ultimately depends on the following assumptions:

1. The safekeeping of symmetric keys. ZigBee assumes that secret keys
are not available outside of the device in an unsecured way, meaning
that all transmission of keys must be encrypted. An exception to this is
during pre-configuration of a new device, in which a single key might
be sent unprotected, creating a brief vulnerability. Here, if the keys are
stolen because the adversary has physical access to the devices, many
information then become available. ZigBee’s security policy does not
protect against attack to hardware due to its low-cost nature.

2. The protection of mechanism employed. All Router and End Device
nodes should support both centralized security and distributed security
by adapting to the security scheme employed by the network that they
join.

3. The proper implementation of cryptographic mechanism and associ-
ated security policies involved. Here, ZigBee developers are assumed
to follow the complete protocol in practice. ZigBee also assumes the
availability of almost perfect random number generators.

8.2.3.1 ZigBee security architecture
The security architecture includes security mechanisms at two layers of
the stack: the network and the APS layers. The two layers are responsible
for secure transport of their frames. APS, also, provides services for the
establishment and maintenance of security relationships. The ZDO manages
the security policies and the security configuration of a device.

ZigBee uses 128-bit keys to implement its security mechanisms. A key
can be associated either to a network, being usable by both ZigBee layers and
the MAC sublayer, or to a link, acquired through pre-installation, agreement
or transport. Establishment of link keys is based on a master key which

8.2 ZigBee Security 379

controls link key correspondence. Ultimately, at least, the initial master key
must be obtained through a secure medium (transport or pre-installation), as
the security of the whole network depends on it. Link and master keys are
only visible to the application layer. Different services use different one-way
variations of the link key to avoid leaks and security risks.

Key distribution is one of the most important security functions of the net-
work. A secure network will designate one special device which other devices
trust for the distribution of security keys: the trust center. Ideally, devices will
have the center trust address and initial master key preloaded; if a momentary
vulnerability is allowed, it will be sent as described above. Typical applica-
tions without special security needs will use a network key provided by the
trust center (through the initially insecure channel) to communicate.

Thus, the trust center maintains both the network key and provides point-
to-point security. Devices will only accept communications originating from
a key supplied by the trust center, except for the initial master key. The
security architecture is distributed among the network layers as follows:

• The MAC sublayer is capable of single-hop reliable communications.
As a rule, the security level it is to use is specified by the upper layers.

• The network layer manages routing, processing received messages and
being capable of broadcasting requests. Outgoing frames will use the
adequate link key according to the routing if it is available; otherwise, the
network key will be used to protect the payload from external devices.

• The application layer offers key establishment and transport services to
both ZDO and applications.

The security levels infrastructure is based on CCM∗, which adds
encryption- and integrity-only features to CCM.

8.2.3.2 Network layer security
When a frame originating at the network layer needs to be secured, or when a
frame originates at a higher layer and the NWK secure all frame attribute
in the NIB is TRUE, ZigBee shall use the frame-protection mechanism,
unless the security enable parameter of the NLDE-DATA. Request primitive
is FALS, explicitly prohibiting security.

The NWK layer is responsible for the processing steps needed to transmit
outgoing frames and securely receive incoming frames securely. Similar to
the MAC layer, upper layers set up the appropriate keys and frame counter
and establish which security level to use. The NWK layer sometimes broad-
cast route request messages and process received route reply messages. In

380 ZigBee PRO and ZigBee SECURITY

Figure 8.8 ZigBee frame with security at the NWK layer.

doing so, the NWK layer uses link keys if available; otherwise, it uses its
active network key. The Network layer’s frame-protection mechanism shall
make use of the AES (Advanced Encryption Standard) and use CCM AS
Specified. The security level applied to a network frame shall be determined
by the NWK security level attributed in NIB. Upper layers manage net-
work layer security by setting up active and alternate network keys and by
determining which security level to use.

The frame format explicitly indicates the key used to protect the frame.
Figure 8.8 shows an example of an encrypted network layer.

8.2.3.3 APL layer security
All the security related with the APL layers is handled by the APS (appli-
cation support) sublayer. The APS layer is responsible for the processing
steps needed to securely transmit outgoing frames, securely receive incoming
frames, and securely establish and manage cryptographic keys. Upper layers
control the security level or the management of cryptographic keys by issuing
primitives to the APS layer. Figure 8.9 shows an example of encrypted APS
layer.

The APS layer is also responsible for providing applications and the ZDO
within key establishment, key transport, and device management services.

Encrypted
PHY MAC NWK APS Auxiliary APS

SYNC HRD HRD HRD HRD HRD Payload MIC

In ZigBee 3.0, ZigBee protocol can also create an application-level secure
link between a pair of devices in the network by establishing a unique set
of AES-128 encryption keys between a pair of devices. This supports the
virtual private links between a pair of devices which needs higher security.
An example is in a functional network of home area network that connects

8.2 ZigBee Security 381

Figure 8.9 ZigBee frame with security at the APS layer.

Figure 8.10 ZigBee frame with security at the MAC layer.

many devices (lights, thermostats, occupancy sensors, door locks, window
sensors, and garage door openers), an extra layer of security qualification is
established between door locks and garage door openers to limit the ability
of an attacker acquiring the network key to inject messages that would open
the door lock; in this case, the attacker would also need the link key between
door locks and garage door openers.

[Ref. ZigBee 3.0 Task Force, ZigBee: Securing the Wireless IoT (2017)].

8.2.3.4 MAC Layer Security
The MAC layer security is based on the security of IEEE 802.15.4 (based on
its specification) augmented with CCM∗. CCM is an enhanced counter with
CBC-MAC mode operation encryption scheme, while CCM∗ is CCM with
encryption-only and integrity-only capabilities. The MAC layer uses a single
key for all CCM∗ security levels (CCM∗ throughout the MAC, NWK, and
APS layers) [5]. As part of the open trust model, the MAC layer is responsible
for its own security processing, but the upper layers determine which keys
or security levels to use. The upper layer sets the MAC layer default key to
coincide with the active network key and the MAC layer link keys to coincide
with any link keys from the upper layer [5]. MAC layer link keys (which are
set by the upper layer are preferred. Figure 8.10 shows an outgoing MAC
frame in ZigBee protocol with its security processing.

382 ZigBee PRO and ZigBee SECURITY

8.2.3.5 Trust center role
As discussed before while discussing the types of nodes, for security pur-
poses, ZigBee defines the role of Trust Center. The trust center is the device
trusted by devices within a network to distribute keys for the purposes of
network and end-to-end application configuration management. All members
of the network shall recognize exactly one Trust center, and there shall be
exactly one trust center in each secure network. In high security, commercial
applications a device can be pre-loaded with the Trust center address and
initial master key. Alternatively, if the application can tolerate a moment
of vulnerability, the master key can be sent via an in-band unsecured key
transport. If not pre-loaded, a device’s Trust center defaults to the ZigBee
coordinator or a device is designated by the ZigBee Coordinator. In low
security, residential applications a device securely communicates with its
Trust Center using the current networks key, which can be preconfigured or
sent via an in-band unsecured key transport. For purposes of trust manage-
ment, a device accepts an initial master or active network key originating
from its trust center via unsecured key transport. For purposes of network
management, a device accepts initial active network key and updated network
keys only from its Trust Center. For purposes of configuration, a device
accepts master keys or link keys intended for establishing end-to-end security
between two devices only form its Trust Center. Aside from the initial master
key or network key, additional link, master, and network keys are generally
only accepted if the originate form a device’s Trust Center via secured key
transport.

8.2.4 ZigBee Security Keys

There are three types of symmetric keys (each of length 128-bit) used in the
ZigBee standard:

• Network key
• Link key
• Master key

Network Key
Network key: It is a unique 128-bit key shared among all the devices in
the network. is used in broadcast communication and applied by NWK and
APL layers of ZigBee. Each node requires the network key in order to
communicate securely with other devices on the network. The trust cen-
ter generates the network key and distributes it to all the devices on the

8.2 ZigBee Security 383

network. The trust center regenerates this key at different intervals. A device
on the network acquires a network key via key-transport (used to protect
transported network keys) or pre-installation. There are two different types
of network keys: standard (sending network key in the open), and high-
security (network key is encrypted). The type of network key controls how a
network key is distributed and may control how network frame counters are
initialized. However, the type does not affect how messages are secured.

The Trust Center regenerates the network key at different intervals. Each
node has to get the Network Key in order to join the network. Once the trust
center decides to change the Network Key, the new one is spread through
the network using the old Network Key (see Figure 8.12 about “ZigBee
Residential Mode”). Once this new key is updated in a device, its Frame
Counter (see in the previous sections) is initialized to zero.

Link Key
Link key: is used in unicast communication and applied by the APS of the
ZigBee stack. A device acquires link keys either via key-transport (key-
load key is used to protect transported link keys), key-establishment (based
on the “master” key and other network parameters), or pre-installation (e.g.,
during factory installation). Usually, link keys related to the Trust Center are
pre-configured using an out-of-band method, for instance, QR code in the
packaging, whereas the link keys between nodes are generated by the Trust
Center and encrypted with the network key before sending it to the node.

ZigBee defines two types of link keys: global and unique (can in turn be
of two types–the first is the trust center link key, where the key is established
between the trust center and the device; and the second is the application
link key that is established between two devices in the network other than
the trust center). The type of link key determines how the device handles
various trust center messages (APS commands), including whether to apply
APS encryption or not.

A global link key has the advantage that the memory required by the
Trust Center does not grow with the number of devices in the network. On
the other hand, a unique link key has the advantage of being unique for each
device on the network and application communications can be secured from
other devices on the network, but more memory resources are needed in each
device.

Both types of keys may be used on the network, but a device shall only
have one type in use per device-key pair. Furthermore, each node may also
have the following pre-configured link keys which would be used to derive a

384 ZigBee PRO and ZigBee SECURITY

Trust Center link key (derivation is done by means of Certificate-Based Key
Establishment protocol (if SE security is enabled), APS request key method,
Touchlink commissioning, or by using Matyas-Meyer-Oseas hash function):

• A default global trust center link key defined by the ZigBee Alliance.
It has a default value of 5A 69 67 42 65 65 41 6C 6C 69 61 6E 63 65
30 39 (ZigBeeAlliance09) and is used or supported by the device if no
other link key is specified by the application at the time of joining.

• A distributed security global link key, a manufacturer specific key
used for interaction between devices from the same manufacturer.

• Install code is a preconfigured link key. All ZigBee devices can con-
tain a unique install code, a random 128-bit number protected by a
16-bit cyclic redundancy check (CRC). The Trust Center may require
that each new device use a unique install code to join a centralized
security network and the install code must match a code previously
entered into the Trust Center out-of-band (i.e., QR code). Once the
install code is verified, the joining device and the Trust Center derive
a unique 128-bit Trust Center Link Key from the install code using the
Matyas-Meyer-Oseas (MMO) hash function

• Touchlink preconfigured link key.

Master key
Master key: forms the basis for long-term security between two devices and
is used only by the APS. Its function is to keep the link key exchange between
two nodes in the Symmetric-Key Key Establishment protocol (SKKE) con-
fidential. A device acquires a master key via key-transport (key-load key is
used to protect transported master keys), pre-installation or user-entered
data such as PIN or password. Besides the above three symmetric keys,
ZigBee uses another two keys:

Key-transport key: The key-transport key is a key used to secure the trans-
mission of any key, other than the master key, from the trust center to the
requesting device.

Key-load key: The key-load key is a key used to secure the transmission of
the master keys.

Commercial Mode and Residential Mode
Each pair of devices can have set both Network and Link Keys. In this
case, the Link key is always used (more security although more memory

8.2 ZigBee Security 385

Figure 8.11 ZigBee security commercial mode.

is needed). There are two kinds of security policies which the Trust Center
can follow:

• Commercial mode, also high security mode, is designed for high
security commercial applications. In this mode, the Trust Center main-
tains a list of devices, master keys, link keys and network keys that
it needs to control and enforce the policies of network key updates
and network admittance. It also mandates the implementation of key
establishment using SKKE and entity authentication (see Figure 8.11).
This mode requires high memory resources. This mode offers a complete
centralized model for the Key Security control.

• Residential or Standard mode: designed for residential applications.
In this mode, Trust Center shares just the Network Key (it is the ideal
mode when embedded devices have to cope with this task due to the low
resources they have). It maintains a standard network key and controls
policies of network admittance. In this mode, each device that joins the
network securely shall either have a global link key or a unique link key

386 ZigBee PRO and ZigBee SECURITY

Figure 8.12 ZigBee security residential mode.

depending upon the application in use. It is required that the trust center
have prior knowledge of the value of the link key and the type (global or
unique) in order to securely join the device to the network.

◦ A global link key has the advantage that the memory required by
the Trust Center does not grow with the number of devices in the
network.
◦ A unique link key has the advantage of being unique for each

device on the network and application communications can be
secured from other devices on the network.

Both types of keys may be used on the network, but a device shall only
have one type in use per device-key pair.

This is the mode normally chosen for the Wireless Sensor Network
model (see Figure 8.12 about the “ZigBee Residential mode”).

The keys used by a centralized security model of ZigBee protocol are
summarized in Figure 8.13.

8.2.5 Key Management

One characteristic of ZigBee security model is the fact that it has a variety of
key management mechanisms:

Pre-installation: The manufacturer installs the key into the device itself. In
the case when the device has more than one preinstalled key, the user can
select one of the installed keys by using a series of jumpers in the device.

Key establishment: This is a local method of generating link keys based
on the master key. Different security services of the ZigBee Network use a

8.2 ZigBee Security 387

Figure 8.13 ZigBee security key summary for centralized model.

key derived from a one-way function (with link key as the input) to avoid
security leaks due to unwanted interactions between the services. The use
of uncorrelated keys ensures logical separation of the execution of different
security protocols. This key-establishment is based on the SKKE (Symmetric
Key Establishment) protocol. The devices involved in communication must
be in possession of the master key, which may have been obtained through
pre-installation or key transport or user-input.

Key transport: The network device makes a request to the Trust Center for a
key to be sent to it. This method is valid for requesting any of the three types
of key in commercial mode (High security mode), whereas, in residential

388 ZigBee PRO and ZigBee SECURITY

mode (Standard mode), the Trust Center holds only the network key. The key-
load key is used by the Trust Center to protect the transport of the master key.

Certificate-Based Key Establishment: In addition to the above, in the
centralized model, keys can be distributed using Certificate-Based Key
Establishment protocol (CBKE). CBKE provides a mechanism to negotiate
symmetric keys with the Trust Center based on a certificate stored in both
devices at manufacturing time and signed by a Certificate Authority (CA).

From the certificate, it is possible to generate a public key and other secu-
rity elements. The CBKE method provides a mechanism to safely identify a
device and to allow it to start communicating. A key establishment procedure
involves the following four steps:

1. Exchange static data (certificate validation)and ephemeral data
2. Generate the key
3. Derive a Message Authentication Code(MAC) key and key data
4. Confirm the key using the MAC

For the second and third steps, the key establishment procedure refers to
the Elliptic Curve Menezes-Qu-Vanstone (ECMQV) key agreement scheme
and a key derivation function respectively. At the end of this process, the Trust
Center and the authenticating device share a new link key that will be used to
protect data communications between them.

8.2.5.1 Security key modification
In a centralized security model, the TC periodically creates, distributes, and
switches the network key to limit the time that an attacker acquires a network
key. The new network key is encrypted with the TC-generated Trust Center
Link Key. When the new key first reaches the nodes, the transported key
is automatically saved but not activated. A node can store more than one
network key while identifying the current one with a unique ’key sequence
number’ assigned by the TC. Similarly, application link key can also be
replaced with the new link key generated by the TC. There is also over-the-
air (OTA) updates that allow a manufacturer to add new features, fix defects
in the product, and apply security patches as new threats are identified. OTA
updates create potential security vulnerability if the protocol does not provide
enough protection or the device manufacturer does not use all the available
protection. ZigBee provides multi-layered security to update devices and
assure that updated code images are not malleable. It encrypts all image
transfers OTA with a unique key, signs the OTA image with another unique
key, then encrypts the image during manufacturing so that only the end

8.2 ZigBee Security 389

product can decrypt it. The image might be stored in on-chip memory that
is configured with the debug read-back feature disabled preventing reverse
engineering with standard debugging tools, which is a common vulnerability
of other solutions. Once the encrypted image is received, its secure bootloader
decrypts the image, validates the signature, and updates the device. The
bootloader also checks the validity of each image each time the device boots
to prevent it from updating and return to using the previous known good
image if the image is invalid (detecting image corruption quickly).

8.2.6 ZigBee Stack Security Measures

The ZigBee standard supports the following optional security services:

Encryption/decryption: ZigBee frames can be optionally protected with
the security suite AES-CCM* to provide data confidentiality, data authen-
tication and data integrity. AES-CCM* is a minor variation of AES
(Advanced Encryption Standard) with a modified CCM mode (Counter with
CBC-MAC).

Figure 8.14 below shows the role of AES-CCM* in data authentication
and confidentiality. On the transmitter side, the plaintext in the form of
128-bit blocks of data enters the AES-CCM*. The responsibility of the AES-
CCM* is to encrypt the data and generate an associated MIC, which is sent
to the receiver along with the frame. The receiver uses the AES-CCM* to
decrypt the data and generate its own MIC from the received frame to be
compared with the received MIC (data integrity). A MIC provides stronger
assurance of authenticity compared to the CRC. The MIC generated by the
CCM* detects intentional and unauthorized modifications of the data as well
as accidental errors.

Figure 8.14 Role of AES-CCM* in data authentication and confidentiality.

390 ZigBee PRO and ZigBee SECURITY

The CCM* is referred to as a generic mode of operation that combines
the data encryption, data authentication and, data integrity. The CCM* offers
encryption-only and integrity-only capabilities as shown in Figure 2 above.
The nonce used in the process is a 13-octet string constructed using the
security control, the frame counter, and the source address fields of auxiliary
header. The size of the MIC can be 32 bits, 64 bits, or 128 bits.

Replay Protection: Each node in the ZigBee network contains a 32-bit frame
counter that is incremented at every packet transmission. Each node also
tracks the previous 32-bit frame counter of each of device (node) that it is
connected to. If a node receives a packet from a neighboring node with the
same or lesser frame counter value than it had previously received, the packet
is dropped. This mechanism enables replay protection by tracking packets
and dropping them if they were already received by the node. The maximum
value that a frame counter can be 0XFFFFFFFF, but if the maximum value
is reached, no transmission can be made. The only time the frame counter is
reset to 0 is when the network key is updated.

Device Authentication: The ZigBee standard supports both device authenti-
cation and data authentication. Device authentication is the act of confirming
a new device that joins the network as authentic. The new device must
be able to receive a network key and set proper attributes within a given
time to be considered authenticated. Device authentication is performed by
the trust center. The authentication procedure is different in residential and
commercial modes.

In residential mode, if the new device that joins the network does not have
a network key, the trust center sends the network key over an unprotected link,
which causes a moment of vulnerability. If the new device already has the
network key, it must wait to receive a dummy (all-zero) network key from
the trust center as part of authentication procedure. The new device does
not know the address of the trust center and uses the source address of this
received message to set the trust center address. The joining device is then
considered authenticated for residential mode.

In commercial mode, in contrast, the trust center never sends the network
key to the new device over an unprotected link. But the master key may be
sent unsecured?in commercial mode if the new device does not have a shared
master key with the?trust center. After the new device receives the master
key, the trust center and the new device start the key establishment protocol
(SKKE). The new device has a limited time to establish a link key with the
trust center. If the new device cannot complete the key establishment before

8.2 ZigBee Security 391

the end of the timeout period, the new device must leave the network and retry
the association and authentication procedure again. When the new link key is
confirmed, the trust center will send the network key to the new device over
a secured connection. The joining device is now considered authenticated for
commercial mode.

Furthermore, ZigBee also supports device-unique authentication at join-
ing such as Touchlink commissioning-which is an easy-to-use proximity
mechanism for commissioning a device into a network. This method works
by the Touchlink ‘initiator’ determining the proximity of the target device (to
be commissioned) and negotiating/transferring network parameters.

Secure over-the-air (OTA) firmware upgrades: OTA updates allow a man-
ufacturer to add new features, fix defects in its product, and apply security
patches as new threats are identified. However, OTA updates also represent
a potential security vulnerability if the protocol does not provide ample
protections, or the device manufacturer does not use all available safeguards.
ZigBee devices and associated silicon platforms provide multi-layered secu-
rity to update devices in the field and assure that updated code images have
not been modified maliciously:

• First, the ZigBee standard provides a method to encrypt all image
transfers over the air with a unique key.

• Second, the standard provides a method to sign the OTA image with
another unique key.

• Third, the image may be encrypted during manufacturing so that only
the end product contains the key to decrypt it.

• Finally, the image may be stored in on-chip memory that is configured
with the debug read-back feature disabled, preventing reverse engineer-
ing with standard debug tools, which is a common vulnerability of other
solutions.

During an OTA upgrade, once a device receives an encrypted image,
its secure bootloader decrypts the image, validates the signature, and then
updates the device. Furthermore, the bootloader checks the validity of the
active image each time the device boots. If the image is invalid, the bootloader
prevents it from updating and returns to using the previous known good
image. Thus, image corruption will be quickly detected and the system
operator can take action.

Logical link-based encryption: Another key security tool is the ability to
create an application-level secured link between a pair of devices in the

392 ZigBee PRO and ZigBee SECURITY

network. This is managed by establishing a unique set of AES-128 encryption
keys between a pair of devices. This allows logical, secured links between any
two devices in the network, thus supporting “virtual private links” between a
pair of devices in a network with many others. This measure limits the ability
of an attacker that acquires the network key from intercepting or injecting
messages that other devices would act upon.

Runtime key updates: periodically or as when required, the trust center takes
the initiative to change the network key. The Trust center generates a new
network key and distributes it throughout the network by encrypting it with
the old network key. All devices continue to retain the old network key for
a short period of time after the update until every device on the network has
switched to the new network key. Also, the devices, on receiving the new
network key initialize their frame counter to zero.

Network interference protection: in low-cost ZigBee nodes, using a band-
select filter might not be even an option due to cost or node size limitations
to protect the network from interference. However, basic properties of IEEE
802.15.4 and ZigBee network such as low RF transmission power, low duty
cycle, and the CSMA/CA channel access mechanism help reduce the effect of
the presence of a ZigBee wireless network on other nearby systems and vice-
versa. There are two approaches to improving the coexistence performance
of ZigBee networks: collaborative and non-collaborative.

In collaborative methods, certain operations of the ZigBee network and
the other network (e.g., an IEEE 802.11b/g network) are managed together.
Every time one network is active, the other network stays inactive to avoid
packet collisions. In this method, there must be a communication link
between the ZigBee network and the other network to implement and manage
the collaboration.

The non-collaborative methods are the procedures any ZigBee network
can follow to improve its coexistence performance without any knowledge
regarding the operating mechanism of the nearby interfering wireless devices.
This method is based on detecting and estimating interferences and avoiding
them whenever possible. Some of the non-collaborative methods that can be
used in ZigBee wireless networking include:

• Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).
• Signal spreading-spreading method such as DSSS allows the desired

signal to have the advantage of processing gain over any interferer that
resides in the same frequency band. Therefore, the signal spreading
generally improves the robustness of a network against interferers.

8.2 ZigBee Security 393

• Dynamic RF output power control-adjust the RF output power of the
transmitter based on the channel condition and the distance between
the nodes. Reducing the transmitter output power decreases the interfer-
ence with other nearby wireless devices, but the recipient of the signal
becomes more susceptible to interference.

• Mesh networking and location-aware routing-If a certain router node in
the network is constantly in the presence of strong interferers that cause
frequent failure in packet delivery to the next hop, a mesh network may
have the option of selecting an alternative path to carry the message
to the final destination and avoid the router located close to a major
source of interference. This is sometimes referred to as path diversity. In
location-aware routing, the information regarding the areas of possible
high interference, if known, can be taken into account in calculating link-
cost functions. In this way, the packet traffic flow is directed away from
the high-interference areas whenever possible. But the interferers still
affect the transmissions initiated by, or intended for, the nodes within
the high-interference areas.

• Frequency Channel Selection-Changing the frequency channel when the
energy of the interferer signal in the desired channel is unacceptable can
be a simple way of addressing the interference problem. ZigBee provides
frequency agility capability that allows the entire network to change
channels in the face of interference. If the frequencies of operations
and bandwidths of the interfering signals in the nearby networks are
known, the frequency channel of the ZigBee network can be selected
accordingly to minimize the effect of interfering signals. This is referred
to as channel alignment.

• Adaptive Packet Length Selection-is based on channel condition. Reduc-
ing the size of the packet is normally considered a way of improving the
PER in presence of interferers. Generally speaking, a smaller packet has
a better chance of receiving the destination before an interferer appears
in the same frequency channel. However, some experiments have shown
that reducing the packet length does not always result in better PER
performance.

8.2.7 ZigBee Vulnerabilities

The security issues mentioned above, can achieved the confidentiality,
integrity and, authentication but they cannot be considered as a comprehen-
sive security suite that can stop different attacks and vulnerabilities. This

394 ZigBee PRO and ZigBee SECURITY

section explores ZigBee vulnerabilities and some practical attacks that could
be performed on a ZigBee network.

Vulnerabilities in a ZigBee network can be attributed to protocol issues
(certain combination of protocol feature choices renders the network vul-
nerable) or poor implementation of the protocol by the developers. Some
vulnerabilities include the following.

8.2.7.1 Implementation vulnerabilities
Insecure key storage: ZigBee protocol’s security is based on the assumption
that its keys are stored securely. Usually, the coordinator is preconfigured
with the network key and, other devices such as routers and end devices are
pre-configured with the link key. If the keys (network, link, or master) are
insecurely stored; extraction of the keys from the device’s firmware becomes
easy. Hence, when a node is compromised this way, a hacker can extract the
network key and compromise the whole network or extract the link key and
obtain all the unicast communication of the that device as well.

Insecure key transportation: In standard security mode, any node that
joins a ZigBee network obtains its network key over-the-air, sometimes in
plaintext. As a result, the key can be obtained by merely eavesdropping on
the network. As the network key is shared among all devices, compromise of
the network key compromises the whole network.

Reusing Initialization Vector (IV) value with the same key is a security
vulnerability inherited by ZigBee from 802.15.4. Reusing nonce values (Ini-
tialization Vector (IV)) with the same key introduces a vulnerability that
enables an attacker to recover two plaintexts using their cipher-texts in the
AES-CTR mode (recovering the two plaintexts is a simple operation; XOR
operation on the two cipher-texts has been encrypted with the same keys and
nonce values). This attack is known as the same-nonce attack. There are 2
occasions that allow the reuse of nonce with the same key:

• Multiple Independent Access Control Entries: 802.15.4 radio devices
have an Access Control List (ACL) for configuring the security suite that
is to be used. Since each chip has multiple independent ACL, the same
IV or nonce could be reused with the same key.

• Repopulating Access Control Table: this happens when a ZigBee device
is inadvertently powered off, resulting in the loss of ACL entries and
the need for the entries to be repopulated. If the last nonce states are
unknown after the power failure, the system might reset the nonce states

8.2 ZigBee Security 395

to a default value. This reset action increases?the chance of reusing the
same nonce with a key that has been used before the power failure and
could lead to the same-nonce attack.

Sending security headers in clear text: Auxiliary frames provide semantic
security and replay protection. When an adversary crafts an invalid security
header without knowing the key generating the MIC, although the integrity
attack fails, the recipient device in fact expends certain amount of energy
receiving and processing those bogus messages. If an adversary sends scads
of such crafted messages to the victim device, a significant amount of energy
will be dispensed by the device leading to its battery depletion. This attack
is capable of reducing the battery life of a device from years to days [ghost
attack or ghost-in-wireless].

Predictable sensor polling rates: ZigBee end devices remain in sleep mode
for certain periods of time to conserve energy. They wake up at regular
intervals to poll the coordinator for data inputs or wake up when the coor-
dinator beacon so. However, knowing the polling rate will help an attacker to
relay crafted messages to the end device at regular intervals even if it wasn’t
required, thereby forcing the end device to dispense excess energy for polling
(energy is dispensed when the device navigates from sleep mode to active
mode) and processing the received messages. (Vidgren et al. demonstrates
how it is possible to discharge the batteries of a sensor if the attacker knows
the adopted sensor polling rate.)

8.2.7.2 Protocol Vulnerabilities
Vulnerability has many reasons. It starts by the protocol itself followed by, as
in Section 8.2.7.1, vulnerability in implementation and others. In this section,
ZigBee protocol vulnerability is discussed.

Default link key values are used by manufacturers to provide interoperability
for all ZigBee devices. For example, a case where a user has a new ZigBee
device to be added to his/her network, but the new device has no specific
authorization associated to it, the ZigBee network will allow a default link key
to fall back to at the startup time. Therefore, an attacker can join the network
by using an unknown type device and collect the data needed to temper
the network’s functionality. SEC Consult’s research has also revealed that
millions of IoT devices are directly accessible via the Internet, and attribute
it to insecure default configuration.

396 ZigBee PRO and ZigBee SECURITY

Unauthenticated acknowledgment packets (ACK): The 802.15.4/ZigBee
specification does not provide integrity and confidentiality protection for
acknowledgment packets. Hence, an unauthenticated remote attacker can
spoof acknowledgment packets to cause a remote node to believe an
acknowledgment was received by the intended node. This attack (association
flooding) is a direct consequence of man-in-the middle attack.

Man-in-the-middle attack instance: A sender device sends a packet to the
receiver and waits for an ACK confirming that the receiver has received
the packet in order to continue its operation. In case an ACK was not
received, the sender will send the packet again. However, in case the network
is compromised and the ACK packet is not authenticated, an attacker can
intercept the packet and send fake ACK to the sender, thereby forcing the
sender to send all subsequent packets to the attacker.

CSMA/CA trade-off: At the MAC layer, an attacker can flood a channel
with frames, thereby forcing the network to deny any communication among
devices. This is made possible because ZigBee uses CSMA/CA (if it is run-
ning in non-beacon mode) and devices that use CSMA/CA communication
always back off if a channel is busy, thereby resulting in an inadvertent DDoS.
Exposed and hidden node problems in a network can also be considered
shortfalls of CSMA/CA mechanism.

Unencrypted keys: When a non-preconfigured device joins a network, a
single network key (default link key) is sent unencrypted by the Trust Center
(at least in residential mode). This one-time transmission of the unprotected
key results in a short timeframe of exploitability. If the key could be sniffed
by an attacker, the active network key stands compromised and consequently
the whole ZigBee network communication is compromised.

Vidgren, et al. demonstrated a sniffing attack on a ZigBee net-
work that sends the network key unencrypted by having a node (Atmel
RZRAVENUSB) interact with a ZigBee device and collecting their wireless
transmissions/interactions. The captured packets were later analyzed using
open source tools (KillerBee) to obtain the network key.

Predictable PAN IDs and limited channels: In ZigBee protocol, a rejoining
device joins a network when its saved parameters match the PAN ID and the
channel that the network is operating on. The PAN ID is a 64-bit value, and
can be brute-forced (It will take some processing time to find the right PAN
ID, but eventually an attacker can find its value). Also, the channel numbers

8.2 ZigBee Security 397

that ZigBee operates on is limited to 16 which makes it easy to find the correct
network channel as well.

Insufficient replay protections: You might argue that ZigBee has replay
attack protection mechanisms as part of its specification; however, 802.15.4
specification has limited replay protection mechanisms that even an encrypted
message cannot complement. Hence, a crafty attacker can replay any previ-
ously observed traffic (ZigBee has the advantage of preventing the attacker
from modifying the packets) until key rotation (provided 802.15.4 has no
authentication mechanisms enabled). There are several other attacks that
accompany replay attack:

• DDoS: A malicious user can receive packets at one point in the network
and then replays these packets in other areas to interfere with the overall
network functionality (wormhole attack).

• Temporal Key Integrity Protocol (TKIP): MIC attack in IEEE 802.11
networks is the one in which an attacker decodes the payload one byte
at a time by using multiple replays and observing the response over the
air on MIC failures.

Over the years, researchers have also succeeded in implementing the
replay attack using the “Killer Bee” tool made by Joshua Wright and have
clearly illustrated the severe problems it can cause. For example, medical
devices such as Fitbit, pacemakers and insulin pumps which replay old
messages can lead to erroneous outputs and dangerous events (loss of life).

Signal interference: Although ZigBee has certain network interference pro-
tection techniques established, they are however not comprehensive and slow
to execute, allowing an attacker to take control of the frequency channel the
network is operating in. This phenomenon is prominent in large networks,
where transmissions are much more frequent and the signals can be detected
quite efficiently.

Unauthorized network commissioning: The ZigBee device connects to the
first network that is made available to it without any further interaction from
the ZigBee device’s user. Hence, it is possible to force a ZigBee device to
join a fake network (even without the knowledge of the active secret keys
expected by the ZigBee device if it were rejoining a network). An attacker
could do this by sending a “reset to factory default” command to the device
and wait on the device to look for a ZigBee network to connect to.

398 ZigBee PRO and ZigBee SECURITY

Lack of DDoS Protection Mechanisms: A denial-of-service (DoS) attack
causes a node to reject all received messages. In a ZigBee network, DoS can
be achieved by:

• Maximizing the frame counter: The attacker composes a message that
includes random content (legit is fine too) as the encrypted payload
(without knowing the security key), sets the frame counter to the max-
imum, and sends it to the node. By setting the frame counter to the
maximum, any legitimate frame that arrives at the node after the attack
will be automatically rejected by the recipient device because the frame
counter of the received message will be less than the one recorded by the
node at the time of the attack. This attack is made possible in situations
where MIC of the packet is not verified.

• Flooding the network with messages (legit or spoofed packets) or
frames. Krivtsova et al. proposed the broadcast storm attack that
involved clogging the network by sending numerous broadcast packets.

• Altering routing tables to redirect all the traffic of the network to a bogus
device (sinkhole attack) by purposely sending messages to construct
artificial routing paths or introduce loops to the routing process of
legitimate sensors. As a consequence, transmission of packets among
devices is hindered, resulting in a DDoS.

• Using jamming techniques (signal jamming, reflexive jamming, chang-
ing the Power Spectral Density, etc.) to trick the user to initiate a factory
reset or preventing the devices from communicating. This technique can
also force a rejoin and reestablish the attack time-frame to sniff the
network key.

Re-using link key: ZigBee allows link keys to be re-used for rejoining the
network. Hence, it would make it possible for an attacker to copy a device’s
addressing credentials and spoof a network layer insecure rejoin using a
separate device. This would result in the Trust Center passing the network
key encrypted with the previously used link key to the cloned device. As a
consequence, an attacker could gain complete access to the network key and
hence the entire network.

TouchLink Factory reset: It is legitimate for a Touchlink initiator to send a
factory-reset command to a target node already?in the network, allowing the
target node to be removed from the current network and moved to another
network. The process is aptly known as stealing. However, it provides a
window of opportunity for an unauthorized person to move a device into
another network of his/her for malicious intent.

8.2 ZigBee Security 399

Privacy issues: ZigBee protocol/network, similar to other wireless networks
is susceptible to statistical attacks. Gleaning network traffic can reveal, with
certain accuracy, the nature of the functionality implemented, thereby aiding
the attacker to work around it to perform his or her malicious deed. However,
a statistical attack on a ZigBee network can compromise ones Privacy as well.
For instance, in home automation systems, an attacker can gather information
to ascertain if tenants are at home or not. This information can aid an attacker
to perform an informed robbery.

8.2.7.3 Security risks
The main security risks for a ZigBee wireless network are:

• Theft of sensitive data from a node–This may be user data that can be
used for criminal purposes but is more likely to be network security data,
such as encryption keys, that will allow access to the node and network.
It is therefore important to carefully select and protect the security keys
used by the network.

• Theft of a node–A node may be stolen in the sense that it is removed
from the current network and moved to another network where it can
be accessed and controlled. This is a particular risk when Touchlink
commissioning has been used (described later), but there are ways to
prevent it.

• Unauthorized control of a node–This may result from the above thefts or
from replay attacks in which genuine over-the-air command frames are
captured and re-sent to the node at a later time to achieve subversive
control. The frame counters incorporated in ZigBee security help to
defeat this kind of breach but other measures, such as regularly changing
the network key, can also help.

• Loss of network service–This may result from the jamming of the radio
channel or whole radio band by interference. Applications can employ
frequency agility to overcome this kind of impediment by moving the
network to a quieter channel.

8.2.7.4 Security key weaknesses
The least secure element of a ZigBee network is the network key. It is used
by all nodes of the network and although it is securely passed to a joining
node encrypted with a pre-configured link key, this link key is likely to be of
the ‘global’ type and susceptible to exposure. Therefore, depending only on
the network key leaves a network vulnerable. A ZigBee application profile
(such as Home Automation) defines the level of security that is appropriate

400 ZigBee PRO and ZigBee SECURITY

Figure 8.15 Security problems start with pre-configured link key.

for itself. For example, Home Automation uses the well-known ZigBee 09
global pre-configured link key to authenticate devices onto the network and
distribute the network key. ZigBee 3.0 has no application profiles but defines a
base device behavior (BDB) that adopts and adapts the security functionality
of the Home Automation profile. It permits use of the ZigBee 09 key, as
this allows backward compatibility with legacy Home Automation devices.
However, the use of this global key will create a hole in network security (see
Figure 8.15). To achieve a high level of security, ZigBee 3.0 allows the use of
install codes (see Figure 8.16).

8.2.8 Measures for Maximizing ZigBee Security

This section introduces some of the measures that can be used to increase the
security of the keys .The work done by NXP Laboratories UK is the base of
the discussions.

8.2.8.1 Protecting the network key
The basic security provided by the ZigBee network is the encryption of
data using the network key. This key is transported to the joining device
during the authentication process. The network key is never sent over-the-air
unencrypted. It is always encrypted with a pre-configured link key, but having

8.2 ZigBee Security 401

Figure 8.16 ZigBee 3.0 security starting with install code.

knowledge of the link key makes obtaining the network key possible by cap-
turing over-the-air packets using an IEEE802.15.4 packet sniffer application.
Exposing the network key could have a very large impact on the security of
the network and its vulnerability to security attacks and hacks. Therefore, the
choice and distribution of the pre-configured link key are critical. The ZigBee
specification does not mandate how to distribute the link keys and it is left to
each vendor to use a mechanism for securing the keys that is suitable for their
products. To properly protect the network key over-the-air, the user has the
choice of using an explicit 16-byte link key which is unique for each device
or using install codes, described later. The use of a pre-configured link key to
protect the network key is illustrated in Figure 8.15. This scheme is typical
in a network based on a legacy ZigBee application profile, such as Home
Automation, and may result in compromised security.

Install Codes
In ZigBee 3.0, an install code can be used to create the link key used to
authenticate a node into a centralized security network and pass the network

402 ZigBee PRO and ZigBee SECURITY

key to the node. A random install code is assigned to the node in the factory
and programmed into the node. The ZigBee stack within the node derives
a link key from the install code using a Matyas-Meyer-Oseas (MMO) hash
function. The install code must also be communicated (by unspecified means)
for the purpose of commissioning the node into a network. During commis-
sioning, the install code is entered into the Trust Center and the ZigBee stack
again derives the same link key from the install code. The Trust Center and
node can subsequently use the link key in joining the node to the network. An
install code is made up of 6, 8, 12 or 16 bytes with a 2-byte CRC appended
to the end. Therefore, from the user’s viewpoint, the install code consists
of 8, 10, 14 or 18 bytes. It is recommended that install codes are 16bytes
long (18bytes including the CRC). They should be randomly generated and
not tied to any other credentials of the node, such as its IEEE/MAC address.
Protecting the install code is vital and it should never be put on the outside
of the product packaging or directly on the product. ZigBee 3.0 also allows
a unique link key to be negotiated between the Trust Center and node in
order to enhance the security of communications between them. The use of
an install code and derived link key to protect the network key is illustrated
in Figure 8.16, which also includes the negotiation of a unique link key. This
scheme is available for networks that employ the ZigBee 3.0 standard and
will result in very high level security.

8.2.8.2 Rolling the network key
Once a device has left a network, it is possible to obtain the network creden-
tials from the device, including the network key and any link keys that it had
for peers in the network. To prevent this from compromising the network, it
is recommended that when a device leaves the network, the Trust Center rolls
the network key to a new key, as follows:

1. The Trust Center broadcasts a new network key (with a new key
sequence number) to all the nodes of the network.

2. The Trust Center then broadcasts a Switch Key command (with the new
key sequence number) to all the nodes of the network.

3. Each device in the network switches to the new network key. Any
devices that do not receive the new network key will try to find the
network again and will receive the new network key encrypted with the
last negotiated Trust Center link key.

It is possible to prevent replay attacks on devices on the network by
simply rolling the network key at regular intervals. However, this would be a

8.2 ZigBee Security 403

huge overhead if done every time a device joins the network and it is more
feasible to do it when network commissioning is opened and/or when the
network is closed for any further joins. During normal network operation,
rolling the key every fourth night would be a reasonable time frame.

8.2.8.3 Preventing spoof leave notifications key
It is possible to repeatedly issue a spoof Leave request from a non-network
device for a device in the network. This would result in the Trust Center
and/or the parent of the victim device losing all network information for
the device, including its keys. This renders the device stranded, outside
the network. This situation can be prevented by the Trust Center or parent
not clearing network data for the device on receiving a Leave request that
supposedly originates from the device, but only when a Leave request has
been issued by the parent of the device. If a device does attempt a (genuine)
self-leave then it is prudent for the removal of the network credentials to
require manual interaction by an authorized person. In order to avoid the
unnecessary or accidental removal of a device from the network:

• The management leave server should be disabled, since the Management
Leave command is only network key encrypted.

• Leaves should be disabled on routing devices so that a network layer
Leave command is ignored, since this command is only network key
encrypted.

To cause a device to leave the network, it is safest to allow this action only
through Remove commands issued by the Trust Center, as this requires link
key encryption.

8.2.8.4 Preventing rejoin security attacks
When a device joins the network, a pre-configured link key is used to join the
network and decrypt the network key received from the Trust Center. If the
same link key is used for every join attempt, it opens up the system to rejoin
security attacks. Therefore, the same link key should not be used for any
subsequent rejoins. In more detail, if the same link key is allowed to be used
for rejoins, it is possible to copy a device’s addressing credentials and spoof
a network layer insecure rejoin using a separate device. This would result in
the Trust Center passing the network key encrypted with the previously used
link key to the cloned device. If the network key finds its way into the wrong
hands, it compromises the entire network.

