

Hadoop Real-World
Solutions Cookbook
Second Edition

Over 90 hands-on recipes to help you learn and master
the intricacies of Apache Hadoop 2.X, YARN, Hive, Pig,
Oozie, Flume, Sqoop, Apache Spark, and Mahout

Tanmay Deshpande

BIRMINGHAM - MUMBAI

Hadoop Real-World Solutions Cookbook
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2013

Second edition: March 2016

Production reference: 1220316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-550-6

www.packtpub.com

www.packtpub.com

Credits

Authors
Tanmay Deshpande

Jonathan R. Owens

Jon Lentz

Brian Femiano

Reviewer
Shashwat Shriparv

Commissioning Editor
Akram Hussain

Acquisition Editor
Manish Nainani

Content Development Editor
Sumeet Sawant

Technical Editor
Gebin George

Copy Editor
Sonia Cheema

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Tanmay Deshpande is a Hadoop and big data evangelist. He's interested in a wide range
of technologies, such as Apache Spark, Hadoop, Hive, Pig, NoSQL databases, Mahout, Sqoop,
Java, cloud computing, and so on. He has vast experience in application development in various
domains, such as finance, telecoms, manufacturing, security, and retail. He enjoys solving
machine-learning problems and spends his time reading anything that he can get his hands on.
He has a great interest in open source technologies and promotes them through his lectures. He
has been invited to various computer science colleges to conduct brainstorming sessions with
students on the latest technologies. Through his innovative thinking and dynamic leadership, he
has successfully completed various projects. Tanmay is currently working with Schlumberger as
the lead developer of big data. Before Schlumberger, Tanmay worked with Lumiata, Symantec,
and Infosys.

He currently blogs at http://hadooptutorials.co.in.

Acknowledgements

This is my fourth book, and I can't thank the Almighty, enough without whom this wouldn't
have been true. I would like to take this opportunity to thank my wife, Sneha, my parents,
Avinash and Manisha Deshpande, and my brother, Sakalya Deshpande, for being with me
through thick and thin. Without you, I am nothing!

I would like to take this opportunity to thank my colleagues, friends, and family for appreciating
my work and making it a grand success so far. I'm truly blessed to have each one of you in
my life.

I am thankful to the authors of the first edition of this book, Jonathan R. Owens, Brian Femino,
and Jon Lentz for setting the stage for me, and I hope this effort lives up to the expectations
you had set in the first edition. I am also thankful to each person in Packt Publishing who has
worked to make this book happen! You guys are family to me!

Above all, I am thankful to my readers for their love, appreciation, and criticism, and I assure
you that I have tried to give you my best. Hope you enjoy this book! Happy learning!

About the Reviewer

Shashwat Shriparv has 6+ IT experience in industry, and 4+ in BigData technologies.
He possesses a master degree in computer application. He has experience in technologies
such as Hadoop, HBase, Hive, Pig, Flume, Sqoop, Mongo, Cassandra, Java, C#, Linux,
Scripting, PHP,C++,C, Web technologies, and various real life use cases in BigData
technologies as a developer and administrator.

He has worked with companies such as CDAC, Genilok, HCL, UIDAI(Aadhaar); he is currently
working with CenturyLink Cognilytics. He is the author of Learning HBase, Packt Publishing
and reviewer Pig design pattern book, Packt Publishing.

I want to acknowledge everyone I know.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

i

Table of Contents
Preface	 v
Chapter 1: Getting Started with Hadoop 2.X	 1

Introduction	 1
Installing single-node Hadoop Cluster	 2
Installing a multi-node Hadoop cluster	 9
Adding new nodes to existing Hadoop clusters	 13
Executing balancer command for uniform data distribution	 14
Entering and exiting from the safe mode in a Hadoop cluster	 17
Decommissioning DataNodes	 18
Performing benchmarking on a Hadoop cluster	 19

Chapter 2: Exploring HDFS	 23
Introduction	 23
Loading data from a local machine to HDFS	 24
Exporting HDFS data to a local machine	 25
Changing the replication factor of an existing file in HDFS	 26
Setting the HDFS block size for all the files in a cluster	 27
Setting the HDFS block size for a specific file in a cluster	 28
Enabling transparent encryption for HDFS	 29
Importing data from another Hadoop cluster	 31
Recycling deleted data from trash to HDFS	 32
Saving compressed data in HDFS	 34

Chapter 3: Mastering Map Reduce Programs	 37
Introduction	 37
Writing the Map Reduce program in Java to analyze web log data	 38
Executing the Map Reduce program in a Hadoop cluster	 42
Adding support for a new writable data type in Hadoop	 43
Implementing a user-defined counter in a Map Reduce program	 47
Map Reduce program to find the top X	 51

ii

Table of Contents

Map Reduce program to find distinct values	 55
Map Reduce program to partition data using a custom partitioner	 58
Writing Map Reduce results to multiple output files	 61
Performing Reduce side Joins using Map Reduce	 63
Unit testing the Map Reduce code using MRUnit	 69

Chapter 4: Data Analysis Using Hive, Pig, and Hbase	 73
Introduction	 74
Storing and processing Hive data in a sequential file format	 75
Storing and processing Hive data in the ORC file format	 77
Storing and processing Hive data in the ORC file format	 79
Storing and processing Hive data in the Parquet file format	 81
Performing FILTER By queries in Pig	 83
Performing Group By queries in Pig	 84
Performing Order By queries in Pig	 86
Performing JOINS in Pig	 87
Writing a user-defined function in Pig	 90
Analyzing web log data using Pig	 94
Performing the Hbase operation in CLI	 97
Performing Hbase operations in Java	 103
Executing the MapReduce programming with an Hbase Table	 105

Chapter 5: Advanced Data Analysis Using Hive	 109
Introduction	 109
Processing JSON data in Hive using JSON SerDe	 110
Processing XML data IN Hive using JSON SerDe	 113
Processing Hive data in the Avro format	 116
Writing a user-defined function in Hive	 118
Performing table joins in Hive	 121
Executing map side joins in Hive	 124
Performing context Ngram in Hive	 127
Call Data Record Analytics using Hive	 129
Twitter sentiment analysis using Hive	 131
Implementing Change Data Capture using Hive	 135
Multiple table inserting using Hive	 139

Chapter 6: Data Import/Export Using Sqoop and Flume	 143
Introduction	 143
Importing data from RDMBS to HDFS using Sqoop	 144
Exporting data from HDFS to RDBMS	 148
Using query operator in Sqoop import	 151
Importing data using Sqoop in compressed format	 153
Performing Atomic export using Sqoop	 154

iii

Table of Contents

Importing data into Hive tables using Sqoop	 156
Importing data into HDFS from Mainframes	 157
Incremental import using Sqoop	 158
Creating and executing Sqoop job	 161
Importing data from RDBMS to Hbase using Sqoop	 164
Importing Twitter data into HDFS using Flume	 168
Importing data from Kafka into HDFS using Flume	 173
Importing web logs data into HDFS using Flume	 175

Chapter 7: Automation of Hadoop Tasks Using Oozie	 177
Introduction	 177
Implementing a Sqoop action job using Oozie	 178
Implementing a Map Reduce action job using Oozie	 180
Implementing a Java action job using Oozie	 182
Implementing a Hive action job using Oozie	 184
Implementing a Pig action job using Oozie	 186
Implementing an e-mail action job using Oozie	 188
Executing parallel jobs using Oozie (fork)	 190
Scheduling a job in Oozie	 192

Chapter 8: Machine Learning and Predictive Analytics
Using Mahout and R	 195

Introduction	 195
Setting up the Mahout development environment	 196
Creating an item-based recommendation engine using Mahout	 198
Creating an user-based recommendation engine using Mahout	 201
Using Predictive analytics on Bank Data using Mahout	 204
Clustering text data using K-Means	 207
Performing Population Data Analytics using R	 208
Performing Twitter Sentiment Analytics using R	 212
Performing Predictive Analytics using R	 217

Chapter 9: Integration with Apache Spark	 221
Introduction	 221
Running Spark standalone	 222
Running Spark on YARN	 224
Olympic Athlete Data Analytics using Spark Shell	 225
Creating Twitter trending topics using Spark Streaming	 229
Twitter trending topics using Spark streaming	 233
Analyzing Parquet files using Spark	 237
Analyzing JSON data using Spark 	 239
Processing graphs using Graph X	 242
Conducting predictive analytics using Spark MLib	 245

iv

Table of Contents

Chapter 10: Hadoop Use Cases	 249
Introduction	 249
Call Data Record analytics	 249
Web log analytics	 254
Sensitive data masking and encryption using Hadoop	 260

Index	 265

v

Preface
Big Data is the need the day. Many organizations are producing huge amounts of data every
day. With the advancement of Hadoop-like tools, it has become easier for everyone to solve
Big Data problems with great efficiency and at a very low cost. When you are handling such a
massive amount of data, even a small mistake can cost you dearly in terms of performance
and storage. It's very important to learn the best practices of handling such tools before
you start building an enterprise Big Data Warehouse, which will be greatly advantageous in
making your project successful.

This book gives you insights into learning and mastering Big Data recipes. This book not
only explores a majority of Big Data tools that are currently being used in the market, but
also provides the best practices in order to implement them. This book will also provide
you with recipes that are based on the latest version of Apache Hadoop 2.X, YARN, Hive,
Pig, Sqoop, Flume, Apache Spark, Mahout, and many more ecosystem tools. This real-world
solutions cookbook is packed with handy recipes that you can apply to your own everyday
issues. Each chapter talks about recipes in great detail, and these can be referred to
easily. This book provides detailed practice on the latest technologies, such as YARN and
Apache Spark. This guide is an invaluable tutorial if you are planning to implement Big Data
Warehouse for your business.

What this book covers
Chapter 1, Getting Started with Hadoop 2.x, introduces you to the installation details needed
for single and multi-node Hadoop clusters. It also contains the recipes that will help you
understand various important cluster management techniques, such as decommissioning,
benchmarking, and so on.

Chapter 2, Exploring HDFS, provides you with hands-on recipes to manage and maintain
the Hadoop Distributed File System (HDFS) in an efficient way. You will learn some important
practices, such as transient encryption, saving data in a compressed format, recycling deleted
data from HDFS, and so on.

Preface

vi

Chapter 3, Mastering Map Reduce Programs, enlightens you about very important recipes for
Map Reduce programming, which take you beyond the simple Word Count program. You will
learn about various customization techniques in detail.

Chapter 4, Data Analysis Using Hive, Pig, and Hbase, takes you to the analytical world of Hive,
Pig, and Hbase. This chapter talks about the use of various file formats, such as RC, ORC,
Parquet, and so on. You will also get introduced to the Hbase NoSQL database.

Chapter 5, Advanced Data Analysis Using Hive, provides insights on the usage of serializers
and deserializers (SerDe) in Hive for JSON and XML data operations. This chapter will provide
you with a detailed explanation for Twitter sentiment analysis using Hive.

Chapter 6, Data Import/Export Using Sqoop and Flume, covers various recipes to import and
export data from sources, such as RDBMS, Kafka, web log servers, and so on, using Sqoop
and Flume.

Chapter 7, Automation of Hadoop Tasks Using Oozie, introduces you to a very rich scheduling
tool called Oozie, which will help you build automated production-ready Big Data applications.

Chapter 8, Machine Learning and Predictive Analytics Using Mahout and R, gives you an
end-to-end implementation of predictive analytics applications using Mahout and R. It covers
the various visualization options available in R as well.

Chapter 9, Integration with Apache Spark, introduces you to a very important distributed
computing framework called Apache Spark. It covers basic to advanced topics such as
installation, Spark application development and execution, usage of the Spark Machine
Learning Library, MLib, and graph processing using Spark.

Chapter 10, Hadoop Use Cases, provides you with end-to-end implementations of Hadoop use
cases from various domains, such as telecom, finance, e-commerce, and so on.

What you need for this book
To get started with this hands-on recipe-driven book, you should have a laptop/desktop with
any OS, such as Windows, Linux, or Mac. It's good to have an IDE, such as Eclipse or IntelliJ,
and of course, you need a lot of enthusiasm to learn.

Who this book is for
This book is for those of you who have basic knowledge of Big Data systems and want to
advance your knowledge with hands-on recipes.

Preface

vii

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: " Spark MLib provides a
huge list of supported algorithms."

A block of code is set as follows:

$jps
2184 DataNode
2765 NodeManager
2835 Jps
2403 SecondaryNameNode
2025 NameNode
2606 ResourceManager

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

 // The results of SQL queries are themselves RDDs and support all
normal RDD functions. The
 // items in the RDD are of type Row, which allows you to access
each column by ordinal.
valrddFromSql = sql("SELECT id, name FROM empSpark WHERE id < 20 ORDER
BY id")

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Click on Create your Twitter
application to save your application."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

viii

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.

2.	 Hover the mouse pointer on the SUPPORT tab at the top.

3.	 Click on Code Downloads & Errata.

4.	 Enter the name of the book in the Search box.

5.	 Select the book for which you're looking to download the code files.

6.	 Choose from the drop-down menu where you purchased this book from.

7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff 7-Zip / PeaZip for Linux

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

ix

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in the
output. You can download this file from https://www.packtpub.com/sites/default/
files/downloads/HadoopRealWorldSolutionsCookbookSecondEdition_
ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/HadoopRealWorldSolutionsCookbookSecondEdition_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HadoopRealWorldSolutionsCookbookSecondEdition_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HadoopRealWorldSolutionsCookbookSecondEdition_ColoredImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Getting Started

with Hadoop 2.X

This chapter covers the following topics:

ff Installing a single-node Hadoop cluster

ff Installing a multi-node Hadoop cluster

ff Adding new nodes to existing Hadoop clusters

ff Executing the balancer command for uniform data distribution

ff Entering and exiting from the safe mode in a Hadoop cluster

ff Decommissioning DataNodes

ff Performing benchmarking on a Hadoop cluster

Introduction
Hadoop has been the primary platform for many people who deal with big data problems.
It is the heart of big data. Hadoop was developed way back between 2003 and 2004 when
Google published research papers on Google File System (GFS) and Map Reduce. Hadoop
was structured around the crux of these research papers, and thus derived its shape. With the
advancement of the Internet and social media, people slowly started realizing the power that
Hadoop had, and it soon became the top platform used to handle big data. With a lot of hard
work from dedicated contributors and open source groups to the project, Hadoop 1.0 was
released and the IT industry welcomed it with open arms.

Getting Started with Hadoop 2.X

2

A lot of companies started using Hadoop as the primary platform for their Data Warehousing
and Extract-Transform-Load (ETL) needs. They started deploying thousands of nodes in a
Hadoop cluster and realized that there were scalability issues beyond the 4000+ node clusters
that were already present. This was because JobTracker was not able to handle that many Task
Trackers, and there was also the need for high availability in order to make sure that clusters
were reliable to use. This gave birth to Hadoop 2.0.

In this introductory chapter, we are going to learn interesting recipes such as installing
a single/multi-node Hadoop 2.0 cluster, its benchmarking, adding new nodes to existing
clusters, and so on. So, let's get started.

Installing a single-node Hadoop Cluster
In this recipe, we are going to learn how to install a single-node Hadoop cluster, which can be
used for development and testing.

Getting ready
To install Hadoop, you need to have a machine with the UNIX operating system installed on it.
You can choose from any well known UNIX OS such as Red Hat, CentOS, Ubuntu, Fedora, and
Amazon Linux (this is in case you are using Amazon Web Service instances).

Here, we will be using the Ubuntu distribution for demonstration purposes.

How to do it...
Let's start installing Hadoop:

1.	 First of all, you need to download the required installers from the Internet. Here, we
need to download Java and Hadoop installers. The following are the links to do this:

For the Java download, choose the latest version of the available JDK from
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html.

You can also use Open JDK instead of Oracle.

For the Hadoop 2.7 Download, go to
http://www.eu.apache.org/dist/hadoop/common/hadoop-2.7.0/
hadoop-2.7.0.tar.gz.

2.	 We will first install Java. Here, I am using /usr/local as the installation directory
and the root user for all installations. You can choose a directory of your choice.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.eu.apache.org/dist/hadoop/common/hadoop-2.7.0/hadoop-2.7.0.tar.gz
http://www.eu.apache.org/dist/hadoop/common/hadoop-2.7.0/hadoop-2.7.0.tar.gz

Chapter 1

3

Extract tar.gz like this:
tar -xzf java-7-oracle.tar.gz

Rename the extracted folder to give the shorter name Java instead of java-7-oracle.
Doing this will help you remember the folder name easily.

Alternately, you can install Java using the apt-get package manager if your machine
is connected to the Internet:
sudo apt-get update

sudo apt-get install openjdk-7-jdk

3.	 Similarly, we will extract and configure Hadoop. We will also rename the extracted
folder for easier accessibility. Here, we will extract Hadoop to path /usr/local:
tar –xzf hadoop-2.7.0.tar.gz

mv hadoop-2.7.0 hadoop

4.	 Next, in order to use Java and Hadoop from any folder, we would need to add these
paths to the ~/.bashrc file. The contents of the file get executed every time a user
logs in:
cd ~

vi .bashrc

Once the file is open, append the following environment variable settings to it. These
variables are used by Java and Hadoop at runtime:
export JAVA_HOME=/usr/local/java
export PATH=$PATH:$JAVA_HOME/bin
export HADOOP_INSTALL=/usr/local/hadoop
export PATH=$PATH:$HADOOP_INSTALL/bin
export PATH=$PATH:$HADOOP_INSTALL/sbin
export HADOOP_MAPRED_HOME=$HADOOP_INSTALL
export HADOOP_COMMON_HOME=$HADOOP_INSTALL
export HADOOP_HDFS_HOME=$HADOOP_INSTALL
export YARN_HOME=$HADOOP_INSTALL
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_INSTALL/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_INSTALL/lib"

5.	 In order to verify whether our installation is perfect, close the terminal and restart it
again. Also, check whether the Java and Hadoop versions can be seen:
$java -version
java version "1.7.0_45"
Java(TM) SE Runtime Environment (build 1.7.0_45-b18)
Java HotSpot(TM) Server VM (build 24.45-b08, mixed mode)

Getting Started with Hadoop 2.X

4

$ hadoop version
Hadoop 2.7.0
Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r
d4c8d4d4d203c934e8074b31289a28724c0842cf
Compiled by jenkins on 2015-04-10T18:40Z
Compiled with protoc 2.5.0
From source with checksum a9e90912c37a35c3195d23951fd18f

This command was run using /usr/local/hadoop/share/hadoop/common/
hadoop-common-2.7.0.jar.

6.	 Now that Hadoop and Java are installed and verified, we need to install ssh (Secure
Shell) if it's not already available by default. If you are connected to the Internet,
execute the following commands. SSH is used to secure data transfers between nodes:
sudo apt-get install openssh-client

sudo apt-get install openssh-server

7.	 Once the ssh installation is done, we need to execute the ssh configuration in
order to avail a passwordless access to remote hosts. Note that even though we
are installing Hadoop on a single node, we need to perform an ssh configuration
in order to securely access the localhost.

First of all, we need to generate public and private keys by executing the
following command:
ssh-keygen -t rsa -P ""

This will generate the private and public keys by default in the $HOME/.ssh folder.
In order to provide passwordless access, we need to append the public key to
authorized_keys file:
cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

Let's check whether the ssh configuration is okay or not. To test it, execute and
connect to the localhost like this:
ssh localhost

This will prompt you to confirm whether to add this connection to the known_hosts
file. Type yes, and you should be connected to ssh without prompting for the password.

8.	 Once the ssh configuration is done and verified, we need to configure Hadoop. The
Hadoop configuration begins with adding various configuration parameters to the
following default files:

�� hadoop-env.sh: This is where we need to perform the Java environment
variable configuration.

�� core-site.xml: This is where we need to perform NameNode-related
configurations.

Chapter 1

5

�� yarn-site.xml: This is where we need to perform configurations related
to Yet Another Resource Negotiator (YARN).

�� mapred-site.xml: This is where we need to the map reduce engine
as YARN.

�� hdfs-site.xml: This is where we need to perform configurations related
to Hadoop Distributed File System (HDFS).

These configuration files can be found in the /usr/local/hadoop/etc/hadoop
folder. If you install Hadoop as the root user, you will have access to edit these files,
but if not, you will first need to get access to this folder before editing.

So, let's take a look at the configurations one by one.

