

 [image: (missing alt)]

 Table of Contents

 Hadoop Real-World Solutions Cookbook Second Edition

 Credits

 About the Author

 Acknowledgements

 About the Reviewer

 www.PacktPub.com

 eBooks, discount offers, and more

 Why Subscribe?

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Conventions

 Reader feedback

 Customer support

 Downloading the example code

 Downloading the color images of this book

 Errata

 Piracy

 Questions

 1. Getting Started with Hadoop 2.X

 Introduction

 Installing a single-node Hadoop Cluster

 Getting ready

 How to do it...

 How it works...

 Hadoop Distributed File System (HDFS)

 Yet Another Resource Negotiator (YARN)

 There's more

 Installing a multi-node Hadoop cluster

 Getting ready

 How to do it...

 How it works...

 Adding new nodes to existing Hadoop clusters

 Getting ready

 How to do it...

 How it works...

 Executing the balancer command for uniform data distribution

 Getting ready

 How to do it...

 How it works...

 There's more...

 Entering and exiting from the safe mode in a Hadoop cluster

 How to do it...

 How it works...

 Decommissioning DataNodes

 Getting ready

 How to do it...

 How it works...

 Performing benchmarking on a Hadoop cluster

 Getting ready

 How to do it...

 TestDFSIO

 NNBench

 MRBench

 How it works...

 2. Exploring HDFS

 Introduction

 Loading data from a local machine to HDFS

 Getting ready

 How to do it...

 How it works...

 Exporting HDFS data to a local machine

 Getting ready

 How to do it...

 How it works...

 Changing the replication factor of an existing file in HDFS

 Getting ready

 How to do it...

 How it works...

 Setting the HDFS block size for all the files in a cluster

 Getting ready

 How to do it...

 How it works...

 Setting the HDFS block size for a specific file in a cluster

 Getting ready

 How to do it...

 How it works...

 Enabling transparent encryption for HDFS

 Getting ready

 How to do it...

 How it works...

 Importing data from another Hadoop cluster

 Getting ready

 How to do it...

 How it works...

 Recycling deleted data from trash to HDFS

 Getting ready

 How to do it...

 How it works...

 Saving compressed data in HDFS

 Getting ready

 How to do it...

 How it works...

 3. Mastering Map Reduce Programs

 Introduction

 Writing the Map Reduce program in Java to analyze web log data

 Getting ready

 How to do it...

 How it works...

 Executing the Map Reduce program in a Hadoop cluster

 Getting ready

 How to do it

 How it works...

 Adding support for a new writable data type in Hadoop

 Getting ready

 How to do it...

 How it works...

 Implementing a user-defined counter in a Map Reduce program

 Getting ready

 How to do it...

 How it works...

 Map Reduce program to find the top X

 Getting ready

 How to do it...

 How it works

 Map Reduce program to find distinct values

 Getting ready

 How to do it

 How it works...

 Map Reduce program to partition data using a custom partitioner

 Getting ready

 How to do it...

 How it works...

 Writing Map Reduce results to multiple output files

 Getting ready

 How to do it...

 How it works...

 Performing Reduce side Joins using Map Reduce

 Getting ready

 How to do it

 How it works...

 Unit testing the Map Reduce code using MRUnit

 Getting ready

 How to do it...

 How it works...

 4. Data Analysis Using Hive, Pig, and Hbase

 Introduction

 Storing and processing Hive data in a sequential file format

 Getting ready

 How to do it...

 How it works...

 Storing and processing Hive data in the ORC file format

 Getting ready

 How to do it...

 How it works...

 Storing and processing Hive data in the ORC file format

 Getting ready

 How to do it...

 How it works...

 Storing and processing Hive data in the Parquet file format

 Getting ready

 How to do it...

 How it works...

 Performing FILTER By queries in Pig

 Getting ready

 How to do it...

 How it works...

 Performing Group By queries in Pig

 Getting ready

 How to do it...

 How it works...

 Performing Order By queries in Pig

 Getting ready

 How to do it..

 How it works...

 Performing JOINS in Pig

 Getting ready

 How to do it...

 How it works

 Replicated Joins

 Skewed Joins

 Merge Joins

 Writing a user-defined function in Pig

 Getting ready

 How to do it...

 How it works...

 There's more...

 Analyzing web log data using Pig

 Getting ready

 How to do it...

 How it works...

 Performing the Hbase operation in CLI

 Getting ready

 How to do it

 How it works...

 Performing Hbase operations in Java

 Getting ready

 How to do it

 How it works...

 Executing the MapReduce programming with an Hbase Table

 Getting ready

 How to do it

 How it works

 5. Advanced Data Analysis Using Hive

 Introduction

 Processing JSON data in Hive using JSON SerDe

 Getting ready

 How to do it...

 How it works...

 Processing XML data in Hive using XML SerDe

 Getting ready

 How to do it...

 How it works

 Processing Hive data in the Avro format

 Getting ready

 How to do it...

 How it works...

 Writing a user-defined function in Hive

 Getting ready

 How to do it

 How it works...

 Performing table joins in Hive

 Getting ready

 How to do it...

 Left outer join

 Right outer join

 Full outer join

 Left semi join

 How it works...

 Executing map side joins in Hive

 Getting ready

 How to do it...

 How it works...

 Performing context Ngram in Hive

 Getting ready

 How to do it...

 How it works...

 Call Data Record Analytics using Hive

 Getting ready

 How to do it...

 How it works...

 Twitter sentiment analysis using Hive

 Getting ready

 How to do it...

 How it works

 Implementing Change Data Capture using Hive

 Getting ready

 How to do it

 How it works

 Multiple table inserting using Hive

 Getting ready

 How to do it

 How it works

 6. Data Import/Export Using Sqoop and Flume

 Introduction

 Importing data from RDMBS to HDFS using Sqoop

 Getting ready

 How to do it...

 How it works...

 Exporting data from HDFS to RDBMS

 Getting ready

 How to do it...

 How it works...

 Using query operator in Sqoop import

 Getting ready

 How to do it...

 How it works...

 Importing data using Sqoop in compressed format

 Getting ready

 How to do it...

 How it works...

 Performing Atomic export using Sqoop

 Getting ready

 How to do it...

 How it works...

 Importing data into Hive tables using Sqoop

 Getting ready

 How to do it...

 How it works...

 Importing data into HDFS from Mainframes

 Getting ready

 How to do it...

 How it works...

 Incremental import using Sqoop

 Getting ready

 How to do it...

 How it works...

 Creating and executing Sqoop job

 Getting ready

 How to do it...

 How it works...

 Importing data from RDBMS to Hbase using Sqoop

 Getting ready

 How to do it...

 How it works...

 Importing Twitter data into HDFS using Flume

 Getting ready

 How to do it...

 How it works

 Importing data from Kafka into HDFS using Flume

 Getting ready

 How to do it...

 How it works

 Importing web logs data into HDFS using Flume

 Getting ready

 How to do it...

 How it works...

 7. Automation of Hadoop Tasks Using Oozie

 Introduction

 Implementing a Sqoop action job using Oozie

 Getting ready

 How to do it...

 How it works

 Implementing a Map Reduce action job using Oozie

 Getting ready

 How to do it...

 How it works...

 Implementing a Java action job using Oozie

 Getting ready

 How to do it

 How it works

 Implementing a Hive action job using Oozie

 Getting ready

 How to do it...

 How it works...

 Implementing a Pig action job using Oozie

 Getting ready

 How to do it...

 How it works

 Implementing an e-mail action job using Oozie

 Getting ready

 How to do it...

 How it works...

 Executing parallel jobs using Oozie (fork)

 Getting ready

 How to do it...

 How it works...

 Scheduling a job in Oozie

 Getting ready

 How to do it...

 How it works...

 8. Machine Learning and Predictive Analytics Using Mahout and R

 Introduction

 Setting up the Mahout development environment

 Getting ready

 How to do it...

 How it works...

 Creating an item-based recommendation engine using Mahout

 Getting ready

 How to do it...

 How it works...

 Creating a user-based recommendation engine using Mahout

 Getting ready

 How to do it...

 How it works...

 Using Predictive analytics on Bank Data using Mahout

 Getting ready

 How to do it...

 How it works...

 Clustering text data using K-Means

 Getting ready

 How to do it...

 How it works...

 Performing Population Data Analytics using R

 Getting ready

 How to do it...

 How it works...

 Performing Twitter Sentiment Analytics using R

 Getting ready

 How to do it...

 How it works...

 Performing Predictive Analytics using R

 Getting ready

 How to do it...

 How it works...

 9. Integration with Apache Spark

 Introduction

 Running Spark standalone

 Getting ready

 How to do it...

 How it works...

 Running Spark on YARN

 Getting ready

 How to do it...

 How it works...

 Olympics Athletes analytics using the Spark Shell

 Getting ready

 How to do it...

 How it works...

 Creating Twitter trending topics using Spark Streaming

 Getting ready

 How to do it...

 How it works...

 Twitter trending topics using Spark streaming

 Getting ready

 How to do it...

 How it works...

 Analyzing Parquet files using Spark

 Getting ready

 How to do it...

 How it works...

 Analyzing JSON data using Spark

 Getting ready

 How to do it...

 How it works...

 Processing graphs using Graph X

 Getting ready

 How to do it...

 How it works...

 Conducting predictive analytics using Spark MLib

 Getting ready

 How to do it...

 How it works...

 10. Hadoop Use Cases

 Introduction

 Call Data Record analytics

 Getting ready

 How to do it...

 Problem Statement

 Solution

 How it works...

 Web log analytics

 Getting ready

 How to do it...

 Problem statement

 Solution

 How it works...

 Sensitive data masking and encryption using Hadoop

 Getting ready

 How to do it...

 Problem statement

 Solution

 How it works...

 Index

Hadoop Real-World Solutions Cookbook Second Edition

Hadoop Real-World Solutions Cookbook Second Edition

Copyright © 2016 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: February 2013
Second edition: March 2016
Production reference: 1220316
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78439-550-6

www.packtpub.com

[image: Hadoop Real-World Solutions Cookbook Second Edition]

Credits

Authors

Tanmay Deshpande
Jonathan R. Owens
Jon Lentz
Brian Femiano

Reviewer

Shashwat Shriparv

Commissioning Editor

Akram Hussain

Acquisition Editor

Manish Nainani

Content Development Editor

Sumeet Sawant

Technical Editor

Gebin George

Copy Editor

Sonia Cheema

Project Coordinator

Shweta H Birwatkar

Proofreader

Safis Editing

Indexer

Tejal Daruwale Soni

Production Coordinator

Manu Joseph

Cover Work

Manu Joseph

About the Author

Tanmay Deshpande is a Hadoop and big data evangelist. He's interested in a wide range of technologies, such as Apache Spark, Hadoop, Hive, Pig, NoSQL databases, Mahout, Sqoop, Java, cloud computing, and so on. He has vast experience in application development in various domains, such as finance, telecoms, manufacturing, security, and retail. He enjoys solving machine-learning problems and spends his time reading anything that he can get his hands on. He has a great interest in open source technologies and promotes them through his lectures. He has been invited to various computer science colleges to conduct brainstorming sessions with students on the latest technologies. Through his innovative thinking and dynamic leadership, he has successfully completed various projects. Tanmay is currently working with Schlumberger as the lead developer of big data. Before Schlumberger, Tanmay worked with Lumiata, Symantec, and Infosys.
He currently blogs at http://hadooptutorials.co.in.

Acknowledgements

This is my fourth book, and I can't thank the Almighty, enough without whom this wouldn't have been true. I would like to take this opportunity to thank my wife, Sneha, my parents, Avinash and Manisha Deshpande, and my brother, Sakalya Deshpande, for being with me through thick and thin. Without you, I am nothing!
I would like to take this opportunity to thank my colleagues, friends, and family for appreciating my work and making it a grand success so far. I'm truly blessed to have each one of you in my life.
I am thankful to the authors of the first edition of this book, Jonathan R. Owens, Brian Femino, and Jon Lentz for setting the stage for me, and I hope this effort lives up to the expectations you had set in the first edition. I am also thankful to each person in Packt Publishing who has worked to make this book happen! You guys are family to me!
Above all, I am thankful to my readers for their love, appreciation, and criticism, and I assure you that I have tried to give you my best. Hope you enjoy this book! Happy learning!

About the Reviewer

Shashwat Shriparv has 6+ IT experience in industry, and 4+ in BigData technologies. He possesses a master degree in computer application. He has experience in technologies such as Hadoop, HBase, Hive, Pig, Flume, Sqoop, Mongo, Cassandra, Java, C#, Linux, Scripting, PHP,C++,C, Web technologies, and various real life use cases in BigData technologies as a developer and administrator.
He has worked with companies such as CDAC, Genilok, HCL, UIDAI(Aadhaar); he is currently working with CenturyLink Cognilytics. He is the author of Learning HBase, Packt Publishing and reviewer Pig design pattern book, Packt Publishing.

I want to acknowledge everyone I know.

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <customercare@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: eBooks, discount offers, and more]

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.
Why Subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print, and bookmark content
	On demand and accessible via a web browser

Preface

Big Data is the need the day. Many organizations are producing huge amounts of data every day. With the advancement of Hadoop-like tools, it has become easier for everyone to solve Big Data problems with great efficiency and at a very low cost. When you are handling such a massive amount of data, even a small mistake can cost you dearly in terms of performance and storage. It's very important to learn the best practices of handling such tools before you start building an enterprise Big Data Warehouse, which will be greatly advantageous in making your project successful.
This book gives you insights into learning and mastering Big Data recipes. This book not only explores a majority of Big Data tools that are currently being used in the market, but also provides the best practices in order to implement them. This book will also provide you with recipes that are based on the latest version of Apache Hadoop 2.X, YARN, Hive, Pig, Sqoop, Flume, Apache Spark, Mahout, and many more ecosystem tools. This real-world solutions cookbook is packed with handy recipes that you can apply to your own everyday issues. Each chapter talks about recipes in great detail, and these can be referred to easily. This book provides detailed practice on the latest technologies, such as YARN and Apache Spark. This guide is an invaluable tutorial if you are planning to implement Big Data Warehouse for your business.
What this book covers

Chapter 1, Getting Started with Hadoop 2.x, introduces you to the installation details needed for single and multi-node Hadoop clusters. It also contains the recipes that will help you understand various important cluster management techniques, such as decommissioning, benchmarking, and so on.

Chapter 2, Exploring HDFS, provides you with hands-on recipes to manage and maintain the Hadoop Distributed File System (HDFS) in an efficient way. You will learn some important practices, such as transient encryption, saving data in a compressed format, recycling deleted data from HDFS, and so on.

Chapter 3, Mastering Map Reduce Programs, enlightens you about very important recipes for Map Reduce programming, which take you beyond the simple Word Count program. You will learn about various customization techniques in detail.

Chapter 4, Data Analysis Using Hive, Pig, and Hbase, takes you to the analytical world of Hive, Pig, and Hbase. This chapter talks about the use of various file formats, such as RC, ORC, Parquet, and so on. You will also get introduced to the Hbase NoSQL database.

Chapter 5, Advanced Data Analysis Using Hive, provides insights on the usage of serializers and deserializers (SerDe) in Hive for JSON and XML data operations. This chapter will provide you with a detailed explanation for Twitter sentiment analysis using Hive.

Chapter 6, Data Import/Export Using Sqoop and Flume, covers various recipes to import and export data from sources, such as RDBMS, Kafka, web log servers, and so on, using Sqoop and Flume.

Chapter 7, Automation of Hadoop Tasks Using Oozie, introduces you to a very rich scheduling tool called Oozie, which will help you build automated production-ready Big Data applications.

Chapter 8, Machine Learning and Predictive Analytics Using Mahout and R, gives you an end-to-end implementation of predictive analytics applications using Mahout and R. It covers the various visualization options available in R as well.

Chapter 9, Integration with Apache Spark, introduces you to a very important distributed computing framework called Apache Spark. It covers basic to advanced topics such as installation, Spark application development and execution, usage of the Spark Machine Learning Library, MLib, and graph processing using Spark.

Chapter 10, Hadoop Use Cases, provides you with end-to-end implementations of Hadoop use cases from various domains, such as telecom, finance, e-commerce, and so on.

What you need for this book

To get started with this hands-on recipe-driven book, you should have a laptop/desktop with any OS, such as Windows, Linux, or Mac. It's good to have an IDE, such as Eclipse or IntelliJ, and of course, you need a lot of enthusiasm to learn.

Who this book is for

This book is for those of you who have basic knowledge of Big Data systems and want to advance your knowledge with hands-on recipes.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: " Spark MLib provides a huge list of supported algorithms."
A block of code is set as follows:
$jps
2184 DataNode
2765 NodeManager
2835 Jps
2403 SecondaryNameNode
2025 NameNode
2606 ResourceManager

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
 // The results of SQL queries are themselves RDDs and support all normal RDD functions. The
 // items in the RDD are of type Row, which allows you to access each column by ordinal.
valrddFromSql = sql("SELECT id, name FROM empSpark WHERE id < 20 ORDER BY id")

Any command-line input or output is written as follows:
cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample
 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Click on Create your Twitter application to save your application."
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:
	Log in or register to our website using your e-mail address and password.
	Hover the mouse pointer on the SUPPORT tab at the top.
	Click on Code Downloads & Errata.
	Enter the name of the book in the Search box.
	Select the book for which you're looking to download the code files.
	Choose from the drop-down menu where you purchased this book from.
	Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:
	WinRAR / 7-Zip for Windows
	Zipeg / iZip / UnRarX for Mac
	7-Zip / PeaZip for Linux

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book. The color images will help you better understand the changes in the output. You can download this file from https://www.packtpub.com/sites/default/files/downloads/HadoopRealWorldSolutionsCookbookSecondEdition_ColoredImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at <questions@packtpub.com>, and we will do our best to address the problem.

Chapter 1. Getting Started with Hadoop 2.X

This chapter covers the following topics:
	Installing a single-node Hadoop cluster
	Installing a multi-node Hadoop cluster
	Adding new nodes to existing Hadoop clusters
	Executing the balancer command for uniform data distribution
	Entering and exiting from the safe mode in a Hadoop cluster
	Decommissioning DataNodes
	Performing benchmarking on a Hadoop cluster

Introduction

Hadoop has been the primary platform for many people who deal with big data problems. It is the heart of big data. Hadoop was developed way back between 2003 and 2004 when Google published research papers on Google File System (GFS) and Map Reduce. Hadoop was structured around the crux of these research papers, and thus derived its shape. With the advancement of the Internet and social media, people slowly started realizing the power that Hadoop had, and it soon became the top platform used to handle big data. With a lot of hard work from dedicated contributors and open source groups to the project, Hadoop 1.0 was released and the IT industry welcomed it with open arms.
A lot of companies started using Hadoop as the primary platform for their Data Warehousing and Extract-Transform-Load (ETL) needs. They started deploying thousands of nodes in a Hadoop cluster and realized that there were scalability issues beyond the 4000+ node clusters that were already present. This was because JobTracker was not able to handle that many Task Trackers, and there was also the need for high availability in order to make sure that clusters were reliable to use. This gave birth to Hadoop 2.0.
In this introductory chapter, we are going to learn interesting recipes such as installing a single/multi-node Hadoop 2.0 cluster, its benchmarking, adding new nodes to existing clusters, and so on. So, let's get started.

Installing a single-node Hadoop Cluster

In this recipe, we are going to learn how to install a single-node Hadoop cluster, which can be used for development and testing.
Getting ready

To install Hadoop, you need to have a machine with the UNIX operating system installed on it. You can choose from any well known UNIX OS such as Red Hat, CentOS, Ubuntu, Fedora, and Amazon Linux (this is in case you are using Amazon Web Service instances).
Here, we will be using the Ubuntu distribution for demonstration purposes.

How to do it...

Let's start installing Hadoop:
	First of all, you need to download the required installers from the Internet. Here, we need to download Java and Hadoop installers. The following are the links to do this:For the Java download, choose the latest version of the available JDK from http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html.
You can also use Open JDK instead of Oracle.
For the Hadoop 2.7 Download, go to

http://www.eu.apache.org/dist/hadoop/common/hadoop-2.7.0/hadoop-2.7.0.tar.gz.

	We will first install Java. Here, I am using /usr/local as the installation directory and the root user for all installations. You can choose a directory of your choice.Extract tar.gz like this:
tar -xzf java-7-oracle.tar.gz

Rename the extracted folder to give the shorter name Java instead of java-7-oracle. Doing this will help you remember the folder name easily.
Alternately, you can install Java using the apt-get package manager if your machine is connected to the Internet:
sudo apt-get update
sudo apt-get install openjdk-7-jdk

	Similarly, we will extract and configure Hadoop. We will also rename the extracted folder for easier accessibility. Here, we will extract Hadoop to path /usr/local:tar –xzf hadoop-2.7.0.tar.gz
mv hadoop-2.7.0 hadoop

	Next, in order to use Java and Hadoop from any folder, we would need to add these paths to the ~/.bashrc file. The contents of the file get executed every time a user logs in:cd ~
vi .bashrc

Once the file is open, append the following environment variable settings to it. These variables are used by Java and Hadoop at runtime:
export JAVA_HOME=/usr/local/java
export PATH=$PATH:$JAVA_HOME/bin
export HADOOP_INSTALL=/usr/local/hadoop
export PATH=$PATH:$HADOOP_INSTALL/bin
export PATH=$PATH:$HADOOP_INSTALL/sbin
export HADOOP_MAPRED_HOME=$HADOOP_INSTALL
export HADOOP_COMMON_HOME=$HADOOP_INSTALL
export HADOOP_HDFS_HOME=$HADOOP_INSTALL
export YARN_HOME=$HADOOP_INSTALL
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_INSTALL/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_INSTALL/lib"

	In order to verify whether our installation is perfect, close the terminal and restart it again. Also, check whether the Java and Hadoop versions can be seen:$java -version
java version "1.7.0_45"
Java(TM) SE Runtime Environment (build 1.7.0_45-b18)
Java HotSpot(TM) Server VM (build 24.45-b08, mixed mode)

$ hadoop version
Hadoop 2.7.0
Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r d4c8d4d4d203c934e8074b31289a28724c0842cf
Compiled by jenkins on 2015-04-10T18:40Z
Compiled with protoc 2.5.0
From source with checksum a9e90912c37a35c3195d23951fd18f

This command was run using /usr/local/hadoop/share/hadoop/common/hadoop-common-2.7.0.jar.

	Now that Hadoop and Java are installed and verified, we need to install ssh (Secure Shell) if it's not already available by default. If you are connected to the Internet, execute the following commands. SSH is used to secure data transfers between nodes:sudo apt-get install openssh-client
sudo apt-get install openssh-server

	Once the ssh installation is done, we need to execute the ssh configuration in order to avail a passwordless access to remote hosts. Note that even though we are installing Hadoop on a single node, we need to perform an ssh configuration in order to securely access the localhost.First of all, we need to generate public and private keys by executing the following command:
ssh-keygen -t rsa -P ""

This will generate the private and public keys by default in the $HOME/.ssh folder. In order to provide passwordless access, we need to append the public key to authorized_keys file:
cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

Let's check whether the ssh configuration is okay or not. To test it, execute and connect to the localhost like this:
ssh localhost

This will prompt you to confirm whether to add this connection to the known_hosts file. Type yes, and you should be connected to ssh without prompting for the password.

	Once the ssh configuration is done and verified, we need to configure Hadoop. The Hadoop configuration begins with adding various configuration parameters to the following default files:	hadoop-env.sh: This is where we need to perform the Java environment variable configuration.
	core-site.xml: This is where we need to perform NameNode-related configurations.
	yarn-site.xml: This is where we need to perform configurations related to Yet Another Resource Negotiator (YARN).
	mapred-site.xml: This is where we need to the map reduce engine as YARN.
	hdfs-site.xml: This is where we need to perform configurations related to Hadoop Distributed File System (HDFS).

These configuration files can be found in the /usr/local/hadoop/etc/hadoop folder. If you install Hadoop as the root user, you will have access to edit these files, but if not, you will first need to get access to this folder before editing.

So, let's take a look at the configurations one by one.
Configure hadoop-env.sh and update the Java path like this:
	Export JAVA_HOME=/usr/local/java.
	Edit core-site.xml, and add the host and port on which you wish to install NameNode. Here is the single node installation that we would need in order to add the localhost:<configuration>
 <property>
 <name>fs.default.name</name>
 <value>hdfs://localhost:9000/</value>
 </property>
</configuration>

	Edit yarn-site.xml, add the following properties to it:<configuration>
 <property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
 </property>
 <property>
 <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
 <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 </property>
</configuration>

The yarn.nodemanager.aux-services property tells NodeManager that an auxiliary service named mapreduce.shuffle is present and needs to be implemented. The second property tells NodeManager about the class by which means it needs to implement the shuffle auxiliary service. This specific configuration is needed as the MapReduce job involves shuffling of key value pairs.

	Next, edit mapred-site.xml to set the map reduce processing engine as YARN:<configuration>
 <property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 </property>
</configuration>

	Edit hdfs-site.xml to set the folder paths that can be used by NameNode and datanode:<configuration>
 <property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
 </property>
 <property>
 <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
 <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 </property>
</configuration>

	I am also setting the HDFS block replication factor to 1 as this is a single node cluster installation.We also need to make sure that we create the previously mentioned folders and change their ownership to suit the current user. To do this, you can choose a folder path of your own choice:
sudo mkdir –p /usr/local/store/hdfs/namenode
sudo mkdir –p /usr/local/store/hdfs/datanode
sudo chown root:root –R /usr/local/store

	Now, it's time to format namenode so that it creates the required folder structure by default:hadoop namenode -format

	The final step involves starting Hadoop daemons; here, we will first execute two scripts to start HDFS daemons and then start YARN daemons:/usr/local/hadoop/sbin/start-dfs.sh

This will start NameNode, the secondary NameNode, and then DataNode daemons:
/usr/local/hadoop/sbin/start-yarn.sh

This will start NodeManager and ResourceManager. You can execute the jps command to take a look at the running daemons:
$jps
2184 DataNode
2765 NodeManager
2835 Jps
2403 SecondaryNameNode
2025 NameNode
2606 ResourceManager

We can also access the web portals for HDFS and YARN by accessing the following URLs:
	For HDFS: http://<hostname>:50070/
	For YARN: http://<hostname>:8088/

How it works...

Hadoop 2.0 has been majorly reformed in order to solve issues of scalability and high-availability. Earlier in Hadoop 1.0, Map Reduce was the only means of processing data stored in HDFS. With advancement of YARN, Map Reduce is one of the ways of processing data on Hadoop. Here is a pictorial difference between Hadoop 1.x and Hadoop 2.x:
[image: How it works...]
Now, let's try to understand how HDFS and YARN works.
Hadoop Distributed File System (HDFS)

HDFS is a redundant, reliable storage for Hadoop. It consists of three important parts: NameNode, the secondary NameNode, and DataNodes. When a file needs to be processed on Hadoop, it first needs to be saved on HDFS. HDFS distributes the file in chunks of 64/128 MB data blocks across the data nodes. The blocks are replicated across data nodes for reliability. NameNode stores the metadata in the blocks and replicas. After a certain period of time, the metadata is backed up on the secondary NameNode. The default time is 60 seconds. We can modify this by setting a property called dfs.namenode.checkpoint.check.period in hdfs-site.xml.

Yet Another Resource Negotiator (YARN)

YARN has been developed to address scalability issues and for the better management of jobs in Hadoop; till date, it has proved itself to be the perfect solution. It is responsible for the management of resources available in clusters. It consists of two important components: ResouceManager(Master) and NodeManager(Worker). NodeManager provides a node-level view of the cluster, while ResourceManager takes a view of a cluster. When an application is submitted by an application client, the following things happen:
	The application talks to ResourceManager and provides details about it.
	ResourceManager makes a container request on behalf of an application to any of the worker nodes and ApplicationMaster starts running within that container.
	ApplicationMaster then makes subsequent requests for the containers to execute tasks on other nodes.
	These tasks then take care of all the communication. Once all the tasks are complete, containers are deallocated and ApplicationMaster exits.
	After this, the application client also exits.

There's more

Now that your single node Hadoop cluster is up and running, you can try some HDFS file operations on it, such as creating a directory, copying a file from a local machine to HDFS, and so on. Here some sample commands.
To list all the files in the HDFS root directory, take a look at this:
hadoop fs –ls /

To create a new directory, take a look at this:
hadoop fs –mkdir /input

To copy a file from the local machine to HDFS, take a look at this:
hadoop fs –copyFromLocal /usr/local/hadoop/LICENSE.txt /input

In order to access all the command options that are available, go to https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html.

Installing a multi-node Hadoop cluster

Now that we are comfortable with a single-node Hadoop installation, it's time to learn about a multi-node Hadoop installation.
Getting ready

In the previous recipe, we used a single Ubuntu machine for installation; in this recipe, we will be using three Ubuntu machines. If you are an individual trying to install Hadoop for your own purposes and you don't have three machines to try this recipe, I would suggest that you get three AWS EC2 Ubuntu machines. I am using the t2.small type of EC2 instances. For more information on this, go to https://aws.amazon.com/ec2/.
Apart from this, I've also performed the following configurations on all the EC2 instances that I have been using:
	Create an AWS security group to allow access to traffic to EC2 instances, and add EC2 instances to this security group.
	Change the hostname of EC2 instances to their public hostnames like this:sudo hostname ec2-52-10-22-65.us-west-2.compute.amazonaws.com

	Disable firewalls for EC2 Ubuntu instances:sudo ufw disable

How to do it...

There are a lot of similarities between single-node and multi-node Hadoop installations, so instead of repeating the steps, I would suggest that you refer to earlier recipes as and when they're mentioned. So, let's start installing a multi-node Hadoop cluster:
	Install Java and Hadoop, as discussed in the previous recipe, on the master and slave nodes. Refer to steps 1-5 in the previous recipe.
	AWS EC2 has a built-in installation of ssh so there's no need to install it again. To configure it, we need to perform the following steps.First, copy the PEM key with which you initiated EC2 instances to the master node. Next, you need to execute the following set of commands that will add an identity into the master's ssh configurations, which can be used to perform passwordless logins to slave machines:
eval `ssh-agent -s`
chmod 644 $HOME/.ssh/authorized_keys
chmod 400 <my-pem-key>.pem
ssh-add <my-pem-key>.pem

But if you are NOT using AWS EC2, then you need to generate the ssh key on the master, and this key needs to be copied to slave machines. Here is a sample command to do this:
ssh-keygen -t rsa -P ""
ssh-copy-id -i $HOME/.ssh/id_rsa.pub ubuntu@slave1
ssh-copy-id -i $HOME/.ssh/id_rsa.pub ubuntu@slave2

	Next, we need to perform the Hadoop configurations—most of the configuration files will be same as they were in the case of the single-node installation. These configurations are the same for all the nodes in the cluster. Refer to step 8 from the previous recipe for hadoop-env.sh, mapred-site.xml, and hdfs-site.xml. For core-site.xml and yarn-site.xml, we need to add some more properties, as shown here:Edit core-site.xml and add the host and port on which you wish to install NameNode. As this is a multi-node Hadoop cluster installation, we will add the master's hostname instead of the localhost:
<configuration>
<property>
 <name>fs.default.name</name>
 <value>hdfs://<master's-host-name>:9000/</value>
</property>
</configuration>

Edit yarn-site.xml and add the following properties. As this is a multi-node installation, we also need to provide the address of the machine where ResourceManager is running:
<configuration>
 <property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
 </property>
 <property>
 <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
 <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 </property>
 <property>
 <name>yarn.resourcemanager.hostname</name>
 <value><master's-host-name></value>
 </property>
</configuration>

In the case of hdfs-site.xml, in the previous recipe, we set the replication factor to 1. As this is a multi-node cluster, we set it to 3. Don't forget to create storage folders configured in hdfs-site.xml.
These configurations need to be made on all the machines of the cluster.

	Now that we are done with configurations, execute the namenode format command so that it creates the required subfolder structure:hadoop namenode -format

	Now, we need to start specific services on specific nodes in order to start the cluster.On the master node, execute following:
/usr/local/hadoop/sbin/hadoop-daemon.sh start namenode
/usr/local/hadoop/sbin/hadoop-daemon.sh start secondarynamenode
/usr/local/hadoop/sbin/yarn-daemon.sh start resourcemanager

On all slave nodes, execute following:
/usr/local/hadoop/sbin/hadoop-daemon.sh start datanode
/usr/local/hadoop/sbin/yarn-daemon.sh start nodemanager

If everything goes well, you should be able to see the cluster running properly. You can also check out the web interfaces for NameNode and Resource Managers, for example, by going to http://<master-ip-hostname>:50070/.
[image: How to do it...]

For ResourceManager, go to http://<master-ip-hostname>/8088

[image: How to do it...]

How it works...

Refer to the How it works section from the previous recipe.

Adding new nodes to existing Hadoop clusters

Sometimes, it may happen that an existing Hadoop cluster's capacity is not adequate enough to handle all the data you may want to process. In this case, you can add new nodes to the existing Hadoop cluster without any downtime for the existing cluster. Hadoop supports horizontal scalability.
Getting ready

To perform this recipe, you should have a Hadoop cluster running. Also, you will need one more machine. If you are using AWS EC2, then you can launch an EC2 instance that's similar to what we did in the previous recipes. You will also need the same security group configurations in order to make the installation process smooth.

How to do it...

To add a new instance to an existing cluster, simply install and configure Hadoop the way we did for the previous recipe. Make sure that you put the same configurations in core-site.xml and yarn-site.xml, which will point to the correct master node.
Once all the configurations are done, simply execute commands to start the newly added datanode and nodemanager:
/usr/local/hadoop/sbin/hadoop-daemon.sh start datanode
/usr/local/hadoop/sbin/yarn-daemon.sh start nodemanager

If you take a look at the cluster again, you will find that the new node is registered. You can use the dfsadmin command to take a look at the number of nodes and amount of capacity that's been used:
hdfs dfsadmin -report

Here is a sample output for the preceding command:
[image: How to do it...]

How it works...

Hadoop supports horizontal scalability. If the resources that are being used are not enough, we can always go ahead and add new nodes to the existing cluster without hiccups. In Hadoop, it's always the slave that reports to the master. So, while making configurations, we always configure the details of the master and do nothing about the slaves. This architecture helps achieve horizontal scalability as at any point of time, we can add new nodes by only providing the configurations of the master, and everything else is taken care of by the Hadoop cluster. As soon as the daemons start, the master node realizes that a new node has been added and it becomes part of the cluster.

Executing the balancer command for uniform data distribution

Data in HDFS may not always be placed uniformly. There can be numerous reasons for this. One of the major reasons is the addition of new nodes to the cluster. In such a case, it's the Hadoop administrator's job to make sure that they execute the balancer command to rebalance the data load.
Getting ready

To perform this recipe, you should have performed earlier recipes.

How to do it...

In the previous recipe, we added a new node to the cluster while the other three nodes were already part of the cluster. When you execute the dfsadmin report command, you would have noticed that the data is not uniformly balanced because of the addition of a new node. In my case, here is the state of the new node versus the old node.
This is the code for the old node:
Name: 172.31.0.9:50010 (ip-172-31-0-9.us-west-2.compute.internal)
Hostname: ip-172-31-0-9.us-west-2.compute.internal
Decommission Status : Normal
Configured Capacity: 8309932032 (7.74 GB)
DFS Used: 67551232 (64.42 MB)
Non DFS Used: 2193256448 (2.04 GB)
DFS Remaining: 6049124352 (5.63 GB)
DFS Used%: 0.81%
DFS Remaining%: 72.79%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Thu Oct 08 08:57:23 UTC 2015

This is the code for the new node:
Name: 172.31.18.55:50010 (ip-172-31-18-55.us-west-2.compute.internal)
Hostname: ip-172-31-18-55.us-west-2.compute.internal
Decommission Status : Normal
Configured Capacity: 8309932032 (7.74 GB)
DFS Used: 1127585 (1.08 MB)
Non DFS Used: 2372033375 (2.21 GB)
DFS Remaining: 5936771072 (5.53 GB)
DFS Used%: 0.01%
DFS Remaining%: 71.44%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Thu Oct 08 08:57:25 UTC 2015

This means that the load on the cluster is not uniform. In this case, we can execute the balancer command to distribute the data uniformly throughout the data nodes:
hdfs balancer

This will initiate the block balancing activity across the cluster. By default, it will run the balancing activity to make sure that the block storage in the nodes does not differ by more than 10%. You can also decide on the threshold limit by setting an optional parameter called threshold:
hdfs balancer -threshold 5

This will execute the balancer command with 5% threshold. This is how the sample execution looks:
[image: How to do it...]

How it works...

The balancer command provides instructions to namenode so that it can rebalance the data uniformly across datanode. This balancing is done by repositioning the blocks placed in datanode. So, if a data node is over utilized, some the blocks from that node would be repositioned to the node that is underutilized.

There's more...

There are some options you can provide as arguments to this command:
Usage: hdfs balancer
 [-policy <policy>] the balancing policy: datanode or blockpool
 [-threshold <threshold>] Percentage of disk capacity
 [-exclude [-f <hosts-file> | <comma-separated list of hosts>]] Excludes the specified datanodes.
 [-include [-f <hosts-file> | <comma-separated list of hosts>]] Includes only the specified datanodes.
 [-idleiterations <idleiterations>] Number of consecutive idle iterations (-1 for Infinite) before exit.

Entering and exiting from the safe mode in a Hadoop cluster

Sometimes, due to an unclear filesystem image state, the Hadoop cluster goes into safemode. In this recipe, we will see how to enter and exit from safemode.
How to do it...

Safemode is an HDFS state that does not allow any new writes to the filesystem. It also does not replicate or delete any blocks from the filesystem. In case you want to make any configuration changes to your cluster, you can put the system into safemode. Here is a command to enter the system into safemode:
hdfs dfsadmin -safemode enter

Now, if you try to make any writes to HDFS, it will not allow you do so. You can perform cluster maintenance and once this is done, you can switch off safemode:
hdfs dfsadmin -safemode leave

In case you are not aware of whether safemode is ON or OFF, you can get its status by executing the following command:
hdfs dfsadmin -safemode get

How it works...

Generally, safemode is enabled automatically for NameNode on startup. It then tries to get the state of the filesystem from FSImage and EditLogs. Namenode waits until datanodes start reporting the block status of individual nodes. safemode is automatically disabled when datanodes report the availability of most of the blocks.
If we enter into safemode manually, we need to disable it manually. It won't be disabled automatically.

Decommissioning DataNodes

The Hadoop framework provides us with the option to remove certain nodes from the cluster if they are not needed any more. Here, we cannot simply shutdown the nodes that need to be removed as we might lose some of our data. They need to be decommissioned properly. In this recipe, we are going to learn how to decommission nodes from the Hadoop cluster.
Getting ready

To perform this recipe, you should have a Hadoop cluster, and you should have decided which node to decommission.

How to do it...

To decommission a node from the HDFS cluster, we need to perform the following steps:
	Create a dfs.exclude file in a folder, say /usr/local/hadoop/etc/hadoop, and add the hostname of the node you wish to decommission.
	Edit hdfs-site.xml on NameNode to append the following property: <property>
 <name>dfs.hosts.exclude</name>
 <value>/usr/local/hadoop/etc/hadoop/dfs.exclude</value>
 </property>

	Next, we need to execute the refreshNodes command so that it rereads the HDFS configuration in order to start the decommissioning:hdfs dfsadmin –refreshNodes

This will start the decommissioning, and once successful execution of the dfsadmin report command, you will see that the node's status is changed to Decommissioned from Normal:
hdfs dfsadmin –report
Name: 172.31.18.55:50010 (ip-172-31-18-55.us-west-2.compute.internal)
Hostname: ip-172-31-18-55.us-west-2.compute.internal
Decommission Status : Decommissioned
Configured Capacity: 8309932032 (7.74 GB)
DFS Used: 1179648 (1.13 MB)
Non DFS Used: 2371989504 (2.21 GB)
DFS Remaining: 5936762880 (5.53 GB)
DFS Used%: 0.01%
DFS Remaining%: 71.44%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Thu Oct 08 10:56:49 UTC 2015

Generally, the decommissioning takes time as it requires block replications on other nodes. Once the decommissioning is complete, the node will be added to the decommissioned nodes list.

How it works...

HDFS/Namenode reads the configurations from hdfs-site.xml. You can configure a file with the list of nodes to decommission and execute the refreshNodes command; it then rereads the configuration file. While doing this, it reads the configuration about the decommissioned nodes and will start rereplicating blocks to other available datanode. Depending on the size of datanode getting decommissioned, the time varies. Unless the completed decommissioning is not completed, it advisable for you to touch datanode.

Performing benchmarking on a Hadoop cluster

The Hadoop framework supports built-in libraries so that we can perform benchmarking in order to take a look at how the Hadoop cluster configurations/hardware are performing. There are plenty of tests available that will perform the benchmarking of various aspects of the Hadoop cluster. In this recipe, we are going to take a look at how to perform benchmarking and read the results.
Getting ready

To perform this recipe, you should have a Hadoop cluster up and running.

How to do it...

The Hadoop framework supports built-in support to benchmark various aspects. These tests are written in a library called hadoop-mapreduce-client-jobclient-2.7.0-tests.jar

To know the list of all the supported tests, you can execute the following command:
hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.7.0-tests.jar

The result of the command will be similar to what is shown in this screenshot:
[image: How to do it...]
TestDFSIO

This is one the major tests that you may want to do in order to see how DFS is performing. So, we are now going to take a look at how to use these tests to know how efficiently HDFS is able to write and read data.
As seen in the preceding screenshot, the library provides tools to test DFS through an option called TestDFSIO. Now, let's execute the write test in order to understand how efficiently HDFS is able to write big files. The following is the command to execute the write test:
hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.7.0-tests.jar TestDFSIO -write -nrFiles 2 -fileSize 1GB -resFile /tmp/TestDFSIOwrite.txt

Once you initiate the preceding command, a map reduce job will start, which will write two files to HDFS that are 1GB in size . You can choose any numbers based on your cluster size. These tests create data in HDFS under the /benchmarks directory. Once the execution is complete, you will see these results:
15/10/08 11:37:23 INFO fs.TestDFSIO: ----- TestDFSIO ----- : write
15/10/08 11:37:23 INFO fs.TestDFSIO: Date & time: Thu Oct 08 11:37:23 UTC 2015
15/10/08 11:37:23 INFO fs.TestDFSIO: Number of files: 2
15/10/08 11:37:23 INFO fs.TestDFSIO: Total MBytes processed: 2048.0
15/10/08 11:37:23 INFO fs.TestDFSIO: Throughput mb/sec: 26.637185406776354
15/10/08 11:37:23 INFO fs.TestDFSIO: Average IO rate mb/sec: 26.63718605041504
15/10/08 11:37:23 INFO fs.TestDFSIO: IO rate std deviation: 0.00829867575568246
15/10/08 11:37:23 INFO fs.TestDFSIO: Test exec time sec: 69.023

The preceding data is calculated from the RAW data generated by the Map Reduce program. You can also view the raw data as follows:
hdfs dfs -cat /benchmarks/TestDFSIO/io_read/part*
f:rate 53274.37
f:sqrate 1419079.2
l:size 2147483648
l:tasks 2
l:time 76885

Tip
The following formulae are used to calculate throughput, the average IO rate, and standard deviation.

Throughput = size * 1000/time * 1048576

Average IO rate = rate/1000/tasks

Standard deviation = square root of (absolute value(sqrate/1000/tasks – Average IO Rate * Average IO Rate))

Similarly, you can perform benchmarking of HDFS read operations as well:
hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.7.0-tests.jar TestDFSIO -read -nrFiles 2 -fileSize 1GB -resFile /tmp/TestDFSIOread.txt

At the end of the execution, a reducer will collect the data from the RAW results, and you will see calculated numbers for the DFSIO reads:
15/10/08 11:41:01 INFO fs.TestDFSIO: ----- TestDFSIO ----- : read
15/10/08 11:41:01 INFO fs.TestDFSIO: Date & time: Thu Oct 08 11:41:01 UTC 2015
15/10/08 11:41:01 INFO fs.TestDFSIO: Number of files: 2
15/10/08 11:41:01 INFO fs.TestDFSIO: Total MBytes processed: 2048.0
15/10/08 11:41:01 INFO fs.TestDFSIO: Throughput mb/sec: 33.96633220001659
15/10/08 11:41:01 INFO fs.TestDFSIO: Average IO rate mb/sec: 33.968116760253906
15/10/08 11:41:01 INFO fs.TestDFSIO: IO rate std deviation: 0.24641533955938721
15/10/08 11:41:01 INFO fs.TestDFSIO: Test exec time sec: 59.343

Here, we can take a look at the RAW data as well:
hdfs dfs -cat /benchmarks/TestDFSIO/io_read/part*
f:rate 67936.234
f:sqrate 2307787.2
l:size 2147483648
l:tasks 2
l:time 60295

The same formulae are used to calculate the throughput, average IO rate, and standard deviation.
This way, you can benchmark the DFSIO reads and writes.

NNBench

Similar to DFS IO, we can also perform benchmarking for NameNode:
hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.7.0-tests.jar nnbench -operation create_write

MRBench

MRBench helps us understand the average time taken for a job to execute for a given number of mappers and reducers. The following is a sample command to execute MRBench with default parameters:
hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.7.0-tests.jar mrbench

How it works...

Hadoop benchmark tests use the parameters and conditions provided by users. For every test, it executes a map reduce job and once complete, it displays the results on the screen. Generally, it is recommended that you run the benchmarking tests as soon as you have installed the Hadoop cluster in order to predict the performance of HDFS/Map Reduce and so on.
Most of the tests require a sequence in which they should be executed, for example, all write tests should be executed first, then read/delete, and so on.
Once the complete execution is done, make sure you clean up the data in the /benchmarks directory in HDFS.
Here is an example command to clean up the data generated by the TestDFSIO tests:
hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.7.0-tests.jar TestDFSIO -clean

Chapter 2. Exploring HDFS

In this chapter, we'll take a look at the following recipes:
	Loading data from a local machine to HDFS
	Exporting HDFS data to a local machine
	Changing the replication factor of an existing file in HDFS
	Setting the HDFS block size for all the files in a cluster
	Setting the HDFS block size for a specific file in a cluster
	Enabling transparent encryption for HDFS
	Importing data from another Hadoop cluster
	Recycling deleted data from trash to HDFS
	Saving compressed data in HDFS

Introduction

In the previous chapter, we discussed the installation and configuration details of a Hadoop cluster. In this chapter, we are going to explore the details of HDFS. As we know, Hadoop has two important components:
	Storage: This includes HDFS
	Processing: This includes Map Reduce

HDFS takes care of the storage part of Hadoop. So, let's explore the internals of HDFS through various recipes.

Loading data from a local machine to HDFS

In this recipe, we are going to load data from a local machine's disk to HDFS.
Getting ready

To perform this recipe, you should have an already Hadoop running cluster.

How to do it...

