David Natingga

Data Science
Algorithms
in a Week

Data analysis, machine learning, and more

IRE Packt>

Data Science Algorithms in a
Week

Data analysis, machine learning, and more

David Natingga

BIRMINGHAM - MUMBAI

Data Science Algorithms in a Week

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2017
Production reference: 1080817
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham
B3 2PB, UK.

ISBN 978-1-78728-458-6

www.packtpub.com

http://www.packtpub.com

Full-Stack
Wweb n:relupmmx Hands-On gf&(;ﬁz:‘nge

with Vue.js and Node Data Science
and Python
Machine Learning

Go to www.packtpub.com
and use this code in the
checkout:

_ HBBIBOOFF

Packt>

Author
David Natingga

Reviewer
Surendra Pepakayala

Commissioning Editor
Veena Pagare

Acquisition Editor
Chandan Kumar

Content Development Editor
Mamata Walkar

Technical Editor
Naveenkumar Jain

Copy Editor
Safis Editing

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Pratik Shirodkar

Production Coordinator
Shantanu Zagade

re

dits

About the Author

David Natingga graduated in 2014 from Imperial College London in MEng Computing
with a specialization in Artificial Intelligence. In 2011, he worked at Infosys Labs in
Bangalore, India, researching the optimization of machine learning algorithms. In 2012 and
2013, at Palantir Technologies in Palo Alto, USA, he developed algorithms for big data. In
2014, as a data scientist at Pact Coffee, London, UK, he created an algorithm suggesting
products based on the taste preferences of customers and the structure of coffees. In 2017,
he work at TomTom in Amsterdam, Netherlands, processing map data for navigation
platforms.

As a part of his journey to use pure mathematics to advance the field of Al he is a PhD
candidate in Computability Theory at, University of Leeds, UK. In 2016, he spent 8 months
at Japan, Advanced Institute of Science and Technology, Japan, as a research visitor.

David Natingga married his wife Rheslyn and their first child will soon behold the outer
world.

I would like to thank Packt Publishing for providing me with this opportunity to share my knowledge
and experience in data science through this book. My gratitude belongs to my wife Rheslyn who has
been patient, loving, and supportive through out the whole process of writing this book.

About the Reviewer

Surendra Pepakayala is a seasoned technology professional and entrepreneur with over 19
years of experience in the US and India. He has broad experience in building enterprise/web
software products as a developer, architect, software engineering manager, and product
manager at both start-ups and multinational companies in India and the US. He is a hands-
on technologist/hacker with deep interest and expertise in Enterprise/Web Applications
Development, Cloud Computing, Big Data, Data Science, Deep Learning, and Artificial
Intelligence.

A technologist turned entrepreneur, after 11 years in corporate US, Surendra has founded
an enterprise BI / DSS product for school districts in the US. He subsequently sold the
company and started a Cloud Computing, Big Data, and Data Science consulting practice to
help start-ups and IT organizations streamline their development efforts and reduce time to
market of their products/solutions. Also, Surendra takes pride in using his considerable IT
experience for reviving / turning-around distressed products / projects.

He serves as an advisor to eTeki, an on-demand interviewing platform, where he leads the
effort to recruit and retain world-class IT professionals into eTeki’s interviewer panel. He
has reviewed drafts, recommended changes and formulated questions for various IT
certifications such as CGEIT, CRISC, MSP, and TOGAEF. His current focus is on applying
Deep Learning to various stages of the recruiting process to help HR (staffing and corporate
recruiters) find the best talent and reduce friction involved in the hiring process.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

. Mapt

https:/ / www. packtpub. com/ mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

¢ Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at link.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787284581

Table of Contents

Preface 1
Chapter 1: Classification Using K Nearest Neighbors 6
Mary and her temperature preferences 6
Implementation of k-nearest neighbors algorithm 10

Map of Italy example - choosing the value of k 15
House ownership - data rescaling 18

Text classification - using non-Euclidean distances 20

Text classification - k-NN in higher-dimensions 23
Summary 25
Problems 25
Chapter 2: Naive Bayes 29
Medical test - basic application of Bayes' theorem 30

Proof of Bayes' theorem and its extension 31
Extended Bayes' theorem 32

Playing chess - independent events 33
Implementation of naive Bayes classifier 34
Playing chess - dependent events 37
Gender classification - Bayes for continuous random variables 40
Summary 42
Problems 43
Chapter 3: Decision Trees 51
Swim preference - representing data with decision tree 52
Information theory 53
Information entropy 53

Coin flipping 54

Definition of information entropy 54

Information gain 55

Swim preference - information gain calculation 55

ID3 algorithm - decision tree construction 57

Swim preference - decision tree construction by ID3 algorithm 57
Implementation 58
Classifying with a decision tree 64

Classifying a data sample with the swimming preference decision tree 65

Playing chess - analysis with decision tree 65
Going shopping - dealing with data inconsistency 69
Summary 70
Problems 71
Chapter 4: Random Forest 75
Overview of random forest algorithm 76
Overview of random forest construction 76
Swim preference - analysis with random forest 77
Random forest construction 78
Construction of random decision tree number 0 78
Construction of random decision tree number 1 80
Classification with random forest 83
Implementation of random forest algorithm 83
Playing chess example 86
Random forest construction 88
Construction of a random decision tree number 0: 88
Construction of a random decision tree number 1, 2, 3 92

Going shopping - overcoming data inconsistency with randomness and
measuring the level of confidence 94
Summary 96
Problems 97
Chapter 5: Clustering into K Clusters 102
Household incomes - clustering into k clusters 102
K-means clustering algorithm 103
Picking the initial k-centroids 104
Computing a centroid of a given cluster 104
k-means clustering algorithm on household income example 104
Gender classification - clustering to classify 105
Implementation of the k-means clustering algorithm 109
Input data from gender classification 112
Program output for gender classification data 112
House ownership — choosing the number of clusters 113

Document clustering — understanding the number of clusters k in a

semantic context 119
Summary 126
Problems 126
Chapter 6: Regression 135
Fahrenheit and Celsius conversion - linear regression on perfect data 136
Weight prediction from height - linear regression on real-world data 139

[]

Gradient descent algorithm and its implementation 140

Gradient descent algorithm 140
Visualization - comparison of models by R and gradient descent

algorithm 144

Flight time duration prediction from distance 144

Ballistic flight analysis — non-linear model 146

Summary 148

Problems 148

Chapter 7: Time Series Analysis 154

Business profit - analysis of the trend 155

Electronics shop's sales - analysis of seasonality 157

Analyzing trends using R 159

Analyzing seasonality 161

Conclusion 164

Summary 165

Problems 166

Chapter 8: Statistics 170

Basic concepts 170

Bayesian Inference 171

Distributions 171

Normal distribution 172

Cross-validation 173

K-fold cross-validation 173

A/B Testing 173

Chapter 9: R Reference 174

Introduction 174

R Hello World example 174

Comments 175

Data types 175

Integer 175

Numeric 176

String 176

List and vector 177

Data frame 177

Linear regression 178

Chapter 10: Python Reference 179

Introduction 179

[]

Python Hello World example

Comments
Data types

Int

Float

String

Tuple

List

Set

Dictionary
Flow control

For loop
For loop on range
For loop on list
Break and continue

Functions
Program arguments
Reading and writing the file

Chapter 11: Glossary of Algorithms and Methods in Data Science

179
180
180
180
181
181
182
182
183
184
184

185
185
185
186

187
187
188

189

Index

191

[]

Preface

Data science is a discipline at the intersection of machine learning, statistics and data
mining with the objective to gain new knowledge from the existing data by the means of
algorithmic and statistical analysis. In this book you will learn the 7 most important ways in
Data Science to analyze the data. Each chapter first explains its algorithm or analysis as a
simple concept supported by a trivial example. Further examples and exercises are used to
build and expand the knowledge of a particular analysis.

What this book covers

Chapter 1, Classification Using K Nearest Neighbors, Classify a data item based on the k most
similar items.

Chapter 2, Naive Bayes, Learn Bayes Theorem to compute the probability a data item
belonging to a certain class.

Chapter 3, Decision Trees, Organize your decision criteria into the branches of a tree and use
a decision tree to classify a data item into one of the classes at the leaf node.

Chapter 4, Random Forest, Classify a data item with an ensemble of decision trees to
improve the accuracy of the algorithm by reducing the negative impact of the bias.

chapter 5, Clustering into K Clusters, Divide your data into k clusters to discover the
patterns and similarities between the data items. Exploit these patterns to classify new data.

Chapter 6, Regression, Model a phenomena in your data by a function that can predict the
values for the unknown data in a simple way.

Chapter 7, Time Series Analysis, Unveil the trend and repeating patters in time dependent
data to predict the future of the stock market, Bitcoin prices and other time events.

Appendix B, Statistics, Provides a summary of the statistical methods and tools useful to a
data scientist.

Appendix B, R Reference, Reference to the basic Python language constructs.

Appendix C, Python Reference, Reference to the basic R language constructs, commands and
functions used throughout the book.

Preface

appendix D, Glossary of Algorithms and Methods in Data Science, Provides a glossary for some
of the most important and powerful algorithms and methods from the fields of the data
science and machine learning.

What you need for this book

Most importantly, an active attitude to think of the problems--a lot of new content is
presented in the exercises. Then you also need to be able to run Python and R programs
under the operating system of your choice. The author ran the programs under Linux
operating system using command line.

Who this book is for

This book is for aspiring data science professionals who are familiar with Python & R and
have some statistics background. Those developers who are currently implementing 1 or 2
data science algorithms and now want to learn more to expand their skill will find this book
quite useful.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "For the
visualization depicted earlier in this chapter, the matplot1ib library was used."

A block of code is set as follows:

import sys
sys.path.append('..")
sys.path.append('../../common"')
import knn # noga

import common # noga

Any command-line input or output is written as follows:

$ python knn_to_data.py mary_and_temperature_preferences.data
mary_and_temperature_preferences_completed.data 1 5 30 0 10

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter."

[2]

Preface

0 Warnings or important notes appear like this.
8 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http:/ /
www. packtpub. com. If you purchased this book elsewhere, you can visit http:/ / www.
packtpub. com/ support and register to have the files e-mailed directly to you. You can
download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NS »h =

[31]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/ Data- Science- Algorithms- in- a- Week. We also have other code
bundles from our rich catalog of books and videos available at https:/ / github. com/
PacktPublishing/ . Check them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https:/ / www. packtpub. com/ sites/ default/

files/ downloads/ DataScienceAlgorithmsinaWeek_ ColorImages. pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ / www. packtpub. com/ submit- errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title. To view the previously submitted errata, go to https:/ / www.
packtpub. com/ books/ content/ support and enter the name of the book in the search
field. The required information will appear under the Errata section.

[4]

https://github.com/PacktPublishing/Data-Science-Algorithms-in-a-Week
https://github.com/PacktPublishing/Data-Science-Algorithms-in-a-Week
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/DataScienceAlgorithmsinaWeek_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DataScienceAlgorithmsinaWeek_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[5]

Classification Using K Nearest
Neighbors

The nearest neighbor algorithm classifies a data instance based on its neighbors. The class of
a data instance determined by the k-nearest neighbor algorithm is the class with the highest
representation among the k-closest neighbors.

In this chapter, we will cover the basics of the k-NN algorithm - understanding it and its
implementation with a simple example: Mary and her temperature preferences. On the
example map of Italy, you will learn how to choose a correct value k so that the algorithm
can perform correctly and with the highest accuracy. You will learn how to rescale the
values and prepare them for the k-NN algorithm with the example of house preferences. In
the example of text classification, you will learn how to choose a good metric to measure the
distances between the data points, and also how to eliminate the irrelevant dimensions in
higher-dimensional space to ensure that the algorithm performs accurately.

Mary and her temperature preferences

As an example, if we know that our friend Mary feels cold when it is 10 degrees Celsius, but
warm when it is 25 degrees Celsius, then in a room where it is 22 degrees Celsius, the
nearest neighbor algorithm would guess that our friend would feel warm, because 22 is
closer to 25 than to 10.

Classification Using K Nearest Neighbors

Suppose we would like to know when Mary feels warm and when she feels cold, as in the
previous example, but in addition, wind speed data is also available when Mary was asked
if she felt warm or cold:

Temperature in degrees Celsius | Wind speed in km/h | Mary's perception
10 0 Cold

25 0 Warm

15 5 Cold

20 3 Warm

18 7 Cold

20 10 Cold

22 5 Warm

24 6 Warm

We could represent the data in a graph, as follows:

Mary and temperature preferences

. cold
. warm

wind speed in kmph

temperature in C

[7]

Classification Using K Nearest Neighbors

Now, suppose we would like to find out how Mary feels at the temperature 16 degrees
Celsius with a wind speed of 3km/h using the 1-NN algorithm:

Mary and temperature preferences

10 - . . .
A 4r=gery

)00000000000000000000006w
7000000000000000000000000(
)000000000000000000000000(

gy vy v vy vyyvyvvvyyvy vy vy vy vy vy vy vy vy VvV Vv V]
5 10 15 20 25 30

temperature in C

wind speed in kmph

For simplicity, we will use a Manhattan metric to measure the distance between the
neighbors on the grid. The Manhattan distance d,,,, of a neighbor N,=(x,y,) from the
neighbor N ,=(x,,1,) is defined to be d,,,=1x- x,[+1y- y, 1.

[81]

Classification Using K Nearest Neighbors

Let us label the grid with distances around the neighbors to see which neighbor with a
known class is closest to the point we would like to classify:

Mary and temperature preferences

10 -, . , .
(A A 4 =y

)00000000000000000000006w
)000000000000000000000000(
00000000000 0000000000000(
1000000000000000000000000(
0000000000000 00000000000(

kmph

wind speed in

7000000000000000000000000(
)O000000O0000000000000000(
70000000000006000000000000(
0000000 00000000000000000(

Ay Y VY V VY VY VYV VYV VYV YV V YV YV VYV VY VY VYV VY YV VY VY V V VI
5 10 15 20 25 30

temperature in C

We can see that the closest neighbor with a known class is the one with the temperature 15
(blue) degrees Celsius and the wind speed 5km/h. Its distance from the questioned point is
three units. Its class is blue (cold). The closest red (warm) neighbor is distanced four units
from the questioned point. Since we are using the 1-nearest neighbor algorithm, we just
look at the closest neighbor and, therefore, the class of the questioned point should be blue
(cold).

[91]

Classification Using K Nearest Neighbors

By applying this procedure to every data point, we can complete the graph as follows:

Mary and temperature preferences

A 4=yl

)00000000000000000000006 %+
7000000000000000000000000(
00000000000 0000000000000(

wind speed in kmph

5y vV VYV VY VY V VY VYV VY VY VYV Y V VY VY YV V VYV VY V VYV VY V YV VI
5 10 15 20 25 30

temperature in C

Note that sometimes a data point can be distanced from two known classes with the same
distance: for example, 20 degrees Celsius and 6km/h. In such situations, we could prefer one
class over the other or ignore these boundary cases. The actual result depends on the
specific implementation of an algorithm.

Implementation of k-nearest neighbors
algorithm

We implement the k-NN algorithm in Python to find Mary's temperature preference. In the
end of this section we also implement the visualization of the data produced in example
Mary and her temperature preferences by the k-NN algorithm. The full compilable code
with the input files can be found in the source code provided with this book. The most
important parts are extracted here:

source_code/l/mary_and_temperature_preferences/knn_to_data.py
Applies the knn algorithm to the input data.

[10]

Classification Using K Nearest Neighbors

The input text file is assumed to be of the format with one line per
every data entry consisting of the temperature in degrees Celsius,
wind speed and then the classification cold/warm.

import sys
sys.path.append('..")
sys.path.append('../../common"')
import knn # noga

import common # noga

Program start

E.g. "mary_and_temperature_preferences.data"
input_file = sys.argv[1l]
E.g. "mary_and_temperature_preferences_completed.data"

output_file = sys.argv[2]
k = int (sys.argv[3])

x_from = int (sys.argv[4])

X_to = int (sys.argv[5])

y_from = int (sys.argv[6])
1)

y_to = int (sys.argv[7

data = common.load_3row_data_to_dic (input_file)
new_data = knn.knn_to_2d_data(data, x_from, x_to, y_from, y_to, k)
common.save_3row_data_from_dic (output_file, new_data)

source_code/common/common.py
Library with common routines and functions
def dic_inc(dic, key):

if key is None:

pass
if dic.get (key, None) 1is None:
dicl[key] =1
else:
diclkey] = diclkey] + 1

source_code/l/knn.py
Library implementing knn algorihtm

def info_reset (info):
info['nbhd_count'] = 0
info['class_count'] = {}

Find the class of a neighbor with the coordinates x,y.

If the class is known count that neighbor.

def info_add(info, data, x, y):
group = data.get ((x, y), None)
common.dic_inc(info['class_count'], group)
info['nbhd_count'] += int (group is not None)

[11]

Classification Using K Nearest Neighbors

Apply knn algorithm to the 2d data using the k-nearest neighbors with
the Manhattan distance.
The dictionary data comes in the form with keys being 2d coordinates
and the values being the class.
x,y are integer coordinates for the 2d data with the range
[x_from,x_to] x [y_from,y_to].
def knn_to_2d_data(data, x_from, x_to, y_from, y_to, k):
new_data = {}
info = {}

Go through every point in an integer coordinate system.
for y in range(y_from, y_to + 1):
for x in range (x_from, x_to + 1):
info_reset (info)
Count the number of neighbors for each class group for
every distance dist starting at 0 until at least k
neighbors with known classes are found.
for dist in range (0, x_to - x_from + y_to - y_£from):
Count all neighbors that are distanced dist from
the point [x,vy].
if dist == 0:
info_add(info, data, x, vy)
else:
for i in range (0, dist + 1):
info_add(info, data, x - i, y + dist - 1)
info_add(info, data, x + dist - i, y - 1)
for i in range(l, dist):
info_add(info, data, x + i, y + dist - 1)
info_add(info, data, x - dist + i, y - 1)
There could be more than k-closest neighbors if the
distance of more of them is the same from the point
[x,y]. But immediately when we have at least k of
them, we break from the loop.
if info['nbhd_count'] >= k:
break
class_max_count = None
Choose the class with the highest count of the neighbors
from among the k-closest neighbors.
for group, count in info['class_count'].items () :
if group is not None and (class_max_count is None or
count > info['class_count'][class_max_count]) :
class_max_count = group
new_data[x, y] = class_max_count
return new_data

[12]

Classification Using K Nearest Neighbors

Input:

The program above will use the file below as the source of the input data. The file contains
the table with the known data about Mary's temperature preferences:

source_code/l/mary_and_temperature_preferences/
marry_and_temperature_preferences.data

10 0 cold

25 0 warm

15 5 cold

20 3 warm

18 7 cold

20 10 cold

22 5 warm

24 6 warm

Output:

We run the implementation above on the input file
mary_and_temperature_preferences.data using the k-NN algorithm for k=1
neighbors. The algorithm classifies all the points with the integer coordinates in the
rectangle with a size of (30-5=25) by (10-0=10), so withtheaof (25+1) * (10+1) =
286 integer points (adding one to count points on boundaries). Using the we command, we
find out that the output file contains exactly 286 lines - one data item per point. Using the
head command, we display the first 10 lines from the output file. We visualize all the data
from the output file in the next section:

$ python knn_to_data.py mary_and_temperature_preferences.data
mary_and_temperature_preferences_completed.data 1 5 30 0 10

$ we -1 mary and_temperature_preferences_completed.data
286 mary_and_temperature_preferences_completed.data

$ head -10 mary_and_temperature_preferences_completed.data

7 3 cold
6 9 cold
12 1 cold
16 6 cold
16 9 cold
14 4 cold
13 4 cold
19 4 warm
18 4 cold
15 1 cold

[13]

Classification Using K Nearest Neighbors

Visualization:

For the visualization depicted earlier in this chapter, the matplotlib library was used. A
data file is loaded, and then displayed in a scattered diagram:

source_code/common/common.py

returns a dictionary of 3 lists: 1st with x coordinates,

2nd with y coordinates, 3rd with colors with numeric values
def get_x_y_colors(data):

dic = {}

dic['x'] = [0] * len(data)

dic['y'] = [0] * len(data)

dic['colors'] = [0] * len(data)

for i in range (0, len(data)):
dic['x'][i] = datali][0]
dic['y']l[i] = datali]l[1]
dic['colors'][i] = datal[i][2]

return dic

source_code/l1/mary_and_temperature_preferences/
mary_and_temperature_preferences_draw_graph.py
import sys

sys.path.append('../../common') # noga

import common

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.patches as mpatches

import matplotlib

matplotlib.style.use('ggplot"')

data_file_name = 'mary_and_temperature_preferences_completed.data’
temp_from = 5
temp_to = 30
wind_from = 0
wind_to = 10

data = np.loadtxt (open(data_file_name, 'r'),
dtype={'names': ('temperature', 'wind', 'perception'),
'formats': ('i4', 'i4', 'S4')})

Convert the classes to the colors to be displayed in a diagram.
for i in range (0, len(data)):

if data[i][2] == 'cold':
data[i][2] = 'blue'
elif datal[i][2] == 'warm':
data[i][2] = 'red'
else:
datali] [2] = 'gray'

[14]

Classification Using K Nearest Neighbors

Convert the array into the format ready for drawing functions.
data_processed = common.get_x_y_colors (data)

Draw the graph.

plt.title('Mary and temperature preferences')

plt.xlabel ('temperature in C')
plt.ylabel ('wind speed in kmph')

plt.axis([temp_from, temp_to, wind_from,

Add legends to the graph.

blue_patch = mpatches.Patch(color="blue',
mpatches.Patch(color="red"',
handles=[blue_patch, red_patch])

(data_processed['y'],

* len (data))

red_patch
plt.legend

(
plt.scatter (data_processed['x'],

c=data_processed['colors'],

plt.show ()

Map of Italy example - choosing the value of

k

In our data, we are given some points (about 1%) from the map of Italy and its
surroundings. The blue points represent water and the green points represent land; white
points are not known. From the partial information given, we would like to predict whether

there is water or land in the white areas.

Drawing only 1% of the map data in the picture would be almost invisible. If, instead, we
were given about 33 times more data from the map of Italy and its surroundings and drew

it in the picture, it would look like below:

[15]

label="'cold")
label="warm')

Classification Using K Nearest Neighbors

Analysis:

For this problem, we will use the k-NN algorithm - k here means that we will look at k
closest neighbors. Given a white point, it will be classified as a water area if the majority of
its k closest neighbors are in the water area, and classified as land if the majority of its k
closest neighbors are in the land area. We will use the Euclidean metric for the distance:
given two points X=[x,,x,] and Y=[y,y,], their Euclidean distance is defined as d;, .., =

sqrt((xo-yo) +(x-y,)’).

The Euclidean distance is the most common metric. Given two points on a piece of paper,
their Euclidean distance is just the length between the two points, as measured by a ruler, as
shown in the diagram:

L

To apply the k-NN algorithm to an incomplete map, we have to choose the value of k. Since
the resulting class of a point is the class of the majority of the k closest neighbors of that
point, k should be odd. Let us apply the algorithm for the values of k=1,3,5,7,9.

Applying this algorithm to every white point of the incomplete map will result in the
following completed maps:

[16]

Classification Using K Nearest Neighbors

As you will notice, the higher value of k results in a completed map with smoother
boundaries. The actual complete map of Italy is here:

We can use this real completed map to calculate the percentage of the incorrectly classified
points for the various values of k to determine the accuracy of the k-NN algorithm for
different values of k:

[17]

Classification Using K Nearest Neighbors

k| % of incorrectly classified points
1297

313.24
5
7
9

3.29
3.40
3.57

Thus, for this particular type of classification problem, the k-NN algorithm achieves the
highest accuracy (least error rate) for k=1.

However, in real-life, problems we wouldn't usually not have complete data or a solution.
In such scenarios, we need to choose k appropriate to the partially available data. For this,
consult problem 1.4.

House ownership - data rescaling

For each person, we are given their age, yearly income, and whether their is a house or not:

Age | Annual income in USD | House ownership status
23 [50,000 Non-owner
37 134,000 Non-owner
48 (40,000 Owner

52 {30,000 Non-owner
28 195,000 Owner

25 178,000 Non-owner
35 (130,000 Owner

32 |105,000 Owner

20 (100,000 Non-owner
40 160,000 Owner

50 (80,000 Peter

[18]

Classification Using K Nearest Neighbors

House Ownership

B owner
EEN Peter

. EEE non-owner

140000 -

120000 -

100000 - . .

80000 - . .
60000 - .

40000 - I .

20000 -

Annual income in USD

Age

The aim is to predict whether Peter, aged 50, with an income of $80k/year, owns a house
and could be a potential customer for our insurance company.

Analysis:

In this case, we could try to apply the 1-NN algorithm. However, we should be careful
about how we are going to measure the distances between the data points, since the income
range is much wider than the age range. Income levels of $115k and $116k are $1,000 apart.
These two data points with these incomes would result in a very long distance. However,
relative to each other, the difference is not too large. Because we consider both measures
(age and yearly income) to be about as important, we would scale both from 0 to 1
according to the formula:

ScaledQuantity = (Actual Quantity-MinQuantity)/(MaxQuantity-MinQuantity)
In our particular case, this reduces to:
ScaledAge = (ActualAge-MinAge)/(MaxAge-MinAge)

ScaledIncome = (Actuallncome- inlncome)/(MaxIncome-inIncome)

[19]

Classification Using K Nearest Neighbors

After scaling, we get the following data:

Age |Scaled age | Annual income in USD | Scaled annual House ownership status
income

23 [0.09375 50,000 0.2 Non-owner

37 10.53125 34,000 0.04 Non-owner

48 [0.875 40,000 0.1 Owner

52 |1 30,000 0 Non-owner

28 10.25 95,000 0.65 Owner

25 10.15625 78,000 0.48 Non-owner

35 [0.46875 130,000 1 Owner

32 [0.375 105,000 0.75 Owner

20 |0 100,000 0.7 Non-owner

40 10.625 60,000 0.3 Owner

50 [0.9375 80,000 0.5 ?

Now, if we apply the 1-NN algorithm with the Euclidean metric, we will find out that Peter
more than likely owns a house. Note that, without rescaling, the algorithm would yield a
different result. Refer to exercise 1.5.

Text classification - using non-Euclidean

distances

We are given the word counts of the keywords algorithm and computer for documents of
the classes, informatics and mathematics:

Algorithm words per 1,000 | Computer words per 1,000 | Subject classification
153 150 Informatics
105 97 Informatics
75 125 Informatics
81 84 Informatics

[20]

Classification Using K Nearest Neighbors

73 77 Informatics
90 63 Informatics
20 0 Mathematics
33 0 Mathematics
105 10 Mathematics
2 0 Mathematics
84 2 Mathematics
12 0 Mathematics
41 42 ?

The documents with a high rate of the words algorithm and computer are in the class of
informatics. The class of mathematics happens to contain documents with a high count
of the word algorithm in some cases; for example, a document concerned with the
Euclidean algorithm from the field of number theory. But, since mathematics tends to be
less applied than informatics in the area of algorithms, the word computer is contained
in such documents with a lower frequency.

We would like to classify a document that has 41 instances of the word algorithm per 1,000
words and 42 instances of the word computer per 1,000 words:

Text Classification

= informatics
mm mathematics
- ?

120 .

80 ‘ '
60~ ’

‘mathematics' words per 1000

N YW ¥ B a ‘
0 20 60 80 100 120 140 160
‘algorithm* words per 1000

[21]

Classification Using K Nearest Neighbors

Analysis:

Using, for example, the 1-NN algorithm and the Manhattan or Euclidean distance would
result in the classification of the document in question to the class of mathematics.
However, intuitively, we should instead use a different metric to measure the distance, as
the document in question has a much higher count of the word computer than other known
documents in the class of mathematics.

Another candidate metric for this problem is a metric that would measure the proportion of
the counts for the words, or the angle between the instances of documents. Instead of the
angle, one could take the cosine of the angle cos(6), and then use the well-known dot
product formula to calculate the cos(0).

Let a=(a,a,), b=(b,b,), then instead this formula:
la||blcos(0) =a-b=ag-by+ay-by
One derives:

az by +ay - by

|al[b]

cos(0) =

Using the cosine distance metric, one could classify the document in question to the class of
informatics:

Text Classification

= informatics
B mathematics
- ?

‘mathematics' words per 1000

[22]

Classification Using K Nearest Neighbors

Text classification - k-NN in higher-
dimensions

Suppose we are given documents and we would like to classify other documents based on
their word frequency counts. For example, the 120 most frequent words for the Project
Gutenberg e-book of the King James Bible are as follows:

1. the 8.07% 41. when 0.36% 81.go 0.19%

2. and 6.51% 42. this 0.36% 82. hand 0.18%
3. 0f 4.37% 43. out 0.35% 83. us 0.18%

4. t01.72%| 44 were 0.35% 84. saying 0.18%
5. that 1.63% 45. upon 0.35% 85. made 0.18%
6. in 1.60% 46. man 0.34% 87. went 0.18%
7.he 1.31% 47. you 0.34% 88. even 0.18%

8. shall 1.24% 48. by 0.33% 89. do 0.17%

9. for 1.13% 49. Israel 0.32% 90. now 0.17%
10. unto 1.13% 50. king 0.32% 91. behold 0.17%
11.11.11% 51. son 0.30% 92. saith 0.16%
12. his 1.07% 52. up 0.30% 93. therefore 0.16%
13.a1.04% 53. there 0.29% 94. every 0.16%
14. lord 1.00% 54. hath 0.28% 95. these 0.15%
15. they 0.93% 55. then 0.27% 96. because 0.15%
16. be 0.88% 56. people 0.27% 97. or 0.15%
17.1is 0.88% 57. came 0.26% 98. after 0.15%
18. him 0.84% 58. had 0.25% 99. our 0.15%

19. not 0.83% 59. house 0.25% 100. things 0.15%
20. them 0.81% 60. on 0.25% 101. father 0.14%
21.it 0.77% 61. into 0.25% 102. down 0.14%
22. with 0.76% 62. her 0.25% 103. sons 0.14%
23. all 0.71% 63. come 0.25% 104. hast 0.13%
24, thou 0.69% 64. one 0.25% 105. David 0.13%
25. thy 0.58% 65. we 0.23% 106. 0 0.13%

26. was 0.57% 66. children 0.23% 107. make 0.13%
27. god 0.56% 67.50.23% 108. say 0.13%
28. which 0.56% 68. before 0.23% 109. may 0.13%
29. my 0.55% 69. yvour 0.23% 110. over 0.13%
30. me 0.52% 70. also 0.22% 111. did 0.13%
31. said 0.50% 71. day 0.22% 112. earth 0.12%
32. but 0.50% 72. land 0.22% 113. what 0.12%
33.ye 0.50% 74.500.21% 114. Jesus 0.12%
34. their 0.50% 75. men 0.21% 115. she 0.12%
35. have 0.49% 76. against 0.21% 116. who 0.12%
36. will 0.48% 77. shalt 0.20% 117. great 0.12%
37. thee 0.48% 78. if 0.20% 118. name 0.12%
38. from 0.46% 79. at 0.20% 119. any 0.12%
39. as 0.44% 80. let 0.19% 120. thine 0.12%
40. are 0.37%

[23]

Classification Using K Nearest Neighbors

The task is to design a metric which, given the word frequencies for each document, would
accurately determine how semantically close those documents are. Consequently, such a
metric could be used by the k-NN algorithm to classify the unknown instances of the new
documents based on the existing documents.

Analysis:

Suppose that we consider, for example, N most frequent words in our corpus of the
documents. Then, we count the word frequencies for each of the N words in a given
document and put them in an N dimensional vector that will represent that document.
Then, we define a distance between two documents to be the distance (for example,
Euclidean) between the two word frequency vectors of those documents.

The problem with this solution is that only certain words represent the actual content of the
book, and others need to be present in the text because of grammar rules or their general
basic meaning. For example, out of the 120 most frequent words in the Bible, each word is
of a different importance, and the author highlighted the words in bold that have an
especially high frequency in the Bible and bear an important meaning;:

* lord - used 1.00% * Israel - 0.32% ¢ David - 0.13%
¢ god - 0.56% * king - 0.32% Jesus - 0.12%

These words are less likely to be present in the mathematical texts for example, but more
likely to be present in the texts concerned with religion or Christianity.

However, if we just look at the six most frequent words in the Bible, they happen to be less
in detecting the meaning of the text:

« the 8.07% e of 4.37% « that 1.63%
eand 6.51% *t0 1.72% *in 1.60%

Texts concerned with mathematics, literature, or other subjects will have similar frequencies
for these words. The differences may result mostly from the writing style.

Therefore, to determine a similarity distance between two documents, we need to look only
at the frequency counts of the important words. Some words are less important - these
dimensions are better reduced, as their inclusion can lead to a misinterpretation of the
results in the end. Thus, what we are left to do is to choose the words (dimensions) that are
important to classify the documents in our corpus. For this, consult exercise 1.6.

[24]

Classification Using K Nearest Neighbors

Summary

The k-nearest neighbor algorithm is a classification algorithm that assigns to a given data
point the majority class among the k-nearest neighbors. The distance between two points is
measured by a metric. Examples of distances include: Euclidean distance, Manhattan
distance, Minkowski distance, Hamming distance, Mahalanobis distance, Tanimoto
distance, Jaccard distance, tangential distance, and cosine distance. Experiments with
various parameters and cross-validation can help to establish which parameter k and which
metric should be used.

The dimensionality and position of a data point in the space are determined by its qualities.
A large number of dimensions can result in low accuracy of the k-NN algorithm. Reducing
the dimensions of qualities of smaller importance can increase accuracy. Similarly, to
increase accuracy further, distances for each dimension should be scaled according to the
importance of the quality of that dimension.

Problems

1. Mary and her temperature preferences: Imagine that you know that your friend
Mary feels cold when it is -50 degrees Celsius, but she feels warm when it is 20
degrees Celsius. What would the 1-NN algorithm say about Mary; would she feel
warm or cold at the temperatures 22, 15, -10? Do you think that the algorithm
predicted Mary's body perception of the temperature correctly? If not, please,
give the reasons and suggest why the algorithm did not give appropriate results
and what would need to improve in order for the algorithm to make a better
classification.