Configure hadoop-env.sh and update the Java path like this:

1.	 Export JAVA_HOME=/usr/local/java.

2.	 Edit core-site.xml, and add the host and port on which you wish to install
NameNode. Here is the single node installation that we would need in order to
add the localhost:
<configuration>
 <property>
 <name>fs.default.name</name>
 <value>hdfs://localhost:9000/</value>
 </property>
</configuration>

3.	 Edit yarn-site.xml, add the following properties to it:
<configuration>
 <property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
 </property>
 <property>
 <name>yarn.nodemanager.aux-services.mapreduce.shuffle.
class</name>
 <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 </property>
</configuration>

The yarn.nodemanager.aux-services property tells NodeManager that
an auxiliary service named mapreduce.shuffle is present and needs to be
implemented. The second property tells NodeManager about the class by which
means it needs to implement the shuffle auxiliary service. This specific configuration
is needed as the MapReduce job involves shuffling of key value pairs.

Getting Started with Hadoop 2.X

6

4.	 Next, edit mapred-site.xml to set the map reduce processing engine as YARN:
<configuration>
 <property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 </property>
</configuration>

5.	 Edit hdfs-site.xml to set the folder paths that can be used by NameNode
and datanode:
<configuration>
 <property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
 </property>
 <property>
 <name>yarn.nodemanager.aux-services.mapreduce.shuffle.
class</name>
 <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 </property>
</configuration>

6.	 I am also setting the HDFS block replication factor to 1 as this is a single node
cluster installation.

We also need to make sure that we create the previously mentioned folders and
change their ownership to suit the current user. To do this, you can choose a folder
path of your own choice:
sudo mkdir –p /usr/local/store/hdfs/namenode

sudo mkdir –p /usr/local/store/hdfs/datanode

sudo chown root:root –R /usr/local/store

7.	 Now, it's time to format namenode so that it creates the required folder structure
by default:
hadoop namenode -format

8.	 The final step involves starting Hadoop daemons; here, we will first execute two
scripts to start HDFS daemons and then start YARN daemons:
/usr/local/hadoop/sbin/start-dfs.sh

This will start NameNode, the secondary NameNode, and then DataNode daemons:

/usr/local/hadoop/sbin/start-yarn.sh

Chapter 1

7

This will start NodeManager and ResourceManager. You can execute the jps command to
take a look at the running daemons:

$jps
2184 DataNode
2765 NodeManager
2835 Jps
2403 SecondaryNameNode
2025 NameNode
2606 ResourceManager

We can also access the web portals for HDFS and YARN by accessing the following URLs:

ff For HDFS: http://<hostname>:50070/

ff For YARN: http://<hostname>:8088/

How it works...
Hadoop 2.0 has been majorly reformed in order to solve issues of scalability and
high-availability. Earlier in Hadoop 1.0, Map Reduce was the only means of processing data
stored in HDFS. With advancement of YARN, Map Reduce is one of the ways of processing
data on Hadoop. Here is a pictorial difference between Hadoop 1.x and Hadoop 2.x:

Now, let's try to understand how HDFS and YARN works.

Getting Started with Hadoop 2.X

8

Hadoop Distributed File System (HDFS)
HDFS is a redundant, reliable storage for Hadoop. It consists of three important parts:
NameNode, the secondary NameNode, and DataNodes. When a file needs to be processed on
Hadoop, it first needs to be saved on HDFS. HDFS distributes the file in chunks of 64/128 MB
data blocks across the data nodes. The blocks are replicated across data nodes for reliability.
NameNode stores the metadata in the blocks and replicas. After a certain period of time, the
metadata is backed up on the secondary NameNode. The default time is 60 seconds. We can
modify this by setting a property called dfs.namenode.checkpoint.check.period in
hdfs-site.xml.

Yet Another Resource Negotiator (YARN)
YARN has been developed to address scalability issues and for the better management of
jobs in Hadoop; till date, it has proved itself to be the perfect solution. It is responsible for
the management of resources available in clusters. It consists of two important components:
ResouceManager(Master) and NodeManager(Worker). NodeManager provides a node-level
view of the cluster, while ResourceManager takes a view of a cluster. When an application is
submitted by an application client, the following things happen:

ff The application talks to ResourceManager and provides details about it.

ff ResourceManager makes a container request on behalf of an application to any of
the worker nodes and ApplicationMaster starts running within that container.

ff ApplicationMaster then makes subsequent requests for the containers to
execute tasks on other nodes.

ff These tasks then take care of all the communication. Once all the tasks are
complete, containers are deallocated and ApplicationMaster exits.

ff After this, the application client also exits.

There's more
Now that your single node Hadoop cluster is up and running, you can try some HDFS file
operations on it, such as creating a directory, copying a file from a local machine to HDFS,
and so on. Here some sample commands.

To list all the files in the HDFS root directory, take a look at this:

hadoop fs –ls /

To create a new directory, take a look at this:

hadoop fs –mkdir /input

To copy a file from the local machine to HDFS, take a look at this:

hadoop fs –copyFromLocal /usr/local/hadoop/LICENSE.txt /input

Chapter 1

9

In order to access all the command options that are available, go to https://hadoop.
apache.org/docs/current/hadoop-project-dist/hadoop-common/
FileSystemShell.html.

Installing a multi-node Hadoop cluster
Now that we are comfortable with a single-node Hadoop installation, it's time to learn about a
multi-node Hadoop installation.

Getting ready
In the previous recipe, we used a single Ubuntu machine for installation; in this recipe, we will
be using three Ubuntu machines. If you are an individual trying to install Hadoop for your own
purposes and you don't have three machines to try this recipe, I would suggest that you get
three AWS EC2 Ubuntu machines. I am using the t2.small type of EC2 instances. For more
information on this, go to https://aws.amazon.com/ec2/.

Apart from this, I've also performed the following configurations on all the EC2 instances that I
have been using:

1.	 Create an AWS security group to allow access to traffic to EC2 instances, and add EC2
instances to this security group.

2.	 Change the hostname of EC2 instances to their public hostnames like this:
sudo hostname ec2-52-10-22-65.us-west-2.compute.amazonaws.com

3.	 Disable firewalls for EC2 Ubuntu instances:
sudo ufw disable

How to do it...
There are a lot of similarities between single-node and multi-node Hadoop installations,
so instead of repeating the steps, I would suggest that you refer to earlier recipes as and
when they're mentioned. So, let's start installing a multi-node Hadoop cluster:

1.	 Install Java and Hadoop, as discussed in the previous recipe, on the master and
slave nodes. Refer to steps 1-5 in the previous recipe.

2.	 AWS EC2 has a built-in installation of ssh so there's no need to install it again.
To configure it, we need to perform the following steps.

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://aws.amazon.com/ec2/

Getting Started with Hadoop 2.X

10

First, copy the PEM key with which you initiated EC2 instances to the master node.
Next, you need to execute the following set of commands that will add an identity
into the master's ssh configurations, which can be used to perform passwordless
logins to slave machines:
eval `ssh-agent -s`

chmod 644 $HOME/.ssh/authorized_keys

chmod 400 <my-pem-key>.pem

ssh-add <my-pem-key>.pem

But if you are NOT using AWS EC2, then you need to generate the ssh key on
the master, and this key needs to be copied to slave machines. Here is a sample
command to do this:
ssh-keygen -t rsa -P ""

ssh-copy-id -i $HOME/.ssh/id_rsa.pub ubuntu@slave1

ssh-copy-id -i $HOME/.ssh/id_rsa.pub ubuntu@slave2

3.	 Next, we need to perform the Hadoop configurations—most of the configuration
files will be same as they were in the case of the single-node installation. These
configurations are the same for all the nodes in the cluster. Refer to step 8 from the
previous recipe for hadoop-env.sh, mapred-site.xml, and hdfs-site.xml.
For core-site.xml and yarn-site.xml, we need to add some more properties,
as shown here:

Edit core-site.xml and add the host and port on which you wish to install
NameNode. As this is a multi-node Hadoop cluster installation, we will add the
master's hostname instead of the localhost:
<configuration>
<property>
 <name>fs.default.name</name>
 <value>hdfs://<master's-host-name>:9000/</value>
</property>
</configuration>

Edit yarn-site.xml and add the following properties. As this is a multi-
node installation, we also need to provide the address of the machine where
ResourceManager is running:
<configuration>
 <property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
 </property>
 <property>

Chapter 1

11

 <name>yarn.nodemanager.aux-services.mapreduce.shuffle.
class</name>
 <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 </property>
 <property>
 <name>yarn.resourcemanager.hostname</name>
 <value><master's-host-name></value>
 </property>
</configuration>

In the case of hdfs-site.xml, in the previous recipe, we set the replication factor
to 1. As this is a multi-node cluster, we set it to 3. Don't forget to create storage folders
configured in hdfs-site.xml.

These configurations need to be made on all the machines of the cluster.

4.	 Now that we are done with configurations, execute the namenode format command
so that it creates the required subfolder structure:
hadoop namenode -format

5.	 Now, we need to start specific services on specific nodes in order to start the cluster.

On the master node, execute following:
/usr/local/hadoop/sbin/hadoop-daemon.sh start namenode

/usr/local/hadoop/sbin/hadoop-daemon.sh start secondarynamenode

/usr/local/hadoop/sbin/yarn-daemon.sh start resourcemanager

On all slave nodes, execute following:
/usr/local/hadoop/sbin/hadoop-daemon.sh start datanode

/usr/local/hadoop/sbin/yarn-daemon.sh start nodemanager

Getting Started with Hadoop 2.X

12

If everything goes well, you should be able to see the cluster running properly.
You can also check out the web interfaces for NameNode and Resource Managers,
for example, by going to http://<master-ip-hostname>:50070/.

For ResourceManager, go to http://<master-ip-hostname>/8088

How it works...
Refer to the How it works section from the previous recipe.

Chapter 1

13

Adding new nodes to existing Hadoop
clusters

Sometimes, it may happen that an existing Hadoop cluster's capacity is not adequate enough
to handle all the data you may want to process. In this case, you can add new nodes to the
existing Hadoop cluster without any downtime for the existing cluster. Hadoop supports
horizontal scalability.

Getting ready
To perform this recipe, you should have a Hadoop cluster running. Also, you will need one more
machine. If you are using AWS EC2, then you can launch an EC2 instance that's similar to what
we did in the previous recipes. You will also need the same security group configurations in order
to make the installation process smooth.

How to do it...
To add a new instance to an existing cluster, simply install and configure Hadoop the way we
did for the previous recipe. Make sure that you put the same configurations in core-site.
xml and yarn-site.xml, which will point to the correct master node.

Once all the configurations are done, simply execute commands to start the newly added
datanode and nodemanager:

/usr/local/hadoop/sbin/hadoop-daemon.sh start datanode

/usr/local/hadoop/sbin/yarn-daemon.sh start nodemanager

If you take a look at the cluster again, you will find that the new node is registered. You can
use the dfsadmin command to take a look at the number of nodes and amount of capacity
that's been used:

hdfs dfsadmin -report

Getting Started with Hadoop 2.X

14

Here is a sample output for the preceding command:

How it works...
Hadoop supports horizontal scalability. If the resources that are being used are not enough,
we can always go ahead and add new nodes to the existing cluster without hiccups. In Hadoop,
it's always the slave that reports to the master. So, while making configurations, we always
configure the details of the master and do nothing about the slaves. This architecture helps
achieve horizontal scalability as at any point of time, we can add new nodes by only providing
the configurations of the master, and everything else is taken care of by the Hadoop cluster.
As soon as the daemons start, the master node realizes that a new node has been added
and it becomes part of the cluster.

Executing the balancer command for
uniform data distribution

Data in HDFS may not always be placed uniformly. There can be numerous reasons for this.
One of the major reasons is the addition of new nodes to the cluster. In such a case, it's
the Hadoop administrator's job to make sure that they execute the balancer command to
rebalance the data load.

Getting ready
To perform this recipe, you should have performed earlier recipes.

Chapter 1

15

How to do it...
In the previous recipe, we added a new node to the cluster while the other three nodes were
already part of the cluster. When you execute the dfsadmin report command, you would
have noticed that the data is not uniformly balanced because of the addition of a new node.
In my case, here is the state of the new node versus the old node.

This is the code for the old node:

Name: 172.31.0.9:50010 (ip-172-31-0-9.us-west-2.compute.internal)

Hostname: ip-172-31-0-9.us-west-2.compute.internal

Decommission Status : Normal

Configured Capacity: 8309932032 (7.74 GB)

DFS Used: 67551232 (64.42 MB)

Non DFS Used: 2193256448 (2.04 GB)

DFS Remaining: 6049124352 (5.63 GB)

DFS Used%: 0.81%

DFS Remaining%: 72.79%

Configured Cache Capacity: 0 (0 B)

Cache Used: 0 (0 B)

Cache Remaining: 0 (0 B)

Cache Used%: 100.00%

Cache Remaining%: 0.00%

Xceivers: 1

Last contact: Thu Oct 08 08:57:23 UTC 2015

This is the code for the new node:

Name: 172.31.18.55:50010 (ip-172-31-18-55.us-west-2.compute.internal)

Hostname: ip-172-31-18-55.us-west-2.compute.internal

Decommission Status : Normal

Configured Capacity: 8309932032 (7.74 GB)

DFS Used: 1127585 (1.08 MB)

Non DFS Used: 2372033375 (2.21 GB)

DFS Remaining: 5936771072 (5.53 GB)

DFS Used%: 0.01%

DFS Remaining%: 71.44%

Configured Cache Capacity: 0 (0 B)

Cache Used: 0 (0 B)

Getting Started with Hadoop 2.X

16

Cache Remaining: 0 (0 B)

Cache Used%: 100.00%

Cache Remaining%: 0.00%

Xceivers: 1

Last contact: Thu Oct 08 08:57:25 UTC 2015

This means that the load on the cluster is not uniform. In this case, we can execute the balancer
command to distribute the data uniformly throughout the data nodes:

hdfs balancer

This will initiate the block balancing activity across the cluster. By default, it will run the
balancing activity to make sure that the block storage in the nodes does not differ by more
than 10%. You can also decide on the threshold limit by setting an optional parameter called
threshold:

hdfs balancer -threshold 5

This will execute the balancer command with 5% threshold. This is how the sample
execution looks:

How it works...
The balancer command provides instructions to namenode so that it can rebalance the
data uniformly across datanode. This balancing is done by repositioning the blocks placed
in datanode. So, if a data node is over utilized, some the blocks from that node would be
repositioned to the node that is underutilized.

There's more...
There are some options you can provide as arguments to this command:

Usage: hdfs balancer

 [-policy <policy>] the balancing policy: datanode or
blockpool

 [-threshold <threshold>] Percentage of disk capacity

Chapter 1

17

 [-exclude [-f <hosts-file> | <comma-separated list of hosts>]]
Excludes the specified datanodes.

 [-include [-f <hosts-file> | <comma-separated list of hosts>]]
Includes only the specified datanodes.

 [-idleiterations <idleiterations>] Number of consecutive
idle iterations (-1 for Infinite) before exit.

Entering and exiting from the safe mode in a
Hadoop cluster

Sometimes, due to an unclear filesystem image state, the Hadoop cluster goes into safemode.
In this recipe, we will see how to enter and exit from safemode.

How to do it...
Safemode is an HDFS state that does not allow any new writes to the filesystem. It also
does not replicate or delete any blocks from the filesystem. In case you want to make any
configuration changes to your cluster, you can put the system into safemode. Here is a
command to enter the system into safemode:

hdfs dfsadmin -safemode enter

Now, if you try to make any writes to HDFS, it will not allow you do so. You can perform
cluster maintenance and once this is done, you can switch off safemode:

hdfs dfsadmin -safemode leave

In case you are not aware of whether safemode is ON or OFF, you can get its status by
executing the following command:

hdfs dfsadmin -safemode get

How it works...
Generally, safemode is enabled automatically for NameNode on startup. It then tries
to get the state of the filesystem from FSImage and EditLogs. Namenode waits until
datanodes start reporting the block status of individual nodes. safemode is automatically
disabled when datanodes report the availability of most of the blocks.

If we enter into safemode manually, we need to disable it manually. It won't be
disabled automatically.

Getting Started with Hadoop 2.X

18

Decommissioning DataNodes
The Hadoop framework provides us with the option to remove certain nodes from the cluster
if they are not needed any more. Here, we cannot simply shutdown the nodes that need to
be removed as we might lose some of our data. They need to be decommissioned properly.
In this recipe, we are going to learn how to decommission nodes from the Hadoop cluster.

Getting ready
To perform this recipe, you should have a Hadoop cluster, and you should have decided which
node to decommission.

How to do it...
To decommission a node from the HDFS cluster, we need to perform the following steps:

1.	 Create a dfs.exclude file in a folder, say /usr/local/hadoop/etc/hadoop,
and add the hostname of the node you wish to decommission.

2.	 Edit hdfs-site.xml on NameNode to append the following property:
 <property>
 <name>dfs.hosts.exclude</name>
 <value>/usr/local/hadoop/etc/hadoop/dfs.exclude</value>
 </property>

3.	 Next, we need to execute the refreshNodes command so that it rereads the HDFS
configuration in order to start the decommissioning:
hdfs dfsadmin –refreshNodes

This will start the decommissioning, and once successful execution of the dfsadmin report
command, you will see that the node's status is changed to Decommissioned from Normal:

hdfs dfsadmin –report

Name: 172.31.18.55:50010 (ip-172-31-18-55.us-west-2.compute.internal)

Hostname: ip-172-31-18-55.us-west-2.compute.internal

Decommission Status : Decommissioned

Configured Capacity: 8309932032 (7.74 GB)

DFS Used: 1179648 (1.13 MB)

Non DFS Used: 2371989504 (2.21 GB)

DFS Remaining: 5936762880 (5.53 GB)

DFS Used%: 0.01%

Chapter 1

19

DFS Remaining%: 71.44%

Configured Cache Capacity: 0 (0 B)

Cache Used: 0 (0 B)

Cache Remaining: 0 (0 B)

Cache Used%: 100.00%

Cache Remaining%: 0.00%

Xceivers: 1

Last contact: Thu Oct 08 10:56:49 UTC 2015

Generally, the decommissioning takes time as it requires block replications on other nodes.
Once the decommissioning is complete, the node will be added to the decommissioned
nodes list.

How it works...
HDFS/Namenode reads the configurations from hdfs-site.xml. You can configure a
file with the list of nodes to decommission and execute the refreshNodes command;
it then rereads the configuration file. While doing this, it reads the configuration about the
decommissioned nodes and will start rereplicating blocks to other available datanode.
Depending on the size of datanode getting decommissioned, the time varies. Unless the
completed decommissioning is not completed, it advisable for you to touch datanode.

Performing benchmarking on a Hadoop
cluster

The Hadoop framework supports built-in libraries so that we can perform benchmarking
in order to take a look at how the Hadoop cluster configurations/hardware are performing.
There are plenty of tests available that will perform the benchmarking of various aspects
of the Hadoop cluster. In this recipe, we are going to take a look at how to perform
benchmarking and read the results.

Getting ready
To perform this recipe, you should have a Hadoop cluster up and running.

How to do it...
The Hadoop framework supports built-in support to benchmark various aspects. These tests are
written in a library called hadoop-mapreduce-client-jobclient-2.7.0-tests.jar

Getting Started with Hadoop 2.X

20

To know the list of all the supported tests, you can execute the following command:

hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-
client-jobclient-2.7.0-tests.jar

The result of the command will be similar to what is shown in this screenshot:

TestDFSIO
This is one the major tests that you may want to do in order to see how DFS is performing.
So, we are now going to take a look at how to use these tests to know how efficiently HDFS
is able to write and read data.