To prevent this type of attack, the ZigBee 3.0 mechanism of Trust Center
link key negotiation should be used. In this scheme, once the device has joined

404 ZigBee PRO and ZigBee SECURITY

the network, it is issued with a new Trust Center link key which is randomly
generated by the Trust Center and replaces the original link key. Thus, the new
link key (instead of the original link key) is subsequently used for transporting
the network key during future rejoins. It is also recommended that rejoins are
disabled by setting the Trust Center policy to disallow automatic rejoins with
the pre-configured link key. Then if a device needs to rejoin the network, it
will perform a fresh join with the pre-configured link key but, in this case, it is
advised that the applications implement a mechanism for manual intervention
at the Trust Center by the user in order to authorize the join.

8.2.8.5 Persisting essential data when using cloud services
The storage of network parameters in a remote location or in the Cloud
provides huge benefits in terms of security, memory management and remote
access. The weakness of this approach is that access to the network parame-
ters is lost when the connection to the Cloud or remote location goes down.
It is recommended that only non-essential data are stored away from the
network nodes. Essential data should be persisted on the nodes themselves,
so that they continue to operate through the loss of backhaul links or network
issues. Essential data include the following:

• Network key and link key
• PAN and channel information
• Authentication and commissioning data
• Factory-default settings

8.2.8.6 Key establishment cluster and security certificates
The ZigBee Smart Energy profile includes a Key Establishment cluster which
provides the functionality to authenticate devices using very strong Elliptic
Curve Cryptography (ECC) based security. This security scheme generates
and employs unique link keys for communications between pairs of nodes. It
does, however, require digital security certificates for the joining nodes and
Trust Center, and is reliant on the availability of these certificates. There are
a number of certification authorities that can issue these certificates and this
brings its own complications. Certificates issued by different authorities are
likely to be different and a device may need to hold certificates and root keys
from multiple certification authorities. This has huge memory implications
for the devices, which have small memory footprints. The only practical
ways of managing the use of security certificates on devices with very limited
memory are to either use only devices that have certificates issued from the

8.2 ZigBee Security 405

same authority or rely on installing the certificates into the devices using a
custom validation and certification method.

8.2.9 ZigBee Security–Conclusion

[NXP Laboratories UK member of ZigBee came in their document number:
MAXSECZBNETART REV 0 with the next conclusions]

The ZigBee protocol defines a highly secure operating environment but
does not mandate the level of security that a product needs to provide. This
is a choice for the product manufacturer, depending on how sensitive the
handled data are, as well as how easily and securely the product should
interoperate with products from other manufacturers.

• If data security is important then care must be taken to avoid eaves-
dropping as well as rejoin and replay attacks, and it is absolutely
critical to protect the network key that is used to secure all network
communications.

• If backwards compatibility and ease-of-use are requirements then there
is a possible vulnerability introduced by using well-known keys to
securely distribute the network key. The use of install codes and Trust
Center link keys is highly advisable to ensure that the network key is
secured when passing it to joining nodes.

• If the intention is to produce highly-secured network applications, as
a minimum they should be designed to employ link key security and
not just network key security. In addition, use of the Key Establishment
cluster should be given due consideration, with its support of ECC-
based key establishment, digital certificate management and choice of
certification authority.

• If Cloud services are used by low-power wireless network products,
these devices will also be vulnerable if the connection to the Internet and
Cloud is not properly secured. So the end-to-end security of the system
should also be considered.

• The ZigBee network should also not be fully reliant on such backhaul
connections; otherwise, the loss of a connection could render the Zig-
Bee network unusable. There should be some autonomy for network
recovery and maintenance in the event of the loss of backhaul links.

• The wireless medium can be contaminated with interference and it is
possible to cause sufficient interference for two devices not to be able
to communicate effectively. It may be possible to overcome such inter-
ferers by building frequency agility into the network and it is strongly

406 ZigBee PRO and ZigBee SECURITY

recommended that this is considered for the final implementation of the
system.

• Outside the scope of the ZigBee protocol itself, the encryption of pro-
gram memories and firmware as well as read/write protection on devices
should be considered. Erasing the security credentials of any device that
is no longer in use is also advisable.

The level of security that is realistically required depends on the nature
of the product but manufacturers should not overlook security for the sake
of cost. The security measures implemented in a product should form part
of the product specifications and features list in the advertising, marketing,
documentation and packaging.

8.3 Applications of ZigBee Technology

The applications of this technology include the following:

1. Collection of Medical Data
This technology is used in home patient monitoring where collection of
medical data is crucial. In this system, a patient wears a ZigBee device which
collects the information like the pulse rate, temperature of the body, blood
pressure etc.

2. Intelligent Smoke Alarms
This technology is used in intelligent smoke alarms. This system consists of a
smoke detection module, a wireless communication module, data collection
module and an intelligent identification module which differentiates the types
of smokes, that is, smoke arising from cooking, from accidental fire, foggy
air etc. thus improving the safety of the user.

3. Home Automation System
This technology is used in home automation system leading to create smarter
homes that has enhanced the comfort, convenience, security of the users.
Smart Air conditioners, smart TV’s, smart refrigerator, smart home alarms
can be made inter operable using this technology.

4. Wireless Sensor Networks
An intelligent smart wireless sensor network system helps to gather informa-
tion and to monitor air quality, weather conditions, traffic etc.

8.4 Advantages of ZigBee Technology 407

Figure 8.17 Applications of ZigBee technology.

8.4 Advantages of ZigBee Technology

8.4.1 ZigBee Technology Advantages

• ZigBee is a popular technology for smart home, because it offers some
distinct advantages over other wireless technologies:

• For starters, ZigBee communication is two-way: devices confirm com-
mands given to them. This makes ZigBee devices very reliable. It makes
sure devices never miss a command, and allows your sensors to dub as a
smart security system.

• ZigBee is also relatively standardized, especially in lighting. Carried by
big brands such as Philips Hue and IKEA, ZigBee has a universal basis
for lighting control. That is why you can pair your lights from IKEA to
a ZigBee hub from a different brand like Hue.

• Another advantage is the fact that ZigBee uses the same wireless band
as Wi-Fi and Bluetooth do: 2.4 GHz. This means that devices can be
certified relatively simple and can immediately be sold worldwide. Z-
Wave devices on the other hand need different frequencies, certifications
and requirements for different regions.

• The technology also requires very little power. It allows very small
devices like a Xiaomi Door Sensor to run on a single battery for years.

408 ZigBee PRO and ZigBee SECURITY

It’s also fairly mainstream and affordable–ZigBee devices usually cost
less than their counterparts on Z-Wave.

• ZigBee is built as a mesh network. Mesh networks allow all the devices
to talk to each other and repeat commands. In practice, it means range
and reliability of the whole network improve with every ZigBee device
you add.

• It is more stable and reliable.
• It is less complex than Bluetooth.
• Installation is easy and consumes less power.
• Its protocol patent is free and hence cost effective.
• Easier to control and monitor home devices with a touch of a button.

8.4.2 Disadvantages

• Every technology has its trade-offs. For ZigBee, this is mainly range.
This issue is solved partly because ZigBee uses mesh networking, as
described above. When you do not have a mesh, however, the point-
to-point range of ZigBee is fairly limited, especially when compared to
technologies like Z-Wave or 433 MHz. As ZigBee works on the 2.4 GHz
band and is energy-efficient, the direct range is often limited to 15-20
meter in open air.

• Another thing in ZigBee is the quality and compatibility difference
between devices. Where ZigBee light bulbs and plugs are pretty evolved,
some other products are less mature. An example is the 5 button dimmer
from IKEA, which cannot be paired properly to a ZigBee hub like
Homey.

• You cannot connect ZigBee devices directly to your phone. Your phone
does not feature a ZigBee antenna. So you always need a smart home
hub to connect with ZigBee devices. Luckily, Homey includes ZigBee,
so if you have Homey you have nothing to worry about.

• It operates on short range, that is, 10–100 m line of sight.
• Low transmission rate.
• It has certain limitations in the area of memory size, processing speed of

data.
• Less secure compared to Wi-Fi based security systems.

8.4.3 Conclusion

To sum up, ZigBee is a powerful, energy-efficient and affordable smart home
technology. It is widely used for lighting by big brands like IKEA and Philips

8.5 Future Scope Of ZigBee 409

Hue. Next to lighting, ZigBee is found in sensors, plugs, roller blinds and
many more attractive products from a variety of brands.

ZigBee has less range than Z-Wave, but this is easily offset by building
a good ZigBee mesh network in your home which will relay signals. And
because ZigBee devices are cheaper, you can automate your home for less.
More and more brands and devices are adopting ZigBee, but not everything is
on ZigBee yet. That is why we recommend to combine ZigBee with another
technology like Z-Wave if you want to fully automate your home.

8.5 Future Scope Of ZigBee

{Review on Selecting Topologies in ZigBee Networks, International Journal
of Science, Engineering and Technology Research (IJSETR) Volume 5, Issue
6, June 2016}

1. Various types of fields, that is, national security, defense, monitoring,
and control, are provided by devices depending on ZigBee standard.
To achieve the highest throughput from a ZigBee network, the nodes
position required to be considered particularly. A significant role has
been played by the nodes movements in a ZigBee network from the
point of view of the throughput and network efficiency.

2. In a ZigBee network, a wireless sensor network is often built by utilizing
a tree topology. These wireless sensor networks are utilized for appli-
cations that need the data delivery. Utilizing the tree topology for the
nodes position in the network and by configuring the nodes movement
according to the group mobility model, network provides the highest
throughput and possess least data dropped in the network.

3. This is an important obstacle to ZigBee which means that most of the
wireless devices should have a level of automated intelligence intro-
duced in them so as to enable easy commissioning and reliable usage.
Approaching this challenge will need advanced planning to automate
issues faced by the people who is actually responsible for installing the
ZigBee application.

4. In the WSNs, the coordinator is responsible for forwarding the signal to
all the sensor nodes linked to it. As the distance from the coordinator
increases, the signal strength becomes weak causing interaction with
destination nodes complex as a result the link breaks with all the broadly
distributed wireless sensor nodes. Thus, it is complicated to perform
reliable and stable communication with broad range nodes.

410 ZigBee PRO and ZigBee SECURITY

5. Chipcon is utilizing ZigBee to create a road map product that decreases
the system and chip costs and increases integration level with low
power consumption. Sensors are currently being utilized in agricultural
and environmental applications, but the main target–home automation.
ZigBee technology is also being utilized and examined in applications
related to health monitoring.

6. A Wireless sensor network (WSN) contains spatially distributed wireless
nodes at the bottom most layer. These sensor nodes are often battery
powered devices and consume very low power. Data are forwarded from
these devices to the gateway by the support of the subsystem on the
top of devices. These sensor nodes can behave both as a full functional
device and decreased functional device. But one of the major issue in
WSN is the hot spot such as all the FFD’s linked to the coordinator are
responsible for forwarding the data to the coordinator on the behalf of
nodes linked to them. So these nodes use more power which increases
the load on them and die out much sooner in comparison of other nodes
which breaks the link with the whole network. For overcoming the hot-
spot issue, utilizing the mobile coordinator is the best solution.

7. Control overhead is a very significant indicator for evaluating Zig-
Bee routing protocol performance. More control overhead will append
network energy consumption and decrease network survival time. 8)
Energy consumption is also a ZigBee challenge. ZigBee was particularly
planned for home applications and have some characteristics, that is,
high latency because of the low power consumption, long battery life,
low cost etc. The configuration is the important issue and it should
be performed very carefully. Routing method selection and type of
topology plays a significant role because ZigBee objectives to obtain
greater efficiency. A combined routing technique of AODV and Tree
Routing is also planned in the ZigBee specification. But there is no
mechanism designed to balance these two Routing modes for achieving
better performance. So selecting the best mechanism is also a ZigBee
challenge.

CONCLUSION ZigBee will play a significant part in the future in the fields,
that is, smart lighting, home automation, war fields and smoke and intruder
warning traffic management and will build computer and communication
technology more accessible and usable to the subscribers. These networks are
easy to deploy which is cheaper in comparison of other technologies. It would
cost only $5 for a single chip. But the smaller memory size of protocol stack

8.5 Future Scope Of ZigBee 411

will further lower. ZigBee price to around $2 per chip. ZigBee technology is
very helpful from security point of view as the devices manage a list of trusted
devices inside the network and frame integrity to secure data from being
altered by parties without cryptographic keys. Because of its emergence,
researchers are facing several challenges in the deployment and development
of the technology but because of the intensive research, all the issues are
being sorted out day by day and the technology is becoming less vulnerable
to the issues and also becoming more sustainable and reliable. The wireless
communication technologies are frequently spreading to several new fields,
involving the wireless sensors and the significance of the usage of wireless
technologies in building control, data acquisition, monitoring systems and
automation of manufacturing procedures will develop in future So, ZigBee
has a very promising future in front of it.

References

[1] ZigBee Alliance, ZigBee Specification Document 053474r17, 2008
[2] Daintree Network, “Comparing ZigBee Specification Versions,” www.

daintree.net/resources/spec-matrix.php
[3] “How Does ZigBee Compare with Other Wireless Standards?” www.st

g.com/wireless/ZigBee-comp.html
[4] Craig, William C. “ ZigBee: Wireless Control That Simply Works,”

ZigBee Alliance, 2003
[5] Ember Corporation, EmberZNet Application Developer’s Reference

Manual, 2008
[6] IEEE Std 802.15.4 2003
[7] IEEE Std 802.15.4 2006
[8] Harsh Dhaka, –ZigBee Technology: Wireless Control that Simply

Works?, Communications Design Conference, 2 October 2003
[9] Jorjeta G. Jetcheva, Yih-Chun Hu, Amit Kumar Saha, and David B.

Johnson. “Design and Evaluation of a Metropolitan Area Multitier Wire-
less Ad Hoc Network Architecture in Wireless Sensor Networks.” In
Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems
& Applications, Monterey, CA, pp. 32–37, 2004

[10] ZigBee Alliance. ZigBee Overview. September 2003
[11] Aaron Alva, DMCA security research exemption for consumer devices,

October 28, 2016. https://www.ftc.gov/news-events/blogs/techftc/2016
/10/dmca-security-research-exemption-consumer-devices.

www.daintree.net/resources/spec-matrix.php
www.daintree.net/resources/spec-matrix.php
www.stg.com/wireless/ZigBee-comp.html
www.stg.com/wireless/ZigBee-comp.html
https://www.ftc.gov/news-events/blogs/techftc/2016/10/dmca-security-research-exemption-consumer-devices
https://www.ftc.gov/news-events/blogs/techftc/2016/10/dmca-security-research-exemption-consumer-devices

412 ZigBee PRO and ZigBee SECURITY

[12] Wireless Mesh Networking ZigBee vs. DigiMesh. https://www.digi.c
om.

[13] About ZigBee Protocol. https://sites.google.com/site/xbeetutorial/xbee-
introduction/zigbee.

[14] Inc. ZigBee Alliance, ZigBee Specification053474r20 (September 7,
2012).

[15] ZigBee Specification053474r06 (December 4, 2004).
[16] ZigBee 3.0 Task Force, ZigBee: Securing the Wireless IoT(2017).
[17] Luke Tutty, Guide to ZigBee 3.0, March 21, 2017. https://mmbnetwork

s.atlassian.net/wiki/display/ITZ/Guide+to+Zigbee+3.0.
[18] Ricky A. Melgares, ZigBee Analysis and Security (May 31, 2011).
[19] Bjorn Stelte and Gabi Dreo Rodosek, Thwarting Attacks on ZigBee–

Removal of the KillerBee Stinger.
[20] Jeff John Roberts, Light Bulbs Flash “SOS” in Scary Internet of Things

Attack, November 03, 2016. http://fortune.com/2016/11/03/light-bulb-
hacking/.

[21] Darren Pauli, IoT worm can hack Philips Hue light bulbs, spread across
cities, November 10, 2016. https://www.theregister.co.uk/2016/11/10/i
otwormcanhackphilipshuelightbulbsspreadacrosscities/.

[22] Internet of Things Map. https://p16.praetorian.com/iotmap.
[23] Inc. ZigBee Alliance, ZigBee 3.0 Stack User GuideJN-UG-3113 (Octo-

ber 5, 2016).
[24] ZigBee 3.0 Devices User GuideJN-UG-3114 (December 1, 2016).
[25] Tobias Zillner, ZigBee Exploited: the good, the bad, and the ugly

(August 16 2015).
[26] Joshua Wright, KillerBee API Documentation, 2009.
[27] Michael Ashbridge, Eddystone-EID, 2016. https://github.com/google/

eddystone/blob/master/eddystone-eid/tools/eidtools.py

https://www.digi.com
https://www.digi.com
https://sites.google.com/site/xbeetutorial/xbee-introduction/zigbee
https://sites.google.com/site/xbeetutorial/xbee-introduction/zigbee
https://mmbnetworks.atlassian.net/wiki/display/ITZ/Guide+to+Zigbee+3.0
https://mmbnetworks.atlassian.net/wiki/display/ITZ/Guide+to+Zigbee+3.0
http://fortune.com/2016/11/03/light-bulb-hacking/
http://fortune.com/2016/11/03/light-bulb-hacking/
https://www.theregister.co.uk/2016/11/10/iotwormcanhackphilipshuelightbulbsspreadacrosscities/
https://www.theregister.co.uk/2016/11/10/iotwormcanhackphilipshuelightbulbsspreadacrosscities/
https://p16.praetorian.com/iotmap
https://github.com/google/eddystone/blob/master/eddystone-eid/tools/eidtools.py
https://github.com/google/eddystone/blob/master/eddystone-eid/tools/eidtools.py

Section IV

Bluetooth

413

9
Bluetooth

9.1 Introduction: Overview

Bluetooth is a short range wireless communication technology designed
to replace cables connecting portable unit and maintaining high levels of
security. Bluetooth products communicate over the radio (Figure 9.1) and
therefore no cables or optical connection is needed (which is not the case for
IrDA). It started within Ericsson concern as means to replace the cables to
peripheral devices for Ericsson’s mobile telephones. It has since then grown
to a short-range wireless ad hoc networking solution.

The key features of Bluetooth are low cost, robustness and low power
consumption. Bluetooth operates in the universally unlicensed Industrial,
Scientific and Medical (ISM) band at 2.4 GHz. To avoid possible interference
from other devices using the same band, Bluetooth uses a frequency hopping
scheme, where devices alternate rapidly among the 79 available frequencies
in a pseudo-random fashion, which changes the transmission frequency 1600
times per second in a pseudo random way.

The range of the Bluetooth radio is approximately 10 m with a standard
Bluetooth device. The range can be extended to 100 m by increasing the
output power. Maximum communication speed is around 700 kbps. Bluetooth
technology is based on Ad hoc technology. When two or more Bluetooth
devices form an ad hoc network it is called a piconet. Several piconets can
be linked together and the resulting network is called a scatternet, which is a
local area network with a very limited coverage (see Section 9.1.2).

Bluetooth wireless technology is currently one of the most common
means of communication for embedded systems. Bluetooth is described
under IEEE 802.15.1 standard.

All products using Bluetooth wireless technology must follow the
communication protocols documented in the Bluetooth specification. The
advantage of this is interoperability; all products from different manufacturers
function well together.

415

416 Bluetooth

Figure 9.1 Two products communicating over a wireless Bluetooth radio link.

Figure 9.2 Bluetooth cards.

The Bluetooth specification is a highly technical document (over 1500
pages) describing all the functionality that must be implemented in order to
build a product that complies with the Bluetooth specification.

In order to communicate with another device using Bluetooth technology,
a special Bluetooth card is needed (Figure 9.2). It is important to note that the
regular Wi-Fi card that normally used on laptop or smartphone is for 802.11
technology, and it is not compatible with Bluetooth based on the 802.15
standard.

9.1.1 History of Bluetooth

WLAN technology enables device connectivity to infrastructure based ser-
vices through a wireless carrier provider. The need for personal devices to

9.1 Introduction: Overview 417

communicate wirelessly with one another without an established infrastruc-
ture has led to the emergence of Personal Area Networks (PANs).

• Ericsson’s Bluetooth project in 1994 defines the standard for PANs to
enable communication between mobile phones using low power and low
cost radio interfaces.

• In May 1988, Companies such as IBM, Intel, Nokia and Toshiba joined
Ericsson to form the Bluetooth Special Interest Group (SIG) whose aim
was to develop a defacto standard for PANs.

• IEEE has approved a Bluetooth based standard named IEEE 802.15.1
for Wireless Personal Area Networks (WPANs). IEEE standard covers
MAC and Physical layer applications.

Bluetooth specification details the entire protocol stack. Bluetooth employs
Radio Frequency (RF) for communication. It makes use of frequency
modulation to generate radio waves in the ISM band.

The usage of Bluetooth has widely increased for its special features.

• Bluetooth offers a uniform structure for a wide range of devices to
connect and communicate with each other.

• Bluetooth technology has achieved global acceptance such that any
Bluetooth enabled device, almost everywhere in the world, can be
connected with Bluetooth enabled devices.

• Low power consumption of Bluetooth technology, an offered range of
up to 10 m, has paved the way for several usage models.

• Bluetooth offers interactive conference by establishing an ad hoc net-
work of laptops.

• Bluetooth usage model includes cordless computer, intercom, cordless
phone and mobile phones.

9.1.2 Piconets and Scatternets

In order to communicate, Bluetooth devices organize themselves into small
networks called piconets, comprising one master and up to 7 slave devices, in
which the frequency hopping sequences are synchronized and controlled by
the master. The device that initializes establishment of the Piconet becomes
the master. In general the devices forming piconett has the ability to act either
as a master or slave. The specification allows a mechanism for master and
slave to switch their roles. Point to point configuration with one master and
one slave is the simplest configuration.

418 Bluetooth

Figure 9.3 Piconets and scatternets.

The master is responsible for transmission control by dividing the net-
work into a series of time slots amongst the network members, as a part of
time division multiplexing scheme which is shown below.

The features of Piconets are as follows:
• Within a Piconet, the timing of various devices and the frequency

hopping sequence of individual devices is determined by the clock and
unique 48-bit address of master.

• Each device can communicate simultaneously with up to seven other
devices within a single Piconet.

• Each device can communicate with several piconets simultaneously.
• Piconets are established dynamically and automatically as Bluetooth

enabled devices enter and leave piconets (Bluetooth is a mobile ad hoc
network).

• There is no direct connection between the slaves and all the connections
are essentially master-to-slave or slave-to-master.

• Slaves are allowed to transmit once these have been polled by the master.
• Transmission starts in the slave-to-master time slot immediately follow-

ing a polling packet from the master.
• A device can be a member of two or more piconets, jumping from

one piconet to another by adjusting the transmission regime-timing and
frequency hopping sequence dictated by the master device of the second
piconet.

• It can be a slave in one piconet and master in another. It however cannot
be a master in more than once piconet.

9.1 Introduction: Overview 419

• Devices resident in adjacent piconets provide a bridge to support
inner-piconet connections, allowing assemblies of linked piconets to
form a physically extensible communication infrastructure known as
Scatternet.

9.1.3 Bluetooth Spectrum

Bluetooth technology operates in the unlicensed industrial, scientific and
medical (ISM) band at 2.4 to 2.485 GHZ, using a spread spectrum hopping,
full-duplex signal at a nominal rate of 1600 hops/s. The 2.4 GHZ ISM band
is available and unlicensed in most countries.

The frequency range from 2.4 GHz to 2.485 GHz is the same as that of
WLAN; therefore, using the Bluetooth communication would interfere with
WLAN networks, if both of them are used in the same area.

9.1.4 Bluetooth Frequency and Connectivity Ranges

Bluetooth enables, low power communication between devices that are in
close proximity of each other. It operates in the unlicensed Industrial, Scien-
tific, and Medical (ISM) radio frequency (RF) 2.4 GHz spectrum and has a
range from between 0.5 m and 1 m to 100 m.

The technology has three classes of devices, which offer three different
connectivity ranges. Class 1 devices offer a range of 100 m and transmit at
100 mW. Class 2 devices, the most common devices, have a range of 10 m and
transmit at 2.5 mW. Class 3 devices have a range of about 1 m and transmit
at 1 mW.

One main advantage of the technology is its ability to transmit both voice
and data simultaneously; however, the 2.4 GHz radio frequency spectrum
is shared with many consumer appliances (i.e., microwaves, baby moni-
tors, and cordless phones), which could cause interference. According to
research, coexistence in wireless technologies resulted in Bluetooth signals
being harmed significantly by other wireless technologies. For this reason,
Bluetooth technology uses hops in the Bluetooth frequency at 1600 hops per
second and a technology called spread spectrum to avoid interference.

9.1.5 Data Rate and Modulation

Bluetooth 1.1 and, the later improved version of Bluetooth, Bluetooth 1.2
are known as Basic Rate (BR). They allow transmission speeds up to 1
Mbps. Bluetooth version 2.0, known as Enhanced Data Rate (EDR), allows

420 Bluetooth

transmission speeds up to 3 Mbps. Bluetooth version 3.0, known as High
Speed (Hs), provides data rates up to 24 Mbps. Bluetooth version 4.0, known
as Low Energy (BLE), is simple and more efficient, offers 1 Mbps, and
achieves lower power consumption for use in medical devices. Bluetooth 4.1
and 4.2 are the most updated versions. The technology, developed for coin cell
battery-powered devices (e.g., medical devices), provides both Low Energy
and BR/EDR/HS. Bluetooth 4.1 offers speeds in range of 1–3 Mbps, while
Bluetooth 4.2 offers 1 Mbps using Gaussian frequency shift keying (GFSK).
GFSK is a method of modulation used for digital communication and is
one method used in Bluetooth technology. It is able to send information by
shifting carrier frequencies by Gaussian filtering square-wave signals and by
increasing or decreasing the duration of carrier frequencies based on symbols
(i.e., decreasing the frequency for 0 and increasing the frequency for 1).

Bluetooth 5 has been announced as the next version of Bluetooth. It will
also be known for Low Energy mode.

9.2 Bluetooth Stack Architecture

A Bluetooth protocol stack is a software library that implements the commu-
nication protocol as defined in the Bluetooth specification.

Bluetooth stacks can be roughly divided into two distinct categories:

1. General-purpose implementations that are written with emphasis on
feature-richness and flexibility, usually for desktop computers. Support
for additional Bluetooth profiles can typically be added through drivers.

2. Embedded system implementations intended for use in devices where
resources are limited and demands are lower, such as Bluetooth periph-
eral devices.

Some of the General-purpose implementations are as follows:
FreeBSD: The FreeBSD Bluetooth stack is implemented using the Netgraph
framework. A broad variety of Bluetooth USB dongles are supported by the
ng_ubt driver.

NetBSD: NetBSD has its own Bluetooth implementation, committed in 2006,
and first released with NetBSD § 4.0.

OpenBSD: OpenBSD has had the implementation from NetBSD for some
time, but it was removed in 2014 due lack of maintainership and code rot.

DragonFly BSD: DragonFly BSD has had NetBSD’s Bluetooth implemen-
tation since 1.11 (2008), first released with DragonFly BSD § 1.12

9.2 Bluetooth Stack Architecture 421

Linux: The Linux operating system currently has BlueZ included with the
official Linux kernel distributions, initially developed by Qualcomm.

BlueZ: BlueZ is a Bluetooth stack for Linux kernel-based family of operating
systems. Its goal is to program an implementation of the Bluetooth wireless
standards specifications for Linux. As of 2006, the BlueZ stack supports all
core Bluetooth protocols and layers. It was initially developed by Qualcomm,
and is available for Linux kernel versions 2.4.6 and up. In addition to the
basic stack, the bluez-utils and bluez-firmware packages contain low level
utilities such as dfutool which can interrogate the Bluetooth adapter chipset
to determine whether its firmware can be upgraded.

BlueZ is licensed under the GNU General Public License (GPL), but
reported to be on its way toward switching to the GNU Lesser General Public
License (LGPL).

Some of Embedded System Implementations are as follows:
Apache Mynewt NimBLE: Apache Mynewt NimBLE is a full-featured, open
source Bluetooth Low Energy 4.2 and 5.0 protocol stack written in C for
embedded systems. NimBLE is one of the most complete protocol stacks,
supporting 5.0 features including high data rate and extended advertising. The
implementation supports all layers of the Bluetooth protocol. The first ports
for the Controller part are to nRF51 series and nRF52 SoCs from Nordic
Semiconductor. NimBLE also supports standard HCI interfaces to work with
controllers, including ST, Dialog and Em Micro chipsets. It leverages the
open source Apache Mynewt OS which is designed to support multiple
microcontroller architectures. NimBLE can also run with FreeRTOS and is
portable to other real-time operating systems. The implementation allows for
the Mynewt NimBLE Controller part to be used with a non-Mynewt NimBLE
Host.

BlueCode+: BlueCode+ is the portable higher layer Bluetooth protocol stack
from Stollmann E+V GmbH. BlueCode+ 4.0 is qualified to Bluetooth version
3.0. The protocol stack is chipset and operating system independent and
supports any Bluetooth HCI chips available. The APIs offer control of the
profiles and stack functions, as well as direct access to lower level functions.
BlueCode+ 4.0 supports the protocols L2CAP, eL2CAP, RFCOMM, SDP
Server and Client, MCAP, HCI-Host Side and AVDTP. Supported profiles
are Generic Access (GAP), Service Discovery Application (SDAP), Serial
Port Profile (SPP), Health Device Profile (HDP), Device Identification Profile
(DID), Dial-up Networking (DUN), Fax, Headset (HSP), Handsfree (HFP),

422 Bluetooth

SIM Access (SAP), Phone Book Access (PBAP), Advanced Audio Distri-
bution Profile (A2DP), Audio/Video Remote Control (AVRCP) and OBEX.
The stack has been ported to a wide range of different microcontrollers and
operating systems.

BlueCore Host Software (BCHS) a.k.a. CSR Synergy: CSR’s BCHS or
BlueCore Host Software (now called CSR Synergy) provides the upper layers
of the Bluetooth protocol stack (above HCI, or optionally RFCOMM)–plus
a large library of Profiles–providing a complete system software solution
for embedded BlueCore applications. Current qualified Profiles available
with BCHS: A2DP, AVRCP, PBAP, BIP, BPP, CTP, DUN, FAX, FM API,
FTP GAP, GAVDP, GOEP, HCRP, Headset, HF1.5, HID, ICP, JSR82, LAP
Message Access Profile, OPP, PAN, SAP, SDAP, SPP, SYNC, SYNC ML.

BlueLet: It is also a product of IVT Corporation. DUN, FAX, HFP, HSP,
LAP, OBEX, OPP, PAN and SPP are currently supported.

BlueMagic: BlueMagic 3.0 is Qualcomm’s (formerly Open Interface North
America’s) highly portable embedded Bluetooth protocol stack which pow-
ers Apple’s iPhone and Qualcomm-powered devices such as the Motorola
RAZR. BlueMagic also ships in products by Logitech, Samsung, LG, Sharp,
Sagem, and more. BlueMagic 3.0 was the first fully certified (all protocols
and profiles) Bluetooth protocol stack at the 1.1 level.

Zephyr Project: The Zephyr Project RTOS includes a complete, open source
Bluetooth Low Energy 5.0 protocol stack written in C for embedded systems.
It contains both a BLE Controller and a BLE and BR/EDR capable Host
running on nRF51 Series and nRF52 SoCs from Nordic Semiconductor.

9.2.1 Relation between Classic Bluetooth, OSI model, and
802.11 Wi-Fi

Figure 9.4 demonstrates the relationship between the Open Systems Intercon-
nection (OSI) model, selected 802.11 (Wi-Fi) layers and the components of
the classic Bluetooth v1.1 protocol stack. The diagram shows that parts of
the Bluetooth stack can be mapped to the Wi-Fi stack, primarily in the areas
encompassing the Data Link and Physical OSI layers. Although the diagram
does not include the Bluetooth LE stack for the purposes of simplicity,
the same mapping principles would still apply. The depicted relationship
is significant because it implies that techniques that have been evaluated
as effective in the context of other protocols such as Wi-Fi may also be
applicable to Bluetooth.

9.2 Bluetooth Stack Architecture 423

Figure 9.4 Mapping classic Bluetooth (IEEE 802.11.5 v1.1) and IEEE 802.11 (Wi-Fi) to the
data link and physical layers of the OSI model. (The figure is adapted from Marks, Gifford,
and O’Hara (2001, p. 52); Patil (2003).)

Figure 9.4 shows that when using Wi-Fi communication (that is based
on an 802.11 Protocol), all the layers of its OSI model are involved in the
communication. This means that Wi–Fi is using layer 1 which is now a
wireless physical layer (modulation and coding). Layer 2 is needed to have
802.11 header and then on layer 3, all the IP information, and so on.

With the Bluetooth protocol stack it is different as devices do not have
to use all the protocols in the stack (all the layers of the communication
model). It is because, the Bluetooth was developed to be used by a variety of
communication applications, and it is the application, that designates which
part of the Bluetooth stack is used by the communication.

Bluetooth versus Wi-Fi (IEEE 802.11)
Bluetooth and Wi-Fi (Wi-Fi is the brand name for products using IEEE
802.11 standards) have some similar applications: setting up networks, print-
ing, or transferring files. Wi-Fi is intended as a replacement for high-speed
cabling for general local area network access in work areas or home. This
category of applications is sometimes called wireless local area networks
(WLAN). Bluetooth was intended for portable equipment and its appli-
cations. The category of applications is outlined as the wireless personal
area network (WPAN). Bluetooth is a replacement for cabling in a vari-
ety of personally carried applications in any setting, and also works for
fixed location applications such as smart energy functionality in the home
(thermostats, etc.).

424 Bluetooth

Wi-Fi and Bluetooth are to some extent complementary in their applica-
tions and usage. Wi-Fi is usually access point-centered, with an asymmetrical
client-server connection with all traffic routed through the access point, while
Bluetooth is usually symmetrical, between two Bluetooth devices. Bluetooth
serves well in simple applications where two devices need to connect with
a minimal configuration like a button press, as in headsets and remote con-
trols, while Wi-Fi suits better in applications where some degree of client
configuration is possible and high speeds are required, especially for network
access through an access node. However, Bluetooth access points do exist,
and ad hoc connections are possible with Wi-Fi though not as simply as with
Bluetooth. Wi-Fi Direct was recently developed to add a more Bluetooth-like
ad hoc functionality to Wi-Fi.

9.2.2 Classical Bluetooth Stack

Figure 9.5 shows the Bluetooth Stack, and Figure 9.6 shows Bluetooth 4
stack.

The Bluetooth protocol layers, together with their associated protocols
are as follows:

• Bluetooth Core Protocol Baseband – LMP, L2CAP, SDP
• Cable Replacement Protocol – RFCOMM
• Telephony Control Protocol – TCS Binary, AT-Commands
• Adopted Protocols – PPP, UDP/TCP/IP, WAP.

Figure 9.5 Bluetooth protocol stack.

9.2 Bluetooth Stack Architecture 425

Figure 9.6 Bluetooth protocol stack (Bluetooth 4).

One additional element that can be seen on the stack is the Host Con-
troller Interface (HCI). This HCI provides a command interface to the
baseband controller, link manager, hardware status, registers. Due to this fact,
all the names of the Linux tools that are used for Bluetooth communication
are starting from “hci”; for example–“hciconfig,” “hcidump”, “hcitool.”

9.2.2.1 Bluetooth stack as core and profile
A Bluetooth protocol stack can also be divided into two parts: the core and
the profiles.

i. Bluetooth stack core consists of:
• Host Controller Interface (HCI) which provides a standardized commu-

nications protocol between the stack and the Bluetooth module. HCI
communication packets can be transmitted over UART, RS232, USB, or
PC Card interface.

• Logical Link Control and Adaptation Protocol (L2CAP) allows multiple
communication channels to share a single Bluetooth link (multiplexing).
L2CAP also handles segmentation and assembly of long messages.

• Radio Frequency Communication Protocol (RFCOMM) implements the
functionality needed for a virtual RS232 link, including modem control

426 Bluetooth

signals. Most of the application profiles use RFCOMM to send and
receive data.

• Service Discovery Protocol (SDP) provides functionality to publish
supported Bluetooth functionality (SDP server), as well as to query other
Bluetooth products for Bluetooth functionality (SDP client).

ii. Bluetooth profile

To use Bluetooth wireless technology, a device must be able to interpret
certain Bluetooth profiles, which are definitions of possible applications and
specify general behaviors that Bluetooth-enabled devices use to communicate
with other Bluetooth devices. These profiles include settings to parameterize
and to control the communication from the start. Adherence to profiles saves
the time for transmitting the parameters anew before the bi-directional link
becomes effective. There are a wide range of Bluetooth profiles that describe
many different types of applications or use cases for devices.

The Bluetooth specification defines how Bluetooth should be used within
specific application fields (each application usage is defined in its own pro-
file). A number of profiles have already been defined, and more are expected
to be developed in the future. Some of the most important profiles are:

• Generic Access Profile (GAP) is mandatory and is used to manage
connections between different Bluetooth products. GAP exposes a high-
level API that can be used by the application program to configure the
stack and manage connections to different Bluetooth products.

• Service Discovery Application Profile (SDAP) is mandatory and is used
to query other Bluetooth products for supported services and functional-
ity. SDAP exposes a high-level API that can be used by the application
program to query other Bluetooth products for supported functionality.

• Serial Port Profile (SPP) provides emulated virtual serial ports over a
Bluetooth radio link. SPP exposes a high-level API that can be used by
the application program to transmit and receive data in a way that is very
similar to a standard serial port.

• Headset Profile (HSP) provides functionality for linking sound between
an audio gateway (usually a GSM phone) and a headset. HSP exposes a
high-level API that can be used by the application program to establish
and manage the sound link.

There are also many other profiles for different purposes, for example,
file transfer, network access, and dial-up network connections. New profiles
are being specified for, for example, cars, audio/video, digital cameras and

9.3 Bluetooth Stack Layers 427

Table 9.1 Examples of bluetooth profiles
Profile API Function Description
Serial Port Profile SPP_AddPortRq() Creates a virtual serial port

SPP_RemovePortRq() Deletes a virtual serial port

SPP_OpenRq() Opens a virtual serial port

SPP_CloseRq() Closes a virtual serial port

SPP_WriteRQ() Prints data to a virtual serial port

.

Headset Profile HSP_OpenVoiceRq() Opens a sound channel

HSP_CloseVoiceRq() Closes a sound channel

HSP_VolumeRq() Adjusts the volume

.

printer management. This means that a Bluetooth device must not support
the entire specification but rather a segment of the protocol stack.

When a Bluetooth protocol stack has been purchased an application pro-
gram must be developed to use the stack functionality by calling the different
API functions. The stack takes care of all the complex communication rules
that are defined in the specification and manages the communication with the
Bluetooth module.

Table 9.1 contains a few examples of API functionality provided by a
stack (in this case the IAR Systems stack) to an application program for a
few different profiles.

9.3 Bluetooth Stack Layers

Bluetooth is defined as a layer protocol architecture consisting of core proto-
cols, cable replacement protocols, telephony control protocols, and adopted
protocols. Mandatory protocols for all Bluetooth stacks are LMP, L2CAP
and SDP. In addition, devices that communicate with Bluetooth almost
universally can use these protocols: HCI and RFCOMM.

In the following, we present the different layers.

9.3.1 Bluetooth Radio

The most common Bluetooth radio has an output power of 0 dBm. These
devices are called class 3 devices. There are two more classes: class 2 which

428 Bluetooth

has a maximum output power of 4 dBm and class 1 which has a maximum
output power of 20 dBm. Channel spacing is 1 MHz and a guard range
is used in the top and bottom of the frequency band which makes for 79
channels. There is a 23-channel radio defined for countries with special radio
frequency regulations. The modulation technique used is Gaussian Frequency
Shift Keying (GFSK).

9.3.2 Baseband

The Baseband (BB) sets up connections, defines links and packet types and
provides error correction. It sets up the hopping sequence of the piconet based
on the master’s unique device address (BD ADDR). Two different connec-
tions are supported: Asynchronous Connection Less (ACL) and Synchronous
Connection Oriented (SCO). Typically, the ACL link transmits data and the
SCO link is used only for voice.

The physical channel is divided into time slots of 625 µs in length, each
time slot corresponds to a RF frequency which is determined by the masters
BD ADDR. A time division duplex TDD scheme is used where the master
and slave transmits alternatively. Normally a BB packet covers one time slot
but there are packets covering 3 and 5 time slots as well (Figure 9.7).

Each active member in a piconet is given a three bit address called the
Active Member Address (AM ADDR) which acts as a MAC address. There
can only be seven active slaves participating in a piconet at the same time,
AM ADDR 000 is reserved for broadcast. There can, however, be a number
of slaves in so-called parked mode, these slaves are not participating in the
piconet traffic but remain synchronized with it.

Figure 9.7 Packet lengths supported by baseband.

9.3 Bluetooth Stack Layers 429

The master starts its transmission in even-numbered time slots only, the
slave starts its transmission in odd-numbered time slots only. The time slots
are numbered according to the Bluetooth clock (CLKN) of the piconet master.
In an ACL connection a slave can only transmit a packet if it has received a
packet containing its AM ADDR in the previous time slot. However, a slave
with an SCO connection may transmit even though it has not received its AM
ADDR in the previous time slot.

Each packet carries an access code which is the first 72 or 68 bits, the
latter if no packet header exists. The access code is used for synchronization,
DC offset compensation and identification. There are three access codes
defined within Bluetooth, these are as follows.

• Channel Access Code: identifies which piconet the packet belongs to. It
is included in every packet transmitted on a piconet.

• Device Access Code: used during the device discovery process to page
a device. It is derived from the BD ADDR of the device.

• Inquiry Access Code (IAC): used in the device discovery process when
a device inquires about which devices are in range. There are two kinds
of Inquiry Access Codes, General IAC (GIAC) and Dedicated IAC
(DIAC). GIAC is used in a general case when a device wishes to know
all devices in range. DIAC is used when a device only wishes to know
about devices with special characteristics.