2. Mary and temperature preferences: Do you think that the use of the 1-NN
algorithm would yield better results than the use of the k-NN algorithm for k>1?

3. Mary and temperature preferences: We collected more data and found out that
Mary feels warm at 17C, but cold at 18C. By our common sense, Mary should feel
warmer with a higher temperature. Can you explain a possible cause of
discrepancy in the data? How could we improve the analysis of our data? Should
we collect also some non-temperature data? Suppose that we have only
temperature data available, do you think that the 1-NN algorithm would still
yield better results with the data like this? How should we choose k for K-NN
algorithm to perform well?

[25]

Classification Using K Nearest Neighbors

4.

Analysis:
1.

Map of Italy - choosing the value of k: We are given a partial map of Italy as for
the problem Map of Italy. But suppose that the complete data is not available.
Thus we cannot calculate the error rate on all the predicted points for different
values of k. How should one choose the value of k for the k-NN algorithm to
complete the map of Italy in order to maximize the accuracy?

House ownership: Using the data from the section concerned with the problem
of house ownership, find the closest neighbor to Peter using the Euclidean metric:

a) without rescaling the data,
b) using the scaled data.

Is the closest neighbor in a) the same as the neighbor in b)? Which of the
neighbors owns the house?

Text classification: Suppose you would like to find books or documents in
Gutenberg's corpus (www.gutenberg.org) that are similar to a selected book from
the corpus (for example, the Bible) using a certain metric and the 1-NN algorithm.
How would you design a metric measuring the similarity distance between the
two documents?

8 degrees Celsius is closer to 20 degrees Celsius than to -50 degrees Celsius. So,
the algorithm would classify that Mary should feel warm at -8 degrees Celsius.
But this likely is not true using our common sense and knowledge. In more
complex examples, we may be seduced by the results of the analysis to make
false conclusions due to our lack of expertise. But remember that data science
makes use of substantive and expert knowledge, not only data analysis. To make
good conclusions, we should have a good understanding of the problem and our
data.

The algorithm further says that at 22 degrees Celsius, Mary should feel
warm, and there is no doubt in that, as 22 degrees Celsius is higher than 20
degrees Celsius and a human being feels warmer with a higher temperature;
again, a trivial use of our knowledge. For 15 degrees Celsius, the algorithm
would deem Mary to feel warm, but our common sense we may not be that
certain of this statement.

[26]

Classification Using K Nearest Neighbors

To be able to use our algorithm to yield better results, we should collect more
data. For example, if we find out that Mary feels cold at 14 degrees Celsius,
then we have a data instance that is very close to 15 degrees and, thus, we
can guess with a higher certainty that Mary would feel cold at a temperature
of 15 degrees.

2. The nature of the data we are dealing with is just one-dimensional and also
partitioned into two parts, cold and warm, with the property: the higher the
temperature, the warmer a person feels. Also, even if we know how Mary feels at
temperatures, -40, -39, ..., 39, 40, we still have a very limited amount of data
instances - just one around every degree Celsius. For these reasons, it is best to
just look at one closest neighbor.

3. The discrepancies in the data can be caused by inaccuracy in the tests carried out.
This could be mitigated by performing more experiments.

Apart from inaccuracy, there could be other factors that influence how Mary
feels: for example, the wind speed, humidity, sunshine, how warmly Mary is
dressed (if she has a coat with jeans, or just shorts with a sleeveless top, or
even a swimming suit), if she was wet or dry. We could add these additional
dimensions (wind speed and how dressed) into the vectors of our data
points. This would provide more, and better quality, data for the algorithm
and, consequently, better results could be expected.

If we have only temperature data, but more of it (for example, 10 instances of
classification for every degree Celsius), then we could increase the k and look
at more neighbors to determine the temperature more accurately. But this
purely relies on the availability of the data. We could adapt the algorithm to
yield the classification based on all the neighbors within a certain distance d
rather than classifying based on the k-closest neighbors. This would make the
algorithm work well in both cases when we have a lot of data within the
close distance, but also even if we have just one data instance close to the
instance that we want to classify.

4. For this purpose, one can use cross-validation (consult the Cross-validation section
in the Appendix A - Statistics) to determine the value of k with the highest
accuracy. One could separate the available data from the partial map of Italy into
learning and test data, For example, 80% of the classified pixels on the map
would be given to a k-NN algorithm to complete the map. Then the remaining
20% of the classified pixels from the partial map would be used to calculate the
percentage of the pixels with the correct classification by the k-NN algorithm.

[27]

Classification Using K Nearest Neighbors

5. a) Without data rescaling, Peter's closest neighbor has an annual income of 78,000
USD and is aged 25. This neighbor does not own a house.
b) After data rescaling, Peter's closet neighbor has annual income of 60,000 USD
and is aged 40. This neighbor owns a house.

6. To design a metric that accurately measures the similarity distance between the
two documents, we need to select important words that will form the dimensions
of the frequency vectors for the documents. The words that do not determine the
semantic meaning of a documents tend to have an approximately similar
frequency count across all the documents. Thus, instead, we could produce a list
with the relative word frequency counts for a document. For example, we could
use the following definition:

frequency _count(word, document,)

relative_frequency_count(word, document) = frequency count (word, whole_corpus)
- , N

Then the document could be represented by an N-dimensional vector
consisting of the word frequencies for the N words with the highest relative
frequency count. Such a vector will tend to consist of the more important
words than a vector of the N words with the highest frequency count.

[28]

Naive Bayes

A naive Bayes classification algorithm assigns a class to an element of a set which is most
probable according to Bayes' theorem.

Let A and B be probabilistic events. P(A) the probability of A being true. P(A|B) the
conditional probability of A being true given B is true. Then, Bayes' theorem states the

following;:

P(AIB)=(P(BIA) * P(A))/P(B)

P(A) is the prior probability of A being true without the knowledge of the probability of
P(B) and P(BIA). P(A|B) is the posterior probability of A being true, taking into
consideration additional knowledge about the probability of B being true.

In this chapter, you will learn the following:

How to apply Bayes' theorem in a basic way to compute the probability of a
medical test being correct in simple example Medical test

To grasp Bayes' theorem by proving its statement above and its extension

How to apply Bayes' theorem differently for independent and dependent
variables in examples Playing chess

How to apply Bayes' theorem for discrete random variables in examples Medical
test and Playing chess; and for continuous random variables in example Gender
classification using the probability distribution of the continuous random
variable

To implement in Python an algorithm calculating the posterior probabilities
using Bayes' theorem in section Implementation of naive Bayes classifier

By verifying your understanding through solving problems in the end of the
chapter to discern in what situations Bayes' theorem is an appropriate method of
analysis and when it is not

Naive Bayes

Medical test - basic application of Bayes'
theorem

A patient takes a special cancer test which has the accuracy test_accuracy=99.9%: if the result
is positive, then 99.9% of the patients tested will suffer from the special type of cancer.
99.9% of the patients with a negative result do not suffer from the cancer.

Suppose that a patient is tested and scores positive on the test. What is the probability that a
patient suffers from the special type of cancer?

Analysis:

We will use Bayes' theorem to find out the probability of the patient having the cancer:

P(cancer]test_positive)=(P(test_positivelcancer) * P(cancer))/P(test_positive)

To know the prior probability that a patient has the cancer, we have to find out how
frequently the cancer occurs among people. Say that we find out that 1 person in 100,000
suffers from this kind of cancer. Then P(cancer)=1/100,000. So, P(test_positive | cancer) =
test_accuracy=99.9%=0.999 given by the accuracy of the test.

P(test_positive) has to be computed:

P(test_positive)=P(test_positive | cancer)*P(cancer)+P(test_positive | no_cancer)*P(no_cancer)
= test_accuracy*P(cancer)+(1-test_accuracy)*(1-P(cancer))

= 2*test_accuracy*P(cancer)+1-test_accuracy-P(cancer)

Therefore, we can compute the following:

P(cancer | test_positive) = (test_accuracy * P(cancer))/(2 * test_accuracy * P(cancer)+1-
test_accuracy-P(cancer))

=0.999 *0.00001 /(2 *0.999 * 0.00001 + 1 - 0.999-0.00001)
=0.00989128497 which is approximately 1%

[30]

Naive Bayes

So, even if the result of the test is positive and the test has accuracy is 99.9%, the probability
of the patient having the tested type of cancer is only approximately 1%. This probability of
having the cancer after taking the test is relatively low when compared to the high accuracy
of the test, but is much higher than the probability of 1 in 100,000 (0.001%), as known prior
to taking the test based on its occurrence in the population.

Proof of Bayes' theorem and its extension

Bayes' theorem states the following:
P(AIB)=[P(BJA) * P(A)J/P(B)

Proof:

We can prove this theorem using elementary set theory on the probability spaces of the
events A and B. That is, here, a probability event will be defined as the set of the possible
outcomes in the probability space:

Figure 2.1: Probability space for the two events

From figure 2.1 above, we can state the following relationships:
P(A|B)=P(ANB)/P(B)

P(BIA)=P(ANB)/P(A)

[31]

Naive Bayes

Rearranging these relationships, we get the following:
P(AnB)=P(A1B)*P(B)

P(ANB)=P(BIA)*P(A)

P(A1B)*P(B)=P(BIA)*P(A)

This is, in fact, Bayes' theorem:
P(A|B)=P(BIA)*P(A)/P(B)

This concludes the proof.

Extended Bayes' theorem

We can extend Bayes' theorem taking into consideration more probability events. Suppose
that the events B,,..., B, are conditionally independent given A. Let ~A denote the
complement of A. Then:

P(A|B,...,B,) = P(B,,...B,|A) * P(A) | P(B,...,B,)

=[P(B,IA)*...* P(B,|A) * P(A)] / [P(B,| A) * ... * P(B,| A) * P(A) + P(B,1~A) * ... * P(B,|~A) *
P(~A)]

Proof:

Since the events B,,...,B, are conditionally independent given A (and also given ~A), we have
the following:

P(B,...,B,|A)=P(B,|A) * ... * P(B,|A)

Applying the simple form of Bayes' theorem and this fact, we thus have the following:
P(AlB,,...,B,)=P(B,...,B,1A) * P(A) | P(B,,...,B,)

=P(B,lA) *...*P(B,|A) * P(A) | [P(B,,...,.B,| A)*P(A)+P(B,,....B,| ~A)*P(~A)]

—[P(B,1A) *...* P(B,| A) * P(A)] / [P(B,1 A) * ... * P(B,| A) * P(A) + P(B,1~A) * ... * P(B,| ~A) *
P(~A)]

This completes the proof as required.

[32]

Naive Bayes

Playing chess - independent events

Suppose we are given the following table of data with the conditions for our friend playing
a game of chess with us in a park outside:

Temperature | Wind | Sunshine | Play
Cold Strong [Cloudy [No
Warm Strong | Cloudy |No
Warm None |Sunny Yes
Hot None |Sunny No
Hot Breeze [Cloudy |Yes
Warm Breeze | Sunny Yes
Cold Breeze [Cloudy |No
Cold None |Sunny Yes
Hot Strong [Cloudy | Yes
Warm None |Cloudy |[Yes
Warm Strong | Sunny ?

We would like to find out using Bayes' theorem whether our friend would like to play a
game of chess with us in the park given that the temperature is warm, the wind is strong,
and it is sunny.

Analysis:

In this case, we may want to consider temperature, wind, and sunshine as the independent
random variables. The formula for the extended Bayes' theorem when adapted becomes the
following;:

P(Play=Yes | Temperature=Warm, Wind=Strong, Sunshine=Sunny)=R/(R+~R)

Here, R = P(Temperature=Warm | Play=Yes)* P(Wind=Strong | Play=Yes) *
P(Sunshine=Sunny | Play=Yes) * P(Play=Yes), and

~R = P(Temperature=Warm | Play=No)* P(Wind=Strong | Play=No) * P(Sunshine=Sunny | Play=No)
* P(Play=No).

[33]

Naive Bayes

Let us count the number of columns in the table with all known values to determine the
individual probabilities.

P(Play=Yes)=6/10=3/5 since there are 10 columns with complete data and 6 of them have the
value Yes for the attribute Play.

P(Temperature=Warm | Play=Yes)=3/6=1/2 since there are 6 columns with the value Yes for the
attribute Play and, out of them, 3 have the value Warm for the attribute Temperature.
Similarly, we have the following;:

P(Wind=Strong|Play=Yes)=1/6
P(Sunshine=Sunny|Play=Yes)=3/6=1/2
P(Play=No)=4/10=2/5
P(Temperature=Warm|Play=No)=1/4
P(Wind=Strong|Play=No)=2/4=1/2
P(Sunshine=Sunny|Play=No)=1/4

Thus R=(1/2)*(1/6)*(1/2)*(3/5)=1/40 and ~R=(1/4)*(1/2)*(1/4)*(2/5)=1/80. Therefore, we have the
following;:

P(Play=Yes | Temperature=Warm,Wind=Strong, Sunshine=Sunny)= R/(R+~R)=2/3~67%

Therefore, our friend is likely to be happy to play chess with us in the park in the stated
weather conditions with a probability of about 67%. Since this is a majority, we could
classify the data vector (Temperature=Warm,Wind=Strong, Sunshine=Sunny) to be in the class
Play=Yes.

Implementation of naive Bayes classifier

We implement a program calculating the probability of a data item belonging to a certain
class using Bayes' theorem:

source_code/2/naive_bayes.py

A program that reads the CSV file with the data and returns

the Bayesian probability for the unknown value denoted by ? to
belong to a certain class.

An input CSV file should be of the following format:

[34]

Naive Bayes

import imp
import sys

1. items in a row should be separated by a comma ','

2. the first row should be a heading - should contain a name for each
column of the data.

3. the remaining rows should contain the data itself - rows with

complete and rows with the incomplete data.

A row with complete data is the row that has a non-empty and

non—question mark value for each column. A row with incomplete data is
the row that has the last column with the value of a question mark ?.
Please, run this file on the example chess.csv to understand this help
better:

#

$ python naive_bayes.py chess.csv

sys.path.append('../common"')
import common # noga

H= = =

Calculates the Baysian probability for the rows of incomplete data and
returns them completed by the Bayesian probabilities. complete_data
are the rows with the data that is complete and are used to calculate
the conditional probabilities to complete the incomplete data.

def bayes_probability (heading, complete_data, incomplete_data,

enquired_column) :

conditional_counts = {}
enquired_column_classes = {}
for data_item in complete_data:

common.dic_inc (enquired_column_classes,

data_item[enquired_column])

for i in range (0, len(heading)):

if i !'= enquired_column:
common.dic_inc (
conditional_counts, (
heading[i], data_item[i],
data_item[enquired_column]))

completed_items = []
for incomplete_item in incomplete_data:

partial_probs = {}

complete_probs = {}

probs_sum = 0

for enquired_group in enquired_column_classes.items() :

For each class in the of the enquired variable A calculate
the probability P (A)*P (B,|A)*P(B,|A)*...*P(B,|A) where
B,,...,B, are the remaining variables.
probability = float (common.dic_key_count (
enquired_column_classes,
enquired_group([0])) / len(complete_data)
for i in range (0, len(heading)):

[35]

Naive Bayes

if i != enquired_column:
probability = probability * (float (
common.dic_key_count (
conditional_counts, (
heading[i], incomplete_item[i],
enquired_group[0]))) / (
common.dic_key_count (enquired_column_classes,
enquired_group[0])))
partial_probs[enquired_group[0]] = probability
probs_sum += probability

for enquired_group in enquired_column_classes.items() :
complete_probs[enquired_group[0]
] = partial_probslenquired_group[0]
] / probs_sum
incomplete_item[enquired_column] = complete_probs
completed_items.append (incomplete_item)
return completed_items

Program start
if len(sys.argv) < 2:
sys.exit ('Please, input as an argument the name of the CSV file.')

(heading, complete_data, incomplete_data,
enquired_column) = common.csv_file_to_ordered_data(sys.argv[1l])

Calculate the Bayesian probability for the incomplete data
and output it.
completed_data = bayes_probability (

heading, complete_data, incomplete_data, enquired_column)
print completed_data

source_code/common/common.py
Increments integer values in a dictionary.
def dic_inc(dic, key):

if key is None:

pass
if dic.get (key, None) 1is None:
dicl[key] =1
else:
diclkey] = diclkey] + 1

def dic_key_count (dic, key):
if key is None:
return 0
if dic.get (key, None) 1is None:
return 0
else:

[36]

Naive Bayes

return int (diclkey])
Input:
We save the data from the table in example Playing chess in the following CSV file:

source_code/2/naive_bayes/chess.csv
Temperature,Wind, Sunshine,Play
Cold, Strong, Cloudy, No

Warm, Strong, Cloudy, No
Warm, None, Sunny, Yes

Hot,None, Sunny, No
Hot,Breeze,Cloudy, Yes

Warm, Breeze, Sunny, Yes
Cold,Breeze, Cloudy, No

Cold, None, Sunny, Yes

Hot, Strong, Cloudy, Yes

Warm, None, Cloudy, Yes

Warm, Strong, Sunny, ?

Output:

We provide the file chess. csv as the input to the Python program calculating the
probabilities of the data item (Temperature=Warm,Wind=Strong, Sunshine=Sunny) belonging
to the classes present in the file: Play=Yes and Play=No. As we found out earlier manually,
the data item belongs with a higher probability to the class Play=Yes. Therefore we classify
the data item into that class:

$ python naive_bayes.py chess.csv
[
['"Warm', 'Strong', 'Sunny', {
'Yes': 0.6666666666666666,
'No': 0.33333333333333337
H]

Playing chess - dependent events

Suppose that we would like to find out again if our friend would like to play chess in the
park with us in a park in Cambridge, UK. But, this time, we are given different input data:

Temperature | Wind |Season |Play

Cold Strong | Winter |No

[37]

Naive Bayes

Warm Strong | Autumn [No
Warm None [Summer |Yes
Hot None |Spring |No
Hot Breeze | Autumn | Yes
Warm Breeze | Spring | Yes
Cold Breeze | Winter |No
Cold None |Spring |Yes
Hot Strong | Summer | Yes
Warm None |Autumn|Yes
Warm Strong | Spring | ?

So, we wonder how the answer will change with this different data.
Analysis:

We may be tempted to use Bayesian probability to calculate the probability of our friend
playing chess with us in the park. However, we should be careful, and ask whether the
probability events are independent of each other.

In the previous example, where we used Bayesian probability, we were given the
probability variables Temperature, Wind, and Sunshine. These are reasonably independent.
Common sense tells us that a specific temperature or sunshine does not have a strong
correlation to a specific wind speed. It is true that sunny weather results in higher
temperatures, but sunny weather is common even when the temperatures are very low.
Hence, we considered even sunshine and temperature reasonably independent as random
variables and applied Bayes' theorem.

However, in this example, temperature and season are tightly related, especially in a
location such as the UK, where we stated that the park we are interested in was placed.
Unlike closer to the equator, temperatures in the UK vary greatly throughout the year.
Winters are cold and summers are hot. Spring and fall have temperatures in between.

Therefore, we cannot apply Bayes' theorem here, as the random variables are dependent.
However, we could still perform some analysis using Bayes' theorem on the partial data. By
eliminating sufficient dependent variables, the remaining ones could turn out to be
independent. Since temperature is a more specific variable than season, and the two
variables are dependent, let us keep only the temperature variable. The remaining two
variables, temperature and wind, are dependent.

[38]

Naive Bayes

Thus, we get the following data:

Temperature | Wind |Play
Cold Strong | No
Warm Strong | No
Warm None |Yes
Hot None |No
Hot Breeze | Yes
Warm Breeze | Yes
Cold Breeze | No
Cold None |Yes
Hot Strong | Yes
Warm None |Yes
Warm Strong | ?

We can keep the duplicate rows, as they give us greater evidence of the occurrence of the
specific data row.

Input:
Saving the table we get the following CSV file:

source_code/2/chess_reduced.csv
Temperature,Wind, Play
Cold, Strong, No

Warm, Strong, No

Warm, None, Yes

Hot, None, No

Hot, Breeze, Yes

Warm, Breeze, Yes

Cold, Breeze, No

Cold, None, Yes

Hot, Strong, Yes

Warm, None, Yes

Warm, Strong, ?

[39]

Naive Bayes

Output:

We input the saved CSV file into the program naive_bayes.py. We get the following
result:

python naive_bayes.py chess_reduced.csv
[['Warm', 'Strong', {'Yes': 0.49999999999999994, 'No': 0.5}]]

The first class, Yes, is going to be true with the probability 50%. The numerical difference
resulted from using Python's non-exact arithmetic on the float numerical data type. The
second class, No, has the same probability, 50%, of being true. We, thus, cannot make a
reasonable conclusion with the data that we have about the class of the vector (Warm,
Strong). However, we probably have already noticed that this vector already occurs in the
table with the resulting class No. Hence, our guess would be that this vector should just
happen to exist in one class, No. But, to have greater statistical confidence, we would need
more data or more independent variables involved.

Gender classification - Bayes for continuous
random variables

So far, we have been given a probability event that belonged to one of a finite number of
classes, for example, a temperature was classified as cold, warm, or hot. But how would we
calculate the posterior probability if we were given the temperature in degrees Celsius
instead?

For this example, we are given five men and five women with their heights as in the
following table:

Height in cm | Gender
180 Male
174 Male
184 Male
168 Male
178 Male
170 Female
164 Female

[40]

Naive Bayes

155 Female
162 Female
166 Female
172 ?

Suppose that the next person has the height 172cm. What gender is that person more likely
to be and with what probability?

Analysis:

One approach to solving this problem could be to assign classes to the numerical values, for
example, the people with a height between 170 cm and 179 cm would be in the same class.
With this approach, we may end up with a few classes that are very wide, for example, with
a high cm range, or with classes that are more precise but have fewer members and so the
power of Bayes cannot be manifested well. Similarly, using this method, we would not
consider that the classes of height intervals in cm [170,180) and [180,190) are closer to each
other than the classes [170,180) and [190,200).

Let us remind ourselves of the Bayes' formula here:
P(malel height)=P(height | male)*P(male)/P(height)
=P(height | male)*P(male)/[P(height | male)*P(male)+P(height | female)*P(female)]

Expressing the formula in the final form above removes the need to normalize the
P(height | male) and P(height) to get the correct probability of a person being male based on
the measured height.

Assuming that the height of people is distributed normally, we could use a normal
probability distribution to calculate P(malelheight). We assume P(male)=0.5, that is, that it is
equally likely that the person to be measured is of either gender. A normal probability
distribution is determined by the mean p and the variance ¢” of the population:

—(z—p)?
e 202

f(z|p, 0%) = o=

[41]

Naive Bayes

Gender | Mean of height | Variance of height
Male |176.8 37.2
Female |163.4 30.8

Thus we could calculate the following:
P(height=172 | male)=exp[-(172- 176.8)2/(2*37.2)]/[sqrt(2*37.2*n)]=0
P(height=172 | female)=exp[-(172- 163.4)2/(2*30.8)1/[sqrt(2*30.8*7)]1=0.02163711333

Note that these are not the probabilities, just the values of the probability density function.
However, from these values, we can already observe that a person with a measured height
172 cm is more likely to be male than female because

P(height=172 | male)>P(height=172 | female). To be more precise:

P(male| height=172)=P(height=172 | male)*P(male)/[P(height=172 | male)*P(male)+P(height=17
2| female)*P(female)]

=0.04798962999*0.5/[0.04798962999*0.5+0.02163711333*0.5]=0.68924134178~68.9%

Therefore, the person with the measured height 172 cm is a male with a probability of
68.9%.

Summary

Bayes' theorem states the following:
P(AIB)=(P(BIA) * P(A))/P(B)

Here, P(A|B) is the conditional probability of A being true given that B is true. It is used to
update the value of the probability that A is true given the new observations about other
probabilistic events. This theorem can be extended to a statement with multiple random
variables:

P(AIB,...B,)=[P(B,1A) * ... * P(B,|A) * P(A)] / [P(B,| A) * ... * P(B,| A) * P(A) + P(B,1~A) * ... *
P(B,|~A) * P(~A)]

[42]

Naive Bayes

The random variables B,,...,B, have to be independent conditionally given A. The random
variables can be discrete or continuous and follow some probability distribution, for
example, normal (Gaussian) distribution.

For the case of a discrete random variable, it would be best to ensure you have a data item
for each value of a discrete random variable given any of the conditions (value of A) by
collecting enough data.

The more independent random variables we have, the more accurately we can determine
the posterior probability. However, the greater danger there is that some of these variables
could be dependent, resulting in imprecise final results. When the variables are dependent,
we may eliminate some of the dependent variables and consider only mutually
independent variables, or consider another algorithm as an approach to solving the data
science problem.

Problems

1. A patient is tested for having a virus V. The accuracy of the test is 98%. This virus
V is currently present in 4 out of 100 people in the region of the patient:

¢ a) What is the probability that a patient suffers from the virus V if they tested
positive?

¢ b) What is the probability that a patient can still suffer from the disease if the
result of the test was negative?

2. Apart from assessing the patients for suffering from the virus V (in question 2.1.),
by using the test, a doctor usually also checks for other symptoms. According to a
doctor, about 85% of patients with symptoms such as fever, nausea, abdominal
discomfort, and malaise suffer from the virus V:

¢ a) What is the probability that a patient is suffering from the virus V if they have
the symptoms mentioned above and their test result for the virus V is positive?

¢ b) How likely is it the patient is suffering from the virus V if they have the
symptoms mentioned above, but the result of the test is negative?

3. On a certain island, 1 in 2 tsunamis are preceded by an earthquake. There have
been 4 tsunamis and 6 earthquakes in the past 100 years. A seismological station
recorded an earthquake in the ocean near the island. What is the probability that
it will result in a tsunami?

[43]

Naive Bayes

4. Patients are tested with four independent tests on whether they have a certain

illness:

Test1 positive | Test2 positive | Test3 positive | Test4 positive | Illness
Yes Yes Yes No Yes
Yes Yes No Yes Yes
No Yes No No No
Yes No No No No
No No No No No
Yes Yes Yes Yes Yes
Yes No Yes Yes Yes
No Yes No No No
No No Yes Yes No
Yes Yes No Yes Yes
Yes No Yes No Yes
Yes No No Yes Yes
No Yes Yes No ?

We have taken a new patient, for whom the second and third tests are positive and the first
and fourth are negative. What is the probability that they suffer from the illness?

5. We are given the following table of which words an email contains and whether
it is spam or not:

Money | Free | Rich | Naughty | Secret | Spam
No No |Yes |No Yes Yes
Yes Yes |Yes |[No No Yes
No No |No |No No No
No Yes |No [No No Yes
Yes No |No |No No No
No Yes |No |Yes Yes Yes

[44]

Naive Bayes

No Yes |No |Yes No Yes
No No |No |Yes No Yes
No Yes |No [No No No
No No [No |No Yes [No
Yes Yes |Yes [No Yes Yes
Yes No |No |No Yes Yes
No Yes |Yes |[No No No
Yes No |Yes |No Yes ?

¢ a) What is the result of the naive Bayes algorithm when given an email that
contains the words money, rich, and secret, but does not contain the words free
and naughty?

¢ b) Do you agree with the result of the algorithm? Is the naive Bayes algorithm, as
used here, a good method to classify email? Justify your answers.

6. Gender classification. Assume we are given the following data about 10 people:

Height in cm | Weight in kg | Hair length | Gender
180 75 Short Male
174 71 Short Male
184 83 Short Male
168 63 Short Male
178 70 Long Male
170 59 Long Female
164 53 Short Female
155 46 Long Female
162 52 Long Female
166 55 Long Female
172 60 Long ?

[45]

Naive Bayes

What is the probability that the 11th person with a height of 172cm, weight of 60kg, and
long hair is a man?

Analysis:

1. Before the patient is given the test, the probability that he suffers from the virus is
4%, P(virus)=4%=0.04. The accuracy of the test is test_accuracy=98%=0.98. We
apply the formula from the medical test example:

P(test_positive)=P(test_positive | virus)*P(virus)+P(test_positive | virus)*P(no_virus)
= test_accuracy*P(virus)+(1-test_accuracy)*(1-P(virus))

= 2*test_accuracy*P(virus)+1-test_accuracy-P(virus)

Therefore, we have the following:

e a) P(virus| test_positive)=P(test_positive | virus)*P(virus)/P(test_positive)
=test_accuracy*P(virus)/P(test_positive)
=test_accuracy*P(virus)/[2*test_accuracy*P(virus)+1-test_accuracy-P(virus)]
=0.98%0.04/[2%0.98%0.04+1-0.98-0.04]=0.67123287671~67%

Therefore, there is a probability of about 67% that a patient suffers from the
virus V if the result of the test is positive:

 b) P(virus|test_negative)=P(test_negative | virus)*P(virus)/P(test_negative)
=(1-test_accuracy)*P(virus)/[1-P(test_positive)]
=(1-test_accuracy)*P(virus)/[1-2*test_accuracy*P(virus)-1+test_accuracy+P(virus)]
=(1-test_accuracy)*P(virus)/[test_accuracy+P(virus)-2*test_accuracy*P(virus)]
=(1-0.98)*0.04/[0.98+0.04-20.9870.04]=0.000849617672~0.08 %

If the test is negative, a patient can still suffer from the virus V with a
probability of 0.08%.

[46]

Naive Bayes

2. Here, we can assume that symptoms and a positive test result are conditionally

independent events given that a patient suffers from virus V. The variables we
have are the following:

P(virus)=0.04
test_accuracy=0.98
symptoms_accuracy=85%=0.85

Since we have two independent random variables, we will use an extended
Bayes' theorem:

e a) Let R=P(test_positive|virus)*P(symptoms | virus)*P(virus)

=test_accuracy*symptoms_accuracy*P(virus)
=0.98%0.85*0.04=0.03332

~R=P(test_positive | ~virus)*P(symptoms | ~virus)*P(~virus)
=(1-test_accuracy)*(1-symptoms_accuracy)*(1-P(virus))
=(1-0.98)*(1-0.85)*(1-0.04)=0.00288

Then P(virus | test_positive,symptoms) = R/[R+~R]
=0.03332/[0.03332+0.00288]=0.92044198895~92%.

So, the patient with the symptoms for virus V and the positive test result for
virus V suffers from the virus with a probability of approximately 92%.

Note that in the previous question, we learnt that a patient suffers from
the disease with the probability of only about 67% given that the result of
the test was positive. But after adding another independent random
variable, the confidence increased to 92% even though the symptom
assessment was reliable only on 85%. This implies that usually it is a very
good idea to add as many independent random variables as possible to
calculate the posterior probability with a higher accuracy and confidence.

[47]

Naive Bayes

¢ b) Here, the patient has the symptoms for the virus V, but the result of the test is
negative. Thus we have the following:

R=P(test_negative | virus)*P(symptoms | virus)*P(virus)
=(1-test_accuracy)*symptoms_accuracy*P(virus)
=(1-0.98)*0.85%0.04=0.00068
~R=P(test_negative|~virus)*P(symptoms | ~virus)*P(~virus)
=test_accuracy*(1-symptoms_accuracy)*(1-P(virus))
=0.98%*(1-0.85)*(1-0.04)=0.14112

Thus P(virus | test_negative,symptoms)=R/[R+~R]
=0.00068/[0.00068+0.14112]=0.0047954866~0.48%

Thus, a patient tested negative on the test, but with symptoms of virus V, has
a probability of 0.48% of having the virus.

3. We apply the basic form of Bayes' theorem:

P(tsunamil earthquake)=P(earthquake | tsunami)*P(tsunami)/P(earthquake)
~0.5%(4/(365*100))/(6/(365*100))
~0.5"4/6~1/3=33%

There is a chance of 33% that there will be a tsunami following the recorded
earthquake.

Note that here we set P(tsunami) to be the probability of a tsunami
happening on some particular day out of the days in the past 100
years. We used a day as a unit to calculate the probability
P(earthquake) as well. If we changed the unit to an hour, week, month,
and so on for both P(tsunami) and P(earthquake), the result would still
be the same. What is important in the calculation is the ratio

P(tsunami):P(earthquake)=4:6=2/3:1, that is, that a tsunami is 2/3 times
more likely to happen than an earthquake.

[48]

Naive Bayes

4. We put the data into the program for calculating the posterior probability from
the observations and get the following answer:

[['No’, "Yes’, "Yes’, 'No’, {"Yes’: 0.0, 'No’: 1.0}]]

By this calculation, a patient tested should not suffer from the illness.
However, the probability of No seems quite high. It may be a good idea to
get more data to get a more precise estimate of with what probability the
patient is healthy.

5. a) The result of the algorithm is as follows:

[["Yes’, 'No’, "Yes’, 'No’, "Yes’, {'Yes’: 0.8459918784779665, 'No':
0.15400812152203341}]]

So, according to the naive Bayes algorithm, when applied to the data in the
table, the email is spam with the probability of about 85%.

b) This method may not be as good since the occurrence of certain words in a
spam email is not independent. For example, spam emails containing the
word money would likely try to convince that a victim of a spam could
somehow get the money from the spammer and thus other words such as
rich, secret, or free are more likely to be present in such an email as well. A
nearest neighbor algorithm would seem to perform better at spam email
classification. One could verify the actual methods using cross-validation.

6. For this problem, we will use the extended Bayes' theorem for both continuous
and discrete random variables:

P(male| height=172cm,weight=60kg, hair=long)=R/[R+~R]
where R=P(height=172cm | male)*P(weight=60kg | male)*P(hair=long | male)*P(male)

~R=P(height=172cm | female)*P(weight=60kg | female)*P(hair=long | female)*P(female
)

[49]

Naive Bayes

Let us summarize the given information in the following tables:

Gender | Mean of height | Variance of height
Male |176.8 37.2
Female |163.4 30.8

Gender | Mean of weight | Variance of weight
Male |72.4 53.8
Female |53 22.5

From this data, let us determine other values needed to determine the final
probability of the person being male:

P(height=172cm | male)=0.04798962999

P(weight=60kg | male)=exp[-(60- 72.4)2/(2*53.8)]/[sqrt(2%53.8*x)]=0.01302907931
P(hair=long | male)=0.2

P(male)=0.5 by assumption

P(height=172cm | female)=0.02163711333

P(weight=60kg | female)=exp[-(60- 53)2/(2*22.5)]/[sqrt(2*22.5%*x)]=0.02830872899
P(hair=long | female)=0.8

P(female)=0.5 by assumption, Hence, we have the following;:
R=0.0479896299970.01302907931*0.2*0.5=0.00006252606
~R=0.02163711333*0.028308728990.80.5=0.00024500767

P(male| height=172cm,weight=60kg, hair=long)
=0.00006252606/[0.00006252606+0.00024500767]=0.2033144787~20.3%

Therefore, the person with height 172 cm, weight 60 kg, and long hair is a
male with a probability of 20.3%. Thus, they are more likely to be female.