As seen in the preceding screenshot, the library provides tools to test DFS through an option
called TestDFSIO. Now, let's execute the write test in order to understand how efficiently
HDFS is able to write big files. The following is the command to execute the write test:

hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-
client-jobclient-2.7.0-tests.jar TestDFSIO -write -nrFiles 2 -fileSize
1GB -resFile /tmp/TestDFSIOwrite.txt

Once you initiate the preceding command, a map reduce job will start, which will write two
files to HDFS that are 1GB in size . You can choose any numbers based on your cluster size.
These tests create data in HDFS under the /benchmarks directory. Once the execution is
complete, you will see these results:

15/10/08 11:37:23 INFO fs.TestDFSIO: ----- TestDFSIO ----- : write

15/10/08 11:37:23 INFO fs.TestDFSIO: Date & time: Thu Oct 08
11:37:23 UTC 2015

15/10/08 11:37:23 INFO fs.TestDFSIO: Number of files: 2

15/10/08 11:37:23 INFO fs.TestDFSIO: Total MBytes processed: 2048.0

15/10/08 11:37:23 INFO fs.TestDFSIO: Throughput mb/sec:
26.637185406776354

Chapter 1

21

15/10/08 11:37:23 INFO fs.TestDFSIO: Average IO rate mb/sec:
26.63718605041504

15/10/08 11:37:23 INFO fs.TestDFSIO: IO rate std deviation:
0.00829867575568246

15/10/08 11:37:23 INFO fs.TestDFSIO: Test exec time sec: 69.023

The preceding data is calculated from the RAW data generated by the Map Reduce program.
You can also view the raw data as follows:

hdfs dfs -cat /benchmarks/TestDFSIO/io_read/part*

f:rate 53274.37

f:sqrate 1419079.2

l:size 2147483648

l:tasks 2

l:time 76885

The following formulae are used to calculate throughput, the average
IO rate, and standard deviation.
Throughput = size * 1000/time * 1048576
Average IO rate = rate/1000/tasks
Standard deviation = square root of (absolute value(sqrate/1000/
tasks – Average IO Rate * Average IO Rate))

Similarly, you can perform benchmarking of HDFS read operations as well:

hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-
client-jobclient-2.7.0-tests.jar TestDFSIO -read -nrFiles 2 -fileSize 1GB
-resFile /tmp/TestDFSIOread.txt

At the end of the execution, a reducer will collect the data from the RAW results, and you will
see calculated numbers for the DFSIO reads:

15/10/08 11:41:01 INFO fs.TestDFSIO: ----- TestDFSIO ----- : read

15/10/08 11:41:01 INFO fs.TestDFSIO: Date & time: Thu Oct 08
11:41:01 UTC 2015

15/10/08 11:41:01 INFO fs.TestDFSIO: Number of files: 2

15/10/08 11:41:01 INFO fs.TestDFSIO: Total MBytes processed: 2048.0

15/10/08 11:41:01 INFO fs.TestDFSIO: Throughput mb/sec:
33.96633220001659

15/10/08 11:41:01 INFO fs.TestDFSIO: Average IO rate mb/sec:
33.968116760253906

15/10/08 11:41:01 INFO fs.TestDFSIO: IO rate std deviation:
0.24641533955938721

15/10/08 11:41:01 INFO fs.TestDFSIO: Test exec time sec: 59.343

Getting Started with Hadoop 2.X

22

Here, we can take a look at the RAW data as well:

hdfs dfs -cat /benchmarks/TestDFSIO/io_read/part*

f:rate 67936.234

f:sqrate 2307787.2

l:size 2147483648

l:tasks 2

l:time 60295

The same formulae are used to calculate the throughput, average IO rate, and
standard deviation.

This way, you can benchmark the DFSIO reads and writes.

NNBench
Similar to DFS IO, we can also perform benchmarking for NameNode:

hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-
client-jobclient-2.7.0-tests.jar nnbench -operation create_write

MRBench
MRBench helps us understand the average time taken for a job to execute for a given number
of mappers and reducers. The following is a sample command to execute MRBench with
default parameters:

hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-
client-jobclient-2.7.0-tests.jar mrbench

How it works...
Hadoop benchmark tests use the parameters and conditions provided by users. For every test, it
executes a map reduce job and once complete, it displays the results on the screen. Generally, it
is recommended that you run the benchmarking tests as soon as you have installed the Hadoop
cluster in order to predict the performance of HDFS/Map Reduce and so on.

Most of the tests require a sequence in which they should be executed, for example, all write
tests should be executed first, then read/delete, and so on.

Once the complete execution is done, make sure you clean up the data in the /benchmarks
directory in HDFS.

Here is an example command to clean up the data generated by the TestDFSIO tests:

hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-
client-jobclient-2.7.0-tests.jar TestDFSIO -clean

23

2
Exploring HDFS

In this chapter, we'll take a look at the following recipes:

ff Loading data from a local machine to HDFS

ff Exporting HDFS data to a local machine

ff Changing the replication factor of an existing file in HDFS

ff Setting the HDFS block size for all the files in a cluster

ff Setting the HDFS block size for a specific file in a cluster

ff Enabling transparent encryption for HDFS

ff Importing data from another Hadoop cluster

ff Recycling deleted data from trash to HDFS

ff Saving compressed data in HDFS

Introduction
In the previous chapter, we discussed the installation and configuration details of a Hadoop
cluster. In this chapter, we are going to explore the details of HDFS. As we know, Hadoop has
two important components:

ff Storage: This includes HDFS

ff Processing: This includes Map Reduce

HDFS takes care of the storage part of Hadoop. So, let's explore the internals of HDFS through
various recipes.

Exploring HDFS

24

Loading data from a local machine to HDFS
In this recipe, we are going to load data from a local machine's disk to HDFS.

Getting ready
To perform this recipe, you should have an already Hadoop running cluster.

How to do it...
Performing this recipe is as simple as copying data from one folder to another. There are a
couple of ways to copy data from the local machine to HDFS.

ff Using the copyFromLocal command

�� To copy the file on HDFS, let's first create a directory on HDFS and then
copy the file. Here are the commands to do this:
hadoop fs -mkdir /mydir1

hadoop fs -copyFromLocal /usr/local/hadoop/LICENSE.txt /
mydir1

ff Using the put command

�� We will first create the directory, and then put the local file in HDFS:
hadoop fs -mkdir /mydir2

hadoop fs -put /usr/local/hadoop/LICENSE.txt /mydir2

You can validate that the files have been copied to the correct folders by listing the files:

hadoop fs -ls /mydir1

hadoop fs -ls /mydir2

How it works...
When you use HDFS copyFromLocal or the put command, the following things will occur:

1.	 First of all, the HDFS client (the command prompt, in this case) contacts NameNode
because it needs to copy the file to HDFS.

2.	 NameNode then asks the client to break the file into chunks of different cluster block
sizes. In Hadoop 2.X, the default block size is 128MB.

3.	 Based on the capacity and availability of space in DataNodes, NameNode will decide
where these blocks should be copied.

Chapter 2

25

4.	 Then, the client starts copying data to specified DataNodes for a specific block.
The blocks are copied sequentially one after another.

5.	 When a single block is copied, the block is sent to DataNode in packets that are
4MB in size. With each packet, a checksum is sent; once the packet copying is done,
it is verified with checksum to check whether it matches. The packets are then sent
to the next DataNode where the block will be replicated.

6.	 The HDFS client's responsibility is to copy the data to only the first node; the replication
is taken care by respective DataNode. Thus, the data block is pipelined from one
DataNode to the next.

7.	 When the block copying and replication is taking place, metadata on the file is
updated in NameNode by DataNode.

Exporting HDFS data to a local machine
In this recipe, we are going to export/copy data from HDFS to the local machine.

Getting ready
To perform this recipe, you should already have a running Hadoop cluster.

How to do it...
Performing this recipe is as simple as copying data from one folder to the other. There are a
couple of ways in which you can export data from HDFS to the local machine.

ff Using the copyToLocal command, you'll get this code:
hadoop fs -copyToLocal /mydir1/LICENSE.txt /home/ubuntu

ff Using the get command, you'll get this code:
hadoop fs -get/mydir1/LICENSE.txt /home/ubuntu

How it works...
When you use HDFS copyToLocal or the get command, the following things occur:

1.	 First of all, the client contacts NameNode because it needs a specific file in HDFS.

2.	 NameNode then checks whether such a file exists in its FSImage. If the file is not
present, the error code is returned to the client.

3.	 If the file exists, NameNode checks the metadata for blocks and replica placements
in DataNodes.

Exploring HDFS

26

4.	 NameNode then directly points DataNode from where the blocks would be given
to the client one by one. The data is directly copied from DataNode to the client
machine. and it never goes through NameNode to avoid bottlenecks.

5.	 Thus, the file is exported to the local machine from HDFS.

Changing the replication factor of an
existing file in HDFS

In this recipe, we are going to take a look at how to change the replication factor of a file in
HDFS. The default replication factor is 3.

Getting ready
To perform this recipe, you should already have a running Hadoop cluster.

How to do it...
Sometimes. there might be a need to increase or decrease the replication factor of a specific
file in HDFS. In this case, we'll use the setrep command.

This is how you can use the command:

hadoop fs -setrep [-R] [-w] <noOfReplicas><path> ...

In this command, a path can either be a file or directory; if its a directory, then it recursively
sets the replication factor for all replicas.

ff The w option flags the command and should wait until the replication is complete

ff The r option is accepted for backward compatibility

First, let's check the replication factor of the file we copied to HDFS in the previous recipe:

hadoop fs -ls /mydir1/LICENSE.txt

-rw-r--r-- 3 ubuntu supergroup 15429 2015-10-29 03:04 /mydir1/
LICENSE.txt

Once you list the file, it will show you the read/write permissions on this file, and the very
next parameter is the replication factor. We have the replication factor set to 3 for our cluster,
hence, you the number is 3.

Let's change it to 2 using this command:

hadoop fs -setrep -w 2 /mydir1/LICENSE.txt

Chapter 2

27

It will wait till the replication is adjusted. Once done, you can verify this again by running the
ls command:

hadoop fs -ls /mydir1/LICENSE.txt

-rw-r--r-- 2 ubuntu supergroup 15429 2015-10-29 03:04 /mydir1/
LICENSE.txt

How it works...
Once the setrep command is executed, NameNode will be notified, and then NameNode
decides whether the replicas need to be increased or decreased from certain DataNode.
When you are using the –w command, sometimes, this process may take too long if the file
size is too big.

Setting the HDFS block size for all the files
in a cluster

In this recipe, we are going to take a look at how to set a block size at the cluster level.

Getting ready
To perform this recipe, you should already have a running Hadoop cluster.

How to do it...
The HDFS block size is configurable for all files in the cluster or for a single file as well. To change
the block size at the cluster level itself, we need to modify the hdfs-site.xml file.

By default, the HDFS block size is 128MB. In case we want to modify this, we need to update
this property, as shown in the following code. This property changes the default block size
to 64MB:

<property>
<name>dfs.block.size</name>
 <value>67108864</value>
 <description>HDFS Block size</description>
</property>

If you have a multi-node Hadoop cluster, you should update this file in the nodes, that is,
NameNode and DataNode. Make sure you save these changes and restart the HDFS daemons:

/usr/local/hadoop/sbin/stop-dfs.sh

/usr/local/hadoop/sbin/start-dfs.sh

Exploring HDFS

28

This will set the block size for files that will now get added to the HDFS cluster. Make sure that
this does not change the block size of the files that are already present in HDFS. There is no
way to change the block sizes of existing files.

How it works...
By default, the HDFS block size is 128MB for Hadoop 2.X. Sometimes, we may want to change
this default block size for optimization purposes. When this configuration is successfully
updated, all the new files will be saved into blocks of this size. Ensure that these changes
do not affect the files that are already present in HDFS; their block size will be defined at
the time being copied.

Setting the HDFS block size for a specific
file in a cluster

In this recipe, we are going to take a look at how to set the block size for a specific file only.

Getting ready
To perform this recipe, you should already have a running Hadoop cluster.

How to do it...
In the previous recipe, we learned how to change the block size at the cluster level. But this
is not always required. HDFS provides us with the facility to set the block size for a single file
as well. The following command copies a file called myfile to HDFS, setting the block size
to 1MB:

hadoop fs -Ddfs.block.size=1048576 -put /home/ubuntu/myfile /

Once the file is copied, you can verify whether the block size is set to 1MB and has been
broken into exact chunks:

hdfs fsck -blocks /myfile

 Connecting to namenode via
 http://localhost:50070/fsck?ugi=ubuntu&blocks=1&path=%2Fmyfile

 FSCK started by ubuntu (auth:SIMPLE) from /127.0.0.1 for path
 /myfile at Thu Oct 29 14:58:00 UTC 2015

 .Status: HEALTHY

 Total size: 17276808 B

 Total dirs: 0

Chapter 2

29

 Total files: 1

 Total symlinks: 0

 Total blocks (validated): 17 (avg. block size 1016282 B)

 Minimally replicated blocks: 17 (100.0 %)

 Over-replicated blocks: 0 (0.0 %)

 Under-replicated blocks: 0 (0.0 %)

 Mis-replicated blocks: 0 (0.0 %)

 Default replication factor: 1

 Average block replication: 1.0

 Corrupt blocks: 0

 Missing replicas: 0 (0.0 %)

 Number of data-nodes: 3

 Number of racks: 1

 FSCK ended at Thu Oct 29 14:58:00 UTC 2015 in 2 milliseconds

 The filesystem under path '/myfile' is HEALTHY

How it works...
When we specify the block size at the time of copying a file, it overwrites the default block size
and copies the file to HDFS by breaking the file into chunks of a given size. Generally, these
modifications are made in order to perform other optimizations. Make sure you make these
changes, and you are aware of their consequences. If the block size isn't adequate enough,
it will increase the parallelization, but it will also increase the load on NameNode as it would
have more entries in FSImage. On the other hand, if the block size is too big, then it will
reduce the parallelization and degrade the processing performance.

Enabling transparent encryption for HDFS
When handling sensitive data, it is always important to consider the security measures.
Hadoop allows us to encrypt sensitive data that's present in HDFS. In this recipe, we are
going to see how to encrypt data in HDFS.

Getting ready
To perform this recipe, you should already have a running Hadoop cluster.

Exploring HDFS

30

How to do it...
For many applications that hold sensitive data, it is very important to adhere to standards
such as PCI, HIPPA, FISMA, and so on. To enable this, HDFS provides a utility called encryption
zone in which we can create a directory so that data is encrypted on writes and decrypted
on read.

To use this encryption facility, we first need to enable Hadoop Key Management Server (KMS):

/usr/local/hadoop/sbin/kms.sh start

This would start KMS in the Tomcat web server.

Next, we need to append the following properties in core-site.xml and hdfs-site.xml.

In core-site.xml, add the following property:

<property>
 <name>hadoop.security.key.provider.path</name>
 <value>kms://http@localhost:16000/kms</value>
</property>

In hds-site.xml, add the following property:

<property>
 <name>dfs.encryption.key.provider.uri</name>
 <value>kms://http@localhost:16000/kms</value>
</property>

Restart the HDFS daemons:

/usr/local/hadoop/sbin/stop-dfs.sh

/usr/local/hadoop/sbin/start-dfs.sh

Now, we are all set to use KMS. Next, we need to create a key that will be used for
the encryption:

hadoop key create mykey

This will create a key, and then, save it on KMS. Next, we have to create an encryption zone,
which is a directory in HDFS where all the encrypted data is saved:

hadoop fs -mkdir /zone

hdfs crypto -createZone -keyName mykey -path /zone

We will change the ownership to the current user:

hadoop fs -chown ubuntu:ubuntu /zone

Chapter 2

31

If we put any file into this directory, it will encrypt and would decrypt at the time of reading:

hadoop fs -put myfile /zone

hadoop fs -cat /zone/myfile

How it works...
There can be various types of encryptions one can do in order to comply with security standards,
for example, application-level encryption, database-level, file-level, and disk-level encryption.

The HDFS transparent encryption sits between the database and file-level encryptions.
KMS acts like a proxy between HDFS clients and HDFS's encryption provider via HTTP REST
APIs. There are two types of keys used for encryption: Encryption Zone Key(EZK) and Data
Encryption Key (DEK). EZK is used to encrypt DEK, which is also called Encrypted Data
Encryption Key(EDEK). This is then saved on NameNode.

When a file needs to be written to the HDFS encryption zone, the client gets EDEK from
NameNode and EZK from KMS to form DEK, which is used to encrypt data and store it in
HDFS (the encrypted zone).

When an encrypted file needs to be read, the client needs DEK, which is formed by combining
EZK and EDEK. These are obtained from KMS and NameNode, respectively. Thus, encryption
and decryption is automatically handled by HDFS. and the end user does not need to worry
about executing this on their own.

You can read more on this topic at http://blog.cloudera.
com/blog/2015/01/new-in-cdh-5-3-transparent-
encryption-in-hdfs/.

Importing data from another Hadoop cluster
Sometimes, we may want to copy data from one HDFS to another either for development,
testing, or production migration. In this recipe, we will learn how to copy data from one HDFS
cluster to another.

Getting ready
To perform this recipe, you should already have a running Hadoop cluster.

http://blog.cloudera.com/blog/2015/01/new-in-cdh-5-3-transparent-encryption-in-hdfs/
http://blog.cloudera.com/blog/2015/01/new-in-cdh-5-3-transparent-encryption-in-hdfs/
http://blog.cloudera.com/blog/2015/01/new-in-cdh-5-3-transparent-encryption-in-hdfs/

Exploring HDFS

32

How to do it...
Hadoop provides a utility called DistCp, which helps us copy data from one cluster to
another. Using this utility is as simple as copying from one folder to another:

hadoop distcp hdfs://hadoopCluster1:9000/source hdfs://
hadoopCluster2:9000/target

This would use a Map Reduce job to copy data from one cluster to another. You can also
specify multiple source files to be copied to the target. There are a couple of other options
that we can also use:

ff -update: When we use DistCp with the update option, it will copy only those files
from the source that are not part of the target or differ from the target.

ff -overwrite: When we use DistCp with the overwrite option, it overwrites the
target directory with the source.

How it works...
When DistCp is executed, it uses map reduce to copy the data and also assists in error
handling and reporting. It expands the list of source files and directories and inputs them to
map tasks. When copying from multiple sources, collisions are resolved in the destination
based on the option (update/overwrite) that's provided. By default, it skips if the file is already
present at the target. Once the copying is complete, the count of skipped files is presented.

You can read more on DistCp at https://hadoop.apache.org/
docs/current/hadoop-distcp/DistCp.html.

Recycling deleted data from trash to HDFS
In this recipe, we are going to see how to recover deleted data from the trash to HDFS.

Getting ready
To perform this recipe, you should already have a running Hadoop cluster.

https://hadoop.apache.org/docs/current/hadoop-distcp/DistCp.html
https://hadoop.apache.org/docs/current/hadoop-distcp/DistCp.html

Chapter 2

33

How to do it...
To recover accidently deleted data from HDFS, we first need to enable the trash folder, which
is not enabled by default in HDFS. This can be achieved by adding the following property to
core-site.xml:

<property>
 <name>fs.trash.interval</name>
 <value>120</value>
</property>

Then, restart the HDFS daemons:

/usr/local/hadoop/sbin/stop-dfs.sh

/usr/local/hadoop/sbin/start-dfs.sh

This will set the deleted file retention to 120 minutes.

Now, let's try to delete a file from HDFS:

hadoop fs -rmr /LICENSE.txt

 15/10/30 10:26:26 INFO fs.TrashPolicyDefault: Namenode trash
 configuration: Deletion interval = 120 minutes, Emptier interval
 = 0 minutes.

 Moved: 'hdfs://localhost:9000/LICENSE.txt' to trash at:
 hdfs://localhost:9000/user/ubuntu/.Trash/Current

We have 120 minutes to recover this file before it is permanently deleted from HDFS. To restore
the file to its original location, we can execute the following commands.

First, let's confirm whether the file exists:

hadoop fs -ls /user/ubuntu/.Trash/Current

 Found 1 items

 -rw-r--r-- 1 ubuntu supergroup 15429 2015-10-30 10:26
 /user/ubuntu/.Trash/Current/LICENSE.txt

Now, restore the deleted file or folder; it's better to use the distcp command instead of
copying each file one by one:

hadoop distcp hdfs

//localhost:9000/user/ubuntu/.Trash/Current/LICENSE.txt hdfs://
localhost:9000/

This will start a map reduce job to restore data from the trash to the original HDFS folder.
Check the HDFS path; the deleted file should be back to its original form.

Exploring HDFS

34

How it works...
Enabling trash enforces the file retention policy for a specified amount of time. So, when trash
is enabled, HDFS does not execute any blocks deletions or movements immediately but only
updates the metadata of the file and its location. This way, we can accidently stop deleting
files from HDFS; make sure that trash is enabled before experimenting with this recipe.

Saving compressed data in HDFS
In this recipe, we are going to take a look at how to store and process compressed data
in HDFS.

Getting ready
To perform this recipe, you should already have a running Hadoop.