The BB determines the hopping sequence of the Bluetooth device. There
are five hopping sequences for a standard 79 channel device. These are
described below:

• Channel Hopping Sequence: distributes the hopping frequencies pseudo
randomly but equally over the 79 channels. It has a very long period
so as not to repeat itself in the short term. It is calculated from the BD
ADDR of the master of the piconet.

• Inquiry Hopping Sequence: a sequence of 32 wakeup frequencies. It is
calculated from the GIAC or the DIAC. The inquiry hopping sequence
switches between 2 inquiry trains of 16 frequencies each. The phase is
determined from the native clock (CLKN) of the unit.

• Inquiry Response Sequence: also uses two trains of 16 frequencies each,
which are exactly the same as the 2*16 frequencies of the Inquiry
Hopping Sequence.

• Page Hopping Sequence: a sequence of 32 frequencies calculated from
the device being paged’s BD ADDR. The phase is determined from an
estimate of the paged device’s clock. The paging device will calculate

430 Bluetooth

the frequency at which the paged device will be listening on and start
transmitting on that frequency to speed up the process. Two trains of 16
frequencies each are used.

• Page Response Sequence: uses two trains of 16 frequencies each, which
are exactly the same as the 2*16 frequencies of the Page Hopping
Sequence.

9.3.3 Link Manager Protocol (LMP)

The Link Manager Protocol (LMP) provides means for setting up secure,
power efficient links for both voice and data. It has the ability to, whenever
necessary, update the link properties to ensure optimum performance. The
Link Manager also terminates connections, either on higher layers request or
because of various failures. The Link Manager Protocol basically consists of
a number of PDUs (Protocol Data Units) that are sent from one device to
another. The following is a list of supported services:

• Transmission and reception of data.
• Name request
• Request of the link addresses.
• Establishment of the connection.
• Authentication.
• Negotiation of link mode and connection establishment.

The LMP also handles security (authentication is one of security mea-
sures) and the different low-power modes sniff, hold and park:

• Active: a device participates in the piconet by listening (in the master-
to-slave time slots) for packets containing its own AM ADDR.

• Sniff: in sniff mode, a device acts similar to an active device. Upon
entering sniff mode, the master and slave decide a sniff interval, the time
between two time slots where the slave will listen for packets.

• Hold: a device that enters hold mode, does so for a specified time. During
this time ACL packets are not supported but SCO packets can still be
transmitted.

• Park: when a slave enters park mode, it gives up its AM ADDR but
remains synchronized to the piconet. It is given a Parked Member
Address (PM ADDR) that the master uses for un-parking the slave and
an Access Request Address (AR ADDR) that the slave can use to request
to be un-parked.

9.3 Bluetooth Stack Layers 431

9.3.4 Host Controller Interface (HCI)

The Host Controller Interface provides a command interface for the controller
and for the link manager, which allows access to the hardware status and con-
trol registers. This interface provides an access layer for all Bluetooth devices.
The HCI layer of the machine exchanges commands and data with the HCI
firmware present in the Bluetooth device. One of the most important HCI
tasks that must be performed is the automatic discovery of other Bluetooth
devices that are within the coverage radius.

9.3.5 Logical Link Control and Adaptation Protocol (L2CAP)

The Logical Link Control and Adaptation Protocol (L2CAP) supports pro-
tocol multiplexing, packet segmentation and reassembly, the maintenance
of Quality of Service and group management. L2CAP is placed above the
Baseband Protocol and interfaces with higher protocols.

L2CAP has a number of modes.

Basic mode: In Basic mode, L2CAP provides packets with a payload config-
urable up to 64 kB, with 672 bytes as the default MTU, and 48 bytes as the
minimum mandatory supported MTU.

Retransmission and Flow Control Mode: In Retransmission and Flow
Control modes, L2CAP can be configured either for isochronous data or
reliable data per channel by performing retransmissions and CRC checks.

Bluetooth Core Specification Addendum 1 adds two additional L2CAP
modes to the core specification. These modes effectively deprecate original
Retransmission and Flow Control modes:

Enhanced Retransmission Mode (ERTM): This mode is an improved
version of the original retransmission mode. This mode provides a reliable
L2CAP channel.

Streaming Mode (SM): This is a very simple mode, with no retransmission
or flow control. This mode provides an unreliable L2CAP channel.

Reliability in any of these modes is optionally and/or additionally guar-
anteed by the lower layer Bluetooth BDR/EDR air interface by configuring
the number of retransmissions and flush timeout (time after which the radio
flushes packets). In-order sequencing is guaranteed by the lower layer.

Only L2CAP channels configured in ERTM or SM may be operated over
AMP logical links.

432 Bluetooth

9.3.6 Radio Frequency Communications (RFCOMM)

RFCOMM is a simple transport protocol intended as a cable replacement pro-
tocol. The RFCOMM provides transparent data stream and control channels
over the L2CAP channels.

RFCOMM provides for binary data transport and emulates EIA-232
(formerly RS-232) control signals over the Bluetooth baseband layer, that
is, it is a serial port emulation.

RFCOMM provides a simple, reliable, data stream to the user, similar to
TCP. It is used directly by many telephony related profiles as a carrier for AT
commands, as well as being a transport layer for OBEX over Bluetooth.

Many Bluetooth applications use RFCOMM because of its widespread
support and publicly available API on most operating systems. Additionally,
applications that used a serial port to communicate can be quickly ported to
use RFCOMM.

9.3.7 Adapted Protocols

There are a number of protocols that have been adapted to fit into the
Bluetooth protocol stack. Adopted protocols are defined by other standards-
making organizations and incorporated into Bluetooth’s protocol stack,
allowing Bluetooth to code protocols only when necessary. The adopted
protocols include:

Point-to-Point Protocol (PPP): Internet standard protocol for transporting
IP datagrams over a point-to-point link.

TCP/IP/UDP: Foundation Protocols for TCP/IP protocol suite.

Object Exchange Protocol (OBEX): Session-layer protocol for the
exchange of objects, providing a model for object and operation represen-
tation.

Wireless Application Environment/Wireless Application Protocol (WAE/
WAP): WAE specifies an application framework for wireless devices and
WAP is an open standard to provide mobile users access to telephony and
information services.

9.3.8 Service Discovery Protocol

The Service Discovery Protocol (SDP) enables a Bluetooth device to inquire
what services are available in a piconet and how to access them. For example,

9.3 Bluetooth Stack Layers 433

when you use a mobile phone with a Bluetooth headset, the phone uses
SDP to determine which Bluetooth profiles the headset can use (Headset
Profile, Hands Free Profile, Advanced Audio Distribution Profile (A2DP)
etc.) and the protocol multiplexer settings needed for the phone to connect
to the headset using each of them. The SDP should be able to determine
the properties of any service, future or present, of arbitrary complexity in any
operating environment. However, it will not provide any access to the services
themselves or negotiate service parameters.

SDP uses a server-client model where the server has a list of elements
called Service Records. Each Service Record describes the characteristics of
one service. There can only be one SDP server in a Bluetooth device, if a
device has several services the one SDP server can act on behalf of all of
them. Similarly multiple applications may use a single SDP client to query
servers of Service Records. If a device only acts as an SDP client it does not
need to have an SDP server. A device may operate as both a server and a
client at the same time.

The server-client model used by SDP states that each transaction consists
of one request protocol data unit (PDU) and one response PDU. To provide
some flow control, a client must receive a response to each request before
issuing another request on the same L2CAP connection. The SDP database
consists of a set of records describing the services of the device. A service
is described using Service Attributes. A Service Attribute consists of a 16 bit
Attribute ID and a variable length Attribute Value. The Attribute Value PDU
has a header describing their type and length to the receiver.

9.3.9 Server-Client Model

An overview of the Bluetooth client and server model is given in this section.
A Bluetooth service is an application that acts as a server and provides
assistance to client devices via Bluetooth communication. This assistance
typically takes the form of a capability or a function unavailable locally on
the client device. Examples of some of a Bluetooth server applications are
LAN access services, file transfer services, business-card exchange services,
and synchronization services. Additional profiles describing standardized
services were developed after the Bluetooth profiles specification v1.1. For
example, three printing profiles were defined that offer various forms of
printing services. We note here that if the service is defined by a Blue-
tooth profile, then the profile specification describes the requirements for
the service record, device security, device discoverable modes, and so on.

434 Bluetooth

Figure 9.8 Bluetooth components involved in service discovery.

Developers can create Bluetooth server applications to implement one of the
Bluetooth profiles or to implement their own custom service. These services
are made available to remote clients by the definition of a service record that
describes the service and the addition of that service record to the service
discovery database (SDDB) of the local device.

Figure 9.8 represents the Client-Server model and illustrates the Blue-
tooth components involved in service registration and service discovery. The
SDP is a Bluetooth protocol for discovering the services provided by a
Bluetooth device. A server application adds a service record to the SDDB.
The Bluetooth stack provides an SDP server, which maintains this database
of service records. Service discovery clients use SDP to query the SDP
server for any service records of interest. A service record provides sufficient
information to allow an SDP client to connect to the Bluetooth service on the
server device.

After registering a service record in the SDDB, the server application
waits for a client application to initiate contact with the server to access
the service. The client application and the server application then establish
a Bluetooth connection to conduct their business.

Service Discovery protocol will be discussed again in more details in
Section 9.6.

9.4 Device Discovery 435

9.4 Device Discovery

Bluetooth, as mentioned before, is a mobile ad hoc network. In mobile ad hoc
environments, devices initially have no information about their surrounding
environment or the devices that operate within their range. There is no
centralized instance to query about the environment. Therefore, a protocol
must exist that provides means for detecting devices and enables devices to
set up a connection, Bluetooth uses the Baseband protocol for this task. Two
procedures are used in the device discovery procedure: inquiry and page:
firstly, the inquiry process, where a master device discovers neighboring slave
devices; and secondly, the page process, where connections between them
are established. During the first step, information about slave clock times is
exchanged for the purposes of synchronization. This can be used during the
second step, which is hence much faster. We therefore concentrate on the
inquiry process. We now describe in more detail the procedure executed by
an inquiring device (a master trying to discover slaves) and a scanning device
(a potential slave device who wants to be discovered). Next the two steps are
considered in details.

9.4.1 Inquiry

In order to set up a connection, a device must detect what other devices are
in range. This is the goal of the inquiry procedure (Figure 9.9). The process
is initiated by the unit that wishes to collect device information or create a
connection. To conserve power and coexist with other link activity, inquiry
is always initiated by higher level control protocols. The inquiry procedure
must overcome the initial frequency discrepancy between devices. Therefore,
inquiry only uses 32 of the 79 hop frequencies. Typically a device enters
inquiry mode periodically. Similarly, a device that wishes to be visible to
inquiring units enters inquiry scan in certain intervals. In order to find each
other, one device must be in Inquiry state and one (or more) device must be
in Inquiry Scan substate simultaneously (Figure 9.10).

Like all Bluetooth devices, the inquiring device has a 28 bit free-running
clock, which ticks every 312.5µs. On two consecutive 312.5µs time slots, it
sends on two sequential frequencies, that is, it sends two ID packets every
625µs. During the next two time slots, the device scans for a reply on these
same two frequencies, that is, each scan occurs 625µs after the corresponding
send (in fact, a 10µs margin is added to the start and end of the scan in case
replying devices are not completely synchronized). The device now proceeds

436 Bluetooth

Figure 9.9 State transitions during the inquiry process.

Figure 9.10 Timing of the inquiring device’s behavior.

to send and scan on the next pair of frequencies in the same fashion. This
procedure is illustrated in Figure 9.10.

The inquiring device does so for the duration of the inquiry window
denoted Tw inquiry (Figure 9.11). The device can also be set to exit Inquiry
state after a number, denoted Ninq responses, of devices has been found. In peri-
odic inquiry mode, the time between two consecutive inquiries is determined
by the inquiry interval, T inquiry, (Figure 9.11).

An ID packet contains the Inquiry Access Code. As mentioned earlier in
Section 9.3.2, a device can inquire about all units in range using GIAC or a
specific type of device using DIAC. The Inquiry Hopping Sequence, however,
is always derived from the Lower Address Part (LAP) of the GIAC which is
common for all devices and therefore it is the same for all devices. The 32

9.4 Device Discovery 437

Figure 9.11 Periodic inquiry and inquiry scan.

frequencies are divided into two trains, A and B, each train is 10 ms in length
and according to the specification a train must be repeated at least 256 times
before a new train is used (Ninquiry = 256). The specification also states that
in an error free environment at least three train switches must have taken place
in order to ensure that all devices in range respond to the inquiry, resulting in
Tw inquiry = 10.24 s. In an error prone environment more train switches may
be necessary to ensure responses from all devices in range.

The phase within the trains is derived from the CLKN of the inquiring
device and therefore unique to every device. The phase Xi is calculated as
follows:

Xi = [CLKN16−12 + koffset + (CLKN4−2,0 − CLKN16−12) mod 16]

mod 32

where CLKNx−y,z denotes bits x to y and bit z of the native clock. Koffset

selects the train used:

koffset =

{
24 train A
8 train B

A device wishing to be found by inquiring units periodically enters
Inquiry Scan substate. The interval between two consecutive inquiry scans
is determined by the inquiry scan interval, T inquiry scan. The time a device
stays in Inquiry Scan substate is determined by the inquiry scan window,
Tw inquiry scan. During this time the device listens to a single frequency of the
Inquiry Hopping Sequence. The phase is determined by its native clock:

Xir = [CLKN16−12 +N] mod 32

438 Bluetooth

The value of N is increased each time CLKN1 is set to zero, which
corresponds to the start of a master transmission slot.

According to the specification, Tw inquiry scan must be greater than 10 ms
in order to ensure that a frequency synchronization takes place, assuming
that the listening frequency is in the train transmitted. It also states that
T inquiry scan = 2.56 s.

Upon reception of an ID packet a device in Inquiry Scan substate will
leave Inquiry Scan substate for a random backoff time, uniformly distributed
between 0 and 1023 time slots which corresponds to [0,. . . ,639.375 ms]. This
is done to reduce the probability that devices will respond to the same ID
packet simultaneously, thus colliding. After the random backoff the device
will enter Inquiry Response state, in which it listens for a second ID packet.
After receiving this, the device responds with a Frequency Hopping Selection
(FHS) packet containing its device information, that is, its BD ADDR and its
current clock (CLKN).

If the inquiring device receives a response FHS packet in the first half of
the receive slot, it cannot receive a response from another device in the second
half because the radio channel synthesizer does not permit that. Similarly if
it receives a response in the second half of the receive slot, it cannot send the
first ID packet in the following transmit slot.

In Inquiry state, a device cannot exchange ACL data with another device.
However, SCO links are still supported in the Inquiry and Inquiry Scan
substates. If there are SCO links active, the inquiring device must increase
Ninquiry and Tw inquiry to make up for the time slots lost to the SCO links.

9.4.2 Page

In Bluetooth the connection establishment is handled by the page process
(Figure 9.12). The page process requires knowledge of the BD ADDR of
the device with which the connection is to be established. Furthermore the
device being paged must be in Page Scan substate, that is, listening for page
messages. At the end of the page process a connection has been set up, the
paging device becomes the master and the paged device becomes the slave.
As with inquiry a device typically enters Page state periodically and a device
that wishes to be able to connect to paging units enters page scan in certain
intervals.

In Page state a device transmits ID packets at twice the normal frequency
hopping rate using the 32 frequencies of the Page Hopping Sequence. The
Page Hopping Sequence is derived from the paged device’s BD ADDR and

9.4 Device Discovery 439

Figure 9.12 State transitions during the page process.

the phase is calculated as follows:

Xp = [CLKE16−12 + koffset + (CLKE4−2,0 − CLKE16−12) mod 16]

mod 32

where CLKEx−y,z denotes bits x to y and bit z of the clock estimate of the
paged device. The parameter koffset selects the train used. Unlike inquiry the
page process always start on train A. This is because the train A starts with the
most probable listening frequency of the paged device, based on the CLKE
received from, for example, an inquiry. It is of course possible to perform a
page without the CLKE but it will consume more time.

Similar to the inquiry process, the time a device stays in Page state is
determined by the page window, Tw page. In periodic page mode, the time
between two consecutive pages is determined by the page interval, Tpage.

In periodic page scan mode, the interval between two consecutive page
scans is set by the page scan interval, Tpage scan. The length of the scan
is determined by the page scan window, Tw page scan. The scanning device
listens to frequencies in the Page Hopping Sequence. The phase is determined
by it is native clock:

Xp = CLKN16−12

440 Bluetooth

Table 9.2 Relationship between scan interval, train repetition and paging modes
Mode T Page Scan Npage

R0 Continous > 1

R1 < 1.28 sec > 128

R2 < 2.56 sec > 256

Reserved – –

There are three modes concerning the Page Scan substate, R0, R1 and R2.
These modes set the behavior of the scanning device (Table 9.2). Depending
of the scanning device’s scan mode the paging device must repeat the page
train a certain amount Npage times, called the repetition number, or until a
response is obtained. If the scanning device’s scan interval corresponds to
R1, then Npage ≥ 128; if the slave scan interval corresponds to R2, then
Npage ≥ 256.

When a unit in Page Scan substate receives an ID packet containing its
own Access Code it acknowledges the page message with an ID packet and
enters Slave Response state. In this state, it freezes the CLKN16−12 bits at
their current values, then using a value one larger than the preceding slot for
determining the phase:

Xprs = [CLKN∗
6−12 +N]mod 32

where CLKN∗
16−12 are the frozen clock bits and N is a counter set to zero

in the slot the paged device acknowledges the page and incremented each
master TX slot.

After receiving the ACK from the paged device, the paging device enters
the Master Response substate. In this mode, the phase is determined as
follows:

Xprm = [CLKE∗
16−12 + k∗offset + (CLKE∗

4−2,0 − CLKE∗
16−12)mod 16]

mod 32

In Master Response substate the device sends a FHS packet containing its
CLKN, which will be the piconet clock CLK, and the AM ADDR the paged
device shall use. After acknowledging the FHS packet the paged device,
now called the slave, switches to the hopping sequence of the pager, now
called the master. Now the two units are connected and they both switch to
Connection state. To make sure the slave has changed to the master’s hop
sequence, it sends a Poll packet to the slave which in turn answers with an
arbitrary packet. The entire page process is shown in Figure 9.13. The Paging

9.5 Service Discovery and Access 441

Figure 9.13 Page procedure.

scheme described above is the normal one, all units support it. In addition to
supporting this mandatory paging scheme, a unit may support one or more
optional paging schemes.

9.4.3 Optional Paging Schemes

To this date only one optional paging scheme has been defined, called
optional scheme. It uses the same 32 page frequencies as the mandatory
paging scheme and they are split into two trains, A and B. In contrast to the
mandatory scheme, the same 32 frequencies that are used for transmitting are
also used for reception of page responses, called reception trials. The page
train construction differs from the mandatory paging scheme in two ways;
the page train consists of 10 slots, or 6.25 ms. The first 8 slots of the train are
used to transmit the ID packets, the 9th slot is used to send a marker packet,
and the 10th slot is used for the return of a slave response. The marker packet
indicates that a response may be sent and it also contains information about
what frequency to be used for the response.

9.5 Service Discovery and Access

After the devices in an area are discovered, the next step before connecting
to a device is finding the services a device has running on it. Unlike device
discovery, the service discovery process involves only a single pair of devices
(Figure 9.14). The service discovery process requires the device searching for
services to ask a device with services whether it has a service defined by a
service record that has a specific set of attributes. If a remote device has a
service with the attributes specified, the remote device returns the service
record describing the service. The service record has multiple attributes.
These attributes provide additional information on a specific service. These
attributes may contain anything, including information on how to connect to
the service.

442 Bluetooth

Figure 9.14 Unlike an inquiry, a service search is only between two devices.

Bluetooth Service Discovery Protocol (SDP) provides means for discov-
ering services within remote devices but it does not provide access to them,
hence there is the need for other service discovery protocols that addresses
this issue such as Jini, Salutation, Universal Plug and Play (UPnP), etc.
Universal Plug and Play (UPnP) that developed by MicrosoftOne will be
given as example of this techniques

9.5.1 Bluetooth Service Discovery Protocol

The Service Discovery Protocol allows Bluetooth devices to discover what
services other devices may offer. It permits service browsing and search-
ing for specific services. But SDP does not provide access to the services
themselves.

SDP relies on L2CAP links between the SDP server and client. Following
the setup of a L2CAP link, a client may query the SDP server about ser-
vices available (Figure 9.16). SDP uses a dedicated L2CAP channel known
beforehand to all devices. This channel uses a Protocol Service Multiplexer
reserved for SDP. After the SDP data has been received, a client must set up
a new connection to access the service; the SDP channel cannot be used.
Devices supporting the SDP application profile must support pairing and
authentication.

9.5.1.1 Format
A SDP PDU is a packet of variable length depending on the parameters
of the service record. Every SDP PDU consists of a header followed by

9.5 Service Discovery and Access 443

PDU-specific parameters; the header consists of three fields:

• PDU ID (1 byte) identifies the type of PDU, that is, its meaning and the
specific parameters.

• Transaction ID (2 bytes) identifies request PDUs and is used to match
responses to requests.

• Parameter Length (2 bytes) specifies the length of the parameters carried
in the PDU.

As some requests may require responses that are longer than the PDU
length, a PDU may contain a Continuation State parameter to indicate that not
all parameters were sent in the PDU. Then the client repeats the request with
the Continuation State copied from the response. The server then responds
with the rest of the parameters.

Every request PDU has a corresponding response PDU. Should there be
an error in the request or the server cannot respond to the request, the server
will respond with an error PDU (SDP ErrorResponse).

9.5.1.2 Service record
All information about a service is stored in a single Service Record within the
SDP server. A Service Record consists of a list of Service Attributes. There
are 16 Service Attributes defined in the specification v 1.1. A Service Record
is identified by a Service Attribute called ServiceRecordHandle. Some Ser-
vice Attributes are common to all service records, but there are reserved fields
where vendors can define their own Service Attributes. A Service Attribute
consists of two components:

• Attribute ID (16 bits), distinguishes each Service Attribute within a
Service Record. It also identifies the semantics of the Attribute Value.

• Attribute Value (variable length), a data element consisting of two fields,
a header and data. The meaning of the Attribute Value is defined by the
corresponding Attribute ID.

A typical Service Record is made up as follows: The first part is the
ServiceRecordHandle followed by the ServiceClassIDList which lists the
services offered by the device.

The ProtocolDescriptorList lists the protocols needed to use the service.
There may also be protocol specific parameters that are needed to use the
protocols listed, such as channel numbers, etc.

The BluetoothProfileDescriptorList lists the profiles which the service
supports described by their UUID and a version number. If a profile is

444 Bluetooth

Figure 9.15 Example of a data element containing a 16-bit unsigned int.

dependent of another profile, only the top level profile is listed. GAP is never
listed since it is mandatory for all services.

Finally there may be some extra attributes needed to use the service, for
example, ServiceName.

9.5.1.3 Representation of data
All data in the Attribute Values is represented as a data element. A data
element is a typed data representation of variable length. It consists of a
header and data field. The header contains a 5 bit Type Descriptor and a 3
bit Size Descriptor. There are nine types of data defined:

• 0, Null.
• 1, Unsigned int.
• 2, Signed two complement int.
• 3, Universally Unique Identifier (UUID).
• 4, Text string.
• 5, Boolean.
• 6, A sequence of data elements, all of which make up the data.
• 7, Data sequence alternative. A sequence of data elements, of which one

must be chosen.
• 8, Uniform Resource Locator (URL).

The Size Descriptor is an index of the size using the three bits left in the
byte from the Type Descriptor. Sometimes, however, Service Attributes can
be too long to be described with the index, such as text strings, hence the
length must be described in another way. Therefore, the Size Descriptor can
also indicate where the actual data size can be read. The Size Descriptors and
what they indicate are listed below:

• 0, 1 byte (or 0 if Null type).
• 1, 2 bytes.
• 2, 4 bytes.
• 3, 8 bytes.
• 4, 16 bytes.
• 5, Data size in next 1 byte.

9.5 Service Discovery and Access 445

Figure 9.16 SDP session messaging.

• 6, Data size in next 2 bytes.
• 7, Data size in next 4 bytes.

This system saves bandwidth since most attributes fit in the 1–16 bytes of
the Size Descriptor index part.

9.5.1.4 Searching and browsing services
To make services easily searched and browsed, they are arranged in a tree
structure. The hierarchy of the tree and which services will be browsable
is up to the service providers to decide. The top of the tree is called

446 Bluetooth

PublicBrowseRoot. Service Classes are used to identify services, and all
services are members of a Service Class. A Service Class record defines all
attributes contained in a Service Record of the fore-mentioned class. It always
includes a BrowseGroupList attribute, which is a list of UUIDs of all browse
groups associated with the service.

A client can search for services with specific attributes contained in their
Service Records provided that the attributes are of UUID type. Search for
arbitrary values is not supported. In all searches SDP ServiceSearchRequest
is used, it includes a ServiceSearchPattern which is a list of UUIDs that are to
be searched for by the server in its database. The server responds with a SDP
ServiceSearchResponse that includes the ServiceRecordHandle of the match-
ing Service Records. The ServiceRecordHandles are then used to retrieve the
attributes of the desired services, done with SDP ServiceAttributeRequest.

To speed up the process of retrieving Service Attributes a client can com-
bine a service search and an attribute request using SDP ServiceSearchAt-
tributeRequest. The server then responds with the ServiceRecordHandles and
attributes of the services matching the ServiceSearchPattern.

A client that wishes to browse through the services of a server creates
a ServiceSearchPattern containing the UUID of the PublicBrowseRoot. All
services that may be browsed from the top level are made members of the root
group by including the PublicBrowseRoot UUID in the BrowseGroupList
attribute.

9.5.2 Examples of SDP: Universal Plug and Play

Universal Plug and Play (UPnP), developed by Microsoft, is designed
to enable simple ad hoc communication between distributed devices and
services. UPnP uses the TCP/IP protocol stack which is virtually ubiquitous.

Figure 9.17 The UPnP protocol stack.

9.5 Service Discovery and Access 447

It enables a device to dynamically join a network, obtain an IP address,
convey its capabilities, and learn about the presence and capabilities of other
devices.

9.5.2.1 Architecture overview
A UPnP device, as mentioned earlier, uses the TCP/IP protocol suite as
transport. It uses Simple Service Discovery Protocol (SSDP) for announcing
its presence to other devices as well as discovering services. SSDP can
function with or without a directory service. It uses HTTP over unicast and
multicast UDP called HTTPU (unicast UDP) and HTTPMU (multicast UDP).
The multicast is sent on a reserved channel to which all devices must listen.
XML is used to describe devices and services. Control messages are also
expressed in XML using Simple Object Access Protocol (SOAP). Event
messages also use XML, the messages are formatted using General Event
Notification (GENA). UPnP introduces the term control points as potential
clients of services.

9.5.2.2 Operations overview
A device entering the system can use AutoIP to obtain an IP address without
explicit administration. It then multicasts a number of discovery messages
(ssdp:alive), each corresponding to one of its embedded devices and services
to advertise its services to the control points in the network. The messages
should include an expiry time for the service or device, if the service or device
is still available at the expiry time the advertisement should be resent.

A control point entering the network multicasts a discovery message
searching for interesting devices, services, or both. All devices listen to the
standard multicast address for these messages and must respond if any of
their embedded devices or services match the search criteria in the discovery
message. The discovery message may also be directed to a directory service
if present. The fundamental exchange in both cases is a discovery message
containing a few essential specifics about the device or one of its services, for
example, its type, identifier and a pointer (URL) to more detailed information.

After a control point has discovered a device, it will use the URL to
retrieve more information about the device and/or how to interact with it.
The description for a service is expressed in XML and includes a list of any
embedded devices or services, as well as a URL for control, and presentation.

A control point then can send actions to a device’s service through control
messages. The message is sent to the control URL of the device and the device
in turn responds with any action-specific values.

448 Bluetooth

A UPnP service description includes a list of actions the service responds
to and a list of variables that model the state of the service at runtime. A
service publishes updates when these variables change. A control point may
subscribe to receive these updates through event messages. Event messages
contain the name of one or more state variables and their values.

If a device or service has a URL for presentation; a control point may
display this to the user and, depending on the capabilities of the page, allow
the user control and or view of the device status. When a device and its
services are to be removed from the network, the device multicasts a message
(ssdp:byebye) corresponding to each of the discovery (ssdp:alive) messages
it multicasted that have not already expired.

9.6 Bluetooth Security

In any wireless networking setup, security is a concern. Devices can easily
grab radio waves out of the air, so people who send sensitive information
over a wireless connection need to take precautions to make sure those signals
aren’t intercepted.

Bluetooth security like that for any other wireless system is of paramount
importance as devices are susceptible to a variety of wireless and networking
attacking including denial of service attacks, eavesdropping, man-in-the-
middle attacks, message modification, and resource misappropriation.

Bluetooth security must also address more specific Bluetooth related
attacks that target known vulnerabilities in Bluetooth implementations and
specifications. These may include attacks against improperly secured Blue-
tooth implementations which can provide attackers with unauthorized access.

The latest releases of Bluetooth have increased the levels of security to
combat the threat of hackers–any wireless link provides an opportunity for
entry into a network.

Not only is the level of security increasing on the hardware elements that
often have inbuilt security, but also the level of security built into Bluetooth
itself is improving.

In this section, we discuss Bluetooth security. There are two guides and
standards for Bluetooth protocols and security, NIST 800-121-R1 and IEEE
802.15.1. NIST 800-121-R1 details the recommended Bluetooth security pro-
cesses. These recommendations include the authentication and verification of
the sender, confidentiality regarding information, and authorization in regard
to who has control over access to the information. IEEE 802.15.1 is the
standard for Bluetooth Wireless Technology.

9.6 Bluetooth Security 449

9.6.1 Basic Means of Providing Bluetooth Security

There are three basic means of providing Bluetooth security:

• Authentication: In this process, the identity of the communicating
devices is verified. User authentication is not part of the main Bluetooth
security elements of the specification.

• Confidentiality: This process prevents information being eavesdropped
by ensuring that only authorized devices can access and view the data.

• Authorization: This process prevents access by ensuring that a device is
authorized to use a service before enabling it to do so.

Besides the three basic means there is a fourth type of Bluetooth security:
Pairing.

The four security means work together in the following sequence:
Pairing stage: Pairing is the first step in the process of Bluetooth security.
When two devices come into contact with one another for the first time
and want to use security, the devices must establish a shared secret used
for authentication and encryption. Pairing requires the user of each device
to input a common code or PIN into each device.

The PIN is then used to do an initial authentication of both devices.
After the initial pairing, a shared secret is established and is stored within
the Bluetooth device to allow authentication of both devices in the future
without the need for the pairing process. Figure 9.18 shows how two devices
can retrieve the PIN to complete the pairing process. The pairing process is
transparent to the application. It is the responsibility of the BCC to retrieve
the PIN from the user or determine what the PIN should be.

Authentication phase: After pairing comes authentication. Bluetooth
authentication verifies the identity of one device to another device using
a challenge and response scheme. Bluetooth authentication, as mentioned
above, does not authenticate users but authenticates devices. When device A
wants to authenticate device B, device A sends a challenge to device B. When
it receives this challenge, device B applies the shared secret to the challenge
and sends the result to device A. Device A then combines the challenge that
was sent with its shared secret and compares the result with the result sent
from device B. Although it authenticates device B to device A, this process
does not authenticate device A to device B. The same process must be used to
authenticate device A to device B. To perform authentication, device A and
device B must complete the pairing process so that the shared secret can be
established.

450 Bluetooth

Figure 9.18 For two devices to complete the pairing process, a common PIN must be
entered.

Encryption phase: Once the authentication process has been completed,
encryption can be turned on. Encryption is used to prevent an eavesdropper,
Eve, from intercepting communication between two entities, Alice and Bob.
When one device wants to turn on encryption, it must ask the other Bluetooth
device to do so also. If the other device accepts the request, all packets
between the devices are encrypted. If the other device rejects the request,
the connection is closed. Unlike the mechanism of authentication, it is not
possible for communications sent from device A to device B to be encrypted
while communications sent from device B to device A are unencrypted.

Authorization phase: Another option within Bluetooth security is autho-
rization. Authorization is the process of determining whether a connection
request from a specific Bluetooth device should be granted. Authorization is
completed on a connection-by-connection basis. The Bluetooth specification
has also defined the concept of a trusted device, which is a device that
is automatically granted authorization when authorization is requested. In
other words, a trusted device is authorized to connect to any service on
the local device. When a trusted device connects to a service that requires
authorization, the request is automatically accepted without the BCC asking
the user if the device is authorized to use the service. The BCC is in charge
of maintaining the list of trusted devices. When an authorization request is
received by the BCC for a nontrusted device, the BCC requests the user to
grant or deny the connection.

The above discussion means that each level of security builds on the
previous level. Authentication requires pairing. Encryption and authorization

9.6 Bluetooth Security 451

require authentication. JABWT enforces these requirements. If encryption
is requested on a link and the link has not been authenticated, the JABWT
implementation authenticates the remote device before encrypting the link.

9.6.2 Bluetooth Security and Trust Modes

9.6.2.1 Bluetooth security modes
The various versions of the specifications detail four Bluetooth security
modes. Each Bluetooth device must operate in one of four modes:

• Bluetooth Security Mode 1: This mode is non-secure. The authen-
tication and encryption functionality is bypassed and the device is
susceptible to hacking. Bluetooth devices operation in Bluetooth Secu-
rity Mode 1. Devices operating like this do not employ any mechanisms
to prevent other Bluetooth-enabled devices from establishing connec-
tions. While it is easy to make connections, security is an issue. It may
be applicable to short range devices operating in an area where other
devices may not be present. Security Mode 1 is only supported up to
Bluetooth 2.0 + EDR and not beyond.

• Bluetooth Security Mode 2: Application/Service Based–In this mode,
once a connection is established, a Security Manager performs authen-
tication, thereby restricting access to the device. For this Bluetooth
security mode, a centralized security manager controls access to specific
services and devices. The Bluetooth security manager maintains policies
for access control and interfaces with other protocols and device users.
It is possible to apply varying trust levels and policies to restrict access
for applications with different security requirements, even when they
operate in parallel. It is possible to grant access to some services without
providing access to other services. The concept of authorization is intro-
duced in Bluetooth security mode 2. Using this it is possible to determine
if a specific device is allowed to have access to a specific service.
Although authentication and encryption mechanisms are applicable to
Bluetooth Security Mode 2, they are implemented at the LMP layer
(below L2CAP).
All Bluetooth devices can support Bluetooth Security Mode 2; however,
v2.1 + EDR devices can only support it for backward compatibility for
earlier devices. After introducing security mode 3 and mode 4, the role
of mode 2 will be discussed in some detail in Section 9.6.2.1.

• Bluetooth Security Mode 3: Link level enforced security–In Bluetooth
Security Mode 3, the Bluetooth device initiates security procedures

452 Bluetooth

before any physical link is established. In this mode, authentication and
encryption are used for all connections to and from the device.
The authentication and encryption processes use a separate secret
link key that is shared by paired devices, once the pairing has been
established.
Bluetooth Security Mode 3 is only supported in devices that conform to
Bluetooth 2.0 + EDR or earlier.

• Bluetooth Security Mode 4: This is service level enforced security with
encrypted key exchange .Bluetooth Security Mode 4 was introduced at
Bluetooth v2.1 + EDR.
In Bluetooth Security Mode 4 the security procedures are initiated
after link setup. Secure Simple Pairing uses what are termed Elliptic
Curve Diffie-Hellman (ECDH) techniques for key exchange and link
key generation.
The algorithms for device authentication and encryption algorithms are
the same as those defined in Bluetooth v2.0 + EDR.
The security requirements for services protected by Security Mode 4 are
as follows:

◦ Authenticated link key required
◦ Unauthenticated link key required
◦ No security required

Whether or not a link key is authenticated depends on the Secure Simple
Pairing association model used. Bluetooth Security Mode 4 is mandatory for
communication between v2.1 + EDR devices.

9.6.2.1.1 Security mode 2 role
We refer in to Figure 9.18 during this discussion. Figure 9.19 shows that
the Security Manager is cognizant of the goings on in both the L2CAP
and RFCOMM layers. When an attempt is made to establish a peer-to-peer
connection at either of these layers, the Security Manager is made aware
of this and acts as an arbiter. It does not matter if the connection is being
initiated by the client’s application, or requested by a remote device, the
Security Manager has intimate knowledge of what is happening and responds
appropriately. It can decide on the course of action, basing its decision on
configuration data placed in the service database. The options available to the
Security Manager are as follows:

• Do nothing and allow the peer-to-peer connection to establish itself.
• Initiate authentication procedures

9.6 Bluetooth Security 453

Figure 9.19 Trigger points are located within RFCOMM and L2CAP to invoke mode 2
security.

Table 9.3 Associated protocol service multiplexor specifying the service it represents
Service Module Protocol Service Multiplexor
SDP 0x0001

TCS bin 0x0005

TCS cordless 0x0007

RFCOMM 0x0003

• Initiate authorization procedures.
• Start encryption once a communications link is established.

With security being triggered at the L2CAP layer, there is the potential
for blocking access to services above this layer. Service Discovery Proto-
col (SDP), Telephony Control Specification (TCS), RFCOMM, and OBEX
functions (and all application profiles relying on these underlying building
blocks) can be selectively protected. When an L2CAP connection is estab-
lished, a value called a protocol service multiplexor (PSM) must be specified,
identifying which of the modules above this layer is to be accessed. Table 9.3
lists the PSM values along with their corresponding upper layer connection
module to give you a view of services that can be protected if security is
linked to L2CAP.

Usually, when using the L2CAP layer as the security trigger, the intention
of the user will go to protect either the cordless telephony/intercom profile

454 Bluetooth

(TCS) or SDP. Protecting SDP may not be in best interest of the user as this
implies that the user is not inclined to provide services to other devices that
do not know what the user is doing. It is important to note here that once a
remote device passes authentication, and if the link key is stored (bonding
completes), authentication will successfully pass in future sessions without
user intervention. Perhaps a different strategy would suffice in protecting
your device from others that do not know what you do–like configuring your
device to be non-discoverable.

In a manner similar to L2CAP, the Security Manager has access to
the internal workings of RFCOMM as well and can trigger security based
upon connection requests being made at this level. Associating security with
the RFCOMM protocol layer protects applications requiring the serial port
profile and profiles built upon this foundation such as fax, modem, LAN
access, and OBEX.

As was the case with L2CAP, the Security Manager can be selective in
determining which applications to protect as well. Peer-to-peer connection
establishment at the RFCOMM layer requires that a specific channel (out of
a possible 60 channel values) be specified for the connection to complete suc-
cessfully. This channel number is always associated with a particular service
or profile being offered by the Bluetooth server unit. This channel number is
made available to client devices through SDP. Therefore, to protect a specific
service relying upon serial profile support, you would set up the Security
Manager to trigger when a connection attempt is made using RFCOMM and
a service-specific channel ID.

There are a few interesting things the reader should be made aware of.
First, server applications (such as a LAN Access Point) relying on RFCOMM
must register their use of the RFCOMM interface by entering information
into the SDP service database; specifically, this equates to a channel number
associated with the RFCOMM module along with the service supported, such
as LAN access. Devices interested in using this service must query the service
database using the SDP facility, extract this information, then make a request
to connect to the specified RFCOMM channel number. The Security Manager
detecting this request will make a determination if security is required based
upon configuration information contained within its own internal service
database. It will then take action and invoke security measures as required.

The Security Manager, in accordance with the Bluetooth specifica-
tion, can also initiate security measures if a particular type of connection
(RFCOMM or L2CAP) is initiated by your own application. For instance,
assuming for a moment that as a client application, I want to establish a

9.6 Bluetooth Security 455

connection to a server offering “FAX” capability (RFCOMM channel #7 as
revealed by an earlier SDP session). After establishing a radio connection at
the Link Manager level, a connection request would be made to the server
unit at the L2CAP layer. Next, before attempting to connect at the RFCOMM
layer, authentication would be invoked by my side. My device would be the
Verifier. If successful, a connect request to RFCOMM would then proceed.
Note that authentication is supported on outgoing (as well as incoming)
connection requests. Authorization and encryption are only triggered on
incoming connection requests.

9.6.2.2 Bluetooth trust modes
In addition to the security modes discussed above, there are two levels of trust
for Bluetooth devices, trusted and untrusted. They are described as follows:

1. Trusted–A trusted device has established a fixed relationship with
another device and has unrestricted access to all services.

2. Untrusted–An untrusted device only has access to a restricted set of
services. Although the device has passed authentication successfully, it
does not have a fixed relationship with another device.

9.6.3 Discoverability in Devices

Discoverability modes of Bluetooth devices also affect the device’s security.
Devices in discoverable mode are more vulnerable, as they can be recognized.
The device name, class, list of services, and technical information are all
exchanged in discoverable Bluetooth devices that are in range (approximately
10 m). In addition, every Bluetooth device has a unique 48-bit address used
for identification, known as the BD_ADDR. This address is similar to a MAC
address, which is a manufacturer assigned address for hardware that serves
as a unique identification number. The BD_ADDR, like a MAC address, is
assigned by the manufacturer.

9.6.4 Bluetooth Security Services

The first time that two devices attempt a connection, a trusted relationship
needs to be established through authentication. Authentication is performed
by using challenge-response, based on BD_ADDR and a link key. The link
keys, once established, are kept by both devices to be used for future pairing.
In older versions of Bluetooth (v2.0 and earlier), common secret PIN codes,
which are passkeys required for first time Bluetooth connections, are used.

456 Bluetooth

Figure 9.20 Link-key generation with PIN [19].

Figure 9.21 Link-key establishment for SSP.

The PINs are used by both devices and consist of between 4 and 16 characters.
These codes are specifically used for link-key generation. This is illustrated
in Figure 9.20. In some cases, once the PIN is set, it cannot be changed. It is
also important to note that two devices cannot communicate or be paired if
the devices have fixed PINs. Newer versions of Bluetooth (v2.1 and later) use
SSP for the pairing process, which utilizes public key cryptography instead
of a PIN. This protocol is illustrated in Figure 9.21.

9.7 Bluetooth Vulnerabilities and Threats 457

Authorization begins by first determining whether the device had previ-
ously been authorized as a trusted device. If the device database lists it as a
trusted device, then access to services is granted. If the device is not listed as
a trusted device, trust must first be established before it can be authorized.