[50]

Decision Trees

A decision tree is the arrangement of the data in a tree structure where, at each node, data is
separated to different branches according to the value of the attribute at the node.

To construct a decision tree, we will use a standard ID3 learning algorithm that chooses an
attribute that classifies the data samples in the best possible way to maximize the
information gain - a measure based on information entropy.

In this chapter, you will learn:

What a decision tree is and how to represent data in a decision tree in example
Swim preference

In the section Information theory concepts of information entropy and
information gain theoretically first, then practically applying on example Swim
preference

ID3 algorithm constructing a decision tree from the training data and its
implementation in Python

How to classify new data items using the constructed decision tree in example
Swim preference

How to provide an alternative analysis using decision trees to the problem
Playing chess from the previous chapter and how the results of two different
algorithms applied may differ

Verifying your understanding at the exercise section when to use and when not
to use decision trees as a method of analysis

How to deal with data inconsistencies during decision tree construction in
example Going shopping

Decision Trees

Swim preference - representing data with
decision tree

For example, we may have certain preferences on whether we would swim or not. This can
be recorded in the table as follows:

Swimming suit | Water temperature | Swim preference
None Cold No
None Warm No
Small Cold No
Small Warm No
Good Cold No
Good Warm Yes

Data in this table can be represented alternatively with the following decision tree, for
example:

Swim?

swimming suit

ood
none/ I small \
no water

no

colc/ wrm
no
yes

Figure 3.1.: Decision tree for the swim preference example

At the root node, we ask the question: does one have a swimming suit? The response to the
question separates the available data into three groups, each with two rows. If the attribute
swimming suit = none, then two rows have the attribute swim preference as no.
Therefore, there is no need to ask a question about the temperature of the water as all the
samples with the attribute swimming suit = none would be classified as no. This is also
true for the attribute swimming suit = small. In the case of swimming suit = good,
the remaining two rows can be divided into two classes: no and yes.

[52]

Decision Trees

Without further knowledge, we would not be able to classify each row correctly.
Fortunately, there is one more question that can be asked about each row which classifies
each row correctly. For the row with the attribute water=cold, the swimming preference is
no. For the row with the attribute water=warm, the swimming preference is yes.

To summarize, starting with the root node, we ask a question at every node and based on
the answer, we move down the tree until we reach a leaf node where we find the class of
the data item corresponding to those answers.

This is how we can use a ready-made decision tree to classify samples of the data. But it is
also important to know how to construct a decision tree from the data.

Which attribute has a question at which node? How does this reflect on the construction of
a decision tree? If we change the order of the attributes, can the resulting decision tree
classify better than another tree?

Information theory

Information theory studies the quantification of information, its storage and
communication. We introduce concepts of information entropy and information gain that
are used to construct a decision tree using ID3 algorithm.

Information entropy

Information entropy of the given data measures the least amount of the information
necessary to represent a data item from the given data. The unit of the information entropy
is a familiar unit - a bit and a byte, a kilobyte, and so on. The lower the information entropy,
the more regular the data is, the more pattern occurs in the data and thus less amount of the
information is necessary to represent it. That is why compression tools on the computer can
take large text files and compress them to a much smaller size, as words and word
expressions keep reoccurring, forming a pattern.

[53]

Decision Trees

Coin flipping
Imagine we flip an unbiased coin. We would like to know if the result is head or tail. How
much information do we need to represent the result? Both words, head and tail, consist of

four characters, and if we represent one character with one byte (8 bits) as it is standard in
the ASCII table, then we would need four bytes or 32 bits to represent the result.

But the information entropy is the least amount of the data necessary to represent the result.
We know that there are only two possible results - head or tail. If we agree to represent
head with 0 and tail with 1, then one bit would be sufficient to communicate the result
efficiently. Here the data is the space of the possibilities of the result of the coin throw. It is
the set {head, tail} which can be represented as a set {0, 1}. The actual result is a data item
from this set. It turns out that the entropy of the set is 1. This is owing to that the probability
of head and tail are both 50%.

Now imagine that the coin is biased and throws head 25% of the time and tail 75% of the
time. What would be the entropy of the probability space {0, 1} this time? We could
certainly represent the result with one bit of the information. But can we do better? One bit
is, of course, indivisible, but maybe we could generalize the concept of the information to
indiscrete amounts.

In the previous example, we know nothing about the previous result of the coin flip unless
we look at the coin. But in the example with the biased coin, we know that the result tail is
more likely to happen. If we recorded n results of coin flips in a file representing heads with
0 and tails with 1, then about 75% of the bits there would have the value 1 and 25% of them
would have the value 0. The size of such a file would be n bits. But since it is more regular
(the pattern of 1s prevails in it), a good compression tool should be able to compress it to
less than n bits.

To learn the theoretical bound to the compression and the amount of the information
necessary to represent a data item, we define information entropy precisely.

Definition of information entropy

Suppose that we are given a probability space S with the elements 1, 2, ..., n. The probability
an element i would be chosen from the probability space is p,. Then the information entropy
of the probability space is defined as:

E(S)=-p, *log,(p,) - ... - p, *log,(p,) where log, is a binary logarithm.

[54]

Decision Trees

So the information entropy of the probability space of unbiased coin throws is:
E =-0.5*10g,(0.5) - 0.5*10g,(0.5)=0.5+0.5=1

When the coin is based with 25% chance of a head and 75% change of a tail, then the
information entropy of such space is:

E=-0.25*10g,(0.25) - 0.75*10g,(0.75) = 0.81127812445

which is less than 1. Thus, for example, if we had a large file with about 25% of 0 bits and
75% of 1 bits, a good compression tool should be able to compress it down to about 81.12%
of its size.

Information gain

The information gain is the amount of the information entropy gained as a result of a
certain procedure. For example, if we would like to know the results of three fair coins, then
its information entropy is 3. But if we could look at the third coin, then the information
entropy of the result for the remaining two coins would be 2. Thus, by looking at the third
coin, we gained one bit information, so the information gain is 1.

We may also gain the information entropy by dividing the whole set S into sets, grouping
them by a similar pattern. If we group elements by their value of an attribute A, then we
define the information gain as:

|5
B

IG(S,A)=E(S) - Y [

vEvalues(A)

v E(Sv)]

where S, is a set with the elements of S that have the value v for the attribute A.

Swim preference - information gain calculation

Let us calculate the information gain for the six rows in the swim preference example by
taking swimming suit as an attribute. Because we are interested whether a given row of
data is classified as no or yes for the question whether one should swim, we will use the
swim preference to calculate the entropy and information gain. We partition the set S by the
attribute swimming suit:

S, ...={(none,cold,no),(none,warm,no)}

[55]

Decision Trees

S..a={(small,cold,no),(small, warm,no)}

ngd={ (good, cold,no),(good,warm,yes)}

The information entropy of S is E(S)=-(1/6)*l0g,(1/6)-(5/6)*10g,(5/6)~0.65002242164.
The information entropy of the partitions is:

E(S,,,.)=-(2/2)*10g,(2/2)=-10g,(1)=0 since all instances have the class no.

E(S,,.)=0 for a similar reason.

E(S,,,)=(1/2)*l0g,(1/2)=1

Therefore, the information gain is:

IG(S,swimming suit)=E(S)-[(2/6)*E(S ., JH(2/6) E(S,,,)+(2/6)*E(S)]
=0.65002242164-(1/3)=0.3166890883

If we chose the attribute water temperature to partition the set S, what would be the
information gain IG(S,water temperature)? The water temperature partitions the set S into
the following sets:

S.u={(none,cold,no),(small,cold,no),(good,cold,no)}
Swarm={(none,warm,no),(small,warm,no),(good, warm,yes)}
Their entropies are:

E(S,,)=0 as all instances are classified as no.

E(S yur)=(2/3)*10g,(2/3)-(1/3)*10g,(1/3)~0.91829583405

Therefore, the information gain from partitioning the set S by the attribute water
temperature is:

IG(S,water temperature)=E(S)-[(1/2)*E(S,,)+(1/2)*E(S)]
= 0.65002242164-0.5%0.91829583405=0.19087450461

This is less than IG(S,swimming suit). Therefore, we can gain more information about the set
S (the classification of its instances) by partitioning it per the attribute swimming suit
instead of the attribute water temperature. This finding will be the basis of the ID3
algorithm constructing a decision tree in the next section.

[56]

Decision Trees

ID3 algorithm - decision tree construction

The ID3 algorithm constructs a decision tree from the data based on the information gain. In
the beginning, we start with the set S. The data items in the set S have various properties
according to which we can partition the set S. If an attribute A has the values {v,, ..., v,J, then
we partition the set S into the sets S, ..., S,, where the set S, is a subset of the set S, where the
elements have the value v, for the attribute A.

If each element in the set S has attributes A, ..., A,, then we can partition the set S according
to any of the possible attributes. The ID3 algorithm partitions the set S according to the
attribute that yields the highest information gain. Now suppose that it was attribute A,.
Then for the set S we have the partitions S,, ..., S,, where A, has the possible values {v,,..., v,}.

Since we have not constructed any tree yet, we first place a root node into the tree. For
every partition of S, we place a new branch from the root. Every branch represents one
value of the selected attributes. A branch has data samples with the same value for that
attribute. For every new branch, we can define a new node that will have data samples from
its ancestor branch.

Once we have defined a new node, we choose another of the remaining attributes with the
highest information gain for the data at that node to partition the data at that node further,
then define new branches and nodes. This process can be repeated until we run out of all
the attributes for the nodes or even earlier until all the data at the node has the same class of
our interest. In the case of the swim preference example, there are only two possible classes
for the swimming preference: class no and class yes. The last node is called a leaf node and
decides the class of a data item from the data.

Swim preference - decision tree construction by
ID3 algorithm

Here we describe, step by step, how an ID3 algorithm would construct a decision tree from
the given data samples in the swim preference example. The initial set consists of six data
samples:

S={ (none, cold,no), (small,cold, no), (good, cold,no), (none,warm,no), (small,warm
,no), (good, warm, yes) }

[57]

Decision Trees

In the previous sections, we calculated the information gains for both and the only non-
classifying attributes, swimming suit and water temperature:

IG(S,swimming suit)=0.3166890883
IG(S,water temperature)=0.19087450461

Hence, we would choose the attribute swimming suit as it has a higher information gain.
There is no tree drawn yet, so we start from the root node. As the attribute swimming suit
has three possible values {none, small, good}, we draw three possible branches out of it for
each. Each branch will have one partition from the partitioned set S: S, Sy and Sy, 4. We
add nodes to the ends of the branches. S . data samples have the same class swimming
preference = no, so we do not need to branch that node by a further attribute and partition
the set. Thus, the node with the data S . is already a leaf node. The same is true for the
node with the data S

none

small*

But the node with the data S, has two possible classes for swimming preference.
Therefore, we will branch the node further. There is only one non-classifying attribute left -
water temperature. So there is no need to calculate the information gain for that attribute
with the data S, .. From the node S,,,;, we will have two branches, each with the partition
from the set S, 4. One branch will have the set of the data sample S, ...={(g00d,cold,no)},
the other branch will have the partition S,y ..={(g00d,warm,yes)}. Each of these two
branches will end with a node. Each node will be a leaf node because each node has the
data samples of the same value for the classifying attribute swimming preference.

The resulting decision tree has four leaf nodes and is the tree in the figure 3.1. - Decision
tree for the swim preference example.

Implementation

We implement ID3 algorithm that constructs a decision tree for the data given in a csv file.
All sources are in the chapter directory. The most import parts of the source code are given
here:

source_code/3/construct_decision_tree.py

Constructs a decision tree from data specified in a CSV file.
Format of a CSV file:

Each data item is written on one line, with its variables separated
by a comma. The last variable is used as a decision variable to
branch a node and construct the decision tree.

S o H 4 3= 3E

import math
anytree module is used to visualize the decision tree constructed by
this ID3 algorithm.

[58]

Decision Trees

from anytree import Node, RenderTree
import sys
sys.path.append('../common"')

import common

import decision_tree

Program start
csv_file_name = sys.argv[l]
verbose = int (sys.argv[2]) # verbosity level, 0 - only decision tree

Define the equired column to be the last one.

I.e. a column defining the decision variable.

(heading, complete_data, incomplete_data,

enquired_column) = common.csv_file_to_ordered_data(csv_file_name)

tree = decision_tree.constuct_decision_tree(
verbose, heading, complete_data, enquired_column)
decision_tree.display_tree (tree)

source_code/common/decision_tree.py

***Decision Tree library ***

Used to construct a decision tree and a random forest.
import math

import random

import common

from anytree import Node, RenderTree

from common import printfv

Node for the construction of a decision tree.
class TreeNode:

def _ _init_ (self, wvar=None, val=None) :
self.children = []
self.var = var
self.val = val

def add_child(self, child):
self.children.append(child)

def get_children(self):
return self.children

def get_var (self):
return self.var

def get_val (self):
return self.val

[59]

Decision Trees

def is_root (self):
return self.var is None and self.val is None

def is_leaf (self):
return len(self.children) == 0

def name (self) :
if self.is_root () :
return "[root]"
return "[" 4+ self.var + "=" 4+ self.val + "]"

Constructs a decision tree where heading is the heading of the table

with the data, i.e. the names of the attributes.

complete_data are data samples with a known value for every attribute.

enquired_column is the index of the column (starting from zero) which

holds the classifying attribute.

def constuct_decision_tree (verbose, heading, complete_data,

enquired_column) :

return construct_general_tree (verbose, heading, complete_data,
enquired_column, len (heading))

HH= = = R

m is the number of the classifying variables that should be at most

considered at each node. m needed only for a random forest.

def construct_general_tree (verbose, heading, complete_data,
enquired_column, m):

available_columns = []
for col in range (0, len (heading)):
if col != enquired_column:
available_columns.append(col)

tree = TreeNode ()

printfv (2, verbose, "We start the construction with the root node" +
" to create the first node of the tree.\n")

add_children_to_node (verbose, tree, heading, complete_data,
available_columns, enquired_column, m)

return tree

Splits the data samples into the groups with each having a different
value for the attribute at the column col.
def split_data_by_col(data, col):

data_groups = {}

for data_item in data:

if data_groups.get (data_item[col]) is None:
data_groups[data_item[col]] = []
data_groups[data_item[col]].append (data_item)

return data_groups

Adds a leaf node to node.
def add_leaf (verbose, node, heading, complete_data, enquired_column):

[60]

Decision Trees

leaf_node = TreeNode (heading[enquired_column],

complete_datal[0] [enquired_column])
printfv (2, verbose,

"We add the leaf node " + leaf node.name() + ".\n")
node.add_child(leaf_node)

Adds all the descendants to the node.
def add_children_to_node (verbose, node, heading, complete_data,
available_columns, enquired_column, m):

if len(available_columns) == 0:
printfv (2, verbose, "We do not have any available variables " +
"on which we could split the node further, therefore " +

"we add a leaf node to the current branch of the tree. ")
add_leaf (verbose, node, heading, complete_data,

enquired_column)
return -1

printfv (2, verbose, "We would like to add children to the node " +
node.name () + ".\n")

selected_col = select_col(

verbose, heading, complete_data, available_columns,
enquired_column, m)

for i in range (0, len(available_columns)):

if available_columns[i] == selected_col:
available_columns.pop (i)
break

data_groups = split_data_by_col (complete_data, selected_col)

if (len(data_groups.items()) == 1):
printfv (2, verbose, "For the chosen variable " +
heading[selected_col] +
" all the remaining features have the same value " +
complete_data[0] [selected_col] + ". " +

"Thus we close the branch with a leaf node. ")

add_leaf (verbose, node, heading, complete_data, enquired_column)
return -1

if verbose >= 2:

printfv (2, verbose, "Using the variable " +
heading[selected_col] +
" we partition the data in the current node, where" +
" each partition of the data will be for one of the " +
"new branches from the current node " + node.name () +
". " + "We have the following partitions:\n")

for child_group, child_data in data_groups.items():

printfv (2, verbose, "Partition for " +
str (heading[selected_col]) + "=" +
str(child_datal[0] [selected_col]) + ": " +

[61]

Decision Trees

str (child_data) + "\n")
printfv(
2, verbose, "Now, given the partitions, let us form the " +
"branches and the child nodes.\n")
for child_group, child_data in data_groups.items():
child = TreeNode (heading[selected_col], child_group)

printfv (2, verbose, "\nWe add a child node " + child.name() +
" to the node " + node.name() + ". " +
"This branch classifies %d feature(s): " +

str(child_data) + "\n", len(child_data))
add_children_to_node (verbose, child, heading, child_data, list(
available_columns), enquired_column, m)
node.add_child(child)
printfv (2, verbose,
"\nNow, we have added all the children nodes for the " +
"node " + node.name() + ".\n")

Selects an available column/attribute with the highest
information gain.
def select_col (verbose, heading, complete_data, available_columns,
enquired_column, m):
Consider only a subset of the available columns of size m.
printfv (2, verbose,
"The available variables that we have still left are " +
str (numbers_to_strings (available_columns, heading)) + ". ")
if len(available_columns) < m:
printfv(
2, verbose, "As there are fewer of them than the " +
"parameter m=%d, we consider all of them. ", m)
sample_columns = available_columns
else:
sample_columns = random.sample (available_columns, m)
printfv (2, verbose,
"We choose a subset of them of size m to be " +

str (numbers_to_strings(available_columns, heading)) +
".")

selected_col = -1
selected_col_information_gain = -1
for col in sample_columns:
current_information_gain = col_information_gain (
complete_data, col, enquired_column)
print len(complete_data),col,current_information_gain
if current_information_gain > selected_col_information_gain:

selected_col = col

selected_col_information_gain = current_information_gain
printfv (2, verbose,

"Out of these variables, the variable with " +

[62]

Decision Trees

"the highest information gain is the variable " +
heading[selected_col] +

". Thus we will branch the node further on this " +
"variable. " +

"We also remove this variable from the list of the " +

"available variables for the children of the current node.

return selected_col

Calculates the information gain when partitioning complete_data

according to the attribute at the column col and classifying by the

attribute at enquired_column.

def col_information_gain (complete_data, col, enquired_column) :
data_groups = split_data_by_col (complete_data, col)

information_gain = entropy (complete_data, enquired_column)
for _, data_group in data_groups.items{() :
information_gain -= (float (len(data_group)) / len(complete_data)

) * entropy(data_group, enquired_column)
return information_gain

Calculates the entropy of the data classified by the attribute
at the enquired_column.
def entropy(data, enquired_column) :

value_counts = {}

for data_item in data:

if value_counts.get (data_item[enquired_column]) is None:
value_counts[data_item[enquired_column]] = 0
value_counts[data_item[enquired_column]] += 1
entropy = 0
for _, count in value_counts.items{() :
probability = float (count) / len (data)
entropy —= probability * math.log(probability, 2)

return entropy
Program input:

We input the data from the swim preference example into the program to construct a
decision tree:

source_code/3/swim.csv
swimming_suit,water_temperature, swim
None, Cold, No

None, Warm, No

Small, Cold, No

Small, Warm, No

Good, Cold, No

Good, Warm, Yes

[63]

Decision Trees

Program output:

We construct a decision tree from the data file swim. csv with the verbosity set to 0. The
reader is encouraged to set the verbosity to 2 to see a detailed explanation how exactly the
decision tree is constructed:

$ python construct_decision_tree.py swim.csv 0
Root

F——— [swimming_suit=Small]

F——— [water_temperature=Cold]

L—— [swim=No]

[water_temperature=Warm]

[swim=No]

F——— [swimming_suit=None]

F——— [water_temperature=Cold]
I

al

|

| | [swim=No]

| — [water_temperature=Warm]
| L—— [swim=No]

I

[swimming_suit=Good]
F——— [water_temperature=Cold]
L—— [swim=No]
— [water_temperature=Warm]
L—— [swim=Yes]

Classifying with a decision tree

Once we have constructed a decision tree from the data with the attributes A,, ..., A,, and the
classes {c,, ..., ¢}, we can use this decision tree to classify a new data item with the attributes
A, ..., A, into one of the classes {c,, ..., ¢}

Given a new data item that we would like to classify, we can think of each node including
the root as a question for data sample: What value does that data sample for the selected
attribute A, have? Then based on the answer, we select the branch of a decision tree and
move further to the next node. Then another question is answered about the data sample
and another until the data sample reaches the leaf node. A leaf node has an associated one
of the classes {c,, ..., ¢,} with it; for example, ;. Then the decision tree algorithm would
classify the data sample into the class c;.

[64]

Decision Trees

Classifying a data sample with the swimming
preference decision tree

Let us construct a decision tree for the swimming preference example with the ID3
algorithm. Consider a data sample (good, cold,?) and we would like to use the constructed
decision tree to decide into which class it should belong.

Start with a data sample at the root of the tree. The first attribute that branches from the root
is swimming suit, so we ask for the value for the attribute swimming suit of the sample
(good, cold,?). We learn that the value of the attribute is swimming suit=good; therefore,
move down the rightmost branch with that value for its data samples. We arrive at the node
with the attribute water temperature and ask the question: what is the value of the attribute
water temperature for the data sample (good, cold,?)? We learn that for that data sample, we
have water temperature=cold; therefore, we move down the left branch into the leaf node.
This leaf is associated with the class swimming preference=no. Therefore, the decision tree
would classify the data sample (good, cold,?) to be in that class swimming preference; that is,
to complete it to the data sample (good, cold, no).

Therefore, the decision tree says that if one has a good swimming suit, but the water
temperature is cold, then one would still not want to swim based on the data collected in
the table.

Playing chess - analysis with decision tree

Let us take an example from the chapter 2, Naive Bayes again:

Temperature | Wind | Sunshine | Play
Cold Strong | Cloudy |No
Cold Strong [Cloudy |[No
Warm None |Sunny Yes
Hot None |Sunny No
Hot Breeze [Cloudy |Yes
Warm Breeze | Sunny Yes
Cold Breeze |Cloudy |No
Cold None |Sunny Yes

[65]

Decision Trees

Hot Strong [Cloudy |Yes
Warm None |[Cloudy [Yes
Warm Strong | Sunny ?

We would like to find out if our friend would like to play chess with us outside in the park.
But this time, we would like to use decision trees to find the answer.

Analysis:
We have the initial set S of the data samples as:

S={ (Cold, Strong,Cloudy,No), (Warm, Strong, Cloudy,No), (Warm, None, Sunny, Yes) ,
(Hot, None, Sunny, No), (Hot,Breeze,Cloudy, Yes), (Warm, Breeze, Sunny, Yes), (Cold, B
reeze,Cloudy,No), (Cold, None, Sunny, Yes), (Hot, Strong, Cloudy, Yes), (Warm, None, C
loudy, Yes) }

First we determine the information gain for each of the three non-classifying attributes:
temperature, wind, and sunshine. Possible values for temperature are cold, warm, and hot.
Therefore, we will partition the set S into the three sets:

S.1s=1 (Cold, Strong, Cloudy,No), (Cold,Breeze,Cloudy,No), (Cold, None, Sunny, Yes) }
Syarm=1 (Warm, Strong, Cloudy, No) , (Warm, None, Sunny, Yes), (Warm, Breeze, Sunny, Yes),
(Warm, None, Cloudy, Yes) }
S,..={ (Hot, None, Sunny, No) , (Hot,Breeze,Cloudy, Yes), (Hot, Strong, Cloudy, Yes) }

We calculate the information entropies for the sets first:
E(S)=-(4/10)*10g,(4/10)-(6/10)*1og,(6/10)=0.97095059445
E(S,.)=-(2/3)*0g,(2/3)-(1/3)*10g,(1/3)=0.918295834.05

E(S yup)=-(1/4)"10g,(1/4)-(3/4)*10g,(3/4)=0.81127812445

warm:

E(S,.)=-(1/3)*l0g,(1/3)-(2/3)*l0g,(2/3)=0.91829583405

Thus, IG(S, temperature)=E(S)-[(15 41 /1 S1)*E(S)+ (1S s | /I SIFE(S i)+ (1S3 1/ SI*E(S,,)]

warm

=0.97095059445-[(3/10)*0.91829583405+(4/10)*0.81127812445+(3/10)*0.91829583405]
=0.09546184424

[66]

Decision Trees

Possible values for the attribute wind are none, breeze, strong. Thus we will partition the set
S into the three partitions:

S,on={(Warm,None,Sunny, Yes),(Hot,None, Sunny,No),(Cold,None, Sunny, Yes),(Warm,None,
Cloudy,Yes)}

Sureez={ (Hot,Breeze,Cloudy, Yes),(Warm, Breeze, Sunny, Yes),(Cold, Breeze, Cloudy,No)}
S.nng={(Cold, Strong,Cloudy,No),(Warm,Strong,Cloudy,No),(Hot,Strong, Cloudy, Yes)}

The information entropies of the sets are:

E(S,,,)=0.81127812445

none:

E(S,,.0:)=0.91829583405

breeze

E(S,0,,)=0.91829583405

strong

Thus, IG(S,wind)=E(S)-[(15,,,. 1/ SI)*E(S,,,)4(1 Sy /1 S1)*E(S,00 ¥ (1S |/ 1 SI¥E(S,,,,0)]

strong

=0.97095059445-[(4/10)*0.81127812445+(3/10)*0.91829583405+(3/10)*0.91829583405]
=0.09546184424

Finally, the third attribute sunshine has two possible values, cloudy and sunny; thus, it
partitions the set S into two sets:

Seouay={(Cold,Strong,Cloudy,No),(Warm,Strong, Cloudy,No),(Hot, Breeze, Cloudy, Yes),
(Cold, Breeze,Cloudy,No),(Hot,Strong,Cloudy, Yes),(Warm,None,Cloudy, Yes)}

S.umy={(Warm,None, Sunny, Yes),(Hot,None, Sunny,No),(Warm, Breeze, Sunny, Yes),
(Cold,None,Sunny, Yes)}

The entropies of the sets are:

E(S =1

cloudy

E(S,,)=0.81127812445

sunny

Thus, IG(S,sunshine)=E(S)-[(1 S 1,41/ 1 S1)*E(S 10uis) (| Sumng1 /1S) *E(S)]

sunmny

=0.97095059445-[(6/10)*1+(4/10)*0.81127812445]=0.04643934467

[67]

Decision Trees

IG(S,wind) and IG(S,temperature) are greater than IG(S,sunshine). Both of them are equal;
therefore, we can choose any of the attribute to form the three branches; for example, the
first one, temperature. In that case, each of the three branches would have data samples S,
Sewarr Siot- At those branches, we could apply the algorithm further to form the rest of the
decision tree. Instead, we will use the program to complete the tree.

Input:

source_code/3/chess.csv
Temperature,Wind, Sunshine,Play
Cold, Strong, Cloudy, No
Warm, Strong, Cloudy, No
Warm, None, Sunny, Yes
Hot, None, Sunny, No
Hot,Breeze,Cloudy, Yes
Warm, Breeze, Sunny, Yes
Cold, Breeze,Cloudy, No
Cold, None, Sunny, Yes
Hot, Strong,Cloudy, Yes
Warm, None, Cloudy, Yes

Output:

$ python construct_decision_tree.py chess.csv 0

Root

—— [Temperature=Cold]

| F— [Wind=Breeze]

| | “—— [Play=No]

| F—— [Wind=Strong]

| | “—— [Play=No]

| L— [Wind=None]

| L— [Play=Yes]

F——— [Temperature=Warm]

—— [Wind=Breeze]

| L—— [Play=Yes]

—— [Wind=None]

| F——— [Sunshine=Sunny]

| | L—— [Play=Yes]

| L—— [Sunshine=Cloudy]

| L— [Play=Yes]

L—— [Wind=Strong]

L— [Play=No]

L [Temperature=Hot]
—— [Wind=Strong]
| L—— [Play=Yes]
—— [Wind=None]

| L— [Play=No]

[68]

Decision Trees

L—— [Wind=Breeze]

L [Play=Yes]
Classification:

Now that we have constructed the decision tree, we would like to use it to classify a data
sample (warm,strong,sunny,?) into one of the two classes in the set {no,yes/.

We start at the root. What value does the attribute temperature have in that instance?
Warm, so we go to the middle branch. What value does the attribute wind have in that
instance? Strong, so the instance would fall into the class no since we have arrived already
in the leaf node.

So, our friend would not want to play chess with us in the park according to the decision
tree classification algorithm. Please note that the Naive Bayes' algorithm stated otherwise.
An understanding of the problem is required to choose the best possible method. At other
times, a method with a greater accuracy is the one that takes into consideration results of
several algorithms or several classifiers, as in the case of random forest algorithm in the next
chapter.

Going shopping - dealing with data
inconsistency

We have the following data about the shopping preferences of our friend, Jane:

Temperature | Rain | Shopping
Cold None |Yes
Warm None [No

Cold Strong | Yes

Cold None |No
Warm Strong | No
Warm None |Yes

Cold None |?

[69]

Decision Trees

We would like to find out, using the decision trees, whether Jane would go shopping if the
outside temperature was cold with no rain.

Analysis:

Here we should be careful, as there are instances of the data that have the same values for
the same attributes, but have different classes; thatis, (cold, none, yes) and
(cold, none, no). The program we made would form the following decision tree:

Root

— [Temperature=Cold]

| F——I[Rain=None]

| | L—[Shopping=Yes]
| L—[Rain=Strong]

| L—[Shopping=Yes]

L [Temperature=Warm]

——[Rain=None]

| L—[Shopping=No]
L—— [Rain=Strong]
L—— [Shopping=No]

But at the leaf node [Rain=None] with the parent [Temperature=Cold], there are two
data samples with both classes no and yes. We cannot therefore classify an instance

(cold, none, ?) accurately. For the decision tree algorithm to work better, we would have
to either provide a class at the leaf node with the greatest weight - that is, the majority class.
Even better would be to collect values for more attributes for the data samples so that we
can make a decision more accurately.

Therefore, in the presence of the given data, we are uncertain whether Jane would go
shopping or not.

Summary

A decision tree ID3 algorithm first constructs a decision tree from the input data and then
classifies a new data instance using this constructed tree. A decision tree is constructed by
selecting the attribute for branching with the highest information gain. The information
gain measures how much information can be learned in terms of the gain in the information
entropy.

[70]

Decision Trees

The decision tree algorithm can achieve a different result from other algorithms such as
Naive Bayes' algorithm. In the next chapter, we will learn how to combine various
algorithms or classifiers into a decision forest (called random forest) in order to achieve a
more accurate result.

Problems

1. What is the information entropy of the following multisets?
a) {1,2}, b) {1,2,3}, ¢) {1,2,3,4}, d) {1,1,2,2}, e) {1,1,2,3}

2. What is the information entropy of the probability space induced by the biased
coin that shows heads with the probability 10% and tails with the probability
90%?

3. Let us take another example of playing chess from chapter 2, Naive Bayes:

¢ a) What is the information gain for each of the non-classifying attributes in the
table?

¢ b) What is the decision tree constructed from the given table?

¢ ¢) How would you classify a data sample (warm, strong, spring, ?) according
to the constructed decision tree?

Temperature | Wind |Season |Play
Cold Strong | Winter |No
Warm Strong | Autumn | No
Warm None [Summer |Yes
Hot None |[Spring |[No
Hot Breeze | Autumn | Yes
Warm Breeze | Spring | Yes
Cold Breeze | Winter [No
Cold None |Spring |Yes
Hot Strong | Summer | Yes
Warm None |Autumn|Yes
Warm Strong | Spring |?

[71]

Decision Trees

4. Mary and temperature preferences. Let us take the example from the chapter 1,
Classification Using K Nearest Neighbors, about the temperature preferences of

Mary.

Temperature in degrees Celsius Wind speed in kmph Mary's perception
10 0 Cold

25 0 Warm

15 5 Cold

20 3 Warm

18 7 Cold

20 10 Cold

22 5 Warm

24 6 Warm

We would like to use decision trees to decide if our friend Mary would feel warm or cold in
the room with the temperature 16 degrees Celsius with the fan of the wind speed 3km/h.

Can you please explain how a decision tree algorithm could be used here and how good it
would be to use it for this example?

Analysis:
1. Here are entropies of the multisets:
a) E({1,2})=-(1/2)*10g,(1/2)-(1/2)*log,(1/2)=1
b) E({1,2,3})=-(1/3)*10g,(1/3)-(1/3)*log,(1/3)-(1/3)*10g,(1/3)=1.5849625
o) E({1,2,3,4})=-(1/4)*10g,(1/4)-(1/4)*log,(1/4)-(1/4)*l0og,(1/4)-(1/4)*l0g,(1/4)=2
d) E({1,1,2,2})=-(2/4)*log,(2/4)-(2/4)*10g,(2/4)=1
e) E({1,1,2,3})=-(2/4)*10g,(2/4)-(1/4)*l0g,(1/4)-(1/4)*l0g,(1/4)=1.5

[72]

Decision Trees

Here note that the information entropy of the multisets that have more than two
classes is greater than 1, so we need more than one bit of information to represent
the result. But is this true for every multiset that has more than two classes of
elements?

2. E({10% of heads, 90% of tails})=-0.1*l0g,(0.1)-(0.9)*log,(0.9)=0.46899559358

3. a) The information gains for the three attributes are as follows:

IG(S, temperature)=0.0954618442383
IG(S,wind)=0.0954618442383
IG(S,season)=0.419973094022

b) Therefore, we would choose the attribute season to branch from the root
node as it has the highest information gain. Alternatively, we can put all the
input data into the program to construct a decision tree:

[Season=Autumn]

I— [Wind=Breeze]

| |—[Play:Yes]
I—[Wind:Strong]

| L—[Play=No]
L—— [Wind=None]

— [Play=Yes]
[Season=Summer]
I—[Temperature:Hot]
| |—[Play:Yes]
— [Temperature=Warm]
— [Play=Yes]
[Season=Winter]
L—[Play=No]
[Season=Spring]
[Temperature=Hot]
L—[Play=No]
[Temperature=Warm]
— [Play=Yes]
[Temperature=Cold]
[Play=Yes]

TIr T T

¢) According to the constructed decision tree, we would classify the data
sample (warm,strong,spring,?) to the class Play=Yes by going to the
bottommost branch from the root node and then arriving to the leaf node by
taking the middle branch.