How to do it...
It's always good to use compression while storing data in HDFS. HDFS supports various types
of compression algorithms such as LZO, BIZ2, Snappy, GZIP, and so on. Every algorithm has
its own pros and cons when you consider the time taken to compress and decompress and
the space efficiency. These days people prefer Snappy compression as it aims to achieve a
very high speed and a reasonable amount of compression.

We can easily store and process any number of files in HDFS. To store compressed data,
we don't need to specifically make any changes to the Hadoop cluster. You can simply copy
the compressed data in the same way it's in HDFS. Here is an example of this:

hadoop fs -mkdir /compressed

hadoop fs –put file.bz2 /compressed

Now, we'll run a sample program to take a look at how Hadoop automatically uncompresses
the file and processes it:

hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-
examples-2.7.0.jar wordcount /compressed /compressed_out

Once the job is complete, you can verify the output.

Chapter 2

35

How it works...
Hadoop explores native libraries to find the support needed for various codecs and their
implementations. Native libraries are specific to the platform that you run Hadoop on.
You don't need to make any configuration changes to enable compression algorithms.
As mentioned earlier, Hadoop supports various compression algorithms that are already
familiar to the computer world. Based on your needs and requirements (more space or
more time), you can choose your compression algorithm.

Take a look at http://comphadoop.weebly.com/ for more information on this.

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.
You can download the code files by following these steps:

ff Log in or register to our website using your e-mail address
and password

ff Hover the mouse pointer on the SUPPORT tab at the top.
ff Click on Code Downloads & Errata
ff Enter the name of the book in the Search box
ff Select the book for which you're looking to download the

code files
ff Choose from the drop-down menu where you purchased this

book from
ff Click on Code Download

Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

ff WinRAR / 7-Zip for Windows
ff Zipeg / iZip / UnRarX for Mac
ff 7-Zip / PeaZip for Linux

http://comphadoop.weebly.com/
http://www.packtpub.com
http://www.packtpub.com/support

37

3
Mastering Map

Reduce Programs

In this chapter, we'll cover the following recipes:

ff Writing the Map Reduce program in Java to analyze web log data

ff Executing the Map Reduce program in a Hadoop cluster

ff Adding support for a new writable data type in Hadoop

ff Implementing a user-defined counter in a Map Reduce program

ff Map Reduce program to find the top X

ff Map Reduce program to find distinct values

ff Map Reduce program to partition data using a custom partitioner

ff Writing Map Reduce results to multiple output files

ff Performing Reduce side Joins using Map Reduce

ff Unit testing the Map Reduce code using MRUnit

Introduction
Hadoop consists of two important components: HDFS and Map Reduce. In the previous
chapter, we talked about various recipes one can perform to use and maintain HDFS in a
good state. In this chapter, we are going to explore the details of the Map Reduce framework.
Hadoop itself is written in Java, and Java is, of course, a preferred way to write Map Reduce
programs, but this does not restrict you to only using Java. It provides libraries, such as
Hadoop-Streaming, Hadoop Pipes, and so on so that you can write map reduce programs
in most popular languages. These include C++, C#, Shell Scripting using Hadoop-Streaming,
and so on.

Mastering Map Reduce Programs

38

Writing the Map Reduce program in Java to
analyze web log data

In this recipe, we are going to take a look at how to write a map reduce program to analyze
web logs. Web logs are data that is generated by web servers for requests they receive. There
are various web servers such as Apache, Nginx, Tomcat, and so on. Each web server logs
data in a specific format. In this recipe, we are going to use data from the Apache Web Server,
which is in combined access logs.

To read more on combined access logs, refer to
http://httpd.apache.org/docs/1.3/logs.html#combined.

Getting ready
To perform this recipe, you should already have a running Hadoop cluster as well as an eclipse
similar to an IDE.

How to do it...
We can write map reduce programs to analyze various aspects of web log data. In this recipe,
we are going to write a map reduce program that reads a web log file, results pages, views,
and their counts. Here is some sample web log data we'll consider as input for our program:

106.208.17.105 - - [12/Nov/2015:21:20:32 -0800] "GET /tutorials/
mapreduce/advanced-map-reduce-examples-1.html HTTP/1.1" 200 0
"https://www.google.co.in/" "Mozilla/5.0 (Windows NT 6.3; WOW64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2490.86 Safari/537.36"

60.250.32.153 - - [12/Nov/2015:21:42:14 -0800] "GET /tutorials/
elasticsearch/install-elasticsearch-kibana-logstash-on-windows.html
HTTP/1.1" 304 0 - "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/46.0.2490.86 Safari/537.36"

49.49.250.23 - - [12/Nov/2015:21:40:56 -0800] "GET /tutorials/hadoop/
images/internals-of-hdfs-file-read-operations/HDFS_Read_Write.png
HTTP/1.1" 200 0 "http://hadooptutorials.co.in/tutorials/spark/install-
apache-spark-on-ubuntu.html" "Mozilla/5.0 (Windows NT 10.0; WOW64;
Trident/7.0; Touch; LCTE; rv:11.0) like Gecko"

60.250.32.153 - - [12/Nov/2015:21:36:01 -0800] "GET /tutorials/
elasticsearch/install-elasticsearch-kibana-logstash-on-windows.html
HTTP/1.1" 200 0 - "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/46.0.2490.86 Safari/537.36"

http://httpd.apache.org/docs/1.3/logs.html#combined

Chapter 3

39

91.200.12.136 - - [12/Nov/2015:21:30:14 -0800] "GET /tutorials/hadoop/
hadoop-fundamentals.html HTTP/1.1" 200 0 "http://hadooptutorials.co.in/
tutorials/hadoop/hadoop-fundamentals.html" "Mozilla/5.0 (Windows NT 6.1)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.99 Safari/537.36"

These combined Apache Access logs are in a specific format. Here is the sequence and
meaning of each component in each access log:

ff %h: This is the remote host (that is, the IP client)

ff %l: This is the identity of the user determined by an identifier (this is not usually
used since it's not reliable)

ff %u: This is the username determined by the HTTP authentication

ff %t: This is the time the server takes to finish processing a request

ff %r: This is the request line from the client ("GET / HTTP/1.0")

ff %>s: This is the status code sent from a server to a client (200, 404, and so on)

ff %b: This is the size of the response given to a client (in bytes)

ff Referrer: This is the page that is linked to this URL

ff User agent: This is the browser identification string

Now, let's start a writing program in order to get to know the page views of each unique URL
that we have in our web logs.

First, we will write a mapper class where we will read each and every line and parse it to
the extract page URL. Here, we will use a Java pattern that matches a utility in order to
extract information:

public static class PageViewMapper extends Mapper<Object, Text, Text,
IntWritable> {
 public static String APACHE_ACCESS_LOGS_PATTERN = "^(\\S+) (\\
S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(\\S+) (\\S+) (\\S+)\"
(\\d{3}) (\\d+) (.+?) \"([^\"]+|(.+?))\"";

 public static Pattern pattern = Pattern.compile(APACHE_ACCESS_
LOGS_PATTERN);

 private static final IntWritable one = new IntWritable(1);
 private Text url = new Text();

 public void map(Object key, Text value, Mapper<Object, Text,
Text, IntWritable>.Context context)
 throws IOException, InterruptedException {
 Matcher matcher = pattern.matcher(value.toString());
 if (matcher.matches()) {
 // Group 6 as we want only Page URL

Mastering Map Reduce Programs

40

 url.set(matcher.group(6));
 System.out.println(url.toString());
 context.write(this.url, one);
 }

 }
 }

In the preceding mapper class, we read key value pairs from the text file. By default, the key is
a byte offset (the number of characters in a line), and the value is an actual line in a text file.
Next, we match the line with the Apache Access Log regex pattern so that we can extract the
exact information we need. For a page view counter, we only need a URL. Mapper outputs the
URL as a key and 1 as the value. So, we can count these URL in reducer.

Here is the reducer class that sums up the output values of the mapper class:

public static class IntSumReducer extends Reducer<Text, IntWritable,
Text, IntWritable> {
 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,
 Reducer<Text, IntWritable, Text, IntWritable>.Context
context)
 throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 this.result.set(sum);
 context.write(key, this.result);
 }
 }

Now, we just need a driver class to call these mappers and reducers:

public class PageViewCounter {

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 if (args.length != 2) {
 System.err.println("Usage: PageViewCounter <in><out>");
 System.exit(2);
 }

Chapter 3

41

 Job job = Job.getInstance(conf, "Page View Counter");
 job.setJarByClass(PageViewCounter.class);
 job.setMapperClass(PageViewMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

As the operation we are performing is aggregation, we can also use a combiner here to optimize
the results. Here, the same reducer logic is being used as the one used for the combiner.

To compile your program properly, you need to add two external JARs, hadoop-common-
2.7.jar, which can be found in the /usr/local/hadoop/share/hadoop/common folder
and hadoop-mapreduce-client-core-2.7.jar, which can be found in the /usr/
local/hadoop/share/hadoop/mapreduce path.

Make sure you add these two JARs in your build path so that your program can be
compiled easily.

How it works...
The page view counter program helps us find the most popular pages, least accessed pages,
and so on. Such information helps us make decisions about the ranking of pages, frequency
of visits, and the relevance of a page. When a program is executed, each line of the HDFS
block is read individually and then sent to Mapper. Mapper matches the input line with the
log format and extracts its page URL. Mapper emits the (URL,1) type of key value pairs. These
pairs are shuffled across nodes and partitioners to make sure that a similar URL goes to only
one reducer. Once received by the reducers, we add up all the values for each key and emit
them. This way, we get results in the form of a URL and the number of times it was accessed.

Mastering Map Reduce Programs

42

Executing the Map Reduce program in a
Hadoop cluster

In the previous recipe, we took a look at how to write a map reduce program for a page view
counter. In this recipe, we will explore how to execute this in a Hadoop cluster.

Getting ready
To perform this recipe, you should already have a running Hadoop cluster as well as an eclipse
similar to an IDE.

How to do it
To execute the program, we first need to create a JAR file of it. JAR stands for Java Archive file,
which contains compiled class files. To create a JAR file in eclipse, we need to perform the
following steps:

1.	 Right-click on the project where you've written your Map Reduce Program.
Then, click on Export.

2.	 Select Java->Jar File and click on the Next button. Browse through the path
where you wish to export the JAR file, and provide a proper name to the jar file.
Click on Finish to complete the creation of the JAR file.

3.	 Now, copy this file to the Hadoop cluster. If you have your Hadoop cluster running
in the AWS EC2 instance, you can use the following command to copy the JAR file:
scp –i mykey.pem logAnalyzer.jar ubuntu@ec2-52-27-157-247.us-
west-2.compute.amazonaws.com:/home/ubuntu

4.	 If you don't already have your input log files in HDFS, use following commands:
hadoop fs –mkdir /logs

hadoop fs –put web.log /logs

5.	 Now, it's time to execute the map reduce program. Use the following command to
start the execution:
hadoop jar logAnalyzer.jar com.demo.PageViewCounter /logs /
pageview_output

6.	 This will start the Map Reduce execution on your cluster. If everything goes well,
you should be able to see output in the pageview_output folder in HDFS. Here,
logAnalyzer is the name of the JAR file we created through eclipse. logs is the
folder we have our input data in, while pageview_output is the folder that will first
be created, and then results will be saved into. It is also important to provide a fully
qualified name to the class along with its package name.

Chapter 3

43

How it works...
Once the job is submitted, it first creates the Application Client and Application Master in the
Hadoop cluster. The application tasks for Mapper are initiated in each node where data blocks
are present in the Hadoop cluster. Once the Mapper phase is complete, the data is locally
reduced by a combiner. Once the combiner finishes, the data is shuffled across the nodes in
the cluster. Unless all the mappers have finished, reducers cannot be started. Output from
the reducers is also written to HDFS in a specified folder.

The output folder to be specified should be a nonexisting folder in HDFS.
If the folder is already present, then the program will give you an error.

When all the tasks are finished for the application, you can take a look at the output in HDFS.
The following are the commands to do this:

hadoop fs –ls /pageview_output

hadoop fs –cat /pageview_output/part-m-00000

This way, you can write similar programs for the following:

ff Most number of referral sites (hint: use a referral group from the matcher)

ff Number of client errors (with the Http status of 4XX)

ff Number of of server errors (with the Http status of 5XX)

Adding support for a new writable data type
in Hadoop

In this recipe, we are going to learn how to introduce a new data type in Map Reduce
programs and then use it.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as an eclipse that's
similar to an IDE.

Mastering Map Reduce Programs

44

How to do it...
Hadoop allows us to add new custom data types ,which are made up of one or more primary
data types. In the previous recipe, you must have noticed that when you handled the log data
structure, you had to remember the sequence in which each data component was placed.
This can get very nasty when it comes to complex programs. To avoid this, we will introduce
a new data type in which WritableComparable can be used efficiently.

To add a new data type, we need to implement the WritableComparable interface, which is
provided by Hadoop. This interface provides three methods, readFields(DataInput in),
write(DataOut out), and compareTo(To), which we will need to override with our own
custom implementation. Here, we are going to abstract the log parsing and pattern matching
logic from the user of this data type by providing a method that returns parsed objects:

public class ApacheAccessLogWritable implements WritableComparable<Apa
cheAccessLogWritable> {

 public static String APACHE_ACCESS_LOGS_PATTERN = "^(\\S+) (\\
S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(\\S+) (\\S+) (\\S+)\"
(\\d{3}) (\\d+) (.+?) \"([^\"]+|(.+?))\"";
 public static Pattern pattern = Pattern.compile(APACHE_ACCESS_
LOGS_PATTERN);

 private Text clientIp, id, username, dateString, httpMethod, url,
httpVersion, referral, browserString;
 private IntWritable httpStatus, requestSize;

 @Override
 public void readFields(DataInput in) throws IOException {
 clientIp.readFields(in);
 id.readFields(in);
 username.readFields(in);
 dateString.readFields(in);
 httpMethod.readFields(in);
 url.readFields(in);
 httpVersion.readFields(in);
 referral.readFields(in);
 browserString.readFields(in);
 httpStatus.readFields(in);
 requestSize.readFields(in);

 }

Chapter 3

45

 @Override
 public void write(DataOutput out) throws IOException {
 clientIp.write(out);
 id.write(out);
 username.write(out);
 dateString.write(out);
 httpMethod.write(out);
 url.write(out);
 httpVersion.write(out);
 referral.write(out);
 browserString.write(out);
 httpStatus.write(out);
 requestSize.write(out);

 }

 private ApacheAccessLogWritable(Text clientIp, Text id, Text
username, Text dateString, Text httpMethod, Text url,
 Text httpVersion, IntWritable httpStatus, IntWritable
requestSize, Text referral, Text browserString) {

 this.clientIp = clientIp;
 this.id = id;
 this.username = username;
 this.dateString = dateString;
 this.httpMethod = httpMethod;
 this.url = url;
 this.httpVersion = httpVersion;
 this.referral = referral;
 this.browserString = browserString;
 this.httpStatus = httpStatus;
 this.requestSize = requestSize;
 }

 public static ApacheAccessLogWritable parseFromLogLine(String
logline) {
 Matcher m = pattern.matcher(logline);
 if (!m.find()) {

 throw new RuntimeException("Error parsing logline");
 }

 return new ApacheAccessLogWritable(new Text(m.group(1)), new
Text(m.group(2)), new Text(m.group(3)),

Mastering Map Reduce Programs

46

 new Text(m.group(4)), new Text(m.group(5)), new
Text(m.group(6)), new Text(m.group(7)),
 new IntWritable(Integer.parseInt(m.group(8))), new
IntWritable(Integer.parseInt(m.group(9))),
 new Text(m.group(10)), new Text(m.group(11)));
 }

 @Override
 public int compareTo(ApacheAccessLogWritable o) {
 // TODO Auto-generated method stub
 return 0;
 }
 // Getter and Setter methods
 ..
}

The following piece of code shows us how we can use the data type in our map reduce
program; here, I am going to update the same program that we used in the previous recipe.
So, the mapper code will be updated as follows:

public static class PageViewMapper extends Mapper<Object, Text, Text,
IntWritable> {

 private static final IntWritable one = new IntWritable(1);

 public void map(Object key, Text value, Mapper<Object, Text,
Text, IntWritable>.Context context)
 throws IOException, InterruptedException {
 ApacheAccessLogWritable log = ApacheAccessLogWritable.
parseFromLogLine(value.toString());
 context.write(log.getUrl(), one);

 }
 }

The highlighted code shows you where we have used our own custom data type. Here, the
reducer and driver code remain as it is. Refer to the previous recipe to know more about
these two.

To execute this code, we need to bundle the datatype class and map reduce program into a
single JAR itself so that at runtime the map reduce code is able to find our newly introduced
data type.

Chapter 3

47

How it works...
We know that when we execute the map reduce code, a lot of data gets transferred over the
network when this shuffle takes place. Sometimes, the size of the keys and values that are
transferred can be huge, which might affect network traffic. To avoid congestion, it's very
important to send the data in a serialized format. To abstract the pain of serialization and
deserialization from the map reduce programmer, Hadoop has introduced a set of box/wrapper
classes such as IntWritable, LongWritable, Text, FloatWritable, DoubleWritable,
and so on. These are wrapper classes on top of primitive data types, which can be serialized and
deserialized easily. The keys need to be WritableComparable, while the values need to be
Writable. Technically, both keys and values are WritableComparable.

Apart from the set of built-in data types, Hadoop also supports the introduction of custom
and new data types that are WritableComparable. This is done so that the handling of
complex data becomes easy and serialization and deserialization is taken care of automatically.
WritableComparable are data types that are easy to serialize and deserialize and can be
compared in order to decide what their order is.

Implementing a user-defined counter in a
Map Reduce program

In this recipe, we are going to learn how to add a user-defined counter so that we can keep
track of certain events easily.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as an eclipse that's
similar to an IDE.

How to do it...
After every map reduce execution, you will see a set of system defined counters getting
published, such as File System counters, Job counters, and Map Reduce Framework counters.
These counters help us understand the execution in detail. They give very detailed information
about the number of bytes written to HDFS, read from HDFS, the input given to a map, the
output received from a map, and so on. Similar to this information, we can also add our own
user-defined counters, which will help us track the execution in a better manner.

In earlier recipes, we considered the use case of log analytics. There can be chances that the
input we receive might always not be in the same format as we expect it to be. So, its very
important to track such bad records and also avoid any failures because of them. In order to
achieve this, in this recipe, we are going to add one custom counter that keeps track of such
bad records without failing the task.