Confidentiality is achieved through encryption, more specifically the use
of the E0 stream cypher. A link key and the BD_ADDR of the device are
used to develop a keystream that when combined with plaintext achieves a
cyphered text. Attacks and cryptanalysis attempts on E0 have proven that the
stream cipher is vulnerable to attacks.

9.6.5 Built-in Security Features

Bluetooth technology has certain built-in features that help secure the
technology. They include:

(1) Adaptive Frequency Hopping: Frequency hopping in Bluetooth uses
a 2.4 GHz ISM band with 79 channels to enable hops at 1600 hops
per second. During the hopping, existing frequencies are excluded. The
ability to frequency hop reduces both jamming and interference.

(2) E0 Cipher Suite: The cipher generally has a key length of 128 bits and
uses stream ciphering.

(3) Undiscoverability: This prevents devices from responding to scanning
attempts. A device’s 48-bit BD_ADDR address is also concealed.

(4) Pairing: Pairing enables devices to communicate. A device’s BD_ADDR
must be known for a pairing request to be made. The BD_ADDR, which
is discussed in the previous two sections, is identified from knowledge
of previous pairing or by scanning.

9.7 Bluetooth Vulnerabilities and Threats

In this section, we discuss the vulnerabilities in different versions of Blue-
tooth. We then discuss Bluetooth attacks, which are a result of vulnerabilities
in the technology. Finally, we introduce the Bluetooth threat taxonomy and
discuss common Bluetooth attacks.

9.7.1 Vulnerabilities in Bluetooth Versions

The version of Bluetooth that is being used, and the security of communi-
cations between devices, which is only as strong as the weakest link (i.e.,
the device with the oldest (weakest) version) is important when discussing

458 Bluetooth

Bluetooth vulnerabilities. Since many older devices are still being used today,
the vulnerabilities in the older versions of Bluetooth continue to be present.

(1) Versions before Bluetooth 1.2: Link keys, which are based on static unit
keys, are used for pairing and can be reused. If the key is retrieved,
malicious devices can eavesdrop on the original devices, as well as spoof
the original device and/or connected devices.

(2) Versions before Bluetooth 2.1 + EDR: Codes that consist of short PINs
are permitted. These PINs are easy for attackers to guess due to their
short length. These versions are lacking in PIN management, which
is a desirable security capability at an enterprise level. In addition,
the keystreams in these early versions become vulnerable after being
connected for 23.3 h. This is the time period at which the keystream
repeats. This increases an adversary’s ability to decrypt messages.

(3) Versions 2.1 and 3.0: If Security Mode 4 devices are connecting to
devices that do not support Security Mode 4, earlier security modes are
used in the connection. For example, it is possible that Security Mode 1,
which offers no security, will be used. This rollback in security modes
makes versions 2.1 and 3.0 more vulnerable to attacks. In addition, SSP
static keys are used in versions 2.1 and 3.0, which increases the device’s
vulnerability to Man-in-the-Middle attacks.

(4) Versions before Bluetooth 4.0: There is an unlimited number of authen-
tication challenge requests, which enables adversaries to obtain infor-
mation on many challenge responses. This allows them to gain insight
on secret link keys. In addition, the stream cipher E0 function, which is
used in early versions, is considered weak.

(5) All versions of Bluetooth: Adversaries can view and potentially modify
link keys if they are stored improperly. In addition, encryption key
lengths may be small, which can make them vulnerable to attackers. It
is possible that encryption keys can be as small as 1 byte. Regarding
authentication, there is no user authentication. The Bluetooth stan-
dard only includes device authentication. It is important to note that a
device can remain in discoverable/connectable mode for an indefinite
period of time.

9.8 Reasons for Bluetooth Vulnerabilities

Security in Bluetooth networks depends on the security of the Bluetooth
medium, protocols and parameters. Weaknesses in each of these aspects
result in vulnerabilities in a Bluetooth network. Bluetooth makes several
assumptions about security. Firstly, it assumes that once a connection is

9.8 Reasons for Bluetooth Vulnerabilities 459

established between two devices, it will remain permanently secure with
the keys it has stored. Secondly, there is an assumption that short range
provides some level of security since adversaries need to be in close proximity
(typically 5–30 m). Moreover Bluetooth authenticates devices, not users, so
there is an assumption that all users on a particular device should follow the
same security protocol. In this section, we look at Bluetooth’s vulnerability
to eavesdropping and weaknesses in the mechanisms of Bluetooth’s security
model.

9.8.1 Vulnerability to Eavesdropping

Due to the nature of wireless RF communication, eavesdroppers are often
not detected in a Bluetooth network. Unencrypted transmissions obviously
make it easy for an eavesdropper to see the contents of any packets. However,
the eavesdropper has to be in range of the Bluetooth network. Bluetooth
packets consist of an access code, packet header and a payload. Since the
access code and packet header are always sent unencrypted, even when
encryption is used on the data and payload, an eavesdropper can always see
general piconet information pertaining to the devices. Using this information,
the eavesdropper could figure out the authorization levels of the legitimate
piconet devices. Furthermore, as explained in our attack below 6, low energy
legacy pairing provides no passive eavesdropping protection. If success-
ful, eavesdroppers can capture secret keys distributed during low energy
pairing.

9.8.2 Potential Weaknesses

9.8.2.1 Encryption mechanisms
The most significant weakness in the Bluetooth encryption mechanism is
when 128-bit encryption cannot be used. When two devices communicate
the parameters for encryption, the length of the encryption key is restricted
by the Bluetooth device that has the shorter maximum encryption key length.
Another weakness occurs when the PIN inputted in the Passkey Entry or
Just Works association model is used to generate the link keys. This PIN
can be brute-forced and used for replication of the link keys by a passive
eavesdropping attacker.

9.8.2.2 Association models of SSP
One particular weakness of the association models of SSP is the Just Works
model. This pairing method provides no MITM protection between trusted
devices.

460 Bluetooth

9.8.2.3 Device configuration
The default settings of Bluetooth provide little security, as the device is set as
discoverable and non-secure, meaning that an attacker can discover the BD
ADDR of it and perform various attacks.

9.8.2.4 Bad coding during development of RFCOMM stack
implementation

• Failures in secure stack implementation may lead to buffer overflows.
• Some manufacturers may not be releasing any patches for the original

version of their codes they deploy on end-devices.

9.8.2.5 Re-use of older services for different protocols
• Some highly privileged services are left open.

9.8.2.6 IrMC permissions
• IrMC defines a set of access permissions for common Bluetooth objects.
• Permissions are sometimes not followed or just open, leading to

exploitation of open IrMC services.

All the mentioned vulnerabilities do not directly say–what are really the
threats of using Bluetooth devices (knowing that those vulnerabilities exist).
To name just a few, the attacker might be able to:

• Steal the information.
• Perform a DoS attack on the end-device using Bluetooth.
• Remotely execute code.
• Inject viruses or worms.
• Inject crafted connections to go via a Bluetooth device (working as

proxy).

The Bluetooth threat Taxonomy illustrated below in Table 9.4, out-
lines, and classifies Bluetooth-based threats. This classification system can
help determine the severity of threats, provides precautionary methods,
and presents reactionary strategies. Some threats may display characteris-
tics of several classifications; however, they are classified based on their
predominant characteristic.

9.9 Common Bluetooth Attacks

The pairing process is a main contributor to security issues found in Blue-
tooth. Attacks can be performed during different stages of the pairing process

9.9 Common Bluetooth Attacks 461

Table 9.4 Bluetooth threat taxonomy
Classification Method Threats
Obfuscation Techniques are used to hide the HCIConfig (Device Name)

attack and prevent detection. HCIConfig/BTClass (Class of
Device)
Bdaddr (Device Address)
SpoofTooph

Surveillance Device monitoring is done to collect HCITool (Device Discovery)
information. Sdptool (Service Discovery)

Redfang
Blueprinting
Bt Audit
War-Nibbling
Bluefish
BNAP BNAP/BlueProPro
BlueScanner

Range
Extension

Range of connectivity is extended so
attacks can be conducted at a
distance.

BlueSniping/Bluetoone

Sniffing Sniffer is used to intercept data by
capturing network traffic.

Merlin/FT4USB (External
Based)
BlueSniff (Frequency Based)
HCIDump (Host Based)

Man-In-The-
Middle

Attackers trick devices into thinking
they are paired, when in reality they
are both connected to the attacker.

Bthidproxy

Unauthorized Data stored in cloud is directly Bluesnarf/Bl000ver
Direct accessed due to vulnerabilities. BTCrack/Btpincrack
Data Access Car Whisperer

HeloMoto
Bluebugger
HID Attack
Btaptap

Denial of
Service

Services are disrupted, making a BlueSmack/Tanya

machine or network unavaiable to Blueper
users. BlueJacking/BlueSpam/Smurf

vCardBlaster
Signal Jamming
BlueSYN/Pingblender
(Multi-Vector DoS)
Battery Exhaustion

(Continued)

462 Bluetooth

Table 9.4 Continued
Classification Method Threats
Malware Intrusive or harmful software is put BlueBag

on a computer to disrupt operations, Caribe
steal data, or extort a target for CommWarrior
ransom. Skuller

Fuzzer Injects data into a stack or program
and has the ability to detect bugs.

Bluetooth Stack
Smasher/BluePAss
BlueStab
HCIDump Crash
L2CAP Header Overflow
Nokia N70 L2CAP DoS
Sonyericson Reset Display

including before the pairing process has completed and after devices are
paired. For example, attackers may be able to carry out Man-in-the-Middle
attacks based on information they collected after pairing. Some of the more
common attacks on Bluetooth are described below:

A. MAC Spoofing Attack

The attack is performed before encryption is established and during the
formation of the piconet when link keys are being generated. Devices are
able to authenticate each other by generating link-keys. During the attack,
attackers can imitate another user. They also have the ability to terminate
connections or intercept/modify data with the use of special tools. Figure 9.22
illustrates a MAC spoofing attack.

B. PIN Cracking Attack

The attack occurs during the device pairing and authentication process. An
attacker uses a frequency sniffer tool to collect the RAND and the BD_ADDR
of the targeted device. A brute-force algorithm (E22 algorithm) is then used
to test all possible permutations of the PIN with the data previously collected
until the correct PIN is found. Figure 9.23 illustrates the PIN cracking attack
structure.

C. Man-in-the-Middle Attack

Man-in-the-Middle Attacks such as the one illustrated in Figure 9.24 below
occur when devices are attempting to pair. During the attack, messages

9.9 Common Bluetooth Attacks 463

Figure 9.22 MAC spoofing attack.

are relayed unknowingly between the devices. This enables authentication
without the shared secret keys. In a successful attack, the user believes the
pairing was successful; however, this is not the case, as the two devices are
paired to the attacker.

D. BlueJacking Attack

During a BlueJacking attack, the attacker sends unsolicited messages to a
device to trick the user into using an access code. This enables the adversary
to access files on the targeted device. The devices involved in the attack and
the exact source of the message received need to be within a specific range, 10
m, for the attack to be successful. This attack is commonly used in crowded
areas (e.g., airports, shopping malls, and train stations). While it does not
usually involve the alteration of data, it could make devices susceptible to
other attacks.

464 Bluetooth

Figure 9.23 PIN cracking attack.

E. BlueSnarfing Attack

The attack involves hacking into a mobile phone and stealing any of the data
stored in the phone’s memory, such as contacts, calendar entries, images, etc.
During the attack, the attacker connects by exploiting the OBEX File Transfer
Protocol, a file transfer program used in Bluetooth. This enables the attacker
to pair with the user’s device. Figure 9.25 below illustrates a BlueSnarfing
attack.

9.9 Common Bluetooth Attacks 465

Figure 9.24 Man-in-the-middle attack.

E. BlueBugging Attack

The attack occurs in the RFCOMM protocol. Physical connections are made
via L2CAP + base band and it emulates serial RS-232 connections. During
the attack, the attacker connects to the target device without the knowledge
of the owner. The attacker then takes over the device by gaining access to
the device’s set of “AT” commands, which are attention commands that send
instructions to the module. This enables the attacker to execute commands as
if he was the device owner. The attacker can also steal information and access
the phone’s services and settings.

F. BlueBump Attack

The attack occurs when there is a weakness in the handling of link keys.
During the attack a business card is sent between the attacker and user. By
forcing the user to accept the card, a trusted and authenticated connection is
made. After the pairing, the user then has the ability to delete the link key;
however, the user unknowingly still has an active connection to the attacker.
The attacker is then able to pair with the device later without authenticating
by simply requesting link-key regenerations. The attacker can continue to pair
with the target device if the key is not deleted.

466 Bluetooth

Figure 9.25 BlueSnarfing attack.

G. BlueDump Attack

During the attack, the attacker spoofs the BD_ADDR of one of
the devices to connect with the other. During pairing, the target
device sends an authentication request. The attacker responds with
‘HCI_Link_Key_Request_Negative_Reply. This is a result of the attacker not
having a link key. In some cases, the device targeted deletes its link key. It
then goes into pairing mode.

F. BluePrinting Attack

The attack is carried out by combining the information that is revealed about
a device to gain additional information, such as the manufacturer, device
model, and firmware version. This attack can only be performed when the
BD_ADDR of the device is known.

9.9 Common Bluetooth Attacks 467

G. Blueover Attack

Blueover and its successor Blueover II are auditing tools that are used to
determine if a Bluetooth device is vulnerable, but they can also be used to
initiate a BlueBugging attack.

H. BlueBorne Attack

The attack is conducted by exploiting a stack buffer overflow flaw. By
targeting the processing of pending client L2CAP configuration responses,
the attacker is able to hijack Bluetooth connections. This enables them to
control a targeted device’s embedded content and functions. For the attack to
be successful, only MAC and Bluetooth addresses are needed.

I. Fuzzing Attack

The attack occurs when the adversary attempts to cause a device to behave
abnormally by sending malformed data packets and non-standard data to a
device’s Bluetooth radio. The attacker then watches how the device reacts
to the data packets being sent. If the device’s operations become sluggish or
stop during these attacks, the attacker could infer that the protocol stack has
vulnerabilities.

J. Off-Line PIN Recovery Attack

During the attack, the attacker tries to intercept the IN_RAND value,
LK_RAND values, AU_RAND value, and SRES (signed response) value.
The SRES value is a matching variable needed for authentication [9]. The
attacker then uses brute-force to obtain a PIN that could be used to determine
the correct SRES value, which is equal to the intercepted SRES value.

K. Brute-force BD_ADDR Attack

This attack is a scanning attack on the last three bytes of the BD_ADDR of
a device. It is important to note that the first three bytes, which are known
publicly, can be set as fixed.

L. Reflection/Relay Attack

The attack occurs when the adversary impersonates a device. The attacker
is not looking for any undisclosed information during the attack. It simply
authenticates the connection by reflecting/relaying device information.

468 Bluetooth

M. Backdoor Attack

The attack occurs when establishing a trusted relationship during pairing.
During the attack, the adversary does not appear in the register of paired
devices on the target device. After a relationship is established, the attacker
has access to the devices services and resources. This access is unbeknownst
to the device owner. The BD_ADDR of the target device needs to be known
for a backdoor attack to be successful. It also needs to be determined that the
device targeted by the attacker is vulnerable to the attack.

N. Denial of Service Attacks

DDoS (Distributed Denial of Service) and ordinary DoS are two types of
Denial of Service attacks. For ordinary DoS attacks, the attacker tries to
crash the network or restart the system by sending packets to the targeted
system. DDoS attacks can be done by a single attacker. These attacks can
disable a network. They also can restrict network accessibility to a larger
network. The attacks target the Physical Layer in the protocol stack or those
above the Physical Layer. Some typical Denial of Service (DoS) attacks are
BD_ADDR duplication, BlueSmack, BlueChop, L2CAP guaranteed service,
battery exhaustion, and Big NAK (Negative Acknowledgment), which is an
attack using a continuous retransmission loop.

O. Worm Attacks

The attacks occur when a malicious software or Trojan file sends itself to
available Bluetooth devices. Examples of these attacks are:

1. Cabir Worm: A malicious software that targets Bluetooth technology.
Mobile phones that use the Symbian series 60 interface platform are
vulnerable to the attacks. For the attacks to be successful, the user must
accept the worm. This causes the malware to install on the device.
The worms are usually disguised in applications, which results in users
unknowingly accepting them. Once installed, the software is the able
to use the compromised device to search for and send itself to other
available devices. The Mabir worm is a form of the Cabir worm. This
worm replicates by using Multimedia Messaging Service messages and
Bluetooth.

2. Skulls Worm: The Skulls Worm, a malicious SIS (Symbian Installation
System) trojan file, targets Symbian mobile phones with the Series 60
platform. The worm poses as a Macromedia Flash player. The user must

9.9 Common Bluetooth Attacks 469

open and install the SIS file for the worm to become active. It then
searches for additional devices to infect and the process repeats itself.

3. Lasco Worm: The Lasco worm, is a combination of a Bluetooth worm
and SIS file. It targets and infects Symbian mobile phones that support
the Series 60 platform. The user must open and install the velasco.sis file.
This prompts the activation of the worm. It can then begin searching for
additional devices to infect and the process repeats itself.

P. Bluesmack Attack

The attack is a DoS attack on Bluetooth devices and is similar to the “Ping of
Death” attacks that are carried out on IP-based devices, which are networked
devices. It is done by sending pings that are approximately 600 bytes, as well
as L2CAP echo requests to Bluetooth devices. This results in the input buffer
to overflow and the targeted device to be knocked out.

Q. MultiBlue Attack

The attack occurs when an attacker has access to the device they wish to
hack. The MultiBlue dongle, a bluetooth capable 4 GB thumb, is used to
gain access to and take over the targeted device. The attacker then uses the
MultiBlue application to see all discoverable devices within range and send
pairing requests. The targeted device then presents a code, a pre-shared key,
which needs to be entered into the MultiBlue application. This key is needed
for authentication and encryption. The attacker then has control of the device.

R. HeloMoto Attack

The attack is a mix of the previously mentioned BlueSnarfing and Blue-
Bugging attacks. A vulnerability caused by the erroneous implementation of
“trusted devices” on Motorola devices is exploited during the attack. When
exploited, the adversary’s device is stored as a trusted device on the target
device’s trusted list. After connecting to the OBEX push profile, the attacker
tries sending a vcard. The adversary is then able to elude authentication and
connect to the target device’s headset profile. BlueBugging is also used to
take control of the device.

S. Bluecasing/War Nibbling Attack

The attack occurs when a phreaker, a telephone network hacker, uses laptops
or PCs with high gain antennas and special software to discover and exploit
vulnerabilities in Bluetooth phones to obtain access.

470 Bluetooth

The ability to identify and describe these different attacks enables us to
better understand the threats surrounding IoT Bluetooth devices. In addition,
by classifying the threats, we can determine the severity of the various
Bluetooth attacks. Next, we discuss ways to mitigate the risks and identify
potential countermeasures used in response to these threats

9.10 Bluetooth Risk Mitigation and Countermeasures

The attacks that are described in the previous section discuss Bluetooth flaws
that result in vulnerabilities, which can be exploited by an attacker to steal
data, send messages, make phone calls, and connect to the Internet using
the compromised device. We now discuss risk mitigation techniques and
countermeasures.

9.10.1 Mitigation Techniques

Mitigating Bluetooth vulnerabilities differ significantly from mitigating vul-
nerabilities in a computer system. While application software patches are
used to resolve vulnerabilities in computer systems, Bluetooth devices require
upgrades in device firmware. These upgrades cannot be developed by the
general public and/or user community. Therefore, Bluetooth devices will
continue to be vulnerable to attacks even if mitigation solutions become
available.

While all attacks cannot be prevented, and security is not guaranteed,
there are countermeasures that can be used to secure Bluetooth communi-
cations. Some of those mitigation techniques are described below:

A. Enhancement of Bluetooth user awareness: it is necessary to educate
Bluetooth users to ensure they have knowledge of the proper Bluetooth
security practices. These security practices include:

(1) Default settings should be updated to achieve optimal standards.
(2) Ensuring devices are in and remain in a secure range. This is done

by setting devices to the lowest power level.
(3) Using long and random PIN codes, which make the codes less

susceptible to brute-force attacks.
(4) Changing the default PIN for devices and frequently updating this

PIN (i.e., once every other month).
(5) Setting devices to undiscoverable mode by default, except as

needed for pairing. Most active discovery tools require that
devices be in discoverable mode to be identified. Devices set to

9.10 Bluetooth Risk Mitigation and Countermeasures 471

undiscoverable mode will not be visible to other Bluetooth devices.
Devices previously configured, better known as trusted devices,
will be able to connect and communicate while in this hidden mode.

(6) Turning off a device’s Bluetooth when not needed or in use, espe-
cially while in certain public areas such as shopping malls, coffee
shops, public transportation, clubs, bars, etc. This can prevent users
from receiving advertisements from other Bluejackers.

(7) Refraining from entering passkeys or PINs when unexpectedly
prompted to do so.

(8) Frequently updating software and drivers to have the most recent
product improvements and security fixes.

(9) It is recommended that users refrain from using non-supported or
not secure Bluetooth-enabled devices or modules. This includes
Bluetooth versions 1.0 and 1.2.

(10) Pairing devices as needed. Users need to maintain that any pairing
should take place in a secure non-public setting. This will help pre-
vent attackers from intercepting pairing messages. As previously
mentioned, a crucial part of Bluetooth security is pairing, so users
should have knowledge regarding eavesdropping.

(11) Users should use SSP instead of legacy PIN authentication for
the pairing exchange process when it is possible. This will help
mitigate PIN cracking attacks.

(12) All lost or stolen Bluetooth devices should be unpaired from
devices they had previously been paired with. Unpairing will pre-
vent an attacker from accessing the users other devices through the
Bluetooth pairing.

(13) Users should never accept transmissions from unknown or suspi-
cious devices.
Content should only be accepted from trusted devices.

(14) All devices that are paired should be removed immediately after
use.

(15) Devices should be monitored and kept at close range.

B. Instead of basing link keys on unit keys, they should be based on
combination keys. This will prevent Man-in-the-Middle attacks.

C. Use link encryption for all data transmissions to prevent any eavesdrop-
ping, including passive eavesdropping. Use of the HID boot mode mech-
anism, a connectionless human interface device, should be avoided, as it
sends traffic in plaintext.

472 Bluetooth

D. Users should ensure all links are encryption-enabled when using multi-
hop communication. Failure to do so could result in the entire commu-
nication chain being compromised.

E. Require mutual authentication for network connected devices. This will
provide confirmation that the network connections are legitimate.

F. Lower the risk of broadcast interceptions by encrypting the broadcasts.
G. The maximum encryption key size should be used. In addition, a

minimum key size should also be set–128 bits is recommended. The
utilization of these minimum and maximum keys will protect devices
from brute-force attacks.

H. To provide the highest level of security, Security Mode 3 is highly
recommended. This mode of security, which is implemented at the link
level, is one of the highest levels of Bluetooth security.

9.10.2 Applications for Protecting Bluetooth Devices

(1) Bluetooth firewall: The Firewall application protects devices, specif-
ically Android devices, from all Bluetooth related attacks. Users are
alerted upon any Bluetooth activity. The application also enables you
to see Bluetooth capabilities on devices or specific apps.

(2) Bluetooth file transfer: This application only enables authorized devices
to be connected.

References

[1] Bisikian, C. An overview of the Bluetooth wireless technology. IEEE
Commun. Mag. 2001, 39, 86–94.

[2] Bluetooth Core Specification v5.0, Bluetooth Special Interest Group
(SIG), Dec. 2016.

[3] Bluetooth Core Specification v4.1, Bluetooth Special Interest Group
(SIG), Dec. 2013.

[4] S. (n.d.)., Bluetooth low energy (BLE) enabled devices market volume
worldwide, from 2013 to 2020 (in million units), 2015. [Online]. Avail-
able: https://www.statista.com/statistics/750569/ worldwide-bluetooth-
low-energy-device-market-volume/

[5] Harris, A., III; Khanna, V.; Tuncay, G.; Want, R.; Kravets, R. Bluetooth
low energy in dense IoT environments. IEEE Commun. Mag. 2016, 54,
30–36.

9.10 Bluetooth Risk Mitigation and Countermeasures 473

[6] Darroudi, S.M.; Gomez, C. Bluetooth low energy mesh networks: A
survey. Sensors 2017, 17, 1467.

[7] Hayajneh, T.; Almashaqbeh, G.; Ullah, S.; Vasilakos, A.V. A survey
of wireless technologies coexistence in WBAN: Analysis and open
research issues. Wirel. Netw. 2014, 20, 2165–2199.

[8] Sairam, K.; Gunasekaran, N.; Reddy, S.R. Bluetooth in wireless com-
munication. IEEE Commun. Mag. 2002, 40, 90–96.

[9] Jordan, R.; Abdallah, C.T. Wireless communications and networking:
An overview. IEEE Antennas Propag. Mag. 2002, 44, 185–193.

[10] Ferro, E.; Potorti, F. Bluetooth and Wi-Fi wireless protocols: A survey
and a comparison. IEEE Wirel. Commun. 2005, 12, 12–26.

[11] Bluetooth Versions Walkthrough and Bluetooth 4.0 Low Energy Devel-
opment Resources. Available online:

[12] https://www.cnx-software.com/2013/06/05/bluetooth-versions-walkthr
ough-and-bluetooth-4-0-low-e.

[13] Carettoni, L.; Merloni, C.; Zanero, S. Studying bluetooth malware
propagation: The BlueBag project. IEEE Secur. Priv. 2007, 5, 17–25.

[14] Bluetooth SIG, ”Specification of the Bluetooth system v1.1, Core”,
December 2000.

[15] Bluetooth SIG, ”Specification of the Bluetooth system v1.1, Profiles”,
December 2000.

[16] Salutation Consortium, ”Salutation Architecture Specification v2.1, Part
1”, 1999.

[17] Sun Microsystems, ”Jini Architecture Specification v1.2”, December
2001.

[18] Microsoft Corporation, ”Universal Plug and Play Device Architecture
v1.0”, June 2000.

[19] Jennifer Bray and Charles F Sturman, ”Bluetooth, Connect without
cables”, Prentice Hall, 2001.

[20] Oliver Kasten and Marc Langheinrich, ”First Experiences with Blue-
tooth in the Smart-Its Distributed Sensor Network”, Swiss Federal
Institute of Technology, October 2001.

[21] Eugene A Gryazin, ”Service Discovery in Bluetooth”, Helsinki Univer-
sity of Technology, 2000

[22] Choonhwa Lee and Sumi Helal, ”Protocols for Service Discovery in
dynamic and mobile networks”, University of Florida, September 2000.

[23] Bluetooth SIG, ”Mapping Salutation Architecture APIs to Bluetooth
Service Discovery Layer”, White paper, July 1999.

https://www.cnx-software.com/2013/06/05/bluetooth-versions-walkthrough-and-bluetooth-4-0-low-e
https://www.cnx-software.com/2013/06/05/bluetooth-versions-walkthrough-and-bluetooth-4-0-low-e

474 Bluetooth

[24] Sun Microsystems, ”Jini Architectural overview ”, White paper, January
1999.

[25] John Rakesh, “UPnP,Jini and Salutation–A look at some popular coor-
dination frameworks for future networked devices”, California Software
Laboratories, June 1999.

[26] Salutation Consortium, ”Salutation Lite, Find-And-Bind Technologies
for mobile devices”, White paper, June 1999.

[27] Microsoft Corporation, ”Understanding Universal Plug and Play”,
White paper, June 2000.

[28] Steven Czerwinski, Ben Zhau, Todd Hodes, Anthony Joseph and Randy
Katz, ”An Architecture for a Secure Service Discovery Service”, Uni-
versity of California, Berkeley, 1999.

[29] E. Guttman, C. Perkins, J. Veizades and M. Day, ”Service Location
Protocol, Version 2” IETF, June 1999.

[30] M. Wahl, T. Howes, S. Kille, ”Lightweight Directory Access Protocol
(v3)” IETF, December 1997.

[31] Erik Guttman, ”Service Location Protocol: Automatic Discovery of IP
Network Services” IEEE Internet Computing, vol 3, no.4, pp 71–80,
August 1999.

[32] Network Simulator web page, available 8/2/2002. http://www.isi.edu/ns
nam/ns/

[33] BlueHoc web page, available 8/2/2002. http://oss.software.ibm.com/blu
ehoc/

[34] Bahar, I., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A.,
Somenzi, F.: Algebraic decision diagrams and their applications. Formal
Methods in System Design 10(2/3), 171–206 (1997).

[35] Basagni, S., Bruno, R., Petrioli, C.: Device discovery in Bluetooth
networks: A scatternet perspective. In: Proc. Networking 2002, LNCS,
vol. 2345, pp. 1087–1092. Springer (2002).

[36] BlueHoc–An open-source Bluetooth simulator: www-124.ibm.com/de
veloperworks/opensource/bluehoc

[37] Bluetooth specification, version 1.2, Bluetooth SIG, 2003, www.blueto
oth.com

[38] Bryant, R.: Binary decision diagrams and beyond: Enabling tech-
nologies for formal verification. In: Proc. International Conference on
Computer-Aided Design (ICCAD’95), pp. 236–243 (1995).

[39] Clarke, E., Fujita, M., McGeer, P., McMillan, K., Yang, J., Zhao, X.:
Multi-terminal binary decision diagrams: An efficient data structure for

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://oss.software.ibm.com/bluehoc/
http://oss.software.ibm.com/bluehoc/
www-124.ibm.com/developerworks/opensource/bluehoc
www-124.ibm.com/developerworks/opensource/bluehoc
www.bluetooth.com
www.bluetooth.com

9.10 Bluetooth Risk Mitigation and Countermeasures 475

matrix representation. Formal Methods in System Design 10((2/3), 149–
169 (1997).

[40] Daws, C., Kwiatkowska, M., Norman, G.: Automatic verification of
the IEEE 1394 root contention protocol with KRONOS and PRISM.
International Journal on Software Tools for Technology Transfer (STTT)
5(2–3), 221–236 (2004).

[41] Duflot, M., Fribourg, L., Herault, T., Lassaigne, R., Magniette, F.,
Messika, S., Peyronnet, S., Picaronny, C.: Probabilistic model checking
of the CSMA/CD protocol using PRISM and APMC. In: Proc. 4th
Workshop on Automated Verification of Critical Systems (AVoCS’04),
Electronic Notes in Theoretical Computer Science, vol. 128(6), pp.
195–214. Elsevier Science (2004).

[42] Kasten, O., Langheinrich, M.: First experiences with Bluetooth in the
Smart-Its distributed sensor network. In: Proc. PACT’01 (2001).

[43] Kwiatkowska, M., Norman, G.: Verifying randomized Byzantine agree-
ment. In: D. Peled, M. Vardi (eds.) Proc. Formal Techniques for
Networked and Distributed Systems (FORTE’02), LNCS, vol. 2529, pp.
194–209. Springer (2002).

[44] Kwiatkowska, M., Norman, G., Parker, D.: Controller dependability
analysis by probabilistic model checking. In: Proc. 11th IFAC Sympo-
sium on Information Control Problems in Manufacturing (INCOM’04)
(2004).

[45] Kwiatkowska, M., Norman, G., Parker, D.: PRISM 2.0: A tool for
probabilistic model checking. In: Proc. 1st International Conference
on Quantitative Evaluation of Systems (QEST’04), pp. 322–323. IEEE
Computer Society Press (2004).

[46] Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance
analysis of probabilistic timed automata using digital clocks. In: K.
Larsen, P. Niebert (eds.) Proc. Formal Modeling and Analysis of Timed
Systems (FORMATS’03), LNCS, vol. 2791, pp. 105–120. Springer-
Verlag (2003).

[47] Padgette, J. Bahr, M. Batra, M. Holtmann, R. Smithbey, L. Chen,
and K. Scarfone, Guide to Bluetooth Security: Recommendations of
the National Institute of Standards and Technology (Special Publica-
tion 800-121 Revision 2). USA: CreateSpace Independent Publishing
Platform, 2017.

[48] Haataja, K. Hyppĺonen, S. Pasanen, and P. Toivanen, Bluetooth Secu-
rity Attacks: Comparative Analysis, Attacks, and Countermeasures, ser.
SpringerBriefs in Computer Science. Springer Berlin Heidelberg, 2013.

476 Bluetooth

[Online]. Available: https://books.google.com/books?id=bFm6BAAA
QBAJ

[49] D.-Z. Sun, Y. Mu, and W. Susilo, “Man-in-the-middle attacks on secure
simple pairing in bluetooth standard v5.0 and its countermeasure,”
Personal Ubiquitous Comput., vol. 22, no. 1, pp. 55–67, Feb. 2018.
[Online]. Available: https://doi.org/10.1007/s00779-017-1081

[50] National Institute of Standards and Technology. Guide to Bluetooth
Security: Recommendations of the National Institute of Standards and
Technology; Special Publication 800-121 Revision 1; National Institute
of Standards and Technology: Maryland, MD, USA, 2008.

[51] NIST Special Publication 800-121 Revision 2: Guide to Bluetooth Secu-
rity. Available online: https://nvlpubs.nist.gov/nistpubs/SpecialPublicati
ons/NIST.SP.800-121r2.pdf.

[52] Gerez, S. Implementation of Digital Signal Processing: Some Back-
ground on GFSK Modulation.

[53] Available online: http://wwwhome.ewi.utwente.nl/~{}gerezsh/sendfile/
sendfile.php/gfsk-intro.pdf?sendfile=gfsk-intro.pdf.

[54] Bluetooth 5 FAQ: Everything You Need to Know. Available online: http
s://www.macworld.com/article/3262664/hardware/bluetooth-5-faq-ev
erything-you-need-to-know.html.

[55] Nateq Be-Nazir Ibn, M.; Tarique, M. Bluetooth security threats and
solutions: A survey. Int. J. Distrib. Parallel Syst. 2012, 3, 127.

[56] Panse, T.; Panse, P. A Survey on Security Threats and Vulnerability
attacks on Bluetooth Communication. Int. J. Comput. Sci. Inf. Technol.
2013, 4, 741–746.

[57] Hassan, S.S.; Bibon, S.D.; Hossain, M.S.; Atiquzzzaman, M. Security
Threats in Bluetooth Technology. Comput. Secur. 2017, 74, 308–322.

[58] Zou, Y.; Wang, X.; Hanzo, L. A survey on wireless security: Tech-
nical challenges, recent advances and future trends. arXiv 2015,
arxiv:1505.07919.

[59] Shrivastava, M. Analysis of security risks in Bluetooth. Int. J. Comput.
Acad. Res. 2012, 1, 88–95.

[60] National Institute of Standards and Technology. Guide to Bluetooth
Security; NIST 800-121-Rev 1; NIST: Gaithersburg, MD, USA, 2016.

[61] Mitchell, A. The Car Whisperer: Eavesdrop Onand Take Part in Nearby
Bluetooth Conversations. 2005. Available online: https://www.theinter
netpatrol.com/the-car-whisperer-eavesdrop-on-and-take-part-innearb
y-bluetooth-conversations/.

https://books.google.com/books?id=bFm6BAAAQBAJ
https://books.google.com/books?id=bFm6BAAAQBAJ
https://doi.org/10.1007/s00779-017-1081
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-121r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-121r2.pdf
http://wwwhome.ewi.utwente.nl/~{}gerezsh/sendfile/sendfile.php/gfsk-intro.pdf?sendfile=gfsk-intro.pdf
http://wwwhome.ewi.utwente.nl/~{}gerezsh/sendfile/sendfile.php/gfsk-intro.pdf?sendfile=gfsk-intro.pdf
https://www.macworld.com/article/3262664/hardware/bluetooth-5-faq-everything-you-need-to-know.html
https://www.macworld.com/article/3262664/hardware/bluetooth-5-faq-everything-you-need-to-know.html
https://www.macworld.com/article/3262664/hardware/bluetooth-5-faq-everything-you-need-to-know.html
https://www.theinternetpatrol.com/the-car-whisperer-eavesdrop-on-and-take-part-innearby-bluetooth-conversations/
https://www.theinternetpatrol.com/the-car-whisperer-eavesdrop-on-and-take-part-innearby-bluetooth-conversations/
https://www.theinternetpatrol.com/the-car-whisperer-eavesdrop-on-and-take-part-innearby-bluetooth-conversations/

9.10 Bluetooth Risk Mitigation and Countermeasures 477

[62] Dunning, J.P. Bluetooth Threat Taxonomy. Available online: https://vtec
hworks.lib.vt.edu/bitstream/handle/10919/76883/etd-10242010-1630
02_Dunning_JP_T_2010.pdf?sequence=1&isAllowed=y)

[63] Bluetooth Security. Available online: https://cs.stanford.edu/people/ero
berts/courses/soco/projects/2003-04/wireless-computing/sec_bluetooth
.shtml

[64] Sen, J. Security and Privacy Challenges in Cognitive Wireless Sensor
Networks. In Cognitive Radio Technology Applications for Wireless
and Mobile Ad hoc Networks; Meghanathan, N., Reddy, Y.B., Eds.;
IGI-Global: Hershey, PA, USA, 2013.

[65] Shaked, Y.; Wool, A. Cracking Bluetooth PIN. Available online: http:
//www.eng.tau.ac.il/~{}yash/shakedwool-mobisys05/

[66] Saravanan, K.; Vijayanand, L.; Negesh, R.K. A Novel Bluetooth Man-
In-The-Middle Attack Based on SSP using OOB Association model.
arXiv, 2012, arxiv:1203.4649.

[67] Moreno, A.; Okamoto, E. BlueSnarf Revisited: OBEX FTP Service
Directory Traversal. Available online: https://link.springer.com/cont
ent/pdf/10.1007%2F978-3-642-23041-7_16.pdf.

[68] Ahmed, M.; Musleh, A.; Marouf, A.; Mahmoud, A.; Abu-Amara, M.
Bluetooth Security. Available online: https://www.slideshare.net/ram_a
ri/bluetooth-security.

[69] Becker, A. Bluetooth Security & Hacks; Seminar ITS Ruhr-Universitat
Bochum SS2007; Ruhr University of Bochum: Bochum, Germany,
2007; Available online: https://gsyc.urjc.es/~anto/ubicuos2/bluetoot
h_security_and_hacks.pdf.

[70] Trifinite: BlueBump. Available online: https://trifinite.org/trifinite_stu
ff_bluebump.html.

[71] BlueDump. Available online: https://trifinite.org/trifinite_stuff_blued
ump.html.

[72] Trifinite: BluePrinting. Available online: https://trifinite.org/trifinite_stu
ff_blueprinting.html.

[73] The Attack Vector “BlueBorne” Exposes Almost Every Connected
Device. Available online: https://www.armis.com/blueborne/

[74] Tsira, V.; Nandi, G. Bluetooth technology: Security issues and its
prevention. Int. J. Comput. Appl. Technol. 2014, 5, 1833–1837.

[75] Nawir, M.; Amir, A.; Yaakob, N.; Lynn, O. Internet of Things (IoT):
Taxonomy of Security Attacks. In Proceedings of the 2016 3rd Inter-
national Conference on Electronic Design (ICED), Phuket, Thailand,
11–12 August 2016.

https://vtechworks.lib.vt.edu/bitstream/handle/10919/76883/etd-10242010-163002_Dunning_JP_T_2010.pdf?sequence=1&isAllowed=y
https://vtechworks.lib.vt.edu/bitstream/handle/10919/76883/etd-10242010-163002_Dunning_JP_T_2010.pdf?sequence=1&isAllowed=y
https://vtechworks.lib.vt.edu/bitstream/handle/10919/76883/etd-10242010-163002_Dunning_JP_T_2010.pdf?sequence=1&isAllowed=y
https://cs.stanford.edu/people/eroberts/courses/soco/projects/2003-04/wireless-computing/sec_bluetooth.shtml
https://cs.stanford.edu/people/eroberts/courses/soco/projects/2003-04/wireless-computing/sec_bluetooth.shtml
https://cs.stanford.edu/people/eroberts/courses/soco/projects/2003-04/wireless-computing/sec_bluetooth.shtml
http://www.eng.tau.ac.il/~{}yash/shakedwool-mobisys05/
http://www.eng.tau.ac.il/~{}yash/shakedwool-mobisys05/
https://link.springer.com/content/pdf/10.1007%2F978-3-642-23041-7_16.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-642-23041-7_16.pdf
https://www.slideshare.net/ram_ari/bluetooth-security
https://www.slideshare.net/ram_ari/bluetooth-security
https://gsyc.urjc.es/~anto/ubicuos2/bluetooth_ security_and_hacks.pdf
https://gsyc.urjc.es/~anto/ubicuos2/bluetooth_ security_and_hacks.pdf
https://trifinite.org/trifinite_stuff_bluebump.html
https://trifinite.org/trifinite_stuff_bluebump.html
https://trifinite.org/trifinite_stuff_bluedump.html
https://trifinite.org/trifinite_stuff_bluedump.html
https://trifinite.org/trifinite_stuff_blueprinting.html
https://trifinite.org/trifinite_stuff_blueprinting.html
https://www. armis.com/blueborne/

478 Bluetooth

[76] Haataja, K. Security Threats and Countermeasures in Bluetooth-Enabled
Systems. Kuopio University Publications H. Business and Informa-
tion Technology 13. 2009. Page 75. Available online: http://epublica
tions.uef.fi/pub/urn_isbn_978-951-27-0111-7/urn_isbn_978-951-27-
0111-7.pdf.

