O
%
- C
G O
0.2

[o

Intell
for Big Data

e
1Y)
£
=
By
<
0
c
1Y)
=
T
-
©
)
go)
-
1Y)
Q
<
wnv
@
Q
L®]
c
©
-
<
>
m

Arti

Artificial Intelligence
for Big Data

Complete guide to automating Big Data solutions using
Artificial Intelligence techniques

Anand Deshpande
Manish Kumar

BIRMINGHAM - MUMBAI

Artificial Intelligence for Big Data

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Tushar Gupta

Content Development Editor: Tejas Limkar
Technical Editor: Dinesh Chaudhary

Copy Editor: Safis Editing

Project Coordinator: Manthan Patel
Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Graphics: Tania Dutta

Production Coordinator: Aparna Bhagat

First published: May 2018
Production reference: 1170518
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78847-217-3

www . packtpub.com

http://www.packtpub.com

Full-Stack
Wweb n:relupmmx Hands-On gf&(;ﬁz:‘nge

with Vue.js and Node Data Science
and Python
Machine Learning

Go to www.packtpub.com
and use this code in the
checkout:

_ HBBIBOOFF

Packt>

A Mapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as

well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

¢ Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the authors

Anand Deshpande is the Director of big data delivery at Datametica Solutions. He is
responsible for partnering with clients on their data strategies and helps them become data-
driven. He has extensive experience with big data ecosystem technologies. He has
developed a special interest in data science, cognitive intelligence, and an algorithmic
approach to data management and analytics. He is a regular speaker on data science and
big data at various events.

This book and anything worthwhile in my life is possible only with the blessings of my
spiritual Guru, parents, and in-laws; and with unconditional support and love from my
wife, Mugdha, and daughters, Devyani and Sharvari. Thank you to my co-author, Manish
Kumar, for his cooperation. Many thanks to Mr. Rajiv Gupta and Mr. Sunil Kakade for
their support and mentoring.

Manish Kumar is a Senior Technical Architect at Datametica Solutions. He has more than
11 years of industry experience in data management as a data, solutions, and product
architect. He has extensive experience in building effective ETL pipelines, implementing
security over Hadoop, implementing real-time data analytics solutions, and providing
innovative and best possible solutions to data science problems. He is a regular speaker on
big data and data science.

I would like to thank my parents, Dr. N.K. Singh and Dr. Rambha Singh, for their
blessings. The time spent on this book has taken some precious time from my wife, Mrs.
Swati Singh, and my adorable son, Lakshya Singh. I do not have enough words to thank
my co-author and friend, Mr. Anand Deshpande. Niraj Kumar and Rajiv Gupta have my
gratitude too.

About the reviewers

Albenzo Coletta is a senior software and system engineer in robotics, defense, avionics, and
telecoms. He has a master's in computational robotics. He was an industrial researcher in
Al a designer for a robotic communications system for COMAU, and a business analyst. He
designed a neuro-fuzzy system for financial problems (with Sannio University) and also
designed a recommender system for a few key Italian editorial groups. He was also a
consultant at UCID (Ministry of Economics and Finance). He developed a mobile human
robotic interaction system.

Giancarlo Zaccone has more than 10 years, experience in managing research projects in
scientific and industrial areas. He has worked as a researcher at the CNR, the National
Research Council, in projects on parallel numerical computing, and in scientific
visualization.

He is a senior software engineer at a consulting company, developing and testing software
systems for space and defense applications. He holds a master's in physics from University
of Naples Federico II and a 2nd-level PG master's in scientific computing from La Sapienza
of Rome.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

Chapter 1: Big Data and Artificial Intelligence Systems
Results pyramid
What the human brain does best
Sensory input
Storage
Processing power
Low energy consumption
What the electronic brain does best
Speed information storage
Processing by brute force
Best of both worlds
Big Data
Evolution from dumb to intelligent machines
Intelligence
Types of intelligence
Intelligence tasks classification
Big data frameworks
Batch processing
Real-time processing
Intelligent applications with Big Data
Areas of Al
Frequently asked questions
Summary

Chapter 2: Ontology for Big Data
Human brain and Ontology
Ontology of information science

Ontology properties
Advantages of Ontologies
Components of Ontologies
The role Ontology plays in Big Data
Ontology alignment
Goals of Ontology in big data
Challenges with Ontology in Big Data
RDF—the universal data format
RDF containers
RDF classes
RDF properties
RDF attributes

10
10
10
11
1"
11
1"
12
12
13
15
16
16
17
17

19
20
20
20
22

23
24
26
27
28
29
30
32
32
33
33

37
37
38

Table of Contents

Using OWL, the Web Ontology Language
SPARQL query language
Generic structure of an SPARQL query
Additional SPARQL features
Building intelligent machines with Ontologies
Ontology learning
Ontology learning process
Frequently asked questions
Summary

Chapter 3: Learning from Big Data

Supervised and unsupervised machine learning

The Spark programming model
The Spark MLIib library
The transformer function
The estimator algorithm
Pipeline
Regression analysis
Linear regression
Least square method
Generalized linear model
Logistic regression classification technique
Logistic regression with Spark
Polynomial regression
Stepwise regression
Forward selection
Backward elimination
Ridge regression
LASSO regression
Data clustering
The K-means algorithm
K-means implementation with Spark ML
Data dimensionality reduction
Singular value decomposition
Matrix theory and linear algebra overview

The important properties of singular value decomposition

SVD with Spark ML
The principal component analysis method
The PCA algorithm using SVD
Implementing SVD with Spark ML
Content-based recommendation systems
Frequently asked questions
Summary

Chapter 4: Neural Network for Big Data

38
40
42
43
44
47
48
50
51

52
53
58
61
61
62
62
63
64
64
68
68
70
70
72
72
72
73
73
73
75
77
78
80
80
84
84
86
87
87
88
93
94

95

[ii]

Table of Contents

Fundamentals of neural networks and artificial neural networks
Perceptron and linear models
Component notations of the neural network
Mathematical representation of the simple perceptron model
Activation functions
Sigmoid function

Tanh function
RelLu

Nonlinearities model
Feed-forward neural networks
Gradient descent and backpropagation
Gradient descent pseudocode
Backpropagation model
Overfitting
Recurrent neural networks
The need for RNNs
Structure of an RNN
Training an RNN
Frequently asked questions
Summary

Chapter 5: Deep Big Data Analytics
Deep learning basics and the building blocks
Gradient-based learning
Backpropagation
Non-linearities
Dropout
Building data preparation pipelines
Practical approach to implementing neural net architectures
Hyperparameter tuning
Learning rate
Number of training iterations
Number of hidden units
Number of epochs
Experimenting with hyperparameters with Deeplearning4j
Distributed computing
Distributed deep learning
DL4J and Spark
API overview
TensorFlow
Keras
Frequently asked questions
Summary

Chapter 6: Natural Language Processing

96
98
99
100
102
103
104
104

106
106
108
112
113
115
117
117
118
118
120
122

123
124
126
128
130
132
133
140
143
144
145
146
146
147
152
154
155
155
157
158
159
161

162

[iii]

Table of Contents

Natural language processing basics
Text preprocessing
Removing stop words
Stemming
Porter stemming
Snowball stemming
Lancaster stemming
Lovins stemming
Dawson stemming
Lemmatization
N-grams
Feature extraction
One hot encoding
TF-IDF
CountVectorizer
Word2Vec
CBOwW
Skip-Gram model
Applying NLP techniques
Text classification
Introduction to Naive Bayes' algorithm
Random Forest
Naive Bayes' text classification code example
Implementing sentiment analysis
Frequently asked questions
Summary

Chapter 7: Fuzzy Systems
Fuzzy logic fundamentals
Fuzzy sets and membership functions
Attributes and notations of crisp sets
Operations on crisp sets
Properties of crisp sets
Fuzzification
Defuzzification
Defuzzification methods
Fuzzy inference
ANFIS network
Adaptive network
ANFIS architecture and hybrid learning algorithm
Fuzzy C-means clustering
NEFCLASS
Frequently asked questions
Summary

Chapter 8: Genetic Programming

163
165
165
167
167
168
168
169
169
170
170
171
171
172
175
176
176
178
179
180
181
182
183
185
187
188

189
190
191
192
193
194
194
197
197
197
198
198
199
202
206
208
209

210

[iv]

Table of Contents

Genetic algorithms structure
KEEL framework
Encog machine learning framework
Encog development environment setup
Encog API structure
Introduction to the Weka framework
Weka Explorer features
Preprocess
Classify
Attribute search with genetic algorithms in Weka
Frequently asked questions
Summary

Chapter 9: Swarm Intelligence
Swarm intelligence
Self-organization
Stigmergy
Division of labor
Advantages of collective intelligent systems
Design principles for developing S| systems
The particle swarm optimization model
PSO implementation considerations
Ant colony optimization model
MASON Library
MASON Layered Architecture
Opt4J library
Applications in big data analytics
Handling dynamical data
Multi-objective optimization
Frequently asked questions
Summary

Chapter 10: Reinforcement Learning
Reinforcement learning algorithms concept
Reinforcement learning techniques

Markov decision processes
Dynamic programming and reinforcement learning
Learning in a deterministic environment with policy iteration
Q-Learning
SARSA learning
Deep reinforcement learning
Frequently asked questions
Summary

Chapter 11: Cyber Security

213
216
221
221
221
225
230

230
233

238
241
241

242
243
244
246
246
247
248
249
252
253
256
257
261
263
266
266
267
268

269
270
274
274
276
277
280
289
291
292
293

294

[v]

Table of Contents

Big Data for critical infrastructure protection
Data collection and analysis
Anomaly detection
Corrective and preventive actions
Conceptual Data Flow

Components overview
Hadoop Distributed File System
NoSQL databases
MapReduce
Apache Pig
Hive

Understanding stream processing
Stream processing semantics
Spark Streaming
Kafka

Cyber security attack types
Phishing
Lateral movement
Injection attacks
Al-based defense

Understanding SIEM
Visualization attributes and features

Splunk
Splunk Enterprise Security
Splunk Light

ArcSight ESM

Frequently asked questions

Summary

Chapter 12: Cognitive Computing
Cognitive science
Cognitive Systems
A brief history of Cognitive Systems
Goals of Cognitive Systems
Cognitive Systems enablers
Application in Big Data analytics
Cognitive intelligence as a service
IBM cognitive toolkit based on Watson
Watson-based cognitive apps
Developing with Watson
Setting up the prerequisites
Developing a language translator application in Java
Frequently asked questions
Summary

Other Books You May Enjoy

295
296
297
298
299
300
300
301
301
302
302
303
304
305
306
309
309
309
310
310
312
314
315
316
316
319
319
321

322
323
327
328
330
332
333
335
336
337
340

340
342

345
346

348

[vi]

Table of Contents

Index 351

[vii]

Preface

We are at an interesting juncture in the evolution of the digital age, where there is an
enormous amount of computing power and data in the hands of everyone. There has been
an exponential growth in the amount of data we now have in digital form. While being
associated with data-related technologies for more than 6 years, we have seen a rapid shift
towards enterprises that are willing to leverage data assets initially for insights and
eventually for advanced analytics. What sounded like hype initially has become a reality in
a very short period of time. Most companies have realized that data is the most important
asset needed to stay relevant. As practitioners in the big data analytics industry, we have
seen this shift very closely by working with many clients of various sizes, across regions
and functional domains. There is a common theme evolving toward open distributed open
source computing to store data assets and perform advanced analytics to predict future
trends and risks for businesses.

This book is an attempt to share the knowledge we have acquired over time to help new
entrants in the big data space to learn from our experience. We realize that the field of
artificial intelligence is vast and it is just the beginning of a revolution in the history of
mankind. We are going to see Al becoming mainstream in everyone’s life and
complementing human capabilities to solve some of the problems that have troubled us for
a long time. This book takes a holistic approach into the theory of machine learning and Al,
starting from the very basics to building applications with cognitive intelligence. We have
taken a simple approach to illustrate the core concepts and theory, supplemented by
illustrative diagrams and examples.

It will be encouraging for us for readers to benefit from the book and fast-track their
learning and innovation into one of the most exciting fields of computing so they can create
a truly intelligent system that will augment our abilities to the next level.

Preface

Who this book is for

This book is for anyone with a curious mind who is exploring the fields of machine
learning, artificial intelligence, and big data analytics. This book does not assume that you
have in-depth knowledge of statistics, probability, or mathematics. The concepts are
illustrated with easy-to-follow examples. A basic understanding of the Java programming
language and the concepts of distributed computing frameworks (Hadoop/Spark) will be an
added advantage. This book will be useful for data scientists, members of technical staff in
IT products and service companies, technical project managers, architects, business
analysts, and anyone who deals with data assets.

What this book covers

Chapter 1, Big Data and Artificial Intelligence Systems, will set the context for the convergence
of human intelligence and machine intelligence at the onset of a data revolution. We have
the ability to consume and process volumes of data that were never possible before. We will
understand how our quality of life is the result of our decisive power and actions and how
it translates into the machine world. We will understand the paradigm of big data along
with its core attributes before diving into the basics of Al. We will conceptualize the big
data frameworks and see how they can be leveraged for building intelligence into machines.
The chapter will end with some of the exciting applications of Big Data and Al

Chapter 2, Ontology for Big Data, introduces semantic representation of data into
knowledge assets. A semantic and standardized view of the world is essential if we want to
implement artificial intelligence, which fundamentally derives knowledge from data and
utilizes contextual knowledge for insights and meaningful actions in order to augment
human capabilities. This semantic view of the world is expressed as ontologies.

Chapter 3, Learning from Big Data, shows broad categories of machine learning

as supervised and unsupervised learning, and we understand some of the fundamental
algorithms that are very widely used. In the end, we will have an overview of the Spark
programming model and Spark's Machine Learning library (Spark MLIib).

Chapter 4, Neural Networks for Big Data, explores neural networks and how they have
evolved with the increase in computing power with distributed computing frameworks.
Neural networks get their inspiration from the human brain and help us solve some very
complex problems that are not feasible with traditional mathematical models.

[2]

Preface

Chapter 5, Deep Big Data Analytics, takes our understanding of neural networks to the next
level by exploring deep neural networks and the building blocks of deep learning: gradient
descent and backpropagation. We will review how to build data preparation pipelines, the
implementation of neural network architectures, and hyperparameter tuning. We will also
explore distributed computing for deep neural networks with examples using the DL4]
library.

Chapter 6, Natural Language Processing, introduces some of the fundamentals of Natural
Language Processing (NLP). As we build intelligent machines, it is imperative that the
interface with the machines should be as natural as possible, like day-to-day human
interactions. NLP is one of the important steps towards that. We will be learning about text
preprocessing, techniques for extraction of relevant features from natural language text,
application of NLP techniques, and the implementation of sentiment analysis with NLP.

Chapter 7, Fuzzy Systems, explains that a level of fuzziness is essential if we want to build
intelligent machines. In the real-world scenarios, we cannot depend on exact mathematical
and quantitative inputs for our systems to work with, although our models (deep neural
networks, for example) require actual inputs. The uncertainties are more frequent and, due
to the nature of real-world scenarios, are amplified by incompleteness of contextual
information, characteristic randomness, and ignorance of data. Human reasoning are
capable enough to deal with these attributes of the real world. A similar level of fuzziness is
essential for building intelligent machines that can complement human capabilities in a real
sense. In this chapter, we are going to understand the fundamentals of fuzzy logic, its
mathematical representation, and some practical implementations of fuzzy systems.

Chapter 8, Genetic Programming, big data mining tools need to be empowered by
computationally efficient techniques to increase the degree of efficiency. Genetic algorithms
over data mining create great, robust, computationally efficient, and adaptive systems. In
fact, with the exponential explosion of data, data analytics techniques go on to take more
time and inversely affect the throughput. Also due to their static nature, complex hidden
patterns are often left out. In this chapter, we want to show how to use genes to mine data
with great efficiency. To achieve this objective, we’ll introduce the basics of genetic
programming and the fundamental algorithms.

Chapter 9, Swarm Intelligence, analyzes the potential of swarm intelligence for solving big
data analytics problems. Based on the combination of swarm intelligence and data mining
techniques, we can have a better understanding of the big data analytics problems and
design more effective algorithms to solve real-world big data analytics problems. In this
chapter, we’ll show how to use these algorithms in big data applications. The basic theory
and some programming frameworks will be also explained.

[31]

Preface

Chapter 10, Reinforcement Learning, covers reinforcement learning as one of the categories
of machine learning. With reinforcement learning, the intelligent agent learns the right
behavior based on the reward it receives as per the actions it takes within a specific
environmental context. We will understand the fundamentals of reinforcement learning,
along with mathematical theory and some of the commonly used techniques for
reinforcement learning.

Chapter 11, Cyber Security, analyzes the cybersecurity problem for critical infrastructure.
Data centers, data base factories, and information system factories are continuously under
attack. Online analysis can detect potential attacks to ensure infrastructure security. This
chapter also explains Security Information and Event Management (SIEM). It emphasizes
the importance of managing log files and explains how they can bring benefits.
Subsequently, Splunk and ArcSight ESM systems are introduced.

Chapter 12, Cognitive Computing, introduces cognitive computing as the next level in the
development of artificial intelligence. By leveraging the five primary human senses along
with mind as the sixth sense, a new era of cognitive systems can begin. We will see the
stages of Al and the natural progression towards strong Al, along with the key enablers for
achieving strong Al. We will take a look at the history of cognitive systems and see how
that growth is accelerated with the availability of big data, which brings large data volumes
and processing power in a distributed computing framework.

To get the most out of this book

The chapters in this book are sequenced in such a way that the reader can progressively
learn about Artificial Intelligence for Big Data starting from the fundamentals and eventually
move towards cognitive intelligence. chapter 1, Big Data and Artificial Intelligence Systems,
to Chapter 5, Deep Big Data Analytics, cover the basic theory of machine learning and
establish the foundation for practical approaches to Al Starting from chapter ¢, Natural
Language Processing, we conceptualize theory into practical implementations and possible
use cases. To get the most out of this book, it is recommended that the first five chapters are
read in order. From chapter 6, Natural Language Processing, onward, the reader can choose
any topic of interest and read in whatever sequence they prefer.

[4]

https://cdp.packtpub.com/artificial_intelligence_for_big_data/wp-admin/post.php?post=284&action=edit#post_220

Preface

Download the example code files

You can download the example code files for this book from your account at
www . packtpub. com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/ArtificialfIntelligencefforfBingata.VVéiﬂSO
have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/files/
downloads/ArtificialIntelligenceforBigData_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

[5]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Artificial-Intelligence-for-Big-Data
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf

Preface

A block of code is set as follows:

StopWordsRemover remover = new StopWordsRemover ()
.setInputCol ("raw")
.setOutputCol ("filtered");

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

[6]

http://www.packtpub.com/submit-errata

Preface

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[7]

http://authors.packtpub.com/
https://www.packtpub.com/

Big Data and Artificial
Intelligence Systems

The human brain is one of the most sophisticated machines in the universe. It has evolved
for thousands of years to its current state. As a result of continuous evolution, we are able to
make sense of nature's inherent processes and understand cause and effect relationships.
Based on this understanding, we are able to learn from nature and devise similar machines
and mechanisms to constantly evolve and improve our lives. For example, the video
cameras we use derived from the understanding of the human eye.

Fundamentally, human intelligence works on the paradigm of sense, store, process, and act.
Through the sensory organs, we gather information about our surroundings, store the
information (memory), process the information to form our beliefs/patterns/links, and use
the information to act based on the situational context and stimulus.

Currently, we are at a very interesting juncture of evolution where the human race has
found a way to store information in an electronic format. We are also trying to devise
machines that imitate the human brain to be able to sense, store, and process information to
make meaningful decisions and complement human abilities.

This introductory chapter will set the context for the convergence of human intelligence and
machine intelligence at the onset of a data revolution. We have the ability to consume and
process volumes of data that were never possible before. We will understand how our
quality of life is the result of our decisive power and actions and how it translates to the
machine world. We will understand the paradigm of Big Data along with its core attributes
before diving into artificial intelligence (AI) and its basic fundamentals. We will
conceptualize the Big Data frameworks and how those can be leveraged for building
intelligence into machines. The chapter will end with some of the exciting applications of
Big Data and AL

Big Data and Artificial Intelligence Systems Chapter 1

We will cover the following topics in the chapter:

¢ Results pyramid
¢ Comparing the human and the electronic brain
e Overview of Big Data

Results pyramid

The quality of human life is a factor of all the decisions we make. According to Partners in
Leadership, the results we get (positive, negative, good, or bad) are a result of our actions,
our actions are a result of the beliefs we hold, and the beliefs we hold are a result of our
experiences. This is represented as a results pyramid as follows:

.

Actions

Beliefs

Experiences

At the core of the results pyramid theory is the fact that it is certain that we cannot achieve
better or different results with the same actions. Take an example of an organization that is
unable to meets its goals and has diverted from its vision for a few quarters. This is a result
of certain actions that the management and employees are taking. If the team continues to
have same beliefs, which translate to similar actions, the company cannot see noticeable
changes in its outcomes. In order to achieve the set goals, there needs to be a fundamental
change in day-to-day actions for the team, which is only possible with a new set of beliefs.
This means a cultural overhaul for the organization.

Similarly, at the core of computing evolution, man-made machines cannot evolve to be
more effective and useful with the same outcomes (actions), models (beliefs), and data
(experiences) that we have access to traditionally. We can evolve for the better if human
intelligence and machine power start complementing each other.

[91]

Big Data and Artificial Intelligence Systems Chapter 1

What the human brain does best

While the machines are catching up fast in the quest for intelligence, nothing can come close
to some of the capabilities that the human brain has.

Sensory input

The human brain has an incredible capability to gather sensory input using all the senses in
parallel. We can see, hear, touch, taste, and smell at the same time, and process the input in
real time. In terms of computer terminology, these are various data sources that stream
information, and the brain has the capacity to process the data and convert it into
information and knowledge. There is a level of sophistication and intelligence within the
human brain to generate different responses to this input based on the situational context.

For example, if the outside temperature is very high and it is sensed by the skin, the brain
generates triggers within the lymphatic system to generate sweat and bring the body
temperature under control. Many of these responses are triggered in real time and without
the need for conscious action.

Storage

The information collected from the sensory organs is stored consciously and
subconsciously. The brain is very efficient at filtering out the information that is non-critical
for survival. Although there is no confirmed value of the storage capacity in the human
brain, it is believed that the storage capacity is similar to terabytes in computers. The brain's
information retrieval mechanism is also highly sophisticated and efficient. The brain can
retrieve relevant and related information based on context. It is understood that the brain
stores information in the form of linked lists, where the objects are linked to each other by a
relationship, which is one of the reasons for the availability of data as information and
knowledge, to be used as and when required.

[10]

Big Data and Artificial Intelligence Systems Chapter 1

Processing power

The human brain can read sensory input, use previously stored information, and make
decisions within a fraction of a millisecond. This is possible due to a network of neurons
and their interconnections. The human brain possesses about 100 billion neurons with one
quadrillion connections known as synapses wiring these cells together. It coordinates
hundreds of thousands of the body's internal and external processes in response to
contextual information.

Low energy consumption

The human brain requires far less energy for sensing, storing, and processing information.
The power requirement in calories (or watts) is insignificant compared to the equivalent
power requirements for electronic machines. With growing amounts of data, along with the
increasing requirement of processing power for artificial machines, we need to consider
modeling energy utilization on the human brain. The computational model needs to
fundamentally change towards quantum computing and eventually to bio-computing.

What the electronic brain does best

As the processing power increases with computers, the electronic brain—or computers—are
much better when compared to the human brain in some aspects, as we will explore in the
following sections.

Speed information storage

The electronic brain (computers) can read and store high volumes of information at
enormous speeds. Storage capacity is exponentially increasing. The information is easily
replicated and transmitted from one place to another. The more information we have at our
disposal for analysis, pattern, and model formation, the more accurate our predictions will
be, and the machines will be much more intelligent. Information storage speed is consistent
across machines when all factors are constant. However, in the case of the human brain,
storage and processing capacities vary based on individuals.

[11]

Big Data and Artificial Intelligence Systems Chapter 1

Processing by brute force

The electronic brain can process information using brute force. A distributed computing
system can scan/sort/calculate and run various types of compute on very large volumes of
data within milliseconds. The human brain cannot match the brute force of computers.

Computers are very easy to network and collaborate with in order to increase collective
storage and processing power. The collective storage can collaborate in real time to produce
intended outcomes. While human brains can collaborate, they cannot match the electronic
brain in this aspect.

Best of both worlds

Al is finding and taking advantage of the best of both worlds in order to augment human
capabilities. The sophistication and efficiency of the human brain and the brute force of
computers combined together can result in intelligent machines that can solve some of the
most challenging problems faced by human beings. At that point, the Al will complement
human capabilities and will be a step closer to social inclusion and equanimity by
facilitating collective intelligence. Examples include epidemic predictions, disease
prevention based on DNA sampling and analysis, self driving cars, robots that work in
hazardous conditions, and machine assistants for differently able people.

Taking a statistical and algorithmic approach to data in machine learning and Al has been
popular for quite some time now. However, the capabilities and use cases were limited
until the availability of large volumes of data along with massive processing speeds, which
is called Big Data. We will understand some of the Big Data basics in the next section. The
availability of Big Data has accelerated the growth and evolution of Al and machine
learning applications. Here is a quick comparison of Al before and with with Big Data:

Al before Big Data Al with Big Data

Availability of limited data sets (MBs) Availability of ever increasing data sets (TBs)

Limited Sample Sizes Massive Sample Sizes resulting in increased
model accuracy

Inability to analyze large data in milliseconds Large data analysis in milliseconds

Batch oriented Real-time

Slow learning curve Accelerated learning curve

Limited Data Sources Heterogeneous and multiple data sources
Based on mostly structured data sets Based on Structured / unstructured and semi-

structured data

[12]

Big Data and Artificial Intelligence Systems Chapter 1

The primary goal of Al is to implement human-like intelligence in machines and to create
systems that gather data, process it to create models (hypothesis), predict or influence
outcomes, and ultimately improve human life. With Big Data at the core of the pyramid, we
have the availability of massive datasets from heterogeneous sources in real time. This
promises to be a great foundation for an Al that really augments human existence:

e

Models
Hypothesis

Big Data

"We don’t have better algorithms, We just have more data.”

- Peter Norvig, Research Director, Google

Data in dictionary terms is defined as facts and statistics collected together for reference or
analysis. Storage mechanisms have greatly evolved with human evolution—sculptures,
handwritten texts on leaves, punch cards, magnetic tapes, hard drives, floppy disks, CDs,
DVDs, SSDs, human DNA, and more. With each new medium, we are able to store more
and more data in less space; it's a transition in the right direction. With the advent of the
internet and the Internet of Things (IoT), data volumes have been growing exponentially.

Data volumes are exploding; more data has been created in the past two
years than in the entire history of the human race.

[13]

Big Data and Artificial Intelligence Systems Chapter 1

The term Big Data was coined to represent growing volumes of data. Along with volume,
the term also incorporates three more attributes, velocity, variety, and value, as follows:

¢ Volume: This represents the ever increasing and exponentially growing amount
of data. We are now collecting data through more and more interfaces between
man-made and natural objects. For example, a patient's routine visit to a clinic
now generates electronic data in the tune of megabytes. An average smartphone
user generates a data footprint of at least a few GB per day. A flight traveling
from one point to another generates half a terabyte of data.

¢ Velocity: This represents the amount of data generated with respect to time and a
need to analyze that data in near-real time for some mission critical operations.
There are sensors that collect data from natural phenomenon, and the data is then
processed to predict hurricanes/earthquakes. Healthcare is a great example of the
velocity of the data generation; analysis and action is mission critical:

2018 (50,000
.2013 (28,000 GB / Second)
GB / Second)
‘zooz (100 GB /

Second)

.1997 (100 GB
/ Hour)

‘1992 (100

GB / Day) Growing Data Volumes and Velocity

e Variety: This represents variety in data formats. Historically, most electronic
datasets were structured and fit into database tables (columns and rows).
However, more than 80% of the electronic data we now generate is not in
structured format, for example, images, video files, and voice data files. With Big
Data, we are in a position to analyze the vast majority of structured/unstructured
and semi-structured datasets.

[14]

Big Data and Artificial Intelligence Systems Chapter 1

¢ Value: This is the most important aspect of Big Data. The data is only as valuable
as its utilization in the generation of actionable insight. Remember the results
pyramid where actions lead to results. There is no disagreement that data holds
the key to actionable insight; however, systems need to evolve quickly to be able
to analyze the data, understand the patterns within the data, and, based on the
contextual details, provide solutions that ultimately create value.

Evolution from dumb to intelligent machines

The machines and mechanisms that store and process these huge amounts of data have
evolved greatly over a period of time. Let us briefly look at the evolution of machines (for
simplicity's sake, computers). For a major portion of their evolution, computers were dumb
machines instead of intelligent machines. The basic building blocks of a computer are the
CPU (Central Processing Unit), the RAM (temporary memory), and the disk (persistent
storage). One of the core components of a CPU is an ALU (Arithmetic and Logic Unit). This
is the component that is capable of performing the basic steps of mathematical calculations
along with logical operations. With these basic capabilities in place, traditional computers
evolved with greater and higher processing power. However, they were still dumb
machines without any inherent intelligence. These computers were extremely good at
following predefined instructions by using brute force and throwing errors or exceptions
for scenarios that were not predefined. These computer programs could only answer specific
questions they were meant to solve.

Although these machines could process lots of data and perform computationally heavy
jobs, they would be always limited to what they were programmed to do. This is extremely
limiting if we take the example of a self driving car. With a computer program working on
predefined instructions, it would be nearly impossible to program the car to handle all
situations, and the programming would take forever if we wanted to drive the car on ALL
roads and in all situations.

This limitation of traditional computers to respond to unknown or non-programmed
situations leads to the question: Can a machine be developed to think and evolve as humans
do? Remember, when we learn to drive a car, we just drive it in a small amount of situations
and on certain roads. Our brain is very quick to learn to react to new situations and trigger
various actions (apply breaks, turn, accelerate, and so on). This curiosity resulted in the
evolution of traditional computers into artificially intelligent machines.

Traditionally, Al systems have evolved based on the goal of creating expert
systems that demonstrate intelligent behavior and learn with every
interaction and outcome, similar to the human brain.

[15]

Big Data and Artificial Intelligence Systems Chapter 1

In the year 1956, the term artificial intelligence was coined. Although there were gradual
steps and milestones on the way, the last decade of the 20th century marked remarkable
advancements in Al techniques. In 1990, there were significant demonstrations of machine
learning algorithms supported by case-based reasoning and natural language
understanding and translations. Machine intelligence reached a major milestone when then
World Chess Champion, Gary Kasparov, was beaten by Deep Blue in 1997. Ever since that
remarkable feat, Al systems have greatly evolved to the extent that some experts have
predicted that Al will beat humans at everything eventually. In this book, we are going to
look at the specifics of building intelligent systems and also understand the core techniques
and available technologies. Together, we are going to be part of one of the greatest
revolutions in human history.

Intelligence

Fundamentally, intelligence in general, and human intelligence in particular, is a constantly
evolving phenomenon. It evolves through four Ps when applied to sensory input or data
assets: Perceive, Process, Persist, and Perform. In order to develop artificial intelligence, we
need to also model our machines with the same cyclical approach:

Perform " Perceive

Persist Process

Types of intelligence

Here are some of the broad categories of human intelligence:

¢ Linguistic intelligence: Ability to associate words to objects and use language
(vocabulary and grammar) to express meaning

¢ Logical intelligence: Ability to calculate, quantify, and perform mathematical
operations and use basic and complex logic for inference

¢ Interpersonal and emotional intelligence: Ability to interact with other human
beings and understand feelings and emotions

[16]

Big Data and Artificial Intelligence Systems Chapter 1

Intelligence tasks classification

This is how we classify intelligence tasks:

e Basic tasks:
e Perception

e Common sense
¢ Reasoning
¢ Natural language processing
¢ Intermediate tasks:
e Mathematics
o Games
e Expert tasks:
e Financial analysis
e Engineering
e Scientific analysis
¢ Medical analysis

The fundamental difference between human intelligence and machine intelligence is the
handling of basic and expert tasks. For human intelligence, basic tasks are easy to master
and they are hardwired at birth. However, for machine intelligence, perception, reasoning,
and natural language processing are some of the most computationally challenging and
complex tasks.

Big data frameworks

In order to derive value from data that is high in volume, varies in its form and structure,
and is generated with ever increasing velocity, there are two primary categories of
framework that have emerged over a period of time. These are based on the consideration
of the differential time at which the event occurs (data origin) and the time at which the
data is available for analysis and action.

[17]

Big Data and Artificial Intelligence Systems Chapter 1

Batch processing

Traditionally, the data processing pipeline within data warehousing systems consisted of
Extracting, Transforming, and Loading the data for analysis and actions (ETL). With the
new paradigm of file-based distributed computing, there has been a shift in the ETL process
sequence. Now the data is Extracted, Loaded, and Transformed repetitively for analysis
(ELTTT) a number of times:

- . >
S |ue @E ep

Transform

- » u

Transform

‘ Extract

Traditional Data Warehousing Modern Data Warehousing

In batch processing, the data is collected from various sources in the staging areas and
loaded and transformed with defined frequencies and schedules. In most use cases with
batch processing, there is no critical need to process the data in real time or in near real
time. As an example, the monthly report on a student's attendance data will be generated
by a process (batch) at the end of a calendar month. This process will extract the data from
source systems, load it, and transform it for various views and reports. One of the most
popular batch processing frameworks is Apache Hadoop. It is a highly scalable,
distributed/parallel processing framework. The primary building block of Hadoop is

the Hadoop Distributed File System.

As the name suggests, this is a wrapper filesystem which stores the data
(structured/unstructured/semi-structured) in a distributed manner on data nodes within
Hadoop. The processing that is applied on the data (instead of the data that is processed) is
sent to the data on various nodes. Once the compute is performed by an individual node,
the results are consolidated by the master process. In this paradigm of data-compute
localization, Hadoop relies heavily on intermediate I/O operations on hard drive disks. As a
result, extremely large volumes of data can be processed by Hadoop in a reliable manner at
the cost of processing time. This framework is very suitable for extracting value from Big
Data in batch mode.

[18]

Big Data and Artificial Intelligence Systems Chapter 1

Real-time processing

While batch processing frameworks are good for most data warehousing use cases, there is
a critical need for processing the data and generating actionable insight as soon as the data
is available. For example, in a credit card fraud detection system, the alert should be
generated as soon as the first instance of logged malicious activity. There is no value if the
actionable insight (denying the transaction) is available as a result of the end-of-month
batch process. The idea of a real-time processing framework is to reduce latency between
event time and processing time. In an ideal system, the expectation would be zero
differential between the event time and the processing time. However, the time difference is
a function of the data source input, execution engine, network bandwidth, and hardware.
Real-time processing frameworks achieve low latency with minimal I/O by relying on in-
memory computing in a distributed manner. Some of the most popular real-time processing
frameworks are:

e Apache Spark: This is a distributed execution engine that relies on in-memory
processing based on fault tolerant data abstractions named RDDs
(Resilient Distributed Datasets).

e Apache Storm: This is a framework for distributed real-time computation. Storm
applications are designed to easily process unbounded streams, which generate
event data at a very high velocity.

¢ Apache Flink: This is a framework for efficient, distributed, high volume data
processing. The key feature of Flink is automatic program optimization. Flink
provides native support for massively iterative, compute intensive algorithms.

As the ecosystem is evolving, there are many more frameworks available for batch and real-
time processing. Going back to the machine intelligence evolution cycle (Perceive, Process,
Persist, Perform), we are going to leverage these frameworks to create programs that work
on Big Data, take an algorithmic approach to filter relevant data, generate models based on
the patterns within the data, and derive actionable insight and predictions that ultimately
lead to value from the data assets.

[19]

Big Data and Artificial Intelligence Systems Chapter 1

Intelligent applications with Big Data

At this juncture of technological evolution, where we have the availability of systems that
gather large volumes of data from heterogeneous sources, along with systems that store
these large volumes of data at ever reducing costs, we can derive value in the form of
insight into the data and build intelligent machines that can trigger actions resulting in the
betterment of human life. We need to use an algorithmic approach with the massive data
and compute assets we have at our disposal. Leveraging a combination of human
intelligence, large volumes of data, and distributed computing power, we can create expert
systems which can be used as an advantage to lead the human race to a better future.

Areas of Al

While we are in the infancy of developments in Al, here are some of the basic areas in
which significant research and breakthroughs are happening:

¢ Natural language processing: Facilitates interactions between computers and
human languages.

e Fuzzy logic systems: These are based on the degrees of truth instead of
programming for all situations with IF/ELSE logic. These systems can control
machines and consumer products based on acceptable reasoning.

e Intelligent robotics: These are mechanical devices that can perform mundane or
hazardous repetitive tasks.

¢ Expert systems: These are systems or applications that solve complex problems
in a specific domain. They are capable of advising, diagnosing, and predicting
results based on the knowledge base and models.

Frequently asked questions

Here is a small recap of what we covered in the chapter:
Q: What is a results pyramid?

A: The results we get (man or machine) are an outcome of our experiences (data), beliefs
(models), and actions. If we need to change the results, we need different (better) sets of
data, models, and actions.

[20]

Big Data and Artificial Intelligence Systems Chapter 1

Q: How is this paradigm applicable to Al and Big Data?

A: In order to improve our lives, we need intelligent systems. With the advent of Big Data,
there has been a boost to the theory of machine learning and Al due to the availability of
huge volumes of data and increasing processing power. We are on the verge of getting
better results for humanity as a result of the convergence of machine intelligence and Big
Data.

Q: What are the basic categories of Big Data frameworks?

A: Based on the differentials between the event time and processing time, there are two
types of framework: batch processing and real-time processing.

Q: What is the goal of AI?
A: The fundamental goal of Al is to augment and complement human life.
Q: What is the difference between machine learning and AI?

A: Machine learning is a core concept which is integral to Al In machine learning, the
conceptual models are trained based on data and the models can predict outcomes for the
new datasets. Al systems try to emulate human cognitive abilities and are context sensitive.
Depending on the context, Al systems can change their behaviors and outcomes to best suit
the decisions and actions the human brain would take.

Have a look at the following diagram for a better understanding;:

Artificial
Intelligence

Deep
Learning

Machine
Learning

Logic Systems

[21]

Big Data and Artificial Intelligence Systems Chapter 1

Summary

In this chapter, we understood the concept of the results pyramid, which is a model for the
continuous improvement of human life and striving to get better results with an improved
understanding of the world based on data (experiences), which shape our models (beliefs).
With the convergence of the evolving human brain and computers, we know that the best of
both worlds can really improve our lives. We have seen how computers have evolved from
dumb to intelligent machines and we provided a high-level overview of intelligence and
Big Data, along with types of processing frameworks.

With this introduction and context, in subsequent chapters in this book, we are going to
take a deep dive into the core concepts of taking an algorithmic approach to data and the
basics of machine learning with illustrative algorithms. We will implement these algorithms
with available frameworks and illustrate this with code samples.

[22]

Ontology for Big Data

In the introductory chapter, we learned that big data has fueled rapid advances in the field
of artificial intelligence. This is primarily because of the availability of extremely large
datasets from heterogeneous sources and exponential growth in processing power due to
distributed computing. It is extremely difficult to derive value from large data volumes if
there is no standardization or a common language for interpreting data into information
and converting information into knowledge. For example, two people who speak two
different languages, and do not understand each other's languages, cannot get into a verbal
conversation unless there is some translation mechanism in between. Translations and
interpretations are possible only when there is a semantic meaning associated with a
keyword and when grammatical rules are applied as conjunctions. As an example, here is a
sentence in the English and Spanish languages:

English John eats three bananas every day

Spanish John come tres platanos todos los dias

Broadly, we can break a sentence down in the form of objects, subjects, verbs, and
attributes. In this case, John and bananas are subjects. They are connected by an activity, in
this case eating, and there are also attributes and contextual data—information in
conjunction with the subjects and activities. Knowledge translators can be implemented in
two ways:

¢ All-inclusive mapping: Maintaining a mapping between all sentences in one
language and translations in the other language. As you can imagine, this is
impossible to achieve since there are countless ways something (object, event,
attributes, context) can be expressed in a language.

¢ Semantic view of the world: If we associate semantic meaning with every entity
that we encounter in linguistic expression, a standardized semantic view of the
world can act as a centralized dictionary for all the languages.

Ontology for Big Data Chapter 2

A semantic and standardized view of the world is essential if we want to implement
artificial intelligence which fundamentally derives knowledge from data and utilizes the
contextual knowledge for insight and meaningful actions in order to augment human
capabilities. This semantic view of the world is expressed as Ontologies. In the context of
this book, Ontology is defined as: a set of concepts and categories in a subject area or
domain, showing their properties and the relationships between them.

In this chapter, we are going to look at the following:

e How the human brain links objects in its interpretation of the world

¢ The role Ontology plays in the world of Big Data

¢ Goals and challenges with Ontology in Big Data

¢ The Resource Description Framework

¢ The Web Ontology Language

e SPARQL, the semantic query language for the RDF

¢ Building Ontologies and using Ontologies to build intelligent machines
¢ Ontology learning

Human brain and Ontology

While there are advances in our understanding of how the human brain functions, the
storage and processing mechanism of the brain is far from fully understood. We receive
hundreds and thousands of sensory inputs throughout a day, and if we process and store
every bit of this information, the human brain will be overwhelmed and will be unable to
understand the context and respond in a meaningful way. The human brain applies filters
to the sensory input it receives continuously. It is understood that there are three
compartments to human memory:

¢ Sensory memory: This is the first-level memory, and the majority of the
information is flushed within milliseconds. Consider, for example, when we are
driving a car. We encounter thousands of objects and sounds on the way, and
most of this input is utilized for the function of driving. Beyond the frame of
reference in time, most of the input is forgotten and never stored in memory.

[24]

Ontology for Big Data Chapter 2

¢ Short-term memory: This is used for the information that is essential for serving
a temporary purpose. Consider, for example, that you receive a call from your co-
worker to remind you about an urgent meeting in room number D-1482. When
you start walking from your desk to the room, the number is significant and the
human brain keeps the information in short-term memory. This information may
or may not be stored beyond the context time. These memories can potentially
convert to long-term memory if encountered within an extreme situation.

¢ Long-term memory: This is the memory that will last for days or a lifetime. For
example, we remember our name, date of birth, relatives, home location, and so
many other things. The long-term memory functions on the basis of patterns and
links between objects. The non-survival skills we learn and master over a period
of time, for example playing a musical instrument, require the storage of
connecting patterns and the coordination of reflexes within long-term memory.

Irrespective of the memory compartment, the information is stored in the form of patterns
and links within the human brain. In a memory game that requires players to momentarily
look at a group of 50-odd objects for a minute and write down the names on paper, the
player who writes the most object names wins the game. One of the tricks of playing this
game is to establish links between two objects and form a storyline. The players who try to
independently memorize the objects cannot win against the players who create a linked list
in their mind.

When the brain receives input from sensory organs and the information needs to be stored
in the long-term memory, it is stored in the form of patterns and links to related objects or
entities, resulting in mind maps. This is shown in the following figure:

Experiences

Demographics _ Friend

Apprarance

Name

[25]

Ontology for Big Data Chapter 2

When we see a person with our eyes, the brain creates a map for the image and retrieves all
the context-based information related to the person.

This forms the basis of the Ontology of information science.

Ontology of information science

Formally, the Ontology of information sciences is defined as: A formal naming and definition
of types, properties, and interrelationships of the entities that fundamentally exist for a particular
domain.

There is a fundamental difference between people and computers when it comes to dealing
with information. For computers, information is available in the form of strings whereas for
humans, the information is available in the form of things. Let's understand the difference
between strings and things. When we add metadata to a string, it becomes a thing.
Metadata is data about data (the string in this case) or contextual information about data.
The idea is to convert the data into knowledge. The following illustration gives us a good
idea about how to convert data into knowledge:

Information Knowledge

New York, NY, USA
Monday 8:00 PM
Clear

66 66 66"

[26]

Ontology for Big Data Chapter 2

The text or the number 66 is Data; in itself, 66 does not convey any meaning. When we say
66'F, 66 becomes a measure of f temperature and at this point it represents some
Information. When we say 66 F in New York on 3rd October 2017 at 8:00 PM, it becomes
Knowledge. When contextual information is added to Data and Information, it becomes
Knowledge.

In the quest to derive knowledge from data and information, Ontologies play a major role
in standardizing the worldview by precisely defined terms that can be communicated
between people and software applications. They create a shared understanding of objects
and their relationships within and across domains. Typically, there are schematic,
structural, and semantic differences, and hence conflict arises between knowledge
representations. Well-defined and governed Ontologies bridge the gaps between the
representations.

Ontology properties

At a high level, Ontologies should have the following properties to create a consistent view
of the universe of data, information, and knowledge assets:

e The Ontologies should be complete so that all aspects of the entities are covered.

¢ The Ontologies should be unambiguous in order to avoid misinterpretation by
people and software applications.

¢ The Ontologies should be consistent with the domain knowledge to which they
are applicable. For example, Ontologies for medical science should adhere to the
formally established terminologies and relationships in medical science.

¢ The Ontologies should be generic in order to be reused in different contexts.

¢ The Ontologies should be extensible in order to add new concepts and facilitate
adherence to the new concepts, that emerge with growing knowledge in the
domain.

¢ The Ontologies should be machine-readable and interoperable.

[27]

Ontology for Big Data Chapter 2

Here is an illustration to better explain properties of Ontologies:

Complete

Unambiguous

Ontologies

Domain

Specific

The most important advantage of Ontological representation for real-world concepts and
entities is that it facilitates the study of concepts independently of programming language,
platforms, and communication protocols. This enables loose coupling, and at the same time,
tight integration between the concepts, which enables the software development process to
reuse the software and knowledge base as modular concepts.

Advantages of Ontologies

The following are the advantages of Ontologies:

e Increased quality of entity analysis
e Increased use, reuse, and maintainability of the information systems

e Facilitation of domain knowledge sharing, with common vocabulary across
independent software applications

Those who are familiar with the object-oriented programming paradigm or database design
can easily relate the Ontological representation of the domain entities to classes or database
schemas. The classes are generic representations of the entities that encapsulate properties
and behaviors. One class can inherit behavior and properties from another class (is-a
relationship). For example, a cat is an animal.

[28]

Ontology for Big Data Chapter 2

In this case, Animal is an abstract superclass of Cat. The Cat class inherits properties from
the Animal class and adds/overrides some of the attributes and behaviors specific to a cat.
This paradigm is applicable in Ontologies. Similarly, relational databases have schematic
representations of the domain entities within an organization.

There are some fundamental differences between databases and Ontologies, as follows:

Ontologies are semantically richer than the concepts represented by databases
Information representation in an Ontology is based on semi-structured, natural
language text and it is not represented in a tabular format

The basic premise of Ontological representation is globally consistent
terminology to be used for information exchange across domains and
organizational boundaries

More than defining a confined data container, Ontologies focus on generic
domain knowledge representation

Components of Ontologies

The following are the components of Ontologies:

Concepts: These are the general things or entities similar to classes in object-
oriented programming, for example, a person, an employee, and so on.

Slots: These are the properties or attributes of the entities, for example, gender,
date of birth, location, and so on.

Relationships: These represent interactions between concepts, or is-a, has-a
relationships, for example, an employee is a person.

Axioms: These are statements which are always true in regards to concepts, slots
and relationships, for example, a person is an employee if he is employed by an
employer.

Instances: These are the objects of a class in object-oriented terms. For example,
John is an instance of the Employee class. It is a specific representation of a
concept. Ontology, along with instances, fully represents knowledge.
Operations: These are the functions and rules that govern the various
components of the Ontologies. In an object-oriented context, these represent
methods of a class.

[29]

Ontology for Big Data Chapter 2

The following diagram explains the components of Ontologies:

v_

FirstName
LastName

~——— Slots
Concepts -

Is-a
l *
N Employee John (Employee)
100 .
_ DolEn .‘ s h
JoiningDate \ John .

ProjectiD WorkLocation Smith

ProjectName getProjects() 2]{{»01»2017

v 1

— . Instance

Axioms Relationships

Operation

The development of Ontologies begins with defining classes in the Ontology. These classes
represent real-world entities. Once the entities are clearly identified and defined, they are
arranged in a taxonomic hierarchy. Once the hierarchy is defined, the Slots and
Relationships are defined. Filling in the values for slots and instances completes the
development of a domain-specific Ontology.

The role Ontology plays in Big Data

As we saw in the introductory chapter, data volumes are growing at a phenomenal rate and
in order to derive value from the data, it is impossible to model the entire data in a
traditional Extract, Transform, and Load (ETL) way. Traditionally, data sources generate
the datasets in structured and unstructured formats. In order to store these data assets, we
need to manually model the data based on various entities. Taking an example of Person as
an entity in the relational database world, we need to create a table that represents Person.
This table is linked to various entities with foreign key relationships. However, these
entities are predefined and have a fixed structure. There is manual effort involved in
modeling the entities and it is difficult to modify them.

In the big data world, the schema is defined at read time instead of write time. This gives us
a higher degree of flexibility with the entity structure and data modeling. Even with
flexibility and extensible modeling capabilities, it is very difficult to manage the data assets
on an internet scale if the entities are not standardized across domains.

[30]

Ontology for Big Data Chapter 2

In order to facilitate web search, Google introduced the knowledge graph which changed
the search from keyword statistics based on representation to knowledge modeling.

This was the introduction of the searching by things and not strings paradigm. The
knowledge graph is a very large Ontology which formally describes objects in the real
world. With increased data assets generated from heterogeneous sources at an accelerating
pace, we are constantly headed towards increased complexity. The big data paradigm
describes large and complex datasets that are not manageable with traditional applications.
At a minimum, we need a way to avoid false interpretations of complex data entities. The
data integration and processing frameworks can possibly be improved with methods from
the field of semantic technology. With use of things instead of text, we can improve
information systems and their interoperability by identifying the context in which they
exist. Ontologies provide the semantic richness of domain-specific knowledge and

its representation.

With big data assets, it is imperative that we reduce the manual effort of modeling the data
into information and knowledge. This is possible if we can create a means to find the
correspondence between raw entities, derive the generic schema with taxonomical
representation, and map the concepts to topics in specific knowledge domains with
terminological similarities and structural mappings. This implementation will facilitate
automatic support for the management of big data assets and the integration of different
data sources, resulting in fewer errors and speed of knowledge derivation.

We need an automated progression from Glossary to Ontologies in the following manner:

of words S
Lists of words in TOPIC Maps

relating to
specific subject,
groups of Ontologies
synonyms and Standard for g
representation

A scheme of
classification

text with
explanations

7 Gy related
@ - concepts
G o T

Big Data Sources

and interchange
of ‘knowledge’

A set of
concepts and
categoriesina
subject area or
domain that
shows their
properties and
the

relationships

[31]

Ontology for Big Data Chapter 2

Ontology alignment

Ontology alignment or matching is a process of determining one-to-one mapping between
entities from heterogeneous sources. Using this mapping, we can infer the entity types and
derive meaning from the raw data sources in a consistent and semantic manner:

[Source System Ontology [Big Data System Ontology

rdfs:subClassO rdfs:subClassOf

rdf:type

Goals of Ontology in big data

The following are the goals of Ontology in big data:

e Share a common understanding of information structures across software
applications

e Make ETL faster, easier, and more accurate

e Eliminate the need for customized, situation-specific ETL pipelines

e The automatic incorporation of new data sources

¢ Enhance information extraction from text and convert it into knowledge assets
e Enrich existing data with structural and semantic information

e Translate business knowledge into machine-usable software

e Build once, use many times

[32]

Ontology for Big Data Chapter 2

Challenges with Ontology in Big Data

We face the following challenges when using Ontology in big data:

¢ Generating entities (converting strings to things)
¢ Managing relationships

Handling context

Query efficiency

Data quality

RDF—the universal data format

With the background of Ontologies and their significance in the big data world, let us look
at a universal data format that defines the schematic representations of the Ontologies. One
of the most adopted and popular frameworks is the Resource Description Framework
(RDF). RDF has been a W3C recommendation since 2004. RDF provides a structure for
describing identified things, entities, or concepts designed to be read and interpreted by
computers. There is a critical need to uniquely identify an entity or concept universally. One
of the most popular ways in the information science field is the use of Universal Resource
Identifiers (URIs). We are familiar with website addresses, which are represented

as Universal Resource Locators (URLs). These map to a unique IP address and hence a web
domain on the internet. A URI is very similar to a URL, with the difference that the URIs
may or may not represent an actual web domain. Given this distinction, the URISs that
represent the real-world objects must be unambiguous. Any URI should be exclusive to
either a web resource or a real-world object and should never be used to represent both at
the same time, in order to avoid confusion and ambiguity:

URI
o
O
O/
G/ %,
N ;
/& %,
/& e\
&/ 2
& F Content Types ~\%,
/L X
S/ R \
RDF URI HTML
URL

[33]

Ontology for Big Data Chapter 2

Here is a basic example that describes the https://www.w3schools.com/rdf resource:

<?xml version="1.0"72>
<RDF>
<Description about="https://www.w3schools.com/rdf">
<homepage>https: //www.w3schools. com</homepage:>
</Description>
</RDF>

When defining RDFs, there are the following considerations:

¢ Define a simple data model

¢ Define formal semantics

¢ Use extensible URI-based vocabulary
e Preferably use an XML-based syntax

The basic building block of the RDF is a triple that consists of a Subject, Predicate, and an
Object. The set of triples constitutes an RDF graph:

Predicate

Subject \Object

John[works as a Project Manageﬂ at [a Logistics Company]

Let us look at an example of a database of books and represent it with RDF XML:

Book Name Author Company Year
Hit Refresh Satya Nadella Microsoft 2017
Shoe Dog Phil Knight Nike 2016

[34]

Ontology for Big Data Chapter 2

<?xml version="1.0"?2>

<rdf:RDF
xmlns:rdf="http://www.w3.o0xrg/1999/02/22-rdf-syntax-ns#"
xmins:book="http://www.artificial-intelligence.big-data/book#">

<rdf:Description

rdf:about="http://www.artificial-intelligence.big-data/book/Hit-Refresh">
<book:author>Satya Nadella</book:author>
<book:company>Microsoft</book: company>
<book:year>2017</book:year>

</rdf:Description>

<rdf:Description

rdf:about="http://www.artificial-intelligence.big-data/book/Shoe-Dog">
<hook:author>Phil Rnight</book:author>
<book:company>Nike</book:company>
<book:year>2016</book:year>

</rdf:Description>

</rdf:RDF>

The first line of the RDF document is the XML declaration. The XML declaration is followed
by the root element of the RDF documents, <rdf : RDF>.

The xmlns:rdf namespace specifies that the elements with the rdf prefix are from
the http://www.w3.0rg/1999/02/22-rdf-syntax-ns# namespace. The XML
namespaces are used to provide uniquely named elements and attributes in an XML
document.

The xm1ns :book namespace specifies that the elements with the book prefix are from the —
http://www.artificial-intelligence.big-data/book# namespace.

The <rdf :Description> element contains the description of the resource identified by
the rdf : about attribute.

The elements <book :author>, <book: company>, <book:year>, and so on are properties
of the resource.

[35]

Ontology for Big Data Chapter 2

W3C provides an online validator service (https://www.w3.org/RDF/Validator/), which
validates the RDF in terms of its syntax and generates tabular and graphical views of the
RDF document:

& > C' | @ Secure | https//www.w3.0rg/RDF/Validator/rdfval#messages Q Q L]

Validation Results

Your RDF document validated successfully.

Triples of the Data Model

Number[Subject Predicate Object

1 http://www.artificial-intelligence.big= http://www.artificial-intelligence.big= |"Satya
data/book/Hit-Refresh data/book#author Nadella"

5 http://www.artificial-intelligence.big= http://www.artificial-intelligence.big- "M crosoft™
data/book/Hit-Refresh data/book#company

3 http://www.artificial-intelligence.big= http://www.artificial-intelligence.big- w017
data/book/Hit-Refresh data/book#vear

4 http://www.artificial-intelligence.big= http://www.artificial-intelligence.big= ["Phil
data/book/Shoe-Dog data/book#author Knight"

5 http://www.artificial-intelligence.big= http://www.artificial-intelligence.big- "N ke
data/book/Shoe=-Dog data/bookfcompany

6 http://www.artificial-intelligence.big= http://www.artificial-intelligence.big- w016
data/book/Shoe=-Dog data/book#vear

RDF containers

RDF containers are used to describe groups of things. Here is an example:

<rdf:Description
rdf:about="http://www.artificial-intelligence.big-data/boock/Hit-Refresh">
<book:author>Satya Nadella</book:author>
<book:company>Microsoft</book: company>
<book:year>2017</book:year>
<book:chapters>
<rdf:Bag>
<rdf:1i>1. From Hyderabad to Redmond</rdf:1i>
<rdf:1i>2. Learning to Lead</rdf:1i>
<rdf:11>3. New Mission, New Momentum</rdf:1i>

</rdf:Bag>
</book:chapters>
</rdf:Description>

The <rdf :Bag> element is used to describe a list of values that do not have to be in a
specific order.

[36]

https://www.w3.org/RDF/Validator/
https://www.w3.org/RDF/Validator/
https://www.w3.org/RDF/Validator/
https://www.w3.org/RDF/Validator/
https://www.w3.org/RDF/Validator/
https://www.w3.org/RDF/Validator/
https://www.w3.org/RDF/Validator/
https://www.w3.org/RDF/Validator/
https://www.w3.org/RDF/Validator/
https://www.w3.org/RDF/Validator/
https://www.w3.org/RDF/Validator/
https://www.w3.org/RDF/Validator/
https://www.w3.org/RDF/Validator/
https://www.w3.org/RDF/Validator/

Ontology for Big Data

Chapter 2

<rdf:Seq> is similar to <rdf : Bag>. However, the elements represent an ordered list.

<rdf:Alt>is used to represent a list of alternate values for the element.

RDF classes

The RDF classes are listed in the following images:

Element Class of Subcdlass of
rdfs:Class All classes

rdfs:Datatype Data types Class
rdfs:Resource All resources Class
rdfs:Container Containers Resource
rdfs:Literal Literal values (text and numbers) |Resource
rdf:List Lists Resource
rdf:Property Properties Resource
rdf:Statement Statements Resource
rdf: Alt Containers of alternatives Container
rdf:Bag Unordered containers Container
rdf:Seq Ordered containers Container
rdfs:ContainerMembershipProperty |Container membership properties |Property
rdf: XMLLiteral XML literal values Literal

RDF properties

The RDF properties are listed as follows:

Element

Domain

Range

Description

rdfs:domain Property [Class The domain of the resource

rdfs:range Property [Class The range of the resource

rdfs:subPropertyOf |Property |Property |The property is a sub property of a property
rdfs:subClassOf Class Class The resource is a subclass of a class
rdfs:comment Resource |Literal The human readable description of the resource
rdfs:label Resource |Literal The human readable label (name) of the resource
rdfs:isDefinedBy Resource |Resource |The definition of the resource

rdfs:seeAlso Resource [Resource |The additional information about the resource
rdfs:member Resource |Resource |[The member of the resource

rdf:first List Resource

rdf:rest List List

rdf:subject Statement |Resource | The subject of the resource in an RDF Statement
rdf:predicate Statement |Resource [The predicate of the resource in an RDF Statement
rdf:object Statement [Resource | The object of the resource in an RDF Statement
rdf:value Resource [Resource |The property used for values

rdf:type Resource |Class The resource is an instance of a class

[37]

Ontology for Big Data Chapter 2

RDF attributes

The various RDF attributes are listed as follows:

Attribute Description

rdf:about Defines the resource being described
rdf:Description Container for the description of a resource
rdf:resource Defines a resource to identify a property
rdf:datatype Defines the data type of an element
rdf:1ID Defines the ID of an element

rdf:li Defines a list

rdf:_n Defines a node

rdf:nodelID Defines the ID of an element node
rdf:parseType Defines how an element should be parsed
rdf:RDF The root of an RDF document

xml:base Defines the XML base

xml:lang Defines the language of the element content

Using OWL, the Web Ontology Language

While the RDF and corresponding schema definitions (RDFS) provide a structure for the
semantic view of the information assets, there are some limitations with RDFS. RDFS cannot
describe the entities in sufficient detail. There is no way to define localized ranges for the
entity attributes, and the domain-specific constraints cannot be explicitly expressed. The
existence or non-existence of a related entity, along with cardinality constraints (one-to-one,
one-to-many, and so on), cannot be represented with RDEFS. It is difficult to represent
transitive, inverse, and symmetrical relationships. One of the important aspects of real-
world entity relationships is logical reasoning and inferences, without explicit mention of
the relationship. RDFS cannot provide reasoning support for the related entities.

The Web Ontology Language (OWL) extends and builds on top of RDF/RDFS. OWL is a
family of knowledge representation languages for authoring Ontologies.

Actually, OWL is not a real acronym. The language started out as WOL.
However, the working group disliked the acronym WOL. Based on
conversations within the working group, OWL had just one obvious
pronunciation that was easy on the ear, and it opened up great
opportunities for a logo—owls are associated with wisdom!

[38]

Ontology for Big Data Chapter 2

For building intelligent systems that can communicate across domains, there is a need to
overcome the limitations of RDFS and equip the machines with access to structured
collections of knowledge assets and sets of inference rules that can be used for automated
reasoning. OWL provides formal semantics for knowledge representation and attempts to
describe the meaning of the entities and their relationships and reasoning precisely.

There are three species of OWL:

OWL Lite

e OWL DL: This is used for supporting description logic. This supports maximum
expressiveness and logical reasoning capabilities. This is characterized by:
¢ Well-defined semantics

¢ Well-understood formal properties for the entities
¢ The ease of implementation of known reasoning algorithms
e OWL Full: This is based on RDFS-compatible semantics. It complements the

predefined RDF and OWL vocabulary. However, with OWL Full, the software
cannot completely reason and inference.

e OWL Lite: This is used for expressing taxonomy and simple constraints such as
zero-to-one cardinality.

OWL represents entities as classes. For example, let's define an entity of P1ayGround with
OWL:

<owl:Class rdf:ID="PlayGround">

Now, define FootballGround and state that FootballGroundis a type of PlayGround

<owl:Class rdf:ID="FootballGround">
<rdf:subClassOf rdf:resource="#PlayGround"/>
</owl:Class>

[39]

Ontology for Big Data Chapter 2

OWL provides several other mechanisms for defining classes:

® equivalentClass: Represents that the two classes (across Ontologies and
domains) are synonymous.

e disjointWith: Represents that an instance of a class cannot be an instance of
another class. For example, FootballGround and HockyGround are stated as
disjointed classes.

e Boolean combinations:

e unionOf: Represents that a class contains things that are from
more than one class

* intersectionOf: Represents that a class contains things that
are in both one and the other

e complementOf: Represents that a class contains things that are not
other things

SPARQL query language

With a generic understanding of Ontologies, the RDF, and OWL, we are able to
fundamentally understand how intelligent systems can communicate with each other
seamlessly with a semantic view of the world. With a semantic worldview, the entities come
to life by translating data assets into information and information assets into knowledge. It
is imperative that there is a common language to leverage a semantic worldview so that
heterogeneous systems can communicate with each other. SPARQL is a W3C standard that
is attempting to be the global query language with the primary goal of interoperability.
SPARQL is a recurring acronym and stands for SPARQL Protocol and RDF Query
Language. As the name indicates, it is a query language for querying knowledge (as triples)
stored in RDF format. Traditionally, we stored the information in relational databases in
tabular format. The relational database view of the entities can easily be represented as
triples. For example, let us once again consider the BOOK table:

Book_1ID Title Author Company Year
1 Hit Refresh Satya Nadella Microsoft 2017
2 Shoe Dog Phil Knight Nike 2016

[40]

Ontology for Big Data Chapter 2

Here, the row identifier (Book_ID and Tit1le) is the subject, the column name is the
predicate, and the column value is the object. For example:

A Triple:
{1: Hit Refresh} {Author} {Satya Nadella}
Subject (Entity Name) Predicate (Attribute Name) Object (Attribute Value)

The subjects and predicates are represented using URIs which universally identify specific
subjects and predicates as resources:

http://www.artificial-intelligence.big-data/book#
http://www.artificial-intelligence.big-data/book#author "Satya Nadella"

Turtle syntax allows an RDF graph to be completely written in a compact
and natural text form. It provides abbreviations for common usage
patterns and datatypes. This format is compatible with the triple pattern
syntax of SPARQL.

Let us use the turtle syntax to represent the book table in RDF format:

@prefix book: <http://www.artificial-intelligence.big-data/book#>

book:1 book:Title "Hit Refresh"
book:1 book:Author "Satya Nadella"
book:1 book:Company "Microsoft"
book:1 book:Year "2017"

book:2 book:Title "Shoe Dog"

2
book:2 book:Author "Phil Knight"
book:2 book:Company "Nike"
book:2 book:Year "2016"

Let us use a simple SPARQL query for getting a list of books published in the year 2017:
PREFIX book: <http://www.artificial-intelligence.big-data/book#>

SELECT ?books
WHERE
{
?books book:year "2017"
}

[41]

Ontology for Big Data Chapter 2

We have the following result:

?books
book:1

Here is another SELECT query, which fetches more data elements from the dataset:
PREFIX book: <http://www.artificial-intelligence.big-data/book#>

SELECT ?books ?bookName ?company
WHERE
{
?books book:year "2017"
?books book:title ?bookName .
?books book:company ?company .

