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Preface
Apache Hadoop is the most popular platform for big data processing, and can be combined
with a host of other big data tools to build powerful analytics solutions. Big Data Analytics
with Hadoop 3 shows you how to do just that, by providing insights into the software as well
as its benefits with the help of practical examples.

Once you have taken a tour of Hadoop 3's latest features, you will get an overview of
HDFS, MapReduce, and YARN, and how they enable faster, more efficient big data
processing. You will then move on to learning how to integrate Hadoop with open source
tools, such as Python and R, to analyze and visualize data and perform statistical
computing on big data. As you become acquainted with all of this, you will explore how to
use Hadoop 3 with Apache Spark and Apache Flink for real-time data analytics and stream
processing. In addition to this, you will understand how to use Hadoop to build analytics
solutions in the cloud and an end-to-end pipeline to perform big data analysis using
practical use cases.

By the end of this book, you will be well-versed with the analytical capabilities of the
Hadoop ecosystem. You will be able to build powerful solutions to perform big data
analytics and get insights effortlessly.

Who this book is for
Big Data Analytics with Hadoop 3 is for you if you are looking to build high-performance
analytics solutions for your enterprise or business using Hadoop 3's powerful features, or if
you’re new to big data analytics. A basic understanding of the Java programming language
is required.

What this book covers
Chapter 1, Introduction to Hadoop, introduces you to the world of Hadoop and its core
components, namely, HDFS and MapReduce.

Chapter 2, Overview of Big Data Analytics, introduces the process of examining large
datasets to uncover patterns in data, generating reports, and gathering valuable insights.



Preface

[ 2 ]

Chapter 3, Big Data Processing with MapReduce, introduces the concept of MapReduce,
which is the fundamental concept behind most of the big data computing/processing
systems.

Chapter 4, Scientific Computing and Big Data Analysis with Python and Hadoop, provides an
introduction to Python and an analysis of big data using Hadoop with the aid of Python
packages.

Chapter 5, Statistical Big Data Computing with R and Hadoop, provides an introduction to R
and demonstrates how to use R to perform statistical computing on big data using Hadoop.

Chapter 6, Batch Analytics with Apache Spark, introduces you to Apache Spark and
demonstrates how to use Spark for big data analytics based on a batch processing model.

Chapter 7, Real-Time Analytics with Apache Spark, introduces the stream processing model of
Apache Spark and demonstrates how to build streaming-based, real-time analytical
applications.

Chapter 8, Batch Analytics with Apache Flink, covers Apache Flink and how to use it for big
data analytics based on a batch processing model.

Chapter 9, Stream Processing with Apache Flink, introduces you to DataStream APIs and
stream processing using Flink. Flink will be used to receive and process real-time event
streams and store the aggregates and results in a Hadoop cluster.

Chapter 10, Visualizing Big Data, introduces you to the world of data visualization using
various tools and technologies such as Tableau.

Chapter 11, Introduction to Cloud Computing, introduces Cloud computing and various
concepts such as IaaS, PaaS, and SaaS. You will also get a glimpse into the top Cloud
providers.

Chapter 12, Using Amazon Web Services, introduces you to AWS and various services in
AWS useful for performing big data analytics using Elastic Map Reduce (EMR) to set up a
Hadoop cluster in AWS Cloud.
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To get the most out of this book
The examples have been implemented using Scala, Java, R, and Python on a Linux 64-bit.
You will also need, or be prepared to install, the following on your machine (preferably the
latest version):

Spark 2.3.0 (or higher)
Hadoop 3.1 (or higher)
Flink 1.4
Java (JDK and JRE) 1.8+
Scala 2.11.x (or higher)
Python 2.7+/3.4+
R 3.1+ and RStudio 1.0.143 (or higher)
Eclipse Mars or Idea IntelliJ (latest)

Regarding the operating system: Linux distributions are preferable (including Debian,
Ubuntu, Fedora, RHEL, and CentOS) and, to be more specific, for example, as regards
Ubuntu, it is recommended having a complete 14.04 (LTS) 64-bit (or later) installation,
VMWare player 12, or Virtual box. You can also run code on Windows (XP/7/8/10) or
macOS X (10.4.7+).

Regarding hardware configuration: Processor Core i3, Core i5 (recommended) ~ Core i7 (to
get the best result). However, multicore processing would provide faster data processing
and scalability. At least 8 GB RAM (recommended) for a standalone mode. At least 32 GB
RAM for a single VM and higher for cluster. Enough storage for running heavy jobs
(depending on the dataset size you will be handling) preferably at least 50 GB of free disk
storage (for stand alone and SQL warehouse).

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
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You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Big-Data-Analytics-with-Hadoop-3. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ ​/​www. ​packtpub. ​com/​sites/ ​default/ ​files/
downloads/​BigDataAnalyticswithHadoop3_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "This file, temperatures.csv, is available as a download and once downloaded,
you can move it into hdfs by running the command, as shown in the following code."

A block of code is set as follows:

hdfs dfs -copyFromLocal temperatures.csv /user/normal

http://www.packtpub.com/support
https://github.com/PacktPublishing/Big-Data-Analytics-with-Hadoop-3
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/BigDataAnalyticswithHadoop3_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataAnalyticswithHadoop3_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataAnalyticswithHadoop3_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataAnalyticswithHadoop3_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataAnalyticswithHadoop3_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataAnalyticswithHadoop3_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataAnalyticswithHadoop3_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataAnalyticswithHadoop3_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataAnalyticswithHadoop3_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataAnalyticswithHadoop3_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataAnalyticswithHadoop3_ColorImages.pdf
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When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Map-Reduce Framework -- output average temperature per city name
    Map input records=35
    Map output records=33
    Map output bytes=208
    Map output materialized bytes=286

Any command-line input or output is written as follows:

$ ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
$ chmod 0600 ~/.ssh/authorized_keys

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Clicking on the Datanodes tab shows all the nodes."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

http://www.packtpub.com/submit-errata
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Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://authors.packtpub.com/
https://www.packtpub.com/


1
Introduction to Hadoop

This chapter introduces the reader to the world of Hadoop and the core components of
Hadoop, namely the Hadoop Distributed File System (HDFS) and MapReduce. We will
start by introducing the changes and new features in the Hadoop 3 release. Particularly, we
will talk about the new features of HDFS and Yet Another Resource Negotiator (YARN),
and changes to client applications. Furthermore, we will also install a Hadoop cluster
locally and demonstrate the new features such as erasure coding (EC) and the timeline
service. As as quick note, Chapter 10, Visualizing Big Data shows you how to create a 
Hadoop cluster in AWS.

In a nutshell, the following topics will be covered throughout this chapter:

HDFS
High availability
Intra-DataNode balancer
EC
Port mapping

MapReduce
Task-level optimization

YARN
Opportunistic containers
Timeline service v.2
Docker containerization

Other changes
Installation of Hadoop 3.1

HDFS
YARN
EC
Timeline service v.2
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Hadoop Distributed File System
HDFS is a software-based filesystem implemented in Java and it sits on top of the native
filesystem. The main concept behind HDFS is that it divides a file into blocks (typically 128
MB) instead of dealing with a file as a whole. This allows many features such as
distribution, replication, failure recovery, and more importantly distributed processing of
the blocks using multiple machines. Block sizes can be 64 MB, 128 MB, 256 MB, or 512 MB,
whatever suits the purpose. For a 1 GB file with 128 MB blocks, there will be 1024 MB/128
MB equal to eight blocks. If you consider a replication factor of three, this makes it 24
blocks. HDFS provides a distributed storage system with fault tolerance and failure
recovery. HDFS has two main components: the NameNode and the DataNode.
The NameNode contains all the metadata of all content of the filesystem: filenames, file
permissions, and the location of each block of each file, and hence it is the most important 
machine in HDFS. DataNodes connect to the NameNode and store the blocks within HDFS.
They rely on the NameNode for all metadata information regarding the content in the
filesystem. If the NameNode does not have any information, the DataNode will not be able
to serve information to any client who wants to read/write to the HDFS.

It is possible for NameNode and DataNode processes to be run on a single machine;
however, generally HDFS clusters are made up of a dedicated server running the
NameNode process and thousands of machines running the DataNode process. In order to
be able to access the content information stored in the NameNode, it stores the entire
metadata structure in memory. It ensures that there is no data loss as a result of machine
failures by keeping a track of the replication factor of blocks. Since it is a single point of
failure, to reduce the risk of data loss on account of the failure of a NameNode, a secondary
NameNode can be used to generate snapshots of the primary NameNode's memory
structures.

DataNodes have large storage capacities and, unlike the NameNode, HDFS will continue to
operate normally if a DataNode fails. When a DataNode fails, the NameNode automatically
takes care of the now diminished replication of all the data blocks in the failed DataNode
and makes sure the replication is built back up. Since the NameNode knows all locations of
the replicated blocks, any clients connected to the cluster are able to proceed with little to
no hiccups.

In order to make sure that each block meets the minimum required
replication factor, the NameNode replicates the lost blocks.



Introduction to Hadoop Chapter 1

[ 9 ]

The following diagram depicts the mapping of files to blocks in the NameNode, and the
storage of blocks and their replicas within the DataNodes:

The NameNode, as shown in the preceding diagram, has been the single point of failure
since the beginning of Hadoop.

High availability
The loss of NameNodes can crash the cluster in both Hadoop 1.x as well as Hadoop 2.x. In
Hadoop 1.x, there was no easy way to recover, whereas Hadoop 2.x introduced high
availability (active-passive setup) to help recover from NameNode failures.

The following diagram shows how high availability works:
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In Hadoop 3.x you can have two passive NameNodes along with the active node, as well as
five JournalNodes to assist with recovery from catastrophic failures:

NameNode machines: The machines on which you run the active and standby
NameNodes. They should have equivalent hardware to each other and to what
would be used in a non-HA cluster.

JournalNode machines: The machines on which you run the JournalNodes. The
JournalNode daemon is relatively lightweight, so these daemons may reasonably
be collocated on machines with other Hadoop daemons, for example
NameNodes, the JobTracker, or the YARN ResourceManager. 

Intra-DataNode balancer
HDFS has a way to balance the data blocks across the data nodes, but there is no such
balancing inside the same data node with multiple hard disks. Hence, a 12-spindle
DataNode can have out of balance physical disks. But why does this matter to
performance? Well, by having out of balance disks, the blocks at DataNode level might be
the same as other DataNodes but the reads/writes will be skewed because of imbalanced
disks. Hence, Hadoop 3.x introduces the intra-node balancer to balance the physical disks
inside each data node to reduce the skew of the data. 

This increases the reads and writes performed by any process running on the cluster, such
as a mapper or reducer.

Erasure coding
HDFS has been the fundamental component since the inception of Hadoop. In Hadoop 1.x
as well as Hadoop 2.x, a typical HDFS installation uses a replication factor of three.
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Compared to the default replication factor of three, EC is probably the biggest change in
HDFS in years and fundamentally doubles the capacity for many datasets by bringing
down the replication factor from 3 to about 1.4. Let's now understand what EC is all about. 

EC is a method of data protection in which data is broken into fragments, expanded,
encoded with redundant data pieces, and stored across a set of different locations or
storage. If at some point during this process data is lost due to corruption, then it can be
reconstructed using the information stored elsewhere. Although EC is more CPU intensive,
this greatly reduces the storage needed for the reliable storing of large amounts of data
(HDFS). HDFS uses replication to provide reliable storage and this is expensive, typically
requiring three copies of data to be stored, thus causing a 200% overhead in storage space.

Port numbers
In Hadoop 3.x, many of the ports for various services have been changed.

Previously, the default ports of multiple Hadoop services were in the Linux ephemeral port
range (32768–61000). This indicated that at startup, services would sometimes fail to bind to
the port with another application due to a conflict.

These conflicting ports have been moved out of the ephemeral range, affecting the
NameNode, Secondary NameNode, DataNode, and KMS. 

The changes are listed as follows:

NameNode ports: 50470 → 9871, 50070 → 9870, and 8020 → 9820
Secondary NameNode ports: 50091 → 9869 and 50090 → 9868
DataNode ports: 50020 → 9867, 50010 → 9866, 50475 → 9865, and 50075 → 9864
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MapReduce framework
An easy way to understand this concept is to imagine that you and your friends want to
sort out piles of fruit into boxes. For that, you want to assign each person the task of going
through one raw basket of fruit (all mixed up) and separating out the fruit into various
boxes. Each person then does the same task of separating the fruit into the various types
with this basket of fruit. In the end, you end up with a lot of boxes of fruit from all your
friends. Then, you can assign a group to put the same kind of fruit together in a box, weigh
the box, and seal the box for shipping. A classic example of showing the MapReduce
framework at work is the word count example. The following are the various stages of
processing the input data, first splitting the input across multiple worker nodes and then
finally generating the output, the word counts:

The MapReduce framework consists of a single ResourceManager and multiple
NodeManagers (usually, NodeManagers coexist with the DataNodes of HDFS). 

Task-level native optimization
MapReduce has added support for a native implementation of the map output collector.
This new support can result in a performance improvement of about 30% or more,
particularly for shuffle-intensive jobs.
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The native library will build automatically with Pnative. Users may choose the new
collector on a job-by-job basis by setting
mapreduce.job.map.output.collector.class=org.apache.hadoop.mapred.
nativetask.NativeMapOutputCollectorDelegator in their job configuration. 

The basic idea is to be able to add a NativeMapOutputCollector in order to handle
key/value pairs emitted by mapper. As a result of this sort, spill, and IFile serialization
can all be done in native code. A preliminary test (on Xeon E5410, jdk6u24) showed
promising results as follows:

sort is about 3-10 times faster than Java (only binary string compare is
supported)
IFile serialization speed is about three times faster than Java: about 500 MB per
second. If CRC32C hardware is used, things can get much faster in the range of 1
GB or higher per second
Merge code is not completed yet, so the test uses enough io.sort.mb to prevent
mid-spill

YARN
When an application wants to run, the client launches the ApplicationMaster, which then
negotiates with the ResourceManager to get resources in the cluster in the form of
containers. A container represents CPUs (cores) and memory allocated on a single node to
be used to run tasks and processes. Containers are supervised by the NodeManager and
scheduled by the ResourceManager.

Examples of containers:

One core and 4 GB RAM
Two cores and 6 GB RAM
Four cores and 20 GB RAM
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Some containers are assigned to be mappers and others to be reducers; all this is
coordinated by the ApplicationMaster in conjunction with the ResourceManager. This
framework is called YARN:

Using YARN, several different applications can request for and execute tasks on containers,
sharing the cluster resources pretty well. However, as the size of the clusters grows and the
variety of applications and requirements change, the efficiency of the resource utilization is
not as good over time.

Opportunistic containers
Opportunistic containers can be transmitted to a NodeManager even if their execution at
that particular time cannot begin immediately, unlike YARN containers, which are
scheduled in a node if and only if there are unallocated resources.

In these types of scenarios, opportunistic containers will be queued at the NodeManager till
the required resources are available for use. The ultimate goal of these containers is to
enhance the cluster resource utilization and in turn improve task throughput.



Introduction to Hadoop Chapter 1

[ 15 ]

Types of container execution 
There are two types of container, as follows:

Guaranteed containers: These containers correspond to the existing YARN
containers. They are assigned by the capacity scheduler. They are transmitted to
a node if and only if there are resources available to begin their execution
immediately. 
Opportunistic containers: Unlike guaranteed containers, in this case we cannot
guarantee that there will be resources available to begin their execution once they
are dispatched to a node. On the contrary, they will be queued at the
NodeManager itself until resources become available.

YARN timeline service v.2
The YARN timeline service v.2 addresses the following two major challenges:

Enhancing the scalability and reliability of the timeline service
Improving usability by introducing flows and aggregation

Enhancing scalability and reliability
Version 2 adopts a more scalable distributed writer architecture and backend storage, as
opposed to v.1 which does not scale well beyond small clusters as it used a single instance
of writer/reader architecture and backend storage.

Since Apache HBase scales well even to larger clusters and continues to maintain a good
read and write response time, v.2 prefers to select it as the primary backend storage.

Usability improvements
Many a time, users are more interested in the information obtained at the level of flows or
in logical groups of YARN applications. For this reason, it is more convenient to launch a
series of YARN applications to complete a logical workflow.

In order to achieve this, v.2 supports the notion of flows and aggregates metrics at the flow
level.
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Architecture
YARN Timeline Service v.2 uses a set of collectors (writers) to write data to the back-end
storage. The collectors are distributed and co-located with the application masters to which
they are dedicated. All data that belong to that application are sent to the application level
timeline collectors with the exception of the resource manager timeline collector.

For a given application, the application master can write data for the application to the co-
located timeline collectors (which is an NM auxiliary service in this release). In addition,
node managers of other nodes that are running the containers for the application also write
data to the timeline collector on the node that is running the application master. 

The resource manager also maintains its own timeline collector. It emits only YARN-
generic
life-cycle events to keep its volume of writes reasonable.

The timeline readers are separate daemons separate from the timeline collectors, and they
are dedicated to serving queries via REST API:
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The following diagram illustrates the design at a high level:

Other changes
There are other changes coming up in Hadoop 3, which are mainly to make it easier to
maintain and operate. Particularly, the command-line tools have been revamped to better
suit the needs of operational teams.

Minimum required Java version 
All Hadoop JARs are now compiled to target a runtime version of Java 8. Hence, users that
are still using Java 7 or lower must upgrade to Java 8.
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Shell script rewrite
The Hadoop shell scripts have been rewritten to fix many long-standing bugs and include
some new features. 

Incompatible changes are documented in the release notes. You can find them at https:/ ​/
issues.​apache.​org/ ​jira/ ​browse/ ​HADOOP- ​9902.

There are more details available in the documentation at https:/ ​/​hadoop. ​apache. ​org/
docs/​r3.​0.​0/​hadoop- ​project- ​dist/ ​hadoop- ​common/ ​UnixShellGuide. ​html. The
documentation present at https:/ ​/​hadoop. ​apache. ​org/ ​docs/ ​r3. ​0.​0/ ​hadoop- ​project-
dist/​hadoop-​common/ ​UnixShellAPI. ​html will appeal to power users, as it describes most
of the new functionalities, particularly those related to extensibility.

Shaded-client JARs
The new hadoop-client-api and hadoop-client-runtime artifacts have been added,
as referred to by https:/ ​/​issues. ​apache. ​org/​jira/ ​browse/ ​HADOOP- ​11804. These
artifacts shade Hadoop's dependencies into a single JAR. As a result, it avoids leaking
Hadoop's dependencies onto the application's classpath.

Hadoop now also supports integration with Microsoft Azure Data Lake and Aliyun Object
Storage System as an alternative for Hadoop-compatible filesystems.

Installing Hadoop 3 
In this section, we shall see how to install a single-node Hadoop 3 cluster on your local
machine. In order to do this, we will be following the documentation given at https:/ ​/
hadoop.​apache.​org/ ​docs/ ​current/ ​hadoop- ​project- ​dist/ ​hadoop- ​common/ ​SingleCluster.
html.

This document gives us a detailed description of how to install and configure a single-node
Hadoop setup in order to carry out simple operations using Hadoop MapReduce and the
HDFS quickly.
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Prerequisites
Java 8 must be installed for Hadoop to be run. If Java 8 does not exist on your machine,
then you can download and install Java 8: https:/ ​/ ​www.​java. ​com/ ​en/ ​download/ ​.

The following will appear on your screen when you open the download link in the
browser:

Downloading
Download the Hadoop 3.1 version using the following link: http:/ ​/​apache.
spinellicreations. ​com/ ​hadoop/ ​common/ ​hadoop- ​3.​1. ​0/​.
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The following screenshot is the page shown when the download link is opened in the
browser:

When you get this page in your browser, simply download the hadoop-3.1.0.tar.gz file
to your local machine.

Installation
Perform the following steps to install a single-node Hadoop cluster on your machine:

Extract the downloaded file using the following command:1.

tar -xvzf hadoop-3.1.0.tar.gz

Once you have extracted the Hadoop binaries, just run the following commands2.
to test the Hadoop binaries and make sure the binaries works on our local
machine:

cd hadoop-3.1.0

mkdir input

cp etc/hadoop/*.xml input

bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-
examples-3.1.0.jar grep input output 'dfs[a-z.]+'

cat output/*

If everything runs as expected, you will see an output directory showing some output,
which shows that the sample command worked.
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A typical error at this point will be missing Java. You might want to check
and see if you have Java installed on your machine and the JAVA_HOME
environment variable set correctly.

Setup password-less ssh
Now check if you can ssh to the localhost without a passphrase by running a simple
command, shown as follows:

$ ssh localhost

If you cannot ssh to localhost without a passphrase, execute the following commands:

$ ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
$ chmod 0600 ~/.ssh/authorized_keys

Setting up the NameNode
Make the following changes to the configuration file etc/hadoop/core-site.xml:

<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://localhost:9000</value>
    </property>
</configuration>

Make the following changes to the configuration file etc/hadoop/hdfs-site.xml:

<configuration>
    <property>
        <name>dfs.replication</name>
        <value>1</value>
    </property>
        <name>dfs.name.dir</name>
        <value><YOURDIRECTORY>/hadoop-3.1.0/dfs/name</value>
    </property>
</configuration>
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Starting HDFS
Follow these steps as shown to start HDFS (NameNode and DataNode):

Format the filesystem:1.

$ ./bin/hdfs namenode -format

Start the NameNode daemon and the DataNode daemon:2.

$ ./sbin/start-dfs.sh

The Hadoop daemon log output is written to the $HADOOP_LOG_DIR directory
(defaults to $HADOOP_HOME/logs).

Browse the web interface for the NameNode; by default it is available3.
at http://localhost:9870/.
Make the HDFS directories required to execute MapReduce jobs:4.

$ ./bin/hdfs dfs -mkdir /user
$ ./bin/hdfs dfs -mkdir /user/<username>

When you're done, stop the daemons with the following:5.

$ ./sbin/stop-dfs.sh
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Open a browser to check your local Hadoop, which can be launched in the6.
browser as http://localhost:9870/. The following is what the HDFS
installation looks like:
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Clicking on the Datanodes tab shows the nodes as shown in the following7.
screenshot:

Figure: Screenshot showing the nodes in the Datanodes tab

Clicking on the logs will show the various logs in your cluster, as shown in the8.
following screenshot:
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As shown in the following screenshot, you can also look at the various JVM9.
metrics of your cluster components:

As shown in the following screenshot, you can also check the configuration. This10.
is a good place to look at the entire configuration and all the default settings:
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You can also browse the filesystem of your newly installed cluster, as shown in11.
the following screenshot:

Figure: Screenshot showing the Browse Directory and how you can browse the filesystem in you newly installed cluster
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At this point, we should all be able to see and use a basic HDFS cluster. But this is just a
HDFS filesystem with some directories and files. We also need a job/task scheduling service
to actually use the cluster for computational needs rather than just storage.

Setting up the YARN service
In this section, we will set up a YARN service and start the components needed to run and
operate a YARN cluster:

Start the ResourceManager daemon and the NodeManager daemon:1.

$ sbin/start-yarn.sh

Browse the web interface for the ResourceManager; by default it is available2.
at: http://localhost:8088/

Run a MapReduce job3.

When you're done, stop the daemons with the following:4.

$ sbin/stop-yarn.sh

The following is the YARN ResourceManager, which you can view by putting the
URL http://localhost:8088/ into the browser:

Figure: Screenshot of YARN ResouceManager
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The following is a view showing the queues of resources in the cluster, along with any
applications running. This is also the place where you can see and monitor the running
jobs:

Figure: Screenshot of queues of resources in the cluster

At this time, we should be able to see the running YARN service in our local cluster
running Hadoop 3.1.0. Next, we will look at some new features in Hadoop 3.x.

Erasure Coding
EC is a key change in Hadoop 3.x promising a significant improvement in HDFS utilization
efficiencies as compared to earlier versions where replication factor of 3 for instance caused
immense wastage of precious cluster file system for all kinds of data no matter what the
relative importance was to the tasks at hand. 

EC can be setup using policies and assigning the policies to directories in HDFS. For this,
HDFS provides an ec subcommand to perform administrative commands related to EC:

hdfs ec [generic options]
    [-setPolicy -path <path> [-policy <policyName>] [-replicate]]
    [-getPolicy -path <path>]
    [-unsetPolicy -path <path>]
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    [-listPolicies]
    [-addPolicies -policyFile <file>]
    [-listCodecs]
    [-enablePolicy -policy <policyName>]
    [-disablePolicy -policy <policyName>]
    [-help [cmd ...]]

The following are the details of each command:

[-setPolicy -path <path> [-policy <policyName>] [-

replicate]]: Sets an EC policy on a directory at the specified path.
path: An directory in HDFS. This is a mandatory
parameter. Setting a policy only affects newly created files, and
does not affect existing files.
policyName: The EC policy to be used for files under this
directory. This parameter can be omitted if a 
dfs.namenode.ec.system.default.policy configuration
is set. The EC policy of the path will be set with the default value
in configuration.
-replicate: Apply the special REPLICATION policy on
the directory, force the directory to adopt 3x replication scheme.
-replicate and -policy <policyName>: These are
optional arguments. They cannot be specified at the same time.

[-getPolicy -path <path>]: Get details of the EC policy of a file or directory
at the specified path.
[-unsetPolicy -path <path>]: Unset an EC policy set by a previous call to
setPolicy on a directory. If the directory inherits the EC policy from
an ancestor directory, unsetPolicy is a no-op. Unsetting the policy on a
directory which doesn't have an explicit policy set will not return an error.
[-listPolicies]: Lists all (enabled, disabled and removed) EC policies
registered in HDFS. Only the enabled policies are suitable for use with the
setPolicy command.
[-addPolicies -policyFile <file>]: Add a list of EC policies. Please refer
etc/hadoop/user_ec_policies.xml.template for the example policy file.
The maximum cell size is defined in property
dfs.namenode.ec.policies.max.cellsize with the default value 4 MB.
Currently HDFS allows the user to add 64 policies in total, and the added
policy ID is in range of 64 to 127. Adding policy will fail if there are already 64
policies added.
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[-listCodecs]: Get the list of supported EC codecs and coders in system. A
coder is an implementation of a codec. A codec can have different
implementations, thus different coders. The coders for a codec are listed in a fall
back order.
[-removePolicy -policy <policyName>]: It removes an EC policy
[-enablePolicy -policy <policyName>]: It enables an EC policy
[-disablePolicy -policy <policyName>]: It disables an EC policy

By using -listPolicies, you can list all the EC policies currently setup in your cluster
along with the state of such policies whether they are ENABLED or DISABLED:

Lets test out EC in our cluster. First we will create directories in the HDFS shown as follows:
./bin/hdfs dfs -mkdir /user/normal
./bin/hdfs dfs -mkdir /user/ec

Once the two directories are created then you can set the policy on any path:

./bin/hdfs ec -setPolicy -path /user/ec -policy RS-6-3-1024k
Set RS-6-3-1024k erasure coding policy on /user/ec

Now copying any content into the /user/ec folder falls into the newly set policy.

Type the command shown as follows to test this:

./bin/hdfs dfs -copyFromLocal ~/Documents/OnlineRetail.csv /user/ec
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The following screenshot shows the result of the copying, as expected the system complains
as we don't really have a cluster on our local system enough to implement EC. But this
should give us an idea of what is needed and how it would look:

Intra-DataNode balancer
While HDFS always had a great feature of balancing the data between the data nodes in the
cluster, often this resulted in skewed disks within data nodes. For instance, if you have four
disks, two disks might take the bulk of the data and the other two might be under-utilized.
Given that physical disks (say 7,200 or 10,000 rpm) are slow to read/write, this kind of
skewing of data results in poor performance. Using an intra-node balancer, we can
rebalance the data amongst the disks.

Run the command shown in the following example to invoke disk balancing on a
DataNode:

./bin/hdfs diskbalancer -plan 10.0.0.103

The following is the output of the disk balancer command:

Installing YARN timeline service v.2
As stated in the YARN timeline service v.2 section, v.2 always selects Apache HBase as the
primary backing storage, since Apache HBase scales well even to larger clusters and
continues to maintain a good read and write response time.
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There are a few steps that need to be performed to prepare the storage for timeline service
v.2:

Set up the HBase cluster1.
Enable the co-processor2.
Create the schema for timeline service v.23.

Each step is explained in more detail in the following sections.

Setting up the HBase cluster
The first step involves picking an Apache HBase cluster to use as the storage cluster. The
version of Apache HBase that is supported with the timeline service v.2 is 1.2.6. The 1.0.x
versions no longer work with timeline service v.2. Later versions of HBase have not been
tested yet with the timeline service.

Simple deployment for HBase
If you are intent on a simple deploy profile for the Apache HBase cluster where the data
loading is light but the data needs to persist across node comings and goings, you could
consider the Standalone HBase over HDFS deploy mode. 

http:/​/​mirror.​cogentco. ​com/ ​pub/ ​apache/ ​hbase/ ​1.​2. ​6/​

The following screenshot is the download link to HBase 1.2.6:

http://mirror.cogentco.com/pub/apache/hbase/1.2.6/
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Download hbase-1.2.6-bin.tar.gz to your local machine. Then extract the HBase
binaries:

tar -xvzf hbase-1.2.6-bin.tar.gz

The following is the content of the extracted HBase:

This is a useful variation on the standalone HBase setup and has all HBase
daemons running inside one JVM but rather than persisting to the local filesystem, it
persists to an HDFS instance. Writing to HDFS where data is replicated ensures that data is
persisted across node comings and goings. To configure this standalone variant, edit your
hbasesite.xml setting the hbase.rootdir to point at a directory in your HDFS instance
but then set hbase.cluster.distributed to false. 

The following is the hbase-site.xml with the hdfs port 9000 for the local cluster we
have installed mentioned as a property. If you leave this out there wont be a HBase
cluster installed.

<configuration>
    <property>
        <name>hbase.rootdir</name>
        <value>hdfs://localhost:9000/hbase</value>
    </property>
    <property>
        <name>hbase.cluster.distributed</name>
        <value>false</value>
    </property>
</configuration>

Next step is to start HBase. We will do this by using start-hbase.sh script:

./bin/start-hbase.sh
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The following screenshot shows the HBase cluster we just installed:

The following screenshot shows are more attributes of the HBase cluster setup showing
versions, of various components:
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Figure: Screenshot of attributes of the HBase cluster setup and the versions of different components

Once you have an Apache HBase cluster ready to use, perform the steps in the following 
section.

Enabling the co-processor
In this version, the co-processor is loaded dynamically.

Copy the timeline service .jar to HDFS from where HBase can load it. It is needed for the
flowrun table creation in the schema creator. The default HDFS location is
/hbase/coprocessor.

For example:

hadoop fs -mkdir /hbase/coprocessor hadoop fs -put hadoop-yarn-server-
timelineservice-hbase-3.0.0-alpha1-SNAPSHOT.jar /hbase/coprocessor/hadoop-
yarn-server-timelineservice.jar
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To place the JAR at a different location on HDFS, there also exists a YARN configuration
setting called yarn.timeline-service.hbase.coprocessor.jar.hdfs.location,
shown as follows:

<property>
  <name>yarn.timeline-service.hbase.coprocessor.jar.hdfs.location</name>
  <value>/custom/hdfs/path/jarName</value>
</property>

Create the timeline service schema using the schema creator tool. For this to happen, we
also need to make sure the JARs are all found correctly:

export
HADOOP_CLASSPATH=$HADOOP_CLASSPATH:/Users/sridharalla/hbase-1.2.6/lib/:/Use
rs/sridharalla/hadoop-3.1.0/share/hadoop/yarn/timelineservice/

Once we have the classpath corrected, we can create the HBase schema/tables using a
simple command, shown as follows:

./bin/hadoop
org.apache.hadoop.yarn.server.timelineservice.storage.TimelineSchemaCreator
-create -skipExistingTable

The following is the HBase schema created as a result of the preceding command:
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Enabling timeline service v.2
The following are the basic configurations to start timeline service v.2:

<property>
  <name>yarn.timeline-service.version</name>
  <value>2.0f</value>
</property>

<property>
  <name>yarn.timeline-service.enabled</name>
  <value>true</value>
</property>

<property>
  <name>yarn.nodemanager.aux-services</name>
  <value>mapreduce_shuffle,timeline_collector</value>
</property>

<property>
  <name>yarn.nodemanager.aux-services.timeline_collector.class</name>
<value>org.apache.hadoop.yarn.server.timelineservice.collector.PerNodeTimel
ineCollectorsAuxService</value>
</property>

<property>
  <description> This setting indicates if the yarn system metrics is
published by RM and NM by on the timeline service. </description>
  <name>yarn.system-metrics-publisher.enabled</name>
  <value>true</value>
</property>

<property>
  <description>This setting is to indicate if the yarn container events are
published by RM to the timeline service or not. This configuration is for
ATS V2. </description>
  <name>yarn.rm.system-metrics-publisher.emit-container-events</name>
  <value>true</value>
</property>
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Also, add the hbase-site.xml configuration file to the client Hadoop cluster
configuration so that it can write data to the Apache HBase cluster you are using, or
set yarn.timeline-service.hbase.configuration.file to the file URL pointing
to hbase-site.xml for the same purpose of writing the data to HBase, for example:

<property>
  <description>This is an Optional URL to an hbase-site.xml configuration
file. It is to be used to connect to the timeline-service hbase cluster. If
it is empty or not specified, the HBase configuration will be loaded from
the classpath. Else, they will override those from the ones present on the
classpath. </description>
  <name>yarn.timeline-service.hbase.configuration.file</name>
  <value>file:/etc/hbase/hbase-site.xml</value>
</property>

Running timeline service v.2
Restart the ResourceManager as well as the node managers to pick up the new
configuration. The collectors start within the resource manager and the node managers in
an embedded manner.

The timeline service reader is a separate YARN daemon, and it can be started using the
following syntax:

$ yarn-daemon.sh start timelinereader

Enabling MapReduce to write to timeline service v.2
To write MapReduce framework data to timeline service v.2, enable the following
configuration in mapred-site.xml:

<property>
  <name>mapreduce.job.emit-timeline-data</name>
  <value>true</value>
</property>

The timeline service is still evolving so you should try it out only to test out the features
and not in production, and wait for the more widely adopted version, which should be
available sometime soon.
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Summary
In this chapter, we have discussed the new features in Hadoop 3.x and how it improves the
reliability and performance of Hadoop 2.x. We also walked through the installation of a
standalone Hadoop cluster on the local machine.

In the next chapter, we will take a peek into the world of big data analytics.



2
Overview of Big Data Analytics

In this chapter, we will talk about big data analytics, starting with a general point of view
and then taking a deep dive into some common technologies used to gain insights into
data. This chapter introduces the reader to the process of examining large data sets to
uncover patterns in data, generating reports, and gathering valuable insights. We will
particularly focus on the seven Vs of big data. We will also learn about data analysis and
big data; we will see the challenges that big data provides and how they are dealt with in
distributed computing, and look at approaches using Hive and Tableau to showcase the
most commonly used technologies.

In a nutshell, the following topics will be covered throughout this chapter:

Introduction to data analytics
Introduction to big data
Distributed computing using Apache Hadoop
MapReduce framework
Hive
Apache Spark

Introduction to data analytics
Data analytics is the process of applying qualitative and quantitative techniques when
examining data, with the goal of providing valuable insights. Using various techniques and
concepts, data analytics can provide the means to explore the data exploratory data
analysis (EDA) as well as draw conclusions about the data confirmatory data analysis
(CDA). The EDA and CDA are fundamental concepts of data analytics, and it is important
to understand the differences between the two.
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EDA involves the methodologies, tools, and techniques used to explore data with the
intention of finding patterns in the data and relationships between various elements of the
data. CDA involves the methodologies, tools, and techniques used to provide an insight or
conclusion for a specific question, based on hypothesis and statistical techniques, or simple
observation of the data.

Inside the data analytics process
Once data is deemed ready, it can be analyzed and explored by data scientists using
statistical methods such as SAS. Data governance also becomes a factor to ensure the proper
collection and protection of the data. Another less well known role is that of a data steward
who specializes in understanding the data to the byte; exactly where it is coming from, all
transformations that occur, and what the business really needs from the column or field of
data.

Various entities in the business might be dealing with addresses differently, such as the
following:

123 N Main St vs 123 North Main Street.

But, our analytics depend on getting the correct address field, else both the addresses
mentioned will be considered different and our analytics will not have the same accuracy.

The analytics process starts with data collection based on what the analysts might need
from the data warehouse, collecting all sorts of data in the organization (sales, marketing,
employee, payroll, HR, and so on). Data stewards and governance teams are important
here to make sure the right data is collected and that any information deemed confidential
or private is not accidentally exported out, even if the end users are all employees. Social
Security Numbers (SSNs) or full addresses might not be a good idea to include in analytics
as this can cause a lot of problems to the organization.

Data quality processes must be established to make sure that the data being collected and
engineered is correct and will match the needs of the data scientists. At this stage, the main
goal is to find and fix data quality problems that could affect the accuracy of analytical
needs. Common techniques are profiling the data, cleansing the data to make sure that the
information in a dataset is consistent, and also that any errors and duplicate records are
removed.
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Analytical applications can thus be realized using several disciplines, teams, and skillsets.
Analytical applications can be used to generate reports all the way to automatically
triggering business actions. For example, you can simply a create daily sales report to be
emailed out to all managers every day at 8 AM in the morning. But, you can also integrate
with business process management applications or some custom stock trading applications
to take action, such as buying, selling, or alerting on activities in the stock market. You can
also think of taking in news articles or social media information to further influence what
decisions to be made.

Data visualization is an important piece of data analytics and it's hard to understand
numbers when you are looking at a lot of metrics and calculation. Rather, there is an
increasing dependence on business intelligence (BI) tools, such as Tableau, QlikView, and
so on, to explore and analyze the data. Of course, large-scale visualization, such as showing
all Uber cars in the country or heat maps showing water supply in New York City, requires
more custom applications or specialized tools to be built.

Managing and analyzing data has always been a challenge across many organizations of
different sizes across all industries. Businesses have always struggled to find a pragmatic
approach to capturing information about their customers, products, and services. When the
company only had a handful of customers who bought a few of their items, it was not that
difficult. It was not as big of a challenge. But over time, companies in the markets started
growing. Things have become more complicated. Now, we have branding information and
social media. We have things that are sold and bought over the internet. We need to come
up with different solutions. With web development, organizations, pricing, social networks,
and segmentations, there's a lot of different data that we're dealing with that brings a lot
more complexity when it comes to dealing, managing, organizing, and trying to gain some
insight from the data.

Introduction to big data
Twitter, Facebook, Amazon, Verizon, Macy's, and Whole Foods are all companies that run
their business using data analytics and base many of the decisions on the analytics. Think
about what kind of data they are collecting, how much data they might be collecting, and
then how they might be using the data.
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Let's look at the grocery store example seen earlier; what if the store starts expanding its
business to set up hundreds of stores? Naturally, the sales transactions will have to be
collected and stored at a scale hundreds of times more than the single store. But then, no
business works independently any more. There is a lot of information out there, starting
from local news, tweets, Yelp reviews, customer complaints, survey activities, competition
from other stores, the changing demographics or economy of the local area, and so on. All
such additional data can help in better understanding the customer behavior and the
revenue models.

For example, if we see increasing negative sentiment regarding the store's parking facility,
then we could analyze this and take corrective action such as validated parking or
negotiating with the city's public transportation department to provide more frequent
trains or buses for better reach. Such an increasing quantity and variety of data, while it
provides better analytics also poses challenges to the business IT organization trying to
store and process and analyze all the data. It is, in fact, not uncommon to see TBs of data.

Every day, we create more than two quintillion bytes of data (2 EB), and it is estimated that
more than 90% of the data has been generated in last few years alone:

1 KB = 1024 Bytes
1 MB = 1024 KB
1 GB = 1024 MB
1 TB = 1024 GB ~ 1,000,000 MB
1 PB = 1024 TB ~ 1,000,000 GB ~ 1,000,000,000 MB
1 EB = 1024 PB ~ 1,000,000 TB ~ 1,000,000,000 GB ~ 1,000,000,000,000 MB

Such large amounts of data since the 1990s and the need to understand and make sense of
the data, gave rise to the term big data. 

In 2001, Doug Laney, then an analyst at consultancy Meta Group Inc (which got acquired by
Gartner), introduced the idea of three Vs (that is, Variety, Velocity, and Volume). Now, we
refer to four Vs instead of three Vs with the addition of Veracity of data to the three Vs.

The following are the four Vs of big data, used to describe the properties of big data.

Variety of data
Data can be obtained from a number of sources, such as weather sensors, car sensors,
census data, Facebook updates, tweets, transactions, sales, and marketing. The data format
is both structured and unstructured as well. Data types can also be different, binary, text,
JSON, and XML. Variety really begins to scratch the surface of the depth of the data.
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Velocity of data
Data can be from a data warehouse, batch mode file archives, near real-time updates, or
instantaneous real-time updates from the Uber ride you just booked. Velocity refers to the
increasing speed at which this data is created, and the increasing speed at which the data
can be processed, stored, and analyzed by relational databases. 

Volume of data
Data can be collected and stored for an hour, a day, a month, a year, or 10 years. The size of
data is growing to 100s of TBs for many companies. Volume refers to the scale of the data,
which is part of what makes big data big.

Veracity of data
Data can be analyzed for actionable insights, but with so much data of all types being
analyzed from across data sources, it is very difficult to ensure correctness and proof of
accuracy.

The following are the four Vs of big data:
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To make sense of all the data and apply data analytics to big data, we need to expand the
concept of data analytics to operate at a much larger scale that deals with the four Vs of big
data. This changes not only the tools and technologies and methodologies used in
analyzing the data, but also changes the way we even approach the problem. If a SQL
database was used for data in a business in 1999, to handle the data now for the same
business, we will need a distributed SQL database that is scalable and adaptable to the
nuances of the big data space.

The four Vs described earlier are no longer sufficient to cover the capabilities and needs of
big data analytics, hence nowadays it's common to hear about the seven Vs instead of the
four Vs.

Variability of data
Variability refers to data whose meaning is constantly changing. Many a
time, organizations need to develop sophisticated programs in order to be able to
understand context in them and decode their exact meaning.

Visualization
Visualization comes in the picture when you need to present the data in a readable and
accessible manner after it has been processed.

Value
Big data is large and is increasing everyday, however the data is also messy, noisy, and
constantly changing. It is available for all in a variety of formats and is in no position to be
used without analysis and visualization.
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Distributed computing using Apache
Hadoop
We are surrounded by devices such as the smart refrigerator, smart watch, phone, tablet,
laptops, kiosks at the airport, ATMs dispensing cash to you, and many many more, with
the help of which we are now able to do things that were unimaginable just a few years
ago. We are so used to applications such as Instagram, Snapchat, Gmail, Facebook, Twitter,
and Pinterest that it is next to impossible to go a day without access to such applications.
Today, cloud computing has introduced us to the following concepts:

Infrastructure as a Service
Platform as a Service
Software as a Service

Behind the scenes is the world of highly scalable distributed computing, which makes it 
possible to store and process Petabytes (PB) of data:

1 EB = 1024 PB (50 million Blu-ray movies)
1 PB = 1024 TB (50,000 Blu-ray movies)
1 TB = 1024 GB (50 Blu-ray movies)

The average size of one Blu-ray disc for a movie is ~ 20 GB.

Now, the paradigm of distributed computing is not really a genuinely new topic and has
been pursued in some shape or form over decades, primarily at research facilities as well as
by a few commercial product companies. Massively parallel processing (MPP) is a
paradigm that was in use decades ago in several areas such as oceanography, earthquake
monitoring, and space exploration. Several companies, such as Teradata, also implemented
MPP platforms and provided commercial products and applications.
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Eventually, tech companies such as Google and Amazon, among others, pushed the niche
area of scalable distributed computing to a new stage of evolution, which eventually led to
the creation of Apache Spark by Berkeley University. Google published a paper on
MapReduce as well as Google File System (GFS), which brought the principles of
distributed computing to be used by everyone. Of course, due credit needs to be given to
Doug Cutting, who made it possible by implementing the concepts given in the Google
white papers and introducing the world to Hadoop. The Apache Hadoop framework is an
open source software framework written in Java. The two main areas provided by the
framework are storage and processing. For storage, the Apache Hadoop framework uses
Hadoop Distributed File System (HDFS), which is based on the GFS paper released on
October 2003. For processing or computing, the framework depends on MapReduce, which
is based on a Google paper on MapReduce released in December 2004 MapReduce
framework evolved from V1 (based on JobTracker and TaskTracker) to V2 (based on
YARN).

The MapReduce framework
MapReduce is a framework used to compute a large amount of data in a Hadoop cluster.
MapReduce uses YARN to schedule the mappers and reducers as tasks, using the
containers. 

An example of a MapReduce job to count frequencies of words is shown in the following
diagram:
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MapReduce works closely with YARN to plan the job and the various tasks in the job,
requests computing resources from the cluster manager (resource manager), schedules the
execution of the tasks on the compute resources of the cluster, and then executes the plan of
execution. Using MapReduce, you can read write many different types of files of varying
formats and perform very complex computations in a distributed manner. We will see
more of this in the next chapter on MapReduce frameworks.

Hive
Hive provides a SQL layer abstraction over the MapReduce framework with several
optimizations. This is needed because of the complexity of writing code using the
MapReduce framework. For example, a simple count of the records in a specific file takes at
least a few dozen lines of code, which is not productive to anyone. Hive abstracts the
MapReduce code by encapsulating the logic from the SQL statement into a MapReduce
framework code, which is automatically generated and executed on the backend. This saves
incredible amounts of time for anyone who needs to spend more time on doing something
useful with the data, rather than going through the boiler plate coding for every single task
that needs to be executed and every single computation that's desired as part of your job:
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Hive is not designed for online transaction processing and does not offer real-time queries
and row-level updates.

In this section, we will look at Hive and how to use it to perform analytics, https:/ ​/ ​hive.
apache.​org/​downloads. ​html:

Click on the download link to see the various downloadable files as shown in the following
screenshot:

https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
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Downloading and extracting the Hive binaries
In this section, we will extract the downloaded binaries and then configure the Hive
binaries to get everything started:

tar -xvzf apache-hive-2.3.3-bin.tar.gz

Once the Hive bundle is extracted, do the following to create a hive-site.xml:

cd apache-hive-2.3.3-bin
vi conf/hive-site.xml

At the top of the properties list, paste the following:

<property>
 <name>system:java.io.tmpdir</name>
 <value>/tmp/hive/java</value>
</property>

At the bottom of the hive-site.xml add the following properties:

<property>
 <name>hive.metastore.local</name>
 <value>TRUE</value>

</property>
<property>
 <name>hive.metastore.warehouse.dir</name>
 <value>/usr/hive/warehouse</value>
 </property>

After this, using the Hadoop commands, create the HDFS paths needed for hive:

cd hadoop-3.1.0
./bin/hadoop fs -mkdir -p /usr/hive/warehouse
./bin/hadoop fs -chmod g+w /usr/hive/warehouse
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Installing Derby
Hive works by leveraging the MapReduce framework and uses the tables and schemas to
create the mappers and reducers for the MapReduce jobs that are run behind the scenes. In
order to maintain the metadata about the data, Hive uses Derby which is an easy to use
database. In this section, we will look at installing Derby to be used in our Hive
installation, https:/ ​/​db. ​apache. ​org/ ​derby/ ​derby_ ​downloads. ​html:

Extract Derby using a command, as shown in the following code:1.

tar -xvzf db-derby-10.14.1.0-bin.tar.gz

Then, change directory into derby and create a directory named data. In fact,2.
there are several commands to be run so we are going to list all of them in the
following code:

export HIVE_HOME=<YOURDIRECTORY>/apache-hive-2.3.3-bin
export HADOOP_HOME=<YOURDIRECTORY>/hadoop-3.1.0
export DERBY_HOME=<YOURDIRECTORY>/db-derby-10.14.1.0-bin
export PATH=$PATH:$HADOOP_HOME/bin:$HIVE_HOME/bin:$DERBY_HOME/bin
mkdir $DERBY_HOME/data
cp $DERBY_HOME/lib/derbyclient.jar $HIVE_HOME/lib
cp $DERBY_HOME/lib/derbytools.jar $HIVE_HOME/lib

https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
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Now, start up the Derby server using a simple command, as shown in the3.
following code:

nohup startNetworkServer -h 0.0.0.0

Once this is done, you have to create and initialize the derby instance:4.

schematool -dbType derby -initSchema --verbose

Now, you are ready to open the hive console:5.

hive

Using Hive
As opposed to relational data warehouses, nested data models have complex types such as
array, map, and struct. We can partition tables based on the values of one or more columns
with the PARTITIONED BY clause. Moreover, tables or partitions can be bucketed using
CLUSTERED BY columns, and data can be sorted within that bucket via SORT BY columns:

Tables: They are very similar to RDBMS tables and contain rows and tables.
Partitions: Hive tables can have more than one partition. They are mapped to
subdirectories and filesystems as well.
Buckets: Data can also be divided into buckets in Hive. They can be stored as
files in partitions in the underlying filesystem.
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The Hive query language provides the basic SQL-like operations. Here are few of the tasks
that HQL can do easily:

Create and manage tables and partitions
Support various relational, arithmetic, and logical operators
Evaluate functions
Download the contents of a table to a local directory or the results of queries to
the HDFS directory

Creating a database
We first have to create a database to hold all the tables created in Hive. This step is easy and
similar to most other databases:

create database mydb;

The following is the hive console showing the query execution:

We then begin using the database we just created to create the tables required by our
database as follows:

use mydb;

The following is the hive console showing the query execution:
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Creating a table
Once we have created a database, we are ready to create a table in the database. The table
creation is syntactically similar to most RDBMS (database systems such as Oracle, MySQL):

create external table OnlineRetail (
 InvoiceNo string,
 StockCode string,
 Description string,
 Quantity integer,
 InvoiceDate string,
 UnitPrice float,
 CustomerID string,
 Country string
 ) ROW FORMAT DELIMITED
 FIELDS TERMINATED BY ','
 LOCATION '/user/normal';

The following is the hive console and what it looks like:

We will not get into the syntax of query statements, rather, we will discuss how to improve
the query performance significantly using the stinger initiative as follows:

select count(*) from OnlineRetail;
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The following is the hive console showing the query execution:

SELECT statement syntax
Here's the syntax of Hive's SELECT statement:

SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference
[WHERE where_condition]
[GROUP BY col_list]
[HAVING having_condition]
[CLUSTER BY col_list | [DISTRIBUTE BY col_list] [SORT BY col_list]]
[LIMIT number]
;

SELECT is the projection operator in HiveQL. The points are:

SELECT scans the table specified by the FROM clause
WHERE gives the condition of what to filter
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GROUP BY gives a list of columns that specifies how to aggregate the records
CLUSTER BY, DISTRIBUTE BY, and SORT BY specify the sort order and
algorithm
LIMIT specifies how many records to retrieve:

Select Description, count(*) as c from OnlineRetail group By Description
order by c DESC limit 5;

The following is the hive console showing the query execution:

select * from OnlineRetail limit 5;

The following is the hive console showing the query execution:

select lower(description), quantity from OnlineRetail limit 5;

The following is the hive console showing the query execution:
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WHERE clauses
A WHERE clause is used to filter the result set by using predicate operators and logical
operators with the help of the following:

List of predicate operators
List of logical operators
List of functions

Here is an example of using the WHERE clause:

select * from OnlineRetail where Description='WHITE METAL LANTERN' limit 5;

The following is the hive console showing the query execution:

The following query shows us how to use the group by clause:

select Description, count(*) from OnlineRetail group by Description limit
5;

The following is the hive console showing the query execution:

The following query is an example of using the group by clause and specify conditions to
filter the results obtained with the help of the having clause:

select Description, count(*) as cnt from OnlineRetail group by Description
having cnt> 100 limit 5;
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The following is the hive console showing the query execution:

The following query is another example of using the group by clause, filtering the result
with the having clause and sorting our result using the order by clause, here using DESC:

select Description, count(*) as cnt from OnlineRetail group by Description
having cnt> 100 order by cnt DESC limit 5;

The following is the hive console showing the query execution:

INSERT statement syntax
The syntax of Hive's INSERT statement is as follows:

-- append new rows to tablename1
INSERT INTO TABLE tablename1 select_statement1 FROM from_statement;

-- replace contents of tablename1
INSERT OVERWRITE TABLE tablename1 select_statement1 FROM from_statement;

-- more complex example using WITH clause
WITH tablename1 AS (select_statement1 FROM from_statement) INSERT
[OVERWRITE/INTO] TABLE tablename2 select_statement2 FROM tablename1;
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Primitive types
Types are associated with the columns in the tables. Let's take a look at the types supported
and their description in the following table:

Types Description

Integers

• TINYINT: 1 byte integer
• SMALLINT: 2 byte integer
• INT: 4 byte integer
• BIGINT: 8 byte integer

Boolean type • BOOLEAN: TRUE/FALSE

Floating point numbers
• FLOAT: Single precision
• DOUBLE: Double precision

Fixed point numbers • DECIMAL: A fixed point value of user defined scale and precision

String types
• STRING: Sequence of characters in a specified character set
• VARCHAR: Sequence of characters in a specified character set with a maximum length
• CHAR: Sequence of characters in a specified character set with a defined length

Date and time types
• TIMESTAMP: A specific point in time, up to nanosecond precision
• DATE: A date

Binary types • BINARY: A sequence of bytes

Complex types
We can build complex types from primitive and other composite types with the help of the
following:

Structs: The elements within the type can be accessed using the DOT (.)
notation. 
Maps (key-value tuples): The elements are accessed using the ['element
name'] notation. 
Arrays (indexable lists): The elements in the array have to be in the same type.
You can access the elements using the [n] notation where n is an index (zero-
based) into the array. 
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Built-in operators and functions
The following operators and functions listed are not necessarily up to date. (Hive operators
and UDFs have more current information). In Beeline or the Hive CLI, use these commands
to show the latest documentation:

SHOW FUNCTIONS;
DESCRIBE FUNCTION <function_name>;
DESCRIBE FUNCTION EXTENDED <function_name>;

All Hive keywords are case insensitive, including the names of Hive operators and
functions.