[73]

Decision Trees

4. Here the decision tree algorithm may not perform that well without any
processing of the data. If we considered every class of a temperature, then 25
degrees Celsius would still not occur in the decision tree as it is not in the input
data, so we would not be able to classify how Mary would feel at 16 degrees
Celsius and at 3km/h windspeed.

We could alternatively divide the temperature and wind speed into the
intervals in order to reduce the classes, so that the resulting decision tree
could classify the input instance. But it is this division, the classification of in
what intervals 25 degrees Celsius and 3km/h should be, that is the
fundamental part of the analysis procedure for this type of problem. Thus
decision trees without any serious modification could not analyze the
problem well.

[74]

Random Forest

A random forest is a set of random decision trees (similar to the ones described in the
previous chapter), each generated on a random subset of the data. A random forest
classifies the feature to belong to the class that is voted for by the majority of the random
decision trees. A random forest tends to provide a more accurate classification of a feature
than a decision tree because of the decreased bias and variance.

In this chapter, you will learn:

Tree bagging (or bootstrap aggregation) technique as part of random forest
construction, but that can be extended also to other algorithms and methods in
data science to reduce the bias and variance and hence to improve the accuracy
In example Swim preference to construct a random forest and classify a data item
using the constructed random forest

How to implement an algorithm in Python that would construct a random forest
In example Playing chess the differences in the analysis of a problem by
algorithms naive Bayes, decision trees and random forest

In example Going shopping how random forest algorithm can overcome the
shortcomings of decision tree algorithm and thus outperform it

In example Going shopping how a random forest can express the level of the
confidence in its classification of the feature

In exercises how decreasing the variance of a classifier can yield more accurate
results

Random Forest

Overview of random forest algorithm

General considerations, to begin with, we choose the number of the trees that we are going
to construct for a decision forest. A random forest does not tend to overfit (unless the data is
very noisy), so choosing many decision trees will not decrease the accuracy of the
prediction. However, the more decision trees, the more computational power is required.
Also, increasing the number of the decision trees in the forest dramatically, does not
increase the accuracy of the classification much. It is important that we have sufficiently
many decision trees so that most of the data is used for the classification when chosen
randomly for the construction of a decision tree.

In practice, one can run the algorithm on a specific number of decision trees, increase their
number, and compare the results of the classification of a smaller and a bigger forest. If the
results are very similar, then there is no reason to increase the number of trees.

To simplify demonstration, in this book, we will use a small number of decision trees in a
random forest.

Overview of random forest construction

We will describe how each tree is constructed in a random fashion. Given N training
features, for the construction of each decision tree, we provide the data by selecting N
features randomly with replacement from the initial data for the random forest. This
process of selecting the data randomly with replacement for each tree is called bootstrap
aggregating or tree bagging. The purpose of bootstrap aggregating is to reduce the variance
and bias in the results of the classification.

Say a feature has M variables that are used to classify the feature using the decision tree.
When we must make a branching decision at a node, in the ID3 algorithm we choose the
variable that resulted in the highest information gain. Here in a random decision tree at
each node, we consider only at most m (which is at most M) variables (we do not consider
the ones that were already chosen) sampled in a random fashion without the replacement
from the given M variables. Then out of these m variables, we choose the one that results in
the highest information gain.

The rest of the construction of a random decision tree is carried out just as it was for a
decision tree in the previous chapter.

[76]

Random Forest

Swim preference - analysis with random
forest

We will use the example from the previous chapter about the swim preference. We have the
same data table:

Swimming suit | Water temperature | Swim preference
None Cold No
None Warm No
Small Cold No
Small Warm No
Good Cold No
Good Warm Yes

We would like to construct a random forest from this data and use it to classify an item
(Good,Cold,?).

Analysis:

We are given M=3 variables according to which a feature can be classified. In a random
forest algorithm, we usually do not use all three variables to form tree branches at each
node. We use only m variables out of M. So we choose m such that m is less than or equal to
M. The greater m is, the stronger the classifier is in each constructed tree. However, as
mentioned earlier, more data leads to more bias. But, because we use multiple trees (with
smaller m), even if each constructed tree is a weak classifier, their combined classification
accuracy is strong. As we want to reduce a bias in a random forest, we may want to
consider to choose a parameter m to be slightly less than M.

Thus we choose the maximum number of the variables considered at the node to be
m=min(M,math.ceil(2*math.sqrt(M)))=min(M,math.ceil(2*math.sqrt(3)))=3.

We are given the following features:

[['None', 'Cold', 'No'], ['None', 'Warm', 'No'], ['Small', 'Cold', 'No'],
['Small', 'Warm', 'No'], ['Good', 'Cold', 'No'], ['Good', 'Warm', 'Yes']]

[77]

Random Forest

When constructing a random decision tree as a part of a random forest, we will choose only
a subset out of them in a random manner with replacement.

Random forest construction

We construct a random forest that will consist of two random decision trees.

Construction of random decision tree number 0

We are given six features as the input data. Out of these, we choose randomly six features
with replacement for the construction of this random decision tree:

[['None', 'Warm', 'No'], ['None', 'Warm', 'No'], ['Small', 'Cold', 'No'],
['Good', 'Cold', 'No'], ['Good', 'Cold', 'No']l, ['Good', 'Cold', 'No']]

We start the construction with the root node to create the first node of the tree. We would
like to add children to the node [root].

We have the following variables available ['swimming_suit', 'water_temperature'].
As there are fewer of them than the parameter m=3, we consider all of them. Of these, the
variable with the highest information gain is swimming suit.

Therefore, we will branch the node further on this variable. We also remove this variable
from the list of the available variables for the children of the current node. Using the
variable swimming_suit, we partition the data in the current node as follows:

e Partition for swimming_suit=Small: [['Small', 'Cold', 'No']]
e Partition for swimming_suit=None: [['None', 'Warm', 'No'], ['None',
'"Warm', 'No']]
e Partition for swimming_suit=Good: [['Good', 'Cold', 'No'l], ['Good',
'Cold', 'No'], ['Good', 'Cold', 'No']l]
Using the preceding partitions, we create the branches and the child nodes.

We now add a child node [swimming_suit=Small] to the node [root]. This branch
classifies one feature(s): [['Small', 'Cold', 'No'l].

We would like to add children to the node [swimming suit=Small].

[78]

Random Forest

We have the following variable available ['water_temperature']. As there are fewer of
them than the parameter m=3, we consider all of them. Of these, the variable with the
highest information gain is the variable water_temperature. Therefore, we will branch
the node further on this variable. We also remove this variable from the list of the available
variables for the children of the current node. For the chosen variable
water_temperature, all the remaining features have the same value: Cold. So, we end the
branch with a leaf node. We add the leaf node [swim=No].

We now add a child node [swimming_suit=None] to the node [root]. This branch
classifies two feature(s): [['None', 'Warm', 'No'], ['None', 'Warm', 'No'l]].

We would like to add children to the node [swimming_suit=None].

We have the following variable available ['water_temperature']. As there are fewer of
them than the parameter m=3, we consider all of them. Of these, the variable with the
highest information gain is the variable water_temperature. Therefore, we will branch
the node further on this variable. We also remove this variable from the list of the available
variables for the children of the current node. For the chosen variable
water_temperature, all the remaining features have the same value: Wwarm. So, we end the
branch with a leaf node. We add the leaf node [swim=No].

We now add a child node [swimming_suit=Good] to the node [root]. This branch
classifies three feature(s): [['Good', 'Cold', 'No'l, ['Good', 'Cold', 'No'l,
['Good', 'Cold', 'No']]

We would like to add children to the node [swimming_suit=Good].

We have the following variable available ['water_temperature']. As there are fewer of
them than the parameter m=3, we consider all of them. Of these, the variable with the
highest information gain is the variable water_temperature. Therefore, we will branch
the node further on this variable. We also remove this variable from the list of the available
variables for the children of the current node. For the chosen variable
water_temperature, all the remaining features have the same value: Cold. So, we end the
branch with a leaf node. We add the leaf node [swim=No].

Now, we have added all the children nodes for the node [root].

[79]

Random Forest

Construction of random decision tree number 1

We are given six features as the input data. Out of these, we choose randomly six features
with replacement for the construction of this random decision tree:

[['Good', 'Warm', 'Yes'], ['None', 'Warm', 'No'], ['Good', 'Cold', 'No'],
['None', 'Cold', 'No'], ['None', 'Warm', 'No'], ['Small', 'Warm', 'No']]

The rest of the construction of random decision tree number 1 is similar to the construction
of the previous random decision tree number 0. The only difference is that the tree is built
with the different randomly generated subset (as seen above) of the initial data.

We start the construction with the root node to create the first node of the tree. We would
like to add children to the node [root].

We have the following variables available ['swimming_suit', 'water_temperature'].
As there are fewer of them than the parameter m=3, we consider all of them. Of these, the
variable with the highest information gain is the variable swimming_suit.

Therefore, we will branch the node further on this variable. We also remove this variable
from the list of the available variables for the children of the current node. Using the
variable swimming_suit, we partition the data in the current node as follows:

o Partition for swimming_suit=Small: [['Small', 'Warm', 'No']]

e Partition for swimming_suit=None: [['None', 'Warm', 'No'], ['None',
'Cold', 'No'], ['None', 'Warm', 'No']]

e Partition for swimming_suit=Good: [['Good', 'Warm', 'Yes'],

['Good', 'Cold', 'No'l]]

Now, given the partitions, let us create the branches and the child nodes. We add a child
node [swimming_suit=Small] to the node [root]. This branch classifies one feature(s):
[['"Small', 'Warm', 'No']].

We would like to add children to the node [swimming_suit=Small].

We have the following variable available ['water_temperature']. As there are fewer of
them than the parameter m=3, we consider all of them. Of these, the variable with the
highest information gain is the variable water_temperature. Therefore, we will branch
the node further on this variable. We also remove this variable from the list of the available
variables for the children of the current node. For the chosen variable
water_temperature, all the remaining features have the same value: Warm. So, we end
the branch with a leaf node. We add the leaf node [swim=No].

[80]

Random Forest

We add a child node [swimming_suit=None] to the node [root]. This branch classifies
three feature(s): [['None', 'Warm', 'No'], ['None', 'Cold', 'No'], ['None',
'Warm', 'No']].

We would like to add children to the node [swimming_suit=None].

We have the following variable available ['water_temperature']. As there are fewer of
them than the parameter m=3, we consider all of them. Of these, the variable with the
highest information gain is the variable water_temperature. Therefore, we will branch
the node further on this variable. We also remove this variable from the list of the available
variables for the children of the current node. Using the variable water temperature, we
partition the data in the current node as follows:

o Partition for water_temperature=Cold: [['None', 'Cold', 'No']]
o Partition for water_temperature=Warm: [['None', 'Warm', 'No'],
['None', 'Warm', 'No']] Now, given the partitions, let us create the

branches and the child nodes.

We add a child node [water_temperature=Cold] to the node [swimming_ suit=None].
This branch classifies one feature(s): [['None', 'Cold', 'No'l].

We do not have any available variables on which we could split the node further; therefore,
we add a leaf node to the current branch of the tree. We add the leaf node [swim=No].

We add a child node [water_temperature=Warm] to the node [swimming_suit=None].
This branch classifies two feature(s): [['None', 'Warm', 'No'], ['None', 'Warm',
'No']l].

We do not have any available variables on which we could split the node further; therefore,
we add a leaf node to the current branch of the tree. We add the leaf node [swim=No].

Now, we have added all the children nodes for the node [swimming_suit=None].

We add a child node [swimming_suit=Good] to the node [root]. This branch classifies
two feature(s): [['Good', 'Warm', 'Yes'], ['Good', 'Cold', 'No'l]

We would like to add children to the node [swimming_suit=Good].

[81]

Random Forest

We have the following variable available ['water_temperature']. As there are fewer of
them than the parameter m=3, we consider all of them. Out of these variables, the variable
with the highest information gain is the variable water_temperature. Therefore, we will
branch the node further on this variable. We also remove this variable from the list of the
available variables for the children of the current node. Using the variable water
temperature, we partition the data in the current node as follows:

e Partition for water_temperature=Cold: [['Good', 'Cold', 'No']l]

o Partition for water_temperature=Warm: [['Good', 'Warm', 'Yes']]

Now, given the partitions, let us create the branches and the child nodes.

We add a child node [water_temperature=Cold] to the node [swimming_ suit=Good].
This branch classifies one feature(s): [['Good', 'Cold', 'No'l]

We do not have any available variables on which we could split the node further; therefore,
we add a leaf node to the current branch of the tree. We add the leaf node [swim=No].

We add a child node [water_temperature=Warm] to the node [swimming_suit=Good].
This branch classifies one feature(s): [['Good', 'Warm', 'Yes']]

We do not have any available variables on which we could split the node further; therefore,
we add a leaf node to the current branch of the tree. We add the leaf node [swim=Yes].

Now, we have added all the children nodes for the node [swimming_suit=Good].
Now, we have added all the children nodes for the node [root].

Therefore we have completed the construction of the random forest consisting of two
random decision trees.

Random forest graph:

Tree 0:
Root
F——— [swimming_suit=Small]
| L—— [swim=No]
F——— [swimming_suit=None]
| L—— [swim=No]

— [swimming_suit=Good]
L—— [swim=No]
Tree 1:
Root

F——— [swimming_suit=Small]
| L—— [swim=No]

[82]

Random Forest

FAA* [swimming_suit=None]
FAA* [water_temperature=Cold]
| L—— [swim=No]
L44*[wateJ:_temperaturezWarm]
L—— [swim=No]
[swimming_suit=Good]

FAA* [water_temperature=Cold]

| L—— [swim=No]

L [water_temperature=Warm]

L—— [swim=Yes]

The total number of trees in the random forest=2.
The maximum number of the variables considered at the node is m=3.

I

Classification with random forest

Because we use only a subset of the original data for the construction of the random
decision tree, we may not have enough features to form a full tree that is able to classify
every feature. In such cases, a tree will not return any class for a feature that should be
classified. Therefore, we will only consider trees that classify a feature to some specific class.

The feature we would like to classify is: ['Good', 'Cold', '?'].A random decision tree
votes for the class to which it classifies a given feature using the same method to classify a
feature as in the previous chapter on decision trees. Tree 0 votes for the class: No. Tree 1
votes for the class: No. The class with the maximum number of votes is 'No'. Therefore, the
constructed random forest classifies the feature ['Good', 'Cold', '?'] into the class
'No'.

Implementation of random forest algorithm

We implement a random forest algorithm using a modified decision tree algorithm from the
previous chapter. We also add an option to set a verbose mode within the program that can
describe the whole process of how the algorithm works on a specific input- how a random
forest is constructed with its random decision trees and how this constructed random forest
is used to classify other features.

The implementation of a random forest uses the construction of a decision tree from the
previous chapter. A reader is encouraged to consult the function
decision_tree.construct_general_tree from the previous chapter:

source_code/4/random_forest.py
import math
import random

[83]

Random Forest

import sys
sys.path.append('../common"')
import common # noga

import decision_tree # noga

from common import printfv # noga

#Random forest construction
def sample_with_replacement (population, size):

sample = []
for i in range (0, size):
sample.append (population[random.randint (0, len(population) - 1)])

return sample

def construct_random_forest (verbose, heading, complete_data,
enquired_column, m, tree_count):
printfv (2, verbose, "*** Random Forest construction ***\n")
printfv (2, verbose, "We construct a random forest that will " +
"consist of %d random decision trees.\n", tree_count)
random_forest = []
for i in range (0, tree_count):
printfv (2, verbose, "\nConstruction of a random " +
"decision tree number %d:\n", 1)
random_forest.append (construct_random_decision_tree (
verbose, heading, complete_data, enquired_column, m))
printfv (2, verbose, "\nTherefore we have completed the " +
"construction of the random forest consisting of %d " +
"random decision trees.\n", tree_count)
return random_forest

def construct_random_decision_tree (verbose, heading, complete_data,
enquired_column, m):

sample = sample_with_replacement (complete_data, len(complete_data))

printfv (2, verbose, "We are given %d features as the input data. " +
"Out of these, we choose randomly %d features with the " +
"replacement that we will use for the construction of " +

"this particular random decision tree:\n" +
str (sample) + "\n", len(complete_data),
len (complete_data))
The function construct_general_ tree from the module decision_tree
is written in the implementation section in the previous chapter
on decision trees.
return decision_tree.construct_general_tree (verbose, heading,
sample,
enquired_column, m)

M is the given number of the decision variables, i.e. properties
of one feature.
def choose_m(verbose, M):

[84]

Random Forest

m =
printfv (2,

printfv (3,

printfv (3,
printfv (3,

int (min (M, math
verbose,
" variables
"classified.
verbose,

"not use all "
"branches at each node.
verbose,
verbose,

")

+ str (M) +

l')
"We use only m variables out of M.
"So we choose m such that m is less than or

n

.ceil (2 * math.sgrt (M))))
"We are given M=" + str (M) +
according to which a feature can be " +

variables to form tree

")

printfv (3,

printfv (2,

"equal to M. ")

verbose,
"individual

"The greater m 1is,
tree constructed is.

However,

it is more

+

"

"In random forest algorithm we usually do " +

n

a stronger classifier an "
+

"susceptible to a bias as more of the data is considered.

"Since we in the end use multiple trees,
"be a weak classifier,

"accuracy is strong.

Therefore as we want to reduce a
"bias in a random forest,

their combined classification

"choose a parameter m to be slightly less than M.\n")

verbose,

"variables considered at the node to be " +
"m=min (M, math.ceil (2*math.sqgqrt (M)))" +
"=min (M, math.ceil (2*math.sqgrt (%d)))=%d.\n",

return m

#Classification

def display_classification (verbose,
enquired_column,

if len(incomplete_data) == 0:

printfv (0,

else:

verbose,

"No data to classify.\n")

for incomplete_feature in incomplete_data:
"\nFeature: " +

def display_classification_for_ feature (verbose,

classification =
for i in range (0,
group =

printfv (0, verbose,

str (incomplete_feature) +

"\n")

display_classification_for_feature (

verbose,
enquired_column,

{3

random_forest[i],

random_forest,

heading,

incomplete_feature)

heading,

common.dic_inc(classification,

printfv (0,

printfv (0,

verbose,
n

verbose,
"iS

"Tree "

[85]

enquired_column,

len (random_forest)) :
decision_tree.classify_by_tree(

enquired_column,
group)

+ str(i) +
votes for the class:

"

+ str(group) +

"Thus we choose the maximum number of the

M, m)

random_forest, heading,
incomplete_data):

feature) :

feature)

"\n")

"

n

n

"The class with the maximum number of votes
'" + str(common.dic_key_max_count (classification))

we may want to consider to " +

+

even if each may
+

+

+

n

random_forest, heading,

+

Random Forest

"', Thus the constructed random forest classifies the " +
"feature " + str(feature) + " into the class '" +
str (common.dic_key_max_count (classification)) + "'.\n")

Program start

csv_file_name = sys.argv[l]

tree_count = int(sys.argv[2])

verbose = int (sys.argv[3])

(heading, complete_data, incomplete_data,

enquired_column) = common.csv_file_to_ordered_data(csv_file_name)

m = choose_m(verbose, len (heading))

random_forest = construct_random_forest (

verbose, heading, complete_data, enquired_column, m, tree_count)

display_forest (verbose, random_forest)

display_classification(verbose, random_forest, heading,
enquired_column, incomplete_data)

Input:

As an input file to the implemented algorithm we provide the data from example Swim
preference.

source_code/4/swim.csv
swimming_suit,water_temperature, swim
None, Cold, No

None, Warm, No

Small,Cold, No

Small, Warm, No

Good, Cold, No

Good, Warm, Yes

Good, Cold, ?

Output:

We type the following command in the command line to get the output:

$ python random_forest.py swim.csv 2 3 > swim.out

2 means that we would like to construct 2 decision trees and 3 is the level of the verbosity of
the program which includes detailed explanations of the construction of the random forest,
the classification of the feature and the graph of the random forest. The last part >
swim.out means that the output is written to the file swim. out. This file can be found in
the chapter directory source_code/4. This output of the program was used above to write
the analysis of Swim preference problem.

[86]

Random Forest

Playing chess example

We will use the example from the chapter 2, Naive Bayes and chapter 3, Decision Tree,
again.

Temperature | Wind | Sunshine | Play
Cold Strong | Cloudy |No
Warm Strong [Cloudy |[No
Warm None |Sunny Yes
Hot None |Sunny No
Hot Breeze [Cloudy | Yes
Warm Breeze | Sunny Yes
Cold Breeze |Cloudy |No
Cold None |Sunny Yes
Hot Strong | Cloudy | Yes
Warm None [Cloudy [Yes
Warm Strong | Sunny ?

However, we would like to use a random forest consisting of four random decision trees to
find the result of the classification.

Analysis:

We are given M=4 variables from which a feature can be classified. Thus, we choose the
maximum number of the variables considered at the node to be
m=min(M,math.ceil(2*math.sqrt(M)))=min(M,math.ceil(2*math.sqrt(4)))=4.

We are given the following features:

[['Cold', 'Strong', 'Cloudy', 'No'], ['Warm', 'Strong', 'Cloudy', 'No'],
['"Warm', 'None', 'Sunny',

'Yes'], ['Hot', 'None', 'Sunny', 'No'], ['Hot', 'Breeze', 'Cloudy', 'Yes'],
['"Warm', 'Breeze',

'Sunny', 'Yes'], ['Cold', 'Breeze', 'Cloudy', 'No'], ['Cold', 'None',
'Sunny', 'Yes'], ['Hot', 'Strong', 'Cloudy', 'Yes'], ['Warm',6 'None',

'Cloudy', 'Yes']]

[87]

Random Forest

When constructing a random decision tree as a part of a random forest, we will choose only
a subset of them in a random way with replacement.

Random forest construction

We construct a random forest that will consist of four random decision trees.

Construction of a random decision tree number 0:

We are given 10 features as the input data. Out of these, we choose randomly 10 features
with replacement that we will use for the construction of this random decision tree:

[['Warm', 'Strong', 'Cloudy', 'No'], ['Cold', 'Breeze', 'Cloudy', 'No'],
['Cold', 'None', 'Sunny', 'Yes'], ['Cold', 'Breeze', 'Cloudy', 'No'],

['"Hot', 'Breeze', 'Cloudy', 'Yes'], ['Warm',6 'Strong', 'Cloudy', 'No'],
['"Hot', 'Breeze', 'Cloudy', 'Yes'], ['Hot', 'Breeze', 'Cloudy', 'Yes'],
['Cold', 'Breeze', 'Cloudy', 'No']l, ['Warm', 'Breeze', 'Sunny', 'Yes']]

We start the construction with the root node to create the first node of the tree. We would
like to add children to the node [root].

We have the following variables available ['Temperature', 'Wind', 'Sunshine'].As
there are fewer of them than the parameter m=4, we consider all of them. Of these, the
variable with the highest information gain is the variable Temperature. Therefore, we will
branch the node further on this variable. We also remove this variable from the list of the
available variables for the children of the current node. Using the variable Temperature, we
partition the data in the current node as follows:

e Partition for Temperature=Cold: [['Cold', 'Breeze', 'Cloudy',
'No'], ['Cold', 'None', 'Sunny', 'Yes'], ['Cold', 'Breeze',
'Cloudy', 'No'], ['Cold', 'Breeze', 'Cloudy', 'No']]

o Partition for Temperature=Warm: [['Warm', 'Strong', 'Cloudy’,
'No']l, ['Warm', 'Strong', 'Cloudy', 'No'], ['Warm',6 'Breeze',
'Sunny', 'Yes']]

e Partition for Temperature=Hot: [['Hot', 'Breeze', 'Cloudy', 'Yes'],
['"Hot', 'Breeze', 'Cloudy', 'Yes'], ['Hot', 'Breeze', 'Cloudy',
'Yes']]

[88]

Random Forest

Now, given the partitions, let us create the branches and the child nodes.

We add a child node [Temperature=Cold] to the node [root]. This branch classifies four
feature(s): [['Cold', 'Breeze', 'Cloudy', 'No'l], ['Cold', 'None', 'Sunny',
'Yes'], ['Cold', 'Breeze', 'Cloudy', 'No'], ['Cold', 'Breeze', 'Cloudy',
'No']].

We would like to add children to the node [Temperature=Cold].

We have the following variables available ['Wind', 'Sunshine']. As there are fewer of
them than the parameter m=4, we consider all of them. Of these, the variable with the
highest information gain is the variable Wind. Therefore, we will branch the node further
on this variable. We also remove this variable from the list of the available variables for the
children of the current node. Using the variable water Wind, we partition the data in the
current node as follows:

e Partition for Wind=None: [['Cold', 'None', 'Sunny', 'Yes']]

o Partition for Wind=Breeze: [['Cold', 'Breeze', 'Cloudy', 'No'l],
['Cold', 'Breeze', 'Cloudy', 'No']l, ['Cold', 'Breeze',
'Cloudy', 'No'l]

Now, given the partitions, let us create the branches and the child nodes.

We add a child node [Wind=None] to the node [Temperature=Cold]. This branch
classifies one feature(s): [['Cold', 'None', 'Sunny', 'Yes']]

We would like to add children to the node [Wind=None].

We have the following variable available['Sunshine']. As there are fewer of them than
the parameter m=4, we consider all of them. Of these, the variable with the highest
information gain is the variable Sunshine. Therefore, we will branch the node further on
this variable. We also remove this variable from the list of the available variables for the
children of the current node. For the chosen variable Sunshine, all the remaining features
have the same value: Sunny. So, we end the branch with a leaf node. We add the leaf node
[Play=Yes].

We add a child node [Wind=Breeze] to the node [Temperature=Cold]. This branch
classifies three feature(s): [['Cold', 'Breeze', 'Cloudy', 'No'], ['Cold',
'Breeze', 'Cloudy', 'No'], ['Cold', 'Breeze', 'Cloudy', 'No'l]]

[89]

Random Forest

We would like to add children to the node [Wind=Breeze].

We have the following variable available ['Sunshine']. As there are fewer of them than
the parameter m=4, we consider all of them. Of these, the variable with the highest
information gain is the variable Sunshine. Therefore, we will branch the node further on
this variable. We also remove this variable from the list of the available variables for the
children of the current node. For the chosen variable Sunshine, all the remaining features
have the same value: Cloudy.So, we end the branch with a leaf node. We add the leaf
node [Play=No].

Now, we have added all the children nodes for the node [Temperature=Cold].

We add a child node [Temperature=Warm] to the node [root]. This branch classifies
three feature(s): [['Warm', 'Strong', 'Cloudy', 'No'], ['Warm', 'Strong',
'Cloudy', 'No'], ['Warm', 'Breeze', 'Sunny', 'Yes']]

We would like to add children to the node [Temperature=Warm].

The available variables that we have still left are ['Wind', 'Sunshine']. As there are
fewer of them than the parameter m=4, we consider all of them. Out of these variables, the
variable with the highest information gain is the variable Wind. Thus we will branch the
node further on this variable. We also remove this variable from the list of the available
variables for the children of the current node. Using the variable Wind, we partition the
data in the current node, where each partition of the data will be for one of the new
branches from the current node [Temperature=Warm]. We have the following partitions:

e Partition for Wind=Breeze: [['Warm', 'Breeze', 'Sunny', 'Yes']]

e Partition for Wind=Strong: [['Warm', 'Strong', 'Cloudy', 'No'l],
['"Warm', 'Strong', 'Cloudy', 'No']]

Now, given the partitions, let us form the branches and the child nodes.

We add a child node [Wind=Breeze] to the node [Temperature=Warm]. This branch
classifies one feature(s): [['Warm', 'Breeze', 'Sunny', 'Yes']]

We would like to add children to the node [Wind=Breeze].

[90]

Random Forest

We have the following variable available ['Sunshine']. As there are fewer of them than
the parameter m=4, we consider all of them. Of these, the variable with the highest
information gain is the variable Sunshine. Therefore, we will branch the node further on
this variable. We also remove this variable from the list of the available variables for the
children of the current node. For the chosen variable Sunshine, all the remaining features
have the same value: Sunny. So, we end the branch with a leaf node. We add the leaf node
[Play=Yes].

We add a child node [Wind=Strong] to the node [Temperature=Warm]. This branch
classifies two feature(s): [['Warm', 'Strong', 'Cloudy', 'No'l, ['Warm',
'Strong', 'Cloudy', 'No']]

We would like to add children to the node [Wind=Strong].

We have the following variable available ['Sunshine']. As there are fewer of them than
the parameter m=4, we consider all of them. Of these, the variable with the highest
information gain is the variable: Sunshine. Therefore, we will branch the node further on
this variable. We also remove this variable from the list of the available variables for the
children of the current node. For the chosen variable Sunshine, all the remaining features
have the same value: Cloudy. So, we end the branch with a leaf node. We add the leaf node
[Play=No].

Now, we have added all the children nodes for the node [Temperature=Warm].

We add a child node [Temperature=Hot] to the node [root]. This branch classifies three
feature(s): [['Hot', 'Breeze', 'Cloudy', 'Yes'], ['Hot', 'Breeze',
'Cloudy', 'Yes'], ['Hot', 'Breeze', 'Cloudy', 'Yes']]

We would like to add children to the node [Temperature=Hot].

We have the following variables available ['Wind', 'Sunshine']. As there are fewer of
them than the parameter m=4, we consider all of them. Of these, the variable with the
highest information gain is the variable Wind. Therefore, we will branch the node further
on this variable. We also remove this variable from the list of the available variables for the
children of the current node. For the chosen variable Wind, all the remaining features have
the same value: Breeze. So, we end the branch with a leaf node. We add the leaf node
[Play=Yes].

Now, we have added all the children nodes for the node [root].

[91]

Random Forest

Construction of a random decision tree number 1, 2, 3

We construct the next three trees in a similar fashion. We should note that since the
construction is random, a reader who performs another correct construction may arrive at a
different construction. However, if there are sufficiently many random decision trees in a
random forest, then the result of the classification should be very similar across all the
random constructions.

The full construction can be found in the program output in the file
source_code/4/chess.out.

Random forest graph:
Tree 0: Tree 1:
Root Root
— [Temperature=Cold] — [Wind=Breeze]
| [Wind=None] | — [Play=No]
| | “— (Play=Yes] — [Wind=None]
‘ | —

[Wind=Breeze]
| L— [Play=No]
}— [Temperature=Warm]
| F—(Wwind=Breeze]

| }7 [Temperature=Cold]

| \ L [Play=Yes]

| b— [Temperature=Warm]

| | F— [(Sunshine=sunny]
L— [Play=Yes] | | | “—IPlay=Yes]

N

|

|

‘—[Windzstrong] ‘—[Sunshinezcloudy]
L— [Play=No] L— [Play=Yes]

L [Temperature=Hot] L [Temperature=Hot]
[I—

[Play=Yes] L— [Play=No]
L— [Wind=Strong]
Tree 2: }7 [Temperature=Cold]
Root | b— [Play=No]
f— [Wind=Strong] L— [Temperature=Warm]
| '— [Play=No] L— [Play=No]

f— [Wind=None]

| F— [Temperature=Cold]

| | “— (Play=Yes]

\ L [Temperature=Warm]

L [Play=Yes]

[Wind=Breeze]

— [Temperature=Hot]

\ L [Play=Yes]

L— [Temperature=Warm]
L [Play=Yes]

Tree 2:
Root
— [Wind=Strong]
| L—— [Play=No]
—— [Wind=None]
| — I[Temperature=Cold]
| | L—— [Play=Yes]
| — [Temperature=Warm]
| L— [Play=Yes]
L [Wind=Breeze]
I— [Temperature=Hot]
| L—— [Play=Yes]
L [Temperature=Warm]

[92]

Random Forest

L [Play=Yes]

Tree 3:
Root
FAA* [Temperature=Cold]
| — [Play=No]
FAA* [Temperature=Warm]
| F——I[wWind=Strong]
| | ——IPlay=No]
| FAA* [Wind=None]
| | b— [Play=Yes]
| L— [Wind=Breeze]
| — [Play=Yes]
L [Temperature=Hot]
FAA* [Wind=Strong]
| — [Play=Yes]
L—— [Wind=Breeze]
L [Play=Yes]
The total number of trees in the random forest=4.
The maximum number of the variables considered at the node is m=4.

Classification:

Given the constructed random forest we classify feature ['Warm', 'Strong', 'Sunny',
Al ? Al] :

Tree 0 votes for the class: No

Tree 1 votes for the class: No

Tree 2 votes for the class: No

Tree 3 votes for the class: No

The class with the maximum number of votes is 'No'. Thus the constructed random forest
classifies the feature ['Warm', 'Strong', 'Sunny', '?'] into the class 'No'.

Input:

To perform the preceding analysis, we use a program implemented earlier in this chapter.
First we put the data from the table into the following CSV file:

source_code/4/chess.csv
Temperature,Wind, Sunshine,Play
Cold, Strong, Cloudy, No

Warm, Strong, Cloudy, No
Warm, None, Sunny, Yes

Hot, None, Sunny, No
Hot,Breeze,Cloudy, Yes

[93]

Random Forest

Warm, Breeze, Sunny, Yes
Cold, Breeze,Cloudy, No
Cold, None, Sunny, Yes
Hot, Strong,Cloudy, Yes
Warm, None, Cloudy, Yes
Warm, Strong, Sunny, ?

Output:
We produce the output by executing on the command line:
$ python random_forest.py chess.csv 4 2 > chess.out

The number 4 here means that we want to construct four decision trees and 2 is the level of
the verbosity of the program which includes the explanations of a tree is constructed. The
last part > chess.out means that the output is written to the file chess. out. This file can
be found in the chapter directory source_code/4. We do not put all the output here, as it
is very large and repetitive. Instead some of it was included in the preceding analysis and
construction of a random forest.

Going shopping - overcoming data
inconsistency with randomness and
measuring the level of confidence

We take the problem from the previous chapter. We have the following data about the
shopping preferences of our friend, Jane:

Temperature | Rain | Shopping
Cold None |Yes
Warm None |No

Cold Strong | Yes

Cold None |No
Warm Strong | No
Warm None |Yes

Cold None |?