Performing this recipe is as simple as copying data from one folder to another. There are a couple of ways to copy data from the local machine to HDFS.
	Using the copyFromLocal command	To copy the file on HDFS, let's first create a directory on HDFS and then copy the file. Here are the commands to do this:hadoop fs -mkdir /mydir1
hadoop fs -copyFromLocal /usr/local/hadoop/LICENSE.txt /mydir1

	Using the put command	We will first create the directory, and then put the local file in HDFS:hadoop fs -mkdir /mydir2
hadoop fs -put /usr/local/hadoop/LICENSE.txt /mydir2

You can validate that the files have been copied to the correct folders by listing the files:
hadoop fs -ls /mydir1
hadoop fs -ls /mydir2

How it works...

When you use HDFS copyFromLocal or the put command, the following things will occur:
	First of all, the HDFS client (the command prompt, in this case) contacts NameNode because it needs to copy the file to HDFS.
	NameNode then asks the client to break the file into chunks of different cluster block sizes. In Hadoop 2.X, the default block size is 128MB.
	Based on the capacity and availability of space in DataNodes, NameNode will decide where these blocks should be copied.
	Then, the client starts copying data to specified DataNodes for a specific block. The blocks are copied sequentially one after another.
	When a single block is copied, the block is sent to DataNode in packets that are 4MB in size. With each packet, a checksum is sent; once the packet copying is done, it is verified with checksum to check whether it matches. The packets are then sent to the next DataNode where the block will be replicated.
	The HDFS client's responsibility is to copy the data to only the first node; the replication is taken care by respective DataNode. Thus, the data block is pipelined from one DataNode to the next.
	When the block copying and replication is taking place, metadata on the file is updated in NameNode by DataNode.

Exporting HDFS data to a local machine

In this recipe, we are going to export/copy data from HDFS to the local machine.
Getting ready

To perform this recipe, you should already have a running Hadoop cluster.

How to do it...

Performing this recipe is as simple as copying data from one folder to the other. There are a couple of ways in which you can export data from HDFS to the local machine.
	Using the copyToLocal command, you'll get this code:hadoop fs -copyToLocal /mydir1/LICENSE.txt /home/ubuntu

	Using the get command, you'll get this code:hadoop fs -get/mydir1/LICENSE.txt /home/ubuntu

How it works...

When you use HDFS copyToLocal or the get command, the following things occur:
	First of all, the client contacts NameNode because it needs a specific file in HDFS.
	NameNode then checks whether such a file exists in its FSImage. If the file is not present, the error code is returned to the client.
	If the file exists, NameNode checks the metadata for blocks and replica placements in DataNodes.
	NameNode then directly points DataNode from where the blocks would be given to the client one by one. The data is directly copied from DataNode to the client machine. and it never goes through NameNode to avoid bottlenecks.
	Thus, the file is exported to the local machine from HDFS.

Changing the replication factor of an existing file in HDFS

In this recipe, we are going to take a look at how to change the replication factor of a file in HDFS. The default replication factor is 3.
Getting ready

To perform this recipe, you should already have a running Hadoop cluster.

How to do it...

Sometimes. there might be a need to increase or decrease the replication factor of a specific file in HDFS. In this case, we'll use the setrep command.
This is how you can use the command:
hadoop fs -setrep [-R] [-w] <noOfReplicas><path> ...

In this command, a path can either be a file or directory; if its a directory, then it recursively sets the replication factor for all replicas.
	The w option flags the command and should wait until the replication is complete
	The r option is accepted for backward compatibility

First, let's check the replication factor of the file we copied to HDFS in the previous recipe:
hadoop fs -ls /mydir1/LICENSE.txt
-rw-r--r-- 3 ubuntu supergroup 15429 2015-10-29 03:04 /mydir1/LICENSE.txt

Once you list the file, it will show you the read/write permissions on this file, and the very next parameter is the replication factor. We have the replication factor set to 3 for our cluster, hence, you the number is 3.

Let's change it to 2 using this command:
hadoop fs -setrep -w 2 /mydir1/LICENSE.txt

It will wait till the replication is adjusted. Once done, you can verify this again by running the ls command:
hadoop fs -ls /mydir1/LICENSE.txt
-rw-r--r-- 2 ubuntu supergroup 15429 2015-10-29 03:04 /mydir1/LICENSE.txt

How it works...

Once the setrep command is executed, NameNode will be notified, and then NameNode decides whether the replicas need to be increased or decreased from certain DataNode. When you are using the –w command, sometimes, this process may take too long if the file size is too big.

Setting the HDFS block size for all the files in a cluster

In this recipe, we are going to take a look at how to set a block size at the cluster level.
Getting ready

To perform this recipe, you should already have a running Hadoop cluster.

How to do it...

The HDFS block size is configurable for all files in the cluster or for a single file as well. To change the block size at the cluster level itself, we need to modify the hdfs-site.xml file.
By default, the HDFS block size is 128MB. In case we want to modify this, we need to update this property, as shown in the following code. This property changes the default block size to 64MB:
<property>
<name>dfs.block.size</name>
 <value>67108864</value>
 <description>HDFS Block size</description>
</property>

If you have a multi-node Hadoop cluster, you should update this file in the nodes, that is, NameNode and DataNode. Make sure you save these changes and restart the HDFS daemons:
/usr/local/hadoop/sbin/stop-dfs.sh
/usr/local/hadoop/sbin/start-dfs.sh

This will set the block size for files that will now get added to the HDFS cluster. Make sure that this does not change the block size of the files that are already present in HDFS. There is no way to change the block sizes of existing files.

How it works...

By default, the HDFS block size is 128MB for Hadoop 2.X. Sometimes, we may want to change this default block size for optimization purposes. When this configuration is successfully updated, all the new files will be saved into blocks of this size. Ensure that these changes do not affect the files that are already present in HDFS; their block size will be defined at the time being copied.

Setting the HDFS block size for a specific file in a cluster

In this recipe, we are going to take a look at how to set the block size for a specific file only.
Getting ready

To perform this recipe, you should already have a running Hadoop cluster.

How to do it...

In the previous recipe, we learned how to change the block size at the cluster level. But this is not always required. HDFS provides us with the facility to set the block size for a single file as well. The following command copies a file called myfile to HDFS, setting the block size to 1MB:
hadoop fs -Ddfs.block.size=1048576 -put /home/ubuntu/myfile /

Once the file is copied, you can verify whether the block size is set to 1MB and has been broken into exact chunks:
hdfs fsck -blocks /myfile
 Connecting to namenode via http://localhost:50070/fsck?ugi=ubuntu&blocks=1&path=%2Fmyfile
 FSCK started by ubuntu (auth:SIMPLE) from /127.0.0.1 for path /myfile at Thu Oct 29 14:58:00 UTC 2015
 .Status: HEALTHY
 Total size: 17276808 B
 Total dirs: 0
 Total files: 1
 Total symlinks: 0
 Total blocks (validated): 17 (avg. block size 1016282 B)
 Minimally replicated blocks: 17 (100.0 %)
 Over-replicated blocks: 0 (0.0 %)
 Under-replicated blocks: 0 (0.0 %)
 Mis-replicated blocks: 0 (0.0 %)
 Default replication factor: 1
 Average block replication: 1.0
 Corrupt blocks: 0
 Missing replicas: 0 (0.0 %)
 Number of data-nodes: 3
 Number of racks: 1
 FSCK ended at Thu Oct 29 14:58:00 UTC 2015 in 2 milliseconds

 The filesystem under path '/myfile' is HEALTHY

How it works...

When we specify the block size at the time of copying a file, it overwrites the default block size and copies the file to HDFS by breaking the file into chunks of a given size. Generally, these modifications are made in order to perform other optimizations. Make sure you make these changes, and you are aware of their consequences. If the block size isn't adequate enough, it will increase the parallelization, but it will also increase the load on NameNode as it would have more entries in FSImage. On the other hand, if the block size is too big, then it will reduce the parallelization and degrade the processing performance.

Enabling transparent encryption for HDFS

When handling sensitive data, it is always important to consider the security measures. Hadoop allows us to encrypt sensitive data that's present in HDFS. In this recipe, we are going to see how to encrypt data in HDFS.
Getting ready

To perform this recipe, you should already have a running Hadoop cluster.

How to do it...

For many applications that hold sensitive data, it is very important to adhere to standards such as PCI, HIPPA, FISMA, and so on. To enable this, HDFS provides a utility called encryption zone in which we can create a directory so that data is encrypted on writes and decrypted on read.
To use this encryption facility, we first need to enable Hadoop
Key Management Server (KMS):
/usr/local/hadoop/sbin/kms.sh start

This would start KMS in the Tomcat web server.
Next, we need to append the following properties in core-site.xml and hdfs-site.xml.
In core-site.xml, add the following property:
<property>
 <name>hadoop.security.key.provider.path</name>
 <value>kms://http@localhost:16000/kms</value>
</property>

In hds-site.xml, add the following property:
<property>
 <name>dfs.encryption.key.provider.uri</name>
 <value>kms://http@localhost:16000/kms</value>
</property>

Restart the HDFS daemons:
/usr/local/hadoop/sbin/stop-dfs.sh
/usr/local/hadoop/sbin/start-dfs.sh

Now, we are all set to use KMS. Next, we need to create a key that will be used for the encryption:
hadoop key create mykey

This will create a key, and then, save it on KMS. Next, we have to create an encryption zone, which is a directory in HDFS where all the encrypted data is saved:
hadoop fs -mkdir /zone
hdfs crypto -createZone -keyName mykey -path /zone

We will change the ownership to the current user:
hadoop fs -chown ubuntu:ubuntu /zone

If we put any file into this directory, it will encrypt and would decrypt at the time of reading:
hadoop fs -put myfile /zone
hadoop fs -cat /zone/myfile

How it works...

There can be various types of encryptions one can do in order to comply with security standards, for example, application-level encryption, database-level, file-level, and disk-level encryption.
The HDFS transparent encryption sits between the database and file-level encryptions. KMS acts like a proxy between HDFS clients and HDFS's encryption provider via HTTP REST APIs. There are two types of keys used for encryption:
Encryption Zone Key(EZK) and
Data Encryption Key (DEK). EZK is used to encrypt DEK, which is also called
Encrypted Data Encryption Key(EDEK). This is then saved on NameNode.
When a file needs to be written to the HDFS encryption zone, the client gets EDEK from NameNode and EZK from KMS to form DEK, which is used to encrypt data and store it in HDFS (the encrypted zone).
When an encrypted file needs to be read, the client needs DEK, which is formed by combining EZK and EDEK. These are obtained from KMS and NameNode, respectively. Thus, encryption and decryption is automatically handled by HDFS. and the end user does not need to worry about executing this on their own.
Note
You can read more on this topic at http://blog.cloudera.com/blog/2015/01/new-in-cdh-5-3-transparent-encryption-in-hdfs/.

Importing data from another Hadoop cluster

Sometimes, we may want to copy data from one HDFS to another either for development, testing, or production migration. In this recipe, we will learn how to copy data from one HDFS cluster to another.
Getting ready

To perform this recipe, you should already have a running Hadoop cluster.

How to do it...

Hadoop provides a utility called DistCp, which helps us copy data from one cluster to another. Using this utility is as simple as copying from one folder to another:
hadoop distcp hdfs://hadoopCluster1:9000/source hdfs://hadoopCluster2:9000/target

This would use a Map Reduce job to copy data from one cluster to another. You can also specify multiple source files to be copied to the target. There are a couple of other options that we can also use:
	-update: When we use DistCp with the update option, it will copy only those files from the source that are not part of the target or differ from the target.
	-overwrite: When we use DistCp with the overwrite option, it overwrites the target directory with the source.

How it works...

When DistCp is executed, it uses map reduce to copy the data and also assists in error handling and reporting. It expands the list of source files and directories and inputs them to map tasks. When copying from multiple sources, collisions are resolved in the destination based on the option (update/overwrite) that's provided. By default, it skips if the file is already present at the target. Once the copying is complete, the count of skipped files is presented.
Note
You can read more on DistCp at https://hadoop.apache.org/docs/current/hadoop-distcp/DistCp.html.

Recycling deleted data from trash to HDFS

In this recipe, we are going to see how to recover deleted data from the trash to HDFS.
Getting ready

To perform this recipe, you should already have a running Hadoop cluster.

How to do it...

To recover accidently deleted data from HDFS, we first need to enable the trash folder, which is not enabled by default in HDFS. This can be achieved by adding the following property to core-site.xml:
<property>
 <name>fs.trash.interval</name>
 <value>120</value>
</property>

Then, restart the HDFS daemons:
/usr/local/hadoop/sbin/stop-dfs.sh
/usr/local/hadoop/sbin/start-dfs.sh

This will set the deleted file retention to 120 minutes.
Now, let's try to delete a file from HDFS:
hadoop fs -rmr /LICENSE.txt
 15/10/30 10:26:26 INFO fs.TrashPolicyDefault: Namenode trash configuration: Deletion interval = 120 minutes, Emptier interval = 0 minutes.
 Moved: 'hdfs://localhost:9000/LICENSE.txt' to trash at: hdfs://localhost:9000/user/ubuntu/.Trash/Current

We have 120 minutes to recover this file before it is permanently deleted from HDFS. To restore the file to its original location, we can execute the following commands.
First, let's confirm whether the file exists:
hadoop fs -ls /user/ubuntu/.Trash/Current
 Found 1 items
 -rw-r--r-- 1 ubuntu supergroup 15429 2015-10-30 10:26 /user/ubuntu/.Trash/Current/LICENSE.txt

Now, restore the deleted file or folder; it's better to use the distcp command instead of copying each file one by one:
hadoop distcp hdfs
//localhost:9000/user/ubuntu/.Trash/Current/LICENSE.txt hdfs://localhost:9000/

This will start a map reduce job to restore data from the trash to the original HDFS folder. Check the HDFS path; the deleted file should be back to its original form.

How it works...

Enabling trash enforces the file retention policy for a specified amount of time. So, when trash is enabled, HDFS does not execute any blocks deletions or movements immediately but only updates the metadata of the file and its location. This way, we can accidently stop deleting files from HDFS; make sure that trash is enabled before experimenting with this recipe.

Saving compressed data in HDFS

In this recipe, we are going to take a look at how to store and process compressed data in HDFS.
Getting ready

To perform this recipe, you should already have a running Hadoop.

How to do it...

It's always good to use compression while storing data in HDFS. HDFS supports various types of compression algorithms such as LZO, BIZ2, Snappy, GZIP, and so on. Every algorithm has its own pros and cons when you consider the time taken to compress and decompress and the space efficiency. These days people prefer Snappy compression as it aims to achieve a very high speed and a reasonable amount of compression.
We can easily store and process any number of files in HDFS. To store compressed data, we don't need to specifically make any changes to the Hadoop cluster. You can simply copy the compressed data in the same way it's in HDFS. Here is an example of this:
hadoop fs -mkdir /compressed
hadoop fs –put file.bz2 /compressed

Now, we'll run a sample program to take a look at how Hadoop automatically uncompresses the file and processes it:
hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.0.jar wordcount /compressed /compressed_out

Once the job is complete, you can verify the output.

How it works...

Hadoop explores native libraries to find the support needed for various codecs and their implementations. Native libraries are specific to the platform that you run Hadoop on. You don't need to make any configuration changes to enable compression algorithms. As mentioned earlier, Hadoop supports various compression algorithms that are already familiar to the computer world. Based on your needs and requirements (more space or more time), you can choose your compression algorithm.
Take a look at http://comphadoop.weebly.com/ for more information on this.
Tip

Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:
	Log in or register to our website using your e-mail address and password
	Hover the mouse pointer on the SUPPORT tab at the top.
	Click on Code Downloads & Errata
	Enter the name of the book in the Search box
	Select the book for which you're looking to download the code files
	Choose from the drop-down menu where you purchased this book from
	Click on Code Download

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:
	WinRAR / 7-Zip for Windows
	Zipeg / iZip / UnRarX for Mac
	7-Zip / PeaZip for Linux

Chapter 3. Mastering Map Reduce Programs

In this chapter, we'll cover the following recipes:
	Writing the Map Reduce program in Java to analyze web log data
	Executing the Map Reduce program in a Hadoop cluster
	Adding support for a new writable data type in Hadoop
	Implementing a user-defined counter in a Map Reduce program
	Map Reduce program to find the top X
	Map Reduce program to find distinct values
	Map Reduce program to partition data using a custom partitioner
	Writing Map Reduce results to multiple output files
	Performing Reduce side Joins using Map Reduce
	Unit testing the Map Reduce code using MRUnit

Introduction

Hadoop consists of two important components: HDFS and Map Reduce. In the previous chapter, we talked about various recipes one can perform to use and maintain HDFS in a good state. In this chapter, we are going to explore the details of the Map Reduce framework. Hadoop itself is written in Java, and Java is, of course, a preferred way to write Map Reduce programs, but this does not restrict you to only using Java. It provides libraries, such as Hadoop-Streaming, Hadoop Pipes, and so on so that you can write map reduce programs in most popular languages. These include C++, C#, Shell Scripting using Hadoop-Streaming, and so on.

Writing the Map Reduce program in Java to analyze web log data

In this recipe, we are going to take a look at how to write a map reduce program to analyze web logs. Web logs are data that is generated by web servers for requests they receive. There are various web servers such as Apache, Nginx, Tomcat, and so on. Each web server logs data in a specific format. In this recipe, we are going to use data from the Apache Web Server, which is in combined access logs.
Note
To read more on combined access logs, refer to

http://httpd.apache.org/docs/1.3/logs.html#combined.

Getting ready

To perform this recipe, you should already have a running Hadoop cluster as well as an eclipse similar to an IDE.

How to do it...

We can write map reduce programs to analyze various aspects of web log data. In this recipe, we are going to write a map reduce program that reads a web log file, results pages, views, and their counts. Here is some sample web log data we'll consider as input for our program:
106.208.17.105 - - [12/Nov/2015:21:20:32 -0800] "GET /tutorials/mapreduce/advanced-map-reduce-examples-1.html HTTP/1.1" 200 0 "https://www.google.co.in/" "Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2490.86 Safari/537.36"
60.250.32.153 - - [12/Nov/2015:21:42:14 -0800] "GET /tutorials/elasticsearch/install-elasticsearch-kibana-logstash-on-windows.html HTTP/1.1" 304 0 - "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2490.86 Safari/537.36"
49.49.250.23 - - [12/Nov/2015:21:40:56 -0800] "GET /tutorials/hadoop/images/internals-of-hdfs-file-read-operations/HDFS_Read_Write.png HTTP/1.1" 200 0 "http://hadooptutorials.co.in/tutorials/spark/install-apache-spark-on-ubuntu.html" "Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; Touch; LCTE; rv:11.0) like Gecko"
60.250.32.153 - - [12/Nov/2015:21:36:01 -0800] "GET /tutorials/elasticsearch/install-elasticsearch-kibana-logstash-on-windows.html HTTP/1.1" 200 0 - "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2490.86 Safari/537.36"
91.200.12.136 - - [12/Nov/2015:21:30:14 -0800] "GET /tutorials/hadoop/hadoop-fundamentals.html HTTP/1.1" 200 0 "http://hadooptutorials.co.in/tutorials/hadoop/hadoop-fundamentals.html" "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.99 Safari/537.36"

These combined Apache Access logs are in a specific format. Here is the sequence and meaning of each component in each access log:
	%h: This is the remote host (that is, the IP client)
	%l: This is the identity of the user determined by an identifier (this is not usually used since it's not reliable)
	%u: This is the username determined by the HTTP authentication
	%t: This is the time the server takes to finish processing a request
	%r: This is the request line from the client ("GET / HTTP/1.0")
	%>s: This is the status code sent from a server to a client (200, 404, and so on)
	%b: This is the size of the response given to a client (in bytes)
	Referrer: This is the page that is linked to this URL
	User agent: This is the browser identification string

Now, let's start a writing program in order to get to know the page views of each unique URL that we have in our web logs.
First, we will write a mapper class where we will read each and every line and parse it to the extract page URL. Here, we will use a Java pattern that matches a utility in order to extract information:
public static class PageViewMapper extends Mapper<Object, Text, Text, IntWritable> {
 public static String APACHE_ACCESS_LOGS_PATTERN = "^(\\S+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(\\S+) (\\S+) (\\S+)\" (\\d{3}) (\\d+) (.+?) \"([^\"]+|(.+?))\"";

 public static Pattern pattern = Pattern.compile(APACHE_ACCESS_LOGS_PATTERN);

 private static final IntWritable one = new IntWritable(1);
 private Text url = new Text();

 public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context)
 throws IOException, InterruptedException {
 Matcher matcher = pattern.matcher(value.toString());
 if (matcher.matches()) {
 // Group 6 as we want only Page URL
 url.set(matcher.group(6));
 System.out.println(url.toString());
 context.write(this.url, one);
 }

 }
 }

In the preceding mapper class, we read key value pairs from the text file. By default, the key is a byte offset (the number of characters in a line), and the value is an actual line in a text file. Next, we match the line with the Apache Access Log regex pattern so that we can extract the exact information we need. For a page view counter, we only need a URL. Mapper outputs the URL as a key and 1 as the value. So, we can count these URL in reducer.
Here is the reducer class that sums up the output values of the mapper class:
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,
 Reducer<Text, IntWritable, Text, IntWritable>.Context context)
 throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 this.result.set(sum);
 context.write(key, this.result);
 }
 }

Now, we just need a driver class to call these mappers and reducers:
public class PageViewCounter {

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 if (args.length != 2) {
 System.err.println("Usage: PageViewCounter <in><out>");
 System.exit(2);
 }
 Job job = Job.getInstance(conf, "Page View Counter");
 job.setJarByClass(PageViewCounter.class);
 job.setMapperClass(PageViewMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

As the operation we are performing is aggregation, we can also use a combiner here to optimize the results. Here, the same reducer logic is being used as the one used for the combiner.
To compile your program properly, you need to add two external JARs, hadoop-common-2.7.jar, which can be found in the /usr/local/hadoop/share/hadoop/common folder and hadoop-mapreduce-client-core-2.7.jar, which can be found in the /usr/local/hadoop/share/hadoop/mapreduce path.
Make sure you add these two JARs in your build path so that your program can be compiled easily.

How it works...

The page view counter program helps us find the most popular pages, least accessed pages, and so on. Such information helps us make decisions about the ranking of pages, frequency of visits, and the relevance of a page. When a program is executed, each line of the HDFS block is read individually and then sent to Mapper. Mapper matches the input line with the log format and extracts its page URL. Mapper emits the (URL,1) type of key value pairs. These pairs are shuffled across nodes and partitioners to make sure that a similar URL goes to only one reducer. Once received by the reducers, we add up all the values for each key and emit them. This way, we get results in the form of a URL and the number of times it was accessed.

Executing the Map Reduce program in a Hadoop cluster

In the previous recipe, we took a look at how to write a map reduce program for a page view counter. In this recipe, we will explore how to execute this in a Hadoop cluster.
Getting ready

To perform this recipe, you should already have a running Hadoop cluster as well as an eclipse similar to an IDE.

How to do it

To execute the program, we first need to create a JAR file of it. JAR stands for Java Archive file, which contains compiled class files. To create a JAR file in eclipse, we need to perform the following steps:
	Right-click on the project where you've written your Map Reduce Program. Then, click on Export.
	Select Java->Jar File and click on the Next button. Browse through the path where you wish to export the JAR file, and provide a proper name to the jar file. Click on Finish to complete the creation of the JAR file.
	Now, copy this file to the Hadoop cluster. If you have your Hadoop cluster running in the AWS EC2 instance, you can use the following command to copy the JAR file:scp –i mykey.pem logAnalyzer.jar ubuntu@ec2-52-27-157-247.us-west-2.compute.amazonaws.com:/home/ubuntu

	If you don't already have your input log files in HDFS, use following commands:hadoop fs –mkdir /logs
hadoop fs –put web.log /logs

	Now, it's time to execute the map reduce program. Use the following command to start the execution:hadoop jar logAnalyzer.jar com.demo.PageViewCounter /logs /pageview_output

	This will start the Map Reduce execution on your cluster. If everything goes well, you should be able to see output in the pageview_output folder in HDFS. Here, logAnalyzer is the name of the JAR file we created through eclipse. logs is the folder we have our input data in, while pageview_output is the folder that will first be created, and then results will be saved into. It is also important to provide a fully qualified name to the class along with its package name.

How it works...

Once the job is submitted, it first creates the Application Client and Application Master in the Hadoop cluster. The application tasks for Mapper are initiated in each node where data blocks are present in the Hadoop cluster. Once the Mapper phase is complete, the data is locally reduced by a combiner. Once the combiner finishes, the data is shuffled across the nodes in the cluster. Unless all the mappers have finished, reducers cannot be started. Output from the reducers is also written to HDFS in a specified folder.
Note
The output folder to be specified should be a nonexisting folder in HDFS. If the folder is already present, then the program will give you an error.

When all the tasks are finished for the application, you can take a look at the output in HDFS. The following are the commands to do this:
hadoop fs –ls /pageview_output
hadoop fs –cat /pageview_output/part-m-00000

This way, you can write similar programs for the following:
	Most number of referral sites (hint: use a referral group from the matcher)
	Number of client errors (with the Http status of 4XX)
	Number of of server errors (with the Http status of 5XX)

Adding support for a new writable data type in Hadoop

In this recipe, we are going to learn how to introduce a new data type in Map Reduce programs and then use it.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as an eclipse that's similar to an IDE.

How to do it...

Hadoop allows us to add new custom data types ,which are made up of one or more primary data types. In the previous recipe, you must have noticed that when you handled the log data structure, you had to remember the sequence in which each data component was placed. This can get very nasty when it comes to complex programs. To avoid this, we will introduce a new data type in which WritableComparable can be used efficiently.
To add a new data type, we need to implement the WritableComparable interface, which is provided by Hadoop. This interface provides three methods, readFields(DataInput in), write(DataOut out), and compareTo(To), which we will need to override with our own custom implementation. Here, we are going to abstract the log parsing and pattern matching logic from the user of this data type by providing a method that returns parsed objects:
public class ApacheAccessLogWritable implements WritableComparable<ApacheAccessLogWritable> {

 public static String APACHE_ACCESS_LOGS_PATTERN = "^(\\S+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(\\S+) (\\S+) (\\S+)\" (\\d{3}) (\\d+) (.+?) \"([^\"]+|(.+?))\"";
 public static Pattern pattern = Pattern.compile(APACHE_ACCESS_LOGS_PATTERN);

 private Text clientIp, id, username, dateString, httpMethod, url, httpVersion, referral, browserString;
 private IntWritable httpStatus, requestSize;

 @Override
 public void readFields(DataInput in) throws IOException {
 clientIp.readFields(in);
 id.readFields(in);
 username.readFields(in);
 dateString.readFields(in);
 httpMethod.readFields(in);
 url.readFields(in);
 httpVersion.readFields(in);
 referral.readFields(in);
 browserString.readFields(in);
 httpStatus.readFields(in);
 requestSize.readFields(in);

 }

 @Override
 public void write(DataOutput out) throws IOException {
 clientIp.write(out);
 id.write(out);
 username.write(out);
 dateString.write(out);
 httpMethod.write(out);
 url.write(out);
 httpVersion.write(out);
 referral.write(out);
 browserString.write(out);
 httpStatus.write(out);
 requestSize.write(out);

 }

 private ApacheAccessLogWritable(Text clientIp, Text id, Text username, Text dateString, Text httpMethod, Text url,
 Text httpVersion, IntWritable httpStatus, IntWritable requestSize, Text referral, Text browserString) {

 this.clientIp = clientIp;
 this.id = id;
 this.username = username;
 this.dateString = dateString;
 this.httpMethod = httpMethod;
 this.url = url;
 this.httpVersion = httpVersion;
 this.referral = referral;
 this.browserString = browserString;
 this.httpStatus = httpStatus;
 this.requestSize = requestSize;
 }

 public static ApacheAccessLogWritable parseFromLogLine(String logline) {
 Matcher m = pattern.matcher(logline);
 if (!m.find()) {

 throw new RuntimeException("Error parsing logline");
 }

 return new ApacheAccessLogWritable(new Text(m.group(1)), new Text(m.group(2)), new Text(m.group(3)),
 new Text(m.group(4)), new Text(m.group(5)), new Text(m.group(6)), new Text(m.group(7)),
 new IntWritable(Integer.parseInt(m.group(8))), new IntWritable(Integer.parseInt(m.group(9))),
 new Text(m.group(10)), new Text(m.group(11)));
 }

 @Override
 public int compareTo(ApacheAccessLogWritable o) {
 // TODO Auto-generated method stub
 return 0;
 }
 // Getter and Setter methods
 ..
}

The following piece of code shows us how we can use the data type in our map reduce program; here, I am going to update the same program that we used in the previous recipe. So, the mapper code will be updated as follows:
public static class PageViewMapper extends Mapper<Object, Text, Text, IntWritable> {

 private static final IntWritable one = new IntWritable(1);

 public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context)
 throws IOException, InterruptedException {
 ApacheAccessLogWritable log = ApacheAccessLogWritable.parseFromLogLine(value.toString());
 context.write(log.getUrl(), one);

 }
 }

The highlighted code shows you where we have used our own custom data type. Here, the reducer and driver code remain as it is. Refer to the previous recipe to know more about these two.
To execute this code, we need to bundle the datatype class and map reduce program into a single JAR itself so that at runtime the map reduce code is able to find our newly introduced data type.

How it works...

We know that when we execute the map reduce code, a lot of data gets transferred over the network when this shuffle takes place. Sometimes, the size of the keys and values that are transferred can be huge, which might affect network traffic. To avoid congestion, it's very important to send the data in a serialized format. To abstract the pain of serialization and deserialization from the map reduce programmer, Hadoop has introduced a set of box/wrapper classes such as IntWritable, LongWritable, Text, FloatWritable, DoubleWritable, and so on. These are wrapper classes on top of primitive data types, which can be serialized and deserialized easily. The keys need to be WritableComparable, while the values need to be Writable. Technically, both keys and values are WritableComparable.
Apart from the set of built-in data types, Hadoop also supports the introduction of custom and new data types that are WritableComparable. This is done so that the handling of complex data becomes easy and serialization and deserialization is taken care of automatically. WritableComparable are data types that are easy to serialize and deserialize and can be compared in order to decide what their order is.

Implementing a user-defined counter in a Map Reduce program

In this recipe, we are going to learn how to add a user-defined counter so that we can keep track of certain events easily.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as an eclipse that's similar to an IDE.

How to do it...

After every map reduce execution, you will see a set of system defined counters getting published, such as File System counters, Job counters, and Map Reduce Framework counters. These counters help us understand the execution in detail. They give very detailed information about the number of bytes written to HDFS, read from HDFS, the input given to a map, the output received from a map, and so on. Similar to this information, we can also add our own user-defined counters, which will help us track the execution in a better manner.
In earlier recipes, we considered the use case of log analytics. There can be chances that the input we receive might always not be in the same format as we expect it to be. So, its very important to track such bad records and also avoid any failures because of them. In order to achieve this, in this recipe, we are going to add one custom counter that keeps track of such bad records without failing the task.
First of all, we have to define the counter as enum in our program:
private enum COUNTERS {
 INVALID_RECORD_COUNT
 }

Next, we will update our mapper code to use the defined counter, as shown here:
public static class PageViewMapper extends Mapper<Object, Text, Text, IntWritable> {

 private static final IntWritable one = new IntWritable(1);

 public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context)
 throws IOException, InterruptedException {
 ApacheAccessLogWritable log = null;
 try {
 // If record is in expected format, do normal processing
 log = ApacheAccessLogWritable.parseFromLogLine(value.toString());
 context.write(log.getUrl(), one);
 } catch (Exception e) {
 // if not, increment the invalid record counter
 System.out.println("Invalid record found");
 context.getCounter(COUNTERS.INVALID_RECORD_COUNT).increment(1L);

 }

 }
 }

The reducer code will remain as it is while we will update the driver code to print the final count of invalid records, as shown here:
public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 if (args.length != 2) {
 System.err.println("Usage: PageViewCounter <in><out>");
 System.exit(2);
 }
 Job job = Job.getInstance(conf, "Page View Counter");
 job.setJarByClass(PageViewCounter.class);
 job.setMapperClass(PageViewMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 org.apache.hadoop.mapreduce.Counters counters = job.getCounters();
 System.out.println("No. of Invalid Records :" + counters.findCounter(COUNTERS.INVALID_RECORD_COUNT).getValue());
 }

Now, to demonstrate, I've added a few invalid records (records with fewer columns than expected) and added the log file to HDFS. So, when I execute the program, I can see the invalid record count getting printed at the end of the execution:
$hadoop jar logAnalyzer.jar com.demo.PageViewCounter /log-input /log-output
15/11/15 08:44:37 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
15/11/15 08:44:37 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
15/11/15 08:44:37 INFO input.FileInputFormat: Total input paths to process : 2
15/11/15 08:44:37 INFO mapreduce.JobSubmitter: number of splits:2
15/11/15 08:44:38 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1447554086128_0003
15/11/15 08:44:38 INFO impl.YarnClientImpl: Submitted application application_1447554086128_0003
15/11/15 08:44:38 INFO mapreduce.Job: The url to track the job: http://admin1:8088/proxy/application_1447554086128_0003/
15/11/15 08:44:38 INFO mapreduce.Job: Running job: job_1447554086128_0003
15/11/15 08:44:43 INFO mapreduce.Job: Job job_1447554086128_0003 running in uber mode : false
15/11/15 08:44:43 INFO mapreduce.Job: map 0% reduce 0%
15/11/15 08:44:50 INFO mapreduce.Job: map 100% reduce 0%
15/11/15 08:44:55 INFO mapreduce.Job: map 100% reduce 100%
15/11/15 08:44:55 INFO mapreduce.Job: Job job_1447554086128_0003 completed successfully
15/11/15 08:44:55 INFO mapreduce.Job: Counters: 50
 File System Counters
 FILE: Number of bytes read=580
 FILE: Number of bytes written=345070
 FILE: Number of read operations=0
 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=3168
 HDFS: Number of bytes written=271
 HDFS: Number of read operations=9
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=2
 Job Counters
 Launched map tasks=2
 Launched reduce tasks=1
 Data-local map tasks=2
 Total time spent by all maps in occupied slots (ms)=8542
 Total time spent by all reduces in occupied slots (ms)=3046
 Total time spent by all map tasks (ms)=8542
 Total time spent by all reduce tasks (ms)=3046
 Total vcore-seconds taken by all map tasks=8542
 Total vcore-seconds taken by all reduce tasks=3046
 Total megabyte-seconds taken by all map tasks=8747008
 Total megabyte-seconds taken by all reduce tasks=3119104
 Map-Reduce Framework
 Map input records=13
 Map output records=10
 Map output bytes=724
 Map output materialized bytes=586
 Input split bytes=201
 Combine input records=10
 Combine output records=8
 Reduce input groups=4
 Reduce shuffle bytes=586
 Reduce input records=8
 Reduce output records=4
 Spilled Records=16
 Shuffled Maps =2
 Failed Shuffles=0
 Merged Map outputs=2
 GC time elapsed (ms)=69
 CPU time spent (ms)=1640
 Physical memory (bytes) snapshot=591077376
 Virtual memory (bytes) snapshot=1219731456
 Total committed heap usage (bytes)=467140608
 Shuffle Errors
 BAD_ID=0
 CONNECTION=0
 IO_ERROR=0
 WRONG_LENGTH=0
 WRONG_MAP=0
 WRONG_REDUCE=0
 com.demo.PageViewCounter$COUNTERS
 INVALID_RECORD_COUNT=3
 File Input Format Counters
 Bytes Read=2967
 File Output Format Counters
 Bytes Written=271

How it works...

Custom counters are helpful in various situations such as keeping track of bad records, count outliers in the form of maximum and minimum values, summations, and so on. The Hadoop framework imposes an upper limit on using these counters. They can be incremented/decremented globally, or you may also update them in mappers or reducers. In either case, they are referred to using the group and counter names. All the counters are managed at the Application Master level. Information about each increment or decrement is passed to the Application Master via heartbeat messages between the containers that run mappers and reducers.
It is better to keep the counters to a limited number as this causes an overhead on the processing framework. The best thing to do is to remember a thumb rule: do not let the number of counters go beyond 100.

Map Reduce program to find the top X

In this recipe, we are going to learn how to write a map reduce program to find the top X records from the given set of values.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as an eclipse that's similar to an IDE.

How to do it...

A lot of the time, we might need to find the top X values from the given set of values. A simple example could be to find the top 10 trending topics from a Twitter dataset. In this case, we will need to use two map reduce jobs. First of all, find out all the words that start with # and the number of times each hashtag has occurred in a given set of data. The first map reduce program is quite simple, which is pretty similar to the word count program. But for the second program, we need to use some logic. In this recipe, we'll explore how we can write a map reduce program to find the top X values from the given set. Now, though, lets try to understand the logic behind this.
[image: How to do it...]
As shown in the preceding figure, our logic includes finding the top 10 words from each input split and then sending these records to only one reducer. In the reducer, we will again find the top 10 words to get the final result of the top 10 records. Now, let's understand the execution.
First, let's prepare the input. Here, we will use the word count program provided along with Hadoop binaries:
First of all, let's put data in HDFS to be processed.
hadoop fs -mkdir /input
hadoop fs -put /usr/local/hadoop/LICENSE.txt /input
hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.0.jar /input /word_count_output

This will execute the word count program and store the output in the HDFS folder called /word_count_output. This output will be used as the input for our top 10 map reduce program.
Let's take a look at the mapper code:
public static class TopTenMapper extends Mapper<Object, Text, Text, IntWritable> {

 // Tree map keeps records sorted by key
 private TreeMap<Integer, String> countWordMap = new TreeMap<Integer, String>();

 public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context)
 throws IOException, InterruptedException {

 String[] words = value.toString().split("[\t]");
 int count = Integer.parseInt(words[1]);
 String word = words[0];
 countWordMap.put(count, word);
 if (countWordMap.size() > 10) {

 countWordMap.remove(countWordMap.firstKey());
 }

 }

 @Override
 protected void cleanup(Context context) throws IOException, InterruptedException {
 for (Entry<Integer, String> entry : countWordMap.entrySet()) {
 context.write(new Text(entry.getValue()), new IntWritable(entry.getKey()));

 }

 }
 }

In the preceding code, we are using TreeMap to store the words and their count. TreeMap helps store keys and values sorted order by the key. Here, we are using the count as the key and words as values. In each Mapper iteration, we check whether the size is greater than 10. If it is, we remove the first key from the key map, which would be the lowest count of the set. This way, at the end of each mapper, we will emit the top 10 words of the reducer.
You can read more about TreeMap at http://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html.
Now, let's take a look at the reducer code:
public static class TopTenReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

 // Tree map keeps records sorted by key
 private TreeMap<IntWritable, Text> countWordMap = new TreeMap<IntWritable, Text>();

 public void reduce(Text key, Iterable<IntWritable> values,
 Reducer<Text, IntWritable, Text, IntWritable>.Context context)
 throws IOException, InterruptedException {

 for (IntWritable value : values) {

 countWordMap.put(value, key);

 }
 if (countWordMap.size() > 10) {

 countWordMap.remove(countWordMap.firstKey());
 }
 for (Entry<IntWritable, Text> entry : countWordMap.descendingMap().entrySet()) {
 context.write(entry.getValue(), entry.getKey());

 }

 }

 }

In the reducer, we will again use TreeMap to find the top 10 of all the collected records from each Mapper. Here, is it very important to use only one reducer for the complete processing; hence, we need to set this in the Driver class, as shown here:
public class TopTenWordsByOccurence {
 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 if (args.length != 2) {
 System.err.println("Usage: toptencounter <in><out>");
 System.exit(2);
 }
 Job job = Job.getInstance(conf, "Top Ten Word By Occurence Counter");
 job.setJarByClass(TopTenWordsByOccurence.class);
 job.setMapperClass(TopTenMapper.class);
 job.setCombinerClass(TopTenReducer.class);
 job.setReducerClass(TopTenReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 job.setNumReduceTasks(1);
 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

Now, when you execute the preceding code, as a result, you will see the output in the form of the top 10 words due to their frequencies in the document.
You can modify the same program to get the top 5, 20, or any number.

How it works

Here, the logic is quite straightforward, as shown in the preceding diagram. The trick is using TreeMap, which stores data in a sorted key order. It is also important to use only one reducer, and if we can't, we will again get the number of sets of the top records from each reducer, which will not show you the correct output.

Map Reduce program to find distinct values

In this recipe, we are going to learn how to write a map reduce program to find distinct values from a given set of data.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as an eclipse that is similar to an IDE.

How to do it

Sometimes, there may be a chance that the data you have contains some duplicate values. In SQL, we have something called a distinct function, which helps us get distinct values. In this recipe, we are going to take a look at how we can get distinct values using map reduce programs.
Let's consider a use case where we have some user data with us, which contains two columns: userId and username. Let's assume that the data we have contains duplicate records, and for our processing needs, we only need distinct records through user IDs. Here is some sample data that we have where columns are separated by '|':
1|Tanmay
2|Ramesh
3|Ram
1|Tanmay
2|Ramesh
6|Rahul
6|Rahul
4|Sneha
4|Sneha

The idea here is to use the default reducer behavior where the same keys are sent to one reducer. In this case, we will make userId the key and emit it to the reducer. In the reducer, the same keys will be reduced together, which will avoid duplicates.
Let's look at the Mapper Code.
public static class DistinctUserMapper extends Mapper<Object, Text, Text, NullWritable> {
 private Text userId = new Text();

 public void map(Object key, Text value, Context context) throws IOException, InterruptedException {

 String words[] = value.toString().split("[|]");
 userId.set(words[0]);
 context.write(userId, NullWritable.get());
 }
 }

We only want distinct user IDs, hence, we emit only user IDs as keys and nulls as values.
Now, let's look at the reducer code:
public static class DistinctUserReducer extends Reducer<Text, NullWritable, Text, NullWritable> {
 public void reduce(Text key, Iterable<NullWritable> values, Context context)
 throws IOException, InterruptedException {
 context.write(key, NullWritable.get());
 }
}

Here, we only emit user IDs as they come. This step removes duplicates as the reducer only treats the records by their keys and only one record per key is kept.
The driver code remains simple, as shown here:
public class DistinctValues {

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 if (args.length != 2) {
 System.err.println("Usage: DistinctValues <in><out>");
 System.exit(2);
 }
 Job job = Job.getInstance(conf, "Distinct User Id finder");
 job.setJarByClass(DistinctValues.class);
 job.setMapperClass(DistinctUserMapper.class);
 job.setReducerClass(DistinctUserReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(NullWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }
}

Now, when we execute the code, we will see the following output:
hadoop jar distinct.jar com.demo.DistinctValues /users /distinct_user_ids
hadoop fs -cat /distinct_user_ids/part-r-00000
 1
 2
 3
 4
 6

How it works...

When mapper emits keys and values, the output is shuffled across the nodes in the cluster. Here, the partitioner decides which keys should be reduced and on which node. On all the nodes, the same partitioning logic is used, which makes sure that the same keys are grouped together. In the preceding code, we use this default behavior to find distinct user IDs.

Map Reduce program to partition data using a custom partitioner

In this recipe, we are going to learn how to write a map reduce program to partition data using a custom partitioner.
Getting ready

To perform this recipe, you should have a running Hadoop cluster running as well as an eclipse that's similar to an IDE.

How to do it...

During the shuffle and sort, if it's not specified, Hadoop by default uses a hash partitioner. We can also write our own custom partitioner with custom partitioning logic, such that we can partition the data into separate files.
Let's consider one example where we have user data with us along with the year of joining. Now, assume that we have to partition the users based on the year of joining that's specified in the record. The sample input data looks like this:
User_id|user_name|yoj
1|Tanmay|2010
2|Sneha|2015
3|Sakalya|2020
4|Manisha|2011
5|Avinash|2012
6|Vinit|2022

To get this data partitioned based on YOJ, we will have to write a custom partitioner:
public class YearOfJoiningPartitioner extends Partitioner<IntWritable, Text> implements Configurable {

 private Configuration conf = null;

 @Override
 public int getPartition(IntWritable key, Text value, int numPartitions) {
 return key.get() % 10;
 }

 @Override
 public Configuration getConf() {

 return conf;
 }

 @Override
 public void setConf(Configuration conf) {
 this.conf = conf;

 }
}

In the custom partitioner, we need to override the getPartition()method where we will write our own custom partitioning logic. Here, we will be using YOJ as the key and partition the data based on the modulo 10 value of year. The value given by this method will be in the form of a reducer where the key will be reduced.
Now, to use this partitioner, we need to set this in the driver class, as shown here:
public class YOJPartitioner {

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 if (args.length != 2) {
 System.err.println("Usage: YOJPartitioner <in><out>");
 System.exit(2);
 }
 Job job = Job.getInstance(conf, "YOJPartitioner");
 job.setJarByClass(YOJPartitioner.class);
 job.setMapperClass(YOJPartitionerMapper.class);
 job.setReducerClass(YOJReducer.class);
 job.setOutputKeyClass(IntWritable.class);
 job.setOutputValueClass(Text.class);
 job.setPartitionerClass(YearOfJoiningPartitioner.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }
}

Now that we want to partition the data based on YOJ, we will have to set YOJ as the key while emitting data from the mapper, as shown here:
public static class YOJPartitionerMapper extends Mapper<Object, Text, IntWritable, Text> {

 public void map(Object key, Text value, Mapper<Object, Text, IntWritable, Text>.Context context)
 throws IOException, InterruptedException {
 String words[] = value.toString().split("[|]");
 context.write(new IntWritable(Integer.parseInt(words[2])), value);

 }
 }

Next, we will write the identity reducer, which emits keys and values as they come:
public static class YOJReducer extends Reducer<IntWritable, Text, Text, NullWritable> {
 protected void reduce(IntWritable key, Iterable<Text> values, Context context)
 throws IOException, InterruptedException {
 for (Text t : values) {
 context.write(t, NullWritable.get());
 }
 }
 }

When we execute this code in a multimode cluster, the records will be partitioned into different files based on the logic we wrote.

How it works...

When we provide the custom partitioner to the map reduce code and the mappers have finished their work, the custom partitioner will come into the picture. The keys are sent through the getPartition() method and the resultant value will be in the form of the reducer number where the keys are sent. Here, we are executing modulo 10 to the year value which would partition the data into 10 partitions. This way, by controlling the logic of the getPartition() method, we can decide which partitioning strategy to use.

Writing Map Reduce results to multiple output files

In this recipe, we are going to learn how to write a map reduce output to multiple output files. This will be useful when we need to use classified output for different purposes.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as an eclipse similar to an IDE.

How to do it...

