

Big Data Architect's Handbook

A guide to building proficiency in tools and systems used by
leading big data experts

Syed Muhammad Fahad Akhtar

BIRMINGHAM - MUMBAI

Big Data Architect's Handbook
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Namrata Patil
Content Development Editor: Aaryaman Singh
Technical Editor: Dinesh Chaudhary
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Mariammal Chettiyar
Graphics: Tania Dutta
Production Coordinator: Deepika Naik

First published: June 2018

Production reference: 1190618

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-582-4

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Syed Muhammad Fahad Akhtar has 12+ years of
industry experience in analysis, designing, developing,
integrating, and managing large applications in different and
diverse industries. He has vast exposure of working in UAE,
Pakistan, and Malaysia. He is currently working in ASIT Solutions
as a solutions architect in Malaysia.
He received his master's degree from Torrens University,
Australia, and bachelor of science in computer engineering from
National University of Computer and Emerging Sciences (FAST),
Pakistan.

He has cross platform expertise and achieves recognition from IBM, Sun Microsystems and
Microsoft. Fahad has received the following accolades:

IBM Certified Big Data Architect - 2017
Sun Certified Java Programmer - 2012
Microsoft Certified Solution Developer - 2009
Microsoft Certified Application Developer - 2007
Microsoft Certified Professional - 2005

He also contributed his experience and services towards as Member, board of director in
K.K. Abdal Institute of Engineering and Management Sciences, Pakistan and is a board
member of Alam Educational Society.

You can find him on LinkedIn at syedmfahad.

About the reviewers
Albenzo Coletta is a senior software and systems engineer in robotic, defense, avionic,
telecommunication fields. He has a master's in computational robotics models. He was an
industrial researcher in AI. He was also a designer for a robotic communication system for
COMAU, as a business analyst. He designed a Neuro Fuzzy system for financial problems
(with Sannio University) and recommender system for major Italian Editorial groups. He
was a consultant at UCID (Economic and Financial Ministry), He also made a Mobile
Human Robotic Interaction System.

Giancarlo Zaccone has 10+ years of experience in managing research projects in both
scientific and industrial areas. He was a researcher at CNR, the National Research Council
of Italy, where he was involved in projects on parallel numerical computing and scientific
visualization. He is a senior software engineer at a consulting company, developing and
testing software systems for space and defense applications.
He holds a master's in physics from Federico II of Naples and a 2nd-level postgraduate
master course in scientific computing from La Sapienza of Rome.

Thirukkumaran Haridass is an independent IT consultant based out of Chennai, India. He
works with clients from various verticals to help them build big data and AI solutions for
their business needs. He is also the author of Learning Google BigQuery published by
Packt. Prior to becoming a consultant, he worked in USA for over 13 years and 6 years at
Builder Homesite Inc, Austin, Texas, USA. He also worked for Fortune 500 companies such
as JCPenney and Volkswagen as a consultant.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Why Big Data? 7
What is big data? 8
Characteristics of big data 9

Volume 10
Velocity 12
Variety 13
Veracity 14
Variability 15
Value 15

Solution-based approach for data 16
Data – the most valuable asset 16
Traditional approaches to data storage 17
Clustered computing 19

High availability 19
Resource pooling 20
Easy scalability 20

Big data – how does it make a difference? 20
Big data solutions – cloud versus on-premises infrastructure 21

Cost 22
Security 23
Current capabilities 23
Scalability 23

Big data glossary 24
Big data 24
Batch processing 24
Cluster computing 24
Data warehouse 25
Data lake 25
Data mining 25
ETL 25
Hadoop 25
In-memory computing 26
Machine learning 26
MapReduce 26
NoSQL 26
Stream processing 26

Summary 27

Chapter 2: Big Data Environment Setup 28

Table of Contents

[ii]

Oracle VM VirtualBox installation 28
Ubuntu installation 32
Hadoop prerequisite installation 42

Java installation 43
SSH installation and configuration 44
Hadoop system user 46

Apache Hadoop installation 47
Hadoop configuration 48
Path configuration for Hadoop commands 49
Hadoop server start and stop 49

Summary 51

Chapter 3: Hadoop Ecosystem 52
Apache Hadoop 53
Hadoop Distributed File System 54

HDFS hands-on 57
Creating a directory in HDFS 57
Copying files from a local file system to HDFS 58
Copying files from HDFS to a local file system 59
Deleting files and folders in HDFS 59

Hadoop MapReduce 60
Job Tracker and Task Tracker 61
The execution flow of MapReduce 62

Mapper 63
Shuffle and Sort 63
Reducer 64

Example program 64
Preparing the data file for analysis 65
Program code 65

Driver program 66
Mapper program 67
Reducer program 68
Observations and results 69

YARN 71
Resource Manager 73
Node Manager 73
Container 73
Application Master 73

Apache Projects related to big data 74
Apache Zookeeper 75
Apache Kafka 77
Apache Flume 79
Apache Cassandra 81
Apache HBase 82
Apache Spark 83

Summary 85

Table of Contents

[iii]

Chapter 4: NoSQL Database 86
What is NoSQL? 87

Benefits of NoSQL databases 87
NoSQL versus RDBMS 88

The CAP theorem 89
The ACID properties 91

Data models in NoSQL 92
Key-value data stores 93
Document store 93
Column stores 93
Graph stores 94

Apache Cassandra 94
Installation 94
Starting Cassandra 95
The Cassandra Query Language – CQL 96

The help command 97
Basic commands 98
Data manipulation 99

Creating, altering, and deleting a keyspace 99
Creating, altering, and deleting tables 101
Inserting, updating, and deleting data 103

The MongoDB database 105
Installing MongoDB 105
Starting MongoDB 106
Working on MongoDB 106

The help command 107
Basic commands 108
Data manipulation 109

Creating and deleting databases 109
Creating and deleting collections 110
The create, retrieve, update, delete operations 110

Neo4j database 112
Installing Neo4j 113
Starting Neo4j 113
The cypher query language 115

Help 117
Basic operations in Cypher 117

Creating nodes, relationships, and properties 117
Updating nodes, relationships, and properties 118
Deleting nodes, relationships, and properties 119
Reading nodes, relationships, and properties 119

Summary 121

Chapter 5: Off-the-Shelf Commercial Tools 122
Microsoft Azure 123
Building a practical application 124

Microsoft Azure account 125
The Azure Event Hub 127

Table of Contents

[iv]

IoT simulation application 132
Setting up an Azure Stream Analytics job 137

Input 139
Query 140
Output 140

Dashboard in Power BI 143
Summary 148

Chapter 6: Containerization 149
Virtualization 149

Hypervisors 150
Hardware-based hypervisors 150
Software-based hypervisors 150

What is containerization? 151
Benefits of containers 152

Docker 152
Docker workflow 152
Installation 153
Basic commands 155
Docker images 158

Building a Docker image 158
Running and verifying Docker images 161
Importing and exporting Docker images 162

Docker Swarm 163
Setting up Docker Swarm 163
Creating service containers 165
Replicating containers 166
Removing container services 166

Kubernetes 167
Key components 167

Pods 168
ReplicaSets 168
Deployments 169
PetSets 170

Installation 170
Deployment 172
Kubernetes Dashboard 174

Summary 176

Chapter 7: Network Infrastructure 177
Network 177

Local area networks 178
Metropolitan area networks 179
Wide area networks 180

Network connectivity 181
Wired 181
Wireless 181

Table of Contents

[v]

Network visualization 182
Gephi 182

Installation 183
Java installation 183
First run 184

Practical example 186
Summary 194

Chapter 8: Cloud Infrastructure 195
Companies moving to cloud 195

Driving factors 196
Infrastructure 196
Locality of data 197
Requirements 199

Design considerations 199
Open source versus commercial 200
Commodity hardware versus purpose build 200
Cloud versus on-premises 201
Scale up and down 205
Application architecture 206
Cost decision 207

Summary 208

Chapter 9: Security and Monitoring 209
Simple Network Management Protocol 209

Benefits of SNMP 211
Security 212
Agents and Traps 212

Netflow 213
Nagios 215

Key benefits 215
Security Onion 216

Deployment scenarios 216
The Standalone model 217
The Server-Sensor model 218
Hybrid model 219

Preconfigured tools 219
Wireshark 221

Key features 221
Summary 222

Chapter 10: Frontend Architecture 223
React JS 224

Key concepts 224
Node.js 225
JSX 226
Unidirectional dataflow 227

Table of Contents

[vi]

Getting started with ReactJS 228
Single page application 228
React application project 229
React app directory structure 232

Components 233
Properties 235
Event handling 236
State 239

Redux 242
Architecture of Redux 243
Key concepts 244

Single store 244
Action 244
Reducers 244

Guestbook application 245
Installation 245
Create a store 246
Setting up Reducer 246
Setting up Dispatcher 247

Connect function 247
Setting up Subscribers 249
Final output 251

Summary 252

Chapter 11: Backend Architecture 253
API 254
RESTful API 254

HTTP request methods 255
GET 255
POST 255
PUT 255
DELETE 255

Authentication 256
Basic authentication 258
JSON Web Token 260

Header 261
Payload 261
Signature 261

Practical 262
RESTful web service 263
Java client 269

Redis 271
Installation 271

Redis server 272
Redis client 273

Working with Redis 273
Redis data types and structures 273

Table of Contents

[vii]

String 274
HashMap 274
List 275
Set 276

Redis Publish/Subscribe 277
Common key operations 278

Summary 279

Chapter 12: Machine Learning 281
Machine learning 282
Types of algorithms 282

Parametric algorithms 283
Non-parametric algorithms 283

Supervised learning 284
The classification model 284

Binary classification 285
Multi-class classification 286

The regression model 286
Linear regression 286
Polynomial regression 288

Unsupervised learning 291
Clustering, k-means 292
Neural networks 297

Feedforward neural network 298
Recurrent neural network 299
Symmetrically connected neural network 300

Deep neural networks 300
Decision tree classifiers 301
Summary 303

Chapter 13: Artificial Intelligence 304
Artificial intelligence 305
Convolutional neural networks 306
Deep learning using TensorFlow 310

TensorFlow 311
Installation 311
TensorFlow program 312
Uninstalling TensorFlow 313

TensorBoard 314
Program 314
Launching TensorBoard 316
TensorBoard graph 317

Object detection using YOLO 319
Installation 319

Compiling YOLO library 320
Trained weights 321

Detecting objects in an image 321

Table of Contents

[viii]

Summary 324

Chapter 14: Elasticsearch 325
Installing Elasticsearch 326

Starting the Elasticsearch server 327
Auto starting the Elasticsearch service 329
Stopping the Elasticsearch server 329

Uninstalling Elasticsearch 329
Kibana 330

Installation 331
Starting Kibana 332
Uninstalling Kibana 333

Security 334
Securing Elasticsearch 334
Securing Kibana 336

Understanding queries – CRUD commands 339
Creating 341
Reading 344
Updating 345
Deleting 346

Summary 347

Chapter 15: Structured Data 348
Data analysis 349

Installing MySQL 349
Importing data 351
Analyzing the data model 353

HBase 357
Installation 357
Starting an HBase instance 361
Stopping a HBase instance 362
Preparing an HBase for migration 362

Sqoop 364
Installation 364
Verifying the installation 366
MySQL JDBC driver 366
Importing data 367
Verifying the imported data 370

Summary 371

Chapter 16: Unstructured Data 372
Moving data into Hadoop 373

Downloading Flume 373
Environment configuration 374
Configuring agent and sink 375
Running Apache Flume 378

Table of Contents

[ix]

Transferring a log file 379
Converting images into text for analysis 382

Tesseract OCR 382
Installing Tesseract 383

Practical example 383
Complete code 385
Program execution 387

Summary 390

Chapter 17: Data Visualization 391
Matplotlib 391

Installing Matplotlib 392
Line chart 393
Bar charts 394
Stack charts 396
Scatter charts 397
Pie charts 399
Geographic projections 400

D3.js 402
Installation 402
Practical example 403

Output 404
Summary 406

Chapter 18: Financial Trading System 407
What is algorithmic trading? 408

Benefits of algorithmic trading 408
Big data in the financial market 409

Algorithmic trading strategies 410
Building an Expert Advisor 411

MetaTrader 413
Downloading and setting up MetaTrader 414
MetaQuotes language 417
Trading bot objective 418
Practical 418

Trading pattern – moving average 423
Decision time: buy or sell 423
Complete program 424

Backtesting in MetaTrader 4 426
Summary 429

Chapter 19: Retail Recommendation System 430
Types of recommendation system 431

Collaborative filtering 431
Content-based filtering 432
Demographic-based system 433

Table of Contents

[x]

Utility-based system 433
Knowledge-based system 433
Hybrid model 433

Commercial tools 434
Barilliance 434
Softcube 435
Strands 435
Monetate 435
Nosto 435

Book recommendation system 436
Dataset 436
Directory structure 437
Code 437

Reading the dataset 437
Verifying the dataset 438
Data analysis 440

Age group 441
Commutative rating 441

Algorithms 442
Top-rated books 443
Popular books 443
Demographic-based recommendation 444

Useful resources 446
Summary 447

Other Books You May Enjoy 448

Index 451

Preface
Big data architects are the masters of data and hold high value in today’s market. Handling
big data, be it of good or bad quality, is not an easy task. The prime task before any big data
architect is to build an end-to-end big data solution that integrates data from different
sources and analyzes it to find useful, hidden insights.
Big Data Architect's Handbook takes you through developing a complete, end-to-end big data
pipeline that will lay the foundation for you and provide the necessary knowledge required
to be an architect in big data. Right from understanding the design considerations to
implementing a solid, efficient, and scalable data pipeline, this book walks you through all
the essential aspects of big data. It also gives you an overview of how you can leverage the
power of various big data tools such as Apache Hadoop and Elasticsearch in order to bring
them together and build an efficient big data solution.
By the end of this book, you will be able to build your own design system that integrates,
maintains, visualizes, and monitors your data. In addition, you will have a smooth design
flow in each process, putting insights in action.

Who this book is for
Big Data Architect's Handbook is for you if you are an aspiring data professional,
developer, or IT enthusiast who aims to be an all-round architect in big data. This book is a
one-stop solution to enhance your knowledge and carry out easy to complex activities
required to become a big data architect.

What this book covers
Chapter 1, Why Big Data?, explains what big data is, why we need big data, who should
deal with big data, when to use big data, and how to use big data. The design consideration
of the end-to-end big data solution, including cloud, Hadoop, network, analytics and so on,
are also outlined here.

Chapter 2, Big Data Environment Setup, provides a step-by-step guide of how to setup
environment to run big data applications.

Preface

[2]

Chapter 3, Hadoop Ecosystem, is about the Hadoop ecosystem. It consists of different open
source modules, accessories, and Apache projects for reliable and scalable distributed
computing. This chapter will teach you how to build a Hadoop big data system for
streaming data with a step-by-step guide.

Chapter 4, NoSQL Database, explains the concepts, principles, properties, performance and
hybrid of the popular NoSQL database so that a big data architect can confidently choose
appropriate NoSQL for their projects. This chapter will teach you how to implement
NoSQL for killer applications with a step-by-step guide.

Chapter 5, Off-the-Shelf Commercial Tools, introduces some popular commercial off-the-shelf
tools for big data with a hands-on Stream Analytics example.

Chapter 6, Containerization, introduces the concept and application of container-based
virtualization. It is an OS-level virtualization method for deploying and running
distributed applications without launching an entire VM for each application. Moreover,
management of Dockers and Kubernetes using Openshift is demonstrated here.

Chapter 7, Network Infrastructure, teaches essential network technology for an architect to
design big data systems across racks, data centers, and geographical locations. Moreover,
this chapter will teach you the network visualization tool via a step-by-step guide.

Chapter 8, Cloud Infrastructure, introduces essential considerations on cloud infrastructure
design for big data from the perspective of performance and capability. The requirements
of deploying big data in cloud are unique and quite different from traditional applications.
Therefore, a big data architect must need careful design, especially estimating the amount
of data to analyze by using the big data capability in the cloud, because not all public or
private cloud offerings are built to accommodate big data solutions.

Chapter 9, Security and Monitoring, is about essential knowledge on security, including
next-generation firewalls, DevOps security, and monitoring tools.

Chapter 10, Frontend Architecture, introduces the Frontend architecture, which is a
collection of tools and processes that aims to improve the quality of our frontend code
while creating a more efficient, scalable, and sustainable design for big data systems. To be
a successful big data Architect, one critical factor is to present persuasive analytic results to
mostly non-technical persons, such as C-level management, and decision-makers with a
user-friendly, elegant, and responsive user graphic interface. This chapter will teach you
how to use the React + Redux framework to build a responsive and easy debug user
interface.

Preface

[3]

Chapter 11, Backend Architecture, shows how to design a scalable, resilient, manageable,
and cost-effective distributed backend architecture with different combinations of
technology. It handles business logic and data storage with a RESTful web API service.

Chapter 12, Machine Learning, teaches the essential concepts and killer applications of
Machine Learning. You will learn about the most effective machine learning techniques,
and gain practice implementing them and getting them to work for yourself and your
enterprise. You'll learn about not only the theoretical underpinnings of learning, but also
the practical know-how needed to quickly and powerfully apply these techniques to new
problems.

Chapter 13, Artificial Intelligence, introduces AI and CNN with hands-on big data killer
applications. The application for CNN or deep learning to work with machine learning is
one good method to handle unstructured big data.

Chapter 14, Elasticsearch, shows how to use the open source tool Elasticsearch to do
searching tasks in a big data system. This is because it is an enterprise-grade search engine,
and easy to scale. More features of it are: handy REST API and JSON response, good
documentation, Sense UI, stable and proven Lucene underlying engine, excellent Query
DSL, multi-tenancy, advanced Search Features, configurable and extensible, percolation,
custom analyzer, On-the-Fly Analyzer selection, rich ecosystem, and active community.

Chapter 15, Structured Data, introduces the use of open source tools to manipulate and
analyze structured data.

Chapter 16, Unstructured Data, shows how to use open source tools to manipulate and
analyze unstructured data. The readers will learn how to use machine learning and AI to
extract information for analysis in killer applications such as a Retail Recommendation
System and Facial Recognition.

Chapter 17, Data Visualization, illustrates how to use tools to present analytical results to
users using two top-of-the-shelf tools, Matplotlib and D3.js.

Chapter 18, Financial Trading System, covers algorithmic trading benefits and strategies,
and how to design and deploy an end-to-end Financial Trading System via a step-by-step
guide.

Chapter 19, Retail Recommendation System, shows how to design and deploy an end-to-end
Retail Recommendation System through a step-by-step guide.

Preface

[4]

To get the most out of this book
This book uses Ubuntu Linux desktop environment to setup and execute all the1.
example and sample codes.
Each chapter contains the installation and setup instruction of the framework /2.
application used. Follow those instructions carefully in order to setup the
environment and successfully run the provided example.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Big-Data-Architects-Handbook. In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Big-Data-Architects-Handbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ ​/​www. ​packtpub. ​com/​sites/ ​default/ ​files/
downloads/​BigDataArchitectsHandbook_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

html, body, #map {
 height: 100%;
 margin: 0;
 padding: 0
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BigDataArchitectsHandbook_ColorImages.pdf

Preface

[6]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Why Big Data?

Nowadays, it seems like everyone is talking about the term big data. However, a majority
of them are not sure what it is and how they will make the most out of it. Apart from a few
companies, most of them are still confused about the concept and are not ready to adopt the
idea. Even when we hear the term big data, so many questions come to our minds. It is very
important to understand these concepts. These questions include:

What is big data?
Why is there so much hype about it?
Does it just mean huge volumes of data or is there something else to it?
Does big data have any characteristics and what are these?
Why do we need big data architects and what are the design considerations we
have to consider to architect any big data solutions?

In this chapter, we will focus on answering these questions and building a strong
foundation toward understanding the world of big data world. Mainly, we will be covering
the following topics:

Big data
The characteristics of big data
The different design considerations to big data solutions
The key terminology used in the world of big data

Let's now start with the first and the most important question: what is big data?

Why Big Data? Chapter 1

[8]

What is big data?
If we take a simpler definition, it can basically be stated as a huge volume of data that
cannot be stored and processed using the traditional approach. As this data may contain
valuable information, it needs to be processed in a short span of time. This valuable
information can be used to make predictive analyses, as well as for marketing and many
other purposes. If we use the traditional approach, we will not be able to accomplish this
task within the given time frame, as the storage and processing capacity would not be
sufficient for these types of tasks.

That was a simpler definition in order to understand the concept of big data. The more
precise version is as follows:

Data that is massive in volume, with respect to the processing system, with a variety of structured
and unstructured data containing different data patterns to be analyzed.

From traffic patterns and music downloads, to web history and medical records, data is
recorded, stored, and analyzed to enable technology and services to produce the
meaningful output that the world relies on every day. If we just keep holding on to the data
without processing it, or if we don't store the data, considering it of no value, this may be to
the company's disadvantage.

Have you ever considered how YouTube is suggesting to you the videos that you are most
likely to watch? How Google is serving you localized ads, specifically targeted to you as
ones that you are going to open, or of the product you are looking for? These companies are
keeping all of the activities you do on their website and utilizing them for an overall better
user experience, as well as for their benefit, to generate revenue. There are many examples
available of this type of behavior and it is increasing as more and more companies are
realizing the power of data. This raises a challenge for technology researchers: coming up
with more robust and efficient solutions that can cater to new challenges and requirements.

Now, as we have some understanding of what big data is, we will move ahead and discuss
its different characteristics.

Why Big Data? Chapter 1

[9]

Characteristics of big data
These are also known as the dimensions of big data. In 2001, Doug Laney first presented
what became known as the three Vs of big data to describe some of the characteristics that
make big data different from other data processing. These three Vs are volume, velocity,
and variety. This the era of technological advancement and loads of research is going on.
As a result of this reaches and advancements, these three Vs have become the six Vs of big
data as of now. It may also increase in future. As of now, the six Vs of big data are volume,
velocity, variety, veracity, variability, and value, as illustrated in the following diagram.
These characteristics will be discussed in detailed later in the chapter:

Characteristics of big data

Different computer memory sizes are listed in the following table to give you an idea of the
conversions between different units. It will let you understand the size of the data in
upcoming examples in this book:

1 Bit Binary digit
8 Bits 1 byte
1,024 Bytes 1 KB (kilobyte)
1,024 KB 1 MB (megabyte)

Why Big Data? Chapter 1

[10]

1,024 MB 1 GB (gigabyte)
1,024 GB 1 TB (terabyte)
1,024 TB 1 PB (petabyte)
1,024 PB 1 EB (exabyte)
1,024 EB 1 ZB (zettabyte)
1,024 ZB 1 YB (yottabyte)
1,024 YB 1 brontobyte
1,024 brontobyte 1 geopbyte

Now that we have established our basis for subsequent discussions, let's move on to discuss
the first characteristics of big data.

Volume
In earlier years, company data only referred to the data created by their employees. Now,
as the use of technology increases, it is not only data created by employees but also the data
generated by machines used by the companies and their customers. Additionally, with the
evolution of social media and other internet resources, people are posting and uploading so
much content, videos, photos, tweets, and so on. Just imagine; the world's population is 7
billion, and almost 6 billion of them have cell phones. A cell phone itself contains many
sensors, such as a gyro-meter, which generates data for each event, which is now being
collected and analyzed.

When we talk about volume in a big data context, it is an amount of data that is massive
with respect to the processing system that cannot be gathered, stored, and processed using
traditional approaches. It is data at rest that is already collected and streaming data that is
continuously being generated.

Take the example of Facebook. They have 2 billion active users who are continuously using
this social networking site to share their statuses, photos, videos, commenting on each
other's posts, likes, dislikes, and many more activities. As per the statistics provided by
Facebook, a daily 600 TB of data is being ingested into the database of Facebook. The
following graph represents the data that was there in previous years, the current situation
and where it is headed in future:

Why Big Data? Chapter 1

[11]

Past, present and future data growth

Take another example of a jet airplane. One statistic shows that it generates 10 TB of data
for every hour of flight time. Now imagine, with thousands of flights each day, how the
amount of data generated may reach many petabytes every day.

In the last two years, the amount of data generated is equal to 90% of the data ever created.
The world's data is doubling every 1.2 years. One survey states that 40 zettabytes of data
will be created by 2020.

Not so long ago, the generation of such massive amount of data was considered to be a
problem as the storage cost was very high. But now, as the storage cost is decreasing, it is
no longer a problem. Also, solutions such as Hadoop and different algorithms that help in
ingesting and processing this massive amount of data make it even appear resourceful.

The second characteristic of big data is velocity. Let's find out what this is.

Why Big Data? Chapter 1

[12]

Velocity
Velocity is the rate at which the data is being generated, or how fast the data is coming in.
In simpler words, we can call it data in motion. Imagine the amount of data Facebook,
YouTube, or any social networking site is receiving per day. They have to store it, process
it, and somehow later be able to retrieve it. Here are a few examples of how quickly data is
increasing:

The New York stock exchange captures 1 TB of data during each trading session.
120 hours of videos are being uploaded to YouTube every minute.
Data generated by modern cars; they have almost 100 sensors to monitor each
item from fuel and tire pressure to surrounding obstacles.
200 million emails are sent every minute.

If we take the example of social media trends, more data means more revealing information
about groups of people in different territories:

Velocity at which the data is being generated

The preceding chart shows the amount of time users are spending on the popular social
networking websites. Imagine the frequency of data being generated based on these user
activities. This is just a glimpse of what's happening out there.

Why Big Data? Chapter 1

[13]

Another dimension of velocity is the period of time during which data will make sense and
be valuable. Will it age and lose value over time, or will it be permanently valuable? This
analysis is also very important because if the data ages and loses value over time, then
maybe over time it will mislead you.

Till now, we have discussed two characteristics of big data. The third one is variety. Let's
explore it now.

Variety
In this section, we study the classification of data. It can be structured or unstructured data.
Structured data is preferred for information that has a predefined schema or that has a data
model with predefined columns, data types, and so on, whereas unstructured data doesn't
have any of these characteristics. These include a long list of data such, as documents,
emails, social media text messages, videos, still images, audio, graphs, the output from all
types of machine-generated data from sensors, devices, RFID tags, machine logs, and cell
phone GPS signals, and more. We will learn more details about structured and
unstructured data in separate chapters in this book:

Variety of data

Why Big Data? Chapter 1

[14]

Let's take an example; 30 billion pieces of content are shared on Facebook each month. 400
million Tweets are sent per day. 4 billion hours of videos are watched on YouTube every
month. These are all examples of unstructured data being generated that needs to be
processed, either for a better user experience or to generate revenue for the companies
itself.

The fourth characteristic of big data is veracity. It's time to find out all about it.

Veracity
This vector deals with the uncertainty of data. It may be because of poor data quality or
because of the noise in data. It's human behavior that we don't trust the information
provided. This is one of the reasons that one in three business leaders don't trust the
information they use for making decisions.

We can consider in a way that velocity and variety are dependent on the clean data prior to
analysis and making decisions, whereas veracity is the opposite to these characteristics as it
is derived from the uncertainty of data. Let's take the example of apples, where you have to
decide whether they are of good quality. Perhaps a few of them are average or below
average quality. Once you start checking them in huge quantities, perhaps your decision
will be based on the condition of the majority, and you will make an assumption regarding
the rest, because if you start checking each and every apple, the remaining good-quality
ones may lose their freshness. The following diagram is an illustration of the example of
apples:

Veracity: illustration of uncertainty in apple example

Why Big Data? Chapter 1

[15]

The main challenge is that you don't get time to clean streaming data or high-velocity data
to eliminate uncertainty. Data such as events data is generated by machines and sensors
and if you wait to first clean and process it, that data might lose value. So you must process
it as is, taking account of uncertainty.

Veracity is all about uncertainty and how much trust you have in your data, but when we
use it in terms of the big data context, it may be that we have to redefine trusted data with a
different definition. In my opinion, it is the way you are using data or analyzing it to make
decisions. Because of the trust you have in your data, it influences the value and impact of
the decisions you make.

Let's now look at the fifth characteristic of big data, which is variability.

Variability
This vector of big data derives from the lack of consistency or fixed patterns in data. It is
different from variety. Let's take an example of a cake shop. It may have many different
flavors. Now, if you take the same flavor every day, but you find it different in taste every
time, this is variability. Consider the same for data; if the meaning and understanding of
data keeps on changing, it will have a huge impact on your analysis and attempts to
identify patterns.

Now comes the final and an important characteristic of big data—value.

Value
This is the most important vector in terms of big data, but is not particularly associated
with big data, and it is equally true for small data as well. After addressing all the other Vs,
volume, velocity, variety, variability, and veracity, which takes a lot of time, effort, and
resources, now it's time to decide whether it's worth storing that data and investing in
infrastructure, either on premises or in the cloud. One aspect of value is that you have to
store a huge amount of data before you can utilize it in order to give valuable information
in return. Previously, storing this volume of data lumbered you with huge costs, but now
storage and retrieval technology is so much less expensive. You want to be sure that your
organization gets value from the data. The analysis needs to be performed to meet ethical
considerations.

Why Big Data? Chapter 1

[16]

Now that we have discussed and understand the six Vs of big data, it's time to broaden our
scope of understanding and find out what to do with data having these characteristics.
Companies may still think that their traditional systems are sufficient for data having these
characteristics, but if they remain under this influence, they may lose in the long run. Now
that we have understood the importance of data and its characteristics, the primary focus
should be how to store it, how to process it, which data to store, how quickly an output is
expected as a result of analysis and so on. Different solutions for handling this type of data,
each with their own pros and cons, are available on the market, while new ones are
continually being developed. As a big data architect, remember the following key points in
your decision making that will eventually lead you to adopt one of them and leave the
others.

Solution-based approach for data
Increasing revenue and profit is the key focus of any organization. Targeting this requires
efficiency and effectiveness from employees, while minimizing the risks that affect overall
growth. Every organization has a competitor and, in order to compete with them, you have
to think and act quickly and effectively before your competitor does. Most decision-makers
depend on the statistics made available to them and raise the following issues:

What if you get analytic reports faster compared to traditional systems?
What if you can predict how customers behave, different trends, and various
opportunities to grow your business, in close to real time?
What if you have automated systems that can initiate critical tasks automatically?
What if automated activities clean your data and you can make your decisions
based on reliable data?
What if you can predict the risk and quantify them?

Any manager, if they can get the answers to these questions, can act effectively to increase
the revenue and growth of any organization, but getting all these answers is just an ideal
scenario.

Data – the most valuable asset
Almost a decade ago, people started realizing the power of data: how important it can be
and how it can help organizations to grow. It can help them to improve their businesses
based on the actual facts rather than their instincts. There were few sources of data to
collect from, and analyzing this data in its raw form was not an easy task.

Why Big Data? Chapter 1

[17]

Now that the amount of data is increasing exponentially, at least doubling every year, big
data solutions are required to make the most of your assets. Continuous research is being
conducted to come up with new solutions and regular improvements are taking place in
order to cater to requirements, following realization of the important fact that data is
everything.

Traditional approaches to data storage
Human-intensive processes only work to make sense of data that doesn't scale as data
volume increases. For example, people used to put each and every record of the company
record in some sort of spreadsheet, and then it is very difficult to find and analyze that
information once the volume or velocity of information increases.

Traditional systems use batch jobs, scheduling them on daily, weekly, or monthly bases to
migrate data into separate servers or into data warehouses. This data has schema and is
categorized as structured data. It will then go through the processing and analysis cycle to
create datasets and extract meaningful information. These data warehouses are optimized
for reporting and analytics purposes only. This is the core concept of business
intelligence (BI) systems. BI systems store this data in relational database systems. The
following diagram illustrates an architecture of a traditional BI system:

Business intelligence system architecture

Why Big Data? Chapter 1

[18]

The main issue with this approach is the latency rate. The reports made available for the
decision makers are not real-time and are mostly days or weeks old, dependent on fewer
sources having static data models.

This is an era of technological advancement and everything is moving very rapidly. The
faster you respond to your customer, the happier your customer will be and it will help
your business to grow. Nowadays, the source of information is not just your transactional
databases or a few other data models; there are many other data sources that can affect
your business directly and if you don't capture them and include them in your analysis, it
will hit you hard. These sources include blog posts and web reviews, social media sources,
posts, tweets, photos, videos, and audio. And it is not just these sources; logs generated by
sensors, commonly known as IoTs (Internet of Things), in your smartphone, appliances,
robot and autonomous systems, smart grids, and any devices that are collecting data, can
now be utilized to study different behaviors and patterns, something that was
unimaginable in the past.

It is a fact that every type of data is increasing, but especially IoTs, which generate logs of
each and every event automatically and continuously. For example, a report shared by Intel
states that an autonomous car generates and consumes 4 TB of data each day, and this is
from just an hour of driving. This is just one source of information; if we consider all the
previously mentioned sources, such as blogs and social media, it will not just make a few
terabytes. Here, we are talking about exabytes, zettabytes, or even yottabytes of data.

We have talked about data that is increasing, but it is not just that; the types of data are also
growing. Fewer than 20% of the types have definite schema. The other 80% is just raw data
without any specific pattern which cannot reside in traditional relational database systems.
This 80% of data includes videos, photos, and textual data including posts, articles, and
emails.

Now, if we consider all these characteristics of data and try to implement this in a
traditional BI solution, it will only be able to utilize 20% of your data, because the other 80%
is just raw data, making it outreached for relational database systems. In today's world,
people have realized that the data that they considered to be of no use can actually make a
big difference to decision making and to understanding different behaviors. Traditional
business solutions, however, are not the correct approach to analyze data with these
characteristics, as they mostly work with definite schema and on batch jobs that produce
results after a day, week or month.

Why Big Data? Chapter 1

[19]

Clustered computing
Before we take a further dive into big data, let us understand clustered computing. This is a
set of computers connected to each other in such a way that they act as a single server to the
end user. It can be configured to work with different characteristics that enable high
availability, load balancing, and parallel processing. Each computer in these configurations
is called a node. They work together to execute any task or application and behave as a
single machine. The following diagram illustrates a computer cluster environment:

Illustration of a computer clustered environment

The volume of data is increasing, as we have already stated; it is now beyond the
capabilities of a single computer to do the analysis all by itself. Clustered computing
combines the resources of many smaller low — cost machines, to achieve many greater
benefits. Some of them are listed here in the following sections

High availability
It is very important for all companies that their data and content must be available at all
times and that when any hardware or software failure occurs, it must not constitute a
disaster for them. Cluster computing provides fault tolerance tools and mechanisms to
provide maximum uptime without affecting performance, so that everyone has their data
ready for analysis and processing.

Why Big Data? Chapter 1

[20]

Resource pooling
In clustered computing, multiple computers are connected to each other to act as a single
computer. It is not just that their data storage capacity is shared; CPU and memory pooling
can also be utilized in individual computers to process different tasks independently and
then merge outputs to produce a result. To execute large datasets, this setup provides more
efficient processing power.

Easy scalability
Scaling is very straightforward in clustered computing. To add additional storage capacity
or computational power, just add new machines with the required hardware to the group.
It will start utilizing additional resources with minimum setup, with no need to physically
expand the resources in any of the existing machines.

Big data – how does it make a difference?
We have established an understanding regarding traditional systems, such as BI, how they
work, what their focused areas are, and where they are lagging in terms of the different
characteristics of data. Let's now talk about big data solutions. Big data solutions are
focused on combining all the data dimensions that were previously ignored or considered
of minimum value, taking all the available sources and types into consideration and
analyzing them for different and difficult-to-identify patterns.

Big data solutions are not just about the data itself or other characteristics of data; it is also
about affordability, making it easier for organizations to store all of their data for analysis
and in real time, if required. You may discover different insights and facts regarding your
suppliers, customers, and other business competitors, or you may find the root cause of
different issues and potential risks your organization might be faced with.

Big data comprises structured and unstructured datasets, which also eliminates the need
for any other relational database management solutions, as they don't have the capability to
store unstructured data or to analyze it.

Why Big Data? Chapter 1

[21]

Another aspect is that scaling up a server is also not a solution, no matter how powerful it
might be; there will always be a hard limit for each resource type. These limits will
undoubtedly move upward, but the rate of data increase will grow much faster. Most
importantly, the cost of this high-end server and resources will be relatively high. Big data
solutions comprise clustered computing mechanisms, which involve commodity hardware
with no high-end servers or resources and can easily be scaled up and down. You can start
with a few servers and can easily scale without any limits.

If we talk about just data itself, in big data solutions, data is replicated to multiple servers,
commonly known as data nodes, based on the configurations done to make them fault
tolerant. If any of the data nodes fail, the respective task will continue to run on the replica
server where the copy of same data resides. This is handled by the big data solution
without additional software development and operation. To keep the data intact, all the
data copies need to be updated accordingly.

Distributed computing comprises commodity hardware, with reasonable storage and
computation power, which is considered much less expensive compared to a dedicated
processing server with powerful hardware. This led to extremely cost-effective solutions
that enabled big data solutions to evolve, something that was not possible a couple of years
ago.

Big data solutions – cloud versus on-premises
infrastructure
Since the time when people started realizing the power of data, researchers have been
working to utilize it to extract meaningful information and identify different patterns. With
big data technology enhancements, more and more companies have started using big data
and many are now on the verge of using big data solutions. There are different
infrastructural ways to deploy a big data setup. Until some time ago, the only option for
companies was to establish the setup on site. But now they have another option: a cloud
setup. Many big companies, such as Microsoft, Google, and Amazon, are now providing a
large amount of services based on company requirements. It can be based on server
hardware configuration, and can be for computation power utilization or just storage space.

Why Big Data? Chapter 1

[22]

Later in this book, we will discuss these services in detail.

Different types of big data infrastructure

Every company's requirements are different; they have different approaches to different
things. They do their analysis and feasibility before adopting any big changes, especially in
the technology department. If your company is one of them and you are working on
adopting any big data solution, make sure to bear the following in mind.

Cost
This is a very important factor, not just for small companies but also for big companies.
Sometimes, it is the only deciding factor in finalizing any solution.

Setting up infrastructure on site has a big start up costs. It involves high-end servers and
network setup to store and analyze information. Normally, it's a multimillion dollar setup,
which is very difficult for small companies to bear; that would lead them to stay on a
traditional approach. Now, with the emergence of technology, these companies have the
option to opt for a cloud setup. In this way, they have the option to have an escape route
from the start up costs, while utilizing the full potential of big data analytics. Companies
offering cloud setup have very flexible plans, such as users having the option to just have a
server and increase them as required. On the other hand, setup on site requires network
engineers and experts to monitor full-time activity of the setup and maintain it. In a cloud
setup, there is less hassle for companies; they just need to worry about how much storage
capacity they need and how much computational power is required for analysis purposes.

Why Big Data? Chapter 1

[23]

Security
This is one of the main concerns for companies, because their establishment depends on it.
Infrastructure setup on premises gives companies a sense of more security. It also gives
them control over who is accessing their data, when it is used, and for what purpose it is
being used. They can do their due diligence to make sure the data is secure.

On the other hand, data in the cloud has its inherent risks. Many questions arise with
respect to data security when you don't know the whereabouts of your data. How is it
being managed? Which team members from the cloud infrastructure provider can access
the data? What, if any, unauthorized access was made to copy that data? That being said,
reputable cloud infrastructure providers are taking serious measures to make sure that
every bit of information you put on the cloud is safe and secure. Many encrypting
mechanisms are being deployed so that even if any unauthorized access is made, the data
will be useless for that person. Secondly, additional copies of your data are being backed up
on entirely different facilities to make sure that you don't lose your data. Measures such as
these are making cloud infrastructure almost as safe and secure as on-site setup.

Current capabilities
Another important factor to consider while implementing big data solutions in terms of on-
premises setup versus cloud setup is whether you currently have big data personnel to
manage your implementation on site. Do you already have a team to support and oversee
all aspects of big data? Is it with your budget, or can you afford to hire them? If you are
starting from scratch, the staff required for on-site setup will be significant, from big data
architects to network support engineers. It doesn't mean that you don't need a team if you
opt for cloud setup. You will still need big data architects to implement your solution so
that companies can focus on what's important, making sense of the information gathered
and effecting implementation in order to improve the business.

Scalability
When you install infrastructures for big data on site, you must have done some analysis
about how much data will be gathered, how much storage capacity is required to store it,
and how much computation power is required for analysis purposes. Accordingly, you
must decide on the hardware required in this setup. Now in future, if your data analysis
requirement changes, you may start receiving data from more sources or need more
computation power to perform analysis on it. In order to fulfil this requirement, you need
more servers or for additional hardware to be installed in your on-site setup.

Why Big Data? Chapter 1

[24]

Another aspect will be this: let's suppose you did the analysis that you will gather this
much data, but after implementation, you are not receiving that much, or before, you
assumed that you would need this much computational power but now, after
implementation, you realize that you don't. In both cases, you will end up with expensive
server hardware of no use to manage. In a cloud setup, you will have the option to scale
your hardware up and down, without worrying about the negative financial implications,
and doing so is incredibly easy.

We will now move on to briefly discuss some of the key concepts and terminologies that
you will encounter in your day-to-day life while working in the world of big data.

Big data glossary
The section includes some key definitions to sum up the core concepts of big data. These
will help you to keep key definitions in mind as we move further into the book, to help you
understand what we have learned so far, and what lies ahead of us.

Big data
Data that is massive in volume, with respect to the processing system, with a variety of
structured and unstructured data containing different data patterns to be analyzed.

Batch processing
A process of analyzing large datasets, which is typically scheduled and executes in bulk
when no other processes are running. This is typically ideal for non-time-sensitive work
that operates on very large datasets. Once the process has finished executing the task, it will
return results typically as an output file or as a database entry.

Cluster computing
Cluster computing is the practice of combining the resources of multiple commodity low-
cost hardwares and managing their collective processing and storage capabilities to execute
different tasks. It requires a software layer to handle communication between different
individual nodes in order to effectively manage and coordinate the execution of assigned
work.

Why Big Data? Chapter 1

[25]

Data warehouse
A large repository of structured data for analysis and reporting purposes. It is composed of
data that is already cleaned, with a definite schema and well integrated with sources. It is
normally referred to in the context of traditional systems, such as BI.

Data lake
Similar to a data warehouse, for storing large datasets, but it comprises unstructured data.
This is a commonly used term in the context of big data solutions that store information
such as blogs, posts, videos, photos, and more.

Data mining
Data mining is the process of trying to process a mass of data into a more understandable
and visual medium. It is a broad term for the practice of trying to find hidden patterns in
large datasets.

ETL
ETL stands for extract, transform, and load. This mainly refers to traditional systems such
as BI, which take raw data and process it for analytical and reporting purposes. It is mainly
associated with data warehouses, but characteristics of this process are also found in the
ingestion pipelines of big data systems.

Hadoop
An open source software platform for processing very large datasets in a distributed
environment with respect to storage and computational power, mainly built on low-cost
commodity hardware. It is designed for easy scale up from a few to thousands of servers. It
will help to process locally stored data in an overall parallel processing setup. It comprises
different modules–Hadoop Distributed File System (HDFS), Hadoop MapReduce, and
Hadoop YARN (Yet Another Resource Negotiator).

Why Big Data? Chapter 1

[26]

In-memory computing
A strategy that involves moving the working datasets entirely within a cluster's collective
memory instead of reading it from hard disk, to reduce the processing time while omitting
I/O bound operations. Intermediate calculations are not written to disk and are instead held
in memory. This is the fundamental idea of projects such as Apache Spark. Because of this,
it has huge advantages in speed over I/O bound systems such as MapReduce.

Machine learning
The study that involves designing a system that can learn without being explicitly
programmed. It can have the ability to adjust and improve itself based on the data fed to it.
It involves the implementation of predictive and statistical algorithms that can continually
zero in on correct behavior and insights as more data flows through the system.

MapReduce
MapReduce is a framework for processing any task in a distributed environment. It works
on a Master/Slave principle similar to HDFS. It involves splitting a problem set into
different nodes available in a clustered computing environment and produces intermediate
results. It then shuffles the results to align like sets, and then reduces them by producing a
single value for each set.

NoSQL
NoSQL provides a mechanism for storage and retrieval of data that is not in tabular form,
such as what we store in relational database systems. It is also called non-SQL or a non-
relational database. It is well suited to big data as it is mostly used with unstructured data
and can work in distributed environments.

Stream processing
The practice of processing individual data items as they move through a system. This will
help with real-time analysis of the data as it is being fed to the system. It is useful for time-
sensitive operations using high velocity metrics.

Why Big Data? Chapter 1

[27]

Summary
In this chapter, we have learned about big data, its characteristics, the six Vs of big data,
and the different aspects of big data. We have also discussed clustered computing and how
to approach it for big data solutions. We also compared big data infrastructure on site
versus the on-cloud setup. At the end, we briefly described some commonly used terms
that you maybe already have encountered and will encounter, whenever you deal with big
data. In the next chapter, we will go through the step-by-step setup of creating our own
Hadoop environment, from a single node server to a clustered environment.

2
Big Data Environment Setup

In this chapter, we will go through a step by step guide on how to set up an environment to
run big data applications. We will go through the following step-by-step setup guides:

Installing Oracle VM VirtualBox
Installing and configuring Ubuntu
Installing Apache Hadoop prerequisite applications
Installing Apache Hadoop
Configuring Hadoop to run as a single node server and pseudo-distributed mode

Oracle VM VirtualBox installation
There is a lot of software available in the market that can help you create virtual
environments, also known as virtual machines, on top of your existing operating system.
Creation of a virtual machine is useful if you want to try a new setup or application without
affecting your existing configuration. Most of the softwares are available for all platforms,
such as Windows, macOS, and different Linux distributions. Some of them are paid and
some are free. We will be using Oracle VM VirtualBox, as it is a free open source software
available under GNU General Public License (GPL) version 2:

Download the latest version of the application from http:/ ​/​www. ​virtualbox.1.
org/​, based on your operation system.
Double click on the downloaded file to start setup.2.

http://www.virtualbox.org/
http://www.virtualbox.org/
http://www.virtualbox.org/
http://www.virtualbox.org/
http://www.virtualbox.org/
http://www.virtualbox.org/
http://www.virtualbox.org/
http://www.virtualbox.org/
http://www.virtualbox.org/

Big Data Environment Setup Chapter 2

[29]

Click Next and leave the default options selected, as shown in the following3.
screenshot:

Figure 2.1.1

Figure 2.1.2

Big Data Environment Setup Chapter 2

[30]

Figure 2.1.3

It will show a warning sign that it will temporarily reset and disconnect your4.
network in. Click Yes and continue with the setup, as shown in the following
screenshot:

Figure 2.1.4

Big Data Environment Setup Chapter 2

[31]

Click Next until you finish the setup as follows:5.

Figure 2.1.5

Figure 2.1.6

Big Data Environment Setup Chapter 2

[32]

It is also recommended to install VirtualBox Extension pack, which gives
you added features such as support for USB 2.0 and USB 3.0, disk
encryption, on top of the default installation.

Ubuntu installation
After the successful installation of VirtualBox application, let's go ahead and create our first
virtual machine and install Ubuntu Linux on it. Later, we will be using this Ubuntu Linux
to configure big data applications and modules. Follow the steps given to set up the VM
and install Ubuntu:

Download the Ubuntu ISO file from https:/ ​/​www. ​ubuntu. ​com/ ​download/1.
desktop.
Open the VirtualBox application and click on New. Give a Name to your new2.
virtual machine as shown in the following screenshot:

Figure 2.2.1

https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop

Big Data Environment Setup Chapter 2

[33]

Assign memory (RAM). It is recommended to assign 4GB, as shown in the3.
screenshot that follows:

Figure 2.2.2

The next step is to Create a virtual hard disk now for your VM, as shown in the4.
screenshot that follows:

Big Data Environment Setup Chapter 2

[34]

Figure 2.2.3

It will ask you to select the type of virtual hard disk you want to create; keep the5.
default option selected (VDI (VirtualBox Disk Image)) and click Next to
continue, as shown in the following screenshot:

Figure 2.2.4

Big Data Environment Setup Chapter 2

[35]

It will give you an option as to whether the hard disk will be dynamically6.
allocated or of a fixed size. If you select fixed size and assign some limits to it,
you will no longer be able to increase the hard disk size in future. It's better to
select the dynamically allocated option, as shown in the screenshot. Click Next to
continue:

Figure 2.2.5

Big Data Environment Setup Chapter 2

[36]

It will ask you to assign an initial hard disk size. Later, VirtualBox will increase it7.
automatically as the initial assigned space gets utilized. Click Create:

Figure 2.2.6

Big Data Environment Setup Chapter 2

[37]

Your new virtual machine is now created. It's time to assign the bootable ISO file8.
that we downloaded in the first step, to make the virtual machine bootable. It's a
four step process, as the following screenshot shows:

Figure 2.2.7

Select your Virtual Machine, Ubuntu, and click on the Settings icon.1.
Select the Storage menu item from the left menu list.2.
Click on the CD-like icon to select the Ubuntu ISO file that was3.
downloaded in Step 1.
Click OK to close the Settings dialogue box.4.

Big Data Environment Setup Chapter 2

[38]

All steps are completed in terms of setting up the new Virtual Machine. Now it's time to
start the Ubuntu installation. Select Ubuntu and click on the Start button from the top
menu bar to launch your virtual machine. At the start, you will get a few prompts
regarding keyboard and mouse control; keep pressing the OK button until you see the
Ubuntu setup screen, as shown in the screenshot that follows:

Figure-2.3.1

Big Data Environment Setup Chapter 2

[39]

We will now go through the following step by step guide to install Ubuntu Linux:

Click on Install Ubuntu to proceed to next step. The setup will give the option to1.
automatically download the latest updates and some third party drivers and
applications with respect to the current Ubuntu version during the installation
process, as shown in the screenshot that follows:

Figure-2.3.2

Big Data Environment Setup Chapter 2

[40]

This step gives an option as to how you want to partition your hard disk. We are2.
currently installing it in a virtual environment and no other operating system is
already installed, so let the setup itself partition your hard drive with the
standard options, as shown in the image that follows. It also gives you an option
to encrypt the data that resides in your hard disk. To enable this feature, select
the Encrypt the new Ubuntu installation for security option. We will not be
selecting this option for now, so proceed further. The setup will show a
confirmation dialog that the changes will be written to the disk.
Click Continue to proceed, as seen in the screenshot that follow:

Figure-2.3.3

Big Data Environment Setup Chapter 2

[41]

Figure-2.3.4

The next step is to select your timezone. Fill out your location and click3.
Continue.
The next step is to select your keyboard layout. If it is anything other than4.
English, select the required language and keyboard layout settings. Otherwise,
click Continue to proceed to the next step.
This step covers configuring your machine; give your computer a name5.
and create your username and password. We will be using username
HadoopAdmin, as shown in the following screenshot:

Figure-2.3.5

Big Data Environment Setup Chapter 2

[42]

Click Continue to start the installation process. Once the installation finishes, the6.
setup will ask you to restart your computer. After restarting, you will see a
screen similar to the following figure. This means that you have successfully
installed Ubuntu on your virtual machine. It will look something like this:

Figure-2.3.6

Hadoop prerequisite installation
Hadoop modules are mostly written in Java, so one of the prerequisites is to install Java.
Hadoop daemons requires SSH to encrypt the communication between its nodes in an
insecure environment. We will now go through a step by step guide for installing and
configuring Java and SSH.

Big Data Environment Setup Chapter 2

[43]

Java installation
Hadoop is compatible with both Oracle Java and OpenJDK, but it is preferable to install
Oracle Java. To install it, use the following instructions:

Download JDK and JRE from http:/ ​/​www. ​oracle. ​com/ ​technetwork/ ​java/1.
javase/​downloads/ ​index. ​html.
Copy the downloaded tar.gz file to the location where you want to install Java.2.
Extract and install Java by using the following command. Make sure to replace3.
8u144 with the Java version you have downloaded:

$ tar zxvf jdk-8u144-linux-x64.tar.gz

The next step is to point the system to the extracted directory. In our case, files4.
are extracted to the ;/home/hadoopadmin/jdk1.8.0_144/ folder. Execute the
following command to make this Java version the default JVM:

$ sudo update-alternatives --install /usr/bin/java java
/home/hadoopadmin/jdk1.8.0_144/bin/java 100
$ sudo update-alternatives --install /usr/bin/javac javac
/home/hadoopadmin/jdk1.8.0_144/bin/javac 100

To make sure Java is installed correctly, use the following command to check5.
your Java version. It will display an output similar to the image that follows the
code block:

$ java -version

Figure-2.4.1

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Big Data Environment Setup Chapter 2

[44]

Edit the .bashrc file using the following command, and configure the Java path6.
at the end of the file. Make sure not to make any other changes in this file. The
image that follows the code block will give you a better idea:

$ sudo gedit ~/.bashrc

Figure-2.4.1.1

Once the installation finishes, you can delete the downloaded file as it is no7.
longer required.

Regular updates are expected of any application. Similarly, Java versions
tend to update. When installing Java for Hadoop, make sure to refer to the
wiki site of Hadoop to check the best matching Java version for your
Hadoop installation. The wiki site is available at https:/ ​/​wiki. ​apache.
org/​hadoop/ ​HadoopJavaVersions.

SSH installation and configuration
One of the prerequisites to run Hadoop is to install ssh. Hadoop scripts requires sshd to be
running to manage Hadoop remote daemons. To install it in Ubuntu, use the following
command:

$ sudo apt-get install ssh
$ sudo apt-get install rsync

https://wiki.apache.org/hadoop/HadoopJavaVersions
https://wiki.apache.org/hadoop/HadoopJavaVersions
https://wiki.apache.org/hadoop/HadoopJavaVersions
https://wiki.apache.org/hadoop/HadoopJavaVersions
https://wiki.apache.org/hadoop/HadoopJavaVersions
https://wiki.apache.org/hadoop/HadoopJavaVersions
https://wiki.apache.org/hadoop/HadoopJavaVersions
https://wiki.apache.org/hadoop/HadoopJavaVersions
https://wiki.apache.org/hadoop/HadoopJavaVersions
https://wiki.apache.org/hadoop/HadoopJavaVersions
https://wiki.apache.org/hadoop/HadoopJavaVersions
https://wiki.apache.org/hadoop/HadoopJavaVersions

Big Data Environment Setup Chapter 2

[45]

SSH, also known as Secure Socket Shell or Secure Shell, is a
cryptographic protocol that helps to encrypt communication in unsecured
networks where an SSHD is the daemon program for SSH. Together they
provide secure communication between two untrusted hosts over an
insecure network.

Once the installation completes after executing the preceding commands, it's time to
configure your SSH services. The first step is to generate an SSH key for our user by
executing the following command:

$ ssh-keygen -t rsa -P ""

-t is the type of key and -P implies for the password. It is left blank so that Hadoop can
interact with its nodes with any user involvement. Otherwise every time Hadoop requires
any communication with its nodes, the user has to enter a passphrase to continue the
operation. The output of the preceding program is shown in the following screenshot:

Figure-2.4.2

The next step is to enable SSH access locally using the previously generated keys. For this
purpose, execute the following command:

$ cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

Big Data Environment Setup Chapter 2

[46]

It's time to test our configuration. User interaction is required only for the first time, to
accept the connection and add a host key fingerprint to the user's known_hosts file.
Execute the following command to connect to your local machine using SSH without any
user involvement:

$ ssh localhost

The output of the command is as follows:

Figure-2.4.3

Hadoop system user
Adding a Hadoop system user is not required, but it is recommended. It helps to assign
different sets of privileges and the permission to separate the Hadoop installation from
other applications running on the same server. Execute the following commands to add a
group and a user:

$ sudo addgroup hadoop
$ sudo adduser --ingroup hadoop hduser

Big Data Environment Setup Chapter 2

[47]

The system will ask you to create a password for the new user and some other information,
such as Full Name, Phone Number, and so on. The output of the preceding command will
be something similar to the screenshot that follows:

Figure-2.4.4

In our case, this is an optional step, as we are using a dedicated virtual
machine for the purpose of running only Hadoop. So, adding a separate
privileged group and user is not required.