}

The result is as follows:

?books ?bookName ?company
book:1 Hit Refresh Microsoft

While we are discussing role of Ontologies in the context of Artificial Intelligence for Big Data,
a complete reference to OWL and SPARQL is outside of the scope of this book. In the
following subsections, we will introduce a generic SPARQL language reference, which will
help us leverage Ontologies to build artificial intelligence.

Generic structure of an SPARQL query

The generic structure of SPARQL is as follows:

e PREFIX: Similar to the declaration of namespaces in the context of XML, and
package in the context of Java, or any similar programming languages, PREFIX is
the SPARQL equivalent, which ensures uniqueness among entity representations
and eliminates the need for typing long URI patterns within SPARQL code.

e SELECT /ASK/DESCRIBE / CONSTRUCT:

e SELECT: This is an equivalent of SQL's SELECT clause. It defines
the attributes that are required to be fetched from the RDF triples
that fulfill the selection criteria.

¢ ASK: This returns a Boolean value of true or false depending on the
availability of the RDF triples, and based on the selection criteria
within the RDF knowledge base.

[42]

Ontology for Big Data Chapter 2

e DESCRIBE: This query construct returns a graph containing all the
available triples from the RDF knowledge base which match the
selection criteria.

e CONSTRUCT: This is very handy when creating a new RDF graph
from an existing RDF based on selection criteria and filter
conditions. This is the equivalent of XSLT in the context of XML.
XSLT transforms XML in the intended format.

e FROM: Defines the data source of the RDF endpoint, against which the query will
be run. This is the SQL equivalent of the FROM <TABLE_NAME> clause. The
endpoint can be a resource on the internet or a local data store accessible to the
query engine.

e WHERE: Defines the part of the RDF graph we are interested in. This is the
equivalent of the WHERE SQL clause which defines filter conditions to fetch
specific data from the entire dataset.

Additional SPARQL features

The additional SPARQL features are as follows:

e Optional matching: Unlike traditional relational data stores, where the
database schemas and constraints are predefined for the structured
representation of data, in the big data word we deal with unstructured datasets.
The attributes of the two resources of the same type may be different. Optional
matching comes in handy when handling heterogeneous representations of the
entities. The OPTIONAL block is used to select the data elements if they exist.

e Alternative matching: Once again, considering the unstructured nature of
knowledge assets, alternating matching provides a mechanism to return
whichever properties are available.

e UNION: This is in contrast to the OPTIONAL pattern. In the case of UNION, at least
one of the datasets must find a match given the query criteria.

e DISTINCT: This is the equivalent of the DISTINCT SQL clause, which excludes
multiple occurrences of the same triple within the result.

[43]

Ontology for Big Data Chapter 2

e ORDER BY: Instructs the query to sequence results by a specific variable either in
ascending or descending order. This is also equivalent to ORDER BY clause in
SQL.

e FILTERS and regular expressions: SPARQL provides features to restrict the result
set triples by using expressions. Along with mathematical and logical
expressions, SPARQL allows for the use of regular expressions to apply filters on
datasets based on textual patterns.

e GROUP BY: This allows the grouping of the resulting RDF triples based on one or
more variables.

e HAVING: This facilitates a selection of the query results at the group level.

e SUM, COUNT, AVG, MIN, MAX, and so on are the functions available to be applied at
the group level.

Building intelligent machines with Ontologies

In this chapter, we have looked at the role of Ontology in the management of big data assets
as knowledge repositories, and understood the need for computational systems to perceive
the data as things instead of strings. Although some of the big systems and web search
engines use a semantic world view, the adoption of Ontology as a basis for systems is slow.
The custodians of data assets (governments and everyone else) need to model knowledge
assets in a consistent and standardized manner in order for us to evolve current
computational systems into intelligent systems.

Let us consider a use case that leverages Ontology-based knowledge graphs in order to
simplify the flight boarding process. We have all experienced a hugely manual and time-
consuming process when boarding a flight. From the time we enter the airport to the time
we board the flight, we go through a number of security checks and experience document
verification. In a connected world where all the knowledge assets are standardized and
defined as domain-specific Ontologies, it is possible to develop intelligent agents to make
the flight boarding process hassle free and seamless.

[44]

Ontology for Big Data Chapter 2

Let us define the generic characteristics of an intelligent agent:

|II|
—-

A little expansion on the characteristics is as follows:

¢ Goals: Every intelligent system should have a well defined set of goals. These
goals govern the rational decisions taken by the intelligent system and drive
actions and hence results. For example, in the case of an intelligent agent that is
responsible for the flight boarding process, one of the goals is to restrict access to
anyone who does not pass all security checks, even if the person has a valid air
ticket. In defining the goals for intelligent agents, one of the prime considerations
should be that the Al agent or systems should complement and augment human
capabilities.

¢ Environment: The intelligent agent should operate within the context of the
environment. Its decisions and actions cannot be independent of the context. In
our example use case, the environment is the airport, the passenger gates, flight
schedules, and so on. The agents perceive the environment with various sensors,
for example video cameras.

e Data Assets: The intelligent agent needs access to historical data in terms of the
domain and the context in which it operates. The data assets can be available
locally and globally (internet endpoints). These data assets ideally should be
defined as RDF schema structures with standardized representations and
protocols. These data assets should be queryable with standard languages and
protocols (SPARQL) in order to ensure maximum interoperability.

[45]

Ontology for Big Data Chapter 2

e Model: This is where the real intelligence of the agent is available as algorithms
and learning systems. These models evolve continuously based on the context,
historical decisions, actions, and results. As a general rule, the model should
perform better (more accurately) over a period of time for similar contextual
inputs.

¢ Effectors: These are the tangible aspects of the agent which facilitate actions. In
the example of an airline passenger boarding agent, the effector can be an
automated gate opening system which opens a gate once all the passengers are
fully validated (having a valid ticket, identity, and no security check failures).
The external world perceives the intelligent agent through effectors.

e Actions and Results: Based on the environmental context, the data assets, and the
trained models, the intelligent agent makes decisions that trigger actions through
the effectors. These actions provide results based on the rationality of the decision
and accuracy of the trained model. The results are once again fed into model
training in order to improve accuracy over a period of time.

At a high level, the method of the intelligent agent, which facilitates the flight boarding
process, can be depicted as follows:

1. When a passenger walks into the airport, a video camera reads the image and
matches it to the data assets available to the agent. These data assets are Ontology
objects which are loosely coupled and have flexibility of structure and attributes.
Some of the inferences are made at the first level of matching to correctly identify
the person who has entered the airport.

2. If the person cannot be identified with the video stream, the first airport gate does
not open automatically and requires a fingerprint scan from the passenger. The
fingerprint scan is validated against the dataset, which is once again an Ontology
object representation of the person entity. If the person is not identified at this
stage, they are flagged for further manual security procedures.

3. Once the person is correctly identified, the agent scans the global active ticket
directory in order to ensure that the person has a valid ticket for a flight that
departs from the airport in a reasonable time window. The global ticket directory
and the flight database is also available as Ontology objects for the agent to refer
to in real time.

4. Once ticket validity is ensured, a boarding pass is generated and delivered to the
passenger's smartphone, once again by referring to the person Ontology to derive
personal details in a secure manner. The real-time instructions for directions to
the gate are also sent to the device.

[46]

Ontology for Big Data Chapter 2

The agent can seamlessly guide the passenger to the appropriate boarding gate. The system
can be built easily once all the heterogeneous data sources are standardized and have
Ontological representation, which facilitates maximum interoperability and eliminates a
need to code diverse knowledge representations. This results in an overall reduction of
complexity in the agent software and an increase in efficiency.

Ontology learning

With the basic concepts on Ontologies covered in this chapter, along with their significance
in building intelligent systems, it is imperative that for a seamlessly connected world, the
knowledge assets are consistently represented as domain Ontologies. However, the process
of manually creating domain-specific Ontologies requires lots of manual effort, validation,
and approval. Ontology learning is an attempt to automate the process of the generation of
Ontologies, using an algorithmic approach on the natural language text, which is available
at the internet scale. There are various approaches to Ontology learning, as follows:

¢ Ontology learning from text: In this approach, the textual data is extracted from
various sources in an automated manner, and keywords are extracted and
classified based on their occurrence, word sequencing, and patterns.

¢ Linked data mining: In this processes, the links are identified in the published
RDF graphs in order to derive Ontologies based on implicit reasoning.

e Concept learning from OWL: In this approach, existing domain-specific
Ontologies are leveraged for expand the new domains using an algorithmic
approach.

e Crowdsourcing: This approach combines automated Ontology extraction and
discovery based on textual analysis and collaboration with domain experts to
define new Ontologies. This approach works great since it combines the
processing power and algorithmic approaches of machines and the domain
expertise of people. This results in improved speed and accuracy.

Here are some of the challenges of Ontology learning;:

¢ Dealing with heterogeneous data sources: The data sources on the internet, and
within application stores, differ in their forms and representations. Ontology
learning faces the challenge of knowledge extraction and consistent meaning
extraction due to the heterogeneous nature of the data sources.

[47]

Ontology for Big Data Chapter 2

¢ Uncertainty and lack of accuracy: Due the the inconsistent data sources, when
Ontology learning attempts to define Ontology structures, there is a level of
uncertainty in terms of the intent and representation of entities and attributes.
This results in a lower level of accuracy and requires human intervention from
domain experts for realignment.

e Scalability: One of the primary sources for Ontology learning is the internet,
which is an ever growing knowledge repository. The internet is also an
unstructured data source for the most part and this makes it difficult to scale the
Ontology learning process to cover the width of the domain from large text
extracts. One of the ways to address scalability is to leverage new, open source,
distributed computing frameworks (such as Hadoop).

¢ Need for post-processing: While Ontology learning is intended to be an
automated process, in order to overcome quality issues, we require a level of
post-processing. This process need to be planned and governed in detail in order
to optimize the speed and accuracy of new Ontology definitions.

Ontology learning process

The Ontology learning process consists of six Rs:

Retrieve

Release

RDF
store

Represent

Re-align

[48]

Ontology for Big Data Chapter 2

They are explained as followed:

Retrieve: The knowledge assets are retrieved from the web and application
sources from the domain specific stores using web crawls and protocol-based
application access. The domain specific terms and axioms are extracted with a
calculation of TF/IDF values and by the application of the C-Value / NC Value
methods. Commonly used clustering techniques are utilized and the statistical
similarity measures are applied on the extracted textual representations of the
knowledge assets.

Refine: The assets are cleansed and pruned to improve signal to noise ratio. Here,
an algorithmic approach is taken for refinement. In the refinement step, the terms
are grouped corresponding to concepts within the knowledge assets.

Represent: In this step, the Ontology learning system arranges the concepts in a
hierarchical structure using the unsupervised clustering method (at this point,
understand this as a machine learning approach for the segmentation of the data;
we will cover the details of unsupervised learning algorithms in the next
chapter).

Re-align: This is a type of post-processing step that involves collaboration with
the domain experts. At this point, the hierarchies are realigned for accuracy. The
Ontologies are aligned with instances of concepts and corresponding attributes
along with cardinality constraints (one-to-one, one-to-many, and so on). The rules
for defining the syntactic structure are defined in this step.

Reuse: In this step, similar domain-specific Ontologies with connection endpoints
are reused, and synonyms are defined in order to avoid parallel representations
of the same concepts, which are finalized across other Ontology definitions.

Release: In this step, the Ontologies are released for generic use and further
evolution.

[49]

Ontology for Big Data Chapter 2

Frequently asked questions

Let's have a small recap of the chapter:
Q: What are Ontologies and what is their significance in intelligent systems?

A: Ontology as a generic term means the knowledge of everything that exists in this
universe. As applicable to information systems, Ontologies represent a semantic and
standardized view of the world's knowledge assets. They are domain-specific
representations of knowledge and models related to real world entity representations. The
intelligent systems that link heterogeneous knowledge domains need to have access to
consistent representations of knowledge in order to interoperate and understand contextual
events to make inferences and decisions, which trigger actions and hence results, in order to
complement human capabilities.

Q: What are the generic properties of Ontologies?
A: Ontologies should be complete, unambiguous, domain-specific, generic, and extensible.
Q: What are the various components of Ontologies?

A: Various Ontology components are Concepts, Slots, Relationships, Axioms, Instances, and
Operations.

Q: What is the significance of a universal data format in knowledge management systems?

A: The Resource Description Format (RDF) intends to be the universal format for
knowledge representation, allowing heterogeneous systems to interact and integrate in a
consistent and reliable manner. This forms the basis of the semantic view of the world.

Q: How is it possible to model the worldview with Ontologies? Is it possible to automate
the Ontology definition process considering vast and ever-increasing knowledge stores in
the universe?

A: Knowledge assets are growing exponentially in size with time. In order to create an
Ontological representation of these assets, we need an automated approach, without which
it will be difficult to catch up with the volume. Ontology learning takes an algorithmic
approach by leveraging distributed computing frameworks to create a baseline model of the
worldview. The Ontology learning process retrieves textual, unstructured data from
heterogeneous sources, refines it, and represents it in a hierarchical manner. This is
realigned with post-processing by reusing existing domain-specific knowledge assets, and
finally released for generic consumption by intelligent agents.

[50]

Ontology for Big Data Chapter 2

Summary

In this chapter, we have explored the need for a standardized and consistent representation
of the world's knowledge for the evolution of intelligent systems, and how these

systems are modeled against the human brain. Ontologies, as applied to information
systems, is a W3C standard that defines the generic rules for knowledge representation.

This chapter introduced the basic concepts of the RDF, OWL, and a query language to
extract the knowledge representations within Ontology instances through SPARQL.

In this chapter, we have explored how to use Ontologies to build intelligent agents by
looking at the generic characteristics of the intelligent agents. In the end, we learned how
Ontology learning facilitates the speedy adoption of Ontologies for the worldview, with
consistent knowledge assets and representations.

In the next chapter, we will get introduced to fundamental concepts of Machine Learning
and how Big Data facilitates the learning process.

[51]

Learning from Big Data

In the first two chapters, we set the context for intelligent machines with the big data
revolution and how big data is fueling rapid advances in artificial intelligence. We also
emphasized the need for a global vocabulary for universal knowledge representation. We
have also seen how that need is fulfilled with the use of ontologies and how ontologies help
construct a semantic view of the world.

The quest is for the knowledge, which is derived from information, which is in turn derived
from the vast amounts of data that we are generating. Knowledge facilitates a rational
decision-making process for machines that complements and augments human capabilities.
We have seen how the Resource Description Framework (RDF) provides the schematic
backbone for the knowledge assets along with Web Ontology Language (OWL)
fundamentals and the query language for RDFs (SPARQL).

In this chapter, we are going to look at some of the basic concepts of machine learning and
take a deep dive into some of the algorithms. We will use Spark's machine learning
libraries. Spark is one of the most popular computer frameworks for the implementation of
algorithms and as a generic computation engine on big data. Spark fits into the big data
ecosystem well, with a simple programming interface, and very effectively leverages the
power of distributed and resilient computing frameworks. Although this chapter does not
assume any background with statistics and mathematics, it will greatly help if the reader
has some programming background, in order to understand the code snippets and to try
and experiment with the examples.

In this chapter, we will see broad categories of machine learning in supervised and
unsupervised learning, before taking a deep dive, with examples, into:

¢ Regression analysis
¢ Data clustering
¢ K-means

Learning from Big Data Chapter 3

¢ Data dimensionality reduction
e Singular value decomposition
¢ Principal component analysis (PCA)

In the end, we will have an overview of the Spark programming model and Spark's
Machine Learning library (Spark MLIib). With all this background knowledge at our
disposal, we will implement a recommendation system to conclude this chapter.

Supervised and unsupervised machine
learning

Machine learning at a broad level is categorized into two types: supervised and
unsupervised learning. As the name indicates, this categorization is based on the
availability of the historical data or the lack thereof. In simple terms, a supervised machine
learning algorithm depends on the trending data, or version of truth. This version of truth is
used for generalizing the model to make predictions on the new data points.

Let's understand this concept with the following example:

Independent Variable
//, Dependent Variable

X y
100 320
125 340
Input Values 150 380 Target Values
175 400
200 410

Figure 3.1 Simple training data: input (independent) and target (dependent) variables

Consider that the value of the y variable is dependent on the value of x. Based on a change
in the value of x, there is a proportionate change in the value of y (think about any examples
where the increase or decrease in the value of one factor proportionally changes the other).

[53]

Learning from Big Data Chapter 3

Based on the data presented in the preceding table, it is clear that the value of y increases
with an increase in the value of x. That means there is a direct relationship between x and y.
In this case, x is called an independent, or input, variable and y is called a dependent, or
target, variable. In this example, what will be the value of y when x is 2207 At this point,
let's understand a fundamental difference between traditional computer programming and
machine learning when it comes to predicting the value of the y variable for a specific value
of x=220. The following diagram shows the traditional programming process:

x =220 y=x*255 y =562

Data Program Output

Traditional Computer Programming

Figure 3.2 Traditional computer programming process

The traditional computer program has a predefined function that is applied on the input
data to produce the output. In this example, a traditional computer program calculates the
value of the (y) output variable as 562.

[54]

Learning from Big Data Chapter 3

Have a look at the following diagram:

X y
100 320
125 340
150 380
175 400
200 410 y =f(x)

Data Output Program

Machine Learning

Figure 3.3 Machine learning process

In the case of supervised machine learning, the input and output data (training data) are
used to create the program or the function. This is also termed the predictor function. A
predictor function is used to predict the outcome of the dependent variable. In its simplest
form, the process of defining the predictor function is called model training. Once a
generalized predictor function is defined, we can predict the value of the target variable (y)
corresponding to an input value (x). The goal of supervised machine learning is to develop
a finely-tuned predictor function, h(x), called hypothesis. Hypothesis is a certain function
that we believe (or hope) is similar to the true function, the target function that we want to
model. Let's add some more data points and plot those on a two-dimensional chart, like the
following diagram:

[55]

Learning from Big Data Chapter 3

Training Data
500 X Yy
50 180
450
Prediction Error A 75 200
e) ¢ 100 320
T e _[125 340
o) ¢ 150 380
[1°] 300
& Predicted Value 175 400
> 250 200 410
L J
© ol 210 423
Do 200 % - -
© . Predictor Function h(x) 240 470
2 w0) — - 110 330
> | Prediction Point 115 340
40 160
’ 35 145
0 A 80 215
0 50 100 150 200 250 300 85 235
X (Input Variable)

Figure 3.4 Supervised learning (linear regression)

We have plotted the input variable on the x axis and the target variable on the y axis. This is
a general convention used and hence the input variable is termed x and the output variable
is termed y. Once we plot the data points from the training data, we can visualize the
correlation between the data points. In this case, there seems to a direct proportion between
x and y. In order for us to predict the value of y when x =220, we can draw a straight line
that tries to characterize, or model, the truth (training data). The straight line represents the
predictor function, which is also termed as a hypothesis.

Based on the hypothesis, in this case our model predicts that the value of y when x =220
will be ~430. While this hypothesis predicts the value of y for a certain value of x, the line
that defines the predictor function does not cover all the values of the input variable. For
example, based on the training data, the value of y =380 at x = 150. However, as per the
hypothesis, the value comes out to be ~325. This differential is called prediction error (~55
units in this case). Any input variable (x) value that does not fall on the predictor function
has some prediction error based on the derived hypothesis. The sum of errors for across all
the training data is a good measure of the model's accuracy. The primary goal of any
supervised learning algorithm is to minimize the error while defining a hypothesis based on
the training data.

[56]

Learning from Big Data Chapter 3

A straight-line hypothesis function is as good as an illustration. However, in reality, we will
always have multiple input variables that control the output variable, and a good predictor
function with minimal error will never be a straight line. When we predict the value of an
output variable at a certain value of the input variable it is called regression. In certain
cases, the historical data, or version of truth, is also used to separate data points into
discrete sets (class, type, category). This is termed classification. For example, an email can
be flagged as spam or not based on the training data. In the case of classification, the classes
are known and predefined. The following image shows the classification with the Decision
Boundary:

1.2
m A
1
= A A A
= m | Decision Boundary
0.8 L
|
0.6
m "o
0.4
0.2
|
]
0
0 02 0.4 0.6 0.8 1 12

Figure 3.5 Classification with Decision Boundary

Here is a two-dimensional training dataset, where the output variables are separated by a
Decision Boundary. Classification is a supervised learning technique that defines the
Decision Boundary so that there is a clear separation of the output variables.

[57]

Learning from Big Data Chapter 3

Regression and classification, as discussed in this section, require historical data to make
predictions about the new data points. These represent supervised learning techniques. The
generic process of supervised machine learning can be represented as follows:

Model
Training

Training Set

Model Tuning

Model
Validation

am &

Figure 3.6 Generic supervised learning process

Validation Set

The labeled data, or the version of truth, is split into training and validation sets with
random sampling. Typically, an 80-20 rule is followed with the split percentage of the
training and validation sets. The training set is used for training the model (curve fitting) to
reduce overall error of the prediction. The model is checked for accuracy with the validation
set. The model is further tuned for the accuracy threshold and then utilized for the
prediction of the dependent variables for the new data.

With this background in machine learning, let's take a deep dive into various techniques of
supervised and unsupervised machine learning.

The Spark programming model

Before we deep dive into the Spark programming model, we should first arrive at an
acceptable definition of what Spark is. We believe that it is important to understand what
Spark is, and having a clear definition will help you to choose appropriate use cases where
Spark is going to be useful as a technological choice.

[58]

Learning from Big Data Chapter 3

There is no one silver bullet for all your enterprise problems. You must pick and choose the
right technology from a plethora of options presented to you. With that, Spark can be
defined as:

Spark is a distributed in-memory processing engine and framework that provides you with
abstract APIs to process big volumes of data using an immutable distributed collection of
objects called Resilient Distributed Datasets. It comes with a rich set of libraries,
components, and tools, which let you write-in memory-processed distributed code in an
efficient and fault-tolerant manner.

Now that you are clear on what Spark is, let's understand how the Spark programming
model works. The following diagram represents a high-level component of the Spark
programming model:

a

2 © £ 3
t 1
o 0 - e
'a'o' L L¥

Task Task

A\ User Code 4
L] L]

Cluster Manager

Figure 3.7 Spark programming model

[59]

Learning from Big Data Chapter 3

As shown, all Spark applications are Java Virtual Machine (JVM)-based components
comprising three processes: driver, executor, and cluster manager. The driver program
runs as a separate process on a logically- or physically-segregated node and is responsible
for launching the Spark application, maintaining all relevant information and
configurations about launched Spark applications, executing application DAG as per user
code and schedules, and distributing tasks across different available executors.
Programmatically, the main () method of your Spark code runs as a driver. The driver
program uses a SparkContext or SparkSession object created by user code to coordinate
all Spark cluster activity. SparkContext or SparkSession is an entry point for executing any
code using a Spark-distributed engine. To schedule any task, the driver program converts
logical DAG to a physical plan and divides user code into a set of tasks. Each of those tasks
are then scheduled by schedulers, running in Spark driver code, to run on executors. The
driver is a central piece of any Spark application and it runs throughout the lifetime of the
Spark application. If the driver fails, the entire application will fail. In that way, the driver
becomes a single point of failure for the Spark application.

Spark executor processes are responsible for running the tasks assigned to it by the driver
processes, storing data in in-memory data structures called RDDs, and reporting its code-
execution state back to the driver processes. The key point to remember here is that, by
default, executor processes are not terminated by the driver even if they are not being used
or executing any tasks. This behavior can be explained with the fact that the RDDs follow a
lazy evaluation design pattern. However, even if executors are killed accidentally, the Spark
application does not stop and those executors can be relaunched by driver processes.

Cluster managers are processes that are responsible for physical machines and resource
allocation to any Spark application. Even driver code is launched by the cluster manager
processes. The cluster manager is a pluggable component and is cynical to the Spark user
code, which is responsible for data processing. There are three types of cluster managers
supported by the Spark processing engine: standalone, YARN, and Mesos.

Further reference to about Spark RDDs and cluster managers can be found
at the following links:

® https://spark.apache.org/docs/latest/cluster—-overview.
html

® https://spark.apache.org/docs/2.2.0/rdd-programming—
guide.html#resilient-distributed-datasets-rdds

[60]

https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds

Learning from Big Data Chapter 3

The Spark MLIib library

The Spark MLIib is a library of machine learning algorithms and utilities designed to make
machine learning easy and run in parallel. This includes regression, collaborative filtering,
classification, and clustering. Spark MLIib provides two types of APl included in the
packages, namely spark.mllib and spark.ml, where spark.mllib is built on top of
RDDs and spark.ml is built on top of the DataFrame. The primary machine learning API for
Spark is now the DataFrame-based API in the spark.ml package. Using spark.ml with the
DataFrame API is more versatile and flexible, and we can have the benefits provided by
DataFrame, such as catalyst optimizer and spark.ml1lib, which is an RDD-based API that
is expected to be removed in the future.

Machine learning is applicable to various data types, including text, images, structured
data, and vectors. To support these data types under a unified dataset concept, Spark ML
includes the Spark SQL DataFrame. It is easy to combine various algorithms in a single
workflow or pipeline.

The following sections will give you a detailed view of a few key concepts in the Spark ML
APIL

The transformer function

This is something that can transform one DataFrame into another. For instance, an ML
model can transform a DataFrame with features into a DataFrame with predictions. A
transformer contains feature transformer and learned model. This uses the transform()
method to transform one DataFrame into another. The code for this is given for your
reference:

import org.apache.spark.ml.feature.Tokenizer

val df = spark.createDataFrame (Seqg(("This is the Transformer", 1.0),
("Transformer is pipeline component”, 0.0))).toDF("text", "label") wval
tokenizer = new Tokenizer ().setInputCol ("text").setOutputCol ("words") wval
tokenizedDF = tokenizer.transform(df)

[61]

Learning from Big Data Chapter 3

The estimator algorithm

An estimator is another algorithm that can produce a transformer by fitting on a
DataFrame. For instance, a learning algorithm can train on a dataset and produce a model.
This produces a transformer by learning an algorithm. It uses the £it () method to produce
a transformer. For instance, the Naive Bayes learning algorithm is an estimator that calls the
fit () method and trains a Naive Bayes model, which is a transformer. We will use the
following code to train the model:

import org.apache.spark.ml.classification.NaiveBayes
val nb = new NaiveBayes () .setModelType ("multinomial")

val model = nb.fit (Training_DataDF)

Pipeline

Pipeline represents a sequence of stages, where every stage is a transformer or an
estimator. All these stages run in an order and the dataset that is input is altered as it passes
through every stage. For the stages of transformers, the t ransform () method is used,
while for the stages of estimators, the £it () method is used to create a transformer.

Every DataFrame that is output from one stage is input for the next stage. The pipeline is
also an estimator. Therefore, it produces PipelineModel once the £it () method is

run. PipelineModel is a transformer. PipelineModel contains the same number of stages
as in the original pipeline. PipelineModel and pipelines make sure that the test and
training data pass through similar feature-processing steps. For instance, consider a
pipeline with three stages: Tokenizer, which will tokenize the sentence and convert it into a
word with the use of Tokenizer.transform(); HashingTF, which is used to represent a
string in a vector form as all ML algorithms understand only vectors and not strings and
this uses the HashingTF.transform () method; and NaiveBayes, an estimator that is
used for prediction.

We can save the model at HDFSlocation using the save () method, so in future we can
load it using the 1oad method and use it for prediction on the new dataset. This loaded
model will work on the feature column of newDataset, and return the predicted column
with this newDataset will also pass through all the stages of the pipeline:

import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.ml.classification.NaiveBayes

[62]

Learning from Big Data Chapter 3

val df = spark.createDataFrame (Seq(
("This is the Transformer", 1.0),
("Transformer is pipeline component”, 0.0)
)) .toDF ("text", "label")

val tokenizer = new Tokenizer () .setInputCol ("text").setOutputCol ("words")

val
HashingTF=newHashingTF () .setNumFeatures (1000) .setInputCol (tokenizer.getOutp
utCol) .setOutputCol (“features”)

val nb = new NaiveBayes () .setModelType ("multinomial")

val pipeline = new Pipeline () .setStages (Array (tokenizer, hashingTF, nb))
val model = pipeline.fit (df)

model.save ("/HDFSlocation/Path/")

val loadModel = PipelineModel.load(("/HDFSlocation/Path/")

val PredictedData = loadModel.transform(newDataset)

Regression analysis

Regression analysis is a statistical modeling technique that is used for predicting or
forecasting the occurrence of an event or the value of a continuous variable (dependent
variable), based on the value of one or many independent variables. For example, when we
want to drive from one place to another, there are numerous factors that affect the amount
of time it will take to reach the destination, for example, the start time, distance, real-time
traffic conditions, construction activities on the road, and weather conditions. All these
factors impact the actual time it will take to reach the destination. As you can imagine, some
factors have more impact than the others on the value of the dependent variable. In
regression analysis, we mathematically sort out which variables impact the outcome,
leading us to understand which factors matter most, which ones do not impact the outcome
in a meaningful way, how these factors relate to each other, and mathematically, the
quantified impact of variable factors on the outcome.

Various regression techniques that are used depend on the number and distribution of
values of independent variables. These variables also derive the shape of the curve that
represents predictor function. There are various regression techniques, and we will learn
about them in detail in the following sections.

[63]

Learning from Big Data Chapter 3

Linear regression

With linear regression, we model the relationship between the dependent variable, y, and
an explanatory variable or independent variable, x. When there is one independent variable,
it is called simple linear regression, and in the case of multiple independent variables, the
regression is called multiple linear regression. The predictor function in the case of linear
regression is a straight line (refer to figure 4 for an illustration). The regression line defines
the relationship between x and y. When the value of y increases when x increases, there is a
positive relationship between x and y. Similarly, when x and y are inversely proportional,
there is a negative relationship between x and y. The line should be plotted on x and y
dimensions to minimize the difference between the predicted value and the actual value,
called prediction error.

In its simplest form, the linear regression equation is:
y=a+br

This is the equation of a straight line, where y is the value of dependent variable, a is the y
intercept (the value of y where the regression line meets the y axis), and b is the slope of the
line. Let's consider the least square method in which we can derive the regression line with
minimum prediction error.

Least square method

Let's consider the same training data we referred to earlier in this chapter. We have values
for the independent variable, x, and corresponding values for the dependent variable, y.
These values are plotted on a two-dimensional scatter plot. The goal is to draw a regression
line through the training data so as to minimize the error of our predictions. The linear
regression line with minimum error always passes the mean intercept for x and y values.

[64]

Learning from Big Data Chapter 3

The following figure shows the least square method:

x y o oxex | yey | R Ry 0

50.00] 180.00| -69.33| -123.20| 4807.11| 8541.87

75.00] 200.00| -44.33| -103.20| 1965.44| 4575.20 54000 Regression Line (y = a + bx) /
100.00] 320.00| -19.33 16.80| 373.78 -324.80 T, e
125.00] 340.00 5.67| 36.80] 32.11 208.53) e sl .
150.00] 380.00] 30.67| 76.80| 940.44| 235520 4000 . /'/ * CEBGEIE
175.00] 400.00| 55.67| 96.80| 3098.78| 5388.53 RS Sx—-x)ly —-¥)
200.00 410.00| 80.67| 106.80| 6507.11] 861520 ., * a= W
210.00] 423.00] 90.67| 119.80| 8220.44| 10861.87 - (:119.33,:303.2)
240.00] 470.00| 120.67| 166.80| 14560.44| 20127.20 8
110.00] 330.00 -9.33 26.80 87.11 -250.13 200.00 5
115.00/ 340.00 -4.33] 36.80] 18.78 -159.47 4

40.00| 160.00| -79.33| -143.20| 6293.78| 11360.53 .. o

35.00 145.00] -84.33| -158.20| 7112.11| 13341.53 \ .

80.00] 215.00] -39.33] -88.20] 1547.11] 3469.20 e () = 1AL

85.00 235.00] -34.33] -68.20| 1178.78] 2341.53 000
119.33 303.20 56743.33 90452.00 0.00 50.00 100.00 150.00 200.00 250.00 300.00
X y

Figure 3.8 Least square method

The formula for calculating the y intercept is as follows:

2.(z—Z)(y—7)
> (z—2)°

a =

The least square method calculates the y intercept and the slope of the line with the
following steps:

SIS .

N

Calculate the mean of all the x values (119.33).

Calculate the mean of all the y values (303.20).

Calculate difference from the mean for all the x and y values.

Calculate the square of mean difference for all the x values.

Multiply the mean difference of x by the mean difference of y for all the
combinations of x and y.

Calculate the sum squares of all the mean differences of the x values (56743.33).
Calculate the sum of mean difference products of the x and y values (90452.00).
The slope of the regression line is obtained by dividing the sum of the mean
difference products of x and y by the sum of the squares of all the mean
differences of the x values (90452.00 / 56743.33 = 1.594). In this training data, since
there is direct proportion between the x and y values, the slope is positive. This is
the value for b in our equation.

[65]

Learning from Big Data Chapter 3

9. We need to calculate the value of the y intercept (a) by solving the following
equation, y=a+1.594 * x.

Remember, the regression line always passes through the mean intercept of
the x and y values.

10. Therefore, 303.2 =a + (1.594 * 119.33).
11. Solving this, we get a = 112.98 as the y intercept for the regression line.

At this point, we have created our regression line with which we can predict the value of
the dependent variable, y, for a value of x. We need to see how close our regression line
mathematically is to the actual data points. We will use one of the most popular statistical
techniques, R-squared, for this purpose. It is also called the coefficient of determination. R-
squared calculates the % of response variable variation for the linear regression model we
have developed. R-squared values will always be between 0% and 100%. A higher value of
R-squared indicates that the model fits the training data well; generally termed the
goodness of fit. The following diagram shows the calculation of R-squared with some
sample data points:

x y vy | oot |l v 8-y | @-w? sy | @y | o000
50.00] 180.00| -123.20| 15178.24[192.68]-110.52] 12214.67] 12.68] 160.78| 45000
75.00] 200.00| -103.20 10650.24|232.53| 70.67] 4994.25| 32.53| 1058.20
100.00] 32000 16.80] 282.24|272.38] 30.82] 949.87] -47.62] 2267.66] 4000 ~ frommean
125.00] 340.00] 36.80] 1354.2431223] 9.03] 81.54] -27.77] 771.17] 35000

150.00 380.00] 76.80| 5898.24|352.08| 48.88] 2389.25| -27.92] 779.53

y distance

175.00) 400.00] 96.80] 9370.24/391.93| 88.73] 7873.01 -8.07 65.12| 30000

200.00| 410.00| 106.80| 11406.24|431.78| 128.58 16532.82| 21.78| 474.37| ,c,

210.00/ 423.00| 119.80| 14352.04|447.72| 144.52| 20886.03| 24.72| 611.08 i Y mean
240.00| 470.00| 166.80| 27822.24|495.54| 192.34| 36994.68 25.54| 652.29| 20000 4 * X 2
110.00| 330.00| 26.80| 718.24|288.32| -14.88| 221.41| -41.68| 1737.22| ;oo Q R squared Z(}’ }’)
115.00) 340.00] 36.80] 1354.24/296.29| -6.91 47.75| -43.71] 1910.56 Z(y—if)z
40.00] 160.00| -143.20| 20506.24|176.74|-126.46| 15992.13 16.74| 280.23| 100.00

35.00| 145.00| -158.20| 25027.24|168.77|-134.43| 18071.42| 23.77) 565.01| .,

80.00| 215.00| -88.20] 7779.24/240.50] -62.70| 3931.29] 25.50| 650.25

85.00| 235.00| -68.20| 4651.24|248.47| -54.73| 2995.37 13.47| 181.44| 000

0.00 50.00 100.00 150.00 200.00 250.00 300.00

119.33| 303.20 156350.40 144175.50 12164.93

Figure 3.9 Calculation of R-squared

[66]

Learning from Big Data Chapter 3

Let's use our training data to calculate R-squared based on the formula in the preceding
image. Please refer to the diagram we just saw, in this case, R-squared = 144175.50 /
156350.40 = 0.9221. This value is an indication that the model is fitting the training data very
well. There is another parameter we can derive, called standard error, from the estimate.
This is calculated as:

In this formula, 7 is the sample size or the number of observations. With our dataset, the
standard error of the estimate comes out to be 30.59.

Let's calculate the R-squared for our training dataset with the Spark machine learning
library:

import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.regression.LinearRegression

val linearRegrsssionSampleData =
sc.textFile ("aibd/linear_regression_sample.txt")

val labeledData = linearRegrsssionSampleData.map { line =>

val parts = line.split(',")

LabeledPoint (parts (0) .toDouble, Vectors.dense (parts(l).toDouble))
}.cache () .toDF

val lr = new LinearRegression /()

val model = lr.fit (labeledData)

val summary = model.summary
println ("R-squared = "+ summary.r2)

This program produces the following output. Note the same value for R-squared:

[67]

Learning from Big Data Chapter 3

Generalized linear model

While we have tried to understand the concept of linear regression with one dependent and
one independent variable, in the real world, we are always going to have multiple
dependent variables that affect the output variable, termed multiple regression. In that case,
our y = a + bx linear equation is going to take the following form:

y=a,tbx; +bx,+ ..+ bx,

Once again, ay is the y intercept, x,, x,, ...x, are the independent variables or factors, and b,,
b,,.., b, are the weights of the variables. They define how much the effect of a particular
variable has on the outcome. With multiple regression, we can create a model for predicting
a single dependent variable. This limitation is overcome by the generalized linear model. It
deals with multiple dependent/response variables, along with the correlation within the
predictor variables.

Logistic regression classification technique

Logistic regression is a method in which we analyze the input variables that result in the
binary classification of the output variables. Even though the name suggests regression, it is
a popular method to solve classification problems, for example, to detect whether an email
is spam or not, or whether a transaction is a fraudulent or not. The goal of logistic
regression is to find a best-fitting model that defines the class of the output variable as 0
(negative class) or 1 (positive class). As a specialized case of linear regression, logistic
regression generates the coefficients of a formula to predict probability of occurrence of the
dependent variable. Based on the probability, the parameters that maximize the probability
of occurrence or nonoccurrence of a dependent event are selected. The probability of an
event is bound between 0 and 1. However, the linear regression model cannot guarantee the
probability range of 0 to 1.

[68]

Learning from Big Data Chapter 3

The following diagram shows the difference between the linear regression and logistic
regression models:

Linear Regression Model Logistic Regression Model
] T
k- 3
& 1.5 k=
2 8 1.5
; 2
2 § Function Break P(y) =1 when P(y >= 1)
g 10 g 1,
[o .
e 8
3 r
f= o
£ 05 $ os
S =
Q =1
: g
s ‘ ‘ ‘ | ‘ S Function Break P(y) = 0 when P(y <= 0)
z 0 2 o4 | |
E P(y)<0 Independent Variable % Independent Variable
o 2
& -05 g os

Figure 3.10 Difference between linear and logistic Regression models

There are two conditions we need to meet with regards to the probability of the intended
binary outcome of the independent variable:

e It should be positive (p >= 0): We can use an exponential function in order to
ensure positivity:

p=exp(B0+ flz) = X+

e It should be less than 1 (p <=1): We can divide the probability exponential term
with the same value, + 1, in order to ensure that the outcome probability is less
than:

_ ezp(B0 + Blz) Ao+)
exp(B0+ Blz) +1 (B0 + pla)+l

[69]

Learning from Big Data Chapter 3

Logistic regression with Spark

We progress with logistic regression with Spark as follows:

import org.apache.spark.ml.classification.LogisticRegression

// Load training data
val training =
spark.read.format ("libsvm") .load ("data/mllib/sample_libsvm_data.txt")

val 1lr = new LogisticRegression()
.setMaxIter (10)
.setRegParam(0.3)
.setElasticNetParam(0.8)

// Fit the model
val lrModel = lr.fit (training)

// Print the coefficients and intercept for logistic regression
println(s"Coefficients: ${lrModel.coefficients} Intercept:
${1lrModel.intercept}")

// We can also use the multinomial family for binary classification
val mlr = new LogisticRegression ()

.setMaxIter (10)

.setRegParam(0.3)

.setElasticNetParam(0.8)

.setFamily ("multinomial")

val mlrModel = mlr.fit (training)

// Print the coefficients and intercepts for logistic regression with
multinomial family

println(s"Multinomial coefficients: ${mlrModel.coefficientMatrix}")
println(s"Multinomial intercepts: ${mlrModel.interceptVector}")

Polynomial regression

While in linear regression, the correlation between the independent and the dependent
variables is best represented with a straight line, the real-life datasets are more complex and
do not represent a linear relationship between cause and effect. The straight line equation
does not fit the data points and hence cannot create an effective predictive model.

[70]

Learning from Big Data Chapter 3

In such cases, we can consider using a higher-order quadratic equation for the predictor
function. Given x as an independent variable and y as a dependent variable, the polynomial
function takes the following forms:

y= fo+ f1x+ ,Bzxz Second Order Polynomial
y = Bo+Pi1x+ ﬁzxZ + ﬁ3x3 Third Order Polynomial

These can be visualized with a small set of sample data as follows:

60

60
.
y=-1.8674x2+22.214x-14.283 o ©® Second Order .
I+ - .
© R?=0.93 e, @ Prediction Function o »
40 e 40 +
o L4 L) * L]
S o
30 30
y
20 o ® 0 I Fourth Order Prediction Functions
10 ®: 10 ¢
y =0.0619x* - 1.4043x® + 8.7968x? - 8.237x + 10.583
o R? =0.9608
0 2 4 6 8 10 12 ’ o 2 4 6 8 10 12
X X

Figure 3.11 Polynomial prediction function

Note that the straight line cannot accurately represent the relationship
between x and y. As we model the prediction function with higher-order
functions, R*is improved. This means the model is able to be more
accurate.

We may think that it will be best to use the highest possible order equation for the
prediction function in order to get the best fitting model. However, that is not right because
as we create the regression line that goes through all the data points, the model fails to
accurately predict the outcomes for any data outside of the training sample (test data). This
problem is called overfitting. On the other end, we may also encounter the problem of
underfitting. This is when the model does not fit the training data well and hence performs
poorly with the test data.

[71]

Learning from Big Data Chapter 3

Stepwise regression

The examples we have seen so far all had one independent and one dependent variable.
This is used to illustrate the basic concepts of regression analysis. However, real-world
scenarios are more complex and there are multiple factors that affect the outcome. As an
example, the salary of an employee depends on multiple factors, such as skill sets, the
ability to learn new tools and technologies, years of experience, past projects worked on,
ability to play multiple roles, and location. As you can imagine, some of the factors
contribute more than others in defining the outcome (salary, in this case).

When we do regression analysis on a dataset that contains lots of factors, the model can be
accurately built if we select the factors that are more significant than others. Stepwise
regression is a method by which the choice or selection of independent variables is
automated.

Consider the following regression function:
Y=Bo. BiXi#+ BoXo + BaXs + .o . + BX,

There are n number of input variables, along with their weights or coefficients. The goal for
stepwise regression is to shortlist the variables that are most important for building an
accurate model. Stepwise regression can be done with two approaches, which will be
covered in the following sections.

Forward selection

With forward selection, we start with zero or no variables in the model. One variable is
added at a time, based on the chosen threshold or criteria. When adding a new variable, the
improvement in the model's fit should be significant. At the point when the inclusion of a
new variable does not improve the model, the process is complete.

Backward elimination

With backward elimination, we start with all the variables. Iteratively, we need to test the
elimination of each of the variables. The variable, once again, is deleted with the predefined
threshold or criteria. The variables that have the least significant impact on the model's
accuracy are eliminated one by one in this method.

It is also possible to utilize both methods together for faster parameter tuning.

[72]

Learning from Big Data Chapter 3

Ridge regression

With stepwise regression, we now have a set of independent variables that contribute well
to the value of the dependent variable. If two or more predictors are related to each other
with a near-linear relationship, we come across a problem called multicollinearity, for
example, if we are modeling the weather data where the input data contains the altitude of
the location and the average rainfall as predictor variables. These two variables are linearly
related. The amount of rainfall increases with the increase in altitude. This multicollinearity
leads to inaccurate estimates for the regression coefficients, leading to an increase in the
standard errors, and hence degrades the model's predictability.

Multicollinearity can be corrected by gathering more data points for the related factors and
ensuring that the linear relationship does not exist between the extended data points. The
correction is also possible by eliminating one of the factors with lower weightage. If
multicollinearity cannot be addressed with these two methods, we can use ridge regression.

LASSO regression

The term LASSO stands for Least Absolute Shrinkage Selection Operator. The coefficients
that tend to zero in ridge regression are set to zero in LASSO regression, and such factors
can easily be eliminated from the predictor function equation. LASSO regression is
generally used when there is a very large number of variables, since LASSO automatically
does the variables selection.

Data clustering

So far, we have primarily explored supervised learning methods where we have a historical
trail of data that is used for training the machine learning models. However, there is a very
common scenario where the machine needs to classify objects or entities into various groups
based on predefined or runtime categories. For example, in the dataset that contains
information about employees, we need to categorize the employees based on one or more
attributes combined. With this, the goal is to group similar objects and partition the data
based on similarities.

[73]

Learning from Big Data Chapter 3

The general idea is to have a consistent attribute map within a group and distinct behaviors
across the groups. Unlike the supervised learning methods, there are no dependent
variables in the case of data clustering. A cluster represents various groups of entities that
demonstrate similarities in attributes. At a broader level, clustering has two types:

e Fixed clustering: In this type of clustering, each of the data points belongs to
exactly one group or cluster. The boundaries are clearly defined and clearly
separate the data points.

¢ Probabilistic clustering: In this case, for each data point, the probability that the
object (instance of an entity) belongs to a particular cluster. As a general rule, the
cluster to which the object belongs with the highest probability takes precedence
over the others.

Unlike supervised learning algorithms, the process and methods for clustering cannot be
fully standardized. The outcomes differ based on the dataset and specific use cases. There
are various models considered for data clustering. Based on these models, various
algorithms are developed. Some of the most commonly used models are as follows:

¢ Connectivity models: These models are based on the data distance between
various objects. These models take two approaches for generalization. In the first
approach, all the independent data points are treated as separate clusters and as
per the relative distance, the clusters are created. In the second approach, the data
points are distributed in clusters and as the relative distance between the data
points decreases, they are distributed into other clusters. The hierarchical
clustering algorithm implements connectivity model.

e Centroid models: In these models, the clusters are formulated around a focal
point. The number of focal points is predefined and the data points with
similarities to the focal point are grouped into a cluster. In this method, the
number of clusters is predefined. K-means clustering is one of the most popular
implementations of the centroid model.

e Distribution models: In these models, the data points are categorized based on
the applicability of statistical data distribution, for example, normal or Gaussian
distributions. These are iterative models that calculate the maximum likelihood of
entity parameters being part of the standard distribution.

¢ Density models: These are iterative models that scan the data points into
multiple dimensions and create boundaries based on data point density within
the data space. The regions are isolated based on the density of the data points
and the isolated regions formulate the clusters.

[74]

Learning from Big Data Chapter 3

The K-means algorithm

K-means is one of the most popular unsupervised algorithms for data clustering, which is
used when we have unlabeled data without defined categories or groups. The number of
clusters is represented by the k variable. This is an iterative algorithm that assigns the data
points to a specific cluster based on the distance from the arbitrary centroid. During the first
iteration, the centroids are randomly defined and the data points are assigned to the cluster
based on the least vicinity from the centroid. Once the data points are allocated, within the
subsequent iterations, the centroids are realigned to the mean of the data points and the
data points are once again added to the clusters based on the least vicinity from the
centroids. These steps are iterated to the point where the centroids do not change more than
the set threshold. Let's illustrate the K-means algorithm with three iterations on a sample
two dimensional (x1, x2) dataset:

Iteration 1:

1. During the first iteration, select two centroids for the two clusters: (C1 - 150:120)
and (C2 - 110:100)

2. For each data point (x1:x2), calculate the ordinary straight line distance from C1
and C2

3. Put the data points into C1 or C2 based on the minimum distance from the
centroid

4. For the data points in C1, calculate the new CI as the mathematical mean of all
the points (162.50:151.67)

5. For the data points in C2, calculate the new C2 as the mathematical mean of all
the points (110:93.33):

[75]

Learning from Big Data Chapter 3
|x1 x2 Dist: from C1 |Dist: from C2 |Cluster Ci1s C2s
1 150 120[C1 0.00 44.72|C1 150 120 0 0
2 165 180 61.85 97.08|C1 165 180 0 0
3 140 100 22.36 30.00/C1 140 100 0 0
4 200 200 94.34 134.54|C1 200 200 0 0
5 120 90 42.43 14.14|C2 0 0 120 90
6 110 100|C2 44.72 0.00|C2 0 0 110 100
7 180 200 85.44 122.07|C1 180 200 0 0
8 100 90 58.31 14.14|C2 0 0 100 90
9 140 110 14.14 31.62|C1 140 110 0 0
| [new C1[162.50] 151.67] newC2 | 110] 93.33
(] 250
c2] 110] 100]
200 " *
150 2 N
100 >,<D (3 A €1)
% k2 \ VAN K/
0 T T T T
0 50 100 150 200 250

Iteration 2:

Figure 3.12 Mathematical mean calculation for cluster points

For the new centroids calculated in iteration 1, realign the data points into K1 and
K2 once again, based on the minimum distance from the new centroids, and
repeat the process to calculate new centroids:

|x1 x2 Distance from C1 |Distance from C2 [Cluster Cis C2s
1 150 120 34.04 48.07|C1 150 120 0 0
2 165 180 28.44 102.65[C1 165 180 0 0
3 140 100 56.35 30.73|C2 0 0 140[100
4 200 200 61.17 139.56(C1 200/ 200 0 0
5 120 90 74.89 10.54|c2 0 0 120 90
6 110 100 73.66 6.67[C2 0 0 110[100
7 180 200 51.40 127.58[C1 180] 200 0 0
8 100 20 87.80 10.54[c2 0 0 100 90
9 140 110 47.35 34.32|C2 0 0 1400 110
[new c1] 173.75[175.00] [new c2] 122] 98.00
[162.5] 151.67| 250
c2?| 110 93.33
[200 P N \
150 \ L\C
2 N /
100 \eﬁi N -
50
0 !
0 50 100 150 200 250

Figure 3.13 K-means algorithm: iteration-2

[76]

Learning from Big Data Chapter 3

Iteration3: The centroids for iteration 3 is as follows:

|x1 x2 Dist from C1 |Dist from C2 |Cluster C1s C2s

1] 150 120 59.91 35.61|C2 0 0 150 120
2] 165] 180 10.08 92.59|C1 165 180 0 0
3] 140[100 82.24 18.11]|C2 0 0 140 100
4] 200[200 36.25 128.41[C1 200 200 0 0
5| 120 90 100.57 8.25|C2 0 0 120 90
6] 110 100 98.43 12.17|C2 0 0 110 100
7] 180[200 25.77 117.34[C1 180 200 0 0
8] 100 90 112.53 23.41|C2 0 0 100 90
o 140[110 73.24 21.63|C2 0 0 140 110
[new €1] 181.67] 193.33] [new C2][126.6666667] 101.67

250

200

o R,

L1
100 <> —s 3\ —ca
o c2
0 50 100 150 200 250

Figure 3.14 K-means algorithm: iteration-3

K-means implementation with Spark ML

We will proceed with the implementation of K-means with Spark ML as follows:

import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.clustering.KMeans

val kmeansSampleData = sc.textFile("aibd/k-means-sample.txt")
val labeledData = kmeansSampleData.map { line =>
val parts = line.split(',")

LabeledPoint (parts (0) .toDouble, Vectors.dense (parts(l).toDouble,
parts (2) .toDouble))
}.cache () .toDF

val kmeans = new KMeans ()

.setK(2) // Setting the number of clusters
.setFeaturesCol ("features")

.setMaxIter (3) // default Max Iteration is 20
.setPredictionCol ("prediction")

.setSeed (1L)

[77]

Learning from Big Data Chapter 3

val model = kmeans.fit (labeledData)

summary.predictions.show
model.clusterCenters.foreach (println)

The output of the code will look like the following;:

Data dimensionality reduction

So far in this chapter, we have looked at the basic concepts of supervised and unsupervised
learning with the simplest possible examples. In these examples, we have considered a
limited number of factors that contribute to the outcome. However, in the real world, we
have a very large number of data points that are available for analysis and model
generation. Every additional factor adds one dimension within the space, and beyond the
third dimension, it becomes difficult to effectively visualize the data in a conceivable form.
With each new dimension, there is a performance impact on the model generation exercise.

In the world of big data, where we now have the capability to bring in data from
heterogeneous data sources, which was not possible earlier, we are constantly adding more
dimensions to our datasets. While it is great to have additional data points and attributes to
better understand a problem, more is not always better if we consider the computational
overhead due to additional dimensions in the dataset.

[78]

Learning from Big Data Chapter 3

If we consider our datasets as rows and columns, where one row represents one instance of
an entity and the columns represent the dimensions, most machine learning algorithms are
implemented column-wise. These algorithms perform more and more slowly as we add
more columns. Once again referring to the human brain analogy we considered in chapter
1, Big Data and Artificial Intelligence Systems, when we drive a car, the human brain
constantly receives a large number of inputs (data dimensions). Our brain can effectively
consider the dimensions that are most significant, ignore some of the input, and merge
other input to form a singular perception point.

We need to apply similar techniques to considering the most important dimensions that can
accurately model the scenario, based on a reduced number of factors within the dataset.
This process of reduction of factors is termed Data Dimensionality Reduction (DDR). One
of the imperatives while considering dimensionality reduction is that the model should
convey the same information without any loss of insight or intelligence. Let's consider some
basic techniques that can be used for DDR, before taking a deeper dive into advanced
techniques such as singular value decomposition (SVD) and principal component
analysis (PCA):

e Dimensions with missing values: As we gather data from various sensors and
data sources, it is possible that for some of the factors, there is a large number of
missing observations. In such cases, we use a default value or the mean of the
other observations to replace the missing values. However, if the number of
missing values crosses a threshold (percentage of observations with missing
values of the total number of observations), it makes sense to drop the dimension
from the model since it does not contribute to the accuracy of the model.

¢ Dimensions with low variance: Within the dataset, if we have some dimensions
for which the observations do not vary, or vary with a very low differential, such
dimensions do not contribute to the model effectiveness. Factors with low
variance across observations can be eliminated.

¢ Dimensions with high correlation: Within the dataset, if we have two or more
dimensions that relate to each other, or they represent the same information in
different measurement units, the factors can be ignored without any impact on
the model's accuracy.

[79]

Learning from Big Data Chapter 3

Now, let's look at the following dataset:

High Correlation
y x1 x2 x3 x4 X5 X6
100 2l 1 75 18 1 2
110] . 4 - 21 28 2 4
M
120 @'\"" & S 32 61 5 10
> S
115| = 56 39 2 4
125 1 3 1 73 81 3 6
121 1 97 59 7 14

Figure 3.15 Sample dataset

In this example dataset, x1 has a lot of missing values, x1 has a lot of missing values, x2 has
no variance among values, and x5 and x6 are highly correlated, hence one of the factors can
be eliminated without affecting the model's accuracy.

Singular value decomposition

As we have seen in the previous section, reducing the dimensions of the datasets increases
the efficiency of the model generation, without sacrificing the amount of knowledge
contained in the data. As a result, the data is compressed and easy to visualize in fewer
dimensions. SVD is a fundamental mathematical tool that can be easily leveraged for
dimensionality reduction.

Matrix theory and linear algebra overview

Before we try to understand SVD, here is a quick overview of linear algebra and matrix
theory concepts. Although a comprehensive discussion on these topics is outside the scope
of this book, a brief discussion is definitely in order:

e Scalar: A single number is termed a scalar. A scalar represents the magnitude of
an entity. For example, the speed of a car is 60 miles/hour. Here, the number 60 is
a scalar.

¢ Vectors: An array of multiple scalars arranged in an order is called a vector.
Typically, vectors define magnitude as well as direction, and are considered
points in space.

[80]

Learning from Big Data Chapter 3

e Matrix: This is a two-dimensional array of scalars. Each element of a matrix is
represented by a coordinate index. A matrix is denoted by a capital letter, for
example A, and individual elements are denoted with subscripts, as A,,,. A

matrix can be defined as follows:

Here, Ais the i" row of A and A;is the j" column of A. Matrix A has a shape of
height, m, and a width of n.

e Transpose of a matrix: When we transpose a matrix, it results in a mirror image
of the matrix structure, where the rows of the resultant matrix are the columns of
the base matrix:

11 12 13 Al,l 21 31 1 2 3 1 4 7
A= b1 ‘ha 3 =A"= Au b2 3 A= 5 6 =A"= 5 8
A A 78 9 3 6 9

31 32 33 13 23 33

Vectors are matrices with one column often represented as a transpose of a row
matrix:

X = [X;, Xpy Xy oeen Xo]

e Matrix addition: If matrices A and B have the same shape (dimensions),
with m height and n width, they can be added to form a C matrix, as follows:

C=A+B=> C;,,'= Ai,j + Bi.j

A scalar can be added to or multiplied by a matrix, as follows:

D=aB+c=>D;=aB;+c

[81]

Learning from Big Data Chapter 3

e Matrix multiplication: In order to multiply matrix A, , with matrix B, matrix B
needs to have n number of rows. In that case, if A is of the shape ,, and B is of
the shape ,,, then C is of the shape ,,,:

C=AB=>Cij=)YA,B,,

(A B)X(E F)_(AE+BG AF+BH)
Cc D G H) \CE+DG CF+DH

The standard product of two matrices is not just the product of individual
elements with positional correspondence.

¢ The properties of a matrix product are:
e Distributability: A(B+C)=AB + AC
¢ Associativity: A (BC)=(AB) C
¢ Not commutative: AB is not always equal to BA
e (AB)'=B" A’

e Identity and inverse matrices: The identity matrix is a square matrix with all the
diagonals as 1 and non-diagonal elements as 0. The identity matrix does not
change the value of a matrix when we multiply the matrix with the identity
matrix. An n-dimensional identity matrix is denoted as I,. The inverse of a square
matrix is a matrix that, when multiplied with the original matrix, results in an
identity matrix:

ATA=In

e Diagonal matrix: This is similar to an identity matrix. All the diagonal elements
are nonzero and the non-diagonal elements are zero.

e Symmetric matrix: This is a square matrix that is equal to the transpose of a
matrix.

[82]

Learning from Big Data Chapter 3

e Linear regression in matrix form: Let's consider the simple linear regression
model equation: Y;= o+ px; +e{i=1, ..., nk

_Yl :ﬂo +161X1 +&]
Yz =ﬂo +)81X2 +é,

Ki =)60 +ﬂ1Xn +gn
Let's represent these equations in matrix form with individual matrices, as follows:

Y, 1 X p
Y= L X= L X B:[ﬁo} €= &

Y 1 X g

n n n

With these definitions of the matrices, the linear regression can be expressed as:
Y=XB+¢€

Note the simple nature of computation of the equation when represented in matrix form.

With this background in matrix theory, it will now be easy to understand SVD as applicable
to dimensionality reduction. Let's first understand how real-world entities are represented
in matrix form. The columns of a matrix represent various dimensions for the individual
instances, which are represented by a row. The SVD theorem says that for any m x m matrix
A, there exists an m x r orthogonal matrix U, an n x r orthogonal matrix), and an r x r diagonal
matrix D with nonnegative values on the diagonal so that A= UYV'". This can be represented
diagrammatically as follows:

[83]

Learning from Big Data Chapter 3
Data Matrix Left Singular Vectors Singular Values Right Singular Vectors
A U 1 VT
I — T
r n

A[mxn] i l"'[mxr] Z [rxr] (V[nxr])T

Figure 3.16 Illustration of singular value decomposition

The important properties of singular value
decomposition

Now, let's take a look at some of the important properties of SVD:

U, }, and V are unique

It is always possible to decompose a real matrix A into 4=V VT

U and V are orthonormal matrices:

e U'U=Iand V'V =I (I represents an identity matrix)

2 is a diagonal matrix where the nonzero diagonal entries are positive and sorted

in descending order (o, > 0, 2 0;....20,....>0)

SVD with Spark ML

Let's implement SVD code using the SparkML library:

import
import
import
import
import

org.
org.
org.
org.
org.

apache.
apache.
apache.
apache.
apache.

spark
spark
spark
spark
spark

.mllib.
.mllib.
.mllib.
.mllib.
.mllib.

linalg.Matrix

linalg.Vectors

linalg.Vector
linalg.distributed.RowMatrix
linalg.SingularValueDecomposition

[84]

Learning from Big Data Chapter 3

val data = Array (Vectors.dense(2.0, 1.0, 75.0, 18.0, 1.0,2),
Vectors.dense (0.0, 1.0, 21.0, 28.0, 2.0,4),

Vectors.dense (0.0, 1.0, 32.0, 61.0, 5.0,10),

Vectors.dense (0.0, 1.0, 56.0, 39.0, 2.0,4),

Vectors.dense (1.0, 1.0, 73.0, 81.0, 3.0,6),

Vectors.dense (0.0, 1.0, 97.0, 59.0, 7.0,14))

val rows = sc.parallelize(data)

val mat: RowMatrix = new RowMatrix (rows)

val svd: SingularValueDecomposition[RowMatrix, Matrix] = mat.computeSVD (3,
computeU = true)

val U: RowMatrix = svd.U // The U factor is stored as a row matrix

val s: Vector = svd.s // The sigma factor is stored as a singular vector
val V: Matrix = svd.V // The V factor is stored as a local dense matrix

The output of the code will look like the following;:

[85]

Learning from Big Data Chapter 3

The principal component analysis method

PCA is one of the most popular methods used for dimensionality reduction. In a real-world
scenario, we have thousands of dimensions in which a data point is explained. However, it
is possible to reduce the number of dimensions without the loss of significant information.
For example, a video camera captures the scene in three-dimensional space and it is
projected onto a two-dimensional space (TV screens); despite the elimination of one
dimension, we are able to perceive the scene without any problems. The data points in
multidimensional space have convergence in fewer dimensions. As a technique, PCA
focuses on getting a direction with the largest variance between the data points while
getting to the best reconstruction of the dataset, without losing information. Let's illustrate
this with a two-dimensional dataset:

Principal
Component

Figure 3.17 Illustration of Principal Component

This is a two-dimensional dataset where a data point is uniquely defined by x1 and x2
values. As we can see, the data is scattered linearly as a function of x1 and x2. A regression
line maps all the data points and is a line that captures the maximum data variation. If we
consider a new axis, which is represented by z, we can represent the dataset with a single
dimension without much loss. On the new z axis, we get the minimum error while moving
from two dimensions to one dimension. There is a fundamental difference between linear
regression and PCA. In linear regression, we try to minimize the vertical distance between
the data point and the point in the regression line. However, in PCA, we try to minimize the
distance between the data point and the regression line in an orthogonal direction, and in
PCA, there is no dependent variable to calculate.

[86]

Learning from Big Data Chapter 3

The PCA algorithm using SVD

Now, let's look at the steps to implement the PCA algorithm using SVD. Consider the

training set, 2(1),2(2),...,x (m), with m data samples. For this dataset, we will progress
with the steps as follows:

1. Mean normalization: Deduct the mean value of all the data points from the
individual data point. With this, we increase the efficiency of model training and

Z z]
get a better error surface shape i=1 . Replace each x(j) with (x, - u).
2. Feature scaling: If the different features have different scales, if x1 is the size of a
house and x2 is the number of bedrooms, they have different measurement
scales. In that case, x2 will not play any role since it is orders smaller than x1.
With normalization, we will reduce the impact of large-value features extracted
on a different scale and allow small-value features to contribute to the equation.

1 m
- Z(m(i)
3. Calculate the covariance matrix sigma = M
4. Apply SVD to the sigma to calculate U, X, and V.

5. Get the reduced matrix (UReduce) from U based on the number of dimensions to
which we want to model our data. In our example, it is from two dimensions to
one dimension. This is simply done by first obtaining k (number of intended
dimensions) columns of the U matrix.

6. Get the z axis as z = UReduce’ (x).

Implementing SVD with Spark ML

It is very easy to implement the SVD algorithm explained earlier with Spark ML. The code
for it is given for your reference:

import org.apache.spark.mllib.linalg.Matrix
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.linalg.distributed.RowMatrix

val data = Array(Vectors.dense(2.0, 1.0, 75.0, 18.0, 1.0,2),
Vectors.dense(O 0, 1.0, 21.0, 28.0, 2.0,4),
Vectors.dense (0.0, 1.0, 32.0, 61.0, 5.0,10),
Vectors.dense (0.0, 1.0, 56.0, 39.0, 2.0,4),
Vectors.dense (1.0, 1.0, 73.0, 81.0, 3.0,6),
Vectors.dense (0.0, 1.0, 97.0, 59.0, 7.0,14))

Learning from Big Data Chapter 3

>
val rows = sc.parallelize(data)

val mat: RowMatrix = new RowMatrix (rows)

// Principal components are stored in a local dense matrix.
val pc: Matrix = mat.computePrincipalComponents (2)

// Project the rows to the linear space spanned by the top 2 principal
components.
val projected: RowMatrix = mat.multiply (pc)

projected.rows.foreach (println)

Here is the program output with two principal components out of a six-dimensional
dataset:

Content-based recommendation systems

With the advancement of rich, performant technology and more focus on data-driven
analytics, recommendation systems are gaining popularity. Recommendation systems are
components that provide the most relevant information to end users based on their
behavior in the past. The behavior can be defined as a user's browsing history, purchase
history, recent searches, and so on. There are many different types of recommendation
systems. In this section, we will keep our focus on two categories of recommendation
engines: collaborative filtering and content-based recommendation.