Sources

• Bluetooth Special Interest Group (SIG) (Oct. 21, 2019) http://www.blue
tooth.com

• Bluetooth SIG. “Bluetooth Core Specification v5.1.” Jan. 21, 2019. (Oct.
28, 2019). https://www.bluetooth.org/docman/handlers/downloaddoc.as
hx?doc_id=457080

• Bluetooth SIG. “Understanding Bluetooth Range.” (Oct. 27, 2019) https:
//www.bluetooth.com/bluetooth-technology/range/

• Fleishman, Glenn. “Inside Bluetooth 2.0.” Macworld.com. Feb. 9, 2005.
(Oct. 21, 2019) http://www.macworld.com/news/2005/02/09/bluetooth
2/index.php

• Mobile Resource Group. “Lions and tigers ... and Bluesnarfing.” Cre-
dentialed Mobile Device Security Professional. 2019. (Oct. 28, 2019)
https://cmdsp.org/2019/08/12/lions-and-tigers-and-bluesnarfing/

• PCMag.com. “Bluetooth.” (Oct. 28, 2019) https://www.pcmag.com/en
cyclopedia/term/38794/bluetoothPCMag.com. “Bluetooth versions.”
(Oct. 28, 2019) https://www.pcmag.com/encyclopedia/term/69982/blue
tooth-versions

• PCMag.com. “Spread spectrum.” (Oct. 28, 2019) https://www.pcmag.
com/encyclopedia/term/51883/spread-spectrumm

• Shepter, John. “How Bluetooth cuts the cord.” March 15, 2005. (Oct.
21, 2019) http://searchmobilecomputing.techtarget.com/generic/0,2955
82,sid40_gci1067872,00.html

http://epublications.uef.fi/pub/urn_isbn_978-951-27-0111-7/urn_isbn_978-951-27-0111-7.pdf
http://epublications.uef.fi/pub/urn_isbn_978-951-27-0111-7/urn_isbn_978-951-27-0111-7.pdf
http://epublications.uef.fi/pub/urn_isbn_978-951-27-0111-7/urn_isbn_978-951-27-0111-7.pdf
http://www.bluetooth.com
http://www.bluetooth.com
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457080
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457080
https://www.bluetooth.com/bluetooth-technology/range/
https://www.bluetooth.com/bluetooth-technology/range/
http://www.macworld.com/news/2005/02/09/bluetooth2/index.php
http://www.macworld.com/news/2005/02/09/bluetooth2/index.php
https://cmdsp.org/2019/08/12/lions-and-tigers-and-bluesnarfing/
https://www.pcmag.com/encyclopedia/term/38794/bluetoothPCMag.com
https://www.pcmag.com/encyclopedia/term/38794/bluetoothPCMag.com
https://www.pcmag.com/encyclopedia/term/69982/bluetooth-versions
https://www.pcmag.com/encyclopedia/term/69982/bluetooth-versions
https://www.pcmag.com/encyclopedia/term/51883/spread-spectrumm
https://www.pcmag.com/encyclopedia/term/51883/spread-spectrumm
http://searchmobilecomputing.techtarget.com/generic/0,295582,sid40_gci1067872,00.html
http://searchmobilecomputing.techtarget.com/generic/0,295582,sid40_gci1067872,00.html

10
Z-Wave Technology

10.1 Introduction: What is Z-Wave?

The Z-Wave protocol is an interoperable, wireless, RF-based communications
technology designed specifically for control, monitoring and status reading
applications in residential and light commercial environments.

Z-Wave is a mesh networking technology developed in 1999 by Danish
company Zensys while looking to create a standard for wireless radio fre-
quency (RF) communication for home devices, and which allows for wireless
control of residential appliances and other devices, such as lighting control,
security systems, thermostats, windows, locks, swimming pools and garage
door openers. Like other protocols and systems aimed at the home and office
automation market, a Z-Wave system can be controlled via the Internet from a
smart phone, tablet or computer, and locally through a smart speaker, wireless
keyfob, or wall-mounted panel with a Z-Wave gateway or central control
device serving as both the hub controller and portal to the outside. Z-Wave
provides the application layer interoperability between home control systems
of different manufacturers that are a part of its alliance. There are a growing
number of interoperable Z-Wave products; over 1,700 in 2017, and over 2,600
by 2019.

10.1.1 Z-Wave Operating Characteristics

Z-Wave devices do not use the same frequency as other home devices like
wireless phones, which typically operate at 2.4 GHz. The frequency used
by Z-Wave varies based on country; however, in the United States, Z-Wave
operates at 908.42 MHz, and in Europe, it operates at 868.42 MHz frequen-
cies. This means Z-Wave devices would not interfere with other household
devices. List of used frequencies worldwide is given in Section 10.1.2.

479

480 Z-Wave Technology

With such frequency band, Z-Wave devices have a greater signal range
compared with ZigBee that works in the higher band of 2.4 GHz. The range of
a Z-Wave device is influenced by a number of factors which also affecting the
range of ZigBee. The factors, as discussed while discussing ZigBee, start first
by the presence of walls in the vicinity. Typical reported ranges are around 30
m (90 ft) indoors and 100 m (300 ft) in the open air.

Extending the normal range of these products is possible simply by
adding more Z-Wave devices to the network. Because all Z-Wave devices
are repeaters, the signal is passed along from one to the next and each time
it is repeated, another 30 m (approximately) of range is gained. Up to three
additional devices (hops) can be used to extend the signal before the protocol
terminates the signal (called a Hop Kill).

10.1.2 Technical Characteristics: Z-Wave frequency bands

Radio frequencies
Z-Wave is designed to provide reliable, low-latency transmission of small
data packets at data rates up to 100 kbps. The throughput is 40 kbps (9.6
kbps using old chips) and suitable for control and sensor applications, unlike
Wi-Fi and other IEEE802.11-based wireless LAN (WLAN) systems that are
designed primarily for high data rates. Communication distance between
two nodes is about 30 m (40 m with 500 series chip), and with message
ability to hop up to four times between nodes, it gives enough coverage for
most residential houses. Modulation is frequency-shift keying (FSK) with
Manchester encoding.

Z-Wave uses the Part 15 unlicensed industrial, scientific, and medical
(ISM) band. It operates at 868.42 MHz in Europe, at 908.42 MHz in the
North America and uses other frequencies in other countries depending
on their regulations. This band competes with some cordless telephones
and other consumer electronics devices, but avoids interference with Wi-
Fi, Bluetooth and other systems that operate on the crowded 2.4 GHz band.
The lower layers, MAC and PHY, are described by ITU-T G.9959 and fully
backwards compatible. In 2012, the International Telecommunication Union
(ITU) included the Z-Wave PHY and MAC layers as an option in its G.9959
standard for wireless devices under 1 GHz. Data rates include 9600 bps and
40 kbps, with output power at 1 mW or 0 dBm. The Z-Wave transceiver chips
are supplied by Silicon Labs.

Table 10.1 gives frequency bands, data rate and channel bandwidth
supported by Z-Wave technology throughout the world.

10.1 Introduction: What is Z-Wave? 481

Table 10.1 Z-Wave frequency bands
RF Center Frequency

Region (G.9959/MHz) Data Rate Channel Width
Australia fANZ1/919.80,

fANZ2/921.40,
100/40/9.6 kbps 400/300/300 KHz

Brazil Same as Australia

Canada Same as USA

Chile Same as USA

China fCN1/868.40, 100/40/9.6 kbps 400/300/300 KHz

European Union fEU1/869.85
fEU2/868.40

100/ 40/9.6 kbps 400/300/300 KHz

Hong Kong fHK1/919.80 100/ 40/9.6 kbps 400/300/300 KHz

India fIN1/865.20 100/ 40/9.6 kbps 400/300/300 KHz

Israel fIL1/916.00 100/ 40/9.6 kbps 400/300/300 KHz

Japan fJP1/922.50, fJP2/923.90,
fJP3/926.30

100/100/100 kbps
for all bands

400/400/400 KHz
for all bands

Korea fKR1/920.90,
fKR2/921.70, fKR3/923.10

100/100/100 kbps
for all bands

400/400/400 KHz
for all bands

Malaysia fMY1/868.10 100/40/9.6 kbps 400/300/300 KHz

Mexico Same as USA

New Zealand Same as Australia

Russia fRU1/869.00 100/40/9.6 kbps 400/300/300 KHz

Singapore Same as EU

South Africa Same as EU

Taiwan Same as Japan

UAE Same as EU

USA fUS1/916.00, fUS2/908.40 100/40/9.6 kbps 400/300/300 KHz

10.1.3 Z-Wave Features

The main features of Z-Wave protocol are summarized in Table 10.2.

10.1.4 Z-Wave History

The Z-Wave protocol was developed by Zensys, a Danish company based in
Copenhagen, in 1999. That year, Zensys introduced a consumer light-control
system, which evolved into Z-Wave as a proprietary system on a chip (SoC)
home automation protocol on an unlicensed frequency band in the 900 MHz

482 Z-Wave Technology

Table 10.2 Z-Wave features
Specification Z-Wave Support
Standard ITU-T G.9959 (PHY and MAC)

RF Frequency Range 868.42 MHz in Europe, 908.42 MHz in US

Data rate 9.6, 40, 100 kbps

Maximum Nodes 232

Architecture Master and slave in mesh mode

MAC layer CSMA/CA

RF PHY modulation FSK (for 9.6 kbps and 40 kbps), GFSK with BT=0.6 (for 100 kbps)

Coding Manchester (for 9.6 kbps), NRZ (for 40 and 100 kbps)

Distance 30 m in indoors, 100 m in outdoors

range. Its 100 series chip set was released in 2003, and its 200 series was
released in May 2005, with the ZW0201 chip offering a high performance
at a low cost. Its 500 series chip, also known as Z-Wave Plus, was released
in March 2013, with four times the memory, improved wireless range, and
improved battery life.

The technology began to catch on in North America around 2005, when
five companies, including Danfoss, Ingersoll-Rand and Leviton Manufactur-
ing, adopted Z-Wave. They formed the Z-Wave Alliance, whose objective is
to promote the use of Z-Wave technology, with all products by companies in
the alliance interoperable.

In 2005, Bessemer Venture Partners led a $16 million third seed round for
Zensys.

In May 2006, Intel Capital announced that it was investing in Zensys, a
few days after Intel joined the Z-Wave Alliance. In 2008, Zensys received
investments from Panasonic, Cisco Systems, Palamon Capital Partners and
Sunstone Capital.

Z-Wave was acquired by Sigma Designs in December 2008. Follow-
ing the acquisition, Z-Wave’s US headquarters in Fremont, California were
merged with Sigma’s headquarters in Milpitas, California. On January 23,
2018, Sigma announced it planned to sell the Z-Wave technology and busi-
ness assets to Silicon Labs for $240 million, and the sale was completed on
April 18, 2018.

In 2005, there were six products on the market that used Z-Wave tech-
nology. By 2012, as smart home technology was becoming increasingly
popular, there were approximately 600 products using Z-Wave technology

10.2 Z-Wave Protocol 483

available in the US. As of January 2019, there are over 2,600 Z-Wave certified
interoperable products.

10.2 Z-Wave Protocol

10.2.1 Overview

The Z-Wave protocol is a low bandwidth half duplex protocol designed for
reliable wireless communication in a low cost control network. The protocols
main purpose is to communicate short control messages in a reliable manner
from a control unit to one or more nodes in the network.

The protocol is not designed to transfer large amounts of data or to
transfer any kind of streaming or timing critical data.

Figure 10.1 shows the Z-Wave protocol stack. The stack consists of 5
layers (Figure 10.1(a)): PHY layer, MAC layer, Transport layer, network
layer and application layer. The security layer is not defined in Z-Wave open
protocol specifications and hence it is implementation specific. We note here
that sometimes PHY and MAC layers combined in one layer letting the stack
consists of four layers (Figure 10.1(b)).

The Z-Wave protocol layers main function is to communicate very short
messages of few bytes long from a control unit to one or more Z-Wave nodes.
It is a low bandwidth and half duplex protocol to establish reliable wireless
communication. Z-Wave protocol stack need not have to take care of large
amount of data as well as any kind of time critical or streaming data.

Figure 10.1 Z-Wave protocol stack.

484 Z-Wave Technology

The major functions of the protocol layers are (the details will be
discussed next).

• Physical layer takes care of modulation and RF channel assignment as
well preamble addition at the transmitter and synchronization at the
receiver using preamble.

• MAC layer takes care of HomeID and NodeID, controls the medium
between nodes based on collision avoidance algorithm and backoff
algorithm.

• Transport layer takes care of transmission and reception of frames,
takes care of retransmission, ACK frame transmission and insertion of
checksum.

• Network layer takes care of frame routing, topology scan and routing
table updates.

• Application layer takes care of control of payloads in the frames received
or to be transmitted.

The details of the stack layers will be considered in detail in the chapter.

10.2.2 Z-Wave Basic Device Classes: Controller and Slave
Nodes

Z-Wave network has two basic types of device (Figure 10.2):

• Controllers–devices that control other Z-Wave devices.
• Slaves–devices that are controlled by other Z-Wave devices.

Controller devices are the nodes in a Z-Wave network which initiates
control commands. It also sends out the commands to other nodes. The slave
devices are the nodes which replies based on command received and also exe-
cute the commands. Slave nodes also forward the commands to other nodes in
the network. This makes it possible for controller to establish communication
with the nodes who are not in radio frequency region. Controllers are factory
programmed with a Home ID, this cannot be changed by the user. Slaves do
not have a pre-programmed Home ID as they take the Home ID assigned to
them by the network.

The simplest Z-Wave network is a single controllable device and
a primary controller. Additional devices can be added at any time, as
can secondary controllers, including traditional hand-held controllers, key-
fob controllers, wall-switch controllers and PC applications designed for
management and control of a Z-Wave network. A Z-Wave network can
consist of up to 232 devices, with the option of bridging networks if more
devices are required.

10.2 Z-Wave Protocol 485

Figure 10.2 Z-Wave network.

The controllers can be classified to “portable controller” and “static
controller, also classified as “primary” and “secondary.” Slaves also can be
classified into “slaves” and “routing slaves”, that is, “slaves with routing
capabilities.”

The difference between the controller, slave and routing slave, is their
knowledge of the network routing table and their ability to send messages to
the network.

In the following, more details on the devices are given.

10.2.2.1 Controllers
The controller device will have full routing table for the mesh network and it
will host it. Hence controller can communicate with all the nodes of Z-Wave
network. There are two types of controllers: primary and secondary.

The controller which creates new Z-Wave network initially will become
primary controller. This primary controller is master controller in the
network and there will be only one in each Z-Wave network. Primary
controller will have capability to include and exclude the nodes in the
network. Hence primary controller always keeps latest topology of the
network. Primary controller also takes care of managing allocation of
node IDs.

The controllers which are added to the Z-Wave network using the primary
controller are known as secondary controllers. They do not have capability to

486 Z-Wave Technology

include or exclude any nodes. They will get copies of the routing tables from
primary controller.

10.2.2.1.1 Portable Controller
A portable controller is a controller, which is designed to change position in
the Z-Wave network. The portable controller uses a number of mechanisms to
estimate the current location and hereby calculating the fastest route through
the network. An example of a portable controller could be a remote control.

10.2.2.1.2 Static controller
A static controller is a fixed controller that mustn’t change position in the
network and has to be powered up all the time. This controller has the
advantage that Routing slaves can report unsolicited status messages to it,
and it also has the advantage of always knowing where it is located in the
network. A static controller will typically be a secondary controller in a Z-
Wave network. An example of a static controller could be an Internet gateway
that monitors a Z-Wave system.

10.2.2.1.3 Static update controller
A Z-Wave network can optionally have a static controller with enabled
Static Update Controller (SUC) functionality to distribute network topology
updates. A SUC is a static controller that will receive notifications from the
primary controller regarding all changes made to the network topology. In
addition the SUC is capable of sending network topology updates to other
controllers and routing slaves upon request. It is the application in a primary
controller that requests a static controller to become a SUC. There can only
be one SUC in a Z-Wave network.

10.2.2.1.4 SUC ID server
A Z-Wave network can optionally have a SUC with enabled node ID server
functionality (SIS). The SIS enables other controllers to include/exclude
nodes in the network on its behalf. The SIS is the primary controller in the
network because it has the latest update of the network topology and capa-
bility to include/exclude nodes in the network. When including additional
controllers to the network they become inclusion controllers because they
have the capability to include/exclude nodes in the network on behalf of the
SIS. The inclusion controllers network topology is dated from last time a node
was included or it requested a network update from the SIS and therefore it
can’t be classified as a primary controller.

10.2 Z-Wave Protocol 487

10.2.2.1.5 Installer controller
An Installer controller is a portable controller that has additional function-
ality, which enables it to do more sophisticated network management and
network quality testing than other controllers. An example of an installer
controller could be an installation tool used by an installer to install a Z-Wave
network at a customer site.

10.2.2.1.6 Bridge controller
A Z-Wave network can optionally have a bridge controller. A bridge con-
troller is an extended static controller, which incorporates extra functionality
that can be used to implement controllers, targeted for bridging between the
Z-Wave network and other networks. The bridge controller device stores the
information concerning the nodes in the Z-Wave network and in addition it
can control up to 128 virtual slave nodes. A virtual slave node is a slave node
that corresponds to a node, which resides on a different network type. An
example of a bridge controller could be a bridge between an UPnP network
and a Z-Wave network to link broadband and narrowband devices together in
a home entertainment application.

10.2.2.2 Slaves
The slave devices/nodes in Z-Wave network receive the commands and
performs action based on the commands. These slave nodes are unable to
transmit information directly to the other slave nodes or controllers unless
they are instructed to do so in the commands. The slave nodes do not compute
routing tables. They can store routing tables. They will act as a repeater.

10.2.2.2.1 Slave
Slave nodes are nodes in a Z-Wave network that receives commands and
performs an action based on the command. Slave nodes are unable to send
information directly to other slaves or controllers unless they are requested to
do so in a command. An example of a slave node could be a light dimmer.

10.2.2.2.2 Routing slave
Routing slaves has the same overall functionality as a slave. The major
difference is that a routing slave can send unsolicited messages to other nodes
in the network. They store a number of static routes for use when sending
unsolicited messages to a limited number of nodes. An example of a routing
slave node could be a thermostat or a Passive Infrared (PIR) movement
sensor.

488 Z-Wave Technology

Table 10.3 Properties of the Z-Wave device models
Neighbors Route Possible Functions

Controller Knows all
neighbors

Has access to complete
routing table

Can communicate with every
device in the network, if route
exists

Slave Knows all
neighbors

Has no information
about routing table

Can only reply to the node
which it has received the
message from. Hence, it cannot
send unsolicited messages.

Routing Slave Knows all
neighbors

Has partial knowledge
of routing table

Can reply to the node which he
has received the message from
and can send unsolicited
messages to a number of
predefined nodes he has a route
too

Table 10.4 Typical applications for slaves
Slave Fixed installed mains powered devices like wall switches, wall dimmers

or Venetian blind controllers

Routing Slave Battery-operated devices and mobile applicable devices as for example
sensors with battery operation, wall plugs for Schuko and plug types,
thermostats and heaters with battery operation and all other slave
applications

10.2.2.2.3 Enhanced slave
Enhanced slaves have the same functionality as routing slaves and they are
handled in the same way in the network. The difference between routing
slaves and enhanced slaves is that enhanced slaves have a real time clock
and an EEPROM for storing application data. An example of an enhanced
slave node could be a weather station

Differences between controller, slave, and routing slave are given in
Table 10.3. Table 10.4 gives the typical applications of slaves

The primary controller includes other nodes into the network by assigning
them its own Home ID. If a node accepts the Home ID of the primary
controller this node becomes part of the network. The primary controller also
assigns an individual Node ID to each new device that is added to the network.
This process is known as Inclusion.

Different classes provide the device with a certain role in the Z-Wave
network. Inside a Basic Class, Generic and Specific device classes are used
to achieve the wanted functionality in the control network. In the Z-Wave

10.2 Z-Wave Protocol 489

protocol, the unique identification of the devices is used through a 32-bit ID.
This ID value cannot be changed as it is written in the device chipset by
the device manufacturer. A Z-Wave network has only one primary controller
device at a time. Each of the 232 nodes of this network can also be a repeater
for forwarding data to its neighbors, mediating a connection. Battery-powered
nodes do not enjoy this facility. In an environment with a certain level of
device drift or even when a device is removed from the network for some
reason, the network topology may change. Changing network topology can
lead to problems in packet forwarding and packet routing in the network. To
minimize this effect, routing tables should be kept up-to-date, optimized and
any new topology detected; Z-Wave supports the discovery and suitability of
the new network topology. This is possible by keeping the routing table up
to date on each device and showing all neighboring devices. When a node
changes its position or is removed from the network, a topology failure can
start an automatic topology and healing procedure to detect the new topology
and define the best routes to update the routing tables. This mechanism
is subjected to unauthorized modification of routing table attacks by rouge
nodes.

10.2.2.3 Home ID and Node ID
The Z-Wave protocol uses a unique identifier called the Home ID to separate
networks from each other. The Home ID is a 32 bit unique identifier that is
preprogrammed in all controller devices. All slave nodes in the network will
initially have a home ID that is zero, and they will therefore need to have a
home ID assigned to them by a controller in order to communicate with the
network. Controllers in a network can exchange home ID’s so more than one
controller can control slave nodes in a network.

Node ID’s are used to address individual nodes in a network, they are only
unique within a network defined by a unique home ID. A node ID is an 8 bit
value and like home ID’s they are assigned to slave nodes by a controller.

Nodes with different Network IDs cannot communicate with each other.
The Node ID is the address of a single node in the network.

Table 10.5 gives comparison between home ID and node ID

10.2.2.4 Z-Wave chip
Managing the routing of messages on a network is complicated, especially
if some devices in the network are mobile. Z-Wave uses source routing, so
any device capable of initiating communication must know which routes
are currently possible, choose the best route and then embed the routing

490 Z-Wave Technology

Table 10.5 Home ID and node ID comparison
Definition In the Controller In the Slave

Home ID The Home ID is the
common identification of
a Z-Wave network

The Home ID is
already set as factory
default

No Home ID at factory
default

Node ID The Node ID is the
individual identification
(address) of a node within
a common network

Controller has its own
Node ID predefined
(typically 0x01)

Assigned by the
primary controller

information into the messages that it sends. Such routing algorithms have
been well developed for a variety of networks, but they require a lot of
code. Lots of code means lots of memory on a chip and therefore higher
build costs for devices that use the chip. Z-Wave chips have 32K or 64K
bytes of flash memory, with provision for adding more memory externally.
To reserve as much memory as possible for the application code in a Z-Wave
device, the Z-Wave communications stack must be kept as small as possible.
This is one of the main reason that Z-Wave defines, as mentioned before,
a number of different device types that have varying capabilities and stack
sizes: Controllers, Routing Slaves and Slaves.

The Z-Wave chip is optimized for battery-powered devices, and most of
the time remains in a power saving mode to consume less energy, waking up
only to perform its function. With Z-Wave mesh networks, each device in the
house bounces wireless signals around the house, which results in low power
consumption, allowing devices work for years without needing to replace
batteries. For Z-Wave units to be able to route unsolicited messages, they
cannot be in sleep mode. Therefore, battery-operated devices are not designed
as repeater units. Mobile devices, such as remote controls, are also excluded
since Z-Wave assumes that all repeater capable devices in the network remain
in their original detected position.

10.2.2.5 Z-Wave frame structure
Figure 10.3 shows the Z-Wave frames of the different layers. The figure
shows PHY/MAC frame, 4 types of frames at transport layer and application
layer frame. As shown in the figure, Z-Wave frame consists of a preamble
part, SOF (Start of Frame), Frame data and EOF (End of Frame) symbol. The
data part is Manchester codes or NRZ coded based on data rate. MAC layer
controls the RF spectrum. Data part comes from the upper layers and Z-Wave
frame as mentioned in formed at the MAC/PHY layers. After this is done the

10.2 Z-Wave Protocol 491

Figure 10.3 Z-Wave frames.

Z-Wave frame as depicted is transmitted by the RF antenna after necessary
radio frequency conversion as desired using RF Transceiver.

10.2.2.5.1 Z-Wave messaging
The minimum length of a properly formatted Z-Wave message is 9 bytes,
but a routed message requires 12 bytes plus repeater data plus the payload.
The message protocol includes routing, frame acknowledgment, collision
avoidance with random back off and a frame checksum with retransmission
if necessary. The Z-Wave network is self-organizing and self-healing. To
achieve self-organization, Z-Wave nodes have software that discovers the
node’s neighbors and informs the network’s Static Update Controller (SUC)
about them. A Source Routing Algorithm (SRA) in devices capable of initi-
ating communication finds message pathways and generates routes based on
a network topology database. Self-healing requires software to dynamically
generate new routes around temporarily unavailable nodes. Moving nodes
have software routines that can request new neighbor searches automatically.
This software, which is part of the Z-Wave stack, resides in on-chip memory.

10.2.3 Z-Wave Physical Layer

The ITU-T recommendation G.9959 contains physical and MAC layer spec-
ifications for sub GHz radio communication including the Z-Wave protocol.
It also outlines some aspects of the Z-Wave transport layer such as frame

492 Z-Wave Technology

Figure 10.4 Z-Wave layer transmitter.

Table 10.6 Z-Wave data rate and accuracy
Data Rate Designation Bit Rate Symbol Rate Accuracy
R1 9.6 kbps 19.2 Kbaud ±27 ppm

R2 40 kbps 40 Kbaud ±27 ppm

R3 100 kbps 100 Kbaud ±27 ppm

formats and Beam control which is necessary to communicate with Z-Wave
door locks.

The following are the functions performed at Z-Wave physical layer (Z-
Wave PHY):

• to assign RF profile to the Z-Wave physical channel
• to activate and deactivate RF transceiver
• Transmission and reception of data frames, that is, payload
• clear channel assessment
• radio frequency selection
• link quality check based on received frames

There are three different data rates supported in Z-Wave Physical layer.
They are 9.6 kbps (designated as ‘R1’), 40 kbps (designated as ‘R2’) and 100
kbps (designated as ‘R3’). Based on this data rate different physical layer
configuration is made.

Figure 10.4 depicts a Z-Wave layer transmitter.
As shown in Figure 10.4, Z-Wave physical layer consists of modula-

tion and coding blocks. Based on the data rates R1, R2 or R3 different
configurations of the Z-Wave PHY is made as mentioned in Table 10.6.

After the modulation and coding of the input MAC layer data, frame is
formed as per format outlined in Figure 10.4. In order to do this at physical
layer preamble is inserted before ‘SOF’ field.

As mentioned in the Table 10.7, FSK modulation is employed for R1 and
R2 rates while GFSK is used for R3 data rate. For R1 Manchester coding is
used while for R2/R3 NRZ coding types is used.

10.2 Z-Wave Protocol 493

Table 10.7 Modulation and coding format in Z-Wave physical layer
Data Rate Designation Modulation Coding Separation Symbols
R1 FSK Manchester 40 KHz ± 10% Binary

R2 FSK NRZ 40 KHz ± 10% Binary

R3 GFSK (BT = 0.6) NRZ 58 KHz ± 10% Binary

Figure 10.5 MAC frame.

All the data are transmitted in little endian format. They are transmitted
in blocks of 8 bit with MSB is sent first after Manchester coding. Manchester
coding will help in obtaining DC free signal.

At the Z-Wave physical layer receiver, preamble is used for synchroniza-
tion before decoding and demodulation is carried out to retrieve the MAC
layer data. After the decoding of the data, they will be passed to the upper
layers for further processing.

10.2.4 Z-Wave MAC Layer

The Z-Wave MAC layer controls the radio frequency medium. The functions
performed at Z-Wave MAC layer are:

• unique network ID number (HomeID)
• up to 232 nodes in one network
• collision avoidance algorithm
• backoff algorithm
• automatic retransmission for reliable data transfer
• support for low-power operation via dedicated wakeup patterns.

10.2.4.1 Z-Wave MAC frame types
The data stream is Manchester coded and consists of a preamble, start of
frame (SOF), frame data and an end of frame (EOF) symbol. The frame data
are the part of the frame that is obtained from transport layer at the transmitter
and given to the transport layer at the receiver.

All data are sent in little endian format.
The MAC layer is independent of the RF media, frequency and modula-

tion method but the MAC layer requires either access to the frame data when

494 Z-Wave Technology

Figure 10.6 Manchester coding.

Figure 10.7 MAC layer frame types.

received or to the whole signal in binary form either as an decoded bit stream
or to the Manchester coded bit stream.

Data are transmitted in blocks of 8bit, most significant bit first, and the
data are Manchester coded in order to have a DC free signal.

10.2.4.2 Collision avoidance
The MAC layer has a collision avoidance mechanism that prevents nodes
from starting to transmit while other nodes are transmitting. The collision
avoidance is achieved by letting nodes be in receive mode when they are not
transmitting, and then delay a transmit if the MAC layer is currently in the
data phase in the receiver. The collision avoidance is active on all types of
nodes when they have the radio activated.

10.2 Z-Wave Protocol 495

Figure 10.8 Collision avoidance zone.

MAC frame fields
The MAC layer is independent of the RF media, frequency and modulation
method but the MAC layer requires either access to the frame data when
received or to the whole signal in binary form either as an decoded bit stream
or to the Manchester coded bit stream.

The transmission of the frame is delayed a random number of millisec-
onds.

Let us understand the Z-Wave MAC frame in some more details. The Z-
Wave MAC layer uses frame formats based on channel configuration, that
is, 1/2 and 3. Figure 1 depicts generic MAC frame format and multicast
frame format for channel configuration 1 and 2. For channel configuration
3, ‘sequence number’ (1 byte) field is added after the ‘length’ field.

In Figure 10.7, channel configuration-1 supports 1 channel (Ch.B),
channel configuration-2 supports 2 channels (Ch.A and Ch.B) and channel
configuration-3 supports 3 channels (Ch.A, Ch.B, Ch.C).

Each MAC frame (MPDU) consists of MHR, MAC payload and MFR.

• MHR consists of addresses, frame control and length information
• MAC payload contains data as per frame type. Ack frames do not have

payload field.
• MFR contains a FCS(Frame Check Sequence).

HomeID
This field is 4 bytes in length. Z-Wave HomeID specifies unique network
identifier. All nodes in a Z-Wave network have the same HomeID. It is
assigned by a primary node during inclusion.

Source Node ID
This field is an 8 bit unique identifier of a node. Along with HomeID, NodeID
identifies the node of the originated frame.

Frame Control
This field is 16 bits in length. This frame control field contains information
defining the frame type, addressing fields and other control flags.

496 Z-Wave Technology

Header type subfield
This field defines different frame type, that is, single cast, multicast, ACK,
routed frame etc.

Length
It is 1 byte size and indicates length of the whole MPDU in bytes. A receiving
node does not accept more bytes than the maximum length allowed for the
actual data rate.

Sequence Number:
This field is a number provided by higher layers when transmitting. The valid
range is 0x00 to 0xFF.

Destination Node ID:
The destination NodeID is used to address individual nodes.

0x00–(Uninitialized NodeID)
0x01–0xE8 (NodeID)
0xE9–0xFE (Reserved)
0xFF–(Broadcast NodeID)

Data Payload
This field is variable size in length. It contains information specific to
individual frames. An acknowledgment frame do not have this field.

FCS
An 8-bit frame checksum is used for checking frame correctness for R1 and
R2 data rates at the receiver. This error detection technique will help in finding
the erroneous frame and hence will initiate retransmission in the Z-Wave
network.

Multicast frames:
Multicast frames carry a destination bit map

10.2.5 Z-Wave Transport Layer

The Z-Wave transfer layer controls the transfer of data between two nodes
including retransmission, checksum check and acknowledgments.

10.2 Z-Wave Protocol 497

Figure 10.9 Z-Wave basic frame format.

Frame Layout
The Z-Wave transfer layer contains 4 basic frame formats used for trans-
ferring commands in the network. All 4 frames uses the following frame
layout:

Z-Wave transport layer is mainly responsible for retransmission, packet
acknowledgment, waking up low power network nodes and packet origin
authentication. The Z-Wave transport layer (or transfer layer) consists of four
basic frame types, see Figure 10.7. These are used for transferring commands
in the network. All the frames use the same format (Figure 10.9):

Transport Frame = {HomeID, Source NodeID, Header, length, Data byte
(0 to X), Checksum}

As shown, each of the transport Z-Wave frame contains the 32 bits Home
ID that identifies the associated Z-Wave network, 8 bits source node ID, frame
header that defines frame type (single-cast, multi-cast, routed) and control
flag such as low power transmission, 8 bits payload length followed by the
payload and the 8 bits frame checksum value.

Transport layer relies on a frame checksum value to detect and dis-
card erroneous frames. The Z-Wave protocol uses the following checksum
algorithm from the ITU-T G.9959 standard:

BYTE GenCheckSum(BYTE *Data, BYTE Length){
BYTE CheckSum = 0xFF;
for (; Length > 0; Length--){
CheckSum ˆ= *Data++;}

return CheckSum;}

498 Z-Wave Technology

An overview of Z-Wave transport frame format and fields is shown in
Figure 10.3. Frame retransmission occurs when an acknowledgment frame
was not received from the destination node before the frame expiration time.
Beam frames that are used to wake up battery powered Z-Wave nodes are
controlled by the transport layer. Some battery powered Z-Wave devices
including door locks needs to listen for the incoming commands from the
network controller, but keeping their radio on will drain the battery quickly.
In order to preserve the battery power, the device enters sleep mode and
periodically turns on its radio, looking for beam frames. The transmitting
node sends several back to back beam frames in 100 ms intervals to ensure
that the sleeping device will notice one of those frames when waking up and
therefore it will keep its radio on to receive subsequent transmissions.

When in secure transmission mode, an 8-byte frame authentication header
is added to the end of the frame just before the frame checksum filed.
No public specifications for the Z-Wave origin authentication header were
available before our research. By using Z-Force tool and performing binary
code analysis of a Z-Wave controller appliance firmware we found the
cryptographic algorithm and parameters to calculate this header value.

As mentioned above, the transport layer has 4 frame types. The 4 frame
types of transport layer is explained below:

10.2.5.1 Singlecast frame type
These type of frames are transmitted to one specific Z-Wave node. The frame
is acknowledged so that transmitter will know whether the frame is received
or not.

A singlecast transmission has the following frame flow.

Figure 10.10 Singlecast.

If this frame or its ACK is lost or damaged then the singlecast frame is
retransmitted. In order to avoid potential collisions with parallel systems the
retransmissions are delayed with a random delay. The random delay must be
in steps of the time it takes to send a frame of the maximum frame size and
receive the Transfer Ack. The singlecast frame can optionally be used without
acknowledgment in a system where reliable communication is not required.

10.2 Z-Wave Protocol 499

Figure 10.11 Case of multicast.

10.2.5.2 ACK frame type
The transfer acknowledge is a Z-Wave singlecast frame where the size of the
data section is zero.

10.2.5.2.1 Multicast frame type
These frames are transmitted to more than one node, that is, ranging from 1
to 232 nodes. This type of frame does not support acknowledgment concept.
Hence this type is not used for reliable communication.

The multicast destination address is used to address selected nodes with-
out having to send a separate frame to each node. Note that a multicast frame
doesn’t get acknowledged so this type of frame can’t be used for reliable
communication. If reliable communication is needed a multicast must be
followed by a singlecast frame to each destination node.

10.2.5.2.2 Broadcast frame type
Broadcast frames are received by all nodes in a network, and the frame is not
acknowledged by any nodes.

Note that a broadcast frame doesn’t get acknowledged so this type of
frame cannot be used for reliable transfer. If reliable communication is needed
a broadcast must be followed by a singlecast frame to each destination node.

10.2.6 Z-Wave Network Layer (Routing Layer)

Z-Wave protocol forms a mesh network with one primary controller device
and up to 232 nodes each of which can act as a packet repeater–with the
exception of battery powered nodes–to route Z-Wave data even when the
two communicating parties cannot establish a direct radio link between

500 Z-Wave Technology

Figure 10.12 Case of broadcast.

Figure 10.13 Z-Wave frame format in different layers.

each other. In order to determine the best route to a destination node, each
device in the Z-Wave network maintains a network topology that indicates
all other devices in proximity. When device locations at home changes or
they are removed from the network, this topology can become wrong and
cause routing issues in the network. The Z-Wave protocol supports automatic
topology discovery and healing to detect new network location and routes
and optimize the routing tables. Although, Z-Wave routing mechanism and
topology discovery might be subjected to attacks such as unauthorized mod-
ification of routing tables by rouge nodes, we did not perform security tests
in network layer, as our research was focused on the encryption and origin
authentication that are handled by transport and application layers

The Z-Wave routing layer controls the routing of frames from one node
to another. Both controllers and slaves can participate in routing of frames
in case they are always listening and have a static position. The layer is
responsible for both sending a frame with a correct repeater list, and also
to ensure that the frame is repeated from node to node. The routing layer is
also responsible for scanning the network topology and maintaining a routing
table in the controller.

10.2 Z-Wave Protocol 501

Figure 10.14 Routed singlecast.

Figure 10.15 Routed acknowledgment.

10.2.6.1 Frame Layout
The Z-Wave routing layer has 2 kinds of frames that are used when repeating
of frames is necessary.

10.2.6.1.1 Routed singlecast frame type
The Z-Wave routed singlecast is a one-node destination frame with acknowl-
edge that contains repeater information. The frame is repeated from one
repeater to another until it reaches its destination.

10.2.6.1.2 Routed acknowledge frame type
The Z-Wave route acknowledge is a routed singlecast frame without payload
that is used to tell the controller that the routed singlecast has reached its
destination.

10.2.6.2 Routing table
The routing table is where a controller keeps the information from the nodes
about the network topology. The table is a bit field table where all information
about what nodes that can see each other is kept. This routing table is built by
primary controller based on information received from all the nodes in the Z-
Wave network. Figure 10.16 illustrates a network topology and the resulting
routing table.

10.2.6.3 Route to node
Finding the route to a node is a difficult task because a portable controller is
defined as a device that will be moved around a lot (e.g., a remote control)
Therefore a portable controller will always try to reach a node without routing

502 Z-Wave Technology

Figure 10.16 Network topology and routing table.

and if that fails the portable controller will use several techniques to find the
best route to the node.

Example 10.1: Routing table

Figure 10.17 Routing in a Z-Wave network.

Figure 10.2 shows a Z-Wave meshed network, with one controller and
five nodes. The controller can communicate directly with node 2 and 3.
There is no direct connection to node 4, 5 and 6. If the controller needs to
communicate with node 4, the communication to node 4 works either via
node 2 or via node 3.

The routing for this network is shown in Table 10.8–the rows contain
the source nodes and the columns contain the destination nodes. A cell with
“1” indicates that the nodes are neighbors and a “0” shows there is no direct
communication path. The table also shows the connection between Source
Node 1 and destination Node 4. The cell between Node 1 and 4 is marked
“0“. Therefore the network routes the signal via Node 3 which is in direct
range of both Node 1 and Node 4. This option is shown in Figure 10.18a. It
is also possible for the controller to reach node 4 through node 2 as shown in
Figure 10.18b.

10.2 Z-Wave Protocol 503

Table 10.8 Routing table for the Z-Wave network
Source node To 1 To 2 To 3 To 4 To 5 To 6
1 X 1 1 0 0 0

2 1 X 1 1 1 1

3 1 1 X 1 1 1

4 0 1 1 X 1 0

5 0 1 1 1 X 1

6 0 1 1 0 1 X

Figure 10.18 Route between controller and node 4 (a) through node 3, (b) through node 2.

Example 10.2
Another example is the Z-Wave network given in Figure 10.19.a. In this
figure, Node 6 can only communicate with the rest of the network using Node
5 as a repeater. Since the controller does not have a direct connection to Node
5, the controller needs to use one of the following routes: “1 -> 3 -> 4 ->
5 -> 6,” shown in Figure 10.4b, or “1 -> 2 -> 5 ->6” which is shown in
Figure 10.19c.

10.2.7 Application Layer

The Z-Wave application layer is responsible for decoding and executing
commands in a Z-Wave network. The only part of the application layer that
is described in this overview is the assignment of Home ID’s and Node
ID’s and the replication of controllers. The rest of the application layer is
implementation specific, and can be different from one implementation to
another.

The frame format used in application layer consists of following fields
(Figure 10.20):

Frame Format = {Single/Multi, broadcast frame header, Application
command class,Application command, Command parameter1-to-X}

504 Z-Wave Technology

Figure 10.19 Alternative Z-Wave network routing.

Figure 10.20 Z-Wave application frame format.

The application command class defines class of commands the command
belong to:
00h-1Fh (This command class reserved for Z-Wave protocol)
20h-FFh (This command class reserved for Z-Wave application)

All the Z-Wave frame types except the acknowledgment frame contain an
application command.

10.2.7.1 Frame layout
The frame format used in the Z-Wave application layer is described in this
section.

10.2 Z-Wave Protocol 505

Command class
Z-Wave networks are composed of controllers, sensors, and actuator devices.
To ensure device compatibility, the application layer protocol is well-defined
(OpenZwave, 2016); however, not all devices require the ability to participate
in every application layer transaction. For example, a light switch does
not need to know how to respond to a request for a temperature reading.
Consequently, the application layer is partitioned by functionality into a
series of command classes. As a fact, Command Classes are the heart of the
operability layer, they define groups of functionality that is implemented in
a standard way. Within each command class is a subset of the application
layer commands pertaining to the class. A given Z-Wave device belongs to
one or more command classes and the associated application layer protocol
functionality is included during compilation of its firmware image. A device
announces this set of supported classes to the controller during the pairing
operation. Each command class is a unique byte value (OpenZwave, 2016).
For example, a light switch may announce that it uses the Binary Switch
command class, which provides commands to get, set, and report the state
of the switch (OpenZwave, 2016). Given the announcement, the controller is
now aware of a subset of commands that the light switch obeys. Commands
sent to the light switch from unsupported command classes are ignored.

Z-Wave certification ensures that these functions are implemented cor-
rectly, and therefore ensures that different devices are compatible. Currently
approximately 120 command classes are defined.

Application Command class: The application command class specifies
which class of commands the command belongs to.

Currently defined command classes are as follows:

Command Class Description
00h-1Fh Reserved for the Z-Wave Protocol
20h-FFh Reserved for the Z-Wave Application

The application command specifies the specific command or action within
the command class.

Command parameter 1-x:

The command parameters contain any parameters associated with the
specified command. The number of parameters depends on the command.
All frame types except acknowledge can contain an application command.

506 Z-Wave Technology

Figure 10.21 Get node info frame flow.

10.2.7.2 Node information
Because a controller in a Z-Wave network should be able to control many
different kinds of nodes, it is necessary to have a frame that describes the
capabilities of a node. Some of the capabilities will be protocol related and
some will be application specific. All nodes will automatically send out their
node information when the action button on the node is pressed. A controller
can also get the node information from a node by requesting it with a “get
node information” frame.

10.2.7.2.1 Node information frame flow
The node information frame is send out by a node each time its action button
is pressed. The frame is sent out as a broadcast to any controller/node that
might be interested in the information. A controller can also request the node
information from a node by sending a get node information frame to it.