Apache Hadoop installation
After the successful installation of the prerequisites, it is now time to start the installation
and configuration of Hadoop itself. The following are the steps to get started:

Download the stable version of Apache Hadoop from http:/ ​/​www- ​us. ​apache.1.
org/​dist/ ​hadoop/ ​common/ ​. As of now the stable version available for download
is hadoop-2.8.1.

http://www-us.apache.org/dist/hadoop/common/
http://www-us.apache.org/dist/hadoop/common/
http://www-us.apache.org/dist/hadoop/common/
http://www-us.apache.org/dist/hadoop/common/
http://www-us.apache.org/dist/hadoop/common/
http://www-us.apache.org/dist/hadoop/common/
http://www-us.apache.org/dist/hadoop/common/
http://www-us.apache.org/dist/hadoop/common/
http://www-us.apache.org/dist/hadoop/common/
http://www-us.apache.org/dist/hadoop/common/
http://www-us.apache.org/dist/hadoop/common/
http://www-us.apache.org/dist/hadoop/common/
http://www-us.apache.org/dist/hadoop/common/
http://www-us.apache.org/dist/hadoop/common/
http://www-us.apache.org/dist/hadoop/common/
http://www-us.apache.org/dist/hadoop/common/
http://www-us.apache.org/dist/hadoop/common/

Big Data Environment Setup Chapter 2

[48]

Extract the downloaded file by using the following command:2.

$ tar zxvf hadoop-2.8.1.tar.gz

It's time to configure some parameters to run Hadoop. Use the following3.
command to edit the hadoop-env.sh configuration file:

$ gedit etc/hadoop/hadoop-env.sh

Look for the following line to set the JAVA_HOME path. Replace4.
/home/hadoopadmin/jdk1.8.0_144/ with the directory where you have
installed it. In our case, it will remain the same:

set to the root of your Java installation
export JAVA_HOME=/home/hadoopadmin/jdk1.8.0_144/

It's time to test the basic configuration of Hadoop. Try to run the following5.
command in your terminal:

 $ bin/hadoop

If you get some usage documentation of the Hadoop script, it means it is configured
correctly. If not, it may be that you have made a mistake in one of the preceding steps. Try
to go through them again to make sure every step has been followed correctly.

Hadoop configuration
Configuration files come with the Hadoop package and are configured by default to run as
a Single Node, as a single Java Process. There is also an option to run each Hadoop daemon
as a separate Java process, which is also known as a pseudo-distributed operation. To set
up pseudo-distributed mode, the following configurations are required. You can use any
text editor of your choice; we will be using gedit. All configuration files are located in
etc/hadoop/ inside the extracted Hadoop package folder. In our case, the complete path
is /home/hadoopadmin/hadoop-2.8.1/etc/hadoop/:

Edit the core-site.xml configuration file and copy the following code in1.
between the <configuration>..</configuration> tabs:

<property>
 <name>fs.defaultFS</name>
 <value>hdfs://localhost:9000</value>
</property>

Big Data Environment Setup Chapter 2

[49]

Edit the hdfs-site.xml file and copy the following in between2.
the <configuration>..</configuration> tabs. You can change the value
from 1 to any number; it depends how many copies of the data you want to
replicate:

<property>
 <name>dfs.replication</name>
 <value>1</value>
</property>

Path configuration for Hadoop commands
We will now configure the path for the Hadoop bin directory. As a result of this, you will
be able to execute Hadoop commands globally from any path. This configuration is similar
to the one which we did for the Java installation, in step 6. To do this configuration, execute
the following command:

$ sudo gedit ~/.bashrc

Once you execute this command, it will open up a configuration file. Add the following
code at the end of the file:

Hadoop Environment
export HADOOP_HOME="/home/hadoopadmin/hadoop-2.8.1/"
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin

Hadoop server start and stop
Now it's time to start our Hadoop server. But, before we proceed further, it's a part of the
recommended practices to format NameNode for the first time before we do so. NameNode
contains the metadata of the directory tree of all the files in DataNodes. The purpose of
formatting NameNode is to utilize all the space available in DataNodes even if any
unutilized data is stored. Execute the following command to format it:

$ bin/hdfs namenode -format

Big Data Environment Setup Chapter 2

[50]

To start your Hadoop server, execute the following command:

$ sbin/start-dfs.sh
$ sbin/start-yarn.sh

Open your browser and type in http://localhost:50070/ to see an overview of your
Hadoop Server. This web interface gives a lot of useful information, including a NameNode
overview, the number of live DataNodes, the number of dead DataNodes, your overall
storage capacity and its utilization, startup progress, and access to log files. The web
interface will be similar to the following figure:

Figure-2.4.5

For Linux terminals, you can also verify that all services are running by executing the
following command:

$ jps

Big Data Environment Setup Chapter 2

[51]

You will get an output similar to the following image:

To stop the Hadoop server, execute the following command:

$ sbin/stop-dfs.sh
$ sbin/stop-yarn.sh

You can verify whether all services related to Hadoop have been stopped by again running
the jps command. You will get an output similar to Figure-2.4.7. Now, you will not see any
of the services, such as DataNode, ResourceManager, and so on in the list:

$ jps

Figure-2.4.7

Summary
In this chapter, we have gone through a step by step guide for installing and setting up a
new virtual machine. Then, while using our new virtual machine, we have gone through
the installation of Ubuntu to treat it as a dedicated server. We then learnt how to install and
configure Apache Hadoop in a single node environment as well as in pseudo-distributed
mode. In between, we have also gone through a step by step guide to the installation of the
Hadoop prerequisite applications Java and SSH. Now, we are ready to go deeper into the
big data world, and will be able to execute our programs.

In the next chapter, we will take a deep dive into the Hadoop echo system, considering the
past and present of Hadoop, HDFS, MapReduce, and YARN in detail.

3
Hadoop Ecosystem

We should now have an understanding of what big data is and how it will impact
industries in their decision-making. We have also created and configured our own big data
virtual environment so that we can move forward in practical terms and build our own
applications. These applications will get more and more mature as we proceed further in
this book.

In this chapter, we will look at the Apache Hadoop Project in detail, touching on why it was
developed and what the advantages and disadvantages of using Hadoop are. We will also
go through the different components and modules of the Hadoop system and will also get
our hands dirty with some practical activities. The main topics that we are going to cover in
this chapter are as follows:

Apache Hadoop
HDFS
MapReduce Framework
YARN

We will then take a look at other Apache Projects that are directly or indirectly related to
the world of big data world that fit into the Hadoop Ecosystem. Some of the projects that
we will discuss include the following:

Zookeeper
Kafka
Flume
Cassandra
HBase
Spark

In this chapter, we will briefly discuss these projects' purposes and how they will impact
your decision-making while designing your big data solution.

Hadoop Ecosystem Chapter 3

[53]

Apache Hadoop
Apache Hadoop is an open source software platform that processes very large datasets in a
distributed environment with respect to storage and computational power, and is mainly
built on low cost commodity hardware. It came into existence thanks to a Google File
System paper that was published in October 2003. Another research paper from Google
MapReduce looked at simplified data processing in large clusters.

Apache Nutch is a highly-scalable and extensible open source web crawler project which
implemented the MapReduce facility and the distributed file system based on Google's
research paper. These facilities were later announced as a sub-project called Apache
Hadoop.

Apache Hadoop is designed to easily scale up from a few to thousands of servers. It helps
you to process locally stored data in an overall parallel processing setup. One of the
benefits of Hadoop is that it handles failure at a software level. The following
figure illustrates the overall architecture of the Hadoop Ecosystem and where the different
frameworks are within it:

Figure-3.0.1

In Hadoop Ecosystem, Apache Hadoop provides a framework for the file system layer,
cluster management layer, and the processing layer. It leaves an option for other projects
and frameworks to come and work alongside Hadoop Ecosystem and develop their own
framework for any of the layers available in the system. We will discuss other Apache
Projects that fit in the remaining layers later.

Hadoop Ecosystem Chapter 3

[54]

Apache Hadoop is comprised of four main modules. These modules are Hadoop
Distributed File System (the file system layer), Hadoop MapReduce (which works with
both cluster management and the processing layer), Yet Another Resource Negotiator
(YARN, the cluster management layer), and Hadoop Common. We will discuss these in
turn as we proceed with this chapter.

Hadoop Distributed File System
The Hadoop Distributed File System (HDFS) is a file system, as the name states, similar to
Windows (FAT or NTFS) and Linux (swap, ext3, and so on) that is specifically designed for
distributed systems that need to process large datasets with high availability. It is
optimized to work with multiple nodes and spread data across them in a clustered
computing environment to assure the maximum availability of data. The main difference
between HDFS and other distributed file systems is that it is designed to run in a low-cost
hardware setup and is highly fault-tolerant. The basic architecture of HDFS is shown in the
following diagram:

Figure-3.1.1

HDFS has two main components that basically work using the master and slave concept.
These two components are called the Name Node, which is the master node, and
the DataNode, which is a slave node.

Hadoop Ecosystem Chapter 3

[55]

NameNode is the key for the whole file system. It is responsible for spreading the data
across different data nodes based on the defined configuration. It contains and manages
metadata of the data blocks available across different data nodes. You might be thinking,
'What is metadata?' Metadata is the information related to files stored in a system, for
example, the name of a file, the size of a file, into how many block a file was split, where its
blocks are stored in the DataNodes, and so on.

Now consider what might happen if we lose this metadata information. Will we still be able
to retrieve all of the information and files that are stored in the DataNodes? The answer is
no. This is because we don't know which data block belongs to which file, and we even
don't know how many data blocks there are for a single file. Without this metadata
information, the whole HDFS system will collapse; that is why NameNode is considered to
be a single point of failure.

To overcome this issue, it is recommended that we have reliable server hardware to act as a
NameNode. If we rely on commodity hardware for NameNode, the chances of failure will
increase. We use commodity hardware in DataNode because we are replicating data in
three or more data nodes, so if any data node fails, we will still be able to extract the
information from another data node. In the case of NameNode, however, the information is
not being replicated anywhere; if it fails, the whole system will fail.

There are some configuration points that we have to take care of while setting up HDFS,
such as how many times data has to be replicated, determining the block size of the data,
and so on. The default block size in HDFS is 64 MB. This can be set to different sizes such as
128 MB, 256 MB, and so on. Normally, in other file systems, the data block size is relatively
low -4 KB or 8 KB - but HDFS is designed to handle large datasets. If we reduce the size of
the data block to a few KBs or MBs, the metadata information will increase, which in turn
increases the load on NameNode while retrieving file information. It will also increase the
overhead. In other words, when we need to execute a job or a program, the more data,
network activity, and processing will be required.

DataNode is responsible for a fragment of a large dataset commonly known as a data block.
Local storage management is assigned by NameNode. The default configuration of HDFS
copies each data block into three different data nodes, one on the same server rack and two
copies in a different rack. This helps with availability, so that even if one copy of the data
faces an issue, the other two copies will be available. Even though HDFS has a built-in fault
tolerance mechanism, it will not be able to foresee human errors such as copying or
deleting data. As a precaution, additional backups at a different location may be required.

Hadoop Ecosystem Chapter 3

[56]

Metadata information is used to store information about a file for easy retrieval and
processing. An illustration of data stored in different DataNodes is shown in the following
figure:

Figure-3.1.2

In the previous figure, two files, log1.txt and log2.txt, are stored in the HDFS. They
are both 100 MB. Now, as the default block size in HDFS is 64 MB, these files will be split
into two parts and, as per default configuration, each data block will be replicated to three
data nodes. NameNode will assign a block ID to each data block. This metadata
information will be stored in NameNode itself and the actual data block will be forwarded
to DataNodes for storage purposes. The other important thing to notice here is that HDFS
stores at least one copy of a data block in a different location; this may be on entirely
different premises or just in a different network rack.

Apart from metadata management, NameNode is also responsible for health reports for
each DataNode. This is done using a heartbeat. DataNode sends a heartbeat at a regular
interval to notify NameNode that it is alive. The default interval time is 3 seconds. If any
data node fails to send a heartbeat, NameNode will wait for up to 10 missed heartbeats, 30
seconds, before acting. NameNode will then generate an alert to replace and mark that
DataNode as dead until it is replaced or returns. If any future data block retrieval happens
that involving a dead node, NameNode will point it to the next available copy of that data
block.

Hadoop Ecosystem Chapter 3

[57]

NameNode also facilitates a load balancing mechanism, so that if any DataNode is already
heavily loaded, it will assign a task to the next available DataNode that contains required
data blocks. This will help with the faster processing of a large dataset and utilizing the
maximum throughput of available servers.

HDFS hands-on
Now let's get hands-on with HDFS. We will run the following tutorial on the virtual
machine we set up in Chapter 2, Big Data Environment Setup. Let's first start with some
basic commands, which are similar to Linux. All Hadoop commands require the hdfs
prefix. If the command is related to a file system operation such as directory listing,
creating, modifying, and deleting files and directories, it requires the dfs operator
immediately after the hdfs prefix. Let's now execute our first command in Hadoop.

Creating a directory in HDFS
The following command will create a directory called hdfs dfs -ls /
hadooptest in the root of the HDFS file system:

$ hdfs dfs -mkdir /hadooptest

Now execute the following command to list the files and directories present in HDFS, and
to verify that the previous command executed successfully and has created a directory for
us:

$ hdfs dfs -ls /

The preceding command lists the files and directories present in the Hadoop file system.
The output will be similar to the following figure. The following screenshot shows only one
directory, hadooptest, which we have just created. No other file and directory is present
as it's a fresh installation:

Hadoop Ecosystem Chapter 3

[58]

Figure-3.2.1

Copying files from a local file system to HDFS
We have created a file called test.txt in our home directory. To copy this file from the
home directory, that is, the local file system storage, to HDFS inside the folder
hadooptest, we need to execute the following command. The operator required for this
purpose is -put:

$ hdfs dfs -put test.txt /hadooptest/

To test whether the file has been copied successfully, execute the ls command, as we have
done previously. The output should be similar to the following screenshot:

Figure-3.2.2

If you don't specify the destination folder when putting a file in HDFS, it
will copy the file to a similar directory structure as the local file system if
the same directory structure is present in HDFS.

Hadoop Ecosystem Chapter 3

[59]

Copying files from HDFS to a local file system
Now we will try to retrieve a file we put in HDFS, test.txt. The operator required for this
purpose is -get. For this exercise, create a folder, hdfsfiles, in your local file system by
executing the following command:

$ mkdir hdfsfiles

After creating the folder, we will extract the file from HDFS and put it in the local system
by executing the following command:

$ hdfs dfs -get /hadooptest/test.txt hdfsfiles/

To verify that the file has been copied to our local file system, execute the following
command:

$ ls hdfsfiles/

The output of these commands should be similar to the following screenshot:

Figure-3.2.3

Deleting files and folders in HDFS
In the previous example, we copied the test.txt file in the hadooptest folder. Let's now
try to delete this file. To delete it from HDFS, execute the following command:

$ hdfs dfs -rm /hadooptest/test.txt

Now we will try to delete the folder hadooptest, which we created in our first example of
working with Hadoop hands-on. To delete this folder from HDFS, execute the following
command:

$ hdfs dfs -rmdir /hadooptest

Hadoop Ecosystem Chapter 3

[60]

The output of the preceding command should be similar to the following screenshot:

Figure-3.2.4

Hadoop MapReduce
Now that we have an understanding of how HDFS works, it's time to move forward and
seek to understand what the benefit of HDFS and a clustered computing environment is.
Hadoop introduces the MapReduce framework to facilitate the execution of programs and
parallel processing. The following figure illustrates where the MapReduce framework fits
into Hadoop's architecture:

Figure-3.2.5

This framework mainly consists of two parts: Map and Reduce. The Map process mainly
comprises of getting information from the data stored, applying the required algorithm,
and generating a result in the form of key-value pairs. The Reduce process is used to
summarize the information that was collected and paired during the Map process. We will
look at these processes in more detail as we proceed with this chapter, but let's first
understand how a program is executed in Hadoop.

Hadoop Ecosystem Chapter 3

[61]

Job Tracker and Task Tracker
Similar to HDFS, there are two main processes involved in the execution of any program,
which also works using the Master Slave concept. They are Job Tracker and Task Tracker.
Job Tracker is the master process, which receives requests for any program execution from
a client. It then gets related metadata information from NameNode and assigns it to Task
Tracker for further execution. The following figure illustrates the overall architecture
including Job Tracker and Task Tracker:

Figure-3.3.1

Job Tracker is a critical process as it manages the information of all of the program
executions in the full Hadoop cluster. This is why this process resides in NameNode. Job
Trackers also manages Task Tracker's activity and receives regular updates from it when it
is operational and executing a task. As part of the default configuration, Task Tracker sends
a heartbeat every 3 seconds, and Job Tracker will wait up to 30 seconds, 10 heartbeats,
before marking that Task Tracker as dead. It will then reassign the same task to other data
node that contains the same data.

Job Tracker is also responsible for load balancing between different data nodes. For
example, if any data node is already processing a program and a new program request to
access that data exists, Job Tracker will assign the new program to its replicated data node
to avoid overloading and to benefit from parallel processing.

Hadoop Ecosystem Chapter 3

[62]

The execution flow of MapReduce
In a traditional system, when a client program executes, it requests data that will then be
made available in the client's system for further processing. In the Hadoop system, the
program will be sent towards data so that if data resides in multiple data nodes, the copies
of a program will be sent to each data node, making it process in parallel. This is where the
MapReduce framework comes in, as it pictures how a program will execute, what the flow
will be, and how it will generate a result.

Job Tracker assigns tasks to Task Tracker before it starts processing on the data node. Let's
suppose we have a file named log.txt that is 200 MB. As per the default configuration, it
will be split into four data blocks; three of them will be 64 MB and the fourth one will be 8
MB. The following figure illustrates the storage of this file in different data nodes:

The input and output of a MapReduce program is written on the file
system.

Hadoop Ecosystem Chapter 3

[63]

Mapper
Mapper is a process of generating results in the form of key-value pairs based on the input
provided. It takes input as <key,value> pairs and outputs them in the same format that
can be different in terms of data type.

The number in Mapper depends on the number of Input Splits involved in storing data.
Let's assume that there are four Input Splits involved - there will four mappers involved in
processing. The following figure illustrates what happens in the Mapper function:

Record Reader is responsible for converting data into key-value pairs for Mapper. When
the program executes, Mapper will run on DataNode-1, DataNode-2, DataNode-3,
and DataNode-4 to take advantage of parallel processing; this is because independent data
nodes contain different data blocks of the same file. Mapper will then produce output in the
form of key-value pairs. This result is called Intermediate Results.

Shuffle and Sort
Between the Map and Reduce steps, there is a step called Shuffle. It is a process of
transforming results from the Mapper phase and making them available to the Reducer
function. All Mappers were executed independently on different data nodes and produced
results as Key Value pairs. The shuffling step will not wait for Mappers to finish their jobs
and will start processing them as they move along. Whichever Mapper finishes the job,
Shuffle will start to transform its data.

Hadoop Ecosystem Chapter 3

[64]

The key-value pairs of the intermediate result will be sorted before passed to Reducer. This
sort is done only on keys and not on values. Values will be passed to Reducer without
sorting. The following figure illustrates this process:

Reducer
After Shuffle, the intermediate output will then be passed on to Reducer as an input.
Reducer mainly performs an aggregation function on the key-value pairs for various
calculations depending on the program's purpose. The aggregation can be of any type,
including summation, multiplication, and so on, as illustrated in the following figure:

Finally, the program output is then written to the HDFS file system. It is worth noting that
the number of reducers is configurable in the Hadoop system; by default there is one.

Example program
It's time to get our hands dirty and write our first program in Hadoop using the
MapReduce framework. We will be using Java as a programming language for this
purpose. The objective of this program is to find the total amount paid for each utility bill.
For this purpose, we will create a text file that contains the required information. The
following step-by-step tutorial will help us achieve this.

Hadoop Ecosystem Chapter 3

[65]

Preparing the data file for analysis
Create a text file in your file system and enter some dummy that can be utilized in our
calculation. The format for entering text in the file is as follows:

Utility Name<space>Year-Month<space>Amount.

The following is an example of our text file. Alternatively, you can download a text file
from the GitHub repository, by visiting https:/ ​/​github. ​com/ ​smfahad/ ​BDAH- ​chapter3-
example-​data.​git:

electricity 2017-01 2000
gas 2017-01 700
telephone 2017-01 1150
electricity 2017-02 2230
gas 2017-02 850
telephone 2017-02 1350
...
...

Log.txt file sample data

Now create the utility directory and copy this file into HDFS by executing the following
commands:

$ hdfs dfs -mkdir /utility/
$ hdfs dfs -put log.txt /utility/

Program code
Now it's time to write a Java program to be executed in Hadoop. This Java program will
have three parts: the driver code, the Mapper code, and the Reducer code. The driver code
contains the main method and the parameters needed to process a MapReduce job. The
Mapper code contains how individual Mappers performs its calculation and the Reducer
code contains how the results will be combined. We will discuss these topics in detail as we
continue.

The MapReduce framework can only work on Java Object types and not
on Java Primitive types. This means there must be a class to access
primitive types as a collection.

https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git
https://github.com/smfahad/BDAH-chapter3-example-data.git

Hadoop Ecosystem Chapter 3

[66]

Driver program
The driver program will utilize the MapReduce framework in the Hadoop environment to
calculate the total amount paid for each bill. It is the primary executioner as it contains the
main method. It defines all of the parameters required by the Hadoop framework to
process a program. Following is the complete code for our driver class; note that comments
have been added to make the code self-explanatory:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class UtilityBillSummary {
 public static void main(String[] args) throws Exception {

 //Initiate Hadoop Configuration class
 Configuration conf = new Configuration();

 // It is to configure a MapReduce Job and assigning it a name
 // for logging purposes
 Job job = Job.getInstance(conf, "UtilityBillSummary");
 job.setJarByClass(UtilityBillSummary.class);

 // In this step we will define what are the names of out Mapper
 // and Reducer classes
 job.setMapperClass(UtilityMapper.class);
 job.setReducerClass(UtilityReducer.class);

 // Here we are defining the types of <Key, Value> pairs
 // Key will be of Text type i.e. String
 // Value will be of Long type
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(LongWritable.class);

 // Here we are assigning the input and output files
 // which will be passed while executing program
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 // Wait until MapReduce Job finishes
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

Hadoop Ecosystem Chapter 3

[67]

Mapper program
This is the Mapper part of the main program that generates Key Value pairs of the input
split provided by Record Reader. It extends the Hadoop Mapper class, specifying the types
of data that will be used while processing. The first two types, Object and Text, are required
when reading the text file. The line number offset will become the key and the actual text
will become the value. The last two types are an intermediate result generated by Mapper.
The text type will be the key and LongWritable will become the value of the generated
key-value pairs. Following is the complete code for the Mapper class:

import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class UtilityMapper extends Mapper<Object, Text, Text, LongWritable>
{

 // Initialize key and value part of the pair
 private Text utility = new Text();
 private LongWritable amount = new LongWritable(1);

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 // Mapper receive line by line of the text file
 String row = value.toString();

 // Check whether the text line contains data or its empty
 if (!row.isEmpty()) {

 // Split the data based in <space> deliminator
 String[] rowValues = row.split(" ");

 // set name of the utility
 utility.set(rowValues[0]);

 // set amount paid for that utility
 amount.set(Long.parseLong(rowValues[2]));

 // assign Utility as Key and Amount as value in keyValue pair
 context.write(utility, amount);
 }
 }
}

Hadoop Ecosystem Chapter 3

[68]

Reducer program
This class extends the Reducer class, which contains generic types. To extend it, we need
the types to be defined in a similar way to the process required in the Mapper class. We set
up our Mapper to produce <Text,LongWritable> values that will be used as input in the
Reducer class. These two types will become the first two values while extending the
Reducer class. The last two values define the type of the final output key-value pairs. In our
case, it will also be <Text,LongWritable>, as we have to produce a result that calculates
the total amount against each bill paid. Following is the complete code for the Reducer
class:

import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class UtilityReducer extends
Reducer<Text,LongWritable,Text,LongWritable> {
 private LongWritable result = new LongWritable();

 public void reduce(Text key, Iterable<LongWritable> values, Context
context)
 throws IOException, InterruptedException {
 // Initiate variable total
 long total = 0;

 // Go through all the values for a specific key and sum them up
 // to achieve our desired output.
 for (LongWritable val : values) {
 total += val.get();
 }

 // Assign calculated value
 result.set(total);

 // Assign the Utility as Key and the summed amount as value
 context.write(key, result);
 }
}

Hadoop Ecosystem Chapter 3

[69]

Observations and results
It's now time to execute your program in the Hadoop environment. If you are using Eclipse
or any other IDE to write your code, you can just export your solution as a JAR file. If you
are using a text editor to write your code, you need to compile it and make a JAR file from
the compiled class files. Put all three classes in the same folder and execute the following
command to compile them:

$ javac -classpath $(hadoop classpath) UtilityBillSummary.java
UtilityMapper.java UtilityReducer.java

Once that has been complied successfully, execute the following command to make a JAR
file that contains the compiled .class files:

$ jar -cvf utilitysummary.jar *.class

Now it's time to pass your JAR file to Hadoop for execution with the following command:

hadoop<space>jar<space>{yourfilename.jar}<space>{MainClassName}<space>{inpu
tfilename.txt}<space>{outputDirectory}

In our case, the values will be as follows:

Command fields Values Comments
JAR file name utilitysummary.jar The JAR file that we compiled previously
Main class name UtilitySummary Our main driver class

Input file in HDFS /utility/log.txt The text file on which we want to perform our
analysis

Output directory /utilityOutput
The result will be published to this directory
after completing the MapReduce job

Type in the following command as per the values mentioned previously to execute your
first MapReduce Job:

$ hadoop jar utilitysummary.jar UtilitySummary /utility/log.txt
/utilityOutput

Hadoop Ecosystem Chapter 3

[70]

The following figure shows a few lines from the output generated in the terminal. This
output contains the successful completion message:

Now when you browse the output directory /utilityoutput, you should see the two following files:

_SUCCESS, which tells you that the job was completed successfully
part-r-00000, which contains the actual result gathered; there may be multiple
files here, with a sequence, such as 00001, 00002, and so on

The following figure displays the files generated in the output directory:

To view the result of your program, display the contents of the part-r-00000 file as
shown in the following screenshot. As you can see, it displays the total amount paid for
each utility:

Hadoop Ecosystem Chapter 3

[71]

YARN
Now we have completed some hands-on experience using the MapReduce framework. You
should now be able to recall that in MapReduce, we see a service called Job Tracker. Job
Tracker does the following things:

It gets the information from NameNode to figure out where the data that will be
required by the client program resides
It coordinates with respective Task Trackers to assign jobs
It monitors the life cycle of a Task Tracker's activities

In a normal scenario, it seems perfectly acceptable that a single machine can handle the
preceding activities. We should instead be thinking of these services taking place in a
production environment with a large cluster, where thousands of jobs will be running. This
means that the Job Tracker will be performing several activities, a burden for the Job
Tracker and an inelegant solution. This way of working can also lead to a performance
bottleneck, as new jobs will continuously arrive to a single point of contact in Hadoop.

The second problem in the current Hadoop framework is resource allocation. So, let's
assume that we have four machines in a cluster. Two of them have 8 GB of RAM and the
other two have 16 GB of RAM with an equal amount of storage capacity. When Job Tracker
assigns a job to Task Tracker, Task Tracker is only responsible for processing that task
within its own machine resources. It is also worth mentioning that in this scenario, all
machines will be considered the same and Task Tracker will performs a task whether it has
8GB of RAM or 16GB available.

To overcome these architectural issues, Hadoop has introduced a new processing model
called YARN (Yet Another Resource Negotiator) to replace the Job Tracker and Task
Tracker model. It is also called Hadoop 2. The following figure illustrates Hadoop's
architectural with YARN included:

Hadoop Ecosystem Chapter 3

[72]

YARN divides the functionality of a Job Tracker into different services. It works with the
following four new services:

Resource Manager
Node Manager
Container
Application Manager

The following figure illustrates YARN's model and where the preceding services will run:

YARN supports programs written in older APIs, that is, MapReduce v-1,
as well programs written in newer APIs.

Hadoop Ecosystem Chapter 3

[73]

Resource Manager
We know that YARN has introduced a new cluster management architecture. One of the
new components of this architecture is Resource Manager. Resource Manager has
somewhat limited functionality compared to Job Tracker. In the previous model, Job tracker
was responsible for taking care of all the activity and its status in the cluster, whereas
Resource Manager is responsible for the following:

Assigning an ID to a new job submitted by a client
Initiating a new daemon service called Application Master on the available Node
Manager and assigning the job to this Application Master for further execution
and handling
Managing and assigning resources across clusters in the form of containers.

In Hadoop V1, we had only one Job Tracker. In case of any failure in Job Tracker, the whole
cluster execution will collapse. Now, with Hadoop v2, there is also a backup Resource
Manager that can replace the original in the case of any failure.

Node Manager
Node Manager is a service daemon that runs on all data nodes. It means that every data
node has its own Node Manager. It is responsible for monitoring resources, such as
memory, CPU, and storage and reporting back to Resource Manager how much is available
and how much has been utilized.

Container
A container is a slot representation of CPU and memory utilization that has been assigned
by Resource Manager in a data note in any cluster. Containers are managed by Node
Manager. A container is a place where a program resides and executes its tasks, such as Map
and Reduce.

Application Master
Once a client submits a new job to Resource Manager, it will then contact any available
Node Manager and initiate the Application Master service in the data node. Application
Master will then contact NameNode to retrieve the metadata required to execute the job. It
will then create one Map task per input split.

Hadoop Ecosystem Chapter 3

[74]

Application Master will also decide how many containers it requires to execute a job. If the
task is small, Application Master executes them within its own JVM or container, which
helps to reduce the overhead of requesting and allocating a separate container. These small
tasks are commonly known as Uber Tasks.

Parameters of Uber Jobs can be configured by editing the mapred-site.xml file in
/etc/hadoop/ directory of the Hadoop installation. These parameters are as follows:

Variables Configurable
values Comments

mapreduce.job.ubertask.enable True or false Enables or disables the
handling of Uber Tasks

mapreduce.job.ubertask.maxmaps Any number
Defines the maximum number
of Mappers a job can contain
before considered an Uber Job

mapreduce.job.ubertask.maxreduces Any number
Defines the maximum number
of Reducers a job can contain
before considered an Uber Job

mapreduce.job.ubertask.maxbytes

Defines the maximum byte
size of a job before considered
an Uber Job; if no value is
specified, the default block
size in the HDFS configuration
will be considered the
maximum number of bytes

Application Master will terminate itself after completing a job assigned to it. You may think
of Application Master as a person hired for a specific task who leaves once they've finished.

Apache Projects related to big data
We have now developed an understanding of how a program works and is executed in the
Hadoop environment, how resources are allocated to a program, and Hadoop's approach to
stored data. This information is mostly related to cluster management and custom
application processing, but there are many Apache Projects that are related to big data
processing that will help to process data. We will now briefly go through some of these
projects, as we will be using some of them in our examples and programs later on in this
book.

Hadoop Ecosystem Chapter 3

[75]

Apache Zookeeper
Zookeeper is an open source Apache Project that provides a centralized infrastructure and
services that enable synchronization across a cluster. It is responsible for maintaining
synchronization between different objects such as configuration files, hierarchical
namespaces, messaging, notifications, and so on. The Zookeeper framework is mainly
designed for use in setup synchronization within a distributed clustered environment.
Imagine that you need to build an application for a distributed environment for 10 to 20
servers that requires synchronization services for data maintenance. Despite such a small
setup, you will have to write your own services and confront any issues arising from
synchronization. In this situation, Zookeeper would be a great support. Zookeeper is also
designed to be very fast and work well with heavy loads in a cluster environment.

Zookeeper is written in Java. It exposes its API to be used by the
application in Java as well as in C-programming languages.

Now we will go through the architecture of Zookeeper. Zookeeper uses the leader and
followers concept, where consistency in data relies on a leader that can provide and verify
data. The following Figure illustrates the Zookeeper Quorum configuration:

It is recommended that Zookeeper Quorum has an odd number of nodes, as some features
in Zookeeper require a voting mechanism. For example, if you have five nodes in Quorum,
three votes are needed as a majority to elect a leader. If you have six nodes in Quorum, you
need four votes to win a majority, the same needed if you have seven nodes. One extra
node will make your life easier without much overhead.

Hadoop Ecosystem Chapter 3

[76]

Whenever a leader is unable to get a majority because of hardware failure, network failure,
or any other reason, it steps down and the Zookeeper system becomes read-only. Similarly,
when the leader itself fails, the remaining nodes will elect a new leader.

Zookeeper is a fault-tolerant system. It makes sure that replication has been done properly.
So, in the case of a write operation, a request first goes to the leader before being forwarded
to the available nodes. If the majority of nodes receive the updated data and write it
persistently, Zookeeper will not commit and confirms to the client that the data has been
successfully written. This all happens in parallel.

The Zookeeper API contains two definitions for every function. One
function is for synchronous calls and the other one is for asynchronous
calls. You can select any one of them based on your requirements.

Zookeeper works in a tree-like directory structure. Each node in a tree is called a znode.
The top-most znode in the hierarchy is called the Parent node, which is also represented by
/. Most applications that use Zookeeper create their node after the parent node. The most
important thing to note here is that each node can contain data as well as its child node. The
following figure illustrates the directory structure of Zookeeper and how it stores
information:

Hadoop Ecosystem Chapter 3

[77]

There are three types of znode; they are as follows:

Persistent Node: A type of node that once created, will remain stored until it is1.
deleted deliberately by the application or user.
Ephemeral Node: A type of node that once created, will remain there until the2.
client is connected and will be deleted once the connection is closed.
Sequential Node: A type of node that once created, Zookeeper attaches a 10 digit3.
sequence number to, along with a prefix and a create command. It can be
persistent or ephemeral in nature.

To sum up the operations of the Zookeeper, it provides highly reliable services while
keeping many copies of the data and configuration. Its best use is to only store
configuration files and manage the metadata information of your data. In Hadoop v1,
Namenode was the single point of failure. Because of which many companies were afraid
to use it as if the NameNode goes down, all of their data will be lost. To overcome this
factor, in Hadoop v2, Apache introduces Zookeeper to handle NameNode failure. So that if
active NameNode goes down, the standby node will take its place, and because of the
zookeeper super fast performance, all this happen in a very minimal time leaving no to
very little discontinuation in performance.

Apache Kafka
We have now learned how Hadoop clusters work and how they process data. We've so far
assumed that data is already available in the cluster for analysis, but have you thought
about how it was made available in Hadoop? How you will handle the stream of data
coming in, for example? Will some sources continue to generate data that you have to bring
into Hadoop in real-time for analysis? Consider that you are required to gather data from
multiple sources. For that you need a mechanism that can handle multiple sources in a
fault-tolerant manner.

Apache Kafka is real-time feed handling system that can receive data from multiple sources
called Producers and that can provide data to multiple destinations called Consumers in a
sequential manner. The following figure illustrates the flow of data in the Kafka
framework:

Hadoop Ecosystem Chapter 3

[78]

Figure-3.6.1

Each stream of data coming in and out from a Kafka cluster is known as a Topic. A topic
labels the data that is coming from different producers. It also helps consumers request a
particular dataset from a Kafka cluster in the form of a required topic. The following
figure illustrates the internal mechanism of a Kafka cluster:

Hadoop Ecosystem Chapter 3

[79]

The topic itself is comprised of different partitions. These partitions are sequences of data
blocks called Records. A producer submits a record to a broker in a Kafka cluster. The
broker is then responsible for replicating that data in different partitions and maintaining
its sequence. When a consumer requests data related to a specific topic, the broker is the
one who is responsible for handling that request and providing the desired output in a
sequential manner. For the broker, all client handling is done independently, so it doesn't
affect one client if another acquires data slowly. For example, if one client received record 5
and is ready to receive record 6, at the same time broker can send record 3 to a different
client.

One thing to keep in regarding Kafka is that it doesn't allow you to make any amendment
once data has been sent a cluster for handling. This means that you will not be able to any
updates of any sort nor be able to delete a record. Kafka doesn't perform much processing
in memory; therefore, all records received by Kafka are directly written to the hard disk,
making these records persistent.

The Apache Kafka framework is not just for Hadoop; it can be utilized in any input and
output stream handling scenarios. In Hadoop, with the help of Kafka, we can analyze the
stream of data as it comes in, instead of collecting the data first and then running batch jobs.

Apache Flume
Apache Flume is a framework that helps move a large amount of streaming data from one
place to another. It is primarily designed for log collection and aggregation, obtaining data
across different servers before moving it to a centralized place such as Hadoop for
processing and analysis. Its usages not limited to just log aggregation, though. Flume's data
source connectors are customizable and can be used to transport a large amount of event-
generated data such as network traffic data, social media data, and so on. It is a fault-
tolerant system with many failure and recovery mechanisms. The following figure
illustrates how Apache Flume works:

Hadoop Ecosystem Chapter 3

[80]

There are three main components inside a Flume agent. They are as follows:

Flume source: External Data sources including web servers or social media
generate a log or event-related data; these events will be consumed by a flume
source. For example, if a Flume source is configured to monitor a Twitter
account, it will generate an event for every tweet and pass it on. Once a Flume
source receives the event, it will pass it on to a Flume channel. It has no control
over how a Flume channel will store or treat the data.
Flume channel: A Flume channel is connected to both a Flume source and Flume
sink. Once any event reaches a Flume source, it will be immediately passed on to
a Flume channel, which acts as a buffer once you have configured how much
data it can store. A Flume channel is responsible for storing data until it is
consumed by the Flume sink. It may use a local file system to store data for more
reliability.
Flume sink: A Flume sink is responsible for retrieving an event from a Flume
channel and passing it on to an external repository, such as HDFS. The event will
be removed from the Flume channel once it is consumed by a Flume sink.

Hadoop Ecosystem Chapter 3

[81]

Flume is a framework that helps with data handling while streaming it in to Hadoop. It is
often compared to Apache Kafka, although they are two quite different systems. Some of
their functionalities may overlap, but that doesn't mean Apache Kafka is an improved
version of Apache Flume or vice versa. Kafka is more of a general-purpose system that can
be used in messaging or in other types of systems that require an approach with a fault-
tolerant mechanism. On the other hand, Flume is a reliable data handler tightly built for the
Hadoop ecosystem that brings a large amount of log and streaming data into the Hadoop
cluster. It provides many built-in sources and sinks, which can be used directly in your
application.

Apache Cassandra
Cassandra is an open source Apache Project designed for NoSQL database management. It
was initially designed by the Facebook team for their internal use, specifically to enhance
their search engine mechanism for unstructured data. It was later released by Facebook as
an Apache Project.

Cassandra runs on a distributed environment. Its architecture was designed with the idea
that software and hardware fails in mind. So, if anything fails in a cluster, it doesn't mean
that the whole operation also has to fail.

Some of the key features of Apache Cassandra are as follows:

All nodes in a Cassandra cluster have the same role; in other words, there is no
master node or leader node. Every node can service a client request. This makes
it a system with no single point of failure and high availability.
Cassandra runs across multiple nodes across multiple data centers. It replicates
data across these data centers to avoid failure or downtime. This makes it a
highly fault-tolerant system.
Cassandra supports integration with Apache Hadoop. It also supports
MapReduce.

Cassandra has a component called Gossip Protocol. The primary purpose of Gossip
Protocol is that the nodes in a Cassandra cluster can communicate with each other
internally as part of their core. By using such a protocol, nodes can share their current state,
location, heartbeats, and much more. Information collected using Gossip is persisted. In
case of any temporary failure or node restart, it will be immediately available for the node
to pick up from where it left off.

Hadoop Ecosystem Chapter 3

[82]

The main brain behind replication in Cassandra is called Partitioner. Partitioner decides
which node will get the first copy of data and how other nodes will receives remaining
copies. It uses a primary key, which is also known as a partition key, to identify a unique
row. An interesting point to note is that a partition key is not just used to classify the
uniqueness of data but it also contains other related information. The most important
information it contains is about data locality, meaning it has the address of the nodes where
the data resides.

Cassandra uses it own programming language to access data across its nodes. It is called
Cassandra Query Language or CQL. It is similar to SQL, which is mainly used by
Relational Databases. CQL can be used by running its own application called cqlsh.
Cassandra also provides many integration interfaces for multiple programming languages
to build an application using Cassandra. Its integration API supports Java, C++, Python,
and others.

Apache Cassandra is a very popular, free, and open-source tool for unstructured data
management with no single point of failure. We will discuss Apache Cassandra in detail in
our next chapter, which is all about NoSQL, its related technology, and frameworks.

Apache HBase
HBase is another Apache Project designed to manage the NoSQL data store. It is designed
to make use of Hadoop Ecosystem's features, including reliability, fault tolerance, and so
on. It utilizes HDFS as a file system for storage purposes. There are multiple data models
that NoSQL works with and Apache HBase belongs to the column-oriented data model.
HBase was originally based on Google Big Table, which is also related to the column-
oriented model for unstructured data.

HBase stores everything in the form of a key-value pair. The important thing to note is that
in HBase, a key and a value are in the form of bytes. So, to store any information in HBase,
you have to convert information into bytes. (In other words, its API doesn't accept any
thing other then byte array.) Be careful with HBase, as when you store data, you should
remember its original type. Data that was originally a string will return as a byte array if
recalled incorrectly. As a result, it will create a bug in your application and crashes your
application.

HBase is written in Java. It also exposes an API for Java integration. Oher
programming languages have to use RESTful web services or the Thrift
gateway.

Hadoop Ecosystem Chapter 3

[83]

HBase doesn't have any SQL tool built-in, so as an alternate, you have to use another
application or third party tools to write SQL queries that directly run on HBase. Some of
these projects include Apache Phoenix, Hive, and Presto.

When we think about the design consideration of an HBase database, we should not think
of it as a relational database where you try to find a relationship between each object. If you
think of it in this way, you will end up with a poorly-performing, un-optimized database.
In relational database design, you first identify the relationship between different entities,
build an index, and do performance tuning in order to get quicker results when you
execute SQL queries. In the case of HBase, it is the total opposite. You have to build your
queries first so as to identify how you will approach data. You have to normalize and
denormalize your data based on which entities have been accessed together and not on the
basis of their relationship.

Apache HBase is a free and open-source tool for unstructured data management. We will
discuss it in detail in our next chapter, which is all about NoSQL database and its related
frameworks.

Apache Spark
Apache Spark in an open-source framework designed for multiple purposes. It has
different processing components, which are as follows:

Spark Core: It is like the main brain of Spark. It handles the most critical
functions within Spark, such as task scheduling.
Spark SQL: It is designed to work with structured data. It can run SQL as well as
HiveQL queries to seamlessly integrate Spark in an existing application. It also
supports JDBC and ODBC connectors as per the industry standard to connect to
Business Intelligence tools.
Spark Streaming: It is designed to work with streams of data in a scalable and
fault-tolerant manner. It splits streaming data into mini batches and then
executes a job. It can also be linked with an existing data stream, like in HDFS,
Kafka, and Flume. You can also create your own data source if needed.
MLib: It is designed to execute a machine learning algorithm and perform
statistical analysis on your big data with the super fast processing power of
Spark. The list of algorithmic topics includes classification, regression, decision
trees, random forests, and gradient-boosted trees. It also contains algorithms
related to recommendation, clustering, topic modeling, frequent itemsets,
association rules, and sequential pattern mining.

Hadoop Ecosystem Chapter 3

[84]

GraphX: It is designed for graph-related analytics. It has a vast list of algorithms
that have been contributed by its users.

The following figure illustrates Spark's components in Hadoop Ecosystem:

Figure-3.8.1

Apache Spark is one of the top choices for big data architects because of the components
and libraries it supports. The application developer doesn't have to look for a different
framework to do any of the listed functionalities, and some of its key features are as
follows:

Spark's main attraction is its memory processing of large datasets. Spark persists
the data in memory and also on the disk if necessary. It also has an improved
algorithm for processing data. As per the Spark's team benchmark, its response
time is 100 times faster than MapReduce in memory processing and 10 times
faster than Hadoop at disk operations.
From a developer's perspective, Spark supports integration with Java, Python,
Scala and R programming languages, while most frameworks only support Java.
It supports multiple distributed processing frameworks including Hadoop
YARN and Mesos, and in the cloud. It can also work in an independent cluster
mode.
It supports multiple data sources, including HDFS, Cassandra, HBase, or any
Hadoop data source.

Apache Spark contains different libraries, as we have discussed, relating to big data
processing. To understand Spark as a big data architect, you will need more than an
overview. We will cover Spark's libraries in-depth in a different section of this book as we
proceed.

Hadoop Ecosystem Chapter 3

[85]

Summary
In this chapter, we looked at various aspects of Apache Hadoop. We discussed the main
components of Hadoop, such as the Hadoop Distributed File System, the MapReduce
framework, and YARN. In between, we did some practical work by executing basic
command related to HDFS. We also developed a program to calculate a bill summary using
the MapReduce framework with easy-to-understand code.

Then, we discussed other projects under the umbrella of the Apache Foundation. These
projects included Apache Zookeeper, Apache Kafka, Apache Flume, Apache Cassandra,
Apache HBase, and Apache Spark. These projects are related to Hadoop Ecosystem. Some
of them are related to bringing data into Hadoop, while others are related to the processing
of data. The important thing we learned here is that though projects may appear similar,
their uses and architecture differs. It's up to a big data architect to decide which framework
best fits their required setup.

In the next chapter, we will look at NoSQL in detail, as well as its core concepts and
principles. We will learn what the different data models in NoSQL are, as well as what
applications and frameworks are available against each data model. We will also discuss
the different designs available, helping you to choose the right model for you.

4
NoSQL Database

Nowadays, there is so much hype about NoSQL databases, especially in the big data world.
People seem to be discussing different aspects of NoSQL and how they can get the most out
of it. Different types of questions come to their minds, such as what is it? How it is different
from RDBMS? How do I select an appropriate framework and tool while architecting my
project?

In this chapter, we will go through NoSQL and answer all of these questions to build a
strong foundation. We will then cover the following NoSQL databases from practical
aspects, which includes their installation, basic configuration, and most of the operations
that we normally perform in a database. We will be mainly discussing the following topics:

What is NoSQL?
Benefits of NoSQL
Comparison of NoSQL and RDBMS
CAP theorem and ACID properties
Different data models in NoSQL
Apache Cassandra
MongoDB
Neo4j

Let's start exploring the NoSQL world with a question: what is NoSQL?

NoSQL Database Chapter 4

[87]

What is NoSQL?
So far, we have the understanding that when we say the word database, the most common
definition that comes to our mind is very well structured and formatted data stored in a
tabular form. Now the question is, what will happen with a large amount of data that is
unstructured and doesn't have the proper formatting or schema? What will we do then?
Here is where NoSQL database comes into the picture. It is a mechanism for storing data
that doesn't have any fixed schema. Most of the people assume that it means No SQL,
whereas the actual abbreviation is from Not Only SQL. It means that it doesn't rely only on
the SQL programming language for manipulating and storing data, but it can be used in
conjunction with other programming languages. Now, we will discuss some of the benefits
of NoSQL databases.

Benefits of NoSQL databases
NoSQL helps us to deal with data that we were not able to store or maintain using
traditional system approaches. The following are the key benefits of NoSQL databases:

NoSQL provides schema less data storage is one of the main advantages. It will
allow the storing of all types of data in different formats and in different
schemas, thereby providing more robust and agile development.
NoSQL servers scales horizontally, which means it is very easy to scale the
capacity up or down. Simply add new servers or remove servers to increase or
decrease its capacity, storage, and computation power.
NoSQL works in a clustered environment that is mainly built on commodity
hardware, which is much less expensive than a highly reliable server without
affecting the performance or reliability.
NoSQL databases spread across multiple nodes with replication to multiple
servers. Some of NoSQL database frameworks even work without the master
slave concept, which makes them highly available with no single point of failure.

These are some of the key advantages of using NoSQL databases over the traditional
approach. Now, moving forward, we will compare NoSQL with RDBMS databases to give
you a clear understanding of the differences between both database types.

NoSQL Database Chapter 4

[88]

NoSQL versus RDBMS
We will now discuss the different characteristics of NoSQL and relational databases with a
point by point comparison to give you a clear understanding:

RDBMS NoSQL

RDBMS are relational databases. NoSQL are normally non-relational databases or
distributed databases.

RDBMS databases store data in tabular
form, which mean it contains data rows
and columns.

NoSQL databases are of key-value, document,
column based, or graph based datastores.

RDBMS has predefined schema. NoSQL have dynamic schema.
RDBMS is vertically scalable. It means
you can only increase the hardware on
the same server, increasing the
computation or other hardware
resources.

NoSQL database is horizontally scalable. It
means you can add more servers in the cluster to
increase the computation power and different
hardware resources, such as storage and
memory.

RDBMS relies on standard query
language for all the related operations.
Different RDBMS tools extend the
features of the SQL by introducing their
own advanced function to be utilized for
handling databases.

NoSQL uses the basic format of the standard
query language. It may differ from framework to
framework, whichever you select to handle
NoSQL database.

SQL supports complex and nested
queries to extract the desired output.

NoSQL frameworks normally handle the basic
CRUD operations as far as support to SQL is
concerned. It doesn't have the interface to handle
complex and nested queries.

SQL is more reliable in performing high
transactional values.

NoSQL doesn't support high transactional
operations.

SQL replies on ACID (atomicity,
consistency, isolation, durability)
properties. We will discuss ACID
properties in detail as we proceed in this
chapter.

NoSQL mainly follows the CAP (consistency,
availability, partition) theorem. We will discuss
the CAP theorem in detail as we proceed in this
chapter.

SQL databases are classified based on
open source or commercial application.

NoSQL classifies its different database
frameworks based on the data model type it
supports, such as key-value data stores, and
column stores, and so on.

NoSQL Database Chapter 4

[89]

Example of RDBMS are MySQL,
Microsoft SQL, Oracle, Postgres.

Example of NoSQL frameworks are Apache
Cassandra, MongoDB, HBase, Redis, Neo4j.

SQL stands for Standard Query Language. It is a programming language
used in RDBMS (Relational Database Management System) to store and
retrieve data from a structured databases. It is as per the ANSI standard.

Now we will discuss the CAP theorem, which is related to NoSQL database, and ACID
properties, which are related to SQL database, in order to understand some of the
differences between NoSQL and Relational databases, as mentioned earlier.

The CAP theorem
CAP stands for Consistency, Availability, and Partition. It is also known as Brewer's
Theorem, after the computer scientist Eric Brewer. The theory states that a distributed data
system should ideally provide these three guarantees—consistency, availability, and
partition. But in the real world, it is not possible to achieve all three of these. The following
is an explanation of these three guarantees:

Consistency: The data source should provide the most recent data after every
successful write. It should make data updates across the whole cluster to provide
up to date changes while accessing any data copy.
Availability: It means that there is no downtime for the system and the service is
always available to serve any request.
Partition tolerance: It means the service will continue to serve requests even if
any of the server partitions of a certain group become unavailable because of any
reason. It means that server nodes will not be able to talk to each other, but they
may still be able to service the client request. The issue may occur because of
hardware failure, network failure, or delay in delivering network packets.

For NoSQL or any distributed data source, it is impossible to provide all three guarantees.
That is why different NoSQL database frameworks provide different combinations of the
CAP theorem. Some provide consistency with availability (CA), some provide consistency
with partitioning (CP) and some provide availability with partitioning (AP). The
following diagram illustrates these combinations:

NoSQL Database Chapter 4

[90]

Explanations of these combinations are as follows:

CA: This configuration guarantees the consistency of data. It make sure that all
the server nodes are available and are able to talk to each other, otherwise the
service itself becomes unable to service any requests until the all the desired
nodes are up and running.
CP: In this configuration, even though it will have sites in different geographical
locations, it will make sure that the data available is consistent across the cluster.
AP: In this configuration, it will make sure that the service is always available
with proper partitioning. It will not guarantee that the data returned by the
service is consistent.

NoSQL Database Chapter 4

[91]

Examples of CA are Relational Databases such as MySQL, MSSQL, Oracle, and so on. For
CP, examples are Neo4j and MongoDB, and examples of AP are Cassandra, CouchDB, and
so on.

Let's now explore what a transaction is with respect to a database, and what the ACID
properties of a transaction are.

The ACID properties
ACID stands for Atomicity, Consistency, Isolation, and Durability. These are the properties
that a transaction should have to reach the mark of a fully reliable operation. Maybe you
are now thinking what actually is a transaction? It is a small bunch of code or a mini
program that should run all together to keep data consistent on an existing database. A
transaction that has the ACID properties will ensure the integrity of data during all of its
internal operations. The following is an explanation of the individual properties:

Atomicity: It means if a transaction contains multiple reads or writes, all of them
should take place. Otherwise, if any step generates an error or fails due to any
reason, all the previous steps should roll back to their original state. In other
words, a transaction should either execute fully or not execute at all.
Consistency: A transaction should keep the integrity of data and leave the
system in a valid state at the end of a transaction, so that if it completes
successfully, the data will be consistent, and if there is any error, the system will
return to its last state, which was already a valid state.
Isolation: It means that at any given time only one transaction should take place
on the required set of data—otherwise, suppose that two writes are happening at
any given time; the data may lose its meaning.
Durability: It means that any changes that happen as a result of a successfully
transaction are permanent, no matter what happens to the server later on. All the
steps done during a transaction should be logged so that, in the case of any
failure, those steps can be recreated to restore their changes.

NoSQL Database Chapter 4

[92]

Let's now try to understand ACID properties using a banking transaction example. Let's
suppose the account ABC wants to transfer $150 to the account XYZ. Currently, the
available balance in account ABC is $1000. This transaction contains two steps; the first one
is to debit the amount from the ABC account and the second one is to credit it to the XYZ
account. The first steps executed successfully and debited the ABC account, and now the
available balance is $850. But the second step fails and the available balance will remain the
same for the XYZ account. This contains a serious risk for the bank and its reputation. To
overcome this issue, a transaction that has ACID properties will rollback the debit and the
amount in the ABC account will be back to $1000.

All the relational databases ensure that their transactions must have the ACID properties,
whereas most of the NoSQL databases only support part of these properties.

Data models in NoSQL
Data model means the way that any framework internally stores and processes data. Every
NoSQL database framework follows a data model to manipulate unstructured data. As of
now, there are more than 150 frameworks available on the market. If we classify them, they
will be broadly covered under four models, as illustrated in the following diagram and
discussed as follows:

NoSQL Database Chapter 4

[93]

Key-value data stores
NoSQL databases built on this type of data model store data in the form of key-value pairs,
as the name states. The key becomes the unique ID to insert and retrieve data whereas the
value contains the actual data. This data can be of any form, such as JSON, video, audio, log
file, and so on, making it flexible for storing any type of data. Its simplistic design increases
its performance while reading and writing data. This type of NoSQL database is normally
built for high availability and data partitioning, which is an AP configuration as per the
CAP theorem.

It doesn't support transactions, which means that the data may not be reliable and
consistent. These databases are not suitable when consistency and reliability is seriously
required, such as in the banking application, or any type of payment solution. Now it's up
to the solution architect to decide whether the data consistency and reliability is more
important than replication and availability in the application.