Built-in operators
Relational operators: Depending on whether the comparison between the operands holds
or not, the following operators compare the passed operands and generate a TRUE or FALSE
value:

Operataors Type Description

A = B
all primitive
types

TRUE if expression A is equivalent to expression B; otherwise
FALSE

A != B
all primitive
types

TRUE if expression A is not equivalent to expression B;
otherwise FALSE

A < B
all primitive
types

TRUE if expression A is less than expression B; otherwise
FALSE

A <= B
all primitive
types

TRUE if expression A is less than or equal to expression B;
otherwise FALSE

A > B
all primitive
types

TRUE if expression A is greater than expression B; otherwise
FALSE

A >= B
all primitive
types

TRUE if expression A is greater than or equal to expression B
otherwise FALSE

A IS NULL all types TRUE if expression A evaluates to NULL otherwise FALSE
A IS NOT
NULL

all types FALSE if expression A evaluates to NULL otherwise TRUE
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A LIKE B strings

TRUE if string A matches the SQL simple regular expression B,
otherwise FALSE. The comparison is done character by
character. The _ character in B matches any character in A
(similar to . in posix regular expressions), and the % character
in B matches an arbitrary number of characters in A (similar
to .* in posix regular expressions). For example,
foobar LIKE foo evaluates to FALSE where as foobar LIKE
foo___ evaluates to TRUE and so does 'foobar' LIKEfoo%. To
escape % use \ (% matches one % character). If the data
contains a semicolon, and you want to search for it, it needs
to be escaped; columnValue LIKE a\;b

A RLIKE B strings

NULL if A or B is NULL, TRUE if any (possibly empty) substring
of A matches the Java regular expression B (see Java regular
expressions syntax), otherwise FALSE. For example,
'foobar' rlike 'foo' evaluates to TRUE and so does
'foobar' rlike '^f.*r$'.

A REGEXP B strings Same as RLIKE

Arithmetic operators: The following operators support various common arithmetic
operations on the operands. All of them return number types:

Operators Type Description

A + B
all number
types

Gives the result of adding A and B. The type of the result is the
same as the common parent (in the type hierarchy) of the types of
the operands, for example, since every integer is a float. Therefore,
float is a containing type of integer so the + operator on a float and
an int will result in a float.

A - B
all number
types

Gives the result of subtracting B from A. The type of the result is
the same as the common parent (in the type hierarchy) of the
types of the operands.

A * B
all number
types

Gives the result of multiplying A and B. The type of the result is
the same as the common parent (in the type hierarchy) of the
types of the operands. Note that if the multiplication is causing
overflow, you will have to cast one of the operators to a type
higher in the type hierarchy.
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A / B
all number
types

Gives the result of dividing B from A. The type of the result is the
same as the common parent (in the type hierarchy) of the types of
the operands. If the operands are integer types, then the result is
the quotient of the division.

A % B
all number
types

Gives the reminder resulting from dividing A by B. The type of the
result is the same as the common parent (in the type hierarchy) of
the types of the operands.

A & B
all number
types

Gives the result of bitwise AND of A and B. The type of the result is
the same as the common parent (in the type hierarchy) of the
types of the operands.

A | B
all number
types

Gives the result of bitwise OR of A and B. The type of the result is
the same as the common parent (in the type hierarchy) of the
types of the operands.

A ^ B
all number
types

Gives the result of bitwise XOR of A and B. The type of the result is
the same as the common parent (in the type hierarchy) of the
types of the operands.

~A
all number
types

Gives the result of bitwise NOT of A. The type of the result is the
same as the type of A.

Logical operators: The following operators provide support for creating logical
expressions. All of them return Boolean TRUE or FALSE depending upon the Boolean values
of the operands:

Operators Type Description
A AND B Boolean TRUE if both A and B are TRUE, otherwise FALSE
A && B Boolean Same as A AND B
A OR B Boolean TRUE if either A or B or both are TRUE, otherwise FALSE
A || B Boolean Same as A OR B
NOT A Boolean TRUE if A is FALSE, otherwise FALSE
!A Boolean Same as NOT A

Operators on complex types: The following operators provide mechanisms to access
elements in complex types:

Operators Type Description

A[n]
A is an array
and n is an int

Returns the nth element in the array A. The first element has
index 0, for example, if A is an array comprising of ['foo',
'bar'] then A[0] returns 'foo' and A[1] returns 'bar'
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M[key]
M is a Map<K, V>
and key has
type K

Returns the value corresponding to the key in the map for
example, if M is a map comprising of
('f' -> 'foo', 'b' -> 'bar', 'all' -> 'foobar')

then M['all'] returns 'foobar'.

S.x S is a struct
Returns the x field of S, for example, for struct foobar (int
foo, int bar) foobar. foo returns the integer stored in the
foo field of the struct.

Built-in functions
Hive supports the following built-in functions:

Data
type Function Description

BIGINT round(double a)
Returns the rounded BIGINT value of the
double.

BIGINT floor(double a)
Returns the maximum BIGINT value that is
equal or less than the double.

BIGINT ceil(double a)
Returns the minimum BIGINT value that is
equal or greater than the double.

double rand(), rand(int seed)

Returns a random number (that changes from
row to row). Specifying the seed will make sure
the generated random number sequence is
deterministic.

string
concat(string A, string
B,...)

Returns the string resulting from concatenating
B after A. For example, concat('foo',
'bar') results in 'foobar'. This function
accepts an arbitrary number of arguments and
returns the concatenation of all of them.

string
substr(string A, int
start)

Returns the substring of A starting from start
position till the end of string A. For example,
substr('foobar', 4) results in 'bar'.

string
substr(string A, int
start, int length)

Returns the substring of A starting from start
position with the given length, for example,
substr('foobar', 4, 2) results in 'ba'.

string upper(string A)
Returns the string resulting from converting all
characters of A to uppercase, for example,
upper('fOoBaR') results in 'FOOBAR'.
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string ucase(string A) Same as upper.

string lower(string A)
Returns the string resulting from converting all
characters of B to lowercase, for example,
lower('fOoBaR') results in 'foobar'.

string lcase(string A) Same as lower.

string trim(string A)
Returns the string resulting from trimming
spaces from both ends of A, for example,
trim('foobar ') results in 'foobar'.

string ltrim(string A)

Returns the string resulting from trimming
spaces from the beginning (left hand side) of A.
For example, ltrim(' foobar ') results in
'foobar '.

string rtrim(string A)

Returns the string resulting from trimming
spaces from the end (right hand side) of A. For
example, rtrim(' foobar') results in
'foobar'.

string
regexp_replace(string A,
string B, string C)

Returns the string resulting from replacing all
substrings in B that match the Java regular
expression syntax (See Java regular expressions
syntax) with C. For example,
regexp_replace('foobar', 'oo|ar', )

returns 'fb'.

int size(Map<K.V>)
Returns the number of elements in the map
type.

int size(Array<T>)
Returns the number of elements in the array
type.

value
of
<type>

cast(<expr> as <type>)

Converts the results of the expression expr to
<type>, for example, cast('1' as BIGINT)
will convert the string '1' to its integral
representation. A null is returned if the
conversion does not succeed.

string
from_unixtime(int
unixtime)

Convert the number of seconds from the UNIX
epoch (1970-01-01 00:00:00 UTC) to a string
representing the timestamp of that moment in
the current system time zone in the format of
1970-01-01 00:00:00.
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string to_date(string timestamp)
Return the date part of a timestamp string:
to_date("1970-01-01 00:00:00") =

"1970-01-01".

int year(string date)
Return the year part of a date or a timestamp
string: year("1970-01-01 00:00:00") =

1970, year("1970-01-01") = 1970.

int month(string date)
Return the month part of a date or a timestamp
string: month("1970-11-01 00:00:00")

= 11, month("1970-11-01") = 11.

int day(string date)
Return the day part of a date or a timestamp
string: day("1970-11-01 00:00:00") =

1, day("1970-11-01") = 1.

string
get_json_object(string
json_string, string path)

Extract a json object from a json string based
on the json path specified, and return json
string of the extracted a .json object. It will
return null if the input json string is invalid.

The following built-in aggregate functions are supported in Hive:

Data type Functions Description

BIGINT

count(*),
count(expr),
count(DISTINCT
expr[, expr_.])

count(*) – Returns the total number of retrieved
rows, including rows containing NULL values;
count(expr) – Returns the number of rows for
which the supplied expression is non-NULL;
count(DISTINCT expr[, expr]) – Returns the
number of rows for which the supplied expressions
are unique and non-NULL.

DOUBLE
sum(col),
sum(DISTINCT col)

Returns the sum of the elements in the group or the
sum of the distinct values of the column in the group.

DOUBLE
avg(col),
avg(DISTINCT col)

Returns the average of the elements in the group or
the average of the distinct values of the column in the
group.

DOUBLE min(col)
Returns the minimum value of the column in the
group.

DOUBLE max(col)
Returns the maximum value of the column in the
group.
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Language capabilities
Hive's SQL provides the following basic SQL operations that can work on tables or
partitions:

Filter rows from a table with the help of a WHERE clause
Select certain columns from the table using a SELECT clause
Perform equijoins between two tables
Evaluate aggregations on multiple group by columns for the data stored in a
table
Store the results of a query into another table
Download the contents of a table to a local (for example, nfs) directory
Store the results of a query in a hadoop dfs directory
Manage tables and partitions (create, drop, and alter)
Plug in custom scripts in the language of choice for custom map/reduce jobs

A cheat sheet on retrieving information 
The following table shows us how to retrieve information for some commonly used
functions:

Function Hive

Retrieving Information (General)
SELECT from_columns FROM table WHERE
conditions;

Retrieving All Values SELECT * FROM table;

Retrieving Some Values SELECT * FROM table WHERE rec_name = "value";

Retrieving With Multiple Criteria 
SELECT * FROM TABLE WHERE rec1 = "value1" AND
rec2 = "value2";

Retrieving Specific Columns SELECT column_name FROM table;

Retrieving Unique Output SELECT DISTINCT column_name FROM table;

Sorting SELECT col1, col2 FROM table ORDER BY col2;

Sorting Reverse 
SELECT col1, col2 FROM table ORDER BY col2
DESC;

Counting Rows SELECT COUNT(*) FROM table;

Grouping With Counting 
SELECT owner, COUNT(*) FROM table GROUP BY
owner;

Maximum Value SELECT MAX(col_name) AS label FROM table;
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Selecting from multiple tables
(Join same table using alias
w/"AS") 

SELECT pet.name, comment FROM pet JOIN event ON
(pet.name = event.name)

Apache Spark
Apache Spark is a unified distributed computing engine across different workloads and
platforms. Spark can connect to different platforms and process different data workloads
using a variety of paradigms such as Spark Streaming, Spark ML, Spark SQL, and Spark
Graphx.

Apache Spark is a fast in-memory data processing engine with elegant and expressive
development APIs, which allow data workers to efficiently execute streaming machine
learning or SQL workloads that require fast interactive access to data sets. 

Additional libraries built on top of the core allow the workloads for streaming, SQL, graph
processing, and machine learning. SparkML, for instance, is designed for data science and
its abstraction makes data science easier.

Spark provides real-time streaming, queries, machine learning, and graph processing.
Before Apache Spark, we had to use different technologies for different types of workloads.
One for batch analytics, one for interactive queries, one for real-time streaming processing,
and another for machine learning algorithms. However, Apache Spark can do all of these
just using Apache Spark instead of using multiple technologies that are not always
integrated.

Using Apache Spark, all types of workloads could be processed and Spark also supports
Scala, Java, R, and Python as a means of writing the client programs.

Apache Spark is an open source distributed computing engine which has key advantages
over the MapReduce paradigm:

Uses in-memory processing as much as possible
General purpose engine to be used for batch, real-time workloads
Compatible with YARN and also Mesos
Integrates well with HBase, Cassandra, MongoDB, HDFS, Amazon S3, and other
filesystems and data sources

Spark was created in Berkeley back in 2009 and was a result of the project to build Mesos, a
cluster management framework to support different kinds of cluster computing systems.
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Hadoop and Apache Spark are both popular big data frameworks, but they don't really
serve the same purposes. While Hadoop provides the distributed storage and MapReduce
distributed computing framework, Spark on the other hand is a data processing framework
that operates on the distributed data storage provided by other technologies.

Spark is generally a lot faster than MapReduce because of the way it
processes data. MapReduce operates on splits using disk operations,
Spark operates on the dataset much more efficiently than MapReduce
with the main reason behind the performance improvement of Apache
Spark being the efficient off-heap in-memory processing rather than solely
relying on disk-based computations.

MapReduce's processing style can be sufficient if your data operations and reporting
requirements are mostly static, and it is okay to use batch processing for your purposes, but
if you need to do analytics on streaming data or the processing requirements needed in
multistage processing logic, you probably want to want to go with Spark. 

The following is the Apache Spark stack:

Visualization using Tableau
Whichever method we use to perform distributed computing on big data, its very hard to
comprehend the meaning of the data without the aid of tools such as Tableau, which can
provide an easy to understand visualization of data.
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We can do visualization using many tools such as Cognos, Tableau, Zoom data,
KineticaDB, Python Matplotlib, R + Shiny, JavaScript, and so on. We will cover
visualization in more detail in Chapter 10, Visualizing Big Data.

The following is a simple horizontal bar chart in Tableau:

Figure: Screenshot showing a simple horizontal bar chart in Tableau
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The following is a geospatial view of data in Tableau:

Figure: Screenshot of a geospatial view of data in Tableau

Summary
In this chapter, we have discussed big data analytics, various concepts of big data analytics,
and the seven Vs of big data—Volume, Velocity, Veracity, Variety, Value, Vision, and
Visualization. We also looked at some of the technologies that aid in performing analytics,
such as Hive and Tableau.

In the next chapter, we will explore the world of MapReduce and the most used patterns in
performing distributed computing.



3
Big Data Processing with

MapReduce
This chapter will puts everything we have learned in the book into a practical use case of
building an end-to-end pipeline to perform big data analytics.

In a nutshell, the following topics will be covered throughout this chapter:

The MapReduce framework
MapReduce job types:

Single mapper jobs
Single mapper reducer jobs
Multiple mappers reducer jobs

MapReduce patterns:
Aggregation patterns
Filtering patterns
Join patterns

The MapReduce framework
MapReduce is a framework used to compute a large amount of data in a Hadoop cluster.
MapReduce uses YARN to schedule the mappers and reducers as tasks, using the
containers. The MapReduce framework enables you to write distributed applications to
process large amounts of data from a filesystem, such as a Hadoop Distributed File
System (HDFS), in a reliable and fault-tolerant manner. When you want to use the
MapReduce framework to process data, it works through the creation of a job, which then
runs on the framework to perform the tasks needed. A MapReduce job usually works by
splitting the input data across worker nodes, running the mapper tasks in a parallel
manner.
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At this time, any failures that happen, either at the HDFS level or the failure of a mapper
task, are handled automatically, to be fault-tolerant. Once the mappers have completed, in
the results are copied over the network to other machines running the reducer tasks.

An example of using a MapReduce job to count frequencies of words is shown in the
following diagram:

MapReduce uses YARN as a resource manager, which is shown in the following diagram:

The term MapReduce actually refers to two separate and distinct tasks that Hadoop
programs perform. The first is the map job, which takes a set of data and converts it into
another set of data, where individual elements are broken down into tuples (key/value
pairs).
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The reduce job takes the output from a map as input and combines those data tuples into a
smaller set of tuples. As the sequence of the name MapReduce implies, the reduce job is
always performed after the map job.

The input to a MapReduce job is a set of files in the data store that is spread out over the
HDFS. In Hadoop, these files are split with an input format, which defines how to separate
a file into input splits. An input split is a byte-oriented view of a chunk of the file, to be
loaded by a map task. Each map task in Hadoop is broken into the following phases: record
reader, mapper, combiner, and partitioner. The output of the map tasks, called the
intermediate keys and values, is sent to the reducers. The reduce tasks are broken into the
following phases: shuffle, sort, reducer, and output format. The nodes in which the map
tasks run are optimally on the nodes in which the data rests. This way, the data typically
does not have to move over the network, and can be computed on the local machine. 

Throughout this chapter, we will look at different use cases, and how to use a MapReduce
job to produce the output desired; for this purpose, we will use a simple dataset.

Dataset
The first dataset is a table of cities containing the city ID and the name of the City:

Id,City
1,Boston
2,New York
3,Chicago
4,Philadelphia
5,San Francisco
7,Las Vegas

This file, cities.csv, is available as a download, and, once downloaded, you can move it
into hdfs by running the command, as shown in the following code:

hdfs dfs -copyFromLocal cities.csv /user/normal

The second dataset is that of daily temperature measurements for a city, and this contains
the Date of measurement, the city ID, and the Temperature on the particular date for the
specific city:

Date,Id,Temperature
2018-01-01,1,21
2018-01-01,2,22
2018-01-01,3,23
2018-01-01,4,24
2018-01-01,5,25
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2018-01-01,6,22
2018-01-02,1,23
2018-01-02,2,24
2018-01-02,3,25

This file, temperatures.csv, is available as a download, and, once downloaded, you can
move it into hdfs by running the command, as shown in the following code:

hdfs dfs -copyFromLocal temperatures.csv /user/normal

The following are the programming components of a MapReduce program:
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Record reader
The input reader divides the input into appropriately sized splits (in practice, typically,
64 MB to 128 MB), and the framework assigns one split to each map function. The input
reader reads data from stable storage (typically, a distributed filesystem) and generates
key/value pairs.

A common example will read a directory full of text files and return each
line as a record.

The record reader translates an input split generated by input format into records. The
purpose of the record reader is to parse the data into records, but not to parse the record
itself. It passes the data to the mapper in the form of a key/value pair. Usually, the key in
this context is positional information, and the value is the chunk of data that composes a
record. Customized record readers are outside of the scope of this book. We generally
assume you have an appropriate record reader for your data. LineRecordReader is the
default RecordReader that TextInputFormat provides and it treats each line of the input
file as the new value; the associated key is byte offset. LineRecordReader always skips the
first line in the split (or part of it), if it is not the first split. It reads one line after the
boundary of the split at the end (if data is available, so it is not the last split).

Map
The map function takes a series of key/value pairs, processes each, and generates zero or
more output key/value pairs. The input and output types of the map can be (and often are)
different from each other.

If the application is doing a word count, the map function will break the line into words and
output a key/value pair for each word. Each output pair will contain the word as the key
and the number of instances of that word in the line as the value.

In the mapper, code is executed on each key/value pair from the record reader to produce
zero or more new key/value pairs, called the intermediate output of the mapper (which
also consists of key/value pairs). The decision of what the key and value from each record is
directly related to what the MapReduce job is accomplishing. The key is what the data will
be grouped on and the value is the part of the data to be used in the reducer to generate the
necessary output. One of the key items discussed in the patterns is how the different types
of use cases also determine the particular key/value logic. In fact, the semantics of this logic
is a key differentiator between MapReduce design patterns.
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Combiner
If every output of every mapper is directly sent over to every reducer, this will consume a
significant amount of resources and time. The combiner, an optional localized reducer, can
group data in the map phase. It takes the intermediate keys from the mapper and applies a
user-provided method to aggregate values in the small scope of that one mapper. For
example, because the count of an aggregation is the sum of the counts of each part, you can
produce an intermediate count, and then sum those intermediate counts for the final result.
In many situations, this significantly reduces the amount of data that has to move over the
network. For instance, if we look at the datasets of cities and temperatures, sending
(Boston, 66) requires fewer bytes than sending (Boston, 20), (Boston, 25), (Boston, 21), three
times over the network. Combiners often provide significant performance gains with no
downsides.

We will point out which patterns benefit from using a combiner, and which ones cannot
use a combiner. A combiner is not guaranteed to execute, so it cannot be a part of the
overall algorithm.

Partitioner
The partitioner takes the intermediate key/value pairs from the mapper (or combiner if it is
being used) and splits them up into shards, one shard per reducer.

Each map function output is allocated to a particular reducer by the application's
partition function for sharding purposes. The partition function, is given the key and
the number of reducers and returns the index of the desired reducer.

A typical default is to hash the key and use the hash value to module the number of
reducers:

partitionId = hash(key) % R, where R is number of Reducers

It is important to pick a partition function that gives an approximately uniform
distribution of data per shard for load-balancing purposes; otherwise the MapReduce
operation can be held up waiting for slow reducers to finish (that is, the reducers assigned
the larger shares of the skewed data).
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Between the map and reduce stages, the data is shuffled (parallel sorted and then
exchanged between nodes) in order to move the data from the map node that produced
them to the shard in which they will be reduced. The shuffle can sometimes take longer
than the computation time, depending on network bandwidth, CPU speeds, data produced,
and time taken by map and reduce computations.

By default, the partitioner computes the hash code of each object, which is typically an md5
checksum. Then, it randomly distributes the keyspace evenly over the reducers, but still
ensures that keys with the same values in different mappers end up at the same reducer.
The default behavior of the partitioner can be customized with operations such as sorting.
The partitioned data is written to the local filesystem for each map task and waits to be
pulled by its corresponding reducer.

Shuffle and sort
Once the mappers are done with the input data processing (essentially, splitting the data
and generating key/value pairs), the output has to be distributed across the cluster to start
the reduce tasks. Hence, a reduce task starts with the shuffle and sort step, by taking the
output files written by all of the mappers and subsequent partitioners and downloads them
to the local machine in which the reducer task is running. These individual data pieces are
then sorted by key into one larger list of key/value pairs. The purpose of this sort is to
group equivalent keys together, so that their values can be iterated over easily in the reduce
task. The framework handles everything automatically, with the ability for the custom
code to control how the keys are sorted and grouped.

Reduce
The reducer takes the grouped data as input and runs a reduce function once per key
grouping. The function is passed the key and an iterator over all of the values associated
with that key. A wide range of processing can happen in this function, as we'll see in many
of our patterns. The data can be aggregated, filtered, and combined in a number of ways.
Once the reduce function is done, it sends zero or more key/value pairs to the final step,
the output format. Like the map function, the reduce function will change from job to job
since it is a core piece of logic in the solution. The reducer can have a lot of customization
including writing output to HDFS, output to Elasticsearch index, and output to RDBMS or
a NoSQL such as Cassandra, HBase, and so on. 
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Output format
The output format translates the final key/value pair from the reduce function and writes
it out to a file by a record writer. By default, it will separate the key and value with a tab
and separate records with a newline character. This can typically be customized to provide
richer output formats, but in the end, the data is written out to HDFS, regardless of format.
Not only is writing to HDFS supported by default but also output to Elasticsearch index,
output to RDBMS, or a NoSQL such as Cassandra, HBase, and so on. 

MapReduce job types
MapReduce jobs can be written in multiple ways, depending on what the desired outcome
is. The fundamental structure of a MapReduce job is as follows:

import java.io.IOException;
import java.util.StringTokenizer;
import java.util.Map;
import java.util.HashMap;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.commons.lang.StringEscapeUtils;

public class EnglishWordCounter {
public static class WordMapper
extends Mapper<Object, Text, Text, IntWritable> {
...
}
public static class CountReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {
...
}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "English Word Counter");
job.setJarByClass(EnglishWordCounter.class);
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job.setMapperClass(WordMapper.class);
job.setCombinerClass(CountReducer.class);
job.setReducerClass(CountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

The purpose of the driver is to orchestrate the jobs. The first few lines of main are all about
parsing command-line arguments. Then, we start setting up the job object by telling it what
classes to use for computations and what input paths and output paths to use.

Let's look at the Mapper code, which simply tokenizes the input string and writes each
word as an output of the mapper:

public static class WordMapper
extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
// Grab the "Text" field, since that is what we are counting over
String txt = value.toString()
StringTokenizer itr = new StringTokenizer(txt);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}

Finally, there is comes the reducer code, which is relatively simple. The reduce function
gets called once per key grouping; in this case, each word. We'll iterate through the values,
which will be numbers, and take a running sum. The final value of this running sum will be
the sum of the ones:

public static class CountReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
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}
result.set(sum);
context.write(key, result);
}
}

There are basic types of MapReduce jobs, as shown in the following points.

Single mapper job
Single mapper jobs are used in transformation use cases. If we want to change only the
format of data, such as some kind of transformation, then this pattern is used:

Scenario Some cities have short names as BOS, NYC, and so on

Map (Key, Value)
Key: city Name
Value: ShortName → if city is Boston/boston then converted to BOS
 else if city is New York/new york then convert to NYC

Now, let's look at a complete example of a Single mapper only job. For this, we will simply
try to output the cityID and temperature from the temperature.csv file seen earlier.

The following is the code:

package io.somethinglikethis;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
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import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;

public class SingleMapper
{
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = new Job(conf, "City Temperature Job");
        job.setMapperClass(TemperatureMapper.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

    /*
    Date,Id,Temperature
    2018-01-01,1,21
    2018-01-01,2,22
    */
    private static class TemperatureMapper
            extends Mapper<Object, Text, Text, IntWritable> {

        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String txt = value.toString();
            String[] tokens = txt.split(",");
            String date = tokens[0];
            String id = tokens[1].trim();
            String temperature = tokens[2].trim();
            if (temperature.compareTo("Temperature") != 0)
                context.write(new Text(id), new
IntWritable(Integer.parseInt(temperature)));
        }
    }

}



Big Data Processing with MapReduce Chapter 3

[ 82 ]

To execute this job, you have to create a Maven project using your favorite editor and edit
pom.xml to look like the following code:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <packaging>jar</packaging>
  <groupId>io.somethinglikethis</groupId>
  <artifactId>mapreduce</artifactId>
  <version>1.0-SNAPSHOT</version>

  <name>mapreduce</name>
  <!-- FIXME change it to the project's website -->
  <url>http://somethinglikethis.io</url>

  <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <maven.compiler.source>1.7</maven.compiler.source>
    <maven.compiler.target>1.7</maven.compiler.target>
  </properties>

  <dependencies>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>4.11</version>
      <scope>test</scope>
    </dependency>
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-mapreduce-client-core</artifactId>
      <version>3.1.0</version>
    </dependency>
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-client</artifactId>
      <version>3.1.0</version>
    </dependency>
  </dependencies>
  <build>
      <plugins>
        <plugin>
          <groupId>org.apache.maven.plugins</groupId>
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          <artifactId>maven-shade-plugin</artifactId>
          <version>3.1.1</version>
          <executions>
              <execution>
                  <phase>package</phase>
                  <goals>
                      <goal>shade</goal>
                  </goals>
              </execution>
          </executions>
            <configuration>
                <finalName>uber-${project.artifactId}-
${project.version}</finalName>
                <transformers>
                    <transformer
implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTra
nsformer"/>
                </transformers>
                <filters>
                    <filter>
                        <artifact>*:*</artifact>
                        <excludes>
                            <exclude>META-INF/*.SF</exclude>
                            <exclude>META-INF/*.DSA</exclude>
                            <exclude>META-INF/*.RSA</exclude>
                            <exclude>META-INF/LICENSE*</exclude>
                            <exclude>license/*</exclude>
                        </excludes>
                    </filter>
                </filters>
            </configuration>
        </plugin>
      </plugins>
  </build>
</project>

Once you have the code, you can use Maven to build the shaded/fat .jar as the following:

Moogie:mapreduce sridharalla$ mvn clean compile package
[INFO] Scanning for projects...
[INFO]
[INFO] --------------------------------------------------------------------
----
[INFO] Building mapreduce 1.0-SNAPSHOT
[INFO] --------------------------------------------------------------------
----
[INFO]
[INFO] --- maven-clean-plugin:2.5:clean (default-clean) @ mapreduce ---
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[INFO] Deleting /Users/sridharalla/git/mapreduce/target
.......
............

You should see a uber-mapreduce-1.0-SNAPSHOT.jar in the target directory; now we
are ready to execute the job.

Make sure that the local Hadoop cluster, as seen in Chapter 1, Introduction
to Hadoop, is started, and that you are able to browse to
http://localhost:9870.

To execute the job, we will use the Hadoop binaries and the fat .jar we just built earlier as
shown in the following code:

export PATH=$PATH:/Users/sridharalla/hadoop-3.1.0/bin
hdfs dfs -chmod -R 777 /user/normal

Now, run the command, as shown in the following code:

hadoop jar target/uber-mapreduce-1.0-SNAPSHOT.jar
io.somethinglikethis.SingleMapper /user/normal/temperatures.csv
/user/normal/output/SingleMapper

The job will run, and you should be able to see output as shown in the following code:

Moogie:target sridharalla$ hadoop jar uber-mapreduce-1.0-SNAPSHOT.jar
io.somethinglikethis.SingleMapper /user/normal/temperatures.csv
/user/normal/output/SingleMapper
2018-05-20 18:38:01,399 WARN util.NativeCodeLoader: Unable to load native-
hadoop library for your platform... using builtin-java classes where
applicable
2018-05-20 18:38:02,248 INFO impl.MetricsConfig: loaded properties from
hadoop-metrics2.properties
......

Pay particular attention to the output counters:

Map-Reduce Framework
 Map input records=28
 Map output records=27
 Map output bytes=162
 Map output materialized bytes=222
 Input split bytes=115
 Combine input records=0
 Combine output records=0
 Reduce input groups=6
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 Reduce shuffle bytes=222
 Reduce input records=27
 Reduce output records=27
 Spilled Records=54
 Shuffled Maps =1
 Failed Shuffles=0
 Merged Map outputs=1
 GC time elapsed (ms)=13
 Total committed heap usage (bytes)=1084227584

This shows that 27 records were output from the mapper, and there is no reducer action
and all input records are output on a 1:1 basis. You will be able to check this using the
HDFS browser by simply using http://localhost:9870 and jumping into the output
directory shown under /user/normal/output as shown in the following screenshot:

Figure: Screenshot showing how to check output from output directory
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Now find the SingleMapper folder and go into this directory as shown in the following
screenshot:

Figure: Screenshot showing SingleMapper folder

Going further down into this SingleMapper folder:

Figure: Screenshot showing further down in the SingleMapper folder
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Finally, click on the part-r-00000 file seen in the following screenshot:

Figure: Screenshot showing the file to be selected

You will see a screen showing the file properties as seen in the following screenshot:

Figure: screenshot showing the file properties
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Using head/tail option in the preceding screenshot you can view the content of the file as
shown in the following screenshot:

Figure: Screenshot showing content of the file

This shows the output of the SingleMapper job as simply writing each row's cityID and
temperature without any calculations.

You can also use the command line to view the contents of output hdfs
dfs -cat /user/normal/output/SingleMapper/part-r-00000.

The output file contents are shown in the following code:

1 25
1 21
1 23
1 19
1 23
2 20
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2 22
2 27
2 24
2 26
3 21
3 25
3 22
3 25
3 23
4 21
4 26
4 23
4 24
4 22
5 18
5 24
5 22
5 25
5 24
6 22
6 22

This concludes the SingleMapper job execution and the output is as expected.

Single mapper reducer job
Single mapper reducer jobs are used in aggregation use cases. If we want to do some
aggregation the such as count, by key, then this pattern is used:
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Scenario Counting the total/average temperature of cities

Map (Key, Value) Key: city
Value: Their temperatures

Reduce Group by city, and take average temperature for each city

Now let's look at a complete example of a single mapper reducer only job. For this, we will
simply try to output the cityID and average temperature from the temperature.csv file
seen earlier.

The following is the code:

package io.somethinglikethis;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class SingleMapperReducer
{
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = new Job(conf, "City Temperature Job");
        job.setMapperClass(TemperatureMapper.class);
        job.setReducerClass(TemperatureReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

    /*
    Date,Id,Temperature
    2018-01-01,1,21
    2018-01-01,2,22
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    */
    private static class TemperatureMapper
            extends Mapper<Object, Text, Text, IntWritable> {

        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String txt = value.toString();
            String[] tokens = txt.split(",");
            String date = tokens[0];
            String id = tokens[1].trim();
            String temperature = tokens[2].trim();
            if (temperature.compareTo("Temperature") != 0)
                context.write(new Text(id), new
IntWritable(Integer.parseInt(temperature)));
        }
    }

    private static class TemperatureReducer
            extends Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable result = new IntWritable();
        public void reduce(Text key, Iterable<IntWritable> values,
                           Context context) throws IOException,
InterruptedException {
            int sum = 0;
            int n = 0;
            for (IntWritable val : values) {
                sum += val.get();
                n +=1;
            }
            result.set(sum/n);
            context.write(key, result);
        }
    }
}

Now, run this command:

hadoop jar target/uber-mapreduce-1.0-SNAPSHOT.jar
io.somethinglikethis.SingleMapperReducer /user/normal/temperatures.csv
/user/normal/output/SingleMapperReducer

The job will run and you should be able to see output as shown in the following code
showing the output counters:

Map-Reduce Framework
    Map input records=28
    Map output records=27
    Map output bytes=162
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    Map output materialized bytes=222
    Input split bytes=115
    Combine input records=0
    Combine output records=0
    Reduce input groups=6
    Reduce shuffle bytes=222
    Reduce input records=27
    Reduce output records=6
    Spilled Records=54
    Shuffled Maps =1
    Failed Shuffles=0
    Merged Map outputs=1
    GC time elapsed (ms)=12
    Total committed heap usage (bytes)=1080557568

This shows that 27 records were output from mapper, and there are six output records from
reducer. You will be able to check this using the HDFS browser, simply by using
http://localhost:9870 and jumping into the output directory shown under
/user/normal/output, as shown in the following screenshot:

Figure: screenshot showing how to check output in the output directory
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Now, find the SingleMapperReducer folder, go into this directory and then drilldown as
in SingleMapper section; then using the head/tail option in the preceding screenshot, you
can view the contents of the file, as shown in the following screenshot:

This shows the output of the SingleMapperReducer job, writing each row's cityID and
average temperature for each cityID.

You can also use command line to view the contents of output hdfs dfs
-cat /user/normal/output/SingleMapperReducer/part-r-00000.

The output file contents are as shown in the following code:

1 22
2 23
3 23
4 23
5 22
6 22
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This concludes the SingleMapperReducer job execution and the output is as expected.

Multiple mappers reducer job
Multiple mappers reducer jobs are used in join use cases. In this design pattern, our input is
taken from multiple input files to yield joined/aggregated output:

Scenario

We have to find the average of city-wide temperature, but we have two
files with different schema, one for cities and the other for temperature.
Input File 1
City ID to Name
Input File 2
Temperature for each city per day

Map (Key,
Value)

Map 1 (For input 1)
We need to write a program to split cityID, Name and according to the
cityID, write the Name
Then prepare the key/value pair (cityID, Name)
Map 2 (For input 2)
We need to write a program to split date, cityID, temperature and
according to the
cityID, write the temperature
Then prepare the key/value pair (cityID, temperature)

Reduce Group by cityID
And take average temperature for each city Name.
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Now let's look at a complete example of a single mapper reducer job. For this, we will
simply try to output the cityID and average temperature from the temperature.csv file
seen earlier.

The following is the code:

package io.somethinglikethis;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.MultipleInputs;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class MultipleMappersReducer
{
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = new Job(conf, "City Temperature Job");
        job.setMapperClass(TemperatureMapper.class);
        MultipleInputs.addInputPath(job, new Path(args[0]),
TextInputFormat.class, CityMapper.class);
        MultipleInputs.addInputPath(job, new Path(args[1]),
TextInputFormat.class, TemperatureMapper.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        job.setReducerClass(TemperatureReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        FileOutputFormat.setOutputPath(job, new Path(args[2]));

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

    /*
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    Id,City
    1,Boston
    2,New York
    */
    private static class CityMapper

            extends Mapper<Object, Text, Text, Text> {

        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String txt = value.toString();
            String[] tokens = txt.split(",");
            String id = tokens[0].trim();
            String name = tokens[1].trim();
            if (name.compareTo("City") != 0)
                context.write(new Text(id), new Text(name));
        }
    }

    /*
    Date,Id,Temperature
    2018-01-01,1,21
    2018-01-01,2,22
    */
    private static class TemperatureMapper
            extends Mapper<Object, Text, Text, Text> {

        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String txt = value.toString();
            String[] tokens = txt.split(",");
            String date = tokens[0];
            String id = tokens[1].trim();
            String temperature = tokens[2].trim();
            if (temperature.compareTo("Temperature") != 0)
                context.write(new Text(id), new Text(temperature));
        }
    }

    private static class TemperatureReducer
            extends Reducer<Text, Text, Text, IntWritable> {
        private IntWritable result = new IntWritable();
        private Text cityName = new Text("Unknown");
        public void reduce(Text key, Iterable<Text> values,
                           Context context) throws IOException,
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InterruptedException {
            int sum = 0;
            int n = 0;

            cityName = new Text("city-"+key.toString());

            for (Text val : values) {
                String strVal = val.toString();
                if (strVal.length() <=3)
                {
                    sum += Integer.parseInt(strVal);
                    n +=1;
                } else {
                    cityName = new Text(strVal);
                }
            }
            if (n==0) n = 1;
            result.set(sum/n);
            context.write(cityName, result);
        }
    }
}

Now, run the command, as shown in the following code:

hadoop jar target/uber-mapreduce-1.0-SNAPSHOT.jar
io.somethinglikethis.MultipleMappersReducer /user/normal/cities.csv
/user/normal/temperatures.csv /user/normal/output/MultipleMappersReducer

The job will run and you should be able to see output as shown in the following output
counters:

Map-Reduce Framework -- mapper for temperature.csv
    Map input records=28
    Map output records=27
    Map output bytes=135
    Map output materialized bytes=195
    Input split bytes=286
    Combine input records=0
    Spilled Records=27
    Failed Shuffles=0
    Merged Map outputs=0
    GC time elapsed (ms)=0
    Total committed heap usage (bytes)=430964736

Map-Reduce Framework.  -- mapper for cities.csv
    Map input records=7
    Map output records=6
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    Map output bytes=73
    Map output materialized bytes=91
    Input split bytes=273
    Combine input records=0
    Spilled Records=6
    Failed Shuffles=0
    Merged Map outputs=0
    GC time elapsed (ms)=10
    Total committed heap usage (bytes)=657457152

Map-Reduce Framework -- output average temperature per city name
    Map input records=35
    Map output records=33
    Map output bytes=208
    Map output materialized bytes=286
    Input split bytes=559
    Combine input records=0
    Combine output records=0
    Reduce input groups=7
    Reduce shuffle bytes=286
    Reduce input records=33
    Reduce output records=7
    Spilled Records=66
    Shuffled Maps =2
    Failed Shuffles=0
    Merged Map outputs=2
    GC time elapsed (ms)=10
    Total committed heap usage (bytes)=1745879040

This shows that 27 records were output from one Mapper, six records were output from
Mapper2 and seven records were output by the reducer. You will be able to check this
using the HDFS browser, simply by using http://localhost:9870 and jumping into the
output directory shown under /user/normal/output, as shown in the following
screenshot:
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Figure: Check output in output directory

Now find the MultipleMappersReducer folder go into the directory, and then drill down
as in the SingleMapper section; then, using the head/tail option in the preceding screenshot,
you can view the content of the file, as shown in the following screenshot:

Figure: Content of the file
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This shows the output of the MultipleMappersReducer job as the cityName and average
temperature per city. If a cityID does not have corresponding temperature records in
temperature.csv, the average is shown as 0. Similarly, if a cityID does not have a name in
cities.csv, then the city name is shown as city-N.

You can also use the command line to view the contents of output hdfs
dfs -cat /user/normal/output/MultipleMappersReducer/part-

r-00000.

The output file contents are shown in the following code:

Boston 22
New York 23
Chicago 23
Philadelphia 23
San Francisco 22
city-6 22  //city ID 6 has no name in cities.csv only temperature
measurements
Las Vegas 0 // city of Las vegas has no temperature measurements in
temperature.csv

This concludes the MultipleMappersReducer job execution, and the output is as
expected.

SingleMapperCombinerReducer job
SingleMapperReducer jobs are used in aggregation use cases. A combiner, also known as
a semi-reducer, is an optional class that operates by accepting the inputs from the map
class and thereafter passing the output key/value pairs to the reducer class. The purpose of
the combiner is to reduce the workload of the reducer:
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In the MapReduce program, 25% of the work is done in the map stage, which is also known
as the data preparation stage, which works in parallel. At the same time, 75% of the work is
done in the reduce stage, which is known as the calculation stage, and is not parallel.
Therefore, it is slower than the map phase. To reduce time, some work in the reduce phase
can be done in the combiner phase.

For example, if we have a combiner, then we will send (Boston, 66) from a mapper, which
sees (Boston, 22), (Boston, 24), (Boston, 20) as input records, instead of sending three
individual key/pair records across the network.
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Scenario
There are several cities, with a daily temperature provided for each city, and we have to
calculate the city's average salary. However, there are certain rules to calculate the
average. After calculating the city-wise total for each city, we can compute the average of
temperature for each city:

Input Files
(several
files)

Map
(Parallel)
(, Value = Name)

Combiner
(Parallel)

Reducer
(Not Parallel) Output

City 1 1<10,20,25,45,15,45,25,20>
2 <10,30,20,25,35>

1 <250,20>
2 <120,10>

1
Boston, < 250,20,155,
10,90,90,30>
2
New York,
<120,10,175,10,135,
10,110,10,130,10>

Boston
<645>
New
York
<720>

City 2 1<Boston>
2 <New York>

1 <Boston>
2 <New York>

Now, let's look at the complete example of a SingleMapperCombinerReducer job. For
this, we will simply try to output the cityID and the average temperature from the
temperature.csv file seen earlier.

The following is the code:

package io.somethinglikethis;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class SingleMapperCombinerReducer
{
    public static void main(String[] args) throws Exception {



Big Data Processing with MapReduce Chapter 3

[ 103 ]

        Configuration conf = new Configuration();
        Job job = new Job(conf, "City Temperature Job");
        job.setMapperClass(TemperatureMapper.class);
        job.setCombinerClass(TemperatureReducer.class);
        job.setReducerClass(TemperatureReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

    /*
    Date,Id,Temperature
    2018-01-01,1,21
    2018-01-01,2,22
    */
    private static class TemperatureMapper
            extends Mapper<Object, Text, Text, IntWritable> {

        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String txt = value.toString();
            String[] tokens = txt.split(",");
            String date = tokens[0];
            String id = tokens[1].trim();
            String temperature = tokens[2].trim();
            if (temperature.compareTo("Temperature") != 0)
                context.write(new Text(id), new
IntWritable(Integer.parseInt(temperature)));
        }
    }

    private static class TemperatureReducer
            extends Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable result = new IntWritable();
        public void reduce(Text key, Iterable<IntWritable> values,
                           Context context) throws IOException,
InterruptedException {
            int sum = 0;
            int n = 0;
            for (IntWritable val : values) {
                sum += val.get();
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                n +=1;
            }
            result.set(sum/n);
            context.write(key, result);
        }
    }
}

Now, run the command, as shown in the following code:

hadoop jar target/uber-mapreduce-1.0-SNAPSHOT.jar
io.somethinglikethis.SingleMapperCombinerReducer
/user/normal/temperatures.csv
/user/normal/output/SingleMapperCombinerReducer

The job will run, and you should be able to see output as shown in the following output
counters:

Map-Reduce Framework
    Map input records=28
    Map output records=27
    Map output bytes=162
    Map output materialized bytes=54
    Input split bytes=115
    Combine input records=27
    Combine output records=6
    Reduce input groups=6
    Reduce shuffle bytes=54
    Reduce input records=6
    Reduce output records=6
    Spilled Records=12
    Shuffled Maps =1
    Failed Shuffles=0
    Merged Map outputs=1
    GC time elapsed (ms)=11
    Total committed heap usage (bytes)=1077936128
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This shows that 27 records were output from mapper and there are 6 output records from
reducer. However, note that there is now a combiner which takes 27 input records and
outputs 6 records clearly demonstrating the performance gain by reducing the records
shuffled from mappers to reducers. You will be able to check this using the HDFS browser
by simply using http://localhost:9870 and jumping into the output directory shown
under /user/normal/output, as shown in the following screenshot:

Now find the SingleMapperCombinerReducer folder and go into this directory and then
drilldown as in SingleMapper section earlier and then using head/tail option in the
preceding screen you can view the content of the file as shown in the following screenshot:

Figure: Check output in output directory
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This shows the output of the SingleMapperCombinerReducer job as writing each row's
cityID and the average temperature per cityID:

Figure: Screenshot showing output of the SingleMapperCombinerReducer

You can also use command line to view contents of output hdfs dfs -
cat /user/normal/output/SingleMapperCombinerReducer/part-

r-00000.

The output file contents are shown in the following code:

1 22
2 23
3 23
4 23
5 22
6 22
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This concludes the SingleMapperCombinerReducer job execution and the output is as
expected.

Next, we will look into more details on the patterns used in writing MapReduce jobs.

MapReduce patterns
A MapReduce pattern is a template for solving a common and general data manipulation
problem with MapReduce. A pattern is not specific to a domain, such as text processing or
graph analysis, but it is a general approach to solving a problem. Using design patterns is
all about using tried and true design principles to build better software. 

Design patterns have been making developers, lives easier for years. They are tools for
solving problems in a reusable and general way, so that the developer can spend less time
figuring out how they're going to overcome a hurdle and move on to the next one.

Aggregation patterns
This chapter focuses on design patterns that produce a top-level, summarized view of your
data, so you can glean insights not available from looking at a localized set of records alone.
Aggregation, or summarization, analytics are all about grouping similar data together and
then performing an operation, such as calculating a statistic, building an index, or simply
counting.

The patterns in this chapter are numerical summarizations, inverted index, and counting
with counters:
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The aggregation pattern is a general pattern for calculating aggregate statistical values over
your data, and is discussed in detail. It is important to use the combiner properly, and to
understand the calculation you are performing before writing the code. Basically, the logic
is to group records together by a key field and calculate a numerical aggregate per group. 

Aggregations, or numerical summarizations, can be used when both of the following are
true:

You are dealing with numerical data or counting
The data can be grouped by specific fields

Average temperature by city
 The application outputs each city of a record as the key and each temperature as the value,
thus grouping by cities. The reduce phase then adds up the integers and outputs each
unique city with the average temperature. 

Record count
A very common summarization is to get a count of records grouped by key, and maybe
have a breakdown into daily, weekly, and monthly counts.

Min/max/count
This is an analytic to determine the minimum, maximum, and count of a particular event,
such as the first time a city was sampled, the last time a city was sampled, and the number
of times the temperature was measured in between that time period. You don't have to
collect all three of these aggregates at the same time, or any of the other use cases listed
here, if you are only interested in one of them.

Average/median/standard deviation
This is similar to min/max/count, but not as straightforward an implementation because
these operations are not associative. A combiner can be used for all three, but requires a
more complex approach than just reusing the reducer implementation.
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A minimum, maximum, and count example, calculating the minimum, maximum, and
count of a given field, are all excellent applications of the numerical summarization pattern.

SingleMapperReducer job seen earlier is a good example for
aggregation pattern.

Depending on the use case, an aggregation pattern can be customized to generate the
intended output.

Filtering patterns
Also known as transformation patterns, filtering patterns find a subset of data, whether it 
be small, like a top 10 listing, or large, like the results of a deduplication:

Four patterns are presented in this chapter: filtering, bloom filtering, top ten, and distinct.

As the most basic pattern, filtering serves as an abstract pattern for some of the other
patterns. Filtering simply evaluates each record separately and decides, based on some
condition, whether it should stay or go. Filter out records that are not of interest and keep
ones that are. Consider an evaluation function f that takes a record and returns a Boolean
value of true or false. If this function returns true, keep the record; otherwise, toss it
out.

The SingleMapper job seen earlier is a good example of a filtering
patterns.
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Depending on the use case, a transformation pattern can be customized to generate the
intended output.

Join patterns
Data is all over the place, and while it's very valuable on its own, we can discover
interesting relationships when we start analyzing these sets together. This is where join 
patterns come in to play. Joins can be used to enrich data with a smaller reference set or
they can be used to filter out or select records that are in some type of special list.

To understand these patterns and their implementations, you should refer to the
MultipleMappersReducer job earlier in this chapter.