[94]

Random Forest

In the previous chapter, decision trees were not able to classify the feature (Cold, None).
So, this time, we would like to find, using the random forest algorithm, whether Jane would
go shopping if the outside temperature was cold and there was no rain.

Analysis:

To perform the analysis with the random forest algorithm we use the implemented
program.

Input:
We put the data from the table into the CSV file:

source_code/4/shopping.csv
Temperature,Rain, Shopping
Cold, None, Yes

Warm, None, No

Cold, Strong, Yes

Cold, None, No

Warm, Strong, No

Warm, None, Yes

Cold, None, ?

Output:

We want to use a slightly larger number of the trees that we used in the previous examples
and explanations to get more accurate results. We want to construct a random forest with 20
trees with the output of the low verbosity - level 0. Thus, we execute in a terminal:

$ python random_forest.py shopping.csv 20 0
Classification

Feature: ['Cold', 'None', '?']

Tree 0 votes for the class: Yes

Tree 1 votes for the class: No
Tree 2 votes for the class: No
Tree 3 votes for the class: No
Tree 4 votes for the class: No
Tree 5 votes for the class: Yes
Tree 6 votes for the class: Yes
Tree 7 votes for the class: Yes
Tree 8 votes for the class: No
Tree 9 votes for the class: Yes
Tree 10 votes for the class: Yes
Tree 11 votes for the class: Yes
Tree 12 votes for the class: Yes
Tree 13 votes for the class: Yes
Tree 14 votes for the class: Yes

[95]

Random Forest

Tree 15 votes for the class: Yes
Tree 16 votes for the class: Yes
Tree 17 votes for the class: No
Tree 18 votes for the class: No
Tree 19 votes for the class: No

The class with the maximum number of votes is 'Yes'. Thus the constructed
random forest classifies the feature ['Cold', 'None', '?'] into the class
'Yes'.

However, we should note that only 12 out of the 20 trees voted for the answer Yes. Thus just
as an ordinary decision tree could not decide the case, so here, although having a definite
answer, it may not be so certain. But unlike in decision trees where an answer was not
produced because of data inconsistency, here we have an answer.

Furthermore, by measuring the strength of the voting power for each individual class, we
can measure the level of the confidence that the answer is correct. In this case the feature
['Cold', 'None', '?'] belongs to the class Yes with the confidence of 12/20 or 60%. To
determine the level of certainty of the classification more precisely, even a larger ensemble
of random decision trees would be required.

Summary

A random forest is a set of decision trees where each tree is constructed from a sample
chosen randomly from the initial data. This process is called bootstrap aggregating. Its
purpose is to reduce variance and bias in the classification made by a random forest. The
bias is further reduced during a construction of a decision tree by considering only a
random subset of the variables for each branch of the tree.

Once a random forest is constructed, the result of the classification of a random forest is the
majority vote from among all the trees in a random forest. The level of the majority also
determines the amount of the confidence that the answer is correct.

Since a random forest consists of decision trees, it is good to use it for every problem where
a decision tree is a good choice. Since a random forest reduces bias and variance that exist in
a decision tree classifier, it outperforms a decision tree algorithm.

[96]

Random Forest

Problems

1. Let us take another example of playing chess from chapter 2, Naive Bayes. How
would you classify a data sample (warm,strong,spring,?) according to the
random forest algorithm?

Temperature | Wind |Season |Play
Cold Strong | Winter |No
Warm Strong | Autumn | No
Warm None |Summer |Yes
Hot None |[Spring |[No
Hot Breeze | Autumn | Yes
Warm Breeze | Spring | Yes
Cold Breeze | Winter |No
Cold None |Spring |Yes
Hot Strong | Summer | Yes
Warm None |[Autumn|Yes
Warm Strong | Spring |?

2. Would it be a good idea to use only one tree and a random forest? Justify your
answer.

3. Can cross-validation improve the results of the classification by the random
forest? Justify your answer.

Analysis:

1. We run the program to construct the random forest and classify the feature
(Warm, Strong, Spring).

Input:

source_code/4/chess_with_seasons.csv
Temperature,Wind, Season,Play

Cold, Strong,Winter, No

Warm, Strong, Autumn, No

Warm, None, Summer, Yes

[971]

Random Forest

Hot, None, Spring, No
Hot,Breeze, Autumn, Yes
Warm, Breeze, Spring, Yes
Cold, Breeze,Winter, No
Cold, None, Spring, Yes
Hot, Strong, Summer, Yes
Warm, None, Autumn, Yes
Warm, Strong, Spring, ?

Output:
We construct four trees in a random forest:

$ python chess_with_seasons.csv 4 2 > chess_with_seasons.out

The whole construction and analysis is stored in the file
source_code/4/chess_with_seasons.out. Your construction may differ
because of the randomness involved. From the output we extract the random
forest graph consisting of random decision trees given the random numbers
generated during our run.

Executing the command above again will most likely result in a different output
and different random forest graph. Yet the results of the classification should be
similar with a high probability because of the multiplicity of the random decision
trees and their voting power combined. The classification by one random decision
tree may be subject to a great variance. However, the majority vote combines the
classification from all the trees, thus reducing the variance. To verify your
understanding, you can compare your results of the classification with the
classification by the random forest graph below.

Random forest graph and classification:

Let's have a look at the output of the random forest graph and the classification of the
feature:

Tree O:
Root
F——— [Wind=None]
| F— I[Temperature=Cold]
| | Y—— [Play=Yes]
| L—— [Temperature=Warm]
| F——— [Season=Autumn]
| | L—— [Play=Yes]
| L—— [Season=Summer]
| L— [Play=Yes]
L [Wind=Strong]

[98]

Random Forest

FAA* [Temperature=Cold]
| — [Play=No]
L [Temperature=Warm]
L [Play=No]
Tree 1:

Root

FAA* [Season=Autumn]
FAA*[WindZStrong]
| L44*[]E’lay=No]

|
|
| FAA* [Wind=None]
|
|

— [Play=Yes]

L— [Wind=Breeze]
| — [Play=Yes]
FAA* [Season=Summer]
— [Play=Yes]
FAA* [Season=Winter]
— [Play=No]
[Season=Spring]
[Temperature=Cold]
— [Play=Yes]
[Temperature=Warm]
L [Play=Yes]

I

ol

|

Tree 2:
Roo
FAA* [Season=Autumn]
| B—— [Temperature=Hot]

| — [Play=Yes]

| — [Temperature=Warm]

| — [Play=No]

—— [Season=Spring]

FAA* [Temperature=Cold]

— [Play=Yes]

[Temperature=Warm]

— [Play=Yes]

FAA* [Season=Winter]

— [Play=No]

L [Season=Summer]

[Temperature=Hot]

— [Play=Yes]

[Temperature=Warm]

L [Play=Yes]

o

|

ol

|

Tree 3:
Root

;

[Season=Autumn]
[Wind=Breeze]
— [Play=Yes]
FAA* [Wind=None]

| — [Play=Yes]

ol

[99]

Random Forest

| L44*[WindZStrong]
| — [Play=No]
—— [Season=Spring]
| B—— [Temperature=Cold]
| — [Play=Yes]
| — [Temperature=Warm]
| — [Play=Yes]

FAA* [Season=Winter]

| — [Play=No]

L [Season=Summer]

L [Play=Yes]

The total number of trees in the random forest=4.
The maximum number of the variables considered at the node is m=4.
Classication
Feature: ['Warm', 'Strong', 'Spring', '?']
Tree 0 votes for the class: No

Tree 1 votes for the class: Yes

Tree 2 votes for the class: Yes

Tree 3 votes for the class: Yes

The class with the maximum number of votes is 'Yes'. Thus the constructed
random forest classifies the feature ['Warm', 'Strong', 'Spring', '?'] into
the class 'Yes'.

2. When we construct a tree in a random forest, we use only a random subset of the
data with replacement. This is to eliminate the bias of the classifier towards
certain features. However, if we use only one tree, that tree may happen to
contain features with bias and might miss some important feature to provide an
accurate classification. So, a random forest classifier with one decision tree would
likely lead to a very poor classification. Therefore, we should construct more
decision trees in a random forest to benefit from the reduction of bias and
variance in the classification.

3. During cross-validation, we divide the data into the training and the testing data.
Training data is used to train the classifier and the test data is to evaluate which
parameters or methods would be the best fit to improve the classification.
Another advantage of cross-validation is the reduction of bias because we only
use partial data, thereby decreasing the chance of overfitting to the specific
dataset.

[100]

Random Forest

However, in a decision forest, we address problems that cross-validation
addresses in an alternative way. Each random decision tree is constructed
only on the subset of the data -reducing the chance of overfitting. In the end,
the classification is the combination of results from each of these trees. The
best decision in the end is not made by tuning the parameters on a test
dataset, but by taking the majority vote of all the trees with reduced bias.

Hence, cross-validation for a decision forest algorithm would not be of a
much use as it is already intrinsic within the algorithm.

[101]

Clustering into K Clusters

Clustering is a technique to divide the data into clusters so that features in the same cluster
are in a certain sense similar.

In this chapter you will learn:

¢ The k-means clustering algorithm on example about household incomes

¢ An example about gender classification to classify features by clustering them
first with the features with the known classes

¢ To implement k-means clustering algorithm in Python in section Implementation of
k-means clustering algorithm

¢ An example about house ownership and how to choose an appropriate number
of clusters for your analysis

¢ Using the example about house ownership how to scale given data appropriately
to improve the accuracy of the classification by a clustering algorithm

¢ An example about document clustering to understand how a different number of
clusters alters the meaning of the dividing boundary between the clusters

Household incomes - clustering into k
clusters

For example let us take households with the yearly earnings in USD dollars 40k, 55k, 70k,
100k, 115k, 130k, 135k. Then if we require to cluster the households into the two clusters
taking their earnings as a measure of similarity, then the first cluster would have the
households earning 40k, 55k, 70k; the second cluster would have the households earning
100k, 115k, 130k, 135k.

Clustering into K Clusters

This is because 40k and 135k are furthest away from each other, and we require to have two
clusters, so they have to be in the different clusters. 55K is closer to 40k than to 135k, so 40k
and 55k will be in the same cluster. Similarly, 130k and 135k will be in the same cluster. 70K
is closer to 40k and 55k than to 130k and 135k, so 70k should be in the cluster with 40k and
55k. 115K is closer to 130k and 135k than to the first cluster with 40k, 55k and 70k, so it will
be in the second cluster. Finally, 100k is closer to the second cluster with 115k, 130k and
135k, so it will be there. Therefore the first cluster will contain 40k, 55k and 70k households.
The second cluster will contain 100k, 115k, 130k and 135k households.

Clustering groups features with similar properties and assigning a cluster to a feature is a
form of classification. It is up to a data scientist to interpret the result of the clustering and
what classification it induces. Here the cluster with the households with the annual incomes
40k, 55k, 70k USD represents a class of households with a low income. The second cluster
with the households with the annual incomes 100k, 115k, 130k and 135k represents a class
of households with a high income.

We clustered the households into the two clusters in an informal way based on the intuition
and the common sense. There are clustering algorithms that cluster the data according to
the precise rules. The algorithms include fuzzy c-means clustering algorithm, hierarchical
clustering algorithm, Gaussian(EM) clustering algorithm, Quality Threshold clustering
algorithm and k-means clustering algorithm which is the focus of this chapter.

K-means clustering algorithm

The k-means clustering algorithm classifies given points into k groups in such a way that a
distance between the members of the same group is minimized.

The k-means clustering algorithm determines the initial k-centroids (points to be in a cluster
center) — one for each cluster. Then each feature is classified into the cluster whose centroid
is closest to that feature. After classifying all the features, we have formed initial k clusters.

For each cluster we recompute the centroid to be the average of the points in that cluster.
After we have moved the centroids, we recompute the classes again. Features may change
the classes. Then we will have to recompute the centroids again. If the centroids do not
move anymore, then the k-means clustering algorithm terminates.

[103]

Clustering into K Clusters

Picking the initial k-centroids

We could pick up the initial k-centroids to be any of the k features in the data to be
classified. But ideally, we would like to pick up the points that belong to the different
clusters already in the beginning. Therefore we may want to aim to maximize their mutual
distance in a certain way. Simplifying the process we could pick the first centroid to be any
point from the features. The second could be the one which is furthest from the first. The
third could be the one that is furthest from both first and second, and so on.

Computing a centroid of a given cluster

A centroid of a cluster is just an average of the points in a cluster. If a cluster contains 1
dimensional points with the coordinates x,, x,, ..., x,, then the centroid of that cluster would
be (1/n)*(x+x,+...+x,). If a cluster contains 2 dimensional points with the coordinates
(xpy1),(x,,45),...,(x,,y,), then the x coordinate of the centroid of the cluster would have value
(1/n)*(x;+x,+...+x,), the y coordinate would have the value (1/n)*(y,+y,+...+y,).

This computation generalizes easily to higher dimensions. If the value of the higher
dimensional features for the x-coordinate are x,, x,, ..., x,, then the value at the x-coordinate
for the centroid is (1/n)*(x+x,+...+x,).

k-means clustering algorithm on household
income example

We will apply k-clustering algorithm on the household income example. In the beginning
we have households with the incomes 40k, 55k, 70k, 100k, 115k, 130k and 135k in USD
dollars.

The first centroid to be picked up can be any feature, example 70k. The second centroid
should be the feature that is furthest from the first one, that is 135k since 135k-70k is 65k
which is the greatest difference between any other feature and 70k. Thus 70k is the centroid
of the first cluster, 135k is the centroid of the second cluster.

Now 40k, 55k, 70k, 100k are closer to 70k by taking the difference than to 135k, so they will
be in the first cluster. The features 115k, 130k and 135k are closer to 135k than to 70k, so
they will be in the second cluster.

After we have classified the features according to the initial centroids, we recompute the
centroids. The centroid of the first cluster is (1/4)*(40k+55k+70k+100k)=(1/4)*265k=66.25k.

[104]

Clustering into K Clusters

The centroid of the second cluster is (1/3)*(115k+130k+135k)=(1/3)*380k~126.66k.
Using the new centroids we reclassify the features as follows:

e The first cluster with the centroid 66.25k will contain the features 40k, 55k, 70k.

e The second cluster with the centroid 126.66k will contain the features 100k, 115k,
130k, 135k.

We notice that the feature 100k moved from the first cluster into the second since now it is
closer to the centroid of the second cluster (distance |100k-126.66k |=26.66k) than to the
centroid of the first cluster (distance 1100k-66.25k |=33.75k). Since the features in the clusters
changed, we have to recompute the centroids again.

The centroid of the first cluster is (1/3)*(40k+55k+70k)=(1/3)/165k=55k. The centroid of the
second cluster is (1/4)*(100k+115k+130k+135k)=(1/4)*480k=120k.

Using these centroids we reclassify the items into the clusters. The first centroid 55k will
contain the features 40k, 55k, 70k. The second centroid 120k will contain the features 100k,
115k, 130k, 135k. Thus upon the update of the centroids, the clusters did not change. So
their centroids will remain the same.

Therefore the algorithm terminates with the two clusters: the first cluster having the
features 40k, 55k, 70k; the second cluster having the features 100k, 115k, 130k, 135k.

Gender classification - clustering to classify

We take the data from the gender classification in the problem chapter 2, Naive Bayes,
Analysis point 6:

Height in cm | Weight in kg | Hair length | Gender
180 75 Short Male
174 71 Short Male
184 83 Short Male
168 63 Short Male
178 70 Long Male
170 59 Long Female
164 53 Short Female

[105]

Clustering into K Clusters

155 46 Long Female
162 52 Long Female
166 55 Long Female
172 60 Long ?

To simplify the matters we will remove the column Hair length. We also remove the
column Gender since we would like to cluster the people in the table based on their height
and weight. We would like to find out whether the 11th person in the table is more likely to
be a man or a woman using clustering:

Height in cm | Weight in kg
180 75
174 71
184 83
168 63
178 70
170 59
164 53
155 46
162 52
166 55
172 60
Analysis:

We may apply scaling to the initial data, but to simplify the matters, we will use the
unscaled data in the algorithm. We will cluster the data we have into the two clusters since
there are two possibilities for genders — a male or a female. Then we will aim to classify a
person with the height 172cm and weight 60kg to be more likely a man if and only if there
are more men in that cluster. The clustering algorithm is a very efficient technique. Thus
classifying this way is very fast, especially if there is a large number of the features to
classify.

[106]

Clustering into K Clusters

So let us apply k-means clustering algorithm to the data we have. First we pick up the initial
centroids. Let the first centroid be for example a person with the height 180cm and the
weight 75kg denoted in a vector as (180,75). Then the point that is furthest away from
(180,75) is (155,46). So that will be the second centroid.

The points that are closer to the first centroid (180,75) by taking Euclidean distance are
(180,75), (174,71), (184,83), (168,63), (178,70), (170,59), (172,60). So these points will be in the
first cluster. The points that are closer to the second centroid (155,46) are (155,46), (164,53),
(162,52), (166,55). So these points will be in the second cluster. We display the current
situation of these two clusters in Image 5.1. below.

s Centroids and points classified according to them

80 -
75 - [
70 - L]
65 -

60 - L]

55 - ®

50 -
45 -

40 i i i i i i i r
150 155 160 165 170 175 180 185 190

Image 5.1: Clustering of people by their height and weight

Let us recompute the centroids of the clusters. The blue cluster with the features (180,75),
(174,71), (184,83), (168,63), (178,70), (170,59), (172,60) will have the centroid
((180+174+184+168+178+170+172)/7 (75+71+83+63+70+59+60)/7)~(175.14,68.71).

[107]

Clustering into K Clusters

The red cluster with the features (155,46), (164,53), (162,52), (166,55) will have the centroid
((155+164+162+166)/4,(46+53+52+55)/4)=(161.75, 51.5).

Reclassifying the points using the new centroid, the classes of the points do not change. The
blue cluster will have the points (180,75), (174,71), (184,83), (168,63), (178,70), (170,59),
(172,60). The red cluster will have the points (155,46), (164,53), (162,52), (166,55). Therefore
the clustering algorithm terminates with clusters as displayed in the following image 5.2:

a5 Centroids and points classified according to them
L]
80 -
75 - L]
70 - * .
|
65 -
L]
60 - L]
L]

55 - L]

. ®

|
50 -

L]
45 -
40 - | | | . | | | -
150 155 160 165 170 175 180 185 190

Image 5.2: Clustering of people by their height and weight

Now we would like to classify the instance (172,60) as to whether it is a male or a female.
The instance (172,60) is in the blue cluster. So it is similar to the features in the blue cluster.
Are the remaining features in the blue cluster more likely males or females? 5 out of 6
features are males, only 1 is a female. Since the majority of the features are males in the blue
cluster and the person (172,60) is in the blue cluster as well, we classify the person with the
height 172cm and the weight 60kg as a male.

[108]

Clustering into K Clusters

Implementation of the k-means clustering
algorithm

We implement the k-means clustering algorithm. It takes as an input a CSV file with one
data item per line. A data item is converted to a point. The algorithms classifies these points
into the specified number of clusters. In the end the clusters are visualized on the graph
using the library matplotlib:

source_code/5/k-means_clustering.py

import
import
import
import
import
import

math

imp

Sys

matplotlib.pyplot as plt
matplotlib

Sys

sys.path.append('../common"')

import

common # noga

matplotlib.style.use('ggplot')

Returns k initial centroids for the given points.
def choose_init_centroids (points, k):

centroids = []

centroids.append(points[0])

while len(centroids) < k:

Find the centroid that with the greatest possible distance
to the closest already chosen centroid.
candidate = points[O0]
candidate_dist = min_dist (points[0], centroids)
for point in points:
dist = min_dist (point, centroids)
if dist > candidate_dist:
candidate = point
candidate_dist = dist
centroids.append(candidate)

return centroids

Returns the distance of a point from the closest point in points.
def min_dist (point, points):

min_dist = euclidean_dist (point, points[0])

for point2 in points:

dist = euclidean_dist (point, point2)
if dist < min_dist:
min_dist = dist

return min_dist

Returns an Euclidean distance of two 2-dimensional points.

[109]

Clustering into K Clusters

def euclidean_dist ((x1, yl), (x2, y2)):
return math.sgrt ((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1l - y2))

PointGroup is a tuple that contains in the first coordinate a 2d point

and in the second coordinate a group which a point is classified to.
def choose_centroids (point_groups, k):

centroid_xs = [0] * k
centroid_ys = [0] * k
group_counts = [0] * k
for ((x, y), group) in point_groups:

centroid_xs[group] += x
centroid_ys[group] +=y
group_counts[group] += 1
centroids = []
for group in range (0, k):
centroids.append ((
float (centroid_xs[group]) / group_counts[group],
float (centroid_ys[group]) / group_counts[group]))
return centroids

Returns the number of the centroid which is closest to the point.
This number of the centroid is the number of the group where
the point belongs to.
def closest_group(point, centroids):
selected_group = 0

selected_dist = euclidean_dist (point, centroids[0])
for i in range(l, len(centroids)):
dist = euclidean_dist (point, centroids[i])
if dist < selected_dist:
selected_group = 1

selected_dist = dist
return selected_group

Reassigns the groups to the points according to which centroid
a point is closest to.
def assign_groups (point_groups, centroids):

new_point_groups = []

for (point, group) in point_groups:

new_point_groups.append (
(point, closest_group (point, centroids)))
return new_point_groups

Returns a list of pointgroups given a list of points.
def points_to_point_groups (points) :
point_groups = []
for point in points:
point_groups.append((point, 0))
return point_groups

[110]

Clustering into K Clusters

Clusters points into the k groups adding every stage
of the algorithm to the history which is returned.
def cluster_with_history (points, k):
history = []
centroids = choose_init_centroids (points, k)
point_groups = points_to_point_groups (points)
while True:
point_groups = assign_groups (point_groups, centroids)
history.append((point_groups, centroids))
new_centroids = choose_centroids (point_groups, k)
done = True
for i in range (0, len(centroids)):
if centroids[i] != new_centroids[i]:
done = False
break
if done:
return history
centroids = new_centroids

Program start
csv_file = sys.argv[l]
k = int (sys.argv[2])
everything = False
The third argument sys.argv[3] represents the number of the step of the
algorithm starting from O to be shown or "last" for displaying the last
step and the number of the steps.
if sys.argv[3] == "last":
everything = True
else:
step = int(sys.argv[3])

data = common.csv_file to_list (csv_file)
points = data_to_points(data) # Represent every data item by a point.
history = cluster_with_history(points, k)
if everything:
print "The total number of steps:", len(history)
print "The history of the algorithm:"
(point_groups, centroids) = historyl[len (history) - 1]
Print all the history.
print_cluster_history (history)
But display the situation graphically at the last step only.
draw (point_groups, centroids)
else:
(point_groups, centroids) = historyl[step]
print "Data for the step number", step, ":"
print point_groups, centroids
draw (point_groups, centroids)

[111]

Clustering into K Clusters

Input data from gender classification

We save data from the gender classification example into the CSV file:

source_code/5/persons_by_ height_and_weight.csv
180,75
174,71
184,83
168,63
178,70
170,59
164,53
155,46
162,52
166,55
172,60

Program output for gender classification data

We run the program implementing k-means clustering algorithm on the data from the
gender classification example. The numerical argument 2 means that we would like to
cluster the data into 2 clusters:

$ python k-means_clustering.py persons_by_height_weight.csv 2 last

The total number of steps: 2

The history of the algorithm:

Step number 0: point_groups = [((180.0, 75.0), 0), ((174.0, 721.0), 0),
((184.0, 83.0), 0), ((168.0, 63.0), 0), ((178.0, 70.0), 0), ((170.0, 59.0),
0), ((164.0, 53.0), 1), ((155.0, 46.0), 1), ((162.0, 52.0), 1), ((le6.0,
55.0), 1), ((172.0, 60.0), 0)]

centroids = [(180.0, 75.0), (155.0, 46.0)]

Step number 1: point_groups = [((180.0, 75.0), 0), ((174.0, 71.0), 0),
((184.0, 83.0), 0), ((168.0, 63.0), 0), ((178.0, 70.0), 0), ((170.0, 59.0),
0), ((164.0, 53.0), 1), ((155.0, 46.0), 1), ((162.0, 52.0), 1), ((le6.0,
55.0), 1), ((172.0, 60.0), 0)]

centroids = [(175.14285714285714, 68.71428571428571), (161.75, 51.5)]

The program also outputs a graph visible in Image 5.2. The parameter 1ast means that we
would like the program to do the clustering until the last step. If we would like to display
only the first step (step 0), we could change last to 0 to run:

$ python k-means_clustering.py persons_by height_weight.csv 2 0

Upon the execution of the program, we would get the graph of the clusters and their
centroids at the initial step as in Image 5.1.

[112]

Clustering into K Clusters

House ownership — choosing the number of
clusters

Let us take the example from the first chapter about the house ownership.

Age | Annual income in USD | House ownership status
23 (50000 non-owner
37 (34000 non-owner
48 (40000 owner

52 130000 non-owner
28 195000 owner

25 |78000 non-owner
35 1130000 owner

32 (105000 owner

20 100000 non-owner
40 160000 owner

50 [80000 Peter

We would like to predict if Peter is a house owner using clustering.
Analysis:

Just as in the first chapter, we will have to scale the data since the income axis is by orders
of magnitude greater and thus would diminish the impact of the age axis which actually
has a good predictive power in this kind of problem. This is because it is expected that older
people have had more time to settle down, save money and buy a house than the younger
ones.

We apply the same rescaling from the Chapter 1 and get the following table:

Age [Scaled age | Annual income in USD | Scaled annual income | House ownership status
23 0.09375 50000 0.2 non-owner

37 10.53125 34000 0.04 non-owner

48 10.875 40000 0.1 owner

[113]

Clustering into K Clusters

52 |1 30000 0 non-owner
28 10.25 95000 0.65 owner

25 0.15625 78000 0.48 non-owner
35 0.46875 130000 1 owner

32 10.375 105000 0.75 owner

20 |0 100000 0.7 non-owner
40 10.625 60000 0.3 owner

50 10.9375 80000 0.5 ?

Given the table, we produce the input file for the algorithm and execute it, clustering the
features into the two clusters.
Input:

source_code/5/house_ownership2.csv
0.09375,0.2
0.53125,0.04
0.875,0.1
1,0
0.25,0.65
0.15625,0.48
0.46875,1
0.375,0.75
0,0.7
0.625,0.3
0.9375,0.5

Output for two clusters:

$ python k-means_clustering.py house_ownership2.csv 2 last

The total number of steps: 3

The history of the algorithm:

Step number 0: point_groups = [((0.09375, 0.2), 0), ((0.53125, 0.04), 0),
((0.875, 0.1), 1), ((1.0, 0.0), 1), ((0.25, 0.65), 0), ((0.15625, 0.48),
0), ((0.46875, 1.0), 0), ((0.375, 0.75), 0), ((0.0, 0.7), 0), ((0.625,
0.3), 1), ((0.9375, 0.5), 1)]

centroids = [(0.09375, 0.2), (1.0, 0.0)]

Step number 1: point_groups = [((0.09375, 0.2), 0), ((0.53125, 0.04), 1),
((0.875, 0.1), 1), ((1.0, 0.0), 1), ((0.25, 0.65), 0), ((0.15625, 0.48),
0), ((0.46875, 1.0), 0), ((0.375, 0.75), 0), ((0.0, 0.7), 0), ((0.625,
0.3), 1), ((0.9375, 0.5), 1)]

centroids = [(0.26785714285714285, 0.5457142857142857), (0.859375, 0.225)]
Step number 2: point_groups = [((0.09375, 0.2), 0), ((0.53125, 0.04), 1),
((0.875, 0.1), 1), ((1.0, 0.0), 1), ((0.25, 0.65), 0), ((0.15625, 0.48),

[114]

Clustering into K Clusters

0), ((0.46875, 1.0), 0), ((0.375, 0.75), 0), ((0.0, 0.7), 0), ((0.625,
0.3), 1), ((0.9375, 0.5), 1)]

centroids = [(0.22395833333333334, 0.63), (0.79375, 0.188)]
o Centroids and points classified according to them
1.0 - L]
0.8 -
L]
L]
\d
0.6 - u
° L]
0.4 -
L]
0.2 - L]]
L
L)

0.0 - []
—0.2 - | | | | | | -

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

The blue cluster contains scaled features (0.09375,0.2), (0.25,0.65), (0.15625,0.48), (0.46875,1),
(0.375,0.75), (0,0.7) or unscaled ones (23,50000), (28,95000), (25,78000), (35,130000),
(32,105000), (20,100000). The red cluster contains scaled features (0.53125,0.04), (0.875,0.1),
(1,0), (0.625,0.3), (0.9375,0.5) or unscaled ones (37,34000), (48,40000), (52,30000), (40,60000),
(50,80000).

So Peter belongs to the red cluster. What is the proportion of house owners in a red cluster
not counting Peter? 2/4 or 1/2 of the people in the red cluster are house owners. Thus the
red cluster to which Peter belongs does not seem to have a high predictive power in
determining whether Peter would be a house owner or not. We may try to cluster the data
into more clusters in the hope that we would gain a purer cluster that could be more
reliable for a prediction of the house-ownership for Peter. Let us therefore try to cluster the
data into the three clusters.

[115]

Clustering into K Clusters

Output for three clusters:

$ python k-means_clustering.py house_ownership2.csv 3 last

The total number of steps: 3
The history of the algorithm:

Step number 0: point_groups = [((0.09375, 0.2), 0), ((0.53125,

((0.875, 0.1), 1), ((1.0, 0.0), 1), ((0.25, 0.65), 2), ((0.15625,
((0.625,

0), ((0.46875, 1.0), 2), ((0.375, 0.75), 2), ((0.0, 0.7),
0.3), 1), ((0.9375, 0.5), 1)1
centroids = [(0.09375, 0.2), (
Step number 1: point_groups

0, 0.0), (0.46875, 1.0)]

1.
[((0.09375, 0.2), 0), ((0.53125,

((0.875, 0.1), 1), ((1.0, 0.0), 1), ((0.25, 0.65), 2), ((0.15625,

0), ((0.46875, 1.0), 2), ((0.375, 0.75), 2), ((0.0, 0.7),
0.3), 1), ((0.9375, 0.5), 1)]

centroids = [(0.1953125, 0.355), (0.859375, 0.225), (0.3645833333333333,

0.7999999999999999)]

((0.625,

Step number 2: point_groups = [((0.09375, 0.2), 0), ((0.53125,

((0.875, 0.1), 1), ((1.0, 0.0), 1), ((0.25, 0.65), 2), ((0.15625,
((0.625,

0), ((0.46875, 1.0), 2), ((0.375, 0.75), 2), ((0.0, 0.7),
0.3), 1), ((0.9375, 0.5), 1)]

centroids = [(0.125, 0.33999999999999997), (0.79375, 0.188),

0.7749999999999999)]

(0.2734375,

- Centroids and points classified according to them

1.0 - L]

0.8 -

0.6 -

0.4 -

0.2 - L] O

0.0 - L]

-0.2 | l l l l |
—-0.2 0.0 0.2 0.4 0.6 0.8 10

[116]

Clustering into K Clusters

The red cluster has stayed the same. Let us therefore cluster the data into the 4 clusters.

Output for four clusters:

$ python k-means_clustering.py house_ownership2.csv 4 last

The total number of steps: 2

The history of the algorithm:

Step number 0: point_groups = [((0.09375, 0.2), 0), ((0.53125, 0.04), 0),
((0.875, 0.1), 1), ((1.0, 0.0), 1), ((0.25, 0.65), 3), ((0.15625, 0.48),
3), ((0.46875, 1.0), 2), ((0.375, 0.75), 2), ((0.0, 0.7), 3), ((0.625,
0.3), 1), ((0.9375, 0.5), 1)1

centroids = [(0.09375, 0.2), (1.0, 0.0), (0.46875, 1.0), (0.0, 0.7)]

Step number 1: point_groups = [((0.09375, 0.2), 0), ((0.53125, 0.04), 0),
((0.875, 0.1), 1), ((1.0, 0.0), 1), ((0.25, 0.65), 3), ((0.15625, 0.48),
3), ((0.46875, 1.0), 2), ((0.375, 0.75), 2), ((0.0, 0.7), 3), ((0.625,
0.3), 1), ((0.9375, 0.5), 1)1

centroids = [(0.3125, 0.12000000000000001), (0.859375, 0.225), (0.421875,
0.875), (0.13541666666666666, 0.61)]

- Centroids and points classified according to them .

1.0 - [] -

0.6 - | _

0.4 - -

0.2 - ° | .

0.0 - ° .

-0.2 4 i i i i i i r
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

[117]

Clustering into K Clusters

Now the red cluster where Peter belongs has changed. What is the proportion of the house
owners in the red cluster now? If we do not count Peter, 2/3 of people in the red cluster own
a house. When we clustered into the 2 or 3 clusters, the proportion was only %2 which did
not tell us about the prediction of whether Peter is a house-owner or not. Now there is a
majority of house owners in the red cluster not counting Peter, so we have a higher belief
that Peter should also be a house owner. However, 2/3 is still a relatively low confidence for
classifying Peter as a house owner. Let us partition the data into the 5 partitions to see what
would happen.

Output for five clusters:

$ python k-means_clustering.py house_ownership2.csv 5 last
The total number of steps: 2
The history of the algorithm:

Step number 0: point_groups = [((0.09375, 0.2), 0), ((0.53125, 0.04), 0),
((0.875, 0.1), 1), ((1.0, 0.0), 1), ((0.25, 0.65), 3), ((0.15625, 0.48),
3), ((0.46875, 1.0), 2) ((0.375, 0.75), 2), ((0.0, 0.7), 3), ((0.625,
0.3), 4), ((0.9375, 0.5), 4)]

centroids = [(0.09375, 0.2), (1.0, 0.0), (0.46875, 1.0), (0.0, 0.7),
(0.9375, 0.5)]

Step number 1: point_groups = [((0.09375, 0.2), 0), ((0.53125, 0.04), 0),

((0.875, 0.1), 1), ((1.0, 0.0), 1), ((0.25, 0.65), 3), ((0.15625, 0.48),
3), ((0.46875, 1.0), 2), ((0.375, 0.75), 2), ((0.0, 0.7), 3), ((0.625,
0.3), 4), ((0.9375, 0.5), 4)]

centroids = [(0.3125, 0.12000000000000001), (0.9375, 0.05), (0.421875,
0.875), (0.13541666666666666, 0.61), (0.78125, 0.4)]

Centroids and points classified according to them

0.8 -

0.6 - | |

0.4 -]

0.2 - (]

0.0 - [

-0.2 0.0 0.2 0.4 0.6 0.8 10 12

[118]

Clustering into K Clusters

Now the red cluster contains only Peter and a non-owner. This clustering suggests that
Peter is more likely a non-owner as well. However, according to the previous cluster Peter
would be more likely an owner of a house. Therefore it may not be so clear whether Peter
owns a house or not. Collecting more data would improve our analysis and should be
carried out before making a definite classification in this problem.