Content-based recommendation systems are the type of recommendation engines that
recommend items that are similar to items the user has liked in the past. The similarity of
items is measured using features associated with an item. Similarity is basically a
mathematical function that can be defined by a variety of algorithms. These types of
recommendation systems match user profile attributes, such as user preferences, likes, and
purchases, with attributes of an item using algorithmic functions. The best matches are
presented to the user.

[88]

Learning from Big Data Chapter 3

The following picture depicts a high-level approach to a content-based recommendation

engine:
ltem User /1 Recommen
Profile Profile I dation
f (x)

Figure 3.18 Content based recommendation

Let's now go through an example of content-based filtering. We have used movie data with
this example. We will eventually use users' rating data as well. The following screenshot
shows how the datasets look:

[MovieData | users Data |

Movie Genres User Movie Ratings

Movie 1 Action,Romance Userl Moviel 1
Movie 2 Adventure User2 Moviel 1
Movie 3 Action,Adventure, Thriller Userl Movied 2
Movie 4 Romance Userl Movies 2
Movie 5 Romance, Thriller Userl Movies 2
Movie 6 Action,Romance, Thriller User2 Moviet 2

In the movies dataset, we have the Movie column, which represents the movie name, and
the Genres column, which represents the genres the movie belongs to. In the user rating
dataset, we have user likes, represented by the number 1, and dislikes, represented by the
number 2. No ratings have NULL or blank values.

The following Spark code can be used to load the data:

import org.apache.spark.ml.feature.{CountVectorizer,HashingTF, IDF,
Tokenizer}

val movieData = spark.createDataFrame (Seq(
("Moviel", Array("Action", "Romance")),
("Movie2", Array ("Adventure")),

("Movie3", Array ("Action", "Adventure","Thriller")),

("Movied", Array ("Romance")),

("Movieb", Array ("Romance","Thriller")),

("Movie6", Array ("Action", "Romance","Thriller"))

)) .toDF ("Movie", "Genres")

val usersData = spark.createDataFrame (Seq(

[891]

Learning from Big Data Chapter 3

"Userl", "Moviel", 1),
"User2","Moviel", 1),
"Userl", "Movie4d",2),
"User2", "Movie5", 2)
"Userl", "Movieb6", 2)
"User2", "Movieb6", 2)

)) .toDF ("User", "Movie", "Ratings")

4

4

(
(
(
(
(
(

Now, we need to calculate the TF-IDF score for each of the movie's records. TF (Term
Frequency) is the frequency of terms in a data row or document. In our example, terms
would be the genres to which a movie belongs. So, for example, the TF for the Action genre
for the row belonging to Moviel would be 1. We have chosen a simple raw count for
calculating TF. The following is an example of how TF calculation would look in our data
sheet:

Movie Matrix (TF) Simple Count

Movie Action Adventure Romance Thriller

Movie 1 1 1

Movie 2 1

Movie 3 1 1 1
Movie 4

Movie 5

Movie 6 1] 1 1

There are many variants of TF calculations available. You have to choose
which TF variant you want to use in your application, depending on
multiple factors, such as type of data and number of records. Further
details about it can be found at the following links:

® https://nlp.stanford.edu/IR-book/html/htmledition/tf-
idf-weighting-1.html

® https://en.wikipedia.org/wiki/Tf%$E2%80%931df

The following Spark code can be used for calculating TF. We have used the hashingTF
library for the process:

val hashingTF = new

HashingTF () .setInputCol ("Genres") .setOutputCol ("rawFeatures")
val featurizedData = hashingTF.transform(movieData)
featurizedData.show (truncate=false)

[90]

https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf

Learning from Big Data

Chapter 3

The following is the output of the previous code:

PR oo m e o o m e m e e e e oo +
| rawFeatures
PR o oo +-
IMoviel| [Action, Romancel

|Movie |Genres

|Movie2 | [Adventure]]
IMovie3| [Action, Adventure, Thriller]
IMovied| [Romance]

5| [Romance, Thriller]

[
[

al,[1.8,1.81)
7,1 N:

Next, we calculate the inverse document frequency (IDF). IDF finds out whether a term is
common or rare across all documents in the given corpus. It's a log-based mathematical
function of the total number of documents, divided by the total number of documents in
which the term has appeared. So, IDF can be calculated using the following formula (taken
from Wikipedia):

with

idf(t,D) = o

g|{d€D:t€d}|

« N total number of documents in the corpus N = |D|
+ |{d € D :t € d}| : number of documents where the term ¢ appears (i.e., tf(t, d) # 0). If the term is not in the corpus, this
will lead to a division-by-zero. It is therefore common to adjust the denominatorto 14 |{d € D : ¢ € d}|.

In our Excel sheet, we calculated IDF based on an earlier formula. Please see the following
screenshot to understand how it looks in our example:

13
14

16
17
18
19
20
21
22
23
24
25
26
27

Movie

Movie 1
Movie 2
Movie 3
Movie 4
Movie 5
Movie 6

DF
IDF
N=

B

A =LN((B27+1)/(B25+1))

i) Movie Matrix (TF) Simple Count

Action

Adventure Romance

1 1
1
1 1
1
1
1 o 1
2 2 4
0.559615788] 0.8472979 0.336472237
6 6 6

Thriller

3

0.559615788
6

[91]

Learning from Big Data Chapter 3

After you have calculated the IDF, to get complete usage you need to multiply the TF
number by the IDF number. Here is how the TF*IDF output would look in our sheet:

Movie Matrix (TF*IDF)

Maovie Action Adventure Romance Thriller

Movie 1 0.559615788 0.336472237

Movie 2 0.8472979

Movie 3 0.539615788 0.8472979 0.559615788
Movie 4 0.336472237

Movie 5 0.336472237 0.559615788
Movie & 0.559615788 0.336472237 0.559615788

The following Spark code will calculate the TF*IDF score for you:

val idf = new IDF () .setInputCol ("rawFeatures") .setOutputCol ("features")
val i1dfModel = idf.fit (featurizedData)

val rescaledData = idfModel.transform(featurizedData)
rescaledData.select ("Movie", "rawFeatures", "features") .show ()

The output of the preceding code looks as follows:

3,1e]1,[1.0,1.01) 26 ' '
I(zo [1 1,[1.81) |(20,[13], [0

|(20,[3,13,14],[1.08,1.08,1.8])|(20,[3,13,14], [0
| (20, [101,[1.08]) |(28,[18],[0.:
|(z0 [10 14] [1 0,1. 0]) I(zo [10 14] ;]

[8]

Now, you need to determine the user vector from user ratings. The user profile vector is
calculated based on each movie genre. It is the vector dot product of all user ratings for a
given genre and user ratings for all movies.

[92]

Learning from Big Data Chapter 3

Frequently asked questions

Q: What are the two basic categories of machine learning and how do they differ from each
other?

A: Machine learning can be broadly categorized into supervised and unsupervised learning. In
the case of supervised learning, the model is trained based on the historical data, which is
treated as the version of truth, termed training data. In the case of unsupervised learning,
the algorithm derives inferences based on the input data, without labeled training data. The
hidden patterns within the datasets are derived on the fly.

Q: Why is the Spark programming model suitable for machine learning with big datasets?

A: Spark is a general-purpose computation engine based on the fundamentals of distributed
resilient computing. The large datasets are seamlessly distributed across cluster nodes for
faster model generation and execution. Most of the underlying details are hidden from the
data science engineer and hence there is a very limited learning curve involved in
implementing machine learning with Spark. Spark is inherently fault-tolerant and very
effectively leverages resource managers (Yarn, Mesos, and so on). It is one of the most
popular Apache projects with a lot of community interest.

Q: What is the difference between regression and classification?

A: Regression is a technique that is used for predicting or forecasting the occurrence of an
event or value of a continuous variable (dependent variable), based on the value of one or
many independent variables. Classification is used as a grouping mechanism where the
data points are tagged under a discrete category or cluster.

Q: What is dimensionality reduction and what is the basic purpose of it?

A: With the evolution of big data techniques, we are generating data from lots of
heterogeneous sources. While it is true that more data is better data, modeling all the
independent variables that are available requires great computational power. There are
some dimensions that are redundant and some of the dimensions do not have a significant
impact on the outcome. Dimensionality reduction techniques help us to reduce the number
of dimensions without any loss of information by eliminating insignificant and redundant
variables. This results in lowering the computational requirement, as well as easy
visualization of the data within limited dimensions.

[93]

Learning from Big Data Chapter 3

Summary

In this chapter, we were introduced to the basic concepts of machine learning algorithms
and saw how the Spark programming model is an effective tool in leveraging big data
assets for machine learning.

We have taken a deep dive into some of the supervised and unsupervised algorithms, and
implemented those with Spark machine learning libraries. We will build on top of these
fundamentals in the subsequent chapters and understand how neural networks act as the
basic building blocks for creating intelligent machines.

[94]

Neural Network for Big Data

In the previous chapter, we established a basic foundation for our journey toward building
intelligent systems. We differentiated the machine learning algorithms in two primary
groups of supervised and unsupervised algorithms, and explored how the Spark
programming model is a handy tool for us to implement these algorithms with a simple
programming interface, along with a brief overview of the machine learning libraries
available in Spark. We have also covered the fundamentals of regression analysis with a
simple example and supporting code in Spark ML. The chapter showed how to cluster the
data using the K-means algorithm and a deep dive into the realm of dimensionality
reduction, which primarily helps us in representing the same information with fewer
dimensions without any loss of information. We have formed the basis for the
implementation of the recommendation engines with an understanding of principal
component analysis, content-based filtering, and collaborative filtering techniques. On the
way, we have also tried to understand some of the basics of matrix algebra.

In this chapter, we are going to explore the neural networks and how they have evolved
with the increase in computing power with distributed computing frameworks. The neural
networks take inspiration from the human brain and help us to solve some very complex
problems that are not feasible with traditional mathematical models. In this chapter, we are
going to cover:

¢ Fundamentals of neural networks and artificial neural networks
¢ Perceptron and linear models

¢ Nonlinearities model

Feed-forward neural networks

Gradient descent, backpropagation, and overfitting
e Recurrent neural networks

We will explain these concepts with easy-to-understand scenarios and corresponding code
samples with Spark ML.

Neural Network for Big Data Chapter 4

Fundamentals of neural networks and
artificial neural networks

The basic algorithms and mathematical modeling concepts we covered in the last chapter
are great when it comes to solving some of the structured and simpler problems. They are
simpler compared to what the human brain is easily capable of doing. For instance, when a
baby starts to identify objects through various senses (sight, sound, touch, and so on), it
learns about those objects based on some fundamental building blocks within the human
brain. There is a similar mechanism in all living beings with a difference in the level of
sophistication based on the evolution cycle.

A neurological study of the brains of various animals and human beings reveals that the
basic building blocks of the brain are neurons. These biological neurons are interconnected
with each other and are capable of transmitting signals simultaneously to thousands of
connected neurons. It is observed that in the more complex species, such as human beings,
the brain contains more neurons than less-complex species. For instance, it is believed that
the human brain contains 100 billion interconnected neurons. The researchers found a direct
correlation between the quantity and level of interconnection between the neurons and the
intelligence in various species. This has led to the development of artificial neural
networks (ANN), which can solve more complex problems, such as image recognition.

ANN s offer an alternate approach to computing and the understanding of the human brain.
While our understanding of the exact functioning of the human brain is limited, the
application of ANNSs for solving complex problems has so far shown encouraging results
for primarily developing a machine that learns on its own based on the contextual inputs,
unlike the traditional computing and algorithmic approach.

In our quest to developing cognitive intelligence for machines, we need to keep in mind
that neural networks and algorithmic computing do not compete with each other, instead,
they complement each other. There are tasks more suited to an algorithmic approach than a
neural network. We need to carefully leverage both to solve specific problems. There are a
lot of systems where we require a combination of both approaches.

[96]

Neural Network for Big Data Chapter 4

Similar to the biological neurons, the ANNSs have input and output units. A simple ANN is
represented as follows:

Ih_lc_h m

Input

Figure 4.1 Structure of a simple ANN

An ANN consists of one input layer, which provides the input data to the network, one
output layer, which represents the finished computation of the ANN, and one or more
(depending on complexity) hidden layers, which is where actual computation and logic
implementation happens.

The theory of neural networks is not new. However, at the time of its origin, the
computational resources as well as datasets were limited in order to leverage the full
potential of the ANNs. However, with the advent of big data technologies and massively
parallel distributed computing frameworks, we are able to explore the power of ANNs for
some of the innovative use cases and solving some of the most challenging problems, such
as image recognition and natural language processing.

In the subsequent sections of this chapter, we will take a deep dive into the ANNs with
some simple-to-understand examples.

[97]

Neural Network for Big Data Chapter 4

Perceptron and linear models

Let's consider the example of a regression problem where we have two input variables and
one output or dependent variable and illustrate the use of ANN for creating a model that
can predict the value of the output variable for a set of input variables:

x1 X2 y
5 7 10
3 1 7
8 9 12
4 6 9
2 3 5
6 10 ?

Figure 4.2 Sample training data

In this example, we have x1 and x2 as input variables and y as the output variable. The
training data consists of five data points and the corresponding values of the dependent
variable, y. The goal is to predict the value of y when x1 =6 and x2 =10. Any given
continuous function can be implemented exactly by a three-layer neural network with n
neurons in the input layer, 21 + 1 neurons in the hidden layer and m neurons in the hidden
layer. Let's represent this with a simple neural network:

Input Layer Hidden Layer Output Layer
Q\O\x&
%,
4, =
2
x1 x2
5 7 -
W
3 1 = ¢ hg(x)
8 9 >V
4 6 v S
2 3 =
% oF
® N
M//JJ
%
r

Figure 4.3 ANN notations

[98]

Neural Network for Big Data Chapter 4

Component notations of the neural network

There is a standardized way in which the neural networks are denoted, as follows:

x, and x, are inputs (It is also possible to call the activation function on the input
layer)

There are three layers in this network: the input layer, output layer, and hidden
layer.

There are two neurons in the input layer corresponding to the input variables.
Remember, two neurons are used for illustration. However, in reality we are
going to have hundreds of thousands of dimensions and hence input variables.
The core concepts of ANN are theoretically applicable to any number of input
variables.

There are three neurons in the hidden layer (layer 2): (a*, a*, a*,).

The neuron in the final layer produces output A’,.

a”; represents activation (the value that is computed and output by a node) of
unit i in layer j. The activation function of a node defines the output of the node
for a set of input. The simplest and most common activation function is a binary
function representing two states of a neuron output, whether the neuron is
activated (firing) or not:
e For example, @’ is the activation of the first unit in the second
layer.

WY, represents the weight on a connector, 1 is the layer from which a signal is
moving, i represents the neuron number from which we are moving, and j
represents the neuron number in the next layer to which the signal is moving.
Weights are used for reducing the difference between the actual and desired
output of the ANN:
o For example, W”,, represents the weight for the connection
between two neurons from layer 1 to layer 2 for the first neuron in
the layer 1 and toward the second neuron in layer 2.

[99]

Neural Network for Big Data Chapter 4

Mathematical representation of the simple
perceptron model

The output of the neural network depends on the input values, activation functions on each
of the neurons, and weights on the connections. The goal is to find appropriate weights on
each of the connections to accurately predict the output value. A correlation between
inputs, weights, transfer, and activation functions can be visualized as follows:

Weights

Activation
function
2 L
g_ X3 @ @—» activation
£
Transfer
function

b bl

Figure 4.4 ANN components correlation

In summary, within an ANN, we do the sum of products of input (X) to their weights (W)
and apply the activation function f(x) to get the output of a layer that is passed as input to
another layer. If there is no activation function, the correlation between the input and

output values will be a linear function.

The perceptron is the simplest form of an ANN used for the classification

of datasets that are linearly separable. It consists of a single neuron with
varying weights and bias units.

We can represent the simple perceptron model as a dot product:

@(i z.w)

[100]

Neural Network for Big Data Chapter 4

Since we have multiple values of x, and x, in our example, the computation is best done
with a matrix multiplication so that all the transfer and activation functions can be parallely
computed. The mathematical model APIs are greatly tuned to utilize the power of
distributed parallel computation frameworks in order to perform the matrix
multiplications. Let's now consider our example and represent it with matrix notations. The
input dataset can be represented as x. In our example, this is a (5,2) matrix. The weights can
be represented as W',,;. The resultant matrix, (Z),isa5 by 3 matrix which is the activity of
the second (hidden) layer. Each row corresponds to a set of input values and each column
represents the transfer function or activity on each of the nodes in the hidden layer. This can
be illustrated in the following diagram:

SWW,+ 7w, swlt, + 7w, SWM 5+ 7WH,,
*51 *72 IWW+IWM, 3WH,+ 1w, 3WW 5+ 1WD,,
W(1)11 W(l)ll W(l'ls
3 1
s 5 8w, +ow,, 8w, + 9w, 8W, 5+ 9w,
4 6 (1) (1) (1)
) 3 W W, W3 4w(1)11+ Gw(l)21 4wt1)12+ 6\/\/(1)22 4w(1D13+ ¢5Wm23
X (5x2) Wi 2) 2w +3wWl,, 2w, + 3w, 2WM 5+ 3w,
2
z (5x3)

Number of nodes in Hidden Layer (3)

Figure 4.5: Each row corresponds to set of input values

With this, we have our first formula for the neural network. Matrix notation is really handy
in this case since it allows us to perform complex computation in a single step:

27 = Xw"

With this formula, we are summing up the products of input and the corresponding
synapse weights for each set of input. The output of a layer is obtained by applying an
activation function over all the individual values for a node.

The main purpose of an activation function is to convert the input signal of a node to an
output signal. As a parallel to the biological neuron, the output after application of an
activation function indicates whether a neuron is fired or not. Let's quickly understand
some of the most popular activation functions used within neural networks before
proceeding with the next steps in our linear perceptron model.

[101]

Neural Network for Big Data Chapter 4

Activation functions

Without an activation function, the output will be a linear function of the input values. A
linear function is a straight line equation or a polynomial equation of the first degree. A
linear equation represents the simplest form of a mathematical model and is not
representative of real-world scenarios. It cannot map the correlations within complex
datasets. Without an activation function, a neural network will have very limited capability
to learn and model unstructured datasets such as images and videos. The difference
between a linear and nonlinear function is illustrated in the following diagram:

600.00
500.00 Linear Function (Firs
Degree Polynomial)
400.00 Non-linear Function (Sixth
Degree Polynomial)
300.00
200.00
Data Points
100.00
0.00
0.00 50.00 100.00 150.00 200.00 250.00 300.00

Figure 4.6: Linear versus nonlinear functions

As we can see, the linear model that we get without use of the activation function cannot
accurately model the training data, whereas the multi-degree polynomial equation can
accurately model the training data.

Using a nonlinear activation function, we can generate nonlinear mapping between the
input and output variables and model complex real-world scenarios. There are three
primary activation functions used at each neuron in the neural network:

¢ Sigmoid function
e Tanh function
e Rectified linear unit

[102]

Neural Network for Big Data Chapter 4

Sigmoid function

The sigmoid function is one of the most popular nonlinear functions; it outputs 0 or 1 for
any x input value between -co and +co. The function can be mathematically and graphically
expressed as follows:

Diminishing Gradient Zone

1- ——

A: L 0.5

Active Gradient Zone

Figure 4.7: Sigmoid function

The function curve takes an S shape and hence the name sigmoid. As we can see in this
example, for the values of x between -2 and +2, the Y output values are very steep. A small
change in the value of X in this region contributes significantly to the value of the output.
This can be termed as an active gradient zone. For the purpose of simplicity, let's
understand this as a region on the curve with the highest slope. As the X values tends to be
between -co and +oo, the curve enters into a diminishing gradient zone. In this region, a
significant change in the value of X does not have a proportionate impact on the output
value. This results in a vanishing gradient problem when the model is trying to converge.
At this point, the network does not learn further or becomes extremely slow and
computationally impossible to converge. The best part with the sigmoid activation function
is that it always outputs 0 or 1, regardless of the input value X. This makes it an ideal choice
as an activation function for binary classification problems. For example, it is great for
identifying a transaction as fraudulent or not. Another problem with the sigmoid function is
that it is not zero-centered (0 < Output < 1). It is difficult to optimize the neural network
computation. This drawback is overcome by the tanh function.

[103]

Neural Network for Big Data Chapter 4

Tanh function

The hyperbolic tangent (tanh) function is a slight variation of the sigmoid function that is 0
centered. The function can be mathematically and graphically represented as follows:

Zero Centered Diminishing Gradient Zone

1.00 /f
0.50

f(x) = tanh(x) = 2 -1 0.00

I4+e™2

-0.50

-1.00

-4.00 -2.00 0.00 2.00 4.00 X

Active Gradient Zone

Figure 4.8: Tanh function

The range of the tanh function is between -1 and 1 and it is zero-centered; -1 < Output < 1.
In this case, the optimization is easy and this activation function is preferred over the
sigmoid function. However, the tanh function also suffers from a vanishing gradient
problem similar to the sigmoid function. In order to overcome this limitation, the Rectified
Linear units activation function, ReLu, is used.

ReLu

The ReLu function is mathematically and graphically represented as follows:

10 s

7y
ok &
A(x) = max(0,x) S
4r + /x‘
{& 7/

Ifx<0,R(x)=0 |/

=10 -5 5 10

Figure 4.9 ReLu function

[104]

Neural Network for Big Data Chapter 4

The mathematical form of this activation function is very simple compared to the sigmoid
or tanh functions and it looks like a linear function. However, this is a nonlinear function
that is computationally simple and efficient, hence it is deployed in deep neural networks
(the neural networks with multiple hidden layers). This activation function eliminates the
vanishing gradient problem. The limitation of using ReLu is that we can only use it for the
hidden layers. The output layer needs to use different functions for regression and
classification problems. The ReLu function simplifies and optimizes neural network
computation and convergence compared to the sigmoid and tanh functions. In the case of
the sigmoid and tanh functions, all the neurons within the hidden units fire during model
convergence. However, in the case of ReLu, some of the neurons will be inactive (for the
negative input values) and hence the activations are sparse and efficient. While the
efficiency due to the horizontal activation line is desirable, it introduces a problem of dying
ReLu. The neurons that go into the state due to negative x values do not respond to
variations in error or input values that makes the major part of the neural network passive.
This undesirable side effect of ReLu is eliminated by a slight variation of ReLu, called leaky
ReLu. In the case of leaky ReLu, the horizontal line is converted into a slight sloped non-
horizontal line (0.001x for x < 0), ensuring that the updates to the input values on the
negative side of the spectrum are alive. The leaky ReLu is graphically represented as
follows:

10 —
’ N
Y/
'l +’]//
=10 -5 5 10
ZoM
oigbﬂ
\

Figure 4.10: Leaky ReLu

[105]

Neural Network for Big Data Chapter 4

Nonlinearities model

With the background information about the activation functions, we now understand why
we need nonlinearities within the neural network. The nonlinearity is essential in order to
model complex data patterns that solve regression and classification problems with
accuracy. Let's once again go back to our initial example problem where we have
established the activity of the hidden layer. Let's apply the sigmoid activation function to
the activity for each of the nodes in the hidden layer. This gives our second formula in the
perceptron model:

° Z(Z) - Xw(l)
° a(Z) =f(z(2))

Once we apply the activation function, f, the resultant matrix will be the same size as z?.
That is, 5 x 3. The next step is to multiply the activities of the hidden layer by the weights on
the synapse on the output layer. Refer to the diagram on ANN notations. Note that we have
three weights, one for each link from the nodes in the hidden layer to the output layer. Let's
call these weights W*?. With this, the activity for the output layer can be expressed with our
third function as:

° Z(S) — a(Z) W(Z)

As we know, a® is a 5 x 3 matrix and W? is a 3 x 1 matrix. Hence, Z® will be a 5 x T matrix.
Each row representing an activity value corresponds to each individual entry in the training
dataset.

Finally, we apply the sigmoid activation function to Z(3) in order to get the output value
estimate based on the training dataset:

y =fz°)

The application of activation functions at the hidden and output layers ensures nonlinearity
in the model and we can model the nonlinear training dataset into the ANN.

Feed-forward neural networks

The ANN we have referred to so far is called a feed-forward neural network since the
connections between the units and layers do not form a cycle and move only in one
direction (from the input layer to the output layer).

[106]

Neural Network for Big Data

Chapter 4

Let's implement the feed-forward neural network example with simple Spark ML code:

object FeedF
def main (arg
val recordRe
val conf = n
.setMaster ("
.setAppName (
val sc = new
val numInput

orwardNetworkWithSpark {
s:Array[String]): Unit ={
ader:RecordReader = new CSVRecordReader (0,",")
ew SparkConf ()
spark://master:7077")
"FeedForwardNetwork-Iris")
SparkContext (conf)
s:Int = 4

val outputNum = 3

val iteratio
val multilLay
NeuralNetC
.seed (1234
.iteration
.optimizati

ns =1

erConfig:MultilLayerConfiguration = new

onfiguration.Builder ()

5)

s (iterations)

onAlgo (OptimizationAlgorithm
.STOCHASTIC_GRADIENT_DESCENT)

.learningRate (1le-1)

.11(0.01) .
.1ist (3)
.layer (0,
.activatio
.weightIni
Lbuild())
.layer (1,
.activatio
.weightIni
Lbuild())
.layer (2,

regularization(true) .12 (1le-3)

new Denselayer.Builder () .nIn (numInputs) .nOut (3)
n("tanh")
t (WeightInit.XAVIER)

new Denselayer.Builder () .nIn(3) .n0Out (2)
n("tanh")
t (WeightInit.XAVIER)

new

OutputLayer.Builder (LossFunctions.LossFunction.MCXENT)

.weightI
.activat
.nIn(2) .
.backpro
.build
val network:
MultiLayerNe
network.init

nit (WeightInit.XAVIER)
ion ("softmax")

nOut (outputNum) .build())
p(true) .pretrain(false)

MultiLayerNetwork = new
twork (multiLayerConfig)

network.setUpdater (null)

val sparkNet
SparkDl14jMul
val nEpochs:
val listBuff

work:SparkDl4jMultilayer = new
tilayer (sc, network)

Int = 6

er = new ListBuffer[Array[Float]] ()

(0 until nEpochs) .foreach{i =>

val net:Mult

iLayerNetwork =

sparkNetwork.fit ("file:///<path>/
iris_shuffled_normalized_csv.txt", 4, recordReader)

[107]

Neural Network for Big Data Chapter 4

listBuffer +=(net.params.data.asFloat () .clone())

;

println ("Parameters vs. iteration Output: ")
(0 until listBuffer.size).foreach{i =>
println (i+"\t"+listBuffer (i) .mkString) }

}

As we can see, the output value predicted by our model is not accurate. This is because we
have initialized the weights randomly and only forward propagated once. We need our
neural network to optimize the weights on each of the links between the input layer to the
hidden layer to the final output layer. This is achieved with a technique called
backpropagation, which we will discuss in the next section.

Gradient descent and backpropagation

Let's consider the following linear regression example where we have a set of training data.
Based on the training data, we use forward propagation to model a straight line prediction
function, h(x), as in the following diagram:

500

450

- Prediction Error) ,
o 3% \\\‘—{
3)
8w .
= Predicted Value
> 250
— L J
gJD 200 - 5 5
5 9 Predictor Function h(x)
= 10 — .
> Prediction Point
100
50
0 A

X (Input Variable)

Figure 4.11: Forward propagation to model a straight line function

[108]

Neural Network for Big Data Chapter 4

The difference between the actual and predicted value for an individual training sample
contributes to the overall error for the prediction function. The goodness of fit for a neural
network is defined with a cost function. It measures how well a neural network performed
with respect to the training dataset when it modeled the training data.

As you can imagine, the cost function value in the case of the neural network is dependent
on the weights on each neuron and the biases on each of the nodes. The cost function is a
single value and it is representative of the overall neural network. The cost function takes
the following form in a neural network:

C W, X,Y)

e W represents weights for the neural network
¢ X' represents the input values of a single training sample
e Y' represents the output corresponding X’

As we saw in Chapter 3, Learning from Big Data, the cost for all the training data points can
be expressed as a sum of squared error. With this, we get our fifth equation for the neural
network which represents the cost:

e C(W,X,Y)=]=X112(y-y")

Since the input training data is contextual and something that we cannot control, the goal of
a neural network is to derive the weights and biases so as to minimize the value of the cost
function. As we minimize the cost, our model is more accurate in predicting values for the
unknown data input. There is a combination of weights, W, that gets us the minimum cost.
Refer to figure 4.3, we have nine individual weights in our neural network. Essentially,
there is a combination of these nine weights that gets us the minimum cost for our neural
network. Let's further simplify our example and assume that we just have one weight that
we want to optimize in order to minimize the cost of the neural network hypothesis. We can
initialize the weight to a random value and test a high number of arbitrary values and plot
the corresponding cost on a simple two-dimensional graph, as follows:

Minimum Cost

Weight

— Cost

Figure 4.12: Weight-to-cost graph

[109]

Neural Network for Big Data Chapter 4

It may be computationally easy and feasible to calculate the minimum cost for a large
number of input weights selected at random. However, as the number of weights increases
(nine in our case) along with the number of input dimensions (just two in our example), it
becomes computationally impossible to get to the minimum cost in a reasonable amount of
time. In real-world scenarios, we are going to have hundreds or thousands of dimensions
and highly complex neural networks with a large number of hidden layers and hence a
large number of independent weight values.

As we can see, the brute-force optimization method for optimizing the weights will not
work for a large number of dimensions. Instead, we can use a simple and widely used
gradient descent algorithm in order to significantly reduce the computational requirement
in training the neural network. In order to understand gradient descent, let's combine our
five equations into a single equation, as follows:

J=3 12 (y -f(X W) W?)

In this case, we are interested in finding the rate of change in] with respect to W, which can
be represented as a partial derivative, as follows:

oJ
T ow
If the derivative equation evaluates to a positive value, we are going up the hill and not in
the direction of minimum cost, and if the derivative equation evaluates to a negative value,
we are descending in the right direction:

aJ aJ
I=w=+ T=aw="
[_RIGHT
g . WRonG J >
Positive Slope i Negative Slope
W W

Figure 4.13: Positive slope versus Negative

[110]

Neural Network for Big Data Chapter 4

Since we know the direction of negative slope, or the descent in the direction of reduced
cost for the neural network, we can save the cost of computation while going in the wrong
direction for the combinations of the weight values. We can iteratively go down the hill and
stop at a point where the cost gets to a minimum and does not change significantly with a
change in weight.

The neural network is trained when we get the combination of weights that results in the
minimum value for the cost function. With the increase in the number of dimensions and
the number of hidden layers, the optimization level due to the application of gradient
descent increases and it is possible to train the neural network. However, the gradient
descent works well only for a convex function relationship between weights and the cost. If
the relationship is non-convex, the gradient descent algorithm my get stuck in a local
minima instead of global minima. This is illustrated in the following diagram:

\Q Local Minima Global Minima

Cost ——

Weight >

Figure 4.14: Graph of local minima and global minima

Depending on how we use our input data in conjunction with the weights matrix, it may
not matter whether the cost function graph is non-convex in nature if we use the training
examples and the corresponding weights one at a time in order to test multiple values in the
direction of negative slope or gradient descent. This technique is called stochastic gradient
descent. As the number of features increase, the gradient descent becomes computationally
intensive and unreasonable for very complex problems and neural networks.

[111]

Neural Network for Big Data Chapter 4

Stochastic gradient descent is an iterative technique that can distribute the work units and
get us to the global minima in a computationally optimal way. In order to understand the
difference between gradient descent and the stochastic gradient descent, let's look at the
pseudocode for each:

Gradient Descent

for (i in all_training_examples)
gradient_descent_params = evaluate_gradient(loss_function, data, parameters)
parameters = parameters — learning_rate * gradient_descent_params

Stochastic Gradient Descent

for (i in all training_examples)
random_shuffle(training_data)
for (single_example in training_data)
gradient_descent_params = evaluate_gradient(loss_function, single_example, parameters)
parameters = parameters — learning_rate * gradient_descent_parameters

Figure 4.15: Difference between gradient and stochastic descent

Gradient descent pseudocode

We proceed with the gradient descent pseudocode:

1. Let w be some initial value that can be chosen randomly.
2. Compute the 9J/0W gradient.

3. If 9J/oW < t, where t is some predefined threshold value, EXIT. We found the
weight vector that gets the minimum error for the predicted output.

4. Update W. W= W -5 (9]J/0W) [s is called the learning rate. It needs to be chosen
carefully, if it is too large, the gradient will overshoot and we will miss the
minimum. If it is too large, it will take too many iterations to converge].

So far, we have traversed the ANN in one direction, which is termed as forward
propagation. The ultimate goal in training the ANN is to derive the weights on each of the
connections between the nodes so as to minimize the prediction error. One of the most
popular technique is termed backpropagation. The fundamental idea is that once we know
the difference between the actual value of the predictor variable based on the training
example, the error is calculated.

[112]

Neural Network for Big Data Chapter 4

The error in the final output layer is a function of the activation values of the nodes on the
previous hidden layer. Each node in the hidden layer contributes with a different degree for
the output error. The idea is to fine-tune the weights on the connectors so as to minimize
the final output error. This will essentially help us to define how the hidden units should
look based on the input and how the output is intended to look. This is an online algorithm
that receives training input, one at a time. We feed forward to get predictions for a class by
multiplying weights and the application of the activation function, get prediction errors
based on the true label, and push the error back into the network in the reverse direction.

Backpropagation model

The backpropagation model can be conceptually represented as follows:

S

Forward

Propagation

ml
..J

Backward Node Error
Propagation Prediction

Input
Features

Parameter

Training Data
Optimization

I+

Accumulated Error

Figure 4.16: Backpropagation model

[113]

Neural Network for Big Data Chapter 4

The backpropagation algorithm can easily be implemented in a staged manner. This is
computationally less demanding compared to the gradient descent:

e Initialize the model: In this step, the model is randomly initialized to a point
where the weights are selected with mathematical approximation and
randomness. This is the first step in the feed-forward network.

e Propagate forward: In this step, all the input units, hidden units, and the output
units are activated after adding the sum of the products of the neuron units and
weights starting from the input units with the training dataset. The output is
calculated by the application of the activation to the final output unit.
Understandably, the output at this stage is going to be far from the ideal expected
output.

e Cost calculation: At this point, we have the expected output (based on the
training dataset) and the actual output from an untrained neural network. The
cost function is typically a sum of squared errors for each of the training data
points. This is a performance matrix of how well the neural network fits the
training dataset as well as an indication of how well it is able to generalize the
unknown input values that the model is expected to receive once trained. Once
the loss function is established, the goal of the model training is to reduce the
error in subsequent runs and for the majority of the possible input that the model
will encounter in the real scenario.

e Mathematical derivation of the loss function: The loss function is optimized
using the derivative of the error with respect to the weights on each of the
connections within the neural network. For each of the connections in the neural
network at this point, we calculate how much effect the change in value of a
single weight (across the entire network) has on the loss function. Here are some
of the possible scenarios when we calculate the cost derivative with respect to the
weights:

e At a particular weight value we have a loss of 0, the model
accurately fits the input training dataset.

e We can have a positive value for the loss function but the
derivative is negative. In this situation, an increase in weight will
decrease the loss function.

e We can have a positive value for the loss function and the

derivative is also positive. In this situation, a decrease in weight
will decrease the loss function.

[114]

Neural Network for Big Data Chapter 4

¢ Backpropagation: At this stage, the error in the output layer is back-propagated
to the previous hidden layer and subsequently back to the input layer. On the
way, we calculate the derivative and adjust the weights in a similar manner as in
the previous step. The technique is called auto-differentiation in the reverse
direction of the forward propagation. At each node, we calculate the derivative of
the loss and adjust the weight on the previous connector.

e Update the weights: In the previous step, we calculated the derivatives on each
of the nodes in all the layers by propagating the overall error backward. In a
simplified manner, New Weight = Old weight - (Derivative Rate * Learning Rate). The
learning rate needs to be carefully selected with multiple experiments. If the
value is too high, we may miss the minima and if the value is too low the model
will converge extremely slowly. The weight on each connection is updated with
following guidelines:

e When the derivative of the error with respect to the weight is
positive, the increase in weight will proportionally increase the
error and the new weight should be smaller.

e When the derivative of the error with respect to the weight is
negative, the increase in weight will proportionally decrease the
error and the new weight should be larger.

o If the derivative of the error with respect to the weight is 0, no
further updates to the weights are required and the neural network
model has converged.

Overfitting

As we have seen in the previous sections, gradient descent and backpropagation are
iterative algorithms. One forward and corresponding backward pass through all the
training data is called an epoch. With each epoch, the model is trained and the weights are
adjusted for minimizing error. In order to test the accuracy of the model, as a common
practice, we split the training data into the training set and the validation set.

The training set is used for generating the model that represents a hypothesis based on the
historical data that contains the target variable value with respect to the independent or
input variables. The validation set is used to test the efficiency of the hypothesis function or
the trained model for the new training samples.

[115]

Neural Network for Big Data Chapter 4

Across multiple epochs we typically observe the following pattern:

Validation Set

\ | / ,\/o&
%
Peak / g\(‘

Tralnlng Set

— Error — Loss Function —

—— #of Epochs ——

Figure 4.17: Graph of overfitting model

As we train our neural network through a number of epochs, the loss function error is
optimized with every epoch and the cumulative model error tends to 0. At this point, the
model has trained itself with respect to the training data. When we validate the hypothesis
with the validation set, the loss function error reduces until a peak. After the peak, the error
again starts to increase, as illustrated in the preceding figure.

At this point, the model has memorized the training data and it is unable to generalize itself
for a new set of data. Each epoch after this point comes under an overfitting zone. The
model has stopped learning after this point and it will produce incorrect results or
outcomes. One of the easiest ways to prevent overfitting and create a model that generalizes
well is to increase the amount of training data. With an increase in training data, the neural
network is tuned for more and more real-world scenarios and hence generalizes well.
However, with every increase in the training dataset, the computational cost of each epoch
proportionately increases.

The machine has a finite capacity for modeling the data. The capacity of the ANN for
modeling can be controlled by changing the number of hidden units, modifications, and
optimizations of the number of training iterations, or changing the degree of nonlinearity
for the activation functions. Overfitting can be controlled by reducing the number of
features. Some features have insignificant contribution to the overall model behavior and
hence the outcome. Such features need to be algorithmically identified with multiple
experiments and iterations and eliminated from the final model generation. We can also use
regularization techniques wherein all the features are used but with a varying degree of
weightage based on the significance of the feature on the overall outcome.

[116]

Neural Network for Big Data Chapter 4

Another popular regularization technique for preventing overfitting is dropout. With this
technique, the nodes in the ANN are ignored (dropped) during the training phase. The
neurons that are ignored are selected in a random manner.

Recurrent neural networks

So far, we have seen the ANNs where the input signals are propagated to the output layer
in the forward pass and the weights are optimized in a recursive manner in order to train
the model for generalizing the new input data based on the training set provided as input.

A special case real-life problem is optimizing the ANN for training sequences of data, for
example, text, speech, or any other form of audio input. In simple terms, when the output of
one forward propagation is fed as input for the next iteration of training, the network
topology is called a recurrent neural network (RNN).

The need for RNNs

In the case of the feed-forward networks, we consider independent sets of inputs. In the
case of image recognition problems, we have input images that are independent of each
other in terms of the input dataset. In this case, we consider the pixel matrix for the input
image. The input data for one image does not influence the input for the next image that the
ANN is trying to recognize. However, if the image is part of a sequence or a frame within a
video input, there is a correlation or dependence between one frame to the next frame.

This is also the case in audio or speech input to the ANN. Another limitation of the ANNs
we have seen so far is that the length of the input layer needs to be constant. For example, a
network that recognizes an image of 27 x 27 pixels as input will consistently be able to take
input of the same size for training and generalization loops. An RNN can accommodate
input of variable lengths and hence is more susceptible to the changes in input signals.

In summary, the RNNs are good at dependent input and input with variable lengths.

[117]

Neural Network for Big Data Chapter 4

Structure of an RNN

A simple representation of an RNN is when we consider the output of one iteration as the
input to the next forward propagation iteration. This can be illustrated as follows:

yt
yo =g (W h)

W

h(t) = gh(W|X(t) + WRh(t—l))

Figure 4.18: Output of one iteration as input to the next propagation iteration

A liner unit that receives input, x, applies a weight, W,, and generates a hypothesis with an
activation function metamorphosis into an RNN when we feed a weight matrix, W, back to
the hypothesis function output in time with the introduction of a recurrent connection.

In the preceding example, t represents the activation in ¢ time space. Now the activity of the
network not only depends on the input signal, weights, and the activation function, but also
on the activity of the previous timestamp. In the equation format, everything is the same
except for the introduction of an additional parameter that represents output from the
previous activation in time (#-1).

Training an RNN

The RNN can be trained by unrolling the recurring unit in time into a series of feed-forward
networks:

Xir1 Xi+2

Figure 4.19: Unrolling the recurring unit into a series of feed-forward networks

[118]

Neural Network for Big Data Chapter 4

The leftmost unit is the activity of the network in time, t, which is a typical feed-forward
network with x, as input at time, ¢. This is multiplied by the weight matrix, W,. With the
application of the activation function, we get the output, y, at time, t. This output is fed as
input to the next unit along with the contextual and time input for the next unit in time, t+1.
If you notice, there is a fundamental difference in the feed-forward network and the RNN.

The weights within various input, hidden, and output layers in a feed-forward network are
different from each other and represent the significance of a dependent variable and the
connections on the overall output. In the case of the RNN, the weights across the units (W;)
that are unrolled in time are the same. Since we are going to have an output at each of the
units, we are going to have a cost associated with each of the units. Let's assume the cost of
the first unit at timestamp ¢ is C, and subsequent units as C,,; and C,,,. The RNN training can
be mathematically represented as:

ac _~C oc,
Wy~ LioWg =0 3w."3y, oh, 0g da Wy

Figure 4.20: RNN training mathematical expression

In this case, we are combining the gradients across units to calculate the overall cost of the
network. Since the weights are shared across the units, the cost function is a derivative with
respect to the weights and we can derive this with the same backpropagation and gradient
descent methods.

Once the RNN is trained, it can be used primarily for the scenarios where the input are
dependent on each other. In the case of language translation, we can use the connections
between two keywords to predict the next word in the sequence in order to increase the
accuracy of the language translation model.

[119]

Neural Network for Big Data Chapter 4

Frequently asked questions

Q: Are ANNSs exactly the same as the biological neurons in terms of information storage
and processing?

A: Although it cannot be stated with 100% certainty that the ANNs are an exact replica in
terms of memory and processing logic, there is evidence in medical science that the basic
building block of a brain is a neuron, and neurons are interconnected. When the external
stimulus is obtained or when is is generated by the involuntary processes, the neurons react
by communicating with each other by the transmission of neurosignals. Although the
functioning of the brain is very complex and far from fully understood, the theory of ANNs
has been evolving and we are seeing a great deal of success in modeling some of the very
complex problems that were not possible with traditional programming models. In order to
make modern machines that possess the cognitive abilities of the human brain, there needs
to be more research and a much better understanding of the biological neural networks.

Q: What are the basic building blocks of an ANN?

A: The ANN consists of various layers. The layer that receives input from the environment
(independent variables) is consumed by the input layer. There is a final layer that emits
output of the model based on the generalization of the training data. This layer is called the
output layer. In between the input and output layers there can be one or many layers that
process the signals. These layers are called hidden layers. The nodes within each of the
layers are connected by synopse or connectors. Each of the connectors has an optimum
weight so as to reduce the value of the cost function that represents the accuracy of the
neural network.

Q: What is the need for nonlinearity within an ANN?

A: The neural networks are mathematical models where the input are multiplied by the
synopse weights and the sum of all the node connection products constitutes the value on a
node. However, if we do not include nonlinearity with an activation function, multi-layer
neural networks will not exist. In that case, the model can be represented with a single
hidden layer. We will be able to model very simple problems with linear modeling. In order
to model more complex, real-world problems, we need multiple layers and hence
nonlinearity within the activation functions.

[120]

Neural Network for Big Data Chapter 4

Q: Which activation functions are most commonly used in building the ANNs?
A: Commonly used activation functions within the ANNSs are:

e Sigmoid function: The output value is between 0 and 1. This function takes a
geometrical shape of S and hence the name sigmoid.

e Tanh function: The hyperbolic tangent function (tanh) is a slight variation of the
sigmoid function that is O-centered.

¢ Rectified Linear Unit (ReLu): This is the simplest, computationally optimized,
and hence most popularly used activation function for the ANNs. The output
value is 0 for all negative input and the same as the value of input for positive
input.

Q: What is a feed-forward ANN and how are the initial values of weights selected?

A: A single pass through the network from the input layer to the output layer via the
hidden layers is called a forward pass. During this, the nodes are activated as sum products
of the node values and the connection weights. The initial values of the weights are selected
randomly and as a result, the first pass output may deviate from the expected output based
on the training data. This delta is called the network cost and is represented with a cost
function. The intuition and goal for the ANN is to ultimately reduce the cost to a minimum.
This is achieved with multiple forward and backward passes through the network. One
round trip is called an epoch.

Q: What is the meaning of model overfitting?

A: Model overfitting occurs when the model is learning the input and cannot generalize on
the new input data. Once this happens, the model is virtually not usable for real-world
problems. The overfitting can be identified by the variation in model accuracy between the
runs on training and validation datasets.

Q: What are RNNs and where are they used?

A: RNNs are the recurrent neural networks that utilize the output of one forward pass
through the network as an input for the next iteration. RNNs are used when the input are
not independent of each other. As an example, a language translation model needs to
predict the next possible word based on the previous sequence of words. ANNSs have great
significance in the field of natural language processing and audio/video processing
systems.

[121]

Neural Network for Big Data Chapter 4

Summary

In this chapter, we introduced the most important concept in realizing intelligent machines,
which is artificial neural networks. The ANNSs are modeled against the biological brain.
While the theory of ANN existed for decades, the advent of distributed computing power
along with access to unprecedented volumes of data has enabled development in this
exciting field of research.

In this chapter, we introduced the basic building blocks of the ANNs and simple techniques
to train the models in order to generalize the model for producing outcomes for the new
datasets.

This introduction is a building block for the next chapter, which will dive deeper into the
implementation aspects of the neural networks.

[122]

Deep Big Data Analytics

In the previous chapter, we established the fundamental theory of artificial neural
networks (ANNs) and how they emulate human brain structure for generating output
based on a set of inputs with the help of interconnected nodes. The nodes are arranged in
three types of layers: input, hidden, and output. We understood the basic and mathematical
concepts of how the input signal is carried through to the output layer and the iterative
approach that ANNSs take for training weights on neuron connections. Simple neural
networks with one or two hidden layers can solve very rudimentary problems. However, in
order to meaningfully utilize ANNSs for real-world problems, which involve hundreds or
thousands of input variables, involve more complex models, and require the models to
store more information, we need more complex structures that are realized with large
numbers of hidden layers. These types of networks are called Deep Neural Networks and
utilizing these Deep Neural Networks for modeling the real data is termed deep learning.
With the addition of nodes and their interconnections, the Deep Neural Networks can
model unstructured input, such as audio, video, and images.

In this chapter, we will explore how deep learning can be utilized for addressing some
important problems in big data analytics, including extracting complex patterns from
massive volumes of data, semantic indexing, data tagging, fast information retrieval, and
simplifying discriminative tasks such as classification. We are going to cover:

¢ The building blocks of deep learning;:
e Gradient descent

e Backpropagation
¢ Non-linearities
e Dropout

Specialized neural net architectures for structured data

Building data preparation pipelines
e Hyperparameter tuning
e Leveraging distributed computing for deep learning

Deep Big Data Analytics Chapter 5

The proposed examples will be implemented using the Deeplearning4j (DL4]) Java
framework.

Deep learning basics and the building
blocks

In the previous chapters, we established the fact that the machine learning algorithms
generalize the input data into a hypothesis that fits the data so that the output, based on the
new values, can be predicted accurately by the model. The accuracy of the model is a
function of the amount of the input data along with variation in the values of the
independent variables. The more data and variety, the more computation power we require
to generate and execute the models. The distributed computing frameworks (Hadoop,
Spark, and so on) work very well with the large volumes of data with variety. The same
principles apply to ANNSs.

The more input data we have along with variations, the more accurate the models can be
generated, which requires more storage and computation power. Since the computation
power and storage is available with the development of the big data analytics platforms (in-
premise as well as on the cloud), it is possible to experiment with large neural networks
with hundreds or thousands of nodes in the input layer, and hundreds or thousands of
hidden layers. These types of ANNSs are called Deep Neural Networks.

While these models are computationally heavy, they produce accurate results and get better
with more data, unlike the traditional algorithms that plateau in terms of performance at
some point. After the plateau point, even after adding more data, the model accuracy for
traditional mathematical models does not increase by a great margin. The Deep

Neural Networks perform better in terms of accuracy and reliability with increasing
amount of data. The use of these multi-layered neural networks for hypothesis generation is
generally termed deep learning. The difference between a Simple Neural Network and a
Deep Neural Network can be depicted as follows:

[124]

Deep Big Data Analytics Chapter 5

Simple Neural Network Deep Neural Network

Input Layer Hidden Layer Output Layer

—

: {
T\ \
(e K/
N\ N s
\ / o o
(o A, A oo > z
X)) g ©
~N ST 5 B
— ‘\“\/Ama ‘,/ o
N/
>
® N
N
3 & -
3 2
< 5\0% Bt
T Gl
] B
N |)
o PR
& o0
£)) Hidden Layers
51 .2 Learning algorithms
il P
(U]
a

Data Volume

Simple ANN versus Deep Neural Network

For supervised learning problems, the Deep Neural Networks have proven to provide
encouraging results, especially when it comes to mapping some of the functions with high
complexity levels. With sufficiently large datasets with labeled training examples, the Deep
Neural Networks are able to train the connection weights so that there is no loss of
intelligence and the model accurately represents the historical facts based on data, and at
the same time has a level of generalization that suits most of the mission critical
applications. Remember, the generic and common objective of all the learning methods is to
minimize the cost function. The cost function value is inversely proportional to the model's
accuracy.

[125]

Deep Big Data Analytics Chapter 5

Let us mathematically define the cost function for a Deep Neural Network. This is also
termed the mean squared error function. This function will always be positive since it takes
the square of the difference:

w: collection of all the weights in the network

, | b: all the biases

Clw,b) =1/2n 3 lly(z) —al* | . training data size (number of samples)

: a: vector of outputs from the network corresponding to x as
input value

Let's look at some of the methods of Deep Neural Networks learning.

Gradient-based learning

In the previous chapter, we primarily discussed the single hidden layer perceptron model
or the simple neural networks, in that chapter we also introduced the concept of gradient
descent. Gradient descent, as applicable to the Deep Neural Network, essentially means we
define the weights and biases for the neuron connections so as to reduce the value of the
cost function. The network is initialized to a random state (random weights and bias values)
and the initial cost value is calculated. The weights are adjusted with the help of

the derivative of cost with respect to weights on the Deep Neural Network.

In mathematics, the derivative is a way to show the rate of change, that is,
the amount by which a function is changing at one given point.

For functions that act on real numbers, it is the slope of the tangent line at a point on a
graph:

Cost

The cost function represents the aggregate difference between

\\ /’\\
/ \ L . .
/N / The dotted line is a tangent at a point on the cost function.
/ ‘\\//
/ “* Tangent | the expected and the actual output from the deep neural network.

Weights aggregate

[126]

Deep Big Data Analytics Chapter 5

In a typical classification problem, where we are trying to predict the output classes based
on the training data, we should be able to define the model's accuracy based on the number
of correct predictions. In that case, it will not be possible to understand the effect of various
weight values on the classification output. Instead, the Deep neural network is trained to
produce a cost value that is a quadratic function of the input variables. With this, tuning
various weight and bias values has a small gradient effect on the prediction confidence for a
particular class.

The gradient-based learning can be visualized with an object that is rolling downhill in the
direction of the lowest point in the valley. Gravity is the driving force that always moves
the object in the direction of the lowest point. The gradient descent algorithm works in a
similar manner. The slope is calculated at a random point initially; if the slope is negative,
the weights and biases are modified in the same direction. Let's consider £(w1,b1) as a small
movement for the cost value in the direction of (w,,b,) and A(wz,b2) a5 the small movement

in the (w, b,) direction. We can define the change in the value of cost function as:

dC dC
ANC ~ ———A b _—
(wla 1) + d(UJz,bQ)

d(w1,b1) A(1‘0271)2)

The goal is to choose values of (w,b,) so that AC is a negative value. In order to meet this
goal, let's define AV as a vector of changes in (w,b,):

AV = (A(wl,bl), A(’wg, bz)T

Let's now define a gradient vector of the cost function as a vector of partial derivatives:

dC acC
C= r
v (d(wl,bl)’d(wQ,b2))

We can now represent the change in the value of the cost function as:

AC~=VC.AV

The gradient vector, VC, establishes a relationship between changes in weight bias values
(wi,bi) and the changes in the value of the cost function, C. This equation allows choice of all
the weights and biases, AV, so that we get a negative value for AC. As a special case, if we
choose AV = -nVC, where " is the learning rate (small value that defines the step size for the
gradient descent). With this, the change in the value of the cost function becomes:

AC =~ —nVC.VC = —q||VC|]?

[127]

Deep Big Data Analytics Chapter 5

Since the square value of VC is always going to be > 0, AC will always be < 0. That means
cost, C, is always going to decrease, which is the intended behavior of the gradient descent.
We change the value of weights and biases as (w,b;) = (w;b,) - 7"VC . This rule is used in an
iterative manner to reach the minimum cost value with the gradient descent algorithm.
With gradient descent, we need to carefully choose the value of 77 so that the function is
approximated properly. If the value is too great, the descent will miss the minima, and for
too small a value, the steps will be small and the convergence will take a lot of time and
computation. Applying the gradient descent to the deep neural network, we need to
repeatedly apply the following updates and calculate the cost with each iteration leading to
the minimum value for the cost function. The combinations of weights and biases at the
minimum cost value is the optimization for the deep neural network and provides the
required generalization:

o dC
w=w1r=wl ’f]dwz
dc

b = b = b —
i T,

While this iterative technique works mathematically, it becomes computationally
demanding as the number of training inputs goes on increasing. As a result, the learning
time increases. In most practical scenarios, the stochastic gradient descent is utilized. This is
a variation of gradient descent in which we randomly pick up a small number of inputs.
The gradient is averaged over these small numbers of input. This speeds up the gradient to
the minimum cost.

Backpropagation

Backpropagation, or backprop, is used to efficiently calculate the gradient of the cost
function, C. In simple terms, the goal of backprop is to comcpute the rate of change of the
dc d

cost, C, with respect to the weights, (dw), and the biases, (‘@).

[128]

Deep Big Data Analytics Chapter 5

In order to clarify the intuition behind backprop, let's consider following deep neural
network:

! I

Imagine that we have made a small change, ijk, in the weight value of some weight, Wik,
!

in the network. Due to this weight change, a corresponding change in the activation, A ,

for the connected neuron takes place. This change propagates to the output layer and
ultimately affects the value of the cost function, as denoted by the solid lines in the earlier

!
diagram. This change in cost, AC, can be related to change in weight, Awﬂc, with the
following equation:

AC ~ gAwl.
dwjk

l
This equation allows us to establish the relationship between a small change, ijk, and the
ac

overall cost, C, which also leads to computation of dwjy The change in the value of the

.. . Nal it - qth :
activation function for a connected neuron, % (j'h neuron in I" layer), is caused by the

weight change. This change can be represented as follows:

daé.
Adt =~ At
J duw! k
ik

[129]

Deep Big Data Analytics Chapter 5

This change in activation changes the activation for all the neurons in the next and
subsequently connected layers, shown by the solid arrows in the earlier formula. The
change can be represented as follows:

1+1
dag

1

da ;

1
Nag™ ~

l
Aaj

l
Based on the value of change in the activation value, Aai, we calculated earlier, the equation
can be rewritten as follows:

1+1 dq!
Aaktl dag I A
g dda! dut k
J Jk

The chain reaction based on the change in weight for one of the connections propagates to
the end and affects the cost, C, which can be depicted as follows:

dc _y dC dak dak' daj! dg
dut, daf, daf ! daj " da) dul,

This is the equation for backpropagation, which gives the change in rate for cost, C, with
respect to the weights in the network.

Non-linearities

Let's consider two types of feature spaces, where x1 and x2 are independent variables and y
is a dependent variable that takes a values based on x1 and x2:

Linearly non-separable
A
e
8 N 0!
\ N
87 ~
s g O
X1 — X1 —

[130]

Deep Big Data Analytics Chapter 5

In the first instance, the input features are linearly separable with a straight line that
represents the separation boundary. In other words, the space is linearly separable.
However, in the second instance, the features space is inconsistent and cannot be separated
with a line. We need some type of nonlinear or quadratic equation in order to derive the
decision boundary. Most of the real-world scenarios are represented with the second type of
feature space.

The deep neural networks receive data at the input layer, process the data, map it
mathematically within the hidden layers, and generate output in the last layer. In order for
the deep neural network to understand the feature space and model it accurately for
predictions, we need some type of non-linear activation function. If the activation functions
on all the neurons are linear, there is no significance for the deep neural networks. All the
linear relationships across layers can be aggregated in single linear function that eliminates
the need for multiple hidden units. In order to model the complex feature spaces, we
require non-linearities within the nodes' activation functions. In the case of the more
complex data input, such as images and audio signals, the deep neural networks model the
feature space with weights and biases on the connectors.

The non-linear activations define whether a neuron fires or not based on the input signal
and the applied activation function. This introduces enough non-linearity across the layers
of a deep neural network in order to model hundreds and thousands of training data
samples. The typical nonlinear functions that are deployed in the deep neural networks are:

e Sigmoid function: This is a mathematical function that takes the shape of 'S” and

1
ranges between 0 and 1. This takes a mathematical form of @ =1 +e,

e Tanh function: This is a variation of the sigmoid for which the values range from

et —e®

tanh(z) = ——

-1 to 1. This nonlinear function takes the mathematical form of (@) e* +e 7,
¢ Rectified linear unit (RELU): This function outputs 0 for any negative value of x

and equals the value of x when it is positive: f(z) = maz(0,z),

[131]

Deep Big Data Analytics Chapter 5

Dropout

Dropout is a popular regularization technique used to prevent overfitting. When the deep
neural network memorizes all the training data due to the limited size of the samples and a
network of right depth is utilized for training, it does not generalize well enough to produce
accurate results with the new test data. This is termed overfitting. Dropout is used primarily
for preventing overfitting. This is a simple technique to implement. During the training
phase, the algorithm selects the nodes from the deep neural network to be dropped
(activation value set to 0). With each epoch, a different set of nodes is selected based on a
predefined probability. For example, if a dropout rate of 0.2 is selected, during each of the
epochs, there is 20% chance that the node will not participate in the learning process. The
network with dropout can be visualized as follows:

QQ - e
PRRNPYe o A% Prp
S "Q\ff"f@ g;@ PAFRNA® K
o gyﬁy‘f}%g g 0 Q ? (; ,3X3 0
S A / o @ O

By dropping out the nodes, a penalty is added to the loss function. Due to this, the model is
prevented from memorizing by learning interdependence between neurons in terms of
activation values as well as corresponding connecting weights. As a result of the dropout
where the activation on the dropped-out units is 0, we are going to have a reduced value on
the subsequent nodes in the network, we need to add a multiplication factor of 1 -
drop_out_rate (1 - 0.5 in our case) to the nodes that are participating in the training process.
This process is called inverted dropout. With this, the activation on the participating node
ig @ = a/(1 — drop_out_percentage) = a/(1 —0.5) = /0.5 = a *2_n order to further optimize the
dropout process, on the same training example, multiple iterations of the dropout with
different nodes randomly eliminated can be applied. This technique also helps to eliminate
the memorizing effect of the deep neural network and generalizes the training model
further. Since the number of units in the neural network are reduced, each epoch through
the network is optimized in terms of the time it takes through the iteration, including the
backpropagation.

[132]

Deep Big Data Analytics Chapter 5

However, with the tests on multiple datasets and neural network sizes, it is observed that
the number of iterations required for convergence are doubled with dropout (at a 50%
dropout rate) and the overfitting zone is eliminated, as shown in the following diagram:

Dropout = 0 (original network) Dropout = 0.5

Validation Set __—— Validation Set

/ e

‘ / &
Peak /&
e o

Training Set

— Error — Loss Function——
)
— Error — Loss Function—

Training Set . m
<

of Epochs ——

of Epochs ——

Building data preparation pipelines

The deep neural networks are best suited for supervised learning problems where we have
access to historical datasets. These datasets are used for training the neural network. As
seen in diagram 5.1, the more data we have at our disposal for training, the better the deep
neural network gets in terms of accurately predicting the outcome for the new and
unknown data values by generalizing the training datasets. In order for the deep neural
networks to perform optimally, we need to carefully procure, transform, scale, normalize,
join, and split the data. This is very similar to building a data pipeline in a data warehouse
or a data lake with the help of the ETL (Extract Transform and Load with a traditional data
warehouse) and ELTTT (Extract Load and Transform multiple times in modern data lakes)
pipelines.

We are going to deal with data from a variety of sources in structured and unstructured
formats. In order to use the data in deep neural networks, we need to convert it into a
numerical representation and make it available in multi-dimensional arrays. DataVec is a
popular Apache 2.0 library for generic machine-learning operations that we listed earlier.
DataVec supports many data sources out-of-the-box. These data sources cover the majority
of the types typically used within the data science community.

[133]

Deep Big Data Analytics Chapter 5

The data sources and types supported by DataVec are listed in the following table:

Data Type Description
Csv Comma separated files. The data fields (attributes are separated by COMMA ',' character)
Raw Test Data Tweets, Text Documents and so on

The images are stored as the two dimensional array of pixels. The pixels are represented as
Image Data an integer value in various color scales. For example, the grey scale image contains 256

unique sheds represented by numbers between 0and 255
LibSVM is an open machine library which specifies the data representation in a structured

LibSVM Data
schema

Matlab (MAT) format :’hlscls a binary file format which isinternally used by Matlab. It includes arrays, variables,
unctions

These are text formats which are defined by semantic rules and support hierarchical

JSON, XML, YAML .
reprentation of the data

A generic machine learning pipeline consists of standard steps, such as data extraction from
source, ingestion, preparation, model training and retraining, model deployment, and
predictions (class prediction or regression value). The pipeline can be visualized as follows:

—

a A
) . Model Model
Ingestion Preparation [— Training [) Deployment
v /
Normalization
J

l

Predictions

There are more and more devices and systems generating data in digital formats. These
data assets are typically pushed into data lake structures that are based on distributed
computing frameworks. Many organizations are also adopting a cloud-first strategy. The
majority of the data loads are computation is moving to cloud infrastructure and platforms.
For the machine learning, and specifically for the use cases based on deep neural networks,
we need to carefully define the data ingestion and processing pipelines.

[134]

Deep Big Data Analytics Chapter 5

The DataVec API has libraries that make it easy to get the data in the format that the neural
networks can understand. The primary component is the vectorization and hence the API is
called DataVec. This is a process by which the data attributes are converted into numerical
formats and regularized for the specific use case requirements. DataVec has a similarity in
dealing with input and output data. The structures are defined to suit parallel processing
and to work seamlessly with distributed file systems, such as HDFS.

The Hadoop Distributed File System (HDES) is a distributed file system
designed to run on commodity hardware. It has many similarities with
existing distributed file systems. However, the differences from other
distributed file systems are significant. HDFES is highly fault-tolerant and is
designed to be deployed on low-cost hardware. HDFES provides high
throughput access to application data and is suitable for applications that
have large datasets.

There are three primary entities in HDFS, as well as DataVec, for storing and loading the
data for processing.

¢ InputFormat: This defines the structural semantic of the data. It confines to a
predefined schema. The validators are implemented for validation based on the
InputFormat. The input formats are defined in such a way that they can be easily
split for distributed processing. The most commonly used input formats are:

e FileInputFormat: This is a file-based format and treats a file as an
independent and unique object. The format is tied with an input
directory in which the data file is present. This format can also read
and process all the files in a directory. Once all the files are loaded,
the splits are created based on the underlying distributed file
system rules.

¢ TextInputFormat: The Hadoop MapReduce framework utilizes
this as the default format. The best-suited and default format is a
comma-separated data structure that typically contains a newline
character as a record separator.

¢ SequenceFileInputFormat: This format is used for reading the
sequence files.

¢ InputSplit: This object is created from the InputFormat and represents the data
logically. The splits are divided into records. The records can be independently
processed in a distributed manner by Hadoop.

* RecordReader: This object reads the records defined by the InputSplit. It
generates key-value pairs based on the indexing of the datasets. This makes it
easy for the Mapper to read in sequences of available data chunks for processing.

[135]

Deep Big Data Analytics Chapter 5

These concepts are also implemented in the DataVec API for facilitating distributed parallel
processing. DataVec also supports the OutputFormats that are largely interoperable. The
vector formats most commonly generated with DataVec are ARFF and SVMLight. The
framework also provides extensibility for incorporating custom input formats. Once the
formats are defined with the DataVec interfaces, the framework handles those in the same
way as the predefined formats. Vectorization of the datasets is the central focus for the
DataVec library.

The numerical vectors are the only suitable input formats as well as the processing formats
for the deep neural networks. The API also supports transformation libraries for massaging
the data and filtering out the insignificant records and attributes. Once the data is ingested
it is available for utilizing in training and testing the models. Normalization is one of the
important preparation steps in order to optimize the learning process.