10.3 Z-Wave Network Operation

10.3.1 Z-Wave Network Setup

As discussed before, Z-Wave allows Only One Master Controller (Primary
controller). Because Z-Wave is a routed network, new Z-Wave devices must
be enrolled into the network before they can be used. One master controller
is allowed because the master controller maintains the database that repre-
sents the network’s topology. Whichever device you choose as your master
controller, to add secondary controllers to Z-Wave network, it is a must go
through a multistep controller replication process. The result is that only
the master controller can add or remove Z-Wave devices from the Z-Wave
network. If any time is required to modify an existing network it will be
needed to repeat the controller replication procedure in order to copy the
new master controller network topology database to all of the secondary
controllers.

10.3 Z-Wave Network Operation 507

10.3.1.1 Including and removing device in the network: ‘pairing’
operation

A distinguishing aspect of Z-Wave is the manner in which devices enter and
leave the network. A device must be ”included” to the Z-Wave network before
it can be controlled via Z-Wave. This inclusion or pairing process is similar
to Bluetooth device pairing (See Chapter 9). A user wishing to add a device
to the network first puts the Z-Wave controller and the new device into a
pairing mode. While placing a device in pairing mode is device specific, this
is usually achieved by pressing a sequence of buttons on the controller and on
the device being added to the network or physically resetting the device. This
sequence only needs to be performed once, after which the device is always
recognized by the controller. While in the pairing mode, the controller adds
any device found to also be in pairing mode. Depending on the controller
implementation, it may present a list of discovered devices and allow the user
to select ones to add. Alternatively, the controller may add all discovered
devices within physical proximity without discrimination. Examples of each
type of controller include the Mi Casa Verde Vera (Vera, 2016) and Aeon
Labs Z-Stick (Z-Stick, 2016), respectively.

Removing a device from a Z-Wave network is accomplished in a similar
manner. The controller learns the signal strength between the devices during
the inclusion process, thus the architecture expects the devices to be in their
intended final location before they are added to the system. Typically, the
controller has a small internal battery backup, allowing it to be unplugged
temporarily and taken to the location of a new device for pairing. The
controller is then returned to its normal location and reconnected.

10.3.1.2 Z-wave network enrollment and button associations
After adding a new Z-Wave device to the network by enrolling it with the
network master controller, there still has to be a choice of which button or
buttons on the master controller will operate the device. In other words, there
are two issues to resolve when adding a new Z-Wave device to an existing
Z-Wave network–network enrollment and button association. The method for
accomplishing these two tasks depends on the controller. For example, the
Intermatic controller requires two distinct steps–first you enroll a new device
into the Z-Wave network, then you associate buttons to control the device. It
is needed to use the controller instruction manual to find out how to perform
these steps, because the controller’s buttons do not have obvious labels for
performing this setup and the display cannot show arbitrary text prompts. In
contrast, the HomePro handheld controller merges the two setup steps into

508 Z-Wave Technology

one by using the concept of HomePro groups and HomePro scenes. There
are six numbered buttons on the HomePro handset, with each button able
to control a HomePro group or scene. The difference between a group and
a scene is that scenes can remember brightness settings. To add a new Z-
Wave device to the HomePro master controller, you traverse a text menu
tree and follow text prompts on the display. The controller’s software can
recognize whether a device is new to the network or if it is already enrolled
in the network and just being associated with more than one HomePro group
button. The software automatically enrolls devices that are new to the network
without involving the user, so users believe they are simply performing button
associations.

Z-Wave Association Process
To support the creation of associations between buttons on a controller and
actions of a controlled device, Z-Wave specifies that:

• The network must provide an Association Wizard,
• There must be a sanity check of requested associations, and
• All nodes must be able to present their supported capabilities.

Software routines to support these features, to the extent that product
developers choose to develop and include them, further enlarge memory
requirements.

10.3.1.3 Button pairs versus on/off toggles
The Intermatic controller uses on/off button pairs to control devices, while
the HomePro handset uses single buttons that alternate between on/bright and
off/dim. Neither controller is “guest friendly,” meaning that a person who had
never seen one before would not be able to figure out how to use it without
some trial and error.

10.4 Z-Wave Security

Z-Wave is based on a proprietary design, supported by Sigma Designs as its
primary chip vendor, but the Z-Wave business unit was acquired by Silicon
Labs in 2018. In 2014, Mitsumi became a licensed second source for Z-
Wave 500 series chips. Although there have been a number of academic and
practical security researches on home automation systems based on ZigBee
and X10 protocols, research is still in its infancy to analyze the Z-Wave

10.4 Z-Wave Security 509

protocol stack layers, requiring the design of a radio packet capture device
and related software to intercept Z-Wave communications. An early vulner-
ability was uncovered in AES-encrypted Z-Wave door locks that could be
remotely exploited to unlock doors without the knowledge of the encryption
keys, and due to the changed keys, subsequent network messages, as in ”door
is open”, would be ignored by the established controller of the network. The
vulnerability was not due to a flaw in the Z-Wave protocol specification but
was an implementation error by the door-lock manufacturer.

On November 17, 2016, the Z-Wave Alliance announced stronger security
standards for devices receiving Z-Wave Certification as of April 2, 2017.
Known as Security 2 (or S2), it provides advanced security for smart home
devices, gateways and hubs. It shores up encryption standards for transmis-
sions between nodes, and mandates new pairing procedures for each device,
with unique PIN or QR codes on each device. The new layer of authentication
is intended to prevent hackers from taking control of unsecured or poorly-
secured devices. According to the Z-Wave Alliance, the new security standard
is the most advanced security available on the market for smart home devices
and controllers, gateways and hubs.

In general, Z-Wave protocol provides packet encryption, integrity pro-
tection and device authentication services and is gaining momentum against
ZigBee protocol with regards to home automation. This is partly due to
interoperability of devices and shorter time to market on the vendor side.
Another benefit is that it is less subjected to signal interference compared to
the ZigBee protocol, which operates on the widely populated 2.4 GHz band
shared by both Bluetooth and Wi-Fi devices.

The following are features used in Z-Wave security:

• Message Freshness: 64 bit Nonce
• 128 bit random network key: Kn

• Encryption: AES-OFB
• Data Authentication: AES-CBCMAC
• 128 bit Cipher and MAC Keys: Derived from Kn

• Custom key Establishment Protocol, as shown below.

Z-Wave data origin authentication is based on the cipher block chaining
message authentication code, that is, CBC-MAC technique. This technique
calculates a message authentication code, that is, MAC from a block cipher
algorithm such as AES. Figure 10.22 describes K-exchange protocol used in
Z-Wave security.

510 Z-Wave Technology

Figure 10.22 Z-Wave key exchange protocol.

10.4.1 Vulnerabilities

The Z-Wave protocol suffers from vulnerabilities some of them are consid-
ered next:

10.4.1.1 Impersonation
Impersonation attacks violate the source integrity of the protocol. With the
exception of the controller, Z-Wave devices implicitly trust the source and
destination fields of the MPDU frame. This makes it trivial to impersonate
frames originating from the controller or another device.

Devices using the Z-Wave security layer have some protection against
outsider impersonation. Devices specify, at a command class granularity,
which command messages must use the secure frame. Secure frames are
signed and encrypted using keys exchanged during network inclusion. An
outsider who is not in possession of the authentication and encryption keys
is unable to transmit a valid secure frame. Regardless of the chosen source

10.4 Z-Wave Security 511

ID, the outsider is unable to impersonate the origin of a command message if
the destination requires that it is sent in a secure frame. However, the outsider
may still perform impersonation attacks on the device using commands from
a supported command class that is not required by the device to use the
security layer.

Summary

• Low Powered RF communications technology that supports full mesh
networks without the need for a coordinator node.

• Operates in the sub-1 GHz band; impervious to interference from Wi-
Fi and other wireless technologies in the 2.4-GHz range (Bluetooth,
ZigBee, etc.):

◦ Details related to the frequency coverage are given in Table 10.1.
◦ The Z-Wave PHY and MAC layers are defined by ITU-T Recom-

mendation G.9959.
◦ Details regarding the frequencies used by Z-Wave can be

found in Z-Wave Alliance Recommendation ZAD12837, “Z-Wave
transceivers–Specification of spectrum-related components.”

• Designed specifically for control and status applications, supports data
rates of up to 100 kbps, with AES128 encryption, IPV6, and multi-
channel operation.

• Full interoperability through layer 6 with backwards compatibility to all
versions.

• Successfully bridged and trialed with OpenADR, SEP 1, SEP 1.1 and
other Smart Energy protocols.

• Shares the same position in the NIST / SGIP Catalog of Standards as the
IEEE 802.11 and 802.15 and 802.16 families.

Z-Wave Market Facts
• Approximately 600 companies and over 2400 interoperable products

(certified devices) available, 100 million Z-Wave products worldwide.
• Extensively used in residential systems throughout numerous business

spectrums, including ADT, Alarm.com, AT&T, DSC, GE/Interlog-
ics, Honeywell, Lowes, Verizon, Vivint, and other prominent service
providers worldwide.

• Found in thousands of hotels, cruise ships, and vacation rentals; includ-
ing 65,000 devices in the flagship Wynn Hotel in Las Vegas, NV.

512 Z-Wave Technology

• Actively supported by over 700 manufacturers and service providers
throughout the world.

• Designed specifically for control, monitoring and status operations;
no interference from Wi-Fi or other 2.4 GHz wireless technologies in
similar band.

Z-Wave PLUS
• Introduced in 2015 and backward compatible with the original standard.
• Mixture of software and hardware changes.
• Improved devices with lower battery consumption, coupled with

improved protocol functionality:

◦ Increased data rate from 40 kbps to 100 kbps
◦ Lower power consumption for better battery life
◦ Higher output power for better range
◦ Better routing options with addition of Explorer frames
◦ Additional command classes to support new device management

References

[1] Zensys, 90310020x, Z-Wave Device Class Specification
[2] WHITEPAPER: Compared, INSTEON
[3] C. W. Badenhop, S. R. Graham, B. W. Ramsey, B. E. Mullins, L. O.

Mailloux, “The Z-Wave routing protocol and its security implications”
https://doi.org/10.1016/j.cose.2017.04.004

[4] M. B. Yassein, W. Mardini and A. Khalil, “Smart homes automa-
tion using Z-wave protocol,” 2016 International Conference on
Engineering & MIS (ICEMIS), Agadir, 2016, pp. 1–6. doi:
10.1109/ICEMIS.2016.7745306

[5] Sigma Designs. (n.d.). Z-Wave development Kit. Retrieved June 2013,
from Sigma Designs public web site: http://www.sigmadesigns.com/upl
oads/documents/zwave dev kit br.pdf

[6] “Introduction to the Z-Wave Security Ecosystem”, available from Sigma
Design, Inc., on the company website: http://z-wave.sigmadesigns.com/
wp-content/uploads/2016/08/Z-Wave-Security-White-Paper.pdf

[7] M. B. Yassein, W. Mardini and A. Khalil, “Smart homes automa-
tion using Z-wave protocol,” 2016 International Conference on
Engineering & MIS (ICEMIS), Agadir, 2016, pp. 1–6. doi:
10.1109/ICEMIS.2016.7745306

https://doi.org/10.1016/j.cose.2017.04.004
http://www.sigmadesigns.com/uploads/documents/zwave_dev_kit_br.pdf
http://www.sigmadesigns.com/uploads/documents/zwave_dev_kit_br.pdf
http://z-wave.sigmadesigns.com/wp-content/uploads/2016/08/Z-Wave-Security-White-Paper.pdf
http://z-wave.sigmadesigns.com/wp-content/uploads/2016/08/Z-Wave-Security-White-Paper.pdf

11
Smart Home Protocols: Comparison

11.1 Introduction

For smart home wireless networking, there are numerous technologies com-
peting to become the standard of choice. Some of these technologies are
popular as: Wi-Fi, Wi-Fi HaLow, Bluetooth, Bluetooth 5, Insteon, Thread,
ZigBee, and Z-Wave. Each of these technologies has its advantages, disad-
vantages and limitations. Wi-Fi consumes a lot of power, and Bluetooth is
limited in signal range and number of devices. Z-Wave is the technology
that starts to become the one for home automation. The standards that are
competing with Z-Wave include Wi-Fi HaLow, Bluetooth 5, Insteon, Thread
and ZigBee.

Z-Wave has a long open-air operating range at 90 meter (outdoor) and 24+
meter (indoor). Insteon has a large number of maximum devices capability
at 17.7 million (to ZigBee’s 65,000 and Z-Wave’s 232). Thread has a fast
data transmission rate at 250 kbps. Z-Wave has better interoperability than
ZigBee, but ZigBee has a faster data transmission rate. Thread operates on
the busy Wi-Fi standard frequency of 2.4 GHz, while Z-Wave operates at
908 MHz in the US, which has reduced noise and a greater coverage area.
ZigBee operates on both 915 MHz and 2.4 GHz frequencies. Thread, Insteon,
ZigBee and Z-Wave are mesh networks. The Z-Wave MAC/PHY is globally
standardized by the International Telecommunications Union as ITU 9959
radio, and the Z-Wave Interoperability, Security (S2), Middleware and Z-
Wave over IP specifications were all released into the public domain in 2016,
making Z-Wave highly accessible to Internet of Things (IoT) developers.
Because of the many similarities between Z-Wave and ZigBee, some more
detailed comparison is given next. Since Thread and Z-Wave belong to IoT,
the two will be compared after giving some enough knowledge on Thread

In this book, we introduced three of the smart home protocols: Bluetooth,
ZigBee and Z-Wave. In our book “Serial Communication protocols and
standards” we introduced Wi-Fi and WiMax. Because of the popularity of

513

514 Smart Home Protocols: Comparison

the other protocols, mainly, Insteon, Thread, Intellon, X10 and UPB, we are
going to introduce them to the reader in brief but with enough knowledge.
This is needed to be able to compare the different smart home and IoT
protocols.

The aim of this Chapter is to compare between the different technologies
mainly: Z-Wave, ZigBee, Bluetooth, Insteon, Intellon, X10, Thread and
Universal Powerline Bus (UPB). The comparison does not target defining
which technology is the best, but to guide the reader while he is selecting his
technology.

11.2 ZigBee versus Z-Wave

The comparison starts by comparing ZigBee and Z-Wave since both of them
are detailed in Chapters 7, 8 and 10. The material of the two chapters are
taking as base for the comparison.

11.2.1 ZigBee versus Z-Wave: Specifications and Capabilities

The ZigBee and Z-Wave are short-range wireless technologies used for
remote monitoring and control. However, their specifications and applications
are different. Both technologies are ideal for home-area networks (HANs),
which started to be widely spread worldwide. We start the comparison
between the two technologies by the next table (Table 11.1) that gives some of
the specifications and capabilities of the two technologies followed by brief
discussion of the table contents.

a. ZigBee Alliance, Z-Wave Alliance, and Sigma Designs
ZigBee: ZigBee was established in the late 1990s as an alternative to Wi-
Fi and Bluetooth for some applications. The IEEE 802.15.4 standard was
completed in 2003 and updated in 2006. The ZigBee Alliance was established
in 2004 to maintain the standard, continue its development, and provide
interoperability testing.

Table 11.1 ZigBee and Z-Wave specifications and capabilities
Technology Frequency Modulation Data Rate Range Application
ZigBee 2.4 to 2.483 GHz OQPSK 250 kbps 10 m Home automation,

smart grid, remote
control

Z-Wave 908.42 MHz GFSK 9.6/40 kbps 30 m Home automation,
security

11.2 ZigBee versus Z-Wave 515

The ZigBee Alliance is a consortium of companies and other organiza-
tions supporting the development of the standard and promoting its use. There
are more than 220 members. The Alliance performs testing to certify that all
products comply with the standard.

Z-Wave: Before it was acquired by Sigma Designs in 2008, Zensys devel-
oped Z-Wave as a proprietary wireless standard. Sigma Designs makes ICs
and other products for power-line communications (PLC) as well as wireless.
The standard is not open like many wireless standards, but it is available to
Zensys/Sigma Design customers. Recently, the International Telecommuni-
cations Union (ITU) included the Z-Wave PHY and MAC layers as an option
in its new G.9959 standard, which defines a set of guidelines for sub-1-GHz
narrowband wireless devices.

The Z-Wave Alliance, consortium of more than 160 companies that
design and sell wireless home control products based on the Z-Wave stan-
dard, plays a major role in the Z-Wave system. Currently, more than 575
interoperable products are available in 22 countries.

b. Topology
ZigBee: As a wireless mesh networking technology, ZigBee can be used
in direct communications, but most applications are based on a star or tree
topology mesh network. A master coordinator node controls other con-
nectEed nodes. If a node cannot communicate with another node, the two may
communicate by way of links to other nodes within range acting as repeaters.
ZigBee can support up to 65k nodes.

Z-Wave: Concerning Z-Wave, it is also a wireless mesh networking technol-
ogy enables any node to talk to other adjacent nodes directly or indirectly
through available relays. A master controller node controls any additional
nodes. The nodes communicate directly with one another if they are within
range. If two nodes that want to communicate are not within range, they can
link with another node that both can access and exchange information. A Z-
Wave network can have up to 232 nodes. Multiple controllers can be set up
to partition a network as required for different functions.

c. Frequency and Modulation
ZigBee: ZigBee devices operate in the unlicensed industrial, scientific, and
medical (ISM) bands. The most popular configuration is in the 2.4-GHz band,
where the standard defines sixteen 5-MHz channels of operation. Maximum
data rate is 250 kbps using offset quadrature phase shift keying (OQPSK).

516 Smart Home Protocols: Comparison

Optional specifications provide for operation at 915 MHz (in the U.S.) with
40 kbps using binary phase shift keying (BPSK) modulation. A European
version uses 868 MHz with 20 kbps.

Z-Wave: Z-Wave uses the Part 15 unlicensed ISM band. It operates at 908.42
MHz in the U.S. and Canada but uses other frequencies in other countries
depending on their regulations. The modulation is Gaussian frequency shift
keying (FSK). Available data rates include 9600 bits/s and 40 kbps.

d. Power and Range
ZigBee: ZigBee’s typical power of 1 mW or 0 dBm limits the free space range
to about 10 m, although longer ranges are possible depending on conditions.
A big issue is co-existence with Wi-Fi and Bluetooth, which use the same
band. Most transceivers have some co-existence mechanism to minimize
interference. The available 16 channels typically allow the radio to find a
frequency with minimum interference.

Z-Wave: Output power is 1 mW or 0 dBm. As with any wireless technol-
ogy, the range of transmission depends on the environment. In free space
conditions, a range of up to 30 m is possible. The through-wall range is
considerably less, of course.

e. Security
Z-Wave protocol provides packet encryption, integrity protection and device
authentication services. It is less subjected to signal interference compared to
the ZigBee protocol, which operates on the widely populated 2.4 GHz band
shared by both Bluetooth and Wi-Fi devices.

11.2.2 ZigBee versus Z-Wave: The Differences

Some of the differences between ZigBee and Z-Wave are given next.

a. ZigBee can connect more devices.
ZigBee can support way more devices at a given time–65,000+ devices, or
nodes on the mesh network, while Z-Wave, on the other hand, caps out at
232 devices. As a fact, 232 devices are still more than enough for most
households.

b. ZigBee is open.
ZigBee is an open standard (open-source software) run by the ZigBee
Alliance, whereas Z-Wave is run by Silicon Labs, which has stricter controls

11.2 ZigBee versus Z-Wave 517

to make sure every Z-Wave device works with every Z-Wave controller.
Actually Z-Wave is proprietary software supported and certified by the Z-
Wave Alliance. The main reason to this strict control is reliability, though the
downside is a lack of compatibility.

Late 2019 there was some news concerning this point coming from both
Z-Wave and ZigBee. The news from Z-Wave was that Z-Wave is set to
open up the standard in 2020; “as a ratified, multi-source wireless standard
available to all silicon and stack vendors for development.”

Concerning the news of ZigBee–Apple, Google, and Amazon announced,
alongside the ZigBee Alliance, the creation of the Connected Home
over IP project; an initiative to simplify development for manufac-
turers and increase compatibility for consumers in the smart home
world.

c. ZigBee allows for more hopping.
ZigBee and Z-Wave are both mesh networks–meaning the signals can hop
from gadget to gadget around the home and each device or sensor does not
need to connect to Wi-Fi–but they usually have a central hub which connects
to the internet. Z-Wave allows up to four ’hops’ between the controller and
the device, whereas ZigBee does not have a limit.

d. Z-Wave has better range.
For a given power level of 0 dBm, Z-Wave’s range is greater than ZigBee
simply because the lower operating frequency supports it with pure physics
(Friis formula). Z-Wave has a larger range, at 30 m (100 ft), than ZigBee’s
10–20 m (33–66 ft) so it might work better for larger houses and buildings.
Z-Wave’s latest platform can connect even further, at up to 100 m from point
to point.

e. ZigBee and Z-Wave are equal on security.
Both ZigBee and Z-Wave use the same AES-128 symmetric encryption. The
operation showed that using AES-128 for encryption, secure the systems from
hacking.

f. Z-Wave is more unified.
ZigBee operates on the 915 MHz frequency in the US and the 2.4 GHz
frequency in the UK, which might look familiar, as that is a major frequency
for Wi-Fi, too.

518 Smart Home Protocols: Comparison

One concern on ZigBee is that it is broken up into several protocols. There
is Home Automation, Smart Energy Profile, SEP energy management, Light
Link, digital health, home hospital care, and more. Unfortunately, ZigBee
devices of different protocols cannot exactly talk to each other well.

ZigBee 3.0, however, unifies all these protocols so that they can work
together. Lux, for example, offered the first thermostat that got ZigBee 3.0
approval, allowing it to talk to any device that has a ZigBee badge on it. This
is how Z-Wave actually works–it is a unified standard.

g. Z-Wave works with minimal interference.
Z-Wave operates at the low frequency 918/960 MHz band, meaning interfer-
ence is minimal for Z-Wave and possible on ZigBee which is working in the
same band of W-Fi.

Concerning speed, ZigBee is faster with data rates at 40–250 kbps versus
Z-Wave’s 9.6–100 kbps.

h. ZigBee is more flexible.
One of the great benefits of ZigBee is its flexibility. It was designed so specific
application software known as profiles could be developed and deployed.
Profiles connect to the ZigBee stack and make it faster and easier for manu-
facturers to create wireless products for very specific applications. Available
profiles include home automation, smart energy, telecommunications, health
care, remote control (RF4CE, or radio frequency for consumer electronics),
building automation, and retail services.

ZigBee and Z-Wave target the same general applications. Of the two,
ZigBee is by far the more versatile since it can be configured for virtually
any short-range wireless task. Profiles are readily available to minimize
development time for common applications. On the other hand the protocol
is far more complex, resulting in longer development times. Z-Wave uses a
far simpler protocol, so development can be faster and simpler.

Z-Wave chips are available from only one source, Sigma Designs. They
sell only to OEMs, ODM, and other major clients. More than 500 consumer
home control products are available in stores like Home Depot and Lowes,
but many don’t state that Z-Wave is used.

ZigBee chips are available from Ember, Freescale, Microchip Technol-
ogy, and Texas Instruments. Complete, ready to use ZigBee modules are
also available from multiple sources like Atmel, CEL, Digi, Jennic, Lemos,
and RFM.

11.2 ZigBee versus Z-Wave 519

11.2.3 Z-Wave versus ZigBee: The Devices

With ZigBee, there around 2,500 products from 400 members of the Zig-
Bee Alliance. Z-Wave has more than 3,200 supported devices and more
companies signed up–700 members.

When considering the popular, premium smart home brands and products,
we would say ZigBee slightly has the edge–but which one is best for you
depends on what smart home kit you already own and what you’re looking to
add.

Devices that work with ZigBee
Some well-known smart home brands and devices that support ZigBee
(otherwise known as ZigBee certified products) include the following:

• Philips Hue
• Samsung SmartThings
• Amazon Echo Plus (with Alexa for voice controls)
• Hive Active Heating and accessories
• Honeywell thermostats
• Ikea Tradfri
• Belkin WeMo Link
• Yale smart locks
• Sengled smart lights
• ADT Security Hub
• Wink hub
• Somfy blinds and drapery motors
• GE Appliances
• LG SmartThinq
• Lux Konoz

Devices that work with Z-Wave
Many big name brands also support the Z-Wave standard–and the reader can
see all the certified products on the official website. Here are some of the
highlights:

• Samsung SmartThings
• Wink hub
• Honeywell thermostats
• Hogar Milo (with Google Assistant for voice controls)
• ADT Security Hub
• August smart locks

520 Smart Home Protocols: Comparison

• Yale smart locks
• Logitech Home Harmony Hub Extender
• Somfy
• GE Appliances
• LG SmartThinq
• Kwikset smart locks

11.3 Z-Wave and ZigBee versus INSTEON

It is important to start this section by giving the reader the main characteristics
of Insteon technology. This will help comparing Z-Wave and ZigBee with
Insteon .

11.3.1 INSTEON Overview (www.insteon.com)

INSTEON enables simple, low-cost devices to be networked together using
the powerline, radio or both. All INSTEON devices are peers, meaning that
any device can transmit, receive or repeat other messages without requir-
ing a master controller or complex routing software. Adding more devices
makes an INSTEON network more robust, because INSTEON devices repeat
each other’s messages by simulcasting them at precisely the same time, so
with more devices the INSTEON signal gets stronger. On the powerline,
INSTEON devices can also be compatible with legacy X10 devices (See
X10 latter). First deployed in 2005, there are now millions of INSTEON
nodes in use around the world in many different products, including dim-
mers and switches, handheld and tabletop remotes, thermostats, sprinkler
controllers, energy monitoring devices, sensors and low-voltage input/output
interfaces. INSTEON networks easily connect to other, larger networks, such
as LANs and Wi-Fi. Many different user interfaces, including smartphones,
PCs and third-party controllers, can manage an INSTEON network. Appli-
cations running on such devices not only can talk to INSTEON products,
but can interoperate with cameras, sensors and other devices using different
networking protocols, including TCP/IP, ZigBee and Z-Wave.

11.3.2 INSTEON Main Characteristics compared with other
Technologies

a. INSTEON Uses Both Powerline and Radio Communications
Radio communication is far from 100% reliable, as cell phone and Wi-Fi
users are frequently reminded from firsthand experience. Z-Wave’s single

11.3 Z-Wave and ZigBee versus INSTEON 521

media design is clearly sub-optimal to INSTEON’s dual-mesh design. Z-
Wave radios, because they use narrowband FSK (frequency shift keying)
signaling, are considerably less sophisticated than cell phones or Wi-Fi.
Furthermore, because they share the unlicensed 900 MHz ISM (industrial,
scientific and medical) band, they are required to transmit at low power. Metal
in the home can block or reflect radio waves–installing radio wall switches in
metal junction boxes can cause particular difficulties. That is why INSTEON
is dual-mesh–if radio fails, powerline provides a backup and vice-versa. In
combination, two independently simple, low-cost signaling methods can be
much more reliable than sophisticated, high-cost methods employed on single
media with no backup. Because it is radio-only, Z-Wave had to resort to
complex network self-organization, self-healing and routing procedures in an
attempt to maximize reliability. INSTEON, on the other hand, even though it
employs the same sort of narrowband FSK radios in the 900 MHz range as Z-
Wave, achieves greater overall reliability with far less complication, because
it relies on dual-mesh powerline backup and repeated message simulcasting.

b. INSTEON Uses Simulcasting Instead of Routing
Simulcasting is much simpler than routing and more robust because multi-
ple devices simulcasting the same message add to the signal power. For a
complete discussion of how simulcasting works see INSTEON, the Details,
available at www.insteon.com. As explained above, routing entails complex-
ity. Devices that initiate communication using a source routing algorithm,
which is what Z-Wave uses, must know the topology of the network. Main-
taining and distributing a network topology database is not trivial, especially
with mobile devices. To keep costs down, Z-Wave has defined different
classes of devices, some of which cannot participate in routing.

c. INSTEON is a Peer-to-Peer Network
INSTEON devices are two-way simulcasting repeaters, which means they
all handle INSTEON messages in exactly the same way, with no need for
network controllers or routers. A Z-Wave network, on the other hand, must
contain a Static Update Controller (SUC) along with other kinds of devices,
including slaves or routing slaves. If you want more than one controller in
your Z-Wave network and you don’t have a SIS (SUC I.D. Server), you
must choose a single controller as a master and use that controller alone for
network maintenance. To set up your other controllers as secondaries you
must go through an involved controller replication procedure. Thereafter, any
time you add or delete network devices using your single master controller,

522 Smart Home Protocols: Comparison

you must repeat the entire controller replication process for all of your other
controllers. In contrast, INSTEON lets you add or remove INSTEON devices
of any kind at any time, because no matter how a device appears to the user, to
the INSTEON network all devices are peers. Therefore, setting up INSTEON
devices requires far less customer knowledge and involvement.

d. INSTEON Requires No Network Enrollment
As a consequence of routing using network controllers, Z-Wave requires that
new devices be enrolled in the Z-Wave network before controller buttons
can be associated with device functions. Some Z-Wave vendors have found
ways to hide the network enrollment step from users by combining it with
the control association procedure, but others have elected to keep the two
procedures separate. This situation is confusing if consumers have Z-Wave
products from different vendors who have implemented different setup meth-
ods. With INSTEON this problem doesn’t arise because there is simply no
need for network enrollment. There is no routing and there is no network
controller. At the factory, INSTEON devices are each given a unique I.D.
number that serves as a permanent network address. All INSTEON devices
automatically become part of an INSTEON network and start simulcasting
repeated messages as soon as a customer powers them up.

INSTEON Benefits
The biggest benefit is the redundancy the system provides. If wireless is down
or there is some sort of interference, the system easily changes to powerline
communications and vice-versa. Unfortunately, if the power goes out then
you lose both forms of communication, but you’ll also lose power to your
accessories so nothing works anyway.

Another benefit is that you don’t have to run new cables since the
INSTEON protocol includes powerline connectivity. It uses your existing
electrical wires to pass messages. There is no need to open walls or snake
wires through existing construction.

INSTEON Limitations
While INSTEON makes hundreds of different accessories for their network,
one big drawback is the lack of third-party options. Some do exist, but for the
most part you are locked into the INSTEON ecosystem. If the company goes
out of business then you won’t have much opportunity to grow or upgrade.

11.3 Z-Wave and ZigBee versus INSTEON 523

11.3.3 INSTEON versus Z-Wave and ZigBee: Comparison

Considering the INSTEON Characteristics given above and the characteris-
tics of Z-Wave and ZigBee given in Chapters 7, 8 and 10 we can conclude the
following.

INSTEON Compared with Z-Wave
The main differences between INSTEON and Z-Wave are that

• INSTEON is dual-mesh (it uses Both Powerline and Radio Communi-
cations), Z-Wave is radio only;

• INSTEON propagates messages by simulcasting, Z-Wave routes mes-
sages;

• INSTEON uses backwards and forwards compatible Statelink com-
mands, Z-Wave uses commands that must be understood by the respon-
der;

• INSTEON devices are peers, Z-Wave has network controllers and
slaves; and

• INSTEON requires no separate network enrollment step.

INSTEON Compared with ZigBee
There are several noteworthy differences between INSTEON and ZigBee that
have consequences in the home control marketplace. The main differences are
that:

• INSTEON is dual-mesh, ZigBee is radio only;
• INSTEON propagates messages by simulcasting, ZigBee routes mes-

sages;
• INSTEON messages are backwards and forwards compatible, ZigBee

messages are specific to revision level and profile;
• INSTEON devices are peers, ZigBee has full-function devices and

reduced-function devices;
• INSTEON requires no separate network enrollment step;
• INSTEON uses FSK radios in one band per market, ZigBee uses DSSS

in two bands per market.

Taken together, these distinctions entail higher cost and complexity for
ZigBee radio. Granting that the elevated cost buys ZigBee radio devices
with somewhat higher performance than INSTEON radios, INSTEON’s dual-
mesh architecture provides a powerline backup that ZigBee can’t rely on

524 Smart Home Protocols: Comparison

when its radio-only messaging does fail. On balance, ZigBee’s cost and com-
plexity make it better suited for large industrial and commercial networks,
whereas INSTEON is optimized for the home.

11.3.4 Z-Wave, ZigBee, and INSTEON Compared: Summary

Table 11.2 summarizes the comparison between the three technologies: Z-
Wave, ZigBee and INSTEON

11.4 Z-Wave versus THREAD Protocol: Comparison

Today there are a multitude of IoT (Internet of Things) protocols available
in the marketplace. In this section, two protocols from different time periods
are selected to be compared. The two protocols selected are: Z-Wave which
is one of the oldest and the most commercially successful IoT protocol, and
Thread which is the latest protocol released for commercialization.

Z-Wave is based on propriety standards, most of which is not pub-
licly available, although some have been reverse engineered by researchers.
Thread on other hand is based completely on open standards. All Z-Wave
modules are made by a single company, while Thread modules are expected
to be available from multiple vendors. Z-Wave has a large installed base
and has proven to be a commercial success. Thread is new and has an open
protocol, but Thread based devices are not yet readily available in the market
for users.

For the reader to follow the comparison between Thread and Z-Wave, he
must have good knowledge about:

• Meaning of IoT
• Z-Wave, and
• Thread

Chapter 10 covers Z-Wave. This section gives the reader enough knowl-
edge about the other two topics: IoT and Thread.

11.4.1 Internet of Things (IoT)

What is an IoT system? An IoT system is a concept of connecting sensors
and actuators into a coherent network with Cloud computing services that
can provide services to the user.

The Internet of Things (IoT) aims to transform people’s lives through
smart homes and businesses. In the home, the goal is a network of connected

11.4 Z-Wave versus THREAD Protocol: Comparison 525

Table 11.2 Z-Wave versus ZigBee versus INSTEON comparison table
Property Z-Wave ZigBee INSTEON
Media Radio only Radio only Powerline and

Radio

Module types Controller
Static controller
(SUC)
Slave
Routing slave
Enhanced slave
Installer
Bridge

Network coordinator (1
per network)
Full-function device
(FFD)
Reduced-function device
(RFD)

All are peers

Message
propagation

Routing tables Routing tables Simulcasting
repeaters

Network
Topology

Routed mesh Partial routed mesh–only
FFDs are repeaters
Partial star–RFDs are star
networked each to a single
FFD

Full mesh

RF
interoperability

Yes, 908.42 MHz No, 915 MHz and 2.4
GHz

Yes, 908.42 MHz

Command
interoperability

No, application and
revision specific
commands

No, 8 profiles and
revisions thereof

Yes, Statelink

RF data rate,
bps

9600 instantaneous 20 K instantaneous at 868
MHz
40 K instantaneous at 915
MHz
250 K instantaneous at 2.4
GHz

38400
instantaneous

RF PHY FSK in ISM Band DSSS in two ISM bands FSK in ISM Band

Acknowledged Yes yes Yes

Addressing 32-bit home ID
8-bit node ID
(232 devices per
network)

64-bit IEEE address
16-bit short address
(65,536 devices)

24-bit pre-assigned
module ID
(16,777,216
devices)

Network
enrollment

Part of installation
procedure

Part of installation
procedure

Automatic

Groups Controller database ? Databases in
modules

Commands Command classes Application profiles 2-byte (65,536)
(Continued)

526 Smart Home Protocols: Comparison

Table 11.2 Continued
Device types Device classes Application profiles 3-byte (16,777,216)

Global clock No Optional beaconing No

Retries Yes yes Yes

Message length Variable Variable, 128 byte
maximum

15, 33 byte

Collision
avoidance

Yes Yes Yes

Triac control Yes ? Yes

SRAM 2048 byte ? 256 bytes

Flash 32K bytes 128K bytes typical 4K x 14 bits (7K
bytes)

EEPROM
external

Up to 24K bytes ? 4K bytes

EEPROM
internal

0 ? 256 bytes

Watchdog Yes ? Yes

Powerline data
rate, bps

None None 13,165
instantaneous PL
2,880 sustained PL
1,440 standard msg
payload
1,698 extended msg
payload
1,034 user data

Powerline PHY None None 131.65 KHz
carrier–BPSK

Powerline phase
bridging

N/A N/A RF or hardware

X10 compatible N/A N/A yes

appliances, lights, climate controls, security, and entertainment systems, all
of which work together to make life more convenient and rewarding for
consumers. In commercial buildings, IoT aims to improve the efficiency,
functionality, automation, and safety of buildings such as offices, healthcare
facilities, hotels, and schools.

An IoT system is depicted in Figure 11.1. In an IoT system, the IoT
devices can be localized in a home or spread across the city. The IoT devices

11.4 Z-Wave versus THREAD Protocol: Comparison 527

Figure 11.1 IoT system (Image from “International Journal on Future Revolution in
Computer Science & Communication Engineering ISSN: 2454–4248 Volume: 3I”).

are connected in a Private Area Network (PAN) using wireless communica-
tion protocols. The PAN is then connected through the router(s) to Internet
allowing it to accessing the Cloud computing services. The data processed
in the Cloud can result in necessity for physical action. The action may be
as simple as sending a text message or as complex as activating a set of
actuators to accomplish some task. The action is communicated from the
Cloud computer back to the IoT actuator device(s) through the router and
the IoT PAN. An IoT system (Figure 11.1) has following features:

• Device Identification. An individual device in an IoT PAN has a unique
address.

• Sensing. The IoT PAN has a number of sensing devices that collect data
from a monitored event or environment. Examples of sensors include
detectors for motion, light, vibration, pressure, temperature, accelera-
tion, magnetic field, infrared, proximity, distance, biometric parameters
and many others.

528 Smart Home Protocols: Comparison

• Response. The IoT PAN may also have a number of devices that
respond, that is, perform actions. Examples include relays, actuators and
switches.

• Communication. The IoT devices in the PAN communicate wirelessly
with each other. The sensor data are communicated, by the router, to
a central location, usually using Cloud computing, for processing and
evaluation. Results of data evaluation are then communicated back to
the IoT PAN for any required physical action.

• Computation. Cloud computing services are usually used to process
the IoT sensor data. Cloud computing formulates a response and sends
to the IoT router, if needed. The IoT router then uses the PAN wireless
communication links, to deliver the message.

• Services. The IoT PAN is ubiquitous and provides a number of services:
item identification, collecting and communicating sensor data, event
monitoring, performing physical action(s), and device collaboration.

• Semantics. Cloud processing software analyzes the data and provides a
context-aware response for the IoT system.

All these capabilities in the IoT PAN are provided under practical
constraints. Some of the major constraints on the IoT PAN are:

• Low power. Many of IoT devices are battery powered; replacing bat-
teries is expensive, inconvenient, and unreliable. Even if the IoT devices
are attached to the power grid, low power is required for a couple of
reasons. First, the IoT devices are continuously operating and therefore
even small amount of power consumption can quickly add up. Second,
a typical IoT installation consists of hundreds of devices. The aggregate
power consumption of these devices operating continuously can be quite
significant.

• Low cost. Cost is always a major factor in the consumer adoption of any
product. Low cost promotes a wider use of the smart technologies.

• Security. Beside physical security of the IoT devices, authenticity, pri-
vacy, confidentiality, and integrity of data are important consideration in
an IoT system.

• Communication. The IoT faces communication constraints on mul-
tiple fronts. The IoT PAN radio operates on low power, short range
transmission, in a restricted public frequency spectrum. The operating
environment is noisy with other equipment generating radio interfer-
ence, and there are many physical obstacles. The IoT communication
also faces the challenge of frequent network route changes as IoT

11.4 Z-Wave versus THREAD Protocol: Comparison 529

devices are moved, some of the IoT devices are mobile, plus the users
may move obstacles in its communication paths. Additionally, the IoT
data packets are small, making it harder to include redundancy for fault
tolerance.

• User interface. Most IoT devices either have a primitive or no user
interface. The lack of graphical user interface (GUI) constraints the com-
munication between the user and the device. GUI-based components,
like smart-phone, smart-tablet, a computer or even a voice controlled
device is normally required to set up and communicate with the IoT
device.

IoT Private Area Network
There are a number of IoT protocols currently available, Z-Wave, ZigBee,
Thread, IoTivity, AllJoyn, and among others. Although particulars for each of
these protocols are different, they share many similarities. All these protocols
establish a wireless Private Area Network (PAN). PAN network topology is
built using connectivity through wireless radios. Topologies commonly used
for PAN are point-to-point, star and mesh. The mesh topology is the most
popular due to its robustness, scalability and fault resilience. A typical PAN
with mesh topology can be seen in Figure 11.1. Generally, an IoT network
have three types of nodes: End devices, PAN routers, Border routers. Data
from IoT devices can be transmitted across multiple hops, as determined
by a routing protocol, before arriving at gateway Border router(s). The End
devices normally consist of sensors or actuators. The PAN routers serve
multiple purposes, besides being sensors or actuators, PAN routers also act as
communication router for the End devices. The PAN routers have additional
capability to connect with other PAN routers and/or Border routers. The Bor-
der router(s) have an additional capability to act as gateway to Internet/Cloud
by connecting to Internet router. The End devices can communicate with
either the PAN network router or directly with Border routers. An example of
a Border router is Nest thermostat, which has connectivity to both PAN and
Wi-Fi router, plus it is also an IoT sensor and actuator.

11.4.2 Thread Protocol

Thread was announced by Thread group Inc. in 2015, so it is a relatively
new IoT protocol. Hardware boards with wireless radios, plus software
libraries for Thread are now available for research and development. Con-
sumer devices are not yet widely available, although Nest thermostat and

530 Smart Home Protocols: Comparison

some ZigBee devices are Thread compatible. Thread is an open standard.
Thread specification is available from the Thread group. Thread was founded
by seven companies (ARM (acquired by SoftBank Group), Big Ass Fans,
Freescale (acquired by NXP Semiconductors), Nest (acquired by Alpha-
bet/Google), Samsung, Silicon Labs, and Yale). Today, Thread group has
more than 200 member companies. Thread intends to consolidate IoT pro-
tocols by working with other IoT alliances. Thread is specially designed for
Home Automation and supports a wide variety of home use applications:
appliances, access control, climate control, energy management, lighting,
safety, and security.

Thread is designed to address the unique interoperability, security, power,
and architecture challenges of the IoT.

• Thread is a low-power wireless mesh networking protocol, based on
the universally-supported Internet Protocol (IP), and built using open
and proven standards.

• Thread enables device-to-device and device-to-cloud communica-
tions and reliably connects hundreds (or thousands) of products and
includes mandatory security features.

• Thread networks have no single point of failure, can self-heal and
reconfigure when a device is added or removed, and are simple to setup
and use.