Mastering Map Reduce Programs

48

First of all, we have to define the counter as enum in our program:

private enum COUNTERS {
 INVALID_RECORD_COUNT
 }

Next, we will update our mapper code to use the defined counter, as shown here:

public static class PageViewMapper extends Mapper<Object, Text, Text,
IntWritable> {

 private static final IntWritable one = new IntWritable(1);

 public void map(Object key, Text value, Mapper<Object, Text,
Text, IntWritable>.Context context)
 throws IOException, InterruptedException {
 ApacheAccessLogWritable log = null;
 try {
 // If record is in expected format, do normal
processing
 log = ApacheAccessLogWritable.parseFromLogLine(value.
toString());
 context.write(log.getUrl(), one);
 } catch (Exception e) {
 // if not, increment the invalid record counter
 System.out.println("Invalid record found");
 context.getCounter(COUNTERS.INVALID_RECORD_COUNT).
increment(1L);

 }

 }
 }

The reducer code will remain as it is while we will update the driver code to print the final
count of invalid records, as shown here:

public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 if (args.length != 2) {
 System.err.println("Usage: PageViewCounter <in><out>");
 System.exit(2);
 }
 Job job = Job.getInstance(conf, "Page View Counter");
 job.setJarByClass(PageViewCounter.class);
 job.setMapperClass(PageViewMapper.class);

Chapter 3

49

 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 org.apache.hadoop.mapreduce.Counters counters = job.
getCounters();
 System.out.println("No. of Invalid Records :" + counters.
findCounter(COUNTERS.INVALID_RECORD_COUNT).getValue());
 }

Now, to demonstrate, I've added a few invalid records (records with fewer columns than
expected) and added the log file to HDFS. So, when I execute the program, I can see the
invalid record count getting printed at the end of the execution:

$hadoop jar logAnalyzer.jar com.demo.PageViewCounter /log-input /log-
output
15/11/15 08:44:37 INFO client.RMProxy: Connecting to ResourceManager
at /0.0.0.0:8032
15/11/15 08:44:37 WARN mapreduce.JobResourceUploader: Hadoop command-
line option parsing not performed. Implement the Tool interface and
execute your application with ToolRunner to remedy this.
15/11/15 08:44:37 INFO input.FileInputFormat: Total input paths to
process : 2
15/11/15 08:44:37 INFO mapreduce.JobSubmitter: number of splits:2
15/11/15 08:44:38 INFO mapreduce.JobSubmitter: Submitting tokens for
job: job_1447554086128_0003
15/11/15 08:44:38 INFO impl.YarnClientImpl: Submitted application
application_1447554086128_0003
15/11/15 08:44:38 INFO mapreduce.Job: The url to track the job:
http://admin1:8088/proxy/application_1447554086128_0003/
15/11/15 08:44:38 INFO mapreduce.Job: Running job:
job_1447554086128_0003
15/11/15 08:44:43 INFO mapreduce.Job: Job job_1447554086128_0003
running in uber mode : false
15/11/15 08:44:43 INFO mapreduce.Job: map 0% reduce 0%
15/11/15 08:44:50 INFO mapreduce.Job: map 100% reduce 0%
15/11/15 08:44:55 INFO mapreduce.Job: map 100% reduce 100%
15/11/15 08:44:55 INFO mapreduce.Job: Job job_1447554086128_0003
completed successfully
15/11/15 08:44:55 INFO mapreduce.Job: Counters: 50
 File System Counters
 FILE: Number of bytes read=580

Mastering Map Reduce Programs

50

 FILE: Number of bytes written=345070
 FILE: Number of read operations=0
 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=3168
 HDFS: Number of bytes written=271
 HDFS: Number of read operations=9
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=2
 Job Counters
 Launched map tasks=2
 Launched reduce tasks=1
 Data-local map tasks=2
 Total time spent by all maps in occupied slots (ms)=8542
 Total time spent by all reduces in occupied slots (ms)=3046
 Total time spent by all map tasks (ms)=8542
 Total time spent by all reduce tasks (ms)=3046
 Total vcore-seconds taken by all map tasks=8542
 Total vcore-seconds taken by all reduce tasks=3046
 Total megabyte-seconds taken by all map tasks=8747008
 Total megabyte-seconds taken by all reduce tasks=3119104
 Map-Reduce Framework
 Map input records=13
 Map output records=10
 Map output bytes=724
 Map output materialized bytes=586
 Input split bytes=201
 Combine input records=10
 Combine output records=8
 Reduce input groups=4
 Reduce shuffle bytes=586
 Reduce input records=8
 Reduce output records=4
 Spilled Records=16
 Shuffled Maps =2
 Failed Shuffles=0
 Merged Map outputs=2
 GC time elapsed (ms)=69
 CPU time spent (ms)=1640
 Physical memory (bytes) snapshot=591077376
 Virtual memory (bytes) snapshot=1219731456
 Total committed heap usage (bytes)=467140608
 Shuffle Errors
 BAD_ID=0

Chapter 3

51

 CONNECTION=0
 IO_ERROR=0
 WRONG_LENGTH=0
 WRONG_MAP=0
 WRONG_REDUCE=0
 com.demo.PageViewCounter$COUNTERS
 INVALID_RECORD_COUNT=3
 File Input Format Counters
 Bytes Read=2967
 File Output Format Counters
 Bytes Written=271

How it works...
Custom counters are helpful in various situations such as keeping track of bad records,
count outliers in the form of maximum and minimum values, summations, and so on.
The Hadoop framework imposes an upper limit on using these counters. They can be
incremented/decremented globally, or you may also update them in mappers or reducers.
In either case, they are referred to using the group and counter names. All the counters are
managed at the Application Master level. Information about each increment or decrement
is passed to the Application Master via heartbeat messages between the containers that
run mappers and reducers.

It is better to keep the counters to a limited number as this causes an overhead on the
processing framework. The best thing to do is to remember a thumb rule: do not let the
number of counters go beyond 100.

Map Reduce program to find the top X
In this recipe, we are going to learn how to write a map reduce program to find the top X
records from the given set of values.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as an eclipse that's
similar to an IDE.

Mastering Map Reduce Programs

52

How to do it...
A lot of the time, we might need to find the top X values from the given set of values. A simple
example could be to find the top 10 trending topics from a Twitter dataset. In this case, we
will need to use two map reduce jobs. First of all, find out all the words that start with # and
the number of times each hashtag has occurred in a given set of data. The first map reduce
program is quite simple, which is pretty similar to the word count program. But for the second
program, we need to use some logic. In this recipe, we'll explore how we can write a map reduce
program to find the top X values from the given set. Now, though, lets try to understand the logic
behind this.

As shown in the preceding figure, our logic includes finding the top 10 words from each input
split and then sending these records to only one reducer. In the reducer, we will again find the
top 10 words to get the final result of the top 10 records. Now, let's understand the execution.

First, let's prepare the input. Here, we will use the word count program provided along with
Hadoop binaries:

First of all, let's put data in HDFS to be processed.

hadoop fs -mkdir /input

hadoop fs -put /usr/local/hadoop/LICENSE.txt /input

hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-
examples-2.7.0.jar /input /word_count_output

This will execute the word count program and store the output in the HDFS folder called
/word_count_output. This output will be used as the input for our top 10 map reduce
program.

Chapter 3

53

Let's take a look at the mapper code:

public static class TopTenMapper extends Mapper<Object, Text, Text,
IntWritable> {

 // Tree map keeps records sorted by key
 private TreeMap<Integer, String> countWordMap = new
TreeMap<Integer, String>();

 public void map(Object key, Text value, Mapper<Object, Text,
Text, IntWritable>.Context context)
 throws IOException, InterruptedException {

 String[] words = value.toString().split("[\t]");
 int count = Integer.parseInt(words[1]);
 String word = words[0];
 countWordMap.put(count, word);
 if (countWordMap.size() > 10) {

 countWordMap.remove(countWordMap.firstKey());
 }

 }

 @Override
 protected void cleanup(Context context) throws IOException,
InterruptedException {
 for (Entry<Integer, String> entry : countWordMap.
entrySet()) {
 context.write(new Text(entry.getValue()), new
IntWritable(entry.getKey()));

 }

 }
 }

In the preceding code, we are using TreeMap to store the words and their count. TreeMap
helps store keys and values sorted order by the key. Here, we are using the count as the key
and words as values. In each Mapper iteration, we check whether the size is greater than 10.
If it is, we remove the first key from the key map, which would be the lowest count of the set.
This way, at the end of each mapper, we will emit the top 10 words of the reducer.

You can read more about TreeMap at http://docs.oracle.com/javase/7/docs/api/
java/util/TreeMap.html.

http://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html
http://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html

Mastering Map Reduce Programs

54

Now, let's take a look at the reducer code:

public static class TopTenReducer extends Reducer<Text, IntWritable,
Text, IntWritable> {

 // Tree map keeps records sorted by key
 private TreeMap<IntWritable, Text> countWordMap = new
TreeMap<IntWritable, Text>();

 public void reduce(Text key, Iterable<IntWritable> values,
 Reducer<Text, IntWritable, Text, IntWritable>.Context
context)
 throws IOException, InterruptedException {

 for (IntWritable value : values) {

 countWordMap.put(value, key);

 }
 if (countWordMap.size() > 10) {

 countWordMap.remove(countWordMap.firstKey());
 }
 for (Entry<IntWritable, Text> entry : countWordMap.
descendingMap().entrySet()) {
 context.write(entry.getValue(), entry.getKey());

 }

 }

 }

In the reducer, we will again use TreeMap to find the top 10 of all the collected records from
each Mapper. Here, is it very important to use only one reducer for the complete processing;
hence, we need to set this in the Driver class, as shown here:

public class TopTenWordsByOccurence {
 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 if (args.length != 2) {
 System.err.println("Usage: toptencounter <in><out>");
 System.exit(2);
 }
 Job job = Job.getInstance(conf, "Top Ten Word By Occurence
Counter");
 job.setJarByClass(TopTenWordsByOccurence.class);

Chapter 3

55

 job.setMapperClass(TopTenMapper.class);
 job.setCombinerClass(TopTenReducer.class);
 job.setReducerClass(TopTenReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 job.setNumReduceTasks(1);
 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

Now, when you execute the preceding code, as a result, you will see the output in the form of
the top 10 words due to their frequencies in the document.

You can modify the same program to get the top 5, 20, or any number.

How it works
Here, the logic is quite straightforward, as shown in the preceding diagram. The trick is using
TreeMap, which stores data in a sorted key order. It is also important to use only one reducer,
and if we can't, we will again get the number of sets of the top records from each reducer,
which will not show you the correct output.

Map Reduce program to find distinct values
In this recipe, we are going to learn how to write a map reduce program to find distinct values
from a given set of data.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as an eclipse that is
similar to an IDE.

How to do it
Sometimes, there may be a chance that the data you have contains some duplicate values.
In SQL, we have something called a distinct function, which helps us get distinct values.
In this recipe, we are going to take a look at how we can get distinct values using map
reduce programs.

Mastering Map Reduce Programs

56

Let's consider a use case where we have some user data with us, which contains two columns:
userId and username. Let's assume that the data we have contains duplicate records, and for
our processing needs, we only need distinct records through user IDs. Here is some sample data
that we have where columns are separated by '|':

1|Tanmay
2|Ramesh
3|Ram
1|Tanmay
2|Ramesh
6|Rahul
6|Rahul
4|Sneha
4|Sneha

The idea here is to use the default reducer behavior where the same keys are sent to one
reducer. In this case, we will make userId the key and emit it to the reducer. In the reducer,
the same keys will be reduced together, which will avoid duplicates.

Let's look at the Mapper Code.

public static class DistinctUserMapper extends Mapper<Object, Text,
Text, NullWritable> {
 private Text userId = new Text();

 public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {

 String words[] = value.toString().split("[|]");
 userId.set(words[0]);
 context.write(userId, NullWritable.get());
 }
 }

We only want distinct user IDs, hence, we emit only user IDs as keys and nulls as values.

Now, let's look at the reducer code:

public static class DistinctUserReducer extends Reducer<Text,
NullWritable, Text, NullWritable> {
 public void reduce(Text key, Iterable<NullWritable> values,
Context context)
 throws IOException, InterruptedException {
 context.write(key, NullWritable.get());
 }
}

Chapter 3

57

Here, we only emit user IDs as they come. This step removes duplicates as the reducer only
treats the records by their keys and only one record per key is kept.

The driver code remains simple, as shown here:

public class DistinctValues {

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 if (args.length != 2) {
 System.err.println("Usage: DistinctValues <in><out>");
 System.exit(2);
 }
 Job job = Job.getInstance(conf, "Distinct User Id finder");
 job.setJarByClass(DistinctValues.class);
 job.setMapperClass(DistinctUserMapper.class);
 job.setReducerClass(DistinctUserReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(NullWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }
}

Now, when we execute the code, we will see the following output:

hadoop jar distinct.jar com.demo.DistinctValues /users /distinct_user_ids

hadoop fs -cat /distinct_user_ids/part-r-00000

 1

 2

 3

 4

 6

How it works...
When mapper emits keys and values, the output is shuffled across the nodes in the cluster.
Here, the partitioner decides which keys should be reduced and on which node. On all the
nodes, the same partitioning logic is used, which makes sure that the same keys are grouped
together. In the preceding code, we use this default behavior to find distinct user IDs.

Mastering Map Reduce Programs

58

Map Reduce program to partition data using
a custom partitioner

In this recipe, we are going to learn how to write a map reduce program to partition data using
a custom partitioner.

Getting ready
To perform this recipe, you should have a running Hadoop cluster running as well as an
eclipse that's similar to an IDE.

How to do it...
During the shuffle and sort, if it's not specified, Hadoop by default uses a hash partitioner.
We can also write our own custom partitioner with custom partitioning logic, such that we
can partition the data into separate files.

Let's consider one example where we have user data with us along with the year of joining.
Now, assume that we have to partition the users based on the year of joining that's specified
in the record. The sample input data looks like this:

User_id|user_name|yoj

1|Tanmay|2010

2|Sneha|2015

3|Sakalya|2020

4|Manisha|2011

5|Avinash|2012

6|Vinit|2022

To get this data partitioned based on YOJ, we will have to write a custom partitioner:

public class YearOfJoiningPartitioner extends Partitioner<IntWritable,
Text> implements Configurable {

 private Configuration conf = null;

 @Override
 public int getPartition(IntWritable key, Text value, int
numPartitions) {
 return key.get() % 10;
 }

Chapter 3

59

 @Override
 public Configuration getConf() {

 return conf;
 }

 @Override
 public void setConf(Configuration conf) {
 this.conf = conf;

 }
}

In the custom partitioner, we need to override the getPartition()method where we will
write our own custom partitioning logic. Here, we will be using YOJ as the key and partition
the data based on the modulo 10 value of year. The value given by this method will be in the
form of a reducer where the key will be reduced.

Now, to use this partitioner, we need to set this in the driver class, as shown here:

public class YOJPartitioner {

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 if (args.length != 2) {
 System.err.println("Usage: YOJPartitioner <in><out>");
 System.exit(2);
 }
 Job job = Job.getInstance(conf, "YOJPartitioner");
 job.setJarByClass(YOJPartitioner.class);
 job.setMapperClass(YOJPartitionerMapper.class);
 job.setReducerClass(YOJReducer.class);
 job.setOutputKeyClass(IntWritable.class);
 job.setOutputValueClass(Text.class);
 job.setPartitionerClass(YearOfJoiningPartitioner.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }
}

Mastering Map Reduce Programs

60

Now that we want to partition the data based on YOJ, we will have to set YOJ as the key while
emitting data from the mapper, as shown here:

public static class YOJPartitionerMapper extends Mapper<Object, Text,
IntWritable, Text> {

 public void map(Object key, Text value, Mapper<Object, Text,
IntWritable, Text>.Context context)
 throws IOException, InterruptedException {
 String words[] = value.toString().split("[|]");
 context.write(new IntWritable(Integer.parseInt(words[2])),
value);

 }
 }

Next, we will write the identity reducer, which emits keys and values as they come:

public static class YOJReducer extends Reducer<IntWritable, Text,
Text, NullWritable> {
 protected void reduce(IntWritable key, Iterable<Text> values,
Context context)
 throws IOException, InterruptedException {
 for (Text t : values) {
 context.write(t, NullWritable.get());
 }
 }
 }

When we execute this code in a multimode cluster, the records will be partitioned into
different files based on the logic we wrote.

How it works...
When we provide the custom partitioner to the map reduce code and the mappers have
finished their work, the custom partitioner will come into the picture. The keys are sent
through the getPartition() method and the resultant value will be in the form of the
reducer number where the keys are sent. Here, we are executing modulo 10 to the year
value which would partition the data into 10 partitions. This way, by controlling the logic
of the getPartition() method, we can decide which partitioning strategy to use.

Chapter 3

61

Writing Map Reduce results to multiple
output files

In this recipe, we are going to learn how to write a map reduce output to multiple output files.
This will be useful when we need to use classified output for different purposes.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as an eclipse similar
to an IDE.

How to do it...
Hadoop supports a class called MultipleOutputs, which allows us to write out of a map
reduce program to multiple files. We can write output to different files, file types, and different
locations with it. You can also choose the filename with this API. To use this, we will take a
look at a simple word count program and write out of this program to multiple output files.

To do so, we need to add the named output files and their types in our Driver code,
as shown here:

public class WordCount {
 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 if (args.length != 2) {
 System.err.println("Usage: wordcount <in><out>");
 System.exit(2);
 }
 Job job = Job.getInstance(conf, "WordCount");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 MultipleOutputs.addNamedOutput(job, "text", TextOutputFormat.
class, Text.class, IntWritable.class);
 MultipleOutputs.addNamedOutput(job, "seq",
SequenceFileOutputFormat.class, Text.class, IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

Mastering Map Reduce Programs

62

The highlighted code shows that we have two named output files, that is, the text and seq.
This will generate two more files in addition to the default output files. Next, we need to
update the reducer code to write output key values to these new files as well:

public static class IntSumReducer extends Reducer<Text, IntWritable,
Text, IntWritable> {
 private MultipleOutputs mos;
 private IntWritable result = new IntWritable();

 public void setup(Context context) {

 mos = new MultipleOutputs(context);
 }

 public void reduce(Text key, Iterable<IntWritable> values,
 Reducer<Text, IntWritable, Text, IntWritable>.Context
context)
 throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 this.result.set(sum);
 mos.write("text", key, this.result);
 mos.write("seq", key, this.result);

 context.write(key, this.result);
 }

 public void cleanup(Context context) throws IOException,
InterruptedException {
 mos.close();

 }
 }

In the setup method, we need to initiate the object of the MultipleOutputs class. In the
reduce method, we have to add the write method, which would write the desired key values
to two files, one of the text type and the other of the sequence file type.

Additionally, you can also specify the complete path apart from the default output path in the
reducer code where you wish to see to your file:

mos.write(key, this.result, "/my_new_output_path_up/file");

It is very important to close the MultipleOutputs stream in the cleanup method.

Chapter 3

63

How it works...
MulitpleOutputs is a great help in two conditions: when you wish to see multiple output
files in different file formats and when you wish to write the output of your map reduce
program in order to use specified files. MultipleOutputs supports counters but they
are disabled by default. Once specified, MultipleOutputs will first create a file with a
specific name, and then it will start writing any data if available. If no data is generated, it
will still create zero-sized files. To avoid this, we can use LazyOutputFormat, as shown
in the following. Details on LazyOutputFormat are available at https://hadoop.
apache.org/docs/r2.6.1/api/org/apache/hadoop/mapreduce/lib/output/
LazyOutputFormat.html. Here is the code for LazyOutputFormat:

LazyOutputFormat.setOutputFormatClass(job, TextOutputFormat.class);

Performing Reduce side Joins using
Map Reduce

In this recipe, we are going to learn how to write a map reduce, which will join records from
two tables.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as an eclipse that's
similar to an IDE.

How to do it
We are aware of the various types of joins that are available in SQL—Inner Join, Left outer join,
right outer join, full outer join, and so on. Performing joins in SQL is quite easy, but when it
comes to MapReduce, this is a little tricky. In this recipe, we will be try to perform various join
operations using the Map Reduce program in the following dataset.

Consider two datasets: the Users table, which has information about userId, username,
and deptId. We also have data on the Department table where we have deptId and
deptName as columns. If we place our data in a table, it would look like this:

Users' table:

User ID Username Department ID
1 Tanmay 1
2 Sneha 1
3 Sakalya 2

https://hadoop.apache.org/docs/r2.6.1/api/org/apache/hadoop/mapreduce/lib/output/LazyOutputFormat.html
https://hadoop.apache.org/docs/r2.6.1/api/org/apache/hadoop/mapreduce/lib/output/LazyOutputFormat.html
https://hadoop.apache.org/docs/r2.6.1/api/org/apache/hadoop/mapreduce/lib/output/LazyOutputFormat.html

Mastering Map Reduce Programs

64

User ID Username Department ID
4 Manisha 2
5 Avinash 3

Department table:

Department ID Department name
1 Engineering
2 Sales
3 Production

Here, deptId is the foreign key between two tables, and we will join the two tables based on
this key.