Hadoop supports a class called MultipleOutputs, which allows us to write out of a map reduce program to multiple files. We can write output to different files, file types, and different locations with it. You can also choose the filename with this API. To use this, we will take a look at a simple word count program and write out of this program to multiple output files.
To do so, we need to add the named output files and their types in our Driver code, as shown here:
public class WordCount {
 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 if (args.length != 2) {
 System.err.println("Usage: wordcount <in><out>");
 System.exit(2);
 }
 Job job = Job.getInstance(conf, "WordCount");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 MultipleOutputs.addNamedOutput(job, "text", TextOutputFormat.class, Text.class, IntWritable.class);
 MultipleOutputs.addNamedOutput(job, "seq", SequenceFileOutputFormat.class, Text.class, IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

The highlighted code shows that we have two named output files, that is, the text and seq. This will generate two more files in addition to the default output files. Next, we need to update the reducer code to write output key values to these new files as well:
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
 private MultipleOutputs mos;
 private IntWritable result = new IntWritable();

 public void setup(Context context) {

 mos = new MultipleOutputs(context);
 }

 public void reduce(Text key, Iterable<IntWritable> values,
 Reducer<Text, IntWritable, Text, IntWritable>.Context context)
 throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 this.result.set(sum);
 mos.write("text", key, this.result);
 mos.write("seq", key, this.result);

 context.write(key, this.result);
 }

 public void cleanup(Context context) throws IOException, InterruptedException {
 mos.close();

 }
 }

In the setup method, we need to initiate the object of the MultipleOutputs class. In the reduce method, we have to add the write method, which would write the desired key values to two files, one of the text type and the other of the sequence file type.
Additionally, you can also specify the complete path apart from the default output path in the reducer code where you wish to see to your file:
mos.write(key, this.result, "/my_new_output_path_up/file");

It is very important to close the MultipleOutputs stream in the cleanup method.

How it works...

MulitpleOutputs is a great help in two conditions: when you wish to see multiple output files in different file formats and when you wish to write the output of your map reduce program in order to use specified files. MultipleOutputs supports counters but they are disabled by default. Once specified, MultipleOutputs will first create a file with a specific name, and then it will start writing any data if available. If no data is generated, it will still create zero-sized files. To avoid this, we can use LazyOutputFormat, as shown in the following. Details on LazyOutputFormat are available at https://hadoop.apache.org/docs/r2.6.1/api/org/apache/hadoop/mapreduce/lib/output/LazyOutputFormat.html. Here is the code for LazyOutputFormat:
LazyOutputFormat.setOutputFormatClass(job, TextOutputFormat.class);

Performing Reduce side Joins using Map Reduce

In this recipe, we are going to learn how to write a map reduce, which will join records from two tables.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as an eclipse that's similar to an IDE.

How to do it

We are aware of the various types of joins that are available in SQL—Inner Join, Left outer join, right outer join, full outer join, and so on. Performing joins in SQL is quite easy, but when it comes to MapReduce, this is a little tricky. In this recipe, we will be try to perform various join operations using the Map Reduce program in the following dataset.
Consider two datasets: the Users table, which has information about userId, username, and deptId. We also have data on the Department table where we have deptId and deptName as columns. If we place our data in a table, it would look like this:
Users' table:
	
User ID

	
Username

	
Department ID

	
1

	
Tanmay

	
1

	
2

	
Sneha

	
1

	
3

	
Sakalya

	
2

	
4

	
Manisha

	
2

	
5

	
Avinash

	
3

Department table:
	
Department ID

	
Department name

	
1

	
Engineering

	
2

	
Sales

	
3

	
Production

Here, deptId is the foreign key between two tables, and we will join the two tables based on this key.
To start with, we need to have a driver code where we will use the MultipleInputs API, which allows us to take the two input paths where the users and department table is stored in HDFS. We also need to accept the join type from the user, and lastly, we need to accept the output path where we will save our final result:
public class ReduceSideJoin {
 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 if (args.length != 4) {
 System.err.println("Usage: join <input-table1><input-table2><jointype:inner|leftouter|rightouter|fullouter><out>");
 System.exit(2);
 }
 Job job = Job.getInstance(conf, "Reduce Side Join");
 job.setJarByClass(ReduceSideJoin.class);

 job.setReducerClass(DeptJoinReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);
 MultipleInputs.addInputPath(job, new Path(args[0]), TextInputFormat.class, UserJoinMapper.class);
 MultipleInputs.addInputPath(job, new Path(args[1]), TextInputFormat.class, DeptJoinMapper.class);
 job.getConfiguration().set("join.type", args[2]);
 FileOutputFormat.setOutputPath(job, new Path(args[3]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

Next, we need to write two mappers that deal with each table. We'll first look at the users table. We'll join the records with deptId, hence we need to emit keys as deptIds. Also, we are going to append an identifier, which will help us classify records based on the table that they are from:
public static class UserJoinMapper extends Mapper<Object, Text, Text, Text> {
 private Text outkey = new Text();
 private Text outvalue = new Text();

 public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
 String attrs[] = value.toString().split("[\t]");
 String deptId = attrs[2];
 // The foreign join key is the dept ID
 outkey.set(deptId);
 // flag this each record with prefixing it with 'A'
 outvalue.set("A" + value.toString());
 context.write(outkey, outvalue);
 }
 }

Similarly, we'll write a mapper class for the department table as well:
public static class DeptJoinMapper extends Mapper<Object, Text, Text, Text> {
 private Text outkey = new Text();
 private Text outvalue = new Text();

 public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
 String attrs[] = value.toString().split("[\t]");
 String deptId = attrs[0];
 // The foreign join key is the dept ID
 outkey.set(deptId);
 // flag this each record with prefixing it with 'B'
 outvalue.set("B" + value.toString());
 context.write(outkey, outvalue);
 }
 }

Next, we need to write a reducer class where we will write our logic to join the records:
public static class DeptJoinReducer extends Reducer<Text, Text, Text, Text> {
 private static final Text EMPTY_TEXT = new Text("");
 private Text tmp = new Text();
 private ArrayList<Text> listA = new ArrayList<Text>();
 private ArrayList<Text> listB = new ArrayList<Text>();
 private String joinType = null;

 public void setup(Context context) {
 // set up join configuration based on input
 joinType = context.getConfiguration().get("join.type");
 }

 public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
 // Clear the lists
 listA.clear();
 listB.clear();
 // Put records from each table into correct lists, remove the prefix
 for (Text t : values) {
 tmp = t;
 if (tmp.charAt(0) == 'A') {
 listA.add(new Text(tmp.toString().substring(1)));
 } else if (tmp.charAt(0) == 'B') {
 listB.add(new Text(tmp.toString().substring(1)));
 }
 }
 // Execute joining logic based on its type
 executeJoinLogic(context);
 }
…
}

In the preceding code, we first initialize the two empty lists where we keep our records. There's one list for each table. We segregate the records based on their prefix. In the setup method, we also set up the join type that's been provided by the user in the job configuration.
Next, we need to write the join logic based on the join type. The following code shows the logic for the inner, left outer, right outer, and the full outer join:
private void executeJoinLogic(Context context) throws IOException, InterruptedException {
 if (joinType.equalsIgnoreCase("inner")) {

 if (!listA.isEmpty() && !listB.isEmpty()) {
 for (Text A : listA) {
 for (Text B : listB) {
 context.write(A, B);
 }
 }
 }
 } else if (joinType.equalsIgnoreCase("leftouter")) {

 for (Text A : listA) {

 if (!listB.isEmpty()) {
 for (Text B : listB) {
 context.write(A, B);
 }
 } else {

 context.write(A, EMPTY_TEXT);
 }
 }
 } else if (joinType.equalsIgnoreCase("rightouter")) {

 for (Text B : listB) {

 if (!listA.isEmpty()) {
 for (Text A : listA) {
 context.write(A, B);
 }
 } else {

 context.write(EMPTY_TEXT, B);
 }
 }
 } else if (joinType.equalsIgnoreCase("fullouter")) {

 if (!listA.isEmpty()) {

 for (Text A : listA) {

 if (!listB.isEmpty()) {
 for (Text B : listB) {
 context.write(A, B);
 }
 } else {

 context.write(A, EMPTY_TEXT);
 }
 }
 } else {

 for (Text B : listB) {
 context.write(EMPTY_TEXT, B);
 }
 }
 }
 }
 }

Now, when we compile this code and bundle it into jar, it is ready for execution. Before the execution, we need to prepare our input:
hadoop fs –mkdir /users
hadoop fs –put users.txt /users
hadoop fs –mkdir /dept
hadoop fs –put dept.txt /dept
hadoop jar join.jar com.demo.ReduceSideJoin /users /dept inner /inner-join-output

Once the execution is complete, you can take a look at the output file:
hadoop fs –cat /inner-join-output/part-r-00000
 2 Sneha	1	1	Engineering
 1 Tanmay	1	1	Engineering
 4 Manisha	2	2	Sales
 3 Sakalya	2	2	Sales
 5 Avinash	3	3	Production

How it works...

MulitpleInputs works with each mapper and sends data from the respective directories. Inside mappers, the keys and values are emitted based on the joining foreign key. When it comes to reducers, the actual join logic is executed based on the join type. Generally, reduce side joins consume a lot of resources and take more time than map side joins. But when you have huge data at hand, reduce side joins are the only options we have. Reduce side joins also cause huge network traffic as each and every record is sent to the reducers. Based on the foreign key to join, the keys should be changed. This way, you can update the code in the preceding section to join any two datasets easily.

Unit testing the Map Reduce code using MRUnit

In this recipe, we are going to learn how to unit test the map reduce code using a library called MRUnit.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as an eclipse similar to an IDE.

How to do it...

Sometimes, it is very difficult to develop, compile, deploy and execute the map reduce program and then figure out whether the code is correct or not. In order to avoid this deploying and testing technique, we can use a unit testing framework that's been built specially for Map Reduce called, MRUnit.
Let's assume that we have a map reduce program that emits and counts words starting with '#', such as a Twitter hashtag counter. The Mapper code for this hashtag counter looks like this:
public static class TokenizerMapper extends
 Mapper<Object, Text, Text, IntWritable> {
 private static final IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(Object key, Text value,
 Mapper<Object, Text, Text, IntWritable>.Context context)
 throws IOException, InterruptedException {
 StringTokenizer itr = new StringTokenizer(value.toString());
 while (itr.hasMoreTokens()) {
 this.word.set(itr.nextToken());
 if (word.toString().startsWith("#"))
 context.write(this.word, one);
 }
 }
 }

The Reduce code is a simple sum reducer code:
public static class IntSumReducer extends
 Reducer<Text, IntWritable, Text, IntWritable> {
 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,
 Reducer<Text, IntWritable, Text, IntWritable>.Context context)
 throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 this.result.set(sum);
 if (result.get() >= 2)
 context.write(key, this.result);
 }
 - }

Now, to unit test this code, we will first add dependencies that are required for MRUnit. We need the following dependencies to be added to POM.xml:
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 </dependency>
 <dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-all</artifactId>
 <version>2.0.2-beta</version>
 </dependency>
 <dependency>
 <groupId>org.apache.mrunit</groupId>
 <artifactId>mrunit</artifactId>
 <version>1.1.0</version>
 <classifier>hadoop1</classifier>
 </dependency>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-core</artifactId>
 <version>2.7.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.7.1</version>
 </dependency>

We need to write a test class that would test the methods from our Map Reduce code:
First we write a setup method which would initialize the objects:
MapDriver<Object, Text, Text, IntWritable> mapDriver;
 ReduceDriver<Text, IntWritable, Text, IntWritable> reduceDriver;
 MapReduceDriver<Object, Text, Text, IntWritable, Text, IntWritable> mapReduceDriver;

 @Before
 public void setUp() {
 TokenizerMapper mapper = new TokenizerMapper();
 IntSumReducer reducer = new IntSumReducer();
 mapDriver = MapDriver.newMapDriver(mapper);
 reduceDriver = ReduceDriver.newReduceDriver(reducer);
 mapReduceDriver = MapReduceDriver.newMapReduceDriver(mapper, reducer);
 }

Here, we are initiating the mapper, reducer, and drivers so that they can be accessed in test cases.
Now, let's write a test case for the mapper class:
@Test
 public void testMapper() throws IOException {
 	mapDriver.withInput(new LongWritable(), new Text("Hello World #mrunit"));
 mapDriver.withOutput(new Text("#mrunit"), new IntWritable(1));
 mapDriver.runTest();
 }

Here, we are testing whether the mapper only emits words starting with '#'.
Next, we will write a test case to check whether the reducer properly sums up the values:
@Test
 public void testReducer() throws IOException {
 List<IntWritable> values = new ArrayList<IntWritable>();
 values.add(new IntWritable(1));
 values.add(new IntWritable(1));
 reduceDriver.withInput(new Text("#mrunit"), values);
 reduceDriver.withOutput(new Text("#mrunit"), new IntWritable(2));
 reduceDriver.runTest();
 }

We can also write a combined test for the mapper and reducer:
 @Test
 public void testMapReduce() throws IOException {
 mapReduceDriver.withInput(new LongWritable(), new Text("Hello World #mrunit"));
 List<IntWritable> values = new ArrayList<IntWritable>();
 values.add(new IntWritable(1));
 values.add(new IntWritable(1));
 mapReduceDriver.withOutput(new Text("#mrunit"), new IntWritable(2));
 mapReduceDriver.runTest();
 }

This way, you can test any important logic that you have written in your map reduce code.

How it works...

MRUnit works exactly like any other testing framework, such as JUnit/TestNG. It only unit tests the logic. Mockito is a framework that helps mocking up an object, which is a part of the Hadoop/Map Reduce framework.
It is always good practice to unit test your code and only then deploy your map reduce jobs in production clusters. This also helps us with continuous integration to get to know any braking changes because any code update.

Chapter 4. Data Analysis Using Hive, Pig, and Hbase

	Storing and processing Hive data in a sequential file format
	Storing and processing Hive data in the RC file format
	Storing and processing Hive data in the ORC file format
	Storing and processing Hive data in the Parquet file format
	Performing FILTER By queries in Pig
	Performing Group By queries in Pig
	Performing Order By queries in Pig
	Performing JOINS in Pig
	Writing a user-defined function in Pig
	Analyzing web log data using Pig
	Performing the Hbase operation in CLI
	Performing Hbase operations in Java
	Executing the MapReduce programming Hbase Table

Introduction

In the previous chapter, we discussed how to write MapReduce programs in various ways in order to analyze data. Earlier, MapReduce was the only means of processing data in Hadoop, but with the passage of time, growing popularity, and the ease of using the Hadoop platform, various subprojects joined its league, which helps users write logic in SQL, scripts, and so on, and analyze the data. Projects, such as Apache Hive, Apache Pig, and Apache Hbase, are well accepted by users, so the majority of development these days takes place using any of these. In this chapter, we are going to take a look at how to use these tools to perform various advanced operations. If you are new to these terms, I would recommend that you read through these links first.
	For Hive resources, take a look a these links:
	https://hive.apache.org/
	http://hadooptutorials.co.in/tutorials/hive/introduction-to-apache-hive.html
	http://hadooptutorials.co.in/tutorials/hive/hive-data-units.html
	http://hadooptutorials.co.in/tutorials/hive/hive-best-practices.html

For Pig resources, take a look at these links:
	https://pig.apache.org/

For Hbase resources, take a look at these links:
	https://hbase.apache.org/

We won't be going through the installations of the above in this book as the installations are quite easy if your Hadoop cluster is already installed; just download the binaries and set the installation paths with few or no configurations as you'll have to use all of them.
Let's get started with our first recipe now.

Storing and processing Hive data in a sequential file format

I'm sure that most of the time, you would have created Hive tables and stored data in a text format; in this recipe, we are going to store data in sequential files.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hive installed on it. Here, I am going to use Hive 1.2.1.

How to do it...

Hive 1.2.1 supports various different types of files, which help process data in a faster manner. In this recipe, we are going to use sequential files to store data in Hive. To store data in sequential files, we first need to create a Hive table that stores the data in a textual format:
create table employee(
id int, name string)
row format delimited
fields terminated by '|'
 stored as textfile;

The preceding statement will create a table in Hive along with the employee name. Now, let's load data into this table:
load data local inpath '/usr/local/hive/examples/files/employee.dat' into table employee;

Here, I am using an example data file that's been provided by the Hive distribution itself. The location where Hive is installed is /usr/local/hive.
Now, we can execute a select query to check whether the data is correct:
select * from employee;

You should see this output:
16 john
17 robert
18 andrew
19 katty
21 tom
22 tim
23 james
24 paul
27 edward
29 alan
31 kerry
34

terri

Now, to store data in a sequential file format, we will create one more table and insert data from this table to the new table:
create table employee_seq(
id int, name string)
row format delimited
fields terminated by '|'
stored as SEQUENCEFILE;

This will create a table in Hive that will read data in the sequential file format. Let's insert data into this table:
insert into employee_seq
select * from employee;

This will start a MapReduce program, which will read the data from the text table and write it to files in the sequential file format.
We can again verify that it's been stored properly by executing this code:
select * from employee_seq;

This will give you all the records from the sequential file.
Just to check whether the data is stored in sequential files, you can check the HDFS file directly, which gives you unreadable text on your screen:
hadoop fs -cat /user/hive/warehouse/employee_seq/000000_0

How it works...

A sequential file is a flat file consisting of key value pairs. It is one of the most commonly used file formats in the Hadoop ecosystem. It's worth noting that the temporary output of maps is stored in the sequential file format. The sequential file provides a writer, reader, and sorter classes to read, write, and sort data. There are three types of sequential files:
	Uncompressed key value records
	Record compressed key value records, where only values are compressed
	Block compressed key value records, where keys and values are stored in blocks, and the blocks are compressed.

You can select the type of sequential file you want by setting the following property in either mapred-site.xml, hive-site.xml, or setting it before a job or query execution:
<property>
 <name>mapred.output.compression.type</name>
 <value>BLOCK</value>
 <description>If the job outputs are to compressed as SequenceFiles, how should they be compressed? Should be one of NONE, RECORD or BLOCK.
 </description>
</property>

This way, you can use sequential files to store your data. Processing these files is the same as processing any other Hive query.

Storing and processing Hive data in the ORC file format

I'm sure that most of the time, you would have created Hive tables and stored data in a text format; in this recipe, we are going to store data in RC files.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hive installed on it. Here, I am going to use Hive 1.2.1.

How to do it...

Hive 1.2.1 supports different types of files, which help process data in a fast manner. In this recipe, we are going to use RC files to store data in Hive. To store data in RC files, we first need to create a Hive table that stores this data in a textual format. We will use the same table that we created in the first recipe.
Creating a table to store RCFILE is very easy, as shown here:
create table employee_rc(
id int, name string)
row format delimited
fields terminated by '|'
stored as RCFILE;

To insert data into the table from our text table, we need to execute the following query, which would start the MapReduce program that reads the data from one table in order to write it using the RCFILE writer:
insert into table employee_rc
select * from employee;

We can verify the data import by selecting the records from the table and displaying it on the console:
select * from employee_rc;

We can also look at the actual file stored in the Hive warehouse folder, which won't be as readable:
hadoop fs -cat /user/hive/warehouse/employee_rc/000000_0

How it works...

RC files are Record Columnar files that are flat and store the data in binary key value pairs, which is similar to sequence files. An RC file stores records in a columnar manner. Let's assume that we have the following table data:
	
C1

	
C2

	
C3

	
C4

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
11

	
12

	
13

	
14

	
15

	
16

	
17

	
18

	
19

	
20

To serialize this data, it first horizontally partitions the data into multiple row groups, which looks like this:
Row group 1:
	
C1

	
C2

	
C3

	
C4

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
11

	
12

Row group 2:
	
C1

	
C2

	
C3

	
C4

	
13

	
14

	
15

	
16

	
17

	
18

	
19

	
20

Next, it partitions the data within the row group vertically similar to a column store:
Row group 1:
1;5;9
2;6;10
3;7;11
4;8;12
Row group 2
13;17
14;18
15;19
16;20
Within row groups, columns are compressed to reduce the storage.
These file storages are more efficient when a query only requires a subset of columns as the output at which time, it only reads the required output, whereas in a row store, it needs to scan the complete row itself, which consumes more I/O. This way, we can store the retrieved data more efficiently using the RC file.

Storing and processing Hive data in the ORC file format

I'm sure that most of the time, you would have created Hive tables and stored data in a text format; in this recipe, we are going store data in ORC files.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hive installed on it. Here, I am going to use Hive 1.2.1.

How to do it...

Hive 1.2.1 supports different types of files, which help process data in a fast manner. In this recipe, we are going to use ORC files to store data in Hive. To store the data in ORC files, we first need to create a Hive table that stores the data in a textual format. We will use the same table that we created in the first recipe.
Creating a table to store ORCFILE is very easy, as shown here:
create table employee_orc(
id int, name string)
row format delimited
fields terminated by '|'
stored as ORC;

To insert data into the table from our text table, we need to execute the following query, which would start the Map Reduce program that reads the data from one table in order to write it using the ORC writer:
insert into table employee_orc
select * from employee;

We can verify the data import by selecting the records from the table and displaying it in the console:
select * from employee_orc;

We can also look at the actual file stored in the Hive warehouse folder, which won't be as readable:
hadoop fs -cat /user/hive/warehouse/employee_orc/000000_0

How it works...

ORC files stand for Optimized Record Columnar files, which are specially designed to improve data reading, writing, and processing in Hadoop-based systems. An ORC file will give you the following advantages over other file formats such as RC and sequential:
	A single file as the output of each task
	Supports data types such as date and time, decimals and complex types, and so on
	Lightweight indexes that are included in the file itself
	Concurrent reads of the same file using individual RecordReaders
	It's able to scan files without scanning for markers
	Metadata is stored using Protocol Buffers, which help add and remove fields

The data storage, partitions, and so on are the same as the RC file, but apart from this, it also contains additional fields/information that help achieve the preceding advantages over other files.
The ORC file contains groups of row data, which are called stripes. The default size of each stripe is 250MB; this size enables the efficient reading of data from HDFS. The auxiliary information is kept in a file footer. It contains information like the number of stripes in a file, rows per stripe, and each column's data type. It also contains column-level aggregations such as count, min, max, and sum.
Here's the ORC file structure:
[image: How it works...]

Storing and processing Hive data in the Parquet file format

I'm sure that most of the time, you would have created Hive tables and stored data in a text format; in this recipe, we are going to learn how to store data in PARQUET files.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hive installed on it. Here, I am going to use Hive 1.2.1.

How to do it...

Hive 1.2.1 supports various types of files, which help process data more efficiently. Parquet is an ecosystem-wide accepted file format and can be used in Hive, Map Reduce, Pig, Impala, and so on. To store the data in Parquet files, we first need to create one Hive table, which will store the data in a textual format. We will use the same table that we created in the first recipe.
Creating a table to store Parquet is very easy, as shown here:
create table employee_par(
id int, name string)
row format delimited
fields terminated by '|'
stored as PARQUET;

To insert data into the table from our text table, we need to execute the following query, which would start the Map Reduce program so that it reads the data from one table in order to write it using the ORC writer:
insert into table employee_par
select * from employee;

We can verify the data import by selecting the records from the table and displaying it in the console:
select * from employee_par;

We can also take a look at the actual file stored in the Hive warehouse folder, which will not be as readable:
hadoop fs -cat /user/hive/warehouse/employee_par/000000_0

How it works...

Parquet files were designed keeping in mind the best compressed and columnar data files. They are built to support very efficient compressions and encoding schemes. A lot of projects have demonstrated the impact of efficient encoding and compression schemes. Parquet allows us to specify the compressions scheme per column level. It is also built to accommodate new compression and encoding schemes for future needs and extensibility. A detailed description of the Parquet storage format is available at https://parquet.apache.org/documentation/latest/.

Performing FILTER By queries in Pig

After going through the various file formats that we can use to store data in HDFS, it's time to take a look at how to execute various operations in Pig. Pig is a data flow language and works in the same way as Hive by transforming the instructions given in Pig Latin to Map Reduce programs.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Pig installed on it. Here, I am going to use Pig 0.15. In case you don't have the installation already, you can refer to https://pig.apache.org/docs/r0.15.0/start.html#Pig+Setup.

How to do it...

In this recipe, you will learn how to use FILTER BY in the Pig script. To do so, let's assume that we have an employee dataset that is stored in the following format (ID, name, department, and salary):
1	Tanmay	ENGINEERING	5000
2	Sneha	PRODUCTION	8000
3	Sakalya	ENGINEERING	7000
4	Avinash	SALES	6000
5	Manisha	SALES	5700
6	Vinit	FINANCE	6200

Here the columns are delimited by \+t (Tab).
Now, let's put this data into HDFS and load it into Pig bag:
hadoop fs -mkdir /pig/emps_data
hadoop fs -put emps.txt /pig/emps_data

Apart from regular daemons, Pig needs one more daemon to be running on Hadoop called a Job History Server. If you have not started it earlier, execute the following command:
/usr/local/hadoop/sbin/mr-jobhistory-daemon.sh start historyserver

Start the Pig interactive shell to perform the processing. Pig's shell is called grunt. Now, let's load the data we have put in HDFS into one bag, say emps:
emps = LOAD '/pig/emps_data/emps.txt' AS (id, name, dept, salary);

This will load the data into the emps bag through the columns, as shown in the preceding command. The default delimiter is \+t (Tab).
Next, we filter some databases on the basis of salary and load into a new bag called rich:
rich = FILTER emps BY salary > 6000;

Pig scripts are lazy executors, which means that unless they don't get any actionable command, Pig will keep on stacking up the instructions. In order to perform the processing, we need to provide an actionable command, such as DUMP, which asks Pig to print the tuples of the bag in the terminal:
DUMP rich;

This will invoke the Map Reduce job as long as all the commands are received by grunt. On completion, you should be able to see results on your screen like this:
(2,Sneha,PRODUCTION,8000)
(3,Sakalya,ENGINEERING,7000)
(6,Vinit,FINANCE,6200)

How it works...

Pig has some very interesting terminology. In Pig, an item is called an Atom. A collection of Atoms is called a tuple. Collections of tuples are called bags. When we load data into a bag, we don't always need to provide data types for the atoms unlike Hive. Depending on the actions submitted by users, grunt explicitly casts the data into specific data types. It also informs the user that it has performed the type casting. When we use the FILTER BY command in a Pig script, it converts it into a Map Reduce program where the filtering logic is mostly applied in a mapper function.
After map, only those records are sent to reducers that are in line with the filter criteria. This way, we can filter out things we wish to.

Performing Group By queries in Pig

In this recipe, we will use the Group By operator in Pig scripts to get the desired output.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Pig installed on it.

How to do it...

Group By is a very useful operator for data analysis. Pig supports this operator so that we can perform aggregations at the group level. Take the same data that we used in the previous recipe where we have this employee dataset:
1	Tanmay	ENGINEERING	5000
2	Sneha	PRODUCTION	8000
3	Sakalya	ENGINEERING	7000
4	Avinash	SALES	6000
5	Manisha	SALES	5700
6	Vinit	FINANCE	6200

First of all, load the data into HDFS:
hadoop fs -mkdir /pig/emps_data
hadoop fs -put emps.txt /pig/emps_data

Next, we load the data into a bag called emps, and then perform the Group By operation on this data by the department:
emps = LOAD '/pig/emps_data/emps.txt' AS (id, name, dept, salary);
by_dept = GROUP emps BY dept;
DUMP by_dept;

This will start a MapReduce job, which groups tuples by the department. As a result, you will see these details on your screen:
(SALES,{(5,Manisha,SALES,5700),(4,Avinash,SALES,6000)})
(FINANCE,{(6,Vinit,FINANCE,6200)})
(PRODUCTION,{(2,Sneha,PRODUCTION,8000)})
(ENGINEERING,{(3,Sakalya,ENGINEERING,7000),(1,Tanmay,ENGINEERING,5000)})

We can also get the count of the employees by executing the following query:
dept_counts = FOREACH by_dept GENERATE
group as dept,
COUNT(emps);
DUMP dept_counts;

Use the aggregation function called count to count the number of employees per department. You will see the following results on completion:
(SALES,2)
(FINANCE,1)
(PRODUCTION,1)
(ENGINEERING,2)

We can also perform Group By on multiple attributes together. We just need to specify the attribute name one by one after the by clause.

How it works...

Pig converts the actions provided in the pig script form into MapReduce jobs. To perform Group By, it first maps the data by the key and then reduces the records with the help of this key. The group operator groups together all the tuples by the key. If the by clause has multiple keys, then the group key will be a tuple. You can get more information about the Group operator at https://pig.apache.org/docs/r0.7.0/piglatin_ref2.html#GROUP.

Performing Order By queries in Pig

In this recipe, we will use the Order By operator in Pig scripts to get the desired output.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Pig installed on it.

How to do it..

Order By is a very useful operator for data analysis when it comes to sequencing data records based on their values for certain attributes. In order to sequence the records in the proper order, Pig supports Order By.
To learn its usage, we will use the dataset that we took a look at in the previous recipe; in case you don't have the employee dataset, you can perform the following actions.
First of all, load the data in HDFS:
hadoop fs -mkdir /pig/emps_data
hadoop fs -put emps.txt /pig/emps_data

Next, we load data into a bag called emps, and then perform the Order By operation on this data on the basis of salary:
emps = LOAD '/pig/emps_data/emps.txt' AS (id, name, dept, salary);

Next, we will sequence the data by salary. We can also specify the order type, that is, whether it should be in ascending or descending form:
sorted_emps = ORDER emps by salary DESC;
DUMP sorted_emps;

At the end of the execution, you will see the following results:
(2,Sneha,PRODUCTION,8000)
(3,Sakalya,ENGINEERING,7000)
(6,Vinit,FINANCE,6200)
(4,Avinash,SALES,6000)
(5,Manisha,SALES,5700)
(1,Tanmay,ENGINEERING,5000)

How it works...

Pig converts the actions provided in the Pig script form into MapReduce jobs. When we execute the order through this command, a MapReduce job will get invoked in order to sort the data on the basis of the provided attribute. Pig performs a natural sort on the attribute, that is, here, we need to order employees by their salary. Therefore, the MapReduce job will get triggered so that it can sort the salary, which is of the data type integer. Similarly, if we order the record by a string, it sequences the string by its natural order.

Performing JOINS in Pig

In this recipe, we will learn how to perform various joins in Pig in order to join datasets.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Pig installed on it.

How to do it...

JOIN operations are very famous in SQL. Pig Latin also supports joining datasets based on a common attribute between them. Pig supports both Inner and Outer joins. Let's understand these syntaxes one by one.
In order to learn about Joins in Pig, we'll need two datasets. The first one is the employee dataset, which we have been using in earlier recipes, the second is the ID location dataset, which contains information about the ID of an employee and their location.
The employee dataset will look like this:
1	Tanmay	ENGINEERING	5000
2	Sneha	PRODUCTION	8000
3	Sakalya	ENGINEERING	7000
4	Avinash	SALES	6000
5	Manisha	SALES	5700
6	Vinit	FINANCE	6200

The ID location dataset will look like this:
1	Pune
2	London
3	Mumbai
4	Pune

Like the emps data, we also loaded the ID locations data in HDFS and then into the id_locations bag:
hadoop fs -put id_locations /pig/emps_data

On grunt:
id_location = load '/pig/emps_data/id_locations' AS (emp_id, location);

Now, to perform inner joins on these datasets, we'll execute the following command:
emps_location = JOIN emps BY id, id_location BY emp_id;
DUMP emps_location;

As result, you will get the following displayed on your screen:
(1,Tanmay,ENGINEERING,5000,1,Pune)
(2,Sneha,PRODUCTION,8000,2,London)
(3,Sakalya,ENGINEERING,7000,3,Mumbai)
(4,Avinash,SALES,6000,4,Pune)

As this is the inner join, only matching ID records will make it to the final results.
Next, we can execute OUTER Joins on the same dataset; to perform the LEFT OUTER join, we execute the following command:
emps_location_left_outer = JOIN emps BY id LEFT OUTER, id_location BY emp_id;
DUMP emps_location_left_outer;

On successful execution, you will see the following results:
(1,Tanmay,ENGINEERING,5000,1,Pune)
(2,Sneha,PRODUCTION,8000,2,London)
(3,Sakalya,ENGINEERING,7000,3,Mumbai)
(4,Avinash,SALES,6000,4,Pune)
(5,Manisha,SALES,5700,,)
(6,Vinit,FINANCE,6200,,)

Here, all records from the LHS of the command will make it to the final table, and all the nonmatching records will be kept blank.
Similarly, we can perform RIGHT OUTER and FULL OUTER joins as well.
We can also specify the type of specialized joins supported by Pig, that is, Replicated Joins, Skewed Joins, and Merge Joins:
emps_location_left_outer = JOIN emps BY id LEFT OUTER, id_location BY emp_id using 'replicated';
DUMP emps_location_left_outer;

The results are the same but Pig performs certain optimizations when we mention these types. Similarly, we can use skewed and merge joins as well.

How it works

Pig converts the actions provided in the Pig script form into Map Reduce jobs. In the previous chapter, we spoke about how to write a Map Reduce program to perform joins. When we execute the JOIN operation, Pig converts it into a Map Reduce job.
To perform optimizations while executing JOINS in pig, we can specify the join type as a replicated, skewed, or merge join. Let's understand what these joins mean.
Replicated Joins

Replicated joins are fragmented joins in which a piece of data is taken in memory and joined with other sets of data in a map function. These joins can only be performed on the Left Outer join. Having data in the memory helps reduce IO disk seeks and provides optimization during executions.
Note
You can read more about Replicated Joins at https://pig.apache.org/docs/r0.11.1/perf.html#replicated-joins.

Skewed Joins

Parallel joins can be vulnerable to any skews in data. If the data is skewed enough, it might encounter some issues when balancing data parts during executions. To avoid this, skewed joins compute a histogram of key spaces and use this information to allocate reducers for a given key. Skewed joins only have certain conditions: first, currently, a skewed join can only be performed on two tables and not more than that at one go, second, it does not address uneven data balancing across reducers; it makes sure that tasks are executed slowly rather than failing them.
Note
You can read more about skewed joins at https://pig.apache.org/docs/r0.11.1/perf.html#skewed-joins.

Merge Joins

Joins are beneficial when they are performed in the map phase of a Map Reduce program. Pig supports merge joins, which work with presorted data. Here, the idea is to gain performance benefits by performing joins in the map phase and avoid sending huge amounts of data through the sort and shuffle phase.
Note
You can read more about merge joins at

https://pig.apache.org/docs/r0.11.1/perf.html#merge-joins.

Writing a user-defined function in Pig

In this recipe, we will learn how to write user-defined functions (UDFs) in order to have our own custom filters.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Pig installed on it. We will also need an IDE, such as Eclipse, to write the Java class.

How to do it...

In this recipe, we are going to write user-defined functions for the dataset we have been considering in this chapter. Our dataset is an employee dataset, so let's assume that we want to convert all the names present in our dataset into uppercase. To do this, we will write a user-defined function to convert the lowercase letters into uppercase letters.
Writing a UDF is very simple: we need to write a class that extends the EvalFunc Pig class. In order to have this and other Hadoop classes in our class path, first of all, we need to create a maven project, and add the following dependencies to the POM.xml project:
 <dependency>
 <groupId>org.apache.pig</groupId>
 <artifactId>pig</artifactId>
 <version>0.15.0</version>
 </dependency>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-core</artifactId>
 <version>2.7.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.7.1</version>
 </dependency>

Now, we write a class that extends the EvalFunc class and overwrites the exec method in it:
package com.demo.pig.udf;

import java.io.IOException;

import org.apache.pig.EvalFunc;
import org.apache.pig.data.DataByteArray;
import org.apache.pig.data.Tuple;

/**
 * Used Defined Function in Pig to covert given string argument into Upper Case
 *
 */
public class ToUpper extends EvalFunc<String> {

 /**
 * Pig hands over the tuple instead of specific arguement, we need to get
 * the specific attribute from tuple by calling tuple.get() method
 *
 */
 @Override
 public String exec(Tuple input) throws IOException {
 if (null == input || input.size() == 0) {
 return null;
 }
 try {
 DataByteArray name = (DataByteArray) input.get(1);
 return name.toString().toUpperCase();

 } catch (Exception e) {
 throw new IOException("Caught exception while processing ", e);
 }

 }

}

In the exec method, we get a complete tuple, and we need to convert the name column, which is at index 1 in our tuple. By default, if we don't specify any data type while loading data into the bag, the data type is assumed to be DataByteArray. So, we simply extract it and convert it into uppercase and return the converted string.
Now, we build our maven project to create a JAR of this implementation. Once the JAR is ready, we copy it to the Hadoop cluster and do the following things in order to use this UDF:
REGISTER ToUpperUDF-1.0.jar;
emps_upper = FOREACH emps GENERATE com.demo.pig.udf.ToUpper(*);
DUMP emps_upper;

In the first statement, we register the UDF jar with Pig. Next, we create a new bag, which would have converted the uppercase names from our previous emps bag. To start the execution, we DUMP the values in emps_upper.
Once the execution is complete, we will see the following results:
(TANMAY)
(SNEHA)
(SAKALYA)
(AVINASH)
(MANISHA)
(VINIT)

How it works...

Whenever we register a function in Pig, we include the implementation in the Pig class path. So, whenever the UDF class is mentioned, Pig looks for this class in its class path. If the proper name is provided at the time of execution, Pig will send the tuples to the respective implementation and get back the returned results.

There's more...

Similar to EvalFunc, we can also write FilterFunc, which can be used to filter out tuples based on certain values of the tuple. Here is an example function that filters out ENGINEERING department employees from the dataset:
package com.demo.pig.udf;

import java.io.IOException;

import org.apache.pig.FilterFunc;
import org.apache.pig.data.DataByteArray;
import org.apache.pig.data.Tuple;

public class EngFilter extends FilterFunc {

 @Override
 public Boolean exec(Tuple input) throws IOException {
 if (null == input || input.size() == 0) {
 return false;
 }
 try {
 DataByteArray name = (DataByteArray) input.get(2);
 if (name.toString().equalsIgnoreCase("ENGINEERING")) {
 return true;
 } else {
 return false;
 }

 } catch (Exception e) {
 throw new IOException("Caught exception while processing ", e);
 }
 }

}

Here, we check whether the department is engineering and only then return true, else we return false. Now, we build the jar and execute it using this filter in the following way:
REGISTER udfs-1.0.jar;
emps_eng = FILTER emps BY com.demo.pig.udf.EngFilter(*);
DUMP emps_eng;

At the end of the execution, you will see results like these:
(1,Tanmay,ENGINEERING,5000)
(3,Sakalya,ENGINEERING,7000)

Analyzing web log data using Pig

In this recipe, we will learn how to use Pig scripts to analyze web log data.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Pig installed on it.

How to do it...

In the previous chapter, we saw how to analyze web logs using the MapReduce program. In this recipe, we are going to take a look at how to use Pig scripts to analyze web log data. Let's consider two use cases:
Here is a sample of web log data:
106.208.17.105 - - [12/Nov/2015:21:20:32 -0800] "GET /tutorials/mapreduce/advanced-map-reduce-examples-1.html HTTP/1.1" 200 0 "https://www.google.co.in/" "Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2490.86 Safari/537.36"
60.250.32.153 - - [12/Nov/2015:21:42:14 -0800] "GET /tutorials/elasticsearch/install-elasticsearch-kibana-logstash-on-windows.html HTTP/1.1" 304 0 - "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2490.86 Safari/537.36"
49.49.250.23 - - [12/Nov/2015:21:40:56 -0800] "GET /tutorials/hadoop/images/internals-of-hdfs-file-read-operations/HDFS_Read_Write.png HTTP/1.1" 200 0 "http://hadooptutorials.co.in/tutorials/spark/install-apache-spark-on-ubuntu.html" "Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; Touch; LCTE; rv:11.0) like Gecko"
60.250.32.153 - - [12/Nov/2015:21:36:01 -0800] "GET /tutorials/elasticsearch/install-elasticsearch-kibana-logstash-on-windows.html HTTP/1.1" 200 0 - "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2490.86 Safari/537.36"
91.200.12.136 - - [12/Nov/2015:21:30:14 -0800] "GET /tutorials/hadoop/hadoop-fundamentals.html HTTP/1.1" 200 0 "http://hadooptutorials.co.in/tutorials/hadoop/hadoop-fundamentals.html" "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.99 Safari/537.36"

These logs are formatted in the following manner:
	%h is the remote host (that is, the IP client)
	%l is the identity of the user determined by an identifier (this is not usually used since it's not reliable)
	%u is the username determined by the HTTP authentication
	%t is the time taken by the server to finish processing a request
	%r is the request line from a client ("GET / HTTP/1.0")
	%>s is the status code sent from a server to a client (200, 404, and so on)
	%b is the size of the response to a client (in bytes)
	The referrer is the page that is linked to the URL
	The user agent is a browser identification string

Now, let's load this data into the bag and start analyzing it:
hadoop fs –mkdir /data
hadoop fs –put web_log.tx /data

In grunt, we start loading this data into a bag:
raw_logs = LOAD '/data/web_log.txt' USING TextLoader AS (line:chararray);

This way, we can load each web load as a single line. Next, we write regex, which parses the data into respective attributes:
logs_base = FOREACH raw_logs GENERATE FLATTEN (REGEX_EXTRACT_ALL(line,'^(\\S+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] "(.+?)" (\\S+) (\\S+) "([^"]*)" "([^"]*)"')) AS (ip: chararray, id: chararray, user: chararray, time: chararray, request: chararray, status: int, bytes_string: chararray, referrer: chararray, browser: chararray);

Now, we need to find the referrer sites from which we are getting the most traffic. To do this, we execute the following commands:
by_referrer = GROUP logs_base BY referrer

referrer_counts = FOREACH by_referrer GENERATE
group as referrer,
COUNT(logs_base);

DUMP referrer_counts;

On successful completion, we will see these results:
(https://www.google.co.in/,1)
(http://hadooptutorials.co.in/tutorials/hadoop/hadoop-fundamentals.html,1)
(http://hadooptutorials.co.in/tutorials/spark/install-apache-spark-on-ubuntu.html,1)
(,0)

Next, we can find the requests that have resulted into some errors. Here, an error could be any request whose status is 4XX or 5XX. Now, we write a filter function to execute this:
package com.demo.pig.udf;

import java.io.IOException;

import org.apache.pig.FilterFunc;
import org.apache.pig.data.Tuple;

public class ErrorFilter extends FilterFunc {

 @Override
 public Boolean exec(Tuple input) throws IOException {
 if (null == input || input.size() == 0) {
 return false;
 }
 try {
 String statusStr = (String) input.get(5);
 if (null == statusStr){
 return false;
 }
 int status = Integer.parseInt(statusStr);
 if (status <= 400 && status >= 505) {
 return true;
 } else {
 return false;
 }

 } catch (Exception e) {
 throw new IOException("Caught exception while processing ", e);
 }
 }
}

We create a jar of this class and copy it in the Hadoop cluster. We'll execute the following to get the web logs with errors:
REGISTER udfs-1.0.jar ;
log_base_error = FILTER logs_base BY com.demo.pig.udf.ErrorFilter(*);
DUMP log_base_error;

How it works...

Here, we use various things that we have already taken a look at in the earlier recipes. The important thing is to parse the logs using the correct regex. If you get this right, the next few things will be a cakewalk for you.

Performing the Hbase operation in CLI

Now that we have gone through various operations in Pig and Hive, it's time to learn about some operations in Hbase. Hbase is a NoSQL database and runs on top of HDFS. In this recipe, we are going to take a look at how to perform various Hbase command-line operations.
Getting ready

To perform this recipe, you should have a Hadoop cluster running as well as the latest version of Hbase installed on it. In case you don't know how to install Hbase, here is a link you can refer to http://hbase.apache.org/book.html#quickstart.

How to do it

Once the installation is complete, execute the following command to start daemons that are related to Hbase such as Zookeeper, Hbase Master, and Hbase region server:
/usr/local/hbase/bin/start-hbase.sh

Once all the daemons are up and running, you can start the Hbase shell by executing the following code:
hbase shell

You can also open the Hbase UI in a browser. You can hit the following URL to view the Hbase UI:

http://<hostname>:16010.
Let's start with a command in Hbase.
	List:hbase(main):001:0> list
TABLE
test_table
1 row(s) in 0.3730 seconds

=> ["test_table"]

This lists the tables that are present in the key space.

	Status:This returns the status of the system and the number of servers:
hbase(main):002:0> status
1 servers, 0 dead, 3.0000 average load

	Version:This prints the running version of Hbase:
hbase(main):003:0> version
1.0.1.1, re1dbf4df30d214fca14908df71d038081577ea46, Sun May 17 12:34:26 PDT 2015

	table_help:This provides help for table-related operations:
hbase(main):004:0> table_help

Help for table-reference commands.
You can either create a table via create and then manipulate the table via commands like put, get, and so on.
See the standard help information for how to use each of these commands.
However, as of 0.96, you can also get a reference to a table, on which you can invoke commands.
For instance, you can get create a table and keep around a reference to it via:
 hbase> t = create 't', 'cf'

Or, if you have already created the table, you can get a reference to it:
 hbase> t = get_table 't'

You can do things like call put on the table:
 hbase> t.put 'r', 'cf:q', 'v'

which puts a row 'r' with column family 'cf', qualifier 'q' and value 'v' into table t. To read the data out, you can scan the table:
 hbase> t.scan

which will read all the rows in table 't'.
Essentially, any command that takes a table name can also be done via table reference. Other commands include things like: get, delete, deleteall., get_all_columns, get_counter, count, incr. These functions, along with the standard JRuby object methods are also available via tab completion.
For more information on how to use each of these commands, you can also just type:
 hbase> t.help 'scan'

which will output more information on how to use that command.
You can also perform general admin actions directly on table; things such as enable, disable, flush, and drop just by typing this:
 hbase> t.enable
 hbase> t.flush
 hbase> t.disable
 hbase> t.drop

Note that after dropping a table, your reference to it becomes useless and further usage is undefined (and not recommended).