This step is important when the neural networks are deep within multiple
hidden layers and the data input features vary in the scale. This variance
results in slow convergence and takes a very long time for the deep neural
network to learn. One of the most common normalization technique is 0-1
range normalization. In this, the input values are normalized between 0
and 1 without affecting the data quality or losing any data.

Let's demonstrate normalization using the Weka framework:

1. Open the Weka explorer and select the iris.atff file. This is a simple dataset
with four features and a class output variable with three possible output values:

| Open file... | | Open URL... | | Open DB... | | Generate... | Edi
Filter
Choose |Normalize -51.0-T0.0
Current relation Selected attribute
Relation: iris Attributes: 5 Name: sepallength
Instances: 150 Sum of weights: 150 Missing: 0 (0%) Distinct: 35
Attributes L satios; L |
& Open >
d
. 0.0
oo [e ElEEEER
1_ p 1 o
2 f sepa\wiéﬁr;” D airline.arff D diabetes.arff D iris_normaliz [_| Invoke options dialog
3 ; petallength D breast-cancer.arff D glass.arif D labor.arff
;‘: E;t:lswmth [} contactdenses.arft [hypothyroid.arff [} Reuterscom| Note:
D cpu.arff D ionosphere.arff D ReutersCom Some file formats offer additional
[cpu.with.vendor.arff [iris.2D.arff [7) ReutersGrain options which can be customized
D credit-g.arff D iris.arff D ReutersGrair when invoking the options dialog.

[136]

Deep Big Data Analytics

Chapter 5

2. Review the attributes and their original value distribution:

Attributes value Distribution

Selected attribute
Name: sepallength Type: Numeric
Missing: 0 (0%) Distinct: 35 Unique: 9 (6%)
Statistic Value
Minimum 43
Maximum 79
Mean 5.843
. StdDev 0.828
Current relation
e Sumorwegni: 50 Seecedabue
- - ghts: Name: sepalwidth Type: Numeric
Attributes Missing: 0 (0%) Distinct: 23 Unique: 5 (3%)
I All ‘ l None “ Invert H Pattern — Slatisig Valug
Minimum 2
Maximum 44
HioS REME Mean 3.054
| 1|_Isepallength StdDev 0434
2|_|sepalwidth
3|[_Ipetallength
; L_|petalwidth Name: petallength Type: Numeric
| L |class Missing: 0 (0%) Distinct: 43 Unique: 10 (7%)
Statistic Value
Minimum 1
Maximum 6.9
Mean 3.759
StdDev 1.764

3. Apply the normalization filter. Choose the filter under filters | unsupervised |

attribute | Normalize and apply the filter to the selected dataset:

Filter

Apply || Stop |

[137]

Deep Big Data Analytics

Chapter 5

4. Check the attribute values after normalization. The values are all in the range
between 0 and 1:

Attributes value Distribution

Selected attribute

Name: sepallength Type: Numeric
Missing: 0 (0%) Distinct: 35 Unique: 9 (6%)
Statistic Value
Minimum 0
Maximum 1
Mean 0.429
Current relation StdDev 023
| Rtelationf ;r; . ‘}“"‘f”:ﬁsf fso Selected attribute
e LGOI WESITES- Name: sepalwidth Type: Numeric
Attributes Missing: 0 (0%) Distinct: 23 Unique: 5 (3%)
l All | | None ‘ l Invert ‘ l Pattern SIaisHc Value
Minimum 0
Maximum 1
LIOE = AEE Mean 0.439
\ 1|_Isep StdDev 0.181
2|[_|sepalwidth
3 L] petallength Selected attribute
4|_|petalwidth Name: petallength Type: Numeric
5|L |class 0(0%) Distinct: 43 Unique: 10 (7%)
Statistic Value
Minimum 0
Maximum 1
Mean 0.468
StdDev 0.299

These normalized values in the range of 0 and 1 produce the same training model and
hence the output. However, with normalization, we optimize the learning performance for
the deep neural network. Here is the Java code for applying normalization in the data
preparation pipeline using the deeplearning4j library:

package com.aibd.dnn;

import
import
import
import
import
import
import
import

public

public static void main(String[]

org.
org.
org.
org.
org.
org.
org.
org.

datavec.
datavec.
datavec.
datavec.

api

api

api.
.records.reader.impl.csv.CSVRecordReader;
api.
.util.ClassPathResource;

records.reader.RecordReader;

split.FileSplit;

deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;

nd4j.linalg.
nd4j.linalg.
nd4j.linalg.

dataset .DataSet;
dataset.api.iterator.DataSetIterator;
dataset.api.preprocessor.NormalizerMinMaxScaler;

class Normalizer {

args) throws Exception {

int numLinesToSkip = 0;
char delimiter

R
o

[138]

Deep Big Data Analytics Chapter 5

System.out.println("Starting the normalization process");
RecordReader recordReader = new
CSVRecordReader (numLinesToSkip,delimiter) ;

recordReader.initialize (new FileSplit (new

ClassPathResource ("iris.txt") .getFile()));
int labelIndex = 4;
int numClasses = 3;

DataSetIterator fulliterator = new
RecordReaderDataSetIterator (recordReader, 150, labelIndex, numClasses) ;

DataSet dataset = fulliterator.next ();

// Original dataset
System.out.println("\n{}\n" + dataset.getRange(0,9));

NormalizerMinMaxScaler preProcessor = new NormalizerMinMaxScaler ();
System.out.println("Fitting with a dataset............... ")
preProcessor.fit (dataset);

System.out.println("Calculated metrics");

System.out.println("Min: {} - " + preProcessor.getMin());
System.out.println("Max: {} - " + preProcessor.getMax());

preProcessor.transform(dataset) ;

// Normalized dataset

System.out.println("\n{}\n" + dataset.getRange(0,9));
}

Here is the output from the program:

===========Q0riginal Values =======

[[5.10, 3.50, 1.40, 0.20],
[4.90, 3.00, 1.40, 0.20],
[4.70, 3.20, 1.30, 0.207],
[4.60, 3.10, 1.50, 0.20],
[5.00, 3.60, 1.40, 0.20],
[5.40, 3.90, 1.70, 0.40],
[4.60, 3.40, 1.40, 0.30],
[5.00, 3.40, 1.50, 0.20],
[4.40, 2.90, 1.40, 0.20]]

===========Normalized Values =======

[[0.22, 0.62, 0.07, 0.047],
[0.17, 0.42, 0.07, 0.047],
[0.11, 0.50, 0.05, 0.047],
[0.08, 0.46, 0.08, 0.047],

[139]

Deep Big Data Analytics Chapter 5

[0.19, 0.67, 0.07, 0.04],
[0.31, 0.79, 0.12, 0.12],
[0.08, 0.58, 0.07, 0.08],
[0.19, 0.58, 0.08, 0.04],
[0.03, 0.38, 0.07, 0.04]]

Practical approach to implementing neural
net architectures

While the deep neural networks are good at generalizing the training data with multi-
layered iteratively-generated models, the practical application of these algorithms and
theory requires careful consideration of various approaches. This section introduces general
guiding principles for using the deep neural networks in practical scenarios. At a high level,
we can follow a cyclic process for deployment and the use of deep neural networks, as
depicted in this diagram:

Define and
Realign the Goals

Deep Neural Network
I -
)

O A A
s

N/

Deployand - | 1 10 .- Set end-to-end
Evaluate ¢ <3 13 't | | % Pipeline
=) Ve)r s
EL /A ~ - [’ }:}
£ | (N"‘ @0 ; pay. *) "‘/“\ a
i ~—

@ 0 @ atve
OO
Hidder‘\ Layers
Incremental Performance
Changes Tuning

[140]

Deep Big Data Analytics Chapter 5

We explain the preceding diagram as follows:

¢ Define and realign the goals: This is applicable not only to the deep neural
networks but in general use of the machine learning algorithms. The use-case-
specific goals related to the choice error metric and threshold target value for the
metric need to be set as the first step. The goal around the error metric defines the
actions in the subsequent stages of architectural design and various design
choices. It is unrealistic to set the goal of zero error for most of the practical use
cases. This is due to the stochastic nature of most of the real scenarios where the
training data is often insufficient and cannot model the environment with
certainty.

¢ Set the end-to-end pipeline: Once the goals are determined and the expected
threshold metrics are set up, the next step is to set up the end-to-end pipeline.
While the pipeline is going to be different based on the use case and available
data assets, in this section we will learn the generic guidelines. When the use case
is to implement supervised learning with fixed and small numbers of input
parameters in vector form (for example, defining the housing price based on
various factors, such as the square foot area, number of rooms, location, start with
a feed-forward network). Initialize this network with fully connected nodes. In
case of a matrix structure data such as image pixels, use a convolutional neural
network architecture. When the input is a sequence of data that depends on the
previous value chain, use a recurrent network topology. Early stopping and
dropout can be used as the strategies when the training set contains a large
number of examples and input features.

¢ Performance tuning: Once we have the basic pipeline setup completed, we need
to evaluate the performance of the model. There is a decision point between
trying out a set of new models or model parameters, or adding more data to the
training set. As a general guiding principle, the initial model should be tested
through multiple iterations by adding more data and evaluating its impact on the
model performance. Measure the model performance on the training set. If the
model is not performing well on the training set, the first step is to increase the
number of hidden units in the network. With this, the model is able to identify
minor and deeper insights in the training data. The performance needs to be
evaluated based on multiple tests by setting different values for the learning rate.
Despite this, if the model's performance on the training data does not improve,
there may be an issue with the quality of the training data. The datasets need to
be carefully evaluated and cleansed before running further optimizations.

[141]

Deep Big Data Analytics Chapter 5

Once the model is performing well on the training data, we need to test the
performance with the test data. If the model is performing well within the set
threshold in the first step, the model is well generalized and good to be utilized
with real data. If the model does not perform well on the test data, we need to
gather more data and train the model again for better generalization. As a rule of
thumb, the marginal addition of data does not improve the performance by a
great deal. We need to consider adding data in multiples of the original dataset in
order to achieve significant performance gain and reduce generalization error.

¢ Incremental changes: The summary-level goal for deploying the deep neural
networks is to minimize the error in the real data when the model is deployed. In
order to achieve that, we need to make incremental changes to the configuration
parameters. This is termed hyperparameter tuning. Some of the hyperparameters
which typically result in quick gains are number of hidden units, learning rate,
convolution kernel width, implicit zero padding, weight decay coefficient and
dropout rate. Apart from these, different volumes of the training data are
randomly tested for incrementally optimizing the model performance. We will
cover this topic in detail in the next section.

¢ Deploy and evaluate: Once the threshold goals for the model's performance are
achieved, the model can be deployed in the real environment. Due to the
stochastic nature of most of the environments, the model performance needs to
be constantly evaluated, especially for mission-critical applications. At this stage,
we also need to consider strategies for automated hyperparameter-tuning based
on the historical trends with the model's deployment in production. With
increasing degrees of historical data on the model's performance with different
values of manually-, as well as automatically-selected hyperparameter values, it
is also possible to treat the hyperparameter values, the volume of the training
data as an input set of the dependent variables, and the model's performance as
the dependent variable. A simplified technique, such as Bayesian regression, can
be used for further optimization at runtime in an automated manner.

In the next section, we will take a look at some of the guiding principles for tuning the
runtime parameters for the deep neural networks.

[142]

Deep Big Data Analytics Chapter 5

Hyperparameter tuning

Imagine a sound system that has a high quality speaker and mixer system. You must have
seen a series of buttons on the console that independently control a specific parameter of
sound quality. The bass, treble, and loudness are some of the controls that need to be
properly set for a great experience. Similarly, a deep neural network is only as good as the
setting of various controlling parameters. These parameters are called hyperparameters,
and the process of controlling various parameters at a value that gets the best performance
in terms of training/execution time as well as accuracy and generalization of the model.
Similar to the sound equalizer example, multiple hyperparameters need to be tuned
together for optimum performance. There are two strategies typically used when choosing a
combination of hyperparameters:

¢ Grid search: The hyperparameters are plotted on a matrix and the combination
that gets the best performance is selected for the model that is deployed in the
real scenario. With grid search, the number of iterations to the yield ratio is poor.

e Random search: In the case of random search, the hyperparameter values are
selected at random. In this case, with the same number of iterations as the grid
search, there is a better chance of reaching the optimum values for the
hyperparameters. The difference between grid search and random search can be
depicted with the diagram as follows:

Grid Search Random Search
W W o © ® o
_ g °
g S ®
= Optimum — o
% Combination | L g
£ £ g °
: s @ o
o
z = o ®_ %,
I& g ® ° { J
— S T
= >
Hyperparameter (1) ——» Hyperparameter (1) ———

[143]

Deep Big Data Analytics Chapter 5

A variation of the random search technique can be deployed in order to reduce the number
of iterations through the search space. The technique is broadly categorized as Coarse to
Fine search. In this case, the random search is run for a few iterations and once a region
with higher optimization combination is identified, the search space is limited to a smaller
zone of hyperparameter values. With this technique, the search is confined to a region and
hence optimized. The coarse-to-fine technique can be visualized as follows:

Random Search

r2) ——

Optimum Fine Zone

Combination |

Hyperparame

Hyperparameter (1) ———

During initial search iterations, the entire space is searched. As the optimum
hyperparameter values are found, the search space is restricted to a fine zone. With this, the
hyperparameters are finely tuned with a relatively smaller number of iterations. With these
techniques for searching for the right set of hyperparameters, let's now look at some of the
most commonly used hyperparameters with deep neural networks.

Learning rate

In the Gradient-based learning section of this chapter, we established the equations for weight
and bias updates for the deep neural network as follows:

wi=wi=wi— dc¢
dC
b = b = b; —
i b,

[144]

Deep Big Data Analytics Chapter 5

In these equations, the learning rate is denoted by ". The learning rate for the gradient
descent algorithm defines the size of the step that algorithm takes with each training set
instance. If the learning rate is too high, the average loss across the gradient descent steps
will be high. In this case, the algorithm may miss the global minima. An extremely low
learning rate will result in slow convergence, as depicted in this diagram:

Small learning Large learning

T / rate f T rate 1)

< c
c o
o =
B 2
c >
= [T
w]
"
a S
- |
L 5
o =
= w
w

—— # of Epochs —— — #of Epochs ——

If there is an opportunity to tune only one hyperparameter, this parameter needs to be
tuned. As a standard, the value of the learning rate needs to be less than 1 and greater than
10°. Another widely used strategy with the learning rate is to adapt to a decreasing learning
rate with time (training iterations). During the initial iterations, the learning rate is kept
constant and once the model is close to convergence (when the change in the value of loss
function degrades to a minimum), the learning rate is modified with a small fraction of the
original learning rate. Typically, a 0.001 fraction of the initial learning rate is recommended
for optimum convergence to global minima. Another strategy for quicker convergence
using parallel processing and train with mini batches. These batches independently tune the
learning rate hyperparameter with small batches defined by a factor between 1 and 100.
When the mini batch factor is 1, the algorithm behaves as the gradient descent algorithm.
As an example, when the factor value is 20, the training data samples are at 5% and are
distributed for independent tuning of the learning rate, ".

Number of training iterations

This hyperparameter is useful for avoiding overfitting. As the model converges (the loss
function value plateaus at a point and does not change with epochs), it tends to overfit the
training data and moves towards a non-generalized zone in which the test samples do not
perform as well as the training data. Setting the number of training iterations carefully
around the plateau region ensures early stopping and hence a robust model that generalizes
well.

[145]

Deep Big Data Analytics Chapter 5

While the hyperparameters are tuned and their effect on the overall cost function is
evaluated, the early stopping can be disabled. However, once all the other hyperparameters
are fully tuned, we can dynamically set the number of training iterations based on the
plateau region for the loss function.

Stopping immediately after convergence is not a good strategy. It is
recommended to continue the iterations for about 10% of the total epochs
that resulted in near convergence. Controlling the number of training
iterations is a good strategy to reduce the computation requirement for the
model.

Number of hidden units

The performance of the deep neural network can be tweaked by selecting and changing the
number of hidden units, n,, in each of the layers. As a general guideline, it is recommended
to select a larger-than-required 7, value initially. This ensures enough generalization for the
network. However, the higher the value of n,, the greater the computational requirement for
training the deep neural network. This hyperparameter can also be tuned at the level of a
layer. Each individual layer can have a different and optimal value for 7, based on the
results from multiple iterations on the test data. In such cases, the first layer that is
connected to the input layer is recommended to be overcomplete (having more nodes than
the optimum value). This strategy helps to generalize the data better than having a lean first
layer and more populated layers toward the output layer.

Number of epochs

One iteration through the entire dataset forward and backward in the deep neural network
is called as an epoch. With each epoch, the network typically uses a backpropagation
algorithm to adjust weights and biases. It is important to choose the right number of epochs.
If the number of epochs is too high, the network will potentially overfit the data and not
generalize on the new set of input.

If the number of epochs is too low, the network will underfit the data and will not perform
well, even on the training data. There is no rule of thumb for selecting the number of epochs
for a deep neural network. The number depends on the diversity of the dataset and the
volume of the data. A recommended strategy is to start with a high number of epochs, and
once the loss function does not vary significantly between multiple epochs, the training can
be stopped.

[146]

Deep Big Data Analytics Chapter 5

Experimenting with hyperparameters with
Deeplearning4;j

Let's build a simple neural network to demonstrate the effects of various hyperparameters
on model performance. We will create a simple neural network that can add two numbers
based on the randomly generated training data. The training data has two independent
variables, xI and x2, and an output variable, y1 = x1 + x2. Here is a pictorial view of the
network we will generate with the deeplearning4; library:

L YExl4x2

x1

X2

Here is the utility code for generating the sample data: xI and x2 as the input independent
variables, and y as the output (dependent) variable:

// Method to generate the training data based on batch size passed as

parameter
private static DataSetIterator generateTrainingData (int batchSize,

rand) {

Random

// container for the sum (output variable)
double [] sum = new double[nSamples];

// container for the first input variable x1
double [] inputl = new double[nSamples];
//container for the second input variable x2
double [] input2 = new double[nSamples];

[147]

Deep Big Data Analytics Chapter 5

// for set size of the sample in configuration, generate random
// numbers and fill the containers
for (int i= 0; i< nSamples; i++) {

inputl1[i] = MIN_RANGE + (MAX_RANGE - MIN_RANGE) *
rand.nextDouble () ;
input2[i] = MIN_RANGE + (MAX_RANGE - MIN_RANGE) *

rand.nextDouble () ;
// £ill the dependent variable vy
sum[i] = inputl[i] + input2[i];
}
// Format in the deeplearning4j data structure
INDArray inputNDArrayl = Nd4j.create(inputl, new int[]{nSamples,1});
INDArray inputNDArray2 = Nd4j.create(input2, new int[]{nSamples,1});
INDArray inputNDArray = Nd4j.hstack (inputNDArrayl, inputNDArray?2);
INDArray outPut = Nd4j.create(sum, new int[]{nSamples, 1});
DataSet dataSet = new DataSet (inputNDArray, outPut);
List<DataSet> listDs = dataSet.asList();
Collections.shuffle(listDs, rand);
return new ListDataSetIterator (listDs,batchSize);

}

Here is the code for the method that generates the multi-layer neural network with
configurable hyperparameters:

/** Method for generating a multi-layer network

* @param numHidden - the int value denoting number of nodes in the hidden
unit

* @param iterations - number of iterations per mini-batch

* @param learningRate - The step size of the gradient descent algorithm

* @param numEpochs - number of full passes through the data

* @param trainingDatalterator - the iterator through the randomly
generated training data

* @return the model object (MultilLayerNetwork)

**/
private static MultilLayerNetwork generateModel (int numHidden, int
iterations, double learningRate, int numEpochs, DataSetIterator

trainingDatalterator) |
int numInput = 2; // using two nodes in the input layer
int numOutput = 1; // using one node in the output layer
MultilLayerNetwork net = new MultilLayerNetwork (new
NeuralNetConfiguration.Builder ()
.seed (SEED)

.lterations (iterations)
.optimizationAlgo (OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.learningRate (learningRate)
.weightInit (WeightInit.XAVIER)
.updater (Updater .NESTEROVS)

[148]

Deep Big Data Analytics Chapter 5

.list ()
.layer (0, new Denselayer.Builder () .nIn (numInput) .nOut (numHidden)
.activation (Activation.TANH)
.build())
.layer (1, new OutputlLayer.Builder (LossFunctions.LossFunction.MSE)
.activation (Activation.IDENTITY)
.nIn (numHidden) .nOut (numOutput) .build())
.pretrain(false) .backprop (true) .build()
)
net.init ();
net.setlListeners (new ScorelterationListener (1));

//Train the network on the full dataset, and evaluate in periodically
double startTime = System.currentTimeMillis();
for(int i=0; i<nEpochs; i++){

trainingDatalterator.reset ();

net.fit (trainingDatalterator);

}
double endTime = System.currentTimeMillis();
System.out.println ("Model Training Time = " + (endTime - startTime));

return net;

}
This model can be tested by passing different values of the hyperparameters, as follows:
public static void main(String[] args){
//Generate the training data

DataSetIterator iterator =
generateTrainingData (batchSize, randomNumberGenerator) ;

// Test 1:
//Set the values of hyperparameters

int nHidden = 10;

int iterations = 1;

double learningRate = 0.01;

int nEpochs = 200;

double startTime = System.currentTimeMillis();
MultiLayerNetwork net =

generateModel (nHidden, iterations, learningRate, nEpochs, iterator);

double endTime = System.currentTimeMillis();
double trainingTime = (endTime - startTime);

// Test the addition of 2 numbers

INDArray input = Nd4j.create (new double[] { 0.6754345,
0.3333333333333 }, new int[] { 1, 2 });

INDArray out = net.output (input, false);

[149]

Deep Big Data Analytics Chapter 5

double actualSum = 0.6754345 + 0.3333333333333;

double error = actualSum - out.getDouble(0);

System.out.println ("Hidden Layer Count, Iterations, Learning Rate,
Epoch Count, Time Taken, Error");

System.out.println(""+nHidden + "," + iterations + "," +
learningRate + "," + nEpochs + "," + trainingTime + "," + error);

//

With this code, the output will be printed on the console as follows:

Hidden Layer Count, Iterations, Learning Rate, Epoch Count, Time Taken,
Error

10,1,0.01,200,11252.0,-3.5079920391032235
10,1,0.02,200,1,3781.0,-2.8320863346049325
10,1,0.04,200,1,3152.0,-9.223153362650587

10,1,0.08,200,1,3520.0,NaN

5,1,0.01,200,2960.0,-0.725370417017652

Alternatively, the deeplearning4j library provides a visualization interface with the Ul
library. The Ul library can be included as Maven dependency, as follows:

<dependency>
<groupld>org.deeplearning4j</groupld>
<artifactId>deeplearning4j-ui_2.10</artifactId>
<version>${dl4j.version}</version>
</dependency>

The user interface can be quickly enabled by adding the following lines of code:

//Initialize the user interface backend
static UIServer uiServer = UlServer.getInstance();

//Configure where the network information (gradients, score vs. time) is to
be stored.

static StatsStorage statsStorage = new InMemoryStatsStorage();

// Once the MultilayerNetwork object is initialized, register the
StateStorage instance as a //listener.

net.setListeners (new StatsListener (statsStorage));

[150]

Deep Big Data Analytics Chapter 5

With this simple code snippet, the framework enables a UI on port 9000 on the 1ocalhost:

DL4) Training Ul > S2oaEd 1 et e
@ Overview
Model Score vs. Iteration Model and Training Information
= Model
\ Model Type MultiLayerNetwork
[T — 3 Layers 2
|\ S
\ | \1 S Total Parameters 41
[Language | | \? \ Start Time
° \ I Total Runtime
” \ u‘ ‘H‘ JI Last Update 2018-04-28 12:57:27
| |
v \ ‘:"\I [A I\H\ Total Parameter Updates 991
| [A I\ / |
L AT RANAC I Updates/sec 204.08
L~ ~7 AT
N ‘-f\v\ Examples/sec 408163.27
Score : 3.81231, Iteration :
Update:Parameter Ratios (Mean Magnitudes): log;o Standard Deviations: logqg Updates Gradients Activations
mo
input

DL‘:H Trainmg ul 20a253-7171-44a1-967e-1€ v
= gl

@@ overview
Layer Information
= Model

Layer Name layer0

@ System Layer Type Dense
Input Size 2

0 Language Layer Size 10
Parameters 30
Weight Init XAVIER
Updater Nesterovs
Activation Function tanh

Update:Parameter Ratios (Mean Magnitudes): logi¢/pdates Param Ratio

Output
layer1

[151]

Deep Big Data Analytics Chapter 5

Distributed computing

As we have seen in figure 5.1, the performance of the neural network improves with an
increasing volume of training data. With more and more devices generating data that can
potentially be used for training and model generation, the models are getting better at
generalizing the stochastic environment and handling complex tasks. However, with more
data and more complex structures for the deep neural networks, the computational
requirements increase.

Even though we have started leveraging GPUs for deep neural network training, the
vertical scaling of the compute infrastructure has its own limitations and cost implications.
Leaving the cost implications aside, the time it takes to train a significantly large deep
neural network on a large set of training data is not reasonable. However, due to the nature
and network topology of the neural networks, it is possible to distribute the computation on
multiple machines at the same time and merge the results back with a centralized process.
This is very similar to Hadoop, as a distributed computing batch processing engine, and
Spark, as an in-memory distributed computing framework. With deep neural networks,
there are two approaches for leveraging distributed computing;:

e Model Distribution: In this approach, the deep neural network is broken into
logical fragments that are treated as independent models from a computational
perspective. The results from these models are combined by a central process, as
depicted in this diagram:

Machine-1 Machine-2 Machine-3

Model Distribution

[152]

Deep Big Data Analytics Chapter 5

¢ Data Distribution: In this approach, the entire model is copied to all the nodes
participating in the cluster and the data is distributed in chunks for processing.
The master process collects the output from the individual nodes and produces
the final outcome, shown as follows:

Data Chunk - 1

T -3poN

Training Data

Data Chunk - 2

\ I 7\\\-| }— >

Data Distributick ;/

I

Data Chunk - 3

Z-9poN

€-3poN

The data distribution approach is very similar to Hadoop's MapReduce framework. The
MapReduce job creates the input splits based on predefined and run-time configuration
parameters. These chunks are sent to the independent nodes for processing by the map
tasks in a parallel manner.

The output from the map tasks is shuffled for relevance (simple sort) and is given as input
to the reduce tasks for generating intermediate results. The individual MapReduce chunks
are combined to produce the final result. The data distribution approach is more naturally
suitable for Hadoop and Spark frameworks and it is a more widely researched approach at
this time. The deep neural networks that leverage data distribution primarily deploy a
parameter-averaging strategy for training the model.

[153]

Deep Big Data Analytics Chapter 5

This is a simple but efficient approach for training a deep neural network with data

distribution:

Split the Training
Data into Chunks

l

Deploy Model Training
Routine on each worker node

l

Initialize Network 1 3
Parameters Wiy = —Z Wii1i
i+ 3;’—1 i+1j| Master Node Wi, 15

l

Gather and Average \ /

Parameter Values 2

T - 9PON JayJopm

C - 9PON 43440\

to average

(e) O
Data?

Based on these fundamental concepts of distributed processing, let's review some of the
popular libraries and frameworks that enable parallelized deep neural networks.

Set global parameters Q@

{;\X
€ - 9pON J3Y40M

Distributed deep learning

With an ever-increasing number of data sources and data volumes, it is imperative that the
deep learning application and research leverages the power of distributed computing
frameworks. In this section, we will review some of the libraries and frameworks that
effectively leverage distributed computing. These are popular frameworks based on their
capabilities, adoption level, and active community support.

[154]

Deep Big Data Analytics Chapter 5

DL4J and Spark

We have coded the examples in this chapter with deeplearning4j library. The core
framework of DL4] is designed to work seamlessly with Hadoop (HDFS and MapReduce)
as well as Spark-based processing. It is easy to integrate DL4J with Spark. DL4J with Spark
leverages data parallelism by sharding large datasets into manageable chunks and training
the deep neural networks on each individual node in parallel. Once the models produce
parameter values (weights and biases), those are iteratively averaged for producing the
final outcome.

API overview

In order to train the deep neural networks on Spark using DL4], two primary wrapper
classes need to be used:

e SparkDl4jMultiLayer: A wrapper around DL4J's MultiLayerNetwork
® SparkComputationGraph: A wrapper around DL4J's ComputationGraph

The network configuration process for the standard, as well as the distributed, mode
remains same. That means, we configure the network properties by creating
aMultilayerConfiguration instance. The workflow for deep learning on Spark with
DL4]J can be depicted as follows:

(Start)

(L I

MultiLayerConfiguation | Specify Network Configuration

.0 c

TrainingMaster Specify Runtime configuration Package the jar file for IEENEEGEG__-.
for distributed training submitting to Spark
7
SparkDl4jMultiLayer Instantiate the Multi layer Call Spark Submit for .
network on Spark runtime resource spark-submit
n allocation and execution
JavaRDD<DataSet> Load Training Data

-

sparkDI4jMultiLayer.fit() | Train the deep neural network |—

[155]

Deep Big Data Analytics Chapter 5

Here are the sample code snippets for the workflow steps:

1. Multilayer network configuration:

MultilLayerConfiguration conf = new NeuralNetConfiguration.Builder ()
.optimizationAlgo (OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT
) .iterations (1)

.learningRate (0.1)

.updater (Updater.RMSPROP) //To configure: .updater (new
RmsProp (0.95))

.seed (12345)

.regularization(true) .12(0.001)

.weightInit (WeightInit .XAVIER)

.list ()

.layer (0, new
GravesLSTM.Builder () .nIn(nIn) .nOut (1lstmLayerSize) .activation (Activa
tion.TANH) .build())

.layer (1, new
GravesLSTM.Builder () .nIn(lstmLayerSize) .nOut (lstmLayerSize) .activat
ion (Activation.TANH) .build())

.layer (2, new
RnnOutputlLayer.Builder (LossFunctions.LossFunction.MCXENT) .activatio
n(Activation.SOFTMAX) //MCXENT + softmax for classification

.nIn(lstmLayerSize) .nOut (nOut) .build())
.backpropType (BackpropType.TruncatedBPTT) .tBPTTForwardLength (tbpttL
ength) .tBPTTBackwardLength (tbpttLength)

.pretrain(false) .backprop (true)

.build();

2. Set up the runtime configuration for the distributed training;:

ParameterAveragingTrainingMaster tm = new
ParameterAveragingTrainingMaster.Builder (examplesPerDataSetObject)
.workerPrefetchNumBatches (2) //Async prefetch 2 batches
for each worker
.averagingFrequency (averagingFrequency)
.batchSizePerWorker (examplesPerWorker)
build();

3. Instantiate the Multilayer network on Spark with TrainingMaster:

SparkDl4jMultilayer sparkNetwork = new SparkDl4jMultilayer (sc,
config, tm);

[156]

Deep Big Data Analytics Chapter 5

4. Load the shardable training data:

public static JavaRDD<DataSet> getTrainingData (JavaSparkContext
sc) throws IOException {

List<String> list = getTrainingDatAsList(); // arbitrary sample
method
JavaRDD<String> rawStrings = sc.parallelize(list);
Broadcast<Map<Character, Integer>> bcCharToInt =
sc.broadcast (CHAR_TO_INT) ;
return rawStrings.map (new StringToDataSetFn (bcCharTolInt));

}

5. Train the deep neural network:
sparkNetwork.fit (trainingData);

6. Package the Spark application as a . jar file:
mvn package

7. Submit the application to Spark runtime:

spark-submit --class <<fully qualified class name>> —--num-executors
3 ./<<jar_name>>-1.0-SNAPSHOT. jar

The DeepLearning4;j official website provides extensive documentation for
running the deep neural networks on Spark: https://deeplearning4j.
org/spark.

TensorFlow

TensorFlow is the most popular library created and open sourced by Google. It uses data-
flow graphs for numerical computations and deals with Tensor as the basic building block.
A Tensor can simply be considered as an n-dimensional matrix. TensorFlow applications
can be seamlessly deployed across platforms and it can run on GPUs and CPUs, along with
mobile and embedded devices. TensorFlow is designed as a large-scale distributed training
that supports new machine learning models, research, and granular-level optimizations.

[157]

https://deeplearning4j.org/spark
https://deeplearning4j.org/spark
https://deeplearning4j.org/spark
https://deeplearning4j.org/spark
https://deeplearning4j.org/spark
https://deeplearning4j.org/spark
https://deeplearning4j.org/spark
https://deeplearning4j.org/spark

Deep Big Data Analytics Chapter 5

TensorFlow is quick to install and start experimenting with. The latest
version of TensorFlow can be downloaded from https://www.
tensorflow.org/. The site also contains extensive documentation and

tutorials.

Keras

Keras is a high-level neural network API, written in Python and capable of running on top
of TensorFlow. For more information, refer to https://keras.io/.

TensorFlow and Keras hold the top two spots in terms of adoption and mention by
researchers in scientific papers. The stack ranking of the frameworks and libraries as per

arxiv.org is as follows:

150

100

50

tensorflow keras caffe theano torch pytorch chainer mxmet contk caffe2

Source: arXiv (Oct 2017)

[158]

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
http://arxiv.org

Deep Big Data Analytics Chapter 5

Frequently asked questions

Q: What is the difference between machine learning and deep learning?

A: Deep learning is a specialized implementation of machine learning as an abstract
concept. Machine learning algorithms are primarily the functions that draw lines through
the data points in the case of supervised learning algorithms. The feature space is mapped
as a multi-dimensional representation. This representation generalizes the datasets and can
predict the value or the state of the actor for new environment states. Deep learning
algorithms also model the real-world data within the context. However, they take a layered
approach in creating the models. Each layer in the network specializes in a specific part of
the input signal, starting from the high-level, more generic features in the initial layers, to
the deeper and granular features in the subsequent layers toward the output layer. These
networks are capable of training themselves based on some of the popular algorithms, such
as backpropagation. Another difference between deep learning and machine learning is the
performance with respect to the addition of data. As seen in figure 5.1, the machine learning
algorithms plateau at a certain data volume threshold. However, the deep learning
algorithms keep improving with the addition of training data. Typically, deep learning
algorithms need more time and computation power to train compared to the traditional
machine learning models.

Q: What is the difference between epoch, batch size, and iterations for a deep neural
network?

A: We come across these terminologies when the data size is high. An epoch is one forward
and backward pass through the entire training dataset. In most of the real-world scenarios,
the training dataset is so high that it is computationally very difficult to pass the entire data
through one epoch. In order to make the training through the deep neural network
computationally feasible, the entire dataset is divided into training batches. The number of
training examples in one batch is called the batch size. The number of batches to complete
one epoch is called an iteration. For example, if the training data size is 10,000 and the batch
size is 2,000, one epoch will be completed in five iterations.

Q: Why do we need non-linear activation functions in deep neural networks?

A: Within the real-world, stochastic environments, and feature spaces, nonlinearities are
more common than linear relationships. The neural networks learn by learning about the
features with a layered structure where each layer stores a specific feature set from the
training data. With a linear activation function applied at all the nodes within different
layers, the linearity can be aggregated in one layer and there is no point in having a multi-
layered network. Without a multilayered network, it is not possible to model the stochastic
input and generalize the model.

[159]

Deep Big Data Analytics Chapter 5

Q: How do we measure the performance of a deep neural network?

A: As a general principle, the performance of the deep neural network is a factor of how
well it is able to generalize the real-world data once the network is deployed in production
use. There are times when the model performs very well on the training data but does not
perform well on the test data due to overfitting. While there are many parameters on which
the deep neural network needs to be evaluated, three primary metrics help us in
understanding the model performance at a broad level:

¢ Receiver operating curve (ROC): Based on the predicted data points, this is a
plot between the false positive rate on the x axis and the true positive rate on the
y axis. Typically, the ROC curve takes the following shape when plotted with a
test with perfect discrimination. The closer the curve stays to the upper-left
corner, the greater the accuracy and hence the performance of the network:

True Positive ——»
T

False Positive ———

e Precision and recall: Precision defines the ratio of the number of correct
classifications to the total number of training input. This is a general indication of
how often the model is correct. Recall measures the utility of the model within
the search space in terms of finding the correct output. These scores are always
seen in combination and they constitute the F1 score for the model. If one of these
parameters is low, the overall F1 score is also low.

Q: What are some of the implementation areas of deep neural networks?

A: Deep learning can be applied in variety of fields, such as automatic speech recognition,
image recognition, natural language processing, medical image processing,
recommendation systems, and bioinformatics.

[160]

Deep Big Data Analytics Chapter 5

Summary

In this chapter, we took our understanding of the ANNSs further, to the deep neural
networks that contain more than one, and up to hundreds and thousands of, hidden layers.
The learning based on these deep neural networks is called deep learning. Deep learning is
evolving as one of the most popular algorithms for solving some of the extremely complex
problems within a stochastic environment. We have established the fundamental theory
behind the working of deep neural networks and looked at the building blocks of gradient
based-learning, backpropagation, nonlinearities, and the regularization technique- dropout.
We have also reviewed some of the specialized neural network architecture's CNNs and
RNNs.

We have also studied practical approaches for building data preparation pipelines and
looked at the examples of applying regularization using the Weka library along with the
DataVec library. We have studied some practical approaches for implementing neural
network architectures. We have also reviewed a set of hyperparameters that affect the
performance of the deep neural networks, and defined best practices for tuning those
hyperparameters.

We experimented with the deeplearning4j library to demonstrate hyperparameter tuning
and how to visualize the neural network with the deeplearning4j Ul library. The deep
neural networks are computationally heavy and hence need more processing power as we
we add more data, and consequently more hidden layers and nodes within each hidden
unit. It is imperative that we leverage the distributed computing frameworks for deep
learning. We reviewed some of the basics of distributed computing and how to integrate
deeplearning4j with Spark.

In the next chapter, we are going to transform from the area of artificial intelligence to
Machine Learning. We will understand the basics of NLP, along with the mathematical
intuition and practical guidelines with the implementation of NLP-based systems.

[161]

Natural Language Processing

Machine learning, or artificial intelligence, is based on data that can be structured or
unstructured. Natural language processing (NLP) is an area of algorithms that is focused
on processing unstructured data. This chapter is focused on unstructured data with a
natural language text format. Organizations always have large corpuses of unstructured
text data, either in the form of word documents, PDFs, email body, or web documents. With
advances in technology, organizations have started relying on large volumes of text
information. For example, a legal firm has lots of information in the form of bond papers,
legal agreements, court orders, law documents, and so on. Such information assets are
made up of textual information that is domain-specific (legal in this case). It is imperative
that in order to utilize these valuable textual assets, and convert the information into
knowledge, we require intelligent machines to be able to understand the text as-is, without
any human intervention. NLP for big data uses tons of text data from various sources to
determine relationships and patterns across contents received from those sources. It helps in
identifying trends which will be utilized in use cases like recommendation engines. This
chapter introduces the basic concepts behind NLP with practical examples.

We can divide NLP into two types of approaches, supervised NLP and unsupervised NLP.
The supervised learning NLP approach involves using supervised learning algorithms such
as Naive Bayes and Random Forests. In these algorithms, models are created based on the
predicted output given to them for training an input set. That means supervised learning
approaches are not self-learning but they train and fine-tune models based on the target
output provided to them. Unsupervised learning algorithms do not rely on the fact that the
target output is provided to them for model training. They draw deductions from input
records given to them as a result of multiple iterations over data learning from the output of
previous iterations, and tuning weights and parameters to optimize results. Recurrent
neural nets (RNN) is one of the common unsupervised learning algorithms used in natural
language processing. We will explore all these techniques in this chapter.

Natural Language Processing Chapter 6

Overall, we will cover the following topics:

Natural language processing basics

Text preprocessing

Feature extraction

Applying NLP techniques
Implementing sentiment analysis

Natural language processing basics

Before we state some of the high-level steps involved in NLP, it is important to establish a
definition of NLP. In simple terms, NLP is a collection of processes, algorithms, and tools
used by intelligent systems to interpret text data written in human language for actionable
insights. The mention of text data makes one fact about NLP very evident. NLP is all about
interpreting unstructured data. NLP organizes unstructured text data and uses
sophisticated methods to solve a plethora of problems, such as sentiment analysis,
document classification, and text summarization. In this section, we will talk about some of
the basic steps involved in NLP.

In the subsequent sections, we will take a deep dive into those steps. The following diagram
represents some of the basics hierarchical steps involved in NLP:

N
Natural Language
Processing
N
V) S B N
Supervised Unsupervised
Learning Learning
Text Feature . Model Model "
Preprocessing Extraction Model Training Verification Deployment Model APIs
N N N N
DN
Web Apps
N
N
Mobile Apps
N
L~
. . Analytics Engine
Natural Language Processing Hierarchy ~

[163]

Natural Language Processing Chapter 6

Let us look at each of these steps briefly:

¢ Type of machine learning: NLP can be performed either using supervised
learning algorithms or as unsupervised learning algorithms. Supervised learning
algorithms include Naive Bayes, SVM, and Random Forest. Unsupervised
learning algorithms include Feed Forward Neural Networks (Multi Layer
Perceptron) and Recurrent Neural Network (RNN). One important thing to note
here is that the preprocessing and feature-extraction steps are same for both
classes of algorithms. What differs is how you train your model. Supervised
learning requires labeled output as their input, and unsupervised learning would
predict the outcome without any labeled output.

¢ Tex preprocessing: This step is required because raw natural text cannot be used
in NLP systems. This will result in bad or not-very-accurate output. Some of the
common text preprocessing steps are removing stop words, replacing capital
letter words, and removing special characters. Another common step in text
preprocessing is part of-speech tagging, which is also called annotation. Text
normalization in the form of stemming and lemmatization is also applied.

e Feature extraction: For any ML algorithm to work on text, these texts have to be
converted into some form of numerical input. Feature extraction employs
common techniques of converting input text to numerical input in the form of
vectors.

e Model training: Model training is process of establishing or finding a
mathematical function that can be used to predict the outcome based on the given
input. The process of finding a function involves multiple iterations and
parameter tuning.

e Model verification: This step is the process of verifying models resulting from
the model training process. Generally, you divide your training dataset into an
80:20 ratio. 80% of data is used for model training and 20% of the data is used for
validating the correctness of the model. In the case of discrepancies, you fine-tune
your model creation steps and re-run the validations.

[164]

Natural Language Processing Chapter 6

e Model deployment and APIs: After the models have been verified, you deploy
your models so that they can be used to predict the outcomes in the context of
enterprise applications. You can save these models on a storage location where
they can be read in-memory and can be applied to a dataset to predict its
outcome. In distributed processing, they are generally saved in a Hadoop-
distributed file system so that Hadoop batch processes can read and apply those
models. In the case of web applications, they are stored in the form of Python
pickle files, and these pickle files are read and processed upon each prediction
request. Although, for applications to use this, you would require API layers to
be exposed on top of it. These API layers can be restful APIs or come in the form
of packaged jars deployed to the location where applications are hosted. Once the
APIs are exposed, they can be used by a variety of web applications, mobile
applications, or analytics or BI engines.

Text preprocessing

Preprocessing the data is the process of cleaning and preparing the text for classification
and derivation of meaning. Since our data may have a lot of noise, uninformative parts,
such as HTML tags, need to be eliminated or re-aligned. At the word level, there might be
many words that do not make much impact on the overall semantic of the textual context.
Text preprocessing involves a few steps, such as extraction, tokenization, stop words
removal, text enrichment, and normalization with stemming and lemmatization. In addition
to these, some of the basic and generic techniques that improve accuracy involve converting
the text to lower case, removing numbers (based on the context), removing punctuation,
stripping white spaces (sometimes these add to noise in the input signal), and eliminating
the sparse terms that are infrequent terms in the document. In the subsequent sections, we'll
analyze some of these techniques in detail.

Removing stop words

Stop words are words that occur more frequently in the sentence and make the text heavier
and less important for the analysis, they should be excluded from the input. Having stop
words in your text confuses your algorithm as these stop words do not have contextual
meaning and increase dimensional features of your term vectors. Therefore, it is imperative
that these stop words be removed for better model accuracy. Examples of stop words are I,
am, is, and the. One of the ways to remove the stop words is to have a precompiled list of
the stop words and then remove those stop words from the document (text used to train the
model).

[165]

Natural Language Processing Chapter 6

With Spark, we can use the stopWordsRemover library, which has its
own list of default stop words for many natural languages. We can also
provide a list of stop words with the stopWords parameter. Another way
to remove the less significant words from the document is based on their
frequency of occurrence; if the word's frequency is low, we can remove
those words, this is also known as pruning.

Here is a sample code for using the Spark library. With this library, the process of stop

words removal is parallelized and we can quickly perform a stop words removal on a large

volume of data in a distributed manner:

import java.util.Arrays;
import java.util.List;

import org.apache.spark.ml.feature.StopWordsRemover;
import org.apache.spark.sqgl.Dataset;

import org.apache.spark.sqgl.Row;

import org.apache.spark.sqgl.RowFactory;

import org.apache.spark.sqgl.types.DataTypes;

import org.apache.spark.sqgl.types.Metadata;

import org.apache.spark.sqgl.types.StructField;
import org.apache.spark.sqgl.types.StructType;

StopWordsRemover remover = new StopWordsRemover ()
.setInputCol ("raw")

.setOutputCol ("filtered");

List<Row> data = Arrays.asList(

RowFactory.create (Arrays.asList ("I", "am", "removing", "the", "stop",
"words")),

RowFactory.create (Arrays.asList ("from", "a", "large", "volume",
"Of", "data"))

)i

StructType schema = new StructType (new StructField[]{
new StructField(
"raw", DataTypes.createArrayType (DataTypes.StringType), false,
Metadata.empty())
}) i

Dataset<Row> dataset = spark.createDataFrame (data, schema);
remover.transform(dataset) .show (false);

[166]

Natural Language Processing Chapter 6

Stemming

Different forms of a word often communicate essentially the same meaning. Consider an
example of a search engine when a user searches shoe or when they search for shoes. The
intent of the user is the same and the search result is still going to be shoes from different
brands. But the presence of both words can confuse models. So for better accuracy, we need
to convert these different forms of the word in its row format. Stemming is converting a
word in a text into its raw format. For example, introduction, introduced, and introducing
all turn into introduce after stemming. The purpose of this method is to remove various
suffixes, to reduce the number of words. Also, this helps the model to avoid confusion
while getting trained. Many stemming algorithms are available, such as porter stemming,
snowball stemming, and Lancaster stemming. Most of the stemming algorithms in the
following sections are available in multiple natural languages.

Porter stemming

Porter stemming is one form of the stemming algorithm that removes suffixes from base
words or terms in the English dictionary. The whole purpose of Porter Stemmer is to
improve the performance of the NLP model training exercise. It does so by removing
suffixes from a word and bringing it to its base form. This way, the number of terms is
reduced and the memory footprint and complexity of your term space is also minimized.
Porter is not dictionary-based. It does not use any stem dictionary to identify suffixes that
need to be removed. It is based on a set of generic rules. Some people see this as a drawback
as its working is pretty straightforward and does not take care of the lower-level
contextual nitty-gritty of English words. Porter stemming is used for its simplicity and
speed. Porter stemming has five steps that are applied on the word until one of them
satisfies. For example, consider step 1 in porter stemming, which is as explained in the
following blocks:

SSESS ->SS - This rule converts SSESS suffix of the word into SS.
For example, prepossess - > preposs

IES > 1 - This rule converts IES suffix of the word into I.
For example, ties -> ti

S5->S5S - If the word has SS as suffix this won’t change.
For example, Success -> Success

S ->- If the word has S as suffix this would remove the suffix.
For example, Pens -> Pen

[167]

Natural Language Processing Chapter 6

Please refer to http://www.cs.toronto.edu/~frank/csc2501/Readings/
R2_Porter/Porter-1980.pdf for a detailed explanation of the porter
stemming algorithm.

Snowball stemming

This is also known as Porter2. The Porter2 algorithm is implemented as the English
Stemmer (based on Snowball). This algorithm was developed as a framework to use for
languages other than English. This is better in accuracy than porter algorithms. The
snowball rule example is given as follows:

ied or ies -> replace by i if preceded by more than one letter, otherwise
by ie.

ties -> tie,

cries -> cri

So as we can see with porter ties we stemmed into ti whereas with snowball

it becomes tie.

For more details, refer to http://snowballstem.org/algorithms/

english/stemmer.html.

Lancaster stemming

A very aggressive stemming algorithm, sometimes to a fault. With porter and snowball, the
stemmed representations are usually fairly intuitive to a reader, not so with Lancaster, as
many shorter words will become totally obfuscated. The fastest algorithm here, it will
greatly reduce your working set of words, but if you want more distinction, this is not the
tool to use. The Lancaster rule example is given in the following block:

ies -> y - This rule converts ies suffix of the word into y.

cries -> cry

So with Lancaster stemming as we see cries stemmed into cry which more
better stemmed.

[168]

http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://snowballstem.org/algorithms/english/stemmer.html
http://snowballstem.org/algorithms/english/stemmer.html
http://snowballstem.org/algorithms/english/stemmer.html
http://snowballstem.org/algorithms/english/stemmer.html
http://snowballstem.org/algorithms/english/stemmer.html
http://snowballstem.org/algorithms/english/stemmer.html
http://snowballstem.org/algorithms/english/stemmer.html
http://snowballstem.org/algorithms/english/stemmer.html
http://snowballstem.org/algorithms/english/stemmer.html
http://snowballstem.org/algorithms/english/stemmer.html
http://snowballstem.org/algorithms/english/stemmer.html
http://snowballstem.org/algorithms/english/stemmer.html
http://snowballstem.org/algorithms/english/stemmer.html
http://snowballstem.org/algorithms/english/stemmer.html

Natural Language Processing Chapter 6

Lovins stemming

In 1968, Lovins JB published this stemming algorithm. The approach taken by Lovins is bit
different, but it does start with removing suffixes from the word. It comes to the conclusion
in a two-step process. It first removes the longest possible suffix from a word. It is a single-
pass algorithm that removes the single largest suffix from a word. Secondly, it applies set of
rules on the resulting longest suffix to transform it into a word. This algorithm is rules- and
dictionary-based. It is faster and usually is less memory intensive. It is able to convert
words such as getting into get or words such as mice to mouse. Sometimes this algorithm
can be inaccurate due to many suffixes not available in its dictionary. Moreover, it
frequently fails to form a word from a stemmed word or even if a word is formed, it may
not have the same meaning as the original word.

Dawson stemming

This stemmer extends the same approach as the Lovins stemmer with a list of more than a
thousand suffixes in the English language. Here is the generic algorithm for the Dawson
stemmer:

1. Get the input word
2. Get the matching suffix
2a. The suffix pool is reverse indexed by length
2b. The suffix pool is reverse indexed by the last character
3. Remove longest suffix from the word with exact match.
4. Recode the word using a mapping table
5. Convert stem into a valid word.

The advantages of the Dawson stemmer are as follows:

e It covers a wider range of suffixes and hence produces a more accurate stemming
output
e It is a single-pass algorithm, which makes it efficient

[169]

Natural Language Processing Chapter 6

Lemmatization

Lemmatization is a bit different from stemming. Stemming generally removes end
characters from a word with the expectation that they will get the correct base word.
However, sometimes it results in removing suffixes that add meaning to a word.
Lemmatization tries to overcome this limitation of stemming. It tries to find out the base
form of the word, called the lemma, based on a vocabulary of words that it has and a
morphological analysis on words. It uses the WordNet lexical knowledge dictionary to get
the correct base form of a word. However, this has its limitation as well, for example, it
requires part-of-speech tagging otherwise it will treat everything as a noun.

N-grams

N-gram is a continuous sequence of N-words or tokens in a given sentence or continuous
sequence of text. N is defined as an integer value starting from 1. So, N-Gram could be Uni-
Gram(N=1), Bi-Gram(N=3) or Tri-Gram(N=3). N-gram algorithms or programs identify all
continuous adjacent sequences of words in a given sentence tokens. It is a Windows-based
functionality starting from the left-most word position and then moving windows by one
step. Let's see it with an example sentence, This is Big Data AI Book. See the following
example of Uni-Gram, Bi-Gram, and Tri-Gram examples:

This is Big Data Al Book

Tri-Gram This is Big Is Big Data Big Data Al Data Al Book

N-grams is used for developing efficient features that are passed to supervised machine
learning models, such as SVMs and Naive Bayes, for training and prediction. The idea is to
use tokens, such as Bi-Grams, instead of just Uni-Grams so that these machine learning
models can learn efficiently.

[170]

Natural Language Processing Chapter 6

Using N-grams tends to capture the context in which words are used together in a given
document. As shown in the previous example, Tri-Grams can give your machine learning
algorithm more context so that the next set of words can be predicted better. However,
what should be the optimal value of N, is something that needs to be determined based on
your dataset and after doing sufficient data exploration and analysis. A larger value of N
does not always mean a better result. You should make very informed decisions about the
value of N.

Feature extraction

As mentioned earlier in this chapter, the NLP system does not understand string values.
They need numerical input to build models, sometimes they are also called numerical
features. Feature extraction in NLP is converting a set of text information into a set of
numerical features. Any machine learning algorithm that you are going to train would need
features in numerical vector forms as it does not understand the string. There are many
ways text can be represented as numerical vectors. Some such ways are One hot encoding,
TF-IDF, Word2Vec, and CountVectorizer.

One hot encoding

One hot encoding is the binary sparse vector representation of text. In this encoding, the
resulting binary vector is all zero-value except at the position or index of the token where it
is one. Let's look at it with an example. Suppose there are two sentences: This is Big
Data AI Book. This is book explains AI algorithms on Big Data. Unique
tokens (nouns) for earlier sentences would be {data, AT, book,algorithms}. The one hot
encoding representation for these tokens would be like the following;:

data AI book Algorithms
data 1 0 0 0
Al 0 1 0 0
book 0 0 1 0
Algorithms 0 0 0 1

[171]

Natural Language Processing Chapter 6

The Encoded Sparse Vector Representation would look like the following:

data = [1,0,0,0]

AI =1[0,1,0,0]

book = [0,0, 1, 0]
Algorithms = [0,0,0, 1]

TF-IDF

The TF-IDF method of feature extraction uses a scalar product of term frequency (TF) and
inverse document frequency (IDF) to calculate the numerical vector of a token or term. TE-
IDF not only calculates the importance of a word in a specific document but also measures
its importance in other documents of a corpus. Moreover, it tries to normalize any word
that is overly frequent in the entire corpus.

TF, or Term Frequency, is a term’s occurrence in a document. We can use the HashingTF
library in Spark to compute the term's frequency. HashingTF creates the sparse vector
corresponding to each document representing index and frequency. For example, if we
consider the extraction of the feature using HashingTF extraction

method text string, then the TF of every word in the earlier document using HashingTF
would be the following;:

import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}

val exampleData = spark.createDataFrame(Seq(
(8.9, "extraction of the feature using HashingTF extraction method")
)).toDF("1label™, "sentence")

val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words'")
val tokensData = tokenizer.transform({exampleData)

val hashingTF = new HashingTF()
.setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(18)

val features = hashingTF.transform(tokensData)

features.select("rawFeatures")show(truncate=false)

TF Using HashingTF

[172]

Natural Language Processing Chapter 6

The output of HashingTF:

In the preceding screenshot, we can see the first array is the extracted features from the
document, and the second array is the Array [SparseVector], which represents the index
and frequency. For an instance, the ext raction word occurs twice in the document so we
can see the frequency of the word is 2. With HashingTF, tokenized word array may not be
in the same sequence as the vector array.

TF measures the importance of a word in a particular document only and not with respect
to the entire corpus of documents. Moreover, overly frequent words in a large document
may not be that important with respect to the entire corpus. This can hamper the prediction
output as words that appear less frequently may be of higher importance with respect to the
entire corpus. This is where IDF comes into the picture; it represents the inverse of the share
of the documents in which the regarded term can be found. The lower the number of
containing documents relative to the size of the corpus, the higher the factor. The reason
why this ratio is not used directly but instead its logarithm, is because otherwise the
effective scoring penalty of showing up in two documents would be too extreme. The
following is the sample example on how to calculate TF-IDF together:

import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}

val exampleData = spark.createDataFrame(Seq(
(8.0, "extraction of the feature using HashingTF extraction method")
)).toDF("label", "sentence")

val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val tokensData = tokenizer.transform(exampleData)

val hashingTF = new HashingTF()
.setInputCol("words").setQutputCol("TF").setNumFeatures(19)

val features = hashingTF.transform(tokensData)

val idf = new IDF().setInputCol("TF").setOutputCol("IDF")

val idfModel = 1idf.fit({features)

val rescaledData = idfModel.transform(features)

rescaledData.select("label", "TF","IDF").show(truncate=false)

Code to calculate IDF

[173]

Natural Language Processing Chapter 6

The IDF code output is as follows:

—————— o
| label|TF | IDF [
—————— o
|e.¢ |(1e,[®,3,4,5,6,8],[1.0,1.0,2.0,1.0,1.0,2.0])]|(1@,[®,3,4,5,6,8],(0.0,0.0,0.0,0.0,0.0,0.0])|
—————— +-—-

The goal of TF-IDF is to find words of higher relevance. The algorithm keeps track of the
local relevance of a word in a document using TF calculations and the global relevance of a
word in the entire training corpus using IDF calculations. Finally, both the calculations are
multiplied to get the final weights of a word. However, we encourage you to get a feel for
how this can be applied to your NLP system as TF-IDF ranking behavior may not give
relevant results in your use case. You can apply multiple adjustments to the corpus to get
the desired behavior. The following is the mathematical formula for TF-IDEF:

The formula to calculate Term Frequency (TF)
=N
tfrod =nea/ Y Mid
1=0

Where t is the term or word in a document, d. "*t.d is the count of term, ¢, in a document,

i=N
> mid
d. i=0

is the count of all terms in a document.
The formula to calculate Inverse Document Frequency (IDF):

idf; = log,o(N/dfy)

Where @/t is term frequency in a document and XV is the total number of documents in a
corpus.

The TF-IDF weight formula is:

’wt’d = (1 -+ (]. —+ tft’d)).'idft

[174]

Natural Language Processing Chapter 6

CountVectorizer

CountVectorizer and CountVectorizerModel works on count of words(tokens). It uses
words in text documents to build vectors containing count of tokens. It has provisions of
using dictionary of words to identify tokens that can be taken as input to algorithms. If
dictionary is not available CountVectorizer uses its own estimator to build the vocabulary.
Based on that vocabulary it generates CountVectorizerModel, a sparse representations of
training documents. This model acts as input to NLP algorithms like LDA.

CountVectorizer counts the word frequencies for the document, whereas TF-IDF gives us
the importance of the word with regards to the whole corpus. CountVectorizer is one of the
tools used to convert the text to a vector that can passed as a feature to the machine learning
model. Similar to TF-IDF, this model also produces sparse representations for the
documents over the vocabulary. For example, if we consider the extraction of the
feature using countvectorizer extraction method text string, then the output

would look something like this:

import org.apache.spark.ml.feature.{CountvVectorizer, CountVectorizerModel,Tokenizer}

val exampleData = spark.createDataFrame(Seq(
(8.0, "extraction of the feature using countvectorizer extraction method")
1) .toDF{"label"™, "sentence")

val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val tokensData = tokenizer.transform{exampleData)

val cvModel: CountVectorizerModel = new CountVWectorizer()
.setInputCol("words")
.5etutputCol ("features")
.setVocabSize(3)
.setMinDF(1)
.fit{tokensData)

cvModel. transform(tokensData) .select("words","features") .show(false)

Code to calculate CountVectors

The output of the CountVector code:

[175]

Natural Language Processing Chapter 6

We can see in the earlier example that the first words array is the extracted features from
the document, similar to TF-IDF, but the second features array is the

Array [SparseVector], which represents the index and word frequency that is ordered
from highest to lowest. Also, here 3 is the vocabulary size, which means CountVectorizer
picks and is equal to the distinct words in the document, which is 3 in our case. You can
customize this in Spark.

Word2Vec

In a typical feature extraction from text, numerical vectors are created based on unique
labels given to them. However, these uniquely-labeled sparse vectors do not represent the
context in which each word has appeared. In other words, it does not specifically state or
represent the relationship a given word exhibits with other words in a corpus. That means
unsupervised learning algorithms that learn from data processing cannot be leveraged
much. These algorithms cannot leverage relationships or contextual information about the
word. Therefore, a new class of algorithms for feature extraction is developed that preserves
the context or relationship information among words. This new class of algorithms is called
Word-Embedding feature-extraction algorithms. These classes of algorithms represent
sparse vectors into continuous vector space models (VSM).

In VSM, similar words are mapped to nearby points so that they form a cluster of similar
words. Word2Vec is a predictive method based on word-embedding algorithms that can be
implemented in two ways, the continuous bag of words model (CBOW) and the Skip-
Gram model.

CBOW

Most of the prediction models are based on the words or contexts that have appeared in
past words. Based on their learning from past words, they predict the next word. CBOW, in
contrast to this, uses N words before and after the word in question to predict the outcome.
It uses a continuous representation of a bag of words to predict the outcome. However,
order is of no significance here. CBOW takes context in the form of a window of words and
predicts the word.

[176]

Natural Language Processing

Chapter 6

The following figure represents how CBOW works:

INPUT

Wi+l

Wt+2

PROJECTION OUTPUT

Word2Vec: CBOW

Based on the previous diagram, CBOW can be formalized as:

1 T
J@ — TZlogp(m’Wt_n,...,m_l,----Wt-i-l""Wt'i‘n)
t=1

The previous formula is based on a window of n words around a target word. ¢ represents
the time step. The word window spans across the previous words and the next words.

[177]

Natural Language Processing Chapter 6

Skip-Gram model

The Skip-Gram model works opposite of the CBOW model. It predicts the context based on
the current word. In other words, it uses a central world to predict words appearing before
and after the main word. The following figure represents the Skip-Gram model:

INPUT PROJECTION OUTPUT

we—

R Wi

A w2

Word2Vec: Skip-Gram Model

Based on the previous diagram, Skip-Gram can be formalized as:

1 T

Jo ==§;§£: j{: log, (Wi ;|Wt)

t=1 —n<j<n

The skip-gram model calculates and sums up the logarithmic probabilities of the previous
and next, n, words surrounding the target word, Wr.

[178]

Natural Language Processing

Chapter 6

The following is code to calculate Word2Vec using the Skip-Gram model in Spark:

impert org.apache.spark.ml.feature.{Word2Vec,Tokenizer}
impert org.apache.spark.ml.linalg.Vector
impert org.apache.spark.sgl.Row

val exampleData = spark.createDataFrame(Seq(

)) .toDF ("label™, "sentence")

val tokensData = tokenizer.transform(exampleData)

val word2Vec = new Word2Vec()
.setInputCol("words")
.setOutputCol("features")
.setVectorSize(3)
.setMinCount (@)
val model = word2Vec.fit(tokensData)
val result = model.transform(tokensData)
result.select("words","features").show(false)

(8.0, "extraction of the feature using word2Vec extraction method”)

val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")

Word2Vec: Skip-Gram code in Spark

The Word2Vec Skip-Gram Spark code output is as follows:

|words | features

,, e

__ e

| [extraction, of, the, feature, using, word2vec, extraction, method] |[-B.836735267378389835,-0.017351628514006734,8.014259896153816953] |

__ e

Applying NLP techniques

Generally, for any class of NLP problems, you first apply text preprocessing and feature
extraction techniques. Once you have reduced the noise in the text and are able to extract
features out of text, you perform various machine learning algorithms to solve different
NLP classes of NLP problems. In this section, we will cover one such problem, called text

classification.

[179]

Natural Language Processing Chapter 6

Text classification

Text classification is one of the very common use cases of NLP. Text classification can be
used for use cases such as email SPAM detection, identifying retail product hierarchy, and
sentiment analysis. This process is typically a classification problem wherein we are trying
to identify a specific topic from a natural language source of a large volume of data. Within
each of the data groups, we may have multiple topics discussed and hence it is important to
classify the article or the textual information into logical groups. Text classification
techniques help us to do that.

These techniques require a good deal of computing power if the data volume is huge and it
is recommended to use a distributed computing framework for text classification. As an
example, if we want to classify the legal documents that exist in a knowledge repository on
the internet, we can use text classification techniques for the logical separation of various
types of documents. The following illustration represents a typical text classification process
that is done in two phases:

Text
Documents

Feature Extractor Text Classification Process

R

Features

l Prediction Process
Machine Learning Classifier %
Algorithm Model

Training Process

Let's now look at how text classification can be performed using Spark. We will divide our
code into four parts: text preprocessing, feature extraction, model training/verification, and
prediction. We will use the Naive Bayes' algorithm for model training and prediction. But
before we deep dive into the code, let's walk you through how NB works. We will also give
you a brief overview of another algorithm, Random Forest, which can be used in text
classification.

[180]

Natural Language Processing Chapter 6

Introduction to Naive Bayes' algorithm

The Naive Bayes (NB) classifier is a very powerful algorithm for the classification task. NB
is very good in cases where we use natural language processing for text analytics. As with
the name, Naive means independent or no relation, and the NB algorithm assumes that
there is no relation between features. As its name suggests, it works on Bayes' theorem.

So what is Bayes' theorem? Bayes' theorem finds out the probability of an event in the
future based on events that have already occurred. This type of probability is also called
conditional probability. This probability is context-based and context is determined by a
knowledge of events that have already occurred.