• Thread is based on the broadly supported IEEE 802.15.4 radio
standard, which is designed from the ground up for extremely low
power consumption and low latency.

A key enabler for the IoT is interoperability. Thread addresses this
challenge by providing a certification program that validates a device’s con-
formance to the specification as well as its interoperability against a blended
network comprised of multiple certified stacks.

The latest Thread specification is v1.1.1 2017.Thread is based on open
standards such as IEEE 802.15.4 (2450 MHz), IPv6, 6LoWPAN, wireless
PAN MESH network topology with no single point of failure. The wireless
PAN operates at 2.4 GHz with a data rate up to 250 kbps and using O-QPSK
modulation. Thread has a maximum range of 30 m per hop, with a default hop
limit of 36 hops. Thread has the ability to connect 250+ devices in a single
PAN. Thread can have multiple Border routers, which connect to Internet,
this eliminates Border router failure as a single point of failure. Each IoT
device in Thread has an IPv6 address. The IPv6 address is compressed using
6LoWPAN, which is a standard for low power devices. Readers might notice

11.4 Z-Wave versus THREAD Protocol: Comparison 531

Figure 11.2 Thread protocol stack.

similarities between Thread and the ZigBee protocol. As a matter of fact,
ZigBee libraries can run as an application on Thread.

11.4.3 Thread General Characteristics

The Thread stack (Figure 11.2) supports IPv6 addresses and provides low-
cost bridging to other IP networks and is optimized for low-power / battery-
backed operation, and wireless device-to-device communication. The Thread
stack is designed specifically for Connected Home and commercial applica-
tions where IP-based networking is desired and a variety of application layers
can be used on the stack. These are the general characteristics of the Thread
stack:

• Simple network installation, start-up, and operation: The Thread
stack supports several network topologies. Installation is simple using
a smartphone, tablet, or computer. Product installation codes are used to
ensure only authorized devices can join the network. The simple proto-
cols for forming and joining networks allow systems to self-configure
and fix routing problems as they occur.

• Secure: Devices do not join the network unless authorized and all
communications are encrypted and secure. Security is provided at the

532 Smart Home Protocols: Comparison

network layer and can be at the application layer. All Thread net-
works are encrypted using a smartphone-era authentication scheme and
Advanced Encryption Standard (AES) encryption. The security used in
Thread networks is stronger than other wireless standards the Thread
Group has evaluated.

• Small and large home networks: Home networks vary from several to
hundreds of devices. The networking layer is designed to optimize the
network operation based on the expected use.

• Large commercial networks: For larger commercial installations, a
single Thread network is not sufficient to cover all the application,
system and network requirements. The Thread Domain model allows
scalability up to 10,000s of Thread devices in a single deployment, using
a combination of different connectivity technologies (Thread, Ethernet,
Wi-Fi, and so on).

• Range: Typical devices provide sufficient range to cover a normal
home. Readily available designs with power amplifiers extend the range
substantially. A distributed spread spectrum is used at the Physical Layer
(PHY) to be more immune to interference. For commercial installations,
the Thread Domain model allows multiple Thread networks to commu-
nicate with each other over a backbone, thus extending the range to cover
many mesh subnets.

• No single point of failure: The Thread stack is designed to provide
secure and reliable operations even with the failure or loss of individual
devices.

• Low power: Devices efficiently communicate to deliver an enhanced
user experience with years of expected life under normal battery con-
ditions. Devices can typically operate for several years on AA type
batteries using suitable duty cycles.

• Cost-effective: Compatible chipsets and software stacks from multiple
vendors are priced for mass deployment, and designed from the ground
up to have extremely low-power consumption.

11.4.3.1 Network stack: Thread versus z-wave stack
The IoT protocol layers are shown in Figure 11.2. Figure 11.3 compares
the Thread stack with that of Z-Wave. Figure 11.4 is a network security
comparison. The main security for IoT protocols are in Perception Layer,
Data Link Layer and Transport Layer. Although data in Cloud is an important
part of the IoT system, Cloud is not part of IoT protocols.

11.4 Z-Wave versus THREAD Protocol: Comparison 533

Figure 11.3 Network layer comparison.

Figure 11.4 Network security comparison.

534 Smart Home Protocols: Comparison

Note: We refer the reader to the references given at the end of the chapter to
get more detailed information. The following discussion is summary of some
of the references.

A. Perception Layer
Security Perception layer includes WSN (Wireless Sensor Network), IMD
(Implantable Medical Devices), RFID (Radio Frequency Identification), NFC
(Near Field Communication), temperature sensors, pressure sensors, lumi-
nance sensors, vibration sensors, accelerometer magnetometer, gyroscope,
etc. Z-Wave and Thread protocol have devices with similar functionality at
perception layer, but are incompatible with each other. The communication
standard for each protocol is very different. Perception layer requires physical
security of devices. Physically manipulated faulty nodes may have unautho-
rized attachments, or reprogrammed boot to change their behavior. This can
be secured by running fault detection algorithms. Encryption related data
must protected by using encryption before storing it in memory. To add new
devices in PAN, strong passwords, biometric recognition (fingerprints, iris,
voice, face, etc.) or a synchronized key generator must be used. Currently,
none of the major IoT protocols address the issue of protecting data stored in
the device registers and memory.

B. Physical and Data Link Layer (PHY and MAC) Security
In Z-Wave PHY and MAC layers are proprietary. In Thread PHY and MAC
layers are defined by IEEE 802.15.4. Although IEEE 802.15.4 allows other
frequencies, Thread only uses the 2450 MHz related portion of the standard.
This is the lowest layer for which there are protocol-based security specifica-
tions. Support for this encryption is built into the radio hardware. Almost all
IoT protocols offer AES (Advanced Encryption Standard) 128-bit. However,
AES does not scale well with hundreds of devices in the network and requires
very large keys. Therefore, IoT protocols implement, ECC (Elliptic Curve
Cryptography, RFC 4492). ECC is an asymmetric, public-key method that
scales well and provides a higher level of security for the same number
of bits. Other low power public key encryption algorithm Rabin’s Scheme
and NtruEncrypt are also good candidates for IoT. Z-Wave security has an
interesting history when it comes to data encryption. Initial Z-Wave, series
100, had TDES (Triple Data Encryption Standard). Later in series 200 silicon,
encryption was dropped according to Knight [see the references]. Encryption
was again added back and now it uses AES (Advanced Encryption Standard).
Since then Z-Wave has taken steps to improve security features and recently

11.4 Z-Wave versus THREAD Protocol: Comparison 535

has been evaluated by UL for security applications according to press release
by Sigma Design, “Z-Wave modules models ZM5101, ZM5202, and ZM5304
with protocol SDK version 6.60 have been evaluated to ULĎs standards for
home security”. This paper considers Z-Wave protocol, with AES-128, as
it exists today. Z-Wave Smart Hub to Internet connection is encrypted with
AES-based pre-shared key (TLS 1.1, PSK). Z-Wave accomplishes secure key
exchange using Elliptic Curve Diffie-Hellman (ECDH).Thread uses AES-128
and ECC for data link encryption. AES does not scale well with hundreds
of devices, as expected in the Thread network and requires very large keys.
Therefore, Thread uses ECC (Elliptic Curve Cryptography, RFC 4492). ECC
is an asymmetric, public-key method that scales well and provides a higher
level of security for the same number of bits.

C. Transport Layer
Security Transport layer mainly consists of routing protocol and data trans-
port protocol. Z-Wave routing protocol is propriety; however, researcher have
reverse engineered most of it. Z-Wave routing has 4 possible hops plus one
final hop to the destination node. Thread uses standard routing RIPng [RFC
2080]. RIPng is a distance vector routing protocol [RFC 1058] for IPv6.
RIPng has maximum of 15 hops. There are two main data protocols currently
being used at transport layer in IoT PANs, CoAP (Constrained Application
Protocol), and MQTT (Message Queuing Telemetry Transport). Both of
these protocols were specifically designed for low power IoT type devices.
Actual transport protocol used by CoAP is a UDP (User Datagram Protocol),
which enforces use of DTLS (Datagram Transport Layer Security, IETF
RFC 6347). CoAP has a set of security modes and mandatory-to-implement
ciphers. CoAP borrows some concepts from REST (Representational State
Transfer) protocol. The transport protocol used by MQTT is TCP, which
enforces TLS (Transport Layer Security, IETF RFC 5246). MQTT is a pub-
lisher/subscriber style protocol, requiring a server-broker. A typical MQTT
session consists of establishing a connection, authentication, communica-
tion, termination. MQTT provides authentication and authorization scheme,
but does not have any security implementation requirements. MQTT is
designed to operate in a secure network, and thus has no defined security
mechanism. MQTT sends username and password in clear text and thus
relies on Transport layer encryption, like TLS, to provide security. MQTT
should not be used for global network as it does not scale well. TLS is
expensive protocol and not well suited for very low power devices. MQTT
has TCP port 1883 reserved for non-encrypted and TCP port 8883 reserved

536 Smart Home Protocols: Comparison

for encrypted communication using TLS. Although the DTLS and TLS have
similar concepts, CoAP with DTLS is preferred in IoT protocol due to low
power IoT devices having limited memory and processing capabilities. Both
CoAP and MQTT can be operated in “no security” mode, “pre-shared key”
mode and “certificate” mode. CoAPs (CoAP secured) can also be configured
in “raw public key” [IETF RFC 7250], but MQTT implementation is not
yet available. In pre-shared key mode CoAPs hashes pre-shared keys with
a list of corresponding communication nodes. Although use of certificate
mode is well established, its use in IoT is discouraged due to resource
constraints. However, there is a one big advantage in use of certificates;
the certificate can be revoked if the IoT device is compromised. In raw
public key mode the IoT device holds an asymmetric key pair but without
a certificate. Normally, the asymmetric key pair is generated and embed-
ded in the device by the manufacturer. This asymmetric key pair needs to
be validated in out-of-band (OOB) mechanism using public key. A device
can have multiple raw public keys. Z-Wave and Thread both utilize DTLS
encryption for the transport layer. If the radio hardware does not support
data encryption than Transport layer encryption must be used. Using “no
security” mode is acceptable if the network is running on a VPN, or if
Data layer encryption is being used. Encrypting the data twice, at Data
layer and Transport layer can decrease the data compression ratio, which
leads to more package transmissions and higher power consumption. Thread
Mesh is self-configuring and each link is individually encrypted. Every
device in Thread holds the credentials which allow it to be part of the
network. However, before the device can receive the credentials it has to be
authenticated by the Commissioner (an authentication server). Commissioner
itself must be authenticated. Commissioner authentication requires a onetime
Commissioning Session, a secured client/server socket connection, between
Commissioner and the Border Router via DTLS (RFC 6347) or TLS (RFC
5246). Using the advertised UDP port, during discovery, Commissioner
provides PSKc (Pre-Shared Key for Commissioner) credential. The Border
router with human interaction than authenticates the Commissioner. A new
device wishing to join the Thread network must transmit an unsecured
Discovery Request message. A router responds with a Discovery Response
message including the joining UDP port. The device will perform DTLS
handshake to establish a secure session with router. The router will relay UDP
messages to the Border router, which in turn will relay them to the Commis-
sioner. The device and Commissioner then exchange token to establish trust.
Commissioner inspects the device IID (Interface Identifier) and credentials.

11.5 Wi-Fi versus INSTEON and Z-Wave 537

If the Commissioner is satisfied with the responses from the device, it will
be provisioned with the appropriate data and services, and also provided with
KEK (Key Encryption Key). Once it is authenticated by the Commissioner,
router will provide the device network credentials. Each Thread node also
receives a master key when joining. Two different 16-bit keys, one for MAC
and other for DTLS, are generated using Hashed Message Authentication
Mode with SHA-256 algorithm (HMAC-SHA256) produces 32-bit output
[RFC 6234] and the master key. The key set are rotated based on key index
changes, or the key rotation timer expiry, or incoming messages matches the
next key.

Concluding Remarks on Z-Wave versus Thread
Both the protocols, Z-Wave and Thread, fulfill the requirements, features,
and capabilities of an IoT protocol. Both protocols have a reliable MESH
configuration for PAN. Z-Wave has tried to protect the PAN from intruders
by hiding the information in the propriety standards. These same propriety
standards also make it hard to judge the quality of Z-Wave standards, but
researchers have reverse engineered some aspects of the PAN. Thread is based
on open standards, which allows everyone to study and detect any security
flaws. Figure 11.3 shows the network layer comparison, which clearly high-
lights the differences in PHY, MAC, Routing between Z-Wave and Thread.
Network security comparison is shown in Figure 11.4, where the differences
are less discernible. The reason for similarity in security is that Z-Wave seems
to have been upgrading its devices. Z-Wave has been commercially successful
with its Z-Alliance. Thread, with its Thread Group Inc., still has to prove itself
in the marketplace.

11.5 Wi-Fi versus INSTEON and Z-Wave

11.5.1 Wi-Fi Overview

In recent years, Wi-Fi (IEEE 802.11) has become the de facto standard for
broadband networking of wireless LANs (local area networks) in the home,
in offices and at an increasing number of commercial ‘hotspots’ around the
world.

Since Wi-Fi is so common in homes today, it makes sense that home
automation accessories take advantage of its availability. While it is important
that your hub devices include Wi-Fi, it isn’t the best protocol for all smart
home accessories.

538 Smart Home Protocols: Comparison

Wi-Fi is a wireless communication standard developed and maintained by
the Wi-Fi Alliance. The standard allows interoperability and communications
among different devices.

Wi-Fi: Technology
Wi-Fi communications travel across radio waves in the 2.4 GHz or 5
GHz spectrum. Compatible devices include a receiver and transmitter plus
connected antennae.

The theoretical range is relatively far, but for practical home usage, the
maximum range is around 60-feet. Of course, range can be affected by
many things including physical barriers, interference, transmitter power, and
antenna quality.

Communications throughput is quite high; speeds range from 10 Mbps to
100 Mbps. Wi-Fi is capable of streaming high-definition audio and video.

Wi-Fi has a theoretical limit of 256 connected devices. Network con-
gestion may become a problem before 256 devices connect, especially if
some of those devices demand large amounts of bandwidth. You may have
experienced this if multiple people in your home try to stream high-definition
video at the same time.

Wi-Fi: Benefits
The main benefits of Wi-Fi are transmission speed, range, and the overall
availability of the technology. As mentioned earlier, most people already have
a Wi-Fi router in their home and adding a router is way less expensive than
running Ethernet cables around the house. Wi-Fi provides easy and fairly
reliable access to the internet anywhere in your home.

Wi-Fi: Limitations
From a home automation standpoint, there are a few drawbacks. First, Wi-
Fi is susceptible to interference since there are so many devices competing
for bandwidth–phones, tablets, watches, scales, streaming media devices,
thermostats, and many others all want to communicate over Wi-Fi. The bands
become even more congested as we add more devices to our homes.

Another problem is the power consumption of Wi-Fi devices. Wide range
and high speeds require a lot of power to operate. While the power usage
doesn’t affect our utility bills very much, the consumption is a problem for
small sensors and other home automation accessories that need to run on
batteries. Plug-in items can easily use Wi-Fi, but we don’t want to plug in
every smart home accessory, especially very small items.

11.5 Wi-Fi versus INSTEON and Z-Wave 539

Let us discuss range as a limitation. This may seem odd, since we also
talked about range as a benefit. However, Wi-Fi range can be limiting in larger
homes or those made from dense materials like concrete block. If this is the
case for you, you have probably already installed additional Wi-Fi routers to
create a mesh network.

Finally, security is something to consider. While Wi-Fi has plenty of
security features to help keep your wireless network safe, they have to be
set up and maintained over time. Wi-Fi itself isn’t a security risk, but when
people disable (or fail to enable) proper security measures then the network
can be compromised. Always make sure your network is secure and routinely
check for router software updates.

The Wi-Fi Alliance understands the limitations with their technology and
they are developing new Wi-Fi standards that will make it more beneficial for
use with home automation. Wi-Fi 6 includes new features that improve range
and power efficiency, while still maintaining data throughput. The new Wi-Fi
Ha-Low is directed at the smart home market and is being developed to lower
power consumption even further while also increasing the communication
range. Wi-Fi will become more reliable for smart homes when these new
versions are released. However, you will need to purchase a new router to
take advantage of the technologies.

Wi-Fi: Compatible Hubs
Most of the hubs available in the market include Wi-Fi for easy wireless
connectivity.

11.5.2 Z-Wave Compared with Wi-Fi

Z-Wave also beats Wi-Fi in terms of network interference. Like Bluetooth,
Wi-Fi devices compete with one another, so signal strength and network
speeds suffer when there are many devices connected. However, Wi-Fi can
carry more information. Z-Wave technology sends and receives plenty of data
for smart devices like light bulbs, motion detectors and other small appli-
ances, but devices that send lots of information require the larger capacity of
a Wi-Fi network. For example, an HD video surveillance camera sends more
data than a low-power Z-Wave or Bluetooth network can handle.

11.5.3 INSTEON Compared with Wi-Fi

Using Wi-Fi to network together low-cost devices like light switches is
theoretically possible, but Wi-Fi is overkill by a wide margin. The slowest

540 Smart Home Protocols: Comparison

Wi-Fi specification, 802.15b, delivers data at 11 Mbps, far in excess of what
a light switch needs to dim a light or a thermostat needs to control a heater.
TCP/IP transport, arguably the gold standard for packet routing, requires a
minimum of 30 bytes of overhead per packet, with 2K of RAM buffers and
at least 14K of code space just for the software stack. Proposed reduced-
overhead and lower-power variations of IP signaling, such as 6LoWPAN and
OSIAN, are still over-complex for dense command and control and they have
yet to be proven by adoption in the market place. Wi-Fi radios work very well,
but they are complicated and so power-hungry that the only way to implement
battery-operated devices is with rechargeable batteries and frequent recharg-
ing. Advanced as it is, Wi-Fi nevertheless has no powerline backup. As with
other single-media networks, if communication fails for any reason, the only
recourse with Wi-Fi is to retry. In contrast, INSTEON’s data rate is optimized
for home control. It is fast enough that users don’t experience a noticeable
delay when controlling devices, but not so fast that simulcast messages might
jam each other. And simulcasting is how INSTEON avoids routing altogether.
All INSTEON devices within range repeat1 identical messages at precisely
the same time, with each device adding to the strength of the signal, so
simulcasting is not only radically simpler than routing, it is more robust.
Simplicity translates into low-cost–the INSTEON engine for communicating
both by powerline and radio occupies a mere 2600 bytes, with an entire
application like a lamp dimmer residing in only 7K bytes, all running in a low-
end microcontroller such as the PIC16f638.Perhaps the strongest argument
against increasing the cost of devices by building Wi-Fi into them is that you
can get the same benefit but without incurring the cost in every device. With
a single gateway between a Wi-Fi network and INSTEON, all of the devices
on an INSTEON network can still appear as part of the Wi-Fi network. Wi-Fi
is great at networking together computers, broadband access points,

11.6 Bluetooth Compared with Z-Wave, ZigBee, Wi-Fi, and
INSTEON

a. Bluetooth Compared with Z-Wave
The biggest improvement that Z-Wave makes over Bluetooth is signal
strength. Bluetooth signal is prone to interference and interruption because all
Bluetooth devices send and receive information on the same 2.4 GHz band.
They compete with one another for bandwidth. And unless you run a 5 GHz

11.6 Bluetooth Compared with Z-Wave, ZigBee, Wi-Fi, and INSTEON 541

Wi-Fi network in your home, they’re competing with devices on your Wi-Fi
network too.

With Z-Wave, every Z-Wave signal repeater works together to make the
network stronger. Every device actually strengthens the signal. The more
devices you have, the easier it is to create a strong network that’s capable
of bypassing obstacles and passing through walls, ceilings and floors.

b. Bluetooth Compared with ZigBee
The next table lists some characteristics of each protocol. The table shows the
similarities between them. The two technologies are similar in that:

• They operate in the 2.4 GHz Industrial, Scientific and Medical
(ISM) unlicensed frequency band and are based on the IEEE standard
802.15 for Wireless Personal Area Networks (WPANs). Bluetooth is
based on standard 802.15.1 and ZigBee is based on standard 802.15.4
for low rate devices (LR-WPAN).

• They can automatically form ad hoc networks as devices within range
are detected.

• They only address devices in their own networks and do not currently
connect to the internet.

• They both modulate signals for radio transmission and packetize data.

Characteristics of ZigBee, Bluetooth Classic, Bluetooth Smart

Bluetooth
Feature ZigBee Classic (BT) Bluetooth Smart
Design Focus Wireless

networking among
sensors

Wireless
keyboards, mouse,
headsets

Wireless sensor and
fitness devices

IEEE Standard 802.15.4 802.15.1 802.15.1

Network Type Mesh, ZigBee PRO Piconet,
Master/Slave;
Scatternet

Scatternet

Distance 75–100 m line of
sight

10 m (33 ft) min >10 m >33 ft

Nodes Connected,
max

65000 8 N/A

Operating Band 2.400–2.4835 GHz
ISM band
16 channels, 5
MHz apart
2 MHz used
Direct Spread
Spectrum

2.400–2.4835 GHz
ISM band
79.1 MHz channels

Frequency Spread
Spectrum

2.400–2.4835 GHz
ISM band

40.2 MHz channels

Frequency Spread
Spectrum

542 Smart Home Protocols: Comparison

Bluetooth
Feature ZigBee Classic (BT) Bluetooth Smart
Throughput 0.03 Mbps 1–3 Mbps 0.27 Mbps

Latency with
Connect

15 ms 100 ms–3 s 3–6 ms

Type of Data Operational
instructions
Low data rate

Continuous
streaming
All types of data;
text, multimedia
Relatively high
speeds

Burst

Voice No Yes No

Security EAP (Extensible
Authentication
Protocol)

56/128 bit and
application layer
user defined

128-bit AES
(Advanced Encryption
Standard)
with Counter Mode
CBC-MAC and
application layer user
defined

Power Consumed
(dependent on
application)

30 mW 100 mW 0.01–0.5 W

Modulation Direct Sequence
Spread Spectrum

Frequency Hopping
Spread Spectrum

Gaussian Frequency
Shift Keying

c. Bluetooth Compared with INSTEON
Bluetooth, because it was designed for personal connectivity, is much faster
and more complex than needed for home control applications. Considering
Bluetooth’s cost, limited range, point-to-point topology (not a mesh) and
lack of powerline backup, INSTEON is a superior choice for networking
together mass-market devices like light switches. Bluetooth coexists with
INSTEON without any issues, because Bluetooth occupies the 2.4 GHz band
and INSTEON radio uses 915 MHz.

d. Bluetooth versus Wi-Fi
Bluetooth and Wi-Fi are different standards for wireless communication.

Bluetooth technology is useful when transferring information between
two or more devices that are near each other when speed is not an issue,
such as telephones, printers, modems and headsets. It is best suited to low-
bandwidth applications like transferring sound data with telephones (i.e., with
a Bluetooth headset) or byte data with hand-held computers (transferring
files) or keyboard and mice.

11.7 X10 Technology 543

Wi-Fi is better suited for operating full-scale networks because it enables
a faster connection, better range from the base station, and better wireless
security (if configured properly) than Bluetooth.

Comparison table: Bluetooth versus Wi-Fi.

Bluetooth versus Wi-Fi Comparison Table
Bluetooth Wi-Fi

Frequency 2.4 GHz 2.4, 3.6, 5 GHz

Cost Low High

Bandwidth Low (800 kbps) High (11 Mbps)

Specifications
authority

Bluetooth SIG IEEE, WECA

Security It is less secure Security issues are already being
debated.

Year of development 1994 1991

Primary Devices Mobile phones, mouse,
keyboards, office and
industrial automation devices.
Activity trackers, such as
Fitbit and Jawbone.

Notebook computers, desktop
computers, servers, TV, Latest
mobiles.

Hardware
requirement

Bluetooth adaptor on all the
devices connecting with each
other

Wireless adaptors on all the
devices of the network, a
wireless router and/or wireless
access points

Range 5–30 m With 802.11b/g the typical range
is 32 m indoors and 95 m (300
ft) outdoors. 802.11n has greater
range. 2.5 GHz Wi-Fi
communication has greater range
than 5 GHz. Antennas can also
increase range.

Power Consumption Low High

Ease of Use Fairly simple to use. Can be
used to connect up to seven
devices at a time. It is easy to
switch between devices or
find and connect to any
device.

It is more complex and requires
configuration of hardware and
software.

Latency 200 ms 150 ms

Bit rate 2.1 Mbps 600 Mbps

544 Smart Home Protocols: Comparison

11.7 X10 Technology

X10 is a wired home automation protocol that uses your existing electrical
wires to send and receive commands–it is a powerline technology. The
protocol was developed in 1975 by Pico Electronics and remains in use today,
although the technology has not advanced to keep up with newer systems. It
is too unreliable and inflexible to be useful today as an infrastructure home-
control network. Although the X-10 Ltd. company and factory are no longer
in business, there are still numerous legacy devices still in use.

11.7.1 X10: Overview

X10: Technology
Commands are sent across existing AC electrical wiring in bursts, which
are small packets of data that provide identifiers and commands. Early X10
devices were one-way communicators–they were only capable of receiving
commands. More advanced (and more expensive) accessories can receive
commands and also respond with a status message.

You can only install 16 accessories per house code, but there are 16 house
codes available so the theoretical system limit is 256 accessories. You will
have to install a filter to keep commands from other homes on the power grid
from controlling your devices.

Furthermore, X10 defines only 16 different Command Codes, but not
all devices can respond to all X10 commands. The six most common X10
commands are On, Off, Dim, Bright, All Units Off and All Lights On. X10
transmits one bit of information at each powerline zero crossing (every 8.33
milliseconds). A simple command-plus-address message contains 100 bits
and takes 833 milliseconds to send (8/10 of a second). A one-millisecond
burst of 120 KHz carrier signifies a one bit and the absence of a carrier
signifies a zero bit. An X10 message consists of a 4-bit Start Code followed
by an 8-bit House Code followed by a 10-bit Key Code. Each message is
sent twice, followed by 6 zero-crossings of silence before starting another
message. (The silence interval can be omitted if certain X10 Commands, such
as Bright or Dim, are being repeated.)

X10: Benefits
X10 is easily added to existing homes without the need for additional com-
munications wiring. In addition, it is more reliable than wireless technology
and can communicate to any location that has an electrical outlet, socket, or

11.7 X10 Technology 545

switch. The technology is also relatively inexpensive and easy to install so if
you just want a few simple light controls then X10 may be an option.

Radio transmitters have been developed for X10 so you can have remote
control from within your home. In addition, there are some X10 controllers
that connect to the internet to give you control from outside your home.

X10: Limitations
The X10 protocol has not kept up with other technological advances so there
are some drawbacks. First, internet-based control requires more advanced
setups and is not as easy to use as newer technology. In addition, X10
occasionally experiences interference from noise on the AC wave. While X10
can work across multiple electrical phases, extra components are required for
this.

Developed as it was in the 1970s, X10 is too limited to function as a
command and control infrastructure network in the mass market. Not only
is X10 powerline signaling dreadfully slow, but X10 communication has no
built-in mechanism to verify that X10 messages got through–X10 is open
loop. Although X10 did eventually define Status Request and Status Response
Commands, very few X10 devices actually employ them and those that do
take even more time to send and receive the extra messages. Installing more
than a few X10 devices in a network is not for the faint of heart. It usually
requires blocking couplers, repeaters and filters–and then is highly likely to
function properly for just a short while. X10 is fundamentally subject to
false positives, both because of its signaling design but also of its limited
addressing schema. Many X10 customers have lived through a neighbor
inadvertently controlling products in their homes.

INSTEON protocol avoided the limitation of X10. This is giving in the
comparison of INSTEON and X10.

X10: Compatible Hubs
We recommend that you only purchase an X10 controller if you already have
X10 accessories and need to replace your current controller. If you are starting
a home automation system from scratch, then we suggest looking at the other
protocols above because they offer more advanced features.

Simple local controllers that are relatively inexpensive can be purchased
on Amazon or Smarthome.com.

If you already have a local X10 system and you want to add
remote/internet control, check out the Universal Devices ISY994ix (Amazon

546 Smart Home Protocols: Comparison

or Smarthome.com), but keep in mind that this requires some advanced
setup.

11.7.2 INSTEON Compared with X10

We mentioned above the limitation of X10. INTEON also has some limita-
tions given as follows:

• INSTEON uses both powerline and radio communications.

Because INSTEON powerline messages are repeated using radio and
radio messages are repeated on the powerline, INSTEON messaging is highly
reliable while still using simple signaling methods on both the powerline
and the radio. Dual-band products also naturally couple the electrical phases
without the need for additional products.

• INSTEON devices are simulcasting repeaters.

Because INSTEON devices simultaneously repeat1 each other’s mes-
sages, adding more devices to an INSTEON network adds more energy to
the INSTEON signal. Thus, as an INSTEON network grows it becomes more
reliable, while adding X10 devices weakens an X10 network.

• INSTEON is closed loop.

All INSTEON devices can both listen and talk and the INSTEON protocol
requires that all INSTEON messages that are not broadcast be acknowledged.
INSTEON is faster than X10. At each powerline zero crossing (every 8.33
milliseconds), INSTEON sends 24-bits of information, while X10 sends only
¡ bit. Thus INSTEON’s raw signaling rate is faster than X10’s by a factor of
48.

• INSTEON has a large address and command space.

With room for more than 16 million addresses and 65 thousand basic
commands, INSTEON is clearly in a different league compared to X10 with
only 256 addresses and 16 commands.

11.8 Universal Powerline Bus (UPB)

UPB is an acronym for Universal Powerline Bus, which is a home automation
protocol that sends communications over existing AC electrical cables in
your home. It is a low-speed powerline-only network. UPB is developed by

11.8 Universal Powerline Bus (UPB) 547

California-based Powerline Control Systems. The company sells commercial
and residential lighting control systems.

11.8.1 UPB an Overview

UPB: Technology
The wired system communicates via pulses within the alternating current on
standard electrical wiring. UPB devices send messages over the powerline
by coding data in the timing of high amplitude pulses. It is similar to the
X10 technology, but is considered to be more efficient and more reliable. The
intent was for UPB to replace X10, but the technology hasn’t caught on and
there aren’t many devices on the market.

UPB: Benefits
The main benefit of UPB is that it can easily be added to a home without
the need for new wiring. In addition, it is very reliable (up to 99%) and
reaches anywhere in the home that has a power outlet, light, or switch.
Devices communicate peer-to-peer so a central controller isn’t necessary. The
technology can also be set up to work on both phases of an electrical system.

UPB: Limitations
Unfortunately, there are a number of significant disadvantages. First, it is very
complicated to set up a wireless controller that connects to UPB so remote or
phone-based control is not available. In addition, there aren’t a lot of product
options available.

Because UPB only communicates via the powerline, if for any reason
powerline messaging fails, UPB devices can only retry and hope for the best.
Unfortunately, electrical noise from many types of lamp dimmers and other
electrical equipment can easily masquerade as a UPB signal pulse, causing
interference that can last indefinitely. While the powerline reliability is pos-
itive, we simply cannot recommend UPB in an era where more advanced
protocols are available. INSTEON protocol solved this problem as given in
the comparison.

UPB: Compatible Hubs
All of the lighting control devices communicate peer-to-peer so a central hub
isn’t required. If you are interested in UPB for lighting control in your home,
check out Pulseworx by Powerline Control Systems.

548 Smart Home Protocols: Comparison

11.8.2 INSTEON Compared with UPB

The most notable differences between INSTEON and UPB are that:

• INSTEON is dual band, and UPB is powerline only;
• INSTEON repeats1 messages by simulcasting, UPB does not repeat

messages making it point-to-point;
• INSTEON cannot be jammed by triac transients; and
• INSTEON device setup does not require special tools.

Being dual mesh network, INSTEON uses both radio and powerline
to back each other up. Moreover, INSTEON devices repeat each other’s
messages by simulcasting them in precise timeslots synchronized to the pow-
erline zero crossings. With each new device adding to the signal strength, an
INSTEON network grows in reliability as more devices are added. There is no
integrated UPB chip available. Instead, the UPB protocol is implemented on
general-purpose microcontrollers with discrete external components. Product
development entails writing application code that runs on the microcontroller.

11.9 Intellon

11.9.1 Intellon: Overview

Acquired by Atheros (www.atheros.com) in September 2009, Intellon, of
Ocala, Florida, got its start in 1989 by developing the winning designs for
adoption as the CEBus powerline and RF signaling standards. Although
CEBus did not find acceptance in the marketplace, Intellon went on to
improve its spread spectrum technology to the point where over a hundred
megabits per second could be transported reliably over the powerline. About
Intellon Technology Intellon’s broadband technology, called PowerPacket, is
at the heart of the HomePlug 1.0 broadband powerline networking specifi-
cation. As a founding sponsor and member of the board of directors of the
HomePlug Powerline Alliance, Intellon is a primary driver of the even-more-
advanced HomePlug AV technology. As one might expect, PowerPacket is
very sophisticated and complex to be able to transport so much data reliably
in such a hostile environment. At the physical (PHY) level, PowerPacket
uses multiple carrier OFDM (orthogonal frequency division multiplexing,
also used by Wi-Fi and DSL), with interleaving and both Viterbi and Reed-
Solomon forward error correction (FEC). The control software dynamically
negotiates an optimum payload data rate by choosing carriers, switching
between DQPSK and DBPSK modulation and varying the FEC rate. The

11.9 Intellon 549

signal is spread from 4.5 MHz to 21 MHz on the powerline, with a digitally
filtered PSD (power spectral density) to match HomePlug’s requirements.
The media access control (MAC) layer uses CSMA (carrier sense multiple
access) with a randomized contention window and exponential back off,
like Ethernet. Other MAC services include priority resolution, ACK/NAK
(acknowledgements), ARQ (automatic repeat requests), segmentation of slow
frames for QoS (quality of service) and 56-bit DES (digital encryption stan-
dard) encryption using cipher block chaining. This technology is clearly a
tour de force. Highly advanced, it is well suited for its intended broadband
applications, but it is far too expensive to find its way into device s like light
switches.

11.9.2 Intellon Compared with INSTEON Technology

Intellon’s broadband technology does not compete with INSTEON as
explained above. Intellon does still offer legacy CEBus-inspired SSC (spread
spectrum carrier) chips, but the marketplace has not adopted CEBus for
reasons explained in the following section, so the chips are mainly used in
proprietary building automation and vehicle brake control systems. Conse-
quently, INSTEON does not overlap Intellon’s technology in the marketplace,
although both signals can coexist on the powerline without interference.

References

[1] Aston, Kevin. “That ‘Internet of Things’ Thing”, Available: http://www.
rfidjournal.com/articles/view?4986, accessed on June 2, 2017.

[2] Wright, J. (2011). Practical ZigBee Exploitation Framework. toorcon
2011.

[3] Sigma Design press release, “Sigma Designs Announces Break-
Through Z-Wave(R) UL Component Recognition”, http://www.sigm
adesigns.com/news/sigma-designs-announces-break-through-z-waver-
ul-component-recognition, accessed on June 2, 2017.

[4] M. Knight, “Wireless security–How safe is Z-wave?,” in Computing &
Control Engineering Journal, vol. 17, no. 6, pp. 18–23, Dec.-Jan. 2006.
doi: 10.1049/cce:20060601

[5] M. Al-Zyoud, T. Atkison and J. Carver, “An Overview of Emerging
Privacy Issues in the Internet of Things,” 2016 International Conference
on Computational Science and Computational Intelligence (CSCI), Las
Vegas, NV, 2016, pp. 212–217. doi: 10.1109/CSCI.2016.0047

http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986
http://www.sigmadesigns.com/news/sigma-designs-announces-break-through-z-waver-ul-component-recognition
http://www.sigmadesigns.com/news/sigma-designs-announces-break-through-z-waver-ul-component-recognition
http://www.sigmadesigns.com/news/sigma-designs-announces-break-through-z-waver-ul-component-recognition

550 Smart Home Protocols: Comparison

[6] C. W. Badenhop, S. R. Graham, B. W. Ramsey, B. E. Mullins, L. O.
Mailloux, “The Z-Wave routing protocol and its security implications”
https://doi.org/10.1016/j.cose.2017.04.004

[7] Threadgroup Inc. website: http://Threadgroup.org/What-is-Thread/Con
nected-Home

[8] H. Sharma and S. Sharma, “A review of sensor networks: Technolo-
gies and applications,” 2014 Recent Advances in Engineering and
Computational Sciences (RAECS), Chandigarh, 2014, pp. 1–4. doi:
10.1109/RAECS.2014.6799579

[9] M. B. Yassein, W. Mardini and A. Khalil, “Smart homes automa-
tion using Z-wave protocol,” 2016 International Conference on
Engineering & MIS (ICEMIS), Agadir, 2016, pp. 1–6. doi:
10.1109/ICEMIS.2016.7745306

[10] Sigma Designs. (n.d.). Z-Wave development Kit. Retrieved June 2013,
from Sigma Designs public web site: http://www.sigmadesigns.com/upl
oads/documents/zwave_dev_kit_br.pdf

[11] M. Zareei, A. Zarei, R. Budiarto and M. A. Omar, “A comparative study
of short range wireless sensor network on high density networks,” The
17th Asia Pacific Conference on Communications, Sabah, 2011, pp.
247–252. doi: 10.1109/APCC.2011.6152813

[12] “Introduction to the Z-Wave Security Ecosystem”, available from Sigma
Design, Inc., on the company website: http://z-wave.sigmadesigns.com/
wp-content/uploads/2016/08/Z-Wave-Security-White-Paper.pdf

[13] OpenZwave. (n.d.). Retrieved June 2013, from open-zwave Google code
site: https://code.google.com/p/open-zwave/

[14] International Telecommunication Union (ITU). (2012). G.9959 : Short
range narrow-band digital radio communication transceivers–PHY and
MAC layer specifications.