	Creating a table:Now, let's create a table called employee, which contains two column families: one to store personal details and the other to store professional details:
hbase(main):005:0> create 'emp', 'personal details', 'professional details';

	Describe the table:We can describe the created table to know about its details:
hbase(main):017:0> describe 'emp'
Table emp is ENABLED
emp
COLUMN FAMILIES DESCRIPTION
{NAME => 'personal details', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROW', REPLICATION_SCOPE => '0', VERSIONS => '1', COMPRESSION => 'NONE'
, MIN_VERSIONS => '0', TTL => 'FOREVER', KEEP_DELETED_CELLS => 'FALSE', BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE => 'true'}
{NAME => 'professional details', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROW', REPLICATION_SCOPE => '0', VERSIONS => '1', COMPRESSION => 'N
ONE', MIN_VERSIONS => '0', TTL => 'FOREVER', KEEP_DELETED_CELLS => 'FALSE', BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE => 'true'}
2 row(s) in 0.0170 seconds

	Inserting data into the tableWe can insert data into the tables using the put command, as shown here:
hbase(main):018:0> put 'emp','1','personal details:name','Ram'
0 row(s) in 0.0820 seconds

hbase(main):019:0> put 'emp','1','personal details:location','Pune'
0 row(s) in 0.0100 seconds

hbase(main):020:0>
hbase(main):021:0* put 'emp','1','professional details:designation','Software Engineer'
0 row(s) in 0.0090 seconds

hbase(main):022:0> put 'emp','1','professional details:salary','10000'
0 row(s) in 0.0060 seconds

	Viewing records:We can see the inserted data by using the scan command, as shown here:
hbase(main):023:0> scan 'emp'
ROW COLUMN+CELL
 1 column=personal details:location, timestamp=1448777442105, value=Pune
 1 column=personal details:name, timestamp=1448777442076, value=Ram
 1 column=professional details:designation, timestamp=1448777442149, value=Software Engineer
 1 column=professional details:salary, timestamp=1448777442169, value=10000
1 row(s) in 0.0280 seconds

	Updating the record:To update the record, we need to use the put command, as shown in the following code snippet. Here, we will be updating the salary to 12000:
hbase(main):024:0> put 'emp','1','professional details:salary','12000'
0 row(s) in 0.0070 seconds

hbase(main):025:0> scan 'emp'
ROW COLUMN+CELL
 1 column=personal details:location, timestamp=1448777442105, value=Pune1 column=personal details:name, timestamp=1448777442076, value=Ram
 1 column=professional details:designation, timestamp=1448777442149, value=Software Engineer
 1 column=professional details:salary, timestamp=1448777689830, value=12000
1 row(s) in 0.0110 seconds

	Getting the recordTo get the record from Hbase, we can use the get command:
hbase(main):026:0> get 'emp', '1'
COLUMN CELL
 personal details:location timestamp=1448777442105, value=Pune
 personal details:name timestamp=1448777442076, value=Ram
 professional details:designation timestamp=1448777442149, value=Software Engineer
 professional details:salary timestamp=1448777689830, value=12000
4 row(s) in 0.0240 seconds

	Getting a specific column from the record:hbase(main):002:0> get 'emp', '1', { COLUMN => 'personal details:name'}
COLUMN CELL
 personal details:name timestamp=1448777442076, value=Ram
1 row(s) in 0.2270 seconds

	Deleting a specific column:We can delete a specific column in Hbase by executing the delete commanding in the following manner
hbase(main):004:0> delete 'emp', '1', 'personal details:location', 1448777442076
0 row(s) in 0.0430 seconds

	Deleting a complete row:We can delete a complete row by using the delete all command.
hbase(main):006:0> deleteall 'emp','1'
0 row(s) in 0.0070 seconds

hbase(main):007:0> scan 'emp'
ROW COLUMN+CELL
0 row(s) in 0.0060 seconds

	Counting the number of rows:We can use the count command to count the number of rows in a specific table.
hbase(main):014:0> count 'emp'
1 row(s) in 0.0090 seconds
=> 1

	Dropping a table.We can drop a table by first disabling it and then executing the dropped table:
hbase(main):016:0> disable 'emp'
0 row(s) in 1.2120 seconds

hbase(main):017:0> drop 'emp'
0 row(s) in 0.1670 seconds

How it works...

Hbase is a NoSQL database, which runs on top of HDFS. We know that HDFS is used for the batch access of data, but it cannot be used to randomly access data, whereas Hbase is used to randomly access data. It is a columnar database where we can have thousands of columns for a particular row. The following is the table structure in which we can save data:
	
Row Id

	
Personal Details

	
Professional Details

	

EMP ID

	

Name

	

Location

	

Designation

	

Salary

	
1

	
Ram

	
Pune

	
Software Engineer

	
12000

	
2

	
Ramesh

	
Mumbai

	
Manager

	
15000

	
3

	
Radha

	
Delhi

	
QA

	
8000

	
4

	
Rahul

	
Mumbai

	
Test Manager

	
10000

In the preceding table, we have a table called emp, and we have two column families, personal details and professional details. Each row is identified by the row ID, which is unique for each record. Hbase consists of master and slave architecture. It has one master and multiple slaves called region servers. Each region server manages multiple regions. A table is partitioned into multiple regions across the region servers. Actual data is saved to HFile. This is a block indexed file format where data is stored into a sequence of blocks, and a separate index is maintained at the end of file. Hbase maintains the in-memory log file called HLog. This file contains the updates happening in tables. This cache is flushed periodically.

Performing Hbase operations in Java

Hbase provides a Java client with which we can perform operations similar to those performed through the command line.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hbase installed on it.

How to do it

To get started, we first need to create a maven project and add the Hbase client dependency:
 <dependency>
 <groupId>org.apache.hbase</groupId>
 <artifactId>hbase-client</artifactId>
 <version>1.0.1.1</version>
 </dependency>

Now, we write a Java class, which uses APIs from the Hbase client to perform various operations:
package com.demo.hbase.hbase.client;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Admin;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.util.Bytes;

public class JavaHbase {

 public static void main(String args[]) throws IOException {

 // Create connection and admin client
 Configuration config = HBaseConfiguration.create();
 Connection connection = ConnectionFactory.createConnection(config);
 Admin admin = connection.getAdmin();

 // Provide table description
 HTableDescriptor descriptor = new HTableDescriptor(TableName.valueOf("emp"));
 descriptor.addFamily(new HColumnDescriptor("personal details"));
 descriptor.addFamily(new HColumnDescriptor("professional details"));
 // create table
 admin.createTable(descriptor);
 System.out.println("Table Created");

 // Insert data
 Put name = new Put(Bytes.toBytes("1"));
 name.addColumn(Bytes.toBytes("personal details"), Bytes.toBytes("name"), Bytes.toBytes("Ram"));

 HTable table = new HTable(config, "emp");
 table.put(name);

 System.out.println("Added data into Table");

 // Get data
 Get g = new Get(Bytes.toBytes("1"));
 Result r = table.get(g);
 byte[] value = r.getValue(Bytes.toBytes("personal details"), Bytes.toBytes("name"));
 System.out.println("Fetched Data:" + value.toString());

 }
}

Now, we create a runnable jar, and execute it in the following manner:
java -cp hbase-client-1.0-jar-with-dependencies.jar com.demo.hbase.hbase.client.JavaHbase

How it works...

Hbase provides clients in various languages such as Java, Scala, and C/C++. You can choose a language of your choice to handle data in Hbase remotely. You don't need anything special to use those APIs.

Executing the MapReduce programming with an Hbase Table

In this recipe, we are going to see how to use Hbase data as input to the MapReduce program.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hbase installed on it. You will also need an IDE such as Eclipse.

How to do it

To get started, we first need to create a maven project, and add the following dependencies to it:
 <dependency>
 <groupId>org.apache.hbase</groupId>
 <artifactId>hbase-client</artifactId>
 <version>1.0.1.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-core</artifactId>
 <version>2.7.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.7.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.hbase</groupId>
 <artifactId>hbase-server</artifactId>
 <version>1.0.1.1</version>
 </dependency>

Next, we write a driver class, which uses TableMapReduceUtils. In this example, we will be reading data from one Hbase table and write it to another Hbase table:
public class HbaseExample {
 public static void main(String[] args) throws Exception {
 Configuration config = HBaseConfiguration.create();
 Job job = Job.getInstance(config, "Hbase Example");
 job.setJarByClass(HbaseExample.class);

 Scan scan = new Scan();
 scan.setCaching(500);
 scan.setCacheBlocks(false);

 TableMapReduceUtil.initTableMapperJob("emp", scan, MyMapper.class, Text.class, IntWritable.class, job);
 TableMapReduceUtil.initTableReducerJob("new_emp", MyTableReducer.class, job);
 job.setNumReduceTasks(1);

 boolean b = job.waitForCompletion(true);
 if (!b) {
 throw new IOException("error with job!");
 }
 }
}

We write a Mapper class, which reads data from the Hbase table:
public static class MyMapper extends TableMapper<Text, IntWritable> {

 private final IntWritable ONE = new IntWritable(1);
 private Text text = new Text();

 public void map(ImmutableBytesWritable row, Result value, Context context)
 throws IOException, InterruptedException {
 String val = new String(value.getValue(Bytes.toBytes("peronsonal details"), Bytes.toBytes("name")));
 text.set(val);

 context.write(text, ONE);
 }
 }

Now, it's time to read the Reducer class, which writes each record to the new table:
public static class MyTableReducer extends TableReducer<Text, IntWritable, ImmutableBytesWritable> {

 public void reduce(Text key, Iterable<IntWritable> values, Context context)
 throws IOException, InterruptedException {
 int i = 0;
 for (IntWritable val : values) {
 i += val.get();
 }
 Put put = new Put(Bytes.toBytes(key.toString()));
 put.add(Bytes.toBytes("details"), Bytes.toBytes("count"), Bytes.toBytes(i));

 context.write(null, put);
 }
 }

We build a jar out of these classes and execute them on Hadoop using the following command:
hadoop jar hbase-mr-1.0-jar-with-dependencies.jar com.demo.hbase.hbase.client.HbaseExample

How it works

As Hbase also uses HDFS as its base to store data, it's quite easy to read that into a Map Reduce job using clients provided by Hbase. All other functionalities of Map Reduce remain the same.

Chapter 5. Advanced Data Analysis Using Hive

	Processing JSON data in Hive using JSON SerDe
	Processing XML data in Hive using XML SerDe
	Processing Hive data in the Avro format
	Writing a user-defined function in Hive
	Performing table joins in Hive
	Executing map side joins in Hive
	Performing context Ngram in Hive
	Analyzing a call data record using Hive
	Performing sentiment analysis using Hive on Twitter data
	Implementing Change Data Capture (CDC) using Hive
	Inserting data in multiple tables data using Hive

Introduction

In the previous chapter, we discussed various tasks that can be performed using Hive, Pig, and Hbase. In this chapter, we are going to take a look at how to perform some advanced tasks using Hive. We will see how to analyze data in various formats such as JSON, XML, and AVRO. We will also explore how to write User-Defined Functions (UDFs) in Hive, deploy them, and use them in Hive queries. Now let's get started.

Processing JSON data in Hive using JSON SerDe

These days, JSON is a very common data structure that's used for data communication and storage. Its key value-based structure gives great flexibility in handling data. In this recipe, we are going to take a look at how to process data stored in the JSON format in Hive. Hive does not have any built-in support to handle JSON, so we will be using JSON SerDe. SerDe is a program that consists of a serializer and deserializer, which tell Hive how to read and write data.
Getting ready

To perform this recipe, you should have a running Hadoop cluster with the latest version of Hive installed on it. Here, I am using Hive 1.2.1. Apart from Hive, we also need JSON SerDe.
There are various JSON SerDe binaries available from various developers. The most popular, though, can be found at https://github.com/rcongiu/Hive-JSON-Serde.
This project contains code for JSON SerDe and is compatible with the latest version of Hive. You can either download the code and build your own JAR, or you can download the precompiled jars from https://github.com/sheetaldolas/Hive-JSON-Serde/tree/master/dist.
I am using https://github.com/sheetaldolas/Hive-JSON-Serde/blob/master/dist/json-serde-1.1.9.9-Hive1.2.jar.
Download the jar, and copy it to the node where you have Hive installed.

How to do it...

Now that we have set up our environment, let's consider a use situation where we have the JSON data with us and want to process this data using Hive. Let's say we have an e-commerce website where we have data coming in the JSON format for various products, as shown here:
{
 "name": "iPhone 6",
 "price": 600,
 "category": "phone",
 "color": "gold",
 "stock": 10,
 "tags": ["phone", "iphone", "cell"]
}

To do this, we first need to put this data in HDFS. Here is some sample data:
{"name":"iPhone 6", "price": 600, "category" :"phone", "color": "gold", "stock": 10, "tags" : ["phone", "iphone", "cell"] }
{"name":"iPhone 6 plus", "price": 660, "category" :"phone", "color": "silver", "stock": 20, "tags" : ["phone", "iphone", "cell"] }
{"name":"Samsung S6", "price": 600, "category" :"phone", "color": "white", "stock": 10, "tags" : ["phone", "samsung", "cell"] }
{"name":"Macbook Pro", "price": 800, "category" :"computer", "color": "silver", "stock": 8, "tags" : ["laptop", "apple"] }
{"name":"Samsung Refrigerator 13 Ltr", "price": 400, "category" :"fridge", "color": "red", "stock": 10, "tags" : ["fridge", "samsung"] }

hadoop fs –mkdir /data/products
hadoop fs –copyFromLocalproducts.json /data/products

Now let's start the Hive prompt and add the jar we downloaded earlier.
hive> ADD JAR json-serde-1.1.9.9-Hive1.2.jar;
Added [json-serde-1.1.9.9-Hive1.2.jar] to class path
Added resources: [json-serde-1.1.9.9-Hive1.2.jar]

Now, it's time to create a Hive table using JSON SerDe:
CREATE TABLE products_json (
name STRING,
price DOUBLE,
category STRING,
color STRING,
stock INT,
tags ARRAY<STRING>)
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
LOCATION '/data/products';

When using SerDe, we also have to use Row format SerDe and provide the main class for this JAR.
If everything is okay, you will get a confirmation that the Hive table has been created.
Now we can query and process this data like any other Hive query. To confirm that the data has been loaded properly, we can execute the select query:
hive> select * from products_json;
OK
iPhone 6	600.0	phone	gold	10	["phone","iphone","cell"]
iPhone 6 plus	660.0	phone	silver	20	["phone","iphone","cell"]
Samsung S6	600.0	phone	white	10	["phone","samsung","cell"]
Macbook Pro	800.0	computer	silver	8	["laptop","apple"]
Samsung Refrigerator 13 Ltr	400.0	fridge	red	10 ["fridge","samsung"]
Time taken: 0.763 seconds, Fetched: 5 row(s)

We can run a query to get product counts by their category, as shown here:
SELECT category, count(*) FROM products_json
GROUP BY category;

This will start a map reduce job, and on its completion, we will have results like this:
computer	1
fridge	1
phone	3

JSON SerDe supports nested JSON as well. Consider a situation where we have an attribute called a feature, as shown here:
{
 "name": "iPhone 6",
 "price": 600,
 "category": "phone",
 "color": "gold",
 "stock": 10,
 "tags": ["phone", "iphone", "cell"],
 "features": {
 "storage": "64GB",
 "battery": "15Hrs",
 "warranty": "1 Yr"
 }
}

To have this type of data, we need to update the create table statement:
CREATE TABLE products_json (
name STRING,
price DOUBLE,
category STRING,
color STRING,
stock INT,
tags ARRAY<STRING>,
features STRUCT<
storage:STRING,
battery:STRING,
warranty:STRING>)
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
LOCATION '/data/products';

How it works...

	While reading the input, Hive's execution engine first reads the records using the default InputFormat. RecordReader keeps sending one record at a time. Here, we don't provide InputFormat, so the default is text. The engine then invokes Serde.deserialize()to deserialize the record. The Hive engine also gets hold of an object inspector by invoking the Serde.getObjectInspector()method. The engine then passes the deserialized object and object inspector to the operators for their use. Each operator uses this deserialized object and object inspector to get data from the data structure.Note
Hive also supports the writing of your own custom SerDe; the documentation for this can be found at https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe.

Processing XML data in Hive using XML SerDe

XML has been one of the most important data structures and has been used for quite a long time for data transfers and storage. Parsing XML data and then processing it is always a tricky task as parsing XML is one of the most costliest operations. Hive does not have any built-in support for XML data processing, but many organizations and individuals have made open source contributions to XML SerDe.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hive installed on it. Here, I am using Hive 1.2.1. Apart from Hive, we also need XML SerDe.
There are various XML SerDe that have been made available by open source developers. Out of these, XML SerDe at https://github.com/dvasilen/Hive-XML-SerDe is well developed and quite useful. So, we can download the jar from http://search.maven.org/remotecontent?filepath=com/ibm/spss/hive/serde2/xml/hivexmlserde/1.0.5.3/hivexmlserde-1.0.5.3.jar.

How to do it...

Now, let's assume that in our e-commerce project, we have data that is stored in the XML format, as follows:
<products>
 <product id="1">
 <name>iPhone 6</name>
 <category>phone</category>
 <price>600</price>
 <stock>14</stock>
 <features>
 <storage>64GB</storage>
 <battery>20Hrs</battery>
 </features>
 </product>
 <product id="2">
 <name>iPhone 6 Plus</name>
 <category>phone</category>
 <price>800</price>
 <stock>15</stock>
 <features>
 <storage>64GB</storage>
 <battery>10Hrs</battery>
 </features>
 </product>
 <product id="3">
 <name>Samsung S6</name>
 <category>phone</category>
 <price>650</price>
 <stock>12</stock>
 <features>
 <storage>16GB</storage>
 <battery>10Hrs</battery>
 </features>
 </product>
</products>

We will be using the XML SerDe to analyze this data. First of all, we need to start a Hive prompt and add the downloaded jar:
hive> ADD JAR hivexmlserde-1.0.5.3.jar;
Added [hivexmlserde-1.0.5.3.jar] to class path
Added resources: [hivexmlserde-1.0.5.3.jar]

Next, we'll write create a table statement, as shown here:
CREATE TABLE product_xml(
id STRING,
name STRING,
category STRING,
price DOUBLE,
stock BIGINT,
features map<string,string>)
ROW FORMAT SERDE 'com.ibm.spss.hive.serde2.xml.XmlSerDe'
WITH SERDEPROPERTIES (
"column.xpath.id"="/product/@id",
"column.xpath.name"="/product/name/text()",
"column.xpath.category"="/product/category/text()",
"column.xpath.price"="/product/price/text()",
"column.xpath.stock"="/product/stock/text()",
"column.xpath.features"="/product/features/*"
)
STORED AS
INPUTFORMAT 'com.ibm.spss.hive.serde2.xml.XmlInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.IgnoreKeyTextOutputFormat'
TBLPROPERTIES (
"xmlinput.start"="<product id",
"xmlinput.end"="</product>"
);

Now that the table is created, we can load the data into this table and execute the select query to check whether the data is loaded properly:
LOAD DATA LOCAL INPATH 'products.xml' INTO TABLE product_xml;
hive> select * from product_xml;
OK
1	iPhone 6	phone	600.0	14	{"battery":"20Hrs","storage":"64GB"}
2	iPhone 6 Plus	phone	800.0	15	{"battery":"10Hrs","storage":"64GB"}
3	Samsung S6	phone	650.0	12 {"battery":"10Hrs","storage":"16GB"}
Time taken: 0.071 seconds, Fetched: 3 row(s)

We can execute various queries, such as other Hive queries, and the XML SerDe will automatically take care of serialization and deserialization:
hive> select * from product_xml
>where price > 620;
OK
2	iPhone 6 Plus	phone	800.0	15	{"battery":"10Hrs","storage":"64GB"}
3	Samsung S6	phone	650.0	12	{"battery":"10Hrs","storage":"16GB"}
Time taken: 0.123 seconds, Fetched: 2 row(s)

How it works

All SerDe work in the manner that is explained in the How it works section of the previous recipe.

Processing Hive data in the Avro format

Avro is an evolvable schema-driven binary data format. It is hosted and maintained by the Apache Software Foundation (http://avro.apache.org/). It provides a rich data structure to store compact, fast binary data, and it relies on schemas. Avro files store data and schemas together; this helps faster reading of data as the files do not need to look for schema anywhere else. It can also be used in Remote Procedure Calls (RPC). There, the schema is transferred at the time of handshake between a client and server. In this recipe, we will take a look at how to process Avro files in Hive.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hive installed on it. Here, I am using Hive 1.2.1. Hive has built-in support for the Avro file format, so we don't need to import any third-party JARs.

How to do it...

Using Avro SerDe, we can either read data that is already in the Avro format or write new data in the Avro file. We cannot write the Avro file using an editor, so we will be using a sample file that's provided along with the Hive installation, that is, doctors.avro. This contains a list of doctors. To read the Avro data, we need to create a table in the following manner:
CREATE TABLE doctors(
number INT,
first_name STRING,
last_name STRING)
STORED AS AVRO;

Now, let's load data into this table, as shown here:
LOAD DATA LOCAL INPATH '/usr/local/hive/examples/files/doctors.avro' INTO TABLE doctors;

We can execute the SELECT query to check whether we are able read the records:
hive> select * from doctors;
OK
 6	Colin	Baker
 3	Jon	Pertwee
 4	Tom	Baker
 5	Peter	Davison
 11	Matt	Smith
 1	William	Hartnell
 7	Sylvester	McCoy
 8	Paul	McGann
 2	Patrick	Troughton
 9	Christopher	Eccleston
 10	David	Tennant
 Time taken: 0.051 seconds, Fetched: 11 row(s)

We can execute any query just like other Hive queries in this table.
We can also write the output of a Hive query in the Avro format by creating another table, as shown here:
CREATE TABLE doctors_selected(
number INT,
first_name STRING,
last_name STRING)
STORED AS AVRO;

We import the selected data from the previous table, as shown here:
INSERT INTO TABLE doctors_selected
SELECT * FROM doctors where number > 5;

Once the map reduce execution is complete, we can take a look at the imported data:
hive> select * from doctors_selected;
OK
 6	Colin	Baker
 11	Matt	Smith
 7	Sylvester	McCoy
 8	Paul	McGann
 9	Christopher	Eccleston
 10	David	Tennant
 Time taken: 0.061 seconds, Fetched: 6 row(s)

We can also take a look at the generated file:
hadoop fs -ls /user/hive/warehouse/doctors_selected
 Found 1 items
 -rwxr-xr-x 1 admin1 supergroup 420 2015-12-06 12:44 /user/hive/warehouse/doctors_selected/000000_0

Here the 000000_0 file is in the Avro file format.

How it works...

All SerDe work in a similar manner as explained in the How it
works sections of the recipe— Processing JSON data using Hive JSON SerDe.

Writing a user-defined function in Hive

In the previous chapter, we talked about how to write user-defined functions in Pig; in this recipe, we are going to do the same for Hive. Hive supports the adding of temporary functions, which can be used to process data. We will be writing UDF in Java and will also create functions that can be used in data processing.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hive installed on it. Here, I am using Hive 1.2.1. We will also need the Eclipse IDE for development.

How to do it

There are various system functions that are supported by Hive, but sometimes, you will need to do something different that cannot be handled by system provided functions. To do this, we will need to write a custom function.
Take a situation where we have census data and a person's income, and we want to categorize them into three parts based on the person's income. The following is some sample data where we have the ID, name, and salary:
1|Tanmay|10000
2|Sneha|12000
3|Sakalya|14000
4|Ramesh|3000
5|Rahul|4000
6|Rajesh|18000
7|Ram|3000

Now, we will create a Hive table and load this data into the table:
CREATE TABLE census(
id INT,
name STRING,
salary INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
STORED AS TEXTFILE;

LOAD DATA LOCAL INPATH 'census.txt' INTO TABLE census;

We can check the loaded data, as shown here:
hive> select * from census;
OK
 1	Tanmay	10000
 2	Sneha	12000
 3	Sakalya	14000
 4	Ramesh	3000
 5	Rahul	4000
 6	Rajesh	18000
 7	Ram	3000
 Time taken: 0.052 seconds, Fetched: 7 row(s)

Let's write a UDF to segregate people based on their income group. To do so, we will need to create a maven project, and add the following dependency in it:
<dependency>
 <groupId>org.apache.hive</groupId>
 <artifactId>hive-exec</artifactId>
 <version>1.2.1</version>
</dependency>

Here is the Java class that provides logic for the income group function. To write a UDF, we need to extend the UDF class from hive-exec jar:
packagecom.demo.hive.udfs;

importorg.apache.hadoop.hive.ql.exec.UDF;
importorg.apache.hadoop.io.IntWritable;
importorg.apache.hadoop.io.Text;

public class IncomeClassifier extends UDF {

 public Text evaluate(IntWritable income) {
 Text incomeGroup = new Text();
 if (income.get() <= 5000) {
 incomeGroup.set("lower");
 } else if (income.get() >= 5001 &&income.get() <= 15000) {
 incomeGroup.set("middle");
 } else if (income.get() >= 15001) {
 incomeGroup.set("upper");
 }
 returnincomeGroup;
 }
}

We compile this code and create a jar out of it. Now, we copy this jar to the place where Hive is installed, and do the following things to create a function:
LOAD DATA LOCAL INPATH 'census.txt' INTO TABLE census;
ADD JAR hive-udfs.jar
CREATE TEMPORARY FUNCTION income_group as 'com.demo.hive.udf.IncomeClassifier';

Use this UDF in the following manner:
SELECT id, name, income_group(salary)
FROM census;
hive> SELECT id, name, income_group(salary)
> FROM census;
OK
 1	Tanmay	middle
 2	Sneha	middle
 3	Sakalya	middle
 4	Ramesh	lower
 5	Rahul	lower
 6	Rajesh	upper
 7	Ram	lower
 Time taken: 0.058 seconds, Fetched: 7 row(s)

How it works...

Whenever UDF is referenced during execution, the respective class is invoked and the evaluate method is executed. Based on the logic provided, a value is returned. UDFs are effective till the time your session is alive. When the terminal is closed, the same UDF cannot be referenced again. If we want to do that, we need add the jar again.

Performing table joins in Hive

In the previous chapter, we talked about how to perform joins in Pig. In this recipe, we are going to take a look at how to perform joins in Hive. Hive supports various types of joins such as inner, outer, and so on.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hive installed on it. Here, I am using Hive 1.2.1.

How to do it...

To perform joins, we will need two types of datasets, which have something in common to join. Consider a situation where we have two employee tables and departments, and every employee table has a structure (ID, name, salary, and department ID) and every department table has an ID and a name. We will quickly create tables and load data into them:
 CREATE TABLE emp(
 id INT,
 name STRING,
 salary DOUBLE,
 deptId INT)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '|'
 STORED AS TEXTFILE;

 LOAD DATA LOCAL INPATH 'emp.txt' INTO TABLE emp;

 hive> select * from emp;
 OK
 1	Tanmay	3500.0	101
 2	Sneha	5599.0	101
 3	Avinash	6700.0	102
 4	Manisha	6400.0	103
 5	Sakalya	3200.0	102
 6	Vinit	3200.0	105
 Time taken: 0.064 seconds, Fetched: 6 row(s)

 CREATE TABLE dept(
 id INT,
 name STRING)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '|'
 STORED AS TEXTFILE;
 LOAD DATA LOCAL INPATH 'dept.txt' INTO TABLE dept;

 hive> select * from dept;
 OK
 101	Engineering
 102	HR
 103	Finance
 104	Facilities
 Time taken: 0.061 seconds, Fetched: 4 row(s)

Now, let's start performing various joins.
For the inner join, here is the code:
SELECT e.name, d.name FROM
emp e JOIN dept d
ON (e.deptId = d.id);

The result will look similar to the following code. The inner join only returns matching records from both tables:
Tanmay	Engineering
Sneha	Engineering
Avinash	HR
Manisha	Finance
Sakalya	HR

Left outer join

The Left outer join gives all records from the left-hand side of a table and only matches records with the other table:
SELECT e.name, d.name FROM
emp e LEFT OUTER JOIN dept d
ON (e.deptId = d.id);

The results of this are as follows:
 Tanmay	Engineering
 Sneha	Engineering
 Avinash	HR
 Manisha	Finance
 Sakalya	HR
 Vinit	NULL

Right outer join

The right outer join gives all the records from the right-hand side of a table and only matches records from the other table:
SELECT e.name, d.name FROM
emp e RIGHT OUTER JOIN dept d
ON (e.deptId = d.id);

The results of this are as follows:
 Tanmay	Engineering
 Sneha	Engineering
 Avinash	HR
 Sakalya	HR
 Manisha	Finance
 NULL	Facilities

Full outer join

The full outer join gives a complete set of matching and non-matching records from both tables:
SELECT e.name, d.name FROM
emp e FULL OUTER JOIN dept d
ON (e.deptId = d.id);

The results of this are as follows:
 Sneha	Engineering
 Tanmay	Engineering
 Sakalya	HR
 Avinash	HR
 Manisha	Finance
 NULL	Facilities
 Vinit	NULL

Left semi join

The left semi join can be used when you want columns from only one table. When compared to the inner join, it gives a similar output except that it does not return columns from the right-hand side of the table:
SELECT e.name, e. salary FROM
emp e LEFT SEMI JOIN dept d
ON (e.deptId = d.id);

The results of this are as follows:
 Tanmay	3500.0
 Sneha	5599.0
 Avinash	6700.0
 Manisha	6400.0
 Sakalya	3200.0

How it works...

In every join operation, Hive will execute a Map Reduce job. In Chapter 3, Mastering Map Reduce Programs, we took a look at the code that gets implemented for various join operations. Refer to those recipes for more details.

Executing map side joins in Hive

Map side joins are special types of optimizations; Hive executes these automatically based on table sizes. In this recipe, we are going to explore map side joins in further detail.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hive installed on it. Here, I am using Hive 1.2.1.

How to do it...

To perform map joins, we need two types of datasets that have something in common to join. One dataset also has to be big, and the other has to be small in comparison. Consider a situation where we have two tables for employees and departments; the employee table has a structure (ID, name, salary, and department ID) and the department table has an ID and a name.
We will quickly create tables and load data into them:
CREATE TABLE emp(
id INT,
name STRING,
salary DOUBLE,
deptId INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
STORED AS TEXTFILE;

 LOAD DATA LOCAL INPATH 'emp.txt' INTO TABLE emp;
 hive> select * from emp;
 OK
 1	Tanmay	3500.0	101
 2	Sneha	5599.0	101
 3	Avinash	6700.0	102
 4	Manisha	6400.0	103
 5	Sakalya	3200.0	102
 6	Vinit	3200.0	105
 Time taken: 0.064 seconds, Fetched: 6 row(s)

CREATE TABLE dept(
id INT,
name STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
STORED AS TEXTFILE;

 LOAD DATA LOCAL INPATH 'dept.txt' INTO TABLE dept;
 hive> select * from dept;
 OK
 101	Engineering
 102	HR
 103	Finance
 104	Facilities
 Time taken: 0.061 seconds, Fetched: 4 row(s)

To execute map side joins, we don't need to do anything special; Hive automatically decides when to execute the map side join and convert it into a map side join:
> SELECT * FROM
>emp e JOIN dept d
> ON (e.deptId = d.id);
Query ID = admin1_20151213081130_ad7a6c17-0c98-4e82-bd51-b9a6a9d687b7
Total jobs = 1
15/12/13 08:11:32 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Execution log at: /tmp/admin1/admin1_20151213081130_ad7a6c17-0c98-4e82-bd51-b9a6a9d687b7.log
2015-12-13 08:11:33	Starting to launch local task to process map join;	maximum memory = 477364224
2015-12-13 08:11:35	Dump the side-table for tag: 1 with group count: 4 into file: file:/tmp/admin1/4406a7b1-64cf-44e3-968f-857c4bd17bb7/hive_2015-12-13_08-11-30_543_7059067307272955469-1/-local-10003/HashTable-Stage-3/MapJoin-mapfile51--.hashtable
2015-12-13 08:11:35	Uploaded 1 File to: file:/tmp/admin1/4406a7b1-64cf-44e3-968f-857c4bd17bb7/hive_2015-12-13_08-11-30_543_7059067307272955469-1/-local-10003/HashTable-Stage-3/MapJoin-mapfile51--.hashtable (370 bytes)
2015-12-13 08:11:35	End of local task; Time Taken: 1.255 sec.
Execution completed successfully
MapredLocal task succeeded
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1449972302581_0007, Tracking URL = http://admin1:8088/proxy/application_1449972302581_0007/
Kill Command = /usr/local/hadoop/bin/hadoopjob -kill job_1449972302581_0007
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 0
2015-12-13 08:11:40,923 Stage-3 map = 0%, reduce = 0%
2015-12-13 08:11:46,201 Stage-3 map = 100%, reduce = 0%, Cumulative CPU 1.7 sec
MapReduce Total cumulative CPU time: 1 seconds 700 msec
Ended Job = job_1449972302581_0007
MapReduce Jobs Launched:
Stage-Stage-3: Map: 1 Cumulative CPU: 1.7 sec HDFS Read: 6787 HDFS Write: 160 SUCCESS

 Total MapReduce CPU Time Spent: 1 seconds 700 msec
 OK
 1	Tanmay	3500.0	101	101	Engineering
 2	Sneha	5599.0	101	101	Engineering
 3	Avinash	6700.0	102	102	HR
 4	Manisha	6400.0	103	103	Finance
 5	Sakalya	3200.0	102	102	HR
 Time taken: 17.748 seconds, Fetched: 5 row(s)

The preceding execution shows that Hive informs you when it has converted this join into a map side join.

How it works...

Map side joins are performed when we have one small table and a very big table join. While executing, Hive reads the small table completely into memory and writes this table to a hash table. This hash table is referenced by each mapper to join the bigger table. By getting one table in its memory, Hive has fewer disk I/O operations, and this means less time to get records. There are limits that are set in the Hive configurations that decide whether the table is small or not. The hive.auto.convert.join.noconditionaltask and hive.auto.convert.join.noconditionaltask.size configurations decide the auto conversion of joins and the size of the table that can fit into the memory.
Note
You can read more about map side joins at https://www.facebook.com/notes/facebook-engineering/join-optimization-in-apache-hive/470667928919.

Performing context Ngram in Hive

Ngrams are sequences that are collected from specific sets of words and are based on their occurrence in a given text. N-grams are generally used to find the occurrence of certain words in a sequence, which helps in the calculation of sentiment analysis. Hive provides built-in support for Ngram calculations by providing a function. In this recipe, we will take a look at how to use this function in order to analyze text data.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hive installed on it. Here, I am using Hive 1.2.1.

How to do it...

N-gram can be used to find the most frequently used word after a sequence of words in a give text dataset. To do this, let's first create a Hive table and load data into it.
Take a situation where we have data from Twitter where people are writing about their sentiments about chocolate. Let's assume that we have text data, as follows:
Chocolate is good
Chocolate is bad
Chocolate is harmful
Chocolate is sweet
Chocolate is good
Chocolate is bad
Chocolate is good
Chocolate is bad
Chocolate is good
Chocolate is bad
Chocolate is harmful
Chocolate is sweet Chocolate is harmful
Chocolate is sweet Chocolate is harmful
Chocolate is sweet Chocolate is harmful
Chocolate is sweet
Chocolate is good
Chocolate is bad

Let's load this data into the Hive table:
CREATE TABLE textData(
data STRING)
ROW FORMAT DELIMITED;

LOAD DATA LOCAL INPATH 'twitter.txt' INTO TABLE textData;

Now, we will write a Hive query to find out what the most frequent word after Chocolate is is:
SELECT context_ngrams(sentences(data),
array("Chocolate","is",null),10) FROM
textData;

On complete execution, we will get the following output:
[{
 "ngram": ["bad"],
 "estfrequency": 5.0
}, {
 "ngram": ["good"],
 "estfrequency": 5.0
}, {
 "ngram": ["harmful"],
 "estfrequency": 5.0
}, {
 "ngram": ["sweet"],
 "estfrequency": 5.0
}]

This way, we can easily find out frequent words after a set of strings. This also helps in performing natural language processing on unstructured text data.

How it works...

Context Ngrams looks for a specific sequence of words and keep counting them using the map reduce program. On complete execution, they sort out the output by the given frequency of words in order to know the top word/s being used after a set of strings.
Note
To know more about Ngrams, you can visit

https://en.wikipedia.org/wiki/N-gram.

Call Data Record Analytics using Hive

Call Data Records (CDR) are special types of records that are used in the telecom domain to keep track of calls made by individuals. We can use Hive to analyze these records in order to give special offers to customers.
Note
You can read more about CDR at https://en.wikipedia.org/wiki/Call_detail_record.

Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hive installed on it. Here, I am using Hive 1.2.1.

How to do it...

First of all, let's consider a situation where we have the following type of dataset with us. To analyze it, we first need to create a Hive table and load data into it:
CALLER_PHONE_NO|RECEIVER_PHONE_NUMBER|START_TIME|END_TIME|CALL_TYPE
11111|22222|2015-01-12 01:20:00|2015-01-12 01:30:00|VOICE
11111|22222|2015-02-12 01:35:00|2015-02-12 01:35:30|VOICE
11111|22222|2015-02-12 02:20:00|2015-02-12 02:20:00|SMS
33333|44444|2015-01-12 01:20:00|2015-01-12 01:30:00|VOICE
11111|33333|2015-05-12 04:02:00|2015-05-12 05:12:00|VOICE
22222|44444|2015-07-12 06:12:00|2015-07-12 06:12:00|SMS
22222|33333|2015-08-12 08:45:00|2015-08-12 08:50:00|VOICE

Let's create this Hive table and load data into it:
CREATE TABLE CDR(
caller_phone_no string,
receiver_phone_no string,
start_time timestamp,
end_time timestamp,
call_type string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
STORED AS TEXTFILE;

LOAD DATA LOCAL INPATH 'cdr.txt' INTO TABLE CDR;	

Now that the data is loaded, we can execute the query to find out the duration of voice calls made by each subscriber in the given data:
SELECT caller_phone_no,
SUM(UNIX_TIMESTAMP(end_time) - UNIX_TIMESTAMP(start_time))
FROM cdr
WHERE call_type = 'VOICE'
GROUP BY caller_phone_no;

This will use the caller phone number and calculate the number of seconds it made calls for:
11111	4830
22222	300
33333	600

Next, we can execute queries to find out what the most frequently used medium of communication is. To know this, we will execute the following query:
SELECT call_type, count(*) as call_count FROM
CDR
GROUP BY call_type
ORDER BYcall_count DESC;

On execution, we will get the following results:
 VOICE	5
 SMS	2

How it works...

The preceding section explains regular Hive queries, and we already know how they work.

Twitter sentiment analysis using Hive

Twitter is one of the most important data sources that helps you to know the sentiments behind various things. In this recipe, we will take a look at how to perform sentiment analysis using Hive on Twitter data.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hive installed on it. Here, I am using Hive 1.2.1.

How to do it...

First of all, we need a dataset to perform this recipe. We will be using a dataset that can be found at http://s3.amazonaws.com/hw-sandbox/tutorial13/SentimentFiles.zip.
Next, we will unzip this data and upload it on HDFS. The zip contains three folders: the first for raw Twitter data, the second for a dictionary, and the third for a time zone:
hadoop fs -mkdir /data
hadoop fs -put tweets_raw /data
hadoop fs -put time_zone_map /data
hadoop fs -put dictionary /data

We use Hive's JSON SerDe jar to read the tweeter data, as shown here:
ADD JAR json-serde-1.1.9.9-Hive1.2-jar-with-dependencies.jar;
CREATE EXTERNAL TABLE tweets_raw (
id BIGINT,
created_at STRING,
source STRING,
favorited BOOLEAN,
retweet_count INT,
retweeted_status STRUCT<
text:STRING,
user_rt:STRUCT<screen_name:STRING,name:STRING>>,
entities STRUCT<
urls:ARRAY<STRUCT<expanded_url:STRING>>,
user_mentions:ARRAY<STRUCT<screen_name:STRING,name:STRING>>,
hashtags:ARRAY<STRUCT<text:STRING>>>,
text STRING,
user_struct STRUCT<
screen_name:STRING,
name:STRING,
friends_count:INT,
followers_count:INT,
statuses_count:INT,
verified:BOOLEAN,
utc_offset:STRING,
time_zone:STRING>,
in_reply_to_screen_name STRING
)
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
WITH SERDEPROPERTIES ("mapping.user_rt" = "user", "mapping.user_struct" = "user")
LOCATION '/data/tweets_raw';

This will create a Hive table and link data to it. Hive 1.2.1 puts certain constraints on reserve keywords such as user. So, we have to explicitly map these words to some other words.
Next, we load the dictionary and time zone tables. The dictionary will be used to determine whether a word is positive or negative:
CREATE EXTERNAL TABLE dictionary (
type string,
lengthint,
word string,
pos string,
stemmed string,
polarity string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE
LOCATION '/data/dictionary';

CREATE EXTERNAL TABLE time_zone_map (
time_zone string,
country string,
notes string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE
LOCATION '/data/time_zone_map';

We only select text column from the tweets_raw table and then clean it up:
CREATE VIEW tweets_simple AS
SELECT
id,
 cast (from_unixtime(unix_timestamp(concat('2013 ', substring(created_at,5,15)), 'yyyy MMM ddhh:mm:ss')) as timestamp) ts,
text,
user_struct.time_zone
FROM tweets_raw;

CREATE VIEW tweets_clean AS
SELECT
id,
ts,
text,
m.country
 FROM tweets_simple t LEFT OUTER JOIN time_zone_map m ON t.time_zone = m.time_zone;

We execute some queries in order to add the tweet ID and calculated sentiment:
create view l1 as select id, words from tweets_raw lateral view explode(sentences(lower(text))) dummy as words;

create view l2 as select id, word from l1 lateral view explode(words) dummy as word ;

create view l3 as select
id,
 l2.word,
cased.polarity
when 'negative' then -1
when 'positive' then 1
else 0 end as polarity
from l2 left outer join dictionary d on l2.word = d.word;

 -- give rights to hive user on tmpdir
 !hadoop fs -chmod -R 777 /tmp;

create table tweets_sentiment stored as RCFILE as select
id,
case
when sum(polarity) > 0 then 'positive'
when sum(polarity) < 0 then 'negative'
else 'neutral' end as sentiment
from l3 group by id;

CREATE TABLE tweets_senti
STORED AS RCFILE
AS
SELECT
t.*,
cases.sentiment
when 'positive' then 2
when 'neutral' then 1
when 'negative' then 0
end as sentiment
FROM tweets_clean t LEFT OUTER JOIN tweets_sentiment s on t.id = s.id;

As a result, you have now reached the tweet and its sentiment.

How it works

To perform the sentiment analysis, we first get only the text column from the raw table. Next, we explode each word in the text using the lateral view. Then, we join these words with the dictionary to know how they're polarized. Now that we know how each word's polarized, we perform 'group by' on the tweet ID to sum up the polarization. Once we have the final polarization, we check whether it is positive, negative, or neutral and save it against each tweet.

Implementing Change Data Capture using Hive

Change Data Capture or CDC is one the most painful areas in Data Warehousing. CDC captures the changes that occur in a table. A change could be in the form of new records getting added, updated, or getting deleted. In this recipe, we are going to take a look at how to perform CDC in Hive.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hive installed on it. Here, I am using Hive 1.2.1.

How to do it

First of all, we need a data sample. Consider a simple employee table that has columns, such as the employee ID, name, and salary. Let's say we import this table from a source table in week 1, and after a week, we want to know about the changes that have taken place in the same table. Let's say we have a table, employee1, which was imported in week 1, and we have another table, which was imported in week 2. Week 2 being the latest week, we want to know the changes that have taken place. Here is some sample data:
Table – employee1
1,A,1000
2,B,2000
3,C,3000
4,D,2000
5,E,1000
6,F,3000
7,G,1000
8,H,3000
9,I,1000
10,J,2000
11,K,1000
12,L,1000
13,M,1000
14,N,3000
15,O,3000
16,P,1000
17,Q,1000
18,R,1000
19,S,2000
20,T,3000

Table – employee2
1,A,1000
2,B,2000
3,C,5000
4,D,2000
5,EE,1000
6,F,3000
7,G,1000
8,H,3000
10,J,2000
11,K,1000
12,L,1000
13,MM,1000
14,N,3000
15,O,3000
16,PQ,1000
17,Q,1000
19,S,2000
20,T,3000
21,S,2000
22,T,3000
23,S,2000
24,T,3000

Now, we want to know which row is updated, which row is deleted, and which rows are newly added. In order to do know this, we can execute the following query:
Create the employee1 table and load data into it:
CREATE TABLE employee1 (
id INT,
name STRING,
salary BIGINT
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE;

Create the employee2 table and load into data:
LOAD DATA LOCAL INPATH 'emp1.txt' INTO TABLE employee1;

CREATE TABLE employee2 (
id INT,
name STRING,
salary BIGINT
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE;

LOAD DATA LOCAL INPATH 'emp2.txt' INTO TABLE employee2;

Now, we write a query in order to know the CDC:
select
case when b1.cdc_codes = 'Updates' then b1.employee1s
 when b1.cdc_codes = 'NoChange' then b1.employee2s
 when b1.cdc_codes = 'New' then b1.employee2s
 when b1.cdc_codes = 'Deletes' then b1.employee1s
else 'Error' end as fin_cols
from (select case when e1.id = e2.id and concat(e1.name,e1.salary) = concat(e2.name,e2.salary) then 'NoChange'
when e1.id = e2.id and concat(e1.name,e1.salary) <> concat(e2.name,e2.salary) then 'Updates'
when e1.id is null then 'New'
when e2.id is null then 'Deletes'
else 'Error' end as cdc_codes,
concat(e1.id,',',e1.name,',',e1.salary) as employee1s,
concat(e2.id,',',e2.name,',',e2.salary) as employee2s
from employee1 as e1 full outer join employee2 as e2
on e1.id = e2.id) as b1

Once we execute the preceding query, we get the following data, which is the updated data:
1,A,1000
2,B,2000
3,C,3000
4,D,2000
5,E,1000
6,F,3000
7,G,1000
8,H,3000
9,I,1000
10,J,2000
11,K,1000
12,L,1000
13,M,1000
14,N,3000
15,O,3000
16,P,1000
17,Q,1000
18,R,1000
19,S,2000
20,T,3000
21,S,2000
22,T,3000
23,S,2000
24,T,3000

How it works

In order to find the changed data, we perform a full outer join of two tables. This will include the entries from both tables that match with their IDs. Next, we check the data that is present and then decide whether the record is new, updated, or deleted. This way, we can easily capture the changes that have taken place. This technique is very useful in cases where you have built your data warehouse using Hive.

Multiple table inserting using Hive

Hive allows you to write data to multiple tables or directories at a time. This is an optimized solution as a source table needs to be read only once, which helps reduce the time. In this recipe, we are going to take a look at how write data to multiple tables/directories in a single query.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hive installed on it. Here, I am using Hive 1.2.1.

How to do it

Let's say we have an employee table with columns such as ID, name, and salary:
Table – employee
1,A,1000
2,B,2000
3,C,3000
4,D,2000
5,E,1000
6,F,3000
7,G,1000
8,H,3000
9,I,1000
10,J,2000
11,K,1000
12,L,1000
13,M,1000
14,N,3000
15,O,3000
16,P,1000
17,Q,1000
18,R,1000
19,S,2000
20,T,3000

Let's create the table and load the data into it:
CREATE TABLE employee (
id INT,
name STRING,
salary BIGINT
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE;

LOAD DATA LOCAL INPATH 'emp.txt' INTO TABLE employee;

First, we need to create tables, and data from the employee table is inserted into these table:
CREATE TABLE emp1 LIKE employee;
CREATE TABLE emp2 LIKE employee;

Now, in order to insert data into two tables at a time, we can execute the following query:
FROM employee
INSERT INTO TABLE emp1
SELECT * WHERE id <= 10
INSERT INTO TABLE emp2
SELECT * WHERE id > 10 ;

As a result, you should see something like this:
hive> select * from emp1;
OK
1	A	1000
2	B	2000
3	C	3000
4	D	2000
5	E	1000
6	F	3000
7	G	1000
8	H	3000
9	I	1000
10	J	2000
Time taken: 0.161 seconds, Fetched: 10 row(s)
hive> select * from emp2;
OK
11	K	1000
12	L	1000
13	M	1000
14	N	3000
15	O	3000
16	P	1000
17	Q	1000
18	R	1000
19	S	2000
20	T	3000

We can also write data to the HDFS directory and table at a time, as shown here:
FROM employee1
INSERT INTO TABLE emp1
SELECT * WHERE id <= 10
INSERT OVERWRITE DIRECTORY '/data/emp1'
SELECT * WHERE id > 10 ;

This will write data to both the table and directory at one go.