Examples of key-value data store NoSQL Databases are Redis, DynamoDB, Riak, Azure
Table Storage.

Document store
This type of databases is mainly designed to store semi structured data, such as JSON,
XML, BSON, and so on. It is similar to key-value data stores as it generates a unique key for
each row to associate it with semi structured document data. They are widely used in
content management systems, mobile applications.

Examples of document store NoSQL Databases are MongoDB, Elasticsearch, ArangoDB,
Azure Document DB, and so on.

Column stores
Column stores are also commonly known as wide column stores. They stores data in
tabular form. They organize data in column form instead of row form, similar to relational
databases, but the type and name of the columns may vary from row to row. It is sort of an
inverse of the traditional systems. It is a highly scalable and very high performance
architecture.

Examples of column store NoSQL databases are Cassandra, HBase, Hypertable, Amazon
SimpleDB, Flink, and so on.

NoSQL Database Chapter 4

[94]

Graph stores
In this data model, each record is treated as a node and all nodes are linked together to
form a relationship. It will help provide a more sophisticated and presentable form of data.
It will evolve and help to identify different patterns as the data increases over time.

Examples of Graph Store NoSQL Databases are Neo4j, GraphBase, InfoGrid, and so on.

We have now learned enough theory about NoSQL databases. Let's now start with some
practical stuff. Following are the commonly used NoSQL database frameworks of each data
model type; we will go through their basic set up, commands, and data manipulation
queries.

Apache Cassandra
Cassandra is one of the most widely used NoSQL databases from column data stores. We
have already discussed the different functionalities and benefits of Cassandra in the
previous chapter. Let's now do some hands-on.

Installation
First of all, we will go through a step-by-step guide for installing Cassandra, as follows:

 Download the Cassandra package from the website https:/ ​/​cassandra.1.
apache.​org/ ​download/ ​. The Current stable release is 3.11.1.
Extract the package by executing the following command. It will be extracted in2.
the directory apache-cassandra-3.11.1. In our case, the full path will
be /home/hadoopadmin/apache-cassandra-3.11.1/. The following
command illustrates this process:

$ tar zxvf apache-cas sandra-3.11.1-bin.tar.gz

Set up the environment variable by executing the following command:3.

$ gedit ~/.bashrc

https://cassandra.apache.org/download/
https://cassandra.apache.org/download/
https://cassandra.apache.org/download/
https://cassandra.apache.org/download/
https://cassandra.apache.org/download/
https://cassandra.apache.org/download/
https://cassandra.apache.org/download/
https://cassandra.apache.org/download/
https://cassandra.apache.org/download/
https://cassandra.apache.org/download/
https://cassandra.apache.org/download/

NoSQL Database Chapter 4

[95]

Copy the following line at the end of the file and save it. Make sure to change the4.
path as per your installation:

Cassandra Environment
export CASSANDRA_HOME="/home/hadoopadmin/apache-cassandra-3.11.1/"
export PATH=$PATH:$CASSANDRA_HOME/bin

Reload the environment file by executing the following command for your5.
changes to take effect. Alternatively, you can restart your computer:

$ source ~/.bashrc

You can edit the default configuration of Cassandra from
the cassandra.yaml file. It exists inside the cassandra/conf folder.
There are many configuration properties you can modify, such as cluster
name, location of data directory, log directory, and some tuning
information, such as heap, memory, and so on.

Starting Cassandra
Now, we have done the basic setup of Apache Cassandra. It's time to start the service and
test whether everything is working properly or not. In order to start Cassandra, execute the
following command:

$ cassandra

It will display some logging information in the terminal. Once it returns to the prompt, it
means that Cassandra has been started. To verify that it is up and running, execute the
following command:

$ nodetool status

You will see an output similar to the one given in the following screenshot:

NoSQL Database Chapter 4

[96]

You can see the status UN, which means it is up and in the normal state
against the node 127.0.0.1.

The Cassandra Query Language – CQL
At this stage, we have successfully started our Cassandra server. It is time to start playing
with it and get familiar with the environment. The built in tool to work on Cassandra is the
Cassandra Query Language (CQL). It is similar to SQL but is based on the Cassandra's
predefined functions. To start the CQL terminal, execute the following command:

$ cqlsh

Once you execute the previous command, you will see a welcome message that will show
you the Cassandra version and CQL version as well as the cluster that you are connected to,
as shown in the following screenshot:

NoSQL Database Chapter 4

[97]

From now on, whatever commands we execute, it will be done on this cqlsh prompt.

The help command
The first command that we are going to learn is the help command. It is the most useful
command to get you out of any trouble. You don't need to learn each and every command
syntax.; just use it to find out the options and different parameters related to any command.
Execute the help command to list the output shown in the following screenshot:

It will list down all the basic commands that cql supports. It will also list down the help
topics that you can explore directly from command. For example, if you want to look for
how to create a keyspace topic, execute the following command. It will open the default
browser window with a sample and explanation:

cqlsh> help CREATE_KEYSPACE

NoSQL Database Chapter 4

[98]

The following screenshot shows the help topic that we just tried to explore:

Basic commands
Sometimes, getting a basic detail out of something may be very painful. The following are
some commands that will be helpful in navigating through Cassandra and extracting the
information:

Describe: The purpose of this command is to provide the relevant information
related to the postfix object. The following are the multiple flavors of this
command, which display information related to a specific object:

// It will list the basic information related to your cluster.
cqlsh> describe Cluster

// It will display the keyspaces define in this Cassandra Cluster
cqlsh> describe Keyspaces

// It will display all the tables created within a specific
keyspace
cqlsh> describe Tables

// It will describe definition of a specific table. What are its
column names,
// what are their types, and so on
cqlsh> describe Table tablename

// It will display all the user defined types in Cassandra.
cqlsh> describe Types

// It will display a definition of a specific typename.

NoSQL Database Chapter 4

[99]

cqlsh> describe Type typename

Exit: This command is used to exit from the cqlsh terminal. The following is the
syntax of exit command:

cqlsh> exit

Show: Similar to describe command, it is also used to display different
information but mostly related to cluster itself:

// It will show the current Cassandra version and cql version
information
cqlsh> show version

// It will show the current session host information
cqlsh> show host

Expand: It is used to display information in rows instead of columns where
required:

// To enable expand feature in current terminal
cqlsh> expand on

// Toggle expand interface off
cqlsh> expand off

Source: This command is used to read lists of command from a text file and
execute them directly in cqlsh:

// You can replace the file path with your own file
cqlsh> source '/home/user/command_list'

Data manipulation
Now that the Cassandra environment is ready, it's time to play around with some basic
create, alter, and delete operations against database objects and data itself.

Creating, altering, and deleting a keyspace
First of all, we will learn how to create a keyspace. The keyspace is similar to a database in
our traditional system. Execute the following command to create a keyspace:

cqlsh> Create Keyspace testKeyspace With replication =
{'class':'SimpleStrategy', 'replication_factor':3};

NoSQL Database Chapter 4

[100]

This command will create a keyspace named testKeyspace. The main point to note here is
that we have selected the SimpleStrategy class with replication factor set to 3. It means
that every piece of information you store in Cassandra will be replicated in three different
node servers within the same data center. If you have multiple data centers and you want
to define different replication factor for each data center, you can use
the NetworkTopologyStrategy class.

To test whether the keyspace has been created successfully, execute the following
command:

cqlsh> describe keyspaces

It will list down all the available keyspace in the cluster; testKeyspace must be part of
this list. If want to list down the full details against each keyspace, what its replication
factor is, and which class you selected while creating your keyspaces, execute the
following command:

cqlsh> select * from system_schema.keyspaces;

It will give you an output similar to the following screenshot:

Conventionally, any keyspace starting with the system keywords belongs
to Cassandra's internal operations and is better left untouched. If modified
directly, it may lead to an unstable installation.

Let's suppose that now we want to change the replication factor for our newly created
keyspace from 3 to 2. It may be because of any reason. To do this alteration, execute the
following command. It is very similar to the create command:

cqlsh> Alter Keyspace testKeyspace With replication =
{'class':'SimpleStrategy', 'replication_factor':2};

NoSQL Database Chapter 4

[101]

The following screenshot displays the output of this alteration and the verification
command:

Let's now suppose that you no longer require this newly created keyspace. In order to
delete the keyspace, execute the following command:

cqlsh> drop keyspace testkeyspace;

The following screenshot displays the output of drop keyspace and the verification
command:

Creating, altering, and deleting tables
Let's now create a new keyspace, StudentPortal, using the previously discussed
command. It's now time to create our first table. This table contains some basic information
related to a student, for example, student ID, student name, address, phone number, and so
on. Execute the following command to create the student table:

cqlsh> Use StudentPortal;
cqlsh:studentportal> Create table StudentInfo (std_id int PRIMARY KEY,
std_name varchar, std_address text, std_phone varchar);

NoSQL Database Chapter 4

[102]

The following screenshot displays the output of the previously executed command as well
as the verification command:

Let's assume that you are required to add the new column ClassName to the studentinfo
table. For this purpose, execute the following command:

cqlsh:studentportal> Alter table studentinfo add class_name text;

The following screenshot displays the output of the previously executed command and
the verification command:

In cases where you need to remove a column from the table, execute the following
command:

cqlsh:studentportal> alter table studentinfo drop class_name;

Assume that you no longer need this table and its data. Now it's time to delete it from our
database. For this purpose, execute the following command:

cqlsh:studentportal> drop table studentinfo;

NoSQL Database Chapter 4

[103]

Inserting, updating, and deleting data
Up to this stage, we are able to create keyspaces and tables, and have the information about
how to alter and delete them, if needed. Now it's time to start inserting data into our
database. Before executing the following command, make sure you have recreated the
studentinfo table, so that you will not encounter any errors. To insert our first record,
execute the following command:

cqlsh:studentportal> Insert into studentinfo (std_id, std_name,
std_address, std_phone) values (1, 'John Doe', 'On Earth', '1-234-567890')

The following screenshot displays the output of the previous query as well as the
verification command:

Let's assume that the student has relocated to some other location and wants to update the
address and the phone number. In order to perform such action, execute the following
query:

cqlsh:studentportal> update studentinfo SET std_address = 'On Moon',
std_phone = '0-987-654321' where std_id = 1;

The following screenshot displays the output of the previous query as well as the
verification command:

NoSQL Database Chapter 4

[104]

Now consider a case where a student has left the school, and you no longer want to keep
data related to that student. To delete the record, execute the following query:

cqlsh:studentportal> delete from studentinfo where std_id = 1

The following screenshot displays the output of the previous query as well as the
verification command:

You have now got practical experience in setting up Cassandra, as well as hands-on
experience with many CQL commands and queries. This tutorial has covered all the major
scenarios, including setting up the environment, handling different database objects, and
data manipulation.

In the next topic, we will learn about MongoDB, which also belongs to NoSQL world, but
has a different data model.

NoSQL Database Chapter 4

[105]

The MongoDB database
MongoDB is a NoSQL database based on the document store data model. It stores data in a
JSON style formatted document. In MongoDB everything is either collection or document.
In order to understand MongoDB terminology, collection is an alternate word for table,
whereas document is an alternate word for rows.

Installing MongoDB
We are now going to install MongoDB's community edition. Follow the step-by-step guide
to successfully install it on your server:

Ubuntu package management require that distributors sign packages with GPG1.
keys for consistency and authenticity within packages. Execute the following
command to import the MongoDB GPG key:

$ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv
0C49F3730359A14518585931BC711F9BA15703C6

Execute the following command to create a MongoDB source list:2.

$ echo "deb [arch=amd64,arm64] http://repo.mongodb.org/apt/ubuntu
xenial/mongodb-org/3.4 multiverse" | sudo tee
/etc/apt/sources.list.d/mongodb-org-3.4.list

Execute the following command to update the repository package details, as we3.
have now added MongoDB repository to the list:

$ sudo apt-get update

Now it's time to install MongoDB by issuing the following command. It will4.
automatically install the latest stable version of MongoDB:

$ sudo apt-get install -y mongodb-org

We have now successfully installed MongoDB on our server. We will now start the service
and test whether it is working properly or not.

NoSQL Database Chapter 4

[106]

Starting MongoDB
It's time to test whether MongoDB installed successfully. In order to do so, issue the
following command:

$ sudo service mongod start

If this returns to the terminal without any error, it means that MongoDB has started
successfully. To double check, MongoDB will have created a log file in
/var/log/mongodb/mongod.log. Open it with any test editor, and if it shows a message
that it's waiting for a connection, this means it is working properly. Alternatively, you can
issue a cat command to list the contents of the file as follows:

$ cat /var/log/mongodb/mongod.log

The following screenshot illustrates the output of the previous command:

Whenever you want to stop the server, issue the following command:

$ sudo service mongod stop

In order to restart the server, issue the following command:

$ sudo service mongod restart

Working on MongoDB
Now that we have successfully installed and started our MongoDB server, it's time to enter
into the world of MongoDB. Type in the following command to start a MongoDB shell
session:

$ mongo

NoSQL Database Chapter 4

[107]

This command will start your session to interact with MongoDB. During startup, it will
display its version, IP address, the port it is listening on, a welcome message, and some
logging information. The following screenshot illustrates the output terminal:

In MongoDB, whatever operation we perform in its shell is a function. Some functions are
predefined as static and some are dynamic and change based on the collection you are
working on.

The help command
While working on any application, the most important thing is that if you don't remember
the commands to get the desired result, then you know how to get help. Of course, you can
search over the internet, but a mark of quality in a good application is to have its own built
in help system to keep you going. MongoDB has a default list of commands with a brief
description, ready for you to display whenever required. To list them, execute the following
command on the MongoDB shell session that we have just started:

> db.help()

NoSQL Database Chapter 4

[108]

The following screenshot illustrates the output of this command:

Basic commands
Let's now learn some basic commands to make our way in MongoDB:

 To list down all the databases that exist in the current setup of MongoDB,
execute either of the following commands:

> show databases;
> show dbs;

To list down all the tables (collections) within a specific database, execute the
following command:

// first switch to a database to explore its tables
> use databasename;
// To list down all the collection in a database
> show collections;

To check in which database currently you are working, execute the following
command:

> db

NoSQL Database Chapter 4

[109]

To clear the screen, execute the following command:

> cls

Data manipulation
MongoDB is a NoSQL database, therefore it doesn't rely very much on defined schemas
and objects. We will discuss some data manipulation commands that you can use for this
purpose in the coming topics.

Creating and deleting databases
It is very easy to create a database. Just execute the use command to mention that from
now on all commands will be executed in a specific database:

// The following command will check whether the database already exists.
// If not it will create a database with this name.
> use schoolportal;

If at any instance you want to delete a database, first you have switch to the database you
want to delete, and then execute the following command:

// To switch to database that you want to delete
> use schoolportal;

// Now it's time to delete it
> db.dropDatabase();

The following screenshot illustrates the execution of the earlier command:

NoSQL Database Chapter 4

[110]

Creating and deleting collections
Collection is an another word for a table in MongoDB terminology. It is what holds the
data. It doesn't require any schema while creating it. In order to create a collection, execute
the following command:

> db.createCollection("collectionName");

In order to delete the collection and all the documents inside it, execute the following
command:

// Replace the collectionName with the collection you want to remove
> db.collectionName.drop();

The following screenshot illustrates the output of the earlier commands with
the verification command:

The create, retrieve, update, delete operations
Every row is called a document in MongoDB terminology. You can have n number of
documents in any collection. The following are the basic operations that you can perform in
relation to any document:

Each document can have a different number of columns. It's up to you how you
place your data, under which collection and database. In order to insert a
document, execute the following command:

> db.employees.insertOne({"first_name":"John", "last_name":"Doe"});

NoSQL Database Chapter 4

[111]

To insert documents in bulk, you can use the function insertMany instead of
insertOne as shown in the following snippet:

> db.employees.insertMany([
 {"first_name":"Abc", "last_name":"xyz"},
 {"first_name":"ijk", "last_name":"xyz"}
]);

To retrieve all the records in the employees collection, execute the following
command:

> db.employees.find()

// If you want to display results vertically, use the following
command
> db.employees.find().pretty()

The following screenshot displays the command in operation and the three records we have
inserted just now:

The beauty of MongoDB or NoSQL database is that there is no defined schema,
so you can add columns on the fly and to only specific documents. Let's suppose
you want to add a phone number for the employee Abc. For this purpose, issue
the following command:

> db.employees.update({first_name:"Abc"}, {$set:
{phone:"123456789"}})

// Similarly to remove a column from a document,
// execute the following command.
> db.employees.update({first_name:"Abc"}, {$unset: {phone}})

The following screenshot displays the output as well as the verification command
result:

NoSQL Database Chapter 4

[112]

To delete any document from a collection, execute the following command. As a
parameter, you can apply any filter. For the sake of example, we are going to
delete a record where the first name is mentioned as Abc:

> db.employees.deleteOne({first_name: "Abc"})

// If your filter criteria return multiple documents,
// then execute the following command
> db.employees.deleteMany({first_name: "Abc"})

The following screenshot displays the output of the following command as well as
the verification command:

We have successfully gone through how to set up MongoDB and its major commands and
functions, which will help you while dealing with MongoDB. In the next topic, we will go
through the Neo4j database, which belongs to the graph data model in the NoSQL world.

Neo4j database
Neo4j belongs to the NoSQL database world and it's based on the graph store data model.
It is very useful if you want to visualize your data. The graphical data visualization often
leads to the identification of different patterns that are largely overlooked when we view
data in tabular or textual formats. It is an open source software and the complete source
code is available at GitHub.

NoSQL Database Chapter 4

[113]

Installing Neo4j
We will now install Neo4j. Follow this step-by-step guide to successfully install it in your
server:

Execute the following to extract the GPG key, similar to what we did during the1.
installation of MongoDB:

$ wget -O - https://debian.neo4j.org/neotechnology.gpg.key | sudo
apt-key add -

Execute the following command to create a Neo4j repository source list:2.

$ echo 'deb http://debian.neo4j.org/repo stable/' | sudo tee -a
/etc/apt/sources.list.d/neo4j.list

Execute the following command to update the repository package details, as we3.
have now added the Neo4j repository to the list:

$ sudo apt-get update

Now it's time to install Neo4j by issuing the following command. It will4.
download almost 200 Mb of installation files:

$ sudo apt-get install neo4j=3.3.0

We have now successfully installed Neo4j on our server. We will now start the service and
test it whether it is working properly.

Starting Neo4j
Once you finish the installation, it will automatically start Neo4j service in the backend. To
verify whether it is active and working properly or not, issue the following command:

$ service neo4j status

The following screenshot displays the output of the earlier command. It shows that the
service is active with some information messages:

NoSQL Database Chapter 4

[114]

Neo4j has a browser based shell portal where you can perform many actions along with
browsing the structure and running queries. To access this management portal, point your
browser to the URL mentioned in the last line in the previous
screenshot; http://localhost:7474/. It will display a login page as shown in the
following screenshot:

The default username and password is neo4j. Once you log in for the first time, it will ask
you to change it. Make note of the newly changed password as you will be needing it for
future connectivity.

NoSQL Database Chapter 4

[115]

The cypher query language
The cypher query language is similar to SQL but specifically for generating graph outputs
as results. It was developed by the Neo Technology company for Neo4j, but was then
released as an open source project named openCypher so that other graph database can
also utilize it in their projects. It translates very complicated traditional queries into simple
CQL graph queries. So, let's get started.

 There are three main components in a graph, namely:

Node: This is the primary object in representing any data in graph form. You
may consider it like a main element that makes to other objects. It represents
entities such as person, event, place, thing, and so on. If you take an example of a
social networking graph, node is a representation of you and your friends
connected to each other.
Relationship: It is the representation of how nodes are connected and what type
of connection they are in. If we expand the earlier example, where you and your
friends are connected to each other, relationship defines what type of connection
it is—whether the connected one is a friend, colleague, business partner, and so
on.
Properties: Every node and relationship may have some properties. For example,
your nodes in the earlier example may contain some information related to you,
such as your name, address, phone number, and so on. They are in the form of
key-value pairs.

The following diagram illustrates the earlier components in a graph:

NoSQL Database Chapter 4

[116]

Now let's talk about the syntax of cypher. It comprises of three main clauses, namely:

MATCH: It is where you build your graph that contain nodes and relationships.
In other words, it contains the structure of the graph.
WHERE: It contains the filter criteria that applies on the MATCH clause to
output the desired data.
RETURN: This contains the desired output of nodes, relationship, and properties
in graphical form. If you apply any aggregation function in your return
statement, then the output will be in tabular form.

NoSQL Database Chapter 4

[117]

Help
Neo4j's browser utility is built for documentation and sample data. It displays tutorials in a
a nice step-by-step style to make you feel comfortable. To access this section, point your
browser to the Neo4j browser shell and click on the book-like icon on the left, as illustrated
in the following screenshot:

Basic operations in Cypher
Let's now execute some Cypher queries to get hands-on experience. In the following
examples, we will be creating, updating, and deleting nodes, relationships, and properties.
In the following section, we will be dealing with example of social networking where we
have many users and they may have the relationship of friend. Let's get started.

Creating nodes, relationships, and properties
In order to create a node, execute the following command:

// Single node creation with Title
$ Create (n:User)

NoSQL Database Chapter 4

[118]

Consider now that we have two users, John and Andrew. They become friends. In Neo4j,
it's now time to create a relationship between them, so that when you query the database in
a graph form, it will display a friend relationship between them. For this purpose, execute
the following command:

// Search for the node type for which relationship is required
$ MATCH (a:User),(b:User)

// Filter the exact result
WHERE a.firstname = 'John' AND b.firstname = 'Andrew'

// Create a relationship titled Friend
CREATE (a)-[r:Friend]->(b)
RETURN r

To create properties, execute the following command:

// Single node creation with title as well as with properties
$ Create (n:User {firstname: 'John', lastname: 'Doe'})

Updating nodes, relationships, and properties
As Neo4j is also a NoSQL database, it supports adding column or properties on the fly.
Now let's assume that you want to add an age property to the existing node of the user
John. To perform this action, execute the following command:

$ Merge (u:User {firstname:'John'})
set u.age = 30
Return u

This Merge command will first check whether this age property already exists or not. If not,
it will create it for you. Otherwise, it will just update it with the value you mentioned in the
query.

NoSQL Database Chapter 4

[119]

Deleting nodes, relationships, and properties
To delete a node, execute the following command. Make sure that there is no relationship
defined for the node you are going to delete. If any relationships exist, the query will not
execute and will throw an error:

// to delete all user nodes
$ Match (u:User)
Delete u

// to delete based on filter criteria
$ Match (u:User)
where u.name = 'John'
Delete u

To delete a node with a relationship, execute the following command:

$ Match (u:User)
where u.name = 'John'
Detach Delete u

To delete properties, execute the following command:

$ Match (u:User)
where u.firstname = 'John'
Remove u.lastname
Return u

Reading nodes, relationships, and properties
Neo4j supports and displays the result in both graph as well as table formats based on your
queries and requirements. Let's start will some basic examples. Let's create a graph to list all
friends of the user John. Execute the following query to retrieve the data in graph form:

$ MATCH (u:User)
WHERE u.firstname = 'John'
RETURN u

The following screenshot illustrates the output of this query:

NoSQL Database Chapter 4

[120]

You can also select the format of the result from the left navigation panel. If you select
Table, it will give you the result in a nicely formatted tabular form, where each row
contains all the properties belonging to that node. The following screenshot illustrate its
output:

NoSQL Database Chapter 4

[121]

Let's assume that you don't need the output in a graph form but you need some properties
displayed as an output, similar to RDBMS results. For this purpose, in the return statement,
instead of returning the full node, you can specify the properties you need. Neo4j will then
return the result in a table format, as shown in the following screenshot:

These are just basic examples to get you started with Neo4j. You can create more complex
queries and graphs as you move forward.

Summary
In this chapter, we first learned about the NoSQL database and its advantages. We then
went through a point by point comparison of NoSQL databases and RDBMS. We then
discussed the CAP theorem and ACID properties of transactions and their relation to
NoSQL database. We then discussed different data models that are commonly used in the
NoSQL world.

In order to have some practical experience with NoSQL databases, in this chapter, we have
gone through step-by-step tutorials of the popular frameworks Apache Cassandra,
MongoDB, and Neo4j. We performed their step-by-step installation and basic
configuration. We have also performed data manipulation, learning how to organize, store,
and retrieve data from these database frameworks.

In the next chapter, we will explore the big data world over cloud. Along with that, we will
also learn about one of the top commercially available cloud infrastructures, which is
named Azure and managed by Microsoft.

5
Off-the-Shelf Commercial Tools

In Chapter 1, Why Big Data, we did various comparisons between on premises and cloud-
based data centers. There are many companies in the race to provide better, secure, and low
cost services for small to enterprise level companies, so that they can confidently start to
utilize their services. Many offer pay as you go billing, helping avoid dealing with huge
multi million startup costs.

In this chapter we will explore Microsoft Azure, formerly known as Windows Azure,
which is provided by Microsoft, one of the market giants. It provides various services over
cloud for all types of customers. It provides Software as a Service (SaaS), Platform as a
Service (PaaS), and Infrastructure as a Service (IaaS). It supports many different
programming languages, frameworks and tools, including Microsoft proprietary and third-
party as well as open source software and systems. The primary comfort of using cloud
infrastructure and services is that there is no startup cost and you can easily scale it up and
down as per your requirements.

In this chapter, we will be covering the following topics with practical examples:

Microsoft Azure and a list of the services it provides
Build a streaming application with Azure that has the following components:

Setting up Microsoft Azure Account
Setting up Microsoft Azure Event Hub
Setting up Microsoft Azure Stream Analytics services
Create a Java application to stream data to Azure as a simulation of
IoT device
Setting up Microsoft Power BI
Build a Dashboard with near to real-time statistics in Power BI

Off-the-Shelf Commercial Tools Chapter 5

[123]

Let's get started with some more details about Microsoft Azure and what type of services it
provides.

Microsoft Azure
As Windows Azure, the service was initially announced in October 2008 and was officially
released on February 1, 2010. On March 25, 2014, it was renamed Microsoft Azure.

As of the time of writing, Azure offers 86 services. A few of these services are listed with a
brief description of each:

Virtual Machines: You can setup and launch a virtual machine of any operating
system like Windows, Linux, and so on, in seconds.
App Services: Publish your web and mobile apps over cloud with many
predefined templates.
SQL Databases: Use RDBMS database over cloud as a service.
Storage Services: Provide scalable cloud storage as per your requirements.
Azure Cosmos DB: Azure's own NoSQL database that supports multi data
models and is scalable.
Azure Active Directory: It can synchronize with on-premises directories and can
work with single sign-on features.
Backup Services: A BaaS solution that provides service to back up your on-
premises data over cloud with geo-replication.
HDInsight: A managed open source big data analytics service through which
you can create clusters for Hadoop, Spark, Hive, HBase, and Kafka.
IoT Hub: Can create, monitor, and manage billions of your IoT devices with
bidirectional communication.
Content Delivery Network (CDN): Microsoft have multiple datacenters all over
the world that can back up CDN, for fast and secure delivery of contents and
improved performance and availability.
Machine Learning Studio: A browser based development and management tool
for applying all the major machine learning algorithms, using a simple drag and
drop interface.
Stream Analytics: A service that can be use to analyze streams of data from
multiple streaming sources, including IoT and non IoT devices.
Event Hubs: A service that can be used to ingest streams of data from multiple
sources with very low latency.

Off-the-Shelf Commercial Tools Chapter 5

[124]

Data Lake Store: It is built on the open HDFS standard to store unstructured,
semi structured, and structured data, with no limits on the size. Data can be in
terabytes or petabytes. It is highly scalable and can ingest trillions of objects.
Cognitive Services: An AI service developed by Microsoft for developers to
enhance their end user's experience by adding features such as image processing,
speech recognition, searching capabilities, a recommendation system, and
natural language processing.

These are but a few from the bunch of services that Microsoft Azure has to offer to its
customers. All of these services can easily be scaled up and down as per user's
requirements. Most of these services will charge on a pay as you go plan, which means that
unless the user consumes processing and computation power through Azure, they will not
be charged.

Now let's build an application utilizing the power of Microsoft Azure.

Building a practical application
The objective of this project is to send data from an IoT device over cloud and monitor its
activities in a nice visual dashboard. For this purpose, we will be utilizing some of the
Microsoft Azure services. The following figure illustrates the steps we will perform in this
project:

Let's get started by creating a Microsoft Azure account.

Off-the-Shelf Commercial Tools Chapter 5

[125]

Microsoft Azure account
We will now create an account in Microsoft Azure. Microsoft are providing a free account
for a year that allows use of their products with base line resources. They are also giving
$200 credit with a free account for the first month, so that user can also test their services on
an enterprise level without any limitations. Follow the following instructions to sign up for
the service:

Point your browser to https:/ ​/​azure. ​microsoft. ​com.1.
Click on the free account signup link. It will redirect you to a login page. If you2.
already have a Hotmail, Outlook, or MSN account, or any of your personal or
enterprise domains configured in Office 365, you can directly log in. If not, click
on the Create One link to take you to signup page. It will ask for some basic
personal information and let you create your account.
Once you finish logging in or creating an account, you will arrive at the Azure3.
sign up page, which asks for some basic information as shown in the following
screenshot:

Sign up page for Azure

https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com

Off-the-Shelf Commercial Tools Chapter 5

[126]

It will verify your identity by verifying your phone number, as well as requiring4.
a valid credit card. Once you provide all the details, it will create your account
and redirect you to the Azure dashboard, as shown in the following screenshot:

Dashboard for Azure

Now that we have setup our account in Microsoft Azure, in the next section, we will create
an Event Hub.

Off-the-Shelf Commercial Tools Chapter 5

[127]

The Azure Event Hub
It's now time to create an Event Hub. One is required to receive data from IoT devices,
which in our case will be a simulation application that will generate data similar to an IoT
device. It will then be passed on to the Stream Data Analytics service:

Let's now open Azure Portal. On the bottom left side of the screen, click on1.
the More services link and type Event Hub in the search box to look for the link,
as shown in the following screenshot:

Open an Event Hub service in Azure Portal

Off-the-Shelf Commercial Tools Chapter 5

[128]

Once you open the Event Hub service, click on the +Add button from the top2.
menu. It will display a form to fill in in order to create a namespace as shown in
the following screenshot. The namespace is a container that will hold all the
related elements in place:

Add Event Hub form

Off-the-Shelf Commercial Tools Chapter 5

[129]

Once the namespace gets created, it will appear in the list, as shown in the3.
following screenshot:

List of Event Hubs

Click on the newly created namespace StreamApp to open it. It will display a4.
screen as shown in the following screenshot:

Event Hub Summary Page

Off-the-Shelf Commercial Tools Chapter 5

[130]

Click on + Event Hub to create an Event Hub, and fill in the required details as5.
shown in the following screenshot:

Create Event Hub Form

Off-the-Shelf Commercial Tools Chapter 5

[131]

Once the Event Hub has been created, it will appear in the list, as shown in the6.
previous screenshot. Click on the Connection Strings on the right side of the
page to open the details, as shown in the following screenshot:

Connection String settings

The previous screen will display the list of access policies. By default, it will be created with
the name RootManageSharedAccessKey. Once you click on it, it gives you the primary
key and the secondary key along with their connection strings. We will need this
information later to configure our simulation application to stream IoT data into the Event
Hub.

Off-the-Shelf Commercial Tools Chapter 5

[132]

IoT simulation application
Now that we have finished setting up Azure Event Hub to start receiving data from IoT
devices, it's now time to build a Java application. It will simulate streaming data similar to
an IoT device. We will be using Eclipse IDE for Java programming:

Open Eclipse. Select New->Project and select Maven Project as shown in the1.
following screenshot:

Create New Maven Project

Off-the-Shelf Commercial Tools Chapter 5

[133]

Next step is to select the default workspace. If you want to keep the current2.
workspace under which you started Eclipse, keep the default options selected
and click Next. In the next step, it will ask you to select the Group Id and
Artifact Id from the available list. Select the one with the Artifact Id maven-
archetype-quickstart, as shown in the following screenshot:

Maven Artifact selection

Now we have to define Group Id and Artifact Id. Here, you can name them as3.
you like. In our case, they are defined as shown in the following screenshot:

Off-the-Shelf Commercial Tools Chapter 5

[134]

Specify Archetype Parameters

Now that the project has been created, it's time to define Maven Repository for Azure
Eventhub. Copy the following lines of code in between the <dependencies>
</dependencies> tag, in your pom.xml file, which is available at the root of your project,
as shown in the following code:

<dependency>
 <groupId>com.microsoft.azure</groupId>
 <artifactId>azure-eventhubs</artifactId>
 <version>0.15.1</version>
</dependency>

Off-the-Shelf Commercial Tools Chapter 5

[135]

Click on Save, and give it a minute. Eclipse will automatically download the related .jar
file for Azure Eventhub. Now create a new class called SendStream and write down the
following code. It contains comments along each line to let you understand how it is
working, as shown in the following code:

package com.handbook.streamingapp;

import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Random;
import java.util.concurrent.ExecutionException;

import com.microsoft.azure.eventhubs.*;

public class SendStream {

 public static void main(String[] args)
 throws ExecutionException, InterruptedException, IOException,
EventHubException{
// fill in the required details below
// as per the variable name defined
 final String namespaceName = "StreamApp";
 final String eventHubName = "streamappevents";
 final String sasKeyName = "RootManageSharedAccessKey";
 final String sasKey = "----Put your shared key here---";

// define connection to connect to Azure Eventhib
 ConnectionStringBuilder connStr = new
ConnectionStringBuilder(namespaceName, eventHubName, sasKeyName, sasKey);
// timestamp format to pass as JSon
 SimpleDateFormat time = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss");

// Randomizer to generate random temperature and humidity values
// as simulation
 Random temp = new Random();
 Random humd = new Random();
// Infinite loop to continuously send data similar to an IoT device
 while(true) {
 int temperature = temp.nextInt(40)+20;
 int humidity = humd.nextInt(50)+20;
// Json string to pass to Azure eventhub
 String msg = "[{timestamp: "+ time.format(new Date()) +",
temperature:" + temperature + ", humidity:" + humidity + "}]";

// Convert the Json to byte array as EventData can only
// accept data in form of byte array

Off-the-Shelf Commercial Tools Chapter 5

[136]

 byte[] payloadBytes = msg.getBytes("UTF-8");

// EventData class initialize
 EventData sendEvent = new EventData(payloadBytes);

// Eventhub Client class initialization based on the connection
// string defined earlier
 EventHubClient ehClient =
EventHubClient.createFromConnectionStringSync(connStr.toString());

// Send data to Eventhub
 ehClient.sendSync(sendEvent);
// Console output as to what was sent to the Azure
 System.out.println("Message Sent --> " + msg);

// Wait for half second before sending the data again
 Thread.sleep(500);
 }
 }
}

Right-click on the class and select Run As | Java Application. It will start sending the
output to the Console window, similar to the one shown in the following screenshot:

Program Output Console

Here, we have finished developing a simulation application that will send data to Azure
EventHub similar to an IoT device. It's now time to set up an Azure Stream Analytics job.

Off-the-Shelf Commercial Tools Chapter 5

[137]

Setting up an Azure Stream Analytics job
Log into the Azure portal and click on More Service and search for Stream Analytics Job.
Once you open it, click on +Add. It will display a form. Fill out the required fields as shown
in the following screenshot:

Create Stream Analytics Job

Off-the-Shelf Commercial Tools Chapter 5

[138]

Once it gets created, it will be displayed in the list. Click on it to open the details and setup
options as shown in the following screenshot:

Stream Analytics Job Details

Off-the-Shelf Commercial Tools Chapter 5

[139]

Input
In this screen, the first step is to set up the input to the Streaming Job. Inputs can be from
many different types of sources, such as Event Hub, blob storage, and so on. To set up
input, click on the Inputs box, marked as 1 in the previous screenshot. Once you click on it,
it will display the list of configured inputs. Click on the +Add button to configure our first
input. Once you click on the button, it will display a form to configure the input, as shown
in the following screenshot:

Configure Input for Stream Analytics Job

Give a name to your input; in our case it's streamappdata. Make sure the source type is
selected as Data stream and the source is selected as Event Hub. In the Service bus
namespace, select the one we created in the first step, StreamApp, the Event Hub name as
streamappevents, and the Event Hub policy name as RootManageSharedAccessKey. If
you have created and inputted all the options as mentioned here, your screen will look
similar to the previous figure. Click on the Create button to create your input to the Stream
Analytics Job.

Off-the-Shelf Commercial Tools Chapter 5

[140]

Query
The second step is to execute a query to get the desired result from Inputs. In order to do
so, click on the Query box. This will open up a query editor with which you can write your
query and test for the desired result. For now, we will simply select the timestamp,
temperature, and humidity from the data source, but if you want to write complex queries
and apply formulas, you are welcome to do so. Our query is as follows:

SELECT
 timestamp, temperature, humidity
FROM
 streamappdata

Once you write the query, click on the Test button to run it against the sample data. To
create a sample of data, you can either upload it or get it against your actual data. It can be
done by clicking on the ... button next to your data label on the left-hand-side side menu.
The following screenshot illustrates these operations:

Query Designer

Off-the-Shelf Commercial Tools Chapter 5

[141]

Output
We have now tested our query and got the desired result. It's now time to configure output.
Setting up an output means what we want to do with our result data; either we want to
store it in a database, pass it on to some other Event Hub, or do some other visual or
analytical job. Our objective is to create a visual representation as a dashboard to display
near to real-time charts of temperature and humidity, as generated by an IoT. For this
purpose, we will pass it on to Microsoft Power Business Intelligence (PowerBI).

Click on the Output box to set up what to do with the results. Once it opens, it will display
a form. Give your output setting a name, like streamdataset. Select the sink type Power BI.
Here, one thing to mention is that if you have never used PowerBI with Azure, it will ask
you to authorize Azure to access the PowerBI workspace, as shown in the following
screenshot. If you don't have PowerBI account, you can sign up for a 60-day free trial by
clicking on the Sign Up link under the login form:

Stream Analytic Job Output setup

Once you authorize it, you will see a list of all your workspaces available in PowerBI. I have
already created a workspace named IoTStreamingData, which I will show the steps for in
the next section. Give your Dataset and Table a name to use while creating a dashboard as
shown in the following screenshot:

Off-the-Shelf Commercial Tools Chapter 5

[142]

Output setup

Click on the Create button to finish setting up the output. The last step is to start the newly
created Stream Analytics Job. In order to do this, click on the Start button, as shown in the
following screenshot:

Start Stream Analytic Job

Off-the-Shelf Commercial Tools Chapter 5

[143]

It will display a confirmation page that asks whether you want to start the service
immediately or at some other custom time. In our case, we will start it immediately. Click
on the Now button and then the Start button, as shown in the following screenshot:

Confirmation to start service

It will take a minute or two to start the service. A notification will display on the top-right
side once the service has started. Now, at this time, we have configured the input, query,
and output relating to the Stream Analytics Job. It's now time create a dashboard in Power
BI.

Dashboard in Power BI
We have come to a stage where we will now represent our data in a visual form; in the form
of a dashboard. When you log in to Power BI for the first time, you have to create a
Workspace. It is required for better organization, similar to what we do in application
development. To do this, click on the Workspace menu in your left navigation and then
click on Create App Workspace as shown in the following screenshot:

Off-the-Shelf Commercial Tools Chapter 5

[144]

Creating Workspace in Power BI

Once you click on it, it will display a form for creating a workspace. Give it a name, select a
privacy option as per your requirement, and click Save, as shown in the following
screenshot. Once thing to notice here is that you have to create the workspace before you
set up your Stream Analytic Job output, as it is one of its requirements for sending your
data to Power BI. The Stream Analytic Job will then automatically create the dataset of the
data it streams:

Power BI Workspace creation

Off-the-Shelf Commercial Tools Chapter 5

[145]

Once your workspace gets created, it's now time to create a Dashboard. Click on the
+Create button at the top right of the screen and select Dashboard, as shown in the
following screenshot:

Create a Dashboard

It will pop-up a window for giving it a name. After inputting a name, click on the Create
button to create your dashboard. Now that your dashboard has been created, it's time to
add different tiles in it. Click on the +Add tile button in the top right corner. This will open
a window; from it, select Custom Streaming Data from the Real-Time data category and
click Next, as shown in the following screenshot:

Creating a Tile in Dashboard

Off-the-Shelf Commercial Tools Chapter 5

[146]

In the next window, you will be shown the list of datasets. Select the one we named while
setting up the Stream Analytics Job, as shown in the following screenshot:

Selecting required dataset

On the next screen, you will be asked to select the type of tile. There are different type of
tiles you can create for your dashboard, as shown in the following screenshot:

Type of tiles

In our case, we have selected the following parameters:

Visualization Type as Clustered column chart
Axis will be timestamp
Value will be temperature and humidity
Time window to display will be 1 minute

Off-the-Shelf Commercial Tools Chapter 5

[147]

Having selected earlier, click the Next button and input the following:

Title as IoT Data
Subtitle as Temperature and Humidity

After inputting the previous details, click on the Apply button. The newly created tile will
be shown in your dashboard, as shown the following screenshot:

IoT Dashboard with real-time data

We have successfully created our initial dashboard with simulated IoT data that produces
temperature and humidity readings. You can add as many tiles with different types of
representation as you like to make it more useful.

Off-the-Shelf Commercial Tools Chapter 5

[148]

Summary
In this chapter, we have learned about one of the commercially available tools, Microsoft
Azure, and the services it is offering for big data and cloud-related tools and technologies.
Then, we have gone a bit further along the learning curve and performed a practical
example of streaming data using Microsoft Azure services.

First of all, we created a free account in Microsoft Azure. Then we setup Azure Event Hub,
which is responsible for handling the stream of data based on events. Then we created a
Java application to simulated IoT data. We then set up a Stream Analytics Job where we
configured inputs, a query to filter data as desired, and the output sink. We then created a
Dashboard in Microsoft Power BI, which displays related information in a nice visual form.

In the next chapter, we will discuss and explore container-based virtualization. We will also
explore related tools and technologies, such as Docker, Kubernetes, and so on.

6
Containerization

In a traditional system, an application usually deploys in a dedicated server. These servers
are not cheap hardware and normally cost upwards of thousands of dollars. Deployment
into a dedicated server is mainly done to provide full access to hardware resources and to
avoid any configuration conflicts. However, this can cost companies a huge amount each
time they're required to deploy a new application. From here, comes virtualization
–although there are both advantages and disadvantages to its approach. To overcome the
negatives of virtualization, containerization came into existence.

In this chapter, we will explore the following topics:

Virtualization and different types of hypervisors
Containerization and its benefits
Docker
Docker Swarm
Kubernetes

We will start with the detailed theory related to these topics. We will then move our
discussion onto something more practical, starting with installation. We will then perform
some hands-on work using these frameworks. Let's get on and introduce virtualization.

Virtualization
In today's world, virtual machines (VM) are very common and are useful in many different
scenarios. VMs help to create an isolated machine within your physical machine, with an
operating system of your choice. There is no requirement of a specific OS from a given set.
One of the advantages of a VM is that you can configure the underlying hardware as per
your requirements; it can be of any architecture and you can add as many virtual devices as
you want. You can create and run multiple virtual machines based on the available physical
hardware. Although the physical hardware is shared among multiple VMs, in software and
configuration terms, they are completely isolated from each other.

Containerization Chapter 6

[150]

Hypervisors
In the virtualization world, there is an important component called a hypervisor. You can
think of it as a hardware traffic monitor and resource allocator. It shares the host
hardware's resources among different guest VMs, such as its CPU, memory, and network.
Hypervisors help to ensure a better utilization of hardware resources by allowing the
hosting of multiple instances on the guest OS.

A hypervisor isolates all guest VMs from each other, so they don't have any knowledge of
each other. If any of the guest VMs are affected by malware or fall victim to an outside
attack, the other VMs will not be affected. This makes this kind of technology extremely
secure.

One of the key benefits of a hypervisor is that it makes underlying hardware details
irrelevant to the guest VM, which makes the migration of VMs very easy. Whether you
require your VM to move locally or to a remote location, there will be no hiccups as long as
the destination machine has the required hardware resources. Here, the migration will be
smooth and the migrated VMs can get to work immediately.

There are two types of hypervisors available: hardware-based and software-based. We will
discuss these types in the following section.

Hardware-based hypervisors
This is also referred to as a Type 1 hypervisor. This runs directly on the host hardware, and
is also known as a native, embedded, or bare metal hypervisor. It is a part of the hardware
firmware and works closely with it in allocating hardware resources to different OSs.
Examples of these types of hypervisors include Hyper-V, Oracle OVM, VMWare, and ESXi.

Software-based hypervisors
This is also referred to as a Type 2 hypervisor. This runs on top of the host operating
system as a software package. It works as a Virtual Machine Manager and allocates
different hardware resources using calls made to the host operating system. Examples of
these types of hypervisors are Oracle VirtualBox and VMware Fusion.

Now that we understand how virtualization works, let's proceed and look at
containerization.

Containerization Chapter 6

[151]

What is containerization?
Virtual machines are of great importance, and although we cannot work without them,
there are some areas in which virtual machines are lagging behind. For example, if you
want to run a single application in an isolated environment, you have to set up and run a
full operating system before you're able to do so. This will have its own boot up time and
will consume a lot of resources when loading its binaries and libraries. In turn, this will
limit the number of VMs you can run on a single physical machine.

So, what is containerization? Containerization is similar to a virtual machine which runs in
an isolated environment without consuming a huge amount of system resources. Instead of
loading a full operating system, containerization uses the base kernel of a required
operation system and loads only the libraries required by our desired application. This will
take seconds to load, whereas VMs can sometimes take minutes to start. Due to their
lightweight nature, containers let you start more isolated applications in a single physical
machine.

The following diagram illustrates the architectural comparison of applications running in a
virtual machine and in a container:

 Virtual machine and container-based architecture

Containerization Chapter 6

[152]

Now we will discuss the benefits of using containers over virtual machines.

Benefits of containers
Let's explore a few of the key benefits of using containers. They are as follows:

Containers use fewer resources, such as CPU and memory, compared to VMs, as
they do not require a full operating system to load
You can start, stop, and destroy containers in seconds
Containers are very portable; once you set up a container, it can be run on any
environment without additional configuration or setup
You can easily perform the horizontal scaling of containers in a clustered
environment
Containers consume less storage space compared to VMs, as they do not require
the binaries and libraries of a full operating system

There are different container daemons and applications available on the market for you to
adopt, such as Docker, Kubernetes, CoreOS rkt, Apache Mesos, and Canonical LXD. We
will be discussing Docker and Kubernetes in the following sections.

Docker
Docker is an open source software technology managed by Docker Inc. It was initially
released in March 2013. Docker makes it easy for you to create, run, and deploy
containers. It is designed to be part of an application's development and deployment
lifecycle, leaving developers and system administrators reassured that it will run smoothly
on any machine without omitting any dependency or configuration. Now, let's explore
what happens when you try to run a Docker image.

Docker workflow
There are three components in a Docker engine; they are as follows:

Docker Client: As the name states, this is a client on the front end that is used to
give commands to the Docker host; these commands can be of any type.
Docker Host: This is the main engine that stores container images and runs them.
It executes different commands as requested by the Docker client.

Containerization Chapter 6

[153]

Docker Hub: This is a repository of container images. Once a client requests to
run an image, Docker Host checks internally whether the image exists locally or
not. If the image doesn't exist, it pulls the image from the Docker Hub.

The following diagram illustrates the workflow of Docker:

 Docker workflow

There are two editions available for Docker, and they are as follows:

Docker Enterprise Edition (EE): This is based on a subscription-based
mechanism and includes support with SLAs. It has different subscription tiers,
including an integrated Docker Datacenter, security, and clusters.
Docker Community Edition (CE): This is freely available for anyone to use.
Docker releases a stable release of this edition on a quarterly basis and an edge
release on a monthly basis.

Installation
Now that we have developed an understanding of containers and Docker, let's install and
experience them first-hand. Follow the given steps to install Docker Community Edition in
Ubuntu Linux.

Containerization Chapter 6

[154]

Execute the following command to enable the capability of adding a repository over the
http command:

$ sudo apt-get install apt-transport-https ca-certificates curl software-
properties-common

Execute the following command to add the Docker official GPG key:

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key
add -

Execute the following command to add the Docker repository:

$ sudo add-apt-repository "deb [arch=amd64]
https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

Now, update your local repository database by executing the following command:

$ sudo apt-get update

It's now time to install Docker Community Edition into your system; do this by executing
the following command:

$ sudo apt-get install docker-ce

This command will install the highest available stable version of Docker on your system. If
you want to install a specific version, use the following command. Make sure to replace
<VERSION> with the required version:

$ sudo apt-get install docker-ce=<VERSION>

The download is around 129 MB and takes a few minutes to install. Once it's installed,
execute the following command to verify the installation:

$ sudo docker run hello-world

Docker has provided a hello-world image to test that everything is installed correctly in
your system and that you have the capability to execute containers. This command will
download a hello-world image from the Docker server and will run in a containerized
environment with a welcome message from Docker, as shown in the following screenshot:

Containerization Chapter 6

[155]

 Docker 'hello-world' image

Basic commands
Let's explore some of the basic commands in Docker and execute them in the Terminal. This
will help us get an overview of the current Docker installation and the containers available
in the server. First, let's start with the help command. Similar to other applications, you can
use the help postfix to get different arguments that the docker command supports.
Execute the following command to list the help menu:

$ docker --help

In order to identify the currently installed version of Docker, execute the following
command:

$ docker --version

Containerization Chapter 6

[156]

If you want to find out detailed information about Docker, including how many container
images are currently installed, how many of them are in different running states, and so on,
execute the following command. The output of this command is shown in the following
screenshot:

$ sudo docker info

 Docker detailed information

You can see in the previous screenshot that only one image and container is currently
available, and it is in the stop state. It is the hello-world image that we downloaded
from the Docker server to test our installation. Once you start creating or downloading
different images and begin to run them, this counter will increase.

If you want to find out what images or containers are available in your local machine,
execute the following command to list all of them. The command's output is illustrated in
the following screenshot:

$ sudo docker image ls

Containerization Chapter 6

[157]

 List of locally available images and containers

To list the containers that are currently running, execute the following command.
The screenshot following the command illustrates its output:

$ sudo docker ps

// Alternate command to list all running containers
$ sudo docker container ls

 List of currently running containers

To avoid using the sudo prefix in each docker command, add your local
user account to the Docker group.

To list every container, whether it's running or in a stop state, execute the following
command. The screenshot following the command displays its output:

$ sudo docker ps -a

 List of all containers

To stop a running container, execute the following command:

// Replace adoring-sammet with the container name you want to stop
$ sudo docker stop adoring-sammet

Containerization Chapter 6

[158]

To remove or delete a container image, execute the following command. Remember that
you must first make sure that the image is not running and is in the stop state:

// Replace adoring-sammet with the container name you want to delete
$ sudo docker rm adoring-sammet

In order to see the different resource utilization of containers, such as CPU and memory,
execute the following command:

$ sudo docker container stats

Now that we have gained some hands-on experience of basic docker commands, let's now
explore how we can make our own Docker images and then run those images as containers.

Docker images
At this stage, we should have successfully installed Docker and tested some basic
commands over the CLI to manage Docker. Now, let's move on to the next stage and create
our own Docker image and a container from it. The purpose of this Docker build is to host a
static HTML page on the NGINX web server, which runs the Alpine Linux distribution
under the hood.

Building a Docker image
Let's get started. The first step is to create a folder named dockerImage by executing the
following command. This will help to give you a better understanding of how to easily
manage files. In our case, the full path will become /home/hadoopadmin/dockerImage:

$ mkdir dockerImage

The next step is to create an HTML page. Open a text editor of your choice and write the
following code in it, and then save it by the name index.html in the same folder
as dockerImage:

<html>
<head>
 <title>Big Data Architect's Handbook</title>
</head>
<body>
 <h1>Welcome to Docker Container</h1>
 example from Big Data Architect's Handbook
</body>
</html>

Containerization Chapter 6

[159]

The next step is to create a Dockerfile. This is a configuration file that builds a Docker
image. It contains all the relevant information from the base operating system about
different commands. These commands can be copied into a Docker image or be used to
perform any configuration within the base operating system. Open a text editor of your
choice and write down the following code. Save it by the name of Dockerfile within the
same folder dockerImage:

FROM nginx:alpine

COPY ./index.html /usr/share/nginx/html

The preceding code contains two lines. The first line contains the command FROM, which
tells Docker what the base image of the container will be. In our case, it is telling Docker to
pull an NGINX web server image with an Alpine Linux base kernel. The second line tells
Docker, once it has finished setting up the base system, to copy the index.html file from
the current directory into the NGINX public directory, which is used to serve static pages.
The following screenshot illustrates the directory structure and the files it contains:

Docker build directory structure

Containerization Chapter 6

[160]

Now, let's issue the following build command to create our first Docker image. The
screenshot after the command displays its output:

$ docker build -t webserver .

 Build command output

Now, if you issue a list of Docker images, it will display two images. One is the base image
downloaded from the Docker hub and the second one is a result of our build command.
The following screenshot displays the output of the docker images command as
verification:

List of Docker images in the local repository

Containerization Chapter 6

[161]

You can explore the full list of Docker images by visiting https:/ ​/​hub.
Docker. ​com/ ​explore/ ​.

Running and verifying Docker images
We have successfully built our first Docker image, which runs an NGINX web server and
hosts our static web page in a container. It's now time to test it. Issue the following
command to run the Docker container:

$ docker run -d -p 80:80 webserver:latest

Once you have executed this command, it will display a process ID if it has successfully
started the container. Issue the docker ps command to verify that the container has
successfully started and that port 80 has been bound to this container, as shown in the
following screenshot:

 Start container and list running containers

It's now time to open a web browser and point it to the IP address mentioned in the ps
command, as shown in the following screenshot:

 Opening a hosted website running inside a container

https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/

Containerization Chapter 6

[162]

If you got the desired output, as shown in the preceding screenshot, it means that you have
successfully built a Docker image and deployed it as a container. This container setup will
work on a single node setup. We will explore what to do if you have a multi-node cluster
environment shortly, but first let's learn how to export and import Docker images to and
from your local filesystem.

Importing and exporting Docker images
Now, you have built your Docker image and tested it successfully. In the real world, you
may be required to give this image to your testing or production team. In order to export
your Docker image, execute the following command. The screenshot after the command
displays its output:

$ docker save smfahad/webserver > webserver.tar

Now, that you have the Docker image file, let's suppose you are now required to load it
into your test or production environment. To do this, execute the following command. The
following screenshot displays the output of this command:

$ docker load --input webserver.tar

 Loading Docker images from a local file

Containerization Chapter 6

[163]

Now that we've learned how to import and export Docker images, let's get back to the
cluster environment setup. If you recall or revisit an earlier screenshot 4, which shows us
detailed Docker information, you will notice a parameter named Swarm. You may be
wondering what it is and why it is in an inactive state. Let's find out.

Docker Swarm
If you look the word up in a dictionary, 'swarm' will mean a number of things. Docker
Swarm, however, is basically a cluster of machines, with each one running a Docker
daemon. The primary purpose is to provide a scalable platform for a containerized
application that can run in a clustered environment. In earlier versions of Docker, Swarm
was available as a separate product, but from version 1.12 it no longer requires an
additional application.

Docker Swarm works using the manager-worker concept, where one of the nodes becomes
the manager and manages the other worker nodes. The prerequisites of running Docker
Swarm is that all machines must be running Docker v1.12 or higher and must be available
in the same subnet. Docker masters and slaves communicate with each other using ports.
The default ports are 2377 for cluster management, 7946 for heartbeat and discovery, and
4789 for overlay network traffic. Make sure that these ports are not blocked by any of your
machines with a firewall to ensure continued Docker Swarm communication.