The abbreviated code is shown as follows, showing the two mappers and one reducer
classes:

public class MultipleMappersReducer
{
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = new Job(conf, "City Temperature Job");
        job.setMapperClass(TemperatureMapper.class);
        MultipleInputs.addInputPath(job, new Path(args[0]),
TextInputFormat.class, CityMapper.class);
        MultipleInputs.addInputPath(job, new Path(args[1]),
TextInputFormat.class, TemperatureMapper.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        job.setReducerClass(TemperatureReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        FileOutputFormat.setOutputPath(job, new Path(args[2]));

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

    /*
    Id,City
    1,Boston
    2,New York
    */
    private static class CityMapper
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            extends Mapper<Object, Text, Text, Text> {

        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String txt = value.toString();
            String[] tokens = txt.split(",");
            String id = tokens[0].trim();
            String name = tokens[1].trim();
            if (name.compareTo("City") != 0)
                context.write(new Text(id), new Text(name));
        }
    }

    /*
    Date,Id,Temperature
    2018-01-01,1,21
    2018-01-01,2,22
    */
    private static class TemperatureMapper
            extends Mapper<Object, Text, Text, Text> {

        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String txt = value.toString();
            String[] tokens = txt.split(",");
            String date = tokens[0];
            String id = tokens[1].trim();
            String temperature = tokens[2].trim();
            if (temperature.compareTo("Temperature") != 0)
                context.write(new Text(id), new Text(temperature));
        }
    }

    private static class TemperatureReducer
            extends Reducer<Text, Text, Text, IntWritable> {
        private IntWritable result = new IntWritable();
        private Text cityName = new Text("Unknown");
        public void reduce(Text key, Iterable<Text> values,
                           Context context) throws IOException,
InterruptedException {
            int sum = 0;
            int n = 0;

            cityName = new Text("city-"+key.toString());

            for (Text val : values) {
                String strVal = val.toString();
                if (strVal.length() <=3)



Big Data Processing with MapReduce Chapter 3

[ 112 ]

                {
                    sum += Integer.parseInt(strVal);
                    n +=1;
                } else {
                    cityName = new Text(strVal);
                }
            }
            if (n==0) n = 1;
            result.set(sum/n);
            context.write(cityName, result);
        }
    }
}

The output of this job is shown in the following code:

Boston 22
New York 23
Chicago 23
Philadelphia 23
San Francisco 22
city-6 22 //city ID 6 has no name in cities.csv only temperature
measurements
Las Vegas 0 // city of Las vegas has no temperature measurements in
temperature.csv

Inner join
Inner join requires the left and right tables to have the same column. If you have duplicate
or multiple copies of the keys on either the left or right side, the join will quickly blow up
into a sort of cartesian join, taking a lot longer to complete than if designed correctly, to
minimize the multiple keys:
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We will consider the cities and temperatures only if the cityID has both records as shown in
the following code:

private static class InnerJoinReducer
        extends Reducer<Text, Text, Text, IntWritable> {
    private IntWritable result = new IntWritable();
    private Text cityName = new Text("Unknown");
    public void reduce(Text key, Iterable<Text> values,
                       Context context) throws IOException,
InterruptedException {
        int sum = 0;
        int n = 0;
        for (Text val : values) {
            String strVal = val.toString();
            if (strVal.length() <=3)
            {
                sum += Integer.parseInt(strVal);
                n +=1;
            } else {
                cityName = new Text(strVal);
            }
        }
        if (n!=0 && cityName.toString().compareTo("Unknown") !=0) {
            result.set(sum / n);
            context.write(cityName, result);
        }
    }
}

The output will be as shown in the following code (without city-6 or Las Vegas, as shown
earlier in original output):

Boston 22
New York 23
Chicago 23
Philadelphia 23
San Francisco 22
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Left anti join
Left anti join gives only those rows from the left hand side table based that are not present
in the right hand side table. Use this when you want to keep rows from the left table only
when not present in right table. This provides very good performance, as only one table is
fully considered and the other is only checked for the join condition:

We will consider the cities and temperatures if the cityID has only, name and no
temperature records, as shown in the following code:

private static class LeftAntiJoinReducer
        extends Reducer<Text, Text, Text, IntWritable> {
    private IntWritable result = new IntWritable();
    private Text cityName = new Text("Unknown");
    public void reduce(Text key, Iterable<Text> values,
                       Context context) throws IOException,
InterruptedException {
        int sum = 0;
        int n = 0;

        for (Text val : values) {
            String strVal = val.toString();
            if (strVal.length() <=3)
            {
                sum += Integer.parseInt(strVal);
                n +=1;
            } else {
                cityName = new Text(strVal);
            }
        }
        if (n==0 ) {
            if (n==0) n=1;
            result.set(sum / n);
            context.write(cityName, result);
        }
    }
}
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The output will be as shown in the following code:

Las Vegas 0 // city of Las vegas has no temperature measurements in
temperature.csv

Left outer join
Left outer join gives all rows present in the left-hand side table, in addition to the rows that
are common to both of the tables (inner join). If used on tables with little in common, can
result in very large results, and thus, slow performance:

We will consider the cities and temperatures only if the cityID has both records or cityID is
in cities.csv only, as shown in the following code:

private static class LeftOuterJoinReducer
        extends Reducer<Text, Text, Text, IntWritable> {
    private IntWritable result = new IntWritable();
    private Text cityName = new Text("Unknown");
    public void reduce(Text key, Iterable<Text> values,
                       Context context) throws IOException,
InterruptedException {
        int sum = 0;
        int n = 0;

        for (Text val : values) {
            String strVal = val.toString();
            if (strVal.length() <=3)
            {
                sum += Integer.parseInt(strVal);
                n +=1;
            } else {
                cityName = new Text(strVal);
            }
        }
        if (cityName.toString().compareTo("Unknown") !=0)) {
            if (n==0) n = 1;



Big Data Processing with MapReduce Chapter 3

[ 116 ]

            result.set(sum / n);
            context.write(cityName, result);
        }
    }
}

The output is shown in the following code:

Boston 22
New York 23
Chicago 23
Philadelphia 23
San Francisco 22
Las Vegas 0 // city of Las vegas has no temperature measurements in
temperature.csv

Right outer join
Right outer join gives all rows in right side table, as well as the common rows on both the
left and right (inner join). Use this to get all of the rows in the right table, along with the
rows found in both left and right tables. Fills in NULL if not in left. The performance here is
similar to the left outer join previously mentioned in this table:

We will consider the cities and temperatures only if the cityID has both records or only
temperature measurements are included, as shown in the following code:

private static class RightOuterJoinReducer
        extends Reducer<Text, Text, Text, IntWritable> {
    private IntWritable result = new IntWritable();
    private Text cityName = new Text("Unknown");
    public void reduce(Text key, Iterable<Text> values,
                       Context context) throws IOException,
InterruptedException {
        int sum = 0;
        int n = 0;
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        for (Text val : values) {
            String strVal = val.toString();
            if (strVal.length() <=3)
            {
                sum += Integer.parseInt(strVal);
                n +=1;
            } else {
                cityName = new Text(strVal);
            }
        }
       if (n !=0) {
         result.set(sum / n);
         context.write(cityName, result);
        }
     }
}

The output will be as follows:

Boston 22
New York 23
Chicago 23
Philadelphia 23
San Francisco 22
city-6 22 //city ID 6 has no name in cities.csv only temperature
measurements

Full outer join
Full outer join gives all (matched and unmatched) rows from the tables at the left and right
side of the join clause. We use this when we want to keep all of the rows from both tables.
A full outer join returns all rows when there is a match in ONE of the tables. If used on
tables with little in common, it can result in very large results, and thus, slow performance:
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We will consider the cities and temperatures only if the cityID has both records, or if it
exists in one of the tables, as shown in the following code:

private static class FullOuterJoinReducer
        extends Reducer<Text, Text, Text, IntWritable> {
    private IntWritable result = new IntWritable();
    private Text cityName = new Text("Unknown");
    public void reduce(Text key, Iterable<Text> values,
                       Context context) throws IOException,
InterruptedException {
        int sum = 0;
        int n = 0;

        for (Text val : values) {
            String strVal = val.toString();
            if (strVal.length() <=3)
            {
                sum += Integer.parseInt(strVal);
                n +=1;
            } else {
                cityName = new Text(strVal);
            }
        }
        if (n==0) n = 1;
        result.set(sum/n);
        context.write(cityName, result);
    }
}

The output will be as follows:

Boston 22
New York 23
Chicago 23
Philadelphia 23
San Francisco 22
city-6 22 //city ID 6 has no name in cities.csv only temperature
measurements
Las Vegas 0 // city of Las vegas has no temperature measurements in
temperature.csv
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Left semi join
Left semi join gives only rows from the left side table, if, and only if, they exist in the right
side table. Use this to get rows from left table, if, and only if, the rows are found in the right
table. This is the opposite of the left anti join seen in the previous section. It does not
include right side values. It provides very good performance, as only one table is fully
considered, and the other is only checked for the join condition:

This is similar to left outer join, except that we will only output left table records from
cities.csv.

Cross join
Cross join matches every row from the left with every row from the right, generating a
Cartesian cross product. This is to be used with caution, as it is the worst performing join,
to be used in specific use cases only:

This will output all temperatures for all cities, generating 6 x 6 records (36 output records).
This join is usually not used, as the output can be very large, and it is not that useful in
most cases.
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Thus, we can implement different joins using the multiple mapper approach. 

The multiple mappers reducer job seen earlier is a good example of a join
pattern.

Depending on the use case, a join pattern can be customized to generate the intended
output.

Summary
In this chapter, we discussed the MapReduce framework, various components of the
MapReduce framework, and the various patterns in the MapReduce paradigm, which can
be used to design and develop MapReduce code to meet specific objectives.

In the next chapter, we will look at the Python language, and how it can be used to perform
analytics on big data.



4
Scientific Computing and Big

Data Analysis with Python and
Hadoop

In this chapter, we provide an introduction to Python and analyzing big data using Hadoop
and Python packages. We will be looking at a basic Python installation, opening a Jupyter
Notebook, and working through some examples.

In a nutshell, the following topics will be covered in this chapter:

Installation:
Downloading and installing Python
Downloading and installing Anaconda
Installing Jupyter Notebook

Data analysis

Installation
In this section, we will look at the steps involved in installing and setting up Jupyter
Notebook with the Python interpreter to perform data analysis.
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Installing standard Python
Go to the Python download page at http:/ ​/​www. ​python. ​org/ ​download/ ​ with your web
browser. Python is supported on Windows, macOS, and Linux, and you will find the 
different installations: 

Python releases for Windows at https:/ ​/​www. ​python. ​org/ ​downloads/ ​windows/ ​

Python releases for macOS X at https:/ ​/​www. ​python. ​org/​downloads/ ​mac- ​osx/ ​

Python source releases (Linux and Unix) at https:/ ​/​www. ​python. ​org/
downloads/ ​source/ ​

When you click on the download page, you will see the following screen: 
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If you click on a specific version, such as 3.6.5, then you will be taken to a different page, as
shown in the following screenshot:
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You can read the release notes and then proceed to download the Python version by simply
scrolling down the page, as shown in the following screenshot:

Click the correct version for your operating system and download the installer. Once the
download is complete, install Python on your computer.

Installing Anaconda
The standard Python install has limitations, so you have to install Jupyter, other packages,
pip, and so on, to make the installation production ready for you. Anaconda is an all-in-
one installer with an emphasis on science: it includes Python, the standard library, and 
many useful third-party libraries.

Using a browser, type the URL https:/ ​/ ​www. ​anaconda. ​com/ ​download/ ​ – this will take you
to the Anaconda download page, as shown in the following screenshot:
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Download the appropriate version of Anaconda for your platform and then install it using
the instructions on the web page https:/ ​/​docs. ​anaconda. ​com/ ​anaconda/ ​install/ ​.

Once installation is complete, you should be able to just open Anaconda Navigator (on
Windows, this is in the Start menu and on the Mac, you can simply search). 

On Linux, typically you have to use the command line to launch Jupyter
Notebook.
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On a Mac, for instance, the Anaconda Navigator appears as shown in the following
screenshot:

If you are using Anaconda Navigator, simply clicking on the Jupyter Notebook Launch
button will launch Jupyter, as shown in the following screenshot:
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Using Conda
The Conda command line is by far the most useful and easy-to-use tool to set up your
Python installation successfully. Conda supports multiple environments that can coexist so
you can set up a Python 2.7 environment as well as a Python 3.6 environment. If you are
into deep learning, you can set up TensorFlow as a separate environment and so on.

You can download and install conda by browsing to the URL https:/ ​/
conda. ​io/ ​docs/ ​user- ​guide/ ​install/ ​index. ​html.

The following screenshot is the Conda installation page:
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Follow the instructions to install Conda on your machine after downloading Conda from
the links, as shown in the following screenshot:

Typing conda list on the command line will show you all the packages installed. This
will help you understand which versions of which packages are installed:
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Installing a package is easy using conda. It's as simple as conda install <package
name>.

For instance, type in:

conda install scikit-learn
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More importantly, conda install Jupyter installs the Jupyter Notebook ,which
requires a lot of other packages:

Let's try another important package:

conda install pandas
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Other important packages are:

conda install scikit-learn
conda install matplotlib
conda install seaborn
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In addition to the conda installs, we would need to install packages to access HDFS
(Hadoop) and open files (parquet format):

pip install hdfs
pip install pyarrow

Jupyter Notebook configuration can be generated by running a command as follows:

[root@4b726275a804 /]# jupyter notebook --generate-config
 Writing default config to: /root/.jupyter/jupyter_notebook_config.py

Jupyter needs authentication, which is a token by default. However, if you want to create a
password-based authentication, then just run the command shown in the following code to
set up a password:

[root@4b726275a804 /]# jupyter notebook password
 Enter password:
 Verify password:
 [NotebookPasswordApp] Wrote hashed password to
/root/.jupyter/jupyter_notebook_config.json

Now, we are ready to launch the Notebook, so type the following command:

jupyter notebook --allow-root --no-browser --ip=* --port=8888

The following is the console when the preceding command is being run:

When you open the browser and put in localhost:8888, the browser will open the login
screen and then you have to put in the password set in the preceding steps:
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Once the password is supplied, the Jupyter Notebook portal opens up which shows any
existing Notebooks. In this case, we have no prior Notebooks so the next step is to create
one. Click New and then select Python 2 for your new Notebook:

The following is a new Notebook where you can now type in some test code, as shown in
the following screenshot:

Now that we have installed Python and Jupyter Notebook, we are ready to do data analysis
using the Notebooks and the Python language. In the next section, we will look deep into
the different types of data analysis that can be done.
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Data analysis
Download OnlineRetail.csv from the link provided with the book. Then, you can load
the file using Pandas.

The following is a simple way of reading a local file using Pandas:

import pandas as pd
path = '/Users/sridharalla/Documents/OnlineRetail.csv'
df = pd.read_csv(path)

However, since we are analyzing data in a Hadoop cluster, we should be using hdfs not a
local system. The following is an example of how the hdfs file can be loaded into a pandas
DataFrame:

import pandas as pd
from hdfs import InsecureClient
client_hdfs = InsecureClient('http://localhost:9870')
with client_hdfs.read('/user/normal/OnlineRetail.csv', encoding = 'utf-8')
as reader:
 df = pd.read_csv(reader,index_col=0)

The following is what the following line of code does:

df.head(3)

You will get the following result:

Basically, it displays the top three entries in the DataFrame.

We can now experiment with the data. Enter the following:

len(df)
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That should output this:

65499

That just means the length, or size, of the DataFrame. It's telling us that there are 65,499
entries in the whole file.

Now do this:

df2 = df.loc[df.UnitPrice > 3.0]
df2.head(3)

We defined a new DataFrame called df2, and we set it as all the entries in the original
DataFrame with unit prices greater than three.

Then, we tell it to display the top three entries, as seen in the following screenshot:

The following lines of code select the indices with data that has a unit price above 3.0 and
set their description to Miscellaneous. Then it displays the first three items:

df.loc[df.UnitPrice > 3.0, ['Description']] = 'Miscellaneous'
df.head(3)

And this is the result:

As you can see, entry number 2 (with the index of 1) has its description changed to
Miscellaneous because its unit price is $3.39 (which is over 3 as we specified earlier).
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The line of code outputs the data with index 2:

df.loc[2]

The output is as follows:

And finally, we can create a plot of the Quantity  column as shown in the following code:

df['Quantity'].plot()
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There are plenty more functions to explore.

Here's an example of the usage of the .append() function.

We define a new df object, df3, and we set it equal to the first 10 rows of df combined with
the rows 200–209 of df. In other words, we append rows 200–209 to rows 0–9 of df:

df3 = df[0:10].append(df[200:210])
df3

And this is the resulting output:
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Now, imagine that you're only concerned with a few columns, namely StockCode,
Quantity, InvoiceDate, and UnitPrice. We can define a new DataFrame object to contain
only those columns in the data:

df4 = pd.DataFrame(df, columns=['StockCode', 'Quantity', 'InvoiceDate',
'UnitPrice']
df4.head(3)

And this is the following result:

Pandas offers different ways to combine data. More specifically, we can merge,
concatenate, join, and append. We have already covered append, so now we will take a
look at concatenating data.

Take a look at this code block:

d1 = df[0:10]
d2 = df[10:20]

d3 = pd.concat([d1, d2])
d3
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Basically, we set d1 to be a DataFrame object containing the first 10 indices in df. Then, we
set d2 to be the next ten indices in df. Finally, we set d3 to be the concatenation of d1 and
d2. This is the result once they are concatenated:
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We can do more with this. We can specify keys that will make it easier to distinguish
between d1 and d2. Take a look at the following line of code:

d3 = pd.concat([d1, d2], keys=['d1', 'd2'])

As you can see, it is much easier to differentiate the two datasets. We can call the keys
anything we want, even simple keys like x and y will work. If we had three datasets d1, d2,
and some d3, we can say the keys are (x, y, z) so that we can distinguish between all three
datasets.

Now, we move on to concatenation with different columns. By default, the concat()
function uses outer join. This means that it combines all the columns. Think of two sets, A
and B, where set A contains all the column names belonging to d1 and set B contains all the
column names belonging to d2. If we concatenate d1 and d2 using the line of code we used
earlier, the columns we will see are represented by the union of A and B.
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We can also specify that we want to use inner join, which is represented by the intersection
of A and B. Take a look at the following lines of code:

d4 = pd.DataFrame(df, columns=['InvoiceNo', 'StockCode',
'Description'])[0:10]
d5 = pd.DataFrame(df, columns=['StockCode', 'Description',
'Quantity'])[0:10]

pd.concat([d4, d5])

As you can see, it used all the column labels.
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Remember that by default, concat() uses outer join. So, saying pd.concat([d4, d5]) is
the same as saying:

pd.concat([d4, d5], join='outer')

Now, we use inner join. Keep everything else the same, but change the call to the concat()
function. Look at the following line of code:

pd.concat([d4, d5], join='inner')

That should now output:
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As you can see, this time we only have the column labels that both d4 and d5 had in
common. And once again, we can add keys to make it easier to distinguish between the two
datasets in the table.

Merge is slightly more complicated. This time, you can choose between outer join, inner
join, left join, and right join, and you can also choose the column to merge on.

Let's keep modifying our original definitions of d4 and of d5:

d4 = pd.DataFrame(df, columns=['InvoiceNo', 'StockCode',
'Description'])[0:11]
d5 = pd.DataFrame(df, columns=['StockCode', 'Description',
'Quantity'])[10:20]

The brackets you see at the end of the d4 definition mean we're taking the first 11 elements
of that particular DataFrame, as defined. The brackets at the end of the d5 definition mean
we're taking the elements 10 through 20 to put into d5, as opposed to the whole thing.

It is noticeable to see that they will have an overlapping element, and this will come into
play soon.

First, let's start with the merge function. Let's do a left join merge of d4 and d5:

pd.merge(d4, d5, how='left')
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What this did was use all the columns of the left DataFrame in the pair d4 and d5 and
added the columns of d5 to that. As you can see, since we defined d5 to contain elements 10
through 20, there are no values of quantity from indices 0 through 10. However, since
element 11 is in both d5 and d4, we see a data value for that under Quantity.

Similarly, we can do the same thing for right join:

pd.merge(d4, d5, how='right')

Now, it uses the column labels of d5 as well as the data of d5 (which spans from elements
10 through 20). As you can see, the data at index 0 is shared with d4, hence why it's
completed in this particular table. This is because element number 11 (with index 10)
overlaps with the first element of d5 (index 10).

Now we do inner join:

pd.merge(d4, d5, how='inner')
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Inner join means it only includes elements that both DataFrames have in common. In this
case, the element shown there is element number 11, with index 10 in df. Because it exists
in both d4 and in d5, it has data for both InvoiceNo and for Quantity (since the data for
InvoiceNo exists in d4 and the data for Quantity exists in d5).

Now, we will do outer join:

pd.merge(d4, d5, how='outer')
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As you can see, outer join means it includes all columns (the union of the columns in d4
and in d5).

Any data values that don't exist are labeled NaN. For example, there is no column labeled
InvoiceNo in d5, so all the data values there are shown as NaN.

Now, let's talk about joining on a column. We can introduce a new parameter, on=, in our
function call. Here is an example of merging on the StockCode  column:

pd.merge(d4, d5, on='StockCode', how='left')

The graph is similar to the table generated when we merge d4 and d5 using left join.
However, the exception is that since Description is a column shared by both d4 and d5, it
adds both of them but distinguishes between them with _x and _y respectively.
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As you can see in the last entry, it is shared by both d4 and d5, so both Description_x and
Description_y are the same.

Remember, we can only enter column names that both DataFrames share in common. So,
we can do either StockCode or Description to merge on.

This is what it looks like if we merge on Description instead:

pd.merge(d4, d5, on='Description', how='left')

Again, it distinguishes between the column that they both share by adding _x and _y
respectively to represent d4 and d5.
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We can actually pass in a list of column names instead of a single column name. So, now we
have:

pd.merge(d4, d5, on=['StockCode', 'Description'], how='left')

However, in this case, we can see that this is the same table as:

pd.merge(d4, d5, how='left')

That's because in this particular case, the list we passed in contained all the column names
both of them shared. This would not be the case if they shared three columns and we only
passed in two.
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To illustrate that, suppose this:

d4 = pd.DataFrame(df, columns=['InvoiceNo', 'StockCode', 'Description',
'UnitPrice'])[0:11]
d5 = pd.DataFrame(df, columns=['StockCode', 'Description', 'Quantity',
'UnitPrice'])[10:20]

Now, let's try this again:

pd.merge(d4, d5, on=['StockCode', 'Description'], how='left')

So, now our table will look like:

We can also specify that we want all columns to be present, even the shared ones.

Consider this:

pd.merge(d4, d5, left_index = True, right_index=True, how='outer')
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You can specify any type of joining that you want, and it will still display all the columns.
However, in this example, it will be using an outer join:

Now, we can move on to the join() function. One thing to note is that it will not allow us
to join two DataFrames if they share a column name. So, the following is not allowed:

d4 = pd.DataFrame(df, columns=['StockCode', 'Description',
'UnitPrice'])[0:11]
d5 = pd.DataFrame(df, columns=[ 'Description', 'Quantity',
'InvoiceNo'])[10:20]
d4.join(d5)

Otherwise, it would result in an error.

Now, look at the following lines of code:

d4 = pd.DataFrame(df, columns=['StockCode', 'UnitPrice'])[0:11]
d5 = pd.DataFrame(df, columns=[ 'Description', 'Quantity'])[10:20]
d4.join(d5)
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That would result in this table:

So it takes the d4 table and adds the columns and corresponding data from d5. Since d5
has no data for description or quantity from indices 0 through 9, they are all displayed as
NaN. Since d5 and d4 both share data for index 10, that element has all its data displayed in
the corresponding columns.
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We can also join them the other way around:

d4 = pd.DataFrame(df, columns=['StockCode', 'UnitPrice'])[0:11]
d5 = pd.DataFrame(df, columns=[ 'Description', 'Quantity'])[10:20]
d5.join(d4)

It's the same logic, except the columns of d4 and corresponding data are added onto the
table for d5.

Next, we can combine the data using combine_first().

Look at the following code:

d6 = pd.DataFrame.copy(df)[0:5]
d7 = pd.DataFrame.copy(df)[2:8]

d6.loc[3, ['Quantity']] = 110
d6.loc[4, ['Quantity']] = 110

d7.loc[3, ['Quantity']] = 210
d7.loc[4, ['Quantity']] = 210
pd.concat([d6, d7], keys=['d6', 'd7'])
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The .copy added after pd.DataFrame ensures that we make a copy of the original df as
opposed to editing the original df itself. That way, d6 changing the quantity to 110 for
indices 3 and 4 shouldn't affect d7, and vice versa. Keep in mind, this won't work if you
pass in a list of columns to select, so you can't have something like:

pd.DataFrame(df, columns=['Quantity', 'UnitPrice'])

After running the preceding code, this is the resulting table:

Notice that both d6 and d7 have elements in common, namely the elements with indices 2
through 4.
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Now, take a look at this code:

d6.combine_first(d7)

What this did was combine the data of d7 data with that of d6, but with preference given to
d6. Remember that we set the quantity of indices 3 and 4 to 110 in d6. As you can see, the
data of d6 was kept where both datasets had indices in common. Now look at this line of
code:

d7.combine_first(d6)

Now you'll see that where both elements had indices in common (at indices 3 and 4), the
data of d7 was kept.
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You can also get the occurrence counts of every value in a category of choice using
value_counts(). Take a look at this code:

pd.value_counts(df['Country'])

One thing to consider during your merges is the fact that you might come across duplicate
data values. To resolve these, use .drop_duplicates().
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Consider this:

d1 = pd.DataFrame(df, columns = ['InvoiceNo', 'StockCode',
'Description'])[0:100]
d2 = pd.DataFrame(df, columns = ['Description', 'InvoiceDate',
'Quantity'])[0:100]

pd.merge(d1, d2)
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And if we scroll all the way to the bottom:
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As you can see, there are many duplicate data entries. To remove them all, we can use
drop_duplicates(). In addition, we can specify what column data we can use to
determine which entries are duplicates to be removed. For example, we can use StockCode
to remove all duplicate entries, assuming that each item has a unique stock code. We could
also assume a unique description for each item and remove items that way. So, now look at
this code:

d1 = pd.DataFrame(df, columns = ['InvoiceNo', 'StockCode',
'Description'])[0:100]
d2 = pd.DataFrame(df, columns = ['Description', 'InvoiceDate',
'Quantity'])[0:100]

pd.merge(d1, d2).drop_duplicates(['StockCode'])
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And if we scroll to the bottom:

You will see that many duplicate entries are removed. We could have also passed in either
Description, StockCode, or Description and it would have yielded the same results.

You'll notice then that the indices are all over the place. We can use reset_index() to fix
it. Look at the following code:

d1 = pd.DataFrame(df, columns = ['InvoiceNo', 'StockCode',
'Description'])[0:100]
d2 = pd.DataFrame(df, columns = ['Description', 'InvoiceDate',
'Quantity'])[0:100]

d3 = pd.merge(d1, d2).drop_duplicates(['StockCode'])
d3.reset_index()
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This is what that will look like:

Now clearly, that is not what you probably had in mind. It reset the index, yes, but it added
the old index as a column. There is a simple fix, and that is to introduce a new parameter.
Now, look at this code:

d3.reset_index(drop=True)
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Much better. By default, drop=False, so if you don't want the old index to be added to the
data as a new column, then remember to set drop=True.

You may remember the .plot() function from earlier. You can use this to help visualize
DataFrames, especially if they are large.
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Here is one such example involving a single column:

d8 = pd.DataFrame(df, columns=['Quantity'])[0:100]
d8.plot()

Here, only the first 100 elements are selected to make the graph less crowded and illustrate
the example better.

Now, you'll have:
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Now, suppose that you want multiple columns to show up. Look at the following:

d8 = pd.DataFrame(df, columns=['Quantity', 'UnitPrice'])[0:100]
d8.plot()

Just remember that it will not plot qualitative data columns such as Description, but only
things that can be graphed such as Quantity and UnitPrice.

Summary
In this chapter, we have discussed Python and how to use Python to perform data analysis
with Jupyter Notebook. We also looked at several different operations that can be done
using Python.

In the next chapter, we will look at another popular analytical language, R, and how R can
be used to perform data analysis.



5
Statistical Big Data Computing

with R and Hadoop
This chapter provides an introduction to R and how to use R to perform statistical
computing on big data using Hadoop. We will see alternatives ranging from open source R
on workstations to parallelized commercial products such as Revolution R Enterprise, and
many other options in between will present themselves. Between these extremes lie a range
of options with unique abilities: scaling data, performance, capability, and ease of use. And
so, the right choice or choices depend on your data size, budget, skill, patience, and
governance limitations.

In this chapter, we will summarize the alternatives and some of their advantages using
pure open source R. Also, we will describe the options for achieving even greater scale,
speed, stability, and ease of development by combining open source and commercial
technologies.

In a nutshell, the following topics will be covered in this chapter:

Introduction to integrating R with Hadoop
Methods of integrating R and Hadoop
Data analytics with R

Introduction
This chapter is written to help current R users who are novices in Hadoop understand and
select solutions to evaluate. As with most things open source, the first consideration is of
course monetary. Isn't it always? The good news is that there are multiple alternatives that
are free, and additional capabilities are under development in various open source projects.
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We generally see four options for building R and Hadoop integration using entirely open
source stacks:

Install R on workstations and connect to the data in Hadoop
Install R on a shared server and connect to Hadoop
Utilize Revolution R Open
Execute R inside of MapReduce using RMR2

Let's walk through each option in detail in the following sections.

Install R on workstations and connect to the data
in Hadoop
This baseline approach's greatest advantage is simplicity and cost. It's free. End to end free.
What else in life is? Through the packages Revolution contributed as open source,
including rhdfs and rhbase, R users can directly ingest data from both the hdfs
filesystem and the hbase database subsystems in Hadoop. Both connectors are part of the
RHadoop package created and maintained by Revolution and are the go-to choice.

Additional options exist as well. The RHive package executes Hive's HQL (SQL-like query
language) directly from R, and provides functions for retrieving metadata from Hive, such
as database names, table names, column names, and so on. The rhive package, in
particular, has the advantage that its data operations some work to be pushed down into
Hadoop, avoiding data movement and parallelizing operations for big speed increases. A
similar push-down can be achieved with rhbase as well. However, neither are particularly
rich environments, and complex analytical problems will invariably reveal some gaps in
capability.

Beyond the somewhat limited push-down capabilities, R's best at working on modest data
sampled from hdfs, hbase, or hive; in this way, current R users can get going with
Hadoop quickly.
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Install R on a shared server and connect to
Hadoop
Once you're tired of R's memory barriers on your laptop, the obvious next path is a shared
server. With today's technologies, you can equip a powerful server for only a few thousand
dollars and easily share it between a few users. When using Windows or Linux with 256 GB
or 512 GB of RAM, R can be used to analyze files up to the hundreds of gigabytes, albeit not
as fast as perhaps you'd like.

Like option one, R on a shared server can also leverage the push-down capabilities of the
rhbase and rhive packages to achieve parallelism and avoid data movement. However,
as with workstations, the push-down capabilities of rhive and rhbase are limited.

And of course, while lots of RAM keeps the dreaded out-of-memory exhaustion at bay, it
does little for compute performance and depends on sharing the skills learned (or perhaps
not learned) in kindergarten. For these reasons, consider a shared server to be a great add-
on to R on workstations but not a complete substitute.

Utilize Revolution R Open
Replacing the CRAN download of R with the R distribution Revolution R Open (RRO)
enhances performance further. RRO is, like R itself, open source and 100% R. It is free to
download. It accelerates math computations using the Intel Math Kernel Libraries and is
100% compatible with the algorithms in CRAN and other repositories such as
BioConductor. No changes are required to R scripts, and the acceleration the MKL libraries
offer varies from negligible to an order of magnitude for scripts making intensive use of
certain math and linear algebra primitives. You can anticipate that RRO can double your
average performance if you’re doing math operations in the language. As with options one
and two, RRO can be used with connectors such as rhdfs, and it can connect and push
work down into Hadoop through rhbase and rhive.

Execute R inside of MapReduce using RMR2
Once you find that your problem set is too big, or your patience is being taxed on a
workstation or server and the limitations of rhbase and rhive push-down are impeding
progress, you're ready to run R inside of Hadoop.
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The open source RHadoop project includes rhdfs, rhbase, and plyrmr, and also a
package called rmr2 that enables R users to build Hadoop MapReduce operations using R
functions. Using mappers, R functions are applied to all the data blocks that compose an
hdfs file, an hbase table, or other datasets; the results can be sent to a reducer, also an R
function, for aggregation or analysis. All the work is conducted inside of Hadoop but is
built in R. Let's be clear: applying R functions to each hdfs file segment is a great way to
accelerate computation. But for the most part, it is the avoidance of moving data that really
accentuates performance. To do this, rmr2 applies R functions to the data residing on
Hadoop nodes rather than moving the data to where R resides.

While rmr2 gives essentially unlimited capabilities, as a data scientist or statistician, your
thoughts will soon turn to computing entire algorithms in R on large datasets. Using rmr2
in this way complicates development for the R programmer because he or she must write
the entire logic of the desired algorithm or adapt existing CRAN algorithms. He/she must
then validate that the algorithm is accurate and reflects the expected mathematical result,
and write code for the myriad corner cases such as missing data.

rmr2 requires coding on your part to manage parallelization. This may be trivial for data
transformation operations, aggregates, and so on, or quite tedious if you're trying to train
predictive models or build classifiers on large datasets. While rmr2 can be more tedious
than other approaches, it is not untenable, and most R programmers will find rmr2 much
easier than resorting to Java-based development of Hadoop mappers and reducers. While
somewhat tedious, it:

Is fully open source
Helps to parallelize computation to address larger datasets
Skips painful data movement
Is widely used, so you'll find help available
Is free

rmr2 is not the only option in this category; a similar package called rhipe is also there and
provides similar capabilities. rhipe is described at https:/ ​/​www. ​rhipe. ​com/ ​download-
confirmation/​ and is downloadable from GitHub.

https://www.rhipe.com/download-confirmation/
https://www.rhipe.com/download-confirmation/
https://www.rhipe.com/download-confirmation/
https://www.rhipe.com/download-confirmation/
https://www.rhipe.com/download-confirmation/
https://www.rhipe.com/download-confirmation/
https://www.rhipe.com/download-confirmation/
https://www.rhipe.com/download-confirmation/
https://www.rhipe.com/download-confirmation/
https://www.rhipe.com/download-confirmation/
https://www.rhipe.com/download-confirmation/
https://www.rhipe.com/download-confirmation/
https://www.rhipe.com/download-confirmation/
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Summary and outlook for pure open source options
The range of open source-based options for using R with Hadoop is expanding. The
Apache Spark community, for example, is rapidly improving R integration via the
predictably named SparkR. Today, SparkR provides access to Spark from R, much as rmr2
and rhipe do for Hadoop MapReduce today.

We expect that in future, the SparkR team will add support for Spark's MLlib machine
learning algorithm library, providing execution directly from R. Availability dates haven't
been widely published.

Perhaps the most exciting observation is that R has become table stakes for platform
vendors. Our partners at Cloudera, Hortonworks, MapR, and others, along with database
vendors and others, are all keenly aware of the dominance of R in the large and growing
data science community, and of R's importance as a means to extract insights and value
from the burgeoning data repositories built atop Hadoop.

In a subsequent post, I'll review the options for creating even greater performance,
simplicity, portability, and scale available to R users by expanding the scope from open
source-only solutions to those like Revolution R Enterprise for Hadoop.

R is an amazing data science programming tool to run statistical data analysis on models
and translate the results of analysis into colorful graphics. There is no doubt that R is the
most preferred programming tool for statisticians, data scientists, data analysts, and data
architects, but it falls short when working with large datasets. One major drawback with
the R programming language is that all objects are loaded into the main memory of a
single-machine. Large datasets of sizes in petabytes cannot be loaded into the RAM
memory; this is when Hadoop integrated with R is an ideal solution. To adapt to the in-
memory, single machine limitation of the R programming language, data scientists have to
limit their data analysis to a sample of data from the large data set. This limitation of the R
programming language comes as a major hindrance when dealing with big data. Since R is
not very scalable, the core R engine can process only a limited amount of data.

On the contrary, distributed processing frameworks such as Hadoop are scalable for
complex operations and tasks on large datasets (petabyte range) but do not have strong
statistical analysis capabilities. As Hadoop is a popular framework for big data processing,
integrating R with Hadoop is the next logical step. Using R on Hadoop will provide a
highly scalable data analytics platform that can be scaled depending on the size of the
dataset. Integrating Hadoop with R lets data scientists run R in parallel on large datasets as
none of the data science libraries in the R language will work on a dataset that is larger than
its memory. Big data analytics with R and Hadoop competes with the cost-value return
offered by commodity hardware clusters for vertical scaling.
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Methods of integrating R and Hadoop
Data analysts or data scientists working with Hadoop might have R packages or R scripts
that they use for data processing. To use these R scripts or R packages with Hadoop, they
need to rewrite these R scripts in the Java programming language or any other language
that implements Hadoop MapReduce. This is a burdensome process and could lead to
unwanted errors. To integrate Hadoop with the R programming language, we need to use a
software that is already written for R, with the data being stored in the distributed of
storage Hadoop. There are many solutions for using the R language to perform large
computations, but all these solutions require that the data be loaded into the memory
before it is distributed to the computing nodes. This is not an ideal solution for large
datasets. Here are some commonly used methods to integrate Hadoop with R to make the
best use of the analytical capabilities of R for large datasets.

RHADOOP – install R on workstations and
connect to data in Hadoop
The most commonly used open source analytics solution to integrate the R programming
language with Hadoop is RHadoop. RHadoop, developed by Revolution analytics, lets
users directly ingest data from HBase database subsystems and HDFS filesystems. The
RHadoop package is the go-to solution for using R on Hadoop because of its simplicity and
cost advantage. RHadoop is a collection of five different packages which allows Hadoop
users to manage and analyze data using the R programming language. The RHadoop
package is compatible with open source Hadoop and also with the popular Hadoop
distributions  Cloudera, Hortonworks and MapR:

rhbase: The rhbase package provides database management functions for
HBase within R using a Thrift server. This package needs to be installed on the
node that will run the R client. Using rhbase, data engineers and data scientists
can read, write, and modify data stored in HBase tables from within R.
rhdfs: The rhdfs package provides R programmers with connectivity to the
Hadoop distributed filesystem so that they read, write, or modify the data stored
in Hadoop HDFS.
plyrmr: This package supports data manipulation operations on large datasets
managed by Hadoop. plyrmr (plyr for MapReduce) provides data
manipulation operations present in popular packages such as reshape2 and
plyr. This package depends on Hadoop MapReduce to perform operations but
abstracts most of the MapReduce details.
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ravro: This package lets users read and write Avro files from local and HDFS
filesystems.
rmr2 (execute R inside Hadoop MapReduce): Using this package, R
programmers can perform statistical analysis on the data stored in a Hadoop
cluster. Using rmr2 might be a cumbersome process to integrate R with Hadoop,
but many R programmers find using rmr2 much easier than depending on Java-
based Hadoop mappers and reducers. rmr2 might be a little tedious but it
eliminates data movement and helps parallelize computation to handle large
datasets.

RHIPE – execute R inside Hadoop MapReduce
R and Hadoop Integrated Programming Environment (RHIPE) is an R library that allows
users to run Hadoop MapReduce jobs within the R programming language. R
programmers just have to write R Map and R Reduce functions, and the RHIPE library will
transfer them and invoke the corresponding Hadoop Map and Hadoop Reduce tasks.
RHIPE uses a protocol buffer encoding scheme to transfer the Map and Reduce inputs. The
advantage of using RHIPE over other parallel R packages is that it integrates well with
Hadoop and provides a data distribution scheme using HDFS across a cluster of machines,
which provides fault tolerance and optimizes processor usage.

R and Hadoop Streaming
The Hadoop Streaming API allows users to run Hadoop MapReduce jobs with any
executable script that reads data from standard input and writes data to standard output as
a mapper or reducer. Thus, the Hadoop Streaming API can be used along with R
programming scripts in the Map or Reduce phases. This method to integrate R and Hadoop
does not require any client-side integration because streaming jobs are launched through
the Hadoop command line. MapReduce jobs submitted undergo data transformation
through UNIX standard streams and serialization to ensure Java complaint input to
Hadoop, irrespective of the language of the input script provided by the programmer.

What do you think is the best way to integrate R with Hadoop?
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RHIVE – install R on workstations and connect to
data in Hadoop
If you want your Hive queries to be launched from the R interface, then RHIVE is the go-to
package with functions for retrieving metadata such as database names, column names,
and table names from Apache Hive. RHIVE provides rich statistical libraries and
algorithms available in the R programming language for the data stored in Hadoop by
extending HiveQL with R language functions. RHIVE functions allow users to apply R
statistical learning models to the data stored in Hadoop cluster that has been cataloged
using Apache Hive. The advantage of using RHIVE for Hadoop R integration is that it
parallelizes operations and avoids data movement because data operations are pushed
down into Hadoop.

ORCH – Oracle connector for Hadoop
ORCH can be used on non-Oracle Hadoop clusters or on any other Oracle big data
appliance. Mappers and reducers are written in R and MapReduce jobs are executed from R
environments through a high-level interface. With ORCH for R Hadoop integration, R
programmers do not have to learn a new programming language such as Java to get into
the details of a Hadoop environment, such as Hadoop cluster hardware or software. The
ORCH connector also allows users to test the ability of MapReduce programs locally
through the same function call, long before they are deployed on the Hadoop cluster.

The number of open source options for performing big data analytics with R and Hadoop is
continuously expanding, but for simple Hadoop MapReduce jobs, R and Hadoop
Streaming still prove to be the best solution. The combination of R and Hadoop together is
a must-have toolkit for professionals working with big data to create fast predictive
analytics combined with the performance, scalability, and flexibility you need.
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Most Hadoop users claim that the advantage of using R is its exhaustive list of data science
libraries for statistics and data visualization. However, the data science libraries in R are
non-distributed in nature, which makes data retrieval a time-consuming affair. This is an
inbuilt limitation of the R programming language, but if we just ignore it, then R and
Hadoop together can make big data analytics an ecstasy!

Data analytics
R allows us to conduct a wide variety of data analytics. Everything we have done with
pandas in Python, we are able to do in R as well.

Take a look at the following code:

df = read.csv(file=file.choose(), header=T, fill=T, sep=",",
stringsAsFactors=F)

file.choose() means there will be a new window that will allow you to select the data
file to be opened. header=T means it will read the header. fill=T means it will fill in NaN
for any undefined or missing data values. Finally, sep="," means that it knows how to
distinguish between the different data values in the .csv file. In this case, they are all
separated by commas. stringsAsFactors tells it to treat all the string values as strings,
not as factors. This allows us to replace values in the data later on.

Now, you should see this:

Figure: Screenshot of output you will obtain



Statistical Big Data Computing with R and Hadoop Chapter 5

[ 173 ]

Press Enter. You should see something like this if you are on Windows:

Regardless of the OS, you should see a window that opens up to allow you to choose a file.
Next, you should see this:

If you look to the right, you'll see a new field called df. If you click on it, you can see its
contents:
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Now, that we have a data frame created, we can begin some analytics.

We can get some information about the number of rows and columns, as well as the length
of the data frame and the column names. Look at the following lines of code and their
respective outputs:

> is.data.frame(df)
[1] TRUE

> ncol(df)
[1] 8

> length(df)
[1] 8

> nrow(df)
[1] 27080

> names(df)
[1] "InvoiceNo" "StockCode" "Description" "Quantity" "InvoiceDate"
    "UnitPrice" "CustomerID" "Country"

> colnames(df)
[1] "InvoiceNo" "StockCode" "Description" "Quantity" "InvoiceDate"
    "UnitPrice" "CustomerID" "Country"

Now, we can move on to creating data subsets. Take a look at this code:

d1 = df[1:3]
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This is what it results in:

So basically, we selected columns 1, 2, and 3 as the set of data for d1. We can also select
what rows we want in addition to what columns we want. Let's redefine d1:

d1 = df[1:10, c(1:3)]
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We can also access an individual column of the data frame. Take a look at this:

v1 = df[[3]]

This assigns the whole column of data to v1. Now, let's access the first five elements of v1:

v1[1:5]

We can also do this:

v2 = df$Description
v2[1:5]
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We can even access each individual row, assuming we know a specific data value. Here, we
use the stock code:

d1[d1$StockCode == "85123A", ]

We can access a specific row we want:

d1 = df[1:10, c(1:8)]
d1[2, c(1:8)]

Similar to the .head() function in Python, there is a head() function in R. Look at this
code:

head(df)

We can add another parameter to choose the number of rows that we want to display. Let's
say that we want to display the first 10 rows. Here is the code:

head(df, 10)
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We can have a negative number as the second parameter. Look at the following:

head(d1, -2)

Similarly, we can display the last n rows using tail(). Look at the following:

tail(d1, 4)

We can also have a negative number as the second parameter, like with head(). Look at
this line of code:

tail(d1, -2)

This displays nrow(d1) + n rows, where n is the parameter passed into the tail() function:

We can do some basic statistical analysis of a column. However, we will have to convert the
data first. We can do min(), max(), mean(), and more. Take a look at this:

min(as.numeric(df$UnitPrice))
[1] 0
min(df$UnitPrice)
[1] 0
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as.numeric() means that any data values that are strings will be converted to a number.
In this case, none of them are a string value, otherwise you'd see min(df$UnitPrice)
result in 0:

max(df$UnitPrice)
[1] 16888.02

mean(df$UnitPrice)
[1] 5.857586

median(df$UnitPrice)
[1] 2.51

quantile(df$UnitPrice)

We can add another parameter here to customize the percentage values we want:

quantile(df$UnitPrice, c(0, .1, .5, .9)

sd(df$UnitPrice)

That tells us the standard deviation of df$UnitPrice. We can also find the variance:

var(df$UnitPrice)
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range(df$UnitPrice)

We can also get a five-number summary, which tells us the minimum, the first quantile, the
median (which is also the 50% mark), the third quantile (the 75% mark), and the maximum:

fivenum(df$UnitPrice)

We can also plot a column of choice. Look at this:

plot(df$UnitPrice)
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There are different types of plot we can have. We can introduce another parameter to
specify the type of plot we want. Look at the following lines of code and their resulting
graphs:

plot(df$UnitPrice, type="p")

As you can see, it is the same graph as the one we saw earlier. However, the graph is a little
crowded, so let's use a smaller range:

d1 = df[0:30, c(1:8)]
plot(d1$UnitPrice)
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Let's make it easier and redefine d1 to just have the UnitPrice column:

d1 = d1$UnitPrice
plot(d1, type="p")

The graph should be the same as the one preceding one.
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Now, let's move on:

plot(d1, type="l")
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This is a line graph of d1:

plot(d1, type="b")
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This is a combined line and point graph of d1. However, they are not overlaid on top of
each other:

plot(d1, type="c")
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This graph is the graph of only the lines from the combined graph we saw earlier with
type="b":

plot(d1, type="o")
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This is an overplotted graph of d1. This means that the line and point graphs are overlaid
on top of each other:

plot(d1, type="h")
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This is a histogram of d1:

plot(d1, type="s")
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This is a step graph:

plot(d1, type="S")

The difference between the two graphs is that the first step graph, where type="s", is
where the graph goes horizontally first then vertical. The second step graph has type="S",
and moves vertically first before moving horizontally. It is possible to see this difference by
looking at the graphs.

There are also other parameters that we can use, such as:

#Note: these are parameters, not individual lines of code.

#The title of the graph
main="Title"

#Subtitle for the graph
sub="title"
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#Label for the x-axis
xlab="X Axis"

#Label for the y-axis
ylab="Y Axis"

#The aspect ratio between y and x.
asp=1

Now for an example:

plot(d1, type="h", main="Graph of Unit Prices vs Index", sub ="First 30
Rows", xlab = "Row Index", ylab="Prices", asp=1.4)
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To add two different data frames together, we use rbind().

Look at the following code:

d2 = df[0:10, c(1:8)]
d3 = df[21:30, c(1:8)]
d4 = rbind(d2, d3)

This is d2:

This is d3:
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And now, this is d4:

One thing to note is that all data frames passed into rbind() must have the same columns.
The order does not matter.

We can also merge two data frames.

Look at this code:

d2 = df[0:11, c("InvoiceNo", "StockCode", "Description")]
d3 = df[11:20, c("StockCode", "Description", "Quantity")]
d4 = merge(d2, d3)
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This is d2:

This is d3:
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This is d4:

So by default, merge() uses inner join.

Now, let's look at outer join:

d4 = merge(d2, d3, all=T)



Statistical Big Data Computing with R and Hadoop Chapter 5

[ 195 ]

This is left outer join:

d4 = merge(d2, d3, all.x=T)

This is right outer join:

d4 = merge(d2, d3, all.y=T)
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And finally, cross join:

d4 = merge(d2, d3, by=NULL)

Just as in pandas, we can use by= to specify between the two data items with a .x and .y
instead of _x and _y. Look at the following:

d4 = merge(d2, d3, by="StockCode", all=T)

This is an outer join on the StockCode column.
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This is the result:

We can always keep a log of all our commands in case something happens. Execute this
code to save the command log:

savehistory(file="logname.Rhistory")

And to load history:

loadhistory(file="logname.Rhistory")

If you want to check your history, simply do this:

history()
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We can check the data to see whether there's any blank data. Look at the code:

colSums(is.na(df))

Now, let's repeat this again. Recall how earlier when we merged two data frames, we had
NaN for some data values:

d2 = df[0:11, c("InvoiceNo", "StockCode", "Description")]
d3 = df[11:20, c("StockCode", "Description", "Quantity")]

Now, let's do an outer merge on them:

d4 = merge(d2, d3, all=T)

Now, let's try this line of code:

colSums(is.na(d4))

We can also replace values in the data.
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Now, suppose that you want to change the description of every item with a price greater
than three to "Miscellaneous". Take a look at this example code:

d1 = df[0:30, c(1:8)]

Now, look at this:

d1[d1$UnitPrice > 3, "Description"] <- "Miscellaneous"
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Now we see that everything with a unit price greater that three has a description
of "Miscellaneous".

We can use other operators besides >, and we can replace values in other columns too.

Here is another example.

Let's say that every item with the invoice number 536365 actually came from the United
States.
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Now, since they all share the same invoice number and invoice date, we can use either one
to select the desired rows:

d1[d1$InvoiceNo == 536365, "Country"] = "United States"

Notice that this time we used = instead of <-. In this context, they both are assigning
something, so either one can be used.

Summary
In this chapter, we discussed how R can be used to perform data analysis. We also
described different options for integrating R and Hadoop.

In the next chapter, we will learn about Apache Spark and how to use it for big data
analytics based on a batch processing model.



6
Batch Analytics with Apache

Spark
In this chapter, you will learn about Apache Spark and how to use it for big data analytics
based on a batch processing model. Spark SQL is a component on top of Spark Core that
can be used to query structured data. It is becoming the de facto tool, replacing Hive as the
choice for batch analytics on Hadoop.

Moreover, you will learn how to use Spark for the analysis of structured data (unstructured
data such as a document containing arbitrary text, or some other format that has to be
transformed into a structured form). We will see how DataFrames/datasets are the
cornerstone here, and how SparkSQL's APIs make querying structured data simple yet
robust.

We will also introduce datasets and see the difference between datasets, DataFrames, and
RDDs. In a nutshell, the following topics will be covered in this chapter:

SparkSQL and DataFrames
DataFrames and the SQL API
DataFrame schema
Datasets and encoders
Loading and saving data
Aggregations
Joins
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SparkSQL and DataFrames
Before Apache Spark, Apache Hive was the go-to technology whenever anyone wanted to
run an SQL-like query on large amount of data. Apache Hive essentially translated an SQL
query into MapReduce, like logic automatically making it very easy to perform many kinds
of analytics on big data without actually learning to write complex code in Java and Scala. 

With the advent of Apache Spark, there was a paradigm shift in how we could perform
analysis at a big data scale. Spark SQL provides an SQL-like layer on top of Apache Spark's
distributed computation abilities that is rather simple to use. In fact, Spark SQL can be used
as an online analytical processing database. Spark SQL works by parsing the SQL-like
statement into an abstract syntax tree (AST), subsequently converting that plan to a logical
plan and then optimizing the logical plan into a physical plan that can be executed, as
shown in the following diagram:
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The final execution uses the underlying DataFrame API, making it very easy for anyone to
use DataFrame APIs by simply using an SQL-like interface rather than learning all the
internals. Since this book dives into the technical details of various APIs, we will primarily
cover the DataFrame APIs, showing Spark SQL API at some places to contrast the different
ways of using the APIs. Thus, the DataFrame API is the underlying layer beneath Spark
SQL. In this chapter, we will show you how to create DataFrames using various techniques,
including SQL queries and performing operations on the DataFrames.

A DataFrame is an abstraction over the resilient distributed dataset (RDD) dealing with
higher-level functions optimized using a catalyst optimizer, and is also highly performant
via the Tungsten initiative. 

Since its inception, Project Tungsten has been the largest change to Spark's execution
engine. Its main focus lies in enhancing efficiency of CPU and memory for Spark
applications. This project comprises three initiatives:

Memory management and binary processing
Cache-aware computation
Code generation

For more information, you can check out https:/ ​/​databricks. ​com/​blog/
2015/ ​04/ ​28/ ​project- ​tungsten- ​bringing- ​spark- ​closer- ​to- ​bare- ​metal.
html.

You can think of a dataset as an efficient table over an RDD with a heavily optimized
binary representation of the data. The binary representation is achieved using encoders that
serialize the various objects into a binary structure for much better performance than RDD
representation. Since DataFrame uses the RDD internally anyway, a DataFrame/dataset is
also distributed exactly like an RDD and thus is also a distributed dataset. Obviously, this
also means datasets are immutable.
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The following is an illustration of the binary representation of data:

Datasets were added in Spark 1.6 and provide the benefit of strong typing on top of
DataFrames. In fact, since Spark 2.0 the DataFrame is simply an alias of a Dataset.

http:/ ​/ ​spark. ​apache. ​org/ ​sql/ ​ defines the DataFrame type as a
Dataset[Row], which means that most of the APIs will work well with both
dataset and DataFrame.type DataFrame = Dataset[Row].