How it works

The preceding queries read the data from the source table only once and write it in multiple places using multiple jobs. The benefit of doing it in this way is that you only read the data once, which optimizes the data read time.

Chapter 6. Data Import/Export Using Sqoop and Flume

The chapter covers the following topics:
	Importing data from RDMBS to HDFS using Sqoop
	Exporting data from HDFS to RDBMS
	Using query operator in Sqoop import
	Importing data using Sqoop in compressed format
	Performing Atomic export using Sqoop
	Importing data into Hive tables using Sqoop
	Importing data into HDFS from Mainframes
	Incremental import using Sqoop
	Creating and executing Sqoop job
	Importing data from RDBMS to Hbase using Sqoop
	Importing Twitter data into HDFS using Flume
	Importing data from Kafka into HDFS using Flume
	Importing web logs data into HDFS using Flume

Introduction

In the previous chapter, we talked about advanced analytics options using Apache Hive. In this chapter, we are going to talk about two very important tools, Sqoop and Flume, which do not directly help us do analytics but help us get the data in and out of Hadoop. So, let's try to understand more about these technologies.

Importing data from RDMBS to HDFS using Sqoop

Most organizations use RDBMS databases as their primary storage for their data. To analyze the data, we need to first import that data on HDFS. Sqoop is a tool that helps us achieve this with ease, and with just a single command, we can import data into HDFS as required. In this recipe, we are going to see how to import data from MySQL to Hadoop using Sqoop.
Getting ready

To perform this recipe, you should have a Hadoop cluster running with you as well as the latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need MySQL database to be present in the network. Installing Sqoop is easy by downloading Sqoop tar ball and setting it in the system path. As we are going to import data from MySQL, we would also need to download MySQL connector from https://dev.mysql.com/downloads/connector/. Based on your MySQL version, download the right connector jar and copy it into the lib directory of Sqoop installation.

How to do it...

Perform the following steps:
	First we will log into MySQL and create a database called company and create a table in it called employee.The schema for the same is as follows:
mysql> desc employee;
+-------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| id | int(11) | YES | | NULL | |
| name | varchar(20) | YES | | NULL | |
+-------+-------------+------+-----+---------+-------+
2 rows in set (0.00 sec)

	Next we will add some records into it, so the MySQL employee table would look like as shown in the following:mysql> select * from employee;
+------+--------+
| id | name |
+------+--------+
16	john
17	robert
18	andrew
19	katty
21	tom
22	tim
23	james
24	paul
27	edward
29	alan
31	kerry
34	terri
+------+--------+
12 rows in set (0.00 sec)

	Now we are going to execute Sqoop command to import this data into the HDFS directory called /data/employee.$sqoop import --connect jdbc:mysql://localhost:3306/company --username root --password password --table employee --target-dir /data/employee -m 1

Once you execute the preceding command, a Map Reduce job will start and import the records and write them to HDFS. Here we need to provide the host on which MySQL is running, its credentials, which table to import, and in which directory on HDFS you wish to store the data. I have also given m = 1, which means using a single mapper to do sequential import. This is a mandatory setting if your table does not have a primary ID. The console output would look like the following:
16/02/28 09:29:24 INFO impl.YarnClientImpl: Submitted application application_1456628547885_0004
16/02/28 09:29:24 INFO mapreduce.Job: The url to track the job: http://admin1:8088/proxy/application_1456628547885_0004/
16/02/28 09:29:24 INFO mapreduce.Job: Running job: job_1456628547885_0004
16/02/28 09:29:37 INFO mapreduce.Job: Job job_1456628547885_0004 running in uber mode : false
16/02/28 09:29:37 INFO mapreduce.Job: map 0% reduce 0%
16/02/28 09:29:49 INFO mapreduce.Job: map 100% reduce 0%
16/02/28 09:29:49 INFO mapreduce.Job: Job job_1456628547885_0004 completed successfully
16/02/28 09:29:49 INFO mapreduce.Job: Counters: 30
 File System Counters
 FILE: Number of bytes read=0
 FILE: Number of bytes written=132328
 FILE: Number of read operations=0
 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=87
 HDFS: Number of bytes written=104
 HDFS: Number of read operations=4
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=2
 Job Counters
 Launched map tasks=1
 Other local map tasks=1
 Total time spent by all maps in occupied slots (ms)=8607
 Total time spent by all reduces in occupied slots (ms)=0
 Total time spent by all map tasks (ms)=8607
 Total vcore-seconds taken by all map tasks=8607
 Total megabyte-seconds taken by all map tasks=8813568
 Map-Reduce Framework
 Map input records=12
 Map output records=12
 Input split bytes=87
 Spilled Records=0
 Failed Shuffles=0
 Merged Map outputs=0
 GC time elapsed (ms)=57
 CPU time spent (ms)=1960
 Physical memory (bytes) snapshot=142516224
 Virtual memory (bytes) snapshot=407183360
 Total committed heap usage (bytes)=85983232
 File Input Format Counters
 Bytes Read=0
 File Output Format Counters
 Bytes Written=104
16/02/28 09:29:49 INFO mapreduce.ImportJobBase: Transferred 104 bytes in 29.694 seconds (3.5024 bytes/sec)
16/02/28 09:29:49 INFO mapreduce.ImportJobBase: Retrieved 12 records.

	Now we can look at the HDFS directory to see the records getting imported:hadoop fs -cat /data/employee/part-m-00000
 16,john
 17,robert
 18,andrew
 19,katty
 21,tom
 22,tim
 23,james
 24,paul
 27,edward
 29,alan
 31,kerry
 34,terri

By default, Sqoop uses a comma (,) as a column delimiter. We can also specify our own delimited data, as shown in the following:
sqoop import --connect jdbc:mysql://localhost:3306/company --username root --password password --table employee --target-dir /data/employee_pipe --fields-terminated-by '|' -m 1

$ hadoop fs -cat /data/employee_pipe/part-m-00000
 16|john
 17|robert
 18|andrew
 19|katty
 21|tom
 22|tim
 23|james
 24|paul
 27|edward
 29|alan
 31|kerry
 34|terri

In case you feel that providing a password in plain text is not safe, you may also provide that interactively:
sqoop import --connect jdbc:mysql://localhost:3306/company --username root --table employee --target-dir /data/employee_pipe_1 --fields-terminated-by '|' -m 1 –P

It will ask you to enter your password.
You can also get the password from the password file. For that, first you need to upload that file to HDFS and then point that in the sqoop command:
echo "password" > mysql.password
hadoop fs -put mysql.password /user/admin
hadoop fs -chown 400 /user/admin1/mysql.password

Now we can use this file in password:
sqoop import --connect jdbc:mysql://localhost:3306/company --username root --table employee --target-dir /data/employee_pipe_3 --fields-terminated-by '|' -m 1 --password-file /user/admin1/mysql.password

How it works...

When sqoop command is executed, it generates a Map Reduce job, rather a map only job, to import the data from the given RDBMS. By default, it uses four mappers to import the data from a given table. If the table has a primary key, then each mapper takes care of importing an equal number of records based on their primary ID. If the table does not have a primary ID, we need to use only a single mapper that will import the data sequentially. Based on the delimiter provided, the columns would be separated by the given characters.

Exporting data from HDFS to RDBMS

In the previous recipe, we spoke about how to import data from MySQL to HDFS. Now it is time to see how to export data from HDFS to RDBMS using Sqoop. Generally, this is required when you want to keep processed data in RDBMS to be used by some reporting tools.
Getting ready

To perform this recipe, you should have a Hadoop cluster running with you as well as the latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need the MySQL database to be present in the network. Installing Sqoop is easy; by downloading Sqoop tar ball and setting it in system path. As we are going to import data from MySQL, we would also need to download MySQL connector. Based on your MySQL version, download the right connector jar and copy it into the lib directory of Sqoop installation.

How to do it...

In the previous recipe, we imported data from MySQL into HDFS. Now we are going to export this data back to some different MySQL table.
	To do this, first we need to create the table in MySQL:mysql> create table employee_export like employee;
Query OK, 0 rows affected (0.02 sec)

	Now we will execute the sqoop export command to fetch the data fromthe /data/employee directory and put it into the employee_export table we just created in the previous step:sqoop export --connect jdbc:mysql://localhost/company --username root --password password --table employee_export --export-dir /data/employee

The console output for this will look like the following:
16/02/28 09:34:23 INFO mapreduce.Job: Running job: job_1456628547885_0005
16/02/28 09:34:36 INFO mapreduce.Job: Job job_1456628547885_0005 running in uber mode : false
16/02/28 09:34:36 INFO mapreduce.Job: map 0% reduce 0%
16/02/28 09:35:04 INFO mapreduce.Job: map 100% reduce 0%
16/02/28 09:35:09 INFO mapreduce.Job: Job job_1456628547885_0005 completed successfully
16/02/28 09:35:10 INFO mapreduce.Job: Counters: 30
 File System Counters
 FILE: Number of bytes read=0
 FILE: Number of bytes written=528692
 FILE: Number of read operations=0
 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=788
 HDFS: Number of bytes written=0
 HDFS: Number of read operations=16
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=0
 Job Counters
 Launched map tasks=4
 Data-local map tasks=4
 Total time spent by all maps in occupied slots (ms)=109699
 Total time spent by all reduces in occupied slots (ms)=0
 Total time spent by all map tasks (ms)=109699
 Total vcore-seconds taken by all map tasks=109699
 Total megabyte-seconds taken by all map tasks=112331776
 Map-Reduce Framework
 Map input records=12
 Map output records=12
 Input split bytes=516
 Spilled Records=0
 Failed Shuffles=0
 Merged Map outputs=0
 GC time elapsed (ms)=838
 CPU time spent (ms)=8110
 Physical memory (bytes) snapshot=507035648
 Virtual memory (bytes) snapshot=1635950592
 Total committed heap usage (bytes)=317456384
 File Input Format Counters
 Bytes Read=0
 File Output Format Counters
 Bytes Written=0
16/02/28 09:35:10 INFO mapreduce.ExportJobBase: Transferred 788 bytes in 51.1218 seconds (15.4142 bytes/sec)
16/02/28 09:35:10 INFO mapreduce.ExportJobBase: Exported 12 records.

	Once the command execution is completed, you can go to mysql prompt and check if the data import is proper: mysql> select * from employee_export;
+------+--------+
| id | name |
+------+--------+
24	paul
27	edward
29	alan
19	katty
21	tom
22	tim
23	james
31	kerry
34	terri
16	john
17	robert
18	andrew
+------+--------+
12 rows in set (0.01 sec)

If, in your HDFS files, the column delimiter is other than a comma (,) then we have to specify the delimiter as shown in the following:
sqoop export --connect jdbc:mysql://localhost/company --username root --password password --table employee_export --export-dir /data/employee --fields-terminated-by '|'

This will read the | delimited data from the given HDFS directory and save it into the employee_export table.
Here you can protect the plain text password being mentioned in the command directly by using the following options.
First, we can choose the – + P option, which would ask for the password in interactive mode:
sqoop export --connect jdbc:mysql://localhost/company --username root --table employee_export --export-dir /data/employee -P

Second, you can also create a password file as explained in the previous recipe:
sqoop export --connect jdbc:mysql://localhost/company --username root --table employee_export --export-dir /data/employee --password-file /user/admin1/mysql.password

How it works...

sqoop export also creates a Map Reduce job for exporting data to RDBMS. It uses the provided credentials to insert records into a given table. Here it is important to match the data type in files with the data type in table. We should also make sure that the destination table exists before starting the sqoop export job, otherwise it would fail. In case the column delimiter is other than comma, then make sure you mention that in the sqoop export command to avoid wrong entries.

Using query operator in Sqoop import

In previous examples, we saw how we import/export complete table. Sometimes you may want to only use selective data, so to achieve this, Sqoop provides a query operation in which we can write SQL query as we need to import data into HDFS.
Getting ready

To perform this recipe, you should have a Hadoop cluster running with you as well as the latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need a MySQL database to be present in the network. Installing Sqoop is easy by downloading Sqoop tar ball and setting it in system path. As we are going to import data from MySQL, we would also need to download MySQL connector. Based on your MySQL version, download the right connector jar and copy it into the lib directory of the Sqoop installation.

How to do it...

	Now we, again, log in to MySQL and take a look at the employee table. Let's say we want to import only those employees whose IDs are greater than 20. Then we can either use query or use where condition as shown in the following:sqoop import --connect jdbc:mysql://localhost:3306/company --username root --password password --target-dir /data/employee_query_1 --query 'SELECT * FROM employee WHERE $CONDITIONS AND id> 20' -m 1

	On successful execution, you should see only those records on HDFS whose IDs are greater than 20:$hadoop fs -cat /data/employee_query_1/part-m-00000
 21,tom
 22,tim
 23,james
 24,paul
 27,edward
 29,alan
 31,kerry
 34,terri

You can also use query options to import data from multiple tables together. You can also import joined records using query options:
sqoop import --connect jdbc:mysql://localhost:3306/company --username root --password password --target-dir /data/a_b_join --query SELECT a.*, b.* FROM a JOIN b on (a.id == b.id) WHERE $CONDITIONS' -m 1

The preceding sqoop job would join two tables a and b on column ID and would be imported into the /data/a_b_join folder.

How it works...

With query option, Sqoop import works exactly the same the way it works for other cases. The only difference is that we can write a free-form query with it.

Importing data using Sqoop in compressed format

In this recipe, we are going to talk about a very important feature of Sqoop that allows us to compress the imported data. We can also choose the compression algorithm.
Getting ready

To perform this recipe, you should have a Hadoop cluster running with you as well as the latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need a MySQL database to be present in the network. Installing Sqoop is easy; by downloading Sqoop tar ball and setting it in the system path. As we are going to import data from MySQL, we would also need to download MySQL connector. Based on your MySQL version, download the right connector jar and copy it into the lib directory of the Sqoop installation.

How to do it...

	Sqoop import allows us to import the data in a compressed format. We don't need to install anything else apart from default installation. The following query will import the employee data into a compressed format and will store in a given directory:sqoop import \
--connect jdbc:mysql://localhost/company \
--username root \
--password password \
--table employee \
--compress \
--target-dir /data/employee_compressed \
--m 1

	Once the job execution is complete, we can take a look at the HDFS directory:hadoop fs -ls /data/employee_compressed
 Found 2 items
 -rw-r--r-- 1 admin1 supergroup 0 2015-12-29 14:41 /data/employee_compressed/_SUCCESS
 -rw-r--r-- 1 admin1 supergroup 106 2015-12-29 14:41 /data/employee_compressed/part-m-00000.gz

By default, the data is compressed in gun zip format. In case you want any other compression format, then you can specify the same as shown in the following:
sqoop import \
--connect jdbc:mysql://localhost/company \
--username root \
--password password \
--table employee \
--compress \
--target-dir /data/employee_compressed_bz2 \
--m 1 \
--compression-codec org.apache.hadoop.io.compress.BZip2Codec

	On completion, you can take a look at the target directory:hadoop fs -ls /data/employee_compressed_bz2
 Found 2 items
 -rw-r--r-- 1 admin1 supergroup 0 2015-12-29 14:45 /data/employee_compressed_bz2/_SUCCESS
 -rw-r--r-- 1 admin1 supergroup 113 2015-12-29 14:45 /data/employee_compressed_bz2/part-m-00000.bz2

Similarly, you can choose which compression algorithm you need and specify it in the sqoop import command.

How it works...

As Sqoop has come from the Hadoop family, it inherits support for various compression algorithms. It's very handy to import compressed data and save it on HDFS for efficient space utilization. We have to be very careful while choosing the compression algorithm as some algorithms do not allow splitting files. LZOP is one algorithm that allows file splitting; you can think about using it.

Performing Atomic export using Sqoop

We have learned in basic database concepts about atomicity, which means doing a complete job or doing nothing. Similarly, if you are exporting data using Sqoop to a table that is very important from the application's point of view and you want make sure that Sqoop should export all data present in HDFS or do nothing, this recipe will help. In this recipe, we are going to see how to ensure atomicity of data export.
Getting ready

To perform this recipe, you should have a Hadoop cluster running with you as well as the latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need a MySQL database to be present in the network. Installing Sqoop is easy; by downloading Sqoop tar ball and setting it in the system path. As we are going to import data from MySQL, we would also need to download MySQL connector. Based on your MySQL version, download the right connector jar and copy it into the lib directory of the Sqoop installation.

How to do it...

	To perform the atomic export, first we need to create a table that can be used as a staging table:mysql> create table staging_employee like employee;
Query OK, 0 rows affected (0.01 sec)

	Then you can execute the sqoop export command specifying the destination table as well as the staging table: sqoop export \
--connect jdbc:mysql://localhost/company \
--username root \
--password password \
--table atomic_employee \
--export-dir /data/employee \
--staging-table staging_employee

	Last couple of lines of the job log will inform you that Sqoop is migrating data from the staging table to the destination table: 15/12/29 15:11:04 INFO mapreduce.ExportJobBase: Transferred 788 bytes in 21.6322 seconds (36.4272 bytes/sec)
15/12/29 15:11:04 INFO mapreduce.ExportJobBase: Exported 12 records.
15/12/29 15:11:04 INFO mapreduce.ExportJobBase: Starting to migrate data from staging table to destination.
15/12/29 15:11:04 INFO manager.SqlManager: Migrated 12 records from `staging_employee` to `atomic_employee`

Sqoop makes sure that if any parallel executing jobs fail, it will not copy anything to the destination table.

How it works...

During atomic export, Sqoop first writes data to the staging table. If any of the parallel executing jobs fail, Sqoop will not copy data to the destination table. This way we make sure that no half writes would go to the destination table. The only disadvantage of using the staging table is we would need to have that much space available for us in our database. Generally, it is recommended to use the staging table while exporting data to production tables.

Importing data into Hive tables using Sqoop

Till now we have seen how to import data into HDFS folders. Now it's time to understand how to import data directly into Hive table.
Getting ready

To perform this recipe, you should have a Hadoop cluster running with you as well as the latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need a MySQL database to be present in the network. Installing Sqoop is easy; by downloading Sqoop tar ball and setting it in the system path. As we are going to import data from MySQL, we would also need to download MySQL connector. Based on your MySQL version, download the right connector jar and copy it into the lib directory of Sqoop installation.

How to do it...

Sqoop provides us the facility to directly import data into Hive table. This saves our time in creating Hive tables, specifying matching schema, loading data into HDFS, and then creating external Hive table. We can do this in a couple of commands:
	The following first command creates a table in Hive as per the schema of the source table, and the second command imports the actual data from the source RDBMS table and stores it into Hive table:sqoop create-hive-table --connect jdbc:mysql://localhost/company \
--table employee --hive-table employee_sqoop \
--username root \
--password password \

	The following creates a table in Hive as per the schema of the source table; we can go to Hive and check if the table is created:hive> desc employee_sqoop;
OK
id int
name string
Time taken: 0.114 seconds, Fetched: 2 row(s)

	Next, we execute the following command to import the data into the newly created Hive table:sqoop import --hive-import --connect jdbc:mysql://localhost/company \
--table employee --hive-table employee_sqoop \
--username root \
--password password \
--m 1

	We can then go to the Hive prompt and see if the data is present:hive> select * from employee_sqoop;
 OK
 16	john
 17	robert
 18	andrew
 19	katty
 21	tom
 22	tim
 23	james
 24	paul
 27	edward
 29	alan
 31	kerry
 34	terri
 Time taken: 1.297 seconds, Fetched: 12 row(s)

How it works...

Sqoop Hive import works similar to regular import; the only extra thing it does is copying data under the Hive warehouse directory. The create-hive-table command reads the source table schema first and then creates Hive table accordingly.

Importing data into HDFS from Mainframes

Mainframes is one of the most used datasets in financial domain for quite a long time. Sqoop supports importing datasets from Mainframes into HDFS. This is an important recipe for those who are looking to migrate from Mainframes to Hadoop base systems.
Getting ready

To perform this recipe, you should have a Hadoop cluster running with you as well as the latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need a MySQL database to be present in the network. Installing Sqoop is easy by downloading Sqoop tar ball and setting it in the system path.

How to do it...

Sqoop provides a tool called import-mainframe, using which, we can connect to a certain mainframe host and select the dataset to be imported. The following command connects to a mainframe host with the provided credentials and then imports the mentioned dataset into the HDFS target directory:
 sqoop import-mainframe --connnect <mainframes-host> \
--dataset <dataset-to-be-imported> \
--target-dir /dest \
 --username foo\
 --password bar

You can also choose in which format you wish to import the data, if it needs to be compressed and if you wish to have different field delimiter than the default.

How it works...

Sqoop mainframes imports sequential data into a partitioned dataset. It has certain limitations like records in a dataset should be character data only. Once imported data will be saved as a single text record, and it would still be in its early stages. It would get more mature as time passes.

Incremental import using Sqoop

In an enterprise world, the data gets increased every single day, hour, minute, and second. It's important to import data in an incremental way to do our analysis on up-to-date data. In this recipe, we are going to learn how to import data incrementally.
Getting ready

To perform this recipe, you should have a Hadoop cluster running with you as well as the latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need a MySQL database to be present in the network. Installing Sqoop is easy by downloading Sqoop tar ball and setting it in the system path. As we are going to import data from MySQL, we would also need to download MySQL connector. Based on your MySQL version, download the right connector jar and copy it into the lib directory of the Sqoop installation.

How to do it...

	To learn about incremental import, we will create a new table in MySQL called newemployee and add some records in it:create table newemployee(id INT NOT NULL AUTO_INCREMENT,
 name varchar(20) ,
 salary float,
 PRIMARY KEY (id));
insert into newemployee (name, salary) values ("Tanmay", 2000.00);
insert into newemployee (name, salary) values ("Sneha", 5000.00);
insert into newemployee (name, salary) values ("Avinash", 8000.00);
insert into newemployee (name, salary) values ("Sakalya", 6000.00);
insert into newemployee (name, salary) values ("Manisha", 4000.00);

So, the table would like the following:
mysql> select * from newemployee;
+----+---------+--------+
| id | name | salary |
+----+---------+--------+
1	Tanmay	2000
2	Sneha	5000
3	Avinash	8000
4	Sakalya	6000
5	Manisha	4000
+----+---------+--------+
5 rows in set (0.00 sec)

	First, we import data in a regular manner:sqoop import \
--connect jdbc:mysql://localhost/company \
--username root \
--password password \
--table newemployee \
--target-dir /data/newemployee \
--m 1

Now let's assume that a few more rows got added into our newemployee table:
 insert into newemployee (name, salary) values ("Kapila",4400.00);
 insert into newemployee (name, salary) values ("Vinit", 6500.00);

mysql> select * from newemployee;
+----+---------+--------+
| id | name | salary |
+----+---------+--------+
1	Tanmay	2000
2	Sneha	5000
3	Avinash	8000
4	Sakalya	6000
5	Manisha	4000
6	Kapila	4400
7	Vinit	6500
+----+---------+--------+
7 rows in set (0.00 sec)

	Now to import only new rows, we can use the incremental option in sqoop import. Following is the command we need to use:sqoop import \
--connect jdbc:mysql://localhost/company \
--username root \
--password password \
--table newemployee \
--target-dir /data/newemployee \
--incremental append \
--check-column id \
--last-value 5 \
--m 1

	Here we need to specify which column Sqoop should look at and what its last value is. Append mode is helpful when you have incremental IDs and you wish to import only those rows.Once you execute the job, you will see that only two new rows get imported into HDFS.

	In case you wish to import updated rows using Sqoop, you can use --incremental lastmodified. To use this, first we need to have a column where we can save the last modified date and make sure that on every update, you update the last modified data column as well. Then you can execute the following command to get only updated records:sqoop import \
--connect jdbc:mysql://localhost/company \
--username root \
--password password \
--table newemployee \
--target-dir /data/newemployee \
--incremental lastmodified \
--check-column lastmod \
--last-value 01-01-1970 \
--m 1

Here lastmod is my column in MySQL table where I am storing the lastmodified date.

How it works...

Sqoop incremental import modifies the underlying Map Reduce job based on the conditions given in the command. It filters out values for the columns specified in the command. This is a very useful tool where the database gets updated periodically.

Creating and executing Sqoop job

Sqoop provides you the facility to store certain jobs that can be used easily. In this recipe, we are going to see how to create a job and execute the same.
Getting ready

To perform this recipe, you should have a Hadoop cluster running with you as well as the latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need a MySQL database to be present in the network. Installing Sqoop is easy by downloading Sqoop tar ball and setting it in system path. As we are going to import data from MySQL, we would also need to download MySQL connector. Based on your MySQL version, download the right connector jar and copy it into the lib directory of Sqoop installation.

How to do it...

	We will create a sqoop job for incremental import that we performed in the last recipe. Following is the command to create a sqoop job:sqoop job \
--create incremental_import_job \
-- import \
--connect jdbc:mysql://localhost/company \
--username root \
--password password \
--table newemployee \
--target-dir /data/newemployee \
--incremental append \
--check-column id \
--last-value 7 \
--m 1

	We can see the list of jobs as shown in the following:$ sqoop job --list
15/12/30 12:00:38 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
Available jobs:
 incremental_import_job

We can also view details of a particular job:
$ sqoop job --show incremental_import_job
15/12/30 12:05:51 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
Job: incremental_import_job
Tool: import
Options:

verbose = false
incremental.last.value = 7
db.connect.string = jdbc:mysql://localhost/company
codegen.output.delimiters.escape = 0
codegen.output.delimiters.enclose.required = false
codegen.input.delimiters.field = 0
hbase.create.table = false
db.require.password = true
hdfs.append.dir = true
db.table = newemployee
codegen.input.delimiters.escape = 0
import.fetch.size = null
accumulo.create.table = false
codegen.input.delimiters.enclose.required = false
db.username = root
reset.onemapper = false
codegen.output.delimiters.record = 10
import.max.inline.lob.size = 16777216
hbase.bulk.load.enabled = false
hcatalog.create.table = false
db.clear.staging.table = false
incremental.col = id
codegen.input.delimiters.record = 0
enable.compression = false
hive.overwrite.table = false
hive.import = false
codegen.input.delimiters.enclose = 0
accumulo.batch.size = 10240000
hive.drop.delims = false
codegen.output.delimiters.enclose = 0
hdfs.delete-target.dir = false
codegen.output.dir = .
codegen.auto.compile.dir = true
relaxed.isolation = false
mapreduce.num.mappers = 1
accumulo.max.latency = 5000
import.direct.split.size = 0
codegen.output.delimiters.field = 44
export.new.update = UpdateOnly
incremental.mode = AppendRows
hdfs.file.format = TextFile
codegen.compile.dir = /tmp/sqoop-admin1/compile/b125ff516f7a0143479b9582373230e7
direct.import = false
hdfs.target.dir = /data/newemployee
hive.fail.table.exists = false
db.batch = false

	Next, we can execute the job using the following command:sqoop job --exec incremental_import_job

This will execute the job we had specified. Now you can add more records into the MySQL table and execute this job. It will automatically keep on updating the lastvalue parameter.

How it works...

Sqoop saves the configuration provided in the job, and the next time you execute, it will remember the parameters you provided. It will also make sure to update the last-value attribute in case of incremental imports. It's a very handy tool for taking care of daily imports with ease.

Importing data from RDBMS to Hbase using Sqoop

These days, lots of people want to make use of the power of NoSQL databases. In order to do so, they need to migrate their existing application from RDBMS to NoSQL databases like Hbase. In this recipe, we are going to learn how to import data from MySQL to Hbase.
Getting ready

To perform this recipe, you should have a Hadoop cluster running with you as well as the latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need a MySQL database to be present in the network. Installing Sqoop is easy; by downloading Sqoop tar ball and setting it in the system path. As we are going to import data from MySQL, we would also need to download MySQL connector. Based on your MySQL version, download the right connector jar and copy it into the lib directory of the Sqoop installation.

How to do it...

First of we need to create a table in MySQL and insert some records in it:
mysql> desc employee;
+-------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| id | int(11) | YES | | NULL | |
| name | varchar(20) | YES | | NULL | |
+-------+-------------+------+-----+---------+-------+
2 rows in set (0.00 sec)
mysql> select * from employee;
+------+--------+
| id | name |
+------+--------+
16	john
17	robert
18	andrew
19	katty
21	tom
22	tim
23	james
24	paul
27	edward
29	alan
31	kerry
34	terri
+------+--------+
12 rows in set (0.02 sec)

Next we need to create a table in Hbase:
hbase>create 'emp', 'personal data', 'professional data'

Now we can write a Sqoop job in order to fetch data from this MySQL table as shown in the following:
sqoop import \
 --connect jdbc:mysql://localhost:3306/company \
 --username root -P \
 --table employee \
 --columns "id,name" \
 --hbase-table emp \
 --column-family 'personal data' \
 --hbase-row-key id -m 1

In the preceding command, we are specifying the source table, destination table, columns to be imported, and which column should be used as the key.
Executing the preceding command will start a Map Reduce job and you will see records getting imported into Hbase:
16/02/28 08:44:53 INFO mapreduce.Job: The url to track the job: http://admin1:8088/proxy/application_1456628547885_0002/
16/02/28 08:44:53 INFO mapreduce.Job: Running job: job_1456628547885_0002
16/02/28 08:45:08 INFO mapreduce.Job: Job job_1456628547885_0002 running in uber mode : false
16/02/28 08:45:08 INFO mapreduce.Job: map 0% reduce 0%
16/02/28 08:45:23 INFO mapreduce.Job: map 100% reduce 0%
16/02/28 08:45:24 INFO mapreduce.Job: Job job_1456628547885_0002 completed successfully
16/02/28 08:45:24 INFO mapreduce.Job: Counters: 30
 File System Counters
 FILE: Number of bytes read=0
 FILE: Number of bytes written=159042
 FILE: Number of read operations=0
 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=87
 HDFS: Number of bytes written=0
 HDFS: Number of read operations=1
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=0
 ob Counters
 Launched map tasks=1
 Other local map tasks=1
 Total time spent by all maps in occupied slots (ms)=11945
 Total time spent by all reduces in occupied slots (ms)=0
 Total time spent by all map tasks (ms)=11945
 Total vcore-seconds taken by all map tasks=11945
 Total megabyte-seconds taken by all map tasks=12231680
 Map-Reduce Framework
 Map input records=12
 Map output records=12
 Input split bytes=87
 Spilled Records=0
 Failed Shuffles=0
 Merged Map outputs=0
 GC time elapsed (ms)=194
 CPU time spent (ms)=4060
 Physical memory (bytes) snapshot=160456704
 Virtual memory (bytes) snapshot=418877440
 Total committed heap usage (bytes)=81002496
 File Input Format Counters
 Bytes Read=0
 File Output Format Counters
 Bytes Written=0
16/02/28 08:45:24 INFO mapreduce.ImportJobBase: Transferred 0 bytes in 38.7996 seconds (0 bytes/sec)
16/02/28 08:45:24 INFO mapreduce.ImportJobBase: Retrieved 12 records.

Now we can check in the Hbase table as shown in the following:
hbase(main):006:0> scan 'emp'
ROW COLUMN+CELL 16 column=personal data:name, timestamp=1456629321444, value=
 John 17 column=personal data:name, timestamp=1456629321444, value=
 Robert 18 column=personal data:name, timestamp=1456629321444, value=
 Andrew 19 column=personal data:name, timestamp=1456629321444, value=
 Katty 21 column=personal data:name, timestamp=1456629321444, value=
 Tom 22 column=personal data:name, timestamp=1456629321444, value=
 Tim 23 column=personal data:name, timestamp=1456629321444, value=
 James 24 column=personal data:name, timestamp=1456629321444, value=
 Paul 27 column=personal data:name, timestamp=1456629321444, value=
 Edward 29 column=personal data:name, timestamp=1456629321444, value=
 Alan 31 column=personal data:name, timestamp=1456629321444, value=
 Kerry 34 column=personal data:name, timestamp=1456629321444, value=
 Terri 12 row(s) in 0.2990 seconds

How it works...

Sqoop reads the command provided and makes a JDBC connection to MySQL. It verifies the existence of source and destination tables and then starts the import. Hbase being a columnar store database, means it writes row data and a column definition in each record.

Importing Twitter data into HDFS using Flume

Flume is another tool that helps us import data from various other sources into HDFS. In this recipe, we are going to see how to import Twitter data using Flume. Twitter data is a great source of information provided by individuals. This data can be used to do sentiment analytics of certain products, persons, companies, and so on.
Getting ready

To perform this recipe, you should have a Hadoop cluster running with you as well as the latest version of Flume installed on it. Here I am using Flume 1.6.

How to do it...

To import data using Flume, first of all we need to have a Twitter account and we need to generate credentials. These credentials would be used by Flume agent to import the data. Flume by default supports sources to import data from Twitter, so there is no need to do anything else other than having an account and generating credentials.
Following is the step-by-step process to generate Twitter authorization tokens:
	Log in to https://apps.twitter.com/.
	Click on Create New Application. Fill in the required form as shown in the following screenshot:[image: How to do it...]

	Read and accept the Developer Agreement if you think it's good for you:[image: How to do it...]

	Click on Create your Twitter application to save your application. Now we can use this handle to import data from Twitter:[image: How to do it...]

	Click on Keys and Access Tokens; there you will find the application specific Consumer Key and Consumer Secret Key. Keep a copy of it as we will need it in the next steps.[image: How to do it...]

	On scrolling down, you will also see an option to generate an access token, so do that and keep a copy of it for future use.
	Now edit $FLUME_HOME/conf/flume.conf to copy the exact values of the access key, secret key, access token, and access token secret. Save the changes made to the file. The following is how your flume.conf should look like:
TwitterAgent for collecting Twitter data to Hadoop HDFS

TwitterAgent.sources = Twitter
TwitterAgent.channels = FileChannel
TwitterAgent.sinks = HDFS

TwitterAgent.sources.Twitter.type = org.apache.flume.source.twitter.TwitterSource
TwitterAgent.sources.Twitter.channels = FileChannel
TwitterAgent.sources.Twitter.consumerKey = <consumer-key>
TwitterAgent.sources.Twitter.consumerSecret = <consume-secret>
TwitterAgent.sources.Twitter.accessToken = <access-token>
TwitterAgent.sources.Twitter.accessTokenSecret = <access-token-secret>
TwitterAgent.sources.Twitter.maxBatchSize = 50000
TwitterAgent.sources.Twitter.maxBatchDurationMillis = 100000

#TwitterAgent.sources.Twitter.keywords = Apache, Hadoop, Mapreduce, hadooptutorial, Hive, Hbase, MySql

TwitterAgent.sinks.HDFS.channel = FileChannel
TwitterAgent.sinks.HDFS.type = hdfs
TwitterAgent.sinks.HDFS.hdfs.path = hdfs://localhost:9000/user/flume/tweets/
TwitterAgent.sinks.HDFS.hdfs.fileType = DataStream
TwitterAgent.sinks.HDFS.hdfs.writeFormat = Text
TwitterAgent.sinks.HDFS.hdfs.batchSize = 200000
TwitterAgent.sinks.HDFS.hdfs.rollSize = 0
TwitterAgent.sinks.HDFS.hdfs.rollCount = 2000000

TwitterAgent.channels.FileChannel.type = file
TwitterAgent.channels.FileChannel.checkpointDir = /var/log/flume/checkpoint/
TwitterAgent.channels.FileChannel.dataDirs = /var/log/flume/data/

	Now it's time to execute Flume agent to start fetching data from Twitter and save it on HDFS:/usr/local/flume/bin/flume-ng agent -n TwitterAgent -c /usr/local/flume/conf -f /usr/local/flume/conf/flume.conf

Execute the preceding command to fetch data from Twitter and save it on HDFS.

	Now you can take a look at the HDFS path /user/flume/tweets to see the actual Twitter data.[image: How to do it...]

How it works

Flume has built-in support for the Twitter source. It uses Twitter exposed APIs to download the data and store it on HDFS. It internally browses through the tweets available for your user and downloads them. It keeps on creating a new file based on time. You can also download only those tweets with certain keywords by uncommenting the following line from flume.conf and rerunning the Flume agent:
TwitterAgent.sources.Twitter.keywords = Apache, Hadoop, Mapreduce, hadooptutorial, Hive, Hbase, MySql

Note
Please make a note that the application you have created has all of the same rights as a user. So don't share the keys with anyone else.

Importing data from Kafka into HDFS using Flume

Kafka is one the most popular message queue systems being used these days. We can listen to Kafka topics and put the message data directly into HDFS using Flume. The latest Flume version supports importing data from Kafka easily. In this recipe, we are going to learn how to import Kafka messages to HDFS.
Getting ready

To perform this recipe, you should have a Hadoop cluster running with you as well as the latest version of Flume installed on it. Here I am using Flume 1.6. We also need Kafka installed and running on one of the machines. I am using kafka_2.10-0.9.0.0.

How to do it...

	To import the data from Kafka, first you need to have Kafka running on your machine. The following command starts Kafka and Zookeeper:bin/zookeeper-server-start.sh config/zookeeper.properties
bin/kafka-server-start.sh config/server.properties

	Next I create a topic called weblogs which we will be listening to:bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic weblogs

	Next we will start a producer which we will write to weblogs topic:bin/kafka-console-producer.sh --broker-list localhost:9092 --topic weblogs

	Now that all Kafka-related infra is set up, we need to also create Flume configuration, which will be listening to the weblogs topic and writing it to HDFS:# Flume config to listen to Kakfa topic and write to HDFS.
flume1.sources = kafka-source-1
flume1.channels = hdfs-channel-1
flume1.sinks = hdfs-sink-1

For each source, channel, and sink, set
standard properties.
flume1.sources.kafka-source-1.type = org.apache.flume.source.kafka.KafkaSource
flume1.sources.kafka-source-1.zookeeperConnect = localhost:2181
flume1.sources.kafka-source-1.topic = weblogs
flume1.sources.kafka-source-1.batchSize = 100
flume1.sources.kafka-source-1.channels = hdfs-channel-1

flume1.channels.hdfs-channel-1.type = memory
flume1.sinks.hdfs-sink-1.channel = hdfs-channel-1
flume1.sinks.hdfs-sink-1.type = hdfs
flume1.sinks.hdfs-sink-1.hdfs.writeFormat = Text
flume1.sinks.hdfs-sink-1.hdfs.fileType = DataStream
flume1.sinks.hdfs-sink-1.hdfs.filePrefix = test-events
flume1.sinks.hdfs-sink-1.hdfs.useLocalTimeStamp = true
flume1.sinks.hdfs-sink-1.hdfs.path = /tmp/kafka/%{topic}/%y-%m-%d
flume1.sinks.hdfs-sink-1.hdfs.rollCount=100
flume1.sinks.hdfs-sink-1.hdfs.rollSize=0

Other properties are specific to each type of
source, channel, or sink. In this case, we
specify the capacity of the memory channel.
flume1.channels.hdfs-channel-1.capacity = 10000

	I am saving this configuration as kafka.conf. Now to execute this Flume agent, we use the following command:/usr/local/flume/bin/flume-ng agent -n flume1 -c /usr/local/flume/conf -f /usr/local/flume/conf/kafka.conf -Dflume.root.logger=INFO,console

This will start a process that will be listening to the weblogs topic in Kafka. Now to test this setup, go to the screen where we are running the Kafka producers and send some messages to the weblogs topic. As soon as you send a message to the topic, you will see logs on Flume agent conveying that it is writing to HDFS.
You can now check out the HDFS path to see if the messages are being written there:
hadoop fs -cat /tmp/kafka/weblogs/16-01-02/test-events.1451730937398
Hello World

[image: How to do it...]

How it works

Flume agent listens to a given topic. As soon as the message is received, it uses the defined HDFS sinks to write the data to the HDFS path. First it creates a .tmp file, and after a certain message is received, it renames it to a regular file. Flume, by default, uses the group ID as Flume to avoid any message loss from the actual application. We can also run multiple Flume agents to distribute the load.

Importing web logs data into HDFS using Flume

One of the most important use cases of Flume is importing logs data into HDFS as and when it is produced. In this recipe, we will be executing a Flume agent which will be listening to the logs file.
Getting ready

To perform this recipe, you should have a Hadoop cluster running with you as well as the latest version of Flume installed on it.

How to do it...

	To import data into HDFS from web servers, we have to install Flume agent on each web server instance.Following is the configuration we have to use for Flume agent configuration:flume1.sources = weblogs-source-1
flume1.channels = hdfs-channel-1
flume1.sinks = hdfs-sink-1

For each source, channel, and sink, set
standard properties.
flume1.sources.weblogs-source-1.type = exec
flume1.sources.weblogs-source-1.command = tail -f /path/to/log/file.log
flume1.sources.weblogs-source-1.batchSize = 100
flume1.sources.weblogs-source-1.channels = hdfs-channel-1

flume1.channels.hdfs-channel-1.type = memory
flume1.sinks.hdfs-sink-1.channel = hdfs-channel-1
flume1.sinks.hdfs-sink-1.type = hdfs
flume1.sinks.hdfs-sink-1.hdfs.writeFormat = Text
flume1.sinks.hdfs-sink-1.hdfs.fileType = DataStream
flume1.sinks.hdfs-sink-1.hdfs.filePrefix = test-events
flume1.sinks.hdfs-sink-1.hdfs.useLocalTimeStamp = true
flume1.sinks.hdfs-sink-1.hdfs.path = /logs/web/%y-%m-%d
flume1.sinks.hdfs-sink-1.hdfs.rollCount=100
flume1.sinks.hdfs-sink-1.hdfs.rollSize=0

Other properties are specific to each type of
source, channel, or sink. In this case, we
specify the capacity of the memory channel.
flume1.channels.hdfs-channel-1.capacity = 10000

	This will be listening to the given log file path. Here we are using exec source, which executes given command after a certain time interval.Here the source is an output of the exec command we have provided. The channel transfers the data to Sink, which writes it to HDFS.

	To execute the preceding configuration, we have to run the following command:/usr/local/flume/bin/flume-ng agent -n flume1 -c /usr/local/flume/conf -f /usr/local/flume/conf/weblogs.conf -Dflume.root.logger=INFO,console

Now, as and when the log file is updated, the data will be written to HDFS as well:
[image: How to do it...]

How it works...

Exec source executes the command on a given instance and redirects the output to a channel. The Channel then makes sure that it is given to the sink. Here we are using HDFS sink, which writes the data to HDFS in the given format.

Chapter 7. Automation of Hadoop Tasks Using Oozie

In this chapter, we'll take a look at the following recipes:
	Implementing a Sqoop action job using Oozie
	Implementing a Map Reduce action job using Oozie
	Implementing a Java action job using Oozie
	Implementing a Hive action job using Oozie
	Implementing a Pig action job using Oozie
	Implementing an e-mail action job using Oozie
	Executing parallel jobs using Oozie (fork)
	Scheduling a job in Oozie

Introduction

In the previous chapter, we talked about two very important tools, Sqoop and Flume, which help us seamlessly import and export data in and out of Hadoop. Now that we have talked about most of the Hadoop ecosystem tools and their advanced usage, it's time to understand how to automate these tasks using another interesting tool called Oozie. Oozie is a job scheduler, which helps us execute a series of Hadoop tasks in a workflow.

Implementing a Sqoop action job using Oozie

In the previous chapter, we took a look at how to use Sqoop to import and export data from RDBMS to HDFS. In this recipe, you are going to learn how to automate this Sqoop import and export using Oozie.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Sqoop and Oozie installed on it.

How to do it...

Any Oozie job execution consists of two important things, a workflow.xml and a properties file. The workflow.xml file is where we need to specify the flow of an execution. The following is an example of workflow.xml, which uses the Sqoop action:
<workflow-app xmlns="uri:oozie:workflow:0.2" name="sqoop-wf">
<start to="sqoop-node"/>

<action name="sqoop-node">
<sqoop xmlns="uri:oozie:sqoop-action:0.2">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>

<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<command>import --connect jdbc:mysql://localhost:3306/company --username root --password password --table employee --target-dir /data/employee-oozie -m 1</command>
</sqoop>
<ok to="end"/>
<error to="fail"/>
</action>

<kill name="fail">
<message>Sqoop failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<end name="end"/>
</workflow-app>

This is the command section where we need to provide the actual command that is to be executed from Sqoop.
Now, we have to upload workflow.xml to HDFS. After this, we need to create a job.properties file, which would invoke this workflow. Here is a sample code snippet for this purpose:
nameNode=hdfs://localhost:9000
jobTracker=localhost:8032
queueName=default
examplesRoot=examples
oozie.libpath=${nameNode}/user/admin1/share/lib
oozie.use.system.libpath=true

oozie.wf.application.path=${nameNode}/user/admin1/share/examples/apps/sqoop

We have a property called jobTracker for which we have to give ResourceManager a host and a port.
Now, we have to submit this job using the following command:
oozie job -oozie http://localhost:11000/oozie -config job.properties –run

This will start the workflow which will fetch data from MySQL and store it in the given HDFS directory. From Oozie's UI, you can track the progress of this job.

How it works

Oozie internally calls Sqoop libraries in order to import and export data as given in the command section. You can also use the <prepare> statements in order to make sure that directory where you export the data has been cleared before executing the job.

Implementing a Map Reduce action job using Oozie

In the previous recipe, we talked about how to use a Sqoop action to import data to HDFS. In this recipe, we are going to take a look at how to execute Map Reduce jobs using Oozie.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Oozie installed on it.

How to do it...

Any Oozie job execution consists of two important things, workflow.xml and a properties file. The Workflow.xml file is where we need to specify the flow of execution. The following is an example of workflow.xml, which uses the MR action. Here, we also need to provide the jar file that contains the the map reduce code:
<workflow-app xmlns="uri:oozie:workflow:0.2" name="map-reduce-wf">
<start to="mr-node"/>
<action name="mr-node">
<map-reduce>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>
<delete path="${nameNode}/user/${wf:user()}/${examplesRoot}/output-data/${outputDir}"/>
</prepare>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
<property>
<name>mapred.mapper.class</name>
<value>com.demo.WordMapper</value>
</property>
<property>
<name>mapred.reducer.class</name>
<value>com.demo.SumReducer</value>
</property>
<property>
<name>mapred.input.dir</name>
<value>/in</value>
</property>
<property>
<name>mapred.output.dir</name>
<value>${outputDir}</value>
</property>
</configuration>
</map-reduce>
<ok to="end"/>
<error to="fail"/>
</action>
<kill name="fail">
<message>Map/Reduce failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<end name="end"/>
</workflow-app>

In the preceding workflow.xml, it is important to provide the mapper and reducer classes, respectively.
Now, we have to upload workflow.xml and the jar file to HDFS. After this, we need to create the job.properties file, which will invoke this workflow. Here is a sample code snippet for this purpose:
nameNode=hdfs://localhost:9000
jobTracker=localhost:8032
queueName=default

oozie.wf.application.path=${nameNode}/user/admin1/share/examples/apps/map-reduce/workflow.xml
outputDir=/newout

For the property called jobTracker, we can pass the ResourceManager host and port number.
We have to submit this job using the following command:
oozie job -oozie http://localhost:11000/oozie -config job.properties –run

This will start the workflow, which will start reading data from the /in directory, calculate the word count, and write the output to the /newout directory.