From our analysis we noticed that a different number of clusters can result in a different
result for a classification as the nature of members in an individual cluster can change. After
collecting more data we should perform a cross-validation to determine the number of the
clusters that classifies the data with the highest accuracy.

Document clustering — understanding the
number of clusters k in a semantic context

We are given the following information about the frequency counts for the words money
and god(s) in the following 17 books from the Project Gutenberg:

Book Book name Money in | God(s) in

number % %

1 The Vedanta-Sutras with the Commentary by 0 0.07
Ramanuja, by Trans. George Thibaut

2 The Mahabharata of Krishna-Dwaipayana Vyasa 0 0.17
- Adi Parva, by Kisari Mohan Ganguli

3 The Mahabharata of Krishna-Dwaipayana 0.01 0.10
Vyasa, Part 2, by Krishna-Dwaipayana Vyasa

4 Mahabharata of Krishna-Dwaipayana Vyasa Bk. 0 0.32
3 Pt. 1, by Krishna-Dwaipayana Vyasa

5 The Mahabharata of Krishna-Dwaipayana Vyasa 0 0.06
Bk. 4, by Kisari Mohan Ganguli

6 The Mahabharata of Krishna-Dwaipayana Vyasa 0 0.27
Bk. 3 Pt. 2, by Translated by Kisari Mohan Ganguli

7 The Vedanta-Sutras with the Commentary by 0 0.06
Sankaracarya

8 The King James Bible 0.02 0.59

[119]

Clustering into K Clusters

9 Paradise Regained, by John Milton 0.02 0.45

10 Imitation of Christ, by Thomas A Kempis 0.01 0.69

11 The Koran as translated by Rodwell 0.01 1.72

12 The Adventures of Tom Sawyer, Complete by 0.05 0.01
Mark Twain (Samuel Clemens)

13 Adventures of Huckleberry Finn, Complete 0.08 0
by Mark Twain (Samuel Clemens)

14 Great Expectations, by Charles Dickens 0.04 0.01

15 The Picture of Dorian Gray, by Oscar Wilde 0.03 0.03

16 The Adventures of Sherlock Holmes, by Arthur 0.04 0.03
Conan Doyle

17 Metamorphosis, by Franz Kafka 0.06 0.03

Translated by David Wyllie

We would like to cluster this dataset based on the on the chosen frequency counts of the
words into the groups by their semantic context.

Analysis:

First we will do a rescaling since the highest frequency count of the word money is 0.08%
whereas the highest frequency count of the word god(s) is 1.72%. So we will divide the
frequency counts of money by 0.08 and the frequency counts of god(s) by 1.72:

Book number | Money scaled | God(s) scaled
1 0 0.0406976744
2 0 0.0988372093
3 0.125 0.0581395349
4 0 0.1860465116
5 0 0.0348837209
6 0 0.1569767442
7 0 0.0348837209
8 0.25 0.3430232558
9 0.25 0.261627907

[120]

Clustering into K Clusters

10 0.125 0.4011627907
11 0.125 1

12 0.625 0.0058139535
13 1 0

14 0.5 0.0058139535
15 0.375 0.0174418605
16 0.5 0.0174418605
17 0.75 0.0174418605

Now that we have rescaled data, let us apply k-means clustering algorithm trying dividing
the data into a different number of the clusters.

Input:

source_code/5/document_clustering/word_frequencies_money_god_scaled.csv
0,0.0406976744
0,0.0988372093
0.125,0.0581395349
0,0.1860465116
0,0.0348837209
0,0.1569767442
0,0.0348837209
0.25,0.3430232558
0.25,0.261627907
0.125,0.4011627907
0.125,1
0.625,0.0058139535
1,0
0.5,0.0058139535
0.375,0.0174418605
0.5,0.0174418605
0.75,0.0174418605

Output for 2 clusters:

$ python k-means_clustering.py
document_clustering/word_frequencies_money_god_scaled.csv 2 last
The total number of steps: 3

The history of the algorithm:

Step number 0: point_groups
0.0988372093), 0), ((0.125,
((0.0, 0.0348837209), 0), ((
0), ((0.25, 0.3430232558), 0

= [((0.0, 0.0406976744), 0), ((0.0,
0.0581395349), 0), ((0.0, 0.1860465116), 0),
0.0, 0.1569767442), 0), ((0.0, 0.0348837209),
), ((0.25, 0.261627907), 0), ((0.125,

[121]

Clustering into K Clusters

0.4011627907), 0), ((0.125, 1.0), 0), ((0.625, 0.0058139535), 1), ((1.0,
0.0), 1), ((0.5, 0.0058139535), 1), ((0.375, 0.0174418605), 0), ((0.5,
0.0174418605), 1), ((0.75, 0.0174418605), 1)]

centroids = [(0.0, 0.0406976744), (1.0, 0.0)]

Step number 1: point_groups = [((0.0, 0.0406976744), 0), ((0.0,
0.0988372093), 0), ((0.125, 0.0581395349), 0), ((0.0, 0.1860465116), 0),
((0.0, 0.0348837209), 0), ((0.0, 0.1569767442), 0), ((0.0, 0.0348837209),
0), ((0.25, 0.3430232558), 0), ((0.25, 0.261627907), 0), ((0.125,
0.4011627907), 0), ((0.125, 1.0), 0), ((0.625, 0.0058139535), 1), ((1.0,
0.0), 1), ((0.5, 0.0058139535), 1), ((0.375, 0.0174418605), 1), ((0.5,
0.0174418605), 1), ((0.75, 0.0174418605), 1)]

centroids = [(0.10416666666666667, 0.21947674418333332), (0.675,
0.0093023256)]

Step number 2: point_groups = [((0.0, 0.0406976744), 0), ((0.0,
0.0988372093), 0), ((0.125, 0.0581395349), 0), ((0.0, 0.1860465116), 0),
((0.0, 0.0348837209), 0), ((0.0, 0.1569767442), 0), ((0.0, 0.0348837209),
0), ((0.25, 0.3430232558), 0), ((0.25, 0.261627907), 0), ((0.125,
0.4011627907), 0), ((0.125, 1.0), 0), ((0.625, 0.0058139535), 1), ((1.0,
0.0), 1), ((0.5, 0.0058139535), 1), ((0.375, 0.0174418605), 1), ((0.5,
0.0174418605), 1), ((0.75, 0.0174418605), 1)]

centroids = [(0.07954545454545454, 0.2378435517909091), (0.625,
0.01065891475)]

12 Centroids and points classified according to them
1.0 - []
0.8 -
0.6 -
0.4 - []
(]
(]
02- . _
.
.
L]
s
0.0 - L] e n - ®
-0.2 4 ! ! ! ! | ! -
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 12

[122]

Clustering into K Clusters

We can observe that clustering into the 2 clusters divides books into religious ones, the ones
in the blue cluster and non-religious ones, the ones in the red cluster. Let us try to cluster
the books into the 3 clusters to observe how the algorithm would divide the data.

Output for 3 clusters:

$ python k-means_clustering.py
document_clustering/word_frequencies_money_god_scaled.csv 3 last
The total number of steps: 3

The history of the algorithm:

Step number 0: point_groups
0.0988372093), 0), ((0.125,

[((0.0, 0.0406976744), 0), ((0.0,
0581395349) 0), ((0.0, 0.1860465116), 0),
((0.0, 0.0348837209), 0), ((0.0, 0.1569767442), 0), ((0.0, 0.0348837209),
0), ((0.25, 0.3430232558), 0 ((0.25, 0.261627907), 0), ((0.125,
0.4011627907), 0), ((0.125, 1.0), 2), ((0.625, 0.0058139535), 1), ((1L.0,
0.0), 1), ((0.5, 0.0058139535), 1), ((0.375, 0.0174418605), 0), ((0.5,
0.0174418605), 1), ((0.75, 0.0174418605), 1)]

centroids = [(0.0, 0.0406976744), (1.0, 0.0), (0.125, 1.0)]

Step number 1: point_groups = [((0.0, 0.0406976744), 0), ((0.0,
0.0988372093), 0), ((0.125, 0. 0581395349), 0), ((0.0, 0.1860465116), 0),
((0.0, 0.0348837209), 0), ((0.0, 0.1569767442), 0), ((0.0, 0.0348837209),
0), ((0.25, 0.3430232558), 0), ((0.25, 0.261627907), 0), ((0.125,
0.4011627907), 0), ((0.125, 1.0), 2), ((0.625, 0.0058139535), 1), ((1L.0,
0.0), 1), ((0.5, 0.0058139535), 1), ((0.375, 0.0174418605), 1), ((0.5,
0.0174418605), 1), ((0.75, 0.0174418605), 1)]

centroids = [(0.10227272727272728, 0.14852008456363636), (0.675,
0.0093023256), (0.125, 1.0)]
Step number 2: point_groups
0.0988372093), 0), ((0.125,

0.
0.
)

[((0.0, 0.0406976744), 0), ((0.0,
0581395349) 0), ((0.0, 0.1860465116), 0),
((0.0, 0.0348837209), 0), ((0.0, 0.1569767442), 0), ((0.0, 0.0348837209),
0), ((0.25, 0.3430232558), O ((0.25, 0.261627907), 0), ((0.125,
0.4011627907), 0), ((0.125, 1.0), 2), ((0.625, 0.0058139535), 1), ((1.0,
0.0), 1), ((0.5, 0.0058139535), 1), ((0.375, 0.0174418605), 1), ((0.5,
0.0174418605), 1), ((0.75, 0.0174418605), 1)]

centroids = [(0.075, 0.16162790697), (0.625, 0.01065891475), (0.125, 1.0)]

0.
0.
)

[123]

Clustering into K Clusters

Lo Centroids and points classified according to them
1.0 -] _
0.8 - -
0.6 - -
0.4 - [-
0.2 - -
N
]
L]
0.0 - ° e [| L . -
-0.2 5 i i i i i i -
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

This time the algorithm separated from the religious books book The Koran into a green
cluster. This is because in fact the word god is the 5th most frequent word in The Koran.
The clustering here happens to divide the books according to the writing style they were
written with. Clustering into 4 clusters separates one book that has a relatively high
frequency of the word money from the red cluster of non-religious books into a separate
cluster. Let us look at the clustering into the 5 clusters.

Output for 5 clusters:

$ python k-means_clustering.py word_frequencies_money_god_scaled.csv 5 last
The total number of steps: 2

The history of the algorithm:

Step number 0: point_groups

0.0988372093), 0), ((0.125,

((0.0, 0.0348837209), 0), ((
0), ((0.25, 0.3430232558), 4

= [((0.0, 0.0406976744), 0), ((0.0,
0.0581395349), 0), ((0.0, 0.1860465116), 0),
0.0, 0.1569767442), 0), ((0.0, 0.0348837209),
), ((0.25, 0.261627907), 4), ((0.125,

[124]

Clustering into K Clusters

0.4011627907), 4), ((0.125, 1.0), 2), ((0.625, 0.0058139535), 3), ((1.0,
0.0), 1), ((0.5, 0.0058139535), 3), ((0.375, 0.0174418605), 3), ((0.5,
0.0174418605), 3), ((0.75, 0.0174418605), 3)]1

centroids = [(0.0, 0.0406976744), (1.0, 0.0), (0.125, 1.0), (0.5,
0.0174418605), (0.25, 0.3430232558)]

Step number 1: point_groups = [((0.0, 0.0406976744), 0), ((0.0,
0.0988372093), 0), ((0.125, 0.0581395349), 0), ((0.0, 0.1860465116), 0),
((0.0, 0.0348837209), 0), ((0.0, 0.1569767442), 0), ((0.0, 0.0348837209),
0), ((0.25, 0.3430232558), 4), ((0.25, 0.261627907), 4), ((0.125,
0.4011627907), 4), ((0.125, 1.0), 2), ((0.625, 0.0058139535), 3), ((1.0,
0.0), 1), ((0.5, 0.0058139535), 3), ((0.375, 0.0174418605), 3), ((0.5,
0.0174418605), 3), ((0.75, 0.0174418605), 3)]1

centroids = [(0.017857142857142856, 0.08720930231428571), (1.0, 0.0),
(0.125, 1.0), (0.55, 0.0127906977), (0.20833333333333334,
0.3352713178333333)]

Lo Centroids and points classified according to them ‘
1.0 -] -
0.8 - -
0.6 - -
0.4 - . -
me*
L]
0.2 - A -
L]
L'
.
0.0 - . CH o -] -
-0.2 - | | | | | | -
—0.2 0.0 0.2 0.4 0.6 0.8 1.0 12

This clustering further divides the blue cluster of the remaining religious books into the
blue cluster of the Hindi books and the gray cluster of the Christian books.

[125]

Clustering into K Clusters

We can use clustering this way to group items with similar properties and then enable to
find similar items quickly based on the given example. The granularity of the clustering
parameter k determines how similar we can expect the items in a group to be. The higher
the parameter, the more similar items are going to be in the cluster, but a smaller number of
them.

Summary

Clustering of the data is very efficient and can be used to facilitate a faster classification of
the new features by classifying a feature to the class represented in the cluster of that
feature. An appropriate number of the clusters can be determined by cross-validation
choosing the one that results in the most accurate classification.

Clustering orders data by their similarity. The more clusters, the greater similarity between
the features in a cluster, but a fewer features in a cluster.

The k-means clustering algorithm is a clustering algorithm that tries to cluster features in
such a way that the mutual distance of the features in a cluster is minimized. To do this, the
algorithm computes centroid of each cluster and a feature belongs to the cluster whose
centroid is closest to it. The algorithm finishes the computation of the clusters as soon as
they or their centroids no longer change.

Problems

1. Compute the centroid of the following clusters:

a)2, 3,4

b) 100$, 400$, 1000%

o) (10,20), (40, 60), (0, 40)

d) (200$, 40km), (300$, 60km), (5008, 100km), (250%, 200km)
e) (1,2,4), (0,0,3), (10,20,5), (4,8,2), (5,0,1)

2. Cluster the following datasets into the 2, 3 and 4 clusters using k-means
clustering algorithm:

a)0,2,5,4,8,10,12, 11.
b) (2,2), (2,5), (10,4), (3,5), (7,3), (5,9), (2,8), (4,10), (7,4), (4,4), (5,8), (9,3).

[126]

Clustering into K Clusters

3. (Couples and the number of their children) We are given the following ages of
the couples and their number of the children.

Couple number | Wife age | Husband age | Number of children
1 48 49 5
2 40 43 2
3 24 28 1
4 49 42 3
5 32 34 0
6 24 27 0
7 29 32 2
8 35 35 2
9 33 36 1
10 42 47 3
11 22 27 2
12 41 45 4
13 39 43 4
14 36 38 2
15 30 32 1
16 36 38 0
17 36 39 3
18 37 38 ?

We would like to guess using clustering how many children a couple has where the age of
the husband is 37 and the age of the wife is 38.

[127]

Clustering into K Clusters

Analysis:

Input:

1.

a) (1/3)*(2+3+4)=3

b) (1/3)*(100$+400$+1000%$)=500%

©) ((10+40+0)/3,(20+60+40)/3)=(50/3, 120/3)=(50/3, 40)

d) ((200$+300$+500$+250%)/4,(40km+60km+100km+200km)/4)
=(1250$/4,400km/4)=(312.5$,100km)

e) ((1+0+10+4+5)/5,(2+0+20+8+0)/5,(4+3+5+2+1)/5)=(4,6,3)

ource_code/5/problem5_2.csv

For 2 clusters:

$ python k-means_clustering.py problem5_2.csv 2 last

The total number of steps: 2
The history of the algorithm:

Step number 0: point_groups = [((0.0, 0.0), 0), ((2.

o), (5.0, 0.0), 0), ((4.0, 0.0), 0), ((8.0, 0.0),
0.0, 1), ((12.0, 0.0), 1), ((11.0, 0.0), 1)1
centroids = [(0.0, 0.0), (12.0, 0.0)]

Step number 1: point_groups = [((0.0, 0.0), 0), ((2.

o), (5.0, 0.0), 0), ((4.0, 0.0), 0), ((8.0, 0.0),
0.0, 1), ((12.0, 0.0), 1), ((11.0, 0.0), 1)]
centroids = [(2.75, 0.0), (10.25, 0.0)]

For 3 clusters:

$ python k-means_clustering.py problem5_2.csv 3 last

The total number of steps: 2
The history of the algorithm:

Step number 0: point_groups = [((0.0, 0.0), 0), ((2.

o), ((5.0, 0.0), 2), ((4.0, 0.0), 2), ((8.0, 0.0),
0.0), 1), ((12.0, 0.0), 1), ((11.0, 0.0), 1)1

2. a) We add a second coordinate and set it to O for all the features. This way the
distance between the features does not change and we can use the clustering
algorithm we implemented earlier in this chapter.

0.0),
((10.0,

0.0),
((10.0,

0.0),
((10.0,

[128]

Clustering into K Clusters

centroids = [(0.0, 0.0), (12.0, 0.0), (5.0, 0.0)]

Step number 1: point_groups = [((0.0, 0.0), 0),

o), (5.0, 0.0), 2), ((4.0, 0.0), 2), ((8.0, 0.0),

0.0), 1), ((12.0, 0.0), 1), ((12.0, 0.0), 1)1
centroids =

For 4 clusters:

[(1.0, 0.0), (11.0, 0.0), (5.666666666666667,

$ python k-means_clustering.py problem5_2.csv 4 last

The total number of steps: 2
The history of the algorithm:
Step number 0: point_groups = [((0.0, 0.0), 0),

0), ((.0, 0.0), 2), ((4.0, 0.0), 2), ((8.0, 0.0),

0.0), 1), ((12.0, 0.0), 1), ((12.0, 0.0), 1)1
centroids =
Step number 1: point_groups = [((0.0, 0.0), 0),

[(0.0, 0.0), (12.0, 0.0), (5.0, 0.0),

0), ((5.0, 0.0), 2), ((4.0, 0.0), 2), ((8.0, 0.0),

0.0), 1), ((12.0, 0.0), 1), ((12.0, 0.0), 1)1
centroids =

b) We use the implemented algorithm again.
Input:
source_code/5/problem5_2b.csv
2,2

2,5
10,4

w
~
;]

~ 0~

~

~

~

O O 9N o
~ 0~

W 0 = 000 W
(@]

~

Output for 2 clusters:

[(1.0, 0.0), (11.0, 0.0), (4.5, 0.0),

$ python k-means_clustering.py problem5_2b.csv 2 last

The total number of steps: 3
The history of the algorithm:
Step number 0: point_groups = [((2.0, 2.0), 0),

0), ((10.0, 4.0), 1), ((3.0, 5.0), 0), ((7.0, 3.0),
9.0), 1), ((2.0, 8.0), 0), ((4.0, 10.0), 0O), ((7.0,

((4.0, 4.0), 0), ((5.0, 8.0), 1), ((9.0, 3.0),
centroids = [(2.0, 2.0), (10.0, 4.0)]
Step number 1: point_groups = [((2.0, 2.0), 0),

[129]

Clustering into K Clusters

0), ((10.0, 4.0), 1), ((3.0, 5.0), 0), ((7.0, 3.0), 1), ((5.0,
9.0), 0), ((2.0, 8.0), 0), ((4.0, 10.0), 0), ((7.0, 4.0), 1),
((4.0, 4.0), 0), ((5.0, 8.0), 0), ((9.0, 3.0), 1)1

centroids = [(2.8333333333333335, 5.666666666666667),
(7.166666666666667, 5.166666666666667)]

Step number 2: point_groups = [((2.0, 2.0), 0), ((2.0, 5.0),
0), ((10.0, 4.0), 1), ((3.0, 5.0), 0), ((7.0, 3.0), 1), ((5.0,
9.0), 0), ((2.0, 8.0), 0), ((4.0, 10.0), 0), ((7.0, 4.0), 1),
((4.0, 4.0), 0), ((5.0, 8.0), 0), ((9.0, 3.0), 1)1

centroids = [(3.375, 6.375), (8.25, 3.5)]

Output for 3 clusters:

$ python k-means_clustering.py problem5_2b.csv 3 last

The total number of steps: 2

The history of the algorithm:

Step number 0: point_groups = [((2.0, 2.0), 0), ((2.0, 5.0),
0), ((t0.0, 4.0), 1), ((3.0, 5.0), 0), ((7.0, 3.0), 1), ((5.0,
9.0), 2), ((2.0, 8.0), 2), ((4.0, 10.0), 2), ((7.0, 4.0), 1),
((4.0, 4.0), 0), ((5.0, 8.0), 2), ((9.0, 3.0), 1)1

centroids = [(2.0, 2.0), (10.0, 4.0), (4.0, 10.0)]

Step number 1: point_groups = [((2.0, 2.0), 0), ((2.0, 5.0),
0), ((t0.0, 4.0), 1), ((3.0, 5.0), 0), ((7.0, 3.0), 1), ((5.0,
9.0), 2), ((2.0, 8.0), 2), ((4.0, 10.0), 2), ((7.0, 4.0), 1),
((4.0, 4.0), 0), ((5.0, 8.0), 2), ((9.0, 3.0), 1)1

centroids = [(2.75, 4.0), (8.25, 3.5), (4.0, 8.75)]

Output for 4 clusters:

$ python k-means_clustering.py problem5_2b.csv 4 last
The total number of steps: 2
The history of the algorithm:

Step number 0: point_groups = [((2.0, 2.0), 0), ((2.0, 5.0),
3), ((10.0, 4.0), 1), ((3.0, 5.0), 3), ((7.0, 3.0), 1), ((5.0,
9.0), 2), ((2.0, 8.0), 2), ((4.0, 10.0), 2), ((7.0, 4.0), 1),

((4.0, 4.0), 3), ((5.0, 8.0), 2), ((9.0, 3.0), 1)]

centroids = [(2.0, 2.0), (10.0, 4.0), (4.0, 10.0), (3.0, 5.0)]
Step number 1: point_groups = [((2.0, 2.0), 0), ((2.0, 5.0),
3), ((10.0, 4.0), 1), ((3.0, 5.0), 3), ((7.0, 3.0), 1), ((5.0,
9.0), 2), ((2.0, 8.0), 2), ((4.0, 10.0), 2), ((7.0, 4.0), 1),
((4.0, 4.0), 3), ((5.0, 8.0), 2), ((9.0, 3.0), 1)]

centroids = [(2.0, 2.0), (8.25, 3.5), (4.0, 8.75), (3.0,
4.666666666666667)]

[130]

Clustering into K Clusters

3. We are given 17 couples and their number of children and would like to find out
how many children has the 18" couple. We will use the first 14 couples as data
and then the next 3 couples for the cross-validation to determine the number of
clusters k that we will use to find out how many children the 18" couple is
expected to have.

After clustering we will say that a couple is likely to have about the number
of the children that is the average of the children in that cluster. Using the
cross-validation we will choose the number of the clusters that will minimize
the difference between the actual number of the children and the predicted
number of the children. We will capture this difference for all the items in the
cluster cumulatively as the square root of the squares of the differences of
children for each couple. This will minimize the variance of the random
variable for the predicted number of the children for the 18" couple.

We will perform the clustering into 2,3,4 and 5 clusters.
Input:

source_code/5/couples_children.csv
48,49
40,43
24,28
49,42
32,34
24,27
29,32
35,35
33,36
42,47
22,27
41,45
39,43
36,38
30,32
36,38
36,39
37,38

Output for 2 clusters:

A couple listed for a cluster is of the form
(couple_number,(wife_age husband_age)).

Cluster O0: [(1, (48.0, 49.0)), (2, (40.0, 43.0)), (4, (49.0,
42.0)), (10, (42.0, 47.0)), (12, (41.0, 45.0)), (13, (39.0,

[131]

Clustering into K Clusters

43.0)), (14, (36.0, 38.0)), (16, (36.0, 38.0)), (17, (36.0,
39.0)), (18, (37.0, 38.0))]

Cluster 1: [(3, (24.0, 28.0)), (5, (32.0, 34.0)), (6, (24.0,
27.0)), (7, (29.0, 32.0)), (8, (35.0, 35.0)), (9, (33.0,
36.0)), (11, (22.0, 27.0)), (15, (30.0, 32.0))]

We would like to determine the expected number of the children for the 15" couple (30,32),
i.e where a wife is 30 years old and the husband is 32 years old. (30,32) is in the cluster 1.
The couples in the cluster 1 are: (24.0, 28.0), (32.0, 34.0), (24.0, 27.0), (29.0, 32.0), (35.0, 35.0),
(33.0, 36.0), (22.0, 27.0), (30.0, 32.0). Out of these and the first 14 couples used for the data the
remaining couples are: (24.0, 28.0), (32.0, 34.0), (24.0, 27.0), (29.0, 32.0), (35.0, 35.0), (33.0,
36.0), (22.0, 27.0). The average number of the children for these couples is est15=8/7~1.14.
This is the estimated number of the children for the 15" couple based on the data from the
first 14 couples.

The estimated number of the children for the 16™ couple is est16=23/7~3.29. The estimated
number of the children for the 17" couple is also est17=23/7~3.29 since both 16" and 17"
couple belong to the same cluster.

Now we will calculate the error E2 (2 for 2 clusters) between the estimated number of the
children (e.g. denoted est15 for the 15" couple) and the actual number of the children
(example. denoted act15 for the 15" couple) as follows:

E2=sqrt(sqr(est15-act15)+sqr(est16-act16)+sqr(est17-act17))
=sqrt(sqr(8/7-1)+sqr(23/7-0)+sqr(23/7-3))~3.3

Now that we have calculated the error E2, we will calculate the errors of the estimation with
the other number of clusters. We will choose the number of the clusters with the least error
to estimate the number of the children for the 18" couple.

Output for 3 clusters:

Cluster O: [(1, (48.0, 49.0)), (2, (40.0, 43.0)), (4, (49.0, 42.0)), (10,
(42.0, 47.0)), (12, (41.0, 45.0)), (13, (39.0, 43.0))]

(
Cluster 1: [(3, (24 28.0)), (6, (24.0, 27.0)), (7, (29.0, 32.0)), (11,
(

.0,
(22.0, 27.0)), (15, (30.0, 32.0))]
Cluster 2: [(5, (32.0, 34.0)), (8, (35.0, 35.0)), (9, (33.0, 36.0)), (14,
(36.0, 38.0)), (16, (36.0, 38.0)), (17, (36.0, 39.0)), (18, (37.0, 38.0))]

[132]

Clustering into K Clusters

Now the 15" couple is in the cluster 1, 16" couple in the cluster 2, 17" couple in the cluster 2.
So the estimated number of the children for each couple is 5/4=1.25.

The error E3 of the estimation is:
E3=sqrt((1.25-1)"+(1.25-0)"+(1.25-3)")~2.17

Output for 4 clusters:

Cluster O: [(1, (48.0, 49.0)), (4, (49.0, 42.0)), (10, (42.0, 47.0)), (12,
(41.0, 45.0))]

Cluster 1: [(3, (24.0, 28.0)), (6, (24.0, 27.0)), (11, (22.0, 27.0))]
Cluster 2: [(2, (40.0, 43.0)), (13, (39.0, 43.0)), (14, (36.0, 38.0)), (16,

(36.0, 38.0)), (17, (36.0, 39.0)), (18, (37.0, 38.0))]
Cluster 3: [(5, (32.0, 34.0)), (7, (29.0, 32.0)), (8, (35.0, 35.0)), (9,
(33.0, 36.0)), (15, (30.0, 32.0))]

The 15" couple is in the cluster 3, 16" in the cluster 2, 17" in the cluster 2. So the estimated
number of the children for the 15" couple is 5/4=1.25. The estimated number of the children
for the 16" and 17" couple is 8/3~2.67 children.

The error E4 of the estimation is:
Ed=sqrt((1.25-1)"+(8/3-0)"+(8/3-3)’)~2.70

Output for 5 clusters:

Cluster O: [(1, (48.0, 49.0)), (4, (49.0, 42.0))]

Cluster 1: [(3, (24.0, 28.0)), (6, (24.0, 27.0)), (11, (22.0, 27.0))]
Cluster 2: [(8, (35.0, 35.0)), (9, (33.0, 36.0)), (14, (36.0, 38.0)), (16,
(36.0, 38.0)), (17, (36.0, 39.0)), (18, (37.0, 38.0))]

Cluster 3: [(5, (32.0, 34.0)), (7, (29.0, 32.0)), (15, (30.0, 32.0))]
Cluster 4: [(2, (40.0, 43.0)), (10, (42.0, 47.0)), (12, (41.0, 45.0)), (13,
(39.0, 43.0))]1

The 15™ couple is in the cluster 3, 16" in the cluster 2, 17" in the cluster 2. So the estimated
number of the children for the 15" couple is 1. The estimated number of the children for the
16" and 17" couple is 5/3~1.67.

The error E5 of the estimation is:

E5=sqrt((1-1)*+(5/3-0)"+(5/3-3)")~2.13

[133]

Clustering into K Clusters

Using cross-validation to determine the outcome:

We used 14 couples as data for the estimation and 3 other couples for cross-validation to
find the best parameter of k clusters among the values 2,3,4,5. We may try to cluster into
more clusters, but since we have so relatively very little data, it should be sufficient to
cluster into the 5 clusters at most. Let us summarize the errors of the estimation.

Number of clusters | Error rate
2 3.3

3 2.17

4 2.7

5 2.13

The error rate is the least for 3 and 5 clusters. The fact that the error rate goes up for 4
clusters and then down again for 5 clusters may indicate that we may not have enough data
to make a good estimate. A natural expectation would be that there are not local maxims of
errors for the values of k greater than 2. Moreover the difference between the error for
clustering with 3 and 5 clusters is very small and one cluster out of 5 is smaller than one
cluster out of 3. For this reason we choose 3 clusters over 5 to estimate the number of the
children for the 18" couple.

When clustering into the 3 clusters, 18" couple is in the cluster 2. Therefore the estimated
number of the children for the 18" couple is 1.25.

[134]

Regression

Regression analysis is a process of estimating the relationship between dependent variables.
For example, if a variable y is linearly dependent on the variable x, then regression analysis
tries to estimate the constants a and b in the equation y=ax+b that expresses the linear
relationship between the variables y and x.

In this chapter, you will learn the following:

¢ The core idea of a regression by performing a simple linear regression on the
perfect data from the first principles in example Fahrenheit and Celsius
conversion

e Linear regression analysis in the statistical software R on perfect and real-world
data in examples Fahrenheit and Celsius conversion, weight prediction from
height, and flight time duration prediction from the distance

e The gradient descent algorithm to find a regression model with the best fit (using
least mean squares rule) and how to implement it in Python in section Gradient
descent algorithm and its implementation

¢ How to find a non-linear regression model using R in example ballistic flight
analysis and problem 4, bacteria population prediction

Regression

Fahrenheit and Celsius conversion - linear
regression on perfect data

For example, Fahrenheit and Celsius degrees are related in a linear way. Given a table with
pairs of both Fahrenheit and Celsius degrees, we can estimate the constants to devise a
conversion formula from degrees Fahrenheit to degrees Celsius or vice versa:

F | °C
5 [-15
14|-10
23(-5
32(0

4115

50(10

Analysis from first principles:

We would like to derive a formula converting F (degrees Fahrenheit) to C (degrees Celsius)
as follows:

=a*F+b
Here, a and b are the constants to be found. A graph of the function C=a*F+b is a straight
line and thus is uniquely determined by two points. Therefore, we actually need only the
two points from the table, say pairs (F1,C1) and (F2,C2). Then we will have the following;:
Ci=a*F1+b C2=a*F2+b
Now, C2-C1=(a*F2+b)-(a*F1+b)=a*(F2-F1). Therefore, we have the following:

a=(C2-C1)/(F2-F1)

b=C1-a*F1=C1-[(C2-C1)/(F2-F1)]

[136]

Regression

So let us take for example the first two pairs (F1,C1)=(5,-15) and (F2,C2)=(14,-10), then we
have the following:

a=(-10-(-15))/(14-5)=5/9
=-15-(5/9)*5=-160/9

Therefore, the formula to calculate degrees Celsius from degrees Fahrenheit is
C=(5/9)*F-160/9~0.5556"F-17.7778.

Let us verify it against the data in the table:

F |°C |(5/9)*F-160/9
5 [-15]-15
141-10|-10

23|-5 |-5

32(0 |0

41(5 |5

50(10 |10

Therefore, the formula fits our input data 100%. The data we worked with was perfect. In
later examples, we will see that the formula that we can derive cannot fit the data perfectly.
The aim will be to derive a formula that fits the data best, so that the error between the
prediction and the actual data is minimized.

Analysis using R:

We use the statistical analysis software R to calculate the linear dependence relation
between the variables degrees Celsius and degrees Fahrenheit.

The R package has the function Im which calculates the linear relationship between the
variables. It can be used in the following form: Im(y ~ x, data = dataset_for_x_y), where y is
the variable dependent on x. The data frame temperatures should contain the vectors with
the values for x and y:

Input:

source_code/6/frahrenheit_celsius.r
temperatures = data.frame (

fahrenheit = c¢(5,14,23,32,41,50), celsius = c(-15,-10,-5,0,5,10)
)

[137]

Regression

model = Im(celsius ~ fahrenheit, data = temperatures)
print (model)

Output:

$ Rscript fahrenheit_celsius.r
Call:
Im(formula = celsius ~ fahrenheit, data = temperatures)
Coefficients: (Intercept) fahrenheit
-17.7778 0.5556

Therefore, we can see the following approximate linear dependence relation between C
(degrees Celsius) and F (degrees Fahrenheit):

C=fahrenheit*F+Intercept=0.5556*F-17.7778

Note that this agrees with our previous calculation.
Visualization:

We display the linear model predicting degrees Celsius from degrees Fahrenheit
underneath by a linear line. Its meaning is that the point (F,C) is on the green line if and
only if F (degrees Fahrenheit) converts to C (degrees Celsius) and vice versa:

20

I given data
15 Il linear model by R ||
10}
o If
o
o
s
o0
2
%]
o
O 5|
=10}
=15}
—-20 L L | I L L 1
-10 0 10 20 30 40 50 60 70

Fahrenheit degree

[138]

Regression

Weight prediction from height - linear
regression on real-world data

Here we predict the weight of a man from his height using linear regression from the
following data in the table for men:

Height in cm | Weight in kg
180 75

174 71

184 83

168 63

178 70

172 ?