A DataFrame is conceptually similar to a table in a relational database. Hence, a DataFrame
contains rows of data with each row consisting of several columns. One of the first things
we need to keep in mind is that just like RDDs, DataFrames are also immutable. This
property of DataFrames being immutable means every transformation or action creates a
new DataFrame.

Let's start by looking more into DataFrames and how they are different from RDDs. RDDs,
as seen before, represent a low-level API for data manipulation in Apache Spark. The
DataFrames were created on top of RDDs to abstract the low-level inner workings of RDDs
and expose high-level APIs which are easier to use and provide lot of functionality out of
the box. DataFrame was created following similar concepts found in the Python pandas
package, R language, Julia language, and so on. 

http://spark.apache.org/sql/
http://spark.apache.org/sql/
http://spark.apache.org/sql/
http://spark.apache.org/sql/
http://spark.apache.org/sql/
http://spark.apache.org/sql/
http://spark.apache.org/sql/
http://spark.apache.org/sql/
http://spark.apache.org/sql/
http://spark.apache.org/sql/
http://spark.apache.org/sql/
http://spark.apache.org/sql/
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As we mentioned before, the DataFrame translates the SQL code and domain-specific
language expressions into optimized execution plans to be run on top of Spark Core APIs in
order for the SQL statements to perform a wide variety of operations. DataFrames support
many different types of input data sources and many types of operations. This includes all
types of SQL operations such as joins, group by, aggregations, and window functions as
most of the databases.

Spark SQL is also quite similar to the Hive query language and since Spark provides a
natural adapter to Apache Hive, users who have been working in Apache Hive can easily
transfer their knowledge and apply to Spark SQL, thus minimizing the transition time. The
DataFrame essentially depends on the concept of table as seen previously.

The table can be operated very similarly to how Apache Hive works. In fact, many of the
operations on the tables in Apache Spark are similar to how Apache Hive handles tables
and operates on the tables. Once you have a table that is the DataFrame, the DataFrame can
be registered as a table and you can operate on the data using Spark SQL statements in lieu
of the DataFrame APIs.

The DataFrame depends on the catalyst optimizer and the Tungsten performance
improvement, so let's briefly examine how the catalyst optimizer works. The catalyst
optimizer creates a parsed logical plan from the input SQL and then analyzes the logical
plan by looking at all the various attributes and columns used in the SQL statement. Once
the analyzed logical plan is created, the catalyst optimizer further tries to optimize the plan
by combining several operations and also rearranging the logic to get better performance.

In order to understand the catalyst optimizer, think about it as a common
sense logic optimizer which can reorder operations such as filters and
transformations, sometimes grouping several operations into one so as to
minimize the amount of data that is shuffled across the worker nodes. For
example, the catalyst optimizer may decide to broadcast the smaller
datasets when performing joint operations between different datasets. Use
explain to look at the execution plan of any DataFrame. The catalyst
optimizer also computes statistics of the DataFrames columns and
partitions improving the speed of execution.

For example, if there are transformations and filters on the data partitions then the order in
which we filter data and apply transformations matters a lot to the overall performance of
the operations. As a result of all the optimizations, the optimized logical plan is generated
which is then converted to a physical plan.
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Obviously, several physical plans are possible to execute the same SQL statement and
generate the same result. The cost optimization logic determines and picks a good physical
plan based on the cost optimizations and estimations. Tungsten performance
improvements are another key ingredient in the secret sauce behind the phenomenal
performance improvements offered by Spark 2.x compared to previous releases such as
Spark 1.6 or older.

Tungsten implements a complete overhaul of memory management and other performance
improvements. Most important memory management improvements use binary encoding
of objects and reference them in both off-heap and on-heap memory. Thus, Tungsten allows
usage of office heap memory by using the binary encoding mechanism to encode all the
objects. Binary encoded objects take up much less memory.

Project Tungsten also improve shuffle performance. The data is typically loaded into
DataFrames through the DataFrameReader and data is saved from DataFrames through
DataFrameWriter.

DataFrame APIs and the SQL API
A DataFrame can be created in several ways; some of them are as follows:

Execute SQL queries, load external data such as Parquet, JSON, CSV, Text, Hive,
JDBC, and so on
Convert RDDs to DataFrames
Load a CSV file

We will take a look at statesPopulation.csv here, which we will then load as a
DataFrame.

The CSV has the following format of the population of US states from the years 2010 to
2016:

State Year Population
Alabama 2010 47,85,492
Alaska 2010 714,031
Arizona 2010 64,08,312
Arkansas 2010 2,921,995
California 2010 37,332,685
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Since this CSV has a header, we can use it to quickly load into a DataFrame with an
implicit schema detection:

scala> val statesDF = spark.read.option("header",
"true").option("inferschema", "true").option("sep",
",").csv("statesPopulation.csv")
statesDF: org.apache.spark.sql.DataFrame = [State: string, Year: int ... 1
more field]

Once we load the DataFrame, it can be examined for the schema:

scala> statesDF.printSchema
root
|-- State: string (nullable = true)
|-- Year: integer (nullable = true)
|-- Population: integer (nullable = true)

option("header",
"true").option("inferschema", "true").option("sep", ",")

tells Spark that the CSV has a header; a comma separator is used to
separate the fields/columns and also that schema can be inferred
implicitly.

The DataFrame works by parsing the logical plan, analyzing the logical plan, optimizing
the plan and then finally executing the physical plan of execution.

Using explain on DataFrame shows the plan of execution:

scala> statesDF.explain(true)
== Parsed Logical Plan ==
Relation[State#0,Year#1,Population#2] csv
== Analyzed Logical Plan ==
State: string, Year: int, Population: int
Relation[State#0,Year#1,Population#2] csv
== Optimized Logical Plan ==
Relation[State#0,Year#1,Population#2] csv
== Physical Plan ==
*FileScan csv [State#0,Year#1,Population#2] Batched: false, Format: CSV,
Location: InMemoryFileIndex[file:/Users/salla/states.csv],
PartitionFilters: [], PushedFilters: [], ReadSchema:
struct<State:string,Year:int,Population:int>

A DataFrame can also be registered as a table name (shown as follows) which will then
allow you to type SQL statements like a relational database:

scala> statesDF.createOrReplaceTempView("states")
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Once we have the DataFrame as a structured DataFrame or a table, we can run commands
to operate on the data:

scala> statesDF.show(5)
scala> spark.sql("select * from states limit 5").show
+----------+----+----------+
| State|Year|Population|
+----------+----+----------+
| Alabama|2010| 4785492|
| Alaska|2010| 714031|
| Arizona|2010| 6408312|
| Arkansas|2010| 2921995|
|California|2010| 37332685|
+----------+----+----------+

If you see in the preceding piece of code, we have written an SQL-like statement and
executed it using the spark.sql API.

Note that the Spark SQL is simply converted to the DataFrame API for
execution and the SQL is only a DSL for ease of use.

Using the sort operation on the DataFrame, you can order the rows in the DataFrame by
any column. We see the effects of descending sort using the Population column as
follows. The rows are ordered by the Population in a descending order:

scala> statesDF.sort(col("Population").desc).show(5)
scala> spark.sql("select * from states order by Population desc limit
5").show
+----------+----+----------+
| State|Year|Population|
 +----------+----+----------+
|California|2016| 39250017|
|California|2015| 38993940|
|California|2014| 38680810|
|California|2013| 38335203|
|California|2012| 38011074|
+----------+----+----------+
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Using groupBy we can group the DataFrame by any column. Following is the code to
group the rows by State and then add up the Population counts for each State:

scala> statesDF.groupBy("State").sum("Population").show(5)
scala> spark.sql("select State, sum(Population)
from states group by State
limit 5").show
+---------+---------------+
| State|sum(Population)|
+---------+---------------+
| Utah| 20333580|
| Hawaii| 9810173|
|Minnesota| 37914011|
| Ohio| 81020539|
| Arkansas| 20703849|
+---------+---------------+

Using the agg operation, you can perform many different operations on columns of the
DataFrame such as finding the min, max, and avg of a column. You can also perform the
operation and rename the column at the same time to suit your use case:

scala>
statesDF.groupBy("State").agg(sum("Population").alias("Total")).show(5)
scala> spark.sql("select State, sum(Population) as Total from states group
by State limit 5").show
+---------+--------+
| State| Total|
+---------+--------+
| Utah|20333580|
| Hawaii| 9810173|
|Minnesota|37914011|
| Ohio|81020539|
| Arkansas|20703849|
+---------+--------+

Naturally, the more complicated the logic gets, the more the execution plan also gets
complicated. Let's look at the plan for the preceding operation of groupBy and agg API
invocations to better understand what is really going on under the hood. The following is
the code showing the execution plan of the group by clause and a summation of
population per State:

scala>
statesDF.groupBy("State").agg(sum("Population").alias("Total")).explain(tru
e)
== Parsed Logical Plan ==
'Aggregate [State#0], [State#0, sum('Population) AS Total#31886]
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+- Relation[State#0,Year#1,Population#2] csv
== Analyzed Logical Plan ==
State: string, Total: bigint
Aggregate [State#0], [State#0, sum(cast(Population#2 as bigint)) AS
Total#31886L]
+- Relation[State#0,Year#1,Population#2] csv
== Optimized Logical Plan ==
Aggregate [State#0], [State#0, sum(cast(Population#2 as bigint)) AS
Total#31886L]
+- Project [State#0, Population#2]
+- Relation[State#0,Year#1,Population#2] csv
== Physical Plan ==
*HashAggregate(keys=[State#0], functions=[sum(cast(Population#2 as
bigint))], output=[State#0, Total#31886L])
+- Exchange hashpartitioning(State#0, 200)
+- *HashAggregate(keys=[State#0], functions=[partial_sum(cast(Population#2
as bigint))], output=[State#0, sum#31892L])
+- *FileScan csv [State#0,Population#2] Batched: false, Format: CSV,
Location: InMemoryFileIndex[file:/Users/salla/states.csv],
PartitionFilters: [], PushedFilters: [], ReadSchema:
struct<State:string,Population:int>

DataFrame operations can be chained together very well so that the execution takes
advantage of the cost optimization (the Tungsten performance improvements and catalyst
optimizer working together). We can also chain the operations together in a single
statement as follows, where we not only group the data by the State column and then sum
the Population value but also sort the DataFrame by the summation column:

scala>
statesDF.groupBy("State").agg(sum("Population").alias("Total")).sort(col("T
otal").desc).show(5)
scala> spark.sql("select State, sum(Population) as Total from states group
by State order by Total desc limit 5").show
+----------+---------+
| State| Total|
+----------+---------+
|California|268280590
| Texas|185672865|
| Florida|137618322|
| New York|137409471|
| Illinois| 89960023|
+----------+---------+
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The preceding chained operation consists of multiple transformations and actions which
can be visualized using the following diagram:

It's also possible to create multiple aggregations at the same time as follows:

scala> statesDF.groupBy("State").agg(
min("Population").alias("minTotal"),
max("Population").alias("maxTotal"),
avg("Population").alias("avgTotal"))
.sort(col("minTotal").desc).show(5)
scala> spark.sql("select State, min(Population) as minTotal,
max(Population) as maxTotal, avg(Population) as avgTotal from states group
by State order by minTotal desc limit 5").show
+----------+--------+--------+--------------------+
| State|minTotal|maxTotal| avgTotal|
+----------+--------+--------+--------------------+
|California|37332685|39250017|3.8325798571428575E7|
| Texas|25244310|27862596| 2.6524695E7|
| New York|19402640|19747183| 1.962992442857143E7|
| Florida|18849098|20612439|1.9659760285714287E7|
| Illinois|12801539|12879505|1.2851431857142856E7|
+----------+--------+--------+--------------------+
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Pivots
One of the best ways to transform a table in order to create a different view that will be
more suitable to perform multiple summarizations and aggregations is pivoting. We can
achieve this by taking the values of a column and making each of the values an actual
column.

Let us understand this better with the help of an example. We will pivot the rows of the
DataFrame by Year and examine the result. The result we obtain now depicts the values
from the Year column and each has formed a new column. The end result of this is that
rather than just looking at the year column we can use the per year columns created to
summarize and aggregate by Year:

scala> statesDF.groupBy("State").pivot("Year").sum("Population").show(5)
+---------+--------+--------+--------+--------+--------+--------+--------+
| State| 2010| 2011| 2012| 2013| 2014| 2015| 2016|
+---------+--------+--------+--------+--------+--------+--------+--------+
| Utah| 2775326| 2816124| 2855782| 2902663| 2941836| 2990632| 3051217|
| Hawaii| 1363945| 1377864| 1391820| 1406481| 1416349| 1425157| 1428557|
|Minnesota| 5311147| 5348562| 5380285| 5418521| 5453109| 5482435| 5519952|
| Ohio|11540983|11544824|11550839|11570022|11594408|11605090|11614373|
| Arkansas| 2921995| 2939493| 2950685| 2958663| 2966912| 2977853| 2988248|
+---------+--------+--------+--------+--------+--------+--------+--------+

Filters
Filter is also supported by DataFrames and can be used to generate a new DataFrame by
filtering the DataFrame rows. The Filter enables a very important transformation of the
data to narrow down the DataFrame to our use case. Let's look at the execution plan for the
filtering of the DataFrame to only consider state of California: 

scala> statesDF.filter("State == 'California'").explain(true)
== Parsed Logical Plan ==
'Filter ('State = California)
+- Relation[State#0,Year#1,Population#2] csv
== Analyzed Logical Plan ==
State: string, Year: int, Population: int
Filter (State#0 = California)
+- Relation[State#0,Year#1,Population#2] csv
== Optimized Logical Plan ==
Filter (isnotnull(State#0) && (State#0 = California))
+- Relation[State#0,Year#1,Population#2] csv
== Physical Plan ==
*Project [State#0, Year#1, Population#2]
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+- *Filter (isnotnull(State#0) && (State#0 = California))
+- *FileScan csv [State#0,Year#1,Population#2] Batched: false, Format:
CSV, Location: InMemoryFileIndex[file:/Users/salla/states.csv],
PartitionFilters: [], PushedFilters: [IsNotNull(State),
EqualTo(State,California)], ReadSchema:
struct<State:string,Year:int,Population:int>

Now that we can seen the execution plan, let's now execute the filter command as
follows:

scala> statesDF.filter("State == 'California'").show
+----------+----+----------+
| State|Year|Population|
+----------+----+----------+
|California|2010| 37332685|
|California|2011| 37676861|
|California|2012| 38011074|
|California|2013| 38335203|
|California|2014| 38680810|
|California|2015| 38993940|
|California|2016| 39250017|
+----------+----+----------+

User-defined functions
User-defined functions (UDFs) define new column-based functions that extend the
functionality of Spark SQL. The creation of UDFs can be of help in cases where the built-in 
functions in Spark cannot handle our requirements.

udf() internally calls a case class UserDefinedFunction which in turn
calls ScalaUDF internally.

Let's go through an example of a UDF which simply converts State column values to
uppercase. First, we create the function we need in Scala as shown in the following code
snippets:

import org.apache.spark.sql.functions._
scala> val toUpper: String => String = _.toUpperCase
toUpper: String => String = <function1>
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Then we have to encapsulate the created function inside the udf to create the UDF:

scala> val toUpperUDF = udf(toUpper)
toUpperUDF: org.apache.spark.sql.expressions.UserDefinedFunction =
UserDefinedFunction(<function1>,StringType,Some(List(StringType)))

Now that we have created the udf, we can use it to convert the State column to
uppercase:

scala> statesDF.withColumn("StateUpperCase",
toUpperUDF(col("State"))).show(5)
+----------+----+----------+--------------+
| State|Year|Population|StateUpperCase|
+----------+----+----------+--------------+
| Alabama|2010| 4785492| ALABAMA|
| Alaska|2010| 714031| ALASKA|
| Arizona|2010| 6408312| ARIZONA|
| Arkansas|2010| 2921995| ARKANSAS|
|California|2010| 37332685| CALIFORNIA|
+----------+----+----------+--------------+

Schema – structure of data
A schema is the description of the structure of your data and can be either implicit or
explicit. There are two main ways to convert existing RDDs into datasets as the DataFrames
are internally based on the RDD; they are as follows:

Using reflection to infer the schema of the RDD
Through a programmatic interface with the help of which you can take an
existing RDD and render a schema to convert the RDD into a dataset with
schema

Implicit schema
Let's look at an example of loading a comma-separated values (CSV) file into a DataFrame.
Whenever a text file contains a header, the read API can infer the schema by reading the
header line. We also have the option to specify the separator to be used to split the text file
lines.
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We read the csv inferring the schema from the header line and use the comma (,) as the
separator. We also show the use of the schema command and the printSchema command
to verify the schema of the input file:

scala> val statesDF = spark.read.option("header", "true")
 .option("inferschema", "true")
 .option("sep", ",")
 .csv("statesPopulation.csv")
statesDF: org.apache.spark.sql.DataFrame = [State: string, Year: int ... 1
more field]
scala> statesDF.schema
res92: org.apache.spark.sql.types.StructType = StructType(
StructField(State,StringType,true),
StructField(Year,IntegerType,true),
StructField(Population,IntegerType,true))
scala> statesDF.printSchema
root
|-- State: string (nullable = true)
|-- Year: integer (nullable = true)
|-- Population: integer (nullable = true)

Explicit schema
A schema is described using StructType which is a collection of StructField objects.

StructType and StructField belong to the 
org.apache.spark.sql.types package. DataTypes such as
IntegerType and StringType also belong to the
org.apache.spark.sql.types package.

Using these imports, we can define a custom explicit schema.

First, import the necessary classes:

scala> import org.apache.spark.sql.types.{StructType, IntegerType,
StringType}
import org.apache.spark.sql.types.{StructType, IntegerType, StringType}

Define a schema with two columns/fields and an integer followed by a string:

scala> val schema = new StructType().add("i", IntegerType).add("s",
StringType)
schema: org.apache.spark.sql.types.StructType =
StructType(StructField(i,IntegerType,true), StructField(s,StringType,true))
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It's easy to print the just created schema:

scala> schema.printTreeString
root
|-- i: integer (nullable = true)
|-- s: string (nullable = true)

There is also an option to print JSON, which is as follows, using the prettyJson function:

scala> schema.prettyJson
res85: String =
{
"type" : "struct",
"fields" : [ {
"name" : "i",
"type" : "integer",
"nullable" : true,
"metadata" : { }
}, {
"name" : "s",
"type" : "string",
"nullable" : true,
"metadata" : { }
} ]
}

All data types of Spark SQL are located in the package org.apache.spark.sql.types.

You can access them by using:

import org.apache.spark.sql.types._

Encoders
Spark 2.x supports a different way of defining schema for complex datatypes. First, let's
look at a simple example. Encoders must be imported using the import statement in order
for you to use Encoders:

import org.apache.spark.sql.Encoders
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Let's look at a simple example of a defined tuple as a datatype to be used in the dataset
APIs:

scala> Encoders.product[(Integer, String)].schema.printTreeString
root
|-- _1: integer (nullable = true)
|-- _2: string (nullable = true)

The preceding code looks complicated to use all the time, so we can also define a case
class for our needs and then use it.

We can define a case class Record with two fields, an Integer and a String:

scala> case class Record(i: Integer, s: String)
defined class Record

Using Encoders we can easily create a schema on top of the case class, thus allowing us
to use the various APIs with ease:

scala> Encoders.product[Record].schema.printTreeString
root
|-- i: integer (nullable = true)
|-- s: string (nullable = true)

All datatypes of Spark SQL are located in the package org.apache.spark.sql.types.

You can access them by using:

import org.apache.spark.sql.types._

You should use the DataTypes object in your code in order to create complex Spark SQL
types such as arrays or maps as shown in the following:

scala> import org.apache.spark.sql.types.DataTypes
import org.apache.spark.sql.types.DataTypes
scala> val arrayType = DataTypes.createArrayType(IntegerType)
arrayType: org.apache.spark.sql.types.ArrayType =
ArrayType(IntegerType,true)
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Following are the data types supported in SparkSQL APIs:

Data type Value type in Scala API to access
or create a data type

ByteType Byte ByteType

ShortType Short ShortType

IntegerType Int IntegerType

LongType Long LongType

FloatType Float FloatType

DoubleType Double DoubleType

DecimalType java.math.BigDecimal DecimalType

StringType String StringType

BinaryType Array[Byte] BinaryType

BooleanType Boolean BooleanType

TimestampType java.sql.Timestamp TimestampType

DateType java.sql.Date DateType

ArrayType scala.collection.Seq
ArrayType(elementType,
[containsNull])

MapType scala.collection.Map

MapType(keyType, valueType,

[valueContainsNull])Note: The
default value of valueContainsNull is
true.

StructType org.apache.spark.sql.Row
StructType(fields).Note: Fields is a
Seq of StructFields. Also, two fields
with the same name are not allowed.

Loading datasets
Spark SQL can read data from external storage systems such as files, Hive tables, and JDBC
databases through the DataFrameReader interface.

The format of the API call is spark.read.inputtype:

Parquet
CSV
Hive table
JDBC
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ORC
Text
JSON

Let's look at a couple of simple examples of reading CSV files into DataFrames:

scala> val statesPopulationDF = spark.read.option("header",
"true").option("inferschema", "true").option("sep",
",").csv("statesPopulation.csv")
statesPopulationDF: org.apache.spark.sql.DataFrame = [State: string, Year:
int ... 1 more field]
scala> val statesTaxRatesDF = spark.read.option("header",
"true").option("inferschema", "true").option("sep",
",").csv("statesTaxRates.csv")
statesTaxRatesDF: org.apache.spark.sql.DataFrame = [State: string, TaxRate:
double]

Saving datasets
Spark SQL can save data to external storage systems like files, Hive tables and JDBC
databases through the DataFrameWriter interface.

Format of the API call is dataframe.write.outputtype:

Parquet
ORC
Text
Hive table
JSON
CSV
JDBC

Let's look at couple of examples of writing or saving a DataFrame to a CSV file:

scala> statesPopulationDF.write.option("header",
"true").csv("statesPopulation_dup.csv")
scala> statesTaxRatesDF.write.option("header",
"true").csv("statesTaxRates_dup.csv")
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Aggregations
Aggregation is the method of collecting data together based on a condition and performing
analytics on the data. Aggregation is very important to make sense of data of all sizes as
just having raw records of data is not that useful for most use cases.

Imagine a table containing one temperature measurement per day for
every city in the world for five years.

For example, if you see the following table and then the aggregated view of the same data
then it is obvious that just raw records do not help you understand the data. Shown below
is the raw data in the form of a table:

City Date Temperature
Boston 12/23/2016 32
New York 12/24/2016 36
Boston 12/24/2016 30
Philadelphia 12/25/2016 34
Boston 12/25/2016 28

Shown below is the average temperature per city:

City Average
Temperature

Boston 30 - (32 + 30 + 28)/3
New York 36
Philadelphia 34

Aggregate functions
Aggregations can be performed with the help of functions that can be found in
the org.apache.spark.sql.functions package. In addition to this, custom aggregation
functions can also be created, also known as user-defined aggregation functions (UDAF).

Each grouping operation returns a RelationalGroupedDataset on
which aggregations can be specified.
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We will load the sample data to illustrate all the different types of aggregate functions in
this section:

val statesPopulationDF = spark.read.option("header", "true").
 option("inferschema", "true").
 option("sep", ",").csv("statesPopulation.csv")

count
Count is the most basic aggregate function which simply counts the number of rows for the
column specified. countDistinct is an extension of count; it also eliminates duplicates. 

The count API has several implementations as follows. The exact API used depends on the
specific use case:

def count(columnName: String): TypedColumn[Any, Long]
 Aggregate function: returns the number of items in a group.
def count(e: Column): Column
 Aggregate function: returns the number of items in a group.
def countDistinct(columnName: String, columnNames: String*): Column
 Aggregate function: returns the number of distinct items in a group.
def countDistinct(expr: Column, exprs: Column*): Column
 Aggregate function: returns the number of distinct items in a group.

Let's take a look at some examples of invoking count and countDistinct on the
DataFrame to print the row counts:

import org.apache.spark.sql.functions._
scala> statesPopulationDF.select(col("*")).agg(count("State")).show
scala> statesPopulationDF.select(count("State")).show
+------------+
|count(State)|
+------------+
| 350|
+------------+
scala> statesPopulationDF.select(col("*")).agg(countDistinct("State")).show
scala> statesPopulationDF.select(countDistinct("State")).show
+---------------------+
|count(DISTINCT State)|
+---------------------+
| 50|
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first
Gets the first record in the RelationalGroupedDataset.

The first API has several implementations as follows. The exact API used depends on the
specific use case:

def first(columnName: String): Column
 Aggregate function: returns the first value of a column in a group.
def first(e: Column): Column
 Aggregate function: returns the first value in a group.
def first(columnName: String, ignoreNulls: Boolean): Column
 Aggregate function: returns the first value of a column in a group.
def first(e: Column, ignoreNulls: Boolean): Column
 Aggregate function: returns the first value in a group.

Let's look at example of invoking first on the DataFrame to output the first row:

import org.apache.spark.sql.functions._
 scala> statesPopulationDF.select(first("State")).show
+-------------------+
|first(State, false)|
+-------------------+
| Alabama|
+-------------------+

last
Gets the last record in the RelationalGroupedDataset.

The last API has several implementations as follows. The exact API used depends on the
specific use case:

def last(columnName: String): Column
 Aggregate function: returns the last value of the column in a group.
def last(e: Column): Column
 Aggregate function: returns the last value in a group.
def last(columnName: String, ignoreNulls: Boolean): Column
 Aggregate function: returns the last value of the column in a group.
def last(e: Column, ignoreNulls: Boolean): Column
 Aggregate function: returns the last value in a group.

Let's look at example of invoking last on the DataFrame to output the last row:

import org.apache.spark.sql.functions._
 scala> statesPopulationDF.select(last("State")).show
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 +------------------+
 |last(State, false)|
 +------------------+
 | Wyoming|
 +------------------+

approx_count_distinct
If you need an approximate count of the distinct records, approximate distinct count is a
much faster way to do so instead of performing an exact count which usually needs lot of
shuffles and other operations.

The approx_count_distinct API has several implementations as follows. The exact API
used depends on the specific use case:

def approx_count_distinct(columnName: String, rsd: Double): Column
 Aggregate function: returns the approximate number of distinct items in a
 group.
def approx_count_distinct(e: Column, rsd: Double): Column
 Aggregate function: returns the approximate number of distinct items in a
group.
def approx_count_distinct(columnName: String): Column
 Aggregate function: returns the approximate number of distinct items in a
group.
def approx_count_distinct(e: Column): Column
 Aggregate function: returns the approximate number of distinct items in a
group.

Let's look at example of invoking approx_count_distinct on the DataFrame to print the
approximate count of the DataFrame:

import org.apache.spark.sql.functions._
 scala>
statesPopulationDF.select(col("*")).agg(approx_count_distinct("State")).sho
w
 +----------------------------+
 |approx_count_distinct(State)|
 +----------------------------+
 | 48|
 +----------------------------+
 scala> statesPopulationDF.select(approx_count_distinct("State", 0.2)).show
 +----------------------------+
 |approx_count_distinct(State)|
 +----------------------------+
 | 49|
 +----------------------------+
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min
min is the minimum column value of one of the columns in the DataFrame. An example of
min is if you want to check the minimum temperature of a city.

The min API has several implementations as follows. The exact API used depends on the
specific use case:

def min(columnName: String): Column
 Aggregate function: returns the minimum value of the column in a group.
def min(e: Column): Column
 Aggregate function: returns the minimum value of the expression in a
group.

Let's look at example of invoking min on the DataFrame to print the minimum
Population:

import org.apache.spark.sql.functions._
 scala> statesPopulationDF.select(min("Population")).show
 +---------------+
 |min(Population)|
 +---------------+
 | 564513|
+---------------+

max
max is the maximum column value of one of the columns in the DataFrame. An example of
this is if you want to check the maximum temperature of a city.

The max API has several implementations as follows. The exact API used depends on the
specific use case:

def max(columnName: String): Column
 Aggregate function: returns the maximum value of the column in a group.
def max(e: Column): Column
 Aggregate function: returns the maximum value of the expression in a
group.
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Let's look at example of invoking max on the DataFrame to print the maximum
Population:

import org.apache.spark.sql.functions._
 scala> statesPopulationDF.select(max("Population")).show
+---------------+
 |max(Population)|
 +---------------+
 | 39250017|
 +---------------+

avg
The average of the values is calculated by adding the values and dividing them by the
number of values.

The average of 1, 2, 3 is (1 + 2 + 3) / 3 = 6/3 = z.

The avg API has several implementations as follows. The exact API used depends on the
specific use case:

def avg(columnName: String): Column
 Aggregate function: returns the average of the values in a group.
def avg(e: Column): Column
 Aggregate function: returns the average of the values in a group.

Let's look at example of invoking avg on the DataFrame to print the average population:

import org.apache.spark.sql.functions._
 scala> statesPopulationDF.select(avg("Population")).show
 +-----------------+
 | avg(Population)|
 +-----------------+
 |6253399.371428572|
 +----------------+
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sum
Computes the sum of the values of the column. Optionally, sumDistinct can be used to
only add up distinct values.

The sum API has several implementations as follows. The exact API used depends on the
specific use case:

def sum(columnName: String): Column
 Aggregate function: returns the sum of all values in the given column.
def sum(e: Column): Column
 Aggregate function: returns the sum of all values in the expression.
def sumDistinct(columnName: String): Column
 Aggregate function: returns the sum of distinct values in the expression
def sumDistinct(e: Column): Column
 Aggregate function: returns the sum of distinct values in the expression.

Let's look at example of invoking sum on the DataFrame to print summation (total)
Population:

import org.apache.spark.sql.functions._
scala> statesPopulationDF.select(sum("Population")).show
 +---------------+
 |sum(Population)|
 +---------------+
 | 2188689780|
 +---------------+

kurtosis
kurtosis is a way of quantifying differences in shapes of distributions, which may look
very similar in terms of means and variances yet is actually different.

The kurtosis API has several implementations as follows. The exact API used depends on
the specific use case:

def kurtosis(columnName: String): Column
 Aggregate function: returns the kurtosis of the values in a group.
def kurtosis(e: Column): Column
 Aggregate function: returns the kurtosis of the values in a group.
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Let's look at an example of invoking kurtosis on the DataFrame on the
Population column:

import org.apache.spark.sql.functions._
scala> statesPopulationDF.select(kurtosis("Population")).show
 +--------------------+
 |kurtosis(Population)|
 +--------------------+
 | 7.727421920829375|
 +--------------------+

skewness
skewness measures the asymmetry the values in your data around the average or mean.

The skewness API has several implementations as follows. The exact API used depends on
the specific use case:

def skewness(columnName: String): Column
 Aggregate function: returns the skewness of the values in a group.
def skewness(e: Column): Column
 Aggregate function: returns the skewness of the values in a group.

Let's look at example of invoking skewness on the DataFrame on the Population column:

import org.apache.spark.sql.functions._
 scala> statesPopulationDF.select(skewness("Population")).show
 +--------------------+
 |skewness(Population)|
 +--------------------+
 | 2.5675329049100024|
 +--------------------+

Variance
The variance is the average of the squared differences of each of the values from the mean.

The var API has several implementations as follows. The exact API used depends on the
specific use case:

def var_pop(columnName: String): Column
 Aggregate function: returns the population variance of the values in a
group.
def var_pop(e: Column): Column
 Aggregate function: returns the population variance of the values in a
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group.
def var_samp(columnName: String): Column
 Aggregate function: returns the unbiased variance of the values in a
group.
def var_samp(e: Column): Column
 Aggregate function: returns the unbiased variance of the values in a
group.

Now, let's look at example of invoking var_pop on the DataFrame measuring variance of
Population:

import org.apache.spark.sql.functions._
scala> statesPopulationDF.select(var_pop("Population")).show
 +--------------------+
 | var_pop(Population)|
 +--------------------+
 |4.948359064356177E13|
 +--------------------+

Standard deviation
The standard deviation is the square root of the variance (see previous section).

The stddev API has several implementations as follows. The exact API used depends on
the specific use case:

def stddev(columnName: String): Column
 Aggregate function: alias for stddev_samp.
def stddev(e: Column): Column
 Aggregate function: alias for stddev_samp.
def stddev_pop(columnName: String): Column
 Aggregate function: returns the population standard deviation of the
 expression in a group.
def stddev_pop(e: Column): Column
 Aggregate function: returns the population standard deviation of the
 expression in a group.
def stddev_samp(columnName: String): Column
 Aggregate function: returns the sample standard deviation of the
expression in a group.
def stddev_samp(e: Column): Column
Aggregate function: returns the sample standard deviation of the expression
in a group.



Batch Analytics with Apache Spark Chapter 6

[ 230 ]

Let's look at an example of invoking stddev on the DataFrame, printing the standard
deviation of Population:

import org.apache.spark.sql.functions._
scala> statesPopulationDF.select(stddev("Population")).show
 +-----------------------+
 |stddev_samp(Population)|
 +-----------------------+
 | 7044528.191173398|
 +-----------------------+

Covariance
Covariance is a measure of the joint variability of two random variables. 

The covar API has several implementations as follows. The exact API used depends on the
specific use case:

def covar_pop(columnName1: String, columnName2: String): Column
 Aggregate function: returns the population covariance for two columns.
def covar_pop(column1: Column, column2: Column): Column
 Aggregate function: returns the population covariance for two columns.
def covar_samp(columnName1: String, columnName2: String): Column
 Aggregate function: returns the sample covariance for two columns.
def covar_samp(column1: Column, column2: Column): Column
 Aggregate function: returns the sample covariance for two columns.

Let's look at an example of invoking covar_pop on the DataFrame to calculate the
covariance between the Year and Population columns:

import org.apache.spark.sql.functions._
scala> statesPopulationDF.select(covar_pop("Year", "Population")).show
 +---------------------------+
 |covar_pop(Year, Population)|
 +---------------------------+
 | 183977.56000006935|
 +---------------------------+

groupBy
A common task seen in data analysis is to group the data into different categories and then
perform calculations on the resultant groups of data.
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Let's run the groupBy function on the DataFrame to print aggregate counts of each State:

scala> statesPopulationDF.groupBy("State").count.show(5)
 +---------+-----+
| State|count|
 +---------+-----+
 | Utah| 7|
 | Hawaii| 7|
 |Minnesota| 7|
 | Ohio| 7|
 | Arkansas| 7|
 +---------+-----+

You can also groupBy and then apply any of the aggregate functions seen previously such
as min, max, avg, stddev, and so on:

import org.apache.spark.sql.functions._
 scala> statesPopulationDF.groupBy("State").agg(min("Population"),
 avg("Population")).show(5)
+---------+---------------+--------------------+
 | State|min(Population)| avg(Population)|
 +---------+---------------+--------------------+
 | Utah| 2775326| 2904797.1428571427|
 | Hawaii| 1363945| 1401453.2857142857|
 |Minnesota| 5311147| 5416287.285714285|
 | Ohio| 11540983|1.1574362714285715E7|
 | Arkansas| 2921995| 2957692.714285714|
 +---------+---------------+--------------------+

Rollup
Rollup is a multi-dimensional aggregation used to perform hierarchical or nested
calculations. For example, if we want to show the number of records for each
State and Year group as well as for each State (aggregating over all years to give a grand
total for each State irrespective of the Year), we can use rollup as follows:

scala> statesPopulationDF.rollup("State", "Year").count.show(5)
 +------------+----+-----+
 | State|Year|count|
 +------------+----+-----+
 |South Dakota|2010| 1|
 | New York|2012| 1|
 | California|2014| 1|
 | Wyoming|2014| 1|
 | Hawaii|null| 7|
 +------------+----+-----+
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Cube
Cube is a multi-dimensional aggregation used to perform hierarchical or nested
calculations just like rollup but with the difference that cube does the same operation for
all dimensions. For example, if we want to show the number of records for each State
and Year group as well as for each State (aggregating over all year's to give a grand total
for each State irrespective of the Year), we can use cubeas follows:

scala> statesPopulationDF.cube("State", "Year").count.show(5)
 +------------+----+-----+
 | State|Year|count|
 +------------+----+-----+
 |South Dakota|2010| 1|
 | New York|2012| 1|
 | null|2014| 50|
 | Wyoming|2014| 1|
 | Hawaii|null| 7|
 +------------+----+-----+

Window functions
Window functions allow you to perform aggregations over a window of data rather than
entire data or some filtered data. The use cases of such window functions are:

Cumulative sum
Delta from previous value for same key
Weighted moving average

 You can specify a window looking at three rows T-1, T, and T+1, and by performing a
simple calculation. You can also specify a window over the latest/most recent 10 values:
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The API for the Window specification requires three properties, the partitionBy(),
orderBy(), and the rowsBetween(). The partitionBy chunks the data into the
partitions/groups as specified by partitionBy(). orderBy() is used to order the data
within each partition of data.

The rowsBetween() specifies the window frame or the span of the sliding window to
perform the calculations.

To try out the Windows function, there are certain packages that are needed. You can
import the necessary packages using the import directive as follows:

import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions.col
import org.apache.spark.sql.functions.max

Now we are ready to write some code to learn about the Window functions. Let's create a
window specification for the partitions sorted by Population and partitioned by State.
Also, specify that we want to consider all rows until current row as part of the Window:

val windowSpec = Window
 .partitionBy("State")
 .orderBy(col("Population").desc)
 .rowsBetween(Window.unboundedPreceding, Window.currentRow)

Compute the rank over the Window specification. The result will be a rank (row number)
added to each row as long as it falls within the Window specified. In this example, we chose
to partition by State and then order the rows of each State further in descending order.
Hence, each State row has its own rank number assigned:

import org.apache.spark.sql.functions._
 scala> statesPopulationDF.select(col("State"), col("Year"),
 max("Population").over(windowSpec), rank().over(windowSpec)).sort("State",
 "Year").show(10)
 +-------+----+------------------------------------------------------------
-
 -----------------------------------------------------------------+--------
-
 --------------------------------------------------------------------------
-
 ---------------------------------+
| State|Year|max(Population) OVER (PARTITION BY State ORDER BY Population
 DESC NULLS LAST ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)|RANK()
 OVER (PARTITION BY State ORDER BY Population DESC NULLS LAST ROWS BETWEEN
 UNBOUNDED PRECEDING AND CURRENT ROW)|
 +-------+----+------------------------------------------------------------
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-
 -----------------------------------------------------------------+--------
-
 --------------------------------------------------------------------------
-
 ---------------------------------+
|Alabama|2010| 4863300| 6|
 |Alabama|2011| 4863300| 7|
 |Alabama|2012| 4863300| 5|
 |Alabama|2013| 4863300| 4|
 |Alabama|2014| 4863300| 3|

ntiles
ntiles is a popular aggregation over a window and is commonly used to divide an input
dataset into n parts.

For example, if we want to partition the statesPopulationDF by State (window
specification is shown previously), order by population, and then divide into two portions,
we can use ntile over the windowspec:

import org.apache.spark.sql.functions._
scala> statesPopulationDF.select(col("State"), col("Year"),
 ntile(2).over(windowSpec), rank().over(windowSpec)).sort("State",
 "Year").show(10)
+-------+----+-------------------------------------------------------------
 ----------------------------------------------------------+---------------
-
 --------------------------------------------------------------------------
-
 --------------------------+
| State|Year|ntile(2) OVER (PARTITION BY State ORDER BY Population DESC
 NULLS LAST ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)|RANK() OVER
 (PARTITION BY State ORDER BY Population DESC NULLS LAST ROWS BETWEEN
 UNBOUNDED PRECEDING AND CURRENT ROW)|
 +-------+----+------------------------------------------------------------
-
 ----------------------------------------------------------+---------------
-
 --------------------------------------------------------------------------
-
 --------------------------+
 |Alabama|2010| 2| 6|
 |Alabama|2011| 2| 7|
 |Alabama|2012| 2| 5|
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 |Alabama|2013| 1| 4|
 |Alabama|2014| 1| 3|
 |Alabama|2015| 1| 2|
 |Alabama|2016| 1| 1|
 | Alaska|2010| 2| 7|
 | Alaska|2011| 2| 6|
 | Alaska|2012| 2| 5|
 +-------+----+------------------------------------------------------------
-
 ----------------------------------------------------------+---------------
-
 --------------------------------------------------------------

As shown previously, we have used the Window function and ntile() together to divide
the rows of each State into two equal portions.

A popular use of this function is to compute decile used in data science
models.

Joins
In traditional databases, joins are used to join one transaction table with another lookup
table to generate a more complete view. For example, if you have a table of online
transactions sorted by customer ID and another table containing the customer city and
customer ID, you can use join to generate reports on the transactions sorted by city.

Transactions table: This table has three columns, the CustomerID, the Purchased item, and
how much the customer paid for the item:

CustomerID Purchased Item Price Paid

1 Headphones 25.00
2 Watch 20.00
3 Keyboard 20.00
1 Mouse 10.00
4 Cable 10.00
3 Headphones 30.00
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Customer Info table: This table has two columns the CustomerID and the City the
customer lives in:

Customer ID City
1 Boston
2 New York
3 Philadelphia
4 Boston

Joining the transaction table with the customer info table will generate a view as follows:

Customer ID Purchased Item Price Paid City
1 Headphone 25.00 Boston
2 Watch 100.00 New York
3 Keyboard 20.00 Philadelphia
1 Mouse 10.00 Boston
4 Cable 10.00 Boston
3 Headphones 30.00 Philadelphia

Now, we can use this joined view to generate a report of Total sale price sorted sorted
by City:

City #Items Total Sale Price
Boston 3 45.00
Philadelphia 2 50.00
New York 1 100.00

Joins are an important function of Spark SQL as they enable you to bring two datasets
together as seen previously. Spark, of course, is not only meant to generate some report but
is used to process data at Peta byte scale to handle real-time streaming use cases, machine
learning algorithms, or plain analytics. In order to accomplish these goals, Spark provides
the API functions needed.

A typical join between two datasets takes place using one or more keys of the left and right
datasets and then evaluates a conditional expression on the sets of keys as a Boolean
expression. If the result of the Boolean expression returns true, then the join is successful,
or else the joined DataFrame will not contain the corresponding join. The join API has six
different implementations:

join(right: Dataset[_]): DataFrame
 Condition-less inner join
 join(right: Dataset[_], usingColumn: String): DataFrame
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 Inner join with a single column
 join(right: Dataset[_], usingColumns: Seq[String]): DataFrame
 Inner join with multiple columns
 join(right: Dataset[_], usingColumns: Seq[String], joinType: String):
 DataFrame
Join with multiple columns and a join type (inner, outer,....)
 join(right: Dataset[_], joinExprs: Column): DataFrame
 Inner Join using a join expression
join(right: Dataset[_], joinExprs: Column, joinType: String): DataFrame
 Join using a Join expression and a join type (inner, outer, ...)

We will use one of the APIs to understand how to use the join API; however, you can
choose to use other APIs depending on the use case:

def join(right: Dataset[_], joinExprs: Column, joinType: String):
 DataFrame
Join with another DataFrame using the given join expression
 right: Right side of the join.
joinExprs: Join expression.
 joinType : Type of join to perform. Default is inner join
// Scala:
 import org.apache.spark.sql.functions._
 import spark.implicits._
 df1.join(df2, $"df1Key" === $"df2Key", "outer")

Note that joins will be covered in detail in the next few sections.

Inner workings of join
Join works by operating on the partitions of a DataFrame using multiple executors.
However, the actual operations and the subsequent performance depends on the type of
join and the nature of the datasets being joined. In the next section, we will look at the
different types of joins.

Shuffle join
A join between two big datasets involves shuffle join where partitions of both left and right
datasets are spread across the executors. Shuffles are expensive and it's important to
analyze the logic to make sure the distribution of partitions and shuffles are done
optimally.
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The following is an illustration of how shuffle join works internally:

Broadcast join
A join that is carried out between one large dataset and a smaller dataset by broadcasting
the smaller dataset to all executors where a partition from left dataset exists is called a
broadcast join.

The following is an illustration of how a broadcast join works internally:
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Join types
The following is the table of different types of joins. This is important as the choice made
when joining two datasets makes all the difference in the output and also the performance:

JoinType Description

inner
The inner join compares each row from left to rows from right and
combines matched pairs of rows from left and right datasets only when
both have non-NULL values.

outer, full,
fullouter

The full outer join gives all rows from the left and right hand side
tables. If we want to keep all the rows from both tables, we use full outer
join. Full outer join returns all rows when there is a match in ONE of the
tables

leftanti Left anti join gives only those rows from the left hand side table based
that are not present in the right hand side table.

left, leftouter
The left outer join gives all rows in left plus common rows of left and
right (inner join). Fills in NULL if not in right.

leftsemi The left semi join gives only rows in left based on existence on right-side.
The does not include right-side values.

right, rightouter 
The right outer join gives all rows in right plus common rows of left and
right (inner join). Fills in NULL if not in left.

We will examine how the different join types work by using the sample datasets:

scala> val statesPopulationDF = spark.read.option("header",
 "true").option("inferschema", "true").option("sep",
 ",").csv("statesPopulation.csv")
 statesPopulationDF: org.apache.spark.sql.DataFrame = [State: string, Year:
 int ... 1 more field]
scala> val statesTaxRatesDF = spark.read.option("header",
 "true").option("inferschema", "true").option("sep",
 ",").csv("statesTaxRates.csv")
 statesTaxRatesDF: org.apache.spark.sql.DataFrame = [State: string,
TaxRate:
 double]
scala> statesPopulationDF.count
 res21: Long = 357
scala> statesTaxRatesDF.count
 res32: Long = 47
%sql
 statesPopulationDF.createOrReplaceTempView("statesPopulationDF")
 statesTaxRatesDF.createOrReplaceTempView("statesTaxRatesDF")
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Inner join
Inner join results in rows from both statesPopulationDF and statesTaxRatesDF when
State is non-NULL in both datasets:

Join the two datasets by the State column as follows:

val joinDF = statesPopulationDF.join(statesTaxRatesDF,
 statesPopulationDF("State") === statesTaxRatesDF("State"), "inner")
%sql
 val joinDF = spark.sql("SELECT * FROM statesPopulationDF INNER JOIN
 statesTaxRatesDF ON statesPopulationDF.State = statesTaxRatesDF.State")
scala> joinDF.count
 res22: Long = 329
scala> joinDF.show
 +--------------------+----+----------+--------------------+-------+
 | State|Year|Population| State|TaxRate|
+--------------------+----+----------+--------------------+-------+
 | Alabama|2010| 4785492| Alabama| 4.0|
 | Arizona|2010| 6408312| Arizona| 5.6|
 | Arkansas|2010| 2921995| Arkansas| 6.5|
 | California|2010| 37332685| California| 7.5|
 | Colorado|2010| 5048644| Colorado| 2.9|
 | Connecticut|2010| 3579899| Connecticut| 6.35|

You can run the explain() on the joinDF to look at the execution plan:

scala> joinDF.explain
 == Physical Plan ==
*BroadcastHashJoin [State#570], [State#577], Inner, BuildRight
 :- *Project [State#570, Year#571, Population#572]
 : +- *Filter isnotnull(State#570)
 : +- *FileScan csv [State#570,Year#571,Population#572] Batched: false,
Format: CSV, Location: InMemoryFileIndex[file:/Users/salla/spark-2.1.0-
binhadoop2.7/
 statesPopulation.csv], PartitionFilters: [], PushedFilters:
 [IsNotNull(State)], ReadSchema:
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 struct<State:string,Year:int,Population:int>
 +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, string,
 true]))
 +- *Project [State#577, TaxRate#578]
 +- *Filter isnotnull(State#577)
 +- *FileScan csv [State#577,TaxRate#578] Batched: false, Format: CSV,
Location: InMemoryFileIndex[file:/Users/salla/spark-2.1.0-binhadoop2.7/
 statesTaxRates.csv], PartitionFilters: [],
PushedFilters:[IsNotNull(State)], ReadSchema:
struct<State:string,TaxRate:double>

Left outer join
Left outer join results in all rows from statesPopulationDF, including any common in
statesPopulationDF and statesTaxRatesDF:

Join the two datasets via the State column as shown as follows:

val joinDF = statesPopulationDF.join(statesTaxRatesDF,
 statesPopulationDF("State") === statesTaxRatesDF("State"), "leftouter")
%sql
 val joinDF = spark.sql("SELECT * FROM statesPopulationDF LEFT OUTER JOIN
statesTaxRatesDF ON statesPopulationDF.State = statesTaxRatesDF.State")
 scala> joinDF.count
 res22: Long = 357
 scala> joinDF.show(5)
 +----------+----+----------+----------+-------+
 | State|Year|Population| State|TaxRate|
 +----------+----+----------+----------+-------+
 | Alabama|2010| 4785492| Alabama| 4.0|
 | Alaska|2010| 714031| null| null|
 | Arizona|2010| 6408312| Arizona| 5.6|
 | Arkansas|2010| 2921995| Arkansas| 6.5|
 |California|2010| 37332685|California| 7.5|
 +----------+----+----------+----------+-------+
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Right outer join
Right outer join results in all rows from statesTaxRatesDF, including any common in
statesPopulationDF and statesTaxRatesDF:

Join the two datasets via the State column as follows:

val joinDF = statesPopulationDF.join(statesTaxRatesDF,
 statesPopulationDF("State") === statesTaxRatesDF("State"), "rightouter")
%sql
 val joinDF = spark.sql("SELECT * FROM statesPopulationDF RIGHT OUTER JOIN
 statesTaxRatesDF ON statesPopulationDF.State = statesTaxRatesDF.State")
scala> joinDF.count
 res22: Long = 323
scala> joinDF.show
 +--------------------+----+----------+--------------------+-------+
 | State|Year|Population| State|TaxRate|
 +--------------------+----+----------+--------------------+-------+
 | Colorado|2011| 5118360| Colorado| 2.9|
 | Colorado|2010| 5048644| Colorado| 2.9|
 | null|null| null|Connecticut| 6.35|
 | Florida|2016| 20612439| Florida| 6.0|
 | Florida|2015| 20244914| Florida| 6.0|
 | Florida|2014| 19888741| Florida| 6.0|
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Outer join
Outer join results in all rows from statesPopulationDF and statesTaxRatesDF:

Join the two datasets via the State column as follows:

val joinDF = statesPopulationDF.join(statesTaxRatesDF,
 statesPopulationDF("State") === statesTaxRatesDF("State"), "fullouter")
%sql
 val joinDF = spark.sql("SELECT * FROM statesPopulationDF FULL OUTER JOIN
 statesTaxRatesDF ON statesPopulationDF.State = statesTaxRatesDF.State")
scala> joinDF.count
 res22: Long = 351
scala> joinDF.show
 +--------------------+----+----------+--------------------+-------+
 | State|Year|Population| State|TaxRate|
 +--------------------+----+----------+--------------------+-------+
 | Delaware|2010| 899816| null| null|
 | Delaware|2011| 907924| null| null|
 | West Virginia|2010| 1854230| West Virginia| 6.0|
 | West Virginia|2011| 1854972| West Virginia| 6.0|
 | Missouri|2010| 5996118| Missouri| 4.225|
 | null|null| null| Connecticut| 6.35|

Left anti join
Left anti join results in rows from only statesPopulationDF if and only if there is no
corresponding row in statesTaxRatesDF:
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Join the two datasets via the State column as follows:

val joinDF = statesPopulationDF.join(statesTaxRatesDF,
 statesPopulationDF("State") === statesTaxRatesDF("State"), "leftanti")
 %sql
 val joinDF = spark.sql("SELECT * FROM statesPopulationDF LEFT ANTI JOIN
 statesTaxRatesDF ON statesPopulationDF.State = statesTaxRatesDF.State")
scala> joinDF.count
res22: Long = 28
 scala> joinDF.show(5)
 +--------+----+----------+
 | State|Year|Population|
 +--------+----+----------+
 | Alaska|2010| 714031|
 |Delaware|2010| 899816|
 | Montana|2010| 990641|
 | Oregon|2010| 3838048|
 | Alaska|2011| 722713|
 +--------+----+----------+

Left semi join
Left semi join results in rows from only statesPopulationDF if and only if there is a
corresponding row in statesTaxRatesDF:
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Join the two datasets by the State column as follows:

val joinDF = statesPopulationDF.join(statesTaxRatesDF,
 statesPopulationDF("State") === statesTaxRatesDF("State"), "leftsemi")
 %sql

val joinDF = spark.sql("SELECT * FROM statesPopulationDF LEFT SEMI JOIN
 statesTaxRatesDF ON statesPopulationDF.State = statesTaxRatesDF.State")

scala> joinDF.count

res22: Long = 322
 scala> joinDF.show(5)
 +----------+----+----------+
 | State|Year|Population|
 +----------+----+----------+
 | Alabama|2010| 4785492|
 | Arizona|2010| 6408312|
 | Arkansas|2010| 2921995|
 |California|2010| 37332685|
 | Colorado|2010| 5048644|
 +----------+----+----------+

Cross join
Cross join matches every row from the left with every row from the right, generating a
cartesian cross product:

Join the two datasets via the State column as follows:

scala> val joinDF=statesPopulationDF.crossJoin(statesTaxRatesDF)
 joinDF: org.apache.spark.sql.DataFrame = [State: string, Year: int ... 3
 more fields]
%sql
val joinDF = spark.sql("SELECT * FROM statesPopulationDF CROSS JOIN
 statesTaxRatesDF")
 scala> joinDF.count
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res46: Long = 16450
 scala> joinDF.show(10)
 +-------+----+----------+-----------+-------+
 | State|Year|Population| State|TaxRate|
 +-------+----+----------+-----------+-------+
 |Alabama|2010| 4785492| Alabama| 4.0|
 |Alabama|2010| 4785492| Arizona| 5.6|
 |Alabama|2010| 4785492| Arkansas| 6.5|
 |Alabama|2010| 4785492| California| 7.5|
 |Alabama|2010| 4785492| Colorado| 2.9|
 |Alabama|2010| 4785492|Connecticut| 6.35|
 |Alabama|2010| 4785492| Florida| 6.0|
 |Alabama|2010| 4785492| Georgia| 4.0|
 |Alabama|2010| 4785492| Hawaii| 4.0|
 |Alabama|2010| 4785492| Idaho| 6.0|
 +-------+----+----------+-----------+-------+

You can also use join with cross joinType instead of calling the cross
join API: statesPopulationDF.join(statesTaxRatesDF,
statesPopulationDF("State").isNotNull, "cross").count.