Setting up Docker Swarm
Setting up Swarm is quite simple. First, let's assume that we have six machines. Their IP
addresses are from 10.0.2.15 to 10.0.2.20, which means they belong to the same
subnet. Install Docker version 1.12 or higher in all of these machines, as per the steps
discussed in the Docker Installation section of this chapter. After successful installation and
verification on these machines, it's time to do Swarm setup.

Containerization Chapter 6

[164]

The first step is to decide which machine you want to make manager. In our case, we will
make 10.0.2.15 our Swarm manager. In order to do this, execute the following command.
The following screenshot illustrates the output of the following command:

$ sudo docker swarm init --listen-addr 10.0.2.15:2377

 Initializing Docker Swarm

The output, as you can see, is displaying a message that says the current node is now a
manager. Another way to list the nodes available in the Swarm along with their status
(whether they are a worker or a manager) is to execute the following command. The
screenshot following the command displays the output of the following command:

$ sudo docker node ls

 List of available nodes in Docker Swarm

Now, to add a worker node in Swarm, log in to the machine that you want as your worker.
In our case, it will be 10.0.2.16. Execute the following command from its Terminal:

$ docker swarm join 10.0.2.15:2377

Containerization Chapter 6

[165]

Once you have executed the command, it will display a successful message saying that the
current node has joined Swarm as a worker. The important thing to notice here is that in
this command, you have to pass the IP address of the manager node to join. You can do the
same with all of the remaining machines. Log in to them and execute the preceding
command from their Terminals.

You can verify the list of joined nodes by executing the nodes ls command, as shown
earlier, from the manager's Terminal. This will list all the nodes along with their name,
status, availability, and managerial status.

Creating service containers
A service is referred to as a container in Docker and is managed by Swarm itself. In other
words, Swarm runs the desired container, but I am not going to manage the individual
instances of that container. We can also define the replication factor, which distributes
instances of the desired service among different nodes in the Swarm.

For demonstration purposes, we will be running an NGINX image in the container. NGINX
is an open source web server. We will not be discussing NGINX or any of its functionalities
in this section; we will just be using its image to understand the service and replication
concept in Docker Swarm. First, let's create a service. Execute the following command in the
manager node Terminal:

$ docker service create --name NginxServer nginx

To verify that the services have been created and are running in the background, execute
the following command:

$ sudo docker service ls

The following screenshot displays the output of both the service commands:

 Creating and verifying a Swarm service

Containerization Chapter 6

[166]

Replicating containers
As you can see, the service ls command lists the service that we have just created with a
replication factor of 1/1. Let's suppose that we want to create a service with a replication
factor of 5. Execute the following command to fulfil that requirement:

$ docker service create --name NginxServer --replicas 5 nginx

The preceding command will initiate five instances of the container so that if any of the
containers fail, another will be there to service the request or whatever task it was assigned
to perform. The following screenshot displays the output of this command:

ervice creation with replication

To list the details regarding each replicated service, execute the following command. The
following screenshot displays the output of this command:

// Replace NginxServer with the desired service name
$ sudo docker service ps NginxServer

 Details of each replication of a desired service

This detail gives you a lot of useful information, such as what a service's current status is, in
which nodes the replicated containers are running, whether it has encountered any errors,
and so on.

Containerization Chapter 6

[167]

Removing container services
Once your desired task is complete, or if you want to stop or delete a service, execute the
following command:

$ sudo docker service rm NginxServer

The following screenshot illustrates the output of this command, as well as service ls and
the detailed task command for verification purposes:

 Removing a service

We have looked at containerization using Docker in detail, including environment and
cluster setup. We have also gone through different flavors of Docker Swarm. Now, let's
look into another tool available on the market that automates container deployment,
management, and scaling: Kubernetes.

Kubernetes
Kubernetes is an open source tool for orchestrating containers in a cluster. It supports
different container technologies including Docker and rkt. It was initially designed by
Google and was based on its internal cluster management project Borg and was named
Project Seven. It was then passed on to Cloud Native Computing Foundation as an initial
technology in July 2015.

Key components
There are some key components and terminologies you will encounter while using
Kubernetes. These are as follows.

Containerization Chapter 6

[168]

Pods
A pod is one or more of a group of containers that are tightly coupled to each other. The
container can be based on any framework, such as Docker, rkt, and so on. It the smallest
deployable unit. It also has shared network and data volumes. The following screenshot
illustrates the internal structure of a pod:

 Internal structure of a pod

A pod has its own routable IP address, but it is not a requirement that it always has the
same address. For example, if a failure occurs and a pod has to restart, it may restart in the
same cluster node or in a different node, which may lead to a different IP address.

You cannot replicate a pod; it is a result of ReplicaSets, which we will discuss next.

ReplicaSets
The purpose of ReplicaSets is to create any number of copies of a pod. It is responsible for
starting and stopping a pod. It also regularly checks the status of a pod. If any pod faces
any issue or failure, it gets restarted. The following figure illustrates ReplicaSets:

Containerization Chapter 6

[169]

The structure of a ReplicaSet

We cannot create ReplicaSets manually as it's part of the deployment, which we will
discuss next.

Deployments
A deployment is a configuration file that contains all the declarations of your application. It
includes declarations for environment variables, container images, data volumes, and much
more. It also contains information related to ReplicaSets. Once you execute a deployment, it
creates ReplicaSets, which in turn creates pods.

When you update your application, it creates a separate ReplicaSets as a result of your new
deployment. It kills a pod from the old version of your application and creates a new pod
as per the new version of the application - and the cycle goes on. If anything goes wrong as
a result of a new deployment, it will automatically roll back to the previous version of your
application.

Containerization Chapter 6

[170]

PetSets
A pet is a pod that has a state. It means that the data volume that is dynamically created, as
required by a container, will never be deleted automatically. It will again reassociate to the
same data volume with which it was first associated upon restart. A collection of these pets
is referred to as a PetSet.

Now that we have gone through some of the key components of Kubernetes, let's get on
with something practical.

Installation
Kubernetes requires a cluster of computers to set it up; you'll need multiple computers or
VMs in order to set up Kubernetes. Thanks to Minikube, however, you can get started with
just a single node. We will also look at the installation of Minikube, so as to get a flavor of
Kubernetes.

The first component that is required on the road to installation is kubectl. This is a
command line interface that interacts with Kubernetes. Execute the following command to
download it on your computer:

$ curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl
-s
https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/l
inux/amd64/kubectl

This command will download the latest stable version of kubectl to your computer. To
make it executable, run the following command:

$ chmod +x ./kubectl

Now, move the executable of kubectl to the PATH of your binaries so that the kubectl
command will be accessible from your Terminal in any location:

$ sudo mv ./kubectl /usr/local/bin/kubectl

Now that we have set up kubectl, let's install Minikube. Execute the following command
to download it:

$ curl -Lo minikube
https://storage.googleapis.com/minikube/releases/v0.24.1/minikube-linux-amd
64

Containerization Chapter 6

[171]

Execute the following command to make it executable:

$ chmod +x minikube

Now, in a similar fashion to kubectl, move the minikube executable to the PATH of your
binaries by executing the following command:

$ sudo mv Minikube /usr/local/bin/

In order to verify that kubectl and Minikube installed successfully, execute the following
command:

$ kubectl version
$ minikube version

The following screenshot displays the output of the verification commands:

 Kubectl and Minikube installation verification

If you see an output similar to the preceding screenshot, it means that both installations
went as expected. If the verification command displays some other message, perform
the installation again.

The next step is to start Minikube. Before that, however, you must install any of the
hypervisors. In our case, we will install VirtualBox. Download VirtualBox from their
website, https:/​/​www. ​virtualbox. ​org/ ​wiki/​Downloads, based on your operating system.
Once the download is complete, simply double click on the package to install it.

Now that we have successfully installed VirtualBox, it's time to start Minikube. For this
purpose, execute the following command:

$ minikube start

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Containerization Chapter 6

[172]

Once you execute the command, it will start downloading multiple files that are almost 280
MB in size. The following screenshot displays the output you will get, along with the
verification command, once you start Minikube:

 Minikube startup with verification

As you can see, the cluster has been started successfully. You can access the Kubernetes
master node from the IP address 192.168.99.100, although it may be different in your
case. In the following section, we will learn how to deploy a container in your Kubernetes
cluster.

Deployment
We will use the same Docker image that we created in the Docker image section of this
chapter, and will deploy and run it in our Kubernetes cluster. In order to do this, execute
the following command:

// Use this command to deploy docker image
$ kubectl run webserver --image=webserver --port=80

// Verification command
$ kubectl get deployments

Containerization Chapter 6

[173]

The following screenshot displays the execution result and the output of the
verification command:

Docker Image deployment and verification

The next step is to expose the deployed image so that you can access the container using
port 80, which is best suited for http requests. Execute the following command in order to
do so. The following screenshot displays the output of this, as well as the verification
command:

// Expose the deployed service for external use
$ kubectl expose deployment webserver --port=80 --type=NodePort

//Verification command
$ kubectl get services

 Results of the expose and verification commands

Containerization Chapter 6

[174]

Now, open your browser and point the address bar to the IP address of your Kubernetes
master node, along with the port number highlighted in the preceding screenshot. In our
case, it will become http://192.168.99.100:30024. The following screenshot displays
the output of the browser once you have pointed it to the mentioned URL:

 Webserver output running in a container

Kubernetes Dashboard
Kubernetes provides a web UI-based dashboard interface. Here, you can perform different
actions, for example, deploying a container, scaling, and so on. It also provides an overview
of resource utilization, deployments, pods, and more. Follow these steps to install the
Kubernetes Dashboard and start exploring:

Execute the following command to install it:1.

$ kubectl create -f
https://raw.githubusercontent.com/kubernetes/dashboard/master/src/d
eploy/recommended/kubernetes-dashboard.yaml

Once the execution of the installation command is complete, you can execute the2.
following command to start serving the dashboard. The following screenshot
displays the output of this command:

$ kubectl proxy

Containerization Chapter 6

[175]

Kubernetes Dashboard

Point your browser to http://127.0.0.1:8001/ui/. It will display an output3.
similar to the one shown in the following screenshot:

 Kubernetes Dashboard UI

If you can see a website similar to the preceding screenshot, it means that the Kubernetes
Dashboard has been successfully installed and you can start using and exploring it.

Containerization Chapter 6

[176]

Summary
In this chapter, we learned about virtualization and different types of hypervisor. Then, we
learned about containerization and its benefits. Nowadays, containers are a hot topic in the
virtualization world, and the primary framework leading the way is Docker. In this
chapter, we learned about Docker and its workflow. Moving from the theoretical to the
practical, we then proceeded with its installation, along with learning some basic
manipulation commands that deal with Docker. We then learned how to create a Docker
image and how to deploy a sample static website in a container, as well as how to export
and import Docker images if and when required. We also learned about Docker Swarm,
which is used to scale Docker containers to a multi-node cluster.

Kubernetes is a very prominent component in cluster management for containers. We
learned about its different components before installing Minikube, which is used to explore
the features of Kubernetes' cluster management in a single node environment. We then
learned how to deploy a Docker container in a Kubernetes cluster and verify its working
status. Lastly, we installed the Kubernetes Dashboard, which is used to perform different
command-line actions in a web-based environment along with resource allocation
overviews and details.

In the next chapter, we will explore different design considerations for big data setups over
cloud infrastructure.

7
Network Infrastructure

The network is the backbone of any infrastructure. If you have high-end machines at your
disposal but the network is not well-designed or not present at all, then their resources will
be limited just to their own, or we will not be able to utilize their full potential.

In this chapter, we will be going through the following different network concepts and
terminologies to give you an idea about the network industry:

Network
LAN, MAN, WAN
Wired, WiFi, VPN
Network visualization
Gephi – a network visualization tool

Let's start by understanding what a network is and what common types of networks we
use.

Network
When we talk about a network in general, we refer to when any two objects are able to
communicate with each other using any means possible. Having this in mind, we will now
talk about computer networks; in this type of network, two computers are connected in a
way that they can share their hardware as well as software resources. Now, the way they
connect to each other under different environmental setups depends on different
configurations, which we will explore in the subsequent sections.

Network Infrastructure Chapter 7

[178]

Local area networks
Local area networks are also referred to as LANs. This type of network is usually
configured within a house or in an office, a school building, and so on. The devices are
mostly interconnected with the help of a device called a router or a switch. Routers support
both wired or wireless connections whereas switches only support connectivity via wired.
The following diagram illustrates the architecture of a local area network:

Architecture of a local area network

Network Infrastructure Chapter 7

[179]

Metropolitan area networks
Metropolitan area networks are also referred to as MANs. This type of network is usually
established to interconnect different geographical locations, such as two cities or remote
areas. It is bigger then local area networks but smaller that wide area networks. In simpler
terms, MAN is made by connected different large local area networks using point to point
connection. The following diagram illustrates the architecture of a metropolitan area
network:

Metropolitan area network

Network Infrastructure Chapter 7

[180]

Wide area networks
Wide area networks are also referred to as WANs. These are spread over different
geographical locations spread over large distances. For example, connectivity between two
cities of different countries. This type of setup is normally established between different
parties with the help of a contract. This type of contract is normally used to rent the services
of the other party. In simpler words, a WAN is a collection of different metropolitan
networks interconnected to each other. The following diagram illustrates the architecture of
a wide area network:

Architecture of a wide area network

Network Infrastructure Chapter 7

[181]

Now that we have established an understanding about different types of networks, let's
develop an understanding of the different connectivity methods used to connect them.

Network connectivity
There are various ways to establish a network connection. The method of connectivity
varies based on the network size and the devices it connects to. The connectivity can be
different types of wired connections or different technologies used in wireless connection.
We will discuss some in detail in the subsequent sections.

Wired
In this type of setup, computers are connected to each other by means of a hard wire, which
is commonly known as an Ethernet cable. In the basic configuration of this type of setup,
one end of the Ethernet cable will connect to a computer and the other end will connect to a
router or a switch. All available computers connect to a switch or router in a similar fashion
to form a network. This is a typical example of a local area network.

Wireless
With the increase in IoT and handheld devices, network setup can also be established in a
wireless environment. Routers act as a base station and all the wireless devices act as a
client. They follow the IEEE 802.11 standard to establish communication between them.
There are different bands, which are normally referred to as
802.11, 802.11a, 802.11b, 802.11g, 802.11n, and the dual band channel, 802.11ac. There are
different series within the 802.11ac band, such as 1200, 1500, 1700, and 3200. The main
difference between them is the communication speed. The following chart lists the
communication speeds of each band:

IEEE standard Wireless speed
802.11 2 Mbps
802.11 b 11 Mbps
802.11 a 54 Mbps
802.11 g 54 Mbps with greater range
802.11 n 300 Mbps
802.11 ac 450 Mbps on 2.5 Ghz and 1300 Mpbs on 5 Ghz

Network Infrastructure Chapter 7

[182]

Now that we have developed an understanding of the different types of network structure
as well as the different types of connectivity between them, we will now move on to
visualize a network with the help of an interactive tool.

Network visualization
Usually, in large network setup, it is difficult to visualize the interconnectivity of different
nodes and the amount of resources they share between them. If the network size is small
then the analysis is not a big issue, but if the network size is big, then it is difficult to make
any sort of analysis on it. For this purpose, there are different open source and commercial
tools available on the market. The tool that we will be exploring is called Gephi, and we
will be exploring more about it in the following section.

Gephi
Gephi is a network visualization tool for analyzing a network in a graphical format. It is an
open source application. It displays different types of graphs and charts for better
understanding and analysis. It provides many options for customizing the working dataset
and interacting with graphs and customizing their appearances to identify patterns. The
following are some of the key features of Gephi:

Real time visualization
Layout algorithm
Statistics and Metrics framework
Network timeline
Cryptography customization
Dynamic filtering
Data table and editing
Import and export to/from different sources

Let's dive in more and start the installation process. Afterwards, we will perform the actual
practical on it.

Network Infrastructure Chapter 7

[183]

Installation
The first step is to download the required application. This can be done by
visiting https://gephi.org/users/download/. At the time of writing this book, the current
version of Gephi is 0.9.2. Once you visit the previous URL, it will display a button to
download the Gephi application based on your operating system. In our case, it is Ubuntu,
so it will display a button that says Download Gephi for Linux. Once you click on it, it will
download the file gephi-0.9.2-linux.tar.gz. Copy this file into your home folder and
execute the following command to extract it:

$ cd ~/
$ tar -zxvf gephi-0.9.2-linux.tar.gz

This command will extract the file containing the gephi package. That's it for the
installation part. If you're doing it on a new system, then you will have to configure Java
first.

Java installation
To install Java, use the following instructions:

Download JDK and JRE from http:/ ​/​www. ​oracle. ​com/ ​technetwork/ ​java/1.
javase/​downloads/ ​index. ​html.
Copy the downloaded jdk-8u144-linux-x64.tar.gz file to the location2.
where you want to install Java.
Extract and install Java by using the following command. Make sure to3.
replace 8u144 with the Java version you have downloaded:

$ tar zxvf jdk-8u144-linux-x64.tar.gz

The next step is to point the system to the extracted directory. In our case, files4.
are extracted to the /home/fahad/jdk1.8.0_144/ folder. Execute the following
command to make this Java version the default JVM:

$ sudo update-alternatives --install /usr/bin/java java
/home/fahad/jdk1.8.0_144/bin/java 100
$ sudo update-alternatives --install /usr/bin/javac javac
/home/fahad/jdk1.8.0_144/bin/javac 100

https://gephi.org/users/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Network Infrastructure Chapter 7

[184]

To make sure Java is installed correctly, use the following command to check5.
your Java version:

$ java -version

Edit the .bashrc file using the following command. Make sure not to make any6.
other changes in this file:

$ sudo gedit ~/.bashrc

Here, we will configure the Java path. Copy the following code at the end of this7.
file:

export JAVA_HOME="/home/fahad/jdk1.8.0_144"
export PATH=$PATH:$JAVA_HOME/bin

Press Ctrl + O and then Ctrl + X to exit the editor. Now, execute the following8.
command to reload the environment variables:

$ source ~/.bashrc

Now that you have successfully installed and configured Java, you can delete the9.
downloaded file as it is no longer required.

First run
Now that we have configured Java and Gephi, we will now issue the following command
in order to start the application:

$ cd ~/gephi-0.9.2/
$ sudo ./bin/gephi

Network Infrastructure Chapter 7

[185]

Once you execute this command, it will open up the application, as shown in the following
screenshot:

Gephi first run

Now we are all set and ready to simulate our first practical example.

Network Infrastructure Chapter 7

[186]

Practical example
In this practical example, we are going to create a visual representation of a local area
network in which two computers, two mobile phones, and a laptop are connected to a
router. Let's start by firing up the Gephi application, as mentioned in the previous section.
Follow this step by step guide to create this visual representation:

The first step is to click on the New Project link, as shown in the following1.
screenshot:

Starting a new project in Gephi

Network Infrastructure Chapter 7

[187]

This will open up a new project for you. The next step is to switch to Data2.
Laboratory mode to start inserting some nodes in your network. Do so by
clicking on Data Laboratory on the top left side of the application, as shown in
the following screenshot:

Switching to the Data Laboratory interface

Once you click on it, it will switch the interface to Data Laboratory mode. The3.
next step is to click on Add Node, as shown in the following screenshot, to create
a new node in your network:

The Add Node button location in Data Laboratory

Network Infrastructure Chapter 7

[188]

Once you click on Add Node, it will pop up a dialog box so that you can provide4.
a name for your new node. In our case, we will name our first node as Router:

Adding a node in a network using Data Laboratory

Network Infrastructure Chapter 7

[189]

Similar to the last step, after adding the Router node, also add the following5.
nodes, as shown in the following screenshot:

Computer1.
Computer-22.
Mobile-13.
Mobile-24.
Laptop5.

Complete node configuration in Data Laboratory

Network Infrastructure Chapter 7

[190]

Once you finish adding the required nodes, click on the Overview button from6.
the top left menu navigation, similar to what we did to switch to Data
Laboratory mode. It will visualize the current network setup, as shown in the
following screenshot:

Node overview on network diagram

Network Infrastructure Chapter 7

[191]

It's now time to connect these nodes, so that we can establish how these nodes7.
are connected to each other. Click on the Data Laboratory button again from the
top left menu to switch the mode. Now, click on the Add edge button to start
establishing the links, as shown in the following screenshot:

Adding an edge in a network

Network Infrastructure Chapter 7

[192]

In our sample network, all the nodes are connected to Router. Select the edge8.
type to be Undirected because it is not a unidirectional connection. Now, select
the Source as Router and the Target as Computer. Then, click Ok to add edge
information in our Data Laboratory. In a similar fashion, add the remaining
edges, as shown in the following table:

Source Target
Router Computer
Router Computer-2
Router Mobile-1
Router Mobile-2
Router Laptop

The following screenshot illustrates a similar configuration in the Data Table:9.

Network edge complete configuration

Now, to visualize the network that we have established, click on the Overview10.
button from the left top menu as we did earlier. The following screenshot
displays the output of our network:

Network Infrastructure Chapter 7

[193]

Full network visualization

Now, imagine how easy it is to visualize all the objects in this network and how they are
connected to each other. This example is performed on a small network, but if you apply it
on a large network setup, it will still be very easy to understand the network along with all
network objects.

Network Infrastructure Chapter 7

[194]

Summary
A well-designed network leads to a high performance infrastructure with better utilization
of its resources. In this chapter, we have learned about the different types of network
configuration, such as local area network, metropolitan area network, and wide area
network. We have also learned about the different connectivity methods used to
established these types of networks. We have also learned about the different bands used
by wireless connections.

We then moved on to the more practical side of a network, designing and using a tool
named Gephi to help visualize a network. We used a sample local area network scenario
where we took two computers, two mobile phones, and a laptop that were connected to
each other with the help of a Router. We went through a step by step guide to build the
network diagram in Gephi, which will help to visualize the network for better analyses.

In the next chapter, we will go through different design considerations for when you are
designing a big data cloud infrastructure.

8
Cloud Infrastructure

There are lots of companies that are now moving their businesses and IT infrastructure to
cloud providers, either completely or in part. They are reaching this stage because they are
convinced that it is the future in terms of infrastructural setup. A survey was conducted
that concluded that by 2019 65% of businesses will have moved to cloud.

In this chapter, we will be covering the following topics:

Companies moving to cloud
Infrastructure driving factors

Data locality driving factors
New requirements driving factors

Design consideration
Open source versus commercial
Commodity hardware versus purpose built
Cloud versus on-premises
Application architecture
Cost

Let's first start with some discussion on the driving factors due to which companies are
moving to cloud infrastructures.

Companies moving to cloud
Companies are always looking to ease things up. With the evolution of cloud service
providers has taken away the headache, from small companies at least, of bearing huge
startup costs, in terms of building their IT infrastructure. Because most startup companies
have low budgets, instead of investing their budgets into the IT infrastructure, they always
want to spend money on their primary business in order to grow it.

Cloud Infrastructure Chapter 8

[196]

Now, with so many cloud service providers and the varying degrees of services they
provide opens up a whole new market for themselves as well as for the businesses. In the
subsequent sections, let's discuss some of the factors that drive companies to make this
decision to opt-in to a cloud-based IT infrastructure.

Driving factors
The driving factors that make companies move to a cloud-based infrastructure can be
divided into three main sections, which are as follows:

Infrastructure
Locality of data
Requirements

Let's start our discussion with the first section, Infrastructure.

Infrastructure
Let's suppose a company has an on-premises data center that contains 10 servers. Now, due
to any reason, you want to add a new server to your data center. Imagine the paperwork
and approval process involved before you get the new server. Getting hardware
requirements from the concerned stakeholders, then getting approval on that, then
requesting different vendors to provide their quotations based on the provided
requirements. Once you get the quotation, you have to get it approved by the higher
management. Once you get the approval, you have to issue a purchase order to the vendor
to provide you with the goods. Then, it will be passed on to the IT team to physically install
it in your premises. Later on, they will do the configuration and setup as per their
guidelines. These are some of the steps involved, which vary from company to company,
and this process will take no less then five to six months to complete.

Whereas, on the other hand, once your business is on the cloud, all you need to do is to
collect the requirement as to which type of server is required, get the approval from higher
management about the related cost and that's it. If you stretch this process too much, it will
still not take more then a month to complete. It will then be just a matter of a few clicks
from your cloud infrastructure management console to add a new server into your
network. And the best part is, if at any point of time you don't need that server anymore,
just remove it from your cloud management console and you will not be charged for it any
longer.

Cloud Infrastructure Chapter 8

[197]

Locality of data
Nowadays, most businesses are spread across multiple countries in different geographical
locations. Now, having an on-premises data center in one part of the world and customers
and devices that are using that data center in another part of the world doesn't seem to be
good practice. It will face data latency issues along with the overhead of the additional data
transfer cost. It will result in an average to low-grade service with extra cost. The following
diagram illustrates this type of architecture:

Single-premises-based data sharing architecture

Cloud Infrastructure Chapter 8

[198]

On the other hand, cloud infrastructure providers have their data centers spread over
different geographical locations on different continents. Having this type of setup leads to
reduced data latency rates and increased performance. So, instead of keeping our servers in
one place and letting all the data come to it, we will divide our servers into different
locations. We will keep the servers near to the location from which the data is being
generated. For example, if our main clients or devices are in China, then we place our
servers close to China, most likely within Asia. And, because it is a cloud infrastructure,
you don't need to worry about all the trouble that comes with placing your server close to
your serving location. The following diagram illustrates the cloud-based data locality
architecture:

Cloud-based data locality architecture

Cloud Infrastructure Chapter 8

[199]

Requirements
We are living in a technologically advanced era, where researches and inventions are being
done on a very rapid scale. Every now and then, we are being presented with new
software, hardware, IoT, and many more things. Similarly, to adopt and cater to the
requirements of these new inventions, your data centers should be needing constant
upgrades, whether it's a hardware upgrade or a software upgrade. Plus, in a traditional
system, we store only data that is important to us, but now that we understand the power
of data, we should have the capacity to ingest all types of data, whether it is useful for us or
not, and it can be of any type, structure, semi-structure, or unstructured.

These types of requirement changes lead to constant changes in your on-premises
infrastructure, and will also financially affect you. Whereas, with a cloud infrastructure,
you are not purchasing any hardware, you are only renting it, and only pay for the amount
of time you used it. So today, if your requirement is different from the requirements of
tomorrow, it only requires some configuration changes, based on how your usage fees may
increase or decrease, and that's it. You will have a full flash new infrastructure ready to go.

Now that we have discussed some of the driving factors that are moving companies from
having their on-premises infrastructure to having a cloud infrastructure, let's move our
discussion to different design considerations that you should keep in our mind while
designing and setting up your application to be used on a cloud infrastructure.

Design considerations
Now that we have discussed some factors due to which companies are moving their
infrastructure onto cloud, let's now discuss some key factors that one should look at while
designing an application to be used in this type of infrastructure. Applications are now
more advanced and utilize different types of data instead of the traditional application,
which uses structured data either in the form of a relational database or local storage. The
following are some of the key considerations that one should cater to before designing a
cloud-based infrastructure and the applications:

Open source versus commercial
Commodity hardware versus purpose built
Cloud versus on-premises
Application architecture
Cost

Let's start our discussion with the first topic, scalability.

Cloud Infrastructure Chapter 8

[200]

Open source versus commercial
Now, while designing an infrastructure to run your applications on, you may need to
decide which type of setup you want to have; either you want to use open source tools or
instead you will use commercial tools.

The open source community is more like do it yourself. So if you are opt-in for open source
tools and technology, keep in mind that you have to play around with it and do the stuff by
yourself. The open source community is growing very rapidly and more and more people
are getting in to play around with the stuff, ready to help others if any sort of support or
help is needed. So, your main point of contact to resolve any issue or to get technical
support is the community. The main advantage is that you have the full code of the tool or
technology you are using so you know what's in there and how to manipulate it to meet
your desired requirements. Obviously, it requires more hard work from your end in terms
of time and effort, but in the end you will get a full flash open source tool without any
recurring costs.

On the other hand, if you opt-in for commercial build tools or technology, you will get a
fully tested, quality assured, and compatible system that is ready to be plugged in for your
use. In general, commercial tools have their custom functions available along with the tool,
which is an added advantage. It comes with all the support you need to resolve your issues,
as most vendors have dedicated teams to cater any client issue available 24 /7. The
downside is that it comes with a price tag. The bigger the vendor, the higher the price tag;
similarly, the price tag also depends on the complexity of the tool required. More functions
means more cost.

Commodity hardware versus purpose build
Now, when it comes to the hardware, there are two options. The first one is to call up
vendors and give them your specifications or requirements. They will then come up with
some premium quotes. You will then select one of them to do the hard work for you and
get you infrastructure ready. Obviously, it will cost some stash of money. The advantages
you will get from it are that you will get a engineered build infrastructure, closely coupled
with all the components with in it, from the operating system to all the micro components,
including hardware and software. You will also get full time vendor support, so if you face
any issues they will be there to help you out and resolve it.

Cloud Infrastructure Chapter 8

[201]

With in the vendor category, you also have the option of going for the cloud infrastructure.
You will have all the advantages of the vendor custom engineered setup, but instead of
purchasing the full infrastructure, you will be renting out the setup based on your
utilization. If you need only 5 servers from the full grid, you will have to pay only for that,
but in a timely fashion, as you will be renting it, not purchasing it. There are many different
types of configuration available, from renting a full flash server to just renting the
computing power or just renting storage capacity.

On the other hand, if you opt-in for commodity hardware, then it's up to you what type of
hardware you will use to build your computing grid. You can mix things up, such as by
having some hardware with more computing power and some with a larger storage
capacity. It all depend on what your requirements are and how you pursue them. You can
start small and gradually build on it one piece at a time. There are many grid management
console tools and applications available in the open source market to help you out. The
drawback is that you will have to do it by yourself; you will not get any specialized people
to do the job for you. The main advantage is that it will have very minimal effect on your
bank account as the components and hardware you will be using are mostly cheap.

Cloud versus on-premises
Let's now talk about building the infrastructure on-premises versus going for a cloud-based
infrastructure solution. If you set up the infrastructure on-premises, the main advantage
you will get is all of your data utilized within will stay local, within the boundaries of your
premises. You will not be having debates about how secure your data is and who else will
have access to it. You will have more control over it and all the other components involved
in the infrastructure. Once you purchase the hardware, you will have the option to either
run it on full throttle using maximum computation power or leave it idle. It's yours to use
with no money involved. The downside is that you will have to bear the cost of a team that
will handle all the infrastructure setup and maintain it.

Cloud Infrastructure Chapter 8

[202]

The following diagram illustrates the on-premises setup:

Illustration of on-premises setup

On the other side, if you choose to go with the cloud solution, then you will bypass all the
initial heavy costs for the infrastructure to get you started. Instead, you will be paying only
for the resources you will use of the cloud provider. In simpler words, you will rent the
infrastructure from a cloud provider based on your requirements and you will pay for it.
There are couple of advantages to this approach. First of all, you will not be barged in with
heavy duty bills, seeing instead small amounts depending on the type of resource you rent.
The other advantage is that you will not have to bare any maintenance costs for the cloud
infrastructure either, as you will not be the team responsible for the task. Instead, it is the
cloud provider's responsibility to keep the things on track. One of the important
advantages is that you can have your infrastructure placed in different geographical
locations so that the computation and the storage will be closer to the place where it has to
be utilized.

Cloud Infrastructure Chapter 8

[203]

The disadvantage of this approach is that you will have less control over the privacy of
your data. Because the data is out there, you may not know who has access to it. Of course,
you can take precautions to prevent the data leakage, such as encrypting you data,
applying more security on the server you rent, and so on, but still, you will always have
some doubts that your data is out in the cloud. The other disadvantage is that if your data
needs heavy duty computation power, that the bills that your cloud provider will send you
will definitely surprise you. You will need to keep a close eye on the amount of resources
and the computation power you used in this type of approach. The following diagram
illustrates the cloud-based infrastructure setup:

Illustration of cloud-based setup

Cloud Infrastructure Chapter 8

[204]

To cover up the disadvantages of both on-premises and cloud-based setup, some of the
companies are now opt-in for the hybrid solutions. In this type of setup, they keep some of
the infrastructure within the premises and some of it out in the cloud. On-premises
infrastructures mostly consist of storage for the sensitive data, along with high
computational power so that most of the computation-expensive operations can be done
on-premises. The cloud infrastructure can be use to handle IoTs, marketing, end-user
applications, and so on – the sort of data that is less computation expensive – and to get the
infrastructure close to the location where it is being utilized. The following diagram
illustrates the setup of the hybrid approach:

Illustration of hybrid infrastructure setup

Cloud Infrastructure Chapter 8

[205]

Scale up and down
In case of on-premises infrastructure setup, when you have a new requirement, it is most
likely that you have to add a new machine to your grid, because in most cases you will
have built your infrastructure based on the requirements that you currently had. So, every
time you get a new requirement, you will buy the required hardware and add it to your
grid. It is very likely that you will have commercial support that will slap you with some
premium quotes for it, which in the end you have to bear in any case. It may go through
some hectic approval processes, but, still, it has to be done. This is in the case where you
have to scale up. In case of scaling down, you don't have any alternatives; you end up with
a resource that you are not utilizing. It may be used in future, but, for now it's a part of
your grid. The following diagram presents the illustration of scaling up your infrastructure:

Illustration of scaling-up your infrastructure

On the other hand, if you have a cloud-based infrastructure, most cloud service providers
give an option to auto scale your jobs so that if today your computation job has less data,
which may utilize the computation power of five servers, then you will only be charged for
that. Similarly, tomorrow, if you have more data and you need the computational power of
ten servers, then the provider will automatically scale the job to ten servers and you will be
charged only for that.

Cloud Infrastructure Chapter 8

[206]

Similarly, if you have ten servers from your cloud provider and you have a new
requirement to deploy a new application on a separate server, this can be handled very
easily from the cloud management console; in a matter of a few clicks, your new server is
up and running. Now, if you decommission any applications and you don't need the server
that it was running on anymore, simply remove it from your infrastructure, and you will
not be charged for it anymore. The following diagram presents an illustration of scaling-
down your infrastructure:

Illustration of scaling-down your infrastructure

Application architecture
One of the important factors to consider is the application itself that you will be running on
the grid. Whether the grid is on-premises or on the cloud, if the application is not built to
run on your distributed environment, then you will not be able to utilize the full potential
of your grid. For example, you have 10 servers in your data center, five servers with high
computational power, and five servers with a high storage capacity. Now, you bring an
application to run in this environment, but the application is built to run on a single
machine. In this case, you will end up with either the high computation power of a single
machine with less storage capacity, or the high storage capacity but low computation
power of a different single machine. In both cases, you will be at a loss, as only one of your
machines is being used, and the other nine are sitting idle, waiting to be utilized.

Cloud Infrastructure Chapter 8

[207]

Cost decision
The essence of everything comes down the cost. If you have the budget, you can buy a
Lamborghini, but if you don't have the money then even a cheap item is hard to get.

Normally, startup companies, or small companies, have tight budgets. Instead of spending
the money on secondary things, they always look to invest in the primary thing. In
traditional business models, setting up an IT infrastructure is a must, and there are no
escape routes available. In their worst condition, they end up sharing the infrastructure
resources among multiple companies.

Now, with the evolution of cloud service providers, they now have the option to at least
rent out the required resources according to individual requirements in the initial stage,
and, later on, if they want to have an on-premises infrastructure, they can also do it.

There are many cloud service providers that offer a range of services, from dedicated
servers, to shared servers, storage, web hosting, and so on, with a price tag. The following
is a list of the top-10 cloud service providers:

Amazon Web Services: https:/ ​/​aws.​amazon. ​com/ ​

Microsoft Azure: https:/ ​/​azure. ​microsoft. ​com/ ​

Google Cloud Platform: https:/ ​/​cloud. ​google. ​com/ ​

Adobe: http:/ ​/​www. ​adobe. ​com/ ​

VMware Cloud: https:/ ​/​cloud. ​vmware. ​com/ ​
IBM Cloud: https:/ ​/​www. ​ibm. ​com/​cloud/ ​

Rackspace: https:/ ​/​www. ​rackspace. ​com/ ​

Red Hat: https:/ ​/ ​www. ​redhat. ​com/​en/ ​topics/ ​cloud

Oracle Cloud: https:/ ​/ ​www. ​oracle. ​com/​cloud/ ​

Verizon Cloud: http:/ ​/ ​www. ​verizonenterprise. ​com/ ​welcome- ​to-​verizon-
cloud/​

Some of them offer free trial versions for you to explore the functionality they have to offer.
For example, Amazon, Google, and Microsoft are offering up to 12 months of their free trial
versions, and on the first month up to $200 credit can be used on some of the premium
services they are offering. Go ahead, sign up for their trial accounts and start exploring the
cloud.

https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
http://www.adobe.com/
http://www.adobe.com/
http://www.adobe.com/
http://www.adobe.com/
http://www.adobe.com/
http://www.adobe.com/
http://www.adobe.com/
http://www.adobe.com/
http://www.adobe.com/
http://www.adobe.com/
https://cloud.vmware.com/
https://cloud.vmware.com/
https://cloud.vmware.com/
https://cloud.vmware.com/
https://cloud.vmware.com/
https://cloud.vmware.com/
https://cloud.vmware.com/
https://cloud.vmware.com/
https://cloud.vmware.com/
https://cloud.vmware.com/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/en/topics/cloud
https://www.oracle.com/cloud/
https://www.oracle.com/cloud/
https://www.oracle.com/cloud/
https://www.oracle.com/cloud/
https://www.oracle.com/cloud/
https://www.oracle.com/cloud/
https://www.oracle.com/cloud/
https://www.oracle.com/cloud/
https://www.oracle.com/cloud/
https://www.oracle.com/cloud/
https://www.oracle.com/cloud/
https://www.oracle.com/cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/
http://www.verizonenterprise.com/welcome-to-verizon-cloud/

Cloud Infrastructure Chapter 8

[208]

Summary
In this chapter, we discussed the key driving factors that are making businesses decide to
move to cloud-based infrastructures. Some of the key factors that we discussed in detail
include infrastructure, locality of data, and the fulfillment of new requirements. Especially
for small to mid-range companies, it is very hard to ignore these factors while setting up
their IT infrastructure.

We then moved on to discuss the design considerations that you should consider while
making decisions related to setting up IT infrastructure. One of the key considerations that
we discussed in this chapter is the comparison of open source to the commercially available
tools and technologies. We then discussed the utilization of commodity hardware against
purpose-built hardware. After that, we moved on to discuss the advantages and
disadvantages of on-premises and cloud-based infrastructure. We also discussed some of
the primary considerations related to the application architecture that we will be running in
our distributed environment. In the end, we concluded that cost is the essence of all the
decision making.

In the next chapter, we will be going through some network monitoring and security tools.

9
Security and Monitoring

Network security and monitoring is always a big concern for companies. The size of the
network was not that big in older day, therefore it was easy to manage. With the increased
use of computer-related devices, the size of the network is exponentially increasing. Take
an example of a data center, where each data center contains thousands of network devices
serving their customers. When you have a big network that contains this many network
devices, it is not possible for you to check whether the hardware and software components
of each and every device are working properly. For this purpose, there are some standard
network protocols and different monitoring applications that are open source, free, and
commercially available in the market.

As far as security is concerned, until a couple of years ago, most companies restricted their
network, which only allowed connected network devices to communicate with each other,
without the interference of any direct or indirect connection from the outside world. All the
servers and clients were part of the on-premises network setup. Even then, the companies
were not satisfied with the security applied on them. Now, with the internet as a
mandatory requirement, and most of the servers and information on the cloud, it is
necessary for companies to expose their network to the outside world. This is something
that is of great concern to many companies, and so they want the best security
available. They always look to install different firewalls and many different types of
network security and monitoring tools to make their network secure.

In this chapter, we will discuss the following topics, as they are related to network
protocols, monitoring, and security:

Simple Network Management Protocol
Netflow
Nagios
Security Onion
Wireshark

Security and Monitoring Chapter 9

[210]

Simple Network Management Protocol
Simple Network Management Protocol is commonly referred to as SNMP. This protocol
allows you to proactively view and analyze what's going on in your network devices, so
that you can fix issues before they become a major problem. If you are in an environment
where you can perform proactive maintenance, SNMP is a must-have protocol for you.
Using this protocol, you can extract lots of information about the device.

SNMP is normally a component used as a part of an open source to enterprise-level
application that helps you keep your network in order. Applications such as Spiceworks,
LAN View, and Open Manager use SNMP to know about the devices in the network
and gather related information from them.

In the standard monitoring solution, we use the default commands, such as ping, to check
whether it is online, you can also use some other commands to check the IP address
assigned to that device, and so on. But just by using those commands, you cannot know
what's going on inside that device. SNMP comes to the rescue here and allows you to get
the inside information about the device. For example, how much memory it is using, how
much of the hard disk space is left, and what is the current CPU utilization.

Other than this, it can also let you know about the state of the hardware, such as whether
the CPU fan is working, or whether all the assembled RAM are functioning properly.
SNMP can send all this information back to a network-management software to highlight
the current state.

The following diagram illustrates how SNMP works as a whole in a network:

Security and Monitoring Chapter 9

[211]

How Simple Network Management Protocol works

Benefits of SNMP
Let's now try to understand the benefits of SNMP. Assume you are an administrator in a
small organization where you have 10 to 20 network devices to manage. It will not be too
much trouble for you to monitor these devices and keep them up and running in a fully-
functional state. Now imagine you have a data center of two hundred network devices.
How will you monitor all of them? It is not possible for you to open up each of the network
devices and check whether all of the components are working properly.

Now imagine in one of the network devices, the case fan just stops working. Eventually, the
heat in that device will build up and it can destroy the entire device. It is a loss in itself but
in some cases, it may catch fire, resulting in a much bigger loss of both property and, most
importantly, data and the operations.

SNMP comes to the rescue in these types of situations. There is always a time window
where you can take necessary actions before an issue becomes a big problem. In the event
of any of such cases, such as hardware component failure or the utilization of any of the
components exceeds the set threshold value, SNMP will immediately notify Management
Software to take corrective action. This prevents any unforeseen issues or a bigger loss.

Security and Monitoring Chapter 9

[212]

Security
SNMP can provide great deal of information about the network device. Back in the
Windows XP era, many of the networks got hacked because of SNMP. It normally comes as
a backend service, along with the operating system, and in Windows it is enabled by
default. So if it is not properly handled in your network, it will open the back door for
hackers to attack. The following figure illustrates this scenario:

Possible security threat due to SNMP

Nowadays, the first thing a network administrator does is to disable the SNMP service and
enable it only when the required configuration and setups are in place, such as firewall
settings.

Agents and Traps
When you work with SNMP and its related software, you will come across two common
terms: Agents and Traps.

Security and Monitoring Chapter 9

[213]

An Agent is a piece of software that runs on the network device that we want to be
monitored. The purpose of this agent is to notify the central-management software in case
any of the configured events happen, such as the hard disk utilization reaches 90% or one
of the memory slots stops working.

The items that we configure, which are picked up by SNMP agent to monitor are called a
Trap. For example, getting a notification upon the hard disk utilization is a trap, the failure
of a memory slot is a trap, and so on.

Now that we have understood the basics of SNMP, let's move on to our next topic, Netflow.

Netflow
Netflow is a network protocol developed by Cisco. It is responsible for collecting data
related to the network traffic that flows through it. It collects information such as
Destination and Source IP addresses and ports, protocols used in communication, total data
transferred, and the network interface user for this purpose. The following figure illustrates
the architecture of Netflow:

Netflow architecture

Security and Monitoring Chapter 9

[214]

The flow cache can contain records from a few thousands up to millions. It depends on the
type of device that is being used for the Flow cache. After the record in the flow cache
expires, it will then transfer that record to the Netflow collector for further analysis. The
following figure illustrates this concept:

Netflow collector opertion

Netflow can be embedded in the device hardware or can be presented as a software
package. It can be used in real time. It is not used just for network-monitoring purposes; it
can also be used to do the following:

Monitor a specific application's activity
Monitor user activity
Network design and planning
User-based billing and reporting
Application profiling
Security analysis
Bandwidth monitoring
Cyber threat forensics

IPFIX is standard for any flow protocol. Other vendors have developed their own version
of Netflow; HP developed s-Flow, and Juniper Networks developed J-Flow.

Security and Monitoring Chapter 9

[215]

Nagios
Nagios is a free and open source network and IT infrastructure-monitoring application. It
provides different types of monitoring options, including servers, computers, switches, and
applications. It was initially named NetSaint as was first released in 2002.

It runs under the category of a server client application. A client application is required to
be installed on the device you want to monitor, which will be configured to provide
feedback to the server running its server component. The following figure illustrates the
architecture and flow of Nagios:

Nagios flow and architecture

Let's now explore some of the key benefits of using Nagios.

Key benefits
Nagios provides the following key benefits:

It monitors network services such as SMTP, POP, SMNP, and HTTP
It can monitor different operating system including Windows and Linux
Hardware monitoring to identify any sort of failure or issues

Security and Monitoring Chapter 9

[216]

It provides options to remotely review and manage through the Remote
Management Console over SSH and SSL connections
It also provides options for developers to create their own plugins depending on
the custom requirements
Multiple notification options, such as an onscreen alert, sending an email, or SMS
if an issue happens
It has the capability to define event handling for proactively resolving problems
It can be integrated with the backend database for more custom details and
analysis

These are some of the key benefits of Nagios. The plugin-based design makes it more
adoptable so that if any of the custom requirements are not already covered by Nagios, you
have the option to create a plugin for that functionality and add it to Nagios. The rest will
be handled by itself.

Up to this stage, we were discussing how to monitor a network. For example, all the hosts
in the network are up and running, and whether all hardware and software of the
individual host is also working properly. We will now discuss the application that will
allow you to understand and analyze the data packets flowing in your network.

Security Onion
Security Onion is a Linux-based distribution that is specifically designed to help you
monitor your network and analyze any malicious activity. It helps to identify any intrusion,
logs all the activities in your network, and provides valuable feedback.

The basic architecture of Security Onion is based on the server-client model. The agents are
deployed on the client machines, they are also called Sensors. The job of the sensor is to
sniff through the activities on the network on configured hosts and report it back to the
Security Onion server. It provides an interface for an analyst to connect to its server from a
client machine and execute queries and jobs for forensic purposes.

A Linux distribution means that it is an operating system specifically
configured with different tools to focus on a desired task.

Security and Monitoring Chapter 9

[217]

Deployment scenarios
The Security onion model-based design allows you to configure it in three different ways:

Standalone model
Server-Sensor model
Hybrid model

We will now go through all of these models and discuss their architectures and the
differences between them. Let's now start with the first model, Standalone.

The Standalone model
In this type of setup, a single machine will be set up to run both the server and the sensor
component, as well as related processes. The server component will be responsible for
collecting data from the sensor and the sensor component will be responsible for sniffing
the network using the configured network interfaces on that machine. You can set it up to
work on different network segments by having multiple network interfaces on that
machine. The following figure illustrates this mode:

Security Onion Standalone model

Security and Monitoring Chapter 9

[218]

This model is considered to be a more efficient and convenient model if you have access to
the complete network from a single location. It makes the setup and deployment easy.

The Server-Sensor model
In this type of model, you will deploy the server component on a single machine, which
will communicate the sensor components that may be deployed to one or multiple
machines. Each Sensor component will be responsible for sniffing through the network on a
set of preconfigured hosts or on a specific network segment, which then reports all the
activities back to the Server component upon request. The following figure illustrates this
model:

Security Onion Server-Sensor model

Security and Monitoring Chapter 9

[219]

Once an analyst connects to the Security Onion server and queries any data, the server
component will then request that data from the related sensor. This will result in reduced
network traffic, as all the data will be kept with the sensor and will be provided on
demand. All the traffic between the server component and the sensor is encrypted.

Hybrid model
As the name states, it a mixture of both flavors. In this type of model, you will have a
machine where the server component and the sensor reside, which work together, similar
to the standalone model. Along with that, it will also have one or more sensors deployed on
different network segments to report back to the standalone server component.

Preconfigured tools
It comes with many powerful tools that are used to handle all sorts of data and perform
analysis on them. Some of them are as follows:

Elasticsearch
Logstash
Kibana
Squert
Sguil
Network Miner

Security and Monitoring Chapter 9

[220]

Some of these tools are covered in this book with respect to Big Data, some of them we have
already discussed and some of them will come in later chapters. They are being used in this
Linux distribution as they provide a more efficient way to handle data, whether it is
structured or unstructured. Not only that, tools such as Kibana will give you graphical
insight in the form a dashboard. The following figure will give you taste of the type of
reports and the dashboard expected from it:

Kibana dashboard

Let's now move on to a tool that will help you to not only capture the data packet in your
network but also look into the details of the packet and its contents. The tool we will
discuss now is called Wireshark.

Security and Monitoring Chapter 9

[221]

Wireshark
Wireshark is an open source application used to analyze the data packet in your network. It
can be applied in multiple ways, for example, network troubleshooting, security analysis,
and network forensics. It was originally named Ethereal but was changed to Wireshark in
2006. It is a cross-platform software that can run on Microsoft Windows, Mac, different
Linux distributions, and Unix-based systems. It is a GUI-based application, but it is also
available to be used in terminal mode, by the name of T-Shark.

Let's now discuss some of the key features of Wireshark that make it popular with network
administrators when it come network data packet analysis.

Key features
The following are some of the key features of Wireshark:

Wireshark is an advanced application that understands different network
protocols. It can identify the structure of the data packet and extract the available
information from it.
It can parse different fields out of the data packet, as per the standards of the
networking protocol.
It can analyze data packets from a live stream or from an already-captured data
packet file.
It supports data capture from different network interfaces, such as Ethernet and
Wireless.
It supports both GUI- and command-line-based interfaces to analyze the data
packets.
It provides many filtration mechanisms to filter out the desired data packet from
the live or already-collected data packets.
It can automatically classify may different types of data packets, such as HTTP
and VOIP.
It provides options to color-code the desired information based on the defined
rules.

It is free to download and will take your networking carrier to the next level.

Security and Monitoring Chapter 9

[222]

Summary
In this chapter, we went through different network monitoring and security protocols and
tools. We started by discussing the most common protocol used in the monitoring world,
SNMP, Simple Network Monitoring Protocol. We discussed how it works, its key benefits,
its security-related issues, and common terminologies used while working on this protocol.
We then moved to another type of protocol used to monitor the data packets flow in your
network. There are different vendor-based variations of this protocol; what we discussed
here is developed by Cisco and called Netflow.

Then, we discussed the different monitoring applications that will help you not only store
the network-monitoring logs and related data, but also represent then in a graphical
manner. We started off by discussing a free, open source tool named Nagios. We discussed
how it works and its key benefits. We then moved on to the fully configured Linux-based
distribution that comes with a bunch of tools and utilities, giving you complete control over
monitoring your network. This Linux distribution is called Security Onion. We discussed
its architecture and different deployment scenarios, and the preconfigured tools that come
along with this distribution, for example Kibana and Elasticsearch. Afterward, we
discussed Wireshark; this is a very important tool used by many security professional to
analyze the contents of the captured data packet. We discussed how it works and some of
its key benefits.

In the next chapter, we will use practical examples to discuss the tools and technology used
to design a frontend software architecture.

10
Frontend Architecture

The user interface of any web application plays a vital role in either making it a success or
dragging it toward failure. If the user interface is friendly and responsive, users of that
application will interact and play around with it for longer period and also revisit it many
times. But if the interface is complex and lags on different occasions, it makes the user
frustrated and more likely to move away from that application. It doesn't matter whether
the application has very strong backend architecture and database support; these things are
irrelevant to the end user. The end user needs a very good-looking, friendly, interactive,
and responsive application at their end; with this, any application can be on the road to
success.

In this chapter, we will cover the following libraries in detail, along with their key concepts,
with respect to building a high-end frontend interactive architecture:

React JS
Redux

React JS library is used to build a responsive and component-based architecture. It comes
with a Virtual DOM concept. The beauty of it is that it will update only the elements of the
application that receive changes rather than refreshing the whole web page. Hold on to it;
we will explore more over the course of the next section.

Redux library is used to maintain the state of the required elements in a global location of
an application by introducing a single place of truth concept. We will learn more about
Redux in its respective section. Let's go ahead and start with React JS.

Frontend Architecture Chapter 10

[224]

React JS
React JS is a JavaScript Library for building an interactive user interface with fast rendering.
It is built by the Facebook company. If we look into React's history, we see that, a few years,
Facebook came across a problem related to its interface; it was not very responsive and
lagged while displaying multiple feeds. To resolve its user interface issues, Facebook came
up with this library.

React JS Library is used only to fulfill frontend design requirements. It is just involved with
the view part of MVC architecture and doesn't support any server, web service, or API
calls. To do backend tasks, such as API or web service calls, database manipulation, server
file handling, and so on, you need to use some other library or framework, such as JQuery.
We will cover the backend architecture in our next chapter.

Now, to understand React fully, let's go ahead and first understand its design and the key
concepts and terminologies used in our later discussions.

Key concepts
Similar to any framework and libraries, React also uses technologies and terminologies to
understand its concepts and functioning. The following diagram illustrates the architecture
of a web request and where React sits and renders the requests made to it:

 Web Request Architecture and ReactJS's place in it

Frontend Architecture Chapter 10

[225]

If we look into this architecture, a client computer makes a request to the internet, which is
usually done using a browser. It can be any browser: Internet Explorer, Chrome, Firefox,
and so on. The request goes to a server through the internet. In traditional systems, the
server processes the request, renders the output, and sends the full response back to the
client computer. The browser will then render the complete page and display the latest
output.

Browsers process a page in a DOM (Document Object Model), also called an HTML
DOM. Simply put, a DOM is a tree-like structure of all the HTML elements present on a
page. It is an in-memory process, and stores all HTML elements in text form, in hierarchical
order. A virtual DOM is an abstract copy of a DOM. It helps to first render changes to it and
compare it with the actual DOM to identify what's changed.

Now, what React does in this situation is create a virtual DOM and only updates the
elements on the page that gets new data. If any element does not get new data in response
to a server request, it will remain unchanged and not be refreshed. Let's take an example of
a client request. Let's assume you are on a website, filling out a contact us form. Once you
click submit, the request will go to the server, and in return the server will respond with
either a success or a failure message. Now, in this scenario, the traditional method is to
update the whole page, which will take bandwidth and processing time. The other way is
to keep the page as it is and only update the success or failure message. Which one do you
think will be fast and responsive? The second one is the obvious answer.

Now that we have got some understanding of what React does and where it resides, let's
move on to the next concept.

Node.js
Before Node.js, the JavaScript programming language had limited means of execution
inside a browser environment. Node.js brings along functionality that breaks this restriction
and opens up a new world of possibilities. It is a cross platform, open source, JavaScript
runtime that lets users run JavaScript code outside of a browser environment. You can
think of it as the ability to use JavaScript even at the server side rendering.

Node.js has a package manager called Node Package Manager (NPM) that contains
thousands and thousands of open source components and libraries available to be used by
any one.

Frontend Architecture Chapter 10

[226]

One of the misconceptions is that React perforce requires Node.js to run. Node.js
facilitates React development in different ways but it is not mandatory. Node.js helps to
create a project structure and template to get started with a React Project. We will be using
Node.js in the practical section of this chapter to build a React Application project structure
using Node.js.

Similarly, Node.js provides a web server functionality to easily run your React application,
and real-time change detection. In production or even in the development environment,
you can run React applications on any other web server, such as Apache Tomcat, IIS, and so
on; whichever you are comfortable with.