How it works...

Oozie internally submits the map reduce job to the Resource Managers and works similar to our regular map reduce jobs. You can also use the <prepare> statements in order to make sure that the directory where you export the data has been cleared before executing the job.

Implementing a Java action job using Oozie

In the previous recipe, we talked about how to use Oozie to execute the Map Reduce job. In this recipe, we are going to take a look at how to execute any Java class using Oozie.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Oozie installed on it.

How to do it

Any Oozie job execution consists of two important things, workflow.xml and a properties file. The workflow.xml is where we need to specify the flow of execution. The following is an example of workflow.xml, which uses a Java action. Here, we need to provide the jar file in which the code is present:
<workflow-app xmlns="uri:oozie:workflow:0.2" name="java-main-wf">
<start to="java-node"/>
<action name="java-node">
<java>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<main-class>com.demo.JavaMain</main-class>
<arg>Hello</arg>
<arg>Oozie!</arg>
</java>
<ok to="end"/>
<error to="fail"/>
</action>
<kill name="fail">
<message>Java failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<end name="end"/>
</workflow-app>

In the preceding e workflow.xml, we need to provide the main class that should be the entry point of our Java program. We can also provide arguments that can be passed to the Java class.
Now, we have to upload workflow.xml and the jar file to HDFS. After this, we need to create the job.properties file, which will invoke this workflow. Here is a sample code snippet for this purpose:
nameNode=hdfs://localhost:8020
jobTracker=localhost:8032
queueName=default
examplesRoot=examples

oozie.wf.application.path=${nameNode}/user/admin1/${examplesRoot}/apps/java-main

Here, we have a property called jobTracker for which we have to provide ResourceManager a host and a port.
Now, we have to submit this job using the following command:
oozie job -oozie http://localhost:11000/oozie -config job.properties –run

This will start the workflow, which will execute the code given in the Main class using the arguments that are passed.

How it works

Oozie executes the Main class provided along with the arguments in workflow.xml. It is important to note that while using Oozie, if you are trying to access any resources, make sure that a user has access to them.

Implementing a Hive action job using Oozie

In this recipe, we are going to take a look at how to use a Hive action in order to automate Hive query executions.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Oozie and Hive installed on it.

How to do it...

Any Oozie job execution consists of two important things, workflow.xml and a properties file. The workflow.xml file is where we need to specify the flow of execution. The following is an example of workflow.xml, which uses the Hive action:
<workflow-app xmlns="uri:oozie:workflow:0.2" name="hive-wf">
<start to="hive-node"/>

<action name="hive-node">
<hive xmlns="uri:oozie:hive-action:0.2">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<script>script.q</script>
</hive>
<ok to="end"/>
<error to="fail"/>
</action>

<kill name="fail">
<message>Hive failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<end name="end"/>
</workflow-app>

Here, we can provide the Hive commands that are to be executed in the script.q file. The following is an example of the contents of script.q:
CREATE EXTERNAL TABLE test (a INT) STORED AS TEXTFILE LOCATION '/data/input/test';
CREATE TABLE test_new (a INT) STORED AS TEXTFILE;
INSERT OVERWRITE TABLE test_new SELECT * FROM test;

In this script, you can write as many Hive queries as you wish to execute using Oozie.
Now, we have to upload workflow.xml and script.q to HDFS. After this, we need to create the job.properties file, which will invoke this workflow. Here is a sample code snippet for this purpose:
nameNode=hdfs://localhost:9000
jobTracker=localhost:8032
queueName=default
examplesRoot=examples

oozie.use.system.libpath=true

oozie.wf.application.path=${nameNode}/user/admin1/share/examples/apps/hive

Here, we have a property called jobTracker for which we have to give ResourceManager a host and a port.
Now, we have to submit this job using the following command:
oozie job -oozie http://localhost:11000/oozie -config job.properties –run

This will start the workflow, which will execute the given Hive queries.

How it works...

Oozie internally calls Hive to execute the given Hive query. It is important to provide fully qualified paths for input directories and not relative directories so there are no errors because of invalid paths. Each and everytime this can be performed from the Hive action as well.

Implementing a Pig action job using Oozie

In this recipe, we are going to take a look at how to use a Pig action in order to automate the Pigscripts executions.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Oozie and Pig installed on it.

How to do it...

A Oozie job execution consists of two important things, workflow.xml and a properties file. The workflow.xml file is where we need to specify the flow of execution. The following is an example of workflow.xml, which uses the Pig action:
<workflow-app xmlns="uri:oozie:workflow:0.2" name="pig-wf">
<start to="pig-node"/>
<action name="pig-node">
<pig>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>
<delete path="${nameNode}/user/${wf:user()}/${examplesRoot}/output-data/pig"/>
</prepare>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<script>script.pig</script>
<param>INPUT=/user/${wf:user()}/${examplesRoot}/input-data/text</param>
<param>OUTPUT=/user/${wf:user()}/${examplesRoot}/output-data/pig</param>
</pig>
<ok to="end"/>
<error to="fail"/>
</action>
<kill name="fail">
<message>Pig failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<end name="end"/>
</workflow-app>

Here, we can provide the Pig commands to be executed in the script.pig file. The following is an example of the contents of script.pig:
A = load '$INPUT' using PigStorage(':');
B = foreach A generate $0 as id;
store B into '$OUTPUT' USING PigStorage();

In this script, you can write any Pig command that you wish to execute using Oozie.
Now, we have to upload workflow.xml and script.pig to HDFS. After this, we need to create the job.properties file, which will invoke this workflow. Here is a sample code snippet for this purpose:
nameNode=hdfs://localhost:9000
jobTracker=localhost:8032
queueName=default
examplesRoot=examples

oozie.use.system.libpath=true

oozie.wf.application.path=${nameNode}/user/admin1/share/examples/apps/pig

Here, we have a property, called jobTracker, for which we have to give ResourceManager a host and a port.
Now, we have to submit this job using the following command:
oozie job -oozie http://localhost:11000/oozie -config job.properties –run

This will start the workflow, which will execute the given Pigcommands.

How it works

Oozie internally calls Pig to execute the given Pig script. It is important to provide fully qualified paths for input directories and not relative directories. Each and everytime, this can be performed from the Pig action as well.

Implementing an e-mail action job using Oozie

In this recipe, we are going to take a look at how to use an e-mail action in order to notify users about job executions in Oozie.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Oozie installed on it.

How to do it...

An Oozie job execution consists of two important things, workflow.xml and a properties file. The workflow.xml file is where we need to specify the flow of execution. The following is an example of workflow.xml, which uses the e-mail action:
<workflow-app xmlns="uri:oozie:workflow:0.2" name="pig-wf">
<start to="notify"/>
<action name="notify">
<email xmlns="uri:oozie:email-action:0.1">
<to>a@.b.com</to>
<cc>b@b.com</cc>
<subject>Email notifications for ${wf:id()}</subject>
<body>The wf ${wf:id()} successfully completed.</body>
</email>
<error to="fail"/>
</action>
<kill name="fail">
<message>Email, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<end name="end"/>
</workflow-app>

To use the e-mail action, we first need to configure SMTP settings in oozie-site.xml, and the following properties need to be set:
	oozie.email.smtp.host: The host where the e-mail action may find the SMTP server (the localhost by default)
	oozie.email.smtp.port: The port to connect to for the SMTP server (25 by default)
	oozie.email.from.address: The from address to be used for the purpose of mailing all e-mails (oozie@localhost by default)
	oozie.email.smtp.auth: The Boolean property that toggles when an authentication is to be done or not (false by default)
	oozie.email.smtp.username: If an authentication is enabled, this shows the username to login as (empty by default)
	oozie.email.smtp.password: If the authentication is enabled, this shows the username's password (empty by default)

Now, we have to upload workflow.xml to HDFS. After this, we need to create the job.properties file, which will invoke this workflow. Here is a sample code snippet for this purpose:
nameNode=hdfs://localhost:9000
jobTracker=localhost:8032
queueName=default
examplesRoot=examples

oozie.use.system.libpath=true

oozie.wf.application.path=${nameNode}/user/admin1/share/examples/apps/email

Here, we have a property, called jobTracker, for which we have to give ResourceManager a host and a port.
Now, we have to submit this job using the following command:
oozie job -oozie http://localhost:11000/oozie -config job.properties –run

This will start the workflow, which will send the e-mail with given the details.

How it works...

The e-mail action is very important as it helps us notify users about the progress. My recommendation is that you should use this action at the start of the workflow, in case of any errors, and on successful completion.

Executing parallel jobs using Oozie (fork)

In this recipe, we are going to take a look at how to execute parallel jobs using the Oozie fork node. Here, we will be executing one Hive and one Pig job in parallel.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Oozie, Hive, and Pig installed on it.

How to do it...

For parallel execution, we need to use the fork node given by Oozie. The following is a sample workflow that executes Hive and Pig jobs in parallel:
<workflow-app xmlns="uri:oozie:workflow:0.2" name="demo-wf">

<start to="fork-node"/>

<fork name="fork-node">
<path start="pig-node"/>
<path start="hive-node"/>
</fork>

<action name="pig-node">
<pig>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>
<delete path="${nameNode}/user/${wf:user()}/${examplesRoot}/output-data/pig"/>
</prepare>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<script>script.pig</script>
<param>INPUT=/user/${wf:user()}/${examplesRoot}/input-data/text</param>
<param>OUTPUT=/user/${wf:user()}/${examplesRoot}/output-data/pig</param>
</pig>
<ok to="join-node"/>
<error to="fail"/>
</action>

<action name="hive-node">
<hive xmlns="uri:oozie:hive-action:0.2">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<script>script.q</script>
</hive>
<ok to="join-node"/>
<error to="fail"/>
</action>

<join name="join-node" to="end"/>

<kill name="fail">
<message>Demo workflow failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>

<end name="end"/>

</workflow-app>

We can provide any number of jobs in the fork node to execute it in parallel. Each forked node should be joined back in a join node.
Now, we have to submit this job using the following command:
oozie job -oozie http://localhost:11000/oozie -config job.properties –run

This will start the workflow that will execute Hive and Pig scripts in parallel.

How it works...

The fork node is helpful when we have two more processes which are independent of each other. This helps reduce the time for execution by consuming available resources.

Scheduling a job in Oozie

In this recipe, we are going to take a look at a schedule that has recurring jobs using the Oozie coordinator.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Oozie installed on it.

How to do it...

Oozie provides one more type of job called a coordinator job. This type of job is used to schedule application jobs. With the help of a coordinator job, we can execute an application job. The following is an example of a coordinator job that runs daily:
<coordinator-app name="sample-coordinator"
 frequency="${coord:days(1)}"
 start="2016-01-01T18:56Z" end="2017-01-01T18:56Z" timezone="UTC"
 xmlns="uri:oozie:coordinator:0.2">

<controls>

<concurrency>1</concurrency>
<execution>FIFO</execution>
<throttle>5</throttle>
</controls>

<action>
<workflow>
<app-path>${applicationPath}</app-path>
<configuration>
 ...
</configuration>
</workflow>
</action>
</coordinator-app>

Coordinator jobs contain one important attribute called frequency, which decides the frequency of job executions within a given start and end time.
Here is sample job.properties to execute the preceding workflow:
nameNode=hdfs://localhost:9000
jobTracker=localhost:8032
queueName=default
examplesRoot=examples

oozie.use.system.libpath=true

oozie.coord.application.path=${nameNode}/user/admin1/share/examples/apps/coordinator

Now, we have to submit this job using the following command:
oozie job -oozie http://localhost:11000/oozie -config job.properties –run

This will start the coordinator workflow, which will keep on running as per the schedule.

How it works...

Coordinator jobs work like crontab, where you set the frequency of certain task executions. Internally, it then invokes the application workflow provided in the coordinator workflow.

Chapter 8. Machine Learning and Predictive Analytics Using Mahout and R

In this chapter, we'll cover the following recipes:
	Setting up the Mahout development environment
	Creating an item-based recommendation engine using Mahout
	Creating a user-based recommendation engine using Mahout
	Using predictive analytics for the marketing data of a bank
	Clustering text data using K-Means
	Performing population data analytics using R
	Performing Twitter Sentiment Analytics using R
	Performing Predictive Analytics using R

Introduction

In the previous chapter, we talked about how to automate Hadoop and its ecosystem tasks using Oozie. In this chapter, we will go deeper into the concepts of machine learning using Mahout and R. Mahout is a machine learning library, which allows us to solve machine learning problems with ease, whereas R is a statistical tool, which helps us build models. So, let's get started.

Setting up the Mahout development environment

In this recipe, we are going to take a look at how to set up the Mahout development environment.
Getting ready

To perform this recipe, you should have a running Hadoop cluster.

How to do it...

Setting up the Mahout environment is very easy:
	To start with, we first need to download the latest version of Mahout from http://www.apache.org/dyn/closer.cgi/mahout/.
	I am going to use version 0.11.1 ,which can be found at http://www.eu.apache.org/dist/mahout/0.11.1/apache-mahout-distribution-0.11.1.tar.gz.
	Next, unzip the tar and rename the folder as Mahout for simplicity's sake:sudo tar -xzf apache-mahout-distribution-0.11.1.tar.gz
sudo mv apache-mahout-distribution-0.11.1 mahout

	To use the Mahout commands from everywhere, we add the distribution path to PATH.Edit ~/.bashrc and add the following commands to it:
export MAHOUT_HOME=/usr/local/mahout
export PATH=$PATH:$MAHOUT_HOME/bin

	Execute the following command to take a look at whether the changes are effective:source ~/.bashrc

	Now you are all set to use Mahout:$ mahout
Running on hadoop, using /usr/local/hadoop/bin/hadoop and HADOOP_CONF_DIR=
MAHOUT-JOB: /usr/local/mahout/mahout-examples-0.11.1-job.jar
An example program must be given as the first argument.
Valid program names are:
 arff.vector: : Generate Vectors from an ARFF file or directory
 baumwelch: : Baum-Welch algorithm for unsupervised HMM training
 canopy: : Canopy clustering
 cat: : Print a file or resource as the logistic regression models would see it
 cleansvd: : Cleanup and verification of SVD output
 clusterdump: : Dump cluster output to text
 clusterpp: : Groups Clustering Output In Clusters
 cmdump: : Dump confusion matrix in HTML or text formats
 cvb: : LDA via Collapsed Variation Bayes (0th deriv. approx)
 cvb0_local: : LDA via Collapsed Variation Bayes, in memory locally.
 describe: : Describe the fields and target variable in a data set
 evaluateFactorization: : compute RMSE and MAE of a rating matrix factorization against probes
 fkmeans: : Fuzzy K-means clustering
 hmmpredict: : Generate random sequence of observations by given HMM
 itemsimilarity: : Compute the item-item-similarities for item-based collaborative filtering
 kmeans: : K-means clustering
 lucene.vector: : Generate Vectors from a Lucene index
 matrixdump: : Dump matrix in CSV format
 matrixmult: : Take the product of two matrices
 parallelALS: : ALS-WR factorization of a rating matrix
 qualcluster: : Runs clustering experiments and summarizes results in a CSV
 recommendfactorized: : Compute recommendations using the factorization of a rating matrix
 recommenditembased: : Compute recommendations using item-based collaborative filtering
 regexconverter: : Convert text files on a per line basis based on regular expressions
 resplit: : Splits a set of SequenceFiles into a number of equal splits
 rowid: : Map SequenceFile<Text,VectorWritable> to {SequenceFile<IntWritable,VectorWritable>, SequenceFile<IntWritable,Text>}
 rowsimilarity: : Compute the pairwise similarities of the rows of a matrix
 runAdaptiveLogistic: : Score new production data using a probably trained and validated AdaptivelogisticRegression model
 runlogistic: : Run a logistic regression model against CSV data
 seq2encoded: : Encoded Sparse Vector generation from Text sequence files
 seq2sparse: : Sparse Vector generation from Text sequence files
 seqdirectory: : Generate sequence files (of Text) from a directory
 seqdumper: : Generic Sequence File dumper
 seqmailarchives: : Creates SequenceFile from a directory containing gzipped mail archives
 seqwiki: : Wikipedia xml dump to sequence file
 spectralkmeans: : Spectral k-means clustering
 split: : Split Input data into test and train sets
 splitDataset: : split a rating dataset into training and probe parts
 ssvd: : Stochastic SVD
 streamingkmeans: : Streaming k-means clustering
 svd: : Lanczos Singular Value Decomposition
 testnb: : Test the Vector-based Bayes classifier
 trainAdaptiveLogistic: : Train an AdaptivelogisticRegression model
 trainlogistic: : Train a logistic regression using stochastic gradient descent
 trainnb: : Train the Vector-based Bayes classifier
 transpose: : Take the transpose of a matrix
 validateAdaptiveLogistic: : Validate an AdaptivelogisticRegression model against hold-out data set
 vecdist: : Compute the distances between a set of Vectors (or Cluster or Canopy, they must fit in memory) and a list of Vectors
 vectordump: : Dump vectors from a sequence file to text
viterbi: : Viterbi decoding of hidden states from given output states sequence

How it works...

We have just set the Mahout home, and it shows all the algorithms that are supported along with their purpose. Not all Mahout algorithms are able to use Hadoop/Map Reduce in order to understand that in a better manner.
Note
I suggest that you take a look at https://mahout.apache.org/users/basics/algorithms.html.

Creating an item-based recommendation engine using Mahout

In this recipe, we are going to take a look at how to use Mahout to generate item-based recommendations. Recommendation engine is one of the most seen use cases. A recommendation engine generates recommendations based on the input data provided to it. In this recipe, we are going to take a look at how to generate recommendations based on user preferences for certain items.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Mahout installed on it.

How to do it...

Mahout provides built-in support for item-based recommendations. In order to execute a program using Mahout, we first need to prepare the input data and store it in a certain folder. The input data needs to be in a specified format (userId, itemId, and preference). Here, userId is the unique user identifier, itemId, is the unique item identifier, while the preference can be a rating given by a user to a specific item, number of items that are ordered, and so on.
First, we capture and prepare our data and store it in HDFS:
hadoop fs -mkdir /recommender-in
hadoop fs -put user-item.txt /recommender-in

Here is some sample input:
1,10,1.0
1,11,2.0
1,12,5.0
1,13,5.0
1,14,5.0
1,15,4.0
1,16,5.0
1,17,1.0
1,18,5.0
2,10,1.0
2,11,2.0
2,15,5.0
2,16,4.5
2,17,1.0
2,18,5.0
3,11,2.5
3,12,4.5
3,13,4.0
3,14,3.0
3,15,3.5
3,16,4.5
3,17,4.0
3,18,5.0
4,10,5.0
4,11,5.0
4,12,5.0
4,13,0.0
4,14,2.0
4,15,3.0
4,16,1.0
4,17,4.0
4,18,1.0

To start the job, we have to execute the following command:
mahout recommenditembased -s SIMILARITY_LOGLIKELIHOOD -i /recommender-in -o /recommender-out --numRecommendations 5

The preceding command starts a series of Map Reduce programs, which run over the input data. SIMILARITY_LOGLIKELIHOOD is the name of a class that determines the similarity between items. You can either use this default, or you can choose from a variety of similar algorithms that are available.
Once the execution is complete, the output that's generated is as follows:
$ hadoop fs -ls /recommender-out
 Found 2 items
 -rw-r--r-- 1 admin1 supergroup 0 2016-01-28 11:46 /recommender-out/_SUCCESS
 -rw-r--r-- 1 admin1 supergroup 28 2016-01-28 11:46 /recommender-out/part-r-00000
$ hadoop fs -cat /recommender-out/part-r-00000
 3	[10:3.8597424]
 4	[13:4.0]

This output indicates that the recommender has generated two recommendations. For user 3, it recommends item 10, and for user 4, it recommends item 13.
This way, you can keep on putting your data in HDFS and keep running the recommendation jobs every time that the data is updated. You can write custom code to use this output and integrate it into your application.

How it works...

Mahout uses various algorithms to generate the recommendations. It first puts the data that's been given as the input in the form of model data. It uses a similarity calculation algorithm given by the user in order to do this. These two things are used as input in order to calculate the similarity between the items. Once this is calculated, based on the items that are not used by users, it recommends them.
This implementation can used as is without any modifications if it can get your data in the given format. You can use this recommendation engine to generate recommendations on e-commerce websites for production recommendations, or it can also be used to track web user activity and recommend web pages accordingly.

Creating a user-based recommendation engine using Mahout

In this recipe, we are going to take a look at how to use Mahout to generate user-based recommendations. The user-based recommendation engine is not available directly to be used as a Map Reduce job. We have to run it in a sequential manner, as described in the next section.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Mahout installed on it. We will also need an Eclipse-like IDE or any other IDE of your choice for code development.

How to do it...

User-based recommendations work on the simple principle of user similarities and their likelihood toward the same set of items. To implement them, we first need to create a Maven project, and add the following dependency to it:
<dependency>
 <groupId>org.apache.mahout</groupId>
 <artifactId>mahout-mr</artifactId>
 <version>0.10.0</version>
</dependency>

Next, we create a Java class, as shown here:
package com.demo.recommender;

import java.io.File;
import java.io.IOException;
import java.util.List;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.ThresholdUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.UserBasedRecommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;

public class MyUserBasedRecommender
{
 public static void main(String[] args) throws IOException, TasteException
 {
 ClassLoader classLoader = MyUserBasedRecommender.class.getClassLoader();
 DataModel model = new FileDataModel(new File(classLoader.getResource("dataset.csv").getFile()));
 UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
 UserNeighborhood neighborhood = new ThresholdUserNeighborhood(0.1, similarity, model);
 UserBasedRecommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity);
 List<RecommendedItem> recommendations = recommender.recommend(2, 3);
 for (RecommendedItem recommendation : recommendations) {
 System.out.println(recommendation);
 }
 }
}

In the preceding code, we first need data from a resource folder. We have copied the dataset.csv file into the src/main/resources folder. The following code shows you the contents of this folder. You should read the data in the file in the specified format such as UserId, ItemId, and preference:
1,10,1.0
1,11,2.0
1,12,5.0
1,13,5.0
1,14,5.0
1,15,4.0
1,16,5.0
1,17,1.0
1,18,5.0
2,10,1.0
2,11,2.0
2,15,5.0
2,16,4.5
2,17,1.0
2,18,5.0
3,11,2.5
3,12,4.5
3,13,4.0
3,14,3.0
3,15,3.5
3,16,4.5
3,17,4.0
3,18,5.0
4,10,5.0
4,11,5.0
4,12,5.0
4,13,0.0
4,14,2.0
4,15,3.0
4,16,1.0
4,17,4.0
4,18,1.0

In order to create a user-based recommendation, we need to first calculate the similarity between these users. Here, we choose the Pearson Similarity Algorithm to calculate the similarity. Next, we pass the similarity, model, and the threshold to decide the neighborhood. Then, we create a user-based recommender by providing the preceding calculated values.
In the preceding code, on execution, we want the top three item recommendations for user 2.
On the execution of the code, we will get the following output. This is the list of items that are to be recommended along with the recommendation score:
RecommendedItem[item:12, value:4.8328104]
RecommendedItem[item:13, value:4.6656213]
RecommendedItem[item:14, value:4.331242]

How it works...

Mahout's user-based recommendation first tries to calculate the similarity between the users, and then it recommends other similar users from their kitty. There are various similarity calculations available, and you can choose any one of them; the preceding example uses the Pearson Similarity Algorithm. More on this can be found at https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient.
Make a note that this recommendation can only be run in a sequential manner, so there is no Map Reduce implementation for this.

Using Predictive analytics on Bank Data using Mahout

In this recipe, we are going to take a look at how to use Mahout to generate a predictive model and validate how good this model is against some sample data. Here, we will be using the sample data collected by a bank during their marketing operations.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Mahout installed on it.

How to do it...

In this recipe, we are going to use Logistic Regression in order to predict the occurrence of an event. It uses predictors from the given data in order to calculate the probability. The Mahout implementation uses the Stochastic Gradient Descent (SGD) algorithm for logistic regression. You can learn more about SGD for logistic regression at http://blog.trifork.com/2014/02/04/an-introduction-to-mahouts-logistic-regression-sgd-classifier/.
SGD is, by default, a sequential algorithm so we cannot run any parallel activities on it. Even though it is sequential, it runs blazing fast on large datasets for which we don't need to worry about the size of data that we are handling.
Now, we are going to take a look at how to execute this algorithm in our data. The following is sample data from a bank's marketing team, which has the last column labelled as 'out'. This is the output that is shown when a customer who's given their details has said yes to the term deposit or not:
age,job,marital,education,out
30,unemployed,married,primary,no
33,services,married,secondary,yes
35,management,single,tertiary,no
30,management,married,tertiary,no
59,blue-collar,married,secondary,no
35,management,single,tertiary,no,
36,self-employed,married,tertiary,yes
39,technician,married,secondary,no
41,entrepreneur,married,tertiary,no
43,services,married,primary,no
39,services,married,secondary,no
43,admin.,married,secondary,no
36,technician,married,tertiary,yes
20,student,single,secondary,no
31,blue-collar,married,secondary,yes

We save this data in a file called bank.csv. Now, let's execute the Mahout program to train a model for this data using this command:
mahout trainlogistic --input bank.csv --output ./model --target out --categories 2 --predictors age job marital education --types word --features 4

Here is the input file in the CSV format, which is used to train the model. We want the output to be created in a file called model. We expect a type of output called categories (yes/no), predictors called columns are used to generate the mode, and types can be words/numerical. And no. of features to be used for generating model.
On execution, you will get the following output:
Running on hadoop, using /usr/local/hadoop/bin/hadoop and HADOOP_CONF_DIR=
MAHOUT-JOB: /usr/local/mahout/mahout-examples-0.11.1-job.jar
4
out ~
-0.003*Intercept Term + -0.007*age=20 + -0.006*age=30 + -0.005*age=31 + -0.002*age=33 + -0.005*age=35 + -0.006*age=36 + -0.005*age=39 + -0.006*age=41 + -0.006*age=43 + -0.004*age=59 + -0.007*education=primary + -0.002*education=secondary + -0.004*education=tertiary + -0.002*job=admin. + -0.005*job=blue-collar + -0.005*job=entrepreneur + -0.004*job=management + -0.007*job=self-employed + -0.006*job=services + -0.005*job=student + -0.006*job=technician + -0.006*job=unemployed + -0.006*marital=married + -0.007*marital=single
 Intercept Term -0.00298
 age=20 -0.00696
 age=30 -0.00645
 age=31 -0.00457
 age=33 -0.00159
 age=35 -0.00545
 age=36 -0.00645
 age=39 -0.00545
 age=41 -0.00557
 age=43 -0.00645
 age=59 -0.00398
 education=primary -0.00696
 education=secondary -0.00159
 education=tertiary -0.00406
 job=admin. -0.00159
 job=blue-collar -0.00457
 job=entrepreneur -0.00457
 job=management -0.00398
 job=self-employed -0.00696
 job=services -0.00557
 job=student -0.00457
 job=technician -0.00557
 job=unemployed -0.00645
 marital=married -0.00645
 marital=single -0.00696
 -0.003981019 -0.002976461 -0.001590416 -0.002469779
16/01/28 12:44:01 INFO MahoutDriver: Program took 644 ms (Minutes: 0.010733333333333333)

Now that we have generated the model to predict the outcome, we can validate it against the data shown here:
mahout runlogistic --input "bank.csv" --model ./model --auc –confusion
Running on hadoop, using /usr/local/hadoop/bin/hadoop and HADOOP_CONF_DIR=
MAHOUT-JOB: /usr/local/mahout/mahout-examples-0.11.1-job.jar
AUC = 0.73
confusion: [[11.0, 4.0], [0.0, 0.0]]
entropy: [[-0.7, -0.4], [-0.7, -0.4]]

This will run the logistic regression on bank.csv using the model generated in the previous step in order to calculate AUC and a confusion matrix.
AUC stands for the Area Under a Curve. You can read more about AUC at http://www.mathwords.com/a/area_under_a_curve.htm.
The AUC should lie between 0.5 and 1.0 in scenarios where you're using a good model, while 1.0 indicates a perfect model.
A Confusion Matrix is a matrix that shows the performance of an algorithm by comparing its actual results with its predicted results. You can read more about the confusion matrix at https://en.wikipedia.org/wiki/Confusion_matrix.

How it works...

Mahout's implementation of SGD calculates the probability of the occurrence of a certain event based on the values considered as predictors. When creating a model, it considers the values of given predictors and these are used for predictions as well. In order to understand Logistic Regression and how it works internally.
Note
I would suggest that you read http://blog.trifork.com/2014/02/04/an-introduction-to-mahouts-logistic-regression-sgd-classifier/.

Clustering text data using K-Means

In this recipe, we are going to take a look at how to use Mahout to cluster text data using Mahout's implementation of the K-Means algorithm. K-Means is very popular clustering algorithm; you can read more about it at https://en.wikipedia.org/wiki/K-means_clustering.
Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Mahout installed on it.

How to do it...

In this recipe, we are going to use Mahout's K Means algorithm to cluster the text data that is available. To do this, we first need to get some text data and copy it to HDFS:
hadoop fs –mkdir /kmeans
hadoop fs –put mydata.txt /kmeans/input

In order to execute the K-Means job on the given data, we first need to convert it into sequential files and from these sequential files to TF-IDF vectors. Mahout provides built-in utilities to perform these actions. The following are the commands to do this.
To convert text data into a sequential file, here is the code:
mahout seqdirectory -i /kmeans/input/ -o /kmeans/sequencefiles

To convert a sequential file to a vector, here is the code:
mahout seq2sparse -i /kmeans/sequencefiles -o /kmeans/sparse

This command will take some time to work as it will run a series of Map Reduce programs to transform the data.
Next, we can run a clustering job on vectors that have been generated in the previous steps:
mahout kmeans -i hdfs://localhost:9000/kmeans/sparse/tfidf-vectors/ -c hdfs://localhost:9000/kmeans/cl/ -o hdfs://localhost:9000/kmeans/out -dm org.apache.mahout.common.distance.CosineDistanceMeasure -x 10 –clustering

This will start a Map Reduce program that performs the actual clustering.
The output of the clustering will be available in the /kmeans/out folder. We can also use the clusterdump command to view the output:
mahout clusterdump -dt sequencefile -d /kmeans/sparse/dictionary. file-0 -i /kmeans/out/clusters-1-final

In this way, we can use Mahout to perform the clustering of text data.

How it works...

The K-Means algorithm plots a graph of points. It then calculates the distance between nodes in order to classify them. In order to optimize the clustering, iterations are performed, and in each new iteration, the centroid of each cluster becomes the mean of the next set of calculations.
Apart from K-Means, Mahout supports various other clustering algorithms such as Canopy, Fuzzy K-means, Streaming K-Means, and so on.

Performing Population Data Analytics using R

So far, we talked about how to use Mahout to solve various machine learning problems. Now, we are going to explain another tool/language called R, which has built-in support for various mathematical and statistical operations.
Getting ready

To perform this recipe, you should have R installed on your machine. You can download the installer from https://cran.r-project.org/bin/windows/base/.

How to do it...

In this recipe, we are going to learn some basic operations that one can perform using R. To start with, we will have one dataset that has information about Australia's population in various states. This is what the dataset looks like:
Year NSW Vic. Qld SA WA Tas. NT ACT Aust.
1917 1904 1409 683 440 306 193 5 3 4941
1927 2402 1727 873 565 392 211 4 8 6182
1937 2693 1853 993 589 457 233 6 11 6836
1947 2985 2055 1106 646 502 257 11 17 7579
1957 3625 2656 1413 873 688 326 21 38 9640
1967 4295 3274 1700 1110 879 375 62 103 11799
1977 5002 3837 2130 1286 1204 415 104 214 14192
1987 5617 4210 2675 1393 1496 449 158 265 16264
1997 6274 4605 3401 1480 1798 474 187 310 18532

I am saving this data in a file called auspop.txt. Now, we start R and load this file in an R object by executing the following command:
>austpop <- read.table("H:/workspace/austpop.txt", header=TRUE)

We can check whether the data is loaded properly by printing it:
>print(austpop)

 Year NSW Vic. Qld SA WA Tas. NT ACT Aust.
1 1917 1904 1409 683 440 306 193 5 3 4941
2 1927 2402 1727 873 565 392 211 4 8 6182
3 1937 2693 1853 993 589 457 233 6 11 6836
4 1947 2985 2055 1106 646 502 257 11 17 7579
5 1957 3625 2656 1413 873 688 326 21 38 9640
6 1967 4295 3274 1700 1110 879 375 62 103 11799
7 1977 5002 3837 2130 1286 1204 415 104 214 14192
8 1987 5617 4210 2675 1393 1496 449 158 265 16264
9 1997 6274 4605 3401 1480 1798 474 187 310 18532

We can print the column names using the following command:
> names(austpop)
 [1] "Year" "NSW" "Vic." "Qld" "SA" "WA" "Tas." "NT" "ACT" "Aust."

Next, we can plot a graph. Let's plot a graph of the population in the state of NSW for the past few years. In order to do so, we have to execute the following command. The input to this will appear in the form of the x axis, y axis, and the size of the graph:
>plot(NSW ~ Year, data=austpop, pch=16)

The graph will look like this:
[image: How to do it...]
There are various options that are available for different types of graphs. This is how you can plot a bar graph for the total population of this state over the last few years:
> barplot(austpop$Aust.)

[image: How to do it...]
You can also easily get the summary of the values for each state by executing the following command:
> summary(austpop)
 Year NSW Vic. Qld SA WA
 Min. :1917 Min. :1904 Min. :1409 Min. : 683 Min. : 440.0 Min. : 306
 1st Qu.:1937 1st Qu.:2693 1st Qu.:1853 1st Qu.: 993 1st Qu.: 589.0 1st Qu.: 457
 Median :1957 Median :3625 Median :2656 Median :1413 Median : 873.0 Median : 688
 Mean :1957 Mean :3866 Mean :2847 Mean :1664 Mean : 931.3 Mean : 858
 3rd Qu.:1977 3rd Qu.:5002 3rd Qu.:3837 3rd Qu.:2130 3rd Qu.:1286.0 3rd Qu.:1204
 Max. :1997 Max. :6274 Max. :4605 Max. :3401 Max. :1480.0 Max. :1798
 Tas. NT ACT Aust.
 Min. :193.0 Min. : 4 Min. : 3.0 Min. : 4941
 1st Qu.:233.0 1st Qu.: 6 1st Qu.: 11.0 1st Qu.: 6836
 Median :326.0 Median : 21 Median : 38.0 Median : 9640
 Mean :325.9 Mean : 62 Mean :107.7 Mean :10663
 3rd Qu.:415.0 3rd Qu.:104 3rd Qu.:214.0 3rd Qu.:14192
 Max. :474.0 Max. :187 Max. :310.0 Max. :18532

In case you want the summary of only one column, you can get it by executing the following command:
> summary(austpop$Aust.)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 4941 6836 9640 10660 14190 18530

You can also perform operations such as sorting the given data, as shown here:
> sort_pop <- sort(austpop$ACT)
> sort_pop
[1] 3 8 11 17 38 103 214 265 310

How it works...

As mentioned earlier, R has been built keeping statisticians in mind, so whatever they require on a daily basis is provided by R. There are various packages also available in case you wish to do something different. The working of the preceding commands is self-explanatory.

Performing Twitter Sentiment Analytics using R

In an earlier chapter, we saw how to perform Twitter sentiment analytics using Hive and Hadoop. In this recipe, we are going to take a look at how to do this using R.
Getting ready

To perform this recipe, you should have R installed on your machine. You should also have a Twitter account and an application that has an API key, API secret, Access Token, and an Access Secret with you so that you can receive tweets in real time.

How to do it...

To get started, first of all, we need to install certain R packages, which will be required in this recipe. The following are the commands:
>install.packages("twitteR")
>install.packages("plyr")
>install.packages("stringr")
>install.packages(c("devtools", "rjson", "bit64", "httr"))

Once the installation is complete, load the following packages:
>library(devtools)
>library(twitteR)

Next, we need to provide the keys provided that are by Twitter on its application page, as follows:
>api_key <- "XXXXXX"
>api_secret <- "XXXXXX"
>access_token <- "XXXXXX"
>access_secret <- "XXXXXXX"
>ssetup_twitter_oauth(api_key, api_secret, access_token, access_secret)

Here, instead of XXXX, add your own keys.
If the keys that are provided by you are correct, you will not see any errors. If there are any missing keys, you will see an appropriate error message.
Next, we need some dictionary words, which are segregated as positive or negative, in order to determine the sentiment of each tweet. So, we download a list of words from http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar and store them in a certain place. Download, extract, and save these files.
Then, we load these lists of words into objects, as shown here:
>pos.from.file = scan('H:/opinion-lexicon-English/positive-words.txt',what='character', comment.char=';')
>neg.from.file = scan('H:/opinion-lexicon-English/negative-words.txt',what='character', comment.char=';')

We also remove the comments that are labelled as headers in the text files.
We can also add some more words if they are not already part of the given files, as shown here:
>pos.words = c(pos.from.file,'upgrade', 'love','achievement','impressed')
>neg.words = c(neg.from.file, 'wtf', 'wait', 'waiting','hate', 'die')

Now, we are going to download the tweets using the searchTwitter method of the TwitterR package:
hadoop.tweets = searchTwitter('#hadoop', n=1000)

The preceding command will download 1,000 tweets with the hadoop hash tag and save it as the hadoop.tweets object.
You can check whether the data is imported properly:
> hadoop.tweets
[[1]]
[1] "bviallet: RT @IBMAnalytics: See how the video game industry is using analytics to create happy customers: https://t.co/LcyTEFqUrT #Hadoop https://t.c…"

[[2]]
[1] "sheltonmkagande: RT @SAS_Cares: Learn five ways #SAS gets to data in #hadoop https://t.co/yMsXTVw7Dd #SASusers"

[[3]]
[1] "thinkittraining: Secondary Indexing for MapR-DB using Elasticsearch @https://www.mapr.com/blog #Hadoop #Mapr #training"

[[4]]
[1] "BigDataTweetBot: RT @andnegr: https://t.co/Yd87vicDlz @SASitaly #BigData #Hadoop @ClouderaITA"

[[5]]
[1] "BigDataTweetBot: RT @techjunkiejh: Is Apache #Hadoop the only option to implement #BigData ? https://t.co/b4z7ZSHTiJ https://t.co/mGRFXqS6Dx"

[[6]]
[1] "shakamunyi: RT @andnegr: https://t.co/Yd87vicDlz @SASitaly #BigData #Hadoop @ClouderaITA"

[[7]]
[1] "shakamunyi: RT @techjunkiejh: Is Apache #Hadoop the only option to implement #BigData ? https://t.co/b4z7ZSHTiJ https://t.co/mGRFXqS6Dx"

[[8]]
[1] "andnegr: https://t.co/Yd87vicDlz @SASitaly #BigData #Hadoop @ClouderaITA"

[[9]]
[1] "techjunkiejh: Is Apache #Hadoop the only option to implement #BigData ? https://t.co/b4z7ZSHTiJ https://t.co/mGRFXqS6Dx"

[[10]]
[1] "gitsacademy: #fact of the day\n#Hadoop was created by Doug Cutting (while at #Yahoo) and named it after his son's elephant https://t.co/RUnDJzSpml"

Now, we want only the tweet text from the preceding data, so we execute the following command:
>hadoop.text = laply(hadoop.tweets, function(t) t$getText())

We will be writing one algorithm that takes each tweet and then computes how many positive and negative words it has. It will give a score based on the sentiment of the overall tweet:
score.sentiment = function(sentences, pos.words, neg.words, .progress='none')
{
require(plyr)
require(stringr)

#Get vectors from the list
scores = laply(sentences, function(sentence, pos.words, neg.words) {

clean up sentences, remove punctuations etc.
sentence = gsub('[[:punct:]]', '', sentence)
sentence = gsub('[[:cntrl:]]', '', sentence)
sentence = gsub('\\d+', '', sentence)
and convert to lower case:
sentence = tolower(sentence)

split into words.
word.list = str_split(sentence, '\\s+')
words = unlist(word.list)

compare our words to the dictionaries of positive & negative terms
pos.matches = match(words, pos.words)
neg.matches = match(words, neg.words)

match() returns the position of the matched term or NA
we just want a TRUE/FALSE so we remove all NA
pos.matches = !is.na(pos.matches)
neg.matches = !is.na(neg.matches)

and conveniently enough, TRUE/FALSE will be treated as 1/0 by sum():
score = sum(pos.matches) - sum(neg.matches)

return(score)
}, pos.words, neg.words, .progress=.progress)

scores.df = data.frame(score=scores, text=sentences)
return(scores.df)
}

We can test this algorithm by using some sample text, as shown here:
> sample = c("You're awesome and I love you",
"I hate and hate and hate. So angry. Die!",
"Impressed and amazed: you are peerless in your
achievement of unparalleled mediocrity.")

> result = score.sentiment(sample, pos.words, neg.words)

Now, we can see the results:
> result
 score text
1 2 You're awesome and I love you
2 -5 I hate and hate and hate. So angry. Die!
3 3 Impressed and amazed: you are peerless in your\nachievement of unparalleled mediocrity.

This means that our algorithm works, so we will test on real Twitter data now:
>hadoop.scores = score.sentiment(hadoop.text, pos.words, neg.words, .progress='text')

Here are the results:
> hadoop.scores
 score text
1 1 RT @IBMAnalytics: See how the video game industry is using analytics to create happy customers: https://t.co/LcyTEFqUrT #Hadoop https://t.c…
2 0 RT @SAS_Cares: Learn five ways #SAS gets to data in #hadoop https://t.co/yMsXTVw7Dd #SASusers
3 0 Secondary Indexing for MapR-DB using Elasticsearch @https://www.mapr.com/blog #Hadoop #Mapr #training
4 0 RT @andnegr: https://t.co/Yd87vicDlz @SASitaly #BigData #Hadoop @ClouderaITA
5 0 RT @techjunkiejh: Is Apache #Hadoop the only option to implement #BigData ? https://t.co/b4z7ZSHTiJ https://t.co/mGRFXqS6Dx
6 0 RT @andnegr: https://t.co/Yd87vicDlz @SASitaly #BigData #Hadoop @ClouderaITA
7 0 RT @techjunkiejh: Is Apache #Hadoop the only option to implement #BigData ? https://t.co/b4z7ZSHTiJ https://t.co/mGRFXqS6Dx
8 0 https://t.co/Yd87vicDlz @SASitaly #BigData #Hadoop @ClouderaITA
9 0 Is Apache #Hadoop the only option to implement #BigData ? https://t.co/b4z7ZSHTiJ https://t.co/mGRFXqS6Dx
10 0 #fact of the day\n#Hadoop was created by Doug Cutting (while at #Yahoo) and named it after his son's elephant https://t.co/RUnDJzSpml

This way, you can perform sentiment analytics for any kind of Twitter data.

How it works...

Our sentiment analysis algorithm is very simple. We first get the sentence, break it into words, remove any punctuation, and so on. Later, we compare each word with a predefined list of positive and negative words. Next, we subtract the number of negative words from the number of positive words and get the score. If the score is a positive number, then it means that the sentiment of the tweet is positive, and if the score is negative, it means that the tweet is negative. If the score is zero, this means that it is a neutral tweet.
This algorithm can be extended further to understand sarcasm.

Performing Predictive Analytics using R

In the previous recipe, we talked about how to perform sentiment analytics using R. In this recipe, we are going to take a look at how to perform predictive analytics using R. Here, we will be using the IRIS flower classification data in order to predict its species based on the features. You can learn more about this at https://en.wikipedia.org/wiki/Iris_flower_data_set.
Getting ready

To perform this recipe, you should have R installed on your machine.

How to do it...

To get started, we need to install an R package called e1071:
>install.packages("e1071")

This package contains the IRIS flower dataset. So, we load the library and then load the data into it:
>library(e1071)
>data(iris)

You can check whether the data is loaded properly or not by executing the following command:
>iris

In this example, we are going to use the Naive Bayes algorithm to classify the data into specifies. So, now we have to train the model using Naive Bayes, as shown here:
>model<- naiveBayes(Species~., data=iris)

You can print the model in order to take a look at how it has calculated probabilities:
>model

Naive Bayes Classifier for Discrete Predictors

Call:
naiveBayes.default(x = X, y = Y, laplace = laplace)

A-priori probabilities:
Y
 setosa versicolor virginica
 0.3333333 0.3333333 0.3333333

Conditional probabilities:
 Sepal.Length
Y [,1] [,2]
 setosa 5.006 0.3524897
 versicolor 5.936 0.5161711
 virginica 6.588 0.6358796

 Sepal.Width
Y [,1] [,2]
 setosa 3.428 0.3790644
 versicolor 2.770 0.3137983
 virginica 2.974 0.3224966

 Petal.Length
Y [,1] [,2]
 setosa 1.462 0.1736640
 versicolor 4.260 0.4699110
 virginica 5.552 0.5518947

 Petal.Width
Y [,1] [,2]
 setosa 0.246 0.1053856
 versicolor 1.326 0.1977527
 virginica 2.026 0.2746501

> summary(model)
 Length Class Mode
apriori 3 table numeric
tables 4 -none- list
levels 3 -none- character
call 4 -none- call

Now, we test this model against actual data:
>predictions <- predict(model, iris[,1:4])

This will give us the model and data to be used for predictions. On execution, the predictions object will have these predicted values:
> predictions

 [1] setosa setosa setosa setosa setosa setosa setosa
 [8] setosa setosa setosa setosa setosa setosa setosa
 [15] setosa setosa setosa setosa setosa setosa setosa
 [22] setosa setosa setosa setosa setosa setosa setosa
 [29] setosa setosa setosa setosa setosa setosa setosa
 [36] setosa setosa setosa setosa setosa setosa setosa
 [43] setosa setosa setosa setosa setosa setosa setosa
 [50] setosa versicolor versicolor virginica versicolor versicolor versicolor
 [57] versicolor versicolor versicolor versicolor versicolor versicolor versicolor
 [64] versicolor versicolor versicolor versicolor versicolor versicolor versicolor
 [71] virginica versicolor versicolor versicolor versicolor versicolor versicolor
 [78] virginica versicolor versicolor versicolor versicolor versicolor versicolor
 [85] versicolor versicolor versicolor versicolor versicolor versicolor versicolor
 [92] versicolor versicolor versicolor versicolor versicolor versicolor versicolor
 [99] versicolor versicolor virginica virginica virginica virginica virginica
[106] virginica versicolor virginica virginica virginica virginica virginica
[113] virginica virginica virginica virginica virginica virginica virginica
[120] versicolor virginica virginica virginica virginica virginica virginica
[127] virginica virginica virginica virginica virginica virginica virginica
[134] versicolor virginica virginica virginica virginica virginica virginica
[141] virginica virginica virginica virginica virginica virginica virginica
[148] virginica virginica virginica
Levels: setosa versicolor virginica

Next, we can build the confusion matrix in order to show how good our model is:
> table(predictions, iris$Species)

predictions setosa versicolor virginica
 setosa 50 0 0
 versicolor 0 47 3
 virginica 0 3 47

This way, you can build a model using various algorithms and validate them.