Performance implications of join
The join type chosen directly impacts the performance of the join. This is because joins
require shuffling data between executors to execute the tasks, hence different joins and
even the order of the joins needs to be considered while using join. The following is a table
you could use as a reference when writing join code:

JoinType Performance considerations and tips

inner

Inner join requires the left and right tables to have the same column.
If you have duplicate or multiple copies of the keys on either left or
right side, the join will quickly blow up into sort of a cartesian join,
taking lot longer to complete than if designed correctly to minimize
the multiple keys.

cross

Cross Join matches every row from the left with every row from the
right, generating a cartesian cross product. This is to be used with
caution as this is the worst performance join, to be used in specific
use cases only.
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outer, full, fullouter

Full outer join gives all (matched and unmatched) rows from
the tables at the left and right side of the join clause. Use this
when we want to keep all the rows from both tables, we use full outer
join. Full outer join returns all rows when there is a match in ONE of
the tables. If used on tables with little in common, it can result in very
large results and thus slow performance.

leftanti

Left anti join gives only those rows from the left hand side table
based that are not present in the right hand side table. Use this when 
we want to keep rows from left table only when not present in right
table. Very good performance as only one table is fully considered
and the other is only checked for the join condition.

left, leftouter

Left outer join gives all rows present in the left hand side table in
addition to the rows that are common to both the tables (inner join). If
used on tables with little in common, can result in very large results
and thus slow performance.

leftsemi

Left semi join gives only rows from the left side table if and only if
they exist in the right side table. Use this to get rows from left table if
and only if the rows are found in the right table. This is the opposite
of leftanti join seen above. Does not include right side values. Very
good performance as only one table is fully considered and the other
is only checked for the join condition.

right, rightouter

Right outer join gives all rows in right side table as well as the
common rows of left and right (inner join). Use this to get all rows in
right table along with the rows found in both left and right tables.
Fills in NULL if not in left. Performance is similar to the left outer join
mentioned previously in this table.
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Summary
In this chapter, we have discussed the origin of DataFrames and how Spark SQL provides
the SQL interface on top of DataFrame. The power of DataFrames is such that the execution
times have decreased over the original RDD-based computations. Having such a powerful
layer with a simple SQL-like interface makes it all the more powerful. We also looked at
various APIs to create and manipulate DataFrames and dug deeper into the sophisticated
features of aggregations, including groupBy, Window, rollup, and cubes. Finally, we also
looked at the concept of joining datasets and the various types of joins possible such as
inner, outer, cross, and so on.

We will explore the exciting world of real-time data processing and analytics in Chapter
7, Real-Time Analytics with Apache Spark.



7
Real-Time Analytics with

Apache Spark
In this chapter, we will introduce the stream-processing model of Apache Spark, and show
you how to build streaming-based, real-time analytical applications. This chapter will focus
on Spark Streaming, and will show you how to process data streams using the Spark API.

More specifically, the reader will learn how to process Twitter's tweets, as well as how to
process real-time data streams in several ways. Basically, the chapter will focus on the
following:

A short introduction to streaming
Spark Streaming
Discretized Streams
Stateful and stateless transformations
Checkpointing
Operating with other streaming platforms (such as Apache Kafka)
Structured Streaming



Real-Time Analytics with Apache Spark Chapter 7

[ 250 ]

Streaming
In the modern world, an increasing number of people are becoming interconnected to one
another via the internet. With the advent of the smartphone, this trend has skyrocketed.
Nowadays, the smartphone can be used to do many things, such as check social media,
order food online, and call a cab online. We are finding ourselves more reliant on the
internet than ever before, and we will only become more reliant in the future. With this
development comes a massive increase in data generation. As the internet began to boom,
the very nature of data processing changed. Any time one of the apps or service is accessed
on the phone, real-time data processing is taking place. Because there is a lot at stake in
terms of the quality of their applications, companies are forced to improve data processing,
and with improvements come paradigm shifts. One paradigm that is currently being
researched and used is the idea of a highly scalable, real-time (or as close to real-time as
possible) processing engine on a high-end infrastructure. It must function quickly and be
receptive to changes and failures. Basically, the data processing must be as close to real-
time as possible, without interruptions.

Most of the systems being monitored generate lots of data as indefinite but continuous
streams of events. The same challenge of collecting, storing, and processing data remains,
as it would with any other data-processing system. Additional complications result from
real-time needs. A highly scalable architecture is required in order to collect and process
these indefinite streams, and so many iterations of these systems exist, such as Flink, AMQ,
Storm, and Spark. Newer, more modern systems are very efficient and flexible, meaning
that companies can reach their goals even more easily and efficiently than ever before.
These new technological developments allow for data consumption from a variety of
sources, as well as for data processing and usage. And all of this with minimal delays.

When you use your smartphone to order a pizza, you are able to make a credit card
payment and have the pizza delivered straight to your address. Some bus systems allow
you to track individual buses on a map in real time, and if you need to wait for the bus, you
can use your smartphone to find a nearby Starbucks and grab a coffee.

By looking at the expected time of arrival, you can make an informed decision about a trip
to the airport. If the car will arrive in an amount of time that might be detrimental to your
flight plans, you can cancel your ride and get in a nearby taxi. In the event that traffic
would prevent an on-time arrival at the airport, you can reschedule or cancel your flight.

To understand how all of that data is processed in real time, we must first understand the
basics of streaming architectures. It is essential for a real-time streaming architecture to
collect large amounts of data at high rates, but to also ensure that it becomes processed.
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The following is a generic stream-processing system, with a producer putting events into a
messaging system while a consumer is reading from the messaging system:

Real-time streaming data can be processed according to the following three paradigms:

At-least-once processing
At-most-once processing
Exactly-once processing

Exactly-once processing is the most ideal situation, but it is hard to achieve it in various
scenarios. We must compromise on the properties of exactly-once processing in situations
where it would be very complex to implement such criteria.

At-least-once processing
In the at-least-once processing paradigm, the position of the last received event is saved
only after it is processed, and the results are stored somewhere. In the event of a failure, the
consumer will still be able to read and reprocess the old events. However, it cannot be
assumed that the received events were either never processed or partially processed, so
there could be a duplication of results after the previous event is called again. This is
what it means when the name says the data has been processed at least once.

This paradigm is ideal for any application that updates a ticker or gauge to show a current
value. However, sums, counters, or any things that depend on the accuracy of those types
of aggregations are not ideal for at-least-once processing, mainly because duplicate events
lead to incorrect results.
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The sequence proceeds as follows:

Save results
Save offsets

The following diagram represents the at-least-once processing paradigm:

At-most-once processing
In this paradigm, the position of the last event is saved before it is actually processed, and
the results are stored somewhere. In case of a failure and consumer restart, the old events
won't be read again. However, there could be the potential for a loss of events, since they
can never be retrieved again because of the fact that we cannot assume all received events
were processed. This is what the paradigm means when it states that events are either not
processed, or processed once, at the most. It is ideal for situations that require a ticker or
gauge to be updated to display a current value. Additionally, any aggregations, such as
cumulative sums or counters, may work as well, if accuracy is not mandatory, or if all
events are needed. Any lost events will cause missing or incorrect results.

The sequence proceeds as follows:

Save results
Save offsets
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If there is a failure and the consumer ends up restarting, there will be offsets for every event
(provided that they all process before failure occurs), but an event might end up going
missing as shown in the following diagram:

 

Exactly-once processing
This paradigm is similar to at-least-once processing. It saves the last event received only
after it is actually processed, and the results are stored somewhere, so that in the case of
failure and consumer restart, the old events can be reread and reprocessed. However, there
is cause for potential duplication, since it cannot be assumed that all the events were either
not processed or were only partially processed. Unlike at-least-once processing, any
duplicate events are dropped and not processed, resulting in exactly-once processing.

This is ideal for any application in which accuracy is important, such as applications
involving aggregations such as accurate counters, or anything else that needs an event
processed only once and without loss.

The sequence proceeds as follows:

Save results
Save offsets
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The following is what occurs when the consumer restarts after a failure. The events have
been processed already, but the offsets have not been saved as shown in the following
diagram:

 

How does exactly-once processing duplicate? Two processes are involved:

Idempotent updates
Transactional updates

Spark Streaming implements structure streaming in Spark 2.0 and higher, which supports
exactly-once processing. Structure streaming will be covered later on in this chapter.

In idempotent updates, results are saved based on a unique key or ID that is generated. In
the case of a duplication, the generated key or ID will already be in the results (a database,
for example), so the consumer can remove the duplicate without updating the results.
However, this can become complicated, since generating a unique keys for every event is
not a simple task, as additional processing is required on the consumer's end. Additionally,
the database could be separate for results and offsets.
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In transactional updates, results are saved in batches that require a transaction to begin and
a transaction to commit, so in the event of a commit, the events will be successfully
processed. In the event of a duplication, they can be dropped without updating results.
However, these are more complicated than idempotent updates, since now, transaction
data needs to be stored. Another disadvantage is that the database could be required to stay
the same for results and offsets.

Decisions on using at-least-once processing or at-most-once processing
should be made after looking into the use case that you are trying to build,
to keep a reasonable level of accuracy and performance.

Spark Streaming
Spark Streaming wasn't the first streaming architecture. Over time, multiple technologies
have been developed in order to address various real-time processing needs. One of the
first popular stream processor technologies was Twitter Storm, and it was used in many
businesses. Spark includes the streaming library, which has grown to become the most
widely used technology today. This is mainly because Spark Streaming holds some
significant advantages over all of the other technologies, the most important being its
integration of Spark Streaming APIs within its core API. Not only that, but Spark Streaming
is also integrated with Spark ML and Spark SQL, along with GraphX. Because of all of these
integrations, Spark is a powerful and versatile streaming technology.

Note that https:/​/ ​spark. ​apache. ​org/ ​docs/ ​2.​1. ​0/​streaming- ​programming- ​guide. ​html
has more information on Spark Streaming Flink, Heron (Twitter Storm's successor), and
Samza and their various features; for example, their ability to handle events while
minimizing latency. However, Spark Streaming consumes data and processes it in
microbatches. The size of these microbatches is of a minimum of 500 milliseconds.

Apache Apex, Flink, Samza, Heron, Gearpump, and other new
technologies are all competitors of Spark Streaming in some cases. Spark
Streaming, will not be the right fit if you need true, event-by-event
processing.

Spark Streaming works by creating batches of events at certain time intervals, as configured
by the user, and delivering them  for processing at another specified time interval.
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Spark Streaming supports several input sources and can write results to several sinks:

Similar to SparkContext, Spark Streaming contains a StreamingContext, the primary
point of entry for the streaming to take place. The StreamingConext depends on
the SparkContext, and the SparkContext can actually be used directly in the streaming
task. The StreamingContext is similar to the SparkContext, the difference being that
StreamingContext requires a specification, by the program, of a time interval/duration of
batching interval, ranging from minutes to milliseconds:

 The SparkContext is the main point of entry. The StreamingContext
reuses the logic that is part of SparkContext (task scheduling and
resource management).

StreamingContext
As the main point of entry for streaming, StreamingContext handles the streaming
application's actions, including checkpointing and transformations of the RDD.
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Creating StreamingContext
A new StreamingContext may be created in one of several ways:

Create a StreamingContext by using an existing SparkContext:

StreamingContext(sparkContext: SparkContext, batchDuration:
Duration)
scala> val ssc = new StreamingContext(sc, Seconds(10))

Create a StreamingContext by providing the configuration necessary for a new
one:

StreamingContext(conf: SparkConf, batchDuration: Duration)
scala> val conf =
newSparkConf().setMaster("local[1]").setAppName("TextStreams")
scala> val ssc = new StreamingContext(conf, Seconds(10))

The getOrCreate function is used to recreate a StreamingContext from a
previous checkpoint data piece, or to create a new StreamingContext. If the
data does not exist, then the StreamingContext will be created by calling the
provided creatingFunc as follows:

def getOrCreate(
checkpointPath: String,
creatingFunc: () => StreamingContext,
hadoopConf: Configuration = SparkHadoopUtil.get.conf,
createOnError: Boolean = false
): StreamingContext

Starting StreamingContext
The streaming application is started by starting the execution of the streams defined using
the StreamingContext:

def start(): Unit
scala> ssc.start()
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Stopping StreamingContext
All processing stops when the StreamingContext is stopped. You will need to create a
new StreamingContext, and you must invoke start() to restart the application. There
are two useful APIs to stop stream processing:

Stop stream execution immediately (this does not wait for received data to be
processed) by using the following:

def stop(stopSparkContext: Boolean)
scala> ssc.stop(false)

Stop the execution of the streams, with an option for allowing the received data
to be processed, by using the following:

def stop(stopSparkContext: Boolean, stopGracefully: Boolean)
scala> ssc.stop(true, true)

Input streams
Several types of input streams exists, all of which need StreamingContext to be created,
as shown in the following sections.

receiverStream
An input stream is created with any user-implemented receiver. It is customizable:

More details can be found at http:/ ​/ ​spark. ​apache. ​org/ ​docs/ ​latest/ ​streaming- ​custom-
receivers.​html:

API declaration for receiverStream:
def receiverStream[T]: ClassTag](receiver: Receiver[T]):
ReceiverInputDStream[T]

socketTextStream
The socketTextStream uses the TCP source hostname:port to create an input stream.
Data is received through the TCP socket, and the received bytes are interpreted as UTF8,
encoded in \n delimiter lines:

def socketTextStream(hostname: String, port: Int,
storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2):
ReceiverInputDStream[String]
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rawSocketStream
The rawSocketStream uses the network source hostname:port to create an input stream.
It is the most efficient method with which to receive data:

def rawSocketStream[T: ClassTag](hostname: String, port: Int,
storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2):
ReceiverInputDStream[T]

fileStream
The fileStream creates an input stream that monitors a Hadoop-compatible filesystem. It
reads new files using a given key-value type and input format. Any filenames starting with
. are ignored. Invoking an atomic file rename function, a filename starting with . is
renamed to a usable filename that can be picked up by the fileStream and have its
contents processed:

def fileStream[K: ClassTag, V: ClassTag, F <: NewInputFormat[K, V]:
ClassTag] (directory: String): InputDStream[(K, V)]

textFileStream
The textFileStream command creates an input stream that monitors a Hadoop-
compatible filesystem. It reads new files, as text files with the key as Longwritable, the
value as text, and the input format as TextInputFormat. Any files that have names
starting with . are ignored:

def textFileStream(directory: String): Dstream[String]

binaryRecordsStream
Using binaryRecordsStream, an input stream that monitors a Hadoop-compatible
filesystem  is created. Any filenames starting with . are ignored:

def binaryRecordsStream(directory: String, recordLength: Int):
Dstream[Array[Byte]]
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queueStream
Using queueStream, an input stream is created from a queue of RDDs. Within each batch,
either one or all of the RDDs returned by the queue are processed:

def queueStream[T: ClassTag](queue: Queue[RDD[T]], oneAtATime: Boolean =
true): InputDStream[T]

textFileStream example
The following is an example of Spark Streaming using the textFileStream method. A
StreamingContext is created from the Spark shell SparkContext (sc) with an interval of
10 seconds. The textFileStream will start, which will then monitor the directory named
streamfiles and process any new files that are found in the directory. In the example, the
number of elements in the RDD will be printed:

scala> import org.apache.spark._
scala> import org.apache.spark.streaming._
scala> val ssc = new StreamingContext(sc, Seconds(10))
scala> val filestream = ssc.textFileStream("streamfiles")
scala> filestream.foreachRDD(rdd => {println(rdd.count())})
scala> ssc.start

twitterStream example
The following is another example of how Twitter tweets can be processed using Spark
Streaming:

Open a terminal and change the directory to spark-2.1.1-bin-hadoop2.7.1.

Create a folder named streamouts under the spark-2.1.1-bin-2.
hadoop2.7 folder, in which you have Spark installed. The Streamouts object
will collect the tweet and convert it to text files when the application is running.

Download these JARs into the directory: http:/ ​/​central. ​maven. ​org/ ​maven2/3.
org/​apache/ ​bahir/ ​spark- ​streaming- ​twitter_ ​2. ​11/​2. ​1.​0/ ​spark- ​streaming-
twitter_ ​2.​11- ​2.​1. ​0. ​jar, http:/ ​/​central. ​maven. ​org/ ​maven2/ ​org/ ​twitter4j/
twitter4j- ​core/ ​4. ​0. ​6/ ​twitter4j- ​core- ​4. ​0.​6. ​jar, and http:/ ​/ ​central.
maven.​org/ ​maven2/ ​org/ ​twitter4j/ ​twitter4j- ​stream/ ​4.​0. ​6/​twitter4j-
stream-​4. ​0. ​6. ​jar.
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Launch the spark-shell with all the JARs needed for the Twitter integration,4.
specified here as ./bin/spakr-shell –jars twitter4j-
stream-4.0.6.jar, twitter4j-core-4.0.6.jar, and spark-streaming-
twitter_2.11-2.1.0.jar.

Sample code can now be written. The following is the code to test the Twitter5.
event processing:

import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.streaming.twitter._
import twitter4j.auth.OAuthAuthorization
import twitter4j.conf.ConfigurationBuilder
//you can replace the next 4 settings with your own twitter account
settings.
System.setProperty("twitter4j.oauth.consumerKey",
"8wVysSpBc0LGzbwKMRh8hldSm")
System.setProperty("twitter4j.oauth.consumerSecret",
"FpV5MUDWliR6sInqIYIdkKMQEKaAUHdGJkEb4MVhDkh7dXtXPZ")
System.setProperty("twitter4j.oauth.accessToken",
"817207925756358656-
yR0JR92VBdA2rBbgJaF7PYREbiV8VZq")
System.setProperty("twitter4j.oauth.accessTokenSecret",
"JsiVkUItwWCGyOLQEtnRpEhbXyZS9jNSzcMtycn68aBaS")
val ssc = new StreamingContext(sc, Seconds(10))
val twitterStream = TwitterUtils.createStream(ssc, None)
twitterStream.saveAsTextFiles("streamouts/tweets", "txt")
ssc.start()

The streamouts folder will now contain several tweet output text files. These can be
opened and checked to ensure they contain tweets.
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Discretized Streams
Discretized Streams (DStreams) are an abstraction that Spark Streaming is built on. Each
DStream is represented as a sequence of RDDs, each being created at a specific time
interval. The DStream can then be processed similar to a regular RDD using concepts such
as a directed cyclic graph-based execution plan (DAG). Just like a regular RDD processing,
any transformations and actions that are part of the execution plan are handled in the case
of a DStream as shown in the following diagram: 
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A DStream divides a very long stream of data into smaller chunks based on time intervals
and processes each of those chunks as an RDD. These micro-batches are processed
independently, with each microbatch being stateless. Assume that the batch interval is five
seconds, with the events being consumed in real time, and that a microbatch goes off for
further processing as an RDD. One thing to note about Spark Streaming is that the API calls
that are used to process microbatch events are integrated into the Spark APIs to be
integrated with the rest of the architecture. Whenever a microbatch is created, it becomes an
RDD, allowing for seamless processing using Spark APIs as shown in the following
diagram:

The DStream class appears similar to the following example:

class DStream[T: ClassTag] (var ssc: StreamingContext)
//hashmap of RDDs in the DStream
var generatedRDDs = new HashMap[Time, RDD[T]]()
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In this example, a StreamingContext is created, and it spawns a microbatch every five
seconds, to create an RDD that is similar to a Spark Core API RDD. These RDDs in the data
stream can be processed like any other RDDs. The steps to build a streaming application are
as follows:

Create a StreamingContext from a SparkContext.1.
Create a DStream from a streaming.2.
Contexts provide transformations and actions that can be applied to the RDDs.3.
Start the streaming application by calling start on the StreamingContext. The4.
Spark Streaming application handles the process of consuming and processing in
real time.

No further operations may be added once the Spark Streaming
application is started. A stopped StreamingContext cannot be restarted
,either, and a new StreamingContext will have to be made.

The following is an example of how to create a streaming job that accesses Twitter:

Create a StreamingContext from a SparkContext:1.

scala> val ssc = new StreamingContext(sc, Seconds(5))
ssc: org.apache.spark.streaming.StreamingContext =
org.apache.spark.streaming.StreamingContext@8ea5756

Create a DStream from the StreamingContext:2.

scala> val twitterStream = TwitterUtils.createStream(ssc, None)
twitterStream:
org.apache.spark.streaming.dstream.ReceiverInputDStream[twitter4j.S
tatus] =
org.apache.spark.streaming.twitter.TwitterInputDStream@46219d14

Provide transformations and actions that can be applied to each individual RDD:3.

val aggStream = twitterStream
.flatMap(x => x.getText.split(" ")).filter(_.startsWith("#"))
.map(x => (x, 1))
.reduceByKey(_ + _)

Start the streaming application by calling start on the StreamingContext:4.

ssc.start()
//to stop just call stop on the StreamingContext
ssc.stop(false)
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In step 2, we created a DSTream of the ReceiverInputDStream type. This is an abstract
class that defines any InputDStream that must start a receiver on worker nodes as being be
able to receive external data.

This example shows what we see when we are receiving from Twitter Stream:

class InputDStream[T: ClassTag](_ssc: StreamingContext) extends
DStream[T](_ssc)
class ReceiverInputDStream[T: ClassTag](_ssc: StreamingContext) extends
InputDStream[T](_ssc)

Running a transformation, flatMap(), on the twitterStream will result in a
FlatMappedDStream, as shown in the following code:

scala> val wordStream = twitterStream.flatMap(x => x.getText().split(" "))
wordStream: org.apache.spark.streaming.dstream.DStream[String] =
org.apache.spark.streaming.dstream.FlatMappedDStream@1ed2dbd5

Transformations
Transformations on DStreams are similar to those that are applicable to a Spark Core RDD.
DStreams consist of RDDs, so a transformation applies to each RDD to generate a
transformed RDD for each RDD, creating a transformed DStream. Each transformation
creates a specified DStream derived class.

There are many DStream classes that are built for a functionalities; map transformations,
window functions, reduce actions, and different InputStream types are implemented
using different DStream-derived classes.

The following table showcases the possible  types of transformations:

Transformation Meaning

map(func)
Applies the transformation function to each element of the DStream
and returns a new DStream.

filter(func) Filters out the records of the DStream to return a new DStream.

repartition(numPartitions)
Creates more or fewer partitions to redistribute the data to change the
parallelism.

union(otherStream)
Combines the elements in two source DStreams and returns a new
DStream.

count()
Returns a new DStream by counting the number of elements in each
RDD of the source DStream.

reduce(func)
Returns a new DStream by applying the reduce function on each
element of the source DStream.



Real-Time Analytics with Apache Spark Chapter 7

[ 266 ]

countByValue()
Computes the frequency of each Key and returns a new DStream of
(Key, Long) pairs.

reduceByKey(func, [numTasks])
Aggregates the data by Key in the source DStream's RDDs and returns
a new DStream of (Key, Value) pairs.

join(otherStream, [numTasks])
Joins two DStreams of (K, V) and (K, W) pairs and returns a new
DStream of (K, (V, W)) pairs, combining the values from both
DStreams.

cogroup(otherStream, [numTasks])

The cogroup transformation, when called on a DStream of (K, V) and
(K, W) pairs, will return a new DStream of (K, Seq(V),
Seq(W)) tuples.

transform(func)
Applies a transformation function on each RDD of the source DStream
and returns a new DStream.

updateStateByKey(func)
Updates the state for each key by applying the given function on the
previous state of the key and the new values for the key. Typically used
to maintain the state machine.

Windows operations
Spark Streaming allows for windowed processing, which enables you to apply
transformations over a sliding window of events. This sliding window is created over a
specified interval.

Every time a window slides over a DStream, the source RDDs that fall into the window
specification are combined to create a windowed DStream as shown in the following
diagram. The window must have two specified parameters:
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Window length – specifies the interval length considered
Sliding interval – the interval at which a window is created

The window length and the sliding interval are required to be a multiple
of the block interval.

The following is a table of some common transformations:

Transformation Meaning

window(windowLength, slideInterval)
Creates a window on the
source DStream and returns it as a new
DStream.

countByWindow(windowLength,
slideInterval)

Returns a count of elements in
the DStream by applying a
sliding window.
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reduceByWindow(func,
windowLength,slideInterval)

Returns a new DStream by applying
the reduce function to each element of
the source DStream after creating a
sliding window of
windowLength length.

reduceByKeyAndWindow(func,
windowLength,
slideInterval, [numTasks])

Aggregates the data by Key in
the window applied to the
source DStream's RDDs and returns a
new DStream of (Key, Value) pairs.
The computation is provided by the
func function.

reduceByKeyAndWindow(func, invFunc,
windowLength, slideInterval,
[numTasks])

Aggrega – the interval at which a
window w applied to the
source DStream's RDDs and returns a
new DStream of (Key, Value) pairs.
The key difference between the
preceding function and this one is the
invFunc, which provides the
computation to be done at the
beginning of the sliding window.

countByValueAndWindow(windowLength,
slideInterval, [numTasks])

Computes the frequency of each Key
and returns a new DStream of (Key,
Long) pairs within the sliding
window, as specified.

Let's revisit the Twitter Stream example. The goal now is to print the five most-used words
in tweets streamed every 5 seconds, with a 15-second-length window that slides every 10
seconds. To run that code, go through the following steps:

Open a terminal and change the directory to spark-2.1.1-bin-hadoop2.7.1.
Create a folder named streamouts under the spark-2.1.1-bin-hadoop2.72.
folder, where Spark is installed. Upon running the application, the
streamouts folder will contain all of the tweet-to-text files.
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Download the following JARs, and place them in the directory: http:/ ​/​central.3.
maven.​org/ ​maven2/ ​org/ ​apache/ ​bahir/ ​spark- ​streaming- ​twitter_ ​2.​11/ ​2.​1. ​0/
spark-​streaming- ​twitter_ ​2. ​11-​2.​1. ​0.​jar, http:/ ​/​central. ​maven. ​org/
maven2/​org/ ​twitter4j/ ​twitter4j- ​core/ ​4. ​0.​6/ ​twitter4j- ​core- ​4.​0.​6. ​jar,
and http:/ ​/​central. ​maven. ​org/​maven2/ ​org/​twitter4j/ ​twitter4j- ​stream/ ​4.
0.​6/​twitter4j- ​stream- ​4. ​0.​6. ​jar.
Launch the Spark shell with the JARs required for integrating the specified4.
tweets; ./bin/spark-shell --jars twitter4j-
stream-4.0.6.jar,twitter4j-core-4.0.6.jar,spark-streaming-

twitter_2.11-2.1.0.jar.
The following is some sample code to test the tweet processing:5.

import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.OFF)
import java.util.Date
import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.streaming.twitter._
import twitter4j.auth.OAuthAuthorization
import twitter4j.conf.ConfigurationBuilder
System.setProperty("twitter4j.oauth.consumerKey","8wVysSpBc0LGzbwKM
Rh8hldSm")
System.setProperty("twitter4j.oauth.consumerSecret",
"FpV5MUDWliR6sInqIYIdkKMQEKaAUHdGJkEb4MVhDkh7dXtXPZ")
System.setProperty("twitter4j.oauth.accessToken",
"817207925756358656-yR0JR92VBdA2rBbgJaF7PYREbiV8VZq")
System.setProperty("twitter4j.oauth.accessTokenSecret",
"JsiVkUItwWCGyOLQEtnRpEhbXyZS9jNSzcMtycn68aBaS")

val ssc = new StreamingContext(sc, Seconds(5))
val twitterStream = TwitterUtils.createStream(ssc, None)
val aggStream = twitterStream
.flatMap(x => x.getText.split(" "))
.filter(_.startsWith("#"))
.map(x => (x, 1))
.reduceByKeyAndWindow(_ + _, _ - _, Seconds(15), Seconds(10), 5)

ssc.checkpoint("checkpoints")
aggStream.checkpoint(Seconds(10))
aggStream.foreachRDD((rdd, time) => {
val count = rdd.count()
if (count > 0) {
val dt = new Date(time.milliseconds)
println(s"\n\n$dt rddCount = $count\nTop 5 words\n")
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val top5 = rdd.sortBy(_._2, ascending = false).take(5)
top5.foreach {
case (word, count) =>
println(s"[$word] - $count")
}}})
ssc.start
//wait 60 seconds
ss.stop(false)
The output is shown on the console every 15 seconds, looking like
the following:
Mon May 29 02:44:50 EDT 2017 rddCount = 1453
Top 5 words
[#RT] - 64
[#de] - 24
[#a] - 15
[#to] - 15
[#the] - 13
Mon May 29 02:45:00 EDT 2017 rddCount = 3312
Top 5 words
[#RT] - 161
[#df] - 47
[#a] - 35
[#the] - 29
[#to] – 29

Stateful/stateless transformations
Spark Streaming uses the concept of DStreams, which are basically microbatches of data
that are RDDs. We also saw some transformations that can be applied to DStreams.
DStream transformations can be grouped into two types: stateless and stateful
transformations.

In a stateless transformation, whether or not each microbatch of data is processed does not
depend on the previous data batches, so each batch is fully independent of whatever
batches of data preceded it.

In stateful transformations, whether or not each microbatch of data is processed depends
partially or wholly on the previous batches of data, so each batch considers what happened
prior to it and uses that information while being processed.
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Stateless transformations
One DStream is transformed into another by applying transformations to each RDD in the
DStream as shown in the following diagram. Some examples include map(), flatMap(),
union(), join(), and reduceBykey().

Stateful transformations
Stateful transformations are applied to a DStream, but they depend on the previous state of
processing. Examples include countByValueAndWindow(), reduceByKeyAndWindow(),
mapWithState(), and updateStateByKey(). All window-based transformations are
stateful by definition; we must keep track of the window length and the sliding interval of
the DStream.

Checkpointing
As it is expected that real-time streaming applications will run for extended periods of time
while remaining resilient to failure, Spark Streaming implements a mechanism called
checkpointing. This mechanism tracks enough information to be able to recover from any
failures. There are two types of data checkpointing:

Metadata checkpointing 
Data checkpointing
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Checkpointing is enabled by calling checkpoint() on the StreamingContext:

def checkpoint(directory: String)

This specifies the directory where the checkpoint data is to be stored. Note that this must be
a filesystem that is fault tolerant, such as HDFS.

Once the directory for the checkpoint is set, any DStream can be checkpointed into it, based
on an interval. Revisiting the Twitter example, each DStream can be checkpointed every 10
seconds:

val ssc = new StreamingContext(sc, Seconds(5))
val twitterStream = TwitterUtils.createStream(ssc, None)
val wordStream = twitterStream.flatMap(x => x.getText().split(" "))
val aggStream = twitterStream
.flatMap(x => x.getText.split(" ")).filter(_.startsWith("#"))
.map(x => (x, 1))
.reduceByKeyAndWindow(_ + _, _ - _, Seconds(15), Seconds(10), 5)
ssc.checkpoint("checkpoints")
aggStream.checkpoint(Seconds(10))
wordStream.checkpoint(Seconds(10))

Metadata checkpointing
Metadata checkpointing saves information that defines streaming operations that are
represented by a DAG to the HDFS. This can be utilized to recover the DAG in the event of
a failure, allowing for the application to be restarted. The driver then restarts and reads all
of the metadata from the HDFS, and rebuilds the DAG while recovering the operational
state before the crash. 

Data checkpointing
Data checkpointing saves the RDDs to the HDFS. In the case of a failure in the streaming
application, the RDDs can be recovered, and the processing can continue where it left off.
Not only is recovery good in the case of data checkpointing, but it also helps when RDDs
are lost because of cache cleanup or the loss of an executor. Now, any generated RDDs do
not need to wait for parent RDDs in the DAG lineage to be reprocessed.
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It is necessary for checkpointing to be enabled for any applications that have the following
requirements:

Stateful transformations are applied. If updateStateBykey() or
reduceByKeyAndWindow() (along with their inverse functions) are used, then
the checkpoint directory has to be given in order for RDD checkpointing to take
place.
Recovering from driver failures while running the application. Metadata
checkpoints help to recover information on progress.

If there are no stateful transformations, then the application can be run without having
checkpointing enabled.

 There could be a loss of received, but not yet processed, data.

Something to take note of is that RDD checkpointing means saving each RDD to storage.
This would have the effect of increasing the processing time of the batches that have RDDs
checkpointed. So, the checkpointing interval must be set and adjusted so as to not hinder
performance, which is important when dealing with the expectations of real-time
processing.

Tiny batch sizes (1 second, for example) mean that checkpointing occurs too frequently, and
this might reduce the operation throughput. Conversely, checkpointing infrequently will
cause the task size to grow, causing processing delays because of the large amount of
queued data.

Stateful transformations that need RDD checkpointing have a default checkpointing
interval of 10 seconds, at the very least. A good setting to start with is a checkpointing
interval of 5 to 10 DStream sliding intervals.

Driver failure recovery
We can achieve driver failure recovery with the help of
StreamingContext.getOrCreate(). As previously mentioned, this will either initialize a
StreamingContext from a checkpoint that already exists, or create a new one. 



Real-Time Analytics with Apache Spark Chapter 7

[ 274 ]

We will not implement a function called createStreamContext0, which creates a
StreamingContext and sets up DStreams to interpret tweets and generate the top five
most-used hashtags, using a window every 15 seconds. Instead of invoking
createStreamContext() and then calling ssc.start(), we will invoke
getOrCreate(), so that if a checkpoint exists, then the StreamingContext will be
recreated from the data in the checkpoint Directory. If there is no such directory, or if
the application is on its first run, then createStreamContext() will be invoked:

val ssc = StreamingContext.getOrCreate(checkpointDirectory,
createStreamContext _)

The following code shows how the function is defined, and how getOrCreate() can be
invoked:

val checkpointDirectory = "checkpoints"
//Creating and setting up a new StreamingContext
def createStreamContext(): StreamingContext = {
val ssc = new StreamingContext(sc, Seconds(5))
val twitterStream = TwitterUtils.createStream(ssc, None)
val wordStream = twitterStream.flatMap(x => x.getText().split(" "))
val aggStream = twitterStream
.flatMap(x => x.getText.split(" ")).filter(_.startsWith("#"))
.map(x => (x, 1))
.reduceByKeyAndWindow(_ + _, _ - _, Seconds(15), Seconds(10), 5)
ssc.checkpoint(checkpointDirectory)
aggStream.checkpoint(Seconds(10))
wordStream.checkpoint(Seconds(10))
aggStream.foreachRDD((rdd, time) => {
val count = rdd.count()
if (count > 0) {
val dt = new Date(time.milliseconds)
println(s"\n\n$dt rddCount = $count\nTop 5 words\n")
val top10 = rdd.sortBy(_._2, ascending = false).take(5)
top10.foreach {
case (word, count) =>
println(s"[$word] - $count")
}
}
})
ssc
}
//Retrieve StreamingContext from checkpoint data or create a new one
val ssc = StreamingContext.getOrCreate(checkpointDirectory,
createStreamContext _)
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Interoperability with streaming platforms
(Apache Kafka)
Spark Streaming integrates well with Apache Kafka, currently the most popular messaging
platform. This integration has several approaches, and the mechanism has improved over
time with regards to performance and reliability.

There are three main approaches:

Receiver-based approach
Direct Stream approach
Structured Streaming

Receiver-based
The first integration between Spark and Kafka is the receiver-based integration. In the
receiver-based approach, the driver starts the receivers on the executors, which then pull
data using a high-level API from the Kafka brokers. Since the events are being pulled from
the Kafka brokers, the receivers update the offsets into Zookeeper, which is also used by the
Kafka cluster. The important aspect here is the use of the write ahead log (WAL), which is
what the receiver writes to as it collects data from Kafka. If there is a problem and the
executors and receivers have to restart or are lost, the WAL can be utilized to recover the 
events and process them. As a result, this design, based on logging, helps to provide
durability, as well as consistency.
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An input DStream of events is created by each receiver from a Kafka topic while it queries
Zookeeper for Kafka topics, brokers, and offsets. Parallelism is made complicated by
logged-in, running receivers, since the workload will not be properly distributed as the
application is scaled. Another problem is the dependence upon HDFS, along with write
operation duplication. There is also a need for reliability with regards to the exactly-once
paradigm of processing, since only an idempotent approach will work. Transactional
approaches will not work in the receiver-based approach, because there is not a way to
access offset ranges from Zookeeper or the HDFS location. The receiver-based approach is
also more general purpose, since it works with any messaging system as shown in the
following diagram:

A receiver-based stream can be created by invoking the createStream() API:

def createStream(
ssc: StreamingContext,
// StreamingContext object
zkQuorum: String,
//Zookeeper quorum (hostname:port,hostname:port,..)
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groupId: String,
//Group id for the consumer
topics: Map[String, Int],
//Map of (topic_name to numPartitions) to consume
storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
//Storage level to use for storing the received objects
(default: StorageLevel.MEMORY_AND_DISK_SER_2)
): ReceiverInputDStream[(String, String)]
//DStream of (Kafka message key,
Kafka message value)

An example of the creation of a receiver-based stream that pulls messages from Kafka
brokers is as follows:

val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
val lines = KafkaUtils.createStream(ssc, zkQuorum, group,
topicMap).map(_._2)

Direct Stream
An input stream that directly pulls messages from Kafka brokers without using a receiver
can be created, and this ensures that each Kafka message is included in the transformations
only once as shown in the following diagram:
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The properties of a Direct Stream are as follows:

No receivers: It does not use a receiver, but directly queries Kafka.
Offsets: It does not use Zookeeper to store offsets, and any consumed offsets are
tracked by the stream itself. The offsets used in each batch can be accessed from
the RDDs that are generated.
Failure recovery: Checkpointing in the streaming context must be enabled to
recover from driver failures.
End-to-end schematics: The stream guarantees that all of the records are
received and transformed exactly once, but it does not ensure that the
transformed data is outputted exactly once.

A Direct Stream can be created as follows, using the Kafka Utils createDirectStream()
API:

def createDirectStream[
K: ClassTag,
//K type of Kafka message key
V: ClassTag,
//V type of Kafka message value
KD <: Decoder[K]: ClassTag,
//KD type of Kafka message key decoder
VD <: Decoder[V]: ClassTag,
//VD type of Kafka message value decoder
R: ClassTag
//R type returned by messageHandler
](
ssc: StreamingContext,
//StreamingContext object
kafkaParams: Map[String, String],
/*
kafkaParams Kafka <a
href="http://kafka.apache.org/documentation.html#configuration">
configuration parameters</a>. Requires "metadata.broker.list" or
"bootstrap.servers"
to be set with Kafka broker(s) (NOT Zookeeper servers) specified in
host1:port1,host2:port2 form.
*/
fromOffsets: Map[TopicAndPartition, Long],
//fromOffsets Per-
topic/partition Kafka offsets defining the (inclusive) starting point of
the stream
messageHandler: MessageAndMetadata[K, V] => R
//messageHandler Function
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for translating each message and metadata into the desired type
): InputDStream[R]
//DStream of R

The following is an example of a Direct Stream that pulls data from Kafka topics to create a
DStream:

val topicsSet = topics.split(",").toSet
val kafkaParams : Map[String, String] =
Map("metadata.broker.list" -> brokers,
"group.id" -> groupid )
val rawDstream = KafkaUtils.createDirectStream[String, String,
StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)

The Direct Stream API can be used only with Kafka, so it is not for general purpose use.

Structured Streaming
Structured Streaming is new as of Apache Spark 2.0+, and it is still in the alpha phase of
development. In the next section, there are details on and examples of how to use
Structured Streaming. You can also refer to https:/ ​/​spark. ​apache. ​org/​docs/ ​latest/
structured-​streaming- ​kafka- ​integration. ​html for more information on Kafka
integration in Structured Streaming.

An example of how you can use a Kafka source stream in Structured Streaming is shown in
the following code snippet:

val ds1 = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1")
.load()
ds1.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
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The following is an example of how you can use a Kafka source instead of source stream (if
you want to take a batch analytics approach):

val ds1 = spark
.read
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1")
.load()
ds1.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]

Getting deeper into Structured Streaming
Structured Streaming is a fault-tolerant, scalable stream-processing engine, built on top of
the Spark SQL engine. Structured Streaming, however, allows you to specify an event time
in the data being received, so that any late data will be taken care of automatically. One
thing to note is that Structured Streaming is still in its alpha stages in Spark 2.1, and the
APIs are labelled as experimental. You can refer
to https://spark.apache.org/docs/latest/structured-streaming-programming-
guide.html for more information.

The driving idea behind Structured Streaming is to treat a data stream as an unbounded
table that is constantly being added to. Computations and SQL queries can then be applied
to this table, as can normally be done with batch data. For instance, a Spark SQL query will
process the unbounded table. As the DStream changes with time, an increasing amount of
data will be processed to generate a table of results. This table can be written to an external
sink, known as the output.

We will now look at an example of the creation of a Structured Streaming query by
listening to the input of the localhost port 9999. On a Linux or macOS, it is easy to start a
server on port 9999:

nc -lk 9999

The following is an example of the creation of an inputStream by calling on
SparkSession's readStream API, and then extracting those words from the lines. Then, the
words are grouped and the occurrences are counted before the results are finally written to
the output stream:

//Creating stream reading from localhost 999
val inputLines = spark.readStream
.format("socket")

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html


Real-Time Analytics with Apache Spark Chapter 7

[ 281 ]

.option("host", "localhost")

.option("port", 9999)

.load()
inputLines: org.apache.spark.sql.DataFrame = [value: string]
// Splitting the inputLines into words
val words = inputLines.as[String].flatMap(_.split(" "))
words: org.apache.spark.sql.Dataset[String] = [value: string]
// Generating running word count
val wordCounts = words.groupBy("value").count()
wordCounts: org.apache.spark.sql.DataFrame = [value: string, count: bigint]
val query = wordCounts.writeStream
.outputMode("complete")
.format("console")

query:
org.apache.spark.sql.streaming.DataStreamWriter[org.apache.spark.sql.Row] =
org.apache.spark.sql.streaming.DataStreamWriter@4823f4d0
query.start()

As long as words are typed into the Terminal, the query will be updated, and will keep
generating results by printing them on the console:

scala> -------------------------------------------
Batch: 0
-------------------------------------------
+-----+-----+
|value|count|
+-----+-----+
| dog| 1|
+-----+-----+
-------------------------------------------
Batch: 1
-------------------------------------------
+-----+-----+
|value|count|
+-----+-----+
| dog| 1|
| cat| 1|
+-----+-----+
scala> -------------------------------------------
Batch: 2
-------------------------------------------
+-----+-----+
|value|count|
+-----+-----+
| dog| 2|
| cat| 1|
+-----+-----+
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Handling event time and late date
Event time is the time inside the data. Spark Streaming used to define the time as the
received time for DStream purposes, but for many applications that need the event time,
this is not enough. For example, if you require the number of times that a hashtag appears
in a tweet every minute, then you will need the time when the data was generated, not the
time when Spark received the event. 

The following is an extension of the previous example of Structured Streaming, listening on
server port 9999. The Timestamp is now enabled as a part of the input data, so now, we
can perform window operations on the unbounded table:

import java.sql.Timestamp
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
// Creating DataFrame that represent the stream of input lines from
connection
to host:port
val inputLines = spark.readStream
.format("socket")
.option("host", "localhost")
.option("port", 9999)
.option("includeTimestamp", true)
.load()
// Splitting the lines into words, retaining timestamps
val words = inputLines.as[(String, Timestamp)].flatMap(line =>
line._1.split(" ").map(word => (word, line._2))
).toDF("word", "timestamp")
// Grouping the data by window and word and computing the count of each
val windowedCounts = words.withWatermark("timestamp", "10 seconds")
.groupBy(
window($"timestamp", "10 seconds", "10 seconds"), $"word"
).count().orderBy("window")
// Begin executing the query which will print the windowed word counts to
the
console
val query = windowedCounts.writeStream.outputMode("complete")
.format("console")
.option("truncate", "false")

query.start()
query.awaitTermination()
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Fault-tolerance semantics
The exactly-once paradigm is complicated in traditional streaming that uses an external
database/storage to maintain offsets. Structured Streaming is still changing, and has several
challenges to conquer before it sees widespread use. 

Summary
Over the course of this chapter, the concepts of the stream-processing system, Spark
Streaming, DStreams in Apache Spark, DStreams, DAG and DStream lineages, and
transformations and actions were covered. Additionally, window-stream processing and a
practical example of processing Twitter tweets using Spark Streaming were covered. Then,
the receiver-based and direct-stream approaches of data consumption were covered with
regards to Kafka, and finally, the newly developing technology of Structured Streaming
was covered. Currently, it aims to solve many current challenges, such as fault tolerance,
the use of exactly-once semantics in the stream, and the simplification of the integration
with messaging systems, such as Kafka, while maintaining flexibility and extensibility to
integrate with other input stream types.

In the next chapter, we will explore Apache Flink, which is a key challenger to Spark as a
computing platform.



8
Batch Analytics with Apache

Flink
This chapter will introduce the reader to Apache Flink, illustrating how to use Flink for big
data analysis, based on the batch processing model. We will look at DataSet APIs, which
provide easy-to-use methods for performing batch analysis on big data.

In this chapter, we will cover the following topics:

Introduction to Apache Flink
Installing Flink
Using the Scala shell
Using the Flink cluster UI
Batch Analytics using Flink

Introduction to Apache Flink
Flink is an open source framework for distributed stream processing, and has the following
features:

It provides results that are accurate, even in the case of out-of-order or late-
arriving data
It is stateful and fault tolerant, and can seamlessly recover from failures while
maintaining an exactly-once application state
It performs at a large scale, running on thousands of nodes with very good
throughput and latency characteristics
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The following is a screenshot from the official documentation that shows how Apache Flink
can be used:

Another way of viewing the Apache Flink framework is shown in the following screenshot:
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All Flink programs are executed lazily, when the program’s main method is executed, the
data loading and transformations do not happen directly. Rather, each operation is created
and added to the program’s plan. The operations are actually executed when the execution
is explicitly triggered by an execute() call on the execution environment. Whether the
program is executed locally or on a cluster depends on the type of execution environment
The lazy evaluation lets you construct sophisticated programs that Flink executes as one
holistically planned unit.

Flink programs look like regular programs that transform collections of data. Each program
consists of the same basic parts:

Obtain an execution environment1.
Load the initial data2.
Specify transformations, aggregations, joins on this data3.
Specify where to put the results of your computations4.
Trigger the program execution5.

Continuous processing for unbounded datasets
Before we go into detail about Apache Flink, let's review, at a higher level, the types of
datasets that you're likely to encounter when processing data, as well as the types of
execution models you can choose for processing. These two ideas are often conflated; it will
be useful to know what makes them different.

Firstly, there are two types of datasets:

Unbounded: Infinite datasets that are added to continuously
Bounded: Finite, unchanging datasets

Many real-world datasets that are traditionally thought of as bounded or batch are, in
reality, unbounded datasets. This is true whether the data is stored in a sequence of 
directories on HDFS, or in a log-based system, such as Apache Kafka.
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Some examples of unbounded datasets include, but are not limited to, the following:

End users interacting with mobile or web applications
Physical sensors providing measurements
Financial markets
Machine log data

Secondly, just like the two types of datasets, there are also two types of execution models:

Streaming: Processing that executes continuously, as long as data is being
produced
Batch: Processing that is executed and runs to completeness in a finite amount of
time, releasing computing resources when finished

It's possible, though not necessarily optimal, to process either type of dataset with either
type of execution model. For instance, batch execution has long been applied to unbounded
datasets, despite potential problems with windowing, state management, and out-of-order
data.

Flink relies on a streaming execution model, which is an intuitive fit for processing
unbounded datasets: streaming execution is continuously processing data that is
continuously produced. An alignment between the type of dataset and the type of
execution model offers many advantages with regard to accuracy and performance.

Flink, the streaming model, and bounded
datasets
In Apache Flink, you can use both a DataStream API for working with unbounded data and
a DataSet API for working with bounded data. Flink makes the relationship between
bounded and unbounded datasets quite natural. A bounded dataset can be treated as
simply a special case of an unbounded one, so it's possible to apply all of the same concepts
to both types of datasets.
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 A bounded dataset is handled inside of Flink as a finite stream, with only a few minor
differences in how Flink manages bounded versus unbounded datasets. As a result, it's
possible to use Flink to process both bounded and unbounded data, with both APIs
running on the same distributed streaming execution engine: a simple yet powerful
architecture.

Installing Flink
In this section, we will download and install Apache Flink.

Flink runs on Linux, OS X, and Windows. To be able to run Flink, the only requirement is
having a working Java 7.x (or higher) installation. If you are using Windows, please take a
look at the Flink on Windows guide at https:/ ​/​ci. ​apache. ​org/ ​projects/ ​flink/ ​flink-
docs-​release-​1.​4/ ​start/ ​flink_ ​on_ ​windows. ​html, which describes how to run Flink on 
Windows for local setups.

You can check your version of Java by issuing the following command:

java -version

If you have Java 8, the output will look something like this:

java version "1.8.0_111"
Java(TM) SE Runtime Environment (build 1.8.0_111-b14)
Java HotSpot(TM) 64-Bit Server VM (build 25.111-b14, mixed mode)
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Downloading Flink
Download the Apache Flink binaries relevant to your platform at https:/ ​/​flink. ​apache.
org/​downloads.​html:

Figure: Screenshot showing Apache Flink libraries

Download Hadoop version 2.8 by clicking on Download. You will see the download page
in your browser, as shown in the following screenshot:
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Figure: Screenshot showing Hadoop version to be downloaded

In this instance, I downloaded flink-1.4.2-bin-hadoop28-scala_2.11.tgz, which is
the most recent version available.

Once downloaded, extract the binaries. On a Mac or a Linux machine, you can use the tar
command:
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Installing Flink
First, change the directory to the location from which you extracted Apache Flink: 

cd flink-1.4.2

You will see the following contents:

Starting a local Flink cluster
You can start a local cluster by simply using the following script in the bin folder:

./bin/start-local.sh

Once you run the script, you should see the cluster started.