The following is mathematical expression of Bayes' theorem:

_ P(B/A)P(4)

P(A/B) = ~PB)

For any given two events, A and B, Bayes’ theorem calculates P(A | B) (the probability of
event A occurring when event B has happened) from P(B|A) (the probability of event

B occurring, given that event A has already occurred).

Naive Bayes tries to classify data points into classes. It calculates the probability of each
data point belonging to a class. Then each of the probabilities are compared to get the
highest probability, and the second highest probability is determined.

The highest probability class is considered the primary class, and the second highest
probability is considered the secondary class. When you have multiple classes - for
example, suppose we are classifying fruits as either apple, banana, orange, or mango, then
we have more than two classes where we are classifying a fruit - it is known as MultiNomial
Naive Bayes, and if we would have only two classes - for example, email as either spam or
non-spam - it would be Binomial MultiNomial Naive Bayes. The NB algorithm would be
clearer with the following example:

A pathology lab is performing a test of a disease, D, with two results, Positive or Negative. They
guarantee that their test result is 99% accurate: if you have the disease, you will test positive 99% of
the time. If you don’t have the disease, you will test negative 99% of the time. If 3% of all the people
have this disease and test gives the positive result, what is the probability that you have the disease?

[181]

Natural Language Processing Chapter 6

For solving the preceding problem, we will have to use conditional probability. The
following mathematical calculation shows how the NB conditional probability would be
applied mathematically:

Probability of people suffering from Disease D, P(D) = 0.03 = 3%
Probability that test gives “positive” result and patient have the disease,
P(Pos | D) = 0.99 =99%

Probability of people not suffering from Disease D, P(~D) = 0.97 = 97%
Probability that test gives “positive” result and patient does have the
disease, P(Pos | ~D) = 0.01 =1%

For calculating the probability that the patient actually have the disease
i.e, P(D | Pos) we will use Bayes theorem:

P(D | Pos) = (P(Pos | D) * P(D)) / P(Pos)
We have all the values of numerator but we need to calculate P (Pos):
P(Pos) = P (D, pos) + P(~D, pos)

= P (pos|D)*P (D) + P(pos|~D)*P(~D)

= 0.99 * 0.03 + 0.01 * 0.97

0.0297 + 0.0097

0.0394

Let’s calculate, P(D | Pos) = (P(Pos | D) * P(D)) / P (Pos)
(0.99 * 0.03) / 0.0394

0.753807107

The preceding example shows that there is approximately a 75% chance of a patient having
the disease.

Random Forest

Random Forest is the class of algorithms that comes under the supervised learning
algorithm category. It is based on forests of trees, which is similar to decision trees in certain
contexts. Random Forest algorithms can be used for both classification and regression
problems. A decision tree gives the set of rules that are used in building models, which can
be executed against a test dataset for the prediction. In decision trees, we first calculate the
root node. To calculate the root node, we use information gain. For example, if you want to
predict whether your friend will accept a job offer or not. You need to feed the training
dataset of the offers they have accepted to the decision tree. Based on this, the decision tree
will come up with a set of rules that you will be using in the prediction. So let's say a rule
can be if salary > 50K, then your friend will accept the offer. A decision tree algorithm can
overfit as it is very flexible. To avoid this model overfitting in a decision tree, we can
perform the pruning. The following is the pseudocode for the Random Forest algorithm:

1. Randomly select k features from total m features. Where k << m.
2. Among the k features, calculate the node, d, using the best split point.

[182]

Natural Language Processing Chapter 6

3. Split the node into daughter nodes using the best split.
4. Repeat steps 1 to 3 until / number of nodes has been reached.

5. Build the forest by repeating steps 1 to 4 for n number times to create n number of
trees.

Once we have trained the model using the previous steps, for prediction we need to pass
the test features through all rules created by the different trees in the forest. If we want to
understand by example, suppose you want to purchase a mobile phone and you have
decided to ask your friends which phone is best for you. In this case, your friends might ask
you some random question about the features you like and suggest a suitable phone. Here,
each friend is the tree, and with the combination of all the friends, we form the forest.

Once you collect the suggestions from your friends (trees, in terms of the Random Forest
algorithm), you will count which type of phone has the most votes, and you will might
purchase that one. Similarly, in Random Forest, each tree will predict a different target
variable that we will sum with respect to that key. The key with the highest count,
predicted by the maximum number of trees, is the final target variable.

Naive Bayes' text classification code example

The following code represents how to perform text classification using the NB algorithm:

import org.apache.spark.ml.{Pipeline, PipelineModel}

import org.apache.spark.ml.classification.{NaiveBayes, NaiveBayesModel}
import org.apache.spark.ml.feature.{StringIndexer, StopWordsRemover,
HashingTF, Tokenizer, IDF, NGram}

import org.apache.spark.ml.linalg.Vector

import org.apache.spark.sgl.Row

//Sample Data

val exampleDF = spark.createDataFrame (Seq(

(1,"Samsung 80 cm 32 inches FH4003 HD Ready LED TV"),

(2,"Polaroid LEDPO40A Full HD 99 cm LED TV Black"),

(3, "Samsung UA24K4100ARLXL 59 cm 24 inches HD Ready LED TV Black")
)) .toDF ("id", "description")

exampleDF.show (false)

//Add labels to dataset

val indexer = new StringIndexer ()
.setInputCol ("description")

.setOutputCol ("label")

val tokenizer = new Tokenizer ()

[183]

Natural Language Processing Chapter 6

.setInputCol ("description")
.setOutputCol ("words™")

val remover = new StopWordsRemover ()
.setCaseSensitive (false)
.setInputCol (tokenizer.getOutputCol)
.setOutputCol ("filtered")

val bigram = new
NGram() .setN(2) .setInputCol (remover.getOutputCol) .setOutputCol ("ngrams")

val hashingTF = new HashingTF ()
.setNumFeatures (1000)
.setInputCol (bigram.getOutputCol)
.setOutputCol ("features™")

val idf = new IDF () .setInputCol (hashingTF.getOutputCol) .setOutputCol ("IDF")

val nb = new NaiveBayes () .setModelType ("multinomial")
val pipeline = new
Pipeline () .setStages (Array (indexer, tokenizer, remover,bigram,

hashingTF, idf, nb))
val nbmodel = pipeline.fit (exampleDF)
nbmodel .write.overwrite () .save ("/tmp/spark-logistic-regression-model")

val evaluationDF = spark.createDataFrame (Seq(
(1,"Samsung 80 cm 32 inches FH4003 HD Ready LED TV")
)) .toDF ("id", "description")

val results = nbmodel.transform(evaluationDF)
results.show (false)

The following screenshot represents the results output:

|id |description | label|words |filtered
|ngrams |features
| TOF

|1 |samsung 8@ cm 32 inches FH4003 HD Ready LED TV|1.@ |[samsung, 8@, cm, 32, inches, fh4ee3, hd, ready, led, tvl|[samsung, 890, cm, 32, inches, fh4@@3, hd, ready, le
d, tv]|[samsung 86, 80 cm, cm 32, 32 inches, inches fh4003, Fh4083 hd, hd ready, ready led, led tv]|(1000,[166,245,358,376,440,570,757,816,893],(1.0,1.6,1.0,1.0,1.0,1.
©,1.0,1.08,1.8])| (1000, [166,245,358,376,440,570,757,816,893],(0.0,0.287682072451780885,0.6931471805599453,8.6931471885599453,0.6931471805599453,0.6931471805599453,0.2876
8207245178085,0.6931471805599453,0.6931471805599453]) |

[184]

Natural Language Processing Chapter 6

Implementing sentiment analysis

In the following code snippet, we have implemented sentiment analysis based on the NLP
theory we discussed in this chapter. It uses SPARK libraries on Tweeter JSON records to
train models for identifying sentiments like happy or unhappy. It looks for keywords like
happy in the twitter messages and then flags it with value 1 indicating that this message
represents a happy sentiment. Other messages are flagged with value 0 which represents
unhappy sentiment. Finally TF-IDF algorithm is applied to train models:

import org.apache.spark.ml.feature.{HashingTF, RegexTokenizer,
StopWordsRemover, IDF}

import org.apache.spark.sqgl.functions._

import org.apache.spark.ml.classification.LogisticRegression

import org.apache.spark.ml.Pipeline

import org.apache.spark.ml.classification.MultilayerPerceptronClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import scala.util.{Success, Try}

import sglContext.implicits._

val sglContext = new org.apache.spark.sqgl.SQLContext (sc)
var tweetDF = sqglContext.read.json("hdfs:///tmp/sa/*")
tweetDF.show ()

var messages = tweetDF.select ("msg")

println ("Total messages: " + messages.count())

var happyMessages =

messages.filter (messages ("msg") .contains ("happy")) .withColumn ("label", 1it ("
"))

val countHappy = happyMessages.count ()

println ("Number of happy messages: " + countHappy)

var unhappyMessages = messages.filter (messages ("msg").contains ("
sad")) .withColumn ("label", 1it ("0"))

val countUnhappy = unhappyMessages.count ()

println ("Unhappy Messages: " + countUnhappy)

var allTweets = happyMessages.unionAll (unhappyMessages)
val messagesRDD = allTweets.rdd

val goodBadRecords = messagesRDD.map (
row =>{
val msg = row(0).toString.toLowerCase ()
var isHappy:Int = 0

[185]

Natural Language Processing Chapter 6

if (msg.contains (" sad")){
isHappy = 0

telse if (msg.contains ("happy")){
isHappy = 1

}

var msgSanitized = msg.replaceAll ("happy", "")
msgSanitized = msgSanitized.replaceAll ("sad","")
//Return a tuple

(isHappy, msgSanitized.split (" ") .toSeq)

val tweets = spark.createDataFrame (goodBadRecords) .toDF ("label", "message")

// Split the data into training and validation sets (30% held out for
validation testing)

val splits = tweets.randomSplit (Array (0.7, 0.3))

val (trainingData, validationData) = (splits(0), splits (1))

val tokenizer = new

RegexTokenizer () .setGaps (false) .setPattern ("\\p{L}+") .setInputCol ("msg") .se
tOutputCol ("words")

val hashingTF = new

HashingTF () .setNumFeatures (1000) .setInputCol ("message") .setOutputCol ("featu
res")

val idf = new IDF () .setInputCol (hashingTF.getOutputCol) .setOutputCol ("IDF")

val layers = Arrayl[Int] (1000, 5, 4, 3)
val trainer = new MultilayerPerceptronClassifier () .setLayers(layers)

val pipeline = new Pipeline () .setStages (Array (hashingTF, idf,trainer))
val model = pipeline.fit (trainingData)

val result = model.transform(validationData)

val predictionAndLabels = result.select ("message","label", "prediction")
predictionAndLabels.where ("label==0") .show (5, false)
predictionAndLabels.where ("label==1") .show (5, false)

[186]

Natural Language Processing Chapter 6

The output is as follows:

/mdincxetnn] |1 1.

The result after implementing sentiment analysis

The previous implementation is very basic form of NLP based sentimental analysis and
should be seen as a just simple example to understand sentimental analysis. There are more
advanced techniques that can be applied on this example to make it more adaptable
towards enterprise grade applications.

Frequently asked questions

Q: What are some of the common use cases of natural language processing?

A: Natural Language processing is branch of Machine learning algorithms that process text
data to produce meaningful insights. A few of the common use cases of NLP are answering
questions asked by the user, sentimental analysis, language translation to a foreign
language, search engines, and document classifications. The key point to understand here is
that if you want to perform analytics/machine learning on data represented by
text/sentences/word format, NLP is the way to go.

Q: How is feature extraction relevant to NLP?

A: Machine learning algorithms work on mathematical forms. Any other forms, such as
Text, need to be converted into mathematical forms to apply machine learning algorithms.
Feature extraction is converting forms, such as texts/images, into numerical features, such
as Vectors. These numerical features act as an input to Machine learning algorithms.
Techniques such as TF-IDF and Word2Vec are used to convert text into numerical features.
In a nutshell, feature extraction is a mandatory step to perform NLP on text data.

[187]

Natural Language Processing Chapter 6

Summary

In this chapter, we reviewed one of the most important techniques for the evolution of
intelligent machines to understand and interpret human language in its natural form. We
covered some of the generic concepts within NLP with sample code and examples. It is
imperative that the NLP technique and our understanding of the text gets better with more
and more data assets used for training.

Combining NLP with an ontological worldview, intelligent machines can derive meaning
from the text based assets at the internet scale and evolve to a know-everything system that
can complement the human ability to comprehend vast amounts of knowledge, and use it at
the right time with the best possible actions based on the context.

In the next chapter, we are going to look at fuzzy systems and how those systems combined
with NLP techniques can take us closer to creating systems that are very close to the human
ability to derive meaning from vague input, rather than exact input as required by
computers.

[188]

Fuzzy Systems

In the previous chapter, we saw an overview of the theory and techniques for building
intelligent systems that are capable of processing natural language input. It is certain that
there will be a growing demand for machines that can interact with human beings via
natural language. In order for the systems to interpret the natural language input and react
in the most reasonable and reliable way, the systems need a great degree of fuzziness. The
biological brain can very easily deal with approximations in the input compared to the
traditional logic we have built with computers. As an example, when we see a person, we
can infer the quotient of oldness without explicitly knowing the age of the person. For
example, if we see a a two-year-old baby, on the oldness quotient, we interpret the baby as
not old and hence young. We can easily deal with the ambiguity in the input. In this case, we
do not need to know the exact age of the baby for a fundamental and very basic
interpretation of the input.

This level of fuzziness is essential if we want to build intelligent machines. In real-world
scenarios, we cannot depend on the exact mathematical and quantitative input for our
systems to work with, although our models (deep neural networks, for example) require
actual input. The uncertainties are more frequent and the nature of real-world scenarios are
amplified by the incompleteness of contextual information, characteristic randomness, and
ignorance of the data. The human reasoning levels are capable enough to deal with these
attributes in the real world. A similar level of fuzziness is essential for building intelligent
machines that can complement human capabilities, in real sense of the term.

In this chapter, we are going to understand the fundamentals of the fuzzy logic theory and
how it can be implemented for building the following:

¢ Adaptive network-based fuzzy inference systems
e (Classifiers with fuzzy c-means
¢ Neuro-fuzzy-classifiers

Fuzzy Systems Chapter 7

We will be covering the following topics in the chapter:

¢ Fuzzy logic fundamentals
ANFIS network

Fuzzy C-means clustering
NEFCLASS

Fuzzy logic fundamentals

Let's quickly understand how human interactions are seamless, even with a degree of
vagueness within our statements. A statement such as John is tall does not have any
indication of John's exact height in inches or centimeters. However, within the context of the
conversation, two people communicating with each other can understand and infer from it.
Now, consider that this conversation is taking place between two teachers in a school about
a second grade student, John. Within this context, the statement John is tall means a certain
height and we are really good at understanding and inferring contextual meaning from this
vague information. The fundamental concept of fuzzy logic originates from the fact that
with an increase in the complexity of the environmental context, our ability to make precise
and exact statements about the state diminishes, yet in spite of that, the human brain is
capable of drawing precise inferences. Fuzzy logic represents a degree of truth instead of
the absolute (mathematical at times) truth. Let's represent the difference between traditional
logic and fuzzy logic with a simple diagram:

)
o)
—
o)9\ — Is John Tall?
9)
g
'_
)
&
—>' :> Is John Tall?
:
=}
= John
Moderate Tall

[190]

Fuzzy Systems Chapter 7

While the traditional computing frameworks are better suited for traditional logic, the
intelligent systems we intend to build need to adapt to fuzzy input based on context. The
computing frameworks need to transition from absolute truth, yes/no, to partial

truth, extremely tall, very tall, and so on. This is very similar to the human reasoning
paradigm in which the truth is partial and falseness is a diminishing degree of truth.

Fuzzy sets and membership functions

In our example, all the possible answers to the question of the height of a person constitute
a set. Since there is enough uncertainty within each of the values, it is termed a fuzzy set. In
this case, the fuzzy set is =k, {"Very tall”, "Somewhat tall”, "Moderately tall”}. Each member of
the set has a mathematical value that represents the level or degree of membership. In our
example, the set can be represented, along with the degree of membership, as {”Extremely
tall”:1.0, "Very tall”:0.8, "Somewhat tall”:0.6, “Moderately tall”:0.2}. The input can be plotted
on a curve that represents the values in the fuzzy set along with the degrees of
membership:

T
Q.
2
4
Q
'g _
g =
£ >
- _ >
@ % Bl E
g == ||z <
g’a Not at GEJ e g fi
a all Tall 6
wv

0

1 2 3 4 5 6 7

— Height (ft)

Let's define some standard terminology around fuzzy sets. A fuzzy set is typically marked
with character ‘A’, which represents the data space parameter X (measure of tallness, in this
case). The fuzzy set, A, is defined using a membership function, u, (X), which associates

each value within A with a real number between 0 and 1, denoting the grade of
membership within A.

[191]

Fuzzy Systems Chapter 7

The membership space is also termed the universe of discourse, which simply refers to all
the possible values within set A. Within the value space, the membership function needs to
satisfy only one condition: that the degree of membership for all the fuzzy set members
should be between 0 and 1. Within this constraint, the membership functions can take any
form (Triangular, Sigmoid, Step, Gaussian, and so on) depending on the dataset and the
predicament context. Here is a representation of the member functions for our dataset that

denotes tallness for a person:

Membership
functions

NT ST VT ET

o Degree of membership -

Set Members

(NT: Not tall — ST: Somewhat Tall — VT: Very Tall — ET: Extremely Tall

The linguistic variables (NT/ST/VT/ET) can be related to the numerical variables (actual
height of a person in inches) with a level of approximation or fuzziness.

Attributes and notations of crisp sets

A crisp set is a collection of entities that can be clearly separated as members versus non-
members, for example, a set of living objects versus non-living objects. In this case, the
container fully includes or fully excludes the elements. There are several ways in which
crisp sets can be defined:

¢ A set of even numbers greater than 0 and less than 10
e A=1{2,46,8}

¢ A set of elements that belong to another set, P and Q
e A={x | xisan element belonging to P and Q}

[192]

Fuzzy Systems Chapter 7

pa(X)=1if (x € A), Oif (x € A)
@: Represents a null or empty set

Power set P(A) ={X | x € A}: This is a set containing all the possible subsets of A

For the crisp sets A and B containing a super-set of elements within X:
e x C A==>xbelongs to A

e x ¢ A==>x does not belong to A
e x € X ==>x belongs to the entire universe X

Consider crisp sets A and B on X space
e A Cc B==>Ais completely part of B (if x € A then x € B) - implicit
reasoning
* A C B==>Ais contained in or equivalent to B

e A=B=>AcCcBorBCcA

Operations on crisp sets

Similar to the mathematical numerals, we can perform certain operations on crisp sets:

e Uniont AUB={x|xeAORxeB)}

o Intersectionn ANB={x | xe AAND x € B}

e Complement: A={x|x¢gA xeX]

e Difference: A-B=A|B={x|xgAandx¢B}=>A-(ANB)

This is how we we represent these operations:

Union Intersection
Difference
Complement of A (A-B) (B-A)

[193]

Fuzzy Systems Chapter 7

Properties of crisp sets

Crisp sets demonstrate certain properties, as follows:

o Commutivity:

e AUB=BUA
e ANB=BnA
e Associativity:

e AUBUC)=(AUB)UC

e AN(BNnC)=(AnB)nC
Distributivity:

e AUBNC)=(AUB)Nn(AuC)

e AN(AUC)=(ANB)U(ANC)

¢ Idempotency:
s AUA=A
e ANA=A
e Transitivity:

e [fACBCcCthenAcC

Fuzzification

Digital computers are designed and programmed to primarily work with crisp sets. This
means they are able to apply logical operations and computational reasoning based on the
classical sets. In order to make intelligent machines, we require a process called
fuzzification. With this process, the digital inputs are translated into fuzzy sets.

Membership of the fuzzy sets corresponds to a certain degree of certainty for the fuzzy set.
Fuzzification is a process by which we move gradually from precise symbols to vagueness
for the element representations, which translates measured numerical values into fuzzy
linguistic values. Consider a set of numbers that are close to integer value 5:

Aclussic = {314/5/6/7}

Ay, =10.6/2,0.8/3, 1.0/4, 1.0/5, 1.0/6, 0.8/7, 0.6/8}

[194]

Fuzzy Systems Chapter 7

Fuzzification is a process for defining the membership degree of the set members. In the
case of the classic set, the membership degree is 1 or 0. Whereas in the fuzzy set, the
membership degree varies between 0 and 1. The following diagram illustrates a dataset
representation for Poorness of Grades. Assume that a student gets grades from 0 to 100 on
the exam. 0 is the minimum and hence the poorest grade, and 100 is the maximum and
hence not a poor grade at all:

Traditional Logic

Fuzzy Logic

Poorness of Grades
[
Poorness of Grades

0
Exam Grades 20 40 60 80 100 20 40 60 80 100

Fuzzification

If a student scores 30 in the exam, with traditional logic, they have received poor grades,
since the poorness of grades is a step function that treats all the grades below 40 as poor and
higher than 40 as not-poor. In the case of fuzzy logic, if a student gets 30, they have a 0.8
degree of a poor grade and if the student scores 70, they have a 0.2 degree of a poor grade.
The fuzzy sets do not need to be distinct and they can union, intersect, complement, and
differentiate with each other:

(=) H()

H(x)
Hanp(x) = min (u,(x), pp(x)) V, € X

Intersection

[195]

Fuzzy Systems Chapter 7

By e)

U(=) Maop(X) = max (uy(x), py(x)) V, € X

pa(x) =1—pa(x)V € X

Complement

The fuzzy function can take any complex form based on the contextual data-based
reasoning. Membership for elements in a fuzzy set that follows the fuzzy function can be
ensured in multiple ways, depending on the context:

Membership as similarity

Membership as probability

Membership as intensity

Membership as approximation

Membership as compatibility

Membership as possibility
Membership functions can be generated in two ways:

¢ Subjective: Intuition/expertise/knowledge
e Automatic: Clustering/neural nets/genetic algorithms

[196]

Fuzzy Systems Chapter 7

Defuzzification

Defuzzification is a process by which the actionable outcomes are generated as quantifiable
values. Since computers can only understand the crisp sets, it can also be seen as a process
of converting fuzzy set values based on the context into a crisp output. Defuzzification
interprets the membership value based on the shape of the membership function into a real
value. The defuzzified value represents the action to be taken by the intelligent machine
based on the contextual inputs. There are multiple defuzzification techniques available; the
one that is used for a given problem depends on the context.

Defuzzification methods

We have the following defuzzication methods:

¢ Center of sums method
Center of gravity (COG)/ centriod of area (COA) method
Center of area / bisector of area (BOA) method

Weighted average method

e Maxima methods:
¢ First of maxima method (FOM)

¢ Last of maxima method (LOM)
¢ Mean of maxima method (MOM)

Fuzzy inference

Fuzzy inference is the actual process that brings everything together to formulate the
actions for the intelligent machines. The process can be depicted as follows:

Fuzzy Input u

Crisp Input Knowledge Base
Fuzzification Rules Engine Defuzzification
Historical Data Sets

Inference System

A

[197]

Fuzzy Systems Chapter 7

In traditional systems, the inputs are received as crisp sets. The crisp input are fuzzified as
membership functions and the input fuzzy sets are aggregated with
union/complement/differentiation techniques. Once the aggregated membership function is
obtained, we apply the knowledge base, rules, and utilize historical datasets before
defuzzifying the input set into an actionable output value.

Modern intelligent systems need to work with fuzzy input directly; the fuzzification process
is part of the environmental context. The machines need to interpret natural language input
to create a seamless experience for end users. A fuzzification unit needs to support the
application of various fuzzification methods to convert the crisp input into fuzzy sets.

ANFIS network

In earlier chapters, we saw the theory and practical applications of ANNs. When we
combine the general theory of ANNs with fuzzy logic, we are able to get a neuro-fuzzy
system that is a very efficient and powerful mechanism for modeling the real world input
into intelligent machines, and producing output that are based on the adaptive judgement
of a machine. This brings the computational frameworks very close to how a human brain
would interpret the information and is able to take action within split seconds. Fuzzy logic
itself has the ability to interpenetrate between human and machine interpretations of the
data, information, and knowledge. However, it does not have an inherent capability to
translate and model the process of transformation of human thought processes into rule
based, self-learning, fuzzy inference systems (FIS).

ANNSs can be utilized for automatically adjusting the membership functions based on the
environmental context and training the network interactively in order to reduce the error
rate. This forms the basis of Artificial Neuro-Fuzzy Inference Systems (ANFIS). ANFIS can
be considered as a class or type of adaptive networks that are equivalent to fuzzy inference
systems that use the hybrid learning algorithm.

Adaptive network

This is a type of feed-forward neural network with multiple layers that often uses a
supervised learning algorithm. This type of network contains a number of adaptive nodes
that are interconnected, without any weight value between them. Each node in this network
has different functions and tasks. A learning rule that is used affects parameters in the node
and reduces error levels at the output layer.

[198]

Fuzzy Systems Chapter 7

This neural network is usually trained with backpropagation or gradient descent. Due to
the slowness in convergence, a hybrid approach can also be used, which accelerates the
convergence and potentially avoids local minima.

ANFIS architecture and hybrid learning algorithm

At the core of the ANFIS architecture is the adaptive network that uses the supervised
learning algorithm. Let's understand this with a simple example. Consider that there are
two inputs, x and y, and an output, z. We can consider the use of two simple rules in the
method of if-then as follows:

Rule1: If xis A, and yis B, thenz,=px + q.x + 1,

Rule 2: If xis A, and y is B, thenz,=p,y + q,y + 1,

Al, A2 and B1, B2 are the membership functions of each input x and y. p1, 41,
0 r1 and p2, q2, r2 are linear parameters of the fuzzy inference model.

Let's illustrate this with a diagram:

u

ANFIS Premise

[199]

Fuzzy Systems Chapter 7

The ANFIS architecture in this case can be considered a five-layer neural network. The first
and fourth layers contain an adaptive node and the other layers contain fixed nodes, as we
have already seen in the previous chapters on ANNs. The network is illustrated in the
following diagram:

(=)

B1 ,
y T
Xy
B2

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

¢ Layer 1: This layer consists of two adaptive nodes that adapt to a function

parameter based on the input values (x and y). The output from each of these
nodes denotes the degree of membership corresponding to the input value (refer
the ANFIS premise in the previous diagram). The membership function, as we
have seen in the previous sections, can take any form (Gaussian, bell function,
and so on). The parameters in this layer are termed premise parameters:

ezl =plx+qly+rl

o z22=p2x+q2y+12

e Layer 2: The nodes in this layer are fixed nodes that are non-adaptive in nature
and resemble a hidden layer node in a neural network. The output from these
nodes is obtained by multiplying the signal coming from the adaptive nodes and
delivered to the next layer nodes. The nodes in this layer represent the firing
strength of each of the rules that are inherited by the adaptive nodes in the
previous layer.

[200]

Fuzzy Systems Chapter 7

e Layer 3: The nodes in this layer are also fixed nodes. Each node is a calculated
value of the ratio between the n" rule's firing strength and the sum of all the
rules' firing strength. The overall result represents the normalized firing
strength.

e Layer 4: The nodes in this layer are the adaptive nodes. In this layer, the
normalized firing strength from the previous layer nodes is multiplied with the
output from the rule functions (p,x + g,x + r; and p,y + ¢,y + 1,). The output
parameters from this layer are called consequent parameters.

e Layer 5: This is the output layer and has one fixed output node resembling the
ANN. This node performs the summation on the signals from the previous layer.
This is the overall output of the ANFIS network. This represents the quantitative
actionable outcome from the fuzzy system. This output can be utilized in the
control loop and back-propagated for training and optimization, eventually
minimizing the error.

With this network topology in place, we can apply a hybrid learning algorithm in order to
optimize the output and reduce the error. The hybrid algorithm also ensures that we are
able to converge quicker and avoid local minima. The hybrid algorithm is a two-step
process that essentially tweaks the parameters for the first and fourth adaptive layers based
on the rule set.

During the forward pass, the parameters for the first layer (premise parameters) are kept
constant and the parameters for the fourth layer (consequent parameters) are adjusted
based on the recursive least square estimator (RLSE) method.

Note that the consequent layer parameters are linear and we can accelerate
the convergence rate in the learning process. Once the consequent
parameters values are obtained, the data is passed through the input space
and the aggregated membership functions, and the output is generated.
The output is then compared with the actual output.

When the backward pass is executed, the consequent parameters obtained from the first
step are kept constant and the premise parameters are tweaked with the learning method of
gradient descent or backward propagation. The output is once again generated with the
changed values for the premise parameters and compared with actual output for further
tuning and optimization. Use of this hybrid algorithm, which combines RLSE and gradient
descent, ensures faster convergence.

[201]

Fuzzy Systems Chapter 7

Fuzzy C-means clustering

In chapter 3, Learning from Big Data, we saw the k-means clustering algorithm, which is an
iterative unsupervised algorithm that creates k clusters for a dataset based on the distance
from a random centroid in the first iteration step. The centriods are calculated in each
iteration to accommodate new data points. This process is repeated until the centriods do
not change significantly after a point. As a result of the k-means clustering algorithm, we
get discrete clusters with data points. Each data point either belongs to a cluster or it does
not. There are only two states for a data point in terms of cluster membership. However, in
real-world scenarios, we have data points that may belong to multiple clusters with
different degrees of membership. The algorithms that create fuzzy membership instead of
crisp membership for the data points within a cluster are termed soft-clustering algorithms.
C-means clustering is one of the most popular algorithms, which is iterative in nature and
very similar to the k-means clustering algorithm.

Let's consider a dataset S that contains N data points. The goal is to cluster these N data
points into C clusters:

S=1{x, Xy, X3 ..., X}
We are going to have C cluster membership functions (indicated by n):
g = [4(x,), 14(x,), 14(x3), oopy(x,)1

U= [Uz(x1)/ Uz(xz)/ Hz(xs)/ """ Hz(xn)]

Aufz [Auc(xl)/ Mc(xz)/ Auc(x3)/ “““ Auc(xn)]

For each of the clusters that are represented by the membership functions, we are going to
have a centroid data point, denoted by V; corresponding to a fuzzy cluster Cl;(i=1,2,3, ... C).
With this background information and these notations, the optimization objective for the C-
means clustering algorithm is defined as:

[202]

Fuzzy Systems Chapter 7

c N
I = [ui (k)] d* (zx, Vi)
i=1 k=1

N, is the total number of input vectors; m represents the fuzziness index for the i" cluster
(the higher the value of m, the higher the fuzziness). The fuzzy C-means algorithm
minimizes], by selecting V; and u; where i = 1,2,3,...C by an iterative process. With these
notations and the algorithm objective, here is the flowchart that represents the fuzzy C-

means algorithm:
Start

Select C clusters
(membership functions)

4

m=m+1 Compute New Fuzzy

3 Centroids for each cluster
Yes

Compute New Fuzzy
Membership Functions

m < Max
[terations?

4

C Y l
onve;gence es [End

Clustering Finished

Partial Clustering

Fuzzy C-means Clustering Algorithm ‘

The flowchart is explained as follows:

e Initialization (Select the membership functions such that):

0 < pi(mr) <1 for i=1,2,3, C

[203]

Fuzzy Systems Chapter 7

C
> pilm) =1
i=1 fork=1,23, ... N;
N;
0< Zﬂi(wk) < N
k=1 fori=1,23, ... C

e Compute fuzzy centroids fori=1,2,3, Cand k=123, .. N

Vi = ZkN:J\[l (i (k)] @i
> pe i ()™

e Compute new fuzzy membership functions:

(; (m—1)
d2 (xka‘/l)

39, (L)@
j=1 d2(wk’Vj)

e Check for convergence:

e If the membership functions do not change over iterations, the
iterations can stop and the algorithm has converged

¢ Once the algorithm converges, u,represents the fuzzy clusters

e If the algorithm does not converge and the number of iterations is
equal to the maximum iterations set as the parameter, we exit the
loop without finding the optimum fuzzy clusters

The membership values for the data points obtained by the algorithm are not unique since
there is a dependency on the initial random conditions. There is a possibility of this
algorithm converging to a local minimum. If we set the threshold for the membership
values, it is possible to produce hard clusters (same as the k-means clustering algorithm).
For example, we can set the threshold value to 0.8. If the cluster membership value is
greater than 0.8, we can consider it as a crisp membership value of 1 and less than 0.8 as 0.

[204]

Fuzzy Systems Chapter 7

Let's implement this algorithm with Spark:

import org.apache.spark.mllib.linalg.Vectors
import scala.util.Random

import org.apache.spark.mllib.clustering.
import org.apache.spark.ml.clustering._
import org.apache.spark.mllib.clustering.KMeans

import org.apache.spark.mllib.clustering.FuzzyCMeans
import org.apache.spark.mllib.clustering.FuzzyCMeans._
import org.apache.spark.mllib.clustering.FuzzyCMeansModel

val points = Seqg(
Vectors.dense
Vectors.dense
Vectors.dense
Vectors.dense
Vectors.dense
Vectors.dense
)

val rdd = sc.parallelize(points, 3).cache()

~
~

~
~

~

~
~

N O O+ OO
~ 0~

O O O O O o

OoON O O+ O
~

~

for (initMode <- Seq(KMeans.RANDOM, KMeans.K_MEANS_PARALLEL)) {
(1 to 10) .map(_ * 2) foreach { fuzzifier =>

val model = FuzzyCMeans.train(rdd, k = 2, maxIterations = 10, runs
= 10, initMode, seed = 26031979L, m = fuzzifier)

val fuzzyPredicts = model.fuzzyPredict (rdd) .collect ()
rdd.collect () zip fuzzyPredicts foreach { fuzzyPredict =>
println(s" Point ${fuzzyPredict._1}")
fuzzyPredict._2 foreach{clusterAndProbability =>
println (s"Probability to belong to cluster
${clusterAndProbability._1} " +
s"is ${"%.6f".format (clusterAndProbability._2)}")

[205]

Fuzzy Systems Chapter 7

The program will output this fuzzy clustering:

Iteration - 1 Iteration - 10

NEFCLASS

In the previous chapters, we learned the general theory of neural networks, which resemble
the human brain in terms of a network of computation units that are interconnected. The
neural networks are trained by adjusting the weights on the synapses (connectors). As we
have seen, the neural network can be trained to solve classification problems such as image
recognition. The neural networks accept crisp input and adjust weights to produce output
values (classification into a class). However, as we have seen in this chapter, the real-world
input have a degree of fuzziness in the input as well as a degree of vagueness for the
output.

[206]

Fuzzy Systems Chapter 7

The membership of the input and output variables in a specific cluster or a type is
represented with a degree instead of a crisp set. We can combine the two approaches to
formulate a neuro-fuzzy-classifier (NEFCLASS), which is based on fuzzy input and
utilizes the elegance of a multi-layer neural network in order to solve the classification
problem. In this section, we will understand the algorithm and intuition behind it.

At a high level, NEFCLASS consists of input, rule, and output layers. The neurons in these
layers are hence called input neurons, rule neurons, and output neurons. Here is the generic
structural representation of the NEFCLASS network:

@@S@ 73)
o
@@@

Layer 1 Layer 2 Layer 3

Layer 1 processes input data. The activation function in this layer is typically an identity
function. The neurons in the hidden Layer 2 represent fuzzy rules that contain fuzzy sets in
premise and conclusion sides (input and output, for simplicity).

In mathematics, an identity function, also called

an identity relation, identity map, or identity transformation, is

a function that always returns the same value that was used as its
argument. In equations, the function is given by f(x) = x.

[207]

Fuzzy Systems Chapter 7

Typically, the fuzzy sets with triangular membership functions are used and a fuzzy set
with a singleton membership function is used in the conclusion part. The premises of fuzzy
rules become weights for the rule neurons in Layer 2. Finally, the conclusion of a rule is the
connection from the rule neuron to the output layer. When we calculate the activation from
the rule neurons in Layer 2, we use T-norm as the minimization function:

ag? = min {W(z, R)(a.”)} W(x,R) represents the weight of connection between input
zely neuron, x, and the rule neuron, R

The weights for the rule neurons, given by the earlier formula, are shared for each fuzzy
input value and one fuzzy set is used. From the rule neuron layer (Layer 2) to the
classification layer (Layer 3), only one connection is attached. This represents the connection
between the rule and the class.

The final layer is the output layer, which calculates the activation value for the given class
on the basis of the activation of rules that indicate a given class as output. In this case, we
use the maximum function indicated in the following:

a.” = max{ap”}

After calculation of the activation in output neurons, the neuron with highest activation is
chosen as a result of classification.

Frequently asked questions

Q: Why do we need fuzzy systems?

A: In our quest to build intelligent machines, we cannot continue to model the world with
crisp or quantitative and definite inputs. We need to model systems like the human brain,
which can easily understand and process input, even if they are not mathematical and
contain a degree of vagueness. We need fuzzy systems in order to interpret real-world
input and produce prescribed actions based on the context. Fuzzy systems can fuzzify and
defuzzify the input and facilitate inseparability between natural events and computers.

[208]

Fuzzy Systems Chapter 7

Q: What are crisp sets and fuzzy sets? How are they different from one another?

A: Crisp sets have two possibilities for members. A particular element/data point/event is a
member or a non-member of the crisp set. For example, days in a week from Monday to
Sunday are members of the days of the week crisp set. Anything else apart from the seven
days is not a member of the set. Members of fuzzy sets, on the other hand, belong to the
fuzzy set with a degree of membership. This is how our natural language conversations
happen. When we say a person is tall, we do not mention the exact height of the person. At
that point, if tallness is considered as a membership function, a person with a certain height
belongs to the fuzzy set with a degree.

Q: Do fuzzy sets support all the operations that are supported by crisp sets?

A: Yes, the fuzzy sets support all the operations supported by crisp sets, such as union,
intersection, complement, and differentiation.

Summary

In this chapter, we understood the fundamental theory of fuzzy logic. It is imperative that
as we build intelligent machines with ever-growing volumes of data that is available from
discrete sources in structured, unstructured, and semi-structured forms, machines need the
ability to interface with the real world in the same way as human beings do. We do not
need explicit mathematical input to make our decisions. In the same way, if we are able to
interpret natural language and apply fuzzy techniques to computation, we will be able to
create smart machines that really complement humans.

The mathematical theory of fuzzy systems is decades old. However, with the advent of
massive data storage and processing frameworks, practical implementations are possible
especially with the convergence of fuzzy logic and deep neural networks, and a truly
intelligent, self-learning system will be a reality very soon. This chapter has created the
foundation for modeling and bringing our systems even closer to the human brain.

In the next chapter, we are going to visit genetic algorithms, where the Al systems derive
inspiration from the natural process of evolution in cases where the brute-force approach is
not computationally viable.

[209]

Genetic Programming

Big Data mining tools need to be empowered by computationally efficient techniques to
increase their degree of efficiency. Using genetic algorithms over data mining creates great
robust, computationally efficient, and adaptive systems. In fact, with an exponential
explosion of data, data analytics techniques go on taking more time and inversely affect the
throughput. Also, due to their static nature, complex hidden patterns are often left out. In
this chapter, we want to show how to use genes to mine data with great efficiency. To
achieve this objective, we are going to explore some of the basics of genetic programming
and the fundamental algorithms. We are going to begin with some of the very basic
principles of natural (biological) genetics and draw some parallels when it comes to
applying the general theory to computer algorithms. We will cover the following:

Genetic algorithm structure
KEEL framework
Encog machine learning framework

Weka framework

Attribute search with genetic algorithms in Weka

The genetic algorithms derive a lot of inspiration from nature and the following quotation is
appropriate as we research nature for the evolution of intelligent machines:

“Nature has all the answers within itself. We need a state of mind that is tuned in
harmony with Nature to find answers to all the questions that bother humanity.”

—Gurunath Patwardhan (Vishnudas)

Genetic Programming Chapter 8

Life on our planet has evolved over a period of millions of years in a peculiar way by
keeping some of the basic fundamentals constant. At the core of the process of evolution of
various creatures, natural phenomena, and everything that we can tangibly perceive, there
is a universal consciousness that operates within the framework of certain laws. Our quest
to develop intelligent systems that match human intelligence cannot be complete if we do
not derive meaning from universal consciousness and try to mimic some of the complex
algorithms that nature is leveraging for boundless time. One such phenomenon is gene
theory, which is one of the basic principles of biology. The core principle of this theory is
that traits are passed from parents to offspring through gene transmission. Genes are
located on chromosomes and consist of DNA. While the natural laws of biological evolution
are very interesting to study, they are out of the scope of this book. We will be looking at
generic principles of genetic evolution and how we can apply those to mimick a computer
algorithm that helps us in reasonably mining huge volumes of data and derive actionable
insights for intelligent machines.

The core principles that define genetic theory and sustain natural evolution generation after
generations are:

¢ Heredity: This is a process by which offspring in the next generation receive
selected characteristics from both parents. For example, there is a chance that the
next generation of tall parents will be tall.

e Variation: In order to sustain evolution, there has to be a level of characteristic
variation between reproducing partners. A new set of combinations and traits
will not evolve if there is a lack of variation.

e Selection: This is a mechanism by which members of the population that
demonstrate prominently better characteristics are selected as the ones that
participate in the matching process and give birth to the next generation. Nature's
selection criteria is subjective and context dependent and differs from species to
species.

¢ Reproduction: In this process, the characteristics from the parents are carried
forward into the next generation by a process of cross-selection and matching. In
simple terms, some characteristics from each of the two parents are selected and
prominently transferred while the same attribute is dormant for the other parent.
While nature's algorithm for the selection of characteristic is not entirely random,
it is far from being fully understood. This is nature's way of creating further
variation with every generation.

[211]

Genetic Programming Chapter 8

e Mutation: This is an optional but essential step in natural evolution. In certain
minimum cases, nature makes a modification in the chromosomal structure (at
times due to some external stimulus and most of the time without a known or
obvious trigger) to modify the characteristic behavior of the offspring entirely.
This is another way by which nature introduces an even larger degree of
variation and diversity since the natural selection process can only have so much
variation.

Let's define the premise of the genetic algorithms that draw motivation from the natural
process of evolution. We need intelligent computer programs that evolve within the search
space of possible solutions in an optimal and self-evolving manner. As is typically the case,
the search space is huge and it is computationally impossible to apply brute force in order
to fetch the solution in a reasonable time. The genetic algorithms provide a quick
breakthrough within the search space with a process very similar to the natural evolution
process. In the next section, we will define the structure of a generic genetic algorithm and
how it simplifies and optimizes solution discovery within the search space. Before we get
there, here is some of the terminology that we are going to use:

¢ Generation: A generation is an iteration of the genetic algorithm. Initial random
generation is called generation zero.

¢ Genotype: It defines the structure of a solution produced by the genetic
algorithm. For example, #ff0000 is the hexadecimal representation of the red color,
which is the genotype for the color red.

¢ Phenotype: This represents the physical/tangible/perceived characteristic
corresponding to the genotype. In the previous example, the color red is the
manifestation or phenotype for genotype #{f0000.

¢ Decoding: This is a process that translates the solution from genotype to
phenotype space.

¢ Encoding: This is a process that translates the solution from phenotype to
genotype space.

¢ Population: This represents a subset of all possible solutions to the given
problem.

¢ Diversity: It defines the relative uniqueness of each element of the selected
population. A higher level of diversity is considered to be good for the
convergence of the genetic algorithm.

[212]

Genetic Programming Chapter 8

Genetic algorithms structure

In this section, let's understand the structure of a genetic algorithm that finds the optimum
solution for a problem where the search space is so huge that brute force cannot solve it.
The core algorithm was proposed by John Holland in 1975. In general, Genetic Algorithm
provides an ability to provide a good enough solution fast enough to be reasonable. The
generic flow of a Genetic Algorithm is depicted in the diagram:

[Population Initialization]

|
)

‘ Fitness Assignment ‘

=

Selection

(9]

>

9 2
Crossover o

2

o

a
Mutation

Y Termination -
B . o Terminate and
Survivor Selection Criteria
Return Best

met?

Let's try to illustrate Genetic Algorithm with a simple example. Consider that you have to
find out a number (integer) in millions of values (the solution space). We can follow the
steps in the algorithm and reach the target solution much quicker than application of a
brute force method. Here is the implementation of the algorithm in Java:

1. Define the GA class with a simple constructor to initialize the population:
public GA (int solutionSpace, int populationSize,int targetValue,
int maxGenerations, int mutationPercent) {
this.solutionSpace = solutionSpace; // Entire solution space in

which the algorithm needs to search
this.populationSize = populationSize; // Size of the random

[213]

Genetic Programming Chapter 8

sample from the solution space

this.targetValue = targetValue; // Value of the target solution

this.maxGenerations = maxGenerations; // Maximum number of
generations (iterations) of the GA

this.mutationPercent = mutationPercent; // This field defines
the percentage of new generation members to be mutated

population = new int[this.populationSize]; // Initialize the
first generation

for(int i=0; i< this.populationSize; i++) |

population[i] = new Random() .nextInt (this.solutionSpace);

}

2. Create a fitness function that defines the level of fitness for a particular
solution in terms of its closeness to the actual solution. The higher the fitness
value of a solution, the greater the chance of it getting retained in subsequent
generations of the GA. In this case, we are making the fitness inversely
proportional to the distance from the target value:

private int getFitness (int chromosome) {
int distance = Math.abs (targetValue - chromosome) ;
double fitness = solutionSpace / new Double (distance);
return (int) fitness;

}

3. Select the next generation from the pool based on the fitness value. The higher
the fitness, the more changes there are to make it to the next generation:

private ArrayList <Integer> getSelectionPool () {
ArrayList <Integer> selectionPool = new ArraylList <Integer>();
for (int i=0; i<this.populationSize; i++) |
int memberFitnessScore = getFitness (this.population[i]);
//System.out.println ("Member fitness score = " +
memberFitnessScore) ;
Integer value = new Integer (this.population[il]);
for (int j=0; j<memberFitnessScore; J++) |
selectionPool.add(value);

}

return selectionPool;

[214]

Genetic Programming Chapter 8

4. In each generation, apply a minor mutation that changes the child element by a
small margin. This includes variation and increases the chances of successfully
finding the solution in a short amount of time:

for (int g=0; g<algorithm.maxGenerations; g++) {

System.out.println ("******x**x** Generation " + g + "
************");

ArrayList <Integer> pool = algorithm.getSelectionPool () ;

Random randomGenerator = new Random() ;

int[] nextGeneration = new int[algorithm.populationSize];

for(int i=0; i<algorithm.populationSize; i++) {

if (pool.size() == 0)

break;
int parentlRandomIndex =
randomGenerator.nextInt (pool.size());
int parent2RandomIndex =
randomGenerator.nextInt (pool.size());
int parentl = pool.get (parentlRandomIndex) .intValue();
int parent2 = pool.get (parent2RandomIndex) .intValue();
if (parentl == algorithm.targetValue || parent2 ==
algorithm.targetValue) {
System.out.println ("Found a match !!! ");

System.exit (1);
}
int childl = (parentl + parent2) > algorithm.solutionSpace ?
algorithm.solutionSpace - (parentl + parent2) : (parentl +
parent?2);
int child2 = Math.abs (parentl - parent2);

if (childl == algorithm.targetValue || child2 ==
algorithm.targetValue) {
System.out.println ("Found a match !!! ");

System.exit (1);
}
double mutatioRate = 0.001;
float randomizer = new Random() .nextFloat ();
if (randomizer < mutatioRate) {

System.out.println ("Mutating....");
childl += new Random() .nextInt (1);
child2 —-= new Random() .nextInt (1);

}
if (algorithm.getFitness (childl) >
algorithm.getFitness (child?2))

nextGeneration[i] = childil;
else
nextGeneration[i] = child2;

algorithm.population = nextGeneration;

[215]

Genetic Programming Chapter 8

Here are the program outputs in multiple runs. As we can see, we need to tune various
parameters for the optimum performance of the algorithm:

Solution Space [Population Sample Size |Target Value |Mutation % |# of Generations to find the match
5000 1000 1234 1% 2
50000 1000 1234 1% 3
500000 1000 1234 1% 6
500000 2000 1234 1% 2
500000 2000 1234 10% 2
500000 10000 1234 1% 2

As we can see, implementing the Genetic Algorithm is simple and the core principles can be
applied to more complex problems such as human gene profiling, signal processing, image
processing, and so on. Based on the basic concepts we have covered so far in this chapter,
there are lots of frameworks and models developed in order to leverage the evolutionary
algorithms (EAs) for various data mining and related problems. In the next sections, we are
going to review some of these frameworks at a high level.

KEEL framework

KEEL (Knowledge Extraction based on Evolutionary Learning) is a framework that can be
used for various tasks, which translates data into information into knowledge assets. KEEL
specifically assesses evolutionary algorithms for data mining based on regression,
classification, unsupervised learning, and so on. The ultimate feat of machine intelligence
will be when the computer programs are able to read the text and interpret and understand
it the way human beings do. With this capability, combined with exponentially growing
brute force computing power, we will be able to create a knowledge system that will
possess supernatural powers when it comes to applying that knowledge to various
problems like Genome decoding, studies of antibodies and so on that have plagued
humanity for centuries.

[216]

Genetic Programming Chapter 8

The KEEL framework and similar frameworks are taking us a step closer to that goal with
the fundamental idea of automatically discovering knowledge from datasets using
evolutionary algorithms. Although EAs are powerful for solving a wide range of scientific
problems, they can only be used with extensive programming expertise, and carefully
tuning the parameters and experimenting with outcomes over a long stretch of time. KEEL
empowers the user to use EAs quite easily without the need for extensive programming,
allowing them to focus on the core data mining and extraction problems while providing a
toolkit for ease of use. KEEL provides an extensive library of EAs along with easy-to-use
software that comes in handy for considerably reducing the level of experience and
knowledge required by researchers in evolutionary computing.

KEEL is a Java-based desktop application that facilitates the analysis of the behavior of
evolutionary learning in different areas of learning and preprocessing tasks, making the
management of these tasks easy for the user. The latest available version (3.0) of KEEL
consists of the following modules:

y KEEL Suite 3.0

Software

Data Management ® Modules

Experiments

Educational

Help

[217]

Genetic Programming

Chapter 8

¢ Data Management: This is the core component for making the data available for
analysis and running experiments using various algorithms and visualization
techniques. It allows data imports from various sources, exporting the data to
outbound systems and storage, visualizing the data and making edits
(transformations based on use cases), and most importantly, making partitions if
the data volume is large so that it can be distributed to various nodes if a
compute and storage cluster is utilized (for example, the Hadoop framework).
The application includes pre-loaded datasets for quick experimentation. Here is

the view into data management within KEEL:

©

Import

Fartition

Help

|START | mmport x [Edt x| visuaize x |

Load Dataset: | al\Writing\08_Genetic_Programming\KEEL \dist\data‘\bupa E

[Dataset view | Attribute Info| Charts 20 |

Select Attributes

Attribute 1 :gammagt

Attribute 2 |sgpt

Chart

gammagt vs sgpt

. Convert to PNG

ey

Convert to PDF

® Class1 ® Class 2

L
150 . ™
125
[}
100 n
= |] L
.
& 75] L] [| '
Hg] ",
Be o &' n
50 g . O !
f' = .
] L]] []
o5 ‘ﬁf .o.. °
f K b .
.
0
0 25 50 75 00 125 150 176 200 225 250 275 300
gammagt

[218]

Genetic Programming Chapter 8

¢ Experiments: This section allows users to create experiments based on the
imported datasets. There are some predefined experiments that the user can start
with and they can build their own experiments based on the use cases and the
available algorithms within KEEL. The framework provides various easy-to-use
options such as type of validation, type of learning
(Classification/Regression/Unsupervised Learning), and so on:

Type of partitions

i@ k-fold cross validation | 10

k-fold DOB-SCVY 10
) 5%2 cross validation

(7 without validation

Type of the experiment

Classification

Regression

[)
[)
[Unsupervised Learning |
[)

Subgroup Discovery

The experiments can be configured with an intuitive user interface that allows users to
select the datasets along with the algorithm used during data preprocessing, processing,
and post processing. Multiple pathways can be configured within the same experiment,
leveraging various algorithms for comparison. The algorithms can be tuned by setting the
relevant parameters, as seen in the following screenshot:

[219]

Genetic Programming Chapter 8

FI.|E View Edit Tools Help \ rAIgorithm pamme‘ﬂsi EE
Codkle~vo0/am
Algorithm Name:
Generational Genetic Algorithm for Feature Selection
%@ Number of Executions: Applied to Dataset:
his Al Datasets -
v l
e
; Parameters:
Parameter descriptor Value
Cross Probability 07 Il
% Mutation Probability 0.01
Population Size 50 E
Number of Evaluations 10000
GGA-FS5
Beta Equilibrate Factor 0.99 N
Number of Neighbours 1 -
l o Apply l [¢ cancel l

Once the experiments are configured and executed, the KEEL framework generates a
directory structure and the files required for running them on the local machine, as well as a
distributed computing environment. For example, the Java class can be embedded to run as
a user defined function (UDF) within any of the Hadoop ecosystem components in order
to leverage a parallel processing paradigm. The KEEL framework also allows extending the
core libraries and algorithm coverage by providing AP]Is for extension.

The KEEL philosophy tries to include the fewest possible constraints for
the developer, in order to simplify the inclusion of new algorithms within
this tool. In fact, each algorithm has its source code in a single folder and
does not depend on a specific structure of classes, making the integration
of new methods straightforward.

[220]

Genetic Programming Chapter 8

Encog machine learning framework

Encog is an advanced ML framework that supports a variety of algorithms including
Neural Networks and Genetic algorithms. It supports Java and .NET APlIs along with a
workbench that has an easy to use user interface for running various tests and experiments
with the datasets. The training algorithm implementations are multi-threaded and support
multi-core hardware. In this section, we are going to see general use of the Encog
framework and specifically its support for genetic programming (GP) to implement genetic
algorithms (GAs).

Encog development environment setup

The core libraries for the Encog framework can be acquired from the Git repository and
built as a Maven project within your development environment as follows:

https://github.com/encog/encog-java-core
mvn package

Encog API structure

The core APl is a simple object-oriented paradigm with three core functional blocks:

¢ Machine learning methods: Each model type in Encog is represented as a
machine learning method. These machine learning methods implement
the org.encog.ml.MLMethod interface as a marker interface. This super-class
does not contain any method or define any behavior for the inheriting interfaces
and only tags them as a machine learning method. A MLMethod is an algorithm
that accepts data and provides some sort of insight into it. This could be a neural
network, support vector machine, clustering algorithm, or something else
entirely:
e MLRegression: Used to define regression models, the ones that
produce numerical output
e MLClassification: Used to define classification models, the ones
that classify the input variables into one of the output classes
e MLClustering: Used to define clustering algorithms that take input
data and place them into several clusters:

[221]

Genetic Programming

Chapter 8

Here is the class diagram of the interfaces which are the fundamental building blocks of

Encog framework:

< <interface>>
MLMethod

-
-
~

R

-

P \ e

\
\

< <interfaces»
MLUInput

< <interfaces:
MLOutput

< <interface>>
MLClustering

< <interfaces:>
MLInputOutput

< <interfaces > <<interface>>
MLRegression MLClassification

&
[

< <interface>»>
MLAutoAssocation

Encog Machine Learning Method interfaces

¢ Encog Datasets: Encog needs data to fit various machine learning methods. The
data is accessed using a variety of dataset classes. The Encog data handling
objects work with the following interfaces:

to or from a model.

functions.

e MLData: Used to hold a vector that will be input or output either

e MLDataPair: Used as input MLData vectors for supervised
learning. A training set is built with this data type.

e MLDataSet: Provides a list of MLDataPair objects to trainer

We can create new versions of any of these three interfaces. Encog also provides basic

implementations of these classes such as BasicMLData, BasicMLDataPair, and

BasicMLDataSet.

[222]

Genetic Programming Chapter 8

Encog supports an extensive implementation of evolutionary algorithms that support
genetic programming. Here is a snapshot of various available classes:

4 3} org.encog.ml.ea.codec 4 [org.encog.ml.ea.rules 4 f#} org.encog.ml.ea.species
ge"m(ecf[;ic-]ava - - 1) BasicRuleHolder,java . @ BasicSpecies.java
J| GenomeAsPhenome Java) i J - . ge =
) i [ConstraintRulejava . [J] SingleSpeciation.java
4 1 org.encog.ml.ea.exception) @ RewriteRule java m Speciation.
: : : > eciation.java
@ EAComr'nIeError.)ava - [/ RuleHolder,java ? SP fatic J
0 EAE"OI’:Java . 4 ff org.encog.ml.ea.score ’ i pecies.java S
0 EARU““":EE"OV-)BVB . [AdjustScorejava >[4} ThresholdSpeciation.java
« & e o e . [3) EmptyScoreFunction java 4 [org.encog.ml.ea.train
[} BasicGenome,java ; . . .
. 4 £ org.encog.ml.ea.score.adjust . IF EvolutionaryAlgorithm.java
Q? Genome,java R X . = X R
[liGenomeEacionyima . [J] ComplexityAdjustedScorejava 4§ org.encog.ml.ea.train.basic
4 [org.encog.ml.ea.opp < org.encog.ml.ea.iscore.paralIeI > 4J] BasicEA java
4+J] CompoundOperator.java - [J) ParallelScore java > 1J] EAWorker.java

[:_Ff EvolutionaryOperator.java ' @ ParallelScoreTask java y m TrainEA,java

OperationList.,java 4 it org.encog.ml.ea.sort
4 3 org.encog.ml.ea.opp.selection . [} AbstractGenomeComparator.java
. [#] SelectionOperator.java . [/} GenomeComparator.java
- [J) TournamentSelection.java . [J] MaximizeAdjustedScoreComp.java
[J) TruncationSelection.java . [J] MaximizeScoreComp.java
4 f org.encog.ml.ea.population . [J] MinimizeAdjustedScoreComp.java
[4) BasicPopulation.java . [4] MinimizeScoreComp.java
package-info.java . 4J] SortGenomesForSpecies.java

[# Population.java

. AJ] SpeciesComparator.java
® PopulationGenerator.java

With these APIs, implementation of genetic algorithms is extremely easy with Encog using
a level of abstraction. Here is some pseudocode for the implementation of genetic
algorithms with Encog:

Population pop = initPopulation(); // Initialize the initial
population (generation 0)
CalculateScore score = new ScorererClass (pop.solutionSpace); // This is

the implementation of
// the scorer class

genetic = new TrainEA (pop, score); // Train
the model with

genetic.addOperation (0.9, new SpliceNoRepeat (POPULATION_SIZE)); // apply
crossover operation

genetic.addOperation (0.1, new MutateShuffle()); // apply
mutation
while (solutionCount < MAX_SAME_SOLUTION) { //
iterate over generations
genetic.iteration(); // next
generation

[223]

Genetic Programming Chapter 8

double thisSolution = genetic.getError(); //
solution from next generation

}

The Encog framework also provides an analyst workbench that is a handy user interface for
running quick experiments with various datasets. The workbench uses the Encog core
libraries and visualizes the output from various algorithms and test cycles. Here is a quick
snapshot of the Encog workbench:

File Edit View Tools Help

D C:\Users\anand.deshp
=3 -
5 s D
) iris5.egb ———1
g [General | Time Series | Tasks | Code Generation
Source CSV File(*.csv) nand.deshpande\EncogProjects\MyEncogProjechiniss.csv] | B
File Format Decimal Point (USA/English) & Comma Separator A
Machine Learning Feedforward Network -
oal Classification
arget Field(blank for auto)
SV File Headers (|
Normalization Range Ato1
Missing Values DiscardMissing
Maximum Error Percent{0-100) 1.0
=.
@ irnsf.csv
@ irnsh.ega
insf.egh

@ iris6_eval.cav

@ ins6_norm.csv

[iris6_output.csv

@ ins6_random.csy

@ irsf_train.csy
[%firis6_train.eq (BasicNetwork)|
iris6_train.egb

\p
DN
X \

77
v
Nl >

I3 >

S~ Z
S
e

[224]

Genetic Programming Chapter 8

Introduction to the Weka framework

One of the handy tools in evaluating various data science algorithms is Weka (Waikato
Environment for Knowledge Analysis). This is a suite of machine learning software
written in the Java programming language. Weka is very popular since it can be extended
to leverage additional algorithms and data mining techniques. In this section, we will be
introduced to the generic concepts of Weka and specifically look at using it for the
implementation of genetic algorithms.

Weka provides a great and intuitive visual user interface for data mining, analysis, and
predictive modeling. Some of the features that make Weka a popular choice for the
community are the following:

e Weka is available as a free tool to use under the GNU General Public license

e Weka is written in the Java programming language and compiles to byte code,
which is easily portable across platforms

e Weka contains a rich library of machine learning algorithms and it can further be
extended within the framework by creating hooks using the simple-to-use APIs

¢ The simple-to-use GUI makes it easy to train and compare various classifiers,
clusters, and regression outputs

Here is a conceptual view of the Weka framework:

IDBC s
' SRR

—

‘ Algorithms
} WEKA =

The University
) of Waikato

DL4]

DEEPLEARNING4J

/

[225]

Genetic Programming Chapter 8

Weka supports ARFF (Attribute-Relation File Format), CSV (Comma Separated Values), and
data formats for the datasets.

An ARFF (Attribute-Relation File Format) file is an ASCII text file that
describes a list of instances sharing a set of attributes. ARFF files were
developed by the Machine Learning Project at the Department of
Computer Science of The University of Waikato for use with the Weka
machine learning software.

ARFF files have two distinct sections. The first section is the header information, which is
followed by the data information. The header of the ARFF file contains the name of the
relation, a list of the attributes (the columns in the data), and their types.

An example header on the standard and typically used IRIS dataset looks as follows:

% 1. Title: Iris Plants Database

oe

oe

2. Sources:
(a) Creator: R.A. Fisher
(b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
(c) Date: July, 1988

o° o oe

oe

@RELATION iris

@ATTRIBUTE sepallength NUMERIC
@ATTRIBUTE sepalwidth NUMERIC
@ATTRIBUTE petallength NUMERIC
@ATTRIBUTE petalwidth NUMERIC
@QATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}

The data of the ARFF file looks as follows:

@DATA

5. 5,1.4,0.2,Iris-setosa
0,1.4,0.2,Iris-setosa
.2,1.3,0.2,Iris-setosa
.1,1.5,0.2,Iris-setosa
6,1.4,0.2,Iris-setosa
9,1.7,0.4,Iris-setosa
4,1.4,0

.3,Iris-setosa

SO 01 DD

[226]

Genetic Programming Chapter 8

Lines that begin with % are comments.
The @GRELATION, GRATTRIBUTE, and @DATA declarations are case
insensitive.

Two of the advantages of Weka is that it includes a rich library of various algorithms for
regression and classification, and there is an easy way to compare the algorithms based on
the available dataset(s).

The latest version of Weka (3.8) can be downloaded
from https://www.cs.waikato.ac.nz/ml/weka/downloading.html.

When we launch Weka, there are five possible applications to choose from:

Explorer: This application provides an environment for exploring datasets with
Weka.

Experimenter: An environment for performing experiments and conducting
statistical tests between learning schemas.

Knowledge Flow: This environment supports the same features as explorer, but
with a drag-and-drop interface. It supports incremental learning.

Workbench: This is an all-in-one application that combines all the others within
the perspectives that the user can select.

Simple CLI: Provides a simple command-line interface that allows direct
execution of Weka commands for operating systems that do not provide their
own command line interface.

[227]

https://www.cs.waikato.ac.nz/ml/weka/downloading.html

Genetic Programming Chapter 8
Here is a consolidated view of the initial launch screen in Weka:
VETEIFZTLGE Tools Help
Plot Ctrl+P Help
ROC Ctri+R Package manager Ctrl+U
- —= TreeVisualizer Cirl+T Arfiviewer Ctri+A
Erogram Visualization Tools GraphVisualizer Ciri+G SqlViewer Ctri+S
LogWindow Cirl+L BoundaryVisualizer Ctrl+B Bayes net editor Ctri+N
Memory usage Cirl+M
Settings
el i Weka GUI Chogler = | 6] %
~ L4 Cd —
Program Visualization Tools Help
Applications
Explorer
The University Experimenter
\ of Waikato
e
KnowledgeFlow
Workbench
Waikato Environment for Knowledge Analysis
Version 3.9.2
ikedtedlr Simple CLI
The University of Waikato

Hamilton, New Zealand

The visualizations allow us to explore the datasets visually with some basic options
provided in the launch Visualization menu. In the Tools section, Package manager
provides a graphical interface to Weka's package management system. This is one of the
key benefits of Weka, that it can be very easily extended to include additional packages

seamlessly.