We would like to estimate the weight of a man given that his height is 172cm.
Analysis using R:

In the previous example Fahrenheit and Celsius conversion, the data fitted the linear model
perfectly. Thus we could perform even a simple mathematical analysis (solving basic
equations) to gain the conversion formula. Most of the data in the realworld does not fit a
model perfectly. For such an analysis, it is good to find the model that fits the given data
with the minimal error. We use R do find such a linear model.

Input:
We put the data from the table above into the vectors and try to fit the linear model.

source_code/6/weight_prediction.r
men = data.frame (
height = ¢ (180,174,184,168,178), weight = c¢(75,71,83,63,70)
)
model = Im(weight ~ height, data = men)
print (model)

[139]

Regression

Output:

$ Rscript weight_prediction.r

Call:

Im(formula = weight ~ height, data = men)

Coefficients: (Intercept) height
-127.688 1.132

Thus the formula expressing the linear relationship between the weight and the height is as
follows: weight=1.132*height-127.688. Therefore, we estimate that the man with the height of
172cm would have the weight 1.132%172-127.688=67.016 kg.

Gradient descent algorithm and its
implementation

To understand better how we may be able to predict a value using linear regression from
first principles, we study a gradient descent algorithm and then implement it in Python.

Gradient descent algorithm

A gradient descent algorithm is an iterative algorithm updating the variables in the model
to fit the data with the least error. More generally, it finds a minimum of a function.

We would like to express the weight in terms of the height using a linear formula:
weight(height,p)=p,*height+p,
We estimate the parameter p=(p,,p,) using n data samples (height,weight,) to minimize the

following square error:

n

1
E(p) = 3 §[Weight(heighti,p) — weight,]?

[140]

Regression

The gradient descent algorithm does it by updating the parameter p; in the direction of (9/0
p) E(p), in particular:

0
p; = p; — learning_rate * (—E p)
;=P 5 P

Here, learning_rate determines the speed of the convergence of the E(p) to the minimum.
Updating of the parameter p will result in the convergence of E(p) to a certain value
providing that learning_rate is sufficiently small. In the Python program, we use
learning_rate of 0.000001. However, the drawback of this update rule is that the minimum of
E(p) may be only a local minimum.

To update the parameter p programatically, we need to unfold the partial derivative on
E(p). Therefore, we update the parameter p as follows:

n
Po = po + learning_rate * Z[Weighti — weight(height,, p)]
i=1
n
p1 := p1 + learning_rate x* Z[(Weighti — weight(height,, p)) * height,]
i=1

We will keep updating the parameter p until it changes only a very little, that is, the change
of both py and p, is less than some constant acceptable_error. Once the parameter p stabilizes,
we can use it to estimate the weight from the height.

Implementation:

source_code/6/regression.py

Linear regression program to learn a basic linear model.
import math

import sys

sys.path.append('../common"')

import common # noga

Calculate the gradient by which the parameter should be updated.
def linear_ gradient (data, old_parameter):

gradient = [0.0, 0.0]
for (x, y) in data:
term = float (y) - old_parameter[0] - old_parameter([1l] * float (x)

gradient [0] += term
gradient[1] += term * float (x)
return gradient

[141]

Regression

This function will apply gradient descent algorithm

to learn the linear model.

def learn_linear_parameter (data, learning_rate,
acceptable_error, LIMIT):

parameter = [1.0, 1.0]

old_parameter = [1.0, 1.0]

for i in range (0, LIMIT):
gradient = linear_gradient (data, old_parameter)
Update the parameter with the Least Mean Squares rule.
parameter[0] = old_parameter[0] + learning_rate * gradient[0]
parameter[1l] = old_parameter([l] + learning_rate * gradient[1]

Calculate the error between the two parameters to compare with
the permissible error in order to determine if the calculation
is suffiently accurate.

if abs(parameter[0] - old_parameter[0]) <= acceptable_error

and abs (parameter[l] - old_parameter[l]) <= acceptable_error:
return parameter

old_parameter[0] = parameter[0]

old_parameter[1l] = parameter[1l]

return parameter

Calculate the y coordinate based on the linear model predicted.
def predict_unknown (data, linear_parameter):
for (x, y) in data:
print (x, linear_parameter[0] + linear_parameter[l] * float (x))

Program start

csv_file_name = sys.argv[l]

The maximum number of the iterations in the batch learning algorithm.
LIMIT = 100

Suitable parameters chosen for the problem given.

learning_rate = 0.0000001

acceptable_error = 0.001

(heading, complete_data, incomplete_data,

enquired_column) = common.csv_file_to_ordered_data(csv_file_name)
linear_parameter = learn_linear_parameter (
complete_data, learning_rate, acceptable_error, LIMIT)
print ("Linear model:\n(p0,pl)=" + str(linear_parameter) + "\n")

print ("Unknowns based on the linear model:")
predict_unknown (incomplete_data, linear_parameter)

[142]

Regression

Input:

We use the data from the table in example weight prediction from height and save it in a
CSV file.

source_code/6/height_weight.csv
height,weight

180,75

174,71

184,83

168,63

178,70

172,72

Output:

$ python regression.py height_weight.csv
Linear model:
(p0,pl)=[0.9966468959362077, 0.4096393414704317]

Unknowns based on the linear model:
('"172', 71.45461362885045)

The output for the linear model means that the weight can be expressed in terms of the
height as follows:

weight = 0.4096393414704317 * height + 0.9966468959362077

Therefore, a man with a height of 172cm is predicted to weigh 0.4096393414704317 * 172 +
0.9966468959362077 = 71.45461362885045 ~ 71.455kg.

Note that this prediction of 71.455kg is slightly different from the prediction in R of
67.016kg. This may be due to the fact that the Python algorithm found only a local
minimum in the prediction or that R uses a different algorithm or its implementation.

[143]

Regression

Visualization - comparison of models by R and
gradient descent algorithm

For example, weight prediction from height, we visualize the linear prediction models of R
and of the gradient descent algorithm implemented in Python.

90

Il given data

85| Il linear model by gradient descent algorithm ||
Il linear model by R

weight

50
160 165 170 175 180 185 190

height

Flight time duration prediction from distance

Given a table of flights with their origin, destination, and flight time, we would like to
estimate the length of a proposed flight from Bratislava, Slovakia to Amsterdam, the
Netherlands:

Origin Destination | Distance in km | Flight duration | Flight duration in hours
London Amsterdam | 365 1h 10m 1.167
London Budapest |1462 2h 20m 2.333
London Bratislava |[1285 2h 15m 2.250
Bratislava |Paris 1096 2h 5m 2.083

[144]

Regression

Bratislava |[Berlin 517 1h 15m 2.250

Vienna Dublin 1686 2h 50m 2.833

Vienna Amsterdam |932 1h 55m 1.917

Amsterdam | Budapest | 1160 2h 10m 2.167

Bratislava | Amsterdam |978 ? ?
Analysis:

We can reason that the flight duration time consists of two times - the first is the time to
take off and the landing time; the second is the time that the airplane moves at a certain
speed in the air. The first time is some constant. The second time depends linearly on the
speed of the plane, which we assume is similar across all the flights in the table. Therefore,
the flight time can be expressed using a linear formula in terms of the flight distance.

Analysis using R:
Input:

source_code/6/flight_time.r
flights = data.frame (

distance = c(365,1462,1285,1096,517,1686,932,1160),

time = ¢(1.167,2.333,2.250,2.083,2.250,2.833,1.917,2.167)
)

model = Im(time ~ distance, data = flights) print (model)
Output:

$ Rscript flight_time.r

Call:

Im(formula = time ~ distance, data = flights)

Coefficients: (Intercept) distance

1.2335890 0.0008387

According to the linear regression, the time to take off and the landing time for an average
flight is about 1.2335890 hours. Then to travel 1 km with the plane takes 0.0008387 hours; in
other words, the speed of an airplane is 1192 km per hour. The actual usual speed of an
aeroplane for short-distance flights like the ones in the table is about 850 km per hour. This
leaves room for improvement in our estimation (refer to exercise 6.3).

[145]

Regression

Therefore, we derived the following formula:
flight_time=0.0008387*distance+1.2335890 hours

Using it, we estimate that the flight from Bratislava to Amsterdam, with the distance 978
km, would take about 0.0008387*978+1.2335890=2.0538376 hours or about 2 hours and 3
minutes, which is a little longer than from Vienna to Amsterdam (1h 55m) and a little
shorter than from Budapest to Amsterdam (2h 10m).

Ballistic flight analysis — non-linear model

An interplanetary spaceship lands on a planet with negligible atmosphere and fires three
projectiles at the same angle carrying exploratory bots, but at different initial velocities.
After the bots land on the surface their distances are measured and the data recorded as
follows:

Velocity in m/s | Distance in m
400 38 098

600 85 692

800 152 220

? 300 000

At what speed should the projectile carrying the 4th bot be fired in order for it to land 300
km from the spacecraft?

Analysis:

For this problem we need to understand the trajectory of the projectile. Since the
atmosphere on the explored planet is weak, the trajectory is almost equivalent to the
ballistic curve without the air drag. The distance d traveled by an object fired from a point
on the ground is approximately (neglecting the curving of the planet surface) given by the
equation:

d=v?xsin(27)/g

[146]

Regression

Where v is the initial velocity of the object, T is an angle at which the object was fired and g
is the gravitational force exerted by the planet on the object. Note that the angle T and the
gravitational force g do not change. Therefore define a constant ¢ = Sin(2 % 7)/9 . Then the
distance on the explored planet can be explained in terms of the velocity by the equation:

d=1v%xc

Although d and v are not in the linear relationship, d and the square of v are. Therefore we
can still apply the linear regression to determine the relationship between d and v.

Analysis using R:
Input:

source_code/6/speed_distance.r
trajectories = data.frame (
squared_speed = ¢ (160000,360000,640000),
distance = c (38098, 85692, 152220)
)
model = Im(squared_speed ~ distance, data = trajectories)
print (model)

Output:

$ Rscript speed_distance.r
Call:

Im(formula = squared_speed ~ distance, data = trajectories)
Coefficients:
(Intercept) distance

-317.708 4.206

Therefore the relationship between the squared velocity and the distance is predicted by the
regression to be:

V' =4.206 *d - 317.708.

[147]

Regression

The presence of the intercept term may be caused by the errors in the measurements or by
other forces playing in the equation. Since it is relatively small, the final velocity should be
estimated reasonably well. Putting the distance of 300km into the equation we get:

V¥ = 4.206 * 300000 - 317.708=1261482.292

v=1123.157

Therefore for the projectile to reach the 300km from the source, we need to fire it at the
speed of 1123.157 m/s approximately.

Summary

We can think of variables as being dependent on each other in a functional way. For
example, the variable y is a function of x denoted by y=f(x). The function f(x) has constant
parameters. For example, if y depends on x linearly, then f(x)=a*x+b, where a and b are
constant parameters in the function f(x). Regression is a method to estimate these constant
parameters in such a way that the estimated f(x) follows y as closely as possible. This is
formally measured by the squared error between f(x) and y for the data samples x.

The gradient descent method minimizes this error by updating the constant parameters in
the direction of the steepest descent (that is, the partial derivative of the error), ensuring
that the parameters converge to the values resulting in the minimal error in the quickest
possible way.

The statistical software R supports the estimation of the linear regression with the function
Im.

Problems

1. Cloud storage prediction cost: Our software application generates data on a
monthly basis and stores this data in cloud storage together with the data from
the previous months. We are given the following bills for the cloud storage and
we would like to estimate the running costs for the first year of using this cloud
storage:

[148]

Regression

Month of using the cloud storage | Monthly bill in euros

120.0

131.2

142.1

152.9

164.3

1
2
3
4
5
1

to 12

?

Fahrenheit and Celsius conversion: In the earlier example, we devised a formula
converting degrees Fahrenheit into degrees Celsius. Devise a formula converting
degrees Celsius into degrees Fahrenheit.

Flight time duration prediction from the distance: Why do you think that a
linear regression model resulted in the estimation of the speed to be 1192 km/h as
opposed to the real speed of about 850 km/h? Can you suggest a way to a better
model of the estimation of the flight duration based on the flight distances and
times?

Bacteria population prediction: A bacteria Escherichia coli has been observed in
the laboratory and the size of its population was estimated by various
measurements at 5-minute intervals as follows:

Time | Size of population in millions

10:00 | 47.5

10:05 [56.5

10:10 | 67.2

10:15|79.9

11:00 | ?

What is the expected number of the bacteria to be observed at 11:00 assuming that the
bacteria would continue to grow at the same rate?

[149]

Regression

Analysis:

1.

Every month, we have to pay for the data we have stored in the cloud storage so
far plus for the new data that is added to the storage in that month. We will use
linear regression to predict the cost for a general month and then we will
calculate the sum of the first 12 months to calculate the cost for the whole year.

Input:

source_code/6/cloud_storage.r
bills = data.frame(
month = ¢(1,2,3,4,5),
bill = ¢(120.0,131.2,142.1,152.9,164.3)

)
model = Im(bill ~ month, data = bills) print (model)

Output:

$ Rscript cloud_storage.r

Call:

Im(formula = bill ~ month, data = bills)

Coefficients: (Intercept) month
109.01 11.03

This means that the base cost is base_cost=109.01 euros and then to store the data
added in 1 month costs additional month_data=11.03 euros. Therefore the formula
for the nth monthly bill is as follows:

bill_amount=month_data*month_number+base_cost=11.03"month_number+109.01 euro

Remember that the sum of the first n numbers is (1/2)*n*(n+1). Thus the cost for
the first n months will be as follows:

total_cost(n months)=base_cost*n+month_data*[(1/2)*n*(n+1)]
=n"*[base_cost+month_data*(1/2)*(n+1)]
=n*109.01+11.03*(1/2)*(n+1)]

=n*[114.565+5.515"n]

[150]

Regression

Thus for the whole year, the cost will be as follows:

total_cost(12 months)=12%[114.565+5.515%12]=2168.94 euros

Visualization:

In the graph below, we can observe the linearity of the model represented by the
blue line. On the other hand, the sum of the points on the linear line is quadratic
in nature and is represented by the area under the line.

260

I given data
240 | Il linear model by R [

220 +

200 +

180+

160+

cloud storage bill in euro

140+

120+

100 Il Il Il Il I
0 2 4 6 8 10 12
month number

2. There are many ways to obtain the formula converting degrees Celsius into
degrees Fahrenheit. We could use R and from the initial R file take the following
line:

model = Im(celsius ~ fahrenheit, data = temperatures)
We then change it to:

model = Im(fahrenheit ~ celsius, data = temperatures)

[151]

Regression

3.

Then we would obtain the desired reversed model:

Call:

Im(formula = fahrenheit ~ celsius, data = temperatures)
Coefficients:

(Intercept) celsius

32.0 1.8
So degrees Fahrenheit can be expressed from degrees Celsius as: F=1.8*C+32.
We may obtain this formula alternatively by modifying the formula:
C=(5/9)*F-160/9
160/9+C=(5/9)*F
160+9*C=5"F F=1.8*C+32

The estimated speed is so high because even flights over a short distance take
quite long: for example, the flight from London to Amsterdam, where the
distance between the two cities is only 365 km, takes about 1.167 hours. But, on
the other hand, if the distance changes only a little, then the flight time changes
only a little as well. This results in us estimating a very high initial setup time.
Consequently, the speed has to be very high because there is only a small amount
of time left to travel a certain distance.

If we consider very long flights where the initial setup time to flight time
ratio is much smaller, we could predict the flight speed more accurately.

The number of the bacteria at the 5-minute intervals is: 47.5, 56.5, 67.2, and 79.9
millions. The differences between these numbers are: 9, 10.7, and 12.7. The
sequence is increasing. So we look at the ratios of the neighbor terms to see how
the sequence grows. 56.5/47.5=1.18947, 67.2/56.5=1.18938, and 79.9/67.2=1.18899.
The ratios of the successive terms are close to each other, so we have the reason to
believe that the number of the bacteria in the growing population can be
estimated using the exponential distribution by the model:

n=47.7*b"

Where n is the number of the bacteria in millions, b is a constant (the base),
the number m is the exponent expressing the number of the minutes since
10:00 which is the time of the first measurement, 47.7 is the number of the
bacteria at this measurement in millions.

[152]

Regression

To estimate the constant b, we use the ratios between the sequence terms. We
know that b’ is approximately (56.5/47.5 + 67.2/56.5 + 79.9/67.2)/3=1.18928.
Therefore the constant b is approximately b=1.18928"°<1.03528. Thus the
number of the bacteria in millions is:

n=477*1.03528"

At 11:00, which is 60 minutes later than 10:00, the estimated number of
bacteria is:

47.7%1.03528%=381.9 7.7*1.03528*=381.9 million.

[153]

Time Series Analysis

Time series analysis is the analysis of time-dependent data. Given data for a certain period,
the aim is to predict data for a different period, usually in the future. For example, time
series analysis is used to predict financial markets, earthquakes, and weather. In this
chapter, we are mostly concerned with predicting the numerical values of certain quantities,
for example, the human population in 2030.

The main elements of time-based prediction are:

¢ The trend of the data: does the variable tend to rise or fall as time passes? For
example, does human population grow or shrink?

e Seasonality: how is the data dependent on certain regular events in time? For
example, are restaurant sales bigger on Fridays than on Tuesdays?

Combining these two elements of time series analysis equips us with a powerful method to
make time-dependent predictions. In this chapter, you will learn the following;:

¢ How to analyse data trends using regression in an example business profits

e How to observe and analyse recurring patterns in data in a form of seasonality in
an example about an Electronics shop's sales

¢ Using the example of an electronics shop's sales, to combine the analysis of trends
and seasonality to predict time-dependent data

¢ Create time-dependent models in R using the examples of business profits and an
electronics shop's sales

Time Series Analysis

Business profit - analysis of the trend

We are interested in predicting the profits of a business for the year 2018 given its profits for
the previous years:

Year | Profit in USD
2011 |40k

2012 |43k

2013 |45k

2014 | 50k

2015 | 54k

2016 | 57k

2017 | 59k

2018 |?

Analysis:

In this example, the profit is always increasing, so we can think of representing the profit as
a growing function dependent on the time variable represented by years. The differences in
profit between the subsequent years are: 3k, 2k, 5k, 4k, 3k, and 2k USD. These differences
do not seem to be affected by time, and the variation between them is relatively low.
Therefore, we may try to predict the profit for the coming years by performing a linear
regression. We express profit p in terms of the year y in the linear equation, also called a
trend line:

profit=a*year+b

We can find the constants 2 and b with linear regression.

[155]

Time Series Analysis

Input:

We store the data from the table above in the vectors year and profit in R script.

source_code/7/profit_year.r
business_profits = data.frame (
year = c(2011,2012,2013,2014,2015,2016,2017),
profit = c(40,43,45,50,54,57,59)
)
model = Ilm(profit ~ year, data = business_profits)
print (model)

Output:

$ Rscript profit_year.r
Call:
Im(formula = profit ~ year, data = business_profits)
Coefficients:
(Intercept) year
-6711.571 3.357

Visualization:

70 : : : . T : :

Il given data

Il predicted data
65} B trend line 1
60 + 8

Profit in 1000 USD
wu
s}

50 - 1

40
0 1 2 3 4 5 6 7 8

Year +2.011e3

[156]

Time Series Analysis

Conclusion:

Therefore, the trend line equation for the profit of the company is:
profit=3.357*year-6711.571.

From this equation, we can predict the profit for the year 2018 to be
profit=3.357*2018-6711.571=62.855k USD or 62855 USD.

This example was simple - we were able to make a prediction just by using linear regression
on the trend line. In the next example, we will look at data subject to both trends and
seasonality.

Electronics shop's sales - analysis of
seasonality

We have data of sales in thousands of USD for a small electronics shop by month for the
years 2010 to 2017. We would like to predict sales for each month of 2018:

Month/Year | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018
January 10.5 |11.9 [13.2 |14.6 |15.1 |16.5 |18.9 |20 [20.843
February 119 (12.6 (144 |15.4 [17.4 |17.9 |19.5 |20.8 |21.993

March 13.4 (13.5 |[16.1 |16.2 [17.2 |19.6 |19.8 |22.1 |22.993
April 12.7 (13.6 [14.9 |17.8 [17.8 |20.2 |19.7 |20.9 |22.956
May 13.9 (14.6 [15.7 |17.8 [18.6 |19.1 |20.8 |21.5 |23.505
June 14 144 (153 [16.1 |18.9 |19.7 |21.1 |22.1 [23.456
July 13.5115.7 |16.8 |17.4 |18.3 |19.7 |21 |22.6 [23.881
August 145|114 |15.7 |17 |179 |20.5 |21 |22.7 [23.668

September |14.3 |15.5 |16.8 |17.2 |19.2 |20.3 |20.6 |21.9 [23.981
October 149 (15.8 [16.3 |17.9 [18.8 |20.3 |21.4 |22.9 |24.293
November |16.9 |16.5 |18.7 |20.5 [20.4 |22.4 (23.7 |24 [26.143
December |17.4 |20.1 |19.7 |22.5 |23 |23.8 (24.6 |26.6 [27.968

[157]

Time Series Analysis

Analysis:

To be able to analyze this, we will first graph the data so that we can notice patterns and

analyze them.

28 T T T
Il sales for Jan-Nov i
26 HEEl sales for Dec 1
[]
24 + ® ® [
[] []
°
2| * ° s,
2 o o
> o o . dfo o0
g 20 ° ° ®
S e W P
— ® a .. e []
E 18+ ®» © o@ o
2 ® 0 %
© ° ee °
Y16} ce. °°
[] L °
[] []
U] o ¢
e ® o
° [}
12e ®
10 P L L L I I L
0 1 3 4 5 6 7 8
Year +2.01e3

From the graph and the table, we notice that, in the long term, the sales increase linearly.
This is the trend. However, we can also see that the sales for December tend to be higher
than for the other months. Thus, we have reason to believe that sales are also influenced by

the month.

How could we predict the monthly sales for the following years? First, we determine the
exact long-term trend of the data. Then, we would like to analyze the change across the

months.

[158]

Time Series Analysis

Analyzing trends using R
Input:

The year list contains the periods of the year represented as a decimal number
year+month/12. The sales list contains the sales in thousands of USD for the corresponding
periods in the year list. We will use linear regression to find the trend line. From the initial
graph, we notice that the trend is linear in nature.

source_code/6/sales_year.r

#Predicting sales based on the period in the year

sales = data.frame (

year = c(2010.000000, 2010.083333, 2010.166667, 2010.250000,
2010.333333, 2010.416667, 2010.500000, 2010.583333,
2010.666667, 2010.750000, 2010.833333, 2010.916667,
2011.000000, 2011.083333, 2011.166667, 2011.250000,
2011.333333, 2011.416667, 2011.500000, 2011.583333,
2011.666667, 2011.750000, 2011.833333, 2011.916667,
2012.000000, 2012.083333, 2012.166667, 2012.250000,
2012.333333, 2012.416667, 2012.500000, 2012.583333,
2012.666667, 2012.750000, 2012.833333, 2012.916667,
2013.000000, 2013.083333, 2013.166667, 2013.250000,
2013.333333, 2013.416667, 2013.500000, 2013.583333,
2013.666667, 2013.750000, 2013.833333, 2013.916667,
2014.000000, 2014.083333, 2014.166667, 2014.250000,
2014.333333, 2014.416667, 2014.500000, 2014.583333,
2014.666667, 2014.750000, 2014.833333, 2014.916667,
2015.000000, 2015.083333, 2015.166667, 2015.250000,
2015.333333, 2015.416667, 2015.500000, 2015.583333,
2015.666667, 2015.750000, 2015.833333, 2015.916667,
2016.000000, 2016.083333, 2016.166667, 2016.250000,
2016.333333, 2016.416667, 2016.500000, 2016.583333,
2016.666667, 2016.750000, 2016.833333, 2016.916667,
2017.000000, 2017.083333, 2017.166667, 2017.250000,
2017.333333, 2017.416667, 2017.500000, 2017.583333,
2017.666667, 2017.750000, 2017.833333, 2017.916667),
sale = ¢ (10.500000, 11.900000, 13.400000, 12.700000, 13.900000,

14.000000, 13.500000, 14.500000, 14.300000, 14.900000,
16.900000, 17.400000, 11.900000, 12.600000, 13.500000,
13.600000, 14.600000, 14.400000, 15.700000, 14.000000,
15.500000, 15.800000, 16.500000, 20.100000, 13.200000,
14.400000, 16.100000, 14.900000, 15.700000, 15.300000,
16.800000, 15.700000, 16.800000, 16.300000, 18.700000,
19.700000, 14.600000, 15.400000, 16.200000, 17.800000,
17.800000, 16.100000, 17.400000, 17.000000, 17.200000,
17.900000, 20.500000, 22.500000, 15.100000, 17.400000,
17.200000, 17.800000, 18.600000, 18.900000, 18.300000,

[159]

Time Series Analysis

17.900000, 19.200000, 18.800000,
16.500000, 17.900000, 19.600000,
19.700000, 19.700000, 20.500000,
22.400000, 23.800000, 18.900000,
19.700000, 20.800000, 21.100000,
20.600000, 21.400000, 23.700000,
20.800000, 22.100000, 20.900000,
22.600000, 22.700000, 21.900000,
26.600000)

)

model = Im(sale ~ year, data = sales)

print (model)

Output:

$ Rscript sales_year.r

Call:

Im(formula = sale ~ year, data = sales)

Coefficients: (Intercept) year

-2557.778 1.279

Therefore, the equation of the trend line is:

sales = 1.279*year-2557.778

Visualization:

Now we add the trend line to the graph:

20.
20.
20.
19.
21.
24,
21.
22.

400000,
200000,
300000,
500000,
000000,
600000,
500000,
900000,

23.
19.
20.
19.
21.
20.
22.
24.

Sales in 1000 USD

28

26 -

T
Il sales for Jan-Nov
Il sales for Dec

Il trend line

10t
0

7 8
+2.01e3

000000,
100000,
300000,
800000,
000000,
000000,
100000,
000000,

Time Series Analysis

Analyzing seasonality

Now we analyze seasonality - how data changes across months. From our observations, we
know that, for some months, sales tend to be higher, whereas, for other months, sales tend
to be lower. We evaluate the differences between the linear trend and the actual sales. Based
on the pattern observed in these differences, we produce a model of seasonality to predict
sales more accurately for each month:

Sales for
January

Year

2010

2011

2012

2013

2014

2015

2016

2017

Average

Actual
sales

10.5

11.9

13.2

14.6

15.1

16.5

18.9

20

Sales on
the trend
line

13.012

14.291

15.57

16.849

18.128

19.407

20.686

21.965

Difference

-2.512

-2.391

-2.37

-2.249

-3.028

-2.907

-1.786

-1.965

-2.401

Sales for
February

Year

2010

2011

2012

2013

2014

2015

2016

2017

Average

Actual
sales

119

12.6

14.4

15.4

17.4

17.9

19.5

20.8

Sales on
the trend
line

13.1185833333

14.3975833333

15.6765833333

16.9555833333

18.2345833333

19.5135833333

20.7925833333

22.0715833333

Difference

-1.2185833333

-1.7975833333

-1.2765833333

-1.5555833333

-0.8345833333

-1.6135833333

-1.2925833333

-1.2715833333

-1.3575833333

Sales for
March

Year

2010

2011

2012

2013

2014

2015

2016

2017

Average

Actual
sales

134

135

l6.1

16.2

17.2

19.6

19.8

221

Sales on
the trend
line

13.2251666667

14.5041666667

15.7831666667

17.0621666667

18.3411666667

19.6201666667

20.8991666667

22.1781666667

Difference

0.1748333333

-1.0041666667

0.3168333333

-0.8621666667

-1.1411666667

-0.0201666667

-1.0991666667

-0.0781666667

-0.4641666667

Sales for
April

Year

2010

2011

2012

2013

2014

2015

2016

2017

Average

Actual
sales

12.7

13.6

14.9

17.8

17.8

20.2

19.7

20.9

Sales on
the trend
line

13.33175

14.61075

15.88975

17.16875

18.44775

19.72675

21.00575

22.28475

Difference

-0.63175

-1.01075

-0.98975

0.63125

-0.64775

0.47325

-1.30575

-1.38475

-0.60825

Sales for
May

Year

2010

2011

2012

2013

2014

2015

2016

2017

Average

Actual
sales

139

14.6

15.7

17.8

18.6

19.1

20.8

21.5

[161]

Time Series Analysis

Sales on
the trend
line

13.4383333333

14.7173333333

15.9963333333

17.2753333333

18.5543333333

19.8333333333

21.1123333333

22.3913333333

Difference

0.4616666667

-0.1173333333

-0.2963333333

0.5246666667

0.0456666667

-0.7333333333

-0.3123333333

-0.8913333333

-0.1648333333

Sales for
June

Year

2010

2011

2012

2013

2014

2015

2016

2017

Average

Actual
sales

14

14.4

15.3

16.1

18.9

19.7

21.1

2211

Sales on
the trend
line

13.5449166667

14.8239166667

16.1029166667

17.3819166667

18.6609166667

19.9399166667

21.2189166667

22.4979166667

Difference

0.4550833333

-0.4239166667

-0.8029166667

-1.2819166667

0.2390833333

-0.2399166667

-0.1189166667

-0.3979166667

-0.3214166667

Sales for
July

Year

2010

2011

2012

2013

2014

2015

2016

2017

Average

Actual
sales

13.5

15.7

16.8

17.4

18.3

19.7

21

226

Sales on
the trend
line

13.6515

14.9305

16.2095

17.4885

18.7675

20.0465

21.3255

22.6045

Difference

-0.1515

0.7695

0.5905

-0.0885

-0.4675

-0.3465

-0.3255

-0.0045

-0.003

Sales for
August

Year

2010

2011

2012

2013

2014

2015

2016

2017

Average

Actual
sales

14.5

14

15.7

17

179

20.5

21

22.7

Sales on
the trend
line

13.7580833333

15.0370833333

16.3160833333

17.5950833333

18.8740833333

20.1530833333

21.4320833333

22.7110833333

Difference

0.7419166667

-1.0370833333

-0.6160833333

-0.5950833333

-0.9740833333

0.3469166667

-0.4320833333

-0.0110833333

-0.3220833333

Sales for
September

Year

2010

2011

2012

2013

2014

2015

2016

2017

Average

Actual
sales

14.3

155

16.8

17.2

19.2

20.3

20.6

21.9

Sales on
the trend
line

13.8646666667

15.1436666667

16.4226666667

17.7016666667

18.9806666667

20.2596666667

21.5386666667

22.8176666667

Difference

0.4353333333

0.3563333333

0.3773333333

-0.5016666667

0.2193333333

0.0403333333

-0.9386666667

-0.9176666667

-0.1161666667

Sales for
October

Year

2010

2011

2012

2013

2014

2015

2016

2017

Average

Actual
sales

14.9

15.8

16.3

17.9

18.8

20.3

21.4

229

Sales on
the trend
line

13.97125

15.25025

16.52925

17.80825

19.08725

20.36625

21.64525

2292425

Difference

0.92875

0.54975

-0.22925

0.09175

-0.28725

-0.06625

-0.24525

-0.02425

0.08975

[162]

Time Series Analysis

Sales for

November

Year 2010 2011 2012 2013 2014 2015 2016 2017 Average
Actual 16.9 16.5 18.7 20.5 204 224 23.7 24

sales

Sales on 14.0778333333 | 15.3568333333 | 16.6358333333 | 17.9148333333 | 19.1938333333 | 20.4728333333 | 21.7518333333 | 23.0308333333
the trend
line

Difference |2.8221666667 |1.1431666667 |2.0641666667 |(2.5851666667 |1.2061666667 |1.9271666667 [1.9481666667 |0.9691666667 |1.8331666667

Sales for

December

Year 2010 2011 2012 2013 2014 2015 2016 2017 Average
Actual 17.4 20.1 19.7 22.5 23 23.8 24.6 26.6

sales

Sales on 14.1844166667 | 15.4634166667 | 16.7424166667 | 18.0214166667 | 19.3004166667 | 20.5794166667 | 21.8584166667 |23.1374166667
the trend
line

Difference |3.2155833333 |(4.6365833333 |2.9575833333 |4.4785833333 |[3.6995833333 |3.2205833333 |2.7415833333 |3.4625833333 |3.5515833333

We cannot observe any obvious trends in the differences between actual sales and sales on
the trend line. Therefore, we just calculate the arithmetic means of these differences for
every month.

For example, we notice that sales in December tend to be higher by about 3551.58 USD
compared to sales predicted on the trend line. Similarly, sales for January tend to be lower
on average by 2401 USD compared to sales predicted on the trend line.