Check the JobManager's web frontend at http://localhost:8081 and make sure that
everything is up and running. The web frontend should report a single available Task
Managers instance:



Batch Analytics with Apache Flink Chapter 8

[ 292 ]

You can also verify that the system is running by checking the log files in the logs
directory:

tail log/flink-*-jobmanager-*.log

To use a Scala shell, enter the following code:

./bin/start-scala-shell.sh remote localhost 6123
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To load data, enter the following code:

val dataSet = benv
.readTextFile("OnlineRetail.csv")
dataSet.count()

You can print the first five rows of the dataset by using the following code. The results are
shown in the screenshot following the code:

dataSet
.first(5)
.print()
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You can perform a simple transformation by using map():

dataSet
.map(x => x.split(",")(2))
.first(5)
.print()

dataSet
.flatMap(x => x.split(","))
.map(x=> (x,1))
.groupBy(0)
.sum(1)
.first(10)
.print()
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Using the Flink cluster UI
Using the Flink cluster UI, you can understand and monitor what's running in your cluster
and dig deeply into various jobs and tasks. You can monitor the job statuses, cancel jobs, or
debug any problems with the jobs. By looking at logs, you can also diagnose problems with
your code, and fix them.

The following is a list of Completed Jobs:

You can drill down into any particular job to see more details about the job's execution:

Figure: Drilling down a particular job to see job's execution
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You can look at the Timeline of the job to get more details:

Figure: Screenshot to see Timeline of a job

The following screenshot shows the Task Managers tab, showing all of the task managers.
This helps you understand the number and status of the task managers:
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You can also check the Logs, as shown in the following screenshot:
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The Metrics tab gives you details of the memory and CPU resources:

Figure: Screenshot showing details of the memory and CPU resources in Metrics tab

You can also submit JARs as jobs, in lieu of writing everything in the Scala shell, as seen
previously:
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Batch analytics
Batch Analytics in Apache Flink are quite similar to the streaming analytics in the way
Flink handles both types of analytics using same APIs. This gives a lot of flexibility and
allows code reuse across both the different types of analytics.

In this section, we will look at some analytical jobs on the sample data we are using
OnlineRetail.csv. We will also be loading cities.csv and temperature.csv to do
some more join operations.

Reading file
Flink comes with several built-in formats to create data sets from common file formats.
Many of them have shortcut methods on the execution environment.

File-based
File based sources can be read using APIs which are listed as follows:

readTextFile(path)/TextInputFormat: Reads files line wise and returns
them as strings.
readTextFileWithValue(path)/TextValueInputFormat: Reads files line
wise and returns them as StringValues. StringValues are mutable strings.
readCsvFile(path)/CsvInputFormat: Parses files of comma (or another char)
delimited fields. Returns a DataSet of tuples, case class objects, or POJOs.
Supports the basic Java types and their Value counterparts as field types.
readFileOfPrimitives(path, delimiter)/PrimitiveInputFormat:
Parses files of new-line (or another char sequence) delimited primitive data types
such as String or Integer using the given delimiter.
readHadoopFile(FileInputFormat, Key, Value,

path)/FileInputFormat: Creates a JobConf and reads file from the specified
path with the specified FileInputFormat, Key class and Value class and
returns them as Tuple2<Key, Value>.
readSequenceFile(Key, Value, path)/SequenceFileInputFormat:
Creates a JobConf and reads file from the specified path with type
SequenceFileInputFormat, Key class and Value class and returns them as
Tuple2<Key, Value>.
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Collection-based
Collection (data structures such as lists, arrays, and so on)  based sources can be read using
APIs which are listed as follows:

fromCollection(Seq): Creates a DataSet from a Seq. All elements in the
collection must be of the same type.
fromCollection(Iterator): Creates a DataSet from an Iterator. The class
specifies the data type of the elements returned by the iterator.
fromElements(elements: _*): Creates a DataSet from the given sequence of
objects. All objects must be of the same type.
fromParallelCollection(SplittableIterator): Creates a DataSet from an
iterator, in parallel. The class specifies the data type of the elements returned by
the iterator.
generateSequence(from, to): Generates the sequence of numbers in the
given interval, in parallel.

Generic
Generic (Custom) sources can be read using APIs which are listed as follows:

readFile(inputFormat, path)/FileInputFormat: Accepts a file input
format
createInput(inputFormat)/InputFormat: Accepts a generic input format

We will look at one of the APIs which is readTextFile(). Reading a file using this API
results in loading a file (local text file, hdfs file, Amazon s3 file, and so on) into a DataSet.
This DataSet contains the locations of the partitions of the data being loaded thus being able
to support TBs of data.

Let's load the example OnlineRetail.csv as shown in the following code:

val dataSet = benv.readTextFile("OnlineRetail.csv")
dataSet.first(10).print()

This will print the contents of the DataSet once loaded as shown in the following code:

InvoiceNo,StockCode,Description,Quantity,InvoiceDate,UnitPrice,CustomerID,C
ountry
 536365,85123A,WHITE HANGING HEART T-LIGHT HOLDER,6,12/1/10
8:26,2.55,17850,United Kingdom
 536365,71053,WHITE METAL LANTERN,6,12/1/10 8:26,3.39,17850,United Kingdom
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 536365,84406B,CREAM CUPID HEARTS COAT HANGER,8,12/1/10
8:26,2.75,17850,United Kingdom
 536365,84029G,KNITTED UNION FLAG HOT WATER BOTTLE,6,12/1/10
8:26,3.39,17850,United Kingdom
 536365,84029E,RED WOOLLY HOTTIE WHITE HEART.,6,12/1/10
8:26,3.39,17850,United Kingdom
 536365,22752,SET 7 BABUSHKA NESTING BOXES,2,12/1/10 8:26,7.65,17850,United
Kingdom
 536365,21730,GLASS STAR FROSTED T-LIGHT HOLDER,6,12/1/10
8:26,4.25,17850,United Kingdom
 536366,22633,HAND WARMER UNION JACK,6,12/1/10 8:28,1.85,17850,United
Kingdom
 536366,22632,HAND WARMER RED POLKA DOT,6,12/1/10 8:28,1.85,17850,United
Kingdom

If you notice the preceding example, you see that the first line/row is actually a header row
hence is not useful in any analysis. You can filter out one or more rows using the filter()
function.

Following is the loading of the file and removal of the first line and return a DataSet:

val dataSet =benv
    .readTextFile("OnlineRetail.csv")
    .filter(!_.startsWith("InvoiceNo"))
dataSet.first(10).print()

This will print the contents of the DataSet once loaded as shown in the following code:

 536365,85123A,WHITE HANGING HEART T-LIGHT HOLDER,6,12/1/10
8:26,2.55,17850,United Kingdom
 536365,71053,WHITE METAL LANTERN,6,12/1/10 8:26,3.39,17850,United Kingdom
 536365,84406B,CREAM CUPID HEARTS COAT HANGER,8,12/1/10
8:26,2.75,17850,United Kingdom
 536365,84029G,KNITTED UNION FLAG HOT WATER BOTTLE,6,12/1/10
8:26,3.39,17850,United Kingdom
 536365,84029E,RED WOOLLY HOTTIE WHITE HEART.,6,12/1/10
8:26,3.39,17850,United Kingdom
 536365,22752,SET 7 BABUSHKA NESTING BOXES,2,12/1/10 8:26,7.65,17850,United
Kingdom
 536365,21730,GLASS STAR FROSTED T-LIGHT HOLDER,6,12/1/10
8:26,4.25,17850,United Kingdom
 536366,22633,HAND WARMER UNION JACK,6,12/1/10 8:28,1.85,17850,United
Kingdom
 536366,22632,HAND WARMER RED POLKA DOT,6,12/1/10 8:28,1.85,17850,United
Kingdom
 536367,84879,ASSORTED COLOUR BIRD ORNAMENT,32,12/1/10
8:34,1.69,13047,United Kingdom
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Clearly this time we do not see the header row:

InvoiceNo,StockCode,Description,Quantity,InvoiceDate,UnitPrice,CustomerID,C
ountry

We will now look into more operations that can be performed on the DataSet loaded.

Transformations
Transformations change a DataSet into a new DataSet by applying the transformation logic
to each row of the original DataSet. As an example, if we want to eliminate the first header
row from the input then we can use a filter() operation to do this.

Following is application of two filter() operations to first remove the header and then
making sure we have the correct number of columns in each row which happens to be 8 in
this case:

val dataSet = benv.readTextFile("OnlineRetail.csv")
    .filter(!_.startsWith("InvoiceNo"))
    .filter(_.split(",").length == 8)

dataSet.map(x => x.split(",")(2))
    .first(10).print()

This will print the contents of the DataSet once loaded as shown in the following code:

 WHITE HANGING HEART T-LIGHT HOLDER
 WHITE METAL LANTERN
 CREAM CUPID HEARTS COAT HANGER
 KNITTED UNION FLAG HOT WATER BOTTLE
 RED WOOLLY HOTTIE WHITE HEART.
 SET 7 BABUSHKA NESTING BOXES
 GLASS STAR FROSTED T-LIGHT HOLDER
 HAND WARMER UNION JACK
 HAND WARMER RED POLKA DOT

Similarly you can print the quantity column from the DataSet:

dataSet.map(x => x.split(",")(3))
    .first(10).print()
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This will print the contents of the DataSet once loaded as shown in the following code: 

 6
 6
 8
 6
 6
 2
 6
 6
 6

Similarly you can print the tuple of description and quantity columns from the DataSet:

dataSet.map(x => (x.split(",")(2), x.split(",")(3).toInt))
    .first(10).print()

This will print the contents of the DataSet once loaded as shown in the following code: 

 (WHITE HANGING HEART T-LIGHT HOLDER,6)
 (WHITE METAL LANTERN,6)
 (CREAM CUPID HEARTS COAT HANGER,8)
 (KNITTED UNION FLAG HOT WATER BOTTLE,6)
 (RED WOOLLY HOTTIE WHITE HEART.,6)
 (SET 7 BABUSHKA NESTING BOXES,2)
 (GLASS STAR FROSTED T-LIGHT HOLDER,6)
 (HAND WARMER UNION JACK,6)
 (HAND WARMER RED POLKA DOT,6)

This section gives a brief overview of the available transformations and can be found
at https:/​/​ci.​apache. ​org/ ​projects/ ​flink/​flink- ​docs- ​release- ​1. ​4/​dev/ ​batch/
dataset_​transformations. ​html:

Transformation Description

Map Takes one element and produces one element.
data.map { x => x.toInt }

FlatMap Takes one element and produces zero, one, or more elements.
data.flatMap { str => str.split(" ") }

MapPartition

Transforms a parallel partition in a single function call. The function get
the partition as an Iterator and can produce an arbitrary number of result
values. The number of elements in each partition depends on the degree-
of-parallelism and previous operations.
data.mapPartition { in => in map { (_, 1) } }
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Transformation Description

Filter

Evaluates a boolean function for each element and retains those for which
the function returns true.
IMPORTANT: The system assumes that the function does not modify the
element on which the predicate is applied. Violating this assumption can
lead to incorrect results.
data.filter { _ > 1000 }

Reduce

Combines a group of elements into a single element by repeatedly
combining two elements into one. Reduce may be applied on a full data
set, or on a grouped data set.
data.reduce { _ + _ }

ReduceGroup
Combines a group of elements into one or more elements. reduceGroup
may be applied on a full data set, or on a grouped data set.
data.reduceGroup { elements => elements.sum }

Aggregate

Aggregates a group of values into a single value. Aggregation functions
can be thought of as built-in reduce functions. Aggregate may be applied
on a full data set, or on a grouped data set.
val input: DataSet[(Int, String, Double)] = // [...]
val output: DataSet[(Int, String, Double)] =
input.aggregate(SUM, 0).aggregate(MIN, 2)

You can also use short-hand syntax for minimum, maximum, and sum
aggregations.
val input: DataSet[(Int, String, Double)] = // [...]
val output: DataSet[(Int, String, Double)] = input.sum(0).min(2)

Distinct

Returns the distinct elements of a data set. It removes the duplicate entries
from the input DataSet, with respect to all fields of the elements, or a
subset of fields.
data.distinct()
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Transformation Description

Join

Joins two data sets by creating all pairs of elements that are equal on their keys.
Optionally uses a JoinFunction to turn the pair of elements into a single element,
or a FlatJoinFunction to turn the pair of elements into arbitrarily many
(including none) elements.
// In this case tuple fields are used as keys. "0" is the join
field on the first tuple
// "1" is the join field on the second tuple.
val result = input1.join(input2).where(0).equalTo(1)

You can specify the way that the runtime executes the join via Join Hints. The hints
describe whether the join happens through partitioning or broadcasting, and whether it
uses a sort-based or a hash-based algorithm. Please refer to the Transformations
Guide at https:/ ​/ ​ci. ​apache. ​org/ ​projects/ ​flink/ ​flink- ​docs- ​release-
1. ​4/ ​dev/ ​batch/ ​dataset_ ​transformations. ​html#join- ​algorithm-
hints for a list of possible hints and an example. If no hint is specified, the system will
try to make an estimate of the input sizes and pick the best strategy according to those
estimates.
// This executes a join by broadcasting the first data set
// using a hash table for the broadcast data
val result = input1.join(input2, JoinHint.BROADCAST_HASH_FIRST)
                   .where(0).equalTo(1)

Note that the join transformation works only for equi-joins. Other join types need to be
expressed using OuterJoin or CoGroup.

OuterJoin

Performs a left, right, or full outer join on two data sets. Outer joins are similar to
regular (inner) joins and create all pairs of elements that are equal on their keys. In
addition, records of the outer side (left, right, or both in case of full) are preserved if no
matching key is found in the other side. Matching pairs of elements (or one element
and a null value for the other input) are given to a JoinFunction to turn the pair of
elements into a single element, or to a FlatJoinFunction to turn the pair of
elements into arbitrarily many (including none) elements. 
val joined = left.leftOuterJoin(right).where(0).equalTo(1) {
   (left, right) =>
     val a = if (left == null) "none" else left._1
     (a, right)
  }

CoGroup

The two-dimensional variant of the reduce operation. Groups each input
on one or more fields and then joins the groups. The transformation
function is called per pair of groups. See the keys section at https:/ ​/​ci.
apache. ​org/ ​projects/ ​flink/ ​flink- ​docs- ​release- ​1. ​4/​dev/ ​api_
concepts. ​html#specifying- ​keys to learn how to define coGroup keys.
data1.coGroup(data2).where(0).equalTo(1)
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https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/api_concepts.html#specifying-keys
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Transformation Description

Cross

Builds the Cartesian product (cross product) of two inputs, creating all
pairs of elements. Optionally uses a CrossFunction to turn the pair of
elements into a single element
val data1: DataSet[Int] = // [...]
val data2: DataSet[String] = // [...]
val result: DataSet[(Int, String)] = data1.cross(data2)

Note: Cross is potentially a very compute-intensive operation which can
challenge even large compute clusters! It is advised to hint the system with
the DataSet sizes by using crossWithTiny() and crossWithHuge().

Union Produces the union of two data sets.
data.union(data2)

Rebalance

Evenly rebalances the parallel partitions of a data set to eliminate data
skew. Only Map-like transformations may follow a rebalance
transformation.
val data1: DataSet[Int] = // [...]
val result: DataSet[(Int, String)] = data1.rebalance().map(...)

Hash-Partition

Hash-partitions a data set on a given key. Keys can be specified as position
keys, expression keys, and key selector functions.
val in: DataSet[(Int, String)] = // [...]
val result = in.partitionByHash(0).mapPartition { ... }

Range-Partition

Range-partitions a data set on a given key. Keys can be specified as
position keys, expression keys, and key selector functions.
val in: DataSet[(Int, String)] = // [...]
val result = in.partitionByRange(0).mapPartition { ... }

Custom
Partitioning

Manually specify a partitioning over the data. 
Note: This method works only on single field keys.
val in: DataSet[(Int, String)] = // [...]
val result = in
  .partitionCustom(partitioner: Partitioner[K], key)

Sort Partition

Locally sorts all partitions of a data set on a specified field in a specified
order. Fields can be specified as tuple positions or field expressions.
Sorting on multiple fields is done by chaining sortPartition() calls.
val in: DataSet[(Int, String)] = // [...]
val result = in.sortPartition(1, Order.ASCENDING).mapPartition {
... }
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Transformation Description

First-n

Returns the first n (arbitrary) elements of a data set. First-n can be applied
on a regular data set, a grouped data set, or a grouped-sorted data set.
Grouping keys can be specified as key-selector functions, tuple positions
or case class fields.
val in: DataSet[(Int, String)] = // [...]
// regular data set
val result1 = in.first(3)
// grouped data set
val result2 = in.groupBy(0).first(3)
// grouped-sorted data set
val result3 = in.groupBy(0).sortGroup(1,
Order.ASCENDING).first(3)

GroupBy
groupBy operation helps to aggregate the rows of the DataSet by some columns.
groupBy() takes index of column which is used to aggregate the rows by.

Following command groups by Description and prints first 10 records.

dataSet.map(x => (x.split(",")(2), x.split(",")(3).toInt))
    .groupBy(0)
    .first(10).print()

This will print the contents of the DataSet once loaded which are shown as follows: 

 (WOODLAND DESIGN COTTON TOTE BAG,1)
 (WOODLAND DESIGN COTTON TOTE BAG,1)
 (WOODLAND DESIGN COTTON TOTE BAG,6)
 (WOODLAND DESIGN COTTON TOTE BAG,1)
 (WOODLAND DESIGN COTTON TOTE BAG,2)
 (WOODLAND DESIGN COTTON TOTE BAG,1)
 (WOODLAND DESIGN COTTON TOTE BAG,6)
 (WOODLAND DESIGN COTTON TOTE BAG,1)
 (WOODLAND DESIGN COTTON TOTE BAG,1)
 (WOODLAND DESIGN COTTON TOTE BAG,12)
 (WOODLAND PARTY BAG + STICKER SET,2)
 (WOODLAND PARTY BAG + STICKER SET,16)
 (WOODLAND PARTY BAG + STICKER SET,1)
 (WOODLAND PARTY BAG + STICKER SET,8)
 (WOODLAND PARTY BAG + STICKER SET,4)
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The groupBy() API is defined as follows:

/**
 * Groups a {@link Tuple} {@link DataSet} using field position keys.
 *
 * <p><b>Note: Field position keys only be specified for Tuple
DataSets.</b>
 *
 * <p>The field position keys specify the fields of Tuples on which the
DataSet is grouped.
 * This method returns an {@link UnsortedGrouping} on which one of the
following grouping transformation
 * can be applied.
 * <ul>
 * <li>{@link UnsortedGrouping#sortGroup(int,
org.apache.flink.api.common.operators.Order)} to get a {@link
SortedGrouping}.
 * <li>{@link UnsortedGrouping#aggregate(Aggregations, int)} to apply an
Aggregate transformation.
 * <li>{@link
UnsortedGrouping#reduce(org.apache.flink.api.common.functions.ReduceFunctio
n)} to apply a Reduce transformation.
 * <li>{@link
UnsortedGrouping#reduceGroup(org.apache.flink.api.common.functions.GroupRed
uceFunction)} to apply a GroupReduce transformation.
 * </ul>
 *
 * @param fields One or more field positions on which the DataSet will be
grouped.
 * @return A Grouping on which a transformation needs to be applied to
obtain a transformed DataSet.
 *
 * @see Tuple
 * @see UnsortedGrouping
 * @see AggregateOperator
 * @see ReduceOperator
 * @see org.apache.flink.api.java.operators.GroupReduceOperator
 * @see DataSet
 */
 public UnsortedGrouping<T> groupBy(int... fields) {
 return new UnsortedGrouping<>(this, new Keys.ExpressionKeys<>(fields,
getType()));
 }
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Aggregation
Aggregation operation applies logic to the grouped rows of the DataSet after applying
groupBy() by  some columns. groupBy() takes index of column which is used to
aggregate the rows by and the aggregation operation takes index of the column to
aggregate on.

Following command groups by Description and adds the Quantities for each
Description and then prints first 10 records.

dataSet.map(x => (x.split(",")(2), x.split(",")(3).toInt))
    .groupBy(0)
    .sum(1)
    .first(10).print()

This will print the contents of the DataSet once loaded as shown in the following code: 

 (,-2117)
 (*Boombox Ipod Classic,1)
 (*USB Office Mirror Ball,2)
 (10 COLOUR SPACEBOY PEN,823)
 (12 COLOURED PARTY BALLOONS,102)
 (12 DAISY PEGS IN WOOD BOX,62)
 (12 EGG HOUSE PAINTED WOOD,16)
 (12 IVORY ROSE PEG PLACE SETTINGS,80)
 (12 MESSAGE CARDS WITH ENVELOPES,238)
 (12 PENCIL SMALL TUBE WOODLAND,444)

Following command groups by Description and adds the Quantities for each
Description and then prints the top Description with maximum Quantity:

dataSet.map(x => (x.split(",")(2), x.split(",")(3).toInt))
    .groupBy(0)
    .sum(1)
    .max(1)
    .first(10).print()
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This will print the contents of the DataSet once loaded as shown in the following code:

(reverse 21/5/10 adjustment,8189)

Following command groups by Description and adds the Quantities for each
Description and then prints the top Description with minimum Quantity:

dataSet.map(x => (x.split(",")(2), x.split(",")(3).toInt))
    .groupBy(0)
    .sum(1)
    .min(1)
    .first(10).print()

This will print the contents of the DataSet once loaded as shown in the following code: 

(reverse 21/5/10 adjustment,-7005)

The sum() API is defined as follows:

// private helper that allows to set a different call location name
 private AggregateOperator<T> aggregate(Aggregations agg, int field, String
callLocationName) {
 return new AggregateOperator<T>(this, agg, field, callLocationName);
 }
/**
 * Syntactic sugar for aggregate (SUM, field).
 * @param field The index of the Tuple field on which the aggregation
function is applied.
 * @return An AggregateOperator that represents the summed DataSet.
 *
 * @see org.apache.flink.api.java.operators.AggregateOperator
 */
 public AggregateOperator<T> sum (int field) {
 return this.aggregate (Aggregations.SUM, field,
Utils.getCallLocationName());
 }



Batch Analytics with Apache Flink Chapter 8

[ 311 ]

Joins
val cities = benv.readTextFile("cities.csv")

Id,City
1,Boston
2,New York
3,Chicago
4,Philadelphia
5,San Francisco
7,Las Vegas

val temp = benv.readTextFile("temperatures.csv")
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Date,Id,Temperature
2018-01-01,1,21
2018-01-01,2,22
2018-01-01,3,23
2018-01-01,4,24
2018-01-01,5,25
2018-01-01,6,22
2018-01-02,1,23
2018-01-02,2,24
2018-01-02,3,25
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Let us now load the cities.csv and temperatures.csv into DataSets and remove the header. 

 val cities = benv.readTextFile("cities.csv")
    .filter(!_.contains("Id,"))
val temp = benv.readTextFile("temperatures.csv")
    .filter(!_.contains("Id,"))

Then we will transform the DataSets to a DataSet of tuples. The first DataSet which is the
cities DataSet will yield <cityId, cityName> tuples.  The second DataSet which is the
temperatures DataSet will yield <cityId, temperature> tuples. 

val cities2 = cities.map(x => (x.split(",")(0), x.split(",")(1)))
cities2.first(10).print()
val temp2 = temp.map(x => (x.split(",")(1), x.split(",")(2)))
temp2.first(10).print()

Inner join
Inner join requires the left and right tables to have the same column. If you have duplicate
or multiple copies of the keys on either left or right side, the join will quickly blow up into
sort of a cartesian join, taking lot longer to complete than if designed correctly to minimize
the multiple keys:

Now, we are ready to perform an inner join to join the two DataSets of tuples as shown in
the following code:

cities2.join(temp2)
 .where(0)
 .equalTo(0)
 .first(10).print()
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The output of this job is as follows showing the tuples from the two DataSets where cityID
exists in both DataSets:

 ((1,Boston),(1,21))
 ((2,New York),(2,22))
 ((3,Chicago),(3,23))
 ((4,Philadelphia),(4,24))
 ((5,San Francisco),(5,25))
 ((1,Boston),(1,23))
 ((2,New York),(2,24))
 ((3,Chicago),(3,25))
 ((4,Philadelphia),(4,26))
 ((5,San Francisco),(5,18))

Now, if we apply aggregation and add the temperatures for each city, we will get the total
temperature per city. You can do this by writing the code as shown in the following code:

cities2
    .join(temp2)
    .where(0)
    .equalTo(0)
    .map(x=> (x._1._2, x._2._2.toInt))
    .groupBy(0)
    .sum(1)
    .first(10).print()

This shows the following result:

(Boston,111)
(Chicago,116)
(New York,119)
(Philadelphia,116)
(San Francisco,113)
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The job can be seen in flink UI:

The join() API is defined as follows:

 /**
 * Initiates a Join transformation.
 *
 * <p>A Join transformation joins the elements of two
 * {@link DataSet DataSets} on key equality and provides multiple ways to
combine
 * joining elements into one DataSet.
 *
 * <p>This method returns a {@link JoinOperatorSets} on which one of the
{@code where} methods
 * can be called to define the join key of the first joining (i.e., this)
DataSet.
 *
 * @param other The other DataSet with which this DataSet is joined.
 * @return A JoinOperatorSets to continue the definition of the Join
transformation.
 *
 * @see JoinOperatorSets
 * @see DataSet
 */
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 public <R> JoinOperatorSets<T, R> join(DataSet<R> other) {
 return new JoinOperatorSets<>(this, other);
 }

Left outer join
Left outer join gives all rows present in the left hand side table in addition to the rows that
are common to both the tables (inner join). If used on tables with little in common, can
result in very large results and thus slow performance:

Now, we are ready to perform a left outer join to join the two DataSets of tuples as shown
in the following code:

cities2
    .leftOuterJoin(temp2)
    .where(0)
    .equalTo(0) {
        (x,y) => (x, if (y==null) (x._1,0) else (x._1, y._2.toInt))
    }
    .map(x=> (x._1._2, x._2._2.toInt))
    .groupBy(0)
    .sum(1)
    .first(10).print()

The output of this job is as follows showing the tuples from the two DataSets where cityID
exists in left or both DataSets:

(Boston,111)
(Chicago,116)
(Las Vegas,0)   // Las vegas has no records in temperatures DataSet so is
assigned 0
(New York,119)
(Philadelphia,116)
(San Francisco,113)
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The job can be seen in flink UI:

The leftOuterJoin() API is defined as follows:

/**
 * Initiates a Left Outer Join transformation.
 *
 * <p>An Outer Join transformation joins two elements of two
 * {@link DataSet DataSets} on key equality and provides multiple ways to
combine
 * joining elements into one DataSet.
 *
 * <p>Elements of the <b>left</b> DataSet (i.e. {@code this}) that do not
have a matching
 * element on the other side are joined with {@code null} and emitted to
the
 * resulting DataSet.
 *
 * @param other The other DataSet with which this DataSet is joined.
 * @return A JoinOperatorSet to continue the definition of the Join
transformation.
 *
 * @see org.apache.flink.api.java.operators.join.JoinOperatorSetsBase
 * @see DataSet
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 */
 public <R> JoinOperatorSetsBase<T, R> leftOuterJoin(DataSet<R> other) {
 return new JoinOperatorSetsBase<>(this, other, JoinHint.OPTIMIZER_CHOOSES,
JoinType.LEFT_OUTER);
 }

Right outer join
Right outer join gives all rows in right side table as well as the common rows of left and
right (inner join). Use this to get all rows in right table along with the rows found in both
left and right tables. Fills in NULL if not in left. Performance is similar to the left outer
join mentioned previously in this table:

Now, we are ready to perform  a right outer join to join the two DataSets of tuples as shown
in the following code:

cities2
    .rightOuterJoin(temp2)
    .where(0)
    .equalTo(0) {
        (x,y) => (if (x==null) (y._1,"unknown") else (y._1, x._2), y)
    }
    .map(x=> (x._1._2, x._2._2.toInt))
    .groupBy(0)
    .sum(1)
    .first(10).print()

The output of this job is as follows showing the tuples from the two DataSets where cityID
exists in right or both DataSets:

(Boston,111)
(Chicago,116)
(New York,119)
(Philadelphia,116)
(San Francisco,113)
(unknown,44) . // note that only right hand side temperatures DataSet has
id 6 which is not in cities DataSet
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The job can be seen in flink UI:

The rightOuterJoin() API is defined as follows:

/**
 * Initiates a Right Outer Join transformation.
 *
 * <p>An Outer Join transformation joins two elements of two
 * {@link DataSet DataSets} on key equality and provides multiple ways to
combine
 * joining elements into one DataSet.
 *
 * <p>Elements of the <b>right</b> DataSet (i.e. {@code other}) that do not
have a matching
 * element on {@code this} side are joined with {@code null} and emitted to
the
 * resulting DataSet.
 *
 * @param other The other DataSet with which this DataSet is joined.
 * @return A JoinOperatorSet to continue the definition of the Join
transformation.
 *
 * @see org.apache.flink.api.java.operators.join.JoinOperatorSetsBase
 * @see DataSet
 */



Batch Analytics with Apache Flink Chapter 8

[ 320 ]

 public <R> JoinOperatorSetsBase<T, R> rightOuterJoin(DataSet<R> other) {
 return new JoinOperatorSetsBase<>(this, other, JoinHint.OPTIMIZER_CHOOSES,
JoinType.RIGHT_OUTER);
 }

Full outer join
Full outer join gives all (matched and unmatched) rows from the tables at the left and right
side of the join clause. Use this when we want to keep all the rows from both tables, we use
full outer join. Full outer join returns all rows when there is a match in ONE of the tables. If
used on tables with little in common, it can result in very large results and thus slow
performance:

Now, we are ready to perform a full outer join to join the two DataSets of tuples as shown
in the following code:

cities2
    .fullOuterJoin(temp2)
    .where(0)
    .equalTo(0) {
        (x,y) => (if (x==null) (y._1,"unknown") else (x._1, x._2),
                if (y==null) (x._1,0) else (y._1, y._2.toInt))
    }
    .map(x=> (x._1._2, x._2._2.toInt))
    .groupBy(0)
    .sum(1)
    .first(10).print()

The output of this job is as follows showing the tuples from the two DataSets where cityID
exists in either or both DataSets:

(Boston,111)
(Chicago,116)
(Las Vegas,0) // Las vegas has no records in temperatures DataSet so is
assigned 0
(New York,119)
(Philadelphia,116)
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(San Francisco,113)
(unknown,44) // note that only right hand side temperatures DataSet has id
6 which is not in cities DataSet

The job can be seen in flink UI:

The fullOuterJoin() API is defined as follows:

/**
 * Initiates a Full Outer Join transformation.
 *
 * <p>An Outer Join transformation joins two elements of two
 * {@link DataSet DataSets} on key equality and provides multiple ways to
combine
 * joining elements into one DataSet.
 *
 * <p>Elements of <b>both</b> DataSets that do not have a matching
 * element on the opposing side are joined with {@code null} and emitted to
the
 * resulting DataSet.
 *
 * @param other The other DataSet with which this DataSet is joined.
 * @return A JoinOperatorSet to continue the definition of the Join
transformation.
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 *
 * @see org.apache.flink.api.java.operators.join.JoinOperatorSetsBase
 * @see DataSet
 */
 public <R> JoinOperatorSetsBase<T, R> fullOuterJoin(DataSet<R> other) {
 return new JoinOperatorSetsBase<>(this, other, JoinHint.OPTIMIZER_CHOOSES,
JoinType.FULL_OUTER);
 }

Writing to a file
Data sinks consume DataSets and are used to store or return them. Data sink operations are
described using an OutputFormat. Flink comes with a variety of built-in output formats
that are encapsulated behind operations on the DataSet:

writeAsText()/TextOutputFormat: Writes elements line-wise as Strings. The
strings are obtained by calling the toString() method of each element.
writeAsCsv(...)/CsvOutputFormat: Writes tuples as comma-separated value
files. Row and field delimiters are configurable. The value for each field comes
from the toString() method of the objects.
print()/printToErr(): Prints the toString() value of each element on the
standard out/standard error stream.
write()/FileOutputFormat: Method and base class for custom file outputs.
Supports custom object-to-bytes conversion.
output()/OutputFormat: Most generic output method, for data sinks that are
not file based (such as storing the result in a database).

Let us write the results of inner join of cities and temperatures to a file using
writeAsText().
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No output will be seen until you call benv.execute().

First, create a DataSet for the inner join of cities and temperatures:

val results = cities2
    .join(temp2)
    .where(0)
    .equalTo(0)
    .map(x=> (x._1._2, x._2._2.toInt))
    .groupBy(0)
    .sum(1)

Then call the writeAsText() on the results DataSet and call execute() on the DataSink
as shown in the following code:

results.writeAsText("file:///Users/sridharalla/flink-1.4.2/results.txt").se
tParallelism(1)
benv.execute()

If you open the file you just created, you will see the results of the join operation as seen in
the following code:

(Boston,111)
(Chicago,116)
(New York,119)
(Philadelphia,116)
(San Francisco,113)
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The job can be seen in flink UI:

Summary
In this chapter, we have discussed Apache Flink and how Flink can be used to perform
batch analysis on a large amount of data. We explored Flink and inner workings of Flink.
Then we loaded and analyzed data performing transformations and aggregation
operations. Then we explored how to perform Join operations on big data.

In the next chapter, we will discuss real-time analytics using Apache Flink.



9
Stream Processing with Apache

Flink
In this chapter, we will look at stream processing using Apache Flink and how the
framework can be used to process data as soon as it arrives to build exciting real-time
applications. We will start with the DataStream API and look at various operations that can
be performed.

We will be looking at the following:

Data processing using the DataStream API 
Transformations 
Aggregations 
Window 
Physical partitioning 
Rescaling 
Data sinks
Event time and watermarks 
Kafka connector 
Twitter connector 
Elasticsearch connector 
Cassandra connector 
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Introduction to streaming execution model
Flink is an open source framework for distributed stream processing that:

Provides results that are accurate, even in the case of out-of-order or late-arriving
data
Is stateful and fault tolerant, and can seamlessly recover from failures while
maintaining an exactly-once application state
Performs on a large scale, running on thousands of nodes with very good
throughput and latency characteristics

The following diagram is a generalized view of stream processing:

Many of Flink's features - state management, handling out-of-order data, flexible
windowing – are essential for computing accurate results on unbounded datasets and are
enabled by Flink's streaming execution model:

Flink guarantees exactly-once semantics for stateful computations. Stateful
means that applications can maintain an aggregation or summary of data that
has been processed over time, and Flink's checkpointing mechanism ensures
exactly-once semantics for an application's state in the event of a failure:
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Flink supports stream processing and windowing with event-time semantics.
Event time makes it easy to compute accurate results over streams where events
arrive out of order and where events may arrive delayed:

Flink supports flexible windowing based on time, count, or sessions, in addition
to data-driven windows. Windows can be customized with flexible triggering
conditions to support sophisticated streaming patterns. Flink's windowing makes
it possible to model the reality of the environment in which data is created:
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Flink's fault tolerance is lightweight and allows the system to maintain high
throughput rates and provide exactly-once consistency guarantees at the same
time. Flink recovers from failures with zero data loss while the trade-off between
reliability and latency is negligible:

Flink is capable of high throughput and low latency (processing lots of data
quickly). 
Flink's savepoints provide a state versioning mechanism, making it possible to
update applications or reprocess historic data with no lost state and minimal
downtime.
Flink is designed to run on large-scale clusters with many thousands of nodes,
and in addition to a standalone cluster mode, Flink provides support for YARN
and Mesos.

Data processing using the DataStream API
It is crucial to have robust analytics in place to process real-time data. This is more
important for domains that are data-driven. Flink enables you to do real-time analytics
using its DataStream API. This streaming data processing API helps you cater to Internet of
Things (IoT) applications and store, process, and analyze data in real time or near real
time.
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In the following sections, let's examine each of the elements related to the DataStream API:

Execution environment
Data sources
Transformations
Data sinks
Connectors

Execution environment
To write a Flink program, you need an execution environment. You can use an existing
environment or create a new environment.

Based on your requirements, Flink allows you to use an existing Flink environment, create
a local environment, or create a remote environment.

Use the getExecutionEnvironment() command to accomplish different tasks based on
your requirement:

To execute on a local environment in an IDE, it starts a local execution
environment
To execute a JAR, the Flink cluster manager executes the program in a
distributed manner
To create your own local or remote environment, you can use methods such
as createLocalEnvironment() and createRemoteEnvironment (string host,
int port, string, and .jar files)

Data sources
Flink gets data from different sources. It has many inbuilt source functions to fetch data
seamlessly. Several pre-implemented data source functions in Flink simplify data
sourcing. Flink also allows you to write custom data source functions when the existing
functions are not enough for data sourcing.

The DataStream API is documented here: https:/ ​/ ​ci.​apache. ​org/​projects/ ​flink/
flink-​docs-​release- ​1. ​4/ ​dev/ ​datastream_ ​api. ​html.

https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/datastream_api.html
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Here are some existing data source functions in Flink:

Socket-based data sourcing
File-based data sourcing

Socket-based
The DataStream API enables you to read from a socket. Look at the following piece of code
for a simple illustration of the streaming API:

// Data type for words with count
case class WordWithCount(word: String, count: Long)
// get input data by connecting to the socket
val text = senv.socketTextStream("127.0.0.1", 9000, '\n')
// parse the data, group it, window it, and aggregate the counts
val windowCounts = text
 .flatMap { w => w.split("\\s") }
 .map { w => WordWithCount(w, 1) }
 .keyBy("word")
 .timeWindow(Time.seconds(5), Time.seconds(1))
 .sum("count")
// print the results with a single thread, rather than in parallel
windowCounts.print().setParallelism(1)
senv.execute("Socket Window WordCount")

The preceding code connects to port 9000 on the localhost, receives and processes text,
splitting the strings into individual words (space separated). Then, the code counts the
frequencies of the words in a window of 5 seconds and prints them.

To run this example, we will use the Scala shell for Flink:
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Now, start a local server running nc as follows on any Linux system:
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Now, run the code in the shell to connect to port 9000 and listen for data:

You can see the job running in the web console now:
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You can look into the tasks for a deeper understanding:

Figure: Screenshot showing a view of the tasks

If you start typing text into the nc server console, you will start seeing output in the log
folder.

In my case, I see a log file for taskmanager:

tail -f log/flink-sridharalla-taskmanager-1-Moogie.local.out

The following is what you will see when you tail the log file:

Now that we have seen running sample code, let's look at the API for the socket stream.

Specify the host and port in the API to read data from a socket:

socketTextStream(hostName, port);

You can also specify the delimiter:

socketTextStream(hostName,port,delimiter)

You can also specify the maximum number of times the API must fetch the data from a
socket:

socketTextStream(hostName,port,delimiter, maxRetry)
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File-based
Use the file-based source functions in Flink to stream data from a file source. Use
readTextFile(String path) to stream data from a specified file. By default, the string
path has the default value TextInputFormat. This implies that it reads text and strings
line by line.

If the file format is different from text, specify the format using these functions:

readFile(FileInputFormat<Out> inputFormat, String path)

Using the readFileStream() function, Flink can read file streams as they are produced:

readFileStream(String filePath, long intervalMillis,
FileMonitoringFunction.WatchType watchType)

Specify the file path, the polling interval in which the file path should be polled, and the
watch type. Watch types are of three types:

FileMonitoringFunction.WatchType.ONLY_NEW_FILES: Use to process only
new files
FileMonitoringFunction.WatchType.PROCESS_ONLY_APPENDED: Use to
process only appended contents of files
FileMonitoringFunction.WatchType.REPROCESS_WITH_APPENDED: Use to
reprocess not only the appended contents of files, but also the previous content
in the file

If the file is not a text file, then you can use this function to define the file input format:

readFile(fileInputFormat, path, watchType, interval, pathFilter, typeInfo)

This command divides the reading file task into two sub-tasks:

One sub-task only monitors the file path based on the specified WatchType
The second sub-task does the actual file reading in parallel

The sub-task that monitors the file path is a non-parallel sub-task. It continuously scans the
file path based on the polling interval and reports files to be processed, splits the files, and
assigns the splits to the respective downstream threads.
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Transformations
Data transformations transform the data stream from one form to another. Input can be one
or more data streams, and the output can be zero, or one or more data streams. In the
following sections, let's examine different transformations.

map
This is one of the simplest transformations, where the input is one data stream and
the output is also one data stream:

In Java:

inputStream.map(new MapFunction<Integer, Integer>() {
@Override
public Integer map(Integer value) throws Exception {
return 5 * value;
}
});

In Scala:

inputStream.map { x => x * 5 }

flatMap
flatMap takes one record as input and gives an output of zero, one, or more than one
record:

In Java:

inputStream.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String value, Collector<String> out)
throws Exception {
    for(String word: value.split(" ")){
        out.collect(word);
    }
});

In Scala:

inputStream.flatMap { str => str.split(" ") }
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filter
The filter function evaluates the conditions and based on the conditions being met, gives
records as output:

The filter function can output zero records also.

In Java:

inputStream.filter(new FilterFunction<Integer>() {
@Override
    public boolean filter(Integer value) throws Exception {
        return value != 1;
    }
});

In Scala:

inputStream.filter { _ != 1 }

keyBy
keyBy logically partitions the stream based on the key. It uses hash functions to partition
the stream. It returns KeyedDataStream:

In Java:

inputStream.keyBy("someKey");

In Scala:

inputStream.keyBy("someKey")
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reduce
reduce rolls out the KeyedDataStream by reducing the last reduced value by the current
value. The following code does the sum reduce of a KeyedDataStream:

In Java:

keyedInputStream. reduce(new ReduceFunction<Integer>() {
@Override
    public Integer reduce(Integer value1, Integer value2)
        throws Exception {
            return value1 + value2;
        }
});

In Scala:

keyedInputStream. reduce { _ + _ }

fold
fold rolls out KeyedDataStream by combining the last folder's stream with the current
record. It emits back the data stream:

In Java:

keyedInputStream keyedStream.fold("Start", new FoldFunction<Integer,
String>() {
@Override
    public String fold(String current, Integer value) {
        return current + "=" + value;
    }
});

In Scala:

keyedInputStream.fold("Start")((str, i) => { str + "=" + i })

The preceding function, when applied on a stream of (1,2,3,4,5), would emit a stream

like this: Start=1=2=3=4=5.
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Aggregations
The DataStream API supports various aggregations such as min, max, sum, and so on.
These functions can be applied on KeyedDataStream to get rolling aggregations:

In Java:

keyedInputStream.sum(0)
keyedInputStream.sum("key")
keyedInputStream.min(0)
keyedInputStream.min("key")
keyedInputStream.max(0)
keyedInputStream.max("key")
keyedInputStream.minBy(0)
keyedInputStream.minBy("key")
keyedInputStream.maxBy(0)
keyedInputStream.maxBy("key")

In Scala:

keyedInputStream.sum(0)
keyedInputStream.sum("key")
keyedInputStream.min(0)
keyedInputStream.min("key")
keyedInputStream.max(0)
keyedInputStream.max("key")
keyedInputStream.minBy(0)
keyedInputStream.minBy("key")
keyedInputStream.maxBy(0)
keyedInputStream.maxBy("key")

The difference between max and maxBy is that max returns the maximum value in a stream,
but maxBy returns a key that has a maximum value. The same applies to min and minBy.

window
The window function allows the grouping of existing KeyedDataStreams by time or other
conditions. The following transformation emits groups of records by a time window of 10
seconds:

In Java:

inputStream.keyBy(0).window(TumblingEventTimeWindows.of(Time.seconds(10)));
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In Scala:

inputStream.keyBy(0).window(TumblingEventTimeWindows.of(Time.seconds(10)))

Flink defines slices of data called windows to process potentially infinite data streams.

This helps the processing of data in chunks using transformations. To do windowing on a
stream, assign a key on which the distribution can be made and a function that describes
what transformations to perform on a windowed stream.

To slice streams into windows, you can use pre-implemented Flink window assigners. Use
options such as tumbling windows, sliding windows, and global and session windows.

Flink also allows you to write custom window assigners by extending the
WindowAssigner class.

Let's examine how these assigners work in the following sections.

Global windows
Global windows are never-ending windows unless specified by a trigger. Generally, in this
case, each element is assigned to one single per-key global window. If you do not specify
any triggers, no computation is triggered.

Tumbling windows
Tumbling windows are fixed-length windows and are non-overlapping. Use tumbling
windows to do computation of elements at a specific time. For example, a tumbling
window of 10 minutes can be used to compute a group of events occurring in 10 minutes,
time.

Sliding windows
Sliding windows are similar to tumbling windows, except that they are overlapping. They
are fixed-length windows, overlapping the previous ones by a user-given window slide
parameter.

Use this windowing to compute something out of a group of events occurring in a certain
time frame.
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Session windows
Session windows are useful when window boundaries must be decided based on the input
data. Session windows allow flexibility in window start time and window size.

Provide the session gap configuration parameter, which indicates the duration to wait
before considering a session as closed.

windowAll
The windowAll function allows grouping of regular data streams. This is normally a non-
parallel data transformation as it runs on non-partitioned streams of data:

In Java:

inputStream.windowAll(TumblingEventTimeWindows.of(Time.seconds(10)));

In Scala:

inputStream.windowAll(TumblingEventTimeWindows.of(Time.seconds(10)))

Similar to regular data stream functions, we have window data stream functions as well.
The only difference is they work on windowed data streams. So, window reduce works like
the reduce function, window fold works like the fold function, and there are aggregations
as well.

union
The union function performs the union of two or more data streams. It combines data
streams in parallel. If you combine a stream with itself, it outputs each record twice:

In Java:

inputStream. union(inputStream1, inputStream2, ...);

In Scala:

inputStream. union(inputStream1, inputStream2, ...)
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Window join
Join two data streams by some keys in a common window. The following example shows
the joining of two streams in a window of 5 seconds where the joining condition of the first
attribute of the first stream is equal to the second attribute of the other stream:

In Java:

inputStream. join(inputStream1)
.where(0).equalTo(1)
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
.apply (new JoinFunction () {...});

In Scala:

inputStream. join(inputStream1)
.where(0).equalTo(1)
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
.apply { ... }

split
Use this function to split the stream into two or more streams based on criteria. This is
particularly helpful when you get a mixed stream and you may want to process data
separately:

In Java:

SplitStream<Integer> split = inputStream.split(new
OutputSelector<Integer>() {
@Override
public Iterable<String> select(Integer value) {
List<String> output = new ArrayList<String>();
if (value % 2 == 0) {
output.add("even");
}
else {
output.add("odd");
}
return output;
}
});
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In Scala:

val split = inputStream.split( (num: Int) =>(num % 2) match {
    case 0 => List("even")
    case 1 => List("odd")
})

Select
Use this function to select a specific stream from the split stream:

In Java:

SplitStream<Integer> split;
DataStream<Integer> even = split.select("even");
DataStream<Integer> odd = split.select("odd");
DataStream<Integer> all = split.select("even","odd");

In Scala:

val even = split select "even"
val odd = split select "odd"
val all = split.select("even","odd")

Project
Use the project function to select a subset of attributes from the event stream and send 
only selected elements to the next processing stream:

In Java:

DataStream<Tuple4<Integer, Double, String, String>> in = // [...]
DataStream<Tuple2<String, String>> out = in.project(3,2);

In Scala:

val in : DataStream[(Int,Double,String)] = // [...]
val out = in.project(3,2)

The preceding function selects the attribute numbers 2 and 3 from the given records. The
following are the sample input and output records:

(1,10.0, A, B )=> (B,A)
(2,20.0, C, D )=> (D,C)
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Physical partitioning
Using Flink, you can do physical partitioning of the stream data. You can also have the
option to provide custom partitioning. Let's examine different types of partitioning in the
following sections.

Custom partitioning
As mentioned earlier, you can provide a custom implementation of a partitioner:

In Java:

inputStream.partitionCustom(partitioner, "someKey");
inputStream.partitionCustom(partitioner, 0);

In Scala:

inputStream.partitionCustom(partitioner, "someKey")
inputStream.partitionCustom(partitioner, 0)

While writing a custom partitioner, make sure that you implement an efficient hash
function.

Random partitioning
Random partitioning randomly partitions data streams in an even manner:

In Java:

inputStream.shuffle();

In Scala:

inputStream.shuffle()

Rebalancing partitioning
This type of partitioning helps distribute the data evenly. It uses a round-robin method for
distribution. This type of partitioning is good when data is skewed:

In Java:

inputStream.rebalance();
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In Scala:

inputStream.rebalance()

Rescaling
Rescaling is used to distribute the data across operations, perform transformations on
subsets of data, and combine them together. This rebalancing happens over a single node
only, so it does not require any data transfer across networks:

In Java:

inputStream.rescale();

In Scala:

inputStream.rescale()

Broadcasting
Broadcasting distributes all records to each partition. This helps to distribute each and
every element to all partitions:

In Java:

inputStream.broadcast();

In Scala:

inputStream.broadcast()Data Sinks

Once data transformations are complete, you must save the results. The following are some
Flink options to save results:

writeAsText(): Writes records one line at a time as strings.
writeAsCsV(): Writes tuples as comma-separated value files. Row and field
delimiters can also be configured.
print()/printErr(): Writes records to the standard output. You can also
choose to write to the standard error.
writeUsingOutputFormat(): You can also provide a custom output format.
While defining the custom format, extend OutputFormat, which takes care of
serialization and deserialization.
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writeToSocket(): Flink supports writing data to a specific socket as well.
Define SerializationSchema for proper serialization and formatting.

Event time and watermarks
The Flink Streaming API draws its inspiration from the Google Dataflow model. This API
supports different concepts of time. The following are the three common places where you
can capture time in a streaming environment:

Event time: Event time is the time when the event occurred on its producing
device. For example, in an IoT project, it can be the time at which the sensor
captures a reading. Generally, these event times need to embed in the record
before they enter Flink. During time processing, these timestamps are extracted
and considered for windowing. Event time processing can be used for out-of-
order events.
Processing time: Processing time is the machine time for executing the stream of
data processing. Processing time windowing considers only the timestamps
where an event gets processed. Processing time is the simplest way of stream
processing, as it does not require any synchronization between processing
machines and producing machines. In distributed asynchronous environment
processing, time does not provide determinism as it is dependent on the speed at
which records flow in the system.
Ingestion time: Ingestion time is the time at which a particular event enters
Flink. All time-based operations refer to this timestamp. Ingestion time is a more
expensive operation than processing, but gives predictable results. Ingestion time
programs cannot handle any out-of-order events as it assigns a timestamp only
after the event has entered the Flink system.

The following example shows how to set event time and watermarks. In the cases of
ingestion time and processing time, just assign the time characteristics and watermark
generation is taken care of automatically. The following is a code snippet for this:

In Java:

final StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
//or
env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime);



Stream Processing with Apache Flink Chapter 9

[ 346 ]

In Scala:

val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime)
//or
env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime)

In the case of event time stream programs, specify the way to assign watermarks and
timestamps. There are two ways of assigning watermarks and timestamps:

Directly from a data source attribute
Using a timestamp assigner

To work with event time streams, assign the time characteristic as follows:

In Java:

final StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime;

In Scala:

val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

It is always best to store event time while storing the record in source. Flink also supports
some predefined timestamp extractors and watermark generators.

Connectors
Apache Flink supports various connectors that allow data reads/writes across 
various technologies.
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Kafka connector
Kafka is a publish—subscribe distributed message queuing system that allows users
to publish messages to a certain topic. These are then distributed to the subscribers of the
topic. Flink provides options to define a Kafka consumer as a data source in Flink
streaming. To use the Flink Kafka connector, you must use a specific JAR file.