How it works...

R is a platform that allows us to perform various operations. The package we installed contains implementations of various well-know algorithms; here, we are just making use of those that are useful for real-world problem solving.
Note
You can do read more about the Naive Bayes algorithm at https://en.wikipedia.org/wiki/Naive_Bayes_classifier.

Chapter 9. Integration with Apache Spark

In this chapter, we'll take a look at the following recipes:
	Running Spark standalone
	Running Spark on YARN
	Performing Olympics Athletes analytics using the Spark Shell
	Creating Twitter trending topics using Spark Streaming
	Analyzing Parquet files using Spark
	Analyzing JSON data using Spark
	Processing graphs using Graph X
	Conducting predictive analytics using Spark MLib

Introduction

In the previous chapter, we talked about how to use Mahout and R to solve machine learning problems. In this chapter, we are going to talk about the latest sensation in the Big Data industry called Apache Spark. By now, everyone is aware, and has acknowledged the power of Apache Spark. This is a general and fast engine that processes large-scale data. It provides high-level APIs in Java, Scala, Python, and R. Spark can perform batch processing as well as stream processing. In this chapter, we are going to explore certain important topics related to Apache Spark such as batch processing, Spark SQL, streaming processing, machine learning with MLib, and graph processing using Spark's GraphX library. So, let's get started.

Running Spark standalone

Spark can be executed in various modes. To get started, we are going to take a look at how to install Apache Spark on a standalone machine.
Getting ready

To perform this recipe, you should download the latest version of Spark. For this recipe, I am using Apache Spark 1.6.0. You can visit the download page at http://spark.apache.org/downloads.html.

How to do it...

Apache Spark is a computation engine. It has a built-in cluster manager. It can also use other cluster managers such as YARN/Mesos and so on. In this recipe, we are going to use the built-in resource manager that's provided by Spark:
	Copy the downloaded Spark binary to a desired location.
	Extract the tar ball:$sudo tar –xzfspark-1.6.0-bin-hadoop2.6.tgz

	Rename the spark folder for ease of use:$sudo mv spark-1.6.0-bin-hadoop2.6 spark

	Add environment variables in ~/.bashrc:export SPARK_HOME=/usr/local/spark
export PATH=$PATH:$SPARK_HOME/bin

	Source ~/.bashrc to make the changes effective:$source ~/.bashrc

	In case you want to run Spark in cluster mode, you need to repeat the preceding commands on each node. Now, we are all set to use Apache Spark.To start the master, use this code:
$/usr/local/spark/sbin/start-master.sh

To start the slaves, use this code:
$/usr/local/spark/sbin/start-slave.sh spark://<masterhost>:<port>

	Now, visit http://localhost:8080/ to take a look at Spark Master's UI and the number of workers that are registered with it.[image: How to do it...]

	We can now try running one sample Spark application in order to check whether everything is working. The following command will launch a Spark application, which will calculate the value for Pi:./bin/spark-submit --class org.apache.spark.examples.SparkPi \
 --master spark://<master>:7077 \
--deploy-mode cluster \
lib/spark-examples*.jar \
 10

	While the application is being executed, you should be able to take a look at all the stages that are involved as well as other things in the application web UI. To do this, visit http://localhost:4040.[image: How to do it...]

How it works...

Spark works in the master-slave architecture. Here, we have started Spark Master and a worker. Spark master acts like a coordinator between the slaves. Once you submit the application, Spark creates a directed acyclic graph of operations. It decides which stages can be executed in parallel and which need to be executed sequentially. Each task is executed by workers, and the status is reported back to the master.

Running Spark on YARN

In the previous recipe, we took a look at how to use Spark's built-in cluster manager; in this recipe, we are going to explore how to use YARN as a cluster manager to execute the Spark application.
Getting ready

To perform this recipe, you should have a running Hadoop cluster. You should also have performed the previous recipe.

How to do it...

As mentioned in the previous recipe, we can either use Spark's built-in cluster manager, or we can use an external cluster manager such as YARN. In order to execute the Spark application on YARN, we need to edit SPARK_HOME/conf/spark-env.sh, and add the following properties to it:
export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop
export YARN_CONF_DIR=/usr/local/hadoop/etc/Hadoop

Here, /usr/local/hadoop/etc/hadoop is the directory where we have our Hadoop and YARN configuration files.
Now, let's execute the same Spark application on YARN using the following command:
./bin/spark-submit --class org.apache.spark.examples.SparkPi \
 --master yarn \
 --deploy-mode cluster \
lib/spark-examples*.jar \
 10

Unlike the previous recipe, we don't need to give YARN IP—PORT, but spark will take it from YARN's configuration directory. We need to give YARN the keyword for the master property.
Now, we can use the YARN application UI in order to check the progress of the job so far.
Go to http://localhost:8088/cluster for the following output:
[image: How to do it...]

How it works...

Working on the Spark application is pretty similar to what was explained in the previous recipe; the only difference is the executors, Resource Manager, and the Node Managers. Spark submits the application to the YARN application master, and the application master then asks the Resource Managers and Node Managers to execute the tasks.

Olympics Athletes analytics using the Spark Shell

Spark supports an interactive Scala-based shell, which can be used to process data as and when we receive actionable commands. In this recipe, we are going to analyze one sample dataset, which contains information about the athletes that have participated in the Olympics.
Getting ready

To perform this recipe, you should have Hadoop and Spark installed. You also need to install Scala. I am using Scala 2.11.0.

How to do it...

First of all, you need to download data from https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/master/data/OlympicAthletes.csv, and store it in HDFS using the following commands:
$hadoop fs –mkdir /athletes
$hadoop fs –put OlympicAthletes.csv /athletes

The following is some sample data from the file for your reference. The data comma-separated file contains various columns in a sequence such as the athlete name, country, year, gold, silver, bronze, and the total number of medals won by each athlete:
Yang Yilin,China,2008,Gymnastics,1,0,2,3
Leisel Jones,Australia,2000,Swimming,0,2,0,2
Go Gi-Hyeon,South Korea,2002,Short-Track Speed Skating,1,1,0,2
Chen Ruolin,China,2008,Diving,2,0,0,2
Katie Ledecky,United States,2012,Swimming,1,0,0,1
Ruta Meilutyte,Lithuania,2012,Swimming,1,0,0,1
Dániel Gyurta,Hungary,2004,Swimming,0,1,0,1
Arianna Fontana,Italy,2006,Short-Track Speed Skating,0,0,1,1
Olga Glatskikh,Russia,2004,Rhythmic Gymnastics,1,0,0,1
Kharikleia Pantazi,Greece,2000,Rhythmic Gymnastics,0,0,1,1
Kim Martin,Sweden,2002,Ice Hockey,0,0,1,1
Kyla Ross,United States,2012,Gymnastics,1,0,0,1
Gabriela Dragoi,Romania,2008,Gymnastics,0,0,1,1
Tasha Schwikert-Warren,United States,2000,Gymnastics,0,0,1,1
Yang Yun,China,2000,Gymnastics,0,0,1,1
Sophie Lamon,Switzerland,2000,Fencing,0,1,0,1
Alejandra Orozco,Mexico,2012,Diving,0,1,0,1
Yuliya Koltunova,Russia,2004,Diving,0,1,0,1
Shawn Johnson,United States,2008,Gymnastics,1,3,0,4
Carly Patterson,United States,2004,Gymnastics,1,2,0,3

Next, we start the Apache Spark shell using the following command:
$cd /usr/local/spark
$./bin/spark-shell

This will start the Spark shell, and it will prompt Scala. Now, to get started, we will first initialize the spark context and start with loading files into it from HDFS:
 scala>valatheletes = sc.textFile("hdfs://localhost:9000/athletes/OlympicAthletes.csv")

Let's check whether the data is loaded properly by executing the following command:
scala>atheletes.take(10).foreach(println)
~
 Yang Yilin,China,2008,Gymnastics,1,0,2,3
 Leisel Jones,Australia,2000,Swimming,0,2,0,2
 Go Gi-Hyeon,South Korea,2002,Short-Track Speed Skating,1,1,0,2
 Chen Ruolin,China,2008,Diving,2,0,0,2
 Katie Ledecky,United States,2012,Swimming,1,0,0,1
 Ruta Meilutyte,Lithuania,2012,Swimming,1,0,0,1
 Dániel Gyurta,Hungary,2004,Swimming,0,1,0,1
 Arianna Fontana,Italy,2006,Short-Track Speed Skating,0,0,1,1
 Olga Glatskikh,Russia,2004,Rhythmic Gymnastics,1,0,0,1
 Kharikleia Pantazi,Greece,2000,Rhythmic Gymnastics,0,0,1,1
 ~

It will print the first 10 athlete records. Next, let's count the total number of records in the dataset. That can be done by the following command:
scala>atheletes.count
~
 16/02/03 13:05:28 INFO DAGScheduler: Job 2 finished: count at <console>:30, took 0.188182 s
 res2: Long = 8613
 ~

Now, let's filter out athletes from India using the following commands:
scala>valindianAthletes = atheletes.filter(_.split(",")(1) == "India").cache

We can print the records using this command:
scala>indianAthletes.foreach(println)
 Vijender Singh,India,2008,Boxing,0,0,1,1
 Saina Nehwal,India,2012,Badminton,0,0,1,1
 Sushil Kumar,India,2008,Wrestling,0,0,1,1
 Karnam Malleswari,India,2000,Weightlifting,0,0,1,1
 Abhinav Bindra,India,2008,Shooting,1,0,0,1
 Vijay Kumar,India,2012,Shooting,0,1,0,1
 Yogeshwar Dutt,India,2012,Wrestling,0,0,1,1
 Sushil Kumar,India,2012,Wrestling,0,1,0,1
 Gagan Narang,India,2012,Shooting,0,0,1,1
 M. C. Mary Kom,India,2012,Boxing,0,0,1,1
 Rajyavardhan Rathore,India,2004,Shooting,0,1,0,1

Next, we would like to find out the number of athlete records on the basis of their countries; thus, we will need to execute the following command:
scala>valatheletesTuples = atheletes.map(line =>line.split(","))

scala>valatheletesKeyValuePairs = atheletesTuples.map(line => (line(1), 1))

scala>valgroupByCountry = atheletesKeyValuePairs.reduceByKey(_+_, 1).collect

In the preceding commands, we first split each record by a comma and then emit the country as the key and 1 as the value. Next, we execute reduce by operation to get the final results. The output is shown here:
groupByCountry: Array[(String, Int)] = Array((Australia,524), (Brazil,217), (Mexico,38), (Uzbekistan,19), (France,287), (South Korea,274), (Finland,112), (Germany,552), (Macedonia,1), (Montenegro,14), (Uruguay,1), (Cuba,188), (Bahrain,1), (North Korea,21), (Sweden,167), (Vietnam,2), (Serbia,31), (Iran,24), (Slovakia,33), (Venezuela,4), (Denmark,89), (Chinese Taipei,20), (Saudi Arabia,6), (Paraguay,17), (Serbia and Montenegro,38), (Sudan,1), (Botswana,1), (Greece,59), (Italy,307), (Slovenia,24), (Iceland,15), (Netherlands,286), (Spain,195), (Kuwait,2), (Hong Kong,3), (Mongolia,10), (Malaysia,3), (Kazakhstan,42), (Ukraine,137), (Romania,97), (Egypt,8), (Indonesia,22), (Latvia,17), (Eritrea,1), (Armenia,10), (Norway,158), (Thailand,18), (Poland,73), (Tajikistan,3), (Afghanistan,2)

Similarly, we can also execute commands to get the number of athletes by the sport they play:
 scala>valsportsWiseKeyValuePairs = atheletesTuples.map(line => (line(3), 1))
 scala>valgroupBySport = sportsWiseKeyValuePairs.reduceByKey(_+_, 1).collect

The output for this is as follows:
groupBySport: Array[(String, Int)] = Array((Basketball,287), (Judo,224), (Football,407), (Modern Pentathlon,24), (Luge,36), (Table Tennis,67), (Swimming,487), (Synchronized Swimming,109), (Cycling,261), (Athletics,687), (Baseball,216), (Diving,113), (Cross Country Skiing,128), (Waterpolo,306), (Equestrian,157), (Skeleton,18), (Hockey,386), (Alpine Skiing,61), (Rhythmic Gymnastics,84), (Handball,351), (Softball,134), (Gymnastics,194), (Nordic Combined,39), (Canoeing,295), (Weightlifting,180), (Wrestling,245), (Sailing,210), (Taekwondo,112), (Ski Jumping,40), (Trampoline,24), (Short-Track Speed Skating,96), (Boxing,188), (Biathlon,94), (Tennis,71), (Triathlon,24), (Figure Skating,54), (Badminton,91), (Curling,82), (Rowing,567), (Snowboarding,48), (Beach Volleyball,48), (Ice Hockey,384)

This way, you can perform various operations to analyze data interactively.

How it works...

The Spark shell gives us interactive ways to analyze data. Internally, it's the same Spark application that gets executed, as explained in the previous recipes.

Creating Twitter trending topics using Spark Streaming

Spark supports various modules. In this recipe, we are going to take a look at its SQL module, which allows the execution of SQL queries through a Spark application. We are going to explore how to access Hive from Spark and perform analytics.
Getting ready

To perform this recipe, you should have Hadoop and Spark installed. You also need to install Scala. I am using Scala 2.11.0. You should also have Hive installed.

How to do it...

To use Hive from Spark, we are going to write one sample spark application in Scala. You can choose an IDE of your choice. Since we are going to write the application in Scala, you will need Scala and SBT installed on your machine.
First of all, I am going to create a folder called HiveFromSpark, and add the following files to it:
HiveFromSpark\src\main\scala\com\demo\HiveFromSpark.scala
HiveFromSpark\ project\assembly.sbt
HiveFromSpark\build.sbt
HiveFromSpark\src\main\resources\emp.txt

Then, we set build.sbt to add dependencies, as shown here:
name := "HiveFromSpark"

version := "1.0"

scalaVersion := "2.11.7"

libraryDependencies ++= Seq(

 "com.google.guava" % "guava" % "14.0",
 "org.apache.spark" %% "spark-core" % "1.6.0" % "provided",
 "org.apache.spark" %% "spark-sql" % "1.6.0" % "provided",
 "org.apache.spark" %% "spark-hive" % "1.6.0" % "provided"
)
resolvers += "Akka Repository" at "http://repo.akka.io/releases/"

Next, we create the assembly.sbt file so that it is able to generate the fat jar:
addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.12.0")

We then add emp.txt, which is a simple file that we are going to use during execution:
 16,john
 17,robert
 18,andrew
 19,katty
 21,tom
 22,tim
 23,james
 24,paul
 27,edward
 29,alan
 31,kerry
 34,terri

Now, we will write a Scala class, which will create a Hive table and load emp.txt into the table. Later on, we will perform various operations in this table. The following code is from HiveFromSpark.scala:
packagecom.demo

importcom.google.common.io.ByteStreams
importcom.google.common.io.Files

importjava.io.File

importorg.apache.spark._
importorg.apache.spark.sql._
importorg.apache.spark.sql.hive.HiveContext

objectHiveFromSpark {
case class Record(id: Int, name: String)

 // Copy emp.txt file from classpath to temporary directory
valempStream = HiveFromSpark.getClass.getResourceAsStream("/emp.txt")
valempFile = File.createTempFile("emp", "txt")
empFile.deleteOnExit()
ByteStreams.copy(empStream, Files.newOutputStreamSupplier(empFile))

def main(args: Array[String]) {
valsparkConf = new SparkConf().setAppName("HiveFromSpark")
valsc = new SparkContext(sparkConf)

valhiveContext = new HiveContext(sc)
importhiveContext.implicits._
importhiveContext.sql

sql("CREATE TABLE IF NOT EXISTS empSpark (id INT, name STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ','")
sql(s"LOAD DATA LOCAL INPATH '${empFile.getAbsolutePath}' INTO TABLE empSpark")

 // Queries are expressed in HiveQL
println("Result of 'SELECT *': ")
sql("SELECT * FROM empSpark").collect().foreach(println)

 // Aggregation queries are also supported.
val count = sql("SELECT COUNT(*) FROM empSpark").collect().head.getLong(0)
println(s"COUNT(*): $count")

 // The results of SQL queries are themselves RDDs and support all normal RDD functions. The
 // items in the RDD are of type Row, which allows you to access each column by ordinal.
valrddFromSql = sql("SELECT id, name FROM empSpark WHERE id < 20 ORDER BY id")

println("Result of RDD.map:")
valrddAsStrings = rddFromSql.map {
case Row(id: Int, name: String) =>s"Key: $id, Value: $name"
 }
 // You can also register RDDs as temporary tables within a HiveContext.
valrdd = sc.parallelize((1 to 100).map(i => Record(i, s"val_$i")))
rdd.toDF().registerTempTable("records")

 // Queries can then join RDD data with data stored in Hive.
println("Result of SELECT *:")
sql("SELECT * FROM records r JOIN src s ON r.key = s.key").collect().foreach(println)

sc.stop()
 }
}

In order to execute the preceding code, we run the following commands to create the assembled fat jar of this application:
sbt compile
sbt package
sbt assembly

This will create a fat jar, called HiveFromSpark-assembly-1.0.jar, in the target\scala-2.11 folder.
Now, we take this jar and copy it in a Spark cluster. Execute the following command to start the Spark application:
/usr/local/spark/bin/spark-submit \
 --class "com.demo.HiveFromSpark" \
 --master yarn \
 HiveFromSpark-assembly-1.0.jar

If you want to run this on the Spark default master slave, then you will have to execute the following command:
/usr/local/spark/bin/spark-submit \
 --class "com.demo.HiveFromSpark" \
 --master spark://admin1:7077 \
 HiveFromSpark-assembly-1.0.jar

This will start the Spark application in YARN. This will create a table in Hive, called empspark, where data from emp.txt will be loaded into it.
You can go to the Hive prompt and check whether this table, called empspark, exists:
hive>descempspark;
hive>select * from empspark;

How it works...

Spark SQL is an interpreter between the underlying technology and Spark. It sends queries and accepts results. All the features of Spark RDDs are available here.

Twitter trending topics using Spark streaming

In the previous recipe, we took a look at the SQL integrations of Spark. In this recipe, we are going to explore yet another powerful module called Spark Streaming. As the name suggests, Spark Streaming can listen to a stream of events and process data as and when it arrives.
Getting ready

To perform this recipe, you should have Hadoop and Spark installed. You also need to install Scala. I am using Scala 2.11.0. You should also have a Twitter account and some keys and tokens.

How to do it...

Spark streaming supports input from various sources such as Flume, HDFS, Kafka, Twitter, and so on. In this recipe, we are going to use Spark Streaming's Twitter source where we will be listening to streaming tweets and compute the top trending topics on Twitter.
To perform this recipe, we are going to write one Spark Streaming application in Scala.
In order to create the application, I am creating a folder called TwitterSpark, and it will have the following files in it:
TwitterSpark\build.sbt
TwitterSpark\src\main\scala\com\demo\TwitterPopularTags.scala
TwitterSpark\project\assembly.sbt

The contents of build.sbt are as follows:
name := "TwitterSpark"

version := "1.0"

scalaVersion := "2.11.7"

mergeStrategy in assembly <<= (mergeStrategy in assembly) { (old) =>
 {
casePathList("META-INF", xs @ _*) =>MergeStrategy.discard
case x =>MergeStrategy.first
 }
}

libraryDependencies ++= Seq(

 "com.google.guava" % "guava" % "14.0",
 "org.apache.spark" %% "spark-core" % "1.6.0" % "provided",
 "org.apache.spark" %% "spark-streaming" % "1.6.0" % "provided",
 "org.apache.spark" %% "spark-streaming-twitter" % "1.6.0"
)

resolvers += "Akka Repository" at "http://repo.akka.io/releases/"

Here, we need to add dependencies for Spark Streaming and Spark Streaming Twitter.
Next, assembly.sbt will show you the following:
addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.12.0")

We need to add a Scala class, which fetches Twitter streams and performs computations on them:
packagecom.demo

importorg.apache.spark.streaming.{Seconds, StreamingContext}
importorg.apache.spark.SparkContext._
importorg.apache.spark.streaming.twitter._
importorg.apache.spark.SparkConf

objectTwitterPopularTags {
def main(args: Array[String]) {

valconsumerKey = "XXXX"
valconsumerSecret = "XXXX"
valaccessToken = "XXXX"
valaccessTokenSecret = "XXXX"
val filters = args.takeRight(args.length - 4)
 // Set the system properties so that Twitter4j library used by twitter stream
 // can use them to generat OAuth credentials
System.setProperty("twitter4j.oauth.consumerKey", consumerKey)
System.setProperty("twitter4j.oauth.consumerSecret", consumerSecret)
System.setProperty("twitter4j.oauth.accessToken", accessToken)
System.setProperty("twitter4j.oauth.accessTokenSecret", accessTokenSecret)

valsparkConf = new SparkConf().setAppName("TwitterPopularTags")
valssc = new StreamingContext(sparkConf, Seconds(2))
val stream = TwitterUtils.createStream(ssc, None, filters)

valhashTags = stream.flatMap(status =>status.getText.split(" ").filter(_.startsWith("#")))

valtopCountsInOneMinute = hashTags.map((_, 1)).reduceByKeyAndWindow(_ + _, Seconds(60))
 .map{case (topic, count) => (count, topic)}
 .transform(_.sortByKey(false))

 // Print popular hashtags
topCountsInOneMinute.foreachRDD(rdd => {
valtopList = rdd.take(10)
println("\nPopular topics in last 1 minute (%s total):".format(rdd.count()))
topList.foreach{case (count, tag) =>println("%s (%s tweets)".format(tag, count))}
 })

ssc.start()
ssc.awaitTermination()
 }
}

Now, we build an assembly jar for this project by executing the following commands:
sbt compile
sbt assembly

This will create a fat jar with the name TwitterSpark-assembly-1.0.jar. To execute it, we copy it into a Spark cluster and execute the following commands.
Here is the code to execute it:
/usr/local/spark/bin/spark-submit \
 --class "com.demo.TwitterPopularTags" \
 --master local[2] \
 TwitterSpark-assembly-1.0.jar

Here is the code to execute it on the Spark default master:
/usr/local/spark/bin/spark-submit \
 --class "com.demo.TwitterPopularTags" \
 --master spark://host:port \
 TwitterSpark-assembly-1.0.jar

Here is the code to execute it on the YARN cluster:
/usr/local/spark/bin/spark-submit \
 --class "com.demo.TwitterPopularTags" \
 --master yarn \
 TwitterSpark-assembly-1.0.jar

As a result you should see the top trending hash tags of every minute:
#style (1 tweets)
#followmejp (1 tweets)
#amateur (1 tweets)
#VotaSebastianVillalobos (1 tweets)
#poem (1 tweets)
#followme (1 tweets)
#thoughtoftheday (1 tweets)
#followcircle (1 tweets)

How it works...

Spark Streaming internally receives live data streams from the source. It then divides data into batches and processes these batches one by one. These streams are called DStreams. Along with the streaming context, we also need to provide the time slot that Spark needs in order to wait for a batch. In the preceding code, the time period needed is 2 seconds. Once the batch has been received by the spark engine, the rest of the processing is similar to what has already been explained in the previous recipes. You can read more about this at http://spark.apache.org/docs/latest/streaming-programming-guide.html.

Analyzing Parquet files using Spark

Parquet is columnar data file format, which is being used extensively. In this recipe, we are going to take a look at how to access this data from Spark and then process it.
Getting ready

To perform this recipe, you should have Hadoop and Spark installed. You also need to install Scala. I am using Scala 2.11.0.

How to do it...

Spark supports the accessing of Parquet files from the SQL context. You can read and write Parquet files using this SQL context. In this recipe, we are going to take a look at how to read a Parquet file from HDFS and process it.
First of all, download the sample parquet file, users.parquet, and store it in the HDFS /parquet path https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/master/data/users.parquet.
We will create a Scala project with the following files:
SparkParquet\build.sbt
SparkParquet\project\assembly.sbt
SparkParquet\src\main\scala\com\demo\SparkParquet.scala

The contents of build.sbt are as follows:
name := "SparkParquet"

version := "1.0"

scalaVersion := "2.11.7"

libraryDependencies ++= Seq(

 "com.google.guava" % "guava" % "14.0",
 "org.apache.spark" %% "spark-core" % "1.6.0" % "provided",
 "org.apache.spark" %% "spark-sql" % "1.6.0" % "provided"
)

resolvers += "Akka Repository" at "http://repo.akka.io/releases/"

The contents of assembly.sbt are as follows:
addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.12.0")

Then, we write a Scala class, which reads the parquet file stored in the given HDFS location and creates another file from it, .SparkParquet.scala, as follows:
packagecom.demo

importorg.apache.spark._
importorg.apache.spark.sql._

objectSparkParquet {

def main(args: Array[String]) {
valsparkConf = new SparkConf().setAppName("SparkParquet")
valsc = new SparkContext(sparkConf)
valsqlContext = new org.apache.spark.sql.SQLContext(sc)
val users = sqlContext.read.load("/parquet/users.parquet")

users.select("name", "favorite_color").write.save("/parquet/namesAndFavColors.parquet")

users.registerTempTable("userParquetFile")
users.map(t => "Name: " + t(0)).collect().foreach(println)
sc.stop()
 }
}

We build an assembly jar for this project using the following commands:
sbt compile
sbt assembly

Then, we execute the application using the following commands:
We use this code for local threads:
 /usr/local/spark/bin/spark-submit \
 --class "com.demo.SparkParquet" \
 --master local[2] \
 SparkParquet-assembly-1.0.jar

We use this code for YARN:
 /usr/local/spark/bin/spark-submit \
 --class "com.demo.SparkParquet" \
 --master yarn \
 SparkParquet-assembly-1.0.jar

This will start the application and print something like this:
~
Name: Alyssa
Name: Ben
~

I will also create another parquet file called namesAndFavColors.parquet in the /parquet HDFS path.

How it works...

The Spark SQL context has features to serialize and deserialize Parquet files. The preceding code makes use of this feature to read the data and print it. We can also register a temporary table and use SQL to analyze the parquet file data using its schema.

Analyzing JSON data using Spark

JSON is one of most frequently used data storage and exchange formats in use these days. In this recipe, we are going to take a look at how to access the JSON file data from Spark and process it.
Getting ready

To perform this recipe, you should have Hadoop and Spark installed. You also need to install Scala. I am using Scala 2.11.0 here.

How to do it...

Spark supports the accessing of JSON files from the SQL context. You can read and write JSON files using the SQL context. In this recipe, we are going to take a look at how to read a JSON file from HDFS and process it.
First of all, download the people.json sample JSON file and store it in the /json HDFS path using this link:

https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/master/data/people.json.
We will create a Scala project using the following files:
SparkJSON\build.sbt
SparkJSON\project\assembly.sbt
SparkJSON\src\main\scala\com\demo\SparkJSON.scala

Here is the content of build.sbt:
name := "SparkJSON"

version := "1.0"

scalaVersion := "2.11.7"

libraryDependencies ++= Seq(

 "com.google.guava" % "guava" % "14.0",
 "org.apache.spark" %% "spark-core" % "1.6.0" % "provided",
 "org.apache.spark" %% "spark-sql" % "1.6.0" % "provided"
)

resolvers += "Akka Repository" at "http://repo.akka.io/releases/"

The contents of assembly.sbt are as follows:
addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.12.0")

Then, we write a Scala class, which reads the JSON file stored in the given HDFS location and process it. SparkJSON.scala is as follows:
packagecom.demo

importorg.apache.spark._
importorg.apache.spark.sql._

objectSparkJSON {

def main(args: Array[String]) {
valsparkConf = new SparkConf().setAppName("SPARKJSON")
valsc = new SparkContext(sparkConf)
valsqlContext = new org.apache.spark.sql.SQLContext(sc)
val users = sqlContext.read.json("/json/people.json")

users.map(t => "Name: " + t(0)).collect().foreach(println)
users.show()

 // Print the schema in a tree format
 users.printSchema()

 // Select only the "name" column
 users.select("name").show()

 // Select everybody, but increment the age by 1
 users.select(users("name"), users("age") + 1).show()

 // Select people older than 21
 users.filter(users("age") > 21).show()

 // Count people by age
 users.groupBy("age").count().show()

sc.stop()
 }
}

We build an assembly jar for this project using the following commands:
 sbt compile
 sbt assembly

Then, we execute the application using the following command:
First on local threads
 /usr/local/spark/bin/spark-submit \
 --class "com.demo.SparkJSON" \
 --master local[2] \
 SparkJSON-assembly-1.0.jar

For YARN, we use the following code:
 /usr/local/spark/bin/spark-submit \
 --class "com.demo.SparkJSON" \
 --master yarn \
 SparkJSON-assembly-1.0.jar

This will start the application and print something like this:
+----+-----+
| age|count|
+----+-----+
50	1
19	1
30	1
+----+-----+

How it works...

The Spark SQL context has features that are used to serialize and deserialize JSON files. The preceding code makes use of these features to read the data from the files and then print it. We can also register a temporary table and use SQL to analyze the JSON file data using its schema.

Processing graphs using Graph X

A graph is combination of vertices and edges. Spark provides a module to define a graph and then process these graphs in real time. In this recipe, we are going to look at a social graph example and process data using Spark.
Getting ready

To perform this recipe, you should have Hadoop and Spark installed. You also need to install Scala. I am using Scala 2.11.0 here.

How to do it...

Take a social networking site that has users and other users such as the activities of a user. Based on the likes, we can conclude who is connected to whom. Consider the following data:
[image: How to do it...]
Now, we have to analyze this graph based on the likes that are provided. In order to do so, we start the Spark Shell, and run the following commands:
Import graph libraries like this:
scala>import org.apache.spark.graphx._
scala>import org.apache.spark.rdd.RDD

Next, we define vertices and edges:
scala>valvertexArray = Array(

 (1L, ("Alice", 28)),
 (2L, ("Bob", 27)),
 (3L, ("Charlie", 65)),
 (4L, ("David", 42)),
 (5L, ("Ed", 55)),
 (6L, ("Fran", 50)))

Here, we have a username and age as the properties of each vertex:
scala>valedgeArray = Array(
Edge(2L, 1L, 7),
Edge(2L, 4L, 2),
Edge(3L, 2L, 4),
Edge(3L, 6L, 3),
Edge(4L, 1L, 1),
Edge(5L, 2L, 2),
Edge(5L, 3L, 8),
Edge(5L, 6L, 3)
)

Every edge displays the link between the vertices and the number of likes that are given to various activities.
Now, we create RDDs of given arrays and orders in order to distribute data in parallel:
scala>valvertexRDD: RDD[(Long, (String, Int))] = sc.parallelize(vertexArray)
scala>valedgeRDD: RDD[Edge[Int]] = sc.parallelize(edgeArray)

Next, we need to build a graph out of these vertices and edges, as shown here:
scala>val graph: Graph[(String, Int), Int] = Graph(vertexRDD, edgeRDD)

Now, we are ready to process this data. First of all, let's try to print all the users who are more than 30 years of age:
scala>graph.vertices.filter { case (id, (name, age)) => age > 30 }.collect.foreach {
case (id, (name, age)) =>println(s"$name is $age")
}

The output for this is as follows:
 David is 42
 Fran is 50
 Charlie is 65
 Ed is 55

We want to print the relationship between the users. We can do this as follows:
scala> for (triplet <- graph.triplets.collect) {
println(s"${triplet.srcAttr._1} likes ${triplet.dstAttr._1}")
 }

The output for this is as follows:
 Bob likes Alice
 Bob likes David
 Charlie likes Bob
 Charlie likes Fran
 David likes Alice
 Ed likes Bob
 Ed likes Charlie
 Ed likes Fran

We can conclude that if a user likes another user's activities more than five times, then they are in love. This can be represented through the following command:
scala>for (triplet <- graph.triplets.filter(t =>t.attr> 5).collect) {
println(s"${triplet.srcAttr._1} loves ${triplet.dstAttr._1}")
 }

The output for this is as follows:
 Bob loves Alice
 Ed loves Charlie

This way, you can analyze various datasets that are available in the graph format.

How it works...

Spark GraphX is used for the parallel computation of graph datasets. GraphX extends the Spark RDD by introducing a directed multi-attribute graph with vertices and edges. To support graph processing, it exposes sets of APIs such as subgraphs, join vertices, and so on. It also includes a set of algorithms, which will be helpful in graph computations such as the Page Rank Algorithm.
Note
You can read more about Graphx at http://spark.apache.org/docs/latest/graphx-programming-guide.html.

Conducting predictive analytics using Spark MLib

Spark has a very rich machine learning library called MLib. This is a collection of various algorithms that are used for classification, clustering, recommendations, and so on. In this recipe, we are going to take a look at how to build a predictive model using MLib.
Getting ready

To perform this recipe, you should have Hadoop and Spark installed. You also need to install Scala. Here, I am using Scala 2.11.0.

How to do it...

For this recipe, we are going use the classic example dataset of iris flowers; you can find out more about this at https://en.wikipedia.org/wiki/Iris_flower_data_set.
Here, based on the petal length and width and the sepal length and width, we need to classify the flowers into species. First, we build a model, and then run tests on it to predict the output.
To start with, we first download iris.txt from https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/master/data/iris.txt.
Next, save it in HDFS.
We start the Spark Shell, and run the following commands:
scala>import org.apache.spark.mllib.classification.NaiveBayes
scala>import org.apache.spark.mllib.linalg.Vectors
scala>import org.apache.spark.mllib.regression.LabeledPoint

This will import the required libraries. We are going to use Naïve Bayes classifiers in this case.
First, we create a class to define the file data model:
scala>case class Iris(
id:java.util.UUID,
sepal_l:Double,
sepal_w:Double,
petal_l:Double,
petal_w:Double,
species:String
)

Next, we load data from HDFS and parse it:
scala>val data = sc.textFile("iris.txt")

scala>val parsed = data.filter(!_.isEmpty).map {row =>
valsplitted = row.split(",")
val Array(sl, sw, pl, pw) = splitted.slice(0,4).map(_.toDouble)
 Iris (java.util.UUID.randomUUID(), sl, sw, pl, pw, splitted(4))
}

We can check whether the data is loaded properly by executing the following command:
parsed.take(10).foreach(println)

It would print something like this:
Iris(006f1567-e7ad-4e2a-8519-45272a66ce9b,5.1,3.5,1.4,0.2,Iris-setosa)
Iris(9ddd68aa-46f4-4d92-8de7-3c783bb5fd2b,4.9,3.0,1.4,0.2,Iris-setosa)

Here, we are going to use LabledPoint, which contains labels and features. The labels need to be in the Double format, and features need to be in the Vector format. Our label is a string in this case, so in order to convert it to the Double format, we create a map of unique values and then reverse them:
scala>val class2id = parsed.map(_.species).distinct.collect.zipWithIndex.map{case (k,v)=>(k, v.toDouble)}.toMap
scala>val id2class = class2id.map(_.swap)

scala>valparsedData = parsed.map { i =>LabeledPoint(class2id(i.species), Vectors.dense(i.petal_l,i.petal_w,i.sepal_l,i.sepal_w)) }

Next, we train the model using the sample data we have:
scala>val model = NaiveBayes.train(parsedData)

Now, the model is ready to predict the species of the given flower on the basis of its features. Here is an example of this:
scala> id2class(model.predict(Vectors.dense(5, 1.5, 6.4, 3.2)))
res19: String = Iris-versicolor

This way, you can perform predictive analytics using Spark MLib.

How it works...

Spark MLib provides a huge list of supported algorithms. In the preceding example that uses a training dataset, Spark builds a model that has probability data. So, once the model is built, we can start predicting the output for certain given features. There are various classification algorithms available, so you can choose any of them.

Chapter 10. Hadoop Use Cases

In this chapter, we'll take a look at the following recipes:
	Call Data Record analytics
	Web log analytics
	Sensitive data masking and encryption using Hadoop

Introduction

Throughout this book, we have been discussing Hadoop and its real-world use cases. In this final chapter, we are going to discuss the end-to-end implementation of a few such use cases. The motivation for this chapter is to apply the learning you've gathered from the earlier chapters. We will discuss use cases related the telecom, finance, and e-commerce domains. So, let's get started.

Call Data Record analytics

Call data records is data that is gathered by telecom operators that are specific to individual customers. We are going to take a look at telecom domain-specific use cases in this recipe.
Getting ready

To perform this recipe, you should have an up and running Hadoop cluster. We need some sample data for these use cases; I have written a data generator, which can used for your reference. You can find it at https://github.com/deshpandetanmay/cdr-data-generator.

How to do it...

Before jumping into the solution let's first try to understand a problem statement.
Problem Statement

Telecom companies keep records of each and every call made by their subscribers. They also keep information such as when a call was made, who it was made to, the start time, end time, and so on. Detailed information, such as SMSes, data sessions, and so on, is also stored by these companies. Here, the problem statement is how we can use this data to make company operations run smoother and help them generate valuable information about their customers.

Solution

Take a situation where a telecom company stores its data in RDMBS such as MySQL or Postgres. So, our solution flow diagram will look like this:
[image: Solution]
Now, let's assume that we have our data already present in the MySQL database in the abctelecom.cdr table:
mysql> desc abctelecom.cdr;
+------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+-------+
id	varchar(50)	NO	PRI		
caller	varchar(20)	YES		NULL	
calling	varchar(20)	YES		NULL	
start_time	varchar(20)	YES		NULL	
end_time	varchar(20)	YES		NULL	
type	varchar(20)	YES		NULL	
charge	double	YES		NULL	
result	varchar(20)	YES		NULL	
+------------+-------------+------+-----+---------+-------+
8 rows in set (0.00 sec)

Now, let's execute the Sqoop command to import this data into HDFS.
First of all, make sure that the data directory is created, and then execute the Sqoop import command:
$ hadoop fs -mkdir /data
$sqoop import --connect jdbc:mysql://localhost:3306/abctelecom --username root --password password --table cdr --target-dir /data/cdr --fields-terminated-by '|'

This will import the data from the MySQL table to the HDFS /data/cdr directory.
Next, we start the Hive prompt and create an external Hive table pointing to the preceding directory:
CREATE EXTERNAL TABLE cdr (
id STRING,
caller_num STRING,
called_num STRING,
start_time STRING,
end_time STRING,
call_type STRING,
call_charge DOUBLE,
call_result STRING
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
 LOCATION '/data/cdr';

We can confirm whether the data load is as expected by executing the following commands:
hive> SELECT * FROM cdr LIMIT 2;
OK
02240095-bc62-4973-a143-710a5fb3509a	0989256849	12380822662016-01-19T11:01:14.	2016-01-19T11:01:14.	SMS	0.35525125ANSWERED
30d73a30-6e93-472a-82cb-b1e53c94d1cb	5564259141	05373307052016-02-15T00:56:17.	2016-02-15T00:58:53.	VOICE0.29876852	ANSWERED
Time taken: 1.387 seconds, Fetched: 2 row(s)

Now, let's start analyzing this data. Let's say we want to know how many calls and SMSes subscribers are making. To know this information, we can execute the following query:
SELECT caller_num, call_type, COUNT(*)
FROM cdr
 GROUP BY caller_num, call_type;

The result for this is as follows:
0537330705	SMS 53
0537330705	VOICE 59
0989256849	SMS 59
0989256849	VOICE 53
1238082266	SMS 55
1238082266	VOICE 56
5314043825	SMS 56
5314043825	VOICE 55
5564259141	SMS 55
5564259141	VOICE 56

Next, we want to find out the total duration of time for which a subscriber is making voice calls:
SELECT caller_num, SUM(UNIX_TIMESTAMP(end_time , "yyyy-MM-dd'T'HH:mm:ss.SSSX") - UNIX_TIMESTAMP(start_time, "yyyy-MM-dd'T'HH:mm:ss.SSSX")) as duration
FROM cdr
group by caller_num, call_type
HAVING call_type = 'VOICE';

This will give us information on how much time each subscriber has spent on voice calls. Now, we can filter out the subscribers who make voice calls for more than a specific amount of time and offer them a voice call-specific package.
The result of the preceding query is as follows:
0537330705	8698
0989256849	7929
1238082266	8554
5314043825	7988
5564259141	4007

Next, we can find out the customers who spend the most amount of money and offer them better packages. In order to find the top five billed customers, execute the following query:
SELECT caller_num, sum(call_charge) AS bill
FROM cdr
GROUP BY caller_num
ORDER BY bill DESC LIMIT 5;

The result is as follows:
5314043825	58.67936635200001
0537330705	56.971656405699996
1238082266	56.0622671385
0989256849	53.69393956600001
5564259141	42.46016877900002

We can round off the bill as follows:
SELECT caller_num, round(sum(call_charge)) AS bill
FROM cdr
GROUP BY caller_num
ORDER BY bill DESC LIMIT 5;

The result of this is as follows:
5314043825	59.0
0537330705	57.0
1238082266	56.0
0989256849	54.0
5564259141	42.0

We can also find out how many times a call was placed but the called number was busy:
SELECT call_result, count(*)
FROM cdr
GROUP BY call_result;

The result of this is as follows:
ANSWERED	527
BUSY	29

This way, the more data you have, the more analysis you can do with it.

How it works...

We have already taken a look at how Hadoop, Sqoop, and Hive work in the previous chapters, so in case you need more details on any of these, refer to the respective chapters.

Web log analytics

Web logs is data generated by web servers running a website. This use case is applicable to domains where companies have their websites hosted and want to know more about their website performance and customer behavior on the website.
Getting ready

To perform this recipe, you should have an up and running Hadoop cluster. I have uploaded the data of some sample web logs from

https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/master/data/mylog.txt.

How to do it...

Before jumping into the solution, let's first try to understand the problem statement:
Problem statement

Many companies run businesses on their websites. Their website performance decides the sales or profitability. Web servers generally log information about the user, browser, IP address, and so on. We can use this information in order to make the website browsing experience smoother for users, which would help increase profitability.

Solution

Here, we assume that a company hosting its website on an Apache server and we will be listening to the logs generated by the server. We will use Flume to copy the logs to the HDFS folder, and then use Apache Hive to process the data.
To import data into HDFS from web servers, we have to install the Flume agent on each web server instance. The following is the configuration that we have to use for the Flume agent configuration:
flume1.sources = weblogs-source-1
flume1.channels = hdfs-channel-1
flume1.sinks = hdfs-sink-1

For each source, channel, and sink, set
standard properties.
flume1.sources.weblogs-source-1.type = exec
flume1.sources.weblogs-source-1.command = tail -f /path/to/log/file.log
flume1.sources.weblogs-source-1.batchSize = 100
flume1.sources.weblogs-source-1.channels = hdfs-channel-1

flume1.channels.hdfs-channel-1.type = memory
flume1.sinks.hdfs-sink-1.channel = hdfs-channel-1
flume1.sinks.hdfs-sink-1.type = hdfs
flume1.sinks.hdfs-sink-1.hdfs.writeFormat = Text
flume1.sinks.hdfs-sink-1.hdfs.fileType = DataStream
flume1.sinks.hdfs-sink-1.hdfs.filePrefix = test-events
flume1.sinks.hdfs-sink-1.hdfs.useLocalTimeStamp = true
flume1.sinks.hdfs-sink-1.hdfs.path = /logs/web/%y-%m-%d
flume1.sinks.hdfs-sink-1.hdfs.rollCount=100
flume1.sinks.hdfs-sink-1.hdfs.rollSize=0

Other properties are specific to each type of
source, channel, or sink. In this case, we
specify the capacity of the memory channel.
flume1.channels.hdfs-channel-1.capacity = 10000

This would be listening to the given log file path. Here, we are using the exec source, which executes the given command after a certain time interval.
The source is the output of the exec command that we have provided. The channel transfers the data to Sink, which writes it to HDFS.
To execute the preceding configuration, we have to run the following command:
/usr/local/flume/bin/flume-ng agent -n flume1 -c /usr/local/flume/conf -f /usr/local/flume/conf/weblogs.conf -Dflume.root.logger=INFO,console

Now, as and when the log file is updated, the data will be written to HDFS as well.
The data we get is as follows:
103.22.239.216 - - [10/Feb/2016:23:05:30 -0800] "GET / HTTP/1.1" 304 0 "http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0ahUKEwjs6N3jku_KAhXFkI4KHbRKBOwQFghGMAQ&url=http%3A%2F%2Fhadooptutorials.co.in%2F&usg=AFQjCNEnec258W4qoaZBxqTY1SxCekMBtw&sig2=GUz56esk1WQ9gaH6IoKBFA" "Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko"
202.183.129.168 - - [10/Feb/2016:23:03:24 -0800] "GET /js/freelancer.js HTTP/1.1" 304 0 - "Mozilla/4.0 (compatible;)"
202.168.90.179 - - [10/Feb/2016:23:03:06 -0800] "GET /tutorials/hadoop/images/understanding-map-reduce-programming/map-reduce-flow.PNG HTTP/1.1" 304 0 - "Mozilla/4.0 (compatible;)"
115.249.142.9 - - [10/Feb/2016:23:02:54 -0800] "GET /tutorials/hadoop/images/big-data-analytics-what-is-that/3Vs_of_big_data.png HTTP/1.1" 200 0 "http://hadooptutorials.co.in/tutorials/elasticsearch/install-elasticsearch-kibana-logstash-on-windows.html" "Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.97 Safari/537.36"
115.249.142.9 - - [10/Feb/2016:23:02:54 -0800] "GET /tutorials/sqoop/images/apache-sqoop-advanced-features/apache-sqoop-advanced-features.png HTTP/1.1" 200 0 "http://hadooptutorials.co.in/tutorials/elasticsearch/install-elasticsearch-kibana-logstash-on-windows.html" "Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.97 Safari/537.36"

Next, we start the Hive prompt and create a table in Hive using RegexSerde:
CREATE TABLE apache_combined_log (
 host STRING,
 identity STRING,
 userid STRING,
 time STRING,
 request STRING,
 status STRING,
 size STRING,
 referer STRING,
 agent STRING)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
 "input.regex" = "([^]*) ([^]*) ([^]*) (-|\\[[^\\]]*\\]) ([^ \"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)(?: ([^ \"]*|\"[^\"]*\") ([^ \"]*|\"[^\"]*\"))?",
 "output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s"
)
STORED AS TEXTFILE;

Load the data to this table from HDFS.
Now we are all set to start our analytics.
First of all, let's try to find the most popular pages on the website by executing the following query:
SELECT request, COUNT(*) AS page_view_count FROM apache_combined_log
GROUP BY request
ORDER BY page_view_count DESC
LIMIT 5;

The output will be shown as follows:
"GET /font-awesome-4.1.0/css/font-awesome.min.css HTTP/1.1"	409
"GET /css/freelancer.css HTTP/1.1"	405
"GET /js/classie.js HTTP/1.1"	402
"GET /js/cbpAnimatedHeader.js HTTP/1.1"	400
"GET /js/freelancer.js HTTP/1.1"	396

Next, we want to know the most number of hits from the referral page, and for this, we need to execute the following command:
SELECT referer, COUNT(*) AS referer_count FROM apache_combined_log
GROUP BY referer
ORDER BY referer_count DESC
LIMIT 5;

The output for this is as shown here:
- 1374
"http://hadooptutorials.co.in/"	1096
"http://hadooptutorials.co.in/tutorials/spark/install-apache-spark-on-ubuntu.html"	1029
"http://hadooptutorials.co.in/tutorials/elasticsearch/install-elasticsearch-kibana-logstash-on-windows.html"	848
"http://hadooptutorials.co.in/tutorials/hive/hive-best-practices.html"	573

Next, we want to know which server threw an error for which pages during browsing. We can work on such pages in order to improve the site performance. Here, an error occurs when the HTTP status is not 200:
SELECT request, status FROM apache_combined_log
WHERE status != 200;

The output for this is as follows:
"GET /js/contact_me.js HTTP/1.1"	304
"GET /js/jqBootstrapValidation.js HTTP/1.1"	304
"GET /js/freelancer.js HTTP/1.1"	304
"GET /tutorials/spark/images/install-apache-spark-on-ubuntu/WordCount_Demo.PNG HTTP/1.1"	304

Next, we want to do analysis based on location. But in our data, we don't have any such information; however, we can find this information using an IP address.
To do this, we are going to use a UDF, as shown here:
package in.co.hadooptutorials.ip.location.hive.udf;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;

import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;

public class LocationFinder extends UDF {

 public Text evaluate(Text inputIp) throws IOException{
 URL url = new URL("http://freegeoip.net/json/"+inputIp.toString());
 HttpURLConnection conn = (HttpURLConnection) url.openConnection();
 conn.setRequestMethod("GET");
 conn.setRequestProperty("Accept", "application/json");

 if (conn.getResponseCode() != 200) {
 throw new RuntimeException("Failed : HTTP error code : "
 + conn.getResponseCode());
 }

 BufferedReader br = new BufferedReader(new InputStreamReader(
 (conn.getInputStream())));

 String output = br.readLine();
 return new Text(output);
 }

}

First, we take out unique IPs:
CREATE TABLE unique_ips as
SELECT DISTINCT(host) FROM apache_combined_log;

Then, we use the UDF to find details about each IP:
ADD JAR ip-location-hive-udf-1.0.jar;
CREATE TEMPORARY FUNCTION get_details AS 'in.co.hadooptutorials.ip.location.hive.udf.LocationFinder' ;

CREATE TABLE location_details (data string) ;
INSERT INTO location_details
SELECT get_details(host) FROM unique_ips;

Next we create table with JSON SerDe.
ADD JAR json-serde-1.1.9.9-Hive1.2-jar-with-dependencies.jar;

CREATE TABLE ip_location_details (
ip STRING,
country_code STRING,
country_name STRING,
region_code STRING,
region_name STRING,
latitude DOUBLE,
longitude DOUBLE,
zip_code STRING,
time_zone STRING,
city STRING,
metro_code INT
)
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
LOCATION '/user/hive/warehouse/location_details';

We are all set to use the location details by joining the tables. For example, to get the number of sessions per country, we need to execute the following command:
SELECT ild.country_name, COUNT(*) FROM
ip_location_details ild JOIN apache_combined_log acl
ON (ild.ip = acl.host)
GROUP BY ild.country_name;
For City,
SELECT ild.city, COUNT(*) FROM
ip_location_details ild JOIN apache_combined_log acl
ON (ild.ip = acl.host)
GROUP BY ild.city;

We can also create reports in order to visualize the results of these queries.