JSX
JSX is an extension to the JavaScript programming language. What it actually does is allow
the use of HTML type syntax and tags within JavaScript, which makes it super easy to
understand and program. It then, while compiling, converts this syntax into plain old
JavaScript.

This extension to JavaScript actually requires a Babel framework to convert the JSX syntax
to plain JavaScript syntax so that browser can understand. You can think of Babel as a JSX
compiler. Without this compiler, the browser will not understand what your code actually
means and will throw error exceptions.

Let's take an example of placing an HTML heading tag in a <div> element using JavaScript
with React JS:

<div id="contentContainer"></div>

<script>
ReactDom.render(
 React.createElement('h1', null, 'Welcome'),
 document.getElementById('contentContainer'));
</script>

Now we will do the exact same thing, but this time, we will be using JSX syntax:

<div id="contentContainer"></div>

<script type="text/babel">
ReactDom.render(
 <h1>Welcome</h1>,
 document.getElementById('contentContainer'));
</script>

Frontend Architecture Chapter 10

[227]

You may have noticed that we have added an attribute type="text/babel" to <script>.
This is what tells the browser to execute the underneath code with the help of Babel
compiler. This is just an example to give you a glimpse of how easy and readable our code
becomes with the use of JSX. There are many different useful scenarios where JSX really
makes writing JavaScript easy. You will see more JSX usage as we proceed in the chapter.

Unidirectional dataflow
In React, every element is a component. All the components are populated in such a way
that they always make up a parent and child relationship. Now, when we talk about the
direction of data flow, it is always unidirectional; it will always flow from a parent to its
child.

It is not possible in any way for the child to be able to send data to its parent. Another
important thing to note is that even the children cannot talk to each other. This means that
the components cannot send data to the same or to the above level in the hierarchical
concept. The following figure illustrates the data flow direction in a React application:

Unidirectional dataflow in React

Frontend Architecture Chapter 10

[228]

If your application architecturally requires your child components to pass
on data to its parent components, then React is not suitable for your
application.

Getting started with ReactJS
There are multiple ways to get you started. If you just want to see how React works, just
create a single page application that calls all the required libraries from their React official
CDN network to get you started so that you don't have to gather and download all the
dependencies by yourself. To do actual development for a production environment, it is
recommended to create a project with the help of NPM, which we will discuss as we
proceed further. Let's first start by creating a single page React application.

Single page application
In its simplest form, you are required to include three JavaScript files in your project, which
are as follows:

// 1 -- React Library
<script src="https://unpkg.com/react@16/umd/react.development.js"></script>

// 2 -- React DOM Library
<script
src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"></script>

// 3 -- Babel for JSX compilation
<script
src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

The URL mentioned in this code is from the React CDN network; if you use it as it is then
you won't have to download any files locally in your computer, but if at any time you
disconnect from the internet, you will not be able to proceed with your development. The
helloworld.html code is as follows:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Hello World</title>
 <script
src="https://unpkg.com/react@16/umd/react.development.js"></script>
 <script

Frontend Architecture Chapter 10

[229]

src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"></script>
 <script
src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>
 </head>
 <body>
 <div id="root"></div>
 <script type="text/babel">

 ReactDOM.render(
 <h1>Hello, world!. Welcome to React App</h1>,
 document.getElementById('root')
);

 </script>
 </body>
</html>

What this code does is link all the required js libraries from the React CDN, then creates a
div element with id root that acts as the main content holder of your application. Then,
using the React render function, a plain HTML heading containing your message gets
returned and places it inside your content container. So here you go, your hello world
single page app is ready.

Lets now proceed to build our React application professionally and in prescribed ways.

React application project
Now here comes the recommended way to create your React app project. It is
recommended to create your project with the help of Node.js and its package manager.
Using this method, you can build up the whole project structure in just a few steps. Let's
start by installing Node.js and its components on our computer. This can be done by
executing the following commands:

// This will install NodeJS framework
$ sudo apt-get install nodejs

// This will install NodeJS Package Manager (NPM)
$ sudo apt-get install npm

// This will install NPX. It is used to executes NPM binaries task
$ sudo npm install -g npx

Frontend Architecture Chapter 10

[230]

Now that we have finished setting up the environment for Node.js, let's now create our
React app using the predefined bundle. It comes with a preconfigured webpack, server, and
babel so that you don't have to worry about any of the configurational stuff and can quickly
start building your React app. To get started, execute the following command to set up
your first React app:

// You can use any name instead of my-app. What ever name you mention
// it will create a folder with that name and set up your React app in it.
$ npx creat-react-app my-app

Once you execute this command, it takes couple of minutes to complete. You see something
similar to the following screen at the end of the execution:

NPX create React app completion

Frontend Architecture Chapter 10

[231]

It suggests that you proceed with any of the steps mentioned as per your requirement. As
this is the first time we have created our React app, we will begin by displaying the output
as to what setup it has done for us. Let's execute the following command to start the server
and execute the default app:

$ cd my-app
~/my-app$ npm start

Once you execute the npm start command, it will compile your application, start a
webserver, and publish it. The terminal window will show the following success message:

 NPM Start terminal output

It will also automatically open up in your browser windows the URL mentioned in the
terminal output window screen. If it will not open, you can manually open up a browser
and point it to the URL mentioned. The default app installed with this project structure will
appear similar to the following screenshot:

 Default React app

Frontend Architecture Chapter 10

[232]

If you are able to see the default React app, it means that everything is set up correctly and
we can proceed with modifying the default app and creating our own app. If not, please go
back and redo the setup carefully.

Before proceeding to customize the app, let's first understand the directory and files created
by NPX command for our React app.

React app directory structure
Let's have a look into the directory structure that is created by NPX. It contains the
following directories and files:

my-app/
 README.md
 node_modules/
 package.json
 public/
 index.html
 favicon.ico
 src/
 App.css
 App.js
 App.test.js
 index.css
 index.js
 logo.svg

node_modules/: Contains the files and folders related to the dependencies while running
our React App. It includes dependencies related to React JS, Babel, Webpack, and so on. We
don't need to worry about the content in it as Node.js is responsible for managing it.

public/: Contains an HTML index page that actually contains the placeholder of the
contents that we will populate using the React JS component. Make sure not to change the
filename of index.html as it is the root placeholder of the components related to your app.

src/: Contains JavaScript files of all the components that we will use in our React App.
Make sure not to change the name of index.js as it is the entry point of your application.

package.json: Node.js requires this file to contain the metadata of the application and all
its related dependencies.

Frontend Architecture Chapter 10

[233]

Now that we have understood the files and directories of our React app, let's now start
customizing the existing components like App.js and also create our own components.

Components
In React, everything is a component. React applications are actually a collection of different
components placed together. You can think of components like HTML tags. For example, in
a web page, textbox is a component. Similarly, the submit button of the form is also a
component.

Now if we broaden our thinking of components, a bigger component can contain many
different smaller components. For example, a text editor on your webpage while writing an
email; this would contain many different components, such as those that make your text
bold, italic, underline, and so on. All these are small components inside the bigger
component called text editor, which you place in your compose email webpage.

Similarly, while designing your React application, you have to think of each functionality
as a component or child of a component. Let's take an example of creating a header
component so that you can place it on all of your web pages easily. In order to create your
component, the following code is required:

import React, { Component } from 'react';

class Header extends Component {
 render() {
 return (
 <h1>Welcome to my Website</h1>
);
 }
}

export default Header;

This is just a very simple component that displays a welcome heading as an output. To call
this component into your webpage is also super easy. In your ReactDom render function,
simply call the variable as an HTML tag as shown in the following code:

ReactDom.render(<Header />, document.getElementById("headerHolder"));

Frontend Architecture Chapter 10

[234]

This will execute the component code, get the returned HTML result, and place it in the
headerHolder div component. As you can see, with the help of this component based
approach code becomes easy to understand, and most importantly, it becomes reusable;
wherever the component is required, simply call it by it tag and leave the rest to be handled
by React and Babel.

When you try to return multiple parent elements, like a <h1> as well as an tag in
your component, it will not work. To make it work, wrap both the tags inside a <div>
element, making it return a single parent element. Your code will become as follows:

import React, { Component } from 'react';

class Header extends Component {
 render() {
 return (<div>
 <h1>Welcome to my website</h1>

 </div>);
 }
}

export default Header;

Similarly, while rendering your component, if in any case you require calling it multiple
times, wrap it as many times as you want but inside a div element. Your code will become
as follows:

ReactDom.render(<div>
 <Header /><Header /><Header />
 </div>, document.getElementById("headerHolder"));

Let's now move on to making our component more complex and generic by introducing the
concept of properties.

Frontend Architecture Chapter 10

[235]

Properties
Properties are also referred to as React Props. They are used to pass values from the React
render function to the components. They are similar to the attributes of any HTML tags.
Here, it's up to you to name these attributes whatever you want. They are very useful for
making generic templates and reusable code. For example, let's say that your task is to
create a component that displays an image with its name and year of posting. Imagine;
without properties, you will be required to create this component for each and every image.
But with the help of properties, you will create a generic template of how the image and
description will appear on the page. Then, while calling the component, you can pass on
the required details as an attribute for rendering.

Attributes can be accessed inside the component using this.props.propertyName. Let's
now take a quick review of the following code to display an image with title and posting
year:

import React, { Component } from 'react';

class Image extends Component {
 render() {
 return (
 <div>

 <h2>{this.props.title}</h2>
 <h4>{this.props.postyear}</h4>
 </div>
);
 }
}

export default Image;

Now that we have a generic template for an image component, let's now call it for our
images. Now our index.js file has the following code:

import React from 'react';
import ReactDOM from 'react-dom';
import Image from './Image';
import './index.css';
import registerServiceWorker from './registerServiceWorker';

ReactDOM.render(
 <div className='imgdiv'>
 <Image file='tree.jpg' title='Tree' postyear='2017' />
 <Image file='flower.jpg' title='Flower' postyear='2016' />

Frontend Architecture Chapter 10

[236]

 <Image file='mont.jpg' title='Mountain' postyear='2015' />
 </div>
, document.getElementById('root'));

registerServiceWorker();

If you now look at the output in the browser by pointing it to the local web server URL, it
will be similar to the following screenshot:

 Output of custom React Image component

Now that you have a good idea about how beneficial these properties are and how to use
them, let's now move on to the next topic, event handling.

Event handling
In some cases, we require our components to respond when the end user interacts with
them; for example, a submit button on a form. When the user clicks on it, it is supposed to
take all the data filled by the user and send it to the server for whatever further reason it is
meant for. Similarly, you can define these interactions, or better, do event handling within
React on the client side.

Frontend Architecture Chapter 10

[237]

Let's expand our example of an image gallery. Now, suppose you want to display some
information related to an image whenever the user clicks on the picture. To handle an
event, first of all you have to define a function, similar to the render function, which will
handle that specific event. It will be similar to the following inside your component class:

description = () => {
 alert('Some description related to image');
}

This will display a message window to the user with the text as mentioned. But our
component is not specific to a single image, so we will use a React property to pass on the
description along with other attributes. Now, our code will become as follows:

description = () => {
 alert({this.props.children});
}

this.props.children is used to get the text written in between the HTML tags without
needing to define an attribute. We will now set our image to call this function whenever a
user clicks on it using the Javascript OnClick function. It will be done using the
following code:

The complete code for the Image.js component class file is as follows:

import React, { Component } from 'react';

class Image extends Component {
 description = () => {
 alert(this.props.children);
 }

 render() {
 return (
 <div className='imgdiv'>
 <img onClick={this.description} src={this.props.file}
className='gallery' />
 <h2>{this.props.title}</h2>
 <h4>{this.props.postyear}</h4>
 </div>
);
 }
}

export default Image;

Frontend Architecture Chapter 10

[238]

The complete code for index.js is as follows:

import React from 'react';
import ReactDOM from 'react-dom';
import Image from './Image';
import './index.css';

ReactDOM.render(
 <div className='imgdiv'>
 <Image file='tree.jpg' title='Tree' postyear='2017'>Picture of a
tree</Image>
 <Image file='flower.jpg' title='Flower' postyear='2016'>Picture of a
Flower</Image>
 <Image file='mont.jpg' title='Mountain' postyear='2015'>Picture of a
Mountain</Image>
 </div>
, document.getElementById('root'));

When the user now clicks on any image, it will display the short description mentioned in
between the image tags. The following figure shows the output when the user clicks on the
tree image:

 Event handling on image click

Let's now move on to our next topic of managing the state of elements.

Frontend Architecture Chapter 10

[239]

State
One of the characteristics of React Props is that once you set it for any component, you
cannot change it for its entire lifecycle. Now, if you need to set a property of a component
and want the flexibility of also changing it, you need to utilize the State object in React.

To understand the concept of state properly, let's take an example of a list of colors,
populated in a dropdown HTML element, with which a user can select a desired color
according to his/her preferences. As an initial stage, we will set a default color, which will
also become the background color of the text on the webpage. Once the user selects a
different color, this color will immediately change.

Let's start by initializing the state object. We will initialize a color variable in the state object
and assign it a default color. This is done using the following code:

 constructor(props) {
 super(props);
 this.state = { color: 'Yellow' };
 }

An important thing to remember is that the state initialization has to be
done in the constructor function of your component class.

Now we will write our event handler function, which will update the state object once the
user selects a different color. In the previous section, we have already covered how to
handle events. So, the code of the event handler function in this scenario is as follows:

 setColor = (event) => {
 this.setState({color: event.target.value});
 }

Now that we have initialized the state object and have our event handler ready, let's build
up a list of colors using the HTML select element and assign our setColor event handler
function on the onChange event of the element. The component render function code is as
follows:

render() {
 var selectedColor = this.state.color;
 return (
 <div>
 <select onChange={this.setColor} value={selectedColor}>
 <option>Red</option>
 <option>Green</option>

Frontend Architecture Chapter 10

[240]

 <option>Yellow</option>
 <option>Blue</option>
 </select>

 <h2 className={selectedColor}>
 Selected color is : {selectedColor}
 </h2>
 </div>
);
 }

Here I have defined four css classes so that, upon the changing of the color, the specific css
class will be assigned. Copy the following into your index.css file:

.Red {
 background-color: Red
}
.Green {
 background-color: Green
}
.Yellow {
 background-color: Yellow
}
.Blue {
 background-color: Blue
}

Now open your browser and point it to your local web server to see the output. The
following figure shows the initial results:

Initial output of the dropdown component

Frontend Architecture Chapter 10

[241]

Now let's assume that a user has selected the color Red from the dropdown menu. Once a
new color gets selected, it will update the state, which results in an update to the text as
well as the background color. The following screenshot show the result upon selection:

 Output as a result of user selection

In order to give you a clear picture, the complete Dropdown.js file code is as follows:

import React from 'react';

class Dropdown extends React.Component {
 constructor(props) {
 super(props);
 this.state = { color: 'Yellow' };
 }

 setColor = (event) => {
 this.setState({color: event.target.value});
 }

 render() {
 var selectedColor = this.state.color;
 return (
 <div>
 <select onChange={this.setColor} value={selectedColor}>
 <option>Red</option>
 <option>Green</option>
 <option>Yellow</option>
 <option>Blue</option>
 </select>

 <h2 className={selectedColor}>
 Selected color is : {selectedColor}
 </h2>

Frontend Architecture Chapter 10

[242]

 </div>
);
 }
}

export default Dropdown;

And the index.js code is as follows:

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import Dropdown from './Dropdown';

ReactDOM.render(<Dropdown />, document.getElementById('root'));

We have now got a clear understanding of how state works and how it is different from
properties. In the previous example, we have also covered event based state changes;
whenever our desired event happens, the state value will be updated, and, based on the
state, our webpage elements will be updated by React.

The complete code of all the React components developed in the
preceding examples can be download from the GitHub repository using
this link: https:/ ​/​github. ​com/ ​smfahad/ ​BDAH- ​React- ​Examples. ​git.

Let's now move on to our next topic, which is also related to state management, but which
uses a different library altogether, named Redux. It will also cover state management from
a different prospect and in a broader sense.

Redux
In React, data flows in a unidirectional manner, which we covered in an earlier topic in this
chapter. Now, if you get a scenario where a child component has to notify its parent or any
other component regarding its state change, what will happen in that scenario? React does
not support data flow from a child component to its parent's component, not even to other
components.

https://github.com/smfahad/BDAH-React-Examples.git
https://github.com/smfahad/BDAH-React-Examples.git
https://github.com/smfahad/BDAH-React-Examples.git
https://github.com/smfahad/BDAH-React-Examples.git
https://github.com/smfahad/BDAH-React-Examples.git
https://github.com/smfahad/BDAH-React-Examples.git
https://github.com/smfahad/BDAH-React-Examples.git
https://github.com/smfahad/BDAH-React-Examples.git
https://github.com/smfahad/BDAH-React-Examples.git
https://github.com/smfahad/BDAH-React-Examples.git
https://github.com/smfahad/BDAH-React-Examples.git
https://github.com/smfahad/BDAH-React-Examples.git
https://github.com/smfahad/BDAH-React-Examples.git
https://github.com/smfahad/BDAH-React-Examples.git
https://github.com/smfahad/BDAH-React-Examples.git
https://github.com/smfahad/BDAH-React-Examples.git
https://github.com/smfahad/BDAH-React-Examples.git

Frontend Architecture Chapter 10

[243]

Here Redux library comes into the picture. It provides a way for all the components in the
application to talk to each other. Let's now explore the architecture of Redux.

Architecture of Redux
Redux comes up with a solution to React's unidirectional data flow. The solution is that all
the components should maintain their states in a global place, which will be called
the Store. The responsibility of the store is to get updates from the components.
Components send updated data to the store, which is also called Dispatch, and the
components that need to know about such changes should register with the store to receive
updates - this is called Subscribe. This will allow components to send and receive updates
across the application without having to worry about unidirectional data flow. The
following figure illustrates the architecture of Redux:

 Redux architecture

Frontend Architecture Chapter 10

[244]

A point to notice here is that components are not sending updates directly to other
components. They are first sending it to the store, and the store will then notify subscribers
regarding new changes.

Key concepts
Following are the key concepts related to Redux:

Single store
Action
Reducer

You should have a clear understanding of both the architecture of Redux and these key
concepts before diving into Redux practically. The following sections cover these concepts.

Single store
It is recommended to use single store architecture in your application. It is also known as
single place of truth. All the components dispatch and subscribe to a single store that can
therefore hold the application's state intact.

Action
You cannot change a state unless an action happens. This means that the state will be in
read-only mode unless any intended user actions have been performed. It is also referred to
as a payload that contains the data that will be sent to the store. It will only specify that
something happened, but what will be done as a result of that is not defined by Action.

Reducers
Reducer is a function that contains the logic of how the state will change as a result of an
Action. It takes the previous state and an Action to emit a new state as a state change. It is
also known as pure functions.

Now that we have a basic understanding of Redux architecture and the key concepts, let's
dive into the practical stuff.

Frontend Architecture Chapter 10

[245]

Guestbook application
In this example, we are going to create a guestbook application. Users can come and view
other users' comments and add their own by providing the name and the desired
comments.

In the first step, we will create a new React application named guestbook, using the same
procedure mentioned earlier in this chapter. We will then add Redux and React-Redux
libraries in it as follows.

Installation
Now that we have created our new project, it's time to add the libraries required for getting
started with Redux. To do so, you need to run a Node package command to download the
required libraries into your project, and save the dependency description into your
package.json file. Execute the following command to get started with Redux:

$ npm install redux --save
$ npm install react-redux --save

The following figure illustrates the output of the install commands:

React Redux installation

Frontend Architecture Chapter 10

[246]

Make sure to execute the install commands inside your application folder.

Create a store
In order to create a store, Redux and React-Redux libraries provide the
functions createStore and Provider. These functions need to be imported into your
application. We will import them to our index.js file using the following code:

import { createStore } from "redux";
import { Provider } from "react-redux";

Once imported, you need to create a store. To do so, use the following code:

const store = createStore(reducer);

Here you may have noticed that the createStore function takes reducer as a parameter.
We have already discussed what Reducers are and their purpose, so let's now understand
how to set up a reducer in our application.

Setting up Reducer
Reducer is actually a function, which takes the current state (some may call it the last state)
and the action performed. Reducers only act as a result of an action, and change the current
state to a new state with the updated values. To set up a reducer, execute the following
code:

const initialState = {
 commentList: []
};

function reducer(state = initialState, action) {
 switch (action.type) {
 case "AddComment":
 return {
 commentList: state.commentList.concat(action.payload)
 };
 default:
 return state
 }
}

Frontend Architecture Chapter 10

[247]

First of all, we have initialized State here, so that if the current state is undefined it will not
throw an exception. Inside the reducer function, using the action type, we have defined
what the new state will be. In this case, as a result of an AddComment action, it will add the
newly added comment to the existing list and return it to the store. You can add as many
functions as you want inside Reducer. We will discuss the action parameter in the Setting
up Dispatcher section.

Now that we have set up our reducer, it's now time for the AddComment component
to dispatch the new changes, so that it will be updated in the store.

Setting up Dispatcher
In our case, we have set up an addComment function, which will be triggered as a result of a
submit button click. In this function, we will dispatch comments using the
props.dispatch function. The code for this is as follows:

 addComment(event) {
 const comment = {
 name: this.state.name,
 comment : this.state.comment
 }
 this.props.dispatch({ type: "AddComment", payload: comment});
 }

The must have argument for a dispatch function is type, which will tell reducers what
action is to be taken. payload is just a variable to pass on the new values to the store. You
can name it anything you want, like data, newValues, and so on. It will be available in your
reducer function's action parameter.

Connect function
The most important part of using Redux code is establishing a connection between the
component and the Redux store. This can be done by importing the connect function from
the React-Redux library at the beginning of your component:

import { connect } from 'react-redux';

Add the connect function call at the end of your component file, within your component
export declaration:

export default connect()(AddComment);

Frontend Architecture Chapter 10

[248]

The complete code of AddComment.js is as follows:

import React, { Component } from 'react';
import { connect } from 'react-redux';

class AddComment extends Component {

 onCommentUpdate(field, event) {
 if (field === 'name') {
 this.setState ({name: event.target.value});
 } else if (field === 'comment') {
 this.setState ({comment: event.target.value});
 }
 }

 addComment(event) {
 const comment = {
 name: this.state.name,
 comment : this.state.comment
 }
 this.props.dispatch({ type: "AddComment", payload: comment});

 }

 render() {
 return (
 <div style={{padding:10}}>
 <h2>Guestbook</h2>
 <input type="text" onChange={this.onCommentUpdate.bind(this, 'name')}
placeholder="name" />

 <textarea type="text" onChange={this.onCommentUpdate.bind(this,
'comment')} placeholder="Add your comments" />

 <button onClick={this.addComment.bind(this)}>Add Comments</button>
 </div>
);
 }
}

export default connect()(AddComment);

Now that we are successfully able to send the updates to the Redux store, it's time to set up
subscribers so that they can receive new updates.

Frontend Architecture Chapter 10

[249]

Setting up Subscribers
The components that are intended to receive updates regarding any changes to the state of
a component will receive changes using props. In our case, we have a component called
DisplayComment, which will list all the comments available in the Redux store.

In our index.js file, while calling the component, the following is required:

 <Provider store={store}>
 <DisplayComment commentList={this.commentList} />
 </Provider>

As you can see, we are passing commentList as a property to the DisplayComment
component. Inside the components, it will be used like any other props that we did in our
React tutorial. But the point to remember here is that we also need to connect this
component to the Redux store. This will also be done using the connect function. After
importing the connection function, we have to set up a function to transform state values
into properties. This will be done at the end of your display component, and the code for
this purpose is as follows:

const mapStateToProps = state => ({
 commentList: state.commentList
});

export default connect(mapStateToProps)(DisplayComment);

The following is the complete code of the DisplayComment.js file:

import React, { Component } from 'react';
import { connect } from 'react-redux';
import Comment from "./Comment"
class DisplayComment extends Component {

 render() {
 return (
 <div style={{padding:20}}>
 <h2>List of Comments received</h2>
 {this.props.commentList.map((comments) =>
 <Comment name={comments.name} comment={comments.comment} />)}
 </div>
);
 }
}

const mapStateToProps = state => ({
 commentList: state.commentList

Frontend Architecture Chapter 10

[250]

});

export default connect(mapStateToProps)(DisplayComment);

The complete code of the index.js file is as follows:

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import AddComment from './AddComment';
import DisplayComment from './DisplayComment';
import { createStore } from "redux";
import { Provider } from "react-redux";

const initialState = {
 commentList: []
};

function reducer(state = initialState, action) {
 switch (action.type) {
 case "AddComment":
 return {
 commentList: state.commentList.concat(action.payload)
 };
 default:
 return state
 }
}

const store = createStore(reducer);

ReactDOM.render(
 <div>
 <Provider store={store}>
 <AddComment />
 </Provider>

 <Provider store={store}>
 <DisplayComment commentList={this.commentList} />
 </Provider>
 </div>
 , document.getElementById('root'));

Frontend Architecture Chapter 10

[251]

Final output
After putting all our effort into setting up a React and Redux based application, we will get
our application ready and similar to the following screenshot. It can be enhanced in many
ways, but as far as understanding React and Redux is concern, this does the job:

 Redux based React application final output

This guestbook application is just to give you a start towards creating a more complex,
interactive, and responsive application. React library is very useful for creating responsive
and interactive websites, and with Redux's help, it overcomes the limits that it had.

The complete code of the Guestbook application can be downloaded from
the Github repository using this link. https:/ ​/​github. ​com/ ​smfahad/
BDAH- ​React- ​Redux- ​Guestbook. ​git.

https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git
https://github.com/smfahad/BDAH-React-Redux-Guestbook.git

Frontend Architecture Chapter 10

[252]

Summary
In this chapter, we have learned about React and its different components. We have learned
about its architectural design and key concepts such as JSX, unidirectional data flow, and so
on. We then dived into the practical part. Firstly, we created a single page React
application, and then later we moved in a more professional direction by creating a React
project using Node.js package manager. We then went through different key areas with
respect to development, such as components, properties, state, event handling, and so on.

We then moved into another library, Redux, which resolved the limitations of React's
unidirectional data flow. We went through its architecture and different key concepts to
give you a strong conceptual hold. We then moved into its coding part. We started with
how to set up a Redux application on top of your React application. Then, moving step by
step, we covered the key areas of Redux library, such as creating a Store, setting up
Reducers and Actions, how to Dispatch an update, connecting components to Redux store,
and how Subscriber will receive updates using a practical example.

In next chapter, we will learn about different technologies for designing scalable and
distributed backend Architecture.

11
Backend Architecture

Designing a good backend architecture for any application has its advantages. It helps in
analyzing the data, increase productivity time, increase performs, and most of all, it will
allow you to better handle different scenarios of your application. If the case is vice versa,
then your application may not be at its best in terms of performance and it may not help
you analyze its data, which may also lead to bad customer experience.

Nowadays every business is somehow connected to another business and exchanging
information. With the increased demand in online shopping and online social activities, it is
very important for business to open its gates to share information with a third party, which
in this technology era is through exposing its software to online world. There are multiple
ways of doing it that we will also be exploring in this chapter.

Then comes a turning point, which is the performance of an application. It is a very
important factor for any application's success or failure. It can drive a customer in and out
very easily. All other factors may then seem secondary. In this chapter, we will also explore
how to increase application performance.

In this chapter, we will mainly be covering the following:

RESTful API
Different types of request methods
Different types of authentication mechanisms
Redis
Installation and setting up Redis server and client
Different working scenarios and operations

Now, in your development life, you may have heard the term API. Let's find out what it is
all about and why it is important.

Backend Architecture Chapter 11

[254]

API
API stands for application programming interface. It is used to allow a third-party
application to interact with the desired application having predefined methods or calls.
Each method is exposed to receive a call with or without some parameters and as a result, it
gives a response with related output.

There are many different types of APIs available. Some of the examples are computer APIs,
desktop APIs, different type of sensors APIs, in short if any hardware or software is open to
allow any third-party application to interact with them, it has to expose an API for that
purpose.

Here we will mainly be exploring web-based API. There are two types of web-based API.
The first one is Simple Object Access Protocol (SOAP) and the other one is
Representational State Transfer (REST). Basically, they are different in terms of
technology. SOAP is a protocol for web service. It means that it has some specific guidelines
to exchange structured information using XML documents, whereas REST is an
architectural design that will interact with other applications through HTTP requests. Both
type of APIs are programming language independent, which means you can use both types
of API in your preferred programming language.

Nowadays, the most common and preferred way of communication over the web is
through REST. So now we will be exploring REST API, which is also known as RESTful
API.

RESTful API
REST stands for Representational State Transfer. It is also referred to as RESTful API. It is
an architectural style of exposing a web service. It services a request mainly over HTTP
using GET, POST, PUT, and delete delivery methods. We will discuss these Hypertext
Transfer Protocol (HTTP) methods in the subsequent section.

RESTful web service gets a request using a HTTP URL. Other related information such as
authorization data will be passed on along with its header. Then it's up to the REST service
provider to return results in whichever format suits them, but it is recommended to
provide a response of a REST API call in a JavaScript Object Notation (JSON)
object. Almost all the publicly available REST API follow the same standards.

We will now explore different types of request methods that we can utilize while making a
HTTP request.

Backend Architecture Chapter 11

[255]

HTTP request methods
As discussed earlier, there are mainly four methods using which REST API receives a
request. These are as follows:

GET
As the name states, this method is used to pull a request from the required server. A typical
example of a GET request is when you click on any link on a website or point your browser
to a specific address.

POST
It is used to send user generated data to the server. A typical example of a POST request is
request generated as a result of submitting a form. It can be for the purpose of create or
update.

PUT
It is also used to create or update data on the server. The main difference between PUT and
POST is that the PUT request will replace the actual data. As a result, the created or
updated data will always be same. Whereas a POST request will create or update the data
incrementally or as per the defined backed logic.

DELETE
It is used specifically to delete the data on the server using an HTTP request.

Now let's suppose you have a REST API available on the web to be utilized by other
applications, but it will be limited to those who have a valid license or a purchase
agreement or similar thing. In simple words, you don't want unauthorized user to access
your services. Let's now explore how you can implement authentication in your REST API.

Backend Architecture Chapter 11

[256]

Authentication
Let's first have an overview of how authentication works in a traditional system. It
initializes by sending a username and password by client to server. Once received, the
server validates whether the provided credentials are correct or wrong. If it's wrong, the
server sends an incorrect message back to the client to provide a valid login. If it's correct,
the server creates a session and sends the session ID back to the client for future
communication. So from next time, instead of providing username and password, the client
will send the request along with the session ID to identify itself as an authorized user. The
following diagram illustrates a traditional authentication system:

Traditional client server authentication mechanism

This type of client server communication is also referred to as stateful communication.
Whereas REST API doesn't maintain or store any session state or client side state and that's
why it is also called stateless API. It means that every time a client sends a request to
server, it somehow has to pass either username and password or any other mode of
authentication along with the request to identify itself as an authorized user:

Backend Architecture Chapter 11

[257]

Figure: Client-server communication using REST web service

HTTP request packet can broadly be categorized in two sections, header and body. Header
contains client-related information such as request method, user agent, authorization
details, host information, and so on, and body contains the actual request. The following
diagram illustrates a HTTP Request:

Components in HTTP request

Backend Architecture Chapter 11

[258]

REST API supports different types of authentication mechanism. Some of them are as
follows:

Basic authentication (basic auth)
JSON web tokens
OAuth
OAuth 2
Digest access authentication
Asymmetric cryptography

We will discuss the first two authentication mechanisms in detail, which are basic auth and
JSON Web Token in the subsequent section. Let's start with the first one, basic auth.

Basic authentication
In HTTP header, we have a field called authorization. In basic authentication mechanisms,
we pass on the username and password details in the header authorization field. The steps
that we have to follow are as follows:

First concatenate the username and password, separated by a colon (:) sign. For1.
example, username:password.

Encode the concatenated credentials using Base64 encoding.2.
Again concatenate the encoded string with the word "Basic(space)" in the3.
start.
Add this final string in your header authorization string.4.

Backend Architecture Chapter 11

[259]

The following diagram illustrates these steps in graphical form:

Steps to set up basic authentication parameters in request headers

An important point to notice here is that Base64 is an encoding
mechanism, it is not an encryption mechanism. So, if someone gets holds
to the encoded information, it can easily be decoded using the Base64
decode function.

Now when the server receives the request, it will check the authorization field in the
header. If it finds the word Basic, it will help to understand the server that the
authorization mechanism used here is basic auth. It will then follow the same steps in
reverse order to get the username and password, which will be as follows:

The server will extract the authorization field value and match whether the first1.
word contains Basic.
Once it finds the word Basic, it will split the string into two using space as a2.
splitting end.
It will then decode the second part using Base64 decoding.3.
It will then split the username and password using the colon (:) as split end.4.
It will then validate that the username and password is correct. If yes, it will5.
service the request, otherwise it will return with an error message.

Backend Architecture Chapter 11

[260]

This is how a complete cycle works in basic authentication mechanisms. Remember, this
communication is not secure. If anyone gets hold of the header information of the request,
username and password information can easily be extracted from it. To make it secure,
always send your request over Hypertext Transfer Protocol Secure (HTTPS), which will
encrypt the complete request.

Always use HTTPS to send requests that contain critical information such
as username and password, credit card info, and so on. It will encrypt the
complete request and become almost impossible to get attack.

You may be thinking that if Base64 is not securing the information then why we are doing
the encoding and decoding. The reason being is to convert the username and password into
HTTP compatible characters, so that if either field contains any non compatible character,
this process will convert them to HTTP compatible.

Let's now move on to the next authorization mechanism used in REST API, which is JSON
Web Token.

JSON Web Token
Similar to basic authentication, JSON Web Token also sends the authentication details in
the HTTP Header authorization field. The difference is that JSON has its own format to
pass on these details.

JSON Web Token contains three parts separated by dot (.):

Header.1.
Payload.2.
Signature.3.

The following diagram illustrates the JSON Web Token structure:

JSON web token structure

Let's now explore each part of the token.

Backend Architecture Chapter 11

[261]

Header
It mainly contains two pieces of information in JSON format. The first part is type, which
will be JWT (JSON Web Token) and the second one is the hashing algorithm, which will be
used to encrypt the signature part. The format will be as follows:

{
 "typ": "JWT",
 "alg": "HS256"
}

While concatenating the header part to create a JSON Web token, it should be encoded
using Base64 algorithm.

Payload
It contains the actual data in the form of JSON that is required to be transmitted. The
following is an example of a decoded payload:

{
 "tokenID": "1234567890",
 "username": "John Doe",
 "role": "admin"
}

Similar to the header information, before adding it to JWT, it is also required to be encoded
using the Base64 algorithm.

Signature
It is the main component of JWT. It will let the server validate the complete token to
confirm that it was originated from a trusted source. Its content contains Base64 encoded
header concatenated with dot (.) and then again concatenated with Base64 of payload data.
This will then get encrypted using the hashing algorithm with a secret-key. There are many
different hashing algorithms such as HS256, RS256, and so on.

Backend Architecture Chapter 11

[262]

The following diagram illustrates the contents of the Signature part in JWT using the HS256
function:

Structure of signature in JSON Web Token

The final output of JSON Web token will be similar to something as follows, which will be
added to the Authorization field along with HTTP Header. The following diagram
illustrates the final format of JWT:

JSON web token final output

You can visit the JWT website https:/ ​/​jwt. ​io/ ​, which provides a tool to experiment and
play around with a different look and feel of JWT.

Let's now move on to practical stuff and build a RESTful web service and a client to
consume it using Java.

Practical
We now have understanding of REST API and how it works. Let's now create our own
service and then later we will create a client for it to consume. For this purpose, we will be
using Java as a programming language and Eclipse IDE. Let's first start by creating a
RESTful web service.

https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/

Backend Architecture Chapter 11

[263]

RESTful web service
Follow this step-by-step guide to create a RESTful web service:

Open Eclipse, create a new Maven Project, and then click Next:1.

Backend Architecture Chapter 11

[264]

On the Archetype selection screen, select maven-archetype-webapp from the2.
available list:

Backend Architecture Chapter 11

[265]

Fill out the parameters on the Archetype parameter screen, which in our case is3.
as follows:

Click Finish to create the project.4.

It's now time to import some dependencies required to build our REST API. For this
purpose, open the pom.xml file and copy the following code in between the
<dependencies></dependencies> tag:

<dependency>
 <groupId>org.glassfish.jersey.bundles</groupId>
 <artifactId>jaxrs-ri</artifactId>
 <version>2.26</version>
</dependency>

Save the pom.xml file and wait for a minute or two. Eclipse will automatically download
the related jar files.

Backend Architecture Chapter 11

[266]

The next step is to create Java classes. But before that, first create a folder in your project
where you will keep all the class files. By default, the Maven project doesn't create it for
you, so you have to do it by yourself. Follow these steps for this purpose:

Right-click on the project and select New.1.
A new window will pop up, select folder and click Next. 2.
Select the project you are working on, drill down in it until the hierarchy tree3.
reaches to src/main, and then select it. In the Folder name: box, write the
name java and click Finish. It will create the required folder.

The following diagram illustrate these steps:

Java folder creation inside src/main

Backend Architecture Chapter 11

[267]

Now create a new class called HelloAPI inside
the org.bdah.rest.helloworld package. The following code is self explanatory as each
line contains comments to explain the code. Copy the following code in it to create your
first REST API:

package org.bdah.rest.helloworld;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

// It will the endpoint of your REST API
@Path("/hello")
public class HelloAPI {

 // It will define the action at which the following method will
 // called upon
 @GET
 // It will define that the following method produces
 // result in HTML format
 @Produces(MediaType.TEXT_HTML)
 public String helloMsg() {
 // Once called upon, the REST API will return the following message
 return "<h1>Hello World. Message from REST API</h1>";
 }
}

The next step is to create a new class called MyRestApplication and copy the following
code in it. It is required to make the REST API project to start up and publish as a service:

package org.bdah.rest.helloworld;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

// It define the base path of the published REST API
@ApplicationPath("/")
public class MyRestApplication extends Application {

}

Backend Architecture Chapter 11

[268]

Now for the final step. We will now configure the tomcat server where you will publish the
newly developed REST API locally by following this step-by-step guide:

Click on File | New | Other.1.
Look for Server, select it, and click Next.2.
Scroll down and select Tomcat v8.0 Server from the list and click Add.3.
Click on the Download and Install button to automatically download Tomcat4.
binary and configure the path. Then click Finish.
Click Finish again to finish setting up the server.5.

Now that we are all set up and ready to go, it's now time to start the application. Right-click
on your project and select Run as | Run on Server. Now point your browser to the
published URL, as shown in the following screenshot:

Locally published REST API service

If you are able to see the screen similar to the preceding screenshot, it means you have
successfully created your first RESTful web service. If you are seeing something else, please
revisit the REST Web service step-by-step guide to check out the issue.

A point to notice here is that if we closely look in to the URL, localhost:8080 is the
server where we have published our REST API, helloworld is the project name that we
have created, and hello is the path that we have configured in our HelloAPI Java class as
an entry point for the outside world to get response.

The complete project code of the RESTful Web Service is available to
download at https:/ ​/ ​github. ​com/ ​smfahad/ ​BDAH- ​RESTful- ​Webservice-
Basic. ​git.

https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git
https://github.com/smfahad/BDAH-RESTful-Webservice-Basic.git

Backend Architecture Chapter 11

[269]

In the next section, we will create a Java program that will act as a client to consume this
service.

Java client
Follow this step-by-step guide to create a RESTful web service:

Open Eclipse and create a new Maven Project, then click Next.1.
On the Archetype selection screen, select maven-archetype-quickstart from the2.
available list.
Fill out the parameters on the Archetype parameter screen, which in our case is3.
as follows:

Groupid: org.bdah.rest
Artifact id: restClient
Version: 1.0

Click Finish to create the project.4.

It's now time to import some dependencies required to build our REST API. For this
purpose, open the pom.xml file and copy the following code in between
the <dependencies></dependencies> tag:

<dependency>
 <groupId>org.glassfish.jersey.bundles</groupId>
 <artifactId>jaxrs-ri</artifactId>
 <version>2.26</version>
</dependency>

Save the pom.xml file and wait for a minute or two. Eclipse will automatically download
the related JAR files. Now open up the App.java class file and write down the following
code in it:

package org.bdah.rest.restClient;

import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.MediaType;

public class App
{
 public static void main(String[] args)
 {

Backend Architecture Chapter 11

[270]

 // Initialize a client object through which we
 // will request REST API
 Client client = ClientBuilder.newClient();
 // Assigning a URL which REST web service to call
 WebTarget target =
client.target("http://localhost:8080/helloworld/hello");
 // Printing the output in console
 System.out.print(
 // Request for the response
 // Return type to be HTML
 // and the object type as String
 target.request(MediaType.TEXT_HTML).get(String.class)
);
 }
}

It's now time to start the application. Right-click on your project and select Run as | Java
Application. You will see similar output as shown in the following screenshot:

Output of Java REST API client

If you are able to see output similar to the preceding screenshot, it means your Java client is
programmed correctly. If not, please revisit the Java client section from the start and try to
create the project again.

Complete project code of the Java client is available in GitHub repository
at https:/ ​/ ​github. ​com/ ​smfahad/ ​BDAH- ​REST- ​Java- ​Client. ​git.

We will now move our discussion to in memory databases, which are mostly used to cache
and improve overall application response. It is called Redis.

https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git
https://github.com/smfahad/BDAH-REST-Java-Client.git

Backend Architecture Chapter 11

[271]

Redis
Redis is an in-memory data structure store, released under open source BSD license. It is
also referred to as Remote (Re) Dictionary (di) Server (s). It works on the principle of Key
Value pair. Redis supports many different types of datasets such as lists, maps, sets, sorted
sets, and so on.

It's in memory data that can also be made persisted on disk. It means that if, because of any
reason, a Redis instance got rebooted, or if after recovering from a failure it comes back
online, then it will restore all of its data from the disk and place it in memory as if nothing
happened. This is what makes Redis utilized as a database.

It is super fast in performance because it runs in memory, due to which many people are
using Redis for cache purpose in order to increase performance of their applications.

Redis has a publisher and subscriber module, which is also referred to as the Pub/Sub
module. In this module, Publisher creates channels and the subscriber joins them. Now,
whenever a publisher sends a message to its channel, all the subscribers will automatically
receive the message without having to manually check for it after a defined interval.

Let's now move on to the practicals and start with the installation of Redis.

Installation
The current version of Redis is 4.0.8. Open up the Terminal and execute the following
commands in order to install Redis:

// Create Redis folder inside home directory and opened it
$ mkdir redis
$ cd redis

// It will now download the current version of Redis
// To check out the latest version, please visit http://redis.io
$ wget http://download.redis.io/releases/redis-4.0.8.tar.gz

// This command will extract the downloaded package into redis folder
$ tar xzf redis-4.0.8.tar.gz
$ cd redis-4.0.8

// This will build Redis
$ make

Now that we have downloaded and built Redis, it's time to start the Redis server.

Backend Architecture Chapter 11

[272]

Redis server
In order to start the Redis server, execute the following command:

$ src/redis-server

Remember to execute this command inside the folder resulted in extraction of the
downloaded file. In our case, it is ~/redis/redis-4.0.8/. Once you execute this
command, it will display a screen similar to the following screenshot:

Redis server started

If you see the last message, which is Ready to accept connections, as highlighted in
the preceding screenshot, it means that your Redis server has been started successfully and
listening to the port for new connections.

Keep the Terminal window open in which you start Redis server. It will
keep it alive. Once you close it, it will stop accepting connections.

Backend Architecture Chapter 11

[273]

Redis client
To start Redis client, execute the following command:

$ src/redis-cli

Remember to execute this command inside the Redis folder. In our case, it
is ~/redis/redis-4.0.8/. Once you execute this command, it will display a screen
similar to the following screenshot:

Redis client

If you see the 127.0.0.1:6379> prompt after executing the command, it means you have
successfully connected to Redis server and are ready to perform and execute Redis
commands.

Let's now move on to learn some Redis-related commands that you will be using a lot when
working with Redis.

Working with Redis
All the Redis-related commands are required to be executed inside Redis client. So make
sure to always open the redis-cli client before the execution of the commands.

Redis data types and structures
There are different types of data types and data structures that Redis supports, which
includes string, HashMap, list, sets, sorted sets, and so on. Let's start with the basic one.

Backend Architecture Chapter 11

[274]

String
It is very much similar to defining any variable in any programming language. By using
the SET and GET methods, you can provide a string that will become the key and then
provide a string to store the value against the key, in case of setting a value. Execute the
following commands in redis-cli to SET and GET keys and values:

// Following command is used to set a key with its value
127.0.0.1:6379> SET message "Hello World"

// Following command is used to retrieve the value of a key
127.0.0.1:6379> GET message

The following screenshot illustrates the execution and output of these commands:

Illustration of SET and GET for string data type

HashMap
In Redis, HashMap stores values in combination of key value pairs. It supports the
following commands to store and retrieve data using Redis HashMap.

The following command is used to create a credentials HashMap with keys username
and password and values against them:

127.0.0.1:6379> HMSET credentials username fahad password akhtar

The following command is used to extract all the key values available in the credentials
HashMap:

127.0.0.1:6379> HGETALL credentials

Backend Architecture Chapter 11

[275]

The following command is used to extract a specific key username from
the credentials HashMap:

127.0.0.1:6379> HGET credentials username

The following screenshot illustrates the outputs of these commands:

Redis HashMap commands and outputs

List
It is like a normal list that contains the different items in it. It is sorted as the items get
inserted in it using LPUSH and RPUSH commands. If you insert items using the LPUSH
command, it will be inserted at the beginning of the list and if you use RPUSH, it will be
added at the end of the list. The following diagram illustrates the structure of a list:

Redis list structure of LPUSH and RPUSH commands

Backend Architecture Chapter 11

[276]

The following commands are used to insert values into a list:

// New list created with these values
127.0.0.1:6379> LPUSH Numbers 1 2 3 4 5 6

// New item inserted at the beginning of the list
127.0.0.1:6379> LPUSH Numbers 0

// New Item inserted at the end of the list
127.0.0.1:6379> RPUSH Numbers 7

Similarly to delete an item from the list, use the following commands:

//To remove an item from the start of the list
127.0.0.1:6379> LPOP Numbers

//To remove an item from the end of the list
127.0.0.1:6379> RPOP Numbers

Set
It is a collection of unordered items, but only unique items. It doesn't store duplicate values.
If your write is successful in the set, it will return (integer) 1, but if you try to insert
duplicate values, it will return with (integer) 0.

The following commands are used to manipulate Sets in Redis:

// To add items in the Set
127.0.0.1:6379> sadd fruits Apple Mango

// To display all items in Set
127.0.0.1:6379> smembers electronics

Backend Architecture Chapter 11

[277]

The following screenshot illustrates these operations in actual environments:

Basic operations for Redis Sets

These are some of the data types and structures available in Redis to get you started. Let's
now move on to the next feature of Redis, that is, the Publish and Subscribe module.

Redis Publish/Subscribe
This module is designed to serve the purpose of a messaging system, where a publisher
creates a channel and its subscribers joins those channels. Mostly, in traditional systems,
these types of scenarios are handled in a way that the subscriber will query the publisher,
asking for any new message after a specific interval. In Redis, whenever a publisher sends a
message to its channel, all the subscribers will automatically receive the new message
immediately without having to query the publisher and asking for a new message.

 Now let's suppose that the publisher said to its subscriber that it will send all the messages
to its channel called LatestNews. Subscribe will join this channel by executing the
following command:

127.0.0.1:6379> SUBSCRIBE LatestNews

Publisher will send a message to this channel by executing the following command:

127.0.0.1:6379> PUBLISH LatestNews "This is news bulletin"

Backend Architecture Chapter 11

[278]

Once the publish command gets executed, all the subscribers of this channel will
automatically receive this new message, as illustrated in the following screenshot:

Redis publish/subscribe in action

If you take a closer look at this screenshot, publisher sends a message to its channel
LatestNews. Terminal returns (integer) 2, which means that the message has been
delivered to its two subscribers. At the same time, if you check the subscriber's terminal,
they have already received the message, which contains three lines, the first line states that
the received type is message, the second line is the channel name, and the third line is the
actual message.

Common key operations
The following are some of the key operations that you will be needing while dealing with
Redis. In all the following commands, key means the datatype such as set, list, and so on
against which you want to perform the operation. For example, we have created a list of
fruits. So fruit will become the key.

The following command is required if you want to delete any existing key:

127.0.0.1:6379> DEL key

Backend Architecture Chapter 11

[279]

Execute the following command if you want to check whether any key with the same name
already exists or not. If it returns (integer) 1, it means true, otherwise it will return
(integer) 0:

127.0.0.1:6379> EXISTS key

To set the expiry of any key after a specified interval, execute the following command:

127.0.0.1:6379> EXPIRES key seconds
127.0.0.1:6379> PEXPIRE key milliseconds
127.0.0.1:6379> EXPIRESAT key timestamp

In order to remove expiration from a key, execute the following command:

127.0.0.1:6379> PERSIST key

To check the type of key, for example, whether the key belongs to List, set, Hash, and so on,
execute the following command:

127.0.0.1:6379> TYPE key

To rename a key, execute the following command:

127.0.0.1:6379> RENAME key newname

These are some of the commands that you will need to perform routine tasks while using
Redis.

Summary
In this chapter, we discussed what an API is and its different types. Then we moved on to
REST API and dived deep by exploring different types of HTTP request methods involved
in it. Then we discussed different types of authentication mechanisms, specifically basic
authentication types and JSON web tokens. In basic authentication, we studied how it
passes related information in the header of a request. Then we studied different
components of JSON web token, such as header, payload, and signature.

We then moved on to the practical part and created a RESTful web service by ourselves.
After testing its functionality over the web, we moved on to create its Java client to all the
REST web services directly in our program, which went successfully.

Backend Architecture Chapter 11

[280]

Then we started discussing an in memory database called Redis. We saw what it is and
why it is popular. We then moved on to its installation. We then set up Redis server and
Redis client, which is also called Redis CLI. We then dived into exploring different
functionalities of Redis. We then discussed different types of data structures used in Redis
such as HashMap, List, Map, and so on. Then we also explored a very popular feature of
Redis, which is the Publish and Subscribe module. We also performed a practical of how to
publish a message to different subscribers and how subscribers will receive messages. In
the end, we discussed different common operations that are helpful in daily activities.

12
Machine Learning

Human beings start learning different things from childhood. The desire to learn increases
as we grow older, interact with different people, study different subjects, and so on. It's in
the nature of human beings. It gives us the ability to make decisions and predict actions.
Computers and machines, however, only do what they are programmed to do, within the
range of predefined rules and instructions. They cannot predict or perform an action on
their own unless they are programmed to do so. But nowadays, with all the advancement
of science and technology, it is becoming a thing of the past that a machine cannot learn on
its own. Now, machines have started learning if provided with the correct datasets. It is
similar to the childhood of a human being, but with all of the new research and
advancement, it all will grow very quickly.

In this chapter, we will discuss the following topics:

Machine learning
Types of machine learning algorithms
Supervised machine learning model

Classification model
Regression model

Unsupervised machine learning model
Clustering, k-means
Neural network
Deep neural network

Decision tree classifier

Let's start our discussion with a question: what actually is machine learning?

Machine Learning Chapter 12

[282]

Machine learning
Machine learning is a field of computer science and a subsection of artificial intelligence.
Machine learning gives a computer the ability to learn things by itself. It is based on many
different algorithms that learn things by experience and interaction instead of predefined
rules.

Machine learning (ML) is very closely linked with Probability and Statistics, a mathematics
field. ML uses its many algorithms and formulas for prediction and the analysis of data.
Machine learning is all about data and the algorithms used to transform it, learn, and get
trained on it.

Some of the naming conventions in machine learning are actually the
same in nature. For example, the independent variable may also be
referred to as a predictor variable. Another example is target variable;
you may also see it referred to as a
dependent variable or response variable.

Now let's move the discussion to our next topic, which is about the types of algorithms
used in machine learning.

Types of algorithms
Machine learning is all about adaptation and learning. This learning is purely based on the
algorithm that we apply in our model to get the desired result. These algorithms can
broadly be divided into two types:

Parametric algorithms
Non-parametric algorithms

Let's now start our discussion with the first type, parametric algorithms.

Machine Learning Chapter 12

[283]

Parametric algorithms
In this type of algorithm, most of the things are assumed beforehand. On one hand, it
simplifies the learning process, whereas on the other hand, it limits the number of items
that can be learned. Let's take an example of image recognition. We have already assumed
that the input image will be of an animal with four legs and a tail. By this assumption, it
limits the computer to learning and predicting other types of animals and infecting any
other type of object. Examples of this types of algorithm include perceptron, linear
regression, linear discriminant analysis, and so on.

The main advantage we get from these types of algorithm is simplicity. It also speeds up
the learning process and it requires less data for the learning purpose. The main
disadvantage of it is that it limits the model's ability to learn new things.

Non-parametric algorithms
Unlike parametric algorithms, in this type of algorithm, we don't make any weak
assumptions. It may be because of the lack of knowledge that we may have about the data
or it may be because we want our model to be flexible and let it learn and get trained for
new things. Whatever the reason we choose this type of algorithm, it helps the model to
adapt to it's environment and changes by itself. Examples of these types of algorithms
include k-nearest neighbors, support vector machines, decision trees, and so on.

The main advantage of using these algorithms is that they are capable of learning new
things and not limited by our assumptions. The other advantage is that once it gets trained,
they will perform much better. The main disadvantage of using these algorithms is that
they require a lot more data compared to parametric algorithms. As there is much more
data, they will require more time to get trained.

In machine learning, we train our model to predict different outputs. The type of training
that we perform in our models can be classified into two categories; supervised learning
and unsupervised learning. Now let's explore what these are by starting with the first
category, supervised learning.

Machine Learning Chapter 12

[284]

Supervised learning
In this type of learning, computers learn from a predefined data set with data labels and
features. Its aim is to predict an output based on the given input variables using the defined
data point and label from the learned dataset. The most important thing you need in
supervised learning is data with labels. By providing data labels, we teach and train our
model for accuracy. The more accurate your data is, the closer your prediction will be.
Some of the ways of getting data include from a historical source, or by doing experiments.

Now let's take an example of supervised learning. In your mailbox, you have a folder for
junk emails; ever wondered how it automatically identifies emails as spam? It is actually
based on the trained model, which looks for certain things before marking it as junk,
including the source from where the email was generated, the intended audience (whether
it is directly targeting the recipient), whether the email body contains marketing or spam
keywords, and so on. Smart spam filters also keep learning based on user interaction; for
example, if per the filter an email is not spam but the end user marks it as spam, this means
that something has been missed out by the filter. Therefore, the filter retrains itself after
some interval, considering all of these scenarios.

There are mainly two types of learning models in supervised learning; the first one is the
classification model and the second one is the regression model.

The classification model
The classification model mainly gets trained to predict fewer output data labels. For
example, answers involving prediction of yes or no, spam or not spam, whether a picture
contains a dog or a cat, and so on. The resulting output must be few and its values must be
discrete. There are two type of classification models; binary classification and multi-class
classification.

Machine Learning Chapter 12

[285]

Binary classification
As the name states, this model only predicts either of the two values. It may be yes or no, 0
or 1. Let's take an example of a blood test. After conducting a study, it was found that if the
value of sugar is less than 6 mmol while fasting, then the person doesn't have diabetes. Let's
build our classification model based on the collected data, as shown in the following
diagram:

Classification model to diagnose whether a person is diabetic

Machine Learning Chapter 12

[286]

Now, once we pass a blood sugar test value to our classification model, it will easily predict
whether a person is diabetic or not.