Use the following Maven dependency to use the connector. For example, for Kafka version
0.9, add the following dependency in pom.xml:

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-kafka-0.9_2.11/artifactId>
    <version>1.1.4</version>
</dependency>

Now, let's see how to use the Kafka consumer as the Kafka source:

In Java:

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "test");
DataStream<String> input = env.addSource(new
FlinkKafkaConsumer09<String>("mytopic", new SimpleStringSchema(),
properties));

In Scala:

val properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
// only required for Kafka 0.8
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "test");
stream = env
.addSource(new FlinkKafkaConsumer09[String]("mytopic", new
SimpleStringSchema(), properties))
.print

In the preceding code, we first set the properties of the Kafka host and the zookeeper host
and port. Then, we specified the topic name, in this case mytopic. So if any messages get
published to the mytopic topic, they will be processed by the Flink streams.
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If you get data in a different format, you can also specify custom schema for deserialization.
By default, Flink supports string and JSON deserializers. To enable fault tolerance, enable
checkpointing in Flink. Flink takes snapshots of the state in a periodic manner. If there is a
failure, it restores to the last checkpoint and restarts the processing. You can also define the
Kafka producer as a sink. This writes data to a Kafka topic. To write data to a Kafka topic:

In Java:

stream.addSink(new FlinkKafkaProducer09[String]("localhost:9092",
"mytopic", new SimpleStringSchema()))

In Scala:

stream.addSink(new FlinkKafkaProducer09<String>("localhost:9092",
"mytopic", new SimpleStringSchema()));

Twitter connector
With social media and networking sites becoming more powerful everyday, it becomes
crucial to be able to fetch data from Twitter and process it. Twitter data can be used to do 
sentiment analysis for various products, services, applications, and so on.

Flink provides the Twitter connector as one data source. To use the connector, use your
Twitter account to create a Twitter application and generate authentication keys to be used
by the connector.

The Twitter connector can be used using Java or Scala API. Once tokens are generated, you
can write a program to fetch data from Twitter as follows:

First, add a Maven dependency:1.

<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-twitter_2.11/artifactId>
<version>1.1.4</version>
</dependency>

Next, add Twitter as a data source:2.

In Java:

Properties props = new Properties();
props.setProperty(TwitterSource.CONSUMER_KEY, "");
props.setProperty(TwitterSource.CONSUMER_SECRET, "");
props.setProperty(TwitterSource.TOKEN, "");
props.setProperty(TwitterSource.TOKEN_SECRET, "");
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DataStream<String> streamSource = env.addSource(new
TwitterSource(props));

In Scala:

val props = new Properties();
props.setProperty(TwitterSource.CONSUMER_KEY, "");
props.setProperty(TwitterSource.CONSUMER_SECRET, "");
props.setProperty(TwitterSource.TOKEN, "");
props.setProperty(TwitterSource.TOKEN_SECRET, "");
DataStream<String> streamSource = env.addSource(new
TwitterSource(props));

In the preceding code, we first set properties for the token we got, and then we added
TwitterSource. If the given information is correct, start fetching the data from
Twitter. TwitterSource emits the data in a JSON string format. A sample Twitter JSON
looks like the following:

{
...
"text": ""Loyalty 3.0: How to Revolutionize Customer &amp; Employee
Engagement with Big Data &amp; #Gamification" can be ordered here:
http://t.co/1XhqyaNjuR",
"geo": null,
"retweeted": false,
"in_reply_to_screen_name": null,
"possibly_sensitive": false,
"truncated": false,
"lang": "en",
"hashtags": [{
"text": "Gamification",
"indices": [90,
103]
}],
},
"in_reply_to_status_id_str": null,
"id": 330094515484508160
...
}

TwitterSource provides various StatusesSampleEndpoint, which returns a set of
random tweets. If you need to add some filters and do not want to use the default endpoint,
you can implement the TwitterSource.EndpointInitializer interface.

Once you fetch data from Twitter, you can either process, store, or analyze the data.
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RabbitMQ connector
RabbitMQ is a widely used, distributed, high-performance message queuing system. It is
used as a message delivery system for high-throughput operations. It allows you to create a
distributed message queue and include publishers and subscribers in the queue. For more 
information about RabbitMQ, visit https://www.rabbitmq.com/.

Flink supports fetching and publishing data to and from RabbitMQ. It provides a connector
that can act as a data source for data streams.

For the RabbitMQ connector to work, you must provide the following information:

RabbitMQ: Configurations such as host, port, user credentials, and so on.
Queue: The RabbitMQ queue name that you wish to subscribe to.
Correlation IDs: This is a RabbitMQ feature used for correlating the request and
response by a unique ID in a distributed world. The Flink RabbitMQ connector
provides an interface to set this to true or false depending on whether you are
using it or not.
Deserialization schema: RabbitMQ stores and transports the data in a serialized
manner to avoid network traffic. So when the message is received, the subscriber
knows how to deserialize the message. The Flink connector provides us with
some default deserializers, such as the string deserializer.

The RabbitMQ source provides us with the following options on stream deliveries:

Exactly once: Using RabbitMQ correlation IDs and the Flink checkpointing
mechanism with RabbitMQ transactions
Atleast once: When Flink checkpointing is enabled but RabbitMQ correlation IDs
are not set

There are no strong delivery guarantees with the RabbitMQ auto-commit mode.

Now let's write a code to get this connector working. Like other connectors, add a Maven
dependency to the code:

<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-rabbitmq_2.11/artifactId>
<version>1.1.4</version>
</dependency>

https://www.rabbitmq.com/
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The following snippet shows how to use the RabbitMQ connector in Java:

//Configurations
RMQConnectionConfig connectionConfig = new RMQConnectionConfig.Builder()
.setHost(<host>).setPort(<port>).setUserName(..)
.setPassword(..).setVirtualHost("/").build();

//Get Data Stream without correlation ids
DataStream<String> streamWO = env.addSource(new
RMQSource<String>(connectionConfig, "my-queue", new SimpleStringSchema()))
.print

//Get Data Stream with correlation ids
DataStream<String> streamW = env.addSource(new
RMQSource<String>(connectionConfig, "my-queue", true, new
SimpleStringSchema()))
.print

Similarly, in Scala the code can be written as follows:

val connectionConfig = new RMQConnectionConfig.Builder()
.setHost(<host>).setPort(<port>).setUserName(..)
.setPassword(..).setVirtualHost("/").build()
streamsWOIds = env.addSource(new RMQSource[String](connectionConfig, " my-
queue", new SimpleStringSchema))
.print
streamsWIds = env.addSource(new RMQSource[String](connectionConfig, "my-
queue", true, new SimpleStringSchema))
.print

You may also use the RabbitMQ connector as a Flink sink.

To send processes back to some different RabbitMQ queue, provide three important
configurations:

RabbitMQ configurations
Queue name – where to send back the processed data
Serialization schema – schema for RabbitMQ to convert the data into bytes

The following is sample code in Java to show how to use this connector as a Flink sink:

RMQConnectionConfig connectionConfig = new RMQConnectionConfig.Builder()
.setHost(<host>).setPort(<port>).setUserName(..)
.setPassword(..).setVirtualHost("/").build();
stream.addSink(new RMQSink<String>(connectionConfig, "target-queue", new
StringToByteSerializer()));
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The same can be done in Scala:

val connectionConfig = new RMQConnectionConfig.Builder()
.setHost(<host>).setPort(<port>).setUserName(..)
.setPassword(..).setVirtualHost("/").build()
stream.addSink(new RMQSink[String](connectionConfig, "target-queue", new
StringToByteSerializer

Elasticsearch connector
Elasticsearch is a distributed, low-latency, full text search engine system that allows you to
index documents of your choice and then allows you to do a full text search over the set of
documents. To know more about Elasticsearch, see https://www.elastic.co.

In many scenarios, you may want to process data using Flink and then store it in
Elasticsearch. To enable this, Flink supports the Elasticsearch connector. So far,
Elasticsearch has had two major releases. Flink supports them both. For Elasticsearch 1.x,
the following Maven dependency needs to be added:

<dependency>
\<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-elasticsearch_2.11</artifactId>
<version>1.1.4</version>
</dependency>

The Flink connector provides a sink to write data to Elasticsearch. It uses two methods to
connect to Elasticsearch:

Embedded node mode: In embedded node mode, the sink uses BulkProcessor to
send the documents to ElasticSearch. You can configure how many requests to
buffer before sending documents to Elasticsearch. The following is the code
snippet:

DataStream<String> input = ...;
Map<String, String> config = Maps.newHashMap();
config.put("bulk.flush.max.actions", "1");
config.put("cluster.name", "cluster-name");
input.addSink(new ElasticsearchSink<>(config, new
IndexRequestBuilder<String>() {
@Override
public IndexRequest createIndexRequest(String element,
RuntimeContext ctx) {
    Map<String, Object> json = new HashMap<>();
    json.put("data", element);
    return Requests.indexRequest()
    .index("my-index")

https://www.elastic.co
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    .type("my-type")
    .source(json);
}
}));

In the preceding code snippet, we create a hash map with configurations such as
the cluster name and how many documents to buffer before sending the request.
Then we add the sink to the stream, specifying the index, type, and the document
to store. Similarly, the code in Scala is as follows:

val input: DataStream[String] = ...
val config = new util.HashMap[String, String]
config.put("bulk.flush.max.actions", "1")
config.put("cluster.name", "cluster-name")
text.addSink(new ElasticsearchSink(config, new
IndexRequestBuilder[String]
{
    override def createIndexRequest(element: String, ctx:
RuntimeContext):
    IndexRequest = {
        val json = new util.HashMap[String, AnyRef]
        json.put("data", element)
        Requests.indexRequest.index("my-index").`type`("my-
type").source(json)
    }
}))

Transport client mode: Elasticsearch allows connections through the transport
client on port 9300. Flink supports connecting using those through its connector.
Specify all the Elasticsearch nodes present in the cluster in configurations. The
following is the snippet in Java:

DataStream<String> input = ...;
Map<String, String> config = Maps.newHashMap();
config.put("bulk.flush.max.actions", "1");
config.put("cluster.name", "cluster-name");
List<TransportAddress> transports = new ArrayList<String>();
transports.add(new InetSocketTransportAddress("es-node-1", 9300));
transports.add(new InetSocketTransportAddress("es-node-2", 9300));
transports.add(new InetSocketTransportAddress("es-node-3", 9300));
input.addSink(new ElasticsearchSink<>(config, transports, new
IndexRequestBuilder<String>() {
@Override
public IndexRequest createIndexRequest(String element,
RuntimeContext ctx) {
Map<String, Object> json = new HashMap<>();
json.put("data", element);
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return Requests.indexRequest()
.index("my-index")
.type("my-type")
.source(json);
}
}));

Here as well, we provide the details about the cluster name, nodes, ports,
maximum requests to send in bulk, and so on. Similar code in Scala can be written
as follows:

val input: DataStream[String] = ...
val config = new util.HashMap[String, String]
config.put("bulk.flush.max.actions", "1")
config.put("cluster.name", "cluster-name")
val transports = new ArrayList[String]
transports.add(new InetSocketTransportAddress("es-node-1", 9300))
transports.add(new InetSocketTransportAddress("es-node-2", 9300))
transports.add(new InetSocketTransportAddress("es-node-3", 9300))
text.addSink(new ElasticsearchSink(config, transports, new
IndexRequestBuilder[String] {
override def createIndexRequest(element: String, ctx:
RuntimeContext):
IndexRequest = {
val json = new util.HashMap[String, AnyRef]
json.put("data", element)
Requests.indexRequest.index("my-index").`type`("my-
type").source(json)
}
}))

Cassandra connector
Cassandra is a distributed, low-latency NoSQL database. It is a key value-based
database. Many high-throughput applications use Cassandra as their primary database.
Cassandra works with distributed cluster mode, where there is no master-slave
architecture. Reads and writes can be felicitated by any node. For more information about
Cassandra, visit http://cassandra.apache.org.

Apache Flink provides a connector that can write data to Cassandra. In many applications,
people may want to store streaming data from Flink in Cassandra.

http://cassandra.apache.org
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Like other connectors, to get this we need to add it as a Maven dependency:

<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-cassandra_2.11</artifactId>
<version>1.1.4</version>
</dependency>

Once the dependency is added, add the Cassandra sink with its configurations, as follows:

In Java:

CassandraSink.addSink(input)
.setQuery("INSERT INTO cep.events (id, message) values (?, ?);")
.setClusterBuilder(new ClusterBuilder() {
@Override
public Cluster buildCluster(Cluster.Builder builder) {
return builder.addContactPoint("127.0.0.1").build();
}
})
.build()

In Scala:

The preceding code writes stream of data into a table called events. The table expects an
event ID and a message:

CassandraSink.addSink(input)
.setQuery("INSERT INTO cep.events (id, message) values (?, ?);")
.setClusterBuilder(new ClusterBuilder() {
@Override
public Cluster buildCluster(Cluster.Builder builder) {
return builder.addContactPoint("127.0.0.1").build();
}
)
.build();
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Summary
In this chapter, we learned about Flink's most powerful API, the DataStream API; how data
sources, transformations, and sinks work together; and about various technology
connectors, such as Elasticsearch, Cassandra, Kafka, RabbitMQ, and so on. In this chapter,
we also discussed stream processing using Apache Flink.

In the next chapter, we will switch gears and look at one of the most exciting fields of
visualizing data.



10
Visualizing Big Data

This chapter explores one of the most important activities in big data processing and
analysis, which is creating a powerful visualization of data and insights. We tend to
understand anything graphical better than anything textual or numerical. During the
analytical process, you will need to constantly make sense of data and manipulate its usage
and interpretation; this will be much easier if you can visualize the data instead of reading
it from tables, columns, or text files. When you have used one of the many ways of
analyzing data and generated insights that we have seen so far (such as through Python, R,
Spark, Flink, Hive, MapReduce, and so on), anyone trying to make sense of the insights will
want to understand those in the context of the data. For this purpose, you need some
pictorial representation for that as well.

In a nutshell, the following topics will be covered throughout this chapter:

Introduction
Tableau
Chart types
Using Python
Using R
Data visualization tools
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Introduction
One of the most valuable means through which we can make sense of big data, and thus
make it more useful to most people, is data visualization. Visualization of data depends a
lot on the use cases. Graphs and charts are visual representations of data. They provide a
powerful means of summarizing and presenting data in a way that most people find easier
to comprehend. Charts and graphs enable us to see the main features or characteristics of
some data. They not only enable us to present the numerical findings of a study but also
provide the shape and pattern of the data, which is critical in data analysis and decision
making. There are many key considerations you need to keep in mind when developing
data visualizations:

What type of graphical representation to use for which type of data
How to design a visualization approach that allows interactive features
How to search and modify datasets graphically
How to differentiate between data and the resultant insights
How to develop a visualization methodology scalable with the growth of your
data on a big data scale
How to address latency issues such that there is no significant lag in visualizing
data
How to optimize design for high velocity or streaming data to show real-time
visualizations
How to visualize data from databases
How to visualize in memory data
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There are many different ways of visualizing data. The following image shows some
examples to depict how the choice of a chart type can change the use and effectiveness of
visualization:
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The following are some more examples of visualization:

Figure: Screenshot showing some more examples of visualization
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Tableau
In this section, we will set up Tableau, which is a very popular visualization tool. For this,
we can simply download a trial version of Tableau and install it on our local machine. You
can find Tableau at https:/ ​/​www. ​tableau. ​com/​.

The following screenshot shows the download link for Tableau:

Once you've installed the trial version (or if you already have a licensed copy available),
you are ready to go through some basic visualization exercises.

https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
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The following is a screenshot of the launch of Tableau, where you will see the various
sources of data you can start with:
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Let's start by opening the file OnlineRetail.csv. The following is a screenshot of the 
blank worksheet:
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Select the Quantity as a column to see a bar chart with one bar, as shown in the following
screenshot:
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Select the Description as a row to see the bar chart showing the quantity for each item, as
follows:



Visualizing Big Data Chapter 10

[ 366 ]

You can apply filters to eliminate the negative quantity values, as shown in this screenshot:
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You will see the range of values of any numerical column, such as Quantity:
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Now, you can select the valid ranges of values for Quantity, as follows:
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As seen in the following screenshot, only positive values are shown now:
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You can sort the chart by Quantity so that you see the item Descriptions with the
largest Quantity at the top, as shown in the following screenshot:
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Create a new worksheet, as follows:
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Similar to the previous worksheet, choose Description and Quantity as shown in the
following screenshot:



Visualizing Big Data Chapter 10

[ 373 ]

You can choose different chart types from the right-hand side pane; select packed bubbles:
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Try choosing treemap as the chart type, as follows:
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You can change the colors and other properties of a chart, as shown in the following
screenshot:
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It's easy to exclude any row/column or a value/data point:
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You can also create a Dashboard comprising multiple worksheets, as follows:
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Create some other chart type (say a line chart), as shown in the following screenshot:
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Add the new worksheet to the Dashboard, as shown in this screenshot:

Chart types
A chart can take a large variety of forms; however, there are common features that provide
the chart with its ability to extract meaning from data. Typically, the data in a chart is
represented graphically, since humans are generally able to infer meanings from pictures
quicker than from text. Text is generally used only to annotate the data.
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One of the most important uses of text in a graph is the title. A graph's title usually appears
above the main graphic and provides a succinct description of what the data in the graph
refers to. Dimensions in the data are often displayed on axes. If a horizontal and a vertical
axis are used, they are usually referred to as the x axis and y axis respectively. Each axis will
have a scale, denoted by periodic graduations and usually accompanied by numerical or
categorical indications. Each axis will typically also have a label displayed outside or beside
it, briefly describing the dimension represented. If the scale is numerical, the label will often
be suffixed with the unit of that scale in parentheses. Within the graph, a grid of lines may
appear to aid in the visual alignment of data. The grid can be enhanced by visually
emphasizing the lines at regular or significant graduations. The emphasized lines are then
called major grid lines and the remainder are minor grid lines.

The data of a chart can appear in all manner of formats, and may include individual textual
labels describing the datum associated with the indicated position in the chart. The data
may appear as dots or shapes, connected or unconnected, and in any combination of colors
and patterns. Inferences or points of interest can be overlaid directly on the graph to further
aid information extraction.

When the data appearing in a chart contains multiple variables, the chart may include a
legend (also known as a key). A legend contains a list of the variables appearing in the
chart and an example of their appearance. This information allows the data from each
variable to be identified in the chart.

Line charts
Line charts allow looking at the behavior of one or several variables over time and
identifying the trends. In traditional BI, line charts can show sales, profit, and revenue
development for the last 12 months. When working with big data, companies can use this
visualization technique to track total product purchases by weeks, the average number of
orders to the sales office by months, and so on.
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The following screenshot is an example of a line chart:

Pie chart
Pie charts show the components of the whole. Companies that work with both traditional
and big data may use this technique to look at customer segments or market shares. The
difference lies in the sources from which these companies take raw data for the analysis.
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The following is an example of a pie chart:

Bar chart
Bar charts allow comparing values of different variables. In traditional BI, companies can
analyze their sales by category, the costs of marketing promotion by channel, and so on.
When analyzing big data, companies can look at the customer engagement, sales figures by
hour, and so on.

An example of a vertical bar chart is as follows:
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The following screenshot is an example of a horizontal bar chart:
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Heat map
Heat maps use colors to represent data. A user may encounter a heat map in Excel that
highlights sales in the best performing branch office with green and the worst performing
with red. If a retailer is interested in knowing the most frequently visited aisles in the store,
they will also use a heat map of their sales floor. In this case, the retailer will analyze big
data, such as the data from a video surveillance system:

Some really cool visualizations can be seen at https:/ ​/​blog. ​hubspot.
com/​marketing/ ​great- ​data-​visualization- ​examples and also at http:/
/​www. ​mastersindatascience. ​org/​blog/ ​10- ​cool- ​big- ​data-
visualizations/ ​.

Visualization is an art in itself and every use case requires attention to what is being
visualized, starting from the chart type, number of data points, colors of the elements, and
so on.
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Using Python to visualize data
Python provides many extensive capabilities of analysis of big data as well as the plotting
and visualization of data.

Analyzing and Visualizing Big Data using Python is covered in Chapter 4,
Scientific Computing and Big Data Analysis with Python and Hadoop.

Here is one such example of using Python, involving a single column:

d8 = pd.DataFrame(df, columns=['Quantity'])[0:100]
d8.plot()

Here, only the first 100 elements are selected to make the graph less crowded and illustrate
the example better.

Now, you'll have:
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Suppose that you want multiple columns to show up. Look at the following code:

d8 = pd.DataFrame(df, columns=['Quantity', 'UnitPrice'])[0:100]
d8.plot()

Just remember that it will not plot qualitative data columns such as Description but only
things that can be graphed, such as Quantity and UnitPrice.

Using R to visualize data
R provides many extensive capabilities for the analysis of big data as well as the plotting
and visualization of data.

Analyzing and Visualizing Big Data using R is covered in Chapter 5,
Statistical Big Data Computing with R and Hadoop.
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Using R, we can also plot a column of choice. Look at this:

plot(df$UnitPrice)
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plot(d1, type="b")

Big data visualization tools
A quick survey of the big data tools marketplace reveals the presence of big names,
including Microsoft, SAP, IBM, and SAS. But there are plenty of specialist software vendors
offering leading big data visualization tools, and these include Tableau, Qlik, and TIBCO.
Leading data visualization products include those offered by the following:

IBM Cognos Analytics: Driven by their commitment to big data, IBM's analytics
package offers a variety of self-service options to more easily identify insights.
Visit https:/ ​/ ​www. ​ibm. ​com/ ​analytics/ ​us/​en/ ​technology/ ​products/ ​cognos-
analytics/ ​.
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QlikSense and QlikView: The Qlik solution touts its ability to perform more
complex analysis that finds hidden insights (http:/ ​/​www. ​qlik. ​com/​us/
products/ ​qlik- ​sense).
Microsoft PowerBI: The Power BI tools enables you to connect with hundreds of
data sources, and then publish reports on the Web and across mobile devices.
Visit https:/ ​/ ​powerbi. ​microsoft. ​com/ ​en-​us/ ​.
Oracle Visual Analyzer: A web-based tool, visual analyzer allows the creation of
curated dashboards to help discover correlations and patterns in data. Refer to
https:/​/ ​docs. ​oracle. ​com/ ​cloud/ ​latest/ ​reportingcs_ ​use/ ​BILUG/ ​GUID-
7DC34CA8- ​3F7C- ​45CF- ​8350- ​441D8D9898EA. ​htm#BILUG- ​GUID- ​7DC34CA8- ​3F7C-
45CF-​8350- ​441D8D9898EA.
SAP Lumira: Calling it self service data visualization for everyone, Lumira
allows you to combine your visualizations into storyboards (https:/ ​/​www. ​sap.
com/​product/ ​analytics/ ​lumira. ​html).
SAS Visual Analytics: The SAS solution promotes its scalability and governance,
along with dynamic visuals and flexible deployment options. Visit https:/ ​/​www.
sas.​com/ ​en_ ​us/ ​software/ ​business- ​intelligence/ ​visual- ​analytics. ​html.
Tableau Desktop: Tableau's interactive dashboards allow you to uncover hidden
insights on the fly, and power users can manage metadata to make the most of
disparate data sources (https:/ ​/​www. ​tableau. ​com/ ​products/ ​desktop).
TIBCO Spotfire: This offers analytics software as a service, and touts itself as a
solution that scales from a small team to the entire organization. Refer to http:/ ​/
spotfire. ​tibco. ​com/ ​.

Summary
In this chapter, we discussed the power of visualization and various concepts behind a
good visualization practice. In the next chapter, we will look at the power of Cloud
computing and how it is changing the landscape of big data and big data analytics.
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11
Introduction to Cloud

Computing
This chapter introduces the concepts of Cloud computing, Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). The top Cloud 
providers are also discussed briefly.

In a nutshell, the following topics will be covered throughout this chapter:

Cloud computing basics
Concepts and terminology
Goals and benefits
Risks and challenges
Roles and boundaries
Cloud characteristics
Cloud delivery models
Cloud deployment models

Whether you are running applications that share photos across millions of mobile users or
whether you are supporting the critical operations of your business, a Cloud services
platform offers rapid access to flexible and low-cost IT resources. With Cloud computing,
you don't need to invest heavily on managing hardware. Instead, you can provision the
suitable computing resources that you need to power your ideas or manage your IT
department's operations. You can instantaneously access the required resources and pay
only as per the usage.

Cloud computing provides a simple way to access servers, storage, databases, and a broad
set of application services over the internet. A Cloud services platform such as Amazon
Web Services (AWS) owns and maintains the network-connected hardware required for 
these application services while you use what you need using a web application.
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Concepts and terminology
This section introduces the fundamental concepts of a Cloud and its artifacts.

Cloud
A Cloud refers to a distinct IT environment that is designed for remote provisioning of
scalable and measured IT resources. The term originated as a metaphor for the internet to
describe a network of networks providing remote access to a set of decentralized IT
resources. Before Cloud computing was a formal IT segment, a Cloud symbol was
commonly used to represent the Internet in a variety of specifications and mainstream
documentation of web-based architectures.

IT resource
An IT resource is a physical or a virtual IT-related artifact that can be either software-based,
such as a virtual server or a custom software program, or hardware-based, such as a
physical server or a network device.

On-premise
As a distinct and remotely accessible environment, a Cloud represents an option for the
deployment of IT resources. An IT resource hosted in a conventional IT enterprise within
an organizational boundary (that does not specifically represent a Cloud) is considered to
be located on the premises of the IT enterprise, or on-premise (on-premise implies on the
premises of a controlled IT environment that is not Cloud-based). This term is used to
qualify an IT resource as an alternative to Cloud-based. An IT resource that is on-premise
cannot be Cloud-based and vice-versa.

Cloud consumers and Cloud providers
The entity that provides Cloud-based IT resources is the Cloud provider. The entity that
uses Cloud-based IT resources is the Cloud consumer.
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Scaling
Scaling represents the ability of an IT resource to handle usage demands.

The following sections describe the types of scaling.

 Types of scaling
Horizontal scaling: Scaling out and scaling in
Vertical scaling: Scaling up and scaling down

Horizontal scaling
Allocating or releasing the same type of IT resources is called horizontal scaling.
Horizontal allocation of resources is referred to as scaling out and horizontal releasing of
resources is referred to as scaling in. Horizontal scaling is a common form of scaling within
Cloud environments.

Vertical scaling
Vertical scaling occurs when an existing IT resource is replaced by another of a higher or
lower capacity. Replacing an IT resource with another one that has a higher capacity is
referred to as scaling up and replacing an IT resource with a lower capacity resource is
referred to as scaling down. Vertical scaling is less common in Cloud environments due to
the replacement downtime caused.

Cloud service
Although a Cloud is a remotely accessible environment, not all IT resources within a Cloud
can be made remotely accessible. For example, a database or a physical server deployed
within a Cloud can be accessible only by other IT resources that are within the same Cloud.
A software program with a published API can be deployed specifically to enable access for
remote clients.

A Cloud service is any IT resource that is made remotely accessible using a Cloud. Unlike
other IT fields that comprise of service technology, such as service-oriented architecture
(SOA), the term service within the context of Cloud computing is broad. A Cloud service
can exist as a simple web-based software program with a technical interface invoked using
a messaging protocol, or as a remote access point for administrative tools or larger
environments.
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Cloud service consumer
The Cloud service consumer is a temporary role assumed at runtime by a software program
while it accesses a Cloud service.

The common types of Cloud service consumers can include software programs and services
capable of remotely accessing Cloud services with published service contracts, as well as
workstations, laptops, and mobile devices running software capable of remotely accessing
other IT resources available as Cloud services.

Goals and benefits
Similar to wholesalers, public Cloud providers base their business model on mass
acquisition of IT resources, which are made available to Cloud consumers for attractive
prices. This helps organizations to access powerful infrastructure without any
infrastructure costs.

The most common economic rationale for investing in Cloud-based IT resources is to
reduce initial IT investments, such as hardware, software purchases, and ownership costs.
A cloud's measured usage characteristic represents a feature set that allows measured
operational expenditures (directly related to business performance) to replace anticipated
capital expenditures. This is also referred to as proportional cost.

The reduction of costs allow enterprises to start small, to increase IT resource allocation as
needed. Moreover, lower initial expenses allow for capital to be redirected to core business
investments. Opportunities to decrease costs are derived from the deployment and
operation of large-scale data centers by major Cloud providers. Such data centers are
commonly located at areas where real estate, IT professionals, and network bandwidth can
be obtained at lower costs, allowing higher operational savings.

The same rationale applies to operating systems, middleware or platform software, and
application software. Pooled IT resources can be shared by multiple Cloud consumers,
resulting in increased or optimal utilization. Operational costs and inefficiencies can be
further reduced by using proven practices for optimizing Cloud architecture, management,
and governance.
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Benefits to Cloud consumers:

On-demand access to pay-as-you-go computing resources on a short-term basis
(such as processors by the hour), and releasing these computing resources when
not required
Access to unlimited computing resources, which are available on demand
without the need to prepare for provisioning
The ability to add or remove IT resources at a rudimentary level, such as
modifying available storage disk space by single gigabyte increments
Infrastructure abstraction of the infrastructure so that applications are not locked
into devices or locations and can be easily moved if needed

For example, a company with sizable batch-centric tasks can complete them as quickly as
their application software can scale. Using 100 servers for 1 hour costs the same as using 1
server for 100 hours. This elasticity of IT resources achieved without requiring steep initial
investments to create a large-scale computing infrastructure can be extremely compelling.

Although the benefits of Cloud computing are obvious, the actual economics can be
complex to calculate and assess. The decision to proceed with a Cloud computing adoption
strategy will involve much more than a simple comparison between the cost of leasing and
the cost of purchasing.

Increased scalability
By providing pools of IT resources, along with tools and technologies designed to leverage
them collectively, Clouds can instantly and dynamically allocate IT resources to Cloud
consumers, on-demand or using the Cloud consumer's direct configuration. This empowers
Cloud consumers to scale their Cloud-based IT resources to accommodate processing
fluctuations and peaks automatically or manually. Similarly, Cloud-based IT resources can
be released (automatically or manually) as processing demands decrease.

The inherent, built-in feature of clouds to provide flexible levels of scalability to IT
resources is directly related to the proportional costs benefits mentioned earlier. Besides the
evident financial gain to the automated reduction of scaling, the ability of IT resources to
always meet and fulfill unpredictable usage demands avoids potential loss of business that
can occur when usage thresholds are met.
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Increased availability and reliability
The availability and reliability of IT resources are directly associated with tangible business
benefits. Outages limit the time an IT resource can be open for business for its customers,
thereby limiting its usage and revenue generating potential. Runtime failures that are not
immediately corrected can have a more significant impact during high-volume usage
periods. Not only is the IT resource unable to respond to customer requests, but also its
unexpected failure can decrease overall customer confidence.

A hallmark of the typical Cloud environment is its intrinsic ability to provide extensive
support for increasing the availability of a Cloud-based IT resource to minimize or even
eliminate outages, and for increasing its reliability so as to minimize the impact of runtime
failure conditions.

Specifically:

An IT resource with increased availability is accessible for longer periods of time
(for example, 22 hours out of a 24 hour day). Cloud providers generally offer
resilient IT resources for which they are able to guarantee high levels of
availability.
 An IT resource with increased reliability is able to better avoid and recover from
exception conditions. The modular architecture of Cloud environments provides
extensive failover support that increases reliability.

It is important that organizations carefully examine the SLAs offered by Cloud providers
when considering the leasing of Cloud-based services and IT resources. Although many
Cloud environments are capable of offering remarkably high levels of availability and
reliability, it comes down to the guarantees made in the SLA that typically represent their
actual contractual obligations.

Risks and challenges
Several of the most critical Cloud computing challenges, pertaining mostly to Cloud
consumers that use IT resources located in public Clouds, are presented and examined.
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Increased security vulnerabilities
Migration of business data to the Cloud means that the responsibility of data security
becomes shared with the Cloud provider. Remote usage of IT resources requires an
expansion of trust boundaries by the Cloud consumer to include the external Cloud. It can
be difficult to properly address multi-regional compliance and legal issues due to the fact
that third-party Cloud providers will frequently establish data centers in affordable or
convenient geographical locations. Cloud consumers will often not be aware of the physical
location of their IT resources and data when hosted by public Clouds. For some
organizations, this can pose serious legal concerns pertaining to industry or government
regulations that specify data privacy and storage policies.

The presence of the multiple boundaries makes it difficult to establish a viable security
architecture that spans such trust boundaries without introducing vulnerabilities, unless
Cloud consumers and Cloud providers happen to support the same or a compatible
security framework. Achieving such compatibility is not easy with public Clouds.

Another consequence of overlapping trust boundaries relates to the Cloud provider's
privileged access to Cloud consumer data. The extent to which the data is secure is now
limited to the security controls and policies applied by both the Cloud consumer and Cloud
provider. Furthermore, there can be overlapping trust boundaries from different Cloud
consumers due to the fact that Cloud-based IT resources are commonly shared.

The overlapping of trust boundaries and the increased exposure of data can provide
malicious Cloud consumers (human and automated) with greater opportunities to attack IT
resources and steal or damage business data. Imagine a scenario whereby two
organizations accessing the same Cloud service are required to extend their respective trust
boundaries to the Cloud, resulting in overlapping trust boundaries. It can be challenging
for the Cloud provider to offer security mechanisms that accommodate the security
requirements of both Cloud service consumers.

Reduced operational governance control
Cloud consumers are usually allotted a level of governance control that is lower than that
over on-premise IT resources. This can introduce risks associated with how the Cloud
provider operates its Cloud, as well as the external connections that are required for
communication between the Cloud and the Cloud consumer.
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Limited portability between Cloud providers
Due to a lack of established industry standards within the Cloud computing industry,
public Clouds are commonly proprietary to various extents. For Cloud consumers that
have custom-built solutions with dependencies on these proprietary environments, it can
be challenging to move from one Cloud provider to another.

Roles and boundaries
Organizations and humans can assume different types of predefined roles depending on
how they relate to and/or interact with a Cloud and its hosted IT resources. Each of the
upcoming roles participates in and carries out responsibilities in relation to Cloud-based
activity. The following sections define these roles and identify their main interactions.

Cloud provider
The organization that provides Cloud-based IT resources is the Cloud provider. When
assuming the role of Cloud provider, an organization is responsible for making Cloud
services available to Cloud consumers as per the agreed SLA terms. The Cloud provider is
further tasked with any required management and administrative duties to ensure smooth
ongoing operation of the overall Cloud infrastructure.

Cloud providers normally own IT resources that are made available for lease by Cloud
consumers; however, some Cloud providers also resell IT resources leased from other
Cloud providers.

Cloud consumer
A Cloud consumer is an organization (or a human) that has a formal contract or
arrangement with a Cloud provider to use the IT resources that are made available by the 
Cloud provider. Specifically, the Cloud consumer uses a Cloud service consumer to access
a Cloud service.
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Cloud service owner
The person or organization that legally owns a Cloud service is called a Cloud service
owner. The Cloud service owner can be the Cloud consumer or the Cloud provider that
owns the Cloud within which the Cloud service resides.

Cloud resource administrator
A Cloud resource administrator is the person or organization responsible for administering
a Cloud-based IT resource (including Cloud services). The Cloud resource administrator
can be (or belong to) the Cloud consumer or Cloud provider of the Cloud within which the
Cloud service resides. Alternatively, it can be (or belong to) a third-party organization
contracted to administer the Cloud-based IT resource.

Additional roles
The NIST Cloud computing reference architecture defines the following supplementary
roles:

Cloud auditor: A third party (often accredited) that conducts independent
assessments of Cloud environments assumes the role of the Cloud auditor. The
typical responsibilities associated with this role include the evaluation of security
controls, privacy impacts, and performance. The main purpose of the Cloud
auditor role is to provide an unbiased assessment (and possible endorsement) of
a Cloud environment to help strengthen the trust relationship between Cloud
consumers and Cloud providers.
 Cloud broker: This role is assumed by a party that assumes the responsibility of
managing and negotiating the usage of Cloud services between Cloud consumers
and Cloud providers. Mediation services provided by Cloud brokers include
service intermediation, aggregation, and arbitrage.
Cloud carrier: The party responsible for providing the wire-level connectivity
between Cloud consumers and Cloud providers assumes the role of the Cloud
carrier. This role is often assumed by network and telecommunication providers.
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Organizational boundary
An organizational boundary represents the physical perimeter that surrounds a set of IT
resources that are owned and governed by an organization.

Trust boundary
When an organization assumes the role of Cloud consumer to access Cloud-based IT
resources, it needs to extend its trust beyond the physical boundary of the organization to
include parts of the Cloud environment.

Cloud characteristics
An IT environment requires a specific set of characteristics to enable the remote
provisioning of scalable and measured IT resources in an effective manner. These
characteristics need to exist to a meaningful extent for the IT environment to be considered
an effective Cloud.

The following six specific characteristics are common to the majority of Cloud
environments:

On-demand usage
Ubiquitous access
Multitenancy (and resource pooling)
Elasticity
Measured usage
Resiliency

On-demand usage
A Cloud consumer can unilaterally access Cloud-based IT resources, giving the Cloud
consumer the freedom to self-provision these IT resources. Once configured, usage of the
self-provisioned IT resources can be automated, reducing human involvement with the
Cloud consumer or Cloud provider. This results in an on-demand usage environment. Also
known as on-demand self-service usage, this characteristic enables the service-based and
usage-driven features found in mainstream Clouds.
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Ubiquitous access
Ubiquitous access represents the ability for a Cloud service to be widely accessible.
Establishing ubiquitous access for a Cloud service can require support for a range of
devices, transport protocols, interfaces, and security technologies. Enabling this level of
access generally requires that the Cloud service architecture be tailored to the particular
needs of different Cloud service consumers.

Multi-tenancy (and resource pooling)
The characteristic of a software program that enables an instance of the program to serve
different consumers (tenants), whereby each is isolated from the other, is referred to as
multi-tenancy. A Cloud provider pools its IT resources to serve multiple Cloud service
consumers by using multi-tenancy models that frequently rely on the use of virtualization
technologies. Through the use of multi-tenancy technology, IT resources can be
dynamically assigned and reassigned according to Cloud service consumer demands.

Elasticity
Elasticity is the automated ability of a Cloud to transparently scale IT resources as required
in response to runtime conditions or as pre-determined by the Cloud consumer or Cloud
provider. Elasticity is often considered a core justification for the adoption of Cloud
computing, primarily due to the fact that it is closely associated with the reduced
investment and proportional costs benefit. Cloud providers with vast IT resources can offer
the greatest range of elasticity.

Measured usage
The measured usage characteristic represents the ability of a Cloud platform to keep track
of the usage of its IT resources, primarily by Cloud consumers. Based on what is measured,
the Cloud provider can charge a Cloud consumer only for the IT resources actually used
and/or for the time frame during which access to the IT resources was granted. In this
context, measured usage is closely related to the on-demand characteristics.
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Resiliency
Resilient computing is a form of failover that distributes redundant implementations of IT
resources across physical locations. IT resources can be preconfigured so that if one
becomes deficient, processing is automatically handed over to another redundant
implementation. Within Cloud computing, the characteristic of resiliency can refer to
redundant IT resources within the same Cloud (but in different physical locations) or across
multiple Clouds.

Cloud delivery models
A Cloud delivery model represents a specific, pre-packaged combination of IT resources
offered by a Cloud provider. Three common Cloud delivery models have become widely
established and formalized:

IaaS
PaaS
SaaS

Infrastructure as a Service
The IaaS delivery model represents a self-contained IT environment that comprises
infrastructure-centric IT resources that can be accessed and managed using Cloud service-
based interfaces and tools. This environment can include hardware, network, connectivity,
operating systems, and other raw IT resources. In contrast to traditional hosting or
outsourcing environments, with IaaS, IT resources are usually virtualized and packaged
into bundles that simplify runtime scaling and customization of the infrastructure.

The general purpose of an IaaS environment is to provide Cloud consumers with a high
level of control and responsibility over its configuration and utilization. The IT resources
provided by IaaS are generally not preconfigured, placing the administrative responsibility
directly upon the Cloud consumer. This model is used by Cloud consumers who require a
high amount of control over the Cloud-based environment they intend to create.

Sometimes Cloud providers contract IaaS offerings from other Cloud providers in order to
scale their own Cloud environments. The types and brands of IT resources provided by
IaaS products that are offered by different Cloud providers can vary. IT resources available
through IaaS environments are generally offered as freshly initialized virtual instances. A
central and primary IT resource within a typical IaaS environment is the virtual server.
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Platform as a Service
The PaaS delivery model represents a predefined, ready-to-use environment typically
comprised of already deployed and configured IT resources. Specifically, PaaS relies on
(and is primarily defined by) the usage of a ready-made environment that establishes a set
of pre-packaged products and tools used to support the entire delivery life cycle of custom
applications.

Common reasons a Cloud consumer would use and invest in a PaaS environment:

The Cloud consumer wants to extend on-premise environments into the Cloud
for scalability and economic purposes
 The Cloud consumer uses the ready-made environment to entirely substitute an
on-premise environment
The Cloud consumer wants to become a Cloud provider and deploys its own
Cloud services to be made available to other external Cloud consumers

By working within a ready-made platform, the Cloud consumer is spared the
administrative burden of setting up and maintaining the bare infrastructure IT resources
provided using the IaaS model.

Software as a Service
A software program positioned as a shared Cloud service and made available as a
product or generic utility represents the typical profile of a SaaS offering. The SaaS delivery
model is typically used to make a reusable Cloud service widely available (often
commercially) to a range of Cloud consumers. An entire marketplace exists around SaaS
products that can be leased and used for different purposes and using different terms.

A Cloud consumer is generally granted very limited administrative control over a SaaS
implementation. It is most often provisioned by the Cloud provider, but it can be legally
owned by whichever entity assumes the Cloud service owner role. For example, an
organization acting as a Cloud consumer while using and working with a PaaS
environment can build a Cloud service that it decides to deploy in that same environment
as a SaaS offering. The same organization then effectively assumes the Cloud provider role,
as the SaaS-based Cloud service is made available to other organizations that act as Cloud
consumers when using that Cloud service.
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Combining Cloud delivery models
The three base Cloud delivery models comprise a natural provisioning hierarchy, allowing
opportunities for combined application of the models to be explored. The upcoming
sections briefly highlight considerations pertaining to two common combinations.

IaaS + PaaS
A PaaS environment will be built upon an underlying infrastructure comparable to the
physical and virtual servers and other IT resources provided in an IaaS environment.

IaaS + PaaS + SaaS
All three Cloud delivery models can be combined to establish layers of IT resources that
build upon each other. For example, by adding on to the preceding layered architecture, the
ready-made environment provided by the PaaS environment can be used by the Cloud
consumer organization to develop and deploy its own SaaS Cloud services, which it can
then make available as commercial products.

The following are all the layers in IaaS, PaaS, and SaaS:



Introduction to Cloud Computing Chapter 11

[ 404 ]

Cloud deployment models
A Cloud deployment model represents a specific type of Cloud environment, primarily
distinguished by ownership, size, and access.

The following sections describe the four common Cloud deployment models:

Public Cloud
Community Cloud
Private Cloud
Hybrid Cloud

Public Clouds
A public Cloud is a publicly accessible Cloud environment owned by a third-party Cloud
provider. The IT resources on public Clouds are usually provisioned using the previously
described Cloud delivery models and are generally offered to Cloud consumers at a cost or
are commercialized using other avenues (such as advertisements).

The Cloud provider is responsible for the creation and ongoing maintenance of the public
Cloud and its IT resources. Many of the scenarios and architectures explored in upcoming
chapters involve public Clouds and the relationship between the providers and consumers
of IT resources using public Clouds.

Community Clouds
A community Cloud is similar to a public Cloud except that its access is limited to a specific
community of Cloud consumers. The community Cloud may be jointly owned by the
community members or by a third-party Cloud provider that provisions a public Cloud
with limited access. The member Cloud consumers of the community typically share the
responsibility for defining and evolving the community Cloud.

Membership in the community does not necessarily guarantee access to or control of all of
the Cloud's IT resources. Parties outside the community are generally not granted access
unless allowed by the community.
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Private Clouds
A private Cloud is owned by a single organization. Private Clouds enable an organization
to use Cloud computing technology as a means of centralizing access to IT resources by
different parts, locations, or departments of the organization. When a private Cloud exists
as a controlled environment, the problems described in the Risks and Challenges section from
Chapter 3, Big Data Processing with MapReduce, do not tend to apply.

The use of a private Cloud can change how organizational and trust boundaries are defined
and applied. The actual administration of a private Cloud environment may be carried out
by internal or outsourced staff.

With a private Cloud, the same organization is technically both the Cloud consumer and
Cloud provider. In order to differentiate these roles:

A separate organizational department typically assumes the responsibility for
provisioning the Cloud (and therefore assumes the Cloud provider role)
Departments requiring access to the private Cloud assume the Cloud consumer
role

A Cloud service consumer in the organization's on-premise environment
accesses a Cloud service hosted on the same organization's private Cloud
using a virtual private network.

It is important to use the terms on-premise and cloud-based correctly within the context of
a private Cloud. Even though the private Cloud may physically reside on the organization's
premises, the IT resources it hosts are still considered Cloud-based as long as they are made
remotely accessible to Cloud consumers. The IT resources hosted outside of the private
Cloud by the departments acting as Cloud consumers are therefore considered on-premise
in relation to the private-cloud-based IT resources.

Hybrid Clouds
A hybrid Cloud is a Cloud environment comprised of two or more different Cloud
deployment models. For example, a Cloud consumer may choose to deploy Cloud services
processing sensitive data to a private Cloud and other, less sensitive Cloud services to a
public Cloud. The result of this combination is a hybrid deployment model.
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Shown here is an organization using a hybrid Cloud architecture that utilizes both a private
and public Cloud:

Hybrid deployment architectures can be complex and challenging to create and maintain
due to the potential disparities in Cloud environments and the fact that management
responsibilities are typically split between private Cloud providers and public Cloud
providers.

Summary
In this chapter, we discussed Cloud computing and the key terminology used to
understand and implement Cloud computing. 

In the next chapter, we will explore one of the most popular Cloud providers from
Amazon: AWS.
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Using Amazon Web Services

This chapter introduces you to the concept of AWS and its services, which are useful for
performing big data analytics using Elastic MapReduce (EMR) while you set up a Hadoop
cluster in AWS Cloud. We will look at the key components and services offered by AWS
and get an idea of what we can do with the various functionalities offered by the
components and services of AWS.

In a nutshell, the following topics will be covered in this chapter:

Amazon Elastic Compute Cloud
Launching multiple instances from an AMI
What is AWS Lambda?
Introduction to Amazon S3
Amazon DynamoDB
Amazon Kinesis Data Streams
AWS Glue
Amazon EMR

Amazon Elastic Compute Cloud
Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides secure,
resizable computing capacity on a Cloud. It is designed to make web-scale Cloud
computing easier for developers.
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Amazon EC2's simple web service interface allows you to obtain and configure capacity
with ease. It provides you with complete control of your computing resources and let's you
use Amazon's computing environment. Amazon EC2 reduces the time required to obtain
and boot new server instances to minutes, allowing you to quickly scale capacity (both up
and down), as your computing requirements change. Amazon EC2 allows you to save
computing costs as you pay only for capacity that you actually use. Amazon EC2 provides
developers with the tools to build failure-resilient applications and to isolate them from
common failure scenarios.

Elastic web-scale computing
Amazon EC2 enables you to increase or decrease capacity within a span of minutes. You
can commission one or several server instances simultaneously. You can also use Amazon
EC2 Auto Scaling to maintain the availability of your EC2 fleet and automatically scale
your fleet up and down depending on your needs, in order to maximize performance and
minimize cost. To scale multiple services, you can use AWS Auto Scaling.

Complete control of operations
You have complete control of your instances, including root access, and have the ability to
interact with them as you would with any machine. You can stop any instance while
retaining the data on the boot partition, and then subsequently restart the same instance
using web service APIs. Instances can be rebooted remotely using web service APIs, and
you also have access to their console output.

Flexible Cloud hosting services
You have the choice of multiple instance types, operating systems, and software packages.
Amazon EC2 allows you to select a configuration of memory, CPU, instance storage, and
the boot partition size that is optimal for your choice of operating system and application.
For example, the choice of operating systems includes numerous Linux distributions and
Microsoft Windows Server.
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Integration
Amazon EC2 is integrated with most AWS services, such as Amazon Simple Storage
Service (Amazon S3), Amazon Relational Database Service (Amazon RDS), and Amazon
Virtual Private Cloud (Amazon VPC), to provide complete, secure solutions for
computing, query processing, and Cloud storage across a wide range of applications.

High reliability
Amazon EC2 offers a highly reliable environment where replacement instances can be
rapidly and predictably commissioned. The service runs within Amazon's proven network
infrastructure and data centers. The Amazon EC2 service-level agreement (SLA) provides
99.99% availability for each Amazon EC2 region.

Security
Cloud security at AWS is the highest priority. As an AWS customer, you will benefit from a
data center and network architecture built to meet the requirements of the most security-
sensitive organizations. Amazon EC2 works in conjunction with Amazon VPC to provide
security and robust networking functionalities for your compute resources.

Inexpensive
Amazon EC2 passes on to you the financial benefits of Amazon's scale. You pay a very low
rate for the compute capacity you actually consume. See Amazon EC2's instance 
purchasing options for more details: https:/ ​/​aws. ​amazon. ​com/ ​ec2/ ​pricing/ ​.

Easy to start
There are several ways to get started with Amazon EC2. You can use the AWS
Management Console, the AWS command-line tools which are accessible via the
CLI(Command Line Interface), or using the AWS SDKs(Software Development Kit). AWS
is easy to start and operate. To learn more, please visit our tutorials at https:/ ​/​aws.
amazon.​com/​getting- ​started/ ​tutorials/ ​.
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Instances and Amazon Machine Images
An Amazon Machine Image (AMI) is a template that contains a software configuration (for
example, an operating system, an application server, and applications). From an AMI, you
launch an instance, which is a copy of the AMI running as a virtual server in the Cloud.
You can launch multiple instances of an AMI, as shown in the following screenshot:

Launching multiple instances of an AMI
Your instances keep running until you stop or terminate them, or until they fail. If an
instance fails, you can launch a new one from the AMI.
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Instances
You can launch different types of instance from a single AMI. An instance type essentially
determines the hardware of the host computer used for your instance. Each instance type
offers different compute and memory capabilities. Select an instance type based on the
amount of memory and computing power that you need for the application or software
that you plan to run on the instance. For more information about the hardware
specifications for each Amazon EC2 instance type, see Amazon EC2 instances at this link
https:/​/​aws.​amazon. ​com/ ​ec2/ ​instance- ​types/ ​.

After you launch an instance, it looks like a traditional host, and you can interact with it as
you would any computer. You have complete control of your instances; you can use sudo
to run commands that require root privileges.

AMIs
Amazon Web Services (AWS) publishes many AMIs that contain common software
configurations for public use. In addition, members of the AWS developer community have
published their own custom AMIs. You can also create your own custom AMI or AMIs;
doing so enables you to quickly and easily start new instances that have everything you
need. For example, if your application is a website or a web service, your AMI could
include a web server, the associated static content, and the code for the dynamic pages. As
a result, after you launch an instance from this AMI, your web server starts and your
application is ready to accept requests.

All AMIs are categorized as either backed by Amazon EBS, which means that the root
device for an instance launched from the AMI is an Amazon EBS volume, or backed by an
instance store, which means that the root device for an instance launched from the AMI is
an instance store volume created from a template stored in Amazon S3.

Regions and availability zones
Amazon EC2 is hosted in multiple locations worldwide. These locations are composed of
regions and availability zones. Each region is a separate geographical area. Each region has
multiple isolated locations known as availability zones. Amazon EC2 provides you with the
ability to place resources such as instances and data in multiple locations. Resources aren't
replicated across regions unless you do so specifically.
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Amazon operates state-of-the-art, highly available data centers. Although rare, failures can
occur that affect the availability of instances that are in the same location. If you host all
your instances in a single location that is affected by such a failure, none of your instances
will be available.

Region and availability zone concepts
Each region is completely independent. Each availability zone is isolated, but the
availability zones in a region are connected through low-latency links. The following
diagram illustrates the relationship between regions and availability zones:

Regions
Each Amazon EC2 region is designed to be completely isolated from the other Amazon EC2
regions. This achieves the greatest possible fault tolerance and stability.

When you view your resources, you'll only see the resources tied to the region you've
specified. This is because regions are isolated from each other, and we don't replicate
resources across regions automatically.
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Availability zones
When you launch an instance, you can select an availability zone or have one assigned for
you. If you distribute your instances across multiple availability zones and one instance
fails, you can design your application so that an instance in another availability zone can
handle requests.