Making the assumption that the month has an impact on the actual sales from our
observations of the variation of sales across the months, we take our prediction rule:

sales = 1.279%*year -2557.778
We then update it to the new rule:
sales = 1.279*year - 2557.778 + month_difference

Here, sales is the amount of sales for a chosen month and year in the prediction, and
month_difference is the average difference in our given data between actual sales and sales on
the trend line. More specifically, we get the following 12 equations and predictions for sales
for the year 2018 in thousands of USD:

sales_january = 1.279*(year+0/12) - 2557.778 - 2.401
=1.279*(2018 + 0/12) - 2557.778 - 2.401 = 20.843
sales_february = 1.279*(year+1/12) - 2557.778 - 1.358
=1.279*(2018+1/12) - 2557.778 - 1.358 = 21.993

[163]

Time Series Analysis

sales_march = 1.279*(year+2/12) - 2557.778 - 0.464
=1.279*%(2018+2/12) - 2557.778 - 0.464 = 22.993
sales_april = 1.279*(year+3/12) - 2557.778 - 0.608
=1.279%(2018+3/12) - 2557.778 - 0.608 = 22.956
sales_may = 1.279*(year+4/12) - 2557.778 - 0.165
=1.279%(2018+4/12) - 2557.778 - 0.165 = 23.505
sales_june = 1.279*(year+5/12) - 2557.778 - 0.321
=1.279%(2018+5/12) - 2557.778 - 0.321 = 23.456
sales_july = 1.279*(year+6/12) - 2557.778 - 0.003
=1.279%(2018+6/12) - 2557.778 - 0.003 = 23.881
sales_august = 1.279*(year+7/12) - 2557.778 - 0.322
=1.279%(2018+7/12) - 2557.778 - 0.322 = 23.668
sales_september = 1.279*(year+8/12) - 2557.778 - 0.116
=1.279%(2018+8/12) - 2557.778 - 0.116 = 23.981
sales_october = 1.279*(year+9/12) - 2557.778 + 0.090
=1.279%(2018+9/12) - 2557.778 + 0.090 = 24.293
sales_november = 1.279*(year+10/12) - 2557.778 + 1.833
=1.279%(2018+10/12) - 2557.778 + 1.833 = 26.143
sales_december = 1.279*(year+11/12) - 2557.778 + 3.552

=1.279%(2018+11/12) - 2557.778 + 3.552 = 27.968

Conclusion

Therefore, we complete the table with sales for the year 2018 based on the seasonal
equations above.

[164]

Time Series Analysis

We visualize the predicted data on the graph:

28

Il given sales
26 - predicted sales e

Il trend line

Sales in 1000 USD

10 L L L L
2010 2012 2014 2016 2018 2020
Year

Summary

Time series analysis is the analysis of time-dependent data. The two most important factors
in this analysis are the analysis of trends and the analysis of seasonality.

The analysis of trends can be considered as determining the function around which the data
is distributed. Using the fact that data is dependent on time, this function can be determined
using regression. Many phenomena have a linear trend line, whereas others may not follow
a linear pattern.

The analysis of the seasonality tries to detect regular patterns occurring in time repeatedly,
such as higher sales before Christmas and so on. To detect a seasonal pattern, it is essential
to divide data into the different seasons in such a way that a pattern reoccurs in the same
season. This division can divide a year into months, a week into days or into workdays and
the weekend, and so on. An appropriate division into seasons and analyzing patterns in
those is the key to good seasonal analysis.

Once trend and seasonality have been analyzed in the data, the combined result is a
predictor for the pattern that the time-dependent data will follow in the future.

[165]

Time Series Analysis

Problems

1. Determining the trend for Bitcoin prices.

a) We are given the table for the Bitcoin prices for the years 2010 - 2017 in terms of USD.
Determine a linear trend line for these prices. The monthly price is for the first day in the
month:

Date year-month-day | Bitcoin price in USD
2010-12-01 0.23
2011-06-01 9.57
2011-12-01 3.06
2012-06-01 5.27
2012-12-01 12.56
2013-06-01 129.3
2013-12-01 946.92
2014-06-01 629.02
2014-12-01 378.64
2015-06-01 223.31
2015-12-01 362.73
2016-06-01 536.42
2016-12-01 753.25
2017-06-01 2452.18

Data taken from CoinDesk price page.
b) As per the linear trend line from part a), what is the expected price of Bitcoin in 2020?

¢) Discuss whether a linear line is a good indicator for the future price of Bitcoin.

[166]

Time Series Analysis

2. Electronics shop's sales. Using the data in the electronics shop's sales example,
predict the sales for every month of the year 2019.

Analysis:

1. Input:

source_code/7/year_bitcoin.r
#Determining a linear trend line for Bitcoin
bitcoin_prices = data.frame (

year =
2012.41666666666,
2013.91666666666,
2015.41666666666,
2016.91666666666,

c(2010.

91666666666,
2012.91666666666,
2014.41666666666,
2015.91666666666,
2017.41666666666),

2011.

41666666666, 2011.91666666666,
2013.41666666666,
2014.91666666666,
2016.41666666666,

btc_price = ¢(0.23, 9.57, 3.06, 5.27, 12.56, 129.3, 946.92, 629.02,
378.64, 223.31, 362.73, 536.42, 753.25, 2452.18)
)
model = 1lm(btc_price ~ year, data = bitcoin_prices)

print (model)

Output:
$ Rscript year_bitcoin.r
Call:
Im(formula = btc_price ~ year, data = bitcoin_prices)
Coefficients: (Intercept) year
-431962.9 214.7

Trend line:

From the output of the Rscript, we find out that the linear trend line for the price of Bitcoin
in USD is:

price = year * 214.7 - 431962.9

[167]

Time Series Analysis

This gives us the following graph for the trend line:

2500

B given data
Il trend line

2000 |

1500 |

1000

Bitcoin price in USD

500 +

-500
2010 2012 2014 2016 2018 2020

Year

As per the trend line, the expected price for Bitcoin for January 1, 2020 is 1731.1 USD.

A linear trend line is probably not a good indicator and price predictor for Bitcoin. This is
because of the many factors in play and because of the potential exponential nature often
seen in the trends in technology, for example, the number of active Facebook users and the
number of transistors in the best consumer CPU under 1000 USD.

There are three important factors that could facilitate an exponential adoption of Bitcoin
and thus drive its price upwards:

¢ Technological maturity (scalability) - the number of transactions per second can
ensure an instant transfer, even though many people use Bitcoin to make and
receive payments

e Stability - once sellers are not afraid to lose their profits if they receive payments
in Bitcoin, they are more open to accept it as currency
¢ User-friendliness - once ordinary users can make and receive payments in

Bitcoin in a natural way, there will not be a technical barrier to using Bitcoin as
they would any other currency they are used to.

To analyze the price of Bitcoin, we would have to take much more data into consideration
and it is likely that its price will not follow a linear trend.

[168]

Time Series Analysis

2. We use the 12 formulas from the example, one for each month, to predict the
sales for each month in the year 2019:

sales_january = 1.279*(year+0/12) - 2557.778 - 2.401
=1.279%2019 + 0/12) - 2557.778 - 2.401 = 22.122

sales_february = 1.279*(2019+1/12) - 2557.778 - 1.358 = 23.272
sales_march = 1.279%(2019+2/12) - 2557.778 - 0.464 = 24.272
sales_april = 1.279%(2019+3/12) - 2557.778 - 0.608 = 24.234
sales_may = 1.279*(2019+4/12) - 2557.778 - 0.165 = 24.784
sales_june = 1.279%(2019+5/12) - 2557.778 - 0.321 = 24.735
sales_july = 1.279%(2019+6/12) - 2557.778 - 0.003 = 25.160
sales_august =1.279*(2019+7/12) - 2557.778 - 0.322 = 24.947
sales_september = 1.279*(2019+8/12) - 2557.778 - 0.116 = 25.259
sales_october = 1.279*(2019+9/12) - 2557.778 + 0.090 = 25.572
sales_november = 1.279*(2019+10/12) - 2557.778 + 1.833 = 27.422
sales_december = 1.279*(2019+11/12) - 2557.778 + 3.552 = 29.247

30

Il given sales
I predicted sales for 2018 @ °
predicted sales for 2019 L] °
25| |l trend line

Sales in 1000 USD

10 L L L L
2010 2012 2014 2016 2018 2020

Statistics

Basic concepts

Notation:

Set intersection of two sets A and B denoted by A N B is the subset of A or B that contains all
elements that are in both A and B,i.e. ANB:={x:xin A and x in B}.

Set union of two sets A and B denoted by A U B is the set that contains precisely the
elements that arein A orin B,i.e AUB :={ x: xin A or x in B}.

Set difference of the two sets A and B denoted by A — B or A\B is the subset of A that
contains all elements in A that are notin B, i.e. A-B :={x:xin A and x not in B}.

Summation symbol Y represents the sum of all members over the set, e.g.:
n
Y ai=a+ax+ .. +an
i=1

Definitions and terms:

Population: A set of the similar data or items subject to the analysis.

Sample: A subset of the population.

Arithmetic mean (average) of a set: The sum of all the values in the set divided by
the size of the set

Median: The middle value in an ordered set, for example, the median of the set
{x,, ..., Xy.,} Where x, <...<x,,,, is the value x, _,.

Statistics

Random variable: A function from the set of possible outcomes to the set of the
values (for example, real numbers).

Expectation: An expectation of a random variable is the limit of the average
values of the increasing sets of the values given by the random variable.
Variance: Measures the dispersion of the population from its mean.
Mathematically, the variance of a random variable X is the expected value of the
square of the difference between the random variable and the mean p of X, i.e.
Var(X) = E[(X - u)’].

Standard deviation: The deviation of the random variable X is the square root of
the variation of the variable X, i.e. SD(X)=sqrt(Var(X)).

Correlation: The measure of the dependency between the random variables.

Mathematically, for the random variables X and Y, the correlation is defined as
corr(X,Y) = E[(X - uy) * (Y-u)J/(SD(X) * SD(Y)).

Causation: A dependence relation explaining the occurrence of one phenomena
through the occurrence of another phenomena. Causation implies correlation, but
not vice versa!

Slope: The variable a in the linear equation y=a*x+b.
Intercept: The variable b in the linear equation y=a*x+b.

Bayesian Inference

Let P(A), P(B) be the probabilities of A and B respectively. Let P(A|B) be the conditional
probability of A given B and P(B|A) be the probability of B given A. Then, Bayes' theorem

states:

P(AIB)=(P(BIA) * P(A))/P(B).

Distributions

Probability distribution is a function from the set of possible outcomes to the set of the
probabilities of those outcomes.

[171]

Statistics

Normal distribution

Random variables of many natural phenomena are modeled by the normal distribution. The
normal distribution has the probability density:

—(z—p)?
e 202

V2021

Where 1 is the mean of the distribution and o” is the variation of the distribution. The graph
of the normal distribution has a shape of a bell curve, e.g. confer the graph underneath of
the normal distribution with the mean 10 and the standard deviation 2.

flalu, o®) =

0.20
|

0.10
|

0.05
|

[172]

Statistics

Cross-validation

Cross-validation is a method to validate an estimated hypothesis on data. In the beginning
of the analysis process, the data is split into the learning data and the testing data. A
hypothesis is fit to the learning data, then its actual error is measured on the testing data.
This way, we can estimate how well a hypothesis may perform on the future data. Reducing
the amount of learning data can also be beneficial in the end, as it reduces the chance of
hypothesis over-fitting — a hypothesis being trained to a particular narrow data subset of
the data.

K-fold cross-validation

Original data is partitioned randomly into the k folds. 1 fold is used for the validation, k-1
folds of data are used for hypothesis training.

A/B Testing

A/B testing is the validation of the 2 hypotheses on the data — usually on the real data. Then,
the hypothesis with the better result (lower error of the estimation) is chosen as an estimator
for future data.

[173]

R Reference

Introduction

Ris a programming language with a focus on the statistical computing. For this reason, it is
useful for statistics, data analysis, and data mining. R code is written in files with the suffix
.r and can be executed with the command Rscript.

R Hello World example

A simple example in R prints one line of text.

Input:

source_code/appendix_b_r/example00_hello_world.r
print ('Hello World!"')

Output:

$ Rscript exampleO0_hello_world.r
[1] "Hello World!"

R Reference

Comments

Comments are not executed in R, start with the character # and end with the end of the line.
Input:

source_code/appendix_b_r/example0l_comments.r

print ("This text is printed because the print statement is executed")
#This is just a comment and will not be executed.

#print ("Even commented statements are not executed.")

print ("But the comment finished with the end of the line.")

print ("So the 4th and 5th line of the code are executed again.")

Output:

$ Rscript example0l_comments.r

[1] "This text will be printed because the print statemnt is executed"
[1] "But the comment finished with the end of the line."

[1] "So the 4th and 5th line of the code are executed again."

Data types

Some of the data types available in R are:

¢ Numeric data types: integer, numeric
o Text data types: string
* Composite data types: vector, list, data frame

Integer

The integer data type can hold only integer values:
Input:

source_code/appendix_b_r/example02_int.r
#Integer constants are suffixed with L.

rectangle_side_a = 10L

rectangle_side_b = 5L

rectangle_area = rectangle_side_a * rectangle_side_b
rectangle_perimeter = 2* (rectangle_side_a + rectangle_side_b)

#The command cat like print can also be used to print the output
#to the command line.
cat ("Let there be a rectangle with the sides of lengths:",

[175]

R Reference

rectangle_side_a, "and", rectangle_side_b, "cm.\n")

cat ("Then the area of the rectangle is", rectangle_area, "cm squared.\n")

cat ("The perimeter of the rectangle is", rectangle_perimeter, "cm.\n")
Output:

$ Rscript exampleO2_int.r

Let there be a rectangle with the sides of lengths: 10 and 5 cm.
Then the area of the rectangle is 50 cm squared.

The perimeter of the rectangle is 30 cm.

Numeric

The numeric data type can also hold non-integer rational values.
Input:

source_code/appendix_b_r/example03_numeric.r
pi = 3.14159

circle_radius = 10.2

circle_perimeter = 2 * pi * circle_radius

circle_area = pi * circle_radius * circle_radius

cat ("Let there be a circle with the radius", circle_radius, "cm.\n")

cat ("Then the perimeter of the circle is", circle_perimeter, "cm.\n")

cat ("The area of the circle is", circle_area, "cm squared.\n")
Output:

$ Rscript example03_numeric.r

Let there be a circle with the radius 10.2 cm.
Then the perimeter of the circle is 64.08844 cm.
The area of the circle is 326.851 cm squared.

String

A string variable can be used to store text.

Input:
source_code/appendix_b_r/example04_string.r
first_name = "Satoshi"
last_name = "Nakamoto"
#String concatenation is performed with the command paste.
full_name = paste(first_name, last_name, sep = " ", collapse = NULL)
cat ("The invertor of Bitcoin is", full_name, ".\n")

[176]

R Reference

Output:

$ Rscript exampleO4_string.r
The invertor of Bitcoin is Satoshi-Nakamoto

List and vector

Lists and vectors in R are written in brackets prefixed by the letter c. They can be used
interchangeably.

Input:
source_code/appendix_b_r/example05_list_vector.r

some_primes = c(2, 3, 5, 7)
cat ("The primes less than 10 are:", some_primes,"\n")

Output:

$ Rscript example05_list_vector.r
The primes less than 10 are: 2 3 5 7

Data frame

A data frame is a list of vectors of equal length.
Input:

source_code/appendix_b_r/example06_data_frame.r
temperatures = data.frame (

fahrenheit = c(5,14,23,32,41,50),

celsius = c¢(-15,-10,-5,0,5,10)
)

print (temperatures)

Output:

$ Rscript example06_data_frame.r
fahrenheit celsius

1 5 -15
2 14 -10
3 23 -5
4 32 0
5 41 5
6 50 10

[177]

R Reference

Linear regression

R is equipped with the command 1m to fit the linear models:

Input:

source_code/appendix_b_r/example07_linear_regression.r
temperatures = data.frame (

fahrenheit = c(5,14,23,32,41,50),

celsius = c¢(-15,-10,-5,0,5,10)
)
model = Im(celsius ~ fahrenheit, data = temperatures)
print (model)

Output:
$ Rscript exampleO7_linear_regression.r
Call:
Im(formula = celsius ~ fahrenheit, data = temperatures)
Coefficients:
(Intercept) fahrenheit
-17.7778 0.5556

[178]

Python Reference

Introduction

Python is a general purpose programming and scripting language. Its simplicity and
extensive libraries make it possible to develop an application quickly and compatible with
the modern requirements on the technology. Python code is written in files with the suffix
.py and can be executed with the command python.

Python Hello World example
A simplest program in Python prints one line of text.
Input:

source_code/appendix_c_python/example00_helloworld.py
print "Hello World!"

Output:

$ python example00_helloworld.py
Hello World!

Python Reference

Comments

Comments are not executed in Python, start with the character #, and end with the end of
the line.

Input:

source_code/appendix_c_python/example0l_comments.py

print "This text will be printed because the print statement is executed."
#This is just a comment and will not be executed.

#print "Even commented statements are not executed."

print "But the comment finished with the end of the line."

print "So the 4th and 5th line of the code are executed again."

Output:

$ python example0Ol_comments.py

This text will be printed because the print statement is executed
But the comment finished with the end of the line.

So the 4th and 5th line of the code are executed again.

Data types

Some of the data types available in Python are:

e numeric data types: int, float,
¢ Text data types: str
e Composite data types: tuple, list, set, dictionary.

Int

The int data type can hold only integer values.

Input:
source_code/appendix_c_python/example02_int.py
rectangle_side_a = 10
rectangle_side_b = 5
rectangle_area = rectangle_side_a * rectangle_side_b
rectangle_perimeter = 2* (rectangle_side_a + rectangle_side_b)

print "Let there be a rectangle with the sides of lengths:"
print rectangle_side_a, "and", rectangle_side_b, "cm."
print "Then the area of the rectangle is", rectangle_area, "cm squared."

[180]

Python Reference

print "The perimeter of the rectangle is", rectangle_perimeter, "cm."

Output:

$ python exampleO2_int.py

Let there be a rectangle with the sides of lengths: 10 and 5 cm.
Then the area of the rectangle is 50 cm squared.

The perimeter of the rectangle is 30 cm.

Float

The float data type can also hold non-integer rational values.
Input:

source_code/appendix_c_python/example03_float.py
pi = 3.14159

circle_radius = 10.2

circle_perimeter = 2 * pi * circle_radius

circle_area = pi * circle_radius * circle_radius

print "Let there be a circle with the radius", circle_radius, "cm."

print "Then the perimeter of the circle is", circle_perimeter, "cm."

print "The area of the circle is", circle_area, "cm squared."
Output:

$ python example03_float.py

Let there be a circle with the radius 10.2 cm.
Then the perimeter of the circle is 64.088436 cm.
The area of the circle is 326.8510236 cm squared.

String

A string variable can be used to store text.

Input:
source_code/appendix_c_python/example04_string.py
first_name = "Satoshi"
last_name = "Nakamoto"
full _name = first_name + " " + last_name

print "The inventor of Bitcoin is", full_name, "."

[181]

Python Reference

Output:

$ python example04_string.py
The inventor of Bitcoin is Satoshi Nakamoto

Tuple

A tuple data type is analogous to a vector in mathematics. For example:
tuple = (integer_number, float_number).
Input:

source_code/appendix_c_python/example05_tuple.py
import math

point_a = (1.2,2.5)
point_b = (5.7,4.8)
#math.sqgrt computes the square root of a float number.
#math.pow computes the power of a float number.
segment_length = math.sqgrt (
math.pow (point_a[0] - point_b[0], 2) +
math.pow (point_a[l] - point_bl[1l], 2))
print "Let the point A have the coordinates", point_a, "cm."
print "Let the point B have the coordinates", point_b, "cm."
print "Then the length of the line segment AB is", segment_length,

Output:

$ python example05_tuple.py

Let the point A have the coordinates (1.2, 2.5) cm.

Let the point B have the coordinates (5.7, 4.8) cm.

Then the length of the line segment AB is 5.0537115074 cm.

List
A list in Python is an ordered set of values.
Input:

source_code/appendix_c_python/example06_list.py
some_primes = [2, 3]
some_primes.append(5)
some_primes.append(7)
print "The primes less than 10 are:", some_primes

"em. "

[182]

Python Reference

Output:

$ python example06_list.py
The primes less than 10 are: [2, 3, 5, 7]

Set

A set in Python is a non-ordered mathematical set of values.
Input:

source_code/appendix_c_python/example07_set.py
from sets import Set

boys = Set (['Adam', 'Samuel', 'Benjamin'])
girls = Set(['Eva', 'Mary'])
teenagers = Set (['Samuel', 'Benjamin', 'Mary'])

print 'Adam' in boys
print 'Jane' in girls
girls.add('Jane')
print 'Jane' in girls

teenage_girls = teenagers & girls #intersection
mixed = boys | girls #union
non_teenage_girls = girls - teenage_girls #difference

print teenage_girls
print mixed
print non_teenage_girls

Output:
$ python example0O7_set.py
True
False
True
Set (['Mary'])
Set (['Benjamin', 'Adam', 'Jane', 'Eva', 'Samuel', 'Mary'])
Set (['Jane', 'Eva'l)

[183]

Python Reference

Dictionary

A dictionary is a data structure that can store values by their keys.

Input:
source_code/appendix_c_python/example08_dictionary.py
dictionary_names_heights = {}
dictionary_names_heights['Adam'] = 180.
dictionary_names_heights['Benjamin'] = 187
dictionary_names_heights['Eva'] = 169
print 'The height of Eva is', dictionary_names_heights['Eva'], 'cm.'
Output:

$ python example08_dictionary.py
The height of Eva is 169 cm.

Flow control

Conditionals, We can make certain amount of the code to be executed only upon a certain
condition met using the if statement. If the condition is not met, then we can execute the
code following the else statement. If the first condition is not met, we can set the next
condition for the code to be executed using the elif statement.

Input:
source_code/appendix_c_python/example09_if_ else_elif.py
x =10
if x == 10:
print 'The variable x is equal to 10.'
if x > 20:
print 'The variable x is greater than 20.'
else:
print 'The variable x is not greater than 20.'
if x > 10:

print 'The variable x is greater than 10.'
elif x > 5:
print 'The variable x is not greater than 10, but greater ' +
'than 5.°'
else:
print 'The variable x is not greater than 5 or 10.'

[184]

Python Reference

Output:

$ python example09_if_else_elif.py

The variable x is equal to 10.

The variable x is not greater than 20.

The variable x is not greater than 10, but greater than 5.

For loop

For loop enables the iteration through every element in some set of elements, e.g. range,
python set, list.

For loop on range
Input:

source_code/appendix_c_python/examplelO_for_loop_range.py
print "The first 5 positive integers are:"
for i in range(l,6):

print i

Output:

$ python examplelO_for_loop_range.py
The first 5 positive integers are:

g w N

For loop on list

Input:
source_code/appendix_c_python/examplell_for_loop_list.py
primes = [2, 3, 5, 7, 11, 13]
print 'The first', len(primes), 'primes are:'

for prime in primes:
print prime

[185]

Python Reference

Output:

$ python examplell_for_loop_list.py
The first 6 primes are:

2

3

5

7

11

13

Break and continue

For loops can be exited earlier with the statement break. The rest of the cycle in the for loop
can be skipped with the statement continue.

Input:

source_code/appendix_c_python/examplel2_break_continue.py
for i in range(0,10):

if 1 $ 2 == 1: #remainder from the division by 2
continue
print 'The number', i, 'is divisible by 2.'

for j in range(20,100):
print j
if 3 > 22:
break;

Output:

$ python examplel2_break_continue.py
The number 0 is divisible by 2.

The number 2 is divisible by 2.
The number 4 is divisible by 2.
The number 6 is divisible by 2.
The number 8 is divisible by 2.
20
21
22
23

[186]

Python Reference

Functions

Python supports the definition of the functions which is a good way to define a piece of
code that is executed at multiple places in the program. A function is defined using the
keyword def.

Input:

source_code/appendix_c_python/examplel3_function.py
def rectangle_perimeter(a, b):
return 2 * (a + b)

print 'Let a rectangle have its sides 2 and 3 units long.'

print 'Then its perimeter is', rectangle_perimeter (2, 3), 'units.'

print 'Let a rectangle have its sides 4 and 5 units long.'

print 'Then its perimeter is', rectangle_perimeter (4, 5), 'units.'
Output:

$ python examplel3_function.py
Let a rectangle have its sides 2 and 3 units long.
Then its perimeter is 10 units.
Let a rectangle have its sides 4 and 5 units long.
Then its perimeter is 18 units.

Program arguments

A program can be passed arguments from the command line.

Input:

source_code/appendix_c_python/exampleld4_arguments.py
#Import the system library in order to use the argument list.
import sys

print 'The number of the arguments given is', len(sys.argv), 'arguments.'

print 'The argument list is ', sys.argv, '.'

Output:

$ python exampleld_arguments.py argl 110
The number of the arguments given is 3 arguments.
The argument list is ['exampleld4_arguments.py', 'argl', '110']

[187]

Python Reference

Reading and writing the file

The following program will write two lines into the file test . txt, then read them and
finally print them to the output.

Input:

source_code/appendix_c_python/examplel5_file.py
#write to the file with the name "test.txt"

file = open("test.txt","w")

file.write("first line\n")

file.write("second line")

file.close()

#read the file
file = open("test.txt","r")
print file.read()

Output:

$ python examplel5_file.py
first line
second line

[188]

Glossary of Algorithms and
Methods in Data Science

k-Nearest Neighbors algorithm: An algorithm that estimates an unknown data
item to be like the majority of the k-closest neighbors to that item.

Naive Bayes classifier: A way to classify a data item using Bayes' theorem about
the conditional probabilities, P(A|B)=(P(BIA) * P(A))/P(B), and in addition,
assuming the independence between the given variables in the data.

Decision Tree: A model classifying a data item into one of the classes at the leaf
node, based on the matching properties between the branches on the tree and the
actual data item.

Random Decision Tree: A decision tree in which every branch is formed using
only a random subset of the available variables during its construction.

Random Forest: An ensemble of random decision trees constructed on the
random subset of the data with the replacement, where a data item is classified to
the class with the majority vote from its trees.

K-means algorithm: The clustering algorithm that divides the dataset into the k
groups such that the members in the group are as similar possible, that is, closest
to each other.

Regression analysis: A method of the estimation of the unknown parameters in a
functional model predicting the output variable from the input variables, for
example, to estimate a and b in the linear model y=a*x+b.

Glossary of Algorithms and Methods in Data Science

e Time series analysis: The analysis of data dependent on time; it mainly includes
the analysis of trend and seasonality.

e Support vector machines: A classification algorithm that finds the hyperplane
that divides the training data into the given classes. This division by the
hyperplane is then used to classify the data further.

e Principal component analysis: The preprocessing of the individual components
of the given data in order to achieve better accuracy, for example, rescaling of the
variables in the input vector depending on how much impact they have on the
end result.

¢ Text mining: The search and extraction of text and its possible conversion to
numerical data used for data analysis.

¢ Neural networks: A machine learning algorithm consisting of a network of
simple classifiers making decisions based on the input or the results of the other
classifiers in the network.

¢ Deep learning: The ability of a neural network to improve its learning process.

e A priori association rules: The rules that can be observed in the training data
and, based on which, a classification of the future data can be made.

e PageRank: A search algorithm that assigns the greatest relevance to the search
result that has the greatest number of incoming web links from the most relevant
search results on a given search term. In mathematical terms, PageRank
calculates a certain eigenvector representing these measures of relevance.

e Ensemble learning: A method of learning where different learning algorithms
are used to make a final conclusion.

e Bagging: A method of classifying a data item by the majority vote of the
classifiers trained on the random subsets of the training data.

¢ Genetic algorithms: Machine learning algorithms inspired by the genetic
processes, for example, an evolution where classifiers with the best accuracy are
trained further.

¢ Inductive inference: A machine learning method learning the rules that
produced the actual data.

¢ Bayesian networks: A graph model representing random variables with their
conditional dependencies.

¢ Singular value decomposition: A factorization of a matrix, a generalization of
eigen decomposition, used in least squares methods.

¢ Boosting: A machine learning meta algorithm decreasing the variance in the
estimation by making a prediction based on the ensembles of the classifiers.

e Expectation maximization: An iterative method to search the parameters in the
model that maximize the accuracy of the prediction of the model.

[190]

A

A/B testing 173

algorithm 20
bagging 190

Bayesian inference 171
Bayesian networks 190
boosting 190
bootstrap aggregating 76
business profit

analysis 155, 156, 157

C

computer 20
cross-validation
about 173

k-fold cross-validation 173

D

data inconsistency
dealing 69, 70

overcoming, with randomness 94, 95

data rescaling
about 18
analysis 19, 20

data types
about 175,180
data frame 177
dictionary 184
float data type 181
int data type 180
integer data type 175
list 177,182
numeric data type 176
set 183

Index

string variable 176, 181

tuple data type 182

vector 177
data

representing, with decision tree 52, 53
decision tree

about 189

analysis 65, 67, 68

classifying 64

data, classifying with swimming preference

decision tree 65

data, representing 52, 53
deep learning 190
dependent events 37, 39, 40
distributions

about 171

normal distribution 172

E

electronics shop's sales
analysis 157, 158
conclusion 164
seasonality, analyzing 161
trends analyzing, R used 159
ensemble learning 190
expectation maximization 190

F

flight time duration

prediction, example from distance 144, 146
flow control

about 184

break and continue 186

file, reading 188

file, writing 188

for loop 185

functions 187

program arguments 187
for loop

about 185

onrange 185

G

genetic algorithms 190
gradient descent algorithm
about 140, 141,143
implementation 140
models, comparison by R 144

ID3 algorithm

about 57

decision tree construction 57, 58

implementation 58, 64
independent events 33, 34
inductive inference 190
information entropy

about 53

coin flipping 54

definition 54, 55
information gain 55
information gain calculation 55
information theory 53

K

k clusters
analysis 113,117,118,119, 120
classifying 105, 107, 108
clustering 102, 103
in semantic context 119, 123, 126
selecting 113
k-means clustering algorithm
about 103, 189
centroid, computing 104
implementation 109
initial k-centroids, picking 104
input data, from gender classification 112
on household income example 104, 105

program output, for gender classification data
112

k-nearest neighbors algorithm
about 189

implementation 10, 13
visualization 14

L

level of confidence
measuring 94, 95

linear regression
about 178
on perfect data 136, 137
on real-world data 139, 140
visualization 138

map data
analysis 16, 17
example 15

N

Naive Bayes classifier
about 189
implementation 34
Naive Bayes' theorem
about 29
basic application 30, 31
extension 31, 32
proof 31, 32
Naive Bayes
for continuous random variables 40, 42
neural networks 190
non-linear model 146, 147, 148

P

PageRank 190
principal component analysis 190
priori association rules 190
Python reference
about 179
comments 180
Python Hello World example 179

R

R reference
about 174
comments 175

[192]

R Hello World example 174
random decision tree 189
random forest algorithm
implementation 83
overview 76
random forest construction
about 78, 88
overview 76
random decision tree number 0, construction 78,
79, 88, 89, 90, 91
random decision tree number 1, construction 80,
81, 82, 92
random decision tree number 2, construction 92
random decision tree number 3, construction 92
random forest
about 189
analysis 77, 78
classification 83
example 87, 88
regression analysis 189

S

singular value decomposition 190
statistics

basic concepts 170, 171
support vector machines 190

T

temperature preferences 6, 7, 8, 9, 10
text classification, k-NN
analysis 24
text classification, non-Euclidean distances
analysis 22
text classification
k-NN, in higher-dimensions 23, 24
non-Euclidean distances, used 20
text mining 190
time series analysis 190
tree bagging 76

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Classification Using K Nearest Neighbors
	Mary and her temperature preferences
	Implementation of k-nearest neighbors algorithm
	Map of Italy example - choosing the value of k
	House ownership - data rescaling
	Text classification - using non-Euclidean distances
	Text classification - k-NN in higher-dimensions
	Summary
	Problems

	Chapter 2: Naive Bayes
	Medical test - basic application of Bayes' theorem
	Proof of Bayes' theorem and its extension
	Extended Bayes' theorem

	Playing chess - independent events
	Implementation of naive Bayes classifier
	Playing chess - dependent events
	Gender classification - Bayes for continuous random variables
	Summary
	Problems

	Chapter 3: Decision Trees
	Swim preference - representing data with decision tree
	Information theory
	Information entropy
	Coin flipping
	Definition of information entropy

	Information gain
	Swim preference - information gain calculation

	ID3 algorithm - decision tree construction
	Swim preference - decision tree construction by ID3 algorithm
	Implementation

	Classifying with a decision tree
	Classifying a data sample with the swimming preference decision tree

	Playing chess - analysis with decision tree
	Going shopping - dealing with data inconsistency
	Summary
	Problems

	Chapter 4: Random Forest
	Overview of random forest algorithm
	Overview of random forest construction

	Swim preference - analysis with random forest
	Random forest construction
	Construction of random decision tree number 0
	Construction of random decision tree number 1

	Classification with random forest

	Implementation of random forest algorithm
	Playing chess example
	Random forest construction
	Construction of a random decision tree number 0:
	Construction of a random decision tree number 1, 2, 3

	Going shopping - overcoming data inconsistency with randomness and measuring the level of confidence
	Summary
	Problems

	Chapter 5: Clustering into K Clusters
	Household incomes - clustering into k clusters
	K-means clustering algorithm
	Picking the initial k-centroids
	Computing a centroid of a given cluster

	k-means clustering algorithm on household income example

	Gender classification - clustering to classify
	Implementation of the k-means clustering algorithm
	Input data from gender classification
	Program output for gender classification data

	House ownership – choosing the number of clusters
	Document clustering – understanding the number of clusters k in a semantic context
	Summary
	Problems

	Chapter 6: Regression
	Fahrenheit and Celsius conversion - linear regression on perfect data
	Weight prediction from height - linear regression on real-world data
	Gradient descent algorithm and its implementation
	Gradient descent algorithm
	Visualization - comparison of models by R and gradient descent algorithm

	Flight time duration prediction from distance
	Ballistic flight analysis – non-linear model
	Summary
	Problems

	Chapter 7: Time Series Analysis
	Business profit - analysis of the trend
	Electronics shop's sales - analysis of seasonality
	Analyzing trends using R
	Analyzing seasonality
	Conclusion

	Summary
	Problems

	Appendix A: Statistics
	Basic concepts
	Bayesian Inference
	Distributions
	Normal distribution

	Cross-validation
	K-fold cross-validation

	A/B Testing

	Appendix B: R Reference
	Introduction
	R Hello World example
	Comments

	Data types
	Integer
	Numeric
	String
	List and vector
	Data frame

	Linear regression

	Appendix C: Python Reference
	Introduction
	Python Hello World example
	Comments

	Data types
	Int
	Float
	String
	Tuple
	List
	Set
	Dictionary

	Flow control
	For loop
	For loop on range
	For loop on list
	Break and continue

	Functions
	Program arguments
	Reading and writing the file

	Appendix D: Glossary of Algorithms and Methods in Data Science
	Index