Multi-class classification
This model is used to classify from a category of output based on the provided inputs. For
example, using this model, we can predict whether an image contains an animal or not. It
may be used to identify whether it's a dog or a cat.

Let's move on to a more complex topic where we have to predict different range values
instead of a simple yes/no or a category.

The regression model
This type of model has many different output labels based on the varying input variables.
This model is mainly trained to predict continuous non-discrete values. There are different
types of regression models, but in machine learning you will be dealing mainly with two
types, linear regression and polynomial regression.

Linear regression
Let's suppose we have collected data related to the size of a house and how much it costs.
We then plotted the values in the following chart. Each dot represents the size of the house
and its value. Now, to predict the price of a house of any given size, we will draw a straight
line similar to the one in the following figure. The characteristic of this line is that it is
drawn in such a way that it is very close to most of the plotted values. Some values may be
above or below the line, but it touches most of the values. So, the closer this line is to the
values, the more correct our predictions will become:

Machine Learning Chapter 12

[287]

Linear regression of price versus the size of a house

Now, by having this linear regression model, we can easily predict the price of a house by
using its size. Let's suppose, if you have to say, what would be the price of a 150 square
yard house? By using this model, it will predict that the price will be somewhere around
$150,000.

Machine Learning Chapter 12

[288]

Polynomial regression
Polynomial regression is also referred to as curvilinear regression. Let's start by taking the
same example of a house and its price. In the last section, we only considered using the size
of a house to predict its price. But now, let's suppose we have other features to consider in
our observation. For example, the number of bedrooms in a house, whether it has a
swimming pool or not, and what the actual constructed area of a house's land is. Now, with
all these features in mind, plot these values in a graph. Now, try to place a line close to the
plotted values. You will end up with a chart similar to the one in the following diagram:

Linear regression application

Machine Learning Chapter 12

[289]

Now, observe this chart; initially, the values increase drastically as the size increases. It may
be because of different features, but after a certain size, the prices are not jumping too high.
So if we apply linear regression in this scenario, we may end up predicting the wrong price
of the house.

For these types of scenario where linear regression is not providing the correct output, we
use polynomial regression. There are mainly two types of polynomial regression, quadratic
and cubical. Quadratic regression is the sum of features multiplied by the input variable.
Mathematically, it is represented using:

Quadratic regression formula

Cubical regression is also the sum of features multiplied by the input variable, but with
each increasing feature, the power of the input variable also increases. Mathematically, it
can be represented as follows:

Cubical regression formula

Machine Learning Chapter 12

[290]

In the current given scenario, if we apply a quadratic formula, the prices will start
descending after a certain size of house. This will never happen in a real life scenario,
where the size of the house is bigger and the price is lower. We will apply a cubical formula
in this case. Let's re-plot the values and apply polynomial regression using, cubical
formula. We will get a chart that looks like the following:

 Polynomial regression

In this chart, the line is closer to the plotted values, thus it will better predict the output
values of a given house.

Now let's move on to the next learning type in machine learning, which is unsupervised
learning.

Machine Learning Chapter 12

[291]

Unsupervised learning
Unsupervised learning is a fairly complicated learning model compared to supervised
learning, in which the data that we are providing to the model to learn from is not labeled.
It means that by reading the data, it cannot tell whether it belongs to class A or B, or if it's
related to male or female, and so on. In these types of scenario, where the data is not
labeled, we apply different algorithms so that a machine can at least distinguish between
different sets/classes/categories within the provided data.

To understand it more clearly, let's take an example dataset to distinguish between
different fruits based on their weights. By looking at the following chart, one can easily tell
that if the weight is between 140 to 150 grams, it's a mango. Similarly, if the weight is
between 110 to 120 grams, it's an apple, and if the weight is between 50 to 60 grams, it's a
cherry:

Fruits dataset by weight

Machine Learning Chapter 12

[292]

But let's suppose that there are no labels in the provided data. How can one tell which one
is which, as shown in the following figure:

Data with no labels

Here, unsupervised learning comes into the picture, where it applies different algorithms in
order to identify different formations and patterns in the data. The following are the most
commonly used algorithms in unsupervised machine learning:

Clustering, k-means algorithm
Neural networks

Let's start by learning more about clustering using the k-means algorithm.

Clustering, k-means
We have already established the understanding that in unsupervised learning, data is not
labeled. A machine cannot tell by itself that it's a fruit, flower, human, or anything, so it
makes its own groups and classes to distinguish data from one class to another. A
clustering algorithm, as the name states, helps to identify clusters within the provided data.
It actually divides the data into logical groups based on the provided parameters. After
identifying the required number of clusters, it will predict the future occurrences of these
groups in the next available data.

Machine Learning Chapter 12

[293]

Now let's understand this more clearly using the following example. Assume we have the
following plotted data:

Data to apply the cluster k-means algorithm

Now, when we see this image with the naked eye, it can easily identify the clusters within
this image. But how will a computer recognize it? For this purpose, we will apply the k-
means algorithm. It states the following:

Randomly plot the cluster points in the same manner as the required clusters to1.
be identified. In our case, we want to identify two clusters.
Calculate the distance from these cluster points with the available data points.2.
Associate the closest data points with the respective cluster points.3.
Calculate the mean of the associated data point for each cluster point. 4.
Move the cluster points to the mean value calculated in the previous step.5.
Repeat steps 2 to 6 until the cluster points stop changing their places.6.

Machine Learning Chapter 12

[294]

Let's apply this algorithm in a graphical way for ease of understanding. Follow point
number 1 in the preceding list and randomly plot two cluster points. The first one is X in an
orange color, and the other one is X in a green color, as shown in the following diagram:

Randomly plotting the cluster points

The second step is to calculate the data point distance from the cluster points and associate
it with the relative cluster point. To illustrate this in a graphical way, the color of the data
points closer to the orange X point has been changed to orange. Similarly, the data points
closer to the green X cluster point have been changed to green, as shown in the following
diagram:

Associated data point closer to the respective cluster point

Machine Learning Chapter 12

[295]

The next step is to calculate the mean of the related data point associated with the cluster
point and then shift the cluster point to the calculated value, as shown in the following
diagram:

Shifting cluster point based on the calculated mean

The next step is to recalculate the distance of the data point with respect to the cluster
points, as shown in the following diagram:

Re-association of the data points with respective cluster points

Machine Learning Chapter 12

[296]

Repeats these steps until the cluster points are no longer moving and clearly declare two
clusters, as shown in the following diagram:

Final result of the k-means cluster algorithm

This example used the k-means algorithm to help the machine identify different clusters of
data in an unsupervised environment. The important thing to note is that the data doesn't
have to be clearly separated to form a cluster. If you have scattered data with no clear
clustering, you can still apply the k-means algorithm to divide it into clusters. The
following is just an illustration of such a scenario:

Cluster application on scattered data

Machine Learning Chapter 12

[297]

As you can see in this image, the data doesn't seem to be divided into clusters, but when we
apply k-means, it gets three clusters as an output.

Let's move on to our next topic on the journey towards understanding unsupervised
learning, which is neural networks.

Neural networks
This learning mechanism is inspired by how a human brain works. A human brain is made
up of billions of nerve cells called neurons. An estimation is that there is a range from 50 to
500 billion neurons in human brain. They are very well interconnected to each other with
many to many relationships, which means that one neuron is not just connected to one
neuron but with multiple neurons.

In a neural network, the neurons are called units. There are some input units. These input
units interact with the outside world and receive data from it. They will then send their
data to an inner layer, also known as the hidden layer. The important thing to note here is
that each input unit sends its data to all the units in the hidden layer. The number of hidden
layers varies from one to n-numbers, depending on the type and purpose of the neural
network. These hidden layers are the actual brain of this neural network. The units of these
hidden layers will then process and learn things and produce their data to the output layer.
An illustration of a typical neural network is shown in the following diagram:

A neural network

Machine Learning Chapter 12

[298]

The following are the main types of neural networks:

Feedforward neural networks
Recurrent neural networks
Symmetrically connected neural networks

Let's explore them one by one in the following subsequent sections.

Feedforward neural network
In this type of network, the information flows in one direction. Typically, it receives an
input from the outside world and passes it on to the hidden layer for whatever purpose
they exist for. Afterwards, the hidden layer passes the resulting value to the output
unit. The following diagram shows a typical feedforward neural network architecture with
one hidden layer. The hidden layer may vary depending on the design and requirements of
the neural network:

Feedforward neural network architecture

Machine Learning Chapter 12

[299]

Recurrent neural network
In this type of network, input units pass on data to the hidden layer. Then, the hidden layer
may use their outputs as an input to the same layer. This means that one unit of the hidden
layer, instead of sending the data to the output layer, may send it to other units in the same
hidden layer, or back to itself as input. It is also possible that the hidden layer sends the
data to the output unit and the output unit will then send the data back to the hidden layer.
Sometimes, it leads you back to the unit where you start giving inputs. An illustration of
these examples is shown in the following diagram:

Recurrent neural network architecture

These types of networks are very good at remembering things for a very long time and are
very similar to our biological brains. On the other hand, their implementation is very hard
and complex.

Machine Learning Chapter 12

[300]

Symmetrically connected neural network
A symmetrically connected neural network is very much similar to a recurrent neural
network. The only difference is that it has symmetrical weights in both directions of the
unit, hence the name symmetrically connected network.

If the symmetrically connected network has hidden units, it's called
a Boltzmann machine and if it doesn't have hidden units, then it's called
a Hopfield network.

Deep neural networks
 A neural network can consist of n-hidden layers. Typically, if a neural network model
consists of more than three layers, it is considered to be a deep learning model. The
following diagram illustrates the architecture of such a network:

Deep neural network architecture

Machine Learning Chapter 12

[301]

As of now, the deepest neural network is designed by Google, and has 22 hidden layers.
Imagine the amount of complexity and computing it requires to handle data.

Let's move on to our next topic, the decision tree classifier.

Decision tree classifiers
This algorithm is used to predict an output based on the available labeled data having
varying parameters. To deal with the problem, it builds a tree-like structure that has nodes
to distinguish different characteristics within data.

Let's take an example of a boy named Smith. We have collected data related to Smith's
outdoor activities that can tell us which weather condition is most likely to provoke Smith
into going out to play with his friends. The following is the data collected over a period of
10 days:

Weather Wind Humidity Played
Cloudy Normal Normal Yes
Sunny Weak High No
Sunny Normal Normal Yes
Cloudy Normal Normal Yes
Rainy Normal Normal Yes
Sunny Normal High No
Rainy Normal High Yes
Rainy Strong Normal No
Cloudy Strong Normal Yes

Decision trees are built on a series of questions about the data. For example, if we look into
the current data, we might have the following possible questions:

What is the weather like?
How is the wind blowing?
How is the humidity?

Machine Learning Chapter 12

[302]

In the decision tree, the most important thing is what question to ask and when. A decision
tree's structure starts with a question, but what question? Shall we start by asking about
humidity or weather? To solve this issue, we will calculate the impurity of the actual data.
We than have to iterate through each value using all of the possible question candidates.
We then partition them based on the uncertainty of data and their impurities. We care more
about a large dataset with low impurity that a small set with high impurity. Then, we
subtract the resulting impurity with the actual impurity. Finally, whichever candidate has
the lowest impurity is the best question to ask.

We will now build our decision tree, as shown in the following diagram:

Decision tree architecture based on the given data

Machine Learning Chapter 12

[303]

Now that we have trained our model based on the provided data, we will now ask a
question to our model and it will predict Smith's next decision - whether he will go out to
play or not. Let's assume the weather is sunny, the humidity is high, and the wind is
normal. Our decision tree will check for the first question that it was built upon; what is the
whether like? Based on the provided data, the answer is Sunny. The next question the
decision tree will ask is about the humidity; is it High or normal? The answer is High. Now,
the decision tree will not ask any further questions, and will predict that Smith is most
likely not to go out to play.

Summary
In this chapter, we learned about machine learning. We then learned about the different
types of algorithm it uses to get the desired information. We then had a discussion about
two types of model, the supervised model and the unsupervised model, which are used to
train machines to predict their input.

We then had a discussion about what supervised learning is. We then discussed the two
commonly used algorithms in supervised learning. The first algorithm we discussed is
called the classification model; here, we discussed binary classification and multi-class
classification. The second algorithm we discussed in supervised learning is called
regression; here, we discussed linear regression and polynomial regression.

We then had a discussion about what unsupervised learning is. We then discussed the two
commonly used techniques in unsupervised learning. The first technique is called
clustering, which uses the K-Mean algorithm to identify patterns in data. The second
technique is called a neural network; herein we studied its three types, the feedforward
neural network, the recurrent neural network, and symmetrically connected neural
networks. We then had a discussion about deep neural networks.

In the next chapter, we will learn about artificial intelligence (AI) and the most important
topic in AI: convolutional neural networks (CNN).

13
Artificial Intelligence

Human beings are the smartest species. No other species reaches to the level of
intelligence that we have. It is because of this intelligence that we feel the need to create
things that will help us in our daily life, ease our work, and help us achieve more in less
time. To pursue this, we as human beings invent so many things from time to time for the
sake of advancement, to improve our lifestyle, and to ease our day-to-day tasks. On this
road of inventions, the most important thing that we came up with was electricity. It
opened up the whole new world of possibilities that we can achieve.

We have designed a lot of machines that run on electricity in order to perform our required
tasks. Whatever we programmed them to do, they do, but still we need more from it.
Curiosity is the integral part of human nature. It leads us to think about machines in a
different way. So, we started the thought process, what if it can decide on its own instead of
doing the programmed task with pre-defined rules? What if it can function similar to a
human being? What if we put thought processes into it so that it can learn on its own from
the environment around it?

In this chapter, we will cover the following topics:

Artificial intelligence
Convolutional neural networks
Deep learning using TensorFlow
Object detection using YOLO

Let's start our discussion about artificial intelligence.

Artificial Intelligence Chapter 13

[305]

Artificial intelligence
Artificial intelligence is intelligence that doesn't come by default from nature. It is created
artificially to make machines intelligent. With the help of continuous research and rapid
advancement, we are now able to make machines smarter, so that they can adopt to their
environment and make decisions to fulfill the purpose they are designed for.

If we go into history, some time in the 1940s, when the first computer was invented, it was
considered a very big achievement in the history of invention. At that time, the size of the
computer was bigger than a room. The memory was in bytes and Kilobytes and the energy
it consumed could light up a whole town. Then, in the 1950's, a group of scientists
presented a theory that they could make machines so smart that they could think, learn,
and act like humans. They got millions of dollars in grants to make it happen. But at that
time, the limitation of computer hardware become the hurdle that they were not able to
solve.

Nowadays, computer hardware is not an issue anymore. Even in our home, we have a
laptop that has a memory of gigabytes, hard disk capacity in terabytes, and quad core
processors in GHz, and we can easily carry them in our bags. Nowadays, even a high end
mobile phone has computational power and memory similar to a laptop. In short, we can
achieve what we were not able to do in the past because of hardware limitations.

The field of artificial intelligence is an active field of research. It is not just about robots
walking among humans, acting like humans. It is everywhere, from the Google search
engine to YouTube suggested videos, from self-driving cars to autonomous robots, from
speech recognition to face recognition. In fact, nowadays, more and more companies are
adopting AI to boost their business and to automate things as much as possible.

From almost the last decade, the active field of research is the human brain and how it
works. There are continuous studies and research projects going on that aim to simulate a
human brain in a machine, so that the machine can also become human-ish.

An example of Artificial Intelligence is Google AlphaGO. It's an AI program that was
created to play the ancient Chinese game GO. It's a strategy board game. It received
training by playing with different human players and learned from the strategies they
applied and the mistakes both made. It then learned different strategies by even playing
with itself. The maker of AlphaGO then challenged an expert player of this game in Korea
to a 5 match series. This player's track record was amazing; he was almost undefeatable.
AlphaGO was able to defeat him 4-1. After the match, many experts in GO were shocked
and surprised, as AlphaGO applied many strategies to the game that humans had never
thought of before.

Artificial Intelligence Chapter 13

[306]

One of the core concepts of artificial intelligence that has lead to this much advancement is
the concept of convolution neural networks (CNN). Let's find out what they are and why
they are so important.

Convolutional neural networks
This model is derived from the research of two researchers, D. H. Hubel and T. N. Wiesel.
In their paper, they explain how any mammal interacts with the objects around them, and
in turn, what happens to the neurons in their brain. Using the same hypotheses and theory,
computer scientists try to build the same biological neural structure and mechanism in
order to detect and recognize images. This neural network is called a convolutional neural
network (CNN).

When a human sees an object, for example, a car, they can tell that it's a car, no matter what,
whether they are looking at the front of it, the side of it, the back of it, or the top of it. They
are still be able to recognize that it's a car. The research paper states that there are mainly
three characteristics or features of a mammalian visual cortex that help identify an object.
These three characteristics are:

Local connections, which means how a cluster of neurons is connected to another
cluster or set of neurons; together they represent a feature.
Layering, meaning that there is a hierarchy of features to be learned by dividing
an object into sets of different layers.
Spatial invariance, which means that no matter from which angle you are looking
at an object, it still means the same thing. For example, if you see a banana in an
upside down position, you will still recognize it as a banana.

These are the three features of a mammalian visual cortex that inspired the creation of a
convolutional neural network, so that a model similar to the biological one can be
programmed to act as one.

Artificial Intelligence Chapter 13

[307]

Let's take an example image of a smiley face. When we pass it on to a convolutional
network, it takes a piece of an image called the Receptive Field. We take the dot product of
this receptive field matrix and moves the receptive field to the next selection, as shown in
the following diagram:

Movement of receptive field in an image

We perform a series of operations in each layer. But first, let us broadly categorize
convolutional networks into two categories; the first category is called feature learning and
the second category is called classification. The feature learning category almost contains
80% of the convolutional network, whereas the classification category contains the
remaining 20% of the network.

In feature learning, CNN performs an operation over and over, which is also called
convolutional blocks. These blocks perform three operations: convolution, ReLU
(rectified linear unit), or any kind of activation function and pooling.

A convolution operation performs a matrix dot product with the weight matrix into the
input layer and passes on the output to the next layer. It keeps taking the dot product of
these matrices to generate a new matrix in order to detect a feature. The illustration of this
process is shown in the following diagram:

Artificial Intelligence Chapter 13

[308]

Convolution iteration for feature detection

Now, back to our example of a smiley face. The convolution layer forms a matrix of the
receptive field, as shown in the following figure. It contains lots of zeroes and numbers, but
only on the places where it found a drawing line. It will then compare it with the features of
different objects that our trained model has already learned from the label data:

Feature representation in a matrix form

Artificial Intelligence Chapter 13

[309]

For the comparison part, it will multiply the input matrix, which is shown in the diagram,
and the matrix from the already learned features. If the result comes up with some high
number, it means that the current receptive field feature has been found within the already
learned features. If the resultant number is zero, then the current feature is not available
within the learned dataset.

Once the convolution step is completed, the resulted matrix will be passed on to the next
layer, which is pooling. The most common type of pooling that we do is max pooling. What
this does is pick the highest or maximum value from within a defined window within a
matrix. The following diagram illustrates the max pooling mechanism:

Max pooling mechanism

Commonly, there are two ways to do pooling. The first way is to take a window within a
matrix and pick the max value from within; the first block in the preceding diagram
illustrates this approach. The other way is to select a window and pick the max value but,
for the next value, instead of moving the window altogether to the new values, slightly
slide it either horizontally or vertically to create a partial move effect. The second block in
the preceding diagram illustrates the sliding window approach.

Artificial Intelligence Chapter 13

[310]

After completing all the iteration of a receptive field as well as the pooling, we come to the
activation function phase. We will take an example of a ReLU function. In this function, we
will tell the resulted matrix that if it contains any negative value, then change that value to
become zero.

In the classification phase, you flatten all the outputs that have been previously gathered
into a small dimensional vector and then apply a fully connected layer to it. Then, we apply
a probability Softmax function in the end and take the highest value in comparison with all
the learned images and features. For example, from with the output values, the highest
value is 81%, which belongs to a smiley face image; this means that the input image is most
likely to be similar to a smiley face.

Let us now explore more about deep learning and how we can quickly start creating our
own deep neural networks, using the libraries and frameworks that are already available
on the market.

Deep learning using TensorFlow
Nowadays, deep learning is a very hot topic. We have already established an
understanding about what deep learning is in the previous chapter. Before proceeding
further, let's recap a little bit. Deep learning is a branch of machine learning that is based on
neural networks similar to a human brain; more specifically, a neural network with a
number of hidden layers is called a deep neural network or deep learning. The more
hidden layers, the deeper the network and learning will be.

There are many open source libraries and frameworks available that can handle the
complex computation involved in designing a neural network. Some of them are listed as
follows:

TensorFlow
Caffe
Theano
Keras
Apache MXNet
Torch
Microsoft Cognitive Toolkit
Pytorch
Deeplearning4j
Lasagne

Artificial Intelligence Chapter 13

[311]

We will be going through the TensorFlow framework in the subsequent section.

TensorFlow
TensorFlow is an open source framework designed to handle the complexity involved in
designing a neural network. This complexity includes numerical computation with data
flow graphs to run a deep neural network. TensorFlow was originally designed by the
researchers and engineers of the Google Brains Team in the Google Machine Intelligence
Research Organization. It was then released under an Apache open source license in 2015,
as architecturally it is more general purpose in use.

It can run on multiple CPUs and GPUs. It is designed to run across almost all platforms,
including desktop (Linux, Windows, macOS) and mobile devices (Android and iOS).

Let's proceed by installing TensorFlow in our system.

Installation
There are multiple ways of installing TensorFlow in your system. It can be installed in a
virtual environment or as a Docker image. We will be going through the steps of having it
installed locally, or in the native environment.

The first step is to check whether python is already installed on your computer by issuing
the following command in your terminal:

$ python --version

If it is already installed, it will display an output omitting the version number of the
installed Python, as shown in the following screenshot:

Installed Python version

Artificial Intelligence Chapter 13

[312]

Otherwise, issue the following command in order to install it on your computer:

$ sudo apt-get install python

Once python is installed on your computer, it's time to install the package manager for
Python, which is called pip. As the name states, it is used to install and manage packages
for python.

If you have python version 2.7.x on your machine, execute the following command:

$ sudo apt-get install python-pip python-dev

If you have python version 3.x on your machine, execute the following command:

$ sudo apt-get install python3-pip python3-dev

Once pip is installed, it's now time to install TensorFlow. If you have Python version 2.7.x
on your machine, execute the following command:

$ sudo pip install tensorflow

If you have Python version 3.x on your machine, execute the following command:

$ sudo pip3 install tensorflow

If your computer has the GPU version, then there is a version of TensorFlow that supports
and runs on GPU for fast computation and processing. To install the GPU version of
TensorFlow, execute the following command:

For Python 2.7.x
$ sudo pip install tensorflow-gpu

For Python 3.x
$ sudo pip3 install tensorflow-gpu

Now that we have successfully installed TensorFlow in our computer, it's time to execute a
small program to test the installation and see whether it is installed correctly or not.

TensorFlow program
We will now run a small program in a Python interactive shell terminal. The purpose of this
program is just to import the main package of TensorFlow and run a command using it. If it
is able to import the package and run the program successfully, it means our development
environment for TensorFlow is ready.

Artificial Intelligence Chapter 13

[313]

The first step is to copy the following code in a file and save it as tensor.py. The complete
path in my case is /home/fahad/tensorflow/tensor.py:

import tensorflow as tf

hello = tf.constant('Hello world. I have successfully installed
TensorFlow!')

sess = tf.Session()
print(sess.run(hello))

Once you save it, navigate to the saved path from within your terminal and execute the
following command. In my case, I have done the TensorFlow installation for Python 3.x:

$ python3 tensor.py

You will see an output similar to the one shown in the following screenshot:

TensorFlow program output to validate the installation

As highlighted in the preceding image, we are able to get an output from our hello world
program of TensorFlow. This means that we have successfully installed it on our computer.

Uninstalling TensorFlow
If at any point of time you need to uninstall TensorFlow from your computer, just execute
the following command, if you installed it for Python 2.7.x:

$ sudo pip uninstall tensorflow

Artificial Intelligence Chapter 13

[314]

If you installed TensorFlow for Python 3.x, execute the following command:

$ sudo pip3 uninstall tensorflow

Now that we have done the installation of TensorFlow and run a basic program using it, in
the subsequent section, we will learn how to visualize a TensorFlow program to help to
view the flow of the program for easy understanding and to identify the issues in it. This
will be done using a TensorFlow module named TensorBoard.

TensorBoard
TensorBoard is a very useful tool if you are using TensorFlow on your machine and for
deep learning programs. It displays a graphical representation of different variables and
layers involved in the overall execution of your program for easy understanding. Your
program can be complex and if you encounter any program in it, it will be very difficult to
debug - for example, which layer is generating an error? Or, how is the execution actually
happening?

TensorBoard is a part of TensorFlow and is installed by default during the installation of
TensorFlow. You can even see it being installed during the installation of TensorFlow when
it tries to download the TensorBoard package and installs it.

We will now create a TensorFlow program to solve a mathematical equation, and will
visualize it in TensorBoard.

Program
We have the following mathematical equation:

The following code has been implemented to calculate the result of the given equation
using the TensorFlow framework in Python:

import tensorflow as tf

Define the required placeholder
A = tf.placeholder(tf.float32, name="a")
B = tf.placeholder(tf.float32, name="b")
C = tf.placeholder(tf.float32, name="c")

Equation to solve

Artificial Intelligence Chapter 13

[315]

calculation = (A * B) + (C / B) * A - C

Starting TensorFlow session to calculate result
with tf.Session() as session:
 result = session.run(calculation, feed_dict= {A: 1, B: 2, C: 3})
 # Output the session in a log directory
 writer =
tf.summary.FileWriter('/home/fahad/tensorflow/log/calculation',
session.graph)

 # Output the result in terminal
 print (result)

In order to get the visual representation, the following is the most important line in our
code, as it places a generated log file so that TensorBoard can read the related data from it
and generate a graph accordingly. Please note that the path mentioned here will be used
later while starting TensorBoard:

tf.summary.FileWriter('/home/fahad/tensorflow/log/calculation',
session.graph)

The next step is to execute the following command in order to compile the code and run it:

$ python3 tensorboard.py

The output generated using this command is shown in the following figure. As highlighted,
it computes the result 0.5 of the given equation in the code using the values A=1, B=2, and
C=3:

Execution output of TensorFlow program

Artificial Intelligence Chapter 13

[316]

Launching TensorBoard
Now that we have successfully executed our code, the program should have generated the
related log file in the location mentioned in the code. You can verify it by browsing the
folder. If the log folder contains the file after the execution of the program, it means we are
all set to proceed to the next step.

The next step is to find out the location of the site-packages directory where Python
package manager (pip) installs all the related modules and frameworks. Execute the
following command to get the location of the directory where TensorFlow is installed:

$ pip3 show tensorflow

If you are using Python version 2.7.x, then use pip instead of pip3.

This command will generate an output similar to the following screenshot. As highlighted
with a red box, it displays the location where TensorFlow is installed:

Identifying TensorFlow installation path

Artificial Intelligence Chapter 13

[317]

Move to this directory and issue the following command to start TensorBoard. It requires a
logdir parameter to read the program output from it. In my case, I have defined the log
directory location as /home/fahad/tensorflow/log:

$ python3 -m tensorboard.main --logdir=/home/fahad/tensorflow/log

This will display an output similar to the following screenshot. It also contains the URL
from where you can access the TensorBoard by pointing your browser to this location:

Starting TensorBoard

By default, it publishes TensorBoard to port 6006, but if it is in use by any other program in
your computer, you can pass a desired port number along with the command. Your
command will then look as follows:

$ python3 -m tensorboard.main --logdir=/home/fahad/tensorflow/log --
port=7007

TensorBoard graph
Now that we have successfully started our TensorBoard, point your browser to the URL
mentioned in the resulting output. It will display a page similar to the following screenshot:

Artificial Intelligence Chapter 13

[318]

Graph generated by the TensorBoard using the log file generated by TensorFlow program

It is displaying a graphical representation of the many layers/steps it has to go through to
solve the provided equation, what the initial inputs were, and how it reaches the desired
output. Now, imagine the case of a more complex program where there are many more
layers and many more inputs and outputs; this tool will be of much use to understand the
flow and debug any issues encountered.

Artificial Intelligence Chapter 13

[319]

We will now proceed to the next topic of this chapter, in which we will learn how to detect
different objects with an image using the YOLO library.

Object detection using YOLO
YOLO stands for you only look once. It's an object detection API. It uses a convolutional
neural network to detect objects in an image. In the traditional detection system, it applies a
model into different parts of the captured image to detect whether the same model is
present. YOLO uses a neural network for this purpose. It divides an image into chunks and
then applies edge detection to identify the object and calculate the probability of having an
object in that region. It then picks up from there and detects the object from within its pre-
trained data.

Let's get our hands dirty with YOLO by starting with its installation process.

Installation
The full code base of YOLO is available in the GitHub repository for everyone to download.
It is allowed to be used by everyone freely. To clone the git repository, make sure that git
is installed on your computer. Issue the following command to install git:

$ sudo apt-get install git

This command will install git on your computer, if it's not already installed. The next step
is to create a directory in your home folder called YOLO:

$ mkdir ~/YOLO/
$ cd ~/YOLO/

The next step is to clone the git repository by issuing the following command:

$ git clone https://github.com/pjreddie/darknet

Artificial Intelligence Chapter 13

[320]

It will display an output similar to the following screenshot:

Cloning the Git Repository of YOLO Darknet

Compiling YOLO library
Once the download finishes, it's time to browse into the darknet directory and compile the
code by executing the following command:

$ cd darknet
$ make

The make command will compile the code. If it finishes with only a warning, without any
errors, as shown in the following figure, it means that YOLO darknet has been compiled
successfully and is ready to use. If it displays any errors and ends unexpectedly, try to redo
the previously mentioned steps:

Output of the Make command executed in the Darknet folder

Artificial Intelligence Chapter 13

[321]

Trained weights
The YOLO creators have provided a trained model weight file. This weight file contains
data that is trained using thousands of images and objects. You can create your own weight
file by training a model, but that's a story for another time. For now, we will use the
yolo.weights file to detect objects in an image. The weight file is approximately 258 MB
in size. You can download it by executing the following command. Make sure to execute
this command in the darknet directory:

$ wget https://pjreddie.com/media/files/yolo.weights

Detecting objects in an image
We will be using the following image as a sample to detect objects in it. Place this image in
the data directory within the darknet folder. Placing the sample image is not mandatory;
we just placed it here for the sake of simplicity. You can place the image anywhere you
want:

Sample image to detect objects using YOLO darknet

Now that we have successfully compiled darknet, downloaded the weights, and have the
sample image ready, it's time to run it and detect objects from our sample image. To do so,
execute the following command:

$./darknet detect cfg/yolo.cfg yolo.weights data/sample.jpg

Artificial Intelligence Chapter 13

[322]

It will display an output similar to the following screenshot:

YOLO darknet execution result on our sample image

Artificial Intelligence Chapter 13

[323]

As you can see, at the end of the execution, it displayed its result. It took 10.64 seconds to
predict that the provided image has an 84% chance of containing an image of a cat. Along
with a cat, there is a 48% chance that it also contains an image of a car. By default, it also
creates the end result in a form of a predicted result where it draws a box on each and every
object it found in the provided image. It then saves the resulting image in the root of the
darknet directory. In our case, the complete path of the predicted image is
~/YOLO/darknet/predictions.png. The predicted image is shown as follows:

Output generated by YOLO darknet

After analyzing this image, YOLO predicted the objects within it very well, even though it's
output only has a 48% chance of containing a car.

Artificial Intelligence Chapter 13

[324]

Summary
In this chapter, we discussed what artificial intelligence is, starting from when it was a
theory and considering how it evolved from there. We also discussed how all the rapid
advancements in technology are changing the world around it. We then discussed the most
important concept in AI, CNNs, in which we try to mimic the functionality of a human
brain and how it pursues any given task.

We then listed down some libraries that are very useful in terms of designing neural
networks, especially deep neural networks. We then got into some details about the most
used library among them, which is developed by Google and named TensorFlow. After an
introduction about it, we proceeded further by setting up its environment so that we could
use it to develop our own neural network program. We then learned about the
TensorBoard tool, namely how to configure and use it. It comes with TensorFlow. The
purpose of it is to display the execution steps of TensorFlow programs in a graphical form.

We then moved our discussion to object detection in an image using Neural Networks. We
looked at a library called YOLO, which works on the principle of neural networks and
generates very fast results once trained. We went through its installation steps, covering
downloading the project code, configuring it, and compiling it. We then used the trained
weights data that is provided by the YOLO team to get you started. We used a sample
image and detected the objects in it; the predictions were impressive.

In the next chapter, we will learn how to use Elasticsearch, which is an open source tool. It
is an enterprise-grade search engine specifically designed for use with big data.

14
Elasticsearch

Elasticsearch is a full text-based search and analytics engine. It is a highly scalable and
distributed system, specifically designed to work efficiently and quickly with big data
systems, where one of its main use cases is log analysis. It is capable of performing
advanced and complex searches, and almost real-time processing for advanced analytics
and operational intelligence.

Elasticsearch is written in Java and is based on Apache Lucene. It was first released in 2010
and it immediately gained popularity because of its flexible data structure, scalable
architecture, and very fast response time. Elasticsearch is based on a JSON document with a
schema-free structure, making adoption easy and hassle-free. It is one of the top ranking
search engines of enterprise grade. You can write its client in any programming language;
Elasticsearch officially works with Java, .NET, PHP, Python, Perl, and so on.

Elasticsearch mainly interacts using a REST API. It gets data in the form of JSON
documents with all of the required parameters, and provides its response in a similar
fashion. We will look at this in more detail when we deep-dive into practical tasks and
execute API calls.

In this chapter, we will discuss the following topics:

Installing Elasticsearch
Kibana
Installing Kibana
Securing Elasticsearch
Understanding queries in Elasticsearch

Let's now move on and set up Elasticsearch in our environment for the first time.

Elasticsearch Chapter 14

[326]

Installing Elasticsearch
Let's first start with the installation procedure and set up Elasticsearch. These are the steps
required to get started:

Point your browser to the URL https:/ ​/​www. ​elastic. ​co/​downloads.1.
Click on the Download button in the Elasticsearch box to open up the web page2.
and select the required operating system, as shown in the following screenshot:

Elasticsearch download button

On the next page, select the desired operating system and download the related3.
package. In our case, click on the DEB link to download the Debian package to
install Elasticsearch in Ubuntu, as shown in the following screenshot:

Selecting the desired Elasticsearch package

https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads

Elasticsearch Chapter 14

[327]

Once the download is complete, double click on the file to open the install4.
function, or execute the following command to install it:

$ sudo gdebi elasticsearch-6.2.2.deb

The following is a snapshot of the output that is produced after the preceding command is
run:

Execution of the installation command for Elasticsearch

gdebi is a Debian package installer that is used to identify if any
dependent package is also required before installation. Use sudo apt
install gdebi to install it.

Starting the Elasticsearch server
We have now successfully installed Elasticsearch. It's now time to started! So, execute the
following command:

$ sudo service elasticsearch start

Elasticsearch Chapter 14

[328]

The following screenshot shows the output of the start command:

 Start and status of the Elasticsearch service

Once Elasticsearch has successfully started, point your browser to
http://localhost:9200 to view the output in a browser, as shown in the following
screenshot:

 Elasticsearch running confirmation on the browser

Elasticsearch Chapter 14

[329]

Auto starting the Elasticsearch service
Normally, in a production environment, it is essential to start all of the required services
whenever the server itself starts. To automatically start Elasticsearch along with your
server, execute the following command:

$ sudo /bin/systemctl daemon-reload
$ sudo /bin/systemctl enable elasticsearch.service

The following screenshot illustrates the output of the preceding command:

Auto-start configuration for the Elasticsearch command output

Stopping the Elasticsearch server
At any point in time, if you need to stop the Elasticsearch service, execute the following
command:

$ sudo service elasticsearch stop

Uninstalling Elasticsearch
If, for any reason, you need to uninstall Elasticsearch from your computer or server, execute
the following command:

$ sudo apt remove elasticsearch

Elasticsearch Chapter 14

[330]

The following screenshot displays the preceding command's execution and the output:

Uninstalling Elasticsearch, command and output

Let's now move our discussion on to a tool that is used to visually interact with
Elasticsearch – Kibana.

Kibana
Kibana was developed by the Elasticsearch team and was released as an open source
project. It is very easy to use, yet is powerful enough to interact with Elasticsearch and
perform analysis on demand. You can easily run a Kibana query by calling the Elasticsearch
API. We have already learned that Elasticsearch interacts using REST API calls, so the
query execution is a little different to what we use with a traditional SQL. In this case,
Kibana provides a very simple environment for performing different actions by calling
Elasticsearch API.

In Kibana, you can also create multiple dashboards and design different types of charts to
visualize data – it's a well-known saying that a picture is worth a thousand words. Let's
now move on to the installation of Kibana; we will explore its functionalities and how to
use it later.

Elasticsearch Chapter 14

[331]

Installation
Let's now install Kibana. Follow the proceeding steps to get started:

Point your browser to the URL https:/ ​/​www. ​elastic. ​co/​downloads.1.
Click on the Download button in the Kibana box to open up the web page and2.
select the required operating system, as shown in the following screenshot:

Kibana download page

On the next page, select the desired operating system to download the related3.
package. In our case, click on the DEB link to download the Debian package to
install Kibana in Ubuntu, as shown in the following screenshot:

Selecting the desired Kibana package

Once the download is complete, double click on the file to install Kibana, or4.
execute the following command:

$ sudo gdebi kibana-6.2.2-amd64.deb

https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads
https://www.elastic.co/downloads

Elasticsearch Chapter 14

[332]

To install Kibana, execute the preceding command using the command line, as shown in
the following screenshot:

Kibana installation, command and output

Starting Kibana
We have now successfully installed Kibana. It's now time to start the Kibana service with
the following command:

$ sudo service kibana start

The following screenshot shows the output of the service start command:

Kibana service, start and output

Elasticsearch Chapter 14

[333]

Once the service has successfully started, point your browser to
http://localhost:5601 to open up the Kibana user interface, as shown in the following
screenshot:

Kibana's User Interface

Uninstalling Kibana
If, at any point in time, you want to uninstall Kibana, execute the following command:

$ sudo apt remove kibana

Elasticsearch Chapter 14

[334]

The output of the preceding command is shown in the following screenshot:

Uninstalling Kibana, command and output

We now know what Elasticsearch is and the steps required to install it on your computer.
We have also successfully installed Kibana, which helps us to interact with Elasticsearch.
Let's now move on to setting up security.

Security
It is always recommended that you apply security on every piece of information that will
be important to you and others; that applies in this case, too. Even when you are storing
something seemingly unimportant, it may still contain data that will be useful to someone.
It's always better to apply security and create strong passwords. Elasticsearch provides a
plugin called X-pack, which eases the process of applying security for both the
Elasticsearch engine and the Kibana tool.

Securing Elasticsearch
First of all, open up the terminal and execute the following command to browse the
installation folder of Elasticsearch, which in our case is
/usr/share/elasticsearch/bin:

$ cd /usr/share/elasticsearch/bin

Elasticsearch Chapter 14

[335]

The next step is to execute the following command to install the x-pack plugin for
Elasticsearch:

$ sudo ./elasticsearch-plugin install x-pack

This will take some time to download and then install. Elasticsearch will display a message
regarding permission; just press Y to proceed. The following screenshot displays the output
generated by the preceding command:

X-Pack installation for Elasticsearch

Once it's finished, it's time to set up a password for Elasticsearch. Execute the following
command to start the process:

$ sudo ./x-pack/setup-passwords auto

Elasticsearch Chapter 14

[336]

Once you have executed this command, it will generate a secure random password and set
the security configuration accordingly. After finishing setup, it will print the randomly
generated password on the terminal for your safe-keeping and any future usage, as shown
in the following screenshot:

Elasticsearch security setup using the X-Pack plugin

Securing Kibana
We will now install X-Pack for Kibana. Open up the terminal and execute the following
command to browse the installation folder of Kibana, which in our case
is /usr/share/kibana/bin:

$ cd /usr/share/kibana/bin

The next step is to execute the following command to install the X-Pack plugin for Kibana:

$ sudo ./kibana-plugin install x-pack

Elasticsearch Chapter 14

[337]

Similar to Elasticsearch, this will take some time to download and install. The following
screenshot displays the output generated by the preceding command:

X-Pack installation for Kibana

Now that we have successfully installed X-Pack for Kibana, it's now time to configure it.
Navigate to the directory /etc/kibana, where you will find the kibana.yml file. We need
to update the newly generated Elasticsearch username and password in this configuration
file so that they are validated with Elasticsearch the next time you start the Kibana web
interface. Execute the following command to start editing the configuration file:

$ sudo nano kibana.yml

Elasticsearch Chapter 14

[338]

Once you have executed this command, it will open up the configuration file in editing
mode. Look for the lines elasticsearch.username and elasticsearch.password. By
default, both lines will be in a commented mode; just un-comment them by removing the
first character, #, and defining the username and password we generated earlier, as shown
in the following screenshot:

Setting up the username and password for Elasticsearch in the Kibana configuration file

Now press Ctrl + O to write data and Ctrl + X to exit the editor. Now execute the following
command to restart the Kibana service and to apply all of the necessary configurations:

$ sudo service kibana restart

Once the service is restarted, point your browser to http://localhost:5601 to open
Kibana. You should see a login page similar to the one shown in the following screenshot:

Elasticsearch Chapter 14

[339]

Kibana login page

Enter the username as elastic and the password as 3gpYmmfaohlIb26Hlw1L, as
generated earlier, to log in.

Now that we're all set up and ready, let's start using Elasticsearch to perform some CRUD
operations.

Understanding queries – CRUD commands
We already know that Elasticsearch uses a RESTful API as a communication model and we
will be using Kibana as an IDE to run our API calls. Let's get started.

First, we need to start the Kibana service by executing the following commands, if Kibana
has not already started:

$ sudo service kibana start
$ sudo service kibana status

Elasticsearch Chapter 14

[340]

Now point your browser to http://localhost:5601/ to open the Kibana application, as
we did earlier. Once the application is open, click on the Dev Tools options from the menu,
as shown in the following screenshot:

Kibana Dev Tools

Before we execute commands, let's understand some of Kibana's basic concepts. Indexes are
like tables in a traditional relational database but, as in other NoSQL databases,
Elasticsearch is also schema-free. In the earlier versions of Elasticsearch, we had to create
types along with every index. Now, starting from Version 6.0, you only have to specify a
single type that will also be removed later on. For example, in earlier Versions, we created
our indexes and types like this: /student/contact, /student/courses,
/student/grades, and so on. From version 6.0 and later, indexes are created as
follows: /student-contact/detail, /student-grades/detail, /student-
courses/details, and so on.

Elasticsearch Chapter 14

[341]

In the chapter on backend architecture in this book, we studied RESTful API and its
operations; let's revisit that. RESTful APIs have four operations, which are as follows:

GET
PUT
POST
DELETE

We will be using these operations to interact with Elasticsearch using Kibana. We should
also note that we will be passing a JSON document along with the REST command. JSON
supports six datatypes, which are as follows:

String
Number (this can be any number, an integer, a float, or a double)
null
Array, of any JSON-supported data type
Boolean
Another JSON document

In the upcoming sections, we will follow a student database example. We will
create documents for each student and their related information. Let's move on to executing
queries and creating our first index in Elasticsearch.

Creating
(Note that the left-hand side box is for writing a query and the right-hand side box is where
the output will appear.) Let's now execute our first query in order to create a student
record. The JSON document in the query is self-explanatory. Execute the following code in
Kibana:

POST /student/detail
{
 "name" : "Smith",
 "age" : 10,
 "phone" : "1-234-567890",
 "address" : "some where on earth"
}

Elasticsearch Chapter 14

[342]

The preceding code will create an index named student with the type detail, as shown
in the following screenshot:

Query execution and its output in Elasticsearch using Kibana

If you look closely at the output, you will see the following information:

_index: This contains the name of the index for which the related query was
executed
_type: This contains the name of the type for which the related query was
executed
_id: This is the ID of the record, which uniquely identifies an inserted document;
if it is not provided in the query, one will be automatically generated
_version: For every new record, the version will always be 1 – this will
continue to increase when the same document is updated
_result: This displays the action performed based on the provided query, such
as created, deleted, or updated; in our case, it is created
_shards: This contains the result of the query – whether it was successfully
executed or not; if successful, the _successful flag will display 1 and
the _failure flag 0 or vice versa

In this example, we have looked at only one way of adding a document in Elasticsearch, but
there is another – we can use the PUT command. If you check the previous command, you'll
see that we used POST. Why are there two different commands with the same purpose? If
you use POST, Elasticsearch will automatically generate a unique ID for the inserted
document, while if you use the PUT command, the executioner has to provide a unique ID
in the command itself, the format for which is as follows:

Elasticsearch Chapter 14

[343]

PUT /student/detail/1
{
 "name" : "JohnDoe",
 "age" : 12,
 "phone" : "2-584-5222890",
 "address" : "some where in the universe"
}

Now, if you look closely at the preceding command's first line, you will see that after
/student/detail, there is /1. This will become the unique ID for this document. The
output of this command is as follows:

{
 "_index": "student",
 "_type": "detail",
 "_id": "1",
 "_version": 1,
 "result": "created",
 "_shards": {
 "total": 2,
 "successful": 1,
 "failed": 0
 },
 "_seq_no": 2,
 "_primary_term": 1
}

If you try to use the PUT command without providing a document ID, it will issue an error
similar to the one as follows:

The preceding error message tells us that if we cannot provide the document's ID, then we
need to use the POST command, which is allowed as the written pattern.

Elasticsearch Chapter 14

[344]

Reading
Now that we have successful inserted our data into Elasticsearch, let's retrieve it. The
simplest way of retrieving data is by using the document ID. In the previous example, we
used a document ID of 1 when inserting a document in the student index. Let's now try to
retrieve it by executing the following query:

GET /student/detail/1

The preceding query will come back with the following response:

{
 "_index": "student",
 "_type": "detail",
 "_id": "1",
 "_version": 6,
 "found": true,
 "_source": {
 "name": "JohnDoe",
 "age": 12,
 "phone": "2-584-5222890",
 "address": "some where in the universe"
 }
}

Now, if you want to retrieve all of the documents in the student index, execute the
following query:

GET /student/detail/_search

The preceding command will display the following output:

{
 "took": 273,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "skipped": 0,
 "failed": 0
 },
 "hits": {
 "total": 2,
 "max_score": 1,
 "hits": [
 {
 "_index": "student",

Elasticsearch Chapter 14

[345]

 "_type": "detail",
 "_id": "1",
 "_score": 1,
 "_source": {
 "name": "JohnDoe",
 "age": 12,
 "phone": "2-584-5222890",
 "address": "some where in the universe"
 }
 },
 {
 "_index": "student",
 "_type": "detail",
 "_id": "4K2jV2IByjXVQnwMXRV8",
 "_score": 1,
 "_source": {
 "name": "Smith",
 "age": 10,
 "phone": "1-234-567890",
 "address": "some where on earth"
 }
 }
]
 }
}

Here, we only inserted two documents, so only saw two documents in the output – one
with a manually-entered ID and the other with the automated ID. Some other things to note
are as follows:

"took": This is the amount of time it took Elasticsearch to fetch the documents in
milliseconds
"timed_out": This tells us whether the query fetched all the available records or
if it timed out
"hits" -> "total": This tells us the number of documents found

Updating
The update command is very much similar to the one for creation; the only difference is
that, in the POST document, there needs to be another document called doc that contains
any fields that need to be updated. Execute the update command as follows:

POST /student/detail/1/_update
{

Elasticsearch Chapter 14

[346]

 "doc" : {
 "phone" : "1-012-9876543"
 }
}

The preceding command will update the phone number of a student with the ID 1. The
output of this command is as follows:

{
 "_index": "student",
 "_type": "detail",
 "_id": "1",
 "_version": 2,
 "result": "updated",
 "_shards": {
 "total": 2,
 "successful": 1,
 "failed": 0
 },
 "_seq_no": 5,
 "_primary_term": 1
}

If you look closely at this output, you will see that there is an additional flag to the
successful one of 1. The output also provides a version number, 2, indicating that this is the
first time the document has been updated since its creation, where it shows a version
number of 1.

Deleting
Deleting a document is very simple; just execute the following command:

DELETE /student/detail/1

Elasticsearch will display the following output as a result:

{
 "_index": "student",
 "_type": "detail",
 "_id": "1",
 "_version": 2,
 "result": "deleted",
 "_shards": {
 "total": 2,
 "successful": 1,

Elasticsearch Chapter 14

[347]

 "failed": 0
 },
 "_seq_no": 3,
 "_primary_term": 1
}

In the output, we see that the operation was performed successfully.

Summary
In this chapter, we learned about an enterprise-grade, full text-based search engine called
Elasticsearch, which we successfully installed and configured. We then moved on to the
Elasticsearch plugin Kibana, which is used to visualize data from Elasticsearch and to
execute REST API calls in order to manipulate data within Elasticsearch. We also installed
and configured Kibana.

Security is very important these days, which is why, instead of leaving our server insecure
or using the default security options, we discussed a plugin provided by Elasticsearch,
called X-Pack. We installed and configured X-Pack for Elasticsearch and Kibana.

We then moved on to the different API structures that perform CRUD operations so that
we can create, read, update, and delete documents within Elasticsearch. We practically
performed each scenario and studied the output generated in return.

In the next chapter, we will learn about structured data and how to manipulate it with the
help of different open source tools.

15
Structured Data

Up until a few years ago, companies were only storing data that was important to them and
directly linked either with their business or customers. These types of data are mostly
structural in form, which means that each of the data records in the dataset available will
have similar attributes. In most cases, they are also linked together and have different types
of relationship between them.

There are many commercial and open source relational databases available in the market
that help us to store and manipulate structural data. Example of these databases are
MySQL, Microsoft SQL, and PostgreSQL. Some of them are free to use for both individual
or commercial use, but some of them require licenses. The license cost varies from provider
to provider based on the features they provide and support. The number of users and IoT
devices is increasing rapidly, resulting in a flow of data with much faster frequency. It is
very difficult to scale these databases, as most of them require expensive hardware and it is
also costly to maintain them.

In previous chapters, we have already learned about Hadoop and its infrastructure
requirements. So, instead of managing a cluster of expensive hardware that also keeps on
growing, it's better to migrate these relational databases into Hadoop, which runs on
commodity hardware. Hadoop is specifically built to handle large datasets with frequently
growing data and it is also very scalable.

In this chapter, we will go through a step-by-step guide to migrate our structured data from
the MySQL database into HBase. We discussed HBase in Chapter 3, Hadoop Ecosystem, and
also performed a comparison between SQL and NoSQL databases in Chapter 4, NoSQL
Database. The main benefit of using HBase is that it runs on Hadoop cluster and Hadoop
runs on commodity hardware. It is very easy to scale Hadoop clusters and add more and
more resources to it. On the other hand, if you scale a MySQL database, it will be very
costly, as you will require expensive hardware as well as a lot of resources to manage it.

Let’s start with details of the structured data that we will be migrating from MySQL to
HBase, and the different entities and tables it contains.

Structured Data Chapter 15

[349]

Data analysis
Let's now discuss the different tables available in our MySQL database that we will be
exporting to our HBase database. We will be simulating an employee database, which will
have information related to their personal information and the details of their salaries. In
order to simulate a full scenario, we will also be installing MySQL database in our
computer so that we can perform all of the actions from end to end in practical terms. So,
let's start with the installation of a MySQL server.

Installing MySQL
Installing the MySQL database is pretty straightforward in Ubuntu. Just execute the
following command to install it:

$ sudo apt-get install mysql-server

It will first prompt you to confirm to start the installation procedure, and then download
approximately 20 MB of data, as shown in the following screenshot:

Starting MySQL installation

Structured Data Chapter 15

[350]

Once it downloads the files, it will prompt you for a password for the root user (which
will have full administrative privileges over MySQL server), as shown in the following
screenshot:

Setting the MySQL root user password

Once you enter the password, it will again prompt you to confirm the password, as shown
in the following screenshot:

Confirming the root user password for MySQL Server

Once the installation completes, restart your computer. After restarting, execute the
following command to verify MySQL server's installation status:

$ sudo service mysql status

Structured Data Chapter 15

[351]

It will display an output similar to the following screenshot:

MySQL Service Status

It is showing active (running), which means that the installation of MySQL was successful
and is running in the background.

Importing data
Now that we have successfully installed MySQL and is running in the background, its now
time to create our database and the related tables. For this purpose, copy the following code
into a text file and save it as employees.sql in the /usr/bin/ folder. It will require that
we bulk load our MySQL server with the data that we will be exporting to our HBase
database server later on:

-- Host: localhost Database: employees
-- --
-- Server version 5.7.21-0ubuntu0.17.10.1

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8 */;
/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;
/*!40103 SET TIME_ZONE='+00:00' */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS,
FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

--

Structured Data Chapter 15

[352]

-- Current Database: `employees`
--

CREATE DATABASE /*!32312 IF NOT EXISTS*/ `employees` /*!40100 DEFAULT
CHARACTER SET latin1 */;

USE `employees`;

--
-- Table structure for table `empInfo`
--

DROP TABLE IF EXISTS `empInfo`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `empInfo` (
 `empId` int(11) NOT NULL,
 `empName` varchar(45) DEFAULT NULL,
 `phoneNo` varchar(45) DEFAULT NULL,
 `address` varchar(45) DEFAULT NULL,
 `designation` varchar(45) DEFAULT NULL,
 `department` varchar(45) DEFAULT NULL,
 PRIMARY KEY (`empId`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
/*!40101 SET character_set_client = @saved_cs_client */;

--
-- Dumping data for table `empInfo`
--

LOCK TABLES `empInfo` WRITE;
/*!40000 ALTER TABLE `empInfo` DISABLE KEYS */;
INSERT INTO `empInfo` VALUES (1,'John Smith','123456789','somewhere on
earth','clerk','Accounts'),(2,'John Doe','987987999','somewhere on
universe','engineer','Development'),(3,'Smith','5432123456','somewhere','en
gineer','Development'),(4,'Andrew','331222345','under the
hood','manager','Development'),(5,'Troy','9102385731','nowhere','director',
'Business');
/*!40000 ALTER TABLE `empInfo` ENABLE KEYS */;
UNLOCK TABLES;

--
-- Table structure for table `empSalary`
--

DROP TABLE IF EXISTS `empSalary`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;

Structured Data Chapter 15

[353]

CREATE TABLE `empSalary` (
 `salaryId` int(11) NOT NULL,
 `salaryMonth` varchar(10) DEFAULT NULL,
 `empId` int(11) DEFAULT NULL,
 `salaryAmount` double DEFAULT NULL,
 PRIMARY KEY (`salaryId`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
/*!40101 SET character_set_client = @saved_cs_client */;

--
-- Dumping data for table `empSalary`
--

LOCK TABLES `empSalary` WRITE;
/*!40000 ALTER TABLE `empSalary` DISABLE KEYS */;
INSERT INTO `empSalary` VALUES
(1,'2018-04',1,1025),(2,'2018-04',2,2556),(3,'2018-04',3,1500),(4,'2018-04'
,4,5000),(5,'2018-04',5,4780);
/*!40000 ALTER TABLE `empSalary` ENABLE KEYS */;
UNLOCK TABLES;
/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;
/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;
/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;
/*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;

Once you create this file, execute the following command to load it into MySQL:

$ mysql -u root -p < employees.sql

If it returns to prompt without any error, then it executed successfully and all the data is
now available to be analyzed. Otherwise, make sure you haven't made any mistakes while
creating the bulk load file and try to recreate it again.