You can also use Elastic IP addresses to mask the failure of an instance in one availability
zone by rapidly remapping the address to an instance in another availability zone. For
more information, see Elastic IP Addresses at this link is https:/ ​/​docs. ​aws. ​amazon. ​com/
AWSEC2/​latest/​UserGuide/ ​elastic- ​ip- ​addresses- ​eip. ​html.

Available regions
Your account determines the regions that are available to you. For example, an AWS
account provides multiple regions so that you can launch Amazon EC2 instances in
locations that meet your requirements. For example, you might want to launch instances in
Europe to be closer to your European customers or to meet legal requirements.

An AWS GovCloud (US) account provides access to the AWS GovCloud (US) region only.
For more information, see AWS GovCloud (US) Region.

An Amazon AWS (China) account provides access to the China (Beijing) region only.

The following table lists the regions provided by an AWS account:

Region name Region Endpoint Protocol
US East (Ohio) us-east-2 rds.us-east-2.amazonaws.com HTTPS
US East (N. Virginia) us-east-1 rds.us-east-1.amazonaws.com HTTPS
US West (N. California) us-west-1 rds.us-west-1.amazonaws.com HTTPS
US West (Oregon) us-west-2 rds.us-west-2.amazonaws.com HTTPS
Asia Pacific (Tokyo) ap-northeast-1 rds.ap-northeast-1.amazonaws.com HTTPS
Asia Pacific (Seoul) ap-northeast-2 rds.ap-northeast-2.amazonaws.com HTTPS
Asia Pacific (Osaka-
Local) ap-northeast-3 rds.ap-northeast-3.amazonaws.com HTTPS

Asia Pacific (Mumbai) ap-south-1 rds.ap-south-1.amazonaws.com HTTPS
Asia Pacific (Singapore) ap-southeast-1 rds.ap-southeast-1.amazonaws.com HTTPS
Asia Pacific (Sydney) ap-southeast-2 rds.ap-southeast-2.amazonaws.com HTTPS
Canada (Central) ca-central-1 rds.ca-central-1.amazonaws.com HTTPS
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China (Beijing) cn-north-1 rds.cn-north-1.amazonaws.com.cn HTTPS
China (Ningxia) cn-northwest-1 rds.cn-northwest-1.amazonaws.com.cn HTTPS
EU (Frankfurt) eu-central-1 rds.eu-central-1.amazonaws.com HTTPS
EU (Ireland) eu-west-1 rds.eu-west-1.amazonaws.com HTTPS
EU (London) eu-west-2 rds.eu-west-2.amazonaws.com HTTPS
EU (Paris) eu-west-3 rds.eu-west-3.amazonaws.com HTTPS
South America (São
Paulo) sa-east-1 rds.sa-east-1.amazonaws.com HTTPS

Regions and endpoints
When you work with an instance using the command-line interface or API actions, you
must specify its regional endpoint. For more information about the regions and endpoints
for Amazon EC2, see Regions and endpoints at this link: https:/ ​/​docs. ​aws. ​amazon. ​com/
general/​latest/​gr/ ​rande. ​html.

Instance types
When you launch an instance, the instance type that you specify determines the hardware
of the host computer used for your instance. Each instance type offers different compute,
memory, and storage capabilities and is grouped in an instance family based on these
capabilities. Select an instance type based on the requirements of the application or
software that you plan to run on your instance.

Tag basics
Tags enable you to categorize your AWS resources in different ways, for example, by
purpose, owner, or environment. This is useful when you have many resources of the same
type—you can quickly identify a specific resource based on the tags you've assigned to it.
Each tag consists of a key and an optional value, both of which you define. For example,
you could define a set of tags for your account's Amazon EC2 instances that helps you track
each instance's owner and stack level.
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Amazon EC2 key pairs
Amazon EC2 uses public key cryptography to encrypt and decrypt login information.
Public key cryptography uses a public key to encrypt a piece of data, such as a password,
then the recipient uses the private key to decrypt the data. The public and private keys are
known as a key pair.

Amazon EC2 security groups for Linux instances
A security group acts as a virtual firewall that controls the traffic for one or more instances.
When you launch an instance, you associate one or more security groups with the instance.
You can add rules to each security group that allow traffic to or from its associated
instances. You can modify the rules for a security group at any time; the new rules are
automatically applied to all instances that are associated with the security group after a
short period. When you decide whether to allow traffic to reach an instance, you can
evaluate all the rules from all the security groups that are associated with the instance.

Elastic IP addresses
An Elastic IP address is a static IPv4 address designed for dynamic Cloud computing. An
Elastic IP address is associated with your AWS account. With an Elastic IP address, you can
mask the failure of an instance or software by rapidly remapping the address to another
instance in your account.

Amazon EC2 and Amazon Virtual Private Cloud
Amazon VPC enables you to define a virtual network in your own logically isolated area
within the AWS Cloud, known as a VPC. You can launch your AWS resources, such as
instances, into your VPC. Your VPC closely resembles a traditional network that you might
operate in your own data center, with the benefits of using AWS's scalable infrastructure.
You can configure your VPC, or select its IP address range, create subnets, and configure
route tables, network gateways, and security settings. You can connect instances in your
VPC to the internet. You can connect your VPC to your own corporate data center, making
the AWS Cloud an extension of your data center. To protect the resources in each subnet,
you can use multiple layers of security, including security groups and network access
control lists. For more information, see the Amazon VPC User Guide at
https://aws.amazon.com/documentation/vpc/.

https://aws.amazon.com/documentation/vpc/
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Amazon Elastic Block Store
Amazon Elastic Block Store (Amazon EBS) provides block-level storage volumes for use
with EC2 instances. EBS volumes are highly available and reliable storage volumes that can
be attached to any running instance which are in the same availability zone. EBS volumes
attached to an EC2 instance are exposed as storage volumes that persist independently
from the life of the instance. With Amazon EBS, you pay only for what you use. For more
information about Amazon EBS pricing, see the Projecting costs section of the Amazon EBS
page https:/​/​aws. ​amazon. ​com/ ​ebs/ ​.

Amazon EBS is recommended when data must be quickly accessible and requires long-
term persistence. EBS volumes are particularly well-suited for use as the primary storage
for filesystems, databases, or for any applications that require fine granular updates and
access to raw, unformatted, block-level storage. Amazon EBS is well suited to both
database-style applications that rely on random reads and writes, and to throughput-
intensive applications that perform long, continuous reads and writes.

Amazon EC2 instance store
An instance store provides temporary block-level storage for your instance. This storage is
located on disks that are physically attached to the host computer. An instance store is ideal
for the temporary storage of information that changes frequently, such as buffers, caches,
scratch data, and other temporary content, or for data that is replicated across a fleet of
instances, such as a load-balanced pool of web servers.

An instance store consists of one or more instance store volumes exposed as block devices.
The size of an instance store as well as the number of devices available varies by instance
type. While an instance store is dedicated to a particular instance, the disk subsystem is
shared among instances on a host computer.
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What is AWS Lambda?
AWS Lambda is a compute service that lets you run code without provisioning or
managing servers. AWS Lambda executes your code only when needed and scales
automatically, from a few requests per day to thousands per second. You pay only for the
compute time you consume—there is no charge when your code is not running. With AWS
Lambda, you can run code for virtually any type of application or backend service, all with
zero administration. AWS Lambda runs your code on a high-availability compute
infrastructure and performs all of the administration of the compute resources, including
server and operating system maintenance, capacity provisioning and automatic scaling,
code monitoring, and logging. All you need to do is supply your code in one of the
languages that AWS Lambda supports (currently Node.js, Java, C#, Go, and Python).

You can use AWS Lambda to run your code in response to events, such as changes to data
in an Amazon S3 bucket or an Amazon DynamoDB table; to run your code in response to
HTTP requests using Amazon API Gateway; or invoke your code using API calls made
using AWS SDKs. With these capabilities, you can use Lambda to easily build data
processing triggers for AWS services such as Amazon S3 and Amazon DynamoDB to
process streaming data stored in Kinesis, or to create your own backend that operates at
AWS scale offering superior performance and the necessary security around the system.

You can also build serverless applications composed of functions that are triggered by
events and automatically deploy them using AWS CodePipeline and AWS CodeBuild. For
more information, see Deploying Lambda-based Applications at https:/ ​/​docs. ​aws. ​amazon.
com/​lambda/​latest/ ​dg/ ​deploying- ​lambda- ​apps. ​html.

When should I use AWS Lambda?
AWS Lambda is an ideal compute platform for many application scenarios, provided that
you can write your application code in languages supported by AWS Lambda (that is,
Node.js, Java, Go, C#, and Python) and run within the AWS Lambda standard runtime
environment and resources provided by Lambda.
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Introduction to Amazon S3
Amazon S3 runs on the world's largest global Cloud infrastructure, and was built from the
ground up to deliver a customer promise of 99.999999999% durability. Data is
automatically distributed across a minimum of three physical facilities that are
geographically separated within an AWS region, and Amazon S3 can also automatically
replicate data to any other AWS region.

Learn more about the AWS Global Cloud Infrastructure at https:/ ​/​aws. ​amazon. ​com/​.

Getting started with Amazon S3
Amazon S3 is storage for the internet. You can use Amazon S3 to store and retrieve any
amount of data at any time, from anywhere on the web. You can accomplish these tasks
using the AWS Management Console, which is a simple and intuitive web interface. This
guide introduces you to Amazon S3 and how to use the AWS Management Console to
manage the storage space offered by Amazon S3.

Companies today need the ability to easily and securely collect, store, and analyze their
data on a massive scale. Amazon S3 is object storage built to store and retrieve any amount
of data from anywhere—websites and mobile apps, corporate applications, and data from
IoT sensors or devices, and stores data for millions of applications used by market leaders
in every industry. S3 provides comprehensive security and compliance capabilities that
meet even the most stringent regulatory requirements. It gives customers flexibility in the
way they manage data for cost optimization, access control, and compliance. S3 provides
query-in-place functionality, allowing you to run powerful analytics directly on your data
at rest in S3. And Amazon S3 is the most supported storage platform available, with the
largest ecosystem of ISV solutions and systems integrator partners.
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Comprehensive security and compliance
capabilities
Amazon S3 is the only Cloud storage platform that supports three different forms of
encryption. S3 offers sophisticated integration with AWS CloudTrail to log, monitor, and
retain storage API call activities for auditing. Amazon S3 is the only Cloud storage platform
with Amazon Macie, which uses machine learning to automatically discover, classify, and
protect sensitive data in AWS. S3 supports security standards and compliance certifications
including PCI-DSS, HIPAA/HITECH, FedRAMP, the EU Data Protection Directive, and
FISMA, helping satisfy compliance requirements for virtually every regulatory agency 
around the globe.

Learn more about security at https:/ ​/ ​aws.​amazon. ​com/​security/ ​.

Learn more about compliance at https:/ ​/​aws.​amazon. ​com/ ​compliance/ ​.

Query in place
Amazon S3 allows you to run sophisticated big data analytics on your data without moving
the data into a separate analytics system. Amazon Athena provides on-demand query
access to vast amounts of unstructured data to anyone who knows SQL. Amazon Redshift
Spectrum lets you run queries spanning your data warehouse and S3. Only AWS offers
Amazon S3 Select (currently in preview for testing purposes), a way to retrieve only the
subset of data you need from an S3 object, which can improve the performance of most
applications that frequently access data from S3 by up to 400%.

Learn more about querying in place at https:/ ​/ ​aws.​amazon. ​com/ ​blogs/ ​aws/ ​amazon-
redshift-​spectrum- ​exabyte- ​scale- ​in- ​place- ​queries- ​of- ​s3-​data/ ​.
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Flexible management
Amazon S3 offers the most flexible set of storage management and administration
capabilities. Storage administrators can classify, report, and visualize data usage trends to
reduce costs and improve service levels. Objects can be tagged with unique, customizable
metadata so customers can see and control storage consumption, cost, and security
separately for each workload. The S3 inventory feature delivers scheduled reports about
objects and their metadata for maintenance, compliance, or analytics operations. S3 can also
analyze object access patterns to build life cycle policies that automate tiering, deletion, and
retention. Since Amazon S3 works with AWS Lambda, customers can log activities, define
alerts, and invoke workflows, all without any additional infrastructure.

Learn more about S3 storage management at https:/ ​/​aws. ​amazon. ​com/ ​s3/ ​.

Most supported platform with the largest
ecosystem
In addition to integration with most AWS services, the Amazon S3 ecosystem includes
several consulting system integrators and independent software vendor partners, with
more joining every month. And the AWS Marketplace offers 35 categories and more than
3,500 software listings from over 1,100 ISVs that are preconfigured to deploy on the AWS
Cloud. AWS Partner Network (APN) partners have adapted their services and software to
work with S3 for solutions such as backup and recovery, archiving, and disaster recovery.

Learn more about AWS storage partners at https:/ ​/ ​aws.​amazon. ​com/ ​backup- ​recovery/
partner-​solutions/ ​.
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Easy and flexible data transfer
You can choose from a wide range of options to transfer your data into (or out of) Amazon
S3. S3's simple and reliable APIs make it easy to transfer data over the internet. Amazon S3
Transfer Acceleration is ideal for data uploads across large geographical distances. AWS
direct connect provides consistently high bandwidth and low latency data transfer for
moving large amounts of data to AWS using a dedicated network connection. You can use
the AWS Snowball and AWS Snowball Edge appliances for petabyte-scale data transfer, or
AWS Snowmobile for even larger datasets. AWS Storage Gateway provides you with a
physical or virtual data transfer appliance to use on-premises to easily move volumes or
files into the AWS Cloud.

Learn more about Cloud data migration at https:/ ​/​aws. ​amazon. ​com/ ​cloud- ​migration/ ​.

Backup and recovery
Amazon S3 offers a highly durable, scalable, and secure destination for backing up and
archiving your critical data. You can use S3's versioning capability to protect your stored
data. You can also define life cycle rules to migrate less frequently used data to S3
Standard-Infrequent Access and archive sets of objects to Amazon Glacier.

Learn more about backup and recovery at https:/ ​/ ​aws.​amazon. ​com/ ​backup- ​restore/ ​.

Data archiving
Amazon S3 and Amazon Glacier provide a range of storage classes to meet the needs of
compliance archives for regulated industries or active archives for organizations who need
fast, infrequent access to archive data. Amazon Glacier Vault Lock provides write-once-
read-many (WORM) storage to meet compliance requirements for records retention.
Lifecycle policies make transitioning data from Amazon S3 to Amazon Glacier simple,
helping automate the transition based on customer-defined policies.

Learn more about data archiving at https:/ ​/​aws. ​amazon. ​com/ ​archive/ ​.
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Data lakes and big data analytics
Whether you're storing pharmaceutical or financial data, or multimedia files such as photos
and videos, Amazon S3 can be used as your data lake for big data analytics. AWS offers a
comprehensive portfolio of services to help you manage big data by reducing costs, scaling
to meet demand, and increasing the speed of innovation.

Learn more about data lakes and big data analytics at https:/ ​/​aws. ​amazon. ​com/ ​blogs/
big-​data/​introducing- ​the- ​data- ​lake- ​solution- ​on- ​aws/​.

Hybrid Cloud storage
AWS Storage Gateway helps you build hybrid Cloud storage, augmenting your existing
local storage environment with the durability and scale of Amazon S3. Use it to burst a
workload from your site into the Cloud for processing and then bring the results back. Tier
colder or less valuable data off of your primary storage into the Cloud to lower costs and
extend your on-premises investment. Or, simply use it to incrementally move data into S3
as a part of backup or migration projects.

Learn more about hybrid Cloud storage at https:/ ​/​aws. ​amazon. ​com/​enterprise/ ​hybrid/ ​.

Cloud-native application data
Amazon S3 provides high performance, highly available storage that makes it easy to scale
and maintain cost-effective mobile and internet-based apps that run fast. With S3, you can
add any amount of content and access it from anywhere, so you can deploy applications
faster and reach more customers.

Disaster recovery
Amazon S3's secure global infrastructure offers a robust disaster recovery solution
designed to provide superior data protection. Cross-Region Replication (CRR)
automatically replicates every S3 object to a destination bucket located in a different AWS
region.

Learn more about disaster recovery at https:/ ​/ ​aws.​amazon. ​com/ ​disaster- ​recovery/ ​.
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Amazon DynamoDB
Amazon DynamoDB is a fully managed NoSQL database service that provides fast and
predictable performance with seamless scalability. DynamoDB lets you offload the
administrative burdens of operating and scaling a distributed database so that you don't
have to worry about hardware provisioning, setup and configuration, replication, software
patching, or cluster scaling. Also, DynamoDB offers encryption at rest, which eliminates the
operational burden and complexity involved in protecting sensitive data. For more
information, see Amazon DynamoDB Encryption at Rest at https:/ ​/​docs. ​aws. ​amazon. ​com/
amazondynamodb/​latest/ ​developerguide/ ​EncryptionAtRest. ​html.

With DynamoDB, you can create database tables that can store and retrieve any amount of
data, and serve any level of request traffic. You can scale up or scale down your tables
throughput capacity without downtime or performance degradation, and use the AWS
Management Console to monitor resource utilization and performance metrics.

Amazon DynamoDB provides on-demand backup capabilities. It allows you to create full
backups of your tables for long-term retention and archival for regulatory compliance
needs. For more information, see On-Demand Backup and Restore for DynamoDB.

DynamoDB allows you to delete expired items from tables automatically to help you
reduce storage use and the cost of storing data that is no longer relevant. For more
information, see Time To Live.

DynamoDB automatically spreads the data and traffic for your tables over a sufficient
number of servers to handle your throughput and storage requirements, while maintaining
consistent and fast performance. All of your data is stored on solid state disks (SSDs) and
automatically replicated across multiple availability zones in an AWS region, providing
built-in high availability and data durability. You can use global tables to keep DynamoDB
tables in sync across AWS regions. For more information, see Global Tables.
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Amazon Kinesis Data Streams
You can use Amazon Kinesis Data Streams to collect and process large streams of data
records in real time. You'll create data-processing applications, known as Amazon Kinesis
Data Streams applications. A typical Amazon Kinesis Data Streams application reads data
from a Kinesis data stream as data records. These applications can use the Kinesis Client
Library, and they can run on Amazon EC2 instances. The processed records can be sent to
dashboards, used to generate alerts, dynamically change pricing and advertising strategies,
or to send data to a variety of other AWS services. For information about Kinesis Data
Streams features and pricing, see Amazon Kinesis Data Streams.

Kinesis Data Streams is part of the Kinesis streaming data platform, along with Amazon
Kinesis Data Firehose. For more information, see the Amazon Kinesis Data Firehose
Developer Guide. For more information about AWS big data solutions, see Big Data. For
more information about AWS streaming data solutions, see What is Streaming Data?

What can I do with Kinesis Data Streams?
You can use Kinesis Data Streams for rapid and continuous data intake and aggregation.
The types of data used includes IT infrastructure log data, application logs, social media,
market data feeds, and web clickstream data. Because the response time for the data intake
and processing is in real time, the processing is typically lightweight.

The following are typical scenarios for using Kinesis Data Streams.

Accelerated log and data feed intake and processing
You can have producers push data directly into a stream. For example, push system and
application logs and they become available for processing in seconds. This prevents the log
data from being lost if the frontend or application server fails. Kinesis Data Streams
provides accelerated data feed intake because you don't batch the data on the servers before
you submit it for intake.
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Real-time metrics and reporting
You can use data collected into Kinesis Data Streams for simple data analysis and reporting
in real time. For example, your dataprocessing application can work on metrics and
reporting for system and application logs as the data is streaming in, rather than waiting to
receive batches of data.

Real-time data analytics
This combines the power of parallel processing with the value of real-time data. For
example, you can process website clickstreams in real time, and then analyze site usability
engagement using multiple different Kinesis Data Streams applications running in parallel.

Complex stream processing
You can create Directed Acyclic Graphs (DAGs) of Amazon Kinesis Data Streams
applications and data streams. This typically involves putting data from multiple Amazon
Kinesis Data Streams applications into another stream for downstream processing by a
different Amazon Kinesis Data Streams application.

Benefits of using Kinesis Data Streams
While you can use Kinesis Data Streams to solve a variety of streaming data problems, a
common use is the real-time aggregation of data, followed by loading that data into a data
warehouse or map-reduce cluster.

To ensure durability and elasticity, data is put into Kinesis data streams. The delay between
the time a record is put into the stream and the time it can be retrieved (put-to-get delay) is
less than 1 second; an Amazon Kinesis Data Streams application can start consuming the
data from the stream almost immediately after the data is added. The managed service
aspect of Kinesis Data Streams relieves you of the operational burden of creating and
running a data intake pipeline. You can create streaming map-reduce type applications,
and the elasticity of Kinesis Data Streams enables you to scale the stream up or down, so
that you never lose data records prior to their expiration.
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Multiple Amazon Kinesis Data Streams applications can consume data from a stream, so
that multiple actions, such as archiving and processing, can take place concurrently and
independently. For example, two applications can read data from the same stream. The first
application calculates running aggregates and updates a DynamoDB table, and the second
application compresses and archives data to a data store such as Amazon S3. The
DynamoDB table with running aggregates is then read by a dashboard for up-to-the-minute
reports.

AWS Glue
AWS Glue is a fully managed extract, transform, and load (ETL) service that makes it
simple and cost-effective to categorize your data, clean it, enrich it, and move it reliably
between various data stores. AWS Glue consists of a central data repository known as the
AWS Glue Data Catalog, an ETL engine that automatically generates Python code, and a
flexible scheduler that handles dependency resolution, job monitoring, and job
retries/reattempts on failure. AWS Glue is serverless, so there's no infrastructure to set up
or manage.

Use the AWS Glue console to discover data, transform it, and make it available for
searching and querying. The console calls the underlying services to orchestrate the work
required to transform your data. You can also use the AWS Glue API operations to
interface with AWS Glue services. Edit, debug, and test your Python or Scala Apache Spark
ETL code using a familiar development environment.

When should I use AWS Glue?
You can use AWS Glue to build a data warehouse to organize, cleanse, validate, and format
data. You can transform and move AWS Cloud data into your data store. You can also load
data from disparate sources into your data warehouse for regular reporting and analysis.
By storing it in a data warehouse, you integrate information from different parts of your
business and provide a common source of data for decision making.

AWS Glue simplifies many tasks when you are building a data warehouse:

Discovers and catalogs metadata about your data stores into a central catalog.
You can process semi-structured data, such as clickstream or process logs.
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Populates the AWS Glue Data Catalog with table definitions from scheduled
crawler programs.
Crawlers call classifier logic to infer the schema, format, and data types of your
data. This metadata is stored as tables in the AWS Glue Data Catalog and used in
the authoring process of your ETL jobs.
Generates ETL scripts to transform, flatten, and enrich your data from source to
target.
Detects schema changes and adapts based on your preferences.
Triggers your ETL jobs based on a schedule or event. You can initiate jobs
automatically to move your data into your data warehouse. Triggers can be used
to create a dependency flow between jobs.
Gathers runtime metrics to monitor the activities of your data warehouse.
Handles errors and retries automatically.
Scales resources, as needed, to run your jobs.

You can use AWS Glue when you run serverless queries against your Amazon S3 data lake.
AWS Glue can catalog your Amazon S3 data, making it available for querying with
Amazon Athena and Amazon Redshift Spectrum. With crawlers, your metadata stays in
sync with the underlying data. Athena and Redshift Spectrum can directly query your
Amazon S3 data lake using the AWS Glue Data Catalog. With AWS Glue, you access and
analyze data through one unified interface without loading it into multiple data silos.

You can create event-driven ETL pipelines with AWS Glue. You can run your ETL jobs as
soon as new data becomes available in Amazon S3 by invoking your AWS Glue ETL jobs
from an AWS Lambda function. You can also register this new dataset in the AWS Glue
Data Catalog as part of your ETL jobs.

You can use AWS Glue to understand your data assets. You can store your data using
various AWS services and still maintain a unified view of your data using the AWS Glue
Data Catalog. View the Data Catalog to quickly search and discover the datasets that you
own, and maintain the relevant metadata in one central repository. The Data Catalog also
serves as a drop-in replacement for your external Apache Hive Metastore.
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Amazon EMR
Amazon EMR is a managed cluster platform that simplifies running big data frameworks,
such as Apache Hadoop and Apache Spark, on AWS to process and analyze vast amounts
of data. By using these frameworks and related open source projects, such as Apache Hive
and Apache Pig, you can process data for analytics purposes and business intelligence
workloads. You can also use Amazon EMR to transform and move large amounts of data in
and out of other AWS data stores and databases, such as Amazon S3 and Amazon
DynamoDB.

Amazon EMR provides a managed Hadoop framework that is easy, fast, and cost-effective
in order to process vast amounts of data across dynamically scalable Amazon EC2
instances. You can also run other popular distributed frameworks such as Apache Spark,
HBase, Presto, and Flink in Amazon EMR, and interact with data in other AWS data stores
such as Amazon S3 and Amazon DynamoDB.

Amazon EMR securely and reliably handles a broad set of big data use cases, including log
analysis, web indexing, data transformations (ETL), machine learning, financial analysis,
scientific simulation, and bioinformatics.

Practical AWS EMR cluster
For this exercise, you will need to create an AWS account using aws.amazon.com.

You will be charged to create and use an EMR cluster so please make sure
you are OK with spending money on the cluster (typically $10 a day) and
also terminate the cluster as soon as you are done.

http://aws.amazon.com
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Once you log in, you will see the screen shown in the following screenshot:

Figure: Screenshot of the screen that will appear after logging into your AWS account
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By selecting EMR, as the service, you will be taken to a screen shown in the following
screenshot:
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You can create an EMR cluster by selecting the various options as shown in the following
screenshot:
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A key pair is a must for EMR so you can open a new tab and go to EC2 service in the AWS
console:
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The following is the EC2 dashboard:
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Create a new key pair in the EC2 dashboard by selecting the Key Pairs option in the left
pane:
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Here is how you can name the key pair:

Make sure you copy the key pair, as you will not be able to do so at a
later time
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Here is the key pair, which you can save for later use:

Figure: Screenshot showing the key pair that can be saved for later use
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Now, proceed further using the key pair you just generated:
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Once you select the key pair, you can now create the cluster:

EMR cluster creation takes about 10 minutes.
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This is the EMR cluster creation screen:



Using Amazon Web Services Chapter 12

[ 440 ]

This is the Summary tab, which shows the cluster details:
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This is the Hardware tab, which shows the cluster hardware:

This is the Events tab, which shows the cluster events:
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You will not be able to access the EMR cluster due to security settings. So, you have to open
the ports to be accessible from outside before you can explore the HDFS and YARN
services of the EMR cluster.

Make sure you don't use this insecure EMR cluster for practical purposes.
This is just to be used to understand EMR.

These are the Security Groups for the cluster, shown in the EC2 dashboard:

Figure: Screenshot showing security groups for the cluster

Edit the two security groups and allow all TCP traffic from source 0.0.0.0/0, as shown in the
following screenshot:
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Figure: Screenshot showing how to edit the two security groups

Now, look at the EMR Master IP address (public) and then use that to access the YARN
service, http://EMR_MASTER_IP:8088/cluster.

This is the resource manager:
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This are the resource manager's queues:

HDFS can also be accessed using the same IP address, http://<EMR-MASTER-IP>:50070.
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Shown here is the HDFS portal:



Using Amazon Web Services Chapter 12

[ 446 ]

These are the datanodes in the EMR cluster:

Figure: Screenshot showing datanodes in the EMR cluster
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This is the HDFS browser showing the directories and files in your filesystem:

We have demonstrated how easily we can spin up an EMR cluster in AWS.

Please make sure you terminate the EMR cluster at this point.

Summary
In this chapter, we have discussed AWS as a Cloud provider for Cloud computing needs.

In the next chapter, we will bring everything together to understand what it takes to realize
the business goals of building a practical big data analytics practice.



Index

A
abstract syntax tree (AST)  203
aggregate functions
   about  222
   approx_count_distinct  224
   avg  226
   count  222
   covariance  230
   cube  232
   first  223
   groupBy  230
   kurtosis  227
   last  223
   max  225
   min  225
   Rollup  231
   skewness  228
   standard deviation  229
   sum  227
   variance  228
aggregation patterns
   about  107
   average temperature by city  108
aggregations
   about  221
   aggregate functions  221
   ntiles  234
   window functions  232
Amazon DynamoDB  423
Amazon DynamoDB Encryption at Rest
   reference link  423
Amazon EC2 Auto Scaling  408
Amazon EC2 instances
   reference link  411
Amazon Elastic Block Store (Amazon EBS)
   about  416

   reference link  416
Amazon Elastic Compute Cloud (Amazon EC2)
   about  407
   and Amazon Virtual Private Cloud  415
   availability zone, selecting  413
   availability zones  411
   instance store  416
   regions  411, 412
Amazon EMR cluster
   about  428
   creating  428, 430, 433, 435, 437, 439, 441,

443, 446, 447
Amazon Machine Image (AMI)
   about  410, 411
   instance types  414
   instances, launching  410
Amazon Macie  419
Amazon Redshift Spectrum  419
Amazon Relational Database Service (Amazon

RDS)  409
Amazon S3 Transfer Acceleration  421
Amazon S3
   about  418
   reference link  420
Amazon Simple Storage Service (Amazon S3)  409
Amazon Virtual Private Cloud (Amazon VPC)
   about  409, 415
   documentation link  415
Amazon Web Services (AWS)
   about  390, 411
   availability zone  412
   available regions  413
   region  412
   regions and endpoints  414
Anaconda
   download link  124
   installing  124



[ 449 ]

   using  127, 128, 129, 130, 133
Apache Flink
   about  284
   bounded dataset  287
   continuous processing, for unbounded datasets 

286

   downloading  289, 290
   installing  288, 291
   local cluster, starting  291, 293
   streaming model  288
Apache Hadoop
   used, for distributed computing  46
Apache Kafka  286
Apache Spark
   about  67
   stack  68
at-least-once processing paradigm  251
at-most-once processing paradigm  252
average temperature by city
   average/median/standard deviation  108
   count, recording  108
   min/max/count  108
AWS Auto Scaling  408
AWS Cloud Security
   reference link  419
AWS CloudTrail  419
AWS CodeBuild  417
AWS CodePipeline  417
AWS Compliance
   reference link  419
AWS data archiving
   reference link  421
AWS data lakes and big data analytics
   reference link  422
AWS disaster recovery
   reference link  422
AWS Glue Data Catalog  426
AWS Glue
   about  426
   using  426, 427
AWS hybrid Cloud storage
   reference link  422
AWS Lambda
   about  417
   reasons, for using  417

AWS Snowball Edge  421
AWS Storage Gateway  421

B
bar chart  382
batch analytics
   about  299
   aggregation operation  309
   file, reading  299
   groupBy operation, using  307
   joins  313
   transformations  302
big data visualization tools
   about  388
   IBM Cognos Analytics  388
   Microsoft PowerBI  389
   Oracle Visual Analyzer  389
   SAP Lumira  389
   SAS Visual Analytics  389
   Tableau Desktop  389
   TIBCO Spotfire  389
big data
   about  42
   value  45
   variability  45
   variety  43
   velocity  44
   veracity  44
   visualization  45
   volume  44
binaries, Hive
   downloading  50
   extracting  50
broadcast join  238
built-in functions, Hive  63, 65
built-in operators, Hive
   arithmetic operators  61
   logical operators  62
   relational operators  60
business intelligence (BI)  42

C
Cassandra connector
   about  355



[ 450 ]

   reference  354
   sinking with  355
changes, Hadoop 3
   about  17
   minimum required Java version  17
changes, Hadoop
   shaded-client JARs  18
   shell script rewrite  18
characteristics, Cloud
   elasticity  400
   measured usage  400
   multi-tenancy (and resource pooling)  400
   on-demand usage  399
   resiliency  401
   ubiquitous access  400
charts
   about  379
   bar charts  382
   heat map  384
   line charts  380
   pie chart  381
checkpointing
   about  271
   data checkpointing  272
   metadata checkpointing  272
CLI(Command Line Interface)  409
cloud consumer  391
Cloud consumers
   about  391, 397
   benefits  394
Cloud data migration
   reference link  421
Cloud delivery models
   combining  403
cloud provider  391
Cloud resource administrator
   about  398
   organizational boundary  399
   trust boundary  399
Cloud service owner  398
Cloud
   about  391
   characteristics  399
   concepts  391
   increased availability and reliability  395

   increased scalability  394
   risks and challenges  395
collection-based sources
   reading  300
comma-separated values (CSV)  215
command-line tools  409
community Clouds  404
confirmatory data analysis (CDA)  40
connectors
   Cassandra connector  354
   Elasticsearch connector  352
   Kafka connector  347
   RabbitMQ connector  350
   Twitter connector  348
containers
   guaranteed container  15
   opportunistic containers  15
cross join  245
Cross-Region Replication (CRR)  422

D
data analytics process
   about  40
   exploring  41
data analytics
   performing  172, 174, 177, 179, 185, 186, 189,

192, 195, 196, 201
data checkpointing  272
data processing
   about  328
   broadcasting  344
   connectors  346
   data sources  329
   data transformations  335
   event time  345
   execution environment  329
   ingestion time  345
   physical partitioning  343
   project function  342
   rescaling  344
   select function  342
   split function  341
   time  345
   union function  340
   Window join  341



[ 451 ]

   windowAll function  340
data sources
   about  329
   file-based data sourcing  334
   socket-based data sourcing  330, 332
data steward role  41
data transformation
   aggregations  338
   filter  336
   flatMap  335
   fold  337
   keyBy  336
   map  335
   reduce  337
   window function  338
data visualization
   Python, using  385
   R, using  386
data
   analyzing  134, 135, 137, 141, 144, 147, 151,

159, 163
DataFrame
   about  203
   API  207, 212
   creating  207
   filters  213
   pivots  213
datasets
   bounded  286
   loading  219
   unbounded  286
DataStream API
   reference  329
   used, for data processing  328
delivery models, Cloud
   about  401
   Infrastructure as a Service (IaaS)  401
   Platform as a Service (PaaS)  402
   Software as a Service (SaaS)  402
Deploying Lambda-based Applications
   reference link  417
deployment models, Cloud
   about  404
   community Clouds  404
   hybrid Cloud  405

   private Cloud  405
   public Clouds  404
Derby
   installation link  51
   installing  51
direct stream approach
   about  277
   properties  278
Directed Acyclic Graphs (DAGs)  425
Discretized Streams (DStreams)  262
distributed computing
   Apache Hadoop, using  46
driver failure recovery  273

E
Elasticsearch connector
   about  352
   client mode  353
   node mode  352
encoders  217
erasure coding (EC)  7
event time and date
   handling  282
exactly-once processing  253
execution models
   batch  287
   streaming  287
explicit schema  216
exploratory data analysis (EDA)  40
extract, transform, and load (ETL)  426

F
fault-tolerance semantics  283
features, Amazon Elastic Compute Cloud (Amazon

EC2)
   Amazon Machine Image (AMI)  410
   easy of starting  409
   elastic web-scale computing  408
   high reliability  409
   hosting services  408
   inexpensive  409
   instances  410
   integration  409
   operations, controlling  408



[ 452 ]

   pricing, reference link  409
   security  409
features, Amazon S3
   big data analytics  422
   cloud-native application data  422
   compliance capabilities  419
   comprehensive security  419
   data archiving  421
   data backup  421
   data lakes analytics  422
   data recovery  421
   disaster recovery  422
   easy data transfer  421
   flexible data transfer  421
   flexible management  420
   hybrid Cloud storage  422
   query access  419
   supported platform  420
file-based sources
   reading  299
file
   writing to  322
fileStream
   about  259
   binaryRecordsStream  259
   Discretized Streams (DStreams)  262, 263, 264
   queueStream  260
   textFileStream  259
filtering patterns  109
filters  213
finite stream  288
Flink cluster UI
   using  295, 297
Flink
   reference  288
following
   operators on complex types  62

G
generic sources
   reading  300
Google File System (GFS)  47

H
Hadoop 3 installation
   about  20
   HDFS, starting  22, 24, 27
   Intra-DataNode balancer  31
   NameNode, setting up  21
   password-less ssh, setting up  21
   prerequisites, reference  19
   version, downloading  19
   YARN service, setting up  27
   YARN timeline service v.2, installing  31
Hadoop 3
   data, connecting  165
   installing  18
   installing, reference  18
Hadoop Distributed File System (HDFS)
   about  7, 8, 47, 71
   DataNode  8
   erasure coding  11
   high availability  9
   Intra-DataNode balancer  10
   NameNode  8
   port numbers  11
heat map  384
Hive
   about  48
   binaries, downloading  50
   buckets  52
   built-in operators and functions  60
   complex types  59
   database, creating  53
   Derby, installing  51
   information, retrieving from cheat sheet  66
   INSERT statement syntax  58
   language capabilities  66
   partitions  52
   primitive types  59
   reference  49
   SELECT statement syntax  55
   table, creating  54
   tables  53
   using  52
horizontal scaling
   about  392



[ 453 ]

   scaling in  392
   scaling out  392
hybrid Clouds  405

I
IBM Cognos Analytics
   reference  388
implicit schema  215
Infrastructure as a Service (IaaS)  390, 401
inner join  240
input streams, StreamingContext
   rawSocketStream  259
   receiverStream  258
   socketTextStream  258
instance types, Amazon Machine Image (AMI)
   Amazon EC2 key pairs  415
   Amazon EC2 security groups, for Linux

instances  415
   elastic IP addresses  415
   Tags  414
instances  411
intermediate keys and values  73
intermediate output of mapper  75
Internet of Things (IoT)  328
IT  391
IT resource  391

J
job types, MapReduce
   about  78
   multiple mappers reducer job  94, 97
   scenario  102, 106
   single mapper job  80, 82, 85, 88
   single mapper reducer job  89, 93
   SingleMapperCombinerReducer job  100
join patterns
   about  110
   cross join  119
   full outer join  117
   inner joins  112
   left anti join  114
   left outer join  115
   left semi join  119
   right outer join  116

joins
   about  235, 236, 313
   broadcast join  238
   cross join  245
   full outer join  320, 321
   inner join  240, 313
   inner working  237
   left anti join  243
   left outer join  241, 316
   left semi join  244
   outer join  243
   performance implications  246
   right outer join  242, 318
   shuffle join  237
   types  239
Jupyter Notebook installation
   about  121
   Anaconda, installing  124, 126
   standard Python, installing  122
Jupyter Notebook
   standard Python, installing  124

K
key  380
key pair  415
Kinesis Data Streams
   about  424
   benefits  425
   usage scenarios  424, 425

L
left anti join  243
left outer join  241
left semi join  244
line charts  380

M
MapReduce framework
   about  12, 47, 71
   combiner  76
   dataset  73
   map  75
   output format  78
   partitioner  76



[ 454 ]

   record reader  75
   reduce  77
   shuffle and sort  77
   task-level native optimization  12
MapReduce patterns
   about  107
   aggregation patterns  107
   filtering patterns  109
   join patterns  110
MapReduce
   R, executing with RMR2  166
massively parallel processing (MPP)  46
metadata checkpointing  272
methods, for R and Hadoop integration
   about  169
   Hadoop Streaming API  170
   ORCH  171
   R and Hadoop Integrated Programming

Environment (RHIPE)  170
   RHadoop  169
   RHIVE  171
Microsoft PowerBI
   reference  389
multiple mappers reducer job  94, 97

N
ntiles  234

O
on-demand self-service usage  399
on-premise  391
opportunistic containers
   container execution, types  15
Oracle Visual Analyzer
   reference  389
ORCH  171
outer join  243

P
Petabytes (PB)  46
physical partitioning
   custom partitioning  343
   random partitioning  343
   rebalancing partitioning  343

pie charts  381
pivoting  213
Platform as a Service (PaaS)  390, 402
private Clouds  405
proportional cost  393
public Cloud  404
Python release
   for macOS X, reference  122
   for Windows, reference  122
   Linux and Unix, reference  122
Python
   installing  122, 124
   used, for data visualization  385, 386

Q
QlikSense
   reference  389
queueStream
   textFileStream example  260
   twitterStream example  260

R
R
   and Hadoop integration, methods  169
   building, options  164
   connecting, to Hadoop  166
   installing, on shared server  166
   installing, on workstations  165
   pure open source options, summarizing  168
   used, for data visualization  386
RabbitMQ connector
   about  350
   options, on stream deliveries  350
   reference  350
receiver-based approach  275
resilient distributed dataset (RDD)  204
Revolution R Open (RRO)
   utilizing  166
RHadoop  169
RHIPE  170
RHIVE  171
right outer join  242
risks and challenges
   increased security vulnerabilities  396



[ 455 ]

   limited portability, between Cloud providers  397
   reduced operational governance control  396
RMR2
   used, for executing R inside MapReduce  166
roles and boundaries
   about  397
   Cloud consumer  397
   cloud provider  397
   Cloud resource administrator  398
   Cloud service owner  398
roles, Cloud resource administrator
   cloud auditor  398
   cloud broker  398
   cloud carrier  398

S
SAP Lumira
   reference  389
SAS Visual Analytics
   reference  389
scaling
   about  392
   cloud service  392
   cloud service consumer  393
   horizontal scaling  392
   types  392
   vertical scaling  392
schema
   about  215
   encoders  217
   explicit schema  216
   implicit schema  215
SELECT statement syntax
   about  55
   WHERE clauses  57
service-level agreement (SLA)  409
shuffle join  237
single mapper job  80, 82, 85, 88
single mapper reducer job  89, 93
SingleMapperCombinerReducer job  100
Social Security Numbers (SSNs)  41
Software as a Service (SaaS)  390, 402
solid state disks (SSDs)  423
spark streaming
   about  255

   StreamingContext  256
   StreamingContext, creating  257
   StreamingContext, starting  257
   StreamingContext, stopping  258
SparkSQL
   about  203, 207
   API  207, 212
   reference  205
   user-defined functions (UDFs)  214
stateful transformations  270, 271
stateless transformations  270, 271
streaming execution model  326, 328
streaming platforms
   direct stream approach  277
   interoperability  275
   receiver-based approach  275
   structured streaming  279
streaming
   about  250
   at-least-once processing paradigm  251
   at-most-once processing paradigm  252
   exactly-once processing  253, 254
StreamingContext
   input streams  258
structured streaming
   exploring  279, 280

T
table stakes  168
Tableau Desktop
   reference  389
Tableau
   about  363
   reference  361
   setting up  361, 366, 372, 377
   used, for visualization  68
TIBCO Spotfire
   reference  389
timeline service v.2
   enabling  37
   executing  38
   writing, with MapReduce  38
transformation patterns  109
transformations
   about  265



   reference  303
   stateful transformations  270
   stateless transformations  270
   windows operations  266, 267
Twitter connector  348

U
user-defined aggregation functions (UDAF)  221
user-defined functions (UDFs)  214

V
vertical scaling
   about  392
   scaling down  392
   scaling up  392
visualization
   reference  384
   Tableau, using  68

W
window functions

   about  232, 338
   global windows  339
   session windows  340
   sliding windows  339
   tumbling windows  339
windows operations  266, 267
write ahead log (WAL)  275

Y
YARN timeline service v.2 installation
   about  32
   co-processor, enabling  35
   enabling step  37
   HBase cluster, setting up  32
YARN timeline service v.2
   about  15
   scalability and reliability, enhancing  15
   usability improvements  15
Yet Another Resource Negotiator (YARN)
   about  7, 13
   opportunistic containers  14
   timeline service v.2  15


	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Hadoop
	Hadoop Distributed File System
	High availability
	Intra-DataNode balancer
	Erasure coding
	Port numbers

	MapReduce framework
	Task-level native optimization

	YARN
	Opportunistic containers
	Types of container execution 

	YARN timeline service v.2
	Enhancing scalability and reliability
	Usability improvements
	Architecture


	Other changes
	Minimum required Java version 
	Shell script rewrite
	Shaded-client JARs

	Installing Hadoop 3 
	Prerequisites
	Downloading
	Installation
	Setup password-less ssh
	Setting up the NameNode
	Starting HDFS
	Setting up the YARN service
	Erasure Coding
	Intra-DataNode balancer
	Installing YARN timeline service v.2
	Setting up the HBase cluster
	Simple deployment for HBase

	Enabling the co-processor
	Enabling timeline service v.2
	Running timeline service v.2
	Enabling MapReduce to write to timeline service v.2



	Summary

	Chapter 2: Overview of Big Data Analytics
	Introduction to data analytics
	Inside the data analytics process

	Introduction to big data
	Variety of data
	Velocity of data
	Volume of data
	Veracity of data
	Variability of data
	Visualization
	Value

	Distributed computing using Apache Hadoop
	The MapReduce framework
	Hive
	Downloading and extracting the Hive binaries
	Installing Derby
	Using Hive
	Creating a database
	Creating a table

	SELECT statement syntax
	WHERE clauses

	INSERT statement syntax
	Primitive types
	Complex types
	Built-in operators and functions
	Built-in operators
	Built-in functions

	Language capabilities
	A cheat sheet on retrieving information 


	Apache Spark
	Visualization using Tableau
	Summary

	Chapter 3: Big Data Processing with MapReduce
	The MapReduce framework
	Dataset
	Record reader
	Map
	Combiner
	Partitioner
	Shuffle and sort
	Reduce
	Output format

	MapReduce job types
	Single mapper job
	Single mapper reducer job
	Multiple mappers reducer job
	SingleMapperCombinerReducer job
	Scenario

	MapReduce patterns
	Aggregation patterns
	Average temperature by city
	Record count
	Min/max/count
	Average/median/standard deviation


	Filtering patterns
	Join patterns
	Inner join
	Left anti join
	Left outer join
	Right outer join
	Full outer join
	Left semi join
	Cross join


	Summary

	Chapter 4: Scientific Computing and Big Data Analysis with Python and Hadoop
	Installation
	Installing standard Python
	Installing Anaconda
	Using Conda


	Data analysis
	Summary

	Chapter 5: Statistical Big Data Computing with R and Hadoop
	Introduction
	Install R on workstations and connect to the data in Hadoop
	Install R on a shared server and connect to Hadoop
	Utilize Revolution R Open
	Execute R inside of MapReduce using RMR2
	Summary and outlook for pure open source options


	Methods of integrating R and Hadoop
	RHADOOP – install R on workstations and connect to data in Hadoop
	RHIPE – execute R inside Hadoop MapReduce
	R and Hadoop Streaming
	RHIVE – install R on workstations and connect to data in Hadoop
	ORCH – Oracle connector for Hadoop

	Data analytics
	Summary

	Chapter 6: Batch Analytics with Apache Spark
	SparkSQL and DataFrames
	DataFrame APIs and the SQL API
	Pivots
	Filters
	User-defined functions

	Schema – structure of data
	Implicit schema
	Explicit schema
	Encoders

	Loading datasets
	Saving datasets
	Aggregations
	Aggregate functions
	count
	first
	last
	approx_count_distinct
	min
	max
	avg
	sum
	kurtosis
	skewness
	Variance
	Standard deviation
	Covariance
	groupBy
	Rollup
	Cube

	Window functions
	ntiles

	Joins
	Inner workings of join
	Shuffle join
	Broadcast join
	Join types
	Inner join
	Left outer join
	Right outer join
	Outer join
	Left anti join
	Left semi join
	Cross join
	Performance implications of join

	Summary

	Chapter 7: Real-Time Analytics with Apache Spark
	Streaming
	At-least-once processing
	At-most-once processing
	Exactly-once processing

	Spark Streaming
	StreamingContext
	Creating StreamingContext
	Starting StreamingContext
	Stopping StreamingContext
	Input streams
	receiverStream
	socketTextStream
	rawSocketStream



	fileStream
	textFileStream
	binaryRecordsStream
	queueStream
	textFileStream example
	twitterStream example

	Discretized Streams

	Transformations
	Windows operations
	Stateful/stateless transformations
	Stateless transformations
	Stateful transformations


	Checkpointing
	Metadata checkpointing
	Data checkpointing

	Driver failure recovery
	Interoperability with streaming platforms (Apache Kafka)
	Receiver-based
	Direct Stream
	Structured Streaming
	Getting deeper into Structured Streaming


	Handling event time and late date
	Fault-tolerance semantics
	Summary

	Chapter 8: Batch Analytics with Apache Flink
	Introduction to Apache Flink
	Continuous processing for unbounded datasets
	Flink, the streaming model, and bounded datasets

	Installing Flink
	Downloading Flink
	Installing Flink
	Starting a local Flink cluster


	Using the Flink cluster UI
	Batch analytics
	Reading file
	File-based
	Collection-based
	Generic

	Transformations
	GroupBy
	Aggregation
	Joins
	Inner join
	Left outer join
	Right outer join
	Full outer join

	Writing to a file

	Summary

	Chapter 9: Stream Processing with Apache Flink
	Introduction to streaming execution model
	Data processing using the DataStream API
	Execution environment
	Data sources
	Socket-based
	File-based

	Transformations
	map
	flatMap
	filter
	keyBy
	reduce
	fold
	Aggregations
	window
	Global windows
	Tumbling windows
	Sliding windows
	Session windows

	windowAll
	union
	Window join
	split
	Select
	Project
	Physical partitioning
	Custom partitioning
	Random partitioning
	Rebalancing partitioning

	Rescaling
	Broadcasting
	Event time and watermarks
	Connectors
	Kafka connector
	Twitter connector
	RabbitMQ connector
	Elasticsearch connector
	Cassandra connector



	Summary

	Chapter 10: Visualizing Big Data
	Introduction
	Tableau
	Chart types
	Line charts
	Pie chart
	Bar chart
	Heat map

	Using Python to visualize data
	Using R to visualize data
	Big data visualization tools
	Summary

	Chapter 11: Introduction to Cloud Computing
	Concepts and terminology
	Cloud
	IT resource
	On-premise
	Cloud consumers and Cloud providers
	Scaling
	 Types of scaling
	Horizontal scaling
	Vertical scaling

	Cloud service
	Cloud service consumer


	Goals and benefits
	Increased scalability
	Increased availability and reliability

	Risks and challenges
	Increased security vulnerabilities
	Reduced operational governance control
	Limited portability between Cloud providers

	Roles and boundaries
	Cloud provider
	Cloud consumer
	Cloud service owner
	Cloud resource administrator
	Additional roles
	Organizational boundary
	Trust boundary


	Cloud characteristics
	On-demand usage
	Ubiquitous access
	Multi-tenancy (and resource pooling)
	Elasticity
	Measured usage
	Resiliency

	Cloud delivery models
	Infrastructure as a Service
	Platform as a Service
	Software as a Service
	Combining Cloud delivery models
	IaaS + PaaS
	IaaS + PaaS + SaaS


	Cloud deployment models
	Public Clouds
	Community Clouds
	Private Clouds
	Hybrid Clouds

	Summary

	Chapter 12: Using Amazon Web Services
	Amazon Elastic Compute Cloud
	Elastic web-scale computing
	Complete control of operations
	Flexible Cloud hosting services
	Integration
	High reliability
	Security
	Inexpensive
	Easy to start
	Instances and Amazon Machine Images

	Launching multiple instances of an AMI
	Instances
	AMIs
	Regions and availability zones
	Region and availability zone concepts
	Regions
	Availability zones
	Available regions
	Regions and endpoints
	Instance types
	Tag basics
	Amazon EC2 key pairs
	Amazon EC2 security groups for Linux instances
	Elastic IP addresses

	Amazon EC2 and Amazon Virtual Private Cloud
	Amazon Elastic Block Store
	Amazon EC2 instance store


	What is AWS Lambda?
	When should I use AWS Lambda?

	Introduction to Amazon S3
	Getting started with Amazon S3
	Comprehensive security and compliance capabilities
	Query in place
	Flexible management
	Most supported platform with the largest ecosystem
	Easy and flexible data transfer
	Backup and recovery
	Data archiving
	Data lakes and big data analytics
	Hybrid Cloud storage
	Cloud-native application data
	Disaster recovery

	Amazon DynamoDB
	Amazon Kinesis Data Streams
	What can I do with Kinesis Data Streams?
	Accelerated log and data feed intake and processing
	Real-time metrics and reporting
	Real-time data analytics
	Complex stream processing
	Benefits of using Kinesis Data Streams


	AWS Glue
	When should I use AWS Glue?

	Amazon EMR
	Practical AWS EMR cluster

	Summary

	Index