How it works...

We have already seen how Hadoop, Flume, and Hive work in previous chapters, so in case you need further details on any of these, refer to the respective chapters.

Sensitive data masking and encryption using Hadoop

A lot of companies handle sensitive information such as SSN numbers, names, credit card numbers, and so on. In this recipe, we are going to take a look at how to use Hadoop to mask or encrypt this data in order to secure it. This recipe can be referred to by various domains, such as finance, retail, telecom, and those people who handle critical information.
Getting ready

To perform this recipe, you should have an up and running Hadoop cluster.

How to do it...

Before jumping into the solution, let's first try to understand the problem statement.
Problem statement

Handling sensitive information is a critical part of today's data operations. Here, the problem statement is to transform critical information into masked data or completely encrypted data.

Solution

Here, we assume that we already have data with us in flat files and it has been loaded into HDFS.
Let's say we have some sample data, as shown here, which has the name and credit card number of a person:
Ryan Levine|4716840526341330
Erika Smith|4539326321106479
Brooklyn Sloan|4916571896673675
Karen Mayer|5428124448681073
Eddie O'neill|5374594066409623
Nancy Stevens|5390742852412406
Chasity Conway|378238168241362
Aaron McCray|374762693530829
Kendra Allen|374606063397725
Jenna Burns|5335126551184557
Jane Mayo|343637926486924
George Suarez|347956127969751
Janet Abbott|6011345775765400
Steven Marshall|6011414499816624
Shane Heath|6011322907488797
Unborn Vega|6011417989731237
Kaitlyn Wilder|6011055063404451
Donald Morgan|5140126646868581

First of all, we will create a Hive table, and then load data into it:
CREATE TABLE personal_details(
name STRING,
ccnum STRING
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|';

LOAD DATA LOCAL INPATH 'personal_details.txt' INTO TABLE personal_details;

Now, we can write Hive UDFs to mask the name as well as the credit card number. Credit card numbers are not random numbers, but they are generated through an algorithm called Luhn's Algorithm, which can be found at https://en.wikipedia.org/wiki/Luhn_algorithm.
We can write algorithms based on our complexity but for the purposes of demonstration, I am using a simple algorithm, which subtracts each number from 9 and returns it. Before starting anything, make sure that you add the required dependencies in pom.xml:
<dependency>
 <groupId>org.apache.hive</groupId>
 <artifactId>hive-exec</artifactId>
 <version>1.2.0</version>
</dependency>
<dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.7.1</version>
</dependency>

Our CC number masking UDF code is as follows:
package in.co.hadooptutorials.hive.udf.masking;

import java.io.IOException;

import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;

public class CCMasker extends UDF {
 public Text evaluate(Text ccNumber) throws IOException {
 String[] num = ccNumber.toString().split("");
 StringBuilder sb = new StringBuilder();
 for (String c : num) {
 if(!("".equals(c))){

 int i = 9 - Integer.parseInt(c);
 sb.append(i);
 }
 }
 return new Text(sb.toString());
 }

}

Our name masking UDF code is as follows:
package in.co.hadooptutorials.hive.udf.masking;

import java.io.IOException;
import java.util.Random;

import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;

public class NameMasker extends UDF {
 public Text evaluate(Text name) throws IOException {

 return new Text(mask(name.toString(), 0));
 }

 char randomChar(Random r, String cs, boolean uppercase) {
 char c = cs.charAt(r.nextInt(cs.length()));
 return uppercase ? Character.toUpperCase(c) : c;
 }

 String mask(String str, int seed) {

 final String cons = "bcdfghjklmnpqrstvwxz";
 final String vowel = "aeiouy";
 final String digit = "0123456789";

 Random r = new Random(seed);
 char data[] = str.toCharArray();

 for (int n = 0; n < data.length; ++n) {
 char ln = Character.toLowerCase(data[n]);
 if (cons.indexOf(ln) >= 0)
 data[n] = randomChar(r, cons, ln != data[n]);
 else if (vowel.indexOf(ln) >= 0)
 data[n] = randomChar(r, vowel, ln != data[n]);
 else if (digit.indexOf(ln) >= 0)
 data[n] = randomChar(r, digit, ln != data[n]);
 }

 return new String(data);

 }
}

We build the project and copy the JAR file to the Hadoop cluster:
ADD JAR masking-udf-1.0.jar;

CREATE TEMPORARY FUNCTION ccmask AS 'in.co.hadooptutorials.hive.udf.masking.CCMasker';

CREATE TEMPORARY FUNCTION namemask AS 'in.co.hadooptutorials.hive.udf.masking.NameMasker';

And then we execute the query to start masking name and cc number.
CREATE TABLE personal_details_masked AS
SELECT namemask(name), ccmask(ccnum) FROM
personal_details;

Once the execution is complete, you can see these results:
hive> select * from personal_details_masked;
 Buek Typozi	5283159473658669
 Aleky Rpozs	5460673678893520
 Bleytryc Zsyyr	5083428103326324
 Bumyt Ryoos	4571875551318926
 Almyy Y'poosw	4625405933590376
 Bumky Rpoziww	4609257147587593
 Blekyry Coswyy	621761831758637
 Aumyt RpCziy	625237306469170
 Bumkty Ycziw	625393936602274
 Bumky Ryczs	4664873448815442
 Bumy Tyyo	656362073513075
 Buekty Poosyw	652043872030248
 Bumyt Ypcosw	3988654224234599
 Blekyr Pozswyrd	3988585500183375
 Bleky Ryozs	3988677092511202
 Almytr Pozi	3988582010268762
 Buektyp Coswyr	3988944936595548
 Bumytr Pozsyw	4859873353131418

This way, you can use Hadoop to mask or encrypt sensitive information.

How it works...

We have already taken a look at how Hadoop and Hive work in previous chapters, so in case you need further details, refer to the respective chapters.

 Index

 A

 	access log, formats	%h / How to do it...
	%l / How to do it...
	%u / How to do it...
	%t / How to do it...
	%r / How to do it...
	%>s / How to do it...
	%b / How to do it...
	referrer / How to do it...
	user agent / How to do it...

 	Apache Spark	about / Introduction
	URL / Getting ready

 	Area Under a Curve	reference / How to do it...

 	Atomic export	performing, Sqoop used / Performing Atomic export using Sqoop, How it works...

 	Avro	reference / Processing Hive data in the Avro format

 	AVRO format	Hive data, processing in / Processing Hive data in the Avro format, How to do it..., How it works...

 	AWS EC2	reference / Getting ready

 B

 	balancer command	executing, for uniform data distribution / Executing the balancer command for uniform data distribution, How to do it...

 	benchmarking	performing, on Hadoop cluster / Performing benchmarking on a Hadoop cluster, How to do it..., TestDFSIO, How it works...

 C

 	Call Data Record analytics	defining / Call Data Record analytics, Problem Statement, Solution
	URL / Getting ready
	problem statement / Problem Statement
	solution / Solution

 	Call Data Record Analytics	performing, Hive used / How to do it...

 	Call Data Records (CDR)	about / Call Data Record Analytics using Hive, Getting ready
	reference / Call Data Record Analytics using Hive

 	Change Data Capture (CDC)	implementing, Hive used / Implementing Change Data Capture using Hive, How to do it, How it works

 	CLI	Hbase operation, performing in / Performing the Hbase operation in CLI, How to do it, How it works...

 	combined access logs	reference / Writing the Map Reduce program in Java to analyze web log data

 	command options, Hadoop	reference / There's more

 	compressed data	saving, on HDFS / Saving compressed data in HDFS, How it works...

 	configuration parameters, Hadoop	hadoop-env.sh / How to do it...
	core-site.xml / How to do it...
	yarn-site.xml / How to do it...
	mapred-site.xml / How to do it...
	hdfs-site.xml / How to do it...

 	Confusion Matrix	reference / How to do it...

 	context Ngram	performing, in Hive / Performing context Ngram in Hive, How it works...

 	custom SerDe	reference / How it works...

 D

 	data	loading, from local machine to HDFS / Loading data from a local machine to HDFS, How it works...
	exporting, from HDFS to local machine / Getting ready, How it works...
	importing, from Hadoop cluster / Importing data from another Hadoop cluster, How it works...
	importing from RDMBS to HDFS, Sqoop used / Importing data from RDMBS to HDFS using Sqoop, How to do it...
	exporting, from HDFS to RDBMS / Exporting data from HDFS to RDBMS, Getting ready, How to do it..., How it works...
	importing into Hive table, Sqoop used / Importing data into Hive tables using Sqoop, How to do it..., How it works...
	importing into HDFS, from Mainframes / Importing data into HDFS from Mainframes
	importing from RDBMS to Hbase, Sqoop used / Importing data from RDBMS to Hbase using Sqoop, How to do it..., How it works...
	importing from Kafka into HDFS, Flume used / Importing data from Kafka into HDFS using Flume, How to do it..., How it works

 	Data Encryption Key (DEK) / How it works...

 	DataNodes	decommissioning / Decommissioning DataNodes, How it works...

 	deleted data	recycling, from trash to HDFS / Recycling deleted data from trash to HDFS, How to do it..., How it works...

 	DistCp	about / How to do it...
	-update option / How to do it...
	-overwrite option / How to do it...
	reference / How it works...

 	distinct values	finding, Map Reduce program used / Map Reduce program to find distinct values, How to do it

 E

 	e-mail action job	implementing, Oozie used / Implementing an e-mail action job using Oozie, How to do it..., How it works...

 	Encrypted Data Encryption Key(EDEK) / How it works...

 	Encryption Zone Key(EZK) / How it works...

 	Extract-Transform-Load (ETL)	about / Introduction

 F

 	FILTER By queries	performing, in Pig / Performing FILTER By queries in Pig, How to do it...

 	Flume	used, for importing Twitter data into HDFS / Importing Twitter data into HDFS using Flume, How to do it...
	about / How it works
	used, for importing data from Kafka into HDFS / Importing data from Kafka into HDFS using Flume, How to do it..., How it works
	used, for importing web logs data into HDFS / Importing web logs data into HDFS using Flume, How to do it..., How it works...

 	full outer join / Full outer join

 G

 	Google File System (GFS)	about / Introduction

 	graphs	processing, Graph X used / Processing graphs using Graph X, How to do it...

 	Graph X	used, for processing graphs / Processing graphs using Graph X, How to do it...
	URL / How it works...

 	Group By queries	performing, in Pig / Performing Group By queries in Pig, How to do it...

 	Group operator	reference / How it works...

 H

 	Hadoop	about / Introduction
	configuration parameters / How to do it...
	support, adding for new writable data type / Adding support for a new writable data type in Hadoop, How to do it..., How it works...
	used, for sensitive data masking / Sensitive data masking and encryption using Hadoop, Getting ready, Solution, How it works...
	used, for encryption / Sensitive data masking and encryption using Hadoop, Getting ready, Solution, How it works...
	problem statement / Problem statement
	solution / Solution

 	Hadoop, components	storage / Introduction
	processing / Introduction

 	Hadoop 2.7	download link / How to do it...

 	Hadoop cluster	benchmarking, performing on / Performing benchmarking on a Hadoop cluster, How to do it..., TestDFSIO, How it works...
	data, importing from / Importing data from another Hadoop cluster, How it works...
	Map Reduce program, executing in / Executing the Map Reduce program in a Hadoop cluster, How it works...

 	Hadoop clusters	new nodes, adding to / Adding new nodes to existing Hadoop clusters, How it works...

 	Hadoop Distributed File System (HDFS)	about / How to do it..., Hadoop Distributed File System (HDFS)

 	Hbase	reference / Introduction, Getting ready

 	Hbase operation	performing, in CLI / Performing the Hbase operation in CLI, How to do it, How it works...
	performing, in Java / Performing Hbase operations in Java, How it works...

 	HDFS	replication factor, modifying of existing file / Changing the replication factor of an existing file in HDFS, How it works...
	transparent encryption, enabling for / Enabling transparent encryption for HDFS, How to do it..., How it works...
	compressed data, saving on / Saving compressed data in HDFS, How it works...

 	HDFS, to local machine	data, exporting from / Getting ready, How it works...

 	HDFS block size	setting, for files in cluster / Getting ready, How it works...
	setting, for specific file in cluster / Getting ready, How it works...

 	Hive	reference / Introduction
	User Defined functions, writing in / Writing a user-defined function in Hive, How to do it
	table joins, performing in / Performing table joins in Hive, How to do it...
	map side joins, executing in / Executing map side joins in Hive, How to do it...
	context Ngram, performing in / Performing context Ngram in Hive, How it works...
	used, for performing Call Data Record Analytics / How to do it..., How it works...
	used, for performing Twitter sentiment analysis / Twitter sentiment analysis using Hive, How to do it..., How it works
	used, for implementing Change Data Capture (CDC) / Implementing Change Data Capture using Hive, How to do it, How it works
	used, for inserting multiple tables / Multiple table inserting using Hive, How to do it

 	Hive action job	implementing, Oozie used / Implementing a Hive action job using Oozie, How to do it..., How it works...

 	Hive data	processing, in sequential file format / Storing and processing Hive data in a sequential file format, How to do it...
	storing, in sequential file format / Storing and processing Hive data in a sequential file format, How to do it...
	processing, in RC file format / Storing and processing Hive data in the ORC file format, How it works...
	storing, in RC file format / Storing and processing Hive data in the ORC file format, How it works...
	processing, in ORC file format / Storing and processing Hive data in the ORC file format, How it works...
	storing, in ORC file format / Storing and processing Hive data in the ORC file format, How it works...
	storing, in Parquet file format / Storing and processing Hive data in the Parquet file format, How to do it...
	processing, in Parquet file format / Storing and processing Hive data in the Parquet file format, How to do it...
	processing, in AVRO format / Processing Hive data in the Avro format, How to do it..., How it works...

 	Hive JSON SerDe	used, for processing JSON data / Processing JSON data in Hive using JSON SerDe, How to do it..., How it works...

 	Hive XML SerDe	used, for processing XML data / Processing XML data in Hive using XML SerDe, How to do it..., How it works

 I

 	incremental import	defining, Sqoop used / Incremental import using Sqoop, How to do it...

 	installing	Single Node Hadoop Cluster / Getting ready, How to do it..., How it works...
	multi-node Hadoop cluster / Installing a multi-node Hadoop cluster, How to do it..., How it works...

 	iris.txt	URL / How to do it...

 	Iris flower data set	reference / Performing Predictive Analytics using R

 	iris flowers	URL / How to do it...

 	item based recommendation engine	setting up, Mahout used / Creating an item-based recommendation engine using Mahout, How to do it..., How it works...

 J

 	Java	Hbase operation, performing in / Performing Hbase operations in Java, How it works...

 	Java action job	implementing, Oozie used / Implementing a Java action job using Oozie, How to do it

 	Java JDK	download link / How to do it...

 	job	scheduling, in Oozie / Scheduling a job in Oozie, How to do it...

 	JOINS	performing, in Pig / Performing JOINS in Pig, How to do it..., How it works

 	JSON data	processing, Hive JSON SerDe used / Processing JSON data in Hive using JSON SerDe, How to do it..., How it works...
	analyzing, Spark used / Analyzing JSON data using Spark , How to do it..., How it works...

 	JSON SerDe binaries	references / Getting ready

 K

 	K-Means	reference / Clustering text data using K-Means

 	Kafka	about / Importing data from Kafka into HDFS using Flume

 	Key Management Server (KMS) / How to do it...

 L

 	LazyOutputFormat	reference link / How it works...

 	left outer join / Left outer join

 	left semi join / Left semi join

 	local machine, to HDFS	data, loading from / Loading data from a local machine to HDFS, How it works...

 	Luhn's Algorithm	URL / Solution

 M

 	Mahout	about / Introduction
	download link / How to do it...
	used, for setting up item based recommendation engine / Creating an item-based recommendation engine using Mahout, How to do it..., How it works...
	used, for setting up user based recommendation engine / Creating a user-based recommendation engine using Mahout, How to do it..., How it works...
	used, for performing predictive analytics on bank data / Using Predictive analytics on Bank Data using Mahout, How to do it...

 	Mahout algorithms	reference / How it works...

 	Mahout development environment	setting up / Setting up the Mahout development environment, How to do it..., How it works...

 	Mainframes	data, importing into HDFS from / Importing data into HDFS from Mainframes
	about / Importing data into HDFS from Mainframes

 	Map Reduce	about / Introduction
	used, for performing Reduce side Joins / Performing Reduce side Joins using Map Reduce, How to do it, How it works...

 	Map Reduce action job	implementing, Oozie used / Implementing a Map Reduce action job using Oozie, How to do it...

 	Map Reduce code	unit testing, MRUnit used / Unit testing the Map Reduce code using MRUnit, How to do it..., How it works...

 	Map Reduce program	writing, in Java for web log data analysis / Writing the Map Reduce program in Java to analyze web log data, How to do it..., How it works...
	executing, in Hadoop cluster / Executing the Map Reduce program in a Hadoop cluster, How it works...
	user-defined counter, implementing in / Implementing a user-defined counter in a Map Reduce program, How to do it..., How it works...
	used, for finding top X / Map Reduce program to find the top X, How to do it...
	used, for finding distinct values / Map Reduce program to find distinct values, How to do it
	writing, for data partitioning / Map Reduce program to partition data using a custom partitioner, How to do it..., How it works...

 	MapReduce programing Hbase Table	executing / Executing the MapReduce programming with an Hbase Table, How to do it

 	Map Reduce results	writing, to multiple output files / Writing Map Reduce results to multiple output files, How to do it...

 	map side joins	executing, in Hive / Executing map side joins in Hive, How to do it...
	reference / How it works...

 	merge joins	about / Merge Joins
	reference / Merge Joins

 	MRBench	benchmarking / MRBench

 	MRUnit	Map Reduce code, unit testing / Unit testing the Map Reduce code using MRUnit, How to do it..., How it works...

 	multi-node Hadoop cluster	installing / Installing a multi-node Hadoop cluster, How to do it..., How it works...

 	multiple tables	inserting, Hive used / Multiple table inserting using Hive, How to do it

 	MySQL connector	URL / Getting ready

 N

 	Naive Bayes algorithm	reference / How it works...

 	Ngrams	reference / How it works...

 	NNBench	benchmarking / NNBench

 	nodes	adding, to existing Hadoop clusters / Adding new nodes to existing Hadoop clusters, How it works...

 O

 	Olympics Athletes Data Analytics	defining, Spark Shell used / Olympics Athletes analytics using the Spark Shell, How to do it...
	URL / How to do it...

 	Oozie	used, for implementing Sqoop action job / Implementing a Sqoop action job using Oozie, How to do it...
	used, for implementing Map Reduce action job / Implementing a Map Reduce action job using Oozie, How to do it...
	used, for implementing Java action job / Implementing a Java action job using Oozie, How to do it
	used, for implementing Hive action job / Implementing a Hive action job using Oozie, How to do it..., How it works...
	used, for implementing Pig action job / Implementing a Pig action job using Oozie, How to do it..., How it works
	used, for implementing e-mail action job / Implementing an e-mail action job using Oozie, How to do it..., How it works...
	used, for executing parallel jobs / Executing parallel jobs using Oozie (fork), How to do it...
	job, scheduling / Scheduling a job in Oozie, How to do it...

 	ORC file format	Hive data, storing in / Storing and processing Hive data in the ORC file format, How it works...
	Hive data, processing in / Storing and processing Hive data in the ORC file format, How it works...

 	Order By queries	performing, in Pig / Performing Order By queries in Pig, How it works...

 P

 	parallel jobs	executing, Oozie used / Executing parallel jobs using Oozie (fork), How to do it...

 	Parquet	about / Analyzing Parquet files using Spark
	URL / How to do it...

 	Parquet file format	Hive data, processing in / Storing and processing Hive data in the Parquet file format, How to do it...
	Hive data, storing in / Storing and processing Hive data in the Parquet file format, How it works...
	reference / How it works...

 	Parquet files	analyzing, Spark used / Getting ready, How to do it..., How it works...

 	Pearson product-moment correlation coefficient	reference / How it works...

 	people.json sample	URL / How to do it...

 	Pig	reference / Introduction
	FILTER By queries, performing in / Performing FILTER By queries in Pig, How to do it...
	Group By queries, performing in / Performing Group By queries in Pig, How to do it...
	Order By queries, performing in / Performing Order By queries in Pig, How it works...
	JOINS, performing in / Performing JOINS in Pig, How to do it...
	user-defined function, writing in / Writing a user-defined function in Pig, How to do it...
	used, for analyzing web log data / Analyzing web log data using Pig, How to do it...

 	Pig 0.15	reference / Getting ready

 	Pig action job	implementing, Oozie used / Implementing a Pig action job using Oozie, How to do it..., How it works

 	population data analytics	performing, R used / Performing Population Data Analytics using R, How to do it...

 	predictive analytics	performing, R used / Performing Predictive Analytics using R, How to do it...
	conducting, Spark MLib used / Conducting predictive analytics using Spark MLib, How to do it..., How it works...

 Q

 	query operator	used, in Sqoop import / Using query operator in Sqoop import, How it works...

 R

 	R	about / Introduction
	used, for performing population data analytics / Performing Population Data Analytics using R, How to do it...
	used, for performing Twitter sentiment analytics / Performing Twitter Sentiment Analytics using R, How to do it..., How it works...
	used, for performing predictive analytics / Performing Predictive Analytics using R, How to do it...

 	RC file format	Hive data, storing in / Storing and processing Hive data in the ORC file format, How it works...
	Hive data, processing in / Storing and processing Hive data in the ORC file format, How it works...

 	Reduce side Joins	performing, Map Reduce used / Performing Reduce side Joins using Map Reduce, How to do it, How it works...

 	Remote Procedure Calls (RPC) / Processing Hive data in the Avro format

 	replicated joins	about / Replicated Joins
	reference / Replicated Joins

 	replication factor	modifying, of existing file in HDFS / Changing the replication factor of an existing file in HDFS, How it works...

 	right outer join / Right outer join

 S

 	safe mode	entering / Entering and exiting from the safe mode in a Hadoop cluster
	exiting from / Entering and exiting from the safe mode in a Hadoop cluster

 	sequential file format	Hive data, storing in / Storing and processing Hive data in a sequential file format, How to do it...
	Hive data, processing in / Storing and processing Hive data in a sequential file format, How to do it...

 	SGD for logistic regression	reference / How to do it...

 	Single Node Hadoop Cluster	installing / Getting ready, How to do it..., How it works...
	HDFS file operations, performing on / There's more

 	skewed joins	about / Skewed Joins
	reference / Skewed Joins

 	Spark	running, on YARN / Running Spark on YARN, How to do it...
	used, for analyzing Parquet files / Getting ready, How to do it..., How it works...
	used, for analyzing JSON data / Analyzing JSON data using Spark , How to do it..., How it works...

 	Spark Shell	used, for Olympics Athletes Data Analytics / Olympics Athletes analytics using the Spark Shell, How to do it...

 	Spark standalone	running / Running Spark standalone, How to do it..., How it works...

 	Spark streaming	used, for Twitter trending topics / Twitter trending topics using Spark streaming, How to do it...

 	Spark Streaming	used, for creating Twitter trending topics / Creating Twitter trending topics using Spark Streaming, How to do it..., How it works...
	URL / How it works...

 	Sqoop	used, for importing data from RDMBS to HDFS / Importing data from RDMBS to HDFS using Sqoop, How to do it...
	used, for performing Atomic export / Performing Atomic export using Sqoop, How it works...
	used, for importing data into Hive table / Importing data into Hive tables using Sqoop, How to do it..., How it works...
	used, for incremental import / Incremental import using Sqoop, How to do it...
	used, for importing data from RDBMS to Hbase / Importing data from RDBMS to Hbase using Sqoop, How to do it..., How it works...

 	Sqoop, in compressed format	used, for importing data / Importing data using Sqoop in compressed format, How to do it..., How it works...

 	Sqoop action job	implementing, Oozie used / Implementing a Sqoop action job using Oozie, How to do it...

 	Sqoop import	query operator, using / Using query operator in Sqoop import, How to do it...

 	Sqoop job	creating / Creating and executing Sqoop job, How it works...
	executing / Creating and executing Sqoop job, How it works...

 	Stochastic Gradient Descent (SGD) / How to do it...

 T

 	table joins	performing, in Hive / Performing table joins in Hive, How to do it...
	left outer join / Left outer join
	right outer join / Right outer join
	full outer join / Full outer join
	left semi join / Left semi join

 	TestDFSIO	benchmarking / TestDFSIO

 	text data clustering, K-Means	Mahout used / Clustering text data using K-Means, How to do it...

 	top X	finding, Map Reduce program used / Map Reduce program to find the top X, How to do it...

 	transparent encryption	enabling, for HDFS / Enabling transparent encryption for HDFS, How to do it..., How it works...
	reference / How it works...

 	TreeMap	reference link / How to do it...

 	Twitter apps	URL / How to do it...

 	Twitter authorization tokens	generating / How to do it...

 	Twitter data	importing Twitter data, Flume used / Importing Twitter data into HDFS using Flume, How to do it...

 	Twitter sentiment analysis	performing, Hive used / Twitter sentiment analysis using Hive, How to do it..., How it works

 	Twitter sentiment analytics	performing, R used / Performing Twitter Sentiment Analytics using R, How to do it..., How it works...

 	Twitter trending topics	creating, Spark Streaming used / Creating Twitter trending topics using Spark Streaming, How to do it..., How it works...
	defining, Spark streaming used / Twitter trending topics using Spark streaming, How to do it...

 U

 	uniform data distribution	balancer command, executing for / Executing the balancer command for uniform data distribution, How to do it...

 	user-defined counter	implementing, in Map Reduce program / Implementing a user-defined counter in a Map Reduce program, How to do it..., How it works...

 	user-defined function	writing, in Pig / Writing a user-defined function in Pig, How to do it...

 	User-Defined Functions (UDFs)	about / Introduction

 	user based recommendation engine	setting up, Mahout used / Creating a user-based recommendation engine using Mahout, How to do it..., How it works...

 	User Defined functions	writing, in Hive / Writing a user-defined function in Hive, How to do it

 W

 	Web log analytics	defining / Web log analytics, Solution
	references / Getting ready
	problem statement / Problem statement
	solution / Solution

 	web log data	analyzing, Pig used / Analyzing web log data using Pig, How to do it...

 	web logs data into HDFS	importing, Flume used / Importing web logs data into HDFS using Flume, How to do it..., How it works...

 X

 	XML data	processing, Hive XML SerDe used / Processing XML data in Hive using XML SerDe, How to do it..., How it works

 	XML SerDe	references / Getting ready

 Y

 	YARN	Spark, running on / Running Spark on YARN, How to do it...

 	Yet Another Resource Negotiator (YARN)	about / How to do it..., Yet Another Resource Negotiator (YARN)

 OEBPS/graphics/B03714_03_01.jpg
Mapper

>
Top 10 local records

Top Ten

Mapper

Top Ten

Mapper

Top Ten
Reducer

Final Top 10
Records

OEBPS/graphics/B03714_06_04.jpg
HadoopTutorialsFlume

Details ~ Settings ~ Keysand Access Tokens ~ Permissions

Application Settings

Consumer Key (API Key) GWYT5K3uL1gqn2UKWGIC96BAN

Gonsumer Secret (APl Secret) I9WLPXL6pQHVZ2pNky97x3XpUKWSKIRU02pzGu10SemhsYchkG
Access Level Read and write (modify app permissions)

Owner HadoopTutorials

Owner ID 2825680861

Application Actions

Regenerate Consumer Key and Secret Change App Permissions

Test OAuth

OEBPS/graphics/B03714_06_06.jpg
Hadoop

Browse Directory

Itmp/kafka/weblogs/16-01-02

Permission Owner Group Size Last Modified
AW adminl supergroup 188 Saturday 02 January 2016 03:
W adminl supergroup 128 Saturday 02 January 2016 04

Hadoop, 2014,

Replication Block Size Name
1 128 M8 test-events. 1451730081684
1 128 M8 testevents. 1451730937398

OEBPS/graphics/B03714_08_01.jpg
NSW

3000 4000 5000 6000

2000

R Graphics: Device 2 (ACTIVE)

T
1920

T T
1940 1960

Year

T
1980

2000

OEBPS/graphics/B03714_01_05.jpg
ubuntuec2-52-10-22-65:~§ hdfs balancer
15/10/08 0:29:07 TNE

15/10/08 09:23:07 Tk
< excluded = 0, number
Time Scamp

15/10/08
15710708
P
15710708
P
P
15/10/08

oce 8, 2015

09:29:08
09:29:09
09:29:00

09:29:09
09:29:09
The cluster is balanced. Exiting

AR
o
e
o
o
o

9 A

of nodes to be included = 0]

Iterations Bytes Already Moved Bytes Left To Move Bytes Being Moved
ucil.NaciveCodeloader: Unable to load native-hadoop library for your placform... using builtin-java classes where applicable

Ret. NetuorkTopology: Adding a new node: /default-rack/172.31.0.

50010

ne: NecuorkTopology: Adding a new node: /defaulc-rack/172.31.0.8:50010

net NetworkTopology: Adding a new node.

Jdetauit-rack/172.31.9.47:50010

net NetuorkTopology: Adding a new node: /default-rack/172.31.18.55:50010

balancer.Balancer: 0 over-utilized: (1
balancer.Balancer: 0 underuilized: [1

o o8 os

0%t 5, 2015 312909 AN Balancing took 2.54 seconds
ubuncigeca-52-10-22-65:-5 |

e

namencdes = [Bdfs://ec2-52-10-22-65.us-west-2.compute. amazonaus. com:2000]
balancer.Balancer: pazamecers = Balancer.Parameters(Balancingfolicy.Node,

“hreshold=10.0, max idle iteracion = 5, number of nodes <o b|

OEBPS/cover/cover.jpg
Hadoop Real-World
Solutions Cookbook

Second Edition

Over 90 hands-on recipes to help you learn and master the
intricacies of Apache Hadoop 2.X, YARN, Hive, Pig, Oozie.
Flume, Sqoop, Apache Spark, and Mahout

PACKT *

OEBPS/graphics/B03714_01_03.jpg
Logged in as: drwho.

All Applications

Cluster Clster Metrcs
[Awps | Apps | Awps | Apps | Containers Mamory Mamory | Memory | VCores VCores | VCores | Active | Decommissioned
fhe Submited Pending Runing Complted Ruming Used | Tosl | Resarved | Used | Tofal Reservad Nodes | Nodes
Hoplestons o o o0 o [} 08 268 08 0o 2 o
W . ScheduerMeics
Shane” Seheder Type Scheduing Resoure Tree Ninimum Alocston Masimum Alocaion
fi Capaciy Schodulr IMEMORY) <memy 1024, Cares 1> <memry 8122, Cores >
e D User Name Application Type Quewe StaTime FinishTime State FinalStats Progress Tracking Ul
e

Schecuer

Lost Unheaithy | Rebooted
Nodes Nodes Nodes
[

Tools

Focalogs

Sinermeis

OEBPS/graphics/B03714_10_01.jpg
Data Processing
using Hiye Queries

Hadoop Cluster

Call Detail Record Analytics using Hadoop

RDBMS Data

import
Store P

OEBPS/graphics/PacktLibLogo.jpg

OEBPS/graphics/activity.jpg

OEBPS/graphics/B03714_09_04.jpg

OEBPS/graphics/B03714_06_05.jpg
[6) Browsing HDFS.

Hadoop

Browse Directory

Juser/flume/tweets Got
Permission Owner Group size Last Modified Replication Block Size Name
adminl supergroup 942.85KB Saturday 02 January 2016 03:05:36 PM IST 1 128M8 FlumeData 1451727304596
adminl supergroup 101M8 Saturday02January 2016 03:07:12PMIST 1 128MB FlumeData 1451727402216

Hadoop, 2014,

OEBPS/graphics/B03714_09_02.jpg
Spark Jobs - Mo:

< v & &> (@] nttp/10.0.2.15:4040/10bs/ v
BuMost Visited v (@) Getting Started [E)Latest Headiines v
@) Spark Pi - Spark Jobs W&

Jobs e rage

Spark Jobs ()

Total Uptime: 3.3 min
Scheduling Mode: FIFO
Active Jobs: 1

» Event Timeline

Active Jobs (1)

Job Stages: Tasks (for all stages):
id Description Submitted Duration Succeeded/Total Succeeded/To!

0 reduce at SparkPiscala:36 2016/02/03 3.0min O/1 oo
11:00:55

OEBPS/graphics/BookInternalAd.jpg
Full-Stack
V\l;eb Dae::lelopment Hands-On .(ri?fcwll'gi"l:-:;e

with Vue.js and Node Data Science
and Python
Machine Learning

Go to www.packtpub.com
and use this code in the
checkout:

OEBPS/graphics/B03714_08_02.jpg
10000 15000

5000

R Graphics: Device 2 (ACTIVE)

OEBPS/graphics/action.jpg

OEBPS/graphics/B03714_01_01.jpg
Map Reduce

Data Processing & Cluster
Resource Management

HDFS

Data Storage

Hadoop 1.X

Graph
Processing

YARN

Cluster Resource Management

HDFS

Data Storage
Hadoop 2.X

OEBPS/graphics/B03714_01_04.jpg
ubuntuBec2-52-10-22-65:~§ hdfs dfsadmin -report
15/10/08 08:57:

Configured Capacicy: 33239728128 (30.96 GB)
Presenc Capacicy: 23809320097 (22.17 GB)
DFS Remaining: 23605534720 (21.98 GB)

DFS Used: 203785377 (194.34 MB)

DFS Useas: 0.06%

Under replicated blocks: ©

Blocks wich corrupt replicas: 0

Kissing blocks: 0

Missing blocks (with replication factor 1): O

amoass (1

Name: 172.31.18.55:50010 (1p-172-31-18-55.us-west-2.conpuce. internal)
Hostname: 1p-172-31-18-55.us-west-2.compute. incernal

Decommission Status : Normal

Configured Capacicy: 8309932032 (1.74 GB)

DFS Dsed: 1127585 (1.08 ¥3)

Non DFS Used: 2372033375 (2.21 GB)

DFS Remaining: 5936771072 (5.53 GB)

DES Useat: 0.013

DFS Remainingt: 71.44%

Configured Cache Capacity: 0 (0 B)

Cache Used: 0 (0 B)

Cache Remaining: 0 (0 B)

Cache Usea: 100.008

Cache Remainingt: 0.00%

pra—

Last contact!

Thu Oct 08 08:57:25 UTC 2015

Name: 172.31.0.9:50010 (1p-172-31-0-9.us-wesc-2.compuce. internal)
Hostname: 1p-172-31-0-0.us-west-2.compuce. internal

Decommission Status : Normal

Configured Capacicy: 5309932032 (7.74 GB)

DFS Used: 67551232 (64.42 ¥B)

Non DFS Used: 2193256448 (2.04 GB)

4 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your placform.

- using builtin-java classes where applicable

OEBPS/graphics/note.jpg

OEBPS/graphics/list.jpg

OEBPS/graphics/B03714_04_01.jpg
250 MB
Stripe

250 MB
Stripe

Index Data

Row Data

Stripe Footer

Index Data

Row Data

Stripe Footer

Column 2
Column 3
Column 4

Column 5

OEBPS/graphics/B03714_06_02.jpg
Developer Agreement

Effective: May 18, 2015.

This Twitter Developer Agreement (*Agreement’) is made between you (either an individual or an entity, referred to herein as ‘you)
‘and Twitter, Inc. and Twitter International Company (collectively, “Twitter") and governs your access to and use of the Licensed
Material (as defined below).

PLEASE READ THE TERMS AND CONDITIONS OF THIS AGREEMENT CAREFULLY, INCLUDING WITHOUT LIMITATION ANY
LINKED TERMS AND CONDITIONS APPEARING OR REFERENCED BELOW, WHICH ARE HEREBY MADE PART OF THIS LICENSE
AGREEMENT. BY USING THE LICENSED MATERIAL, YOU ARE AGREEING THAT YOU HAVE READ, AND THAT YOU AGREE TO
‘GOMPLY WITH AND TO BE BOUND BY THE TERMS AND CONDITIONS OF THIS AGREEMENT AND ALL APPLICABLE LAWS AND
'REGULATIONS IN THEIR ENTIRETY WITHOUT LIMITATION OR QUALIFICATION. IF YOU DO NOT AGREE TO BE BOUND BY THIS
AGREEMENT, THEN YOU MAY NOT ACCESS OR OTHERWISE USE THE LICENSED MATERIAL. THIS AGREEMENT IS EFFECTIVE
AS OF THE FIRST DATE THAT YOU USE THE LICENSED MATERIAL (‘EFFECTIVE DATE").

IF YOU ARE AN INDIVIDUAL REPRESENTING AN ENTITY, YOU ACKNOWLEDGE THAT YOU HAVE THE APPROPRIATE AUTHORITY
TO ACCEPT THIS AGREEMENT ON BEHALF OF SUCH ENTITY. YOU MAY NOT USE THE LICENSED MATERIAL AND MAY NOT

Yes, l agree

Create your Twitter appiication

OEBPS/graphics/B03714_09_03.jpg
B v € o & [onepuccalnostsoss/cluster .

B3 Most Visited v @) Getting Started [§)Latest Headlines v

Showing 1 to 1 of 1 entries

[@) All Applications [
b S i) All Applications
— T E————~
= ST e R e e e s b LA
EN— Scheduler Metrics
BEW savig Scheduler Type Scheduling Resource Type Minimum Allocation |
B | o T e
=) Show 20 gl entries.
= - — - iy e e
e ‘application 1454476527942 0001 adminl org.apache.spark.examples.SparkPi SPARK default Wed Feb Wed Feb 3
» Tools 11:22:59 +0550

OEBPS/graphics/B03714_06_07.jpg
@) Browsi

Hadoop

Browse Directory

/logs/web/16-01-02

Permission Owner Group

rw admin1

supergroup

Hadoop, 2014.

Size Last Modified Replication Block Size Name

4818 Saturday 02 January 2016 04:31:21 PMIST 1 128 MB testevents. 1451732449172

OEBPS/graphics/B03714_01_06.jpg
ubuncu@ecz-52-10-22-65:~5 hadoop Jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-jobelient-2.7.0-tests. Jax
Ao exampie program must be given a9 the Ticst argument.
Velia progran nanes sze:

DESCIOTest: Distribuced 1/o benchmark of libhts.

DistribucedFSCheck: Discributed checkup of the file system consistency.

HLcganalyzer: Job History Log analvzer.

HRRC11abi1ieyTest: A program Chat tests the rellabilicy of the MR frameuork by injecting faults/failures

MidacaGenerator: Generace the data co be used by WMloadGenerator

MilcadGeneratos: Generace load on Namenode tsing NN loadgenerator run NITHOUT M

MilcadGeneratoskh: Generace losd cn Nemenode using NN loadgenerator run as MR Job

Mistructuzeoenerator: Generate the structue to be used by Ndatasencrator

SiiveTest: HDFS Stress Test and Live Data Verification.

TesthESIO: Distributed 1/o benchmark.

£a11: & 300 chac aluays fails

E1lebench: Benchmark SequenceEile (Inpus|Oucpuc) Formas. (block, cecord compressed and uncompressed), Text (Inpus|Oucpuc) Fommat. (compressed and uncompressed)

Targesorter: Large-Sort tester

Loadgen: Generic map/reduce load gensracor

nepreatest: A map/zedice test check,

miniclusces: Single process HDES and MR cluster.

msbench: A map/educe benchmark that can creace masy small jobs

Cnbench: A benchmark that stresses che mamenode.

1cep: A s0b that siecps av cach nap and reduice task.

Cesthigrapoutpuc: A map/educe program that Uorks on a very big nen-splittable file and does idencicy map/reduce

Cesctilesyetem: A cest for Filesystem resd/wrice.

Cestmapredaoee: A map/reduce progran that validates The map-redice framework's sore.

Cestsequencefile: A cest for flat files of binary key value paira.

Cestacquencerileinpus omat: A test for sequence file iaput ormat.

“esttexcinpuCTomaty A test for Cex input format.

Chreadednapbench: A map/zedice benchmark thet compazes the performance of Raps Uit EITiple spills over maps with 1 spill
abantufec2-83-10-22-651-% [

OEBPS/graphics/B03714_09_01.jpg
[http://10.0.2.15:8080/ v [

@ |

Getting Started [§JLatest Headlines v

) Spark Master at spark:/adminl... <

,s‘,o,fr 1.0 Spark Master at spark:/admin1:7077

URL: spark://admin1:7077
REST URL: spark://admin1:6066 (cluster mode
Alive Workers: 1

Cores in use: 2 Total, 0 Used

1024.0 MB Total. 0.0 B Used
0 Running. 0 Completed
Running. 0 Completed

Workers

Worker Id Address State Cores Memory
worker-20160203103208-10.0.2.15-47885 10.0.2.15:47885 ALIVE 2 (0 Used) 1024.0 MB (0.0 B Used)

Done

OEBPS/graphics/reference.jpg

OEBPS/graphics/B03714_01_02.jpg
€ - € [) ec2-54-68-55-189.us-west-2.compute.amazonaws.com:50070/dfshealth. htmi#tab-overview [

QVerview 'ec2-54-68-55-189.us-west-2 compute.amazonaws.com:9000' (active)

stred: on 0ct05 118431 UTC 2015
Verson: B T ——
compiea 2015.04-1071:402 by jenkin o (stachrom ot
Custero: [ETE—

Biock ool 0: 6P 1086572765-172.31 20254 1444045345645
Summary

secuy s on.

‘Safemode Is of.

3 fles and directories, 1 blocks = 4 totalflesystem object(s)

Heap Memory used 33 64 MB of 53 25 MB Heap Memory. Max Heap Memory is 966 69 MB.

OEBPS/graphics/B03714_06_03.jpg
Your application has been created. Please take a moment to review and adjust your application's settings.

HadoopTutorialsFlume

Details ~ Settings Keys and Access Tokens Permissions

Handle to import Twitter data using Flume

http://hadooptutorials.co.in

Organization
Organization None
Organization website None

Application Settings

0 authenticate requests t

Access level Read and write (modify app permissions)

Test OAuth

OEBPS/graphics/B03714_06_01.jpg
Application Details

Name *

HadoopTutorialsFlume
Your application name. This s used to atirbute the source of a tweet and in user-facing authorization scroens. 32 characters max.
Description *

Handle to import Twitter data using Flume
Your application description, which will be shown in user-facing authorization scroens. Betwoen 10 and 200 characters max.
Website *

http://hadooptutorials.co.in

Your application’s publicly accessible home page, where users can o to download, make use of, or find out more information about your application. This fully-qualified URL is used in the
source attribution for tweets created by your application and will be shown in user-facing authorization scroens.
(fyou don't have a URL yet, just put a placsholder here but remember to change it ater;)

Callback URL

Whers should we retum after successfuly authenticating? OAuth 1.0a applications should explicity specify their oauth_callback URL on the request token step, regardless of the value
given here. To restrict your appiication from using callbacks, leave this field biank