To start with, we need to have a driver code where we will use the MultipleInputs API,
which allows us to take the two input paths where the users and department table is stored
in HDFS. We also need to accept the join type from the user, and lastly, we need to accept
the output path where we will save our final result:

public class ReduceSideJoin {
 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 if (args.length != 4) {
 System.err.println("Usage: join <input-table1><input-table
2><jointype:inner|leftouter|rightouter|fullouter><out>");
 System.exit(2);
 }
 Job job = Job.getInstance(conf, "Reduce Side Join");
 job.setJarByClass(ReduceSideJoin.class);

 job.setReducerClass(DeptJoinReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);
 MultipleInputs.addInputPath(job, new Path(args[0]),
TextInputFormat.class, UserJoinMapper.class);
 MultipleInputs.addInputPath(job, new Path(args[1]),
TextInputFormat.class, DeptJoinMapper.class);
 job.getConfiguration().set("join.type", args[2]);
 FileOutputFormat.setOutputPath(job, new Path(args[3]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

Chapter 3

65

Next, we need to write two mappers that deal with each table. We'll first look at the users
table. We'll join the records with deptId, hence we need to emit keys as deptIds. Also,
we are going to append an identifier, which will help us classify records based on the table
that they are from:

public static class UserJoinMapper extends Mapper<Object, Text, Text,
Text> {
 private Text outkey = new Text();
 private Text outvalue = new Text();

 public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
 String attrs[] = value.toString().split("[\t]");
 String deptId = attrs[2];
 // The foreign join key is the dept ID
 outkey.set(deptId);
 // flag this each record with prefixing it with 'A'
 outvalue.set("A" + value.toString());
 context.write(outkey, outvalue);
 }
 }

Similarly, we'll write a mapper class for the department table as well:

public static class DeptJoinMapper extends Mapper<Object, Text, Text,
Text> {
 private Text outkey = new Text();
 private Text outvalue = new Text();

 public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
 String attrs[] = value.toString().split("[\t]");
 String deptId = attrs[0];
 // The foreign join key is the dept ID
 outkey.set(deptId);
 // flag this each record with prefixing it with 'B'
 outvalue.set("B" + value.toString());
 context.write(outkey, outvalue);
 }
 }

Mastering Map Reduce Programs

66

Next, we need to write a reducer class where we will write our logic to join the records:

public static class DeptJoinReducer extends Reducer<Text, Text, Text,
Text> {
 private static final Text EMPTY_TEXT = new Text("");
 private Text tmp = new Text();
 private ArrayList<Text> listA = new ArrayList<Text>();
 private ArrayList<Text> listB = new ArrayList<Text>();
 private String joinType = null;

 public void setup(Context context) {
 // set up join configuration based on input
 joinType = context.getConfiguration().get("join.type");
 }

 public void reduce(Text key, Iterable<Text> values, Context
context) throws IOException, InterruptedException {
 // Clear the lists
 listA.clear();
 listB.clear();
 // Put records from each table into correct lists, remove
the prefix
 for (Text t : values) {
 tmp = t;
 if (tmp.charAt(0) == 'A') {
 listA.add(new Text(tmp.toString().substring(1)));
 } else if (tmp.charAt(0) == 'B') {
 listB.add(new Text(tmp.toString().substring(1)));
 }
 }
 // Execute joining logic based on its type
 executeJoinLogic(context);
 }
…
}

In the preceding code, we first initialize the two empty lists where we keep our records. There's
one list for each table. We segregate the records based on their prefix. In the setup method,
we also set up the join type that's been provided by the user in the job configuration.

Chapter 3

67

Next, we need to write the join logic based on the join type. The following code shows the logic
for the inner, left outer, right outer, and the full outer join:

private void executeJoinLogic(Context context) throws IOException,
InterruptedException {
 if (joinType.equalsIgnoreCase("inner")) {

 if (!listA.isEmpty() && !listB.isEmpty()) {
 for (Text A : listA) {
 for (Text B : listB) {
 context.write(A, B);
 }
 }
 }
 } else if (joinType.equalsIgnoreCase("leftouter")) {

 for (Text A : listA) {

 if (!listB.isEmpty()) {
 for (Text B : listB) {
 context.write(A, B);
 }
 } else {

 context.write(A, EMPTY_TEXT);
 }
 }
 } else if (joinType.equalsIgnoreCase("rightouter")) {

 for (Text B : listB) {

 if (!listA.isEmpty()) {
 for (Text A : listA) {
 context.write(A, B);
 }
 } else {

 context.write(EMPTY_TEXT, B);
 }
 }
 } else if (joinType.equalsIgnoreCase("fullouter")) {

 if (!listA.isEmpty()) {

Mastering Map Reduce Programs

68

 for (Text A : listA) {

 if (!listB.isEmpty()) {
 for (Text B : listB) {
 context.write(A, B);
 }
 } else {

 context.write(A, EMPTY_TEXT);
 }
 }
 } else {

 for (Text B : listB) {
 context.write(EMPTY_TEXT, B);
 }
 }
 }
 }
 }

Now, when we compile this code and bundle it into jar, it is ready for execution. Before the
execution, we need to prepare our input:

hadoop fs –mkdir /users

hadoop fs –put users.txt /users

hadoop fs –mkdir /dept

hadoop fs –put dept.txt /dept

hadoop jar join.jar com.demo.ReduceSideJoin /users /dept inner /inner-
join-output

Once the execution is complete, you can take a look at the output file:

hadoop fs –cat /inner-join-output/part-r-00000

 2 Sneha	 1	 1	 Engineering

 1 Tanmay	1	 1	 Engineering

 4 Manisha	 2	 2	 Sales

 3 Sakalya	 2	 2	 Sales

 5 Avinash	 3	 3	 Production

Chapter 3

69

How it works...
MulitpleInputs works with each mapper and sends data from the respective directories.
Inside mappers, the keys and values are emitted based on the joining foreign key. When it
comes to reducers, the actual join logic is executed based on the join type. Generally, reduce
side joins consume a lot of resources and take more time than map side joins. But when you
have huge data at hand, reduce side joins are the only options we have. Reduce side joins
also cause huge network traffic as each and every record is sent to the reducers. Based on
the foreign key to join, the keys should be changed. This way, you can update the code in the
preceding section to join any two datasets easily.

Unit testing the Map Reduce code
using MRUnit

In this recipe, we are going to learn how to unit test the map reduce code using a library
called MRUnit.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as an eclipse similar
to an IDE.

How to do it...
Sometimes, it is very difficult to develop, compile, deploy and execute the map reduce program
and then figure out whether the code is correct or not. In order to avoid this deploying and
testing technique, we can use a unit testing framework that's been built specially for Map
Reduce called, MRUnit.

Let's assume that we have a map reduce program that emits and counts words starting with
'#', such as a Twitter hashtag counter. The Mapper code for this hashtag counter looks like
this:

public static class TokenizerMapper extends
 Mapper<Object, Text, Text, IntWritable> {
 private static final IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(Object key, Text value,
 Mapper<Object, Text, Text, IntWritable>.Context context)
 throws IOException, InterruptedException {

Mastering Map Reduce Programs

70

 StringTokenizer itr = new StringTokenizer(value.
toString());
 while (itr.hasMoreTokens()) {
 this.word.set(itr.nextToken());
 if (word.toString().startsWith("#"))
 context.write(this.word, one);
 }
 }
 }

The Reduce code is a simple sum reducer code:

public static class IntSumReducer extends
 Reducer<Text, IntWritable, Text, IntWritable> {
 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,
 Reducer<Text, IntWritable, Text, IntWritable>.Context
context)
 throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 this.result.set(sum);
 if (result.get() >= 2)
 context.write(key, this.result);
 }
 - }

Now, to unit test this code, we will first add dependencies that are required for MRUnit.
We need the following dependencies to be added to POM.xml:

 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 </dependency>
 <dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-all</artifactId>
 <version>2.0.2-beta</version>
 </dependency>
 <dependency>
 <groupId>org.apache.mrunit</groupId>

Chapter 3

71

 <artifactId>mrunit</artifactId>
 <version>1.1.0</version>
 <classifier>hadoop1</classifier>
 </dependency>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-core</artifactId>
 <version>2.7.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.7.1</version>
 </dependency>

We need to write a test class that would test the methods from our Map Reduce code:

First we write a setup method which would initialize the objects:

MapDriver<Object, Text, Text, IntWritable> mapDriver;
 ReduceDriver<Text, IntWritable, Text, IntWritable> reduceDriver;
 MapReduceDriver<Object, Text, Text, IntWritable, Text,
IntWritable> mapReduceDriver;

 @Before
 public void setUp() {
 TokenizerMapper mapper = new TokenizerMapper();
 IntSumReducer reducer = new IntSumReducer();
 mapDriver = MapDriver.newMapDriver(mapper);
 reduceDriver = ReduceDriver.newReduceDriver(reducer);
 mapReduceDriver = MapReduceDriver.newMapReduceDriver(mapper,
reducer);
 }

Here, we are initiating the mapper, reducer, and drivers so that they can be accessed in
test cases.

Now, let's write a test case for the mapper class:

@Test
 public void testMapper() throws IOException {
 	 mapDriver.withInput(new LongWritable(), new Text("Hello
World #mrunit"));
 mapDriver.withOutput(new Text("#mrunit"), new IntWritable(1));
 mapDriver.runTest();
 }

Here, we are testing whether the mapper only emits words starting with '#'.

Mastering Map Reduce Programs

72

Next, we will write a test case to check whether the reducer properly sums up the values:

@Test
 public void testReducer() throws IOException {
 List<IntWritable> values = new ArrayList<IntWritable>();
 values.add(new IntWritable(1));
 values.add(new IntWritable(1));
 reduceDriver.withInput(new Text("#mrunit"), values);
 reduceDriver.withOutput(new Text("#mrunit"), new
IntWritable(2));
 reduceDriver.runTest();
 }

We can also write a combined test for the mapper and reducer:

 @Test
 public void testMapReduce() throws IOException {
 mapReduceDriver.withInput(new LongWritable(), new Text("Hello
World #mrunit"));
 List<IntWritable> values = new ArrayList<IntWritable>();
 values.add(new IntWritable(1));
 values.add(new IntWritable(1));
 mapReduceDriver.withOutput(new Text("#mrunit"), new
IntWritable(2));
 mapReduceDriver.runTest();
 }

This way, you can test any important logic that you have written in your map reduce code.

How it works...
MRUnit works exactly like any other testing framework, such as JUnit/TestNG. It only unit
tests the logic. Mockito is a framework that helps mocking up an object, which is a part of
the Hadoop/Map Reduce framework.

It is always good practice to unit test your code and only then deploy your map reduce jobs in
production clusters. This also helps us with continuous integration to get to know any braking
changes because any code update.

73

4
Data Analysis Using
Hive, Pig, and Hbase

ff Storing and processing Hive data in a sequential file format

ff Storing and processing Hive data in the RC file format

ff Storing and processing Hive data in the ORC file format

ff Storing and processing Hive data in the Parquet file format

ff Performing FILTER By queries in Pig

ff Performing Group By queries in Pig

ff Performing Order By queries in Pig

ff Performing JOINS in Pig

ff Writing a user-defined function in Pig

ff Analyzing web log data using Pig

ff Performing the Hbase operation in CLI

ff Performing Hbase operations in Java

ff Executing the MapReduce programming Hbase Table

Data Analysis Using Hive, Pig, and Hbase

74

Introduction
In the previous chapter, we discussed how to write MapReduce programs in various ways in
order to analyze data. Earlier, MapReduce was the only means of processing data in Hadoop,
but with the passage of time, growing popularity, and the ease of using the Hadoop platform,
various subprojects joined its league, which helps users write logic in SQL, scripts, and so
on, and analyze the data. Projects, such as Apache Hive, Apache Pig, and Apache Hbase,
are well accepted by users, so the majority of development these days takes place using
any of these. In this chapter, we are going to take a look at how to use these tools to perform
various advanced operations. If you are new to these terms, I would recommend that you
read through these links first.

ff For Hive resources, take a look a these links:

ff https://hive.apache.org/

ff http://hadooptutorials.co.in/tutorials/hive/introduction-to-
apache-hive.html

ff http://hadooptutorials.co.in/tutorials/hive/hive-data-units.
html

ff http://hadooptutorials.co.in/tutorials/hive/hive-best-
practices.html

For Pig resources, take a look at these links:

ff https://pig.apache.org/

For Hbase resources, take a look at these links:

ff https://hbase.apache.org/

We won't be going through the installations of the above in this book as the installations are
quite easy if your Hadoop cluster is already installed; just download the binaries and set the
installation paths with few or no configurations as you'll have to use all of them.

Let's get started with our first recipe now.

https://hive.apache.org/
http://hadooptutorials.co.in/tutorials/hive/introduction-to-apache-hive.html
http://hadooptutorials.co.in/tutorials/hive/introduction-to-apache-hive.html
http://hadooptutorials.co.in/tutorials/hive/hive-data-units.html
http://hadooptutorials.co.in/tutorials/hive/hive-data-units.html
http://hadooptutorials.co.in/tutorials/hive/hive-best-practices.html
http://hadooptutorials.co.in/tutorials/hive/hive-best-practices.html
https://pig.apache.org/
https://hbase.apache.org/

Chapter 4

75

Storing and processing Hive data in a
sequential file format

I'm sure that most of the time, you would have created Hive tables and stored data in a text
format; in this recipe, we are going to store data in sequential files.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Hive installed on it. Here, I am going to use Hive 1.2.1.

How to do it...
Hive 1.2.1 supports various different types of files, which help process data in a faster
manner. In this recipe, we are going to use sequential files to store data in Hive. To store data
in sequential files, we first need to create a Hive table that stores the data in a textual format:

create table employee(
id int, name string)
row format delimited
fields terminated by '|'
 stored as textfile;

The preceding statement will create a table in Hive along with the employee name. Now, let's
load data into this table:

load data local inpath '/usr/local/hive/examples/files/employee.dat'
into table employee;

Here, I am using an example data file that's been provided by the Hive distribution itself.
The location where Hive is installed is /usr/local/hive.

Now, we can execute a select query to check whether the data is correct:

select * from employee;

You should see this output:

16 john

17 robert

18 andrew

19 katty

21 tom

22 tim

Data Analysis Using Hive, Pig, and Hbase

76

23 james

24 paul

27 edward

29 alan

31 kerry

34 terri

Now, to store data in a sequential file format, we will create one more table and insert data
from this table to the new table:

create table employee_seq(
id int, name string)
row format delimited
fields terminated by '|'
stored as SEQUENCEFILE;

This will create a table in Hive that will read data in the sequential file format. Let's insert data
into this table:

insert into employee_seq
select * from employee;

This will start a MapReduce program, which will read the data from the text table and write it
to files in the sequential file format.

We can again verify that it's been stored properly by executing this code:

select * from employee_seq;

This will give you all the records from the sequential file.

Just to check whether the data is stored in sequential files, you can check the HDFS file
directly, which gives you unreadable text on your screen:

hadoop fs -cat /user/hive/warehouse/employee_seq/000000_0

How it works...
A sequential file is a flat file consisting of key value pairs. It is one of the most commonly used
file formats in the Hadoop ecosystem. It's worth noting that the temporary output of maps is
stored in the sequential file format. The sequential file provides a writer, reader, and sorter
classes to read, write, and sort data. There are three types of sequential files:

ff Uncompressed key value records

ff Record compressed key value records, where only values are compressed

Chapter 4

77

ff Block compressed key value records, where keys and values are stored in blocks,
and the blocks are compressed.

You can select the type of sequential file you want by setting the following property in either
mapred-site.xml, hive-site.xml, or setting it before a job or query execution:

<property>
 <name>mapred.output.compression.type</name>
 <value>BLOCK</value>
 <description>If the job outputs are to compressed as
SequenceFiles, how should they be compressed? Should be one of NONE,
RECORD or BLOCK.
 </description>
</property>

This way, you can use sequential files to store your data. Processing these files is the same as
processing any other Hive query.

Storing and processing Hive data in the
ORC file format

I'm sure that most of the time, you would have created Hive tables and stored data in a text
format; in this recipe, we are going to store data in RC files.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Hive installed on it. Here, I am going to use Hive 1.2.1.

How to do it...
Hive 1.2.1 supports different types of files, which help process data in a fast manner. In this
recipe, we are going to use RC files to store data in Hive. To store data in RC files, we first need
to create a Hive table that stores this data in a textual format. We will use the same table that
we created in the first recipe.

Creating a table to store RCFILE is very easy, as shown here:

create table employee_rc(
id int, name string)
row format delimited
fields terminated by '|'
stored as RCFILE;

Data Analysis Using Hive, Pig, and Hbase

78

To insert data into the table from our text table, we need to execute the following query,
which would start the MapReduce program that reads the data from one table in order
to write it using the RCFILE writer:

insert into table employee_rc
select * from employee;

We can verify the data import by selecting the records from the table and displaying it on
the console:

select * from employee_rc;

We can also look at the actual file stored in the Hive warehouse folder, which won't be
as readable:

hadoop fs -cat /user/hive/warehouse/employee_rc/000000_0

How it works...
RC files are Record Columnar files that are flat and store the data in binary key value pairs,
which is similar to sequence files. An RC file stores records in a columnar manner. Let's assume
that we have the following table data:

C1 C2 C3 C4
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20

To serialize this data, it first horizontally partitions the data into multiple row groups, which
looks like this:

Row group 1:

C1 C2 C3 C4
1 2 3 4
5 6 7 8
9 10 11 12

Chapter 4

79

Row group 2:

C1 C2 C3 C4
13 14 15 16
17 18 19 20

Next, it partitions the data within the row group vertically similar to a column store:

Row group 1:

1;5;9

2;6;10

3;7;11

4;8;12

Row group 2

13;17

14;18

15;19

16;20

Within row groups, columns are compressed to reduce the storage.

These file storages are more efficient when a query only requires a subset of columns as the
output at which time, it only reads the required output, whereas in a row store, it needs to
scan the complete row itself, which consumes more I/O. This way, we can store the retrieved
data more efficiently using the RC file.

Storing and processing Hive data in the ORC
file format

I'm sure that most of the time, you would have created Hive tables and stored data in a text
format; in this recipe, we are going store data in ORC files.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Hive installed on it. Here, I am going to use Hive 1.2.1.

Data Analysis Using Hive, Pig, and Hbase

80

How to do it...
Hive 1.2.1 supports different types of files, which help process data in a fast manner. In this
recipe, we are going to use ORC files to store data in Hive. To store the data in ORC files, we
first need to create a Hive table that stores the data in a textual format. We will use the same
table that we created in the first recipe.

Creating a table to store ORCFILE is very easy, as shown here:

create table employee_orc(
id int, name string)
row format delimited
fields terminated by '|'
stored as ORC;

To insert data into the table from our text table, we need to execute the following query, which
would start the Map Reduce program that reads the data from one table in order to write it
using the ORC writer:

insert into table employee_orc
select * from employee;

We can verify the data import by selecting the records from the table and displaying it in
the console:

select * from employee_orc;

We can also look at the actual file stored in the Hive warehouse folder, which won't be
as readable:

hadoop fs -cat /user/hive/warehouse/employee_orc/000000_0

How it works...
ORC files stand for Optimized Record Columnar files, which are specially designed to improve
data reading, writing, and processing in Hadoop-based systems. An ORC file will give you the
following advantages over other file formats such as RC and sequential:

ff A single file as the output of each task

ff Supports data types such as date and time, decimals and complex types, and so on

ff Lightweight indexes that are included in the file itself

ff Concurrent reads of the same file using individual RecordReaders

ff It's able to scan files without scanning for markers

ff Metadata is stored using Protocol Buffers, which help add and remove fields

Chapter 4

81

The data storage, partitions, and so on are the same as the RC file, but apart from this,
it also contains additional fields/information that help achieve the preceding advantages
over other files.

The ORC file contains groups of row data, which are called stripes. The default size of each stripe
is 250MB; this size enables the efficient reading of data from HDFS. The auxiliary information
is kept in a file footer. It contains information like the number of stripes in a file, rows per stripe,
and each column's data type. It also contains column-level aggregations such as count, min,
max, and sum.

Here's the ORC file structure:

Storing and processing Hive data in the
Parquet file format

I'm sure that most of the time, you would have created Hive tables and stored data in a text
format; in this recipe, we are going to learn how to store data in PARQUET files.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Hive installed on it. Here, I am going to use Hive 1.2.1.

Data Analysis Using Hive, Pig, and Hbase

82

How to do it...
Hive 1.2.1 supports various types of files, which help process data more efficiently. Parquet is an
ecosystem-wide accepted file format and can be used in Hive, Map Reduce, Pig, Impala, and so
on. To store the data in Parquet files, we first need to create one Hive table, which will store the
data in a textual format. We will use the same table that we created in the first recipe.