Analyzing the data model
We will be using the MySQL terminal application to browse through different information.
Execute the following command to log in to a MySQL instance:

$ mysql -u root -p

Structured Data Chapter 15

[354]

The -u parameter means using which user you want to log in, and the -p parameter means
that this user has a password and you will provide it in the next step. The following
screenshot shows the available databases in our MySQL instance, from which we will be
using the employees database:

Available databases in MySQL Instance

Now that we know we will be working with the employees database, execute the
following command to select it as your working database:

mysql> use employees;

We will now check how many tables are available in this database. This is required, because
we will be creating a MapReduce job against each table to map them between the MySQL
table and the HBase table. Execute the following command to list all available tables in the
current database:

mysql> show tables;

Structured Data Chapter 15

[355]

The following screenshot displays the available tables in the database:

Available tables in the Employee Database

Now, we have the information that, in the current database, there are two tables; empInfo
and empSalary. We will now be needing their column information, which will be required
in a later stage, when we will create a program to copy the data from these tables. In order
to get column details, execute the following command on the first table:

mysql> describe empInfo;

The following screenshot displays the information we need related to the empInfo table:

Column details of the empInfo table in the Employee Database

Similarly, now execute the following command to get the required details for
the empSalary table:

mysql> describe empSalary;

Structured Data Chapter 15

[356]

The following screenshot displays the output of this command:

Column details of the EmpSalary table

We will execute the following command to check whether we have any data available in
the empInfo and empSalary tables one by one:

mysql> select * from empInfo;

The following screenshot displays the output of this command:

Data available in the empInfo table

I have put very little data in these tables so that it will be easier to understand and track the
changes that we will be doing. Similarly, we will now execute the following command to
check the available data in the empSalary table:

mysql> Select * from empSalary;

Structured Data Chapter 15

[357]

The following screenshot displays the output of this command:

Data available in the empSalary Table

Now that we have identified the structured and available data in our MySQL database, we
will now prepare our HBase database to inject this data in it.

HBase
We learned about HBase in Chapter 3, Hadoop Ecosystem. We will now set up the HBase
application in the Hadoop cluster that we already set up in Chapter 2, Big Data
Environment Setup. If you have missed any of these, please revisit these chapters to get up to
speed. We will now proceed with the installation of HBase.

Installation
In this first step, we will download the HBase application. At the time of writing, the
current stable version of HBase is 1.4.3, and version 2.0 is in the beta 2 stage. We will be
using the stable release to avoid encountering any bug or unknown failures. To learn more
about different HBase releases, please visit https://hbase.apache.org/. We will now
download HBase by executing the following command:

$ wget http://www-us.apache.org/dist/hbase/1.4.4/hbase-1.4.4-bin.tar.gz

https://hbase.apache.org/

Structured Data Chapter 15

[358]

This command will download HBase 1.4.4 in home directory. The complete path in our case
is /home/hadoopadmin/hbase-1.4.4-bin.tar.gz. Now, execute the following
command to extract the files in this archive:

$ tar -zxvf hbase-1.4.4-bin.tar.gz

This will extract all the files to a folder named hbase-1.4.3. It's now time to do some
HBase related configurations. The first file that we will be editing is the hbase-env.sh file,
which is present in the conf folder in the HBase directory. Browse to this folder and
execute the following command in order to start editing it:

$ cd ~/hbase-1.4.4/conf
$ sudo nano hbase-env.sh

Once you execute this command, it will allow you to edit the file. We need to set
the JAVA_HOME variable to point to the correct installation directory. In our case, we will
install Java in the /home/hadoopadmin/jdk1.8.0_144/ directory. We will uncomment
the line that contains the JAVA_HOME export variable and set it as follows:

export JAVA_HOME="/home/hadoopadmin/jdk1.8.0_144/"

The following screenshot shows the content of the file after setting the JAVA_HOME variable:

Setting up JAVA_HOME in HBase installation

Structured Data Chapter 15

[359]

Now, go to the end of this file, look for the following line, and uncomment it. This line
enables HBase to manage its own Zookeeper instance:

export HBASE_MANAGES_ZK=true

The following screenshot illustrates this step:

Enabling HBase to manage its own Zookeeper instance

Now press Ctrl+O to write the file and Ctrl+X to exit the editor. Now, the next step is to
create the directory that HBase will use to store its data files. We will create a new directory
named datafiles inside the HBase directory by executing the following command:

$ cd ~/hbase-1.4.4/
$ mkdir datafiles

We will now edit the hbase-site.xml file to define the hbase.rootdir property so that
it will start storing all the data files in it. Execute the following command to edit the file:

$ cd ~/hbase-1.4.4/conf
$ sudo nano hbase-site.xml

Structured Data Chapter 15

[360]

This will open up the editor to let you start editing. Copy the following code in between
the <configuration></configuration> tags:

<property>
 <name>hbase.rootdir</name>
 <value>hdfs://localhost:9000/hbase</value>
</property>

The following screenshot shows the actual content of the hbase-site.xml file:

Content of hbase-site.xml to set the rootdir property

We have finished all the related configuration for HBase and we are now ready to start the
server.

Structured Data Chapter 15

[361]

Starting an HBase instance
Now that we have completed the configuration of HBase, it's time to start it. Before doing
so, make sure that the Hadoop instance is up and running. To verify it, point your browser
to http://localhost:50070/, which will display a page similar to the following
screenshot:

Hadoop Server Overview

If you are able to view an output similar to this, it means that Hadoop is working fine and
you can proceed to start HBase. If it is giving any error messages, please go to the Hadoop
installation guide provided in Chapter 2, Big Data Environment Setup. Once resolved, please
proceed to the following instructions.

Make sure that you have created the hbase directory in your Hadoop file system, because
as per the configuration done earlier, we have defined that HBase will store its data files in
HDFS. Execute the following command in order to create it, if this has not already been
done:

$ hdfs dfs -mkdir /hbase

Structured Data Chapter 15

[362]

We will now be executing the commands that are available in HBase's installation
directory, so make sure that you are in the HBase directory. Execute the following
command to start HBase:

$ cd ~/hbase-1.4.4/bin
$./start-hbase.sh

Once you execute this command, it will give you an output similar to the following
screenshot:

Start HBase

As you can see in the output running master, you have successfully started your HBase
instance.

Stopping a HBase instance
In order to stop HBase, execute the following command:

$ cd ~/hbase-1.4.4/bin
$./stop-hbase.sh

Preparing an HBase for migration
We will now start the HBase interactive shell to start our setup for importing data from
MySQL. Execute the following command to open the HBase shell:

$ cd ~/hbase-1.4.4/bin
$./hbase shell

Structured Data Chapter 15

[363]

The following screenshot displays the output of this command:

Starting HBase interactive shell

The data model that we have in MySQL contains two tables, empInfo and empSalary. We
will now need to create these two tables in HBase so that we can then copy the data from
the MySQL tables to the HBase tables. Execute the following command to create the tables
in HBase:

hbase(main):001:0> create 'info','employee'
hbase(main):002:0> create 'salary','employee'

The following screenshot displays the output we get after executing this command:

Creating tables in HBase

We have now successfully prepared our HBase database and are now ready to move on to
the next step. Now, there are two possible scenarios; we can either write a MapReduce Java
program, or we can use an open source application named Sqoop to copy data from the
MySQL database to HBase. Here, we will be using Sqoop.

Structured Data Chapter 15

[364]

Sqoop
Sqoop is an open source tool that is used to import and export data between different
relational databases and Hadoop ecosystems. As you know, the stable version of Sqoop is
1.4.7 and we will be using this version in our scenario. It is managed under the umbrella of
Apache Projects. Let's start with the installation of Sqoop.

Installation
The installation of Sqoop is pretty straightforward. First, download the Sqoop application
by executing the following command:

$ cd ~/
$ wget
http://www.apache.org/dist/sqoop/1.4.7/sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz

The following screenshot illustrates the output of these commands:

Download the Sqoop application

Now, execute the following command to extract the tar archive:

$ tar -zxvf sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz

This will create a folder called sqoop-1.4.7.bin__hadoop-2.6.0 and extract all the files
to it. It's now time to do the related configuration. Execute the following command to edit
the bashrc file in order to include the Sqoop installation folder in the system path.

$ sudo nano ~/.bashrc

Structured Data Chapter 15

[365]

Now, copy the following lines at the end of this file:

Sqoop
export SQOOP_HOME="/home/hadoopadmin/sqoop-1.4.7.bin__hadoop-2.6.0"
export PATH=$PATH:$SQOOP_HOME/bin

Now, press Ctrl + O to write the file and then Ctrl + X to exit from the editor. Then, execute
the following to reload the bashrc file:

$ source ~/.bashrc

Now that we have reloaded the bashrc file, it is able to use the Sqoop variable in the
system path. We will now define the Hadoop and HBase installation directory path in the
Sqoop configuration file. Execute the following command to configure Sqoop:

$ cd $SQOOP_HOME/conf
$ cp sqoop-env-template.sh sqoop-env.sh
$ sudo nano sqoop-env.sh

This will open up the editor to set the following three variables:

HADOOP_COMMON_HOME

HADOOP_MAPRED_HOME

HBASE_HOME

The following screenshot displays this configuration in our case:

Configure Hadoop and the HBase installation path in Sqoop env file

Structured Data Chapter 15

[366]

We have now completed the installation of Sqoop. It's now time to verify whether it has
installed correctly.

Verifying the installation
Execute the following command to check the version of the current Sqoop installation:

$ sqoop version

The following screenshot displays the output of this command, mentioning the version
number of the Sqoop that we have installed just now:

Checking the version number of the Sqoop installation

Now that we have successfully installed Sqoop and verified that everything is working as
expected, it's time to start using it to import data from MySQL into HBase in Hadoop.

MySQL JDBC driver
We will be importing MySQL data in HBase. For that, we will require the MySQL JDBC
driver class to be available in Sqoop's lib directory in order to be utilized. It is available
officially from the MySQL website. Point your browser to https:/ ​/​dev. ​mysql. ​com/
downloads/​connector/ ​j/ ​5. ​1. ​html and download the Platform Independent (Architecture
Independent), Compressed TAR Archive. It is nearly 4.6 MB in size. Once the download is
finished, copy the file to your Home folder and execute the following command to extract it:

$ tar -zxvf mysql-connector-java-5.1.46

https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html
https://dev.mysql.com/downloads/connector/j/5.1.html

Structured Data Chapter 15

[367]

It will extract all the files to a folder named mysql-connector-java-5.1.46. Browse into
this folder and execute the following command to copy the JAR file into Sqoop's lib folder:

$ cd mysql-connector-java-5.1.46/
$ cp mysql-connector-java-5.1.46-bin.jar $SQOOP_HOME/lib

We are now all set and ready to connect to our MySQL instance from Sqoop.

Importing data
Now, we have completed the setup and configuration required to import data from MySQL
tables to HBase tables. First, we will create a folder. Sqoop will place all temporary files by
executing the following command:

$ cd ~/
$ mkdir sqoopfiles
$ cd sqoopfiles

Let's now proceed to execute a Sqoop command to start the importing procedure:

$ sqoop import
 --bindir ./
 --connect jdbc:mysql://localhost/employees
 --username root
 -P
 --table empInfo
 --hbase-table info
 --column-family employee

Let's first understand all the parameters that this command contains, as follows:

--bindir: Specifies the current working directory for Sqoop. Based on the other
parameters, sqoop will create a JAR file that contains the MapReduce job for
importing data. Sqoop will place all the temporary files in it until the job is done.
--connect: Defines the type of connection we are going to make and to which
database. Sqoop supports many different relational databases, and with the
proper connection drivers we can use Sqoop to import data from any database.
In this example, we will be connecting to the MySQL employees database using
the JDBC driver class.

Structured Data Chapter 15

[368]

--username: Specifies the username that we will use to connect to the MySQL
database.
-P: Specifies that the MySQL connection will require a password to connect,
which we will provide once the actual connection has been made.
--table: The name of the MySQL table that we will be importing.
--hbase-table: The name of the HBase table to which the data will be copied.
--column-family: Specifies which column family the HBase table belongs to.

Now that we have understood all the parameters, let's execute this command. The
following screenshot displays the prompt that asks for the MySQL password once we
execute this command:

Sqoop prompting to provide the MySQL Password to proceed

Structured Data Chapter 15

[369]

Once we provide the password, it will proceed to the next step and create different classes
and JAR files, which you can view in the sqoopfile folder once the job finishes. The
following screenshot displays the output when Sqoop finishes executing:

Sqoop finishes importing data from MySQL into HBase

If you now look at the last line of the output, it says Retrieved 5 records. This means
that Sqoop found five records in the MySQL empInfo table and successfully imported
them into the HBase info table.

Structured Data Chapter 15

[370]

Verifying the imported data
As per Sqoop, it has successfully imported the data into HBase. It's now time to verify it
from HBase itself. For this purpose, fire up the hbase shell as shown earlier in this chapter
and execute the following command in it:

hbase(main):001:0> scan 'info'

The following screenshot displays the output of this command:

Data in the HBase table info table

This output now confirms that the data has been successfully imported to the HBase table
info.

Structured Data Chapter 15

[371]

Summary
Data is growing exponentially and it is vital for any company to keep all of its data while
maintaining a bare minimum cost level. In this chapter, we started by learning how to
install MySQL in a Linux environment. Then, we created a database with some tables and
data in it. This was done to create an initial environment in order to learn how to migrate
data from a relational database such as MySQL into a Hadoop ecosystem such as HBase.
We then studied the structure of the tables in the MySQL database and analyzed the data
available in it.

Then, we installed HBase in our Hadoop cluster, which we set up earlier in this book. We
also then performed some required configuration before proceeding with different
operations in HBase. We then created the tables in it that will hold the imported data from
the MySQL database.

We then learned about Sqoop, which is an open source application that makes it easier to
import and export data between relational databases and Hadoop ecosystems. First, we
installed Sqoop, and then we performed the required configuration. We then learned about
the different parameters used in the import process of Sqoop for better understanding and
clarity. Afterwards, we performed the actual import from MySQL tables and placed the
data in HBase tables. Finally, we attempted to verify the availability of the data in our
HBase tables, and were successful.

In the next chapter, we will learn about unstructured data and how to manipulate it with
the help of different open source tools.

16
Unstructured Data

If a form of data doesn't have a predefined structure, then it falls under the classification of
unstructured data. These types of data are normally huge in size compared to structured
data as structured data is mainly in text form. The following are some of the examples of
data that can be classified under the umbrella of unstructured data:

Audio file
Video file
Document file, such as Word, PDF, and Excel
Images
Emails
Text and log files
Sensors and IoT data

Now, keep all these types of data in your mind and think of a possible solution for storing
the data in such a way that you can retrieve the required information and process it using
traditional systems. Take your time. Most likely you will not be able to come up with a
solution, because traditional systems are not designed to deal with unstructured data
effectively.

With the evolution of the big data world, more and more technological advancement is in
place. These advancements lead to many possible solutions that can help us deal with
unstructured data and manipulate them as per our requirements.

In the previous chapter, we learned how to import structured data from any relational
database into Hadoop. In this chapter we will now import unstructured data into Hadoop
and extract meaningful information from them. We will be covering the following topics:

Importing unstructured data into Hadoop Cluster
Converting images into text

Unstructured Data Chapter 16

[373]

In the subsequent sections, we will also perform a practical example to import web server
log data into Hadoop. It will help to consume and store more and more data with low-cost
commodity hardware using Apache Flume.

Moving data into Hadoop
We have already developed our understanding regarding Apache Flume in Chapter 3,
Hadoop Ecosystem. If we recall, Apache Flume is a framework that helps move large
amounts of streaming data from one place to another. It is primarily designed for log
collection and aggregation from across different servers into a centralized place like
Hadoop for processing and analysis. But its usage is not limited to just log aggregation. The
data source connectors are customized and can be used to transport large amounts of event
generated data, such as network traffic data, social media generated data, and so on; almost
any type of data source.

Let's now move our discussion to the practical part, where we set up Flume to get data
from any server and place it in the Hadoop directory structure.

Downloading Flume
It's time to get your hands dirty by performing the actual configuration of Apache Flume.
For that, point your favorite browser to https:/ ​/​flume. ​apache. ​org/ ​download. ​html to
download the latest version of Apache Flume. While writing this, the current stable version
of Flume is 1.8.0. Click on the Download binary link that is available on the page, as shown
in the following screenshot:

https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html

Unstructured Data Chapter 16

[374]

Apache Flume Download Link

Once you download the file, copy it to your home directory. Then, fire up the terminal and
execute the following command to extract it:

$ cd ~/
$ tar -zxvf apache-flume-1.8.0-bin.tar.gz

Now that we have downloaded and extract Apache Flume into our home directory, which
is /home/hadoopadmin/, we will now move forward to do path configuration.

Environment configuration
Now, we will define the Apache Flume home location in the environment path. In order to
do so, edit the bashrc file by executing the following command:

$ sudo nano ~/.bashrc

Once it opens, go to the end of the file and write the following:

#Apache Flume
export FLUME_HOME="/home/hadoopadmin/apache-flume-1.8.0-bin"
export PATH=$PATH:$FLUME_HOME/bin

Unstructured Data Chapter 16

[375]

Notice that we have used the /home/hadoopadmin/ directory, as we have placed the
extracted files of Apache Flume. Make sure to change it as per your directory structure.
Now save and exit the editor and reload the bashrc file by executing the following
command, in order for the changes to take effect:

$ source ~/.bashrc

We are now ready to configure an agent that will define the source, sink, and channel to use
in Flume.

Configuring agent and sink
Create a new file and write down the following code in it. In our case, we will save it with
the name flume-agent.conf. In the following configuration code, the first word agent in
every line of the configuration is not fixed or predefined, it can be anything, such
as logagent, logwritter, eventagent, and so on. It will be used while invoking Apache
Flume to identify that this is the agent name and that it possesses the defined properties. In
the following section, we have defined the following three properties related to this agent:

Sources: It contains the attributes for the sources from which this flume agent
will receive the data. It can be one or multiple.
Sinks: It contains the attributes for where the data will go once the flume agent
receives it.
Channels: It contains information regarding how the data will flow from a
source to a sink, whether it will be through memory, file, JDBC, or another
means.

Up till now, our configuration file looks as follows:

agent.sources=netcatSource
agent.sinks=hdfsWriter
agent.channels=memoryChannel

What we have defined here are just names that will have further properties linked to them
that will make sense of actually what they are and what they will do. Like in sources, we
have defined netcatSource; you can change it to anything you link. You will then use the
same name in the following configurations to refer to it. Now that we have defined the
names of the source, sink, and channel, it's time to define the individual properties of each
of them.

Unstructured Data Chapter 16

[376]

In this example, we will bind a port in our computer to keep listening. Any data received in
that port will be used as source data. For this purpose, we have following three properties:

Type: It will be netcat, as it is a utility that is used to listen to a port and
manipulate the data it receives.
Bind: We are running the whole example in the same computer, so it will be
127.0.0.1. If you are going to use a network environment, then replace it with
the IP address of the computer.
Port: It can be any port that is available to use. In this example we will be using
22222.

The configuration code of our source is as follows:

agent.sources.netcatSource.type=netcat
agent.sources.netcatSource.bind=127.0.0.1
agent.sources.netcatSource.port=22222

We now move on to define the properties of our sink. In this example, we will be receiving
data from our source and writing it to the HDFS file system. We will have the following
properties for this type of sink:

type: It defines what type of sink it is. In this example, it is HDFS, as it will write
the data in the Hadoop file system.
hdfs.path: It defines the path of where you want to place the files in the HDFS
system.
rollInterval: Number of seconds to wait to roll the received contents to a new
file.
writeFormat: In our case, it is Text, as we know that we are setting it up to
receive text data. Other type can be writable if the data is coming in other forms.
hdfs.fileType: In this example, we are using DataStream, which means it will
write the data as it is in the file without compression or converting it to a
sequence file.

The code of the sink configuration is as follows:

agent.sinks.hdfsWriter.type=hdfs
agent.sinks.hdfsWriter.hdfs.path=hdfs://localhost:9000/flumeData/
agent.sinks.hdfsWriter.rollInterval=60
agent.sinks.hdfsWriter.hdfs.writeFormat=Text
agent.sinks.hdfsWriter.hdfs.fileType=DataStream

Unstructured Data Chapter 16

[377]

Now that we have defined the source and sink and their attributes, it's now time to define
the properties related to channel. In our example, we will be using a memory channel,
which has only two properties:

type: It contains the type of the channel – either memory, JDBC connection, or
file system. In our case, it is memory.
capacity: It contains the number of events that it can hold.

The code of the channel configuration is as follows:

agent.channels.memoryChannel.type=memory
agent.channels.memoryChannel.capacity=10000

One last configuration to define is that which links the source and the sink to the memory
channel. It can be done as follows:

agent.sources.netcatSource.channels=memoryChannel
agent.sinks.hdfsWriter.channel=memoryChannel

The complete code of the configuration file is as follows:

agent.sources=netcatSource
agent.sinks=hdfsWriter
agent.channels=memoryChannel

agent.sources.netcatSource.type=netcat
agent.sources.netcatSource.bind=127.0.0.1
agent.sources.netcatSource.port=22222

agent.sinks.hdfsWriter.type=hdfs
agent.sinks.hdfsWriter.hdfs.path=hdfs://localhost:9000/flumeData/
agent.sinks.hdfsWriter.rollInterval=60
agent.sinks.hdfsWriter.hdfs.writeFormat=Text
agent.sinks.hdfsWriter.hdfs.fileType=DataStream

agent.channels.memoryChannel.type=memory
agent.channels.memoryChannel.capacity=10000

agent.sources.netcatSource.channels=memoryChannel
agent.sinks.hdfsWriter.channel=memoryChannel

Now that we have defined all the configuration related to a Flume agent, it's time to save
this file in your Apache Flume installation folder, which in our case
is /home/hadoopadmin/apache-flume-1.8.0-bin. The filename we will be using is
flume-agent.conf, although of course you can name it anything you want.

Unstructured Data Chapter 16

[378]

Running Apache Flume
It's now time to start our agent. It can be done by executing the following commands:

$ cd $FLUME_HOME
$ flume-ng agent -f flume-agent.conf -n agent

This is done as shown in the following screenshot:

Apache Flume agent command to start an agent

Once you execute it, it will display series of configuration outputs, as shown in the
following screenshot:

Apache Flume agent output

Unstructured Data Chapter 16

[379]

The last three lines of this output confirms that the source, sink, and channel have
successfully started.

Transferring a log file
Now that we have successfully confirmed and started our flume agent, it's now time to take
a test drive to check it from end to end. For this purpose, we have created a sample log file
in the $FLUME_HOME path. The following screenshot shows the log file and its contents:

Sample.log file contents

We will now send this log file to the Flume source, which is netcat running on 127.0.0.1
port 22222. In order to do so, execute the following command:

$ head sample.log | nc 127.0.0.1 22222

The following screenshot displays the output of this command:

Unstructured Data Chapter 16

[380]

Head command execution output

In its output, the series of OK represents the contents of the file transferred as per the
buffered size available. Now if you look into the terminal window where you started the
Flume agent, it displays the creation of the file in the HDFS system, as shown in the
following screenshot:

Flume agent log generation in the terminal window

Unstructured Data Chapter 16

[381]

One thing to note here is that it has created two files. This is because while configuring the
agent, we defined that the capacity of it, once exceeded, will create a new file. Now, to
confirm that the content has been successfully transferred to the hdfs file system, execute
the following command first to list the file created in the file system:

$ hdfs dfs -ls /flumeData

The following screenshot displays the output of this command:

Files available in Flume data directory in HDFS

Execute the following command to view the contents of the first file, just to verify that the
contents of the sample log file have been successfully transferred:

$ hdfs dfs -cat /flumeData/FlumeData.1524237471655

The following screenshot displays the output of this command:

Content of the first file created by Flume

Unstructured Data Chapter 16

[382]

Execute the following command to view the contents of the second file:

$ hdfs dfs -cat /flumeData/FlumeData.1524237471656

The following screenshot displays the output of this command:

Content of the second file create by Flume

It confirms that the content of the sample log file has successfully transferred to HDFS
using Apache Flume. You can tune up the agent configuration file as per your requirement
to make Apache Flume more effective.

We will now learn how to convert an image into text; this will in turn help us to extract
meaningful information from one of unstructured data types.

Converting images into text for analysis
In today's world, most of the information is available on the internet. This information can
be in the form of text, videos, or images. We have many tools and techniques available for
analyzing text and extract relevant information from it, but what about a scanned image
from a book, or text that is available in the form of an image?

Tesseract OCR
Here, we will now learn how to extract text from an image. For this purpose, we will use
the Tesseract framework. The Tesseract OCR (optical character recognition) project is
sponsored by Google, and is available as an open source project under the Apache 2.0
license. It is capable of converting images to text in different languages. It can also be
trained to learn new languages.

Unstructured Data Chapter 16

[383]

Installing Tesseract
The first step is to install Tesseract in Ubuntu by executing the following command:

$ sudo apt-get install tesseract-ocr

The following screenshot displays the output of this command:

Tesseract installation

Once it is executed successfully, it will install the Tesseract framework on your local
machine.

Practical example
Now that we have set up the Tesseract framework, it's time to start writing the code. Create
a new text file and save it with the name imgToText.py. For now, we will go through the
core concepts used in this program for better understanding. Then, in the next section, we
will provide the full code of the program with some basic validation and conditions.

At the beginning of the program, the first condition that we will check is whether Tesseract
is installed in the local machine, so that we can correctly warn the end user to install it first
before proceeding further, as it is the core OCR engine that will convert the image into text.
For this purpose, the following code is required:

Unstructured Data Chapter 16

[384]

if (call(['which', 'tesseract'])):
 print("Tesseract is not installed. Please install it first")
 print("If you are in Linux environment, please execute the")
print("following command in terminal in order to install it")
 print("sudo apt-get install tesseract-ocr")
 sys.exit(1)

The program actually tries to call a Linux command, which supposedly returns the path of
the application installed. If the program doesn't find the Tesseract, it will enter into this if
condition, which will display a message along with the Linux command to install Tesseract
and then exit the program. This is the best possible way to check the dependencies within
your program and also help the end user to resolve any issues encountered.

In order to execute a separate process from within your Python script, as we did in this
code while defining the if condition, you are required to import it by mentioning the
following line at the start of your script:

from subprocess import call

In our program, we will accept two arguments. The first one is a mandatory argument,
which will specify the image file that we will convert into text. The second argument will
specify in which local directory to place the converted text. To accept the argument in our
program, we will import a helper class, argparse, in our program by specifying the
following code in the first section of the program, where all the other imports are defined:

import argparse

The next step is to define a variable that will initiate the parser. This is done using the
following code:

parse = argparse.ArgumentParser()

We will now define the first argument that will accept the image filename, along with the
help text for the end user to better understand what is required from them:

parse.add_argument("img", help="Image filename is required to convert it to
text")

Similarly, the following code is used to define the second argument:

parse.add_argument("outPath", nargs="?", help="(optional) Path to store
converted Text from image, or else it will place the text in the same
directory")

Unstructured Data Chapter 16

[385]

This argument is optional; if the user specifies this then the output will be generated in that
folder, otherwise it will generate the output in the same folder as the input image.

We will now generate the output filename as we did with the input filename, along with
the "-text" postfix. For this purpose, the following code will be used:

 textFileName = os.path.splitext(img)[0] + "-text"

It's now time to initiate the conversion process on the image that we got as an input
argument. We will now call a subprocess as we did before to call the Tesseract framework
with the required arguments. It takes two arguments, the input image and the output
image. We will use the following code to execute the subprocess:

call(["tesseract", img, textFileName], stdout=STDNULL)

Once this code gets executed, if everything works fine then you will see an output file in the
location you specified with the input argument, or by default, in the same folder as the
input file.

This is the brief explanation of the main components of the program. In between the
explained code, there are multiple checks and conditions that were skipped in the
explanation as they are basic in nature. The complete code of the program is available in the
subsequent section.

Complete code
The complete code of the program to convert an image into text is as follows. Make sure to
keep the indent to make sure the Python program executes as expected:

import sys
import os
import argparse
from subprocess import call

STDNULL = open(os.devnull, 'w')

def main(img, outPath):
 print("==")
 print("BigData Architect's Handbook Example: Convert Image into text")
print("==\n")
 # Checking whether Tesseract Library is installed in the system
 print("Checking whether tesseract library is installed ...")
 if (call(['which', 'tesseract'])):
 print("Tesseract is not installed. Please install it first")
 print("If you are in Linux environment, please execute the

Unstructured Data Chapter 16

[386]

following command in terminal in order to install it")
 print("sudo apt-get install tesseract-ocr")
 sys.exit(1)
 else:
 print("It is installed on the above mentioned path")
 print("---\n")
 # Absolute path of the directory where the image is placed
 img = os.path.abspath(img)
 inputDirectory = os.path.dirname(img)
 print("Working Directory \t: " + inputDirectory)
 print("Image File Name \t: " + img)
 # Output filename based on the input image file with -text postfix
 textFileName = os.path.splitext(img)[0] + "-text"
 if (outPath is not None):
 # Get the absolute path of the output directory
 outputDirectory = os.path.abspath(outPath)

 # check whether the output directory exist or not
 if (not os.path.exists(outputDirectory)):
 # if not, create the directory
 os.makedirs(outputDirectory)

 # Generate the complete name along with absolute path of the
generated text file
 textFileName = os.path.join(outputDirectory, textFileName)
 else:
 textFileName = os.path.join(inputDirectory, textFileName)
 print("Output Filename \t: " + textFileName +"\n")

 # Convert the image into Text
 call(["tesseract", img, textFileName], stdout=STDNULL)

 if (os.path.exists(textFileName + ".txt")):
 print("Operation completed and the output text has been
generated")
 else:
 print("Something went wrong. Please rerun the process")

if __name__ == '__main__':
 parse = argparse.ArgumentParser()
 parse.add_argument("img", help="Image filename is required to convert
it to text")
 parse.add_argument("outPath", nargs="?", help="(optional) Path to store
converted Text from image, \
 or else it will place the text in the same directory")
 args = parse.parse_args()
 main(args.img, args.outPath)

Unstructured Data Chapter 16

[387]

You can download this code from the Github repository.

Program execution
We will now execute this program to test if it is working fine or not, and whether it is able
to convert an image into text. For this purpose, we have placed the code file in
the ImageToText directory, which is in our home directory. The complete path is
/home/hadoopadmin/ImageToText/imgToText.py.

We will be using the following photo to convert it into text. Place this image file in the same
directory as the program code, with the name sample.png:

Sample image to convert into text

We are now ready to execute the program to convert this image into text. First, we will
simulate considering the Tesseract to be missing. For this purpose, fire up the terminal and
execute the following program:

$ cd ~/ImageToText/
$ python imgToText.py sample.png

Unstructured Data Chapter 16

[388]

The following screenshot displays the output of the program:

imgToText Program output if Tesseract is missing

We will now consider the case that we have installed Tesseract and now test the program.
Execute the commands again. The following screenshot displays the output of the program:

imgToText program output after installing Tesseract

Unstructured Data Chapter 16

[389]

Now that our program has successfully executed, we will now test the generated text. For
this purpose, execute the following command:

$ cat sample-text.text

The following screenshot displays the output of this command:

Text generated from the imgToText program

Now, you can analyze the output of our program – how well it has converted the text from
the image. Imagine the possibilities and application of this scenario where the text is in
binary form as an image; now you can read and analyze it, similar to other types of text
based data.

Unstructured Data Chapter 16

[390]

Summary
In this chapter, we learned about the data that is categorized as unstructured data. We then
jumped into the practical of importing data into Hadoop cluster by using Apache Flume.
Apache Flume is designed on the principle of having the source and sink connected to each
other using channel. We have already discussed the theory of Apache Flume in Chapter 3,
Hadoop Ecosystem. Data comes into Flume with the help of a source, travels through
channels, and dumps into sinks. In our example, we configured netcat to be an Apache
Flume source. netcat sends data to Flume, which will be processed in memory. Memory is
served as a channel to connect a source to a sink. Channel will then pass it on to sink. We
configured Hadoop file system as an Apache Flume sink so that it will save the received
data into HDFS as files.

We then developed a program that converts an image into text. We went through the core
functionality of the program and discussed it for better understanding. Then, we went
through the full code of the program with different conditions and logic. Afterwards, we
executed the program with a sample image, which the program successfully converted into
text. It then used this image content to create a text file. This text file will later be used to
stream the data to HDFS for further analysis and storage based on your requirements,
similar to what we did in the first section of this chapter.

In the next chapter, we will learn how to use the different open source tools that are
available for data visualization and analysis purposes.

17
Data Visualization

Data is a very powerful weapon. If used properly, it can lead to many victories. In the
business world, victory means a happy customer while company remain competitive in the
market. Sometimes data presented is in numerical form or in tabular form, which makes it
very difficult to find a pattern or to visually analyze it.

On the other hand, if the same data is presented to you in graphical form, such as in the
form of different types of charts or an interactive dashboard, most of the time it becomes
easy to visualize what to look for, and it may lead to meaningful discoveries to help in a
better understanding and analysis of the data.

In this chapter, we will go through the following data visualization libraries, which will
help to present data in the form of different types of visual elements, such as charts:

Matplotlib
D3.js

Let's start with the first visualization library, Matplotlib.

Matplotlib
Matplotlib is a charting library that helps to create 2D charts with a few lines of code. If
you know what type of chart you want to display and you have the required data, then
Matplotlib helps you to achieve it very easily and with minimal code. It is mainly available
to use with Python scripts, but can also be used with IPython shells, Jupyter notebook, and
web application servers.

Let's move ahead and start setting up the environment to use the matplotlib library.

Data Visualization Chapter 17

[392]

Installing Matplotlib
Installing Matplotlib is pretty simple. It is available to be installed using Python package
manager (Pip). Let's start the installation process by executing the following command:

$ sudo pip install matplotlib

The following screenshot displays the output of this command:

Matplotlib installation using Pip

If this is a fresh copy of Python, then it will also download a few other dependency
packages along with Matplotlib. Matplotlib also requires a python tkinter package, which
can be installed using the following command:

$ sudo apt install python-tk

Now that we have successfully installed Matplotlib, let's start playing with it.

Data Visualization Chapter 17

[393]

Line chart
We will start writing our first program in Python by importing Matplotlib using the
following code:

import matplotlib.pyplot as plt

If you are familiar with charts, in a line chart, there are some values on the x axis and some
values on the y axis against which the chart gets plotted. In our program, we will provide
the values in the form of a matrix, as shown in the following code:

x = [1, 5, 3, 7]
y = [2, 5, 1, 5]

In real life scenarios, these values may be coming from a databases or you may get them
after some analysis of the data available to you. Anyway, let's now plot them in the line
chart and visualize the output it generates by using the following code:

plt.plot(x, y)
plt.show()

The complete code of our program now becomes the following:

import matplotlib.pyplot as plt

x = [1, 5, 3, 7]
y = [2, 5, 1, 5]

plt.plot(x, y)
plt.show()

Create a folder named Matplotlib in your home folder and save the file as
linechart.py. Now execute the following command to run it:

$ cd ~/Matplotlib
$ python linechart.py

Data Visualization Chapter 17

[394]

It will generate the following:

Linechart generation using Matplotlib

We have successfully created our first chart with Linechart. Let's now move on to creating a
bar chart.

Bar charts
To generate a bar chart, instead of calling plt.plot, we have to call the plt.bar function.
Now, keeping the same code as the linechart, we will make the changes as follows:

import matplotlib.pyplot as plt

x = [1, 5, 3, 7]
y = [2, 5, 1, 5]

plt.bar(x, y)
plt.show()

Data Visualization Chapter 17

[395]

Save this file in the same Matplotlib folder using the name barchart.py. Now execute it
using the following command:

$ python barchart.py

It will display output similar to the following:

Bar chart plotted using Matplotlib

We have now successfully created a bar chart using Matplotlib. We will now move on to
creating a scatter chart.

Data Visualization Chapter 17

[396]

If you want to add a heading in your chart, use the plt.title function.
For example, plt.title("My Bar Chart").

Stack charts
Let's now create a stack chart. A stack chart is used mainly to identify the minority and
majority of the data it plots. Let's suppose we have defined a to be plotted on the x axis,
which is nothing but a series of numbers depending on the number of elements in our data
matrix. Then we have data of four different classes, W, X, Y, and Z, which we will plot on the
y-axis, as shown in the following code:

import matplotlib.pyplot as plt

a = [1, 2, 3, 4]
w = [7, 5, 12, 14]
x = [3, 2, 4, 1]
y = [8, 9, 7, 6]
z = [5, 7, 6, 10]

plt.stackplot(a, w, x, y, z)
plt.title("My Stackplot Chart")
plt.show()

Save this file in the same Matplotlib folder using the name stackchart.py. Now
execute it using the following command:

$ python stackchart.py

Data Visualization Chapter 17

[397]

The following screenshot displays the output of this program:

Stack plot chart

We have successfully created a stack plot chart. We will now create a scatter chart.

Scatter charts
Let's now create scatter chart. In this type of chart, the data is represented on the chart with
the help of a marker. We will be using the following code to create this type of graph:

import matplotlib.pyplot as plt

x = [1, 2, 3, 2, 4]
y = [2, 4, 1, 3, 3]

plt.scatter(x, y, marker="*", s=100)
plt.title("Scatter Chart")
plt.show()

Data Visualization Chapter 17

[398]

Save this file in the same Matplotlib folder using the name scatterchart.py. Now
execute it using the following command:

$ python scatterchart.py

The following screenshot displays the output of this program:

Scatter hart

In the code, we have defined the marker to be * with size 200. It can be anything, such
as x or o, with any size you want. Now that we have successfully created a scatter chart, we
will now proceed to creating a pie chart.

Data Visualization Chapter 17

[399]

Pie charts
We will now create a pie chart. For this purpose, we have to define the labels for the age
group and the data related to its ratio. In this example, we will plot data related to the age
group ratio of the population. We will be using the following code to generate the pie chart:

import matplotlib.pyplot as plt

ratio = [7, 9, 5, 4]
agegroup = ["Adults", "Teenager", "Elderly", "Children"]

plt.pie(ratio, labels=agegroup)
plt.title("Population Age group ratio Chart")
plt.show()

Save this file in the same Matplotlib folder using the name scatterchart.py. Now
execute it using the following command:

$ python scatterchart.py

The following screenshot displays the chart generated as a result of executing the program:

Population age-group ratio pie chart

Data Visualization Chapter 17

[400]

We have now successfully created a pie chart. Let's move on to geographic projection sub
charts.

Geographic projections
The matplotlib library has a geographic projection chart as a subplot. A subplot is a chart
that you will draw along with an existing chart. Let's assume you have a scattered plot data
that you want to highlight on the geographic projection, then it is the type of subplot you
will need. The following is the code used to draw it geographic projection:

import matplotlib.pyplot as plt

plt.figure()
plt.subplot(111, projection="hammer")
plt.title("Hammer")
plt.grid(True)
plt.show()

Save this file in the same Matplotlib folder using the name gp_hammer.py. Now execute
it using the following command:

$ python stackchart.py

Data Visualization Chapter 17

[401]

The following screenshot displays the output of this command:

Geographic projection with the Hammer type

The following are the different projection types available to be used:

aitoff

hammer

lambert

mollweide

You can change it based on your requirement, as each one of them has its own variation. It
is defined on the following line of code:

plt.subplot(111, projection="hammer")

With the help of the matplotlib library, we have created a line chart, bar chart, stack
chart, scatter chart, pie chart, and a geographic projection as a subplot with very few lines
of code. Let's now move on to the other data visualization tool, D3.js.

Data Visualization Chapter 17

[402]

D3.js
D3 stands for Data-Driven Document. It is a JavaScript library that uses document object
model (DOM) elements to create different visual forms to represent data. The D3
framework combines with HTML, SVG, and CSS to create colorful as well as interactive
objects on the web page, which helps the end user to understand data with more clarity.

D3 is a powerful framework. It first binds the data with DOM. Then it uses it to create
different elements on the web page. The element can be anything. For example, if you want
to represent your data in a tabular form, you can do it. If you want to display a pie chart
using the same data, you can also do it. This architecture utilizes the most of the capability
of modern browsers, leaving end users with colorful and interactive web pages without
affecting the performance.

Let's now start with the installation of the D3.js library.

Installation
D3.js is a JavaScript library, which means you have to include the D3.js-dependent
JavaScript file into your web page where you want to use it. There are two ways to do this
and the following screenshot illustrates how to do it from D3js.org, the official website of
the framework:

Installation option for the D3.js library

Data Visualization Chapter 17

[403]

The first option is to download the required files, manually include them in you web
project, and then link the script file in you web page where you want to use the
functionality of the D3.js library. The second option is to leave the handling of script files
and just copy the code from here and paste it on to your web page, where you want to
utilize it. The decision is up to you.

Practical example
It's time to dive in to the code. We will create a bar chart using the D3.js library. For this
purpose, we will be creating three files. The first one is an HTML file, which will be the
main file that holds the basic information and links to other files. The second one is a CSS
file, which contains the styling of the chart, and the last one is a JavaScript file, which will
contain the code to create a bar chart. Let's start with the HTML file.

The HTML file is similar to any other HTML file. It will contain the head section and the
body section. In the head section, we will link the D3.js script file and link to our CSS file.
The body contains the link to the JavaScript file that contains the code to create a bar chart.
The complete HTML files will look as follows:

<html>
<head>

<title>Barchart Example</title>
<script src="https://d3js.org/d3.v5.min.js"></script>
<link rel = "stylesheet" type = "text/css" href="barchart.css" />

</head>

<body>

<h1>Barchart</h1>
<script src="barchart.js"></script>

</body>
</html>

Save this code as barchart.html in a folder. Remember to create the remaining JavaScript
and CSS files in the same folder where you put this HTML file; otherwise, point the links of
these file correctly if you decide to save them in a different folder.

Data Visualization Chapter 17

[404]

We will now create a JavaScript file. It contains the data the we will be plotting in the form
of a bar chart. The following code represents the sample data:

 var chartdata= [120,100, 20, 40, 70, 150, 10, 30, 50, 250];

Now that we have our data, it's time to create the D3.js element to utilize it to create a bar
chart. The following code will be used for this purpose:

d3.select("body").selectAll("div")
 .data(chartdata)
 .enter()
 .append("div")
 .attr("class","bar")
 .style("height", function(d) {
 return d + "px";
 });

Save both the codes in a file named barchart.js and place it in the same folder as the
HTML file. Now the last one is the CSS file, which will contain the styling of the bars in the
charts. The code of CSS is as follows:

body {
 background-color: #8FE985;
}
div.bar {
 display: inline-block;
 width:30px;
 background-color:blue;
 margin-right:10px;
}

Save both the codes in a file named barchart.css and place it in the same folder with the
HTML and JavaScript files.

Output
Now that we have completed the code, it's time to test it by opening barchart.html in
your favorite browser. The following screenshot displays the output of the program:

Data Visualization Chapter 17

[405]

Bar chart using D3.js

The preceding confirms the creation of the bar chart was successful. You can play around
with different stylings by editing the CSS file, modifying the data to match your own needs,
or completely changing the web page to best fit your needs. The limit is only based on your
imagination.

There is a very extensive list of examples of different types of visual forms
that can be created using D3.js, available at https:/ ​/​github. ​com/ ​d3/​d3/
wiki/ ​Gallery. It's worth checking out.

https://github.com/d3/d3/wiki/Gallery
https://github.com/d3/d3/wiki/Gallery
https://github.com/d3/d3/wiki/Gallery
https://github.com/d3/d3/wiki/Gallery
https://github.com/d3/d3/wiki/Gallery
https://github.com/d3/d3/wiki/Gallery
https://github.com/d3/d3/wiki/Gallery
https://github.com/d3/d3/wiki/Gallery
https://github.com/d3/d3/wiki/Gallery
https://github.com/d3/d3/wiki/Gallery
https://github.com/d3/d3/wiki/Gallery
https://github.com/d3/d3/wiki/Gallery
https://github.com/d3/d3/wiki/Gallery
https://github.com/d3/d3/wiki/Gallery

Data Visualization Chapter 17

[406]

Summary
Sometimes, data doesn't seem worthy if not presented in a way it should be. In this chapter,
we have gone through two open source libraries to format your data in a more presentable
way. The first library we explored was Matplotlib, which is based on Python. The object of
this library is to create different types of charts with minimal coding. We started with the
installation of Matplotlib and then moved on to some practical examples, where we created
different types of charts. These charts included a line chart, bar chart, pie chart, and a
scatter chart.

Then we extended our knowledge to the second library, named D3.js. It is based on
JavaScript and is used to create different colorful and interactive data representations. It
utilizes the power of DOM to increase performance and reuses the data to create different
visual elements. We started with an introduction to D3.js. Then we explored the two
different options of using the core library framework in our web project. We then
proceeded further with a practical example, in which we created a bar chart on the web.
That example consisted of creating three different files: HTML, CSS, and JavaScript. After
writing the code, we placed all the files in the same folder and opened the web page, which
in turn contains the desired output in the form of a bar chart.

In the next chapter, we will introduce algorithmic trading, the who, what, why, when, and
how of algorithmic trading, as well as different trends and trading strategies for it.

18
Financial Trading System

Each and every industry is now using computer-related technologies—from simple office
work to advanced robotic work—ranging from the postal service, fashion, and shopping, to
medical applications. Even the technology itself is being used to create new technology.
More and more industries are now looking into different ways to effectively use advanced
technology and artificial intelligence (AI) in their day-to-day work to take it to the next
level.

The financial industry is no different than any other industry. The people in it are also
working on different approaches to make more money, using the help of computer systems
and artificial intelligence, especially in the trading market sector. The essence of their work
is time, and for them, time is money, literally. Because sometimes, within a fraction of
seconds, they make a lot of money, and sometimes they can lose a significant amount if
they don't act within the available time slot. In this chapter, we will be covering the
following topics, which are directly related to the financial market:

Algorithmic trading
Benefits of algorithmic trading
Different strategies for algorithmic trading
Building our own Expert Advisor
Backtesting historical data

Let's start our discussion with our first topic and question: What is algorithmic trading?

Financial Trading System Chapter 18

[408]

What is algorithmic trading?
In the financial world, when you buy or sell anything, it is called trade. It can be real estate,
currency, shares, or goods. This normally happens between two parities. A representative
of each party talks to the other and makes the trade happen. The medium they used in
earlier days was paper-based, and in time it was replaced by computer and mobile
applications. However, the end user is still a human being who makes sure that everything
is in order.

Now as the technology is advancing and people are looking to automate most of their
work, the same thing applies to the financial market. In the financial market, we talk
specifically about shares and the Forex market, it is the most liquid market. The purchase
and sale happens there so fast that every second counts. Sometimes, if you flinch in making
a decision, you may lose big money.

The people in that market are now trying to come up with an automated way of doing
trades, leaving a human as a supervisor. This automation works based on a set of
predefined rules to govern them. This leads to the buying and selling of financial
instruments in a matter of milliseconds, as they don't flinch, unlike humans, when making
decisions. This automated way of doing trade is called algorithmic trading. It is also
referred to as algo-trade, black-box trading, and automated trading.

These algorithms are built using the experience of the traders, the type of factors they
monitor, the opportunities they look for, the calculations they perform before making a
trade that eventually leads to a successful trade. The stronger your algorithm, the better the
chances that you are going to make money.

Let's now discuss some of the key benefits of using algorithmic trading.

Benefits of algorithmic trading
These are some of the key benefits of using algorithmic trading, if you have a good and
strong algorithm in place:

There is always a chance of human error in any kind of work, for various
reasons. Using algorithmic trading can avoid this as it acts based on predefined
rules.
You can watch multiple markets at the same time and trade on them
simultaneously, which is impossible for a human person to do.
It will place the trade in a fraction of a second once the criteria or the rule
matches the market condition.

Financial Trading System Chapter 18

[409]

You can apply multiple sets of instructions to automated, which it will watch and
act accordingly.
 It reduces the risk factor that may be effected by physiological and emotional
human factors.
Due to its instant, human-free behavior, it may get the best possible price for the
trade.
This automation can place a trade on the desired item accurately and instantly,
which leads to an increase in revenue.

These are some of the key benefits of using algorithmic trading. We will now discuss the
involvement of big data in the financial sector.

Big data in the financial market
At this stage, we already know about big data and its characteristics. It helps companies to
make more robust, intelligent, and powerful decisions using the magic of data. The two
main characteristics that the financial market possess from the big data world are volume
and velocity. The data in the financial market is too huge and generating in a very high
velocity, that if you store and analyze that data, it will help to generate good revenue out of
it.

Now, when you develop an algorithm to be used in your trading, will you apply it directly
on live trading? No, because if it contains any logical or technical error, you may lose
everything. Nor is it reliable to use on dummy data, because it may not project the actual
market accurately. In the actual market, everything is not black and white. There are many
cases where the market was performing normally, but due to a sudden crash, many
investors went bankrupt.

To avoid these types of cases while utilizing the full potential of technology and AI, the
market data is getting stored and analyzed to identify different patterns and build different
strategies on top of it. It is available to everyone, including researchers and investors, to
play around with. This helps you to apply your algorithm and strategies on the historical
data, to test whether your algorithm or strategy will help you generate revenue or lose
money.

Let's now move on to discuss some strategies that traders used to place trades in the
financial market.

Financial Trading System Chapter 18

[410]

Algorithmic trading strategies
Trading strategies are employed to identify potential opportunities to make money. In a
traditional system, they require an experienced trader to do this job. In algorithmic trading,
people are trying to use the expertise of an experienced trader to make the algorithm robust
and powerful. Few are successful because the market is not predictable or works based on
mathematical models. Still. people are making money using this approach. Let's now
discuss some of these strategies that help in identifying a potential trade:

Trend-following strategy: This is the most common type of strategy that most
traders use, whether it is to perform an actual trade or just to do the analysis.
This strategy doesn't involve making any sort of prediction and is purely based
on the mathematical model. It will trigger a trade when the price follows a
predefined trend. If the current price is going higher than the moving average
and it is less than the last updated price, then it's time to sell. Similarly, if the
current price is greater than the last price and the current price is less than the
moving average, then it's time to buy.
Arbitrage opportunities: In this type of strategy, a trader buys an instrument
from one market and at the same time, trades to sell it for a higher price on
another market. This strategy can be applied to different markets, such as Forex
and stocks. If it is applied properly to identify and calculate the differential price,
it can provide many profitable opportunities.
Mean reversion: This strategy works based on the idea that everything comes
back to its initial stage or at least close to it. Using this approach, traders calculate
the base value of the instrument and whenever the price changes to break in or
out of that range, they go for the trade.
Volume-weighted average price: In this type of strategy, a large order will be
broken down into smaller chunks based on the historical volume price within a
given time frame. This type of strategy usually applies to pension and mutual
funds
Time-weighted average price: In this type of strategy, a large order will be
broken down into smaller chunks based on the evenly-divided time slots
between a start and an end time. The trade only happens when the price gets
close to the average price between the start and end time. It will minimize the
market impact on the trade.

Financial Trading System Chapter 18

[411]

Percentage of volume: In this strategy, the volume distribution and the order
quantity over a period of time is determined, using the target percentage of the
volume along with the volume-forecast calculated updates from the market. It
allows us to participate based on the volume in the custom defined rate. It is sort
of issue partial orders to the market until the a complete large order takes place.
It is also referred to as a step strategy.

Now that we have learned some of the strategies used by traders in algorithmic trading, it's
time to create our own algo-trader, based on one of the strategies that we have just
discussed.

Building an Expert Advisor
We will now go through the steps of creating our own Expert Advisor/trading bot and
perform algorithmic trading. For this purpose, will be register a demo account in one of the
leading foreign-exchange brokers, XM. Visit their website, https:/ ​/​www. ​xm. ​com/ ​, and click
on the OPEN DEMO ACCOUNT link, or directly visit https:/ ​/​www. ​xm. ​com/ ​register/
account/​demo?​lang= ​en. It will open up the registration page, as shown in the following
screenshot:

 XM demo account registration page

https://www.xm.com/
https://www.xm.com/
https://www.xm.com/
https://www.xm.com/
https://www.xm.com/
https://www.xm.com/
https://www.xm.com/
https://www.xm.com/
https://www.xm.com/
https://www.xm.com/
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en
https://www.xm.com/register/account/demo?lang=en

Financial Trading System Chapter 18

[412]

It will ask you to provide some basic information, such as name, email, phone number,
account password, country, and city. It will also show you some other trading settings,
such as trading platform, account type, account base currency, leverage, and investment
amount. For now, we will not touch these settings and keep it on the default settings. Once
you fill out the form, click on the Open a Demo Account button at the end of the page.
After submitting the form, you will see a success message similar to the following
screenshot:

XM success message of opening a demo account

The next step is to confirm your email address. XM sends an email to your provided email
address with a confirmation link. Just click on the Confirm Email Address button to
proceed to the next step. The new page that will pop up will contain the MT4 ID that is
required to log in to the trading application for the Forex market, as shown in the following
screenshot:

Financial Trading System Chapter 18

[413]

XM confirmation page with new MT4 ID

Now that we have created and confirmed our account from XM, it's now time to start
working on the actual Forex trading station, but before that, let's have a brief introduction
to the trading platform that we are going to use.

MetaTrader
There are many trading stations available in the market. In most cases, all the brokers are
using a common trading station, customized per their requirements. The most common
among brokers is MetaTrader, which is commonly known as the MT trading station. It is
developed by the MetaQuotes software company.

It has two components: the server application and the client application. The client version
will communicate with the broker server version to verify the client account and its related
customized settings. The first version of MetaTrader was released in 2002, and from time to
time, they released different version of MetaTrader. Version 4 was widely adopted by many
brokers, as it was well enhanced and have the functionality to write its own code scripts to
automate the trading process. It can just simulate the trading for analysis purpose and can
also perform the actual trade using these automated algorithms. The company also released
the next version of MetaTrader, but many brokers still use MT4, as the new version has few
changes.

Let's now move on to download MetaTrader and set it up.

Financial Trading System Chapter 18

[414]

Downloading and setting up MetaTrader
We will now download the MetaTrader application by pointing our browser to https:/ ​/
www.​xm.​com/​platforms. It will open a page that will list all the platforms that MetaTrader
supports. The following figure shows the list of platforms it supports:

Platforms supported by MetaTrader 4 by XM

In our case, we will be using MT4 for PC. Click on it and, on the next page, click on the
Download button to start downloading it. Once you click on it, it will start downloading a
file that is approximately 1.2 MB in size. After the download finishes, double-click on the
file to begin the installation process. It will open up the application window, as shown in
the following screenshot:

https://www.xm.com/platforms
https://www.xm.com/platforms
https://www.xm.com/platforms
https://www.xm.com/platforms
https://www.xm.com/platforms
https://www.xm.com/platforms
https://www.xm.com/platforms
https://www.xm.com/platforms
https://www.xm.com/platforms
https://www.xm.com/platforms

Financial Trading System Chapter 18

[415]

XM MetaTrader4 installation

Click on the Next button to continue the installation process. It will now download the
actual application, which will take around four to five minutes, depending on your internet
connection speed. Take a look at this screenshot:

XM MetaTrader 4 installation

Financial Trading System Chapter 18

[416]

Once it finishes downloading the required files, it will silently install them and open the
application:

XM MetaTrader 4 application first run

If you are viewing this screen, then it means that MetaTrader4 has been successfully
installed in your computer. Now select XMGlobal-Demo 4 from this screen, and click next
to step the login for MT4 trading stations. It will open the following screenshot:

XM MetaTrader4 login

Financial Trading System Chapter 18

[417]

We have already created our demo account from XM and we have received the MT4 ID. We
will put this ID in the Login textbox along with the password we used to sign up for the
demo account. Fill in these details and click on Finish to log in to MT4. You will see a
screen similar to the following screenshot:

MetaTrader 4 welcome screen

If you have reached to this screen, then congratulations, you are all set up to go to the next
step.