[228]

Genetic Programming Chapter 8

Another handy tool provided by Weka is ARFF-Viewer. With this, we can quickly view the
structure and contents of a data file in . arff format. Weka provides some of the pre-loaded
datasets in its installation. Let's review one of the datasets that we will be using as an
example to show some of the explorer features of Weka. Weka contains a diabetes dataset
that has a set of independent variables and one dependent variable that defines whether a
person is diabetic or not. Here is a snapshot of the . arff file viewer:

* ARFF-Viewer

File>Properties

Relation name: pima_diabetes
ofinstances: 768

File Edit View

Look In: lﬁ data # of attributes: 9
Class aftribute: class
[airline.arff [credit-g.arff #of class labels: 2
| "| breast-cancer.arff B diabetes.arff
File Edit View

diabetes.arff *

Relation: pima_diabetes
0. 1:preg 2 plas 3:pres 4:skin 5:insu 6:mass 7:pedi 8:@%/ 9:class

Numeric Numeric Numeric Numeric Numeric Numeric Numeric Numeri Nominal

O

D

ke

1 1.0 0.0 48.0 200 0.0 247 0.14 22.0| tested_negative 1]
2 1.0 0.0 740 200 23.0 277 0299 21.0(tested_negative g_
B 1.0 0.0 68.0 350 0.0 320 0389 22.0| tested_negative o)
4 5.0 440 62.0 0.0 0.0 250 0587 36.0| tested_negative 3
5 20 56.0 56.0 28.0 45.0 242 0332 22.0| tested_negative -
6 9.0 57.0 80.0 37.0 0.0 328 0.096 41.0(tested_negative 5
7 0.0 57.0 60.0 0.0 0.0 217 0735 67.0(tested_negative =,
8 3.0 61.0 82.0 280 0.0 344 0243 46.0(tested_negative Q
9 7.0 62.0 78.0 0.0 0.0 326 0391 41.0f tested_negative o
0 8.0 65.0 720 230 0.0 32.0 0.6 M‘ested_negative/ o

Independent Variables

1. From the file selection menu, Select the . art £ data file from available data files
2. Show all the fields (independent variable) in the dataset along with their data
types and the output class (dependent variable)

3. Show the header properties of the file # of records, number of attributes, and the
number of output classes

[229]

Genetic Programming Chapter 8

Weka Explorer features

While an introduction to the entire tool is out of scope for this book, we will review the
Explorer section of the Weka toolkit.

Preprocess

This section allows us to choose and modify the data being acted upon. Weka allows users
to select a data file in a large set of supported formats. The following is a screenshot of
Weka Explorer:

j Preprocess T Classify T Cluster T Associate I Select attributes T Visualize]

[Open file... J [Open URL... J [OpenDB... J [Generate... J

Filter &4 Open _ ﬂ
| Choose _|None Lookin: |[E5 data -"J lﬁj lﬁj lJ E@

Current relation

i ; i [airline arff | credit-g.arff [iris 20 arff L] Invoke options dialog
Relatlon: FME_SEIRES E] breast-cancer.arff [3 diabetes.arff E| iris.arff
Instances: 768 - = - Mote:
[contact-lenses.arff | glass.arff [1abor.arf :
Attributes [cpu.arff [hypothyroid.arf [ReutersCo Some file formats offer additional
[cpu.withvendor.arf [ionosphere.arff [ReutersCo| gptions which can be customized
| when invoking the options dialog.

As you can see in the preceding screenshot, there are multiple choices for selecting the
dataset from:

¢ Open file...: This option displays a file selection box to select the data file from
the local disk or the network location.

e Open URL: This option displays a URL input box that accepts the HTTP URL
endpoint for the dataset.

¢ Open DB: This option allows users to connect to a database and fetch the dataset.
The database can be accessed via JDBC protocol provided that the network
location for the database is accessible to the machine on which Weka is running.

* Generate: Allows the user to generate artificial data from various data
generators.

[230]

Genetic Programming Chapter 8

Let's open the dibetes.arff file from the available datasets. It opens the following user
interface:

| [Preprocess | Ciassity [Cluster | Associate | Selectattributes | Visualize |

L Openfile... J 1 Open URL. J 1 Open DB, J 1 Generate... J

L Edit.. J 1 Save. J
Filter
Choose |None Apply
Current relation Selected attribute
Relation: pima_diabetes Attributes: 9 Name: preg Type: Numeric
Instances: 768 Sum of weights: 768 Missing: 0 (0%) Distinct: 17 Unique: 2 (0%)
Attributes Statistic Value
Minimum 0
Maximum 17
L All L None L Invert L Pattern J Mean 2845
StdDev 337
No. | | Name |
1 W preg

2] plas
3L pres
4[] skin

5 insu -
6 [mass Class: class (Nom) v || visualize All |
7 [pedi

8L age
9 (] cass

Status
Log X0
oK <

1. Filter: The preprocesses section allows filters to be defined so that they transform
the data in various ways. The filter box is used to set up the filters that are
required. Weka provides a consistent user interface for the selection of filters and
any other object types that are applied on the data. Once the filter is selected, the
Apply button filters on the data based on the criteria specified in the filter.

2. Current relation: Once the data is loaded, the preprocesses panel shows a variety
of information about the dataset:

¢ Relation: The name of the relation as given in the file it was loaded
from (@Relation in the ARFF file)
e Instances: The number of records in the data

o Attributes: The number of attributes (features) in the data

[231]

Genetic Programming Chapter 8

3. Attributes: This section shows all the attributes in the same sequence as they are
present in the data file.

4. Selected Attribute: This section displays details about the selected attribute such
as name, type, the % missing values, % unique values, along with
minimum/maximum/mean and standard deviation for the attribute.

5. Visualization: This section shows the output class as a function of the selected
attribute. The Visualize All button shows histograms for all the attributes in the
data in a separate window, as follows:

& Al attributes IEIEIES

plas pres

bl 3 6 3 3 20 1101
T 1

423 246

6. Status bar: This is a placeholder for the information and log entry based on the latest
activity within the explorer

[232]

Genetic Programming

Chapter 8

Classify

This section allows us to train different algorithms for the classification of the data into an
output class. Weka provides a way to perform quick comparisons between various
classification techniques. This facilitates the selection of the right algorithm, along with
optimal parameters to be applied to the actual problem space. The following is a screenshot
of the Classify section in Weka:

) Use training set

Folds

% |80

l More options... ‘

) Supplied test set
0 Cross-validation

@ Percentage split

-]

|om) class
start \
Result list (right-click for options)
17:01:42 - rules.ZeroR
17:02:10 - function Perceptron

05:00:28 - functions.MultilayerPerceptron
05:02:55 - functions.MultilayerPerceptron
05:03:18 - functions.Logistic

4 Weka Explorer " Preprocess | Classify | Cluster | Associate !

Time taken to build model: 0.06& seconds

Evaluation on test split =

Time taken to test model on test

=== Summary ===

Correctly Classified Instances 125
Incorrectly Classified Instances 29
Kappa statistic 0.
Mean absolute error 0.
Root mean squared error 0.
Relative absolute error 65
Root relative squared error 80
Total Number of Instances 154

=== Detailed Accuracy By Class ===

split: 0 seconds

5384
2942

3768

.6566 %
.6233 %

TP Rate FP Rate Precision Recall

0.914 0.408 0.828 0.314

0.592 0.086 0.763 0.592
Weighted Avg. 0.812 0.306 0.807 0.812

=== Confusion Matrix ===

<-- classified as
a = tested_negative
b = tested_positive

a b
96 9|
20 29 |

F-Measure
0.869
0.667
0.804

MCC

9 7 functions

3 seD
0O

q 3 smo

b

ROC RArea
0.836
0.836
0.836

0.547
0.547
0.547

0O
| D=

[muttitayerPerceptron

PRC Area
0.
0.
0.

" Preprocess | Classify | Cluster | Associate | Select attri " Visualize C
Classifier = weka
Cnooseil' istic -R 1.0E-8 -M -1 -num-decimal-places 4 ¢ [classifiers
9 =7 bayes
Test options Classifier output [} BayesNet
.

D NaiveBayes
D NaiveBayesMultinomial

[} NaiveBayesMultinomialText

D NaiveBayesMultinomialUpdateable
D NaiveBayesUpdateable

[seDText

[simpleLogistic

D VotedPerceptron

884
773
849

Class
tested_negative
tested_positive

[233]

Genetic Programming Chapter 8

The following are the classifiers in the Classify section:

1. Selecting a classifier: This section has a text field that displays the name of the

2.

currently selected classifier.

List of classifiers: Clicking on the Choose button opens a list of available
classifiers to select from. Weka provides a wide range of classifiers that can be
seamlessly used. This can be extended very easily with the extension APIs and
libraries provided by the Weka framework.

Test options: The results of applying a chosen classifier will be tested according
to the options provided for testing. There are four primary test modes:

¢ Use Training Set: The classifier is evaluated on how well it predicts the
class of the instances it was trained on.

e Supplied Test Set: The classifier is evaluated on how well it predicts
the class of a set of instances loaded from a file.

¢ Cross Validation: The classifier is evaluated by cross-validation, using
a number of folds that are entered in the Folds text field.

e Percentage Split: The classifier is evaluated on how well it predicts a
certain percentage of the data that is held out for testing. The amount
of data held out depends on the value entered in the % field.

4. Classifier Output: Depending on the classifier used, the output displays a

variety of information:

¢ Run Information: A list of information giving the learning scheme
options, relation name, instances, attributes, and test mode that were
involved in the process.

¢ Classifier Model: A textual representation of the classification model
that was produced on the full training data.

e Summary: A list of statistics summarizing how accurately the classifier
was able to predict the true class of instances under the chosen test
mode.

¢ Detailed Accuracy by Class: A more detailed pre-class break down of
classifier's prediction accuracy.

¢ Confusion Matrix: Shows how many instances have been assigned to
each class.

[234]

Genetic Programming Chapter 8

Here is the classification output on logistic regression for the diabetes database:
=== Run information ===

Scheme: weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 —num-
decimal-places 4
Relation: pima_diabetes
Instances: 768
Attributes: 9
preg
plas
pres
skin
insu
mass
pedi
age
class
Test mode: split 80.0% train, remainder test

=== (Classifier model (full training set) ===

Logistic Regression with ridge parameter of 1.0E-8
Coefficients...

Class
Variable tested_negative

preg -0.1232
plas -0.0352
pres 0.0133

skin -0.0006
insu 0.0012

mass —-0.0897
pedi -0.9452

age -0.0149
Intercept 8.4047

Odds Ratios...
Class
Variable tested_negative

.8841
.9654
.0134
.9994
.0012
.9142

preg
plas
pres
skin
insu
mass

O O OO

[235]

Genetic Programming Chapter 8

pedi 0.3886
age 0.9852

Time taken to build model: 0.06 seconds

=== Evaluation on test split ===

Time taken to test model on test split: 0 seconds
=== Summary ===

Correctly Classified Instances 125 81.1688 %
Incorrectly Classified Instances 29 18.8312 %
Kappa statistic 0.5384

Mean absolute error 0.2942

Root mean squared error 0.3768

Relative absolute error 65.6566 %

Root relative squared error 80.6233 %

Total Number of Instances 154

X

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC
Area PRC Area Class

0.914 0.408 0.828 0.914 0.869 0.547 0.836 0.884
tested_negative

0.592 0.086 0.763 0.592 0.667 0.547 0.836 0.773
tested_positive
Weighted Avg. 0.812 0.306 0.807 0.812 0.804 0.547 0.836 0.849

=== Confusion Matrix ===
a b <-- classified as

96 9 | a = tested_negative
20 29 | b = tested_positive

[236]

Genetic Programming Chapter 8

5. Results List: Once we run multiple tests with different classifiers within a
session, the list is available for comparative analysis. Weka provides various
options for the visualization of the generated classification models as follows:

€3 Weka Classifier: Cost/Benefit A alysis -
¥: Sample Size (Num) ~ | |Y: True Positive Rate (Num) w [|X: Sample Size (Num) w | |¥: CostiBenefit (Num) -
Colour: Threshold (Num) w ||Select Instance w | |Colour: Threshold (Num) | |Select Instance -
| Re... | Clear | Open | Save | Jitter C: ‘ Re... | Clear | Open | Save ‘ Jitter CE
Plot: ThresholdCurve Plot: Cost/Benefit Curve
1 105
0.5 66.57

o
o
@

a 0.5 1 a 0.5 1

Threshold

% of Population: 20.7792

® % of Population % of Target (recall) (' Score Threshold % of Target: 51,0204

; { Score Threshold: 0.6297
Confusion Matrix Cost Matrix
_ _ Cost: 31
Predicted (a) Predicted (b) Predicted (a) Predicted (b) Random: 60.64
Gain: 29.64
25 24 ' o= 0.0 1.0 Actual (a)
|| 16.23% |l Crmm| T AT RIS Maximize CostiBenefit
7 98 : i 10 0.0 Actual (b) Minimize Cost/Benefit
1 1.55% I 63,543 Actual (b): tested_negative
Classification Accuracy: 79.8701% Total Population: M ® Cost () Benefit

In this section, we have provided a brief introduction to the Weka framework and its
intuitive graphical user interface. In the next section, we will use Weka to analyze a genetic
algorithm and demonstrate how to use it for attribute search within the datasets.

[237]

Genetic Programming Chapter 8

Attribute search with genetic algorithms in
Weka

Once again, let's select the diabetes dataset in the Preprocess menu and navigate to the
Select Attributes menu. In the Search Method selection box, select Genetic Search. The
configuration parameters for the Genetic Search can be set by right-clicking the Search
Method text. As seen earlier in this chapter, we can tune various parameters of the
algorithm and experiment with optimum performance. Here is a screenshot representing
Genetic Search with Weka:.

Preprocess | Classify | Cluster | Associate | Selectattributes | Visualize

Attribute Evaluator

CfsSuhsethal -P1-E1 Search Method

SEarchcihod Choose |GeneticSearch-Z20-G 20-C 0.6-M0.033-R 20-51
Choose |BSearch Method Attribute Selection| &3 weka-gui-GeneﬁcobjecEdiw‘ (S
(] weka ® Use full trainiff| \eka.attribute Selection.GeneticSearch

¢ [attributeSelection
[AntSearch

[} Batsearch GeneticSearch:

[Beesearch (Nom) class Performs a search using the simple genetic algorithm

[BestFirst described in Goldberg (1989).
[cuckoosearch

[ElephantSearch

] [EvolutionarySearch

) Cross-validati{|| Apout

crossoverProb |U.ﬁ J

Result list (right-cl

‘ 17:26:45 - Genetic{f| maxGenerations |20 |
| [ExhaustiveSearch
[FireFlySearch mutationProb [0.033 \
| FlowerSearch
ulationSize |20
GeneticSearch — | ‘
[} GreedyStepwise reportFrequency |20 |
Ej HarmonySearch sood |‘1 J
D MultiObjectiveEvolutior
[y Randomsearch startSet | |
[Ranker
[rankSearch | Open... ‘ i save... i ‘ 0K H Cancel ‘
[wolfsearch

Once we click on the Start button, the algorithm searches through the training data and
selects the relevant attributes with GA. Here is the output from the GA execution on the
diabetes dataset:

=== Run information ===

Evaluator: weka.attributeSelection.CfsSubsetEval -P 1 -E 1
Search: weka.attributeSelection.GeneticSearch -2 20 -G 20 -C 0.6 -M 0.033 -

[238]

Genetic Programming Chapter 8

R 20 -5 1
Relation: pima_diabetes
Instances: 768
Attributes: 9

preg

plas

pres

skin

insu

mass

pedi

age

class
Evaluation mode: evaluate on all training data

=== Attribute Selection on all input data ===

Search Method:
Genetic search.
Start set: no attributes
Population size: 20
Number of generations: 20
Probability of crossover: 0.6
Probability of mutation: 0.033
Report frequency: 20
Random number seed: 1

Initial population
merit scaled subset
0.0147 0 3

.1258 0.13239 1 2
.13042 0.1379 1 2 4 5 8
.08771 0.087 5 6 7

0.07313 0.06963 4 8

0.13 0.1374 2 3 6

0.04869 0.04051 5

0.1413 0.15086 1 2 3 6 7 8
0.14492 0.15517 2 3 5 6 7 8
0.08319 0.08162 6

0.03167 0.02022 3 4
0.02242 0.0092 7

0.12448 0.13082 2 3 5 7 8
0.07653 0.07368 1 8
0.10614 0.10896 2 4 7
0.11629 0.12106 5 6 8
0.0147 0 3

0

0

0

[239]

Genetic Programming

Chapter 8

0.13219 0.14001 2 4 5 6
0.10947 0.11294 2 7
0.11407 0.11842 1 2 4 7

Generation:

20

merit scaled subset

0.

O O O O OO OO0 OO0 0OOooooo

Attribute Subset Evaluator

16427 0.18138 2 6 8
.16427 0.18138 2 6 8
.16108 0.17237 2 5 6 8
.15585 0.1576 1 2 6 8
.16427 0.18138 2 6 8
.14809 0.13569 2 4 5 6 8
.16427 0.18138 2 6 8
.14851 0.13688 2 3 5 6 8
.16427 0.18138 2 6 8
.10004 0 1 3 6 8
.14851 0.13688 2 3 5 6 8
.16427 0.18138 2 6 8
.1465 0.13119 2 5 6
.16108 0.17237 2 5 6 8
.16108 0.17237 2 5 6 8
.14851 0.13688 2 3 5 6 8
.14851 0.13688 2 3 5 6 8
.16427 0.18138 2 6 8
.15585 0.1576 1 2 6 8
.16427 0.18138 2 6 8

CFS Subset Evaluator

Including locally predictive attributes

Selected attributes: 2,6,7,8

plas
mass
pedi
age

4

(supervised, Class

(nominal) :

9 class):

As we can see, it is very easy to extend Weka and use it to deploy genetic algorithms and

experiment with various parameters.

[240]

Genetic Programming Chapter 8

Frequently asked questions

Q: What is the significance of genetic algorithms to data mining?

A: With a growing number of data sources and hence an increase in volume, it is difficult to
derive actionable insights from these data assets in reasonable time, despite exponentially
growing computation power. We need smart algorithms to search through the solution
space. Nature provides inspiration with the evolution of life on Earth. With the use of
genetic algorithms we can greatly optimize the search and other data mining activities.

Q: What are the basic components of a GA?

A: Population initialization, fitness assignment, selection, crossover, mutation, and survivor
selection are the basic components of a GA. We need to tune the parameter values for these
components in order to find the solution in an optimized manner.

Summary

In this chapter, we have introduced the concept of genetic algorithms (GAs) and
programming constructs related to GAs. These algorithms derive inspiration from the
natural process of evolution. Living species evolve by inheritance, variation in partner
selection, and hence attributes of the offspring and occasional (random) mutation in the
genetic code (DNA structure). The same concepts are applied in the GAs in order to search
the best possible solution from a vast space of possible options. The algorithm is best
applied to problems where brute force is insufficient and cannot reach a solution within a
reasonable time.

We have seen the structure of GAs in general and implemented a solution for a simple
problem in Java. We have reviewed some of the features of the KEEL framework and how it
is very easy to translate data into knowledge. KEEL is a Java-based desktop application that
facilitates the analysis of the behavior of evolutionary learning in different areas of learning
and preprocessing tasks, making the management of these tasks easy for the user.

We have also briefly seen the Encog framework and the API structure, and how it is very
easy to extend the framework. We have also explored the Weka framework and the GUI for
comparing various algorithms. Weka provides an easy-to-use and rich user interface and
comes packaged with sample datasets. In the end, we realized a quick attribute search using
genetic algorithms with Weka.

In the next chapter, we are once again going to seek further inspiration from nature, from
the intelligent behavior of living creatures, and how some of their concepts can be used to
create intelligent machines of the future.

[241]

Swarm Intelligence

At some point in time, all of you must have observed the behavior of ants. The way they
move in a coordinated line one behind another, the way they collect and carry foods (larger
than their size) to their nests, the way they form bridges to cover larger gaps. All these
behaviors are remarkable considering the fact that the brains in these small creatures are
nowhere close to the human brain in terms of number of neurons and hence the
connections. This type of ordering is inherent to the natural processes and governed
remarkably. One important point to note here is that these insects are very small and it is
not in their individual capacity to achieve such larger goals. However, when they work as a
group they are able to achieve such bigger goals. In light of that, these insects are also called
social insects.

Social insects have certain prominent characteristics. They live in colonies, they have
division of labor, they have strong group interactions (direct or indirect), and they are
flexible. All these behaviors together are applied to achieve collective intelligence of the
group. This type of phenomena has prompted researchers to work on a new way of
achieving artificial intelligence (AI) named as swarm intelligence (SI). The term SI was
first coined by Gerardo Beni and Jing Wang in the year 1989, in the context of cellular
robotic systems. It is the field of Al that is inspired by natural behavior and coordinated
functioning of smaller insects, such as ants, bees, and termites. For any SI system, there
would be a colony of simple agents (same as an individual ant in an ant colony), which are
also called boids. Each of these boids would be interacting with their neighbor and their
environments (contexts) to achieve their individual goals. Together they achieve one larger
goal of solving the problem at hand.

Swarm Intelligence Chapter 9

The idea of SI has appealed to researchers and they are exploring it more for applying it in
solving real-world problems. In today's world, where an influx of information is
uncontrollable, handling such information diligently is no longer within the capacity of a
single human brain or single centralized system due to ever increasing volume of data. You
are always limited by individual capacity of human race or machine hardware. Sl is
emerging as an alternative where information processing is distributed, autonomous, and
naturally controlled. In the next few sections, you will have more clarity on how Sl is
solving some real-world complex problems.

We will be covering the following topics in this chapter:

e Overview of swarm intelligence
e Police swarm optimization model

Ant colony optimization model

Mason library
Opt4] library
Applications in big data analytics

Handling dynamical data

Multi-objective optimization

Swarm intelligence

Swarm intelligence is inspired by group behavior of species such as ants, termites, and bees.
In these species, behavior of a group to achieve common bigger goals is beyond the
capability of individuals who are part of the group. However, each individual in their
limited capacity as per their capability helps in achieving common behavior of the group.
As a group, these species behave intelligently without any excessive centralized authority
or governance. In the computer science field, SI is a collection of algorithms and concepts
which model and formalize such intelligent group behavior.

[243]

Swarm Intelligence Chapter 9

At a very high level, SI can be seen as a system that focuses on achieving useful smart
behavior that is the outcome of the cooperative efforts of individuals who are part of a
group (also called swarm). These individuals are called agents. Each of these agents is
homogeneous in nature. They work asynchronously and in parallel without any centralized
control or excessive governance. Overall these agents cooperate with each other either
knowingly or unknowingly to achieve some specific goal that defines intelligent behavior of
a group. From the perspective of Al or computer science, we can give the following
definition to swarm intelligence:

Swarm intelligence is a collection of intelligent systems inspired by the collective
intelligence of a group. This collective intelligence is achieved through the direct or indirect
interactions of agents that are homogeneous in nature, yet co-operate with each other in
their local environment without being aware of global context or pattern.

While building any SI-based system there are three fundamental concepts or properties that
a proposed system should at minimum comply with. These three basic properties are self-
organization (SO), stigmergy, and division of labor. Let us now look into these properties
one by one.

Self-organization

This is one of the most important characteristics of SI systems. SO is the property of SI
systems that determines the underlying cooperation among SI agents to achieve a desired
collective behavior. SO is one global behavior or phenomena that is achieved by interactions
among its lower level agents or bots. These interactions are dependent on a set of rules that
are incorporated based on local context or environment in which agents are functioning.
These agents are not aware of any global patterns or behavior. However, the global
behavior is emergent out of individual functioning of agents. The key is there is no external
governing body controlling the agents' local behavior. In a nutshell, global group behavior
in any SI system is achieved by the self-organizing capabilities of individual agents whose
functional scope is limited to local environment. There are four basic aspects of SO. They
are:

Positive feedback
Negative feedback

Random behavioral fluctuations

Multiple interactions among agents

[244]

Swarm Intelligence Chapter 9

Positive feedback is certain rules that help in building global best behavior of the swarm.
For example, bee's recruitment or reinforcement of new team members for collecting better
quality food from a better food source is an example of positive feedback. If a bee colony is
presented with two food sources that are similar in nature with respect to food quality and
are at the same distance then bees would try to collect food from both sources
simultaneously. However, if one food source quality is inferior then bees would exploit the
better food source first based on positive feedback received on that food source.

The other behavior that can emerge from positive feedback is that suppose a better quality
food source is presented to bees in the middle of collecting food from another source, then
the bee colony may abandon that food source completely or partially. They would recruit or
reinforce more bees to collect food from newly identified or better food sources. This
behavior that increases the survival chances for the entire community is a result of SO. Each
individual bee type knows its role and responsibilities and performs actions that lead to
completion of their given set of tasks.

A similar behavior of SO is also observed in ants. The ant colony as a whole is always
striving to construct a nest that is safe from harsh environments and organize individual ant
activities so as to locate the source of food that is nearest among all the available food
sources. The ants apply a very unique and smart algorithm for locating the nearest and
most abundant food source. Once the shelter (colony) is established, the most important
aspect for the colony's survival is to find the nearest and most abundant source of food.

The worker ants (on their own and in a self-organized) manner, start moving out in
multiple batches in independent directions. While exploring various places, they secrete a
chemical called pheromones. While they are still exploring the food source, the quantity of
pheromones is constant and is an indication that the search is still going on. As soon as a
source is found, the ant traverses the path back to the colony. However, this time it secretes
a varied amount of pheromones. The greater the amount of pheromone, the bigger and
abundant the source of food. This signal is sufficient for other ants in the colony to start
traversing the same path immediately (once again in a self-organized manner). There is no
central command and control mechanism that keeps track of all the ants that are out on a
specific path. However, the overall goal achievement (finding food in this case) is not
dependent on the central command as far as the ants who are self-organizing. If the food
source vanishes all of a sudden, the ants have a fallback plan based on the secondary food
sources found by another set of ants and based on the level of pheromone on the alternate
path.

[245]

Swarm Intelligence Chapter 9

As is evident, SO for fulfilling the individual responsibility is the key to survival for ants.
The Al systems take a lot of inspiration from these examples and should be built with self-
organizing agents with a specific job responsibility within the context of the applications
environment. The important aspect though is that the individual agents operate without a
leader or a centralized control based on a simple rule for its actions within the environment.
These simple rules, when operating in harmony, result in intelligent behavior that is way
beyond the combined sum of all individual agents' capabilities.

Stigmergy

The rules need to be reactive to the changes in the environmental state and the agent should
be able to adapt to the changes autonomously and continue to perform its function. This
behavior is called stigmergy. Without this property, the agent cannot be self-organizing and
will require a centralized controlling agent. With stigmergy, the agent is made aware of the
context within which it is operating even if the environment changes from the agents'
previous interaction with it.

Take, for example, an ant moving on a path to the food source and there is some water
poured on the path. As soon as the ant encounters water on the way, it starts looking for an
alternate path based on the pheromone signal. It may also traverse its way back to the
colony and then start over again on another path autonomously (without any central
control). At the same time, the ant leaves traces for other ants to know that on a particular
path to the food source, there is trouble on the way. Other ants immediately adapt to the
change in environment based on the previous ants' experience and modify their trajectories
based on the simple rules. The ants interact with each other without any explicit
communication, but only with the modifications in the environmental state.

At this point, the ants apply laws of reinforcement learning that we explored in the
previous chapter. On the way to the food source and back, the ant is constantly adapting to
the environment based on the reward for each individual action and state of the
environment. The goal for the individual agent (an ant, in this case) is to maximize the
reward (locate the food source or fetch food back to the colony) autonomously.

Division of labor

This is the most fundamental aspect of SI. The individual agent within the swarm is
extremely limited in its capability to achieve the goal for the entire swarm. The natural
system applies division of labor with individual agents performing a set of very specific
responsibilities that contribute to the overall success of the swarm.

[246]

Swarm Intelligence Chapter 9

For example, all the bees in a hive are not doing the same thing. There is a clear division of
labor within the bee hive based on the type of the bee. The Queen bee is responsible for
laying eggs, the male drones are responsible for reproduction, and the worker bees build
the hive and work to get food for the entire population. They also take care of the Queen
bee and the drones by feeding them. In Al systems each individual agent needs to be
programmed to have its own rules based on the environmental context to perform a specific
set of duties. With the division of labor, the parallel processing systems can efficiently work
and distribute the work loads without missing the sight of the overall reward and the goal.

With this background with SI, let us look at some of the advantages of collective intelligence
for maximizing the rewards.

Advantages of collective intelligent systems

Collective intelligent systems have the following advantages:

¢ Flexibility: The agents have their individual rules for operation within the
context of its environment. The agent responds to changes in the environment
and then the entire population demonstrates flexibility in order to adapt to the
change in environment.

* Robustness: Since the agents are individually a very small unit within the whole,
even if one agent fails, the community does not suffer and the overall goal can
possibly be achieved.

e Scalability: Since the individual agents are small units of independent work, it is
possible to scale from hundreds to thousands to millions of such intelligent
agents based on the use case and achieve exponentially higher returns and
cumulative intelligence.

¢ De-centralization: Since there is no central control in the colony, the agents can
be deployed onto the edge of the computation (realistic scenario in case of IoT use
cases). Unlike a distributed computing framework where a central node server
needs to be incrementally powerful, in the case of SI, there is no need for a
centralized control since the agents work based on rules within the environment.

¢ Self-organization: The possible solutions that deploy algorithms based on SI can
evolve and adapt to the changes in the environment and emerge without being
predefined.

[247]

Swarm Intelligence Chapter 9

¢ Adaptation: The agents and system as a whole can adapt and adjust to the
predefined environment along with the new changes in the environment. The
adaptation is also a unique feature of the individual agent instead of being
centrally controlled.

e Agility and speed: The intelligence system based on swarm algorithms
demonstrate agility and improved speed with every interaction with the
environment.

While designing the systems based on SI, there are certain guiding principles that need to
be followed for developing self-sufficient systems.

Design principles for developing Sl systems

The design principles to be taken into consideration for developing SI systems are as
follows:

¢ Proximity principle: The individual agents within the swarm should be able to
communicate back to the population center in a reasonable time while exploring
the search space individually. For example, an ant in search of food should be
able to report back to the colony, as soon as a food source is found. This reporting
needs to happen in a time-sensitive manner for the food source to be relevant.
The proximity principle defines an implicit demographic boundary for the
members.

¢ Quality principle: While the independent agents get to a solution independently
within the search space, the swarm should be able to determine the quality of the
solution and move in that direction. Once again, if multiple ants find a food
source each they come back with different levels of pheromones on the way in
proportion to the quality and quantity of the food source. This helps the group as
a whole to decide which food source to go to. However, there is no central
command that determines the quality standard and decides the path. On the
other hand, the agents communicate and collaborate to reach the right source of
food.

[248]

Swarm Intelligence Chapter 9

¢ Diverse response principle: While the agents are solving a common problem,
they should not be focused on a small region within the overall search space.
They must be enabled for exploration while exploiting the previously understood
patterns. The swarm should look to diversify with a certain threshold that defines
the survival boundary of an individual agent.

¢ Adaptability principle: The swarm as a whole should be able to adapt to the
changes in environment. The agents should organize themselves in tune with the
changing environment.

With the basic understanding of the SI fundamentals, let us understand two of the
algorithms that can be used for building artificial agents that work in a size-able group to
perform collectively large tasks.

The particle swarm optimization model

The particle swarm optimization (PSO) model is inspired by flocking of birds and the
schooling movement of fish. The goal of the PSO model is to find an optimum solution
(food source or a place to live) within a dynamic space. The swarm starts at a random
location and a random velocity and is based on the collective behavior by exploring and
exploiting the search space. The unique feature of PSO is that the agents operate in a
formation that optimizes the search and also minimizes the collective effort in converging to
an optimum solution. The agents within a swarm that follows the PSO model follow some
of the guideline principles:

¢ Separation: Each individual agent is programmed in a way that it is able to keep
a sufficient distance with the flock-mates so that they do not run into each other
and at the same time, maintain a separate existence space for itself to be part of a
formation in search of an optimum solution. The agent follows the nearest
neighbor in order to adjust its position and velocity in order to ensure the right
level of separation.

e Alignment: Each individual agent aligns with the swarm's overall pattern
formation and the average group velocity within the search space.

[249]

Swarm Intelligence Chapter 9

As a general principle, each member in the swarm that follows the PCO model
communicates its experience continuously to the group as a whole and to the nearest
neighbors in particular. The agent has a view of the nearest members and their behavior
and learning pattern. The agent either influences the movement (position and velocity) of
the neighboring agents based on the observations and suitability of its experience within the
search space for local optimal solution or adjusts its movement based on a better experience
for the nearest members. The core principle is alignment with nearest neighbors and hence
the entire swarm as a whole in the interest of the larger goal. Originally, the PSO was
proposed as an optimization algorithm within real-value continuous search space and it is
now expanded to also deal with binary or discrete search use cases. The core algorithm is
defined by the velocity and position equations as follows:

Historically best position of ith Position of ith agent in

article in dth dimension dth dimension
Velocity of ith particle in dth dimension P

and tis the |tera®ter \ Social parameter

Vg = Vg + c1R1(p;y0) + ¢

N

n-dimensional vectors with
random numbers

o mid”)

Cognitive parameter

Figure 9.1 Velocity function in PSO

ith agent’s position at time Velocitv function
t+1 and dt" dimension Previous position /
] p— . gt ;
azzdm wzd +vzd“1

Figure 9.2 Position function in PSO

In order to define the velocity (rate of change of location for an individual agent) two
parameters play a major role. The best position across a timeline for the individual agent is
represented by Pid® and Pgd® | which represent the position of the best agent within a
swarm's global position within the environmental context. When these two parameters
contribute to overall velocity of the swarm, it is the optimum velocity for searching the
solution within the space provided that the environment is deterministic.

[250]

Swarm Intelligence Chapter 9

However, in case of a stochastic environment the factors R1 and R2 play a role for adjusting
to the changes in the state of the environment. These parameters introduce the required
randomness in the swarm in order to explore the search space in an efficient manner. c1
and c2 are the cognitive and social parameters that represent relative importance of a
particular agent with respect to the best position of the swarm. The relative values of these
parameters constantly move an individual agent to the best position within the swarm even
if the environment undergoes a change. The effect of relative difference between c1 and c2
can be represented as follows:

cl 2 Exploration level

High High High exploration in distant regions

Small |Small |[Refined search and lower level of exploration

High Small |[Bias towards a particular agent's global best position
Small |High Bias towards a swarm's global best position

The velocity function has three distinct components:

e Inertia (vidt): Inertia is the resistance of any physical object to any change in its
state of motion. This includes changes to the object's speed, direction, or state of

rest.

The velocity in time t+1 is a function of time f. Which means the swarm is not
allowed to change the velocity abruptly. Instead, there is a gradual change in
velocity depending on the environmental change or if the swarm needs to
change the velocity in order to navigate effectively through the search space.
Due to this inertia, we observe that the swarm of birds continue in the same
direction most of the time and move in a formation since velocity of the agent
in time t+1 is dependent on velocity of the agent at time t. This term is also
very important for changing the global best agent within the swarm. When
an agents' fitness function is more optimum compared to a swarm's global
fitness, the agent takes the position as global best agent within the swarm.
During the transition, (Pi = Ti = Pg) the social expression in the equation
becomes zero (Pid® ~ Tia® = Pigh ~ Tigt = 0) At this point the new agent
becomes the global best particle by moving with the new velocity and hence
changing the position within the swarm.

[251]

Swarm Intelligence Chapter 9

o Self-knowledge (Pid® ~ %id®): This component of the velocity function defines
an agents' individuality within the swarm. This translates into the level of
attraction for a particle to its own global best value that optimizes the search
through the solution space.

¢ Social-knowledge (Psa” ~ *id"): This component of the velocity function defines
adaption to the social behavior among all the agents. With this expression, grade
of group learning and experience sharing between the individual members is
defined.

The PSO model can be represented as follows:

Identify / Update Swarm’s
best agent (fitness value)

J

Update velocities for all
the members

Initialize the
swarm

Evaluate fitness function J
for each agent’s position

* Population Size

e Arbitrary initial

velocity and position
for each agent

Move members to new
positions

Get next particle? ——

No

Convergence?

Current
position better
than historical
best?

[Historically best position = ‘;'
current position

Figure 9.3 PSO model

PSO implementation considerations

We need to have the following PSO implementation considerations:

e PSO stores an agent's best position in a considerable and relevant timeline along
with the global best position for the swarm. With this, the agent with a maximum
fitness score has an influence on the overall behavior of the swarm and the
convergence is fast.

[252]

Swarm Intelligence Chapter 9

e PSO is a simple algorithm to implement since the mathematical equations for
velocity and position are easy to implement due to inherent simplicity.

e PSO can adapt to the changes in environment very efficiently by adjusting the
velocity and positions of the members quickly through each iteration.

Ant colony optimization model

The ant colony optimization (ACO) is another widely used and adapted variation of the SI
algorithms. At its minimum, the objective of the ant colony or the artificial agent swarms is
to set out in search for an asset (food in case of ants and a package in case of a robot colony
in a retailer warehouse) in an optimum way so as to traverse minimum distance to and
from the asset and the base location. This model is useful with surveillance drones,
autonomous car route planning, and so on.

Let us understand some of the operating principles in an ant colony and get introduced to
the terminologies so that those can be applied in designing artificial swarms based on the
ACO model. Here is a figure of an Ant colony and a Food source:

Food source

...... Low pheromone
==z2:::= High pheromone

Ant colony

Path-1 = Long distance

Figure 9.4 Ant colony representation and terms

[253]

Swarm Intelligence Chapter 9

In this example, there is food source in the vicinity of the ant colony. There are two paths to
the food. Path-1 is a long distance to the Food source and Path-2 is the shortest distance.
The ants begin exploration of the search space independently. Each ant that sets out has a
task to find the food source. A few ants take the long route and find the food source and on
the way secrete a pheromone trail. As the ants return to the colony, other ants get a signal
that the food source is found and they start traversing the path. Meanwhile, the ants on the
shorter path return faster than the ones on the long path and more ants start traversing the
short path since the effective time is less. Over a period of time, the ants on the short
distance accumulate more pheromone on the way, which signals to the colony that the food
source is more optimum in terms of distance as well as the quality. With time, the
pheromone on the long distance path evaporates and the path ceases to exist. Eventually,
the ants stop traversing the long path to the food source and the collective behavior of the
colony is fully optimized.

When we imitate the concepts of natural ants and their optimization techniques for
designing artificial agents, the concepts can be enhanced and further optimized based on
the environment. For example, the natural ants do not have any memory. They operate
within the set of rules that define their movement and the overall behavior (pheromone
secretion). The artificial ants (agents) can have limited memory that stores the rewards
based on the past actions and hence the intelligent behavior can be enhanced. The natural
ants are subject to ecological modifications and constraints. For example, water drops on the
way to the food source. The artificial agents are not subject to the ecological modifications
and normally run within a controlled and predictable environment. The artificial agents
simulate the patterns from the natural ants by depositing the pheromone on the way in
order to reinforce the behavior onto the other agents.

The artificial agents also traverse the path with more pheromone concentration and
supplement it with the memory component for optimum behavior. In the case of artificial
ants, the pheromone is evaporated quickly in order for the colony to explore further
optimizations. This is unlike the real ants that are at work with survival as the basic instinct.
The core intuition while developing the ACO-based agents is based on a fitness function
that defines the actions for the agents that return maximum pheromone levels on the way. It
is also seen as a cost optimization problem that reduces the cumulative cost for the colony
to reach the target within the search space.

[254]

Swarm Intelligence Chapter 9

At the algorithm level, the individual agent works based on a probability rule that helps to
select components (sequential steps) that utilize the pheromone levels on the way and the
environmental variations. While the artificial ants move through the solution space based
on the probability function, it needs to also determine the amount of pheromone for it to
deposit. The probability rule is called the state transition rule:

Heuristic value when

Pheromone amount on transitioning from location i to
» the path from location j weighted by B
Probability of kth ant to move from i to location j weighted
location i to location j at the ith time by a
step through the search space A set of possible
locations for kth ant in ith
/ location
[7i;(D]* * ;17 je NE
k _)Y Ti1(£)]% = ;718 l
Pij(t) = { Ziepk [Ta(O)]% * i)
: k

\

The ants are not expected to
move to any of the
neighboring locations

Figure 9.5 Mathematical representation of ACO

In the following equation, o and f are the parameters that control the overall impact of
pheromone and heuristic approach in deriving the probability function. This is similar to c1
and c2 values in PSO. The effect of relative difference between o and p can be represented
as follows:

o B Effect on convergence

Pheromone information is important. For an agent, there is a higher
possibility of choosing the actions and positions that are previously taken by
High | Low |other agents. This may lead to saturation of many agents in the same region
and hence reducing the swarm's potential to explore the search space and
hence obtaining sub-optimum results.

The algorithm behaves as a stochastic multi-greedy algorithm with the
individual members of the colony seemingly in charge of finding the optima
on their own with low level of co-operation and limited learning from each
other's path traversal.

Low |High

[255]

Swarm Intelligence Chapter 9

In this case, the algorithm operates as a stochastic greedy algorithm with
individual members in charge and with zero learning from others' path
traversal. The node with minimum cost will get a preference and there is no
weight-age given to the pheromone level on the path.

Zero |High

In this case, the algorithm operates same as the natural ants where the
High | Zero |guiding principle is pheromone only and there is no heuristic information
utilized in searching through the problem space.

MASON Library

Multi-Agent Simulation Of Neighborhoods or Networks (MASON) is a Java-based
multi-agent simulation library that has a generic API library in order to easily simulate SI
algorithms in particular and any general algorithm that explores the search space with the
use of independent agents in general. This library is created by George Mason at the
University's Center for Social Complexity and Department of Computer Science. It provides
a fast and portable core written in Java programming language and is supported by
visualization framework for hypothesis testing and visualization. It is a handy framework
for modeling new architectures and algorithms. The design goals for the MASON library
are:

e Provide a large number of simulations and configurable experiments. The library
is very easy to extend for additional simulations and use cases.

e High Degree of modularity and flexibility—the framework is built as a layered
architecture and it deploys object oriented fundamentals for keeping the
responsibilities of the individual building blocks loosely coupled.

¢ Separate visualization tools—the framework has a visualization layer that is
separate from the code engine and can also be extended based on the use case
and the context of the application hypothesis that is being tested.

MASON is a multi-purpose event simulator that runs as a single process that efficiently
supports a large number of agents. The applications of MASON are as diverse as modeling
social complexity, physical modeling of the search space, and agent interactions with the
environment, independent and abstract agents that can be programmed to follow basic
rules, and operate as a member of a swarm. The framework is handy for Al and ML
research and simulations.

[256]

Swarm Intelligence Chapter 9

MASON Layered Architecture

MASON has implemented a layered architecture with distinct components that are loosely
coupled and integrated with a generic interface. The following figure shows various
components within the layered architecture:

Connectors Applications Configurations
Domain
Mason GUI Tools Specific
Simulations

Mason Model Library

Figure 9.6 Mason library components

Primarily, the MASON library contains two main components, the model library and the
visualization framework. The visualization support 2D as well 2D rendering. The model
and the visualizations are totally separated and the models can be independently executed
and results returned to the console or the output files. The Ul is loosely coupled and works
based on the current states of the objects within the model objects.

Instead of taking a top-down approach that starts with user interface and initiates the
model, the MASON framework keeps the model and visualization components fully
independent. This approach gives flexibility to create different visualizations (Java based or
if required, web based) as required. One of the core features implemented by Mason is
checkpointing. The model can be serialized to the disk and can be invoked on an entirely
different platform at a different time and it is initialized to the same state. This facilitates a
great deal of interoperability and collaboration among research teams. Here is another
representation of the MASON architecture:

[257]

Swarm Intelligence Chapter 9

e S_— — —
Model Visualization
Schedule I.._ Controls Controller /
J Console
1 1
£ h
= r p Y
o R
 — l‘ —t —
T | -,
Agents \[Displays
1
Typically 1
- X~
([(—E">,
@7 Visualize Field Portrayals
I
8 1 4
& .
—p I
o~ - - s
" (J— §
Objects / Values |- Visualize I Simple Portrayals
N J
Inspect Features of 1
-
F_______—__*ﬂ
Random Number | y i
andom Mum _ _
(Gensrator | Inspectors
. 7)

Figure 9.7 MASON Architecture (Source: Mason official manual)

The MASON library provides a simple API to create new simulations. In order to create a
new agent object, it needs to extend the sim.engine.SimState class. The simplest
skeleton implementation is as follows:

import sim.engine.*;
public class SWARMAgent extends SimState{

public SWARMAgent (long seed) {
super (seed) ;

[258]

Swarm Intelligence Chapter 9

}
// method used for initialization of the model including the
configurations and the UI
public void start (){
super.start () ;

}
public static void main(String[] args){

doLoop (SWARMAgent.class, args);

System.exit (0);

}

MASON creates a global state of the simulation instance as a subclass of SimState. The
SimState encapsulates an event scheduler (sim.engine.Schedule). The agents are
scheduled with the instance of the sim.engine. Schedule class to be stepped. The
scheduler is the representation of time for the simulator.

The Mason library contains a set of pre-built simulations. Let us look at the ant colony
optimization simulation in the MASON library. This is an implementation of the simple
scenario we have seen in figure 9.4, Ant colony representation and terms. The search space
contains two obstacles, a food source and the colony location. Various parameters such as
number of ants and others are configurable as follows:

|£| Ant Foraging = | = S

File

[About | Console | Displays | Inspectors | Model |
| O Refresh |
NumAnts & [500 |
Reward °q|1.CI |
CutDown % =—=IJ 0.0 |
EvaporationConstant % |EI.999
MomentumProbability &% =—=_k |03
RandomActionProbability % Q: 01

N | PN Time -

Figure 9.8 Ant Foraging configuration

[259]

Swarm Intelligence Chapter 9

Once the simulation starts, the ants get onto a random path individually and deposit a
pheromone trail on the way. The high value of evaporation constant ensures that the ants
explore the search space instead of gravitating to the already explored paths. As soon as the
first ant finds the food source, it starts traversing back and forth between the food source
and the base location once again leaving a pheromone trail both ways. The ants are
programmed to follow the pheromone trail and eventually the model converges and the
ants get on the optimized shortest path. The following figure shows the ACO simulation:

Obstacles

Pheromone close to the
food source (blue)

Pheromone close to the
" base location (green)

Home Pheromone at (30, 74). 0.0
Food Pheromone at (30, 74): 0.0
Site at (30, 74). 0.0

Obstacle at (30, 74): 1.0

Figure 9.9 ACO Simulation in MASON

MASON library has many more simulations pre-built into the package and we can explore
these and experiment with various options. The API can be used for extending the scope of
the application with minimum code and leveraging the framework capabilities and the
visualization layer. In the next section, we will briefly review another framework, Opt4],
which is primarily built for evolutionary computing and can also be used for experimenting
with SI algorithms.

[260]

Swarm Intelligence Chapter 9

Opt4J library

Opt4] is a modular framework for meta-heuristic optimization that can be applied to a
range of evolutionary algorithms. In the context of this chapter, we are looking at
implementing SI algorithms such as ACO and PSO using the library. The libraries that deal
with optimization problems have three primary components at abstract level. Creator,
decoder, and evaluator. The creator provides random genotypes (please refer to Chapter

8, Genetic Programming, for details on genotype and phenotypes) from the search space.
They represent agents in case of SI algorithms. The agents are created by the creator object.

The Opt4] library provides an org.opt47j.optimizers.mopso.Particle class that
works as a creator. The agents within the swarm are the instances of this class that are
actually created by a factory

class' org.opt47j.optimizers.mopso.ParticleFactory. The decoder transforms a
genotype to a phenotype. The decoder converts the abstract characteristics into tangible
objects and associate behavior patterns with those. Based on the phenotype, the evaluator
defines the quality of the current agent in case of the PSO algorithm, the evaluator function
returns the velocity and position for the agent and determines if it is the best position and
velocity within the swarm. Once the core components are defined, the framework can
handle the optimization problem. The architectural components of the Opt4] libraries are as
follows (Source: Opt4] documentation):

5
— ({inter face)) {{interface)) {{tnterface}}
e eT face})
C'NJ % Creator ‘ Decoder ‘ ‘ Evaluator ‘
= ®© decode(Genotype) | ‘ evaluate(Phenotype) :
= - create() : Genof : P :
= 0 ype J Phenotype Objectives
o ~
O 1 1 1
{{interface)) . | |
P {{interface)}
individualEactory IndividualCompleter
create() : Individual e B
create(Genotype) - can\]gilgte(lndmdual[ﬂ :
Individual
= ~
1 1
{{interface)) e . e
Optimizer (“S”’r‘;;‘é;”
0.4 -
optimize() : void -

Figure 9.10 Architectural Components of Opt4]J (Source: Opt4J documentation)

[261]

Swarm Intelligence Chapter 9

Opt4] provides a simple and intuitive Ul for loading the models and also visualizing in a
limited manner:

Eile 7

¥ Run | || Load ... E Save E Save As ... | «» | Show configuration

= Modules -

- “ || 20T 4» % | (0 EvolutionaryAlgorithm <> % | £ viewer <» X |
=[5 Default —
b Archive ' Opt4] 3.1.4 xﬁ_@m

b IndividualCompleter
(> Random @O0 O X & L&k
b SAT4) it Pareto Plot ==
- optimizer : , : .

=A% Operator x-Axis: |objective: f1 .|y-Axis: objective: f2 v_‘ &
ﬂﬁ? BasicCrossover
ﬂ't? BasicDiversity
-4}/ BasicMutate
ﬂ'i? BasicMeighbor .] Archive
155? MyCperator FPopulation
-0 selector
ﬂ't? ElitismSelector
ﬂﬁ? Msga2
ﬂ'i? oMS
ﬂﬁ? Speal
ﬂ'f? DifferentialEvolution
E—]--ﬂﬁ? EvolutionaryAlgorithm

ﬂﬁ? BasicMating

Ay
|1 RandemSearch
Elﬂ'f? SimulatedAnnealing

ﬂ't? CoolingSchedules
- output
« Loager

Viewer

Figure 9.11 Model Visualization with Opt4J

We are at the verge of a data revolution and the data volumes from heterogeneous sources
are increasing day by day. Even though the parallel processing frameworks along with
cloud computing are getting better at processing more data, the brute force technique will
not be able to cope with the growth in data volume. We will need to apply smart techniques
inspired by nature such as genetic programming, reinforcement learning, and SI to deal
with big data. In the next section, we will look at some possible use cases in dealing with
big data and underlying computational assets.

[262]

Swarm Intelligence Chapter 9

Applications in big data analytics

Every passing minute, we are gathering more data across the globe and we now have
computing power to store and process the data assets. Let us briefly understand the
fundamental architecture of big data systems. In the current form, the big data computing
framework is an enormous collection of computation nodes that are distributed across the
globe. There are two primary distinctions within the deployments. The systems can be
deployed on-premise for the enterprises and there is a paradigm shift towards cloud
computing where the compute infrastructure is virtualized and it is geographically
distributed in various regions.

The independent units of compute are termed as nodes. The nodes are interconnected and
controlled by a centralized computation unit that keeps track of all the nodes and various
operations on these nodes. There is a similarity between the natural swarms and the big
data nodes in that the nodes are independent work units. However, the similarity ends
there. The nodes in a big data deployment are governed by one or more master nodes and
worker nodes work in synchronization based on the instructions from the master node. As
we have seen in this chapter, the natural swarms (ant colonies, and fleet of birds, and so on)
do not have a central command and the individual members (agents) work in an
autonomous manner based on the rules and the agents are able to adjust themselves based
on the stochastic nature of the environment in which they operate. The concepts of SI can be
applied in securing the big data infrastructure as well as ensuring that the nodes are fully
balanced. In the mainstream approach, a computation job is first submitted to the master
node and it in turn breaks it down into multiple chunks to be performed by the data or
compute nodes.

At this point, the jobs are executed independently by the slave nodes. Based on the resource
available with the slave nodes, the jobs finish at different times and require varied degrees
of computation and storage. Eventually it may happen that the core compute load is not
evenly distributed across nodes. Based on some of the concepts we have learned in this
chapter, here is a generic (ACO) algorithm based on SI that can be deployed in the
distributed computing environment. With this algorithm the general process be:

¢ Reproduction: This is a process by which new artificial ants are generated. The
controller checks the platform periodically and generates ants based on the load
on the cluster nodes. If the nodes are overloaded or underloaded, new ants are
generated for carrying the message across.

[263]

Swarm Intelligence Chapter 9

¢ Exploration: In this process, the agents are independently in charge of finding the
nodes that are overloaded. They can trace through the network and check the
operating parameters and on the way leave a trial of simulated pheromone
(incremental counter) for the other members of the swarm to get notified about
the overloaded or underloaded node(s).

The ants in this swarm move forward and backward (same as the natural ants that move
from the colony to the food source in both directions). For the sake of simplicity in the load
balancing algorithm, two distinct types of ants move in each direction with independent
tasks at hand. The forward moving ant is responsible for finding a node that is overloaded
or underloaded. This agent starts from the same position (node) at which it was born and
starts exploring the space. The agent that moves backwards carries a signal (quantifiable
pheromone) and creates a trail on the way that notifies that a particular node is overloaded
or underloaded. For simplicity, in our model, the agent that moves backwards is generated
only when a target node (which requires load balancing) is encountered. A forward moving
agent is generated within the process of the target node when the threshold of node activity
is reached (high as well as low).

With this background and the basic understanding about the approach, the load balancing
flow for the distributed computing environment can be broken down into the following
steps:

¢ The agents calculate and quantify the load (under and over) on the node at which
it is currently connected.

e Start in the direction of a random new node to calculate its suitability for load
balancing.

¢ The backward ant is generated when a candidate node is found. This agent
updates the pheromone information in order to leave a trail of target nodes.

e Calculate the collective requirement for load balancing based on the candidate
nodes found by the agents.

e Balance the load on the cluster.

[264]

Swarm Intelligence Chapter 9

The load balancing algorithm can be depicted as follows:

Update timer for forward

Compute moving probability N
an

|

Initialize pheromone levels l
for th ki d
or the worker nodes Move to next node
Is forward
Get the execution jobs (tasks timer >0
= {n})from master node
Is
[No candidate
— Get next task (i) Node? Update pheromone by
l backward ant
Send task i to slave S, Generate Backward
ant (agent)
2
Find candidate nodes
(overloaded / underloaded) Start timer for backward ant —
Increase Decrease
Generate Forward pheromone pheromone
ant (agent) Node due for \
balancing?
Balance the node . Yes

Figure 9.12 Load Balancing Algorithm flowchart

The applicability of SI is even greater in the case of IoT where the computation is moving
towards the edge and the sensors that collect data can be treated as the members of the
swarm and perform independent operations for the overall benefit of the system by
operating based on fuzzy rules instead of hardcoded functions. The edge devices can be
programmed with capabilities to explore and exploit within their working environment in
order to collectively achieve some of the predefined goals.

We have so far seen the optimization of big data processing in regards to the volume and
distributed computing. However, there are two more important aspects of big data, which
are variety and velocity of the data. Variety and velocity of the data requires dealing with
the big data multi-dimensional problem. In the next section, we will briefly review handling
of dynamical data and multi-objective optimization when there is more than one objective
(as in the case of real scenarios) for the data processing system.

[265]

Swarm Intelligence Chapter 9

Handling dynamical data

With increasing sources of data, there is a quest of finding meaning from it and utilizing it
for better decision making and deriving autonomous actions. However, as the number of
dimensions and input variables increase, the search through the solution space becomes
computationally intensive and application of simply the brute force and distributed
computing is not sufficient. We can leverage SI algorithms in order to tag the important
dimensions with higher weights impacting the overall outcome. In this particular scenario,
the velocity of the data generation adds a level of complexity due to the variation in the
data that is received.

Some of the challenges that need to be solved when designing the swarm of artificial agents
are related to the dynamic target space, the state of the environment changes very rapidly
(even after an optimization is performed and the pheromone level is decided by the
intelligent agent). Once the swarm finds global optima, the actual value may change
dynamically. This requires a different set of rules to be built into the agents, which address
the dynamism of the environment. At this point, the algorithm needs to evolve to consider
the increased cost of optimization within the dynamic search space and trade it off with the
quality of the solution that is obtained. The artificial agents require a level of fuzziness built
in its objective function in order to effectively deal with dynamical data.

Multi-objective optimization

So far in this chapter, we have taken the examples of the problem with one objective
(finding a food source for an ant colony). However, in real-world scenarios, often there is
more than one objective that needs to be met by the individual agents as well as the swarm.
For example, in the case of honey bees they need to look for the food source, gather the
food, and find a safe and viable place for the beehive. One objective is fulfilled at the cost of
another objective. The agent should be programmed to consider the trade-off in the larger
interest of the swarm.

[2661

Swarm Intelligence Chapter 9

As far as possible, the optimization function for the agent should bring optimum solution
for more than one objective, but it is not feasible to mutual exclusivity. In such cases, the
agent should be able to operate without a central control and decide the objective weightage
based on the environmental context and should favor the objective that will fulfill the
swarm's overall objective for an elongated period instead of deciding based on a short-term
strategy. The goal of the optimization as a whole is to reach Pareto Optimality for the
swarm:

Pareto optimality is a formally defined concept used to determine when an allocation is
optimal. An allocation is not Pareto optimal if there is an alternative allocation where
improvements can be made to at least one participant’s well-being without reducing any
other participant’s well-being. If there is a transfer that satisfies this condition, the
reallocation is called a Pareto improvement. When no further Pareto improvements are
possible, the allocation is a Pareto optimum.

Frequently asked questions

Q: What is the difference between distributed computing paradigm and swarm
intelligence? In the case of distributed computing, we also divide the work units in chunks
that are processed by individual nodes.

A: The basic difference between these two types of systems is that the distributed
computing systems are centrally controlled. There is a master node or processing unit that
keeps track of all the worker nodes and allocated work units based on their availability. The
frameworks also maintain a level of redundancy so that the system is reliable in case of
failure of one of the worker nodes. In case of intelligent swarm behavior demonstrated by
social creatures, there is not centralized control and all the agents operate independently
within their operating principles. The agents are self-organizing and collaborate intuitively
and implicitly instead of an explicit collaboration managed by a central controlling unit.

Q: How do systems based on SI algorithms mimic the natural phenomenon such as
pheromone generation?

A: Pheromone is a chemical that is secreted by ants on their way to and from the food
source, which signals to other ants that there is a food source around. This chemical is the
primary mechanism in which the ants communicate with each other and varying
concentration of pheromone indicates different things to the ants. In case of artificial agents,
the agent maintains a quantification of pheromone as a numeric value that is incremented
to indicate additional pheromones and there is also a process for evaporation that is based
on a time parameter. In a way, the behavior is simulated to match the natural phenomenon.

[267]

Swarm Intelligence Chapter 9

Q: What are some of the use cases and the real applications of artificial swarm intelligence?

A: The principles of SI can be applied to a diverse set of problems and use cases across
industries. We have already seen a use case in distributed computing for balancing the load
of the nodes. We can also deploy SI algorithms in logistic planning and supply chain
optimization, network and communication routers, intelligent traffic and fleet control,
optimizing factory operations, and workforce optimization in customer services operations.

Summary

In this chapter, we have seen an interesting aspect in building Al. Nature has the best
algorithm when it comes to harmoniously managing an extremely complex ecosystem that
has a massive scale. We take inspiration from nature and some of the smallest creatures that
have tiny brains and hence a very small number of neurons compared to human beings.
However, these small creatures are able to collectively achieve feats that are far bigger than
the sum of their individual capabilities. The operating principles of these community
creatures cannot be ignored when we are on a quest to build Al systems that complement
and augment human capabilities.

In this chapter, we have seen some of the fundamental concepts of natural swarm
intelligence and some of the principles we need to consider while developing modern
systems based on SI. We have tried to represent the collective behaviors in a mathematical
form and derive some of the patterns in developing the algorithmic behavior for the
artificial agents with PSO and ACO algorithms. In this chapter, we have reviewed two
computational frameworks and libraries, MASON and Opt4], which can be easily leveraged
for various experiments and advanced analysis. These libraries provide effective
visualization layers. We have covered a use case for load balancing the servers in a
distributed computing environment.

In the next chapter, we will once again derive inspiration from nature and look at an
important algorithm called reinforcement learning. Unlike supervised learning,
reinforcement learning leverages reward and punishment as the inputs for learning
behavior for the artificial agents.

[268]

10

Reinforcement Learning

In chapter 3, Learning from Big Data, we were introduced to two fundamental types of
machine learning techniques: supervised learning and unsupervised learning. In case of the
supervised learning, a model is trained based on the historical data (observations) for
predicting the outcomes based on the new data inputs. In the case of unsupervised learning,
the model tries to derive patterns within the datasets and define logical grouping
boundaries in order to separate the solution space. There is a third type of machine learning
algorithm that is equally important for the evolution of artificial intelligence.

Remember the process of learning to ride a bicycle. We observe another person who is
riding a bicycle, create a mental model on how to do it, and attempt it ourselves. It is not
possible to just get the balancing and movement on a bicycle right in the first attempt. We
(actor) try for the first time (action) on the road (environment) and may fall down (reward).
We try over and over again with different balance on the left and right side with different
speed and strategy to pedal and this time may go some more distance (higher reward) and
finally get the cycling right (goal!). This process when repeated a number of times reinforces
the right set of actions based on the environmental conditions at a particular point in time in
order to maximize the reward.

The process we have just visualized is called reinforcement learning. This is the third
fundamental category of machine learning algorithms, which we are going to study in this
chapter. In this chapter, we will understand:

¢ The concept of reinforcement learning algorithms
¢ QQ-learning

SARSA learning

Deep reinforcement learning

Reinforcement Learning

Chapter 10

Reinforcement learning algorithms concept

Let's create a simplistic model for reinforcement learning with an introduction of the basic

terminologies:

Observation

Action

—

At each step and time (t), the agent:

¢ Executes action g,
¢ Receives observation o,

® Receives a reward r,

At each step and time (t), the environment:

¢ Receives action 4,
¢ Generates observation ot+1
¢ Generates scalar reward r,,,

The environment is considered to be non-deterministic (action 4, based on o, will receive

reward r, and the same action in the same state may result in different rewards).

[270]

Reinforcement Learning Chapter 10

The agent (intelligent machine) is connected to the environmental context with its
observation and action. The agent perceives the environment in a unique-to-itself manner
and decides the action based on some of the popular and evolving techniques. At each step
in time, the agent receives signals that represent the state of the environment.

The agent responds with an action that is one among several possible options at that point
in time. The action generates an output that changes the state of the environment.
Remember the results pyramid from the first chapter? If the agent needs better results it has
to take the right actions based on the environment and overall goal for its existence. The
change in state of the environment due to an agent's action is communicated back to the
agent with a reinforcement signal r. The overall result is a combination of discrete actions
that the agent needs to choose to maximize or increase the sum of reward (reinforcement
signal). This is learned over a period of time based on trial and error strategies supported by
some of the evolutionary algorithms.

With this background, we can clearly see that there are two distinct ways in which
reinforcement learning can be achieved:

¢ Use genetic algorithm and programming: In this approach, the agent searches
within the space of possible pathways to the optimal solution or action based on
the environmental context. While use of a genetic algorithm model tends to
eliminate dependence on the brute-force for achieving an agent's overall goal of
maximizing rewards, this approach at time yields sub-optimized actions for the
agent.

¢ Use statistical techniques and dynamic programming model: This is the
approach taken by modern computational paradigm of distributed computing
and parallel processing in development of the agents that outperform human
intelligence at some challenging tasks (games such as Chess and Go).

There is a fundamental difference between reinforcement learning and supervised learning
models. In the case of supervised learning, we have access to historical data that maps the
independent variables to the output variable(s). This historical data is used as input for
training the supervised learning model. The model is then able to predict the output value
for a new set of input datasets. In the case of reinforcement learning, the agent needs to
search within the available solution space and does not have access to a historical set of
actions that have resulted in maximum reward. A hybrid approach in which the starting
point for the agent is a trained model that eliminates some of the search space and the agent
can reach the goal (maximizing reward) for a set of environmental transitions in a more
optimized manner seems to be the preference for building machine intelligence.

[271]

Reinforcement Learning Chapter 10

The state transition for the environment based on the agent's actions can be visualized as
follows:

The overall goal for the reinforcement learning algorithm is to derive a policy P to
maximize the sum of reward for all the actions combined:

n

P = Maz() r(t))

t=0

There are two primary strategies that an algorithm needs to apply for reinforcement
learning. Imagine reinforcement learning as navigating through a maze in which we get
positive and negative rewards along the way. We derive the navigation policy with
exploration and trace the path back if the rewards are decreased over multiple actions. This
technique is called exploration with focus on rewards. However, simply following a path of
maximum reward within the limited visibility into the maze, we cannot reach the end state
of finding the optimum path out.

We need to exploit unknown territories at random to venture into new directions. This is
formally termed as exploitation of the search space. A combination of exploration and
exploitation steps leads to the overall goal of reinforcement learning. While the agent
applies exploration and exploitation to meet an overall objective of maximizing the
rewards, there needs to be a consideration for optimum behavior. There are three distinct
modes in which the agent can optimize the search through the solution space within the
visible environment:

e Finite horizon model: At any given point in time the agent cannot have visibility
of the entire search space. The agent breaks the search for maximum reward for
the next m steps:

m

P= Maa:(z r(t))

t=0

[272]

Reinforcement Learning Chapter 10

The agent does not worry about the steps beyond the m" step in future. In this
approach, the agent has a non-stationary policy that may be subject to change
depending on the state of the environment that is encountered. At this point the
agent takes m-step optimal action, which is the best sequence of actions for m
steps in reinforcement. On the next step, the agent optimizes for m-1 steps and so
on to the end of the limited search space.

e Infinite horizon model: The notable difference in this model is that the search
space and the state transitions are considered to be infinite. The model is trained
with long-term reward maximization in mind over the entire search space. The
rewards are discounted in the geometric proportion as per a discount factor
with a value range between 0 and 1:

P= Ma:c(i Bir(t))

e Average reward model: In this case, the agent takes actions based on optimum
value of average reward across action steps. This is a limiting case of the infinite
horizon model and it is considered to be more conservative in terms of digression
to an un-optimized solution in the interim.