Creating a table to store Parquet is very easy, as shown here:

create table employee_par(
id int, name string)
row format delimited
fields terminated by '|'
stored as PARQUET;

To insert data into the table from our text table, we need to execute the following query, which
would start the Map Reduce program so that it reads the data from one table in order to write
it using the ORC writer:

insert into table employee_par
select * from employee;

We can verify the data import by selecting the records from the table and displaying it in
the console:

select * from employee_par;

We can also take a look at the actual file stored in the Hive warehouse folder, which will not
be as readable:

hadoop fs -cat /user/hive/warehouse/employee_par/000000_0

How it works...
Parquet files were designed keeping in mind the best compressed and columnar data
files. They are built to support very efficient compressions and encoding schemes. A lot of
projects have demonstrated the impact of efficient encoding and compression schemes.
Parquet allows us to specify the compressions scheme per column level. It is also built to
accommodate new compression and encoding schemes for future needs and extensibility.
A detailed description of the Parquet storage format is available at https://parquet.
apache.org/documentation/latest/.

https://parquet.apache.org/documentation/latest/
https://parquet.apache.org/documentation/latest/

Chapter 4

83

Performing FILTER By queries in Pig
After going through the various file formats that we can use to store data in HDFS, it's time
to take a look at how to execute various operations in Pig. Pig is a data flow language and
works in the same way as Hive by transforming the instructions given in Pig Latin to Map
Reduce programs.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest
version of Pig installed on it. Here, I am going to use Pig 0.15. In case you don't have the
installation already, you can refer to https://pig.apache.org/docs/r0.15.0/start.
html#Pig+Setup.

How to do it...
In this recipe, you will learn how to use FILTER BY in the Pig script. To do so, let's assume that
we have an employee dataset that is stored in the following format (ID, name, department, and
salary):

1	 Tanmay	ENGINEERING	 5000

2	 Sneha	 PRODUCTION	 8000

3	 Sakalya	 ENGINEERING	 7000

4	 Avinash	 SALES	 6000

5	 Manisha	 SALES	 5700

6	 Vinit	 FINANCE	 6200

Here the columns are delimited by \+t (Tab).

Now, let's put this data into HDFS and load it into Pig bag:

hadoop fs -mkdir /pig/emps_data

hadoop fs -put emps.txt /pig/emps_data

Apart from regular daemons, Pig needs one more daemon to be running on Hadoop called a
Job History Server. If you have not started it earlier, execute the following command:

/usr/local/hadoop/sbin/mr-jobhistory-daemon.sh start historyserver

Start the Pig interactive shell to perform the processing. Pig's shell is called grunt. Now, let's
load the data we have put in HDFS into one bag, say emps:

emps = LOAD '/pig/emps_data/emps.txt' AS (id, name, dept, salary);

https://pig.apache.org/docs/r0.15.0/start.html#Pig+Setup
https://pig.apache.org/docs/r0.15.0/start.html#Pig+Setup

Data Analysis Using Hive, Pig, and Hbase

84

This will load the data into the emps bag through the columns, as shown in the preceding
command. The default delimiter is \+t (Tab).

Next, we filter some databases on the basis of salary and load into a new bag called rich:

rich = FILTER emps BY salary > 6000;

Pig scripts are lazy executors, which means that unless they don't get any actionable command,
Pig will keep on stacking up the instructions. In order to perform the processing, we need to
provide an actionable command, such as DUMP, which asks Pig to print the tuples of the bag
in the terminal:

DUMP rich;

This will invoke the Map Reduce job as long as all the commands are received by grunt.
On completion, you should be able to see results on your screen like this:

(2,Sneha,PRODUCTION,8000)

(3,Sakalya,ENGINEERING,7000)

(6,Vinit,FINANCE,6200)

How it works...
Pig has some very interesting terminology. In Pig, an item is called an Atom. A collection
of Atoms is called a tuple. Collections of tuples are called bags. When we load data into
a bag, we don't always need to provide data types for the atoms unlike Hive. Depending
on the actions submitted by users, grunt explicitly casts the data into specific data types.
It also informs the user that it has performed the type casting. When we use the FILTER
BY command in a Pig script, it converts it into a Map Reduce program where the filtering
logic is mostly applied in a mapper function.

After map, only those records are sent to reducers that are in line with the filter criteria.
This way, we can filter out things we wish to.

Performing Group By queries in Pig
In this recipe, we will use the Group By operator in Pig scripts to get the desired output.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Pig installed on it.

Chapter 4

85

How to do it...
Group By is a very useful operator for data analysis. Pig supports this operator so that we can
perform aggregations at the group level. Take the same data that we used in the previous
recipe where we have this employee dataset:

1	 Tanmay	ENGINEERING	 5000

2	 Sneha	 PRODUCTION	 8000

3	 Sakalya	 ENGINEERING	 7000

4	 Avinash	 SALES	 6000

5	 Manisha	 SALES	 5700

6	 Vinit	 FINANCE	 6200

First of all, load the data into HDFS:

hadoop fs -mkdir /pig/emps_data

hadoop fs -put emps.txt /pig/emps_data

Next, we load the data into a bag called emps, and then perform the Group By operation on
this data by the department:

emps = LOAD '/pig/emps_data/emps.txt' AS (id, name, dept, salary);
by_dept = GROUP emps BY dept;
DUMP by_dept;

This will start a MapReduce job, which groups tuples by the department. As a result, you will
see these details on your screen:

(SALES,{(5,Manisha,SALES,5700),(4,Avinash,SALES,6000)})
(FINANCE,{(6,Vinit,FINANCE,6200)})
(PRODUCTION,{(2,Sneha,PRODUCTION,8000)})
(ENGINEERING,{(3,Sakalya,ENGINEERING,7000),(1,Tanmay,ENGINEERI
NG,5000)})

We can also get the count of the employees by executing the following query:

dept_counts = FOREACH by_dept GENERATE
group as dept,
COUNT(emps);
DUMP dept_counts;

Data Analysis Using Hive, Pig, and Hbase

86

Use the aggregation function called count to count the number of employees per
department. You will see the following results on completion:

(SALES,2)
(FINANCE,1)
(PRODUCTION,1)
(ENGINEERING,2)

We can also perform Group By on multiple attributes together. We just need to specify the
attribute name one by one after the by clause.

How it works...
Pig converts the actions provided in the pig script form into MapReduce jobs. To perform
Group By, it first maps the data by the key and then reduces the records with the help of this
key. The group operator groups together all the tuples by the key. If the by clause has multiple
keys, then the group key will be a tuple. You can get more information about the Group
operator at https://pig.apache.org/docs/r0.7.0/piglatin_ref2.html#GROUP.

Performing Order By queries in Pig
In this recipe, we will use the Order By operator in Pig scripts to get the desired output.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Pig installed on it.

How to do it..
Order By is a very useful operator for data analysis when it comes to sequencing data records
based on their values for certain attributes. In order to sequence the records in the proper
order, Pig supports Order By.

To learn its usage, we will use the dataset that we took a look at in the previous recipe; in case
you don't have the employee dataset, you can perform the following actions.

First of all, load the data in HDFS:

hadoop fs -mkdir /pig/emps_data

hadoop fs -put emps.txt /pig/emps_data

https://pig.apache.org/docs/r0.7.0/piglatin_ref2.html#GROUP

Chapter 4

87

Next, we load data into a bag called emps, and then perform the Order By operation on this
data on the basis of salary:

emps = LOAD '/pig/emps_data/emps.txt' AS (id, name, dept, salary);

Next, we will sequence the data by salary. We can also specify the order type, that is, whether
it should be in ascending or descending form:

sorted_emps = ORDER emps by salary DESC;
DUMP sorted_emps;

At the end of the execution, you will see the following results:

(2,Sneha,PRODUCTION,8000)

(3,Sakalya,ENGINEERING,7000)

(6,Vinit,FINANCE,6200)

(4,Avinash,SALES,6000)

(5,Manisha,SALES,5700)

(1,Tanmay,ENGINEERING,5000)

How it works...
Pig converts the actions provided in the Pig script form into MapReduce jobs. When we
execute the order through this command, a MapReduce job will get invoked in order to sort
the data on the basis of the provided attribute. Pig performs a natural sort on the attribute,
that is, here, we need to order employees by their salary. Therefore, the MapReduce job will
get triggered so that it can sort the salary, which is of the data type integer. Similarly, if we
order the record by a string, it sequences the string by its natural order.

Performing JOINS in Pig
In this recipe, we will learn how to perform various joins in Pig in order to join datasets.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Pig installed on it.

How to do it...
JOIN operations are very famous in SQL. Pig Latin also supports joining datasets based on a
common attribute between them. Pig supports both Inner and Outer joins. Let's understand
these syntaxes one by one.

Data Analysis Using Hive, Pig, and Hbase

88

In order to learn about Joins in Pig, we'll need two datasets. The first one is the employee
dataset, which we have been using in earlier recipes, the second is the ID location dataset,
which contains information about the ID of an employee and their location.

The employee dataset will look like this:

1	 Tanmay	ENGINEERING	 5000

2	 Sneha	 PRODUCTION	 8000

3	 Sakalya	 ENGINEERING	 7000

4	 Avinash	 SALES	 6000

5	 Manisha	 SALES	 5700

6	 Vinit	 FINANCE	 6200

The ID location dataset will look like this:

1	 Pune

2	 London

3	 Mumbai

4	 Pune

Like the emps data, we also loaded the ID locations data in HDFS and then into the
id_locations bag:

hadoop fs -put id_locations /pig/emps_data

On grunt:

id_location = load '/pig/emps_data/id_locations' AS (emp_id,
location);

Now, to perform inner joins on these datasets, we'll execute the following command:

emps_location = JOIN emps BY id, id_location BY emp_id;
DUMP emps_location;

As result, you will get the following displayed on your screen:

(1,Tanmay,ENGINEERING,5000,1,Pune)

(2,Sneha,PRODUCTION,8000,2,London)

(3,Sakalya,ENGINEERING,7000,3,Mumbai)

(4,Avinash,SALES,6000,4,Pune)

As this is the inner join, only matching ID records will make it to the final results.

Chapter 4

89

Next, we can execute OUTER Joins on the same dataset; to perform the LEFT OUTER join,
we execute the following command:

emps_location_left_outer = JOIN emps BY id LEFT OUTER, id_location BY
emp_id;
DUMP emps_location_left_outer;

On successful execution, you will see the following results:

(1,Tanmay,ENGINEERING,5000,1,Pune)

(2,Sneha,PRODUCTION,8000,2,London)

(3,Sakalya,ENGINEERING,7000,3,Mumbai)

(4,Avinash,SALES,6000,4,Pune)

(5,Manisha,SALES,5700,,)

(6,Vinit,FINANCE,6200,,)

Here, all records from the LHS of the command will make it to the final table, and all the
nonmatching records will be kept blank.

Similarly, we can perform RIGHT OUTER and FULL OUTER joins as well.

We can also specify the type of specialized joins supported by Pig, that is, Replicated Joins,
Skewed Joins, and Merge Joins:

emps_location_left_outer = JOIN emps BY id LEFT OUTER, id_location BY
emp_id using 'replicated';

DUMP emps_location_left_outer;

The results are the same but Pig performs certain optimizations when we mention these types.
Similarly, we can use skewed and merge joins as well.

How it works
Pig converts the actions provided in the Pig script form into Map Reduce jobs. In the previous
chapter, we spoke about how to write a Map Reduce program to perform joins. When we execute
the JOIN operation, Pig converts it into a Map Reduce job.

To perform optimizations while executing JOINS in pig, we can specify the join type as a
replicated, skewed, or merge join. Let's understand what these joins mean.

Replicated Joins
Replicated joins are fragmented joins in which a piece of data is taken in memory and
joined with other sets of data in a map function. These joins can only be performed on
the Left Outer join. Having data in the memory helps reduce IO disk seeks and provides
optimization during executions.

Data Analysis Using Hive, Pig, and Hbase

90

You can read more about Replicated Joins at https://pig.apache.
org/docs/r0.11.1/perf.html#replicated-joins.

Skewed Joins
Parallel joins can be vulnerable to any skews in data. If the data is skewed enough, it might
encounter some issues when balancing data parts during executions. To avoid this, skewed
joins compute a histogram of key spaces and use this information to allocate reducers for a
given key. Skewed joins only have certain conditions: first, currently, a skewed join can only
be performed on two tables and not more than that at one go, second, it does not address
uneven data balancing across reducers; it makes sure that tasks are executed slowly rather
than failing them.

You can read more about skewed joins at https://pig.apache.
org/docs/r0.11.1/perf.html#skewed-joins.

Merge Joins
Joins are beneficial when they are performed in the map phase of a Map Reduce program. Pig
supports merge joins, which work with presorted data. Here, the idea is to gain performance
benefits by performing joins in the map phase and avoid sending huge amounts of data
through the sort and shuffle phase.

You can read more about merge joins at
https://pig.apache.org/docs/r0.11.1/perf.
html#merge-joins.

Writing a user-defined function in Pig
In this recipe, we will learn how to write user-defined functions (UDFs) in order to have our own
custom filters.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Pig installed on it. We will also need an IDE, such as Eclipse, to write the Java class.

https://pig.apache.org/docs/r0.11.1/perf.html#replicated-joins
https://pig.apache.org/docs/r0.11.1/perf.html#replicated-joins
https://pig.apache.org/docs/r0.11.1/perf.html#skewed-joins
https://pig.apache.org/docs/r0.11.1/perf.html#skewed-joins
https://pig.apache.org/docs/r0.11.1/perf.html#merge-joins
https://pig.apache.org/docs/r0.11.1/perf.html#merge-joins

Chapter 4

91

How to do it...
In this recipe, we are going to write user-defined functions for the dataset we have been
considering in this chapter. Our dataset is an employee dataset, so let's assume that we
want to convert all the names present in our dataset into uppercase. To do this, we will
write a user-defined function to convert the lowercase letters into uppercase letters.

Writing a UDF is very simple: we need to write a class that extends the EvalFunc Pig class.
In order to have this and other Hadoop classes in our class path, first of all, we need to create
a maven project, and add the following dependencies to the POM.xml project:

 <dependency>
 <groupId>org.apache.pig</groupId>
 <artifactId>pig</artifactId>
 <version>0.15.0</version>
 </dependency>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-core</artifactId>
 <version>2.7.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.7.1</version>
 </dependency>

Now, we write a class that extends the EvalFunc class and overwrites the exec method in it:

package com.demo.pig.udf;

import java.io.IOException;

import org.apache.pig.EvalFunc;
import org.apache.pig.data.DataByteArray;
import org.apache.pig.data.Tuple;

/**
 * Used Defined Function in Pig to covert given string argument into
Upper Case
 *
 */
public class ToUpper extends EvalFunc<String> {

Data Analysis Using Hive, Pig, and Hbase

92

 /**
 * Pig hands over the tuple instead of specific arguement, we need
to get
 * the specific attribute from tuple by calling tuple.get() method
 *
 */
 @Override
 public String exec(Tuple input) throws IOException {
 if (null == input || input.size() == 0) {
 return null;
 }
 try {
 DataByteArray name = (DataByteArray) input.get(1);
 return name.toString().toUpperCase();

 } catch (Exception e) {
 throw new IOException("Caught exception while processing
", e);
 }

 }

}

In the exec method, we get a complete tuple, and we need to convert the name column,
which is at index 1 in our tuple. By default, if we don't specify any data type while loading
data into the bag, the data type is assumed to be DataByteArray. So, we simply extract
it and convert it into uppercase and return the converted string.

Now, we build our maven project to create a JAR of this implementation. Once the JAR is ready,
we copy it to the Hadoop cluster and do the following things in order to use this UDF:

REGISTER ToUpperUDF-1.0.jar;

emps_upper = FOREACH emps GENERATE com.demo.pig.udf.ToUpper(*);

DUMP emps_upper;

In the first statement, we register the UDF jar with Pig. Next, we create a new bag, which would
have converted the uppercase names from our previous emps bag. To start the execution, we
DUMP the values in emps_upper.

Once the execution is complete, we will see the following results:

(TANMAY)

(SNEHA)

(SAKALYA)

Chapter 4

93

(AVINASH)

(MANISHA)

(VINIT)

How it works...
Whenever we register a function in Pig, we include the implementation in the Pig class path.
So, whenever the UDF class is mentioned, Pig looks for this class in its class path. If the
proper name is provided at the time of execution, Pig will send the tuples to the respective
implementation and get back the returned results.

There's more...
Similar to EvalFunc, we can also write FilterFunc, which can be used to filter out
tuples based on certain values of the tuple. Here is an example function that filters out
ENGINEERING department employees from the dataset:

package com.demo.pig.udf;

import java.io.IOException;

import org.apache.pig.FilterFunc;
import org.apache.pig.data.DataByteArray;
import org.apache.pig.data.Tuple;

public class EngFilter extends FilterFunc {

 @Override
 public Boolean exec(Tuple input) throws IOException {
 if (null == input || input.size() == 0) {
 return false;
 }
 try {
 DataByteArray name = (DataByteArray) input.get(2);
 if (name.toString().equalsIgnoreCase("ENGINEERING")) {
 return true;
 } else {
 return false;
 }

 } catch (Exception e) {
 throw new IOException("Caught exception while processing
", e);
 }
 }

}

Data Analysis Using Hive, Pig, and Hbase

94

Here, we check whether the department is engineering and only then return true, else we
return false. Now, we build the jar and execute it using this filter in the following way:

REGISTER udfs-1.0.jar;

emps_eng = FILTER emps BY com.demo.pig.udf.EngFilter(*);

DUMP emps_eng;

At the end of the execution, you will see results like these:

(1,Tanmay,ENGINEERING,5000)

(3,Sakalya,ENGINEERING,7000)

Analyzing web log data using Pig
In this recipe, we will learn how to use Pig scripts to analyze web log data.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Pig installed on it.

How to do it...
In the previous chapter, we saw how to analyze web logs using the MapReduce program.
In this recipe, we are going to take a look at how to use Pig scripts to analyze web log data.
Let's consider two use cases:

Here is a sample of web log data:

106.208.17.105 - - [12/Nov/2015:21:20:32 -0800] "GET /tutorials/
mapreduce/advanced-map-reduce-examples-1.html HTTP/1.1" 200 0
"https://www.google.co.in/" "Mozilla/5.0 (Windows NT 6.3; WOW64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2490.86 Safari/537.36"

60.250.32.153 - - [12/Nov/2015:21:42:14 -0800] "GET /tutorials/
elasticsearch/install-elasticsearch-kibana-logstash-on-windows.html
HTTP/1.1" 304 0 - "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/46.0.2490.86 Safari/537.36"

49.49.250.23 - - [12/Nov/2015:21:40:56 -0800] "GET /tutorials/hadoop/
images/internals-of-hdfs-file-read-operations/HDFS_Read_Write.png
HTTP/1.1" 200 0 "http://hadooptutorials.co.in/tutorials/spark/install-
apache-spark-on-ubuntu.html" "Mozilla/5.0 (Windows NT 10.0; WOW64;
Trident/7.0; Touch; LCTE; rv:11.0) like Gecko"

Chapter 4

95

60.250.32.153 - - [12/Nov/2015:21:36:01 -0800] "GET /tutorials/
elasticsearch/install-elasticsearch-kibana-logstash-on-windows.html
HTTP/1.1" 200 0 - "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/46.0.2490.86 Safari/537.36"

91.200.12.136 - - [12/Nov/2015:21:30:14 -0800] "GET /tutorials/hadoop/
hadoop-fundamentals.html HTTP/1.1" 200 0 "http://hadooptutorials.co.in/
tutorials/hadoop/hadoop-fundamentals.html" "Mozilla/5.0 (Windows NT 6.1)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.99 Safari/537.36"

These logs are formatted in the following manner:

ff %h is the remote host (that is, the IP client)

ff %l is the identity of the user determined by an identifier (this is not usually used
since it's not reliable)

ff %u is the username determined by the HTTP authentication

ff %t is the time taken by the server to finish processing a request

ff %r is the request line from a client ("GET / HTTP/1.0")

ff %>s is the status code sent from a server to a client (200, 404, and so on)

ff %b is the size of the response to a client (in bytes)

ff The referrer is the page that is linked to the URL

ff The user agent is a browser identification string

Now, let's load this data into the bag and start analyzing it:

hadoop fs –mkdir /data

hadoop fs –put web_log.tx /data

In grunt, we start loading this data into a bag:

raw_logs = LOAD '/data/web_log.txt' USING TextLoader AS (line:chararray);

This way, we can load each web load as a single line. Next, we write regex, which parses the
data into respective attributes:

logs_base = FOREACH raw_logs GENERATE FLATTEN (REGEX_EXTRACT_
ALL(line,'^(\\S+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] "(.+?)"
(\\S+) (\\S+) "([^"]*)" "([^"]*)"')) AS (ip: chararray, id: chararray,
user: chararray, time: chararray, request: chararray, status: int, bytes_
string: chararray, referrer: chararray, browser: chararray);

Data Analysis Using Hive, Pig, and Hbase

96

Now, we need to find the referrer sites from which we are getting the most traffic. To do this,
we execute the following commands:

by_referrer = GROUP logs_base BY referrer

referrer_counts = FOREACH by_referrer GENERATE
group as referrer,
COUNT(logs_base);

DUMP referrer_counts;

On successful completion, we will see these results:

(https://www.google.co.in/,1)
(http://hadooptutorials.co.in/tutorials/hadoop/hadoop-fundamentals.
html,1)
(http://hadooptutorials.co.in/tutorials/spark/install-apache-spark-on-
ubuntu.html,1)
(,0)

Next, we can find the requests that have resulted into some errors. Here, an error could be
any request whose status is 4XX or 5XX. Now, we write a filter function to execute this:

package com.demo.pig.udf;

import java.io.IOException;

import org.apache.pig.FilterFunc;
import org.apache.pig.data.Tuple;

public class ErrorFilter extends FilterFunc {

 @Override
 public Boolean exec(Tuple input) throws IOException {
 if (null == input || input.size() == 0) {
 return false;
 }
 try {
 String statusStr = (String) input.get(5);
 if (null == statusStr){
 return false;
 }
 int status = Integer.parseInt(statusStr);
 if (status <= 400 && status >= 505) {
 return true;

Chapter 4

97

 } else {
 return false;
 }

 } catch (Exception e) {
 throw new IOException("Caught exception while processing
", e);
 }
 }
}

We create a jar of this class and copy it in the Hadoop cluster. We'll execute the following to
get the web logs with errors:

REGISTER udfs-1.0.jar ;

log_base_error = FILTER logs_base BY com.demo.pig.udf.ErrorFilter(*);

DUMP log_base_error;

How it works...
Here, we use various things that we have already taken a look at in the earlier recipes.
The important thing is to parse the logs using the correct regex. If you get this right, the
next few things will be a cakewalk for you.