MetaQuotes language
We will now create an automated trading bot in MetaTrader. MetaTrader uses the MQL
programming language to create automated analysis and trading bots. If you have
experience in any of the modern programming, that's a big plus, otherwise it will be little
difficult to get you started. I will keep this exercise simple and understandable.

Financial Trading System Chapter 18

[418]

The MetaTrader application has a built-in Meta Editor that will let you write codes and
execute them. The following are the three types of program that you can code in
MetaTrader:

Scripts: They are created to execute one time on a given chart, it can be to
indicate or draw something or to do a calculation.
Indicators: It draws indicators of the live charts based on the algorithm and
strategy you apply. Some of the traders prefer the way to indicate the potential
trade based on the calculation and strategy and then they trade manually. It can
have many other purposes, such as to analyze the market in real time.
Expert Advisors: It is created to apply the algorithm and strategy on the live data
and, based on the output of the strategy, perform the actual buy and sell, and
make the trade happens without any third-party involvement. Once you execute
them, it will make the decision based on the programmed strategy and algorithm
and fly solo in the live market.

Let's now move forward and understand the objective of creating this trading bot.

Trading bot objective
The object of creating this trading bot is to buy and sell trades in the live market based on
the strategy we programmed. In the preceding section, we learned some trading strategies,
out of which we will be using the moving-average strategy. This trading bot will buy and
sell the currency once the moving-average strategy triggers it.

Practical
Now that we have set up our environment and have our clear objective of created an
algorithm trading bot, we are all set to move to the next step. We will now launch Meta
Editor to start building our own trading bot. From the GUI, click on the Tool menu and
then click on MetaQuotes Language Editor, the shortcut for it is F4:

Financial Trading System Chapter 18

[419]

Starting up the MetaQuotes language editor

Once you click on it, it will open Meta Editor. This is the main screen that we will be
working on. It looks similar to the following screenshot:

MetaEditor welcome screen

Financial Trading System Chapter 18

[420]

To create our first Trading bot, click on the File menu from the top-left side, and click on
New to start creating a bot. Once you click on it, it will display a window similar to the
following screenshot:

Select the type of program to create in MetaTrader

Financial Trading System Chapter 18

[421]

We have already discussed the difference between these options in the MetaTrader section
of this chapter. For now, we will select Expert Advisor (template) and click Next. It will
then display a form to input some basic information, such as the Name of the advisor,
the Author, and the Link to a reference website. Refer to the following screenshot:

Input parameters in MetaTrader

Financial Trading System Chapter 18

[422]

Once you fill out the details, click on the Next button. It will display some more advanced
options to select. But for now, we will skip those. Keep clicking the Next button until you
reach to the final step, and click Finish. Once you click finish, it will display a code
window, as shown in the following screenshot:

Code editor window of Meta Editor

The code that will come by default contains the structure of the following functions to get
you started:

OnInit(): This function will be called only once when you start the program. It
may be used to initialize the variable or to called some other onetime call
function.
OnDeinit(): This function will be called only once when you stop the program.
It may be used to deinitialize any globally-defined variable.
OnTick(): This function will be called every time the price on the given chart
updates.

The main function that we will work on for now is OnTick().

Financial Trading System Chapter 18

[423]

Trading pattern – moving average
We will now write our code to calculate the moving average. Meta Editor provides a built-
in iMA function to calculate the moving average. It requires the following input parameters,
as per the definition provided:

double iMA(
 string symbol, // symbol
 int timeframe, // timeframe
 int ma_period, // MA averaging period
 int ma_shift, // MA shift
 int ma_method, // averaging method
 int applied_price, // applied price
 int shift // shift
);

For now, we will keep it simple and use the following parameter to start calculating the
moving average. Write this code inside the OnTick() function to calculate the values on
each price update:

double movAverage = iMA (NULL, 0, 15, 0, MODE_SMA, PRICE_MEDIAN, 0);

To verify that it is working as expected, use the following code to give a popup message
with the calculated value inside the OnTick() function:

Alert("Moving Average Value : " + movAverage);

Decision time: buy or sell
We will now calculate the price variation to decide whether to initiate a trade for a buy or
sell. For this purpose, we will first identify the value of the current price and the last
updated price by writing the following code:

double currentPrice = Open[0];
double lastPrice = Open[1];

Open is a global array provided by MetaTrader to identify the change in price on the given
chart. If it is on index 0, that means the current value, if it is on index 1, that means the last
updated values, if it is on index 2, that last to last updated value, and so on. The following
code will be triggered once the selling condition meets the criteria for a trade:

if ((currentPrice < lastPrice)
 && (currentPrice > movAverage)) {
 // Place order to Sell
}

Financial Trading System Chapter 18

[424]

Similarly, the following condition will be triggered once the buying condition meets the
criteria:

if ((currentPrice > lastPrice)
 && (currentPrice < movAverage)) {
 // Place order to Buy
}

Now we have reached the point where we will perform the actual trade. The function that
will be used to place the order is OrderSend, which has the following parameters:

int OrderSend(
 string symbol, // symbol
 int cmd, // operation
 double volume, // volume
 double price, // price
 int slippage, // slippage
 double stoploss, // stop loss
 double takeprofit, // take profit
 string comment=NULL, // comment
 int magic=0, // magic number
 datetime expiration=0, // pending order expiration
 color arrow_color=clrNONE // color
);

To keep it simple, we will be calling the OrderSend function with the following parameters
in order to place the order for Sell:

OrderSend(NULL, OP_SELL, 1, currentPrice, 0, NULL, NULL, NULL, 0, 0, NULL)

Similarly, to place the order to Buy, we will be calling the OrderSend function with the
following parameters:

OrderSend(NULL, OP_BUY, 1, currentPrice, 0, NULL, NULL, NULL, 0, 0, NULL)

Complete program
The complete code of our moving-average Expert Advisor is as follows:

//+---+
//| MeanAverageCustomBot.mq4 |
//| Syed Muhammad Fahad Akhtar |
//| https://www.smfahad.com |
//+---+
#property copyright "Syed Muhammad Fahad Akhtar"
#property link "https://www.smfahad.com"

Financial Trading System Chapter 18

[425]

#property version "1.00"
#property strict
//+---+
//| Expert initialization function |
//+---+
int OnInit()
 {
//---
//---
 return(INIT_SUCCEEDED);
 }
//+---+
//| Expert deinitialization function |
//+---+
void OnDeinit(const int reason)
 {
//---
 }
//+---+
//| Expert tick function |
//+---+
void OnTick()
 {
 double movAverage = iMA (NULL, 0, 15, 0, MODE_SMA, PRICE_MEDIAN, 0);

 double currentPrice = Open[0];
 double lastPrice = Open[1];
 if ((currentPrice < lastPrice)
 && (currentPrice > movAverage)) {
 OrderSend(NULL, OP_SELL, 1, currentPrice, 0, NULL, NULL, NULL, 0,
0, NULL)
 }
 if ((currentPrice > lastPrice)
 && (currentPrice < movAverage)) {
 OrderSend(NULL, OP_BUY, 1, currentPrice, 0, NULL, NULL, NULL, 0, 0,
NULL)
 }
 }
//+--+

We will now perform backtesting on historical data to check how well our trading bot
performed with the actual data.

Disclaimer: Don't try to run your Expert Advisor, including the one we
just created, on the live market unless it has been thoroughly tested on
historical data using backtesting.

Financial Trading System Chapter 18

[426]

Backtesting in MetaTrader 4
MetaTrader provides the option to backtest your strategy on historical data, so that you will
come to know how your algorithm and strategy work on the actual data. The date range
depends for the algorithm on you. Let's now run our trading bot on the back dates using
the Strategy tester tool, which can be triggered from the View menu in the top-left, and
then click on Strategy Tester to open it, as shown in this screenshot:

Starting strategy tester

It will open up a vertical tab in the same window and provide you option to select the
following:

Expert Advisor: Choose from the list of available advisors, including custom
build.
Symbol: List of instruments on which you can apply them.
Use date: Range of dates on from which to which date you want to apply on.
Period: List of available periods, such as M1, M5, M15, or H1.
Spread: List of available spreads to choose from.

Financial Trading System Chapter 18

[427]

We have selected our required options to start our testing:

Strategy Tester settings

Now click on the Start button to let the strategy test apply your algorithm on historical data
and come up with the result. This process will take anywhere from few seconds to couple
of minutes, depending on the date you have selected and the algorithm you've applied.
Once it finishes, it will display the result in the tabs. The Result tab will display the list of
trades that our bot actually performed, as shown in the following screenshot:

Trades performed by the Bot using Strategy Tester

Financial Trading System Chapter 18

[428]

The Graph tab displays the overall indicates of your profit and losses:

Graph generated as a result of Strategy testing

The Report tab displays the overall summary of Gross profit, Gross loss, consecutive wins
and losses, profit and loss in trade, and so on, similar to the following screenshot:

The Report tab displays the summary of the overall progress of Strategy Tester

At this stage, we have successfully performed algorithmic trading using our own custom-
built bot and tested it on historical data using the backtesting Strategy Tester tool provided
in MetaTrader.

Financial Trading System Chapter 18

[429]

Summary
In this chapter, we learned about algorithmic trading and its key benefits. We also learned
how big data is influencing the financial market and what are its offering in making it more
robust. Then we learned about some of the strategies, such as trend following or the
moving-average strategy, arbitrage opportunities, the mean-reversion strategy, the volume-
weighted average price, the time-weighted average price, and the percentage of volume
strategy, that we can apply to create our own algorithm and strategy to automate trade.

We then jumped into the practical stuff to create our own trade bot, which will be using the
mean average strategy to perform trade in the actual market with any third-person
involvement. We started by first signing up for a demo trader account. We then
downloaded and set up the trading station environment to start writing the code. Then we
went through the key definition and the basic structure of the program. After that, we
wrote the code to calculate the mean average and apply the strategy so that the
program will perform the actual buy and sell when the desired conditions are met.

Then we went through how to backtest our code/Expert Advisor on historical data. It
provides many options to choose from, based on your desired input and output. For
example, it provides you with the option to select the date range, the period, and other
parameters.

In the next chapter, we will discuss the retail recommendation system and how to create
one of our own.

19
Retail Recommendation

System
More and more consumers are moving away from physical stores and opting for online
shopping. The online stores we choose depend on a number of different factors, such as
products available, price, discounts, and, the most important of all: user experience. User
experience is shaped by the online store's user interface, its support system, its available
guidance, and its searching and recommendation systems.

In this chapter, we will explore the following topics:

Types of recommendation systems:
Collaborative
Content-based
Demographic-based
Utility-based
Knowledge-based
Hybrid model

Commercially available recommendation systems
Practical examples of book recommendation systems

Let's start our discussion by first understanding what a recommendation system is, and
what different types of recommendation systems exist.

Retail Recommendation System Chapter 19

[431]

Types of recommendation system
For an online store owner, it is important that they offer their customers different group
deals, offers and discounts, and plenty of stock so that customers will stay on-site and make
a purchase.

This is not necessarily a way to generate revenue, however. Let's take the example of a
good salesperson. If you visit a salesperson and ask them to show you any item, they will
not only show you that item but others that you are also likely to buy. Good salespeople
create customer profiles using different attributes, such as what the customer is wearing,
how they behave, what gadget they are using, and so on. By using a customer profile,
customers are more likely to make multiple purchases.

While shopping online, recommendation systems do the job of a good salesperson. A
recommendation system will display other items along with the item your user is looking
for. For example, YouTube will display a list of other related videos that its users are likely
to watch. YouTube often recommends certain videos because of their ratings or content.

Let's now look ahead and see how recommendation works. There are different types of
algorithms and mechanisms used in a recommendation system, which we will discuss in
the following section.

Collaborative filtering
When using collaborative filtering, a recommendation system recommends an item-based
on the similar interests of others, relying on the ratings and feedback of users. For example,
collaborative filtering will flag if user A has purchased product X and user B has purchased
products X and Y; the system will then recommend product Y to user A, because another
user with similar interests has purchased both products X and Y. The following diagram
illustrates the collaborative recommendation mechanism:

Retail Recommendation System Chapter 19

[432]

Collaborative recommendation mechanism

Content-based filtering
In this content-based filtering, a list of recommended items-based on the attributes of the
product that a user is searching for is generated. For example, if one user is currently
looking for detergent A, then the recommendation system will display a list of other
available detergents, B and C. The following diagram illustrates the content-based filter
mechanism:

Content-based filter recommendation mechanism

Retail Recommendation System Chapter 19

[433]

Demographic-based system
As the name states, this type of recommendation system classifies different items-based on
demographic attributes, as generally speaking, different populations like different groups
of items. For example, think about your local popular restaurant. Demographic-based
filtering mainly relies on recommending a product-based on market research, rather than
user rating.

Utility-based system
In this type of recommendation system, products are filtered-based on the usefulness of the
item for a specific user. Instead of using similar attributes, this filtering depends on
unrelated attributes such as vendor reliability, vendor review, product availability, and so
on. For example, if user A uses an iPhone, they are more likely to purchase other Apple
products.

Knowledge-based system
This type of recommendation system uses user preferences as a benchmark for displaying
recommended products. For example, if a user set their preferences so that they want to
receive promotions from the electronic department, the recommendation system will
display similar items from that category.

Hybrid model
This type of filtering combines the algorithm of two or more recommendation filters that
we have already discussed. For example, to recommend relevant products to a user, an
online store can apply collaborative filtering to see what other users are also buying, as well
as content-based filtering to display alternatives of a product being searched for. The
following diagram illustrates the mechanism of the hybrid recommendation system:

Retail Recommendation System Chapter 19

[434]

Hybrid recommendation system mechanism

All recommendation systems require continuous review and fine-tuning-based on
individual stores so they can more accurately recommend products and subsequently help
to boost sales.

Now that we know the different types of recommendation system, let's have a brief look at
some of the recommendation systems commercially available at the moment.

Commercial tools
There are many commercially available tools on the market that do the hard job of
maintaining and tuning data for you. To use most of these tools, you will have to request
demos and get a pricing quote.

Barilliance
Barilliance provides many different types of recommendation services, along with a
website recommendation system, personalized emails, and much more. They also offer
custom widgets that you can directly apply to your online store. For more information, visit
Barilliance's official website at: http:/ ​/​www.​barilliance. ​com/ ​.

http://www.barilliance.com/
http://www.barilliance.com/
http://www.barilliance.com/
http://www.barilliance.com/
http://www.barilliance.com/
http://www.barilliance.com/
http://www.barilliance.com/
http://www.barilliance.com/
http://www.barilliance.com/
http://www.barilliance.com/

Retail Recommendation System Chapter 19

[435]

Softcube
Softcube provides services for user recommendations on websites, along with personalized
emails and push notifications. You can opt-in for a 30-day free trial of their service. For
more information, visit Softcube's official website at: http://www.softcube.com/.

Strands
Strands also provides different algorithms, including collaborative recommendation and
content recommendation, along with many different business logic examples and models
that you can apply to your algorithm. For more information, visit Strands' official website
at http:/​/​retail. ​strands. ​com/ ​.

Monetate
Monetate provides support for your website, emails, push notifications, and mobile
applications with different recommendation algorithms that work behind-the-scenes.
Monetate also provides support for the integration of algorithms with an existing CRM and
POS system for better user experience. For more information, visit Monetate's official
website at: http:/ ​/​www. ​monetate. ​com/ ​.

Nosto
Nosto analyzes user behavior on your online store in real time and recommends product
and services accordingly. It also provides tools for applying formulas on real-time user
behavior as well as offering on-the-spot recommendations and discounts. Nosto offers a 14-
day free trial but requests a percentage share of any revenue it has helped to generate
thereafter. For more information, visit Nosto's official website at: http:/ ​/ ​www.​nosto. ​com/​.

Let's now move on to something a little more complicated and build our own
recommendation system in Python.

http://www.softcube.com/
http://retail.strands.com/
http://retail.strands.com/
http://retail.strands.com/
http://retail.strands.com/
http://retail.strands.com/
http://retail.strands.com/
http://retail.strands.com/
http://retail.strands.com/
http://retail.strands.com/
http://retail.strands.com/
http://www.monetate.com/
http://www.monetate.com/
http://www.monetate.com/
http://www.monetate.com/
http://www.monetate.com/
http://www.monetate.com/
http://www.monetate.com/
http://www.monetate.com/
http://www.monetate.com/
http://www.monetate.com/
http://www.nosto.com/
http://www.nosto.com/
http://www.nosto.com/
http://www.nosto.com/
http://www.nosto.com/
http://www.nosto.com/
http://www.nosto.com/
http://www.nosto.com/
http://www.nosto.com/
http://www.nosto.com/

Retail Recommendation System Chapter 19

[436]

Book recommendation system
In this practical section, we will build a recommendation system that will suggest different
books to its online users, similar to the system we see on Amazon's website. Before we
begin creating a recommendation system, we first need a dataset. Once we have one, we
will then analyze that dataset as per our requirements and then apply our findings to
recommend different items to our users.

Let's get started by setting up the dataset for our book recommendation system.

Dataset
At this stage, we should fully understand the power of data. If you don't have data, or have
very sparse data, than it is almost impossible to build a recommendation system. Note that
your data needn't be collected online – it can be the result of market research, user polling,
and so on.

In this example, we will use the book rating dataset that was compiled by Cai-Nicolas
Ziegler. This dataset contains the data of 270,000 books as rated by 90,000 users. The overall
number of ratings it contains is around 1.1 million. The rating scale in this dataset is from 1
to 10, where 1 is the worst and 10 is the best.

The dataset contains the following three CSV files:

BX-Books.csv: This contains information related to the book, such as its title,
ISBN number, author, and so on
BX-Users.csv: This contains information related to the user who rated the
book, such as user ID, their location, and their age
BX-Ratings.csv: This contains the actual rating given to a book by any user
and contains information such as user ID, ISBN number, and rating

This dataset can be download from http:/ ​/​www2. ​informatik. ​uni- ​freiburg. ​de/
~cziegler/​BX/​. It is available in different formats, including SQL dump, CSV dump, and so
on. In our example, as discussed, we will be using CSV dump.

http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/

Retail Recommendation System Chapter 19

[437]

Directory structure
Download the dataset and place it in a folder; make sure to extract it in the same folder too.
This will now be your main folder, which will eventually contain the code files. In this case,
we have placed the folder in ~/Project/RecommendationSystem.

Now, let's create a new file and save it as recommender.py in the same dataset folder. This
file will contain the code for our recommendation system.

Code
Open up recommender.py in your favorite text editor and start writing the code. We will
first import the Python libraries pandas, numpy, and matplotlib. These libraries will help
us to move along with our code. Write the following code in your code file:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Reading the dataset
Our next step is to read the information within our CSV dataset and assign it to a variable.
Let's start by first exploring information about the books from CSV. The Books CSV
contains the following data categories in a column format, separated by ;:

ISBN

Book-Title

Book-Author

Year-Of-Publication

Publisher

Image-URL-S

Image-URL-M

Image-URL-L

Now, we should input the data into our Python program with the following code:

books = pd.read_csv('BX-Books.csv', sep=';', error_bad_lines=False,
encoding="latin-1")

books = pd.read_csv('BX-Books.csv', sep=';', error_bad_lines=False,

Retail Recommendation System Chapter 19

[438]

encoding="latin-1")
books.columns = ['ISBN','Book-Title','Book-Author','Year-Of-
Publication','Publisher','Image-URL-S','Image-URL-M','Image-URL-L']

Now that we have read the information related to the books, let's now take a look at the
users. The Users CSV contains the following columns:

User-ID

Location

Age

We will now read this information by writing the following code in Python, as we did
previously:

users = pd.read_csv('BX-Users.csv', sep=';', error_bad_lines=False,
encoding="latin-1")

users.columns = ['User-ID','Location','Age']

The third and final items we have to look are related to ratings. The Rating CSV file
contains data in the following columns:

User-ID

ISBN

Book-Rating

We will now read this information by writing the following code in Python, as we did
previously:

ratings = pd.read_csv('BX-Book-Ratings.csv', sep=';',
error_bad_lines=False, encoding="latin-1")

ratings.columns = ['User-ID','ISBN','Book-Rating']

Verifying the dataset
We will now verify that all of our data has been loaded successfully. To check this, write
the following code to verify we have the data relating to books:

print(books.shape)
print(list(books.columns))

Retail Recommendation System Chapter 19

[439]

Once executed, you should see output similar to the following screenshot:

Output of verifying book data

The preceding output tells us there are 271360 pieces of book data available in 8 columns,
as well as the column names. Let's now write the following code to verify our data relating
to users:

print(users.shape)
print(list(users.columns))

Once executed, you should see output similar to the following screenshot:

Output of verifying user data

The preceding output tells us there are 278858 pieces of user data available in 3 columns.
Last but not least, let's now verify the data relating to ratings with the following code:

print(ratings.shape)
print(list(ratings.columns))

Once executed, you should see output similar to the following screenshot:

Output of verifying rating data

The preceding output tells us there are 1149780 pieces of rating data available for different
books in our dataset; the data has been divided into 3 columns.

Retail Recommendation System Chapter 19

[440]

In this example, we have used Jupyter Notebook. Jupyter Notebook is a
great tool for getting line-by-line output and efficiently uses data in
memory. There are many benefits of using Jupyter, particularly if you
plan on a hit and trail approach in your program. For more information,
visit Jupyter's official website at: http:/ ​/​jupyter. ​org/ ​.

If you are using Jupyter Notebook, write the following code to see the books data loaded
from the dataset:

books.head()

Once executed, you should see output similar to the following screenshot:

You can write the same command for both user and rating data if you want to view the
load information for the CSV file in our program.

Data analysis
For data analysis, we will be using the matplotlib library to display the output in an easy-
to-read way. We learned how to use Matplotlib in Chapter 17, Data Visualization, so let's
move on and start analyzing our data.

http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/

Retail Recommendation System Chapter 19

[441]

Age group
In order to analyze our data in a visual form, we will apply matplotlib to our user dataset
by writing the following code:

users.Age.hist(bins=range(0,100))

plt.title('User Age Group')
plt.xlabel('Age')
plt.ylabel('Number of Users')
plt.show()

The following screenshot displays the output of the preceding program:

Visual display of users' age groups

As you can see in the preceding output, users who participated in collecting this data were
mainly in the 20 to 40 age group.

Commutative rating
Let's now plot a graph to display the commutative rating list of all books. To do this, write
the following code in your program:

ratings.BookRating.value_counts().plot(kind='pie')

Retail Recommendation System Chapter 19

[442]

plt.title('Combined Rating of All Books')
plt.xlabel('Rating')
plt.show()

Once executed, you should see something similar to the following screenshot:

The combined rating of all books

If we review the result, as we can see in the preceding diagram, we can see that less than
5% of the books available are the most popular books.

Note that you can choose how you visualize your data, and how you extract meaningful
information from it. Graphs and pie charts are just two examples of this. Let's now move on
and apply different filters and algorithms so that we can start recommending books to
users-based on different criteria.

Algorithms
We will now take a look at how to recommend books to users-based on different
recommendation scenarios. First of all, let's take a very simple scenario and start
recommending books that have received the best ratings.

Retail Recommendation System Chapter 19

[443]

Top-rated books
Now that we have a large dataset, we want to be able to recommend all of the top-rated
books to our users. To do this, we will group our data based on the ISBN number, which is
unique to reach book. Write the following code in your program to do the same:

recommender_byRating = pd.DataFrame(ratings.groupby('ISBN')['Book-
Rating'].count())

recommender_byRating.sort_values('Book-Rating', ascending=False).head()

Once executed, you should see output similar to the following screenshot:

The top-rated books in our dataset

The preceding output displays the top five books that received the most ratings by users. It
is worth noting that here we are not seeing books with the highest ratings, but rather the
books that have received the most ratings.

Popular books
Let's now find out the most popular book so we can recommend it to our users. To do this,
we will merge the datasets of both books and ratings and treat them as one. This will help
us to apply different conditions such as group by and count with more ease. Write the
following code to figure out the most popular books in our dataset:

overall_rating = pd.merge(ratings, books, on='ISBN')

book_rated = (overall_rating.groupby(by = ['Book-Title'])['Book-
Rating'].count().reset_index())

book_rated.head()

Retail Recommendation System Chapter 19

[444]

Once executed, you should see output similar to the following screenshot:

Popular books-based on rating

Demographic-based recommendation
We will now recommend the top-rated books to a user from australia or spain. To do
this, we will combine the books and ratings datasets along with the User dataset. Write the
following code in order to do the same:

overall_ratingCount = overall_rating.merge(book_ratingCount, left_on =
'Book-Title', right_on = 'Book-Title', how = 'left')

bookUser = overall_ratingCount.merge(users, left_on = 'User-ID', right_on =
'User-ID', how = 'left')

We now need to filter our result for users residing in australia and spain and print
them; we do this by writing the following lines of code:

demographic =
bookUser[bookUser['Location'].str.contains("australia|spain")]

demographic.head()

Retail Recommendation System Chapter 19

[445]

Once executed, you should see output similar to the following screenshot:

Demographic recommendation code and output

The preceding output shows us what users residing in australia and spain have rated as
their favorite books, so that we can recommend users-based on their Location relevant
books. Bear in mind that we have covered basic algorithms to get you started. You may
want to fine-tune what we've already looked at to produce more advanced output that is
based on precise requirements.

Retail Recommendation System Chapter 19

[446]

Useful resources
Most companies don't like to discard data even if they are not using it – after all, data is
powerful. You can therefore find generalized data available to the public for research
purposes. You can find many of these datasets freely available to download for use in your
projects on the internet.

Yahoo also provides many different datasets, and they have a dedicated website where you
can find them at: https:/ ​/​webscope. ​sandbox. ​yahoo. ​com/ ​. The main categories for which
Yahoo provides datasets are as follows:

Advertising and market data
Competition data
Computing systems data
Graph and social data
Image data
Language data
Ratings and classification data

As an example, if you browse through rating and classification data, you will find the
following datasets:

Music User Ratings of Musical Artists
Music User Ratings of Songs with Artist, Album, and Genre Meta Information
Music ratings for User Selected and Randomly Selected songs
Movies User Ratings and Descriptive Content Information
Delicious Popular URLs and Tags

For researchers like us, it's vital that we have access to data that we can apply different
algorithms to and analyze different patterns in. Recognizing the importance of this, Netflix
organized a competition asking users to improve their movie recommendation system. The
winning algorithm ended up improving Netflix's recommendation system by 10%.

https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/

Retail Recommendation System Chapter 19

[447]

Summary
In this chapter, we learned about what a recommendation system is, including the different
types of recommendation systems, such as collaborative-based, content-based,
demographic-based, utility-based, knowledge-based, and a hybrid approach. We then
looked at different tools that are commercially available that have more advanced
algorithms that can boost your store's user experience and sales.

We then moved on to something more practical: building our own book recommendation
system. We built our model-based on three datasets: books, users, and ratings. We started
off by loading the dataset in our program and verifying it by outputting different print
statements related to a dataset. We also used the matplotlib library to visually analyze
the data. We then applied different algorithms in order to recommend books to our users,
such as top-rated books, the most popular books, the top-rated books according to location,
and so on.

Finally, we looked at some useful datasets available online that are similar to the ones used
in this chapter.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Big Data Analytics with Hadoop 3
Sridhar Alla

ISBN: 9781788628846

Explore the new features of Hadoop 3 along with HDFS, YARN, and MapReduce
Get well-versed with the analytical capabilities of Hadoop ecosystem using
practical examples
Integrate Hadoop with R and Python for more efficient big data processing
Learn to use Hadoop with Apache Spark and Apache Flink for real-time data
analytics
Set up a Hadoop cluster on AWS cloud
Perform big data analytics on AWS using Elastic Map Reduce

https://www.packtpub.com/big-data-and-business-intelligence/big-data-analytics-hadoop-3

Other Books You May Enjoy

[449]

Artificial Intelligence for Big Data
Anand Deshpande, Manish Kumar, Manish Kumar, These popular $10 titles
might interest you

ISBN: 9781788472173

Manage Artificial Intelligence techniques for big data with Java
Build smart systems to analyze data for enhanced customer experience
Learn to use Artificial Intelligence frameworks for big data
Understand complex problems with algorithms and Neuro-Fuzzy systems
Design stratagems to leverage data using Machine Learning process
Apply Deep Learning techniques to prepare data for modeling
Construct models that learn from data using open source tools
Analyze big data problems using scalable Machine Learning algorithms

https://www.packtpub.com/big-data-and-business-intelligence/artificial-intelligence-big-data

Other Books You May Enjoy

[450]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
ACID properties
 about 88, 91
 atomicity 91
 consistency 91
 durability 91
 isolation 91
Agent 213
algorithmic trading
 about 408
 benefits 408
 big data, in financial market 409
 strategies 410, 411
algorithms
 non-parametric algorithms 283
 parametric algorithms 283
 types 282
Apache Cassandra
 about 81, 94
 Cassandra Query Language (CQL) 96
 features 81
 installation 94
 reference 94
 starting 95
Apache Hadoop
 about 53
 configuration 48
 installation 47
 Java, installation 43, 44
 path configuration, for Hadoop commands 49
 prerequisites, for installation 42
 reference 44, 47
 Secure Socket Shell (SSH), configuration 44, 45
 Secure Socket Shell (SSH), installation 44, 45
 server, starting 49, 51
 server, stopping 49, 51

 system user, adding 46
Apache Kafka
 about 77
 Consumers 77
 Producers 77
 Records 79
 Topic 78
Apache Projects
 Apache Cassandra 81, 82
 Apache Flume 81
 Apache HBase 82
 Apache Kafka 77, 78, 79
 Apache Spark 83, 84
 Apache Zookeeper 75, 77
 related to big data 74
Apache Spark
 about 83
 features 84
 GraphX 84
 MLib 83
 Spark Core 83
 Spark SQL 83
 Spark Streaming 83
Apache Zookeeper, znode
 Ephemeral Node 77
 Persistent Node 77
 Sequential Node 77
Apache Zookeeper
 about 75
 Parent node 76
 znode 76
Application Master 73
application programming interface (API) 254
artificial intelligence (AI) 305, 306
authentication, RESTful API
 about 258
 basic authentication 258, 259, 260

[452]

 JSON Web Token (JWT) 260

B
bar charts
 creating, with D3.js 403, 404
 creating, with Matplotlib 394
Barilliance
 about 434
 reference 434
batch processing 24
big data
 about 8, 24
 characteristics 9, 10
 in financial market 409
 value 15
 variability 15
 variety 13
 velocity 12, 13
 veracity 14
 volume 10, 11
binary classification 285
Boltzmann machine 300
book rating dataset
 reference 436
book recommendation system
 about 436
 algorithms 442
 code 437
 commutative rating of books, displaying 441,

442

 data analysis 440
 dataset, reading 437, 438
 dataset, using 436
 dataset, verifying 438, 439, 440
 demographic-based recommendation,

implementing 444, 445
 directory structure 437
 popular books, recommending 443
 top-rated books, recommending 443
 user age group, analyzing 441
Borg 167
Brewer's Theorem 89
business intelligence (BI) systems 17

C
CAP (consistency, availability, partition) theorem

88

CAP theorem
 about 89
 availability 89
 consistency 89
 partition tolerance 89
Cassandra Query Language (CQL)
 about 96
 basic commands 98
 data manipulation 99
 describe command 98
 exit command 99
 expand command 99
 help command 97
 show command 99
 source command 99
classification model
 about 284
 binary classification 285
 multi-class classification 286
cloud service providers
 resources 207
cloud, versus on-premises infrastructure
 about 21
 cost 22
 current capabilities 23
 scalability 23
 security 23
cloud-based infrastructure, design considerations
 about 199
 application architecture 206
 cloud, versus on-premises 201, 203, 204
 commodity hardware, versus purpose build 200
 cost decision 207
 open source, versus commercial 200
 scale up and down 205, 206
cloud-based infrastructure, driving factors
 infrastructure 196
 locality of data 197, 198
 requirements 199
cloud-based infrastructure
 driving factors 196

[453]

 evolution 195
cluster computing
 about 19, 24
 easy scalability 20
 high availability 19
 resource pooling 20
clustering
 with k-means algorithm 292, 293, 294, 295,

296, 297
collaborative filtering 431
collection 105
column stores 93
commercial tools
 about 434
 Barilliance 434
 Monetate 435
 Nosto 435
 Softcube 435
 Strands 435
components, ReactJS 233
Compressed TAR Archive 366
consistency with availability (CA) 89
consistency with partitioning (CP) 89
container 73
containerization
 about 151
 containers, benefits 152
content-based filtering 432
convolutional blocks 307
convolutional neural network (CNN)
 about 306, 307, 308, 309, 310
 characteristics 306
CRUD commands 339, 341
cubical regression 289
curvilinear regression 288
cypher query language, basic operations
 nodes, creating 117
 nodes, deleting 119
 nodes, reading 119, 121
 nodes, updating 118
 properties, creating 118
 properties, deleting 119
 properties, reading 119, 121
 properties, updating 118
 relationships, creating 117

 relationships, deleting 119
 relationships, reading 119, 121
 relationships, updating 118
cypher query language
 about 115
 basic operations 117
 Help 117
 MATCH clause 116
 node 115
 properties 115
 relationship 115
 RETURN clause 116
 WHERE clause 116

D
D3.js
 about 402
 installation 402
 reference link 405
 used, for creating bar charts 403, 404
data analysis
 about 349
 MySQL, installing 349, 350, 351
data lake 25
data manipulation, CQL
 about 99
 data, deleting 104
 data, inserting 103
 data, updating 103
 keyspace, altering 100
 keyspace, creating 99
 keyspace, deleting 101
 tables, altering 102
 tables, creating 101
 tables, deleting 102
data manipulation, MongoDB
 about 109
 collection, creating 110
 create operation 110, 112
 database, creating 109
 database, deleting 109
 delete operation 110, 112
 deleting 110
 retrieve operation 110, 112
 update operation 110, 112

[454]

data mining 25
data structure, Redis
 HashMap 274
 List 275
 Set 276, 277
data types, Redis
 string 274
data warehouse 25
Data-Driven Document 402
database 87
DataNode 54
decision tree classifiers 301, 302, 303
deep learning
 with TensorFlow 310, 311
deep neural networks 300, 301
demographic-based system 433
deployment 169
Dispatch 243
distributed computing 21
Docker Community Edition (CE) 153
Docker Enterprise Edition (EE) 153
Docker Swarm
 about 163
 container services, removing 167
 containers, replicating 166
 service containers, creating 165
 setting up 163
Docker
 about 152
 commands 155, 158
 Docker Client 152
 Docker Community Edition (CE) 153
 Docker Enterprise Edition (EE) 153
 Docker Host 152
 Docker Hub 153
 Docker Swarm 163
 image, building 158
 images 158
 images, executing 161
 images, exporting 162
 images, importing 162
 images, verifying 161
 installation 153
 workflow 152
document 105

document store 93
DOM (Document Object Model) 225, 402

E
Elasticsearch
 about 325
 installing 326
 reference 326
 securing 334, 336
 server, starting 327
 server, stopping 329
 service, auto starting 329
 uninstalling 329, 330
event handling, ReactJS 236, 238
Expert Advisor
 building 411, 412, 413
 code 424, 425
 creating, with MetaTrader 417
 Meta Editor, launching 418, 420, 422
 MetaTrader 413
 MetaTrader, backtesting 426, 428
 moving average, calculating 423
 objective 418
 price variation, calculating for buy or sell 423
extract, transform, and load (ETL) 25

F
feedforward neural network 298
financial market
 big data 409
Flume agent
 Flume channel 80
 Flume sink 80
 Flume source 80
Flume
 downloading 373
 executing 378
 URL 373

G
geographic projections charts
 creating, with Matplotlib 400
Gephi
 about 182

[455]

 executing 184
 installation 183
 Java installation 183
 URL 183
GNU General Public License (GPL) 28
GO 305
graph stores 94
guestbook application
 connect function, importing 247, 248
 creating 245
 Dispatcher, setting up 247
 final output 251
 Reducer, setting up 246
 reference 251
 store, creating 246
 Subscribers, setting up 249, 250

H
Hadoop Distributed File System (HDFS)
 about 25, 54, 55, 56
 directory, creating 57
 files, copying from HDFS to local file system 59
 files, copying from local file system 58
 files, deleting 59
 folders, deleting 59
 working with 57
Hadoop MapReduce, example program
 data file, preparing for analysis 65
 driver program 66
 Mapper program 67
 observations 69, 70
 program code 65
 Reducer program 68
 results 69, 70
 writing 64
Hadoop MapReduce
 about 60
 execution flow 62
 Job Tracker 61
 Map 60
 Mapper 63
 Reduce 60
 Reducer 64
 Shuffle 63
 Sort 63

 Task Tracker 61
Hadoop
 about 25
 agent and sink, configuring 375
 Apache Flume, executing 378
 data, moving 373
 environment, configuration 374
 Flume, downloading 373
 log file, transferring 379, 381, 382
hardware-based hypervisors 150
HBase
 about 357
 installing 357, 359, 360
 instance, starting 361, 362
 instance, stopping 362
 preparing, for migration 362, 363
 reference 357
help command 97, 98
Hopfield network 300
HTML DOM 225
HTTP request methods
 about 255
 DELETE 255
 GET 255
 POST 255
 PUT 255
hybrid model 433
Hypertext Transfer Protocol (HTTP) 254
Hypertext Transfer Protocol Secure (HTTPS) 260
hypervisor 150

I
images
 converting, into text for analysis 382
 object detection 321, 322, 323
 Tesseract OCR 382
in-memory computing 26
Infrastructure as a Service (IaaS) 122
IoTs (Internet of Things) 18
IPFIX 214

J
Java
 installation 43, 44

[456]

JavaScript Object Notation (JSON) 254
JDK
 reference 43
Job Tracker 61, 71
JRE
 reference 43
JSON Web Token (JWT)
 about 260
 Header 261
 Payload 261
 reference 262
 Signature 261, 262
JSX 226
Jupyter Notebook
 about 439
 reference 440

K
k-means
 for clustering 292, 293, 294, 295, 296, 297
key-value data stores 93
keyspace 99
Kibana
 about 330
 installing 331
 reference 331
 securing 336, 338, 339
 starting 332
 uninstalling 333
knowledge-based system 433
Kubernetes
 about 167
 components 167
 dashboard 174
 deployment 169, 172
 installation 170, 172
 pet 170
 pods 168
 ReplicaSets 168

L
line chart
 creating, with Matplotlib 393
linear regression 286, 287

local area networks (LANs) 178

M
machine learning (ML) 26, 282
MapReduce 26
Matplotlib
 about 391
 installing, with Python package manager (Pip)

392

 used, for creating bar charts 394
 used, for creating geographic projections charts

400

 used, for creating line chart 393
 used, for creating pie charts 399
 used, for creating scatter charts 397
 used, for creating stack charts 396
MetaTrader
 about 413
 backtesting 426, 427, 428
 downloading 414, 416, 417
 Expert Advisor, creating 417
 Expert Advisors 418
 indicator 418
 reference 414
 scripts 418
 setting up 414, 416, 417
metropolitan area networks (MANs) 179
Microsoft Azure
 about 122, 123
 account, creating 125
 App Services 123
 Azure Active Directory 123
 Azure Cosmos DB 123
 Backup Services 123
 Cognitive Services 124
 Content Delivery Network (CDN) 123
 Data Lake Store 124
 Event Hub 123, 127, 131
 HDInsight 123
 IoT Hub 123
 IoT simulation application 132, 136
 Machine Learning Studio 123
 Power BI, dashboard 143, 146, 147
 practical application, building 124
 SQL Databases 123

[457]

 Storage Services 123
 Stream Analytics 123
 Stream Analytics job, setting up 137
 Virtual Machines 123
Microsoft Power Business Intelligence (PowerBI)

141

Monetate
 about 435
 reference 435
MongoDB
 about 105
 basic commands 108
 data manipulation 109
 help command 107
 installing 105
 starting 106
 working with 106
multi-class classification 286
MySQL JDBC driver
 reference 366
 using 366
MySQL
 data model, analyzing 353, 354, 355, 356
 data, importing 351, 353
 installing 349, 350, 351

N
Nagios
 about 215
 benefits 215
Name Node 54
Neo4j
 about 112
 cypher query language 115, 116
 installing 113
 starting 113, 114
Netflow
 about 213, 214
 usage 214
network connectivity
 about 181
 wired 181
 wireless 181
network visualization
 about 182

 Gephi 182
 practical example 186, 191, 193
network
 about 177
 local area networks (LANs) 178
 metropolitan area networks (MANs) 179
 wide area networks 180
neural networks
 about 297
 feedforward neural network 298
 recurrent neural network 299
 symmetrically connected neural network 300
 types 298
neurons 297
node 19
Node Manager 73
Node Package Manager (NPM) 225
Node.js 225
non-parametric algorithms 283
Nosto
 about 435
 reference 435
Not Only SQL (NoSQL), data models
 column stores 93
 document store 93
 graph stores 94
 key-value data stores 93
Not Only SQL (NoSQL)
 about 26, 87
 benefits 87
 CAP theorem 89, 90
 data models 92
 versus RDBMS 88

O
object detection
 in image 321, 322, 323
 with you only look once (YOLO) 319
openCypher 115
Oracle VM VirtualBox
 installation 28, 30, 31
 reference 28

[458]

P
parametric algorithms 283
pet 170
pie charts
 creating, with Matplotlib 399
Platform as a Service (PaaS) 122
Platform Independent (Architecture Independent)

366

pod 168
polynomial regression
 about 288
 cubical regression 289
 quadratic regression 289
Project Seven 167
properties, ReactJS 235, 236
Python package manager (pip)
 about 316
 used, for in installing Matplotlib 392

Q
queries
 creating 341, 342, 343
 CRUD commands 339, 341
 deleting 346
 executing 339
 reading 344, 345
 updating 345, 346

R
RDBMS (Relational Database Management

System)
 about 89
 ACID properties 91
 versus Not Only SQL (NoSQL) 88
ReactJS
 about 223, 224
 architecture 224
 components 233
 event handling 236, 238
 JSX 226
 key concepts 224
 Node.js 225
 properties 235, 236
 reference 242

 single page application, creating 228
 state 239, 240, 241, 242
 unidirectional dataflow 227
 working with 228
recommendation system
 collaborative filtering 431
 content-based filtering 432
 demographic-based system 433
 hybrid model 433
 knowledge-based system 433
 resources 446
 types 431
 utility-based system 433
recurrent neural network 299
Redis
 about 271
 data structures 273
 data types 273
 installation 271
 key operations 278, 279
 Publish/Subscribe 277, 278
 Redis client, starting 273
 Redis server, starting 272
 working with 273
Redux
 about 223, 242
 action 244
 architecture 243, 244
 guestbook application, creating 245
 installation 245
 key concepts 244
 reducers 244
 single store architecture 244
regression model
 about 286
 linear regression 286, 287
 polynomial regression 288, 289, 290
ReLU (rectified linear unit) 307
ReplicaSets 168
Representational State Transfer (REST) 254
Resource Manager 73
RESTful API
 about 254
 authentication 256, 258
 HTTP request methods 255

[459]

 RESTful web service, creating 262
RESTful web service
 creating 262, 264, 265, 267, 268, 269
 Java client, creating 269, 270
 reference 268, 270

S
scatter charts
 creating, with Matplotlib 397
Secure Socket Shell (SSH)
 configuration 44, 45
 installation 44, 45
Security Onion
 about 216
 deployment scenarios 217
 hybrid model 219
 pre-configured tools 219, 220
 Server-Sensor model 218
 Standalone model 217
security
 applying 334
 for Elasticsearch 334, 336
 for Kibana 336, 338, 339
Sensors 216
Simple Network Management Protocol (SNMP)
 about 210
 Agents 212
 benefits 211
 security 212
 Traps 212
Simple Object Access Protocol (SOAP) 254
single page application, ReactJS
 creating 228
 directory structure 232
 project, creating 229, 231, 232
Softcube
 about 435
 reference 435
Software as a Service (SaaS) 122
software-based hypervisors 150
solution-based approach, for data
 big data solutions 20
 cloud, versus on-premises infrastructure 21
 cluster computing 19
 importance of data 16

 issues, raising 16
 traditional approach, to data storage 17, 18
Sqoop
 about 364
 data, importing 367, 368, 369
 imported data, verifying 370
 installation, verifying 366
 installing 364, 366
 MySQL JDBC driver 366
stack charts
 creating, with Matplotlib 396
Standard Query Language (SQL) 89
state, ReactJS 239, 240, 241, 242
stateless API 256
step strategy 411
Store 243
Strands
 about 435
 reference 435
Strategy Tester tool 428
Stream Analytics job
 input 139
 output 141, 143
 query, executing 140
 setting up 137
stream processing 26
Subscribe 243
supervised learning
 about 284
 classification model 284
 regression model 286
symmetrically connected neural network 300

T
Task Tracker 61
TensorBoard
 about 314
 graph 317, 318, 319
 launching 316, 317
 program 314
TensorFlow
 about 311
 installation 311, 312
 program, executing 312, 313
 uninstalling 313, 314

 used, for deep learning 310, 311
Tesseract OCR (optical character recognition)
 about 382
 image, converting into text 385
 installing 383
 practical example 383
 program execution 387, 389
trade 408

U
Uber Tasks 74
Ubuntu
 installation 32, 33, 34, 36, 38, 39, 40, 41, 42
 reference 32
units 297
unsupervised learning
 about 291, 292
 clustering, with k-means algorithm 292, 293,

294, 295, 296, 297
 deep neural networks 300, 301
 neural networks 297, 298
utility-based system 433

V
virtual machines (VM) 28, 149
VirtualBox Disk Image (VDI) 34
virtualization
 about 149
 hardware-based hypervisors 150

 hypervisors 150
 software-based hypervisors 150

W
wide area networks (WANs) 180
wide column stores 93
Wireshark
 about 221
 key features 221

X
XM
 reference 411

Y
Yahoo datasets
 reference 446
Yet Another Resource Negotiator (YARN)
 about 25, 54, 71, 72
 Application Master 73
 container 73
 Node Manager 73
 Resource Manager 73
you only look once (YOLO)
 about 319
 installation 319, 320
 library, compiling 320
 trained weights 321
 used, for object detection 319

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Why Big Data?
	What is big data?
	Characteristics of big data
	Volume
	Velocity
	Variety
	Veracity
	Variability
	Value

	Solution-based approach for data
	Data – the most valuable asset
	Traditional approaches to data storage
	Clustered computing
	High availability
	Resource pooling
	Easy scalability

	Big data – how does it make a difference?
	Big data solutions – cloud versus on-premises infrastructure
	Cost
	Security
	Current capabilities
	Scalability

	Big data glossary
	Big data
	Batch processing
	Cluster computing
	Data warehouse
	Data lake
	Data mining
	ETL
	Hadoop
	In-memory computing
	Machine learning
	MapReduce
	NoSQL
	Stream processing

	Summary

	Chapter 2: Big Data Environment Setup
	Oracle VM VirtualBox installation
	Ubuntu installation
	Hadoop prerequisite installation
	Java installation
	SSH installation and configuration
	Hadoop system user

	Apache Hadoop installation
	Hadoop configuration
	Path configuration for Hadoop commands
	Hadoop server start and stop

	Summary

	Chapter 3: Hadoop Ecosystem
	Apache Hadoop
	Hadoop Distributed File System
	HDFS hands-on
	Creating a directory in HDFS
	Copying files from a local file system to HDFS
	Copying files from HDFS to a local file system
	Deleting files and folders in HDFS

	Hadoop MapReduce
	Job Tracker and Task Tracker
	The execution flow of MapReduce
	Mapper
	Shuffle and Sort
	Reducer

	Example program
	Preparing the data file for analysis
	Program code
	Driver program
	Mapper program
	Reducer program
	Observations and results

	YARN
	Resource Manager
	Node Manager
	Container
	Application Master

	Apache Projects related to big data
	Apache Zookeeper
	Apache Kafka
	Apache Flume
	Apache Cassandra
	Apache HBase
	Apache Spark

	Summary

	Chapter 4: NoSQL Database
	What is NoSQL?
	Benefits of NoSQL databases
	NoSQL versus RDBMS
	The CAP theorem
	The ACID properties

	Data models in NoSQL
	Key-value data stores
	Document store
	Column stores
	Graph stores

	Apache Cassandra
	Installation
	Starting Cassandra
	The Cassandra Query Language – CQL
	The help command
	Basic commands
	Data manipulation
	Creating, altering, and deleting a keyspace
	Creating, altering, and deleting tables
	Inserting, updating, and deleting data

	The MongoDB database
	Installing MongoDB
	Starting MongoDB
	Working on MongoDB
	The help command
	Basic commands
	Data manipulation
	Creating and deleting databases
	Creating and deleting collections
	The create, retrieve, update, delete operations

	Neo4j database
	Installing Neo4j
	Starting Neo4j
	The cypher query language
	Help
	Basic operations in Cypher
	Creating nodes, relationships, and properties
	Updating nodes, relationships, and properties
	Deleting nodes, relationships, and properties
	Reading nodes, relationships, and properties

	Summary

	Chapter 5: Off-the-Shelf Commercial Tools
	Microsoft Azure
	Building a practical application
	Microsoft Azure account
	The Azure Event Hub
	IoT simulation application
	Setting up an Azure Stream Analytics job
	Input
	Query
	Output

	Dashboard in Power BI

	Summary

	Chapter 6: Containerization
	Virtualization
	Hypervisors
	Hardware-based hypervisors
	Software-based hypervisors

	What is containerization?
	Benefits of containers

	Docker
	Docker workflow
	Installation
	Basic commands
	Docker images
	Building a Docker image
	Running and verifying Docker images
	Importing and exporting Docker images

	Docker Swarm
	Setting up Docker Swarm
	Creating service containers
	Replicating containers
	Removing container services

	Kubernetes
	Key components
	Pods
	ReplicaSets
	Deployments
	PetSets

	Installation
	Deployment
	Kubernetes Dashboard

	Summary

	Chapter 7: Network Infrastructure
	Network
	Local area networks
	Metropolitan area networks
	Wide area networks

	Network connectivity
	Wired
	Wireless

	Network visualization
	Gephi
	Installation
	Java installation
	First run

	Practical example

	Summary

	Chapter 8: Cloud Infrastructure
	Companies moving to cloud
	Driving factors
	Infrastructure
	Locality of data
	Requirements

	Design considerations
	Open source versus commercial
	Commodity hardware versus purpose build
	Cloud versus on-premises
	Scale up and down
	Application architecture
	Cost decision

	Summary

	Chapter 9: Security and Monitoring
	Simple Network Management Protocol
	Benefits of SNMP
	Security
	Agents and Traps

	Netflow
	Nagios
	Key benefits

	Security Onion
	Deployment scenarios
	The Standalone model
	The Server-Sensor model
	Hybrid model

	Preconfigured tools

	Wireshark
	Key features

	Summary

	Chapter 10: Frontend Architecture
	React JS
	Key concepts
	Node.js
	JSX
	Unidirectional dataflow

	Getting started with ReactJS
	Single page application
	React application project
	React app directory structure

	Components
	Properties
	Event handling
	State

	Redux
	Architecture of Redux
	Key concepts
	Single store
	Action
	Reducers

	Guestbook application
	Installation
	Create a store
	Setting up Reducer
	Setting up Dispatcher
	Connect function

	Setting up Subscribers
	Final output

	Summary

	Chapter 11: Backend Architecture
	API
	RESTful API
	HTTP request methods
	GET
	POST
	PUT
	DELETE

	Authentication
	Basic authentication
	JSON Web Token
	Header
	Payload
	Signature

	Practical
	RESTful web service
	Java client

	Redis
	Installation
	Redis server
	Redis client

	Working with Redis
	Redis data types and structures
	String
	HashMap
	List
	Set

	Redis Publish/Subscribe
	Common key operations

	Summary

	Chapter 12: Machine Learning
	Machine learning
	Types of algorithms
	Parametric algorithms
	Non-parametric algorithms

	Supervised learning
	The classification model
	Binary classification
	Multi-class classification

	The regression model
	Linear regression
	Polynomial regression

	Unsupervised learning
	Clustering, k-means
	Neural networks
	Feedforward neural network
	Recurrent neural network
	Symmetrically connected neural network

	Deep neural networks

	Decision tree classifiers
	Summary

	Chapter 13: Artificial Intelligence
	Artificial intelligence
	Convolutional neural networks
	Deep learning using TensorFlow
	TensorFlow
	Installation
	TensorFlow program
	Uninstalling TensorFlow

	TensorBoard
	Program
	Launching TensorBoard
	TensorBoard graph

	Object detection using YOLO
	Installation
	Compiling YOLO library
	Trained weights

	Detecting objects in an image

	Summary

	Chapter 14: Elasticsearch
	Installing Elasticsearch
	Starting the Elasticsearch server
	Auto starting the Elasticsearch service
	Stopping the Elasticsearch server

	Uninstalling Elasticsearch

	Kibana
	Installation
	Starting Kibana
	Uninstalling Kibana

	Security
	Securing Elasticsearch
	Securing Kibana

	Understanding queries – CRUD commands
	Creating
	Reading
	Updating
	Deleting

	Summary

	Chapter 15: Structured Data
	Data analysis
	Installing MySQL
	Importing data
	Analyzing the data model

	HBase
	Installation
	Starting an HBase instance
	Stopping a HBase instance
	Preparing an HBase for migration

	Sqoop
	Installation
	Verifying the installation
	MySQL JDBC driver
	Importing data
	Verifying the imported data

	Summary

	Chapter 16: Unstructured Data
	Moving data into Hadoop
	Downloading Flume
	Environment configuration
	Configuring agent and sink
	Running Apache Flume
	Transferring a log file

	Converting images into text for analysis
	Tesseract OCR
	Installing Tesseract

	Practical example
	Complete code
	Program execution

	Summary

	Chapter 17: Data Visualization
	Matplotlib
	Installing Matplotlib
	Line chart
	Bar charts
	Stack charts
	Scatter charts
	Pie charts
	Geographic projections

	D3.js
	Installation
	Practical example
	Output

	Summary

	Chapter 18: Financial Trading System
	What is algorithmic trading?
	Benefits of algorithmic trading
	Big data in the financial market

	Algorithmic trading strategies
	Building an Expert Advisor
	MetaTrader
	Downloading and setting up MetaTrader
	MetaQuotes language
	Trading bot objective
	Practical
	Trading pattern – moving average
	Decision time: buy or sell
	Complete program

	Backtesting in MetaTrader 4

	Summary

	Chapter 19: Retail Recommendation System
	Types of recommendation system
	Collaborative filtering
	Content-based filtering
	Demographic-based system
	Utility-based system
	Knowledge-based system
	Hybrid model

	Commercial tools
	Barilliance
	Softcube
	Strands
	Monetate
	Nosto

	Book recommendation system
	Dataset
	Directory structure
	Code
	Reading the dataset
	Verifying the dataset
	Data analysis
	Age group
	Commutative rating

	Algorithms
	Top-rated books
	Popular books
	Demographic-based recommendation

	Useful resources

	Summary

	Other Books You May Enjoy
	Index