When the algorithm follows one of the models, the performance is measured with three
basic criteria:

¢ Slow and eventual convergence to optimal: The agent that initiates the learning
slowly and eventually converges to optimum state with action steps for
maximum reward are less preferred compared to the ones that converge to 90%
optimal behavior quickly.

e Measure of speed of convergence to optimal: Since the state of optimal is
uncertain, the speed of convergence needs to be a relative and subjective measure
and a function of acceptable differential from global optima or near-optimality.
We can also measure level of performance after a given amount of time or action
steps. There is normally a period of time during which mistakes do not occur and
hence the minimum time needs to be carefully selected within the context of the
environment in which the agent is operating. At times, it becomes an
inappropriate measure if the agent operates within the environment for an
elongated amount of time. It is also possible that the agent pays a high penalty
during the overall learning period. A model that converges quickly to the
threshold performance and accuracy can be selected with this measure.

[273]

Reinforcement Learning Chapter 10

Reinforcement learning techniques

With this background in reinforcement learning, in the next few sections we are going to
look at some of the formal techniques for exploration into the search space with the goal of
maximizing the rewards in an optimal way.

Markov decision processes

In order to understand the Markov decision processes (MDPs), let us define two
environment types:

e A deterministic environment: In a deterministic environment, an action taken
within a particular state of the environment determines a certain outcome. For
example, in the game of chess out of all the possible moves at the beginning of the
game, when we move a pawn from e4 to e5, the immediate next step is certain
and does not differ across various games. There is also a level of certainty of
reward in a deterministic environment along with the next possible state(s).

¢ A stochastic environment: In the case of a stochastic environment, there is
always a level of randomness and uncertainty in terms of next state of the
environment based on the agent's action in the previous state.

As you can sense, most of the real-world environments that the agents are going to be part
of when building intelligent systems are going to be stochastic in nature. MDPs provide a
framework that facilitates decision making in a stochastic environment with the overall goal
of the agent being to find a policy to reach the final intended state based on a series of
actions within the context. MDPs deviate from simple planning in the sense that the actions
are determined and adjusted based on the environmental conditions. MDPs provide a
formal quantification model for the decision making process for the agent in the stochastic
environment.

The agent takes a step (action a) from a set of all the available actions at time ¢ within its
current state s. The environment moves to new state s while on the way giving a reward to
the agent R,(s,s'). Due to the stochastic nature of the environment, transition from state s to
a particular state s' cannot be guaranteed with certainty. This transition is possible with a
probability value P,(s,s'). Each action step within state s is independent of previous states
and actions and satisfies Markov property.

[274]

Reinforcement Learning

A stochastic process has the Markov property if the conditional

probability distribution of future states of the process (conditional on both
past and present states) depends only upon the present state, not on the
sequence of events that preceded it. A process with this property is called

a Markov process.

The stochastic nature of the environment with state transitions due to a series of actions can

be visualized as follows:

3

- 01

0. 6
Actions
Reward \,A

| 0

A®

08 \

States

MDP with Stochastic Environment

The MDP has five basic components:

e S: A set of all the possible states of the environment.

e A: A set of all possible actions for the agent.
actions at state s.

[275]

A, represents the set of possible

Reinforcement Learning Chapter 10

¢ P (s,s): Probability that the action a in state s leads to state s'. In the previous
diagram, there is a 0.6 probability that action a, at state s, will transition the
environment state to s,.

* R,(s,s): This represents the reward as a result of action a when the environment
transitions from state s to s' as a result of action a. In the previous diagram, the
agent receives reward of -2 for action a, at state s, and transitioning to state s,.

¢ Y €[0,1]: This represents a discount factor, which is the difference between future
rewards and the current reward for a state transition based on a specific action.

The MDP attempts to find a policy that maximizes the cumulative reward for all the actions
within a finite set of states. The goal can be achieved with the help of a dynamic
programming framework.

Dynamic programming and reinforcement
learning

Within the context of reinforcement learning, the dynamic programming approach deals
with the interactions between a controller or the agent that needs to take actions and the
process within the environment. This interaction takes place with three types of distinct

signals:

e State signal: Describes state of the process
e Action signal: With this, the agent (controller) influences the process

¢ Reward Signal: Provides feedback to the controller based on its most recent
action

The agent moves through the solution space with repetitive iterations of a state-action-
reward-state cycle. A policy defines the overall behavior of the agent. The policy can be
dynamically aligned based on the nature of the environment (deterministic or stochastic).
For dynamic programming, the overall goal for the agent is to figure out an optimal policy
that maximizes the cumulative reward (return) over the course of the agent's existence. We
will consider the return over infinite-horizon, which leads to a stationary optimal policy in
which for a given state the choice of optimal actions will always be the same. While DP and
RL share the same goal over the infinite-horizon, there are some differences between them
in terms of their applications and algorithms. Before we take a deep dive into DP and RL,
here is a quick comparison between them:

[276]

Reinforcement Learning

Chapter 10

Dynamic Programming (DP)

Reinforcement Learning (RL)

Area of application

Automatic control

Artificial Intelligence

Application to problem area

MNon-linear and stochastic optimal
contral prablems

Adaptive optimal contral

Terminologies

Controller / Process

Agent / Environment

Model based

Model free

Algorithm Type

DP and RL apply common iterative strategies such as value iteration, policy iteration, as
well as search policies in order to achieve their optimization goal.

Let us first consider the DP and RL algorithms in the context of a deterministic environment
setting. In this environment, when an action a,is taken by the agent in state s, at time step t,
the state changes to s,,; according to the transition function f: S x A — S so that, s,,, = f(s, a).
At this time, the agent receives a scalar reward signal r,,, according to the reward function p:
SxA - Rso that, r,,, = p(s,, a). The agent chooses further actions as per policy m: S —» A
using a, =« (s). When the transition function £, reward function p, current state s,, and
current action a, are known, the next state s,,; and next reward r,,; can be determined.

Learning in a deterministic environment with policy
iteration

Let us understand the agent's learning process based on the dynamic programming model
in a deterministic environment depicted in the following diagram. Let us imagine an agent
that is learning to play music on a simple keyboard:

r=1

k=0 1 2 3 4 5

[277]

Reinforcement Learning Chapter 10

In this diagram, P represents the keyboard playing agent and K {0,1,2,3,4,5} represents the
keys numbered from 0 to 5. In this simple setup, the agent can move forward and backward
represented by A{-1,1}. Movement to the right side is denoted by a =1 and left side by a =-1.
Assume that the agent gets a reward for playing a specific note and in this case, when it
moves from key number 4 to 5, the reward is 5 and when it moves from key 1 to key 0, the
reward is 1. For all the other transitions, the reward is 0. Assume for simplicity that the keys
0 and 5 are terminal states for the sound note and once the agent reaches there, the agent
cannot leave.

In this case, the transition function can be represented as follows:

f(k,a) =k+a if 1< k<4

fksa) =k 1 porks

The reward function is represented as follows:

- 5 Ifs=4anda=1

p(s,a)= —< 1 Ifs=1landa=-1

~ 0 For other state transitions

With this context, the goal of the agent is to gain the highest cumulative reward based on
the transitions on the keyboard based on any starting position k,. The infinite horizon
reward is formulated as follows:

R(k,) =Y Ark+1) =)+ p(sk, f(zr))
py k=0

[278]

Reinforcement Learning Chapter 10

In this case, 7 € [0,1] is the discount factor that represents the delayed gratitude acceptance
for the agent in regards to the rewards. With this, the cumulative reward is bounded if the
individual action rewards are bounded. The agent only uses feedback from each action step
in order to maximize overall cumulative reward.

The current action step in this case does not provide any indication of the overall reward for
the agent. It is imperative to select the right value for 7, which sets a trade-off between
quality of the solution in maximizing the reward and the convergence rate. In order to
derive an optimal policy for the agent, value functions are used. There are two types of
value functions denoted as Q-functions and V-functions. Q-functions are state-action value
functions and V-functions are state value functions.

The Q-function Q": S x A — R of a policy I’ gives a return when starting from a given state s
and the given action a and following policy P. As a result @°(s,@) = p(s,a) + YR?(f(s,a)).

Here, R”(£(5,4) is the return from the next step f(s,a) The Q-function can also be
represented as a discounted sum of rewards by taking a in s and then following the

policy P.

0

Q"(s,a) = > p(si, ar)

k=0

When (so,a0) = (s,a), ., = F(srs k) for k = 0,and a, = P(st)for k > 1, the first term can be
separated from the cumulative value function.

Q°(5,0) = B(s,0) + 3 *B(st, ax)

k=1

=P(s,a) + v i VP (s, P(si))
k=1

= P(s,a) +YR?(f(s,a))

[279]

Reinforcement Learning Chapter 10

The optimal Q-function is the one that gives maximum Q-value over various transitions of
the agent to the search space.

Q*(s,a) = maz,Q"(s,a)

The V-function V": S — R of a policy p is obtained by starting from a particular key and
following p. This V-function can be derived from the Q-function of policy p:

VP(s) = RP(s) = Q(s, p(s)), Again, the optimal V-function is the one that gives maximum
V-value over various transitions and can be computed from optimum Q-function.

When learning in a stochastic environment, the agent cannot move to a state s+1 with a
certainty when it takes action a+1. In that case, the Q-value and V-value are obtained as a
probability of the transition that is learned by the agent over multiple iterations through the
search space.

In the next section, we will explore one of the popular model-free Q-learning algorithms.

Q-Learning

Q-learning is a model-free learning algorithm that is useful in situations when the agent
knows all the possible states and the actions, which leads to these states within the search
space. Q-learning is able to choose between immediate reward and the long-term reward,
which enables optimization for reaching the goal of maximizing rewards accumulated over
the set of actions.

Let us explain this with a simple example. Consider a maze with six locations (Le
{0,1,2,3,4,5}) within it and when the agent comes to location number 5, it finds treasure (the
end state or the agent's goal). The maze has the following structure. The bi-directional
arrows indicate possible state transitions and the numbers indicate the reward:

[280]

Reinforcement Learning Chapter 10

Current Location |Possibe Location(s) [Reward
0 4 0
1|3,5 0,100
2 3 0
3|4 0
4(3,5 0,100
5|1,4,5 0,0,100

The state transitions are represented in a standardized manner in Q-learning as a matrix
where the rows indicate state and the columns indicate actions. -1 indicates that the action a
is not possible or blocked in a specific state, 100 indicates the reward of 100 points for a state
transition. For all the other transitions the reward is 0.

Action
State 0O 1 2 3 4 5
) [-1 -1 -1 -1 0 -1
-1 -1 -1 0 -1 100
-1 -1 -1 0 -1 -1
-1 0 0 -1 0 -1
0 -1-1 0 -1100
-1 0 -1 -1 0100

f)

BwWr =

Lh

The agent now needs to build a Q matrix that stores all the learning that the agent does with
a series of actions and corresponding state transitions. In the Q matrix also, the rows
represent current state and the columns represent possible actions that lead to the next
stage. The initial state of the Q matrix is when the agent does not know anything about the
environment and hence the matrix contains all zero values. In our example, let us assume
that the agent is aware that there are six possible states of the environment. However, in
real scenarios, the agent will not have knowledge of all the states and needs to explore the
search space. In that case, the Q learning algorithm adds columns to the Q matrix as a new
state is encountered. The transition rule for Q learning is represented as

Q('S’a’) = R(S’a) oy * Max[Q(s + 1aa0,n)],

[281]

Reinforcement Learning Chapter 10

A value assigned within the Q matrix represents a sum of corresponding values in R matrix
and learning parameter ¥ multiplied by maximum value of Q for all possible actions in the
next state. As the agent transitions from start position to the goal state, it updates the Q
matrix and this transition is called one episode. With this context, the Q learning algorithm
is represented as follows:

Start

‘ Select y parameter ‘

l l

‘ Initialize R(reward) matrix ‘ ‘ Get maximum Q value
‘ Initialize Q matrix to zero ‘ Compute Q value
l Q(s,a) = R(s,a) +y * Max[Q (next state), all actions]

‘ Select random initial state ‘

‘ Set next state as current state ‘

Select one of the possible
actions in the state

|
Transition to the next state }— state?

With this algorithm, the agent's memory is enriched with each episode and it stores more
information about the state transition rewards. When trained over a reasonable number
of episodes, the agent can quickly derive the optimal path through the search space.

The 7 parameter ranges between 0 and 1. When this parameter is closer to zero, the agent
prioritizes the rewards during initial episodes. When 7 is closer to 1, the agent considers
future rewards with greater weights willing to delay the reward in the interest of
cumulative gain.

[282]

Reinforcement Learning

Chapter 10

Let us use the algorithm for a couple of episodes based on the maze example we have seen
previously. Here is the initial state of Reward matrix R and Q-matrix Q:

State 0 1 2

0 [-1 -1 -1
1 |-1-1-1
R= 2 |-1 -1 -1
3 -1 0 0
410 -1 -1
5 -1 0 -1

Action

345
-1 0 -1 0
0 -1 100 1
0-1 -1 Q=2
-1 0 -1 3
0 -1 100 4
-1 0 100 5

[=N-NeNeNe N Y

1
0
0
0
0

0
0

[=N ool NeBN

Initial State for the Reward and Q matrix

QOO OO0 W

(=N No N
SO0 OO O W

Let us consider that the agent's initial state is 1 and we use an arbitrary value of ¥ as 0.8. As
we know, from state 1, the possible states to which the agent can go are 3 and 5 and at this
point let us consider that the agent randomly goes to state 5. In stage 5, the agent has three

possible state choices: 1, 4, and 5. Let us apply the Q learning equation:

Q(s,a) = R(s,a) +v* Maz[Q(s + 1,a0,)]

Q(1,5) = R(1,5) + 0.8 * Max[Q(5,1), Q(5,4), Q(5,5)]

=100 + 0.8 * Max[0,0,0]

=100+ 0.8 * 0 (Remember the Q matrix is initialized to a zero)

=100

Since 5 is the goal state, we have finished one episode with a new version of the Q matrix as

follows:

N
O
[l
A W= O

o

3

0
0
0
0
0
0

o

‘ococococoo ©

coococo —
cCocoo0Co0O0OC W
cocococooo &

Q matrix after episode 1

coo o 3o

[283]

Reinforcement Learning Chapter 10

For the next episode, the agent gets into the initial state of 3. Refer to the R matrix, at stage
3, there are three possible actions: 1, 2, and 4. The agent decides to take action 1, which
lands it into state 1. Now imagine that the agent is in state 1. At this point the agent can go
to states 3 and 5. Let us compute the Q value for this route:

Q(s,a) = R(s,a) +v* Maz[Q(s + 1,a0,)]
Q(3,1)=R(3,1) + 0.8 * Max[Q(1,3), Q(1,5)]
=0+ 0.8 * Max[0,100]
=0+ 0.8 *100
=80

At this point, the agent is in state 1, which is not the terminal or goal state and hence the
loop iterates to the goal state (5 in this case). Let us assume that the agent randomly goes to
state 5 from state 1, which is the goal state and hence episode 2 is concluded. The following
is the Q matrix at the end of episode 2:

3 4
0 400
320 0 3
320 0
0 400
0 320 0
400 0 0 400

O O O 9
N
S

25

=
NG
[l
W = O
(=N =Nl NNl
S OO OO O I
SO OO O W
S oo oo o
OO0 OO O W
(('\
N
[l
B W = O
[=)}

wy
S 3
SSocoodSo n

o
n

0

Q matrix after episode 1 Q matrix after convergence

The matrix can be scaled by dividing all the non-zero numbers with the maximum number
and multiplying by 100. With normalization, the final converged Q matrix is as follows:

0 1 2 3 4 5

0 0 0 0 0 80 0

A 1 0 0 0 64 0 100
=210 0 0 & 0 0
3 0 80 51 0 80 0
4164 0 0 64 0 100

5 0 80 0 0 80 100

Normalized Q matrix

[284]

Reinforcement Learning Chapter 10

Once the converged and normalized Q matrix is obtained, the agent has memorized and
learned the optimal actions for state transitions in order to reach the goal state (5 in this
case). The state transition diagram with Q matrix values is as follows:

Once this transition matrix is defined, the agent can navigate through the search space in an
optimal way by choosing an action at each step with maximum Q value, as indicated by the
dotted arrow in the previous diagram.

Here is a code snippet that implements the Q-learning algorithm with the same example
that we have seen previously:

package com.aibd.rl;
import java.util.Random;

public class QLearner {

private static final int STATE_COUNT = 6;

private static final double GAMMA = 0.8;

private static final int MAX_ITERATIONS = 10;

private static final int INITIAL_STATES[] = new int[] {1, 3, 5, 2,

4, 0};

// initialize the R matrix with the state transition combinations
private static final int R[][] =
new int(][] {{-1, -1, -1, -1, 0O, -1},
{-1, -1, -1, 0, -1, 100},
{-1, -1, -1, 0, -1, -1},
{-1, 0, 0, -1, 0, -1},
{0, -1, -1, 0, -1, 100},
{-1, 0, -1, -1, 0, 100}};

[285]

Reinforcement Learning Chapter 10

private static int g[][] = new int [STATE_COUNT] [STATE_COUNT];
private static int currentState = 0;
public static void main(String[] args) {
train();
test ();
return;
}
private static void train() {

// initialize the Q matrix to zero values
initialize();

// Perform training, starting at all initial states.
for(int j = 0; j < MAX_ITERATIONS; Jj++){
for(int i = 0; i < STATE_COUNT; i++) {
episode (INITIAL_STATES[i]);

}
System.out.println("Q Matrix:");
for(int i = 0; i < STATE_COUNT; i++) {
for(int j = 0; j < STATE_COUNT; Jj++){
System.out.print (g[i][3j] + ", \t");
}
System.out.print ("\n");
}
System.out.print ("\n");
return;
}
private static void test () {
// Perform tests, starting at all initial states.
System.out.println ("Shortest routes from initial states:");
for(int i = 0; i < STATE_COUNT; i++) {
currentState INITIAL_STATES[i];
int newState 0;
do {
newState = maximum(currentState, true);
System.out.print (currentState + " ——> ");
currentState = newState;
}while (currentState < 5);
System.out.print ("5\n");

}
return;
}
private static void episode(final int initialState) {
currentState = initialState;
do |
chooseAnAction () ;
}while (currentState == 5);

[286]

Reinforcement Learning Chapter 10

for(int 1 = 0; i < STATE_COUNT; i++){
chooseAnAction () ;

}
return;

}

private static void chooseAnAction() {
int possibleAction = 0;

// Randomly choose a possible action connected to the current
state.
possibleAction = getRandomAction (STATE_COUNT) ;

if (R[currentState] [possibleAction] >= 0) {
glcurrentState] [possibleAction] = reward(possibleAction);
currentState = possibleAction;
}
return;
}
private static int getRandomAction(final int upperBound) {
int action = 0;
boolean choiceIsValid = false;

// Randomly choose a possible action connected to the current
state.
while (choicelIsValid == false) {
// Get a random value between 0 (inclusive) and 6 (exclusive) .
action = new Random () .nextInt (upperBound) ;
if (R[currentState] [action] > -1){
choiceIsValid = true;

}
}
return action;
}
private static void initialize() {
for(int i1 = 0; i < STATE_COUNT; i++)
{
for(int j = 0; j < STATE_COUNT; Jj++)
{
ali]l [j] = 0;
Yy /73
Yy /701
return;
}

private static int maximum(final int State, final boolean
ReturnIndexOnly) {
// If ReturnIndexOnly True, the Q matrix index is returned.
// If ReturnIndexOnly = False, the Q matrix value is returned.

[287]

Reinforcement Learning Chapter 10

int winner = 0;
boolean foundNewWinner = false;
boolean done = false;

while (!done) {
foundNewWinner = false;
for(int i = 0; i < STATE_COUNT; i++)

{
!= winner){ // Avoid self-comparison.
if(glState] [1i] > gl[State] [winner]) {
winner = i;
foundNewWinner = true;

if (i

}
}
if (foundNewWinner == false){
done = true;
}
}
if (ReturnIndexOnly == true){
return winner;

telse{
return g[State] [winner];

}

private static int reward(final int Action) {

return (int) (R[currentState] [Action] + (GAMMA * maximum (Action,

false)));
}

[2881]

Reinforcement Learning Chapter 10

This program produces the following output:

atri
, 0, 0, 0, 3%, O,

, 0, 0, 316, 0, 49¢,

, 0, 0, 316, 0, O,

, 396, 252, 0, 396, O,
16, 0, 0, 316, 0, 496,
, 396, 0, 0, 396, 49¢,

Shortest routes from initial states:

1 -——> 5

3 —>1 ——> 5

5 —>5

2 ——> 3 ——> 1 —--> 5
4 ——> 5

0 —> 4 ——> 5

As we have seen, Q-learning is a method for optimizing discounted rewards, generally
making the future rewards less prioritized compared to near-term rewards. In the next
section, we will look at a variation of Q-learning algorithms called SARSA learning,.

SARSA learning

State-Action-Reward-State-Action (SARSA) is an on-policy algorithm where the same

policy that generated previous actions can generate the next action. This is unlike the Q-
learning where the algorithm is off-policy and only considers current state and rewards
along with available next actions without any consideration to the ongoing policy.

At each step within SARSA, the agent's action is evaluated and improved by improving Q-
function estimates. The Q-value is updated as a result of the error and adjusted by a factor
of learning rate termed as &. In this case, the Q-values represent potential reward from the
next state transition as a result of action a,+1 in state s plus the discounted (7) future reward
received from the next state-action observation. The algorithm can be mathematically
represented as follows:

Q(s, a) « Q(s, a) +a [r, + yQ(S,., a.4) - Qs,a)]

[289]

Reinforcement Learning Chapter 10

The first deviation from Q-learning is that in the case of SARSA learning, the agent is
learning action-value functions rather than state-value functions. The agent needs to
estimate Q° (s,a) for the current alignment with policy IP for all the states s and actions a. The
agent needs to consider the transitions from one state-action pair to another state-action pair
and learn the value of state-action pairs. The updates are done after transition from s, where
it is a non-terminal state. If s,,, is the terminal state, then Q(s,,,, a,,,) is defined as 0. SARSA
utilizes all the elements in decision making (st, at, rt+1, st+1, at+1) on transition from one
state to the next. Similar to Q-learning, SARSA is also an iterative algorithm that can be
represented as follows:

Start

v

Initialize Q(s,a) arbitrarily

Q(sy a) € Qlsy ay) + o [r + vQ(Ssp.q, apg) - Qspay)]

Initialize s l

Apply SARSA
algorithm

Choose a from s using
policy derived from Q

s<-s’anda<-a’

Take action a, observe r
and s’

e)
Choose a’ and s’ using

policy derived from Q

Another method that is less popularly used in reinforcement learning is R-learning, which
tries to optimize average rewards for the agent. It considers future and near-term rewards
equally in deciding the optimal policy.

[290]

Reinforcement Learning Chapter 10

Deep reinforcement learning

In order for the reinforcement learning algorithm to be deployed in real-world use cases
and scenarios, we need to leverage the power of deep neural networks, which can infer the
information from the environments in a human-like manner. One of the goals of Al is to
augment human capabilities by creating autonomous agents that interact with the
environment in which they operate, learn optimal behaviors that improve over time, and
learn from mistakes.

For example, the signals from the video camera can be interpreted using a deep neural
network. Once this signal is interpreted, the objects and patterns observed by the camera
can be analyzed with the help of a deep neural network, as we have seen in the chapters on
artificial neural networks (ANNSs). These deep neural networks can then be used for
application of reinforcement learning algorithms for creating a navigation system that
learns over a period of time based on the training feeds.

Fundamentally, a combination of deep neural networks and reinforcement learning
algorithms are poised to achieve near-human performance with object detection, self-
driving cars, video games, natural language processing, and so on. In this section, we will
review various approaches and techniques for DRL.

As we know, the deep neural networks (DNNs) can deduce low dimensional
representations of the high dimensional datasets such as audio/video signals. On the other
hand, the reinforcement learning model reduces dependence on training data and relies on
the reward/punishment paradigm for the agent to navigate through the stochastic
environments and improve over a period of time. Deep learning enables the reinforcement
learning to a new level towards near-human performance and for some of the activities that
require brute-force the autonomous agent is able to outperform human capabilities.

While a lot of pioneering work is done with use of DRLs, the initial breakthrough was
achieved with training the algorithm to master the Atari 2600 video games and achieve
superhuman level of expertise just by feeding the pixel data. The agent was trained purely
based on the reward signal in conjunction with the pixel map that represented the stochastic
environment. Another prominent success was with the intelligent agent, AlphaGo, which
beat the Go world champion based on the use of neural networks that were trained using a
combination of supervised and reinforcement learning along with a self-learning algorithm.

[291]

Reinforcement Learning Chapter 10

DRLs are found to be useful in the area of robotics where the video signal is interpreted
with an ANN that activates the controllers that perform mission critical tasks such as
operating CNC machines as well as attempt to do surgeries. The push is towards making
the agents that can meta-learn, meaning learning to learn. This is also possible with DRLs. It
is imperative that the DRL agents will evolve to fully complement human capabilities in the
near future. The DRLs have been successful due to the ability to extrapolate low
dimensional learning techniques to high-dimensional, unstructured datasets.

The neural networks are good at approximation and learning based on the high-
dimensional data. With this, the DRLs can deal with the curse of dimensionality and train
models for various stochastic environments in high dimension space. The convolution
neural networks (CNNs) can be used as building blocks for the DRLs, which enables
learning directly from the real-life raw data assets that are high dimensional in nature. The
DRLs enable training a deep neural network to come up with optimal policy through state
transitions along with optimal value functions, V, Q, and A. While the possibilities with a
combination of neural networks and reinforcement learning are enormous, we will evaluate
the application of deep neural networks as function approximators in policy search
methods within DRL. One of the most popular algorithms is deep Q-network (DQN).

Frequently asked questions

Q: What is the difference between supervised learning and reinforcement learning?

A: In the case of supervised learning algorithms, the model is trained based on historical
data which describes the trend for the data historically and establishes a correlation
between the event data and resultant output. In that case, the supervised learning model is
a curve fitting exercise that maps the data points (independent variables) to a set of output
variables (dependent variables). Availability of the historical data is essential for supervised
learning. In case of reinforcement learning, the agent is modeled based on the rewards it
receives based on the action(s) it takes within the context of the environment in which it is
operating. There is no historical data available to the agent to train itself. However, a hybrid
approach often works great where the agent is aware of the historical trends as well as
applies exploration and exploitation strategies in order to maximize the reward as it
transitions through the search space towards its goal.

[292]

Reinforcement Learning Chapter 10

Q: What are the basic components of Reinforcement Learning ?

A: The Reinforcement Learning happens within the context of an environment. The
environment defines all the external factors that impact the performance of an agent, which
is the second component of RL. The agent transitions through the solution space within
multiple states with a goal to achieve the terminal state and maximizing the reward on the
way. Every action the agent performs generates a reward or punishment and a makes a
corresponding change in the environment state.

Q: What are the types of environment that an intelligent agent encounters?

A: An intelligent agent encounters a deterministic or a stochastic environment. The
deterministic environment has a level of certainty based on the environment stater and the
latest action by the agent. In this type of environment, an action g, at time step t when the
environment is in state s, results in a deterministic state and reward. However, in case of a
stochastic environment, there is a level of uncertainty in terms of state of environment as
well as reward for the same action within the same environment state.

Summary

In this chapter, we have explored one of the most important machine learning techniques,
RL. We understood the difference between RL and supervised learning. Learning based on
behavioral reinforcement for the agent is extremely critical in modeling the intelligent
machines that will bridge the gap between human capabilities and the intelligent machines.
We have seen the basic concepts of the RL algorithm along with the participating
components. We have also tried to establish mathematical equations for a generic RL
algorithm where the overall goal is to maximize cumulative rewards for the agent as it
transitions through various states with every action.

We have briefly tried to understand the MDPs in a deterministic and stochastic
environment. We also explored dynamic programming concepts in brief along with Q-
learning and SARSA learning algorithms. In the end, we briefly discussed deep
reinforcement learning DRL as a combination of deep neural networks and the
reinforcement learning paradigm. The use cases that can be derived are enormous and with
this chapter we have established a foundation to explore our creativity.

In the next chapter, we are going to explore one of the most important aspects of data
management, security. Cyber security is extremely critical with growing volumes of data.
We will explore the basic concepts of infrastructure protection along with some of the
frameworks available for Stream processing and real-time threat detection.

[293]

11

Cyber Security

During the course of this book, we have established one thing. In order to realize AI, we
need access to large volumes of data. Data plays a central role in building capabilities for
intelligent machines which complement and augment human capabilities. The applications
we develop based on machine learning architectures and algorithms are only as good as the
underlying data. As our dependence on data increases and we start seeing data as an asset
for mission-critical systems such as medical equipment, aviation, banking systems, and so
on, maintaining the integrity of the data assets is one of the most important priorities and
key ingredients for successful widespread adoption of Al-based systems. Protection of
critical infrastructure from data breaches is generally known as cyber security.

In this chapter, we are going to see how we can leverage various data governance
frameworks to protect the critical data assets and utilize our understanding of Big Data
management and machine learning frameworks to keep our most important asset (data)
secure. We will cover the following topics in this chapter:

¢ How we can leverage Big Data to protect critical infrastructure
¢ General concepts of stream processing

Security information and event management

Web server access log file structure and strategies to utilize it for cyber security

Splunk as an enterprise application for implementing cyber security

ArcSight as an enterprise security management platform

Cyber Security Chapter 11

Big Data for critical infrastructure protection

Critical infrastructure (CI) is a term used by enterprises and government agencies to define
the assets and working models that need to function at their optimal level in order for a
seamless and harmonious experience for the stakeholders who directly or indirectly benefit
from or are impacted by these systems. Examples include the power grid, water supply,
transportation, law enforcement, and many such systems that need to work seamlessly
around the clock. Over the last few decades, most of the CI has become digitized and is
generating more and more data from heterogeneous sources. These additional data assets
result in continuous improvement and elimination of the need for human intervention and
thereby reduce error.

The data generated by these systems is used as an asset for descriptive and predictive
analytics in order to schedule preventive maintenance and prevent failures. With a data-
driven approach for core functioning of the CI, we have seen tremendous improvements in
efficiency and overall reliability of the CI. However, there are enormous incidents in which
attackers with malicious intentions to disrupt the CI have been successful in breaching into
the CI and creating disruption. For example, Stuxnet, which was found in 2010, targeted
SCADA (Supervisory Control and Data Acquisition) systems and caused damage to fuel
enrichment plans in Iran by interfacing with the Programmable Logic Controllers (PLCs).
There are many such incidents and attempts which disturb CI and cause perpetual damage.

One of the most important aspects of preventing cyber security attacks on the Cl is the
availability of data from the CI which is generated in a working environment. This data
needs to be available for analysis and potential actions as close to the event time as possible.
Along with the data from core CI components, the data from other heterogeneous systems
which are indirectly linked to the CI needs to be utilized for building a robust defense
mechanism against cyber attacks. That means we need data volume, velocity, and variety
in order to effectively protect the CI. These three Vs along with value as fourth V which is
derived from the data together constitute Big Data. In other words, Big Data is a critical
asset for effective strategies against cyber attacks. We require a constantly evolving, data-
driven framework and processes for protection of CI, leveraging Big Data analytics for
effective security monitoring and protection.

[295]

Cyber Security Chapter 11

This data-driven framework has three main components, as depicted in the following
diagram:

Corrective
Data .
) Anomalies and

Collection . .

. Detection Preventive
and Analysis .
Action
Figure 11.1 Components of a data-driven framework for critical infrastructure protection

Data collection and analysis

The core systems that constitute Cls generate data assets in the form of event logs. The data
collection component needs to gather these logs from all the components (software and
hardware). Apart from the core systems, the process should also gather data from the
contextual environment of the CI systems. The heterogeneous logs help with holistic
analysis and more accurate and timeline resolution. Along with the running logs, the
system should also have the ability to store and access the historical data for the CI systems.

The historical data provides insights based on pattern similarity with past events. If the past
mitigations have resulted in quick correction and resolution of the critical event, then
supervised learning can be deployed in order to take similar actions based on experience.
Historical data also greatly helps in preventing future attacks based on similar system
vulnerabilities.

[2961]

Cyber Security Chapter 11

The data (log) generated by the CI components and related environmental context can be
categorized into three types:

e Structured data: In the case of structured format, the individual elements
(attributes) of an entity are represented in a predefined and consistent manner
across time periods. For example, the logs generated by the web servers (HTTP
log) represent fields such as the IP address, the time the server finished
processing the request, the HTTP method, status code, and so on. All these
attributes of a web request are represented consistently across requests. The
structured data is relatively easy to process and does not require complex parsing
and pre-processing before it is available for analysis. With structured data,
processing is fast and efficient.

¢ Unstructured data: This is a free-flowing application log format that does not
follow any predefined structural rules. These logs are typically generated by the
applications and are meant to be consumed by someone who is troubleshooting
the issues. The intention is to log the events without an explicit goal of making
the logs machine readable. These logs require extensive preprocessing, parsing,
and some form of natural language processing before those are available for
analysis.

¢ Semi-structured data: This is a combination of structured and unstructured data
where some of the attributes within structured format are represented in an
unstructured manner. The information is organized into fields which can be
easily parsed but the individual fields need additional preprocessing before being
used in analysis.

Anomaly detection

As we start gathering data from heterogeneous systems, there is a pattern that is established
in terms of data volume, structure, information content, and velocity of the data. This
pattern remains consistent during standard operating conditions and there can be expected
surges or changes in the patterns. For example, an online retailer can expect more orders
during the holiday season and this event does not count as an anomaly. When there is an
unanticipated change in the regular pattern of data in terms of volume, velocity, and
variety, the anomaly detection component triggers an alert and notification. One of the
important characteristics of a greatly evolved and reliable anomaly detection component is
that it is able to generate the alert as soon as the event occurs, with minimum lag between
event time and the alert/notification time.

[297]

Cyber Security Chapter 11

The following diagram depicts the ideal, reliable, and unreliable anomaly detection
components based on the time difference between the event and alert time:

Unreliable Anomaly
detection component

\ Reliable Anomaly
detection component

\ Ideal scenario

— Alert / Notification Time ——

Anomalous Event Time ———>

Figure 11.2 Anomaly detection reliability based on Event Time and Alert/Notification Time

Corrective and preventive actions

When the suspicious activity is detected by the anomaly detection component, there are two
ways to respond. In the first case, the alert/notification requires manual intervention in
order to trigger the corrective action. In the second case, the system itself takes some
corrective action based on the context and the acceptable threshold of the error margin.

For example, if a hack into the thermostat circuitry starts increasing the temperature of the
cold storage in an unanticipated manner, the system can switch the control to an alternate
thermostat and ensure that the temperature is back to normal and maintained at normal
levels. This component can use supervised learning as well as reinforcement learning
algorithms for triggering the corrective actions on their own based on historical data or the
reward function. When the correction is applied and the CI state is restored to normal, the
system needs to analyze the root cause and train itself to take preventive actions
(application of a patch, changes to the security model, implementing new access controls,
and so on).

[298]

Cyber Security Chapter 11

Conceptual Data Flow

In typical Big Data environments, a layered architecture is implemented. Layers within the
data processing pipeline help in decoupling various stages through which the data passes
to protect the critical infrastructure. The data flows through ingestion, storage, processing,
and an actionize cycle, which is depicted in the following figure along with popular
frameworks used for implementing the workflow:

Data Collection and Analysis Anomalies Detection Correctlve and Preventive Actlon]

Actions
Ingestion Storage Processing based on
|n5|ghts

4 Sou rces / Acqulsmon /
|= hadtamp

o8 | |4 |
Structured g \ ’
Distributed IVE Action
File System
) API
XML
[*H]) o >
Semi . E> No £ Spoff'{‘ §€ Kafk ArcSight
Sterrl-tured E Streaming arka ESM
D A T A E A S ES m
~
SQL o
c
=N £ 5 storm
A = s
= Dashboard
Un- an
K structured y. K / \\ /

Figure 11.3 Conceptual Data Flow along with popular frameworks for implementing Cyber Security

Most of the components used in this figure are open source and a result of collaborative
efforts from a large community. A detailed discussion of all these components is out of the

scope of this chapter. However, let us understand these components at a high level within
the context of cyber security.

[299]

Cyber Security Chapter 11

Components overview

For successful implementation of CI protection strategy, it is imperative to collect data from
heterogeneous sources beyond the obvious sources like server logs. As more data sources
are identified and integrated, the storage requirement increases. Considering the volume
and velocity of data, it is not possible to accommodate the data using traditional file
systems. Instead, the modern architectures utilizes distributed file systems.

Hadoop Distributed File System

The Hadoop Distributed File System (HDEFS) is one of the most popular implementations
of a distributed file system. It is at the core of Hadoop which is a distributed computing
platform. HDFS was designed and has evolved with the following goals in mind, which
complement the storage requirements for the protection of the CI:

e Hardware failure: HDFS replicates each file block on three (default) nodes. The
core idea of using distributed computing is to be able to leverage commodity
hardware and hence the cluster consists of a large number of relatively small-size
nodes. With large numbers of nodes, the probability of failure of a node increases.
Detection and recovery from these hardware failures without any data loss is one
of the primary goals of HDFS. The CI protection systems also needs the same
level of reliability and fault tolerance in order to detect cyber security threats.

¢ Large datasets: The applications that utilize HDFS as underlying data stores are
assumed to be dealing with large datasets in the range of multiple gigabytes to
terabytes and more. HDFS is inherently built to support large data files. CI
protection systems also generate and deal with large data volumes. A good
example is the central governing authority of a country which monitors the
internet backbone of the country and deals with hundreds of gigabytes of data
per second.

¢ Simple Coherency Model: The CI applications generate log files which need to
be written once and read multiple times. The coherence model is also one of the
primary design goals of HDFS. A file, once created and written, does not need to
be changed with this model. This goal also complements the cyber security
applications.

¢ Portability across heterogeneous hardware and software platforms: HDFS is
easy to port across various platforms. This goal also complements the core
requirement of the cyber security systems. The cyber security systems are
deployed on a variety of different platforms and the portability of HDFS as an
underlying file system can be an added advantage.

[300]

Cyber Security Chapter 11

NoSQL databases

NoSQL (Not only SQL) is a paradigm in which the data is stored in the form of entities
instead of the typical RDBMS type tabular relational format. One of the primary goals for
NoSQL databases is horizontal scaling and high availability. Based on the underlying data
structure of the NoSQL databases, they are categorized into:

¢ Document databases: Each key in the database is mapped to a document. A
document can be a binary file or a nested structure like XML or JSON. The
examples of document databases are MongoDB, CouchDB, Couchbase, and so
on.

e Graph databases: These are useful with the data which is in the form of
connected graphs like social media connections. The examples of graph databases
are Neo4j, OrientDB, Apache Giraph, and so on.

¢ Columnar databases: These databases represent the data by storing column data
together instead of rows. They are optimized for distributed storage and fast
query access over very large databases. The examples of columnar databases are
Cassandra, HBase, and so on.

The NoSQL databases can be effectively used in implementations of cyber security
applications since they can easily handle large volumes of structures and semi-structured
and unstructured data which is gathered from heterogeneous sources surrounding the CI.
The NoSQL databases also support geographically distributed architecture which can be
scaled out on demand without impacting the already persisted data. This feature is handy
in case of incremental growth in Cl infrastructure, such as the telecommunication services
in the remote areas which are incrementally built.

MapReduce

MapReduce (MR) is a programming paradigm at the core of Hadoop. It can scale the
processing of data to massively high volumes. The data and processing can be distributed
to hundreds and thousands of nodes for horizontal scalability. As the name suggests, the
MR jobs contain two phases:

e The map phase
¢ The reduce phase

[301]

Cyber Security Chapter 11

In the map phase, the dataset is divided into chunks and sent to an independent process to
gather the result. These parallel mapper processes work independently on various available
nodes in the cluster. Once their processing is completed (map task), the results are shuffled
and sorted before initiating the reduce tasks. The reduce tasks once again run
independently on the available nodes and the entire computation is completed as a whole.
The intermediate results are stored on the file system (HDFS) and involve IO operations.
Due to these 10 operations, the MR paradigm is suitable for batch-oriented workloads
where very large volumes of datasets are to be processed. In the context of cyber security,
the MR framework can be used for processing the historical data originating from the CI
and the surrounding application and environmental context. The data can be aggregated for
reporting and can be used as the training data for supervised learning-based cyber security
implementation.

Apache Pig

HDEFS and MR are storage and compute engines at the core of Hadoop. The raw
implementation of parallel processing applications is complex and error prone. Apache Pig
provides a wrapper around the parallel processing jobs on Hadoop. Pig makes it easy to
process large datasets by providing a simple programming interface and API. The tasks and
actions written with Pig are inherently parallelized on the underlying Hadoop cluster. In
the context of cyber security, Pig can be used for the implementation of complex parallel
data aggregation and anomaly detection tasks along with preparation of the training data
for supervised learning in case the CI protection application is leveraging machine learning
algorithms.

Hive

Apache Hive is the data warehouse built on top of Hadoop. Hive provides an SQL-like
interface for the data residing on HDFS. The queries are executed as MR, Tez, or Spark jobs
on the Hadoop cluster. Hive supports indexing for fast queries along with compressed

storage types like ORC. In the context of cyber security, Hive can be used for storing the
aggregate views of various logs which are generated by the CI applications.

While the batch processing frameworks like MR on Hadoop are useful in processing very
large volumes of data in an efficient manner, they are not suitable for providing security to
mission Cls. Such CI systems require real-time (at least near real-time) processing of the
streaming or micro-batch data for quick alerts, notifications, and timely actions. Stream
processing architecture requires more focus in the context of cyber security and protection
of ClIs.

[302]

Cyber Security Chapter 11

Understanding stream processing

The software applications that are deployed in the enterprise have two basic components:

e The infrastructure
¢ The applications

The infrastructure includes the physical hardware and the network that connects different
systems together. The security implementation for infrastructure and applications have
different considerations due to which the frameworks and processes for protecting the CI
are also different.

The security systems need to operate across the peripheries of the infrastructure and within
the applications. There are various events through which the data (network and
application) flows. The events take place at a point in time and the corresponding data is
available for analysis and action immediately after the event occurs.

For example, a client application such as a web browser requests access to a website over
the HTTP protocol. The sequence of events are initiated right after the URL is entered
through the browser. The related analysis based on the request needs to happen as close to
the event time as possible in order to protect the web application from malicious attacks.
The capability to process the data as a stream for detection of anomalies is a key
consideration for an effective cyber security implementation. The key considerations for
stream processing are unbounded data, unbounded data processing and low latency-based
analysis:

¢ Unbounded data: This term refers to virtually unlimited datasets. For example,
the network packets which flow from one physical system to another. These
packets contain information that keeps generating as a continuous stream.

e Unbounded data processing: The processing needs to happen while the data is in
motion. The network packets or the application data needs to be accessed and
processed as they are getting generated, unlike a batch processing engine where
the data lands into persistent storage before getting processed.

¢ Low latency analysis: The analysis based on the unbounded data needs to
happen as close to event time as possible in the case of streaming use cases. Cyber
security is a critical use case which requires low latency analysis and actions for it
to be effective. As we have seen in figure 11.2, anomaly detection is reliable when
the event time and alert/notification time is separated by a minimum skew. This
differential is variable and depends on multiple conditions such as network
congestion, latency introduced to processing overhead in a distributed
environment, and so on.

[303]

Cyber Security Chapter 11

Stream processing semantics

As the events are triggered in a system, there are messages (data packets) which are
generated at source and processed within the processing engines. There are three distinct
semantics for the stream processing systems, at least once, at most once, and exactly once:

¢ At least once: In this case, the message may be sent by the source more than once.
However, the processing engine needs to guarantee that one message is
processed at least once out of multiple transmissions of the same message. It is
possible that the message is processed more than once and may be acceptable in
certain use cases. The end application may need to run a de-duplication check on
the semantics.

e At most once: The stream processing application guarantees that the message is
processed only once. Even if there are multiple transmissions of the same
message, the processing engine needs to guarantee that the message is not
processed more than once. It may happen in this case that a particular package is
not processed at all but it cannot be processed more than once. This semantic is
critical in the applications where the end result of the transaction leads itself into
an inconsistent state if the message is processed more than once. For example, a
banking transaction with a fund transfer needs to strictly follow at most once
semantic.

¢ Exactly once: Even if the source system delivers the message more than once, it is
consumed and processed exactly once. This is the most ideal semantic for the
cyber security systems. A critical message processed only once guarantees timely
and right action which can prevent potential attacks on the network and
application infrastructure. However, this semantic of exactly once is the most
difficult to implement since it requires close collaboration between the source and
the target systems. Strong consistency is a primary requirement for the exactly
once semantic.

The exactly once semantic of streaming data processing is supported by some of the open
source frameworks such as Spark Streaming, Apache Kafka, and Apache Storm. Let us
understand these frameworks at a high level before looking at the high-level architecture of
the cyber security system that leverages these frameworks.

[304]

Cyber Security Chapter 11

Spark Streaming

Spark is a general purpose, in-memory, distributed computation engine. The Spark
Streaming API is an extension of the core Spark library which was designed with scalability,
high throughput, and fault tolerance for streaming (unbounded) data goals in mind. Spark
Streaming integrates with a variety of data sources such as TCP network sockets, HTTP
server logs, kafka producers, social media streams, and so on.

The streams and complex events are processed with generic operations such as MapReduce,
join, and windowing. The data in motion can be analysed, aggregated, filtered, and sent to
downstream applications, persistent storage, or live dashboards. Machine learning and
graph processing algorithms and APIs can be applied to the unbounded data with Spark
Streaming. Spark Streaming breaks down the streaming data into batches based on time-
based windowing.

The stream is chunked at specific (predefined and configurable) time intervals and
processed as discretized stream as a low-level abstraction of a processing unit. This is called
a DStream. DStreams can be created from the input streaming data (network or application
logs) or can be consumed from the streaming systems such as Flume, Storm, or Kafka. The
Spark Streaming pipeline can be seen conceptually as follows:

Batches of Batches of
Input Data Processed Data
Spark

LI

Streaming Sources
Network Sockets,
Application Logs,
Social Media feeds

Engine

DStreams }-\

25

~ V8

\\Sggzz’s tin,
T

Yindy,, .
%OHS[
~r

e,
SparkConf sparkConfiguration = new SparkConf().setMaster("local[3]").setAppName("CyberSecurity"); \a\’l
JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConfiguration, Durations.seconds(2));

JavaReceiverIinputDStream<String> lines = streamingContext.socketTextStream("<<URL_end_point>>", <<PORT>>);
JavaDStream<String> words = lines.flatMap(x -> Arrays.asList(x.split(" ")).iterator());

Figure 11.4 Conceptual view of Spark Streaming pipeline

[305]

Cyber Security Chapter 11

Spark Streaming provides exactly once semantics on the streaming data as a reliable
receiver when the streaming source is enabled for acknowledgement processing (for
example, Kafka).

Kafka

Kafka acts as a write-ahead log that records messages to a persistent store and allows
subscribers to read and apply these changes to their own stores in a system-appropriate
timeframe. Common subscribers include live services that do message aggregation or other
processing of these streams, as well as Hadoop and data warehousing pipelines, which load
virtually all feeds for batch-oriented processing. Overall, Kafka was built with the following
goals in mind:

¢ Loose coupling between message producers and message consumers

Persistence of message data for different consumers and failure handling
¢ Maximize end-to-end throughput with low latency components

¢ Managing diverse data formats and types

e Scaling servers linearly without affecting existing setup

In Kafka, every message is an array of bytes. Producers are the applications or processes
that want to store information into Kafka queues. They send messages to Kafka topics,
which stores messages of all types. Each topic is divided into one or more partitions. Each
partition is an ordered write-ahead log of messages. There are only two operations the
system performs:

¢ To append to the end of the log
¢ To fetch messages from a given partition beginning from a message ID

Physically, each topic is spread over different Kafka brokers, which host one or two
partitions of each topic. Ideally, Kafka pipelines should have a uniform number of
partitions per broker and all topics on each machine. Consumers are applications or
processes that subscribe to a topic or receive messages from these topics.

[306]

Cyber Security

Chapter 11

The following visual lays out the simplified conceptual layout of a Kafka cluster:

Consumer A
w

Producer A

+» Consumer B

.
Producer B
——y
“——
Consumer C
“EE——

Figure 11.5 Conceptual layout of a Kafka cluster

In messaging systems, messages need to be stored somewhere. In Kafka, we store messages
in Topics. Each topic belongs to a category, which means you may have one topic storing
items information and another may store sales information. A producer who wants to send
a message may send it to a a category of its choosing. A consumer who wants to read those
messages will simply subscribe to the category of topics he is interested in and will
consume it. Here are few terms that we need to know in terms of publish and subscribe

architectures:

¢ Retention period: The messages in the topic need to be stored for a defined
period of time to save space irrespective of throughput. We can configure a
retention period which is by default 7 days to day of our choice. Kafka will keep

messages for the configured period of time and then will delete them.

¢ Space retention policy: We can also configure a Kafka topic to clear messages
when the size reaches the threshold mentioned in the configuration. However,
this scenario may occur if you haven't done enough capacity planning before

deploying Kafka into your organization.

e Offset: Each message in Kafka is assigned a number called an offset. Topics
consist of many partitions; each partition stores messages in the sequence in
which they arrived. Consumers acknowledge the message with the offset; this
means all the messages before that message offset are received by consumer.

[307]

Cyber Security

Chapter 11

e Partition: Each Kafka topic consists of a defined number of partitions. We need to
configure the number of partitions while creating topics. Partitions are
distributed and help in achieving high throughput.

e Compaction: Topic Compaction was introduced in Kafka's 0.8 release. There is no
way to change over to previous messages in Kafka, message gets deleted when
the retention period is over. Sometimes you may get new Kafka messages with
the same key which includes a few changes and on the consumer side you only
want to process the latest data. Compaction helps you achieve this goal by
compacting all messages with the same key and creates a map offset for key:
offset. It helps in removing duplicates from large numbers of messages.

e Leader: Partitions are replicated across Kafka clusters based on the replication
factor specified. Each partition has a leader broker and followers, and all the read
and write requests to the partition will go through the leader only. If the leader
fails another leader will get elected and the process will resume.

¢ Buffering: Kafka buffers messages both at the producer and consumer side to
increase throughput and to reduce IO.

A combination of Spark Streaming and Kafka produces a comprehensive architecture for
the implementation of cyber security applications. These applications are fault tolerant,
ensure low latency, and are capable of handling large numbers of events per second. Here is
a reference architecture for cyber security applications using the Big Data ecosystem:

Application
Logs

Network !

Traffic

Application Host

Application
Logs

Kafka Producer

Node-1 x

REST

Securit
Y Service

i

— Load
Balancer

l

Security — REST

Service
Node-2 l

Kafka Producer

Zookeeper
Node-1

External Kafka
Cluster

—
Zookeeper
Node-2

Kafka
Consumer
12
Spaﬁ:Z
Sheaming
_Nosat |

Strcaming

Kafka
Consumer

Monitoring
Dashboard

Figure 11.6 Cyber security application - reference architecture

Let's now understand some of the common types of cyber security attacks and general
strategies to deal with those.

[308]

Cyber Security Chapter 11

Cyber security attack types

"One of the main cyber-risks is to think they don’t exist. The other is to try to treat all
potential risks. (Fix the basics, protect first what matters for your business and be ready to
react properly to pertinent threats. Think data, but also business services integrity,
awareness, customer experience, compliance, and reputation).”

- Stephane Nappo

As more and more systems and CIs are getting digitized, the number of security breaches is
also growing. The attackers utilize novel techniques to exploit the vulnerabilities within the
applications to get access to unauthorized information and administrative privileges. In this
section, we will list some of the common attack types and generic resolutions to those.

Phishing

This is one of the most common and successful (from an attacker's perspective) attacks on
the applications. Most of the time, the attacker sends an email or some kind of familiar
communication to the user to trick him/her into following the URL and providing the
credentials. The idea is to make the user believe that the message is genuine. The attacker, at
times, creates a dummy but identical web page which the user is familiar with and finds no
reason to suspect the genuineness. Once the user clicks the URL, some malicious software
gets downloaded to the machine and starts accessing information over the connected
networks.

These attacks can be prevented by using machine learning algorithms. The
user's email headers and content can be used as the training data and can
train the model to understand the common patterns. This learning can
help in detecting the phishing attempt based on the behavioral trends in
the historical emails.

Lateral movement

When an attacker gets access to the network of an enterprise, he/she tries to exploit
vulnerabilities on a given network node. While doing this, the attacker moves from one
network endpoint to another while gaining access to more services and the administration
of the network and application infrastructure. This movement leaves traces within the
network logs.

[309]

Cyber Security Chapter 11

Machine learning algorithms can be trained with lateral movements to
trace data and detect the suspicious user movements. If these movements
are tracked by streaming the live network logs through the processing
systems, the intrusion can potentially be detected in near real time.

Injection attacks

The malicious code is supplied into the target application via form fields or other input
mechanisms. SQL injection is a special case of injection attack where the SQL statements are
pushed into the system via field inputs and the SQL commands can get the dump of the
sensitive data outside of the network. The attacker can get access to the authentication
details if they reside in the database. Despite all the field validations and filtering at the web
server layer, the injection attacks are frequent and one of the leading types of attack. The
database logs can be used to train machine learning models based on statistical user profiles
which can be built over a period of time as the users interacts with the databases.

The abnormalities in the access pattern can be called out as anomalies and the alerts can be
generated. Apart from SQL injection, the attackers at times run scripts that impersonate the
actual application user and execute business functional actions on behalf of the actual user.
For example, if the attacker can get access to the e-commerce platform and starts placing
orders on behalf of the actual users or performs similar operations such as changing the
address. In this case, the machine learning models need to be trained to learn the individual
user behavior and these models should be utilized to identify the suspicious changes in the
user navigation and action pattern in the web application.

Al-based defense

"With Al and machine learning we can do inference and pattern-based monitoring and
alerting, but the real opportunity is the predictive restoration.”

— Rob Stroud

As the Al becomes democratized, the attackers will also have access to tools and techniques
to leverage Al for attacking the CIs. The defense mechanism for such attacks also needs to
upgrade itself to use the power of data and computation to quickly build Al-based models
in order to defend the CI and other applications.

[310]

Cyber Security Chapter 11

As a general principle, the following diagram shows the stages of Al-based defense
mechanisms against cyber security attacks:

e Al based
* Knowledge Engineering
* Case-based reasoning

¢ Machine Learning based
e Clustering,
* Pattern Matching,
* Association Rules
* Visualization

Automate
Prioritize Response
¢ Al based Response Playbooks
* Text analytics, Tz ki
* Classification, volume alerts
* Natural Language
Processing, rack Threats
Collect
erl\‘:lyze *" Al based
Security . Sear.ch of recu.rrent patterns,
Data e Outlier detection

* Network data analysis
* User behaviours analysis

Figure 11.7 Stages of Al-based defence against cyber security attacks

Various machine learning algorithms can be used for detection and prevention of cyber
attacks. While each application is different in terms of its network and security
configuration, a general guideline for the prevention of cyber attacks by different machine
learning algorithms is depicted in the following diagram:

[311]

Cyber Security Chapter 11
Classify a tagged event if it
Decision indicates normal state or an
Multivariate Trees S anomaly. Further classify > KNN/SVM
Regression anomarl{es pased on types
i o and criticality
Lepgiie Q-Learning

Predict the

Regression
~

Classification

user
behaviours
based on the
learning based

-

Regression

on historical

events.
Hierarchical
Clustering

T

Cluster the user activity into
behavioral types and assign the
threat value to each of the cluster
elements.

K-means
Clustering

ML Based Cyber
Security

Deep
Learning

Reinforcement

i

Initially use with
ethical hacking and
mock drills with the
Cl. Eventually as the
model gets trained,
can be deployed in
production use.

{

SARSA

Learning

Train the model for the
heterogeneous data sets and events
within those. Use the training for
triggering automated actions

Figure 11.8 Prevention of cyber security attacks with Machine Learning algorithms

Understanding SIEM

Security Incident and Event Management (SIEM) is a process that helps cyber security
implementation by gathering security-related information (network and application logs for
example) at a centralized location or tags those information assets at the edge (the location
where the data is generated in the case of IoT) and uses this information for identification of
anomalies which indicates breaches to the security infrastructure of an enterprise.

[312]

Cyber Security Chapter 11

The SIEM also facilitates continuous monitoring of the security infrastructure by providing
intuitive visualization dashboards. SIEM as a process is implemented as a suite of software
which is governed by enterprise security with role-based access control. The common
characteristic features of the SIEM system are depicted in the following diagram:

Data
Collection

Data

Alerting Persistence

Data Data

Normalization

Visualization

Figure 11.9 Features of the SIEM system

The SIEM software application needs to support the basic building blocks as follows:

e Data Collection: The SIEM software should support a variety of network
communication protocols in order to connect to heterogeneous systems within
the organization's boundary. The raw data is available in the form of logs from
the enterprise applications, network traffic packets, and hardware controllers.
These raw data assets need to be collected in a seamless and secure manner. Each
individual system should be identified and added to the data collection stack for
the successful implementation of the SIEM. The collected data from across
systems can have a variety of formats such as text, XML, JSON, binary, and so on.
The SIEM system needs to support a diverse variety of data formats.

¢ Data Persistence: Depending on the data volumes, the SIEM software can use the
local and network drives or utilize distributed file systems like HDFS for data
persistence. As soon as the data from the applications and appliances is available
to SIEM, it needs to parse the data depending on the format, index it, and make it
available for ad hoc searching by the human user or by an integrated application.
The historical and rolling logs are an ongoing and ever-increasing asset and
hence the indexing function of the SIEM system needs to be advanced and
efficient.

[313]

Cyber Security Chapter 11

¢ Data Normalization: This is one of the most important aspects of SIEM software.
Once the data is sourced and persisted, it needs to be modeled and normalized.
The purpose of normalization is to make it easy for the visualization component
to display critical information on the dashboard. The normalization module can
also utilize the data assets to build machine learning models based on historical
trends. The SIEM systems that leverage the data to train the machine learning
models and provide predictive analytics will be more in demand compared to the
SIEM systems which perform descriptive analytics and provide rules-based
alerts.

e Data Visualization: The visualization is the window for the personnel in charge
of enterprise security as well as management, which may require a high-level
view of overall system status. Since the decisions and actions are based on what is
visually seen on the dashboard, the SIEM systems need to deploy a thoughtful
and thorough process for defining visualizations. Since every enterprise and the
use case is unique, one visualization cannot fit all. The SIEM tool needs to
provide easy customizations to the visualization component. A generic set of
features of visualization are depicted in the following diagram:

Value Retrieval F|Iter|r1g & Extreme Values
Sorting
Data Range Data Anomalies
& Distribution Representation

Data Clustering
and Alerting
Correlation

Figure 11.10 Features of the visualization component within SIEM

Visualization attributes and features

The visualization attributes and features are as follows:

¢ Value retrieval: The SIEM software should support retrieval of any attribute
values across the data assets. In an ideal scenario, the SIEM software will support
the SQL-like query language to fetch data based on multiple datasets based on
some join condition.

[314]

Cyber Security Chapter 11

e Filtering and sorting: The SIEM software should support intuitive filtering and
sorting on the basis of one or multiple key columns desired by the end user.

¢ Extreme values: The SIEM software should support highlighting the extreme
values for the attributes with color coding so that the user can quickly take action
based on critical conditions.

¢ Data range: For the key attributes, the SIEM should provide a feature to highlight
the range values so as to identify anomalies, if any.

¢ Data distribution: The SIEM software should have a feature to show the data
distribution for key attributes based on a set of criteria. It can answer questions
like: what is the distribution of various types of cyber security attacks? The
support team can tackle the top reasons to safeguard the CI efficiently.

¢ Anomalies representation: The anomalies should be represented in such a way
that they attract attention and provide enough information for mitigating the
risks immediately.

¢ Data clustering and correlation: The data related to CI security infrastructure
applications should be visualized in clusters or groups of correlated entities. The
application should be able to support some operations (filtering, sorting, and so
on) on the clusters.

¢ Alerting: The SIEM software should support mechanisms to generate alerts on
critical events. The user needs to have the capability to configure alert thresholds
and configure new alerts as required. In case of commonly used logs like web
server access logs, the application should have predefined alerts which can be
quickly set up by configuring threshold values. The software should also make
use of historical data to train machine learning models which generate preventive
alerts based on the past trends.

We are going to review two SIEM software packages in this chapter. Splunk and ArcSight
ESM are two of the most popular SIEM applications which are widely deployed for some of
the mission ClIs.

Splunk

Splunk is one of the most popular and time-tested SIEM solutions on the market at the time
of writing. It is trusted by more than 15,000 customers worldwide for the protection of ClIs.
In this section, we will review some of the features Splunk supports for security monitoring
and alerting.

[315]

Cyber Security Chapter 11

A high-level overview of the Splunk platform is depicted in the following visual:

Splunk Platform

Splunk IT Service Splunk Enterprise Splunk User Behavior
Intelligence Security *®/ Analytics

‘ I DOX - € TanuMm

()

splunk>cloud

splunk>enterprise

Figure 11.11 Overview of the Splunk platform

Splunk as a platform provides a range of sub-products which cater to specific
organizational needs. In the context of this chapter, let us review the high-level features of
Splunk Enterprise Security and Splunk Light.

Splunk Enterprise Security

This is a comprehensive suite which takes a holistic view of enterprise security by
improving security operations with reduced action time, making machine data available for
end-to-end visualization with interactive dashboards, and leveraging machine learning and
Al to train predictive models for preventive security measures.

Splunk Light

Splunk Light is a specific product feature that deals with enterprise-wide logs. The logs
contain loads of information which can be leveraged for corrective and preventive cyber
security. Splunk Light enables enterprises to collect and index all the log files irrespective of
their structure and other semantics.

The data input layer is flexible enough to accept logs in any format. There is an intuitive
user interface that reads logs from the configured location and drives the user through
various runtime configurations which makes it easy to index the contents of the log files.
The forwarder component can collect the logs from the systems which are not directly
accessible to Splunk due to network limits.

[316]

Cyber Security Chapter 11

The forwarder can connect to external sources with numerous supported protocols and
fetches the data into Splunk Light for preprocessing and indexing. Splunk supports the
schemaless writes paradigm of Big Data frameworks. The schema is defined at the read
time and there can be multiple interpretations of the data assets based on context and the
use case.

Another handy feature is the support for chronology inference. Splunk can determine the
event sequence based on the timestamp and the messages where the timestamp is missing;
it can also infer the timestamp based on context. All the logs are available at a centralized
location and can be accessed in a consistent manner irrespective of source and format. The
logs are continuously indexed in the background and are available for analysis, filtering,
sorting, and aggregation.

Splunk supports Splunk Search Processing Language (SPL) as a simple SQL-like query
interface into the log files. It also supports analytical and visualization commands which
makes it easy to detect anomalies based on distinct patterns and outliers. The search is
agnostic with respect to pre-processed and indexed logs or the streaming logs. There is a
common interface for searching the logs which enables real-time query into the logs.

The search results can be visualized with an interactive dashboard. The visualization
provides slice and dice capabilities out of the box and can be easily customized based on the
enterprise requirements. Here is a screenshot of Search Processing Language query
execution:

2 Administrator v @ Help v

New Search SaveAsv Close

or OR failed OR severe OR (sourcetypesaccess_* (404 OR 500 OR 503)) | stats|

Command History @ ote: Your search looks simila to the savedsearches Erors I thelast 24 hours2and Errors i the Lt hour 2 Auto Open

stats
Provides stati

Morea
ouped optionally by field

Examples 1 month per ealumr

Search the access logs, and retum the number of hits from the top 100 values of “referer_domain®
sourcetype=access_combined | top limit=100 referer_domain | stats sum{count)

Return the average for each hour, of any unique field that ends with the string “lay" (For example, delay, xdelay, relay, etc)
.| stats avg(*lay) BY date_hour

Remove duplicates of results with the same “host" value and return the total count of the remaining results.
.| stats distinct_count{host)

KEETEDRI PR rbittner-mbpr.local varflog/system.og U system.log

1305 Nov 3 16:05:51 rbittner-nbpr kernel[0]: [SymAPComm] Got error sending data to daemon : 32

ource 4:0551.000PM rbittner-mborlocal varflog/system.log system.log

13415 Nov 3 15:57:16 rbittner-nbpr.sv.splunk.con com.apple.WebKit.WebContent(53591): AVF error: Branch QTO::pushgits, Context Creation Failed.
357:16.000 PM

Laf
Selected Felds
host

sourcetype

rbittner-mbpr.ocal Jar/log/system.og system.log

Figure 11.12 Search Processing Language in Splunk

[317]

Cyber Security Chapter 11

For an SIEM to be effective, the event data from multiple discrete sources needs to be
available for analysis at a centralized place; Splunk enables the correlation of complex
events across various systems. This enables monitoring of the lineage of the event as it
originates from the source and its correlation with the events from other source systems.
This facilitates out-of-the-box investigation for the security team with improved chances of
finding the root cause of anomalies.