[15] Texas Instruments. (2009, December). CC1110 Mini Development Kit.
Retrieved from http://www.ti.com/tool/cc1110dk-mini-868

[16] I. Chatzigiannakis and A. Strikos, “A decentralized intrusion detection
system for increasing security of wireless sensor networks,” 2007 IEEE
Conference on Emerging Technologies and Factory Automation (EFTA
2007), Patras, 2007, pp. 1408-1411. doi: 10.1109/EFTA.2007.4416949

[17] Texas Instruments. (2013, May). SmartRF Studio. Retrieved from http:
//www.ti.com/tool/smartrftm-studio

[18] Morais, A., & Cavalli, , A. (2011). Route Manipulation Attack in Wire-
less Mesh Networks. Advanced Information Networking and Applica-
tions (AINA).

https://doi.org/10.1016/j.cose.2017.04.004
http://Threadgroup.org/What-is-Thread/Connected-Home
http://Threadgroup.org/What-is-Thread/Connected-Home
http://www.sigmadesigns.com/uploads/documents/zwave_dev_kit_br.pdf
http://www.sigmadesigns.com/uploads/documents/zwave_dev_kit_br.pdf
http://z-wave.sigmadesigns.com/wp-content/uploads/2016/08/Z-Wave-Security-White-Paper.pdf
http://z-wave.sigmadesigns.com/wp-content/uploads/2016/08/Z-Wave-Security-White-Paper.pdf
https://code.google.com/p/open-zwave/
http://www.ti.com/tool/cc1110dk-mini-868
http://www.ti.com/tool/smartrftm-studio
http://www.ti.com/tool/smartrftm-studio

11.9 Intellon 551

[19] G. Gaubatz, J. P. Kaps, E. Ozturk and B. Sunar, “State of the art in
ultra-low power public key cryptography for wireless sensor networks,”
Third IEEE International Conference on Pervasive Computing and Com-
munications Workshops, Kauai Island, HI, 2005, pp. 146–150. doi:
10.1109/PERCOMW.2005.76

[20] S. Zamfir, T. Balan, I. Iliescu and F. Sandu, “A security analysis on
standard IoT protocols,” 2016 International Conference on Applied
and Theoretical Electricity (ICATE), Craiova, 2016, pp. 1–6. doi:
10.1109/ICATE.2016.7754665

[21] M. B. Yassein, W. Mardini and A. Khalil, “Smart homes automa-
tion using Z-wave protocol,” 2016 International Conference on
Engineering & MIS (ICEMIS), Agadir, 2016, pp. 1–6. doi:
10.1109/ICEMIS.2016.7745306

[22] “The Thread Group Expands Influence through Partnership with ZigBee
Alliance, TCLA and Innovation Enabler Award”, (Accessed June 7,
2017) http://mysmahome.com/news/5905/the-Thread-group-expan
ds-influence-through-partnership-with-zigbee-alliance-tcla-and-innov
ation-enabler-award-2/

[23] HackersOnBoard. “Black Hat 2013–Honey, I“m Home!!–Hacking Z-
Wave Home Automation Systems.” Online video clip. YouTube.
YouTube, 19 Nov 2013. Web 1 Nov. 2016. URL: https://www.yout
ube.com/watch?v=KYaEQhvodc8

[24] M. B. Tamboli and D. Dambawade, “Secure and efficient CoAP based
authentication and access control for Internet of Things (IoT),” 2016
IEEE International Conference on Recent Trends in Electronics, Infor-
mation & Communication Technology (RTEICT), Bangalore, 2016,
pp. 1245–1250. doi: 10.1109/RTEICT.2016.7808031

[25] J. Singh, T. Pasquier, J. Bacon, H. Ko and D. Eyers, “Twenty Secu-
rity Considerations for Cloud-Supported Internet of Things,” in IEEE
Internet of Things Journal, vol. 3, no. 3, pp. 269–284, June 2016. doi:
10.1109/JIOT.2015.2460333

[26] L. Nastase, “Security in the Internet of Things: A Survey on Applica-
tion Layer Protocols,” 2017 21st International Conference on Control
Systems and Computer Science (CSCS), Bucharest, Romania, 2017,
pp. 659–666. doi: 10.1109/CSCS.2017.101

[27] M. B. Yassein, M. Q. Shatnawi and D. Al-zoubi, “Application layer
protocols for the Internet of Things: A survey,” 2016 International
Conference on Engineering & MIS (ICEMIS), Agadir, 2016, pp. 1–4.
doi: 10.1109/ICEMIS.2016.7745303

http://mysmahome.com/news/5905/the-Thread-group-expands-influence-through-partnership-with-zigbee-alliance-tcla-and-innovation-enabler-award-2/
http://mysmahome.com/news/5905/the-Thread-group-expands-influence-through-partnership-with-zigbee-alliance-tcla-and-innovation-enabler-award-2/
http://mysmahome.com/news/5905/the-Thread-group-expands-influence-through-partnership-with-zigbee-alliance-tcla-and-innovation-enabler-award-2/
https://www.youtube.com/watch?v=KYaEQhvodc8
https://www.youtube.com/watch?v=KYaEQhvodc8

Index

A
Address

Addresses standard: Special
addresses and exceptions
in 7-bit address space 25

Non-reserved addresses in
7-bit address space
12, 25, 40, 242

Reserved and non-reserved
addresses in 7-bit address
space 25

Reserved addresses in 7-bit
address space 25

Stochastic assignment 279, 281,
351, 363

ZigBee assignment 137, 254,
313, 523

Addressing
Dynamic addressing 118, 120,

127, 133
Group 116, 255, 360, 529
Stochastic 279, 281, 351, 364
7-bit addressing 12, 19, 25, 40
10-bit addressing 4, 12, 23, 25

Arbitration 5, 45, 168, 238
Advanced encryption standard

(AES) 275, 532
Association

Device 5, 93, 263, 542
Dis- 301, 315, 332, 334

Attack
Common bluetooth 427, 457, 460
Replay attack 363, 371, 399, 405
Rejoin security attack 403
Preventing rejoin security

attacks 403
Automation

Home automation 253, 399,
518, 546

Commercial building automation
257, 368

Authentication 264, 362, 446, 536

B
Base device behavior (BDB) 400
Bit stuffing 173, 211, 222, 227
Broadcasting 239, 288, 337, 379
Bluetooth

Data rate and modulation 419
Frequency and connectivity

ranges 419
Bluetooth security modes 451
Radio 12, 150, 484, 548
Risk mitigation and

countermeasures 470
Security services 272, 368,

375, 455
Service discovery protocol 426,

442, 447, 453
Stack architecture 420

553

554 Index

Stack layers 301, 376, 427, 509
Trust modes 451, 455

Broadcasting 239, 288, 337, 379
Bus

Arbitration 42, 120, 207, 244
Monitoring 47, 243, 479, 528

C
CAN

Communication services
197, 198

Extended 140, 205, 241, 487
In action 244
FD 142, 168, 223, 261
Frames 191, 237, 331, 549
Messages 6, 143, 344, 548
Standard 4, 144, 376, 538

Camera command interface
(CCI) 114

Center
Trust 254, 382, 402, 536

Clock stretching 36, 37, 46, 132
Coordinator (C) or coordinator

device (CD) 262
Cyclic redundancy check 215, 223,

241, 384

D
Data

Confidentiality 275, 370,
389, 457

Integrity 10, 188, 395, 528
Privacy 316, 370, 399, 528

Device
Association 260, 312, 319, 522
Disassociation 301, 318,

319, 332
Fully functional 261
Reduced functional 261

End 3, 18, 133, 540
Types 9, 333, 386, 529

Diagram
timing 7, 37, 65, 66

Display data channel (DDC) 4, 114

E
Energy detection scan 309
Error flag

Active 218, 220, 234, 243
Passive 218, 219, 230, 234

Error
Acknowledgment ACK error 26,

147, 308, 499
Active 218, 220, 234, 243
Bit error 187, 209, 227, 235
Confinement mechanism 233
CRC error 210, 223, 225
Detection 14, 193, 291, 534
Form error 223, 225, 230, 233
Handling 26, 125, 235, 465
Local errors in EOF 224, 227
Passive 18, 233, 237, 487
Receive counter 233
Stuff 165, 208, 222, 247
States of CAN node 229
Transmit counter 15, 34, 185, 494

Entity
Data entity 272, 275
Management entity 272, 275,

290, 301

F
Format

Message format 6, 214, 274
Transaction format 6

Fragmentation 365, 366
Frame

Acknowledgment 17, 26,
307, 498

Index 555

Auxiliary security 328, 331, 371
Beacon 265, 310, 324, 356
Beacon generation 331
Data 3, 27, 138, 527
Error frame 211, 227, 233, 239
Extended frame format 141, 205,

214, 241
MAC command 308, 323,

326, 333
MAC layer 256, 325, 381, 549
Overload frame 197, 220,

233, 237
Remote data frame 215
Standard (base) CAN frame 206
Start-of-frame delimiter 297,

298, 331
Super frame 334

Frequency agility 366, 368, 399, 405

G
Gateway 265, 356, 426, 540

I
Intelligent platform management

interface (IPMI) 4, 113
Intellon 514, 548, 549
Inter-integrated circuits

Improved inter-integrated circuit
(I3C) 113, 114, 116, 117

Interrupt 28, 103, 126, 236
Install codes 400, 401, 402, 405
Insteon 513, 523, 540, 548
IoT 381, 528, 530, 537
I2C

Advantages and limitation
91, 513

Bus hardware structure 1, 8
Bus terminology 6
Bus transactions 23, 87

Common problems 2, 94
Data validity 1, 17, 18
Design of I2C bus 1, 55
Electrical consideration 1, 9,

10, 153
Interface 3, 103, 128, 431
Enhanced IIC 40, 335, 488, 532
Modes 5, 131, 431, 535
Protocol 3, 156, 285, 545
Typical problems on the I2C

bus 2, 95
I3C

Bus configuration and device
roles 2, 119

I3C features 2, 120
I3C bus activity states 2, 129
I3C bus conditions when the bus

is considered inactive 129
Error detection and recovery

methods in I3C 2, 130
Maximum capacitance load

allowed on the I3C bus 131
Maximum wire length for I3C

communication 131
Time-stamping capability

defined in the I3C bus 130
Repeaters 65, 82, 131, 546

K
Key

Application link key 383, 388
Establishment cluster and

security certificates 404
Global link key 265, 383,

385, 386
Management 4, 175, 279, 431
Modification 8, 37, 256, 489
Protecting the network key 400
Rolling the network key 402

556 Index

Preventing spoof leave
notifications key 403

Trust center link key (TCLK)
377, 384, 403, 405

Unique link key 265, 383,
402, 404

L
Layer

Application APL 3, 137, 275, 503
Application support sublayer

269, 271, 272, 380
Bluetooth 254, 421, 451, 541
Data link layer 141, 197, 223, 534
Higher layer protocols 142, 148,

160, 244
MAC 198, 313, 373, 509
Network Layer 256, 275,

340, 537
Physical layer 57, 165, 289, 492
Routing 261, 352, 486, 531

M
Management

System management bus
(SMBus) 4, 113

Power management bus
(PMBus) 4, 113

Intelligent platform management
interface (IPMI) 4, 113

Master 6, 42, 94, 485
Message based 113, 137, 138, 150
Multi master 6, 51, 94, 137
Message doubling 228

N
Neighbor table 313, 337, 354, 356
Network

Discovery 132, 275, 356, 447

Formation 7, 259, 374, 501
Joining 266, 390, 400, 536
Join–child 314
Join–parent 315
Network security layer 254, 399,

532, 537

O
Open collector 9, 11, 60, 91
Open drain 9, 55, 120, 131
Oscillator tolerance 165, 179,

182, 198

P
Pairing stage 449
Paging schemes 441
Personal area network 253, 259,

423, 541
Personal, home, and hospital care

(PHHC) 257
Phase segment 1 (PhaseSeg1) 167
Phase segment 2 (PhaseSeg2) 167
Physical layer

CAN physical layer 151, 164
Service data unit (PSDU)

299, 330
Physical media-dependent sublayers

(PMS) 164
Piconet 260, 419, 430, 462
Power management bus (PMBus)

4, 113
Provisional ID 122
Profile

Generic access 421, 426
Headset 421, 433, 469, 542
Serial port 91, 421, 432, 454
Service discovery application

421, 426
Propagation segment (PropSeg) 167

Index 557

Protocol
Adapted protocols 432
Link manager protocol

(LMP) 430
Logical link control and

adaptation protocol
(L2CAP) 425, 431

Service discovery protocol 426,
434, 442, 453

Stack 93, 325, 355, 532
ZigBee routing protocols

337, 340
Tree hierarchical routing protocol

(HERA) 348

R
Reduced functional devices

(RFD) 261
Route

Aggregation 363, 364
Discovery 132, 313, 356, 536

Router (R) 263, 267, 312
Routing

Dynamic source routing
(DSR) 340, 345

Hierarchical 340, 348, 351, 353
Many-to-one 340, 356, 364, 365
Neighbor table-based routing

techniques 340, 354
Proactive 337, 345
Reactive 337, 340, 346, 347
Tree 264, 340, 354, 445
ZigBee routing protocols

337, 340
ZigBee multipath hierarchical

tree routing (Z-MHTR) 353

S
Sample point 158, 167, 179, 244

Scatternets 260, 417
Security

APL layer 278, 380, 382
Architecture 4, 144, 421, 523
Authentication 264, 390,

450, 536
Authorization 395, 450, 455, 535
Auxiliary 326, 331, 390, 395
Bluetooth 254, 420, 448, 542
Confidentiality 275, 372,

457, 528
High security mode 264, 265,

362, 387
Key weaknesses 399
MAC layer 265, 269, 483, 534
Model 120, 144, 423, 532
Network layer 256, 278,

364, 532
Risks 277, 379, 399, 470
Standard mode 12, 41, 77, 388
ZigBee 137, 253, 283, 524
ZigBee security keys 382

Serial
Clock line (SCL) 6, 8, 36, 124
Data line (SDA) 6, 8, 39, 124

Service
Discovery 132, 435, 447, 500
Discovery database 434
Client model 433

Slave 4, 81, 125, 488
Slew rate 11, 12, 91, 192
System management bus

(SMBus) 4, 113
Synchronization

Segment (SynchSeg) 167
Jump width (SJW) 171, 177
Hard (CAN) 165, 176, 214

Slotted CSMA-CA 301, 308,
322, 334

558 Index

T
Thread 513, 530, 534, 537
Transmitter 6, 23, 214, 498
Two-wire interface (TWI) 97
Time quantum 167, 168,

170, 181
Topology

Cluster tree 266, 288, 340, 363
Mesh 253, 360, 479, 539
Network 16, 183, 263, 543
Star 25, 183, 284, 513
Tree 264, 353, 355, 515
ZigBee 137, 253, 313, 519

Trust center 254, 377, 390, 404
Transceiver 144, 188, 198, 516

U
UPB 514, 546, 547, 548

V
Vulnerability

Bluetooth and threats 423, 480,
509, 542

In bluetooth versions 457
Implementation 95, 114,

394, 503
Protocol 3, 337, 431, 544
Reasons for bluetooth 458
To eavesdropping 459
ZigBee 137, 263, 354, 519

X
X10 508, 514, 545, 546

Z
ZigBee

Device object (ZDO) 270,
271, 272

Pro 251,
RF4CE 254, 356, 357, 518
RF4CE multi-star topology 357
RF4CE pairing process 357
Smart energy V2 357
Vulnerabilities 393, 457,

470, 510
ZigBee security

Models 139, 377, 459, 535
Architecture 4, 261, 368, 447
Keys 254, 382, 396, 458
Key modification 388
Measures for maximizing 400
Risks 277, 379, 399, 470
Services 145, 277, 433, 549

ZigBee security services
Basic security model 277
Security architecture 277, 368,

378, 379
Network layer security 278,

279, 280
APL layer security 278, 280
Trust center role 279, 382

About the Authors

Prof. Dawoud Shenouda Dawoud has a BSc (1965) and MSc (1969) from
Cairo University in Communication Engineering. He completed his PhD in
Russia in 1973 in the field of Computer hardware where he succeeded to
own 3 Patents in the field of designing new types of memory which was the
beginning of the FPGAs. In 1984, he was promoted to full Professor at the
Egyptian Academy of Science and Technology, National Electronic Research
Institute. During the period from 1973 to 1990, he supervised more than 5
PhDs and 15 MSc degrees all of them focused in the fields of computer and
embedded system designs. During the period from 1990-1999 he established
the Faculty of Engineering at the University of Botswana. During this period
he supervised 3 PhDs and 7 MSc degrees. In the year 2000 he became
Professor of Computer Engineering and Head of the Computer Engineering
Department at the University of KwaZulu Natal, Durban, South Africa. For
10 years he was supervising research in the field of Security of Mobile Ad
hoc Networks. He supervised 2 PhDs and many MSc degrees in this field
and published more than 30 papers. At the same period, he was visiting the
National University of Rwanda to run an MSc program in Communication.
He supervised about 15 MSc students during these 4 years before moving to
the National University of Rwanda in 2010 to become the Dean of the Faculty
of Engineering.

In 2011 he moved to Uganda where he became the Dean of the Faculty of
Engineering at the International University of East Africa (IUEA), where he
currently remains. During this time, he also served as the Vice Chancellor of
IUEA, for a period of 3 years.

Across his career, he has published over 200 Journal and Conference
papers, as well as books in the fields of computer engineering, microcon-
troller system design, embedded system design and Security of Mobil Ad
hoc Networks.

559

560 About the Authors

Peter Dawoud has been working in the area of biometrics and computer
vision for the last six years, leading research and products within Microsoft
in the space. After completing his Bachelor’s degree in computer engineering,
Peter spent time researching applied cryptographic and steganographic sys-
tems for his Master’s Degrees. Upon completion of these degrees, Peter has
been focused on the productization of biometric systems for consumer and
enterprise scenarios and later focused on the principles and use of centralized
cloud biometrics systems in the enterprise and commercial scenarios.

Microcontroller and Smart
�Home Networks

M
icrocontroller and Sm

art
�H

om
e N

etw
orks

Microcontroller and Smart
�Home Networks

Dawoud Shenouda Dawoud and Peter Dawoud

D
aw

oud Shenouda D
aw

oud and
Peter D

aw
oud

Dawoud Shenouda Dawoud and Peter Dawoud

River Publishers Series in Communications

Over recent years industries have faced the problem of how to connect devices
to ‘speak’ to each other with minimum wiring. Philips Semiconductors faced this
problem when they needed to connect many ICs together. The Automotive Industry
faced the same problem when it needed to connect tens of microcontrollers in each
car. Recently, with smart homes, the problem has started to be part of each home.
For instance, you may want to build your smart home with accessories from different
manufacturers and you want the devices to ‘speak’ to each other. Added to that, you
may want to control them from a central App or voice assist.

Solutions for this problem started with the introduction of Inter Integrated Circuits
(IIC) and Controller Area Networks (CAN). Both solutions are wired networks that
allow ICs and microcontrollers to be connected in a network to communicate together.

In smart home automation, a number of common smart home automation protocols
that allow different devices to speak and communicate together have appeared during
the last few decades. Some of the smart home protocols come under the umbrella of
what is called the “Internet of Things (IoT)”. The proposed protocols can be grouped
into wired networks e.g. X10, UPB; wireless or radio networks as ZigBee, Z-Wave,
Bluetooth; or dual (wired and radio) such as Insteon.

This book introduces to the reader some of the most popular Microcontroller and
Smart home networks. The book covers in detail the following protocols:
∙ I2C
∙ I3C
∙ CAN
∙ ZigBee
∙ ZigBee Pro
∙ Z-Wave
∙ Bluetooth

Wi-Fi, WiMax and Insteon are part of our companion book “Serial Communication
Protocols and Standards”.

This book gives detailed comparisons between the various protocols. To complete
the knowledge of the reader, the book gives in the last chapter a short summary on the
protocols that we did not fully cover in this volume: Ethernet, Thread, Insteon, X10
and UPB.

River Publishers River PublishersRiver

	Front Cover
	Microcontroller and Smart: ptHome Networks
	Contents
	Preface
	Acknowledgment
	List of Figures
	List of Tables
	List of Abbreviations
	Section I: Inter-integrated Circuits (IIC)
	1 Inter-integrated Circuits (IIC/I2C)
	1.1 Introduction
	1.1.1 I2C Revisions

	1.2 I2C Bus Terminology
	1.3 I2C Protocol
	1.3.1 Transaction Format–Message Format
	1.3.2 Timing Diagram

	1.4 The I2C Bus Hardware Structure
	1.4.1 Electrical Consideration
	1.4.1.1 Types of devices that can be connected to I2C bus
	1.4.1.2 Electrical considerations that limits I2C bus length

	1.5 The Physical Bus–I2C Bus Interface
	1.6 SDA and SCL Signals
	1.7 Masters and Slaves
	1.7.1 Buffering and Multiplexing

	1.8 I2C Data Validity
	1.9 Voltage Levels and Resistor Values
	1.10 Start/Stop Sequence
	1.11 Repeated START Condition
	1.12 Addressing Structure
	1.12.1 7-bit Addressing
	1.12.2 Acknowledge Scheme
	1.12.3 I2C Addresses Standard: 10-bit Addressing
	1.12.3.1 I2C bus transactions in case of 10-bit address

	1.12.4 I2C Addresses Standard: Special Addresses and Exceptions in 7-bit Address Space
	1.12.4.1 Reserved and none-reserved addresses in 7-bit address space
	1.12.4.1.1 Reserved addresses in 7-bit address space

	1.12.4.2 Non-reserved addresses in 7-bit address space

	1.13 I2C Bus Transaction
	1.13.1 I2C Bus Events 1: Master (Transmitter) to Slave (Receiver) Data Transfer
	1.13.2 I2C Bus Events 2: Slave (Transmitter) to Master (Receiver) Data Transfer
	1.13.3 I2C Bus Events 3: Bidirectional Read and Write in Same Data Transfer

	1.14 Clock Stretching
	1.15 Possible Modifications on the Timing Diagram
	1.16 Bus Clear
	1.17 Applicability of I2C Bus Features
	1.18 I2C Modes: Bus Speeds
	1.18.1 Low-speed Mode or Standard Mode
	1.18.2 Enhanced I2C (Fast Mode)
	1.18.3 Fast-mode plus (FM+)
	1.18.4 High-speed Mode (HS mode)
	1.18.4.1 Electrical characteristics of HS mode
	1.18.4.2 Transmission format of high-speed mode

	1.18.5 Ultra-fast Mode (UFm)

	1.19 I2C as a Multi-master Bus: Bus Arbitration
	1.19.1 Arbitration
	1.19.2 Bus Monitoring
	1.19.3 Possibility of Collision
	1.19.4 Clock Synchronization and Handshaking
	1.19.4.1 Clock synchronization
	1.19.4.2 Handshaking: Using the clock synchronizing mechanism as a handshake

	1.20 I2C Interface: Connecting I2C Bus to a PC

	2 Design of I2C Bus and Operation
	2.1 Design of I2C Bus
	2.1.1 Open-drain Lines
	2.1.1.1 Open-drain for Bidirectional Communication

	2.1.2 Calculation of the Pull-up Resistor
	2.1.2.1 Supply voltage (Vcc)
	2.1.2.2 Total bus capacitance (CBUS or Cb) and Rp(max)
	2.1.2.3 Total high-level input current (IIH): Input leakage
	2.1.2.4 Bus speed versus power consumption

	2.1.3 Maximum Clock Frequency of I2C Bus
	2.1.3.1 Using repeaters: Effect of increasing the number of devices—use of repeaters
	2.1.3.2 I2C bus without a repeater
	2.1.3.3 I2C bus with a repeater

	2.1.4 Series Protection Resistors
	2.1.4.1 Effect of the serial resistance on static low level of I2C line
	2.1.4.2 Serial resistance and debugging
	2.1.4.3 Termination versus capacitance

	2.1.5 Cross Channel Capacitance: Crosstalk between SDA and SCL

	2.2 Operating above the Maximum Allowable Bus Capacitance
	2. 2.1 Reduced fSCL
	2.2.2 Higher Drive Outputs

	2.3 Managing the Delays in Large Systems: Use of Buffers, Repeaters, Multiplexers and Switches
	2.4 Bus Buffers, Repeaters, Multiplexers, and Switches
	2.4.1. Use of Buffers/Repeaters
	2.4.2 Use of Multiplexors and Switches
	2.4.3 Switched Pull-up Circuit

	2.5 Use of Multiplexor/Switches to Solve Address Conflict
	2.5.1 Use of Multiplexor to Solve Address Conflict
	2.5.2 Use of Switches to Solve the Slave Address Conflict
	2.5.3 Control Register
	2.5.4 Level Shifters
	2.5.5 Switches and Level Shifting

	2.6 Advantages and Limitation of I2C Communication
	2.7 Common Problems in I2C Bus Systems
	2.7.1 Obscure Problems in Systems
	2.7.1.1 Analyzing obscure problems

	2.7.2 Typical Problems on the I2C Bus
	2.7.2.1 Blocked I2C Bus
	2.7.2.2 No acknowledge from I2C slave
	2.7.2.3 Master reports arbitration lost
	2.7.2.4 Data bytes from slave are 0xff

	2.8 Case Study: I2C in AVR
	2.8.1 AVR Atmega32 I2C Registers
	2.8.1.1 TWBR (TWI bit rate register)
	2.8.1.2 TWSR (TWI status register)
	2.8.1.3 TWCR (TWI control register)
	2.8.1.4 TWDR (TWI data register)
	2.8.1.5 TWAR [TWI (slave) address register]

	2.8.2 Programming of the AVR TWI in Master Operating Mode
	2.8.2.1 Initialize the TWI in master operating mode
	2.8.2.2 Transmit START Condition
	2.8.2.3 Send Data
	2.8.2.4 Receive Data
	2.8.2.5 Transmit STOP Condition

	2.8.3 Use I2C/TWI (Two-wire Interface) in AVR ATmega32
	2.8.3.1 Circuit diagram
	2.8.3.2 Code explanation for MASTER controller
	2.8.3.3 Code explanation for slave controller

	3 Improved Inter-integrated Circuits (I3C)
	3.1 Derivative Technologies
	3.2 Improved Inter-integrated Circuits (I3C)
	3.2.1 Challenges with Existing I2C-based Architectures
	3.2.2 MIPI I3C Interface
	3.2.3 I3C Bus Configuration and Device Roles
	3.2.4 I3C Features
	3.2.4.1 Dynamic addressing
	3.2.4.2 Provisional ID
	3.2.4.3 Possibility of collision during dynamic address assignment (DAA)
	3.2.4.4 Rule of CCC in dynamic address assignment
	3.2.4.5 Hot-join
	3.2.4.6 In-band Interrupt (IBI)
	3.2.4.6.1 Interrupts

	3.2.5 Multiple Masters
	3.2.6 Increased Throughput
	3.2.7 Power Consumption
	3.2.7.1 Pull-up resistor
	3.7.2.2 High-keeper

	3.2.8 I3C Bus Activity States
	3.2.9 I3C Bus Conditions When the Bus Is Considered Inactive
	3.2.10 Time-stamping Capability Defined in the I3C Bus
	3.2.11 Error Detection and Recovery Methods in I3C
	3.2.12 Maximum Capacitance Load Allowed on the I3C Bus
	3.2.13 Maximum Wire Length for I3C Communication
	3.2.14 Repeaters and I3C
	3.2.15 Resolving Communication Conflicts on the I3C Bus
	3.2.16 Can I3C Devices Cause the Communication Bus to "Hang"?
	3.2.17 MIPI I3C Specifications and Software Development
	3.2.18 Expected New Features for MIPI I3C
	Summary
	References

	Section II: Controller Area Network (CAN)
	4 Controller Area Network (CAN)
	4.1 Introduction to CAN: Overview
	4.1.1 What is CAN?
	4.1.1.1 Meaning of Massage-based Protocol

	4.1.2 The Benefits of CAN Bus in Automobile Industry
	4.1.3 CAN History
	4.1.3.1 Higher layer implementations: Higher layer protocols (HLPs)

	4.1.4 Error Detection and Security in CAN
	4.1.5 The Application of CAN Bus

	4.2 CAN Standard
	4.2.1 CAN Architecture: OSI 7 layer reference model and CAN model
	4.2.2 Higher Layer Protocols (HLPs)

	4.3 CAN Features and Characteristics
	4.3.1 Some Features of CAN Bus
	4.3.2 Key characteristics of CAN

	4.4 CAN Physical Layer
	4.4.1 CAN Bus Description
	4.4.1.1 Electrical consideration
	4.4.1.1.1 Inverted logic of CAN bus
	4.4.1.1.2 Robustness
	4.4.1.1.3 Bus lengths
	4.4.1.1.4 Bit rates and bus lengths
	4.4.1.1.5 Propagation delay
	4.4.1.1.6 Cables
	4.4.1.1.7 Shield termination
	4.4.1.1.8 Grounding
	4.4.1.1.9 Bus termination–line termination
	4.4.1.1.10 Connectors

	4.4.2 CAN Node
	4.4.2.1 CAN nodes types

	4.4.3 Sublayers of the CAN Physical Layer
	4.4.3.1 The physical coding sublayer: Overview
	4.4.3.1.1 Bit-timing setting for Standard CAN
	4.4.3.1.1.1 The Can Bit Time
	4.4.3.1.1.2 Sample point
	4.4.3.1.1.3 Implementation of bit segments in practical CAN controllers
	4.4.3.1.1.4 Information processing time (IPT)

	4.4.3.1.2 Bit timing setting for CAN FD

	4.4.3.2 Calculation of baud-rate and sample point
	4.4.3.3 Synchronization jump width (SJW)
	4.4.3.4 Bit timing control registers
	4.4.3.5 Synchronizing the bit time
	4.4.3.6 Oscillator tolerance
	4.4.3.7 Propagation delay
	4.4.3.8 Synchronization: Synchronization Mechanisms used in CAN
	4.4.3.9 Calculating oscillator tolerance for SJW
	4.4.3.10 Configuring the bit
	4.4.3.11 The physical media attachment sublayer
	4.4.3.12 The medium-dependent sublayer

	4.4.4 Maximum Number of Nodes

	4.5 CAN Transceiver
	4.5.1 CAN Transceiver Features
	4.5.1.1 Supply voltage
	4.5.1.2 High short-circuit protection
	4.5.1.3 High ESD protection
	4.5.1.4 High input impedance
	4.5.1.5 Controlled driver output transition times
	4.5.1.6 Low current standby and sleep modes
	4.5.1.7 Thermal shutdown protection
	4.5.1.8 Glitch free power up and power down
	4.5.1.9 Unpowered node does not disturb the bus
	4.5.1.10 Reference voltage
	4.5.1.11 V-Split
	4.5.1.12 Loopback
	4.5.1.13 Autobaud loopback

	4.5.2 CAN Transceiver Example: MCP2551 CAN TRANSCEIVER
	4.5.2.1 General MCP2551 Operation
	4.5.2.1.1 Transmit
	4.5.2.1.2 Receive
	4.5.2.1.3 Recessive STATE
	4.5.2.1.4 Dominant STATE

	4.5.2.2 Modes of operation
	4.5.2.2.1 HIGH SPEED
	4.5.2.2.2 SLOPE CONTROL
	4.5.2.2.3 STANDBY

	4.5.2.3 Permanent dominant detection on transmitter
	4.5.2.3.1 Power-on reset and brown-out
	4.5.2.3.2 Power-On Reset (POR)
	4.5.2.3.3 Brown-out detection (BOD)
	4.5.2.3.4 Ground offsets

	5 CAN Data Link Layer
	5.1 Data Link Layer
	5.1.1 CAN Communication Services
	5.1.1.1 Communication services
	5.1.1.2 Remote transmission requests (RTR): Read object service

	5.1.2 Multiple Bus Access
	5.1.2.1 Meaning of CSMA/CD+AMP
	5.1.2.2 Bus arbitration

	5.1.3 Standard CAN or Extended CAN
	5.1.3.1 The bit fields of standard CAN and extended CAN
	5.1.3.2 Standard (base) CAN frame
	5.1.3.3 Extended frame format

	5.1.4 CAN Messages
	5.1.4.1 CAN Frames
	5.1.4.1.1 Data frame
	5.1.4.1.2 Remote data frame
	5.1.4.1.3 Error frame
	5.1.4.1.4 Overload frame
	5.1.4.1.5 Bit stuffing

	5.2 CAN Bus Error Handling
	5.2.1 Error Detection Methods
	5.2.2 Form Error
	5.2.3 CRC Error
	5.2.4 Acknowledge Error
	5.2.5 Stuff Error
	5.2.6 Bit Error
	5.2.7 Local Errors in EOF
	5.2.8 Message Doubling
	5.2.9 Error States of CAN Node
	5.2.10 Transmit Error Counter
	5.2.11 Receive Error Counter
	5.2.12 Recovery from Bus Off
	5.2.13 Error Confinement Mechanisms
	5.2.14 Bus Loading
	5.2.15 Time-triggered Protocols

	5.3 CAN FD—The Basic Idea
	5.4 ISO 11898 Review and Optional Modes
	5.4.1 Bus Monitoring Mode
	5.4.2 Time-Triggered Communication (TTC)

	5.5 CAN in Action
	References
	External Links

	Section III: ZigBee
	6 IEEE 802.15.4 and ZigBee
	6.1 Introduction
	6.1.1 ZigBee General Description
	6.1.2 ZigBee: Overview
	6.1.3 Evolution of LR-WPAN Standardization
	6.1.4 ZigBee History
	6.1.5 ZigBee Application Profiles

	6.2 ZigBee Wireless Sensor and Control Network
	6.2.1 ZigBee Network Characteristics
	6.2.1.1 ZigBee versus Bluetooth

	6.2.2 ZigBee Device Types and Operating Modes
	6.2.2.1 Operating modes

	6.2.3 ZigBee Topologies
	6.2.3.1 Forming the ZigBee network
	6.2.3.2 Joining the ZigBee Network

	6.2.4 End Device Addressing
	6.2.5 Depth of a Network, Number of Children, and Network Address Allocation

	6.3 ZigBee Protocol Stack Overview
	6.3.1 Application Layer (APL)
	6.3.1.1 ZigBee Device Objects (ZDO)
	6.3.1.2 APS (application support sublayer)
	6.3.1.2.1 ZigBee APS frame format
	6.3.1.2.2 APS Ack frames
	6.3.1.2.3 APS command frames

	6.3.1.3 Application framework

	6.3.2 Network Layer (NWK)
	6.3.2.1 ZigBee network layer frame format

	6.3.3. Security Services
	6.3.3.1 Basic security model
	6.3.3.2 Security architecture
	6.3.3.3 Network layer security
	6.3.3.4 APL layer security
	6.3.3.5 Trust center role

	6.3.4 ZigBee Address Assignment

	6.4 IEEE 802.15.4 Standard
	6.4.1 IEEE 802.15.4 Standard
	6.4.2 Device Types
	6.4.3 Network Topology
	6.4.3.1 Star topology
	6.4.3.2 Mesh topology, also, peer-to-peer topology
	6.4.3.3 Tree topology
	6.4.3.4 Cluster tree topology

	6.4.4 802.14.5 Architecture
	6.4.4.1 PHY layer
	6.4.4.1.1 Function of physical layer in ZigBee architecture
	6.4.4.1.2 Frequency band, data rate, and channel numbering
	6.4.4.1.3 IEEE 802.15.4 frequencies and frequency bands
	6.4.4.1.4 ZigBee frequency bands and data rates
	6.4.4.1.5 IEEE 802.15.4 modulation formats
	6.4.4.1.6 ZigBee physical layer frame format-PPDU

	6.4.4.2 Receiver energy detection (ED)
	6.4.4.3 Link quality indication (LQI)
	6.4.4.4 Clear channel assessment (CCA)

	7 ZigBee Stack Layers
	7.1 ZigBee Mac Layer
	7.1.1 Superframe Structure
	7.1.1.1 Updating superframe configuration

	7.1.2 CSMA-CA Algorithm
	7.1.3 Data Transfer Model
	7.1.4 Network Formation: Starting a PAN
	7.1.5 Network Joining
	7.1.5.1 Network discovery
	7.1.5.2 Network join
	7.1.5.2.1 Network join–child
	7.1.5.2.2 Network join–parent

	7.1.6 Association and Disassociation
	7.1.6.1 Orphan notification

	7.1.7 Synchronization
	7.1.8 Transmission, Reception, and Acknowledgment
	7.1.9 GTS Allocation and Management
	7.1.10 MAC Layer Frame
	7.1.10.1 Data frame
	7.1.10.2 Beacon frame
	7.1.10.2.1 Beacon generation

	7.1.10.3 Acknowledgment frame
	7.1.10.4 MAC command frame

	7.1.11 Channel Access Mechanism
	7.1.12 GTS Allocation and Management
	7.1.13 Related MAC Standards

	7.2 ZigBee Routing (Network) Layer
	7.2.1 Broadcasting
	7.2.2 ZigBee Routing Protocols
	7.2.2.1 AODV: Ad hoc on-demand distance vector
	7.2.2.2 AODVjr
	7.2.2.3 Multicast route
	7.2.2.4 Dynamic source routing (DSR)
	7.2.2.5 Tree hierarchical routing protocol (HERA) or ZBR (ZigBee Routing)
	7.2.2.6 ZigBee cluster label (ZiCL)
	7.2.2.7 ZigBee multipath hierarchical tree routing (Z-MHTR)
	7.2.2.8 Neighbor table-based routing techniques
	7.2.2.8.1 Neighbor table

	7.2.2.9 Many-to-one routing
	7.2.2.10 ZigBee RF4CE
	7.2.2.11 RF4CE multi-star topology
	7.2.2.12 ZigBee RF4CE pairing process
	7.2.2.13 ZigBee smart energy V2

	8 ZigBee PRO and ZigBee SECURITY
	8.1 ZigBee and ZigBee PRO Feature Sets
	8.1.1 Management and Addressing
	8.1.1.1 Link management
	8.1.1.2 Group addressing
	8.1.1.3 Compatibility
	8.1.1.4 Power management

	8.1.2 Improved Security
	8.1.2.1 Trust center

	8.1.3 Scalability
	8.1.3.1 Stochastic addressing
	8.1.3.2 Route aggregation

	8.1.4 Improved Ease-of-Use and Operation
	8.1.4.1 Fragmentation
	8.1.4.2 Commissioning

	8.1.5 Improved Resiliency
	8.1.5.1 Asymmetric link
	8.1.5.2 Frequency agility
	8.1.5.3 PAN ID conflict resolution

	8.2 ZigBee Security
	8.2.1 802.15.4 Security: Overview
	8.2.1.1. 802.15.4 Access control list

	8.2.2 ZigBee Security
	8.2.2.1 ZigBee security services

	8.2.3 ZigBee Security Models
	8.2.3.1 ZigBee security architecture
	8.2.3.2 Network layer security
	8.2.3.3 APL layer security
	8.2.3.4 MAC Layer Security
	8.2.3.5 Trust center role

	8.2.4 ZigBee Security Keys
	8.2.5 Key Management
	8.2.5.1 Security key modification

	8.2.6 ZigBee Stack Security Measures
	8.2.7 ZigBee Vulnerabilities
	8.2.7.1 Implementation vulnerabilities
	8.2.7.2 Protocol Vulnerabilities
	8.2.7.3 Security risks
	8.2.7.4 Security key weaknesses

	8.2.8 Measures for Maximizing ZigBee Security
	8.2.8.1 Protecting the network key
	8.2.8.2 Rolling the network key
	8.2.8.3 Preventing spoof leave notifications key
	8.2.8.4 Preventing rejoin security attacks
	8.2.8.5 Persisting essential data when using cloud services
	8.2.8.6 Key establishment cluster and security certificates

	8.2.9 ZigBee Security–Conclusion

	8.3 Applications of ZigBee Technology
	8.4 Advantages of ZigBee Technology
	8.4.1 ZigBee Technology Advantages
	8.4.2 Disadvantages
	8.4.3 Conclusion

	8.5 Future Scope Of ZigBee
	References

	Section IV: Bluetooth
	9 Bluetooth
	9.1 Introduction: Overview
	9.1.1 History of Bluetooth
	9.1.2 Piconets and Scatternets
	9.1.3 Bluetooth Spectrum
	9.1.4 Bluetooth Frequency and Connectivity Ranges
	9.1.5 Data Rate and Modulation

	9.2 Bluetooth Stack Architecture
	9.2.1 Relation between Classic Bluetooth, OSI model, and 802.11 Wi-Fi
	9.2.2 Classical Bluetooth Stack
	9.2.2.1 Bluetooth stack as core and profile

	9.3 Bluetooth Stack Layers
	9.3.1 Bluetooth Radio
	9.3.2 Baseband
	9.3.3 Link Manager Protocol (LMP)
	9.3.4 Host Controller Interface (HCI)
	9.3.5 Logical Link Control and Adaptation Protocol (L2CAP)
	9.3.6 Radio Frequency Communications (RFCOMM)
	9.3.7 Adapted Protocols
	9.3.8 Service Discovery Protocol
	9.3.9 Server-Client Model

	9.4 Device Discovery
	9.4.1 Inquiry
	9.4.2 Page
	9.4.3 Optional Paging Schemes

	9.5 Service Discovery and Access
	9.5.1 Bluetooth Service Discovery Protocol
	9.5.1.1 Format
	9.5.1.2 Service record
	9.5.1.3 Representation of data
	9.5.1.4 Searching and browsing services

	9.5.2 Examples of SDP: Universal Plug and Play
	9.5.2.1 Architecture overview
	9.5.2.2 Operations overview

	9.6 Bluetooth Security
	9.6.1 Basic Means of Providing Bluetooth Security
	9.6.2 Bluetooth Security and Trust Modes
	9.6.2.1 Bluetooth security modes
	9.6.2.1.1 Security mode 2 role

	9.6.2.2 Bluetooth trust modes

	9.6.3 Discoverability in Devices
	9.6.4 Bluetooth Security Services
	9.6.5 Built-in Security Features

	9.7 Bluetooth Vulnerabilities and Threats
	9.7.1 Vulnerabilities in Bluetooth Versions

	9.8 Reasons for Bluetooth Vulnerabilities
	9.8.1 Vulnerability to Eavesdropping
	9.8.2 Potential Weaknesses
	9.8.2.1 Encryption mechanisms
	9.8.2.2 Association models of SSP
	9.8.2.3 Device configuration
	9.8.2.4 Bad coding during development of RFCOMM stack implementation
	9.8.2.5 Re-use of older services for different protocols
	9.8.2.6 IrMC permissions

	9.9 Common Bluetooth Attacks
	9.10. Bluetooth Risk Mitigation and Countermeasures
	9.10.1 Mitigation Techniques
	9.10.2 Applications for Protecting Bluetooth Devices
	References
	Sources

	10 Z-Wave Technology
	10.1.1 Introduction: What is Z-Wave?
	10.1.1 Z-Wave Operating Characteristics
	10.1.2 Technical Characteristics: Z-Wave frequency bands
	10.1.3 Z-Wave Features
	10.1.4 Z-Wave History

	10.2 Z-Wave Protocol
	10.2.1 Overview
	10.2.2 Z-Wave Basic Device Classes: Controller and Slave Nodes
	10.2.2.1 Controllers
	10.2.2.1.1 Portable Controller
	10.2.2.1.2 Static controller
	10.2.2.1.3 Static update controller
	10.2.2.1.4 SUC ID server
	10.2.2.1.5 Installer controller
	10.2.2.1.6 Bridge controller

	10.2.2.2 Slaves
	10.2.2.2.1 Slave
	10.2.2.2.2 Routing slave
	10.2.2.2.3 Enhanced slave

	10.2.2.3 Home ID and Node ID
	10.2.2.4 Z-Wave chip
	10.2.2.5 Z-Wave frame structure
	10.2.2.5.1 Z-Wave messaging

	10.2.3 Z-Wave Physical Layer
	10.2.4 Z-Wave MAC Layer
	10.2.4.1 Z-Wave MAC frame types
	10.2.4.2 Collision avoidance

	10.2.5 Z-Wave Transport Layer
	10.2.5.1 Singlecast frame type
	10.2.5.2 ACK frame type
	10.2.5.2.1 Multicast frame type
	10.2.5.2.2 Broadcast frame type

	10.2.6 Z-Wave Network Layer (Routing Layer)
	10.2.6.1 Frame Layout
	10.2.6.1.1 Routed singlecast frame type
	10.2.6.1.2 Routed acknowledge frame type

	10.2.6.2 Routing table
	10.2.6.3 Route to node

	10.2.7 Application Layer
	10.2.7.1 Frame layout
	10.2.7.2 Node information
	10.2.7.2.1 Node information frame flow

	10.3 Z-Wave Network Operation
	10.3.1 Z-Wave Network Setup
	10.3.1.1 Including and removing device in the network: 'pairing' operation
	10.2.1.2 Z-wave network enrollment and button associations
	10.2.1.3 Button pairs versus on/off toggles

	10.4 Z-Wave Security
	10.4.1 Vulnerabilities
	10.4.1.1 Impersonation
	Summary
	References

	11 Smart Home Protocols: Comparison
	11.1 Introduction
	11.2 ZigBee versus Z-Wave
	11.2.1 ZigBee versus Z-Wave: Specifications and Capabilities
	11.2.2 ZigBee versus Z-Wave: The Differences
	11.2.3 Z-Wave versus ZigBee: The Devices

	11.3 Z-Wave and ZigBee versus INSTEON
	11.3.1 INSTEON Overview (www.insteon.com)
	11.3.2 INSTEON Main Characteristics compared with other Technologies
	11.3.3 INSTEON versus Z-Wave and ZigBee: Comparison
	11.3.4 Z-Wave, ZigBee, and INSTEON Compared: Summary

	11.4 Z-Wave versus THREAD Protocol: Comparison
	11.4.1 Internet of Things (IoT)
	11.4.2 Thread Protocol
	11.4.3 Thread General Characteristics
	11.4.3.1 Network stack: Thread versus z-wave stack

	11.5 Wi-Fi versus INSTEON and Z-Wave
	11.5.1 Wi-Fi Overview
	11.5.2 Z-Wave Compared with Wi-Fi
	11.5.3 INSTEON Compared with Wi-Fi

	11.6 Bluetooth Compared with Z-Wave, ZigBee, Wi-Fi, and INSTEON
	11.7 X10 Technology
	11.7.1 X10: Overview
	11.7.2 INSTEON Compared with X10

	11.8 Universal Powerline Bus (UPB)
	11.8.1 UPB an Overview
	11.8.2 INSTEON Compared with UPB

	11.9 Intellon
	11.9.1 Intellon: Overview
	11.9.2 Intellon Compared with INSTEON Technology
	References

	Index
	About the Authors
	Back Cover