Splunk Light can detect changes in pattern automatically without requiring any user
intervention. For example, a particular web application host receives n requests on day d of
a week, if there is a significant change. Splunk can highlight the change in pattern which
can be quickly investigated. Splunk Light allows the configuration of alerts based on
common searches performed by the administration teams. The alerts queries can be set to
run with a predefined frequency or in real time as per the use case context, as seen in the
following screenshot:

Save As Alert %

Settings

Title ‘ WIFi Error

Description Errors connecting to Wifi

Alert type { Scheduled | Real-time

‘ Run avar hane s

é Add to Triggered Alerts

i

Add this alert to Triggered Alerts list st the hour
E Log Event
Trigger Send log event to Splunk receiver endpoint

Trigger | g Run ascript

Invoke a custom script

Send email

Send an email notification to specified recipients

(& Webhook

Generic HTTP POST to a specified URL

h result

L

Manage Alert Actions [2
Manage available actions and browse more actions

=3

Figure 11.13 Configuration of alerts based on queries in Splunk (source: splunk.com)

Trig

[318]

Cyber Security Chapter 11

ArcSight ESM

ArcSight ESM is an HP SIEM product which provides premiere security event
management solutions. ArcSight analyzes and correlates every event and makes it available
for anomaly detection. The product greatly complements efforts in compliance and risk
management. It helps the network operations teams. Key features of ArcSight are as
follows:

Regulatory compliance

Automated log collection and archiving
Fraud detection

Real-time threat detection

Business KPI to IT assets mapping and monitoring
¢ Business impact analysis of the threats and automated prioritization

Frequently asked questions

Let us have a small recap.
Q: What is the significance of Big Data in cyber security?

A: Big data and cyber security complement each other and play a vital role in each other's
relevance and utility. As more and more devices are getting digitally connected, they are
generating more data (volume); the data generated by these connected devices needs to be
processed in neartime (velocity) and it follows a variety of forms such as structured,
unstructured, and semi-structured (variety). These three Vs constitute Big Data in general
which lead to Value as fourth V. The cyber security systems require that the Big Data is
processed in its entirety in order to provide actionable insights into the security
infrastructure of an enterprise and to help in detecting anomalies and preventing attacks on
an organization's computing assets.

Q: What is the meaning of critical infrastructure (CI)? What are the key components for
protection of the CI?

A: Critical Infrastructure is a term used by enterprises and government agencies to define
the assets and working models that need to function at their optimal level in order for a
seamless and harmonious experience for the stakeholders who directly or indirectly benefit
from or are impacted by these systems. A country's power grid is a good example of CI.

[319]

Cyber Security Chapter 11

Most of the CI systems are now digitized and hence controlled with computer programs
with minimum human supervision. The criticality of these systems functioning round the
clock also makes them vulnerable to cyber attacks. The systems that protect the CI against
the attacks are also critically important from a defense perspective. The CI systems generate
large volumes of log data and other operational data. This data is the most important asset
in protecting the CIs. Apart from data, we need systems that are able to consume and
process these data assets in a timely manner for detecting anomalies in system behaviors
and generate alerts which trigger human or automated actions.

Q: How can machine learning and Al be leveraged for effective protection of CI?

A: Rules-based alerts and monitoring systems are not sufficient to deal with the cyber
security attacks and for protecting CIs. The machine learning models need to be trained
based on the historical data (supervised learning) in order to predict the occurrence of
malicious activities in advance or in near real time when the intrusion is in progress. The
machine learning and Al transitions the cyber security systems to predictive analysis which
helps in preventing the attacks.

Q: Is it possible that the attackers also leverage Al for breaching security infrastructure?
How do we protect against it?

A:Yes, Al and machine learning is already leveraged by attackers in breaching security
infrastructure. It is a race to get the better of the attackers and protect the systems. Data is
the advantage with the systems which protect the CI. The data across heterogeneous
sources needs to be leveraged in near real time to stay ahead and protect the Cls.

Q: What is the significance of Stream Processing in cyber security?

A: Big data assets can be processed in batch and real-time modes. Batch mode processing is
suitable for large volumes of data and when the processes are not time sensitive (do not
need to be real time). However, the CI systems constantly generate data as an unbounded
source of information. The ingestion, processing, and analysis needs to happen as close to
the event time as possible in order to stand a chance of protecting the CIs. Stream
processing is an architectural paradigm that deals with unbounded data which is consumed
as a stream and processed even while it is in motion. This comes handy with performing
anomaly detection even while the intrusion is in progress and helps in preventing potential
attacks on CL

[320]

Cyber Security Chapter 11

Summary

In this chapter, we have studied the basic concepts of cyber security and the significance of
Big Data in dealing with threats to the security of critical applications. Big data processing
has two fundamental types, batch processing and real-time processing, for streaming data
sources. We have studied the fundamental concepts and frameworks in batch and real-time
processing.

Real-time stream-based processing is important in dealing with cyber security threats. We
have seen the different types of common security threats and vulnerabilities exploited by
the attackers. Machine learning and Al are largely democratized and leveraged by attackers
for sophisticated attacks on the CIs. This makes utilization of machine learning and Al a
critical consideration while building the systems which deal with cyber security attacks. We
have reviewed the basic building blocks of the SIEM systems and a couple of examples,
Splunk and ArcSight SEM, as two of the most popular SIEM frameworks. The field of cyber
security is of prime importance and more research needs to happen in order to protect data
assets. The protection of data assets is even more significant with ever-increasing
dependence of CI and other systems on the availability of accurate and reliable data.

In the next and final chapter of this book, we will study cognitive computing. Cognitive
intelligence takes the machines as close to human intelligence as possible. It is an exciting
field of research and we will review some of the fundamental concepts and tools available
for experimenting with and realizing cognitive intelligence in smart machines which will
complement and augment human capabilities.

[321]

12

Cognitive Computing

So far in this book, we have studied the general principles of machine learning (ML) and
artificial intelligence (AI). This is a good foundation and a starting point for creating
intelligent machines that can complement and augment human capabilities. This is possible
with the ever increasing computational power along with the availability of ever growing
volumes of data. However, in order to build artificial machines that can potentially match
(or inch closer to) the human brain, we need to develop our understanding of human
cognition.

While a tremendous amount of research and thinking has happened for so many decades
(or centuries), we are far from fully decoding nature's program when it comes to human
cognition. In this chapter, we will initiate the reader on cognitive science and introduce
some of the frameworks that are available to take the research forward. During the course
of this final chapter, we will introduce you to the following;:

¢ General principles of cognitive science

Cognitive Systems

Application of cognitive intelligence in big data analytics

An introduction of IBM Watson as one of the most advanced cognitive
computing frameworks

Developing an IBM Watson application in Java

Cognitive Computing Chapter 12

Cognitive science

In our quest to build intelligent machines, we are attempting to build capabilities that match
and for the most part mimic the human brain and the sensory organs. There are five senses
and primary organs corresponding to each through which we perceive this world. The goal
of cognitive science is to build these sensory capabilities in intelligent machines so that the
interactions with them are natural and seamless:

¢ Vision: To see the objects, understand their position in three primary dimensions,
and also their movement along with time as the fourth dimension. While we use
our eyes as an external interface for vision, everything else happens within the
brain. By deploying principles of cognitive science, we are able to build
intelligent systems that can see the objects and their movements with video
cameras and create a mathematical model for converting the visual signal into a
knowledge.

¢ Audition: With this sense, we hear various audio signals. The external interface
to this in the human body is ears, and once again the audio processing takes place
in the brain. We can identify the person via voice, understand the meaning of the
signal all due to the brain's capacity to process the signal in real time, and use
memory to put the audio signal in context and trigger necessary actions. The Al
systems can also be modeled to perceive audio signals and process those with
NLP and translate them into knowledge and also trigger actions.

¢ Gustation: With this sense, we can perceive taste of an object (food). The external
interface is the tongue and the taste signal is processed within the brain.

¢ Olfaction: With this sense, we can smell various objects. The external interface is
the nose and the signals are all processed within the brain.

¢ Somatosensation: With this sense, we can feel various objects. The external
interface is the skin and once again the entire processing of temperature, texture,
and all the other tangible aspects of an object are processed and understood by
the brain.

During the course of this book in previous chapters, we have seen theories, mathematical
models, tools, and frameworks for creating intelligent machines that mimic human
intelligence with these five senses. The manifestations of these senses are tangible and can
be physically modeled. However, there is a sixth organ and corresponding sense that
governs human life within a larger context and it is called the mind.

[323]

Cognitive Computing Chapter 12

The human mind is the closest manifestation of universal consciousness and it is believed
to control all the other five senses. The mind is in play when we talk about willpower,
emotions, determination, and all other things intangible, but it is the most important aspect
when it comes to building intelligent machines or fully creating Al that is going to
complement and augment human capabilities in a larger sense.

While it is important to study and eventually mimic the human mind, at the same time, it is
difficult. This is because the human mind is not easy to observe, measure, or manipulate
and sometimes it is termed as the most complex entity (that is intangible too) in the
universe. Cognitive science is a branch of science that performs interdisciplinary study of
the mind. While the individual disciplines are independent of each other in their research
space and domain, they have a common string connected to the study of the mind. Some of
the primary fields that coincide with study of the mind are depicted in the following
diagram:

Philosophy

Cognitive

Robotics Psychology

Science

Al Linguistics

Figure 12.1: Cognitive science as an interdisciplinary study of mind

While the functioning of the mind is still an unexplored area of research to a large extent,
for the sake of simplicity, we can treat the mind as a central information processing unit and
relate it to a computer that gathers inputs, processes those based on predefined and fuzzy
rules, and transforms them into outputs that serve a larger purpose. The human mind can
also represent the information and translates it into knowledge and actions. The inputs are
received from the perceptive organs that we have listed earlier.

[324]

Cognitive Computing Chapter 12

However, there is a fundamental difference between the digital computers and primarily
analog human mind and its representation in the brain. When we think about building
intelligent machines, the larger goal of AI when it comes to cognitive computing is to use
computing infrastructure and knowledge assets (database) to solve real-world problems
that complement and augment human capabilities. The deeper-level goal is to ultimately
decode the meta-knowledge and human intelligence to have a chance at building machines
with cognitive abilities (emotional and spiritual intelligence). With the deeper goal in
perspective, the Al can be divided into three stages, as depicted in the following diagram:

Smart machines which

cannot be

differentiated from
Recognize images, human capabilities

voice signals, patterns
in a very similar Strong Al

manner as human

beings .

Cognitively
Smart machines which can :
be programmed for pre- SImUIated
defined as well as variable Al

environmental states .Applled Al

Figure 12.2: Stages of Al

They are as follows:

e Applied AI: We have had applied Al in mainstream use for quite some time now.
The household appliances that work on fuzzy logic (washing machines, air
conditioners, and so on), the smart navigation systems that can predict the
driving time based on real-time traffic situations, the industrial robots that
perform predefined tasks within a level of variation in the environmental state
are some of the examples of applied Al The applied Al leverages machine
learning models and the data assets to implement supervised, unsupervised, and
reinforcement learning algorithms to develop smart machines.

[325]

Cognitive Computing Chapter 12

¢ Cognitively Simulated AI: With this, the machines are enabled with natural
language processing, interpreting video and other sensory inputs from the
environment, and react based on the context and truly augment human
capabilities. The intelligent assistants that we have on our phones simulate
cognitive intelligence for a seamless interaction with the smart machines. In order
to realize cognitively simulated Al, we require a higher level of computation
power along with data. With big data systems in the mainstream, we have
already realized the applications based on cognitively simulated Al.

e Strong Al In this stage, the field of Al gets as close to human intelligence as it
can be and with the brute force as an additional advantage with the computers,
the systems based on strong Al can potentially surpass human intelligence and
create a paradigm shift in our experience of the world. At this level, the Al is
based on high-level cognition and can perform multi-stage reasoning, fully
understand the "meaning" of the natural language, and can potentially generate
artifacts without being instructed to do so.

"The goal of strong Al is nothing less than to build a machine on the model of a man, a
robot that is to have its childhood, to learn language as a child does, to gain its knowledge
of the world by sensing the world through its own organs, and ultimately to contemplate
the whole domain of human thought.”

—Weizenbaum (MIT Al Laboratory)

While applied Al and cognitively simulated Al are already well adopted for various use
cases and have become mainstream, the Cognitive science is a quest toward Strong Al That
means, some of the very basic activities which human beings can perform naturally without
any external training like use of language, logical reasoning, plan future activities and
strategies are some of the most difficult abilities to be replicated in intelligent machines.
These behaviors are the core cognitive competencies which we are planning to incorporate
in machines within the scope of study of Cognitive science and developing strong Al

In the next section, let us review some of the characteristics of the Cognitive Systems which
can possibly be built with the goal to achieve Strong Al

[326]

Cognitive Computing Chapter 12

Cognitive Systems

One of the key characteristics of Cognitive Systems (CS) is that they have the ability to
interact and interface with human beings with natural language in a similar as possible
manner to human interactions. The systems are capable of learning and thinking from the
stochastic environmental context as well as historical data inputs. The systems should be
able to quickly evolve from dependency on the structured data inputs (traditional
computing) to semi-structured and unstructured data inputs very similar to the human
interface.

We have already seen in the chapter on fuzzy systems that the systems based on Al should
be trainable to accept fuzzy inputs in a natural format without any cleansing or
harmonizing. Since Cognitive Systems interact with human beings in a natural way, they
can extend and amplify human capabilities with an added advantage of brute-force and a
virtually unlimited amount of data storage capabilities.

As we have seen in the introductory section in this chapter, the development of CSis a
multidisciplinary effort and requires a great deal of collaboration and knowledge sharing in
order to progress in the direction of realizing a truly Cognitive System that cannot be
differentiated from human capabilities in terms of intelligent behavior. The
multidisciplinary nature of Cognitive Systems can be depicted as follows:

Information
Technology

Bio-technology ~ Cognitively
Simulated Al

Biology ©

(Neuro & e Cognitive
Life % Science

Science)

Figure 12.3: Cognitive Systems (CS) as a multidisciplinary effort

[327]

Cognitive Computing Chapter 12

As we can see, Cognitive Systems can be built with combined efforts from information
technology (IT), Biology (Neuro and Life Science), and Cognitive science. IT provides the
backbone for the CS with data storage and data processing capabilities. With the advent of
cloud-based distributed computing, we have potentially unlimited storage and computing
power at our disposal. IT systems also translate the high-level natural inputs into low-level
digital forms that are interoperable and a means of communication between multiple
Cognitive Systems. Biological knowledge, specifically in the area of neurology and
physiological study of the brain and the nervous system, helps in emulating some of the
tangible patterns in Cognitive Systems. The nervous system is the most complex system and
is far from being fully understood at this time. However, Cognitive Systems can draw a lot
of inspiration from neurological studies.

Cognitive science incorporates the knowledge of psychology, mind, and

its interface with physiology, linguistics, and so on. These three fields
combined together have the potential to develop a true Cognitive System

that resembles human behavior and complements and augments its
capabilities.

Let's look at how far CS has evolved at this point.

A brief history of Cognitive Systems

Cognitive Systems have greatly evolved at this point in time even though we are far from
making a truly Cognitive System that matches human abilities.

[328]

Cognitive Computing Chapter 12

Here is a brief timeline of the evolution of Cognitive Systems:

/

Congitive Systems evolution timeline

J

Knowledge based S]
4 Analog Neural Network systems - integration of Sophia (humanoid robot)
® " diverse information ¢/ offered citizenship of
sources Saudi Arabia

Darthmouth conference:
Artificial intelligence with Robotics and role of ,

aim of human like 4 embodimentto achieve
intelligence intelligence Storage and

| bn s computation
o Allan Touring: Theoryof o Small scale 'toy' projects

Compution in robotics o power
P @@ 49-“Idea of IBM Watson
1940 1950 1960 1970 1980 1990 2000 2010 2020 2030
Expert systems useful in
restricted domains
@ The Touring Test
Start of Neural Network Watson beats human
2 . L 2
revolution Jeopardy player
Claude Shannon: A ¢ Al research under new
4 Mathematical Theory of , names
Communication Moravec's paradox:

Simple tasks not easy to
solve (lack of
computational power)

Figure 12.4: Cognitive Systems evolution timeline

As you can see in this figure, the general theories and science behind realization of
Cognitive Systems have existed for decades, but the acceleration in the evolution process is
a result of availability of big data analytics frameworks that are based on distributed
computing architectures that started becoming mainstream around the year 2000. With
exponential growth in the digital data assets along with the computation power, the
systems are poised to evolve at a faster rate every passing day. A significant feat was
achieved in 2010 when IBM's Watson engine, which is based on cognitive intelligence, beat
a world champion in a game of Jeopardy.

With this background, let us look at some of the goals for Cognitive Systems.

[329]

Cognitive Computing Chapter 12

Goals of Cognitive Systems

The primary goal for Cognitive Systems is to complement human capabilities and augment
those for overall benefit and betterment of human society by helping to solve some of the
problems (effective and accurate diagnosis of some diseases, autonomous and self-driving
cars, decoding human DNA, and so on) that are faced by the human race. When we design
Cognitive Systems, there are certain generic capabilities that contribute to achieving overall
goals for the CS. These capabilities are as follows:

e Exploration: The CS should be able to autonomously explore the environmental
context and infer meaning from it. This exploration can go beyond the immediate
or close context into the vast amounts of digital data that is available for
converting into information and finally into knowledge assets. The architecture of
Cognitive Systems should facilitate unbounded exploration within and outside of
the context.

¢ Retrieval: Once the data is available as knowledge assets in logically and
cognitively connected entities, the architecture should enable effective and timely
retrieval of the knowledge assets as and when required for the system to drive
effective and accurate actions.

¢ Semantic Search: This is a generic extension of the retrieval capabilities.
Whenever a human interface or another Cognitive System needs some
information based on cognitive inputs, the CS should be able to search the
knowledge assets in a timely manner and feed the extracted information to the
entity that has requested the information based on the context. At this point, the
keywords should have semantic context associated with them instead of being
just plain text. This is based on the ontological mapping as we have seen in
Chapter 2, Ontology for Big Data.

e Physical activity and state manipulation: The Cognitive System should have
tangible components that are capable of physical activities. For example, a robotic
arm that can perform a delicate surgery. The system should also be able to
manipulate the state of the environment based on the context and the optimal
behavior of the intended Cognitive System. For example, the system should be
able to turn ON the music for a person in a room based on the mood, time of the
day, and so many other personalized parameters.

¢ Information enrichment: This is a very important aspect of a Cognitive System.
Based on the historical data, current environmental context, and the learning, the
CS should be able to enrich the knowledge assets in an implicit and seamless
manner without having to explicitly perform data entry operations. It should be
an automated closed control loop that draws and commits information into the
knowledge base in order to enrich it with every interaction.

[330]

Cognitive Computing Chapter 12

¢ Navigation and Control: The Cognitive Systems should be capable of navigating
physical objects within the problem space considering the environmental context.
The well known example is the self-driving cars, traffic control systems, and
smart-home systems that can control various operating parameters of the system
in real time.

¢ Decision Support: The Cognitive Systems should facilitate effective decision
making in day-to-day as well as mission critical applications. For example, a
medical decision to operate a particular condition in a patient or to treat it with
available medicine based on the patient's history, symptoms, and various reports
can be taken by the Cognitive System based on the following:

e Model: In this type of decision support system (DSS), the decision
is made based on well-established models and theories in the
specific field of consideration. The Cognitive System should be able
to interpret and infer from the model in a consistent manner.

¢ Data: In this type of DSS, the decision is made based on the
historical data. This is an example of supervised learning
algorithms that the CS can deploy for decision making.

e Communication: The Cognitive System should be able to
communicate in real time with various other human and non-
human Cognitive Systems in order to derive decisions in a
particular situation.

e Document: Document-driven decision is based on large volumes of
unstructured data that is digitized as scanned documents and
audio-video files. The Cognitive Systems should be enabled to
search into these knowledge assets and provide context sensitive
decision support in a timely and efficient manner.

¢ Knowledge: These are specialized types of Cognitive Systems that
operate on domain-specific data assets and ontologies. These are
meant for special purposes with a very limited context. These
systems also leverage the machine learning models based on the
historical data assets and past decisions. These systems constantly
add to the data assets, build semantic relationships within the
domain, and provide decisions similar to the natural human
interfaces in which management seeks some of the reports and
projects from the teams. The decision support systems based on
domain-specific knowledge assets within the enterprise can
potentially improve operational efficiencies multifold.

[331]

Cognitive Computing Chapter 12

Natural language interface: Cognitive Systems support natural language as a
means for data input and generate outputs in natural language that resemble
human interactions. These systems should also be enabled to interact with the
other Cognitive Systems in a standardized and natural format. This facilitates
seamless knowledge exchange and system improvisations with time.

With these goals and expected capabilities within Cognitive Systems, let us look at some of
the entities that enable realization of Cognitive Systems.

Cognitive Systems enablers

In order to build Cognitive Systems that resemble human intellectual behavior, we need the
following core ingredients:

Data: As depicted in the previous diagram, the Cognitive Systems evolution
accelerated after the mainstream availability of large volumes of data in digital
format. The theories and algorithms that were prescribed decades ago, could not
be evaluated to lack of substantial amounts of data. Data is one of the biggest
enablers for Cognitive Systems.

Computation: In order to process the data and apply the theories and algorithms,
we need ever increasing computational power. Once again, as soon as the
distributed computing power was mainstream, the evolution of Cognitive
Systems has accelerated.

Connectivity: Cognitive Systems need data from heterogeneous sources for cross
referencing the entities and derive meaning from those in order to create a
knowledge base. The connectivity of all the data sources as well as the entities
within the data sources is extremely critical for development of efficient and
accurate Cognitive Systems.

Sensors: There has been a recent advance in Internet of things (IoT) where the
sensing devices generate data that can be mission critical in many applications.
Cognitive Systems also deploy various sensors that emulate human sensory
systems in order to facilitate natural language conversations and interactions
with human beings as well as other Cognitive Systems.

Theories in understanding human brain: In order to propel the research in the
right direction, we need to understand the functioning of the human brain in
more detail. We are still far from fully understanding how the human brain
works. In order for Cognitive Systems to really come close to human intelligence
levels, we need to also study the mind. Mind research is complex due to the
intangible nature of the mind.

[332]

Cognitive Computing Chapter 12

¢ Nature: Cognitive Systems need to derive inspiration from nature and how
various creatures interact with each other with the basic survival instincts. All the
natural creatures have the level of intelligence to interact within their
environmental context as well as survive effectively. As we have seen in the
chapter on swarm intelligence, the natural behaviors for the creatures can help in
building Cognitive Systems.

Application in Big Data analytics

Frequently, the terms big data and Cognitive Intelligence are used together. Let us
understand the relationship between these two concepts. During the course of this book, we
have already seen primary aspects and details of big data, such as Volume, Velocity, and
Variety. The data volumes are growing exponentially with more devices and systems
producing data across business domains and platforms.

As a simple example, a person living in any urban area across the world, is producing at
least a few megabytes of data every day with the use of smartphones, televisions, various
electronic gadgets, and even cars. These personalized datasets along with industrial and
enterprise data assets are adding to the volume of data everyday. This data is generated and
stored at an ever increasing velocity into centralized servers on the premise or within the
cloud. In order for the data assets to be of value, the analysis and actionable insights should
be generated as close to the event time as possible. That means the velocity of data
processing is another key aspect of big data.

Most of the data assets we have talked about in this section do not have a standardized
format. They are generated in a large variety of formats and are mostly unstructured in
nature. There is also an increasing volume of structured and semistructured data that is
constantly getting generated. The variety is the third dimension of big data. The
computational models that can store and process this big data is very well established in the
form of distributed computing frameworks such as Hadoop and others. The growth of big
data analytics is also fueled and accelerated with the availability of these platforms as a
service (PAAS) onto cloud. The entire cluster of analytics platform can be spawned within
minutes and it can be auto-scaled as per the data volume and compute requirements.

These big data analytics platforms are the foundation on which cognitive intelligence can be
built. As we have seen earlier in this chapter, underlying technologies that facilitate big
data, are the core components that are required for building artificial intelligence. The key
components are the ability to store massive amounts of data and massive amount of
computation power.

[333]

Cognitive Computing Chapter 12

Despite growing volumes of data that is available in digital format, we still have more than
80% of data that is in rudimentary format. For example, the ancient scriptures, century-old
official documents in paper format, handwritten books, and so on. Some of these
knowledge assets are digitized, but they are still in unstructured raw format. This large data
is extremely critical and a significant portion of our knowledge assets. This data as a whole
is called dark data. One of the core objectives and possibilities with the use of big data and
Cognitive Intelligence together is to be able to tap into the dark data.

Using cognitive intelligence, we can create a semantic view of the dark data that can be
brought into mainstream data assets can be part of the evolution of Cognitive Systems. It is
impossible to fully understand and use the dark data with manual processes. We need big
data technology tools along with the algorithmic approach of cognitive intelligence in order
to utilize the dark data. The cognitive image and document processing techniques such as
advanced imaging, optical character recognition, natural language processing, and various
machine learning algorithms for text classification. Once the knowledge assets are digitized,
they are semantically organized along with the relationships at the ontological entity level.

Within the traditional big data systems that are collectively referred to as Enterprise Data
Hub (EDH) or Data Lake, one of the key components is data modeling. This is an exercise
that maps the source systems to the target data structure into the data lake. The data
modeling is a largely manual process, which requires understanding the significance of the
data attributes (columns) in the source systems that are domain specific structures and map
those to the fields in the data lake. With the use of cognitive intelligence, it is possible to
fully eliminate the data modeling process. In this new paradigm, the Cognitive System
parses and semantically understands the source database and generates a connected
prototype of the target structure, which is efficient in search and exploration and fully
available for advanced analytics. Essentially with a combination of big data technologies
along with the cognitive intelligence, the data management systems are poised to be
autonomous, more efficient, and accurate. Since the manual intervention is minimum, the
data analysis and hence actionable insights are available faster.

With the use of cognitive intelligence, it is possible to seamlessly interact with the data
platform. In the traditional big data analytics world, we are using visualization and
reporting tools for generating and showing trends in the data and doing prescriptive
analytics on the data. The data assets are also made available for machine learning models
for performing predictive analytics. If we introduce cognitive intelligence in these systems,
we can interact with the data platform in a more natural manner.

[334]

Cognitive Computing Chapter 12

This is very similar to human interaction where we can ask domain and context specific
questions to the platform in natural language and by tapping into the underlying data
assets and application of various machine learning algorithms, the answers are presented to
the user in a natural form. This capability opens up a whole new world of how human-
machine interfaces can evolve to the extent where it will be difficult to tell if we are
interacting with a machine or a human being.

Cognitive intelligence as a service

The field of cognitive intelligence is vast and exciting since we are trying to follow an
intangible entity, the human mind. As our understanding of how human cognition works,
we can implement similar behaviors in Cognitive Systems. At a high level, the cognitive
intelligence based human decision process has four basic components as follows:

Observe Interpret Evaluate Decide

Figure 12.5: Basic components of cognitive intelligence based human decision process

We observe the environment and the various inputs simultaneously through the sensory
organs. The inputs are interpreted within the context of environmental state. During the
interpretation stage, we refer to the historical data as well as the intended goal for the
process. Once the interpretation is done, various options based on the past experiences and
future rewards are evaluated and the best option is selected, which maximizes the overall
gain. The decision making is also based on a reinforcement learning process, which we have
seen in Chapter 10, Reinforcement Learning. Any platform that facilitates the decision making
processes based on cognitive intelligence needs to implement the four building blocks at the
core.

[335]

Cognitive Computing Chapter 12

While the research is ongoing and it will accelerate in the near future, companies like IBM,
Microsoft, and Google are some of the pioneers in the field. They have already invested in
Al research in general and cognitive computing related research and application
development in particular. The success of IBM's Watson in the game of Jeopardy has
encouraged the community to make the application using cognitive intelligence
commercially available. There is also a commitment from the front runners to democratize
the knowledge as well as create layers of abstraction for wider and easy adoption. As a
result, the community of data scientists and enthusiasts have access to storage and
computing power with minimum boot time as well as minimum cost to explore and
experiment. Let us explore some of the frameworks, APIs, and tools that are available for
running experiments and research in cognitive intelligence.

IBM cognitive toolkit based on Watson

IBM initially developed Watson as an engine that could play the game of Jeopardy. In this
game, a human moderator asks questions in a somewhat cryptic manner in natural
language. The question is heard by all the participants at the same time. The players can
press a buzzer to indicate that they are ready with an answer. The first player to press the
buzzer gets the chance to answer the question. Watson was successful in outperforming the
Jeopardy world champion in year 2010. As we can see, this process also goes through the
Observe | Interpret | Evaluate | Decide cycle. Here is the high-level architecture of IBM
Watson as an intelligent machine that can answer questions in natural language:

Answer Knowledge Base Evidence
1. Observe sources sources
Question Do — Candidate Supporting Deep
Y - answer evidence |— evidence
search - N A
generation retrieval scoring
a .
= 5 ; 4. Decide
Y o 0
Question Query Hypothesis N Soft || Hypothesis and : Final merging
analysis Kl decomposition Ed generation filtering P evidence scoring Synthesis and ranking
A
Trained
« | Hypothesis 3 Soft Ly Hypothesis and models
71 generation filtering evidence scoring
Al v
2. Interpret 3. Evaluate Answer
and
confidence
>

Figure 12.6: High level architecture of IBM Watson as an intelligent machine

[336]

Cognitive Computing Chapter 12

"The computer’s techniques for unravelling Jeopardy! clues sounded just like mine. That
machine zeroes in on keywords in a clue then combs its memory (in Watson's case, a 15-
terabyte databank of human knowledge) for clusters of associations with those words. It
rigorously checks the top hits against all the contextual information it can muster: the
category name; the kind of answer being sought; the time, place, and gender hinted at in
the clue; and so on. And when it feels sure enough, it decides to buzz. This is all an instant,
intuitive process for a human Jeopardy player, but I felt convinced that under the hood my
brain was doing more or less the same thing.”

—Ken Jennings (one of the best players in Jeopardy)

After the initial success of Watson as a Jeopardy engine, IBM has evolved Watson into
Cognitive Intelligence as a Service and it is available on IBM cloud. The Cognitive System
enablers that we have seen earlier in this chapter (Data, Computation, Connectivity,
Sensors, Understanding of human brain functioning, Nature, and collective intelligence) are
made available with a common interface on the platform.

Watson-based cognitive apps

At the time of writing, IBM supports the following cognitive applications as services on the
IBM Cloud platform:

e Watson assistant: This application was formally named as "Conversation". This
application makes it easy to add a natural language interface to any application.
It is easy to train the model for the domain-specific queries and implement
customized chatbots.

¢ Discovery: This application enables search into the user's documents as well as a
generic cognitive keyword based search on the internet. The service delivers
connections, metadata, trends, and sentiment information by default. It is
possible to input data from local filesystems, emails, and scanned documents in
unstructured format. It is also possible to connect to enterprise storage repository
(sharepoint) or a relational database store. It can seamlessly connect to the
content on cloud storages.

[337]

Cognitive Computing Chapter 12

¢ Knowledge Catalog: The application facilitates organization of data assets for
experimenting with various data science algorithms and hypothesis. A data
science project in the knowledge catalog contains data, collaborators, notebooks,
data flows, and dashboards for visualization. Watson knowledge catalog is a
handy and useful application when there are thousands of datasets and hundreds
of data scientists who need access to these datasets simultaneously and need to
collaborate. The knowledge catalog provides tools to index the data, classify the
documents, and control access based on the users and roles. The application
supports three user roles. Administrators with full control over the data assets,
Editors who can add content to the catalog and grant access to various users, and
Viewers who have role-based access to data assets.

¢ Language Translator: This is an easy to use application that is a handy tool that
can be easily incorporated within mobile and web applications in order to
provide language translation services. This can facilitate development of
multilingual applications.

e Machine Learning: With this app we can experiment and build various machine
learning models in a context sensitive assisted manner within the Watson studio.
The models are very easy to build with model builder web application available
on IBM cloud. The flow editor provides a graphical user interface to represent the
model and this is based on SparkML nodes representation of the DAGs (Directed
Acyclic Graphs).

¢ Natural Language Understanding: This is a cognitive application which makes it
easy to interpret the natural language based on pre-built trained models. It makes
it very easy to integrate within mobile and web applications. The app supports
identification of concepts, entities, keywords, categories, sentiment, emotion and
most importantly semantic relationship between the natural language text
presented as input.

[338]

Cognitive Computing Chapter 12

¢ Personality Insights: This application gets as close as possible to cognitive
intelligence human beings demonstrate while interacting with each other. We
judge a person by the use of specific words in the language, the assertion in
making certain statements, pitch, openness to ideas from others, and so on. This
application applies linguistic analytics and personality theory using various
algorithms and comes up with a Big Five, Needs, and Values score based on the
text available in Twitter feeds, blogs, or recorded speeches from a person. The
output from the service is delivered in a JSON format that contains percentile
scores on various parameters, as seen in the following screenshot:

*% = percentile “% = percentile *% = percentile
Personality Consumer Needs Values
Conscientiousness v Structure Stimulation
81% 958% §2%
. 0 o
Emotional range ~ Challenge Helping others
79% 95% T6%
9 @
Introversion/Extraversion v Liberty Achievement
78% 95% 56%
@ L & @
Openness v Stability
63% 93%
e - Tradition
Curiosity 24%
92% Y
Agreeableness ® Taking pleasure in life
31% 19%
° z= °

Figure 12.7: Percentage scores on various parameters

e Speech to Text and Text to Speech: These are two services to add the speech
recognition capabilities to the enterprise applications. The services transcribe the
speech from various languages and a variety of dialects and tones. The services
support broadband and narrow-band audio formats. The text transmissions
(requests and responses) support JSON format and UTF-8 character set.

[339]

Cognitive Computing Chapter 12

¢ Tone Analyzer: This is another cognitive skill that we humans possess. From the
tone of a speaker, we can identify the mood and the overall connotation. This
determines the overall effectiveness of a specific communication session when it
comes to call centers and other customer interactions. The service offerings can be
optimized based on the detected tone of the client. This service leverages
cognitive linguistic analytics for identification of various types of tones and
categorize emotions (anger, joy, and so on), social nature (openness, emotional
range, and so on), and language styles (confident and tentative).

¢ Visual Recognition: This services enables applications to recognize images and
identify objects and faces that are uploaded to the service. The tagged keywords
are generated with confidence scores. The service utilizes deep learning
algorithms.

e Watson Studio: This service makes it very easy to explore machine learning and
cognitive intelligence algorithms and embed the models into the applications.
The studio provides data exploration and preparation capabilities and facilitates
collaborations among project teams. The data assets and notebooks can be shared
and visualization dashboards can be easily created with the Watson Studio
interface.

Developing with Watson

Watson provides all the services listed previously along with many more on IBM Cloud
infrastructure. There is a consistent web-based user interface for all the services, which
enables quick developments of the prototypes and tests. The cognitive services can be easily
integrated within the applications since most of those work with REST API calls to the
service. The interactions with Watson are secure with encryption and user authentication.
Let us develop a language translator using Watson service.

Setting up the prerequisites
In order to leverage IBM Watson services, we require an IBMid:

1. Create an IBMid at https://console.bluemix.net/registration/?target=
$2Fdeveloper%$2Fwatson%2Fdashboard.

2. Log in to IBM Cloud with the login name and password.

[340]

https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdashboard
https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdashboard
https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdashboard
https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdashboard
https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdashboard
https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdashboard
https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdashboard
https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdashboard
https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdashboard
https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdashboard
https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdashboard
https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdashboard
https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdashboard
https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdashboard
https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdashboard
https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdashboard

Cognitive Computing

Chapter 12

3. Browse the Watson services catalog at https://console.bluemix.net/catalog/?

search=label:litecategory=watson:

Build cognitive apps that help enhance, scale, and accelerate human expertise.

Watson Assistant (formerly
Conversation)

Add a natural language interface to
your application to automate

IBM

Language Translator

=) ¢ Translate text from one language to

another for specific domains.

Discovery

Add a cognitive search and content
analytics engine to applications.

Lite 1IBM

Machine Learning

IBM Watson Machine Learning - make “

smarter decisions, solve tou

Knowledge Catalog

Discover, catalog, and securely share
enterprise data.

1BM

Natural Language Understanding

Analyze text to extract meta-data from
content such as concepts, &

Lite 1BM Lite 1BM

IBM

Personality Insights Speech to Text Text to Speech

The Watson Personality Insights Low-latency, streaming transcription Synthesizes natural-sounding speech

derives insights from transa from text.

IBM Lite JEN 1BM

Figure 12.8: IBM services catalog

4. Select Service Name (you can use the default name), region/location to deploy
the service in, and create the service by clicking on the Create button.

5. Create the service credentials (username and password) for authenticating the
requests to your language translation service:

Watson f
Getting started .
(7) Language Translator-j8

Location: United Kingdom org I Soace: dev

Manage
Service credentials

Plan

Service credentials
Connections

Credentials are provided in J50N format. The JSON snippet lists credentials, such as the API key and secret, as well as connection View More

information for the service.

Service credentials

New credential &

Figure 12.9: Language translator

[341]

https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson
https://console.bluemix.net/catalog/?search=label:lite&category=watson

Cognitive Computing Chapter 12

6. Once we get the service credentials along with URL endpoint, the language
translator service is ready to serve the requests for translating text between
various supported languages.

Developing a language translator application in Java

We proceed as follows:

1. Create a Maven project and add the following dependency for including Watson
libraries:

<dependency>
<groupId>com.ibm.watson.developer_cloud</groupId>
<artifactId>java-sdk</artifactId>
<version>5.2.0</version>
</dependency>

2. Write the Java code for calling various API methods for LanguageTranslator:
package com.aibd;

import com.ibm.watson.developer_cloud.language_translator.v2.*;
import
com.ibm.watson.developer_cloud.language_translator.v2.model.*;

public class WatsonLanguageTranslator {
public static void main(String[] args) {
// Initialize the Language Translator object with your
authentication details
LanguageTranslator languageTranslator = new
LanguageTranslator ("{USER_NAME}", "{PASSWORD}") ;
// Provide the URL end point which is provided along with
service credentials
languageTranslator.setEndPoint ("https://gateway.watsonplatform.net/
language-translator/api");
// Create TranslateOptions object with the builder and adding
the text which needs to be
// translated
TranslateOptions translateOptions = new
TranslateOptions.Builder ()
.addText ("Artificial Intelligence will soon become
mainstream in everyone's life")
.modelId("en-es") .build();
// Call the translation API and collect the result in
TransalationResult object
TranslationResult result =

[342]

Cognitive Computing Chapter 12

languageTranslator.translate (translateOptions)
.execute () ;

// Print the JSON formatted result

System.out.println (result);

// This is a supporting API to list all the identifiable
languages

IdentifiablelLanguages languages =
languageTranslator.listIdentifiableLanguages ()

.execute () ;

//System.out.println (languages) ;
// The API enables identification of the language based on the
entered text.
IdentifyOptions options = new IdentifyOptions.Builder ()
.text ("this is a test for identification of the
language")
Jbuild();
// The language identification API returns a JSON object with
level of confidence
// for all the identifiable languages
IdentifiedLanguages identifiedLanguages =
languageTranslator.identify (options) .execute();
//System.out.println (identifiedLanguages) ;
// API to list the model properties
GetModelOptions optionsl = new
GetModelOptions.Builder () .modelId("en-es") .build();
TranslationModel model =
languageTranslator.getModel (optionsl) .execute();
//System.out.println (model) ;

}

Output # 1: The translation output is returned in JSON format, which contains a number of
words that are translated, the character count, and the translated text in the target language
based on the model that is selected:

"word_count": 9,
"character_count": 70,
"translations": [
{
"translation": "Inteligencia Artificial pronto serd incorporar en la

vida de todos"

}

[343]

Cognitive Computing Chapter 12

Output # 2: The 1istIdentifiableLanguages provides the list of languages that are
supported in JSON format:

{
"languages": [
{
"language": "af",
"name": "Afrikaans"
}I
{

"language": "ar",
"name": "Arabic"

"language": "az",
"name": "Azerbaijani"

"language": "ba",
"name": "Bashkir"

"language": "be",
"name": "Belarusian"

by

Output # 3: The service provides API for identifying the language of the text that is
provided as input. This is a handy feature for the mobile and web applications where the
user can key-in text in any language and the API detects the language and translates into
the target language. The output is presented in JSON format with the confidence score for
each language. In this case, the service is returning language as English (en) with 0. 995921
confidence:

{
"languages": [

{
"language": "en",
"confidence": 0.995921

}I

{
"language": "nn",
"confidence": 0.00240049

}I

{

"language": "hu",

[344]

Cognitive Computing Chapter 12

"confidence": 5.5941E-4
Fy

Output # 4: The model properties can be displayed with the GetModelOptions API call:

{

"model_id": "en-es",
"name": "en-es",
"source": "en",
"target": "es",
"base_model_id": "",
"domain": "news",
"customizable": true,
"default_model": true,
"owner": "",

"status": "available"

Frequently asked questions

Q: What are the various stages of Al and what is the significance of cognitive capabilities?

A: In terms of applicability and its resemblance level with the human brain, Al can be
divided into three stages. Applied Al is the application of machine learning algorithms on
the data assets in order for the smart machines to define the next course of action. These
smart machines operate on the models that can operate within a pre-defined environmental
context as well as to a certain degree work within stochastic environments. This level of Al
is generally available and is finding use cases and applications in our day to day lives.

Cognitively Simulated Al is the next stage in Al development. In this stage, the intelligent
machines are capable of interfacing with human beings in a natural format (with speech,
vision, body movements and gestures, and so on). This type of interface between man and
machine is seamless and natural and the intelligent machines in this stage can start
becoming complementary to human capabilities. The next stage is Strong Al with which we
intend to develop intelligence machines that match or exceed human cognitive capabilities.
With the availability of large volumes of data along with the machine's brute-force,
potentially these intelligent machines can fully augment human capabilities and help us
define solutions for some of the most difficult problems and open new frontiers in AL At
that point, it will be difficult to differentiate the intelligent machines from human beings in
terms of their cognitive intelligent behavior.

[345]

Cognitive Computing Chapter 12

Q: What is the goal of Cognitive Systems and what are the enablers that move the systems
towards the goal?

A: The primary goal of developing Cognitive Systems is to create intelligent machines that
supplement and augment human capabilities while keeping the interface between man and
machine through primary senses. Instead of interacting with keyboard, mouse with the
machine, we interface through the five primary senses and mind as the sixth organ and
sense. The most important enabler for the development of Cognitive Systems that
incorporate strong Al is availability of data and computation power to process the data.

Q: What is the significance of big data in development of Cognitive Systems?

A: The theory of machine learning, various algorithms, and Cognitive Systems has existed
for decades. The acceleration in the field has started with the advent of big data. The
systems learns from the past patterns that can be searched in the data. The supervised
learning and learning models are more accurate with availability of large volumes of data.
Big data also allows the systems to have access to heterogeneous data assets that provide
key contextual insights within the environment, which makes the intelligent machines more
informed and hence enables wholistic decision making. Cognitive Systems also get benefit
from the availability of big data assets. The knowledge that is available in unstructured
format can be utilized with the use of cognitive intelligence and it opens an entirely new
frontier for Cognitive Systems.

Summary

In this chapter, we were introduced to cognitive computing as the next wave in the
development of artificial intelligence. By leveraging the five primary human senses along
with mind as the sixth sense, the new era of Cognitive Systems can be built. We have seen
the stages of Al and the natural progression towards strong Al along with the key enablers
for achieving strong Al.

We have also seen the history of Cognitive Systems and observed that the growth is
accelerated with availability of big data, which brings large data volumes and the
processing power in a distributed computing framework. While the human brain is far from
being fully understood, the prospects are looking great with the pioneering work done by
some of the large companies that have access to the largest volumes of digital data. The
consistent push towards democratizing the Al by enabling Al as a service, these companies
are accelerating research for the entire community.

[346]

Cognitive Computing Chapter 12

In this book, we have introduced some of the fundamental concepts in Machine Learning
and Al and discussed how big data is enabling accelerated research and development in
this exciting field. However, just like any new tool or innovation in our hand, as long as we
do not lose sight of the overall goal to complement and augment human capabilities, the
field is wide open for more research and some of the exciting new use cases that can become
mainstream in the near future.

[347]

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Artificial
Intelligence

with Python

Artificial Intelligence with Python
Prateek Joshi

ISBN: 9781786464392

Realize different classification and regression techniques

Understand the concept of clustering and how to use it to automatically segment
data

See how to build an intelligent recommender system

Understand logic programming and how to use it

Build automatic speech recognition systems

Understand the basics of heuristic search and genetic programming
Develop games using Artificial Intelligence

Learn how reinforcement learning works

Discover how to build intelligent applications centered on images, text, and time
series data

See how to use deep learning algorithms and build applications based on it

https://www.packtpub.com/big-data-and-business-intelligence/artificial-intelligence-python

Other Books You May Enjoy

Shabbir Challawala, Jaydip Lakhatariya,
Chintan Mehta, Kandarp Patel

MySQL 8
for Big Data

TrrmE | Packb

MySQL 8 for Big Data
Shabbir Challawala

ISBN: 9781788397186

Explore the features of MySQL 8 and how they can be leveraged to handle Big
Data

Unlock the new features of MySQL 8 for managing structured and unstructured
Big Data

Integrate MySQL 8 and Hadoop for efficient data processing
Perform aggregation using MySQL 8 for optimum data utilization

Explore different kinds of join and union in MySQL 8 to process Big Data
efficiently

Accelerate Big Data processing with Memcached
Integrate MySQL with the NoSQL API
Implement replication to build highly available solutions for Big Data

[349]

https://www.packtpub.com/big-data-and-business-intelligence/mysql-8-big-data

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[350]

Index

A B

activation functions backpropagation 128, 130
about 102 backpropagation model 113,115
hyperbolic tangent (tanh) function 104 big data frameworks
RelLu function 104, 105 about 17
sigmoid function 103 batch processing 18

Al-based defense 310, 311 real-time processing 19

ALU (Arithmetic and Logic Unit) 15 big data

ant colony optimization (ACO) model 253, 254, for critical infrastructure protection 295

255 value 15

Apache Hadoop 18 variety 14

Apache Hive 302 velocity 14

Apache Pig 302 volume 14

ArcSight ESM 319

ARFF (Attribute-Relation File Format) 226 C

artificial intelligence (Al)
about 8,12, 322
applied Al 325
big data 13
cognitively simulated Al 326
expert systems 20
fuzzy logic systems 20
intelligent robotics 20
natural language processing 20
strong Al 326
artificial neural networks (ANN)
about 123,291
fundamentals 96
structure 97
Artificial Neuro-Fuzzy Inference Systems (ANFIS)
about 198
adaptive network 198
architecture 199, 200, 201
hybrid learning algorithm 199, 200, 201

capabilities, Cognitive Systems
control 331
decision support 331
exploration 330
information enrichment 330
natural language interface 332
navigation 331
physical activity 330
retrieval 330
semantic search 330
state manipulation 330
cluster manager
reference link 60
Coarse to Fine search 144
cognitive intelligence
as service 335, 336
cognitive science
about 323, 324, 326
audition 323
gustation 323
olfaction 323

somatosensation 323
vision 323
Cognitive Systems (CS)
about 327, 328
big data analytics, application 333, 334
goals 330
history 328
collective intelligent systems
advantages 247, 248
components, conceptual data flow
Apache Hive 302
Apache Pig 302
Hadoop Distributed Filesystem (HDFS) 300
MapReduce (MR) 301
NoSQL (Not only SQL) 301
components, Ontologies
axioms 29
concepts 29
instances 29
operations 29
relationships 29
slots 29
components, velocity function
inertia 251
self-knowledge 252
social-knowledge 252
concepts, matrix theory
diagonal matrix 82
identity matrices 82
matrix addition 81
matrix multiplication 82
transpose of a matrix 81
concepts, Spark ML API
estimator algorithm 62
pipeline 62
transformer function 61
conceptual data flow 299
conditional probability 181
content-based recommendation systems 88, 90,
92
continuous bag of words model (CBOW) 176
convolution neural networks (CNNs) 292
CPU (Central Processing Unit) 15
crisp sets
about 192

[352]

attributes 192
notations 192
operations 193
properties 194
critical infrastructure (CI)
about 295
anomaly detection 297
conceptual data flow 299
corrective actions 298
data analysis 296
data collection 296
semi-structured data 297
structured data 297
unstructured data 297
cyber security 294

D

data clustering

about 73

centroid models 74

connectivity models 74

density models 74

distribution models 74

fixed clustering 74

probabilistic clustering 74
Data Dimensionality Reduction (DDR) 78, 79
data preparation pipelines

building 133, 135, 136, 138
databases

versus Ontologies 29
Dawson stemming

above 169

advantages 169
deep learning

backpropagation 128, 130

basics 124

building blocks 124

dropout 132

gradient-based learning 126, 127, 128

non-linearities 130, 131
deep neural networks (DNNs) 291
deep Q-network (DQN) 292
deeplearning4j (DL4J)

about 124

experimenting 147, 148, 150

defuzzification

about 197

methods 197
degree of membership 191
derivative 126

design principles, for S| system development

adaptability principle 249
diverse response principle 249
proximity principle 248
quality principle 248
distributed computing
about 152, 153
data distribution 153
model distribution 152
distributed deep learning
about 154
DL4J 155
Keras 158
Spark 155
TensorFlow 157
dropout 132
dynamic programming
about 276

deterministic environment, with policy iteration

277,279, 280
dynamical data
handling 266

E

electronic brain, capabilities

brute force 12

speed information storage 11
enablers, Cognitive Systems (CS)

computation 332

connectivity 332

data 332

nature 333

sensors 332

theories in human brain 332
Encog API structure 221, 222, 223
Encog framework

about 221

development environment setup 221
Enterprise Data Hub (EDH) 334
epoch 146

[353]

evolutionary algorithms (EAs) 216
Extract Load and Transform (ELTTT) 133
Extract Transform and Load (ETL) 133

F

feature extraction
about 171
one hot encoding 171
TF-IDF method 172, 174
Word2Vec 176
Feed Forward Neural Networks 106, 164
fundamentals, Security Incident and Event
Management (SIEM)
data collection 313
data normalization 314
data persistence 313
data visualization 314
visualization attributes 314, 315
visualization features 314, 315
fuzzification 194, 196
fuzzy C-means clustering 202, 203, 204
fuzzy inference 197, 198
fuzzy inference systems (FIS) 198
fuzzy logic
crisp sets 192
fundamentals 190
fuzzy sets 191

G

generalized linear model 68
genetic algorithm
about 221
attribute search, in Weka 238
structure 213,214, 216
genetic programming 221
goals, Hadoop Distributed File System (HDFS)
hardware failure 300
large datasets 300
portability across heterogeneous hardware
platform 300
portability across heterogeneous software
platform 300
simple coherency model 300
gradient descent

about 110
pseudocode 112,113
gradient-based learning 126, 127, 128

H

Hadoop Distributed File System (HDFS)
about 18, 135, 300
InputFormat 135
InputSplit 135
RecordReader 135

human brain, capabilities
low energy consumption 11
processing power 11
sensory input 10
storage 10

human memory
long-term memory 25
sensory memory 24
short-term memory 25

hyperbolic tangent (tanh) function 104

hyperparameter tuning
about 143
experimenting 147, 148, 150
grid search 143
learning rate 144, 145
number of epochs 146
number of hidden units 146
number of training iterations 145
random search 143

hypothesis 55

information technology (IT) 328
injection attack 310
InputFormat

about 135

FilelnputFormat 135

SequenceFilelnputFormat 135

TextInputFormat 135
InputSplit 135
intelligence

about 16

tasks classification 17
intelligent agent

characteristics 45, 46

intelligent applications

with big data 20

intelligent machines

building, Ontologies used 44

Internet of Things (IoT) 13

In

verse Document Frequency (IDF) 91, 172, 174

J

Java Virtual Machine (JVM)

about 60

cluster manager 60
driver 60

executor 60

Java

language translator application, developing 342,
344

K

K-means algorithm

about 75
implementation, with Spark ML 77

Kafka 306, 307, 308
KEEL framework 216,219
Keras

about 158
reference link 158

key considerations, stream processing

low latency analysis 303
unbounded data 303
unbounded data processing 303

knowledge graph 31

L

Lancaster stemming 168
language translator application, developing

prerequisites, setting up 340, 341

language translator application

developing, in Java 342, 344
developing, with Watson 340

LASSO regression 73
lateral movement 309
Least Absolute Shrinkage Selection Operator

[354]

(LASSO) 73

least square method 64, 66, 67 N
lemmatization 170

linear algebra N-grams 170
about 80 Naive Bayes (NB) 62, 181
matrix 81 Naive Bayes' algorithm 181, 182
scalar 80 Naive Bayes' text classification
vectors 80 code example 183
linear model 98 Natural language processing (NLP)
linear regression about 162, 163
about 64 hierarchy 164, 165
example 108, 109, 111 neural net architectures
least square method 64, 66, 67 implementing 140, 141, 142
logistic regression neural network
about 68, 69 component notations 99
with Spark 70 fundamentals 96
Lovins stemming 169 neuro-fuzzy-classifier (NEFCLASS) 206, 208
NLP techniques
M applying 179
machine learning (ML) 322 text classification 180
nodes 263

machines evolution 15
MapReduce (MR) 301
Markov decision processes (MDPs)
about 274,276
deterministic environment 274
stochastic environment 274
Markov process 275
matrix theory

non-linearities

about 130, 131

rectified linear unit (RELU) 131

sigmoid function 131

tanh function 131
nonlinearities model 106
NoSQL (Not only SQL) 301

about 80
inverse matrices 82 0
linear regression in matrix form 83 one hot encoding 171
symmetric matrix 82 Ontologies
metadata 26 about 24
model training 55 advantages 28
modules, KEEL framework challenges, in big data 33
data management 218 components 29, 30
experiments 219 goals, in big data 32
Multi-Agent Simulation Of Neighborhoods or in big data 30, 31
Networks (MASON) library properties 27, 28
about 256 Resource Description Framework (RDF) 33, 35
layered architecture 257, 258, 260 used, for building intelligent machines 44
multi-objective optimization 266 versus databases 29
multicollinearity 73 Ontology alignment 32
multiple linear regression 64 Ontology learning
about 47

approaches 47

[355]

challenges 47, 48

process 48, 49
Ontology of information science 26
Opt4d library 261, 262
overfitting 115, 116

P

particle swarm optimization (PSO)
about 249, 250
implementation considerations 252
PCA algorithm, using singular value decomposition
feature scaling 87
mean normalization 87
perceptron 98
pheromones 245
phishing 309
platforms as a service (PAAS) 333
polynomial regression 70, 71
porter stemming
about 167
reference link 167
principal component analysis method 86
principles, genetic theory
heredity 211
mutation 212
reproduction 211
selection 211
variation 211
principles, particle swarm optimization (PSO)
alignment 249
separation 249
Programmable Logic Controllers (PLCs) 295
properties, swarm intelligence (SI)
division of labor 246
self-organization 244, 245
stigmergy 246
pruning 165

Q

Q-Learning 280, 282, 284, 289

R

Random Forest 182, 183
RDDs (Resilient Distributed Datasets) 19

[356 1]

real-time processing frameworks
Apache Flink 19
Apache Spark 19
Apache Storm 19
Recurrent Neural Network (RNN)
about 117, 164
need for 117
structure 118
training 118,119
recursive least square estimator (RLSE) 201
regression 57
regression analysis
about 63
generalized linear model 68
LASSO regression 73
linear regression 64
logistic regression 68, 69
polynomial regression 70, 71
ridge regression 73
stepwise regression 72
reinforcement learning algorithms
about 291, 292
average reward model 273
concept 270,271,273
finite horizon model 272
infinite horizon model 273
reinforcement learning
about 276
Markov decision processes (MDPs) 274, 276
techniques 274
RelLu function 104, 105
Resilient Distributed Datasets 59
Resource Description Framework (RDF)
about 33, 35, 52
attributes 38
classes 37
containers 36
properties 37
results pyramid 9
ridge regression 73

S

SCADA (Supervisory Control and Data Acquisition)
295
Security Incident and Event Management (SIEM)

312
self-organization (SO) 244
semantics, stream processing
at least once 304
at most once 304
exactly once 304
sentiment analysis
implementing 185, 187
sigmoid function 103
simple linear regression 64
simple perceptron model
mathematical representation 100, 101
singular value decomposition
about 80
implementing, with Spark ML 87
properties 84
with Spark ML 84
Skip-Gram model 176, 178
Snowball stemming
about 168
reference link 168
social insects 242
Spark ML API 61
Spark ML
K-means algorithm implementation 77
singular value decomposition 84
singular value decomposition, implementing 87
Spark MLIib library 61
Spark programming model 58, 60
Spark RDDs
reference link 60
Spark Streaming 305

Spark's Machine Learning library (Spark MLIib) 53

Spark, using DL4J

APl overview 155, 157
Spark

about 59

logistic regression 70
SPARQL Protocol and RDF Query Language 40
SPARQL

about 40, 41, 42

features 43, 44

generic structure 42, 43
Splunk 315
Splunk Enterprise Security 316

[357]

Splunk Light 316, 318
Splunk Search Processing Language (SPL) 317
standard error 67
state transition rule 255
State-Action-Reward-State-Action (SARSA) 289,
290
stemming
about 167
Dawson stemming 169
Lancaster stemming 168
Lovins stemming 169
porter stemming 167
Snowball stemming 168
stepwise regression
about 72
backward elimination 72
forward selection 72
stigmergy 246
stop words 165
stream processing
about 303
Kafka 306, 307, 308
Spark Streaming 305
supervised machine learning 53, 54, 56, 57
swarm intelligence (SI)
about 243
big data analytics, applications 263, 264, 265

T

TensorFlow

about 157

downloading, reference link 157
Term Frequency (TF) 90, 172, 174
terminologies, genetic algorithm

decoding 212

diversity 212

encoding 212

generation 212

genotype 212

phenotype 212

population 212
text classification

about 179, 180

Naive Bayes' algorithm 181, 182

Random Forest 182, 183

text preprocessing
about 165
lemmatization 170
N-grams 170
stemming 167
stop words, removing 165
TF-IDF
references 90
types, cyber security attack
Al-based defense 310, 311
injection attack 310
lateral movement 309
phishing 309
types, decision support system (DSS)
communication 331
data 331
document 331
knowledge 331
model 331
types, intelligence
emotional intelligence 16
interpersonal intelligence 16
linguistic intelligence 16
logical intelligence 16
types, NoSQL (Not only SQL)
columnar databases 301
document databases 301
graph databases 301

U

Universal Resource Identifiers (URIs) 33
Universal Resource Locators (URLs) 33
universe of discourse 192

unsupervised machine learning 53, 54, 56, 57
user defined function (UDF) 220

Vv

vector space models (VSM) 176
velocity function 250

w

Waikato Environment for Knowledge Analysis
(Weka) 225
Watson-based cognitive apps
about 337
discovery 337
knowledge catalog 338
language translator 338
machine learning 338
natural language understanding 338
personality insights 339
speech to text and text to speech 339
tone analyzer 340
visual recognition 340
Watson assistant 337
Watson Studio 340
Watson
IBM cognitive toolkit 336, 337
language translator application, developing 340
Web Ontology Language (OWL)
about 52
OWL DL 39
OWL Full 39
OWL Lite 39
using 38
Weka Explorer
Classify 233, 234, 235, 237
features 230
Preprocess 230, 232
Weka framework
about 225,227,229
downloading, reference link 227
Weka
attribute search, with genetic algorithms 238
Word2Vec
about 176
continuous bag of words model (CBOW) 176
Skip-Gram model 178

	Cover
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Big Data and Artificial Intelligence Systems
	Results pyramid
	What the human brain does best
	Sensory input
	Storage
	Processing power
	Low energy consumption

	What the electronic brain does best
	Speed information storage
	Processing by brute force

	Best of both worlds
	Big Data
	Evolution from dumb to intelligent machines
	Intelligence
	Types of intelligence
	Intelligence tasks classification

	Big data frameworks
	Batch processing
	Real-time processing

	Intelligent applications with Big Data
	Areas of AI

	Frequently asked questions

	Summary

	Chapter 2: Ontology for Big Data
	Human brain and Ontology
	Ontology of information science
	Ontology properties
	Advantages of Ontologies
	Components of Ontologies
	The role Ontology plays in Big Data
	Ontology alignment
	Goals of Ontology in big data
	Challenges with Ontology in Big Data
	RDF—the universal data format
	RDF containers
	RDF classes
	RDF properties
	RDF attributes

	Using OWL, the Web Ontology Language
	SPARQL query language
	Generic structure of an SPARQL query
	Additional SPARQL features

	Building intelligent machines with Ontologies
	Ontology learning
	Ontology learning process

	Frequently asked questions

	Summary

	Chapter 3: Learning from Big Data
	Supervised and unsupervised machine learning
	The Spark programming model
	The Spark MLlib library
	The transformer function
	The estimator algorithm
	Pipeline

	Regression analysis
	Linear regression
	Least square method

	Generalized linear model
	Logistic regression classification technique
	Logistic regression with Spark

	Polynomial regression
	Stepwise regression
	Forward selection
	Backward elimination

	Ridge regression
	LASSO regression

	Data clustering
	The K-means algorithm
	K-means implementation with Spark ML

	Data dimensionality reduction
	Singular value decomposition
	Matrix theory and linear algebra overview
	The important properties of singular value decomposition
	SVD with Spark ML

	The principal component analysis method
	The PCA algorithm using SVD
	Implementing SVD with Spark ML

	Content-based recommendation systems
	Frequently asked questions
	Summary

	Chapter 4: Neural Network for Big Data
	Fundamentals of neural networks and artificial neural networks
	Perceptron and linear models
	Component notations of the neural network
	Mathematical representation of the simple perceptron model
	Activation functions
	Sigmoid function
	Tanh function
	ReLu

	Nonlinearities model
	Feed-forward neural networks
	Gradient descent and backpropagation
	Gradient descent pseudocode
	Backpropagation model

	Overfitting
	Recurrent neural networks
	The need for RNNs
	Structure of an RNN
	Training an RNN

	Frequently asked questions
	Summary

	Chapter 5: Deep Big Data Analytics
	Deep learning basics and the building blocks
	Gradient-based learning
	Backpropagation
	Non-linearities
	Dropout

	Building data preparation pipelines
	Practical approach to implementing neural net architectures
	Hyperparameter tuning
	Learning rate
	Number of training iterations
	Number of hidden units
	Number of epochs
	Experimenting with hyperparameters with Deeplearning4j

	Distributed computing
	Distributed deep learning
	DL4J and Spark
	API overview

	TensorFlow
	Keras

	Frequently asked questions
	Summary

	Chapter 6: Natural Language Processing
	Natural language processing basics
	Text preprocessing
	Removing stop words
	Stemming
	Porter stemming
	Snowball stemming
	Lancaster stemming
	Lovins stemming
	Dawson stemming

	Lemmatization
	N-grams

	Feature extraction
	One hot encoding
	TF-IDF
	CountVectorizer
	Word2Vec
	CBOW
	Skip-Gram model

	Applying NLP techniques
	Text classification
	Introduction to Naive Bayes' algorithm
	Random Forest
	Naive Bayes' text classification code example

	Implementing sentiment analysis
	Frequently asked questions
	Summary

	Chapter 7: Fuzzy Systems
	Fuzzy logic fundamentals
	Fuzzy sets and membership functions
	Attributes and notations of crisp sets
	Operations on crisp sets
	Properties of crisp sets

	Fuzzification
	Defuzzification
	Defuzzification methods

	Fuzzy inference

	ANFIS network
	Adaptive network
	ANFIS architecture and hybrid learning algorithm

	Fuzzy C-means clustering
	NEFCLASS
	Frequently asked questions
	Summary

	Chapter 8: Genetic Programming
	Genetic algorithms structure
	KEEL framework
	Encog machine learning framework
	Encog development environment setup
	Encog API structure

	Introduction to the Weka framework
	Weka Explorer features
	Preprocess
	Classify

	Attribute search with genetic algorithms in Weka
	Frequently asked questions
	Summary

	Chapter 9: Swarm Intelligence
	Swarm intelligence
	Self-organization
	Stigmergy
	Division of labor
	Advantages of collective intelligent systems
	Design principles for developing SI systems

	The particle swarm optimization model
	PSO implementation considerations

	Ant colony optimization model
	MASON Library
	MASON Layered Architecture

	Opt4J library
	Applications in big data analytics
	Handling dynamical data
	Multi-objective optimization
	Frequently asked questions
	Summary

	Chapter 10: Reinforcement Learning
	Reinforcement learning algorithms concept
	Reinforcement learning techniques
	Markov decision processes
	Dynamic programming and reinforcement learning
	Learning in a deterministic environment with policy iteration

	Q-Learning
	SARSA learning

	Deep reinforcement learning
	Frequently asked questions
	Summary

	Chapter 11: Cyber Security
	Big Data for critical infrastructure protection
	Data collection and analysis
	Anomaly detection
	Corrective and preventive actions
	Conceptual Data Flow
	Components overview
	Hadoop Distributed File System
	NoSQL databases
	MapReduce
	Apache Pig
	Hive

	Understanding stream processing
	Stream processing semantics
	Spark Streaming
	Kafka

	Cyber security attack types
	Phishing
	Lateral movement
	Injection attacks
	AI-based defense

	Understanding SIEM
	Visualization attributes and features

	Splunk
	Splunk Enterprise Security
	Splunk Light

	ArcSight ESM
	Frequently asked questions
	Summary

	Chapter 12: Cognitive Computing
	Cognitive science
	Cognitive Systems
	A brief history of Cognitive Systems
	Goals of Cognitive Systems
	Cognitive Systems enablers

	Application in Big Data analytics
	Cognitive intelligence as a service
	IBM cognitive toolkit based on Watson
	Watson-based cognitive apps
	Developing with Watson
	Setting up the prerequisites
	Developing a language translator application in Java

	Frequently asked questions
	Summary

	Other Books You May Enjoy
	Index