Performing the Hbase operation in CLI
Now that we have gone through various operations in Pig and Hive, it's time to learn about some
operations in Hbase. Hbase is a NoSQL database and runs on top of HDFS. In this recipe, we are
going to take a look at how to perform various Hbase command-line operations.

Getting ready
To perform this recipe, you should have a Hadoop cluster running as well as the latest version
of Hbase installed on it. In case you don't know how to install Hbase, here is a link you can
refer to http://hbase.apache.org/book.html#quickstart.

How to do it
Once the installation is complete, execute the following command to start daemons that are
related to Hbase such as Zookeeper, Hbase Master, and Hbase region server:

/usr/local/hbase/bin/start-hbase.sh

http://hbase.apache.org/book.html#quickstart

Data Analysis Using Hive, Pig, and Hbase

98

Once all the daemons are up and running, you can start the Hbase shell by executing the
following code:

hbase shell

You can also open the Hbase UI in a browser. You can hit the following URL to view the Hbase UI:

http://<hostname>:16010.

Let's start with a command in Hbase.

1.	 List:
hbase(main):001:0> list
TABLE
test_table
1 row(s) in 0.3730 seconds

=> ["test_table"]

This lists the tables that are present in the key space.

2.	 Status:

This returns the status of the system and the number of servers:
hbase(main):002:0> status
1 servers, 0 dead, 3.0000 average load

3.	 Version:

This prints the running version of Hbase:
hbase(main):003:0> version
1.0.1.1, re1dbf4df30d214fca14908df71d038081577ea46, Sun May 17
12:34:26 PDT 2015

4.	 table_help:

This provides help for table-related operations:
hbase(main):004:0> table_help

Help for table-reference commands.

You can either create a table via create and then manipulate the table via
commands like put, get, and so on.

See the standard help information for how to use each of these commands.

However, as of 0.96, you can also get a reference to a table, on which you can
invoke commands.

Chapter 4

99

For instance, you can get create a table and keep around a reference to it via:
 hbase> t = create 't', 'cf'

Or, if you have already created the table, you can get a reference to it:
 hbase> t = get_table 't'

You can do things like call put on the table:
 hbase> t.put 'r', 'cf:q', 'v'

which puts a row 'r' with column family 'cf', qualifier 'q' and value 'v' into table t.
To read the data out, you can scan the table:
 hbase> t.scan

which will read all the rows in table 't'.

Essentially, any command that takes a table name can also be done via table
reference. Other commands include things like: get, delete, deleteall.,
get_all_columns, get_counter, count, incr. These functions, along with
the standard JRuby object methods are also available via tab completion.

For more information on how to use each of these commands, you can also just type:
 hbase> t.help 'scan'

which will output more information on how to use that command.

You can also perform general admin actions directly on table; things such as
enable, disable, flush, and drop just by typing this:
 hbase> t.enable
 hbase> t.flush
 hbase> t.disable
 hbase> t.drop

Note that after dropping a table, your reference to it becomes useless and further
usage is undefined (and not recommended).

5.	 Creating a table:

Now, let's create a table called employee, which contains two column families: one
to store personal details and the other to store professional details:
hbase(main):005:0> create 'emp', 'personal details', 'professional
details';

6.	 Describe the table:

We can describe the created table to know about its details:
hbase(main):017:0> describe 'emp'
Table emp is ENABLED
emp

Data Analysis Using Hive, Pig, and Hbase

100

COLUMN FAMILIES DESCRIPTION
{NAME => 'personal details', DATA_BLOCK_ENCODING => 'NONE',
BLOOMFILTER => 'ROW', REPLICATION_SCOPE => '0', VERSIONS => '1',
COMPRESSION => 'NONE'
, MIN_VERSIONS => '0', TTL => 'FOREVER', KEEP_DELETED_CELLS =>
'FALSE', BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE =>
'true'}
{NAME => 'professional details', DATA_BLOCK_ENCODING => 'NONE',
BLOOMFILTER => 'ROW', REPLICATION_SCOPE => '0', VERSIONS => '1',
COMPRESSION => 'N
ONE', MIN_VERSIONS => '0', TTL => 'FOREVER', KEEP_DELETED_CELLS =>
'FALSE', BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE =>
'true'}
2 row(s) in 0.0170 seconds

7.	 Inserting data into the table

We can insert data into the tables using the put command, as shown here:
hbase(main):018:0> put 'emp','1','personal details:name','Ram'
0 row(s) in 0.0820 seconds

hbase(main):019:0> put 'emp','1','personal
details:location','Pune'
0 row(s) in 0.0100 seconds

hbase(main):020:0>
hbase(main):021:0* put 'emp','1','professional
details:designation','Software Engineer'
0 row(s) in 0.0090 seconds

hbase(main):022:0> put 'emp','1','professional
details:salary','10000'
0 row(s) in 0.0060 seconds

8.	 Viewing records:

We can see the inserted data by using the scan command, as shown here:
hbase(main):023:0> scan 'emp'
ROW COLUMN+CELL
 1 column=personal
details:location, timestamp=1448777442105, value=Pune

 1 column=personal
details:name, timestamp=1448777442076, value=Ram

Chapter 4

101

 1 column=professional
details:designation, timestamp=1448777442149, value=Software
Engineer
 1 column=professional
details:salary, timestamp=1448777442169, value=10000

1 row(s) in 0.0280 seconds

9.	 Updating the record:

To update the record, we need to use the put command, as shown in the following
code snippet. Here, we will be updating the salary to 12000:
hbase(main):024:0> put 'emp','1','professional
details:salary','12000'
0 row(s) in 0.0070 seconds

hbase(main):025:0> scan 'emp'
ROW COLUMN+CELL
 1 column=personal
details:location, timestamp=1448777442105, value=Pune
 1 column=personal
details:name, timestamp=1448777442076, value=Ram
 1 column=professional
details:designation, timestamp=1448777442149, value=Software
Engineer
 1 column=professional
details:salary, timestamp=1448777689830, value=12000

1 row(s) in 0.0110 seconds

10.	 Getting the record

To get the record from Hbase, we can use the get command:
hbase(main):026:0> get 'emp', '1'
COLUMN CELL

 personal details:location timestamp=1448777442105, val
ue=Pune
 personal details:name timestamp=1448777442076, val
ue=Ram
 professional details:designation timestamp=1448777442149,
value=Software Engineer
 professional details:salary timestamp=1448777689830,
value=12000
4 row(s) in 0.0240 seconds

Data Analysis Using Hive, Pig, and Hbase

102

11.	 Getting a specific column from the record:
hbase(main):002:0> get 'emp', '1', { COLUMN => 'personal
details:name'}
COLUMN CELL
 personal details:name timestamp=1448777442076,
value=Ram
1 row(s) in 0.2270 seconds

12.	 Deleting a specific column:

We can delete a specific column in Hbase by executing the delete commanding in
the following manner
hbase(main):004:0> delete 'emp', '1', 'personal details:location',
1448777442076
0 row(s) in 0.0430 seconds

13.	 Deleting a complete row:

We can delete a complete row by using the delete all command.
hbase(main):006:0> deleteall 'emp','1'
0 row(s) in 0.0070 seconds

hbase(main):007:0> scan 'emp'
ROW COLUMN+CELL
0 row(s) in 0.0060 seconds

14.	 Counting the number of rows:

We can use the count command to count the number of rows in a specific table.
hbase(main):014:0> count 'emp'
1 row(s) in 0.0090 seconds
=> 1

15.	 Dropping a table.

We can drop a table by first disabling it and then executing the dropped table:
hbase(main):016:0> disable 'emp'
0 row(s) in 1.2120 seconds

hbase(main):017:0> drop 'emp'
0 row(s) in 0.1670 seconds

Chapter 4

103

How it works...
Hbase is a NoSQL database, which runs on top of HDFS. We know that HDFS is used for the
batch access of data, but it cannot be used to randomly access data, whereas Hbase is used
to randomly access data. It is a columnar database where we can have thousands of columns
for a particular row. The following is the table structure in which we can save data:

Row Id Personal Details Professional Details
EMP ID Name Location Designation Salary
1 Ram Pune Software Engineer 12000
2 Ramesh Mumbai Manager 15000
3 Radha Delhi QA 8000
4 Rahul Mumbai Test Manager 10000

In the preceding table, we have a table called emp, and we have two column families, personal
details and professional details. Each row is identified by the row ID, which is unique for each
record. Hbase consists of master and slave architecture. It has one master and multiple slaves
called region servers. Each region server manages multiple regions. A table is partitioned into
multiple regions across the region servers. Actual data is saved to HFile. This is a block indexed
file format where data is stored into a sequence of blocks, and a separate index is maintained
at the end of file. Hbase maintains the in-memory log file called HLog. This file contains the
updates happening in tables. This cache is flushed periodically.

Performing Hbase operations in Java
Hbase provides a Java client with which we can perform operations similar to those performed
through the command line.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Hbase installed on it.

How to do it
To get started, we first need to create a maven project and add the Hbase client dependency:

 <dependency>
 <groupId>org.apache.hbase</groupId>
 <artifactId>hbase-client</artifactId>
 <version>1.0.1.1</version>
 </dependency>

Data Analysis Using Hive, Pig, and Hbase

104

Now, we write a Java class, which uses APIs from the Hbase client to perform
various operations:

package com.demo.hbase.hbase.client;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Admin;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.util.Bytes;

public class JavaHbase {

 public static void main(String args[]) throws IOException {

 // Create connection and admin client
 Configuration config = HBaseConfiguration.create();
 Connection connection = ConnectionFactory.
createConnection(config);
 Admin admin = connection.getAdmin();

 // Provide table description
 HTableDescriptor descriptor = new HTableDescriptor(TableName.
valueOf("emp"));
 descriptor.addFamily(new HColumnDescriptor("personal
details"));
 descriptor.addFamily(new HColumnDescriptor("professional
details"));
 // create table
 admin.createTable(descriptor);
 System.out.println("Table Created");

 // Insert data
 Put name = new Put(Bytes.toBytes("1"));

Chapter 4

105

 name.addColumn(Bytes.toBytes("personal details"), Bytes.
toBytes("name"), Bytes.toBytes("Ram"));

 HTable table = new HTable(config, "emp");
 table.put(name);

 System.out.println("Added data into Table");

 // Get data
 Get g = new Get(Bytes.toBytes("1"));
 Result r = table.get(g);
 byte[] value = r.getValue(Bytes.toBytes("personal details"),
Bytes.toBytes("name"));
 System.out.println("Fetched Data:" + value.toString());

 }
}

Now, we create a runnable jar, and execute it in the following manner:

java -cp hbase-client-1.0-jar-with-dependencies.jar com.demo.hbase.
hbase.client.JavaHbase

How it works...
Hbase provides clients in various languages such as Java, Scala, and C/C++. You can choose
a language of your choice to handle data in Hbase remotely. You don't need anything special
to use those APIs.

Executing the MapReduce programming
with an Hbase Table

In this recipe, we are going to see how to use Hbase data as input to the MapReduce program.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Hbase installed on it. You will also need an IDE such as Eclipse.

Data Analysis Using Hive, Pig, and Hbase

106

How to do it
To get started, we first need to create a maven project, and add the following dependencies to it:

 <dependency>
 <groupId>org.apache.hbase</groupId>
 <artifactId>hbase-client</artifactId>
 <version>1.0.1.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-core</artifactId>
 <version>2.7.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.7.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.hbase</groupId>
 <artifactId>hbase-server</artifactId>
 <version>1.0.1.1</version>
 </dependency>

Next, we write a driver class, which uses TableMapReduceUtils. In this example, we will be
reading data from one Hbase table and write it to another Hbase table:

public class HbaseExample {
 public static void main(String[] args) throws Exception {
 Configuration config = HBaseConfiguration.create();
 Job job = Job.getInstance(config, "Hbase Example");
 job.setJarByClass(HbaseExample.class);

 Scan scan = new Scan();
 scan.setCaching(500);
 scan.setCacheBlocks(false);

 TableMapReduceUtil.initTableMapperJob("emp", scan, MyMapper.
class, Text.class, IntWritable.class, job);
 TableMapReduceUtil.initTableReducerJob("new_emp",
MyTableReducer.class, job);
 job.setNumReduceTasks(1);

Chapter 4

107

 boolean b = job.waitForCompletion(true);
 if (!b) {
 throw new IOException("error with job!");
 }
 }
}

We write a Mapper class, which reads data from the Hbase table:

public static class MyMapper extends TableMapper<Text, IntWritable> {

 private final IntWritable ONE = new IntWritable(1);
 private Text text = new Text();

 public void map(ImmutableBytesWritable row, Result value,
Context context)
 throws IOException, InterruptedException {
 String val = new String(value.getValue(Bytes.
toBytes("peronsonal details"), Bytes.toBytes("name")));
 text.set(val);

 context.write(text, ONE);
 }
 }

Now, it's time to read the Reducer class, which writes each record to the new table:

public static class MyTableReducer extends TableReducer<Text,
IntWritable, ImmutableBytesWritable> {

 public void reduce(Text key, Iterable<IntWritable> values,
Context context)
 throws IOException, InterruptedException {
 int i = 0;
 for (IntWritable val : values) {
 i += val.get();
 }
 Put put = new Put(Bytes.toBytes(key.toString()));
 put.add(Bytes.toBytes("details"), Bytes.toBytes("count"),
Bytes.toBytes(i));

 context.write(null, put);
 }
 }

Data Analysis Using Hive, Pig, and Hbase

108

We build a jar out of these classes and execute them on Hadoop using the following command:

hadoop jar hbase-mr-1.0-jar-with-dependencies.jar com.demo.hbase.hbase.
client.HbaseExample

How it works
As Hbase also uses HDFS as its base to store data, it's quite easy to read that into a Map
Reduce job using clients provided by Hbase. All other functionalities of Map Reduce remain
the same.

109

5
Advanced Data Analysis

Using Hive

ff Processing JSON data in Hive using JSON SerDe

ff Processing XML data in Hive using XML SerDe

ff Processing Hive data in the Avro format

ff Writing a user-defined function in Hive

ff Performing table joins in Hive

ff Executing map side joins in Hive

ff Performing context Ngram in Hive

ff Analyzing a call data record using Hive

ff Performing sentiment analysis using Hive on Twitter data

ff Implementing Change Data Capture (CDC) using Hive

ff Inserting data in multiple tables data using Hive

Introduction
In the previous chapter, we discussed various tasks that can be performed using Hive, Pig,
and Hbase. In this chapter, we are going to take a look at how to perform some advanced
tasks using Hive. We will see how to analyze data in various formats such as JSON, XML, and
AVRO. We will also explore how to write User-Defined Functions (UDFs) in Hive, deploy them,
and use them in Hive queries. Now let's get started.

Advanced Data Analysis Using Hive

110

Processing JSON data in Hive using
JSON SerDe

These days, JSON is a very common data structure that's used for data communication and
storage. Its key value-based structure gives great flexibility in handling data. In this recipe, we
are going to take a look at how to process data stored in the JSON format in Hive. Hive does not
have any built-in support to handle JSON, so we will be using JSON SerDe. SerDe is a program
that consists of a serializer and deserializer, which tell Hive how to read and write data.

Getting ready
To perform this recipe, you should have a running Hadoop cluster with the latest version of
Hive installed on it. Here, I am using Hive 1.2.1. Apart from Hive, we also need JSON SerDe.

There are various JSON SerDe binaries available from various developers. The most popular,
though, can be found at https://github.com/rcongiu/Hive-JSON-Serde.

This project contains code for JSON SerDe and is compatible with the latest version of
Hive. You can either download the code and build your own JAR, or you can download the
precompiled jars from https://github.com/sheetaldolas/Hive-JSON-Serde/
tree/master/dist.

I am using https://github.com/sheetaldolas/Hive-JSON-Serde/blob/master/
dist/json-serde-1.1.9.9-Hive1.2.jar.

Download the jar, and copy it to the node where you have Hive installed.

How to do it...
Now that we have set up our environment, let's consider a use situation where we have the
JSON data with us and want to process this data using Hive. Let's say we have an e-commerce
website where we have data coming in the JSON format for various products, as shown here:

{
 "name": "iPhone 6",
 "price": 600,
 "category": "phone",
 "color": "gold",
 "stock": 10,
 "tags": ["phone", "iphone", "cell"]
}

https://github.com/rcongiu/Hive-JSON-Serde
https://github.com/sheetaldolas/Hive-JSON-Serde/tree/master/dist
https://github.com/sheetaldolas/Hive-JSON-Serde/tree/master/dist
https://github.com/sheetaldolas/Hive-JSON-Serde/blob/master/dist/json-serde-1.1.9.9-Hive1.2.jar
https://github.com/sheetaldolas/Hive-JSON-Serde/blob/master/dist/json-serde-1.1.9.9-Hive1.2.jar

Chapter 5

111

To do this, we first need to put this data in HDFS. Here is some sample data:

{"name":"iPhone 6", "price": 600, "category" :"phone", "color":
"gold", "stock": 10, "tags" : ["phone", "iphone", "cell"] }
{"name":"iPhone 6 plus", "price": 660, "category" :"phone", "color":
"silver", "stock": 20, "tags" : ["phone", "iphone", "cell"] }
{"name":"Samsung S6", "price": 600, "category" :"phone", "color":
"white", "stock": 10, "tags" : ["phone", "samsung", "cell"] }
{"name":"Macbook Pro", "price": 800, "category" :"computer", "color":
"silver", "stock": 8, "tags" : ["laptop", "apple"] }
{"name":"Samsung Refrigerator 13 Ltr", "price": 400, "category"
:"fridge", "color": "red", "stock": 10, "tags" : ["fridge", "samsung"]
}

hadoop fs –mkdir /data/products

hadoop fs –copyFromLocalproducts.json /data/products

Now let's start the Hive prompt and add the jar we downloaded earlier.

hive> ADD JAR json-serde-1.1.9.9-Hive1.2.jar;
Added [json-serde-1.1.9.9-Hive1.2.jar] to class path
Added resources: [json-serde-1.1.9.9-Hive1.2.jar]

Now, it's time to create a Hive table using JSON SerDe:

CREATE TABLE products_json (
name STRING,
price DOUBLE,
category STRING,
color STRING,
stock INT,
tags ARRAY<STRING>)
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
LOCATION '/data/products';

When using SerDe, we also have to use Row format SerDe and provide the main class for
this JAR.

If everything is okay, you will get a confirmation that the Hive table has been created.

Now we can query and process this data like any other Hive query. To confirm that the data
has been loaded properly, we can execute the select query:

hive> select * from products_json;
OK
iPhone 6	 600.0	 phone	 gold	 10	 ["phone","iphone","cell"]
iPhone 6 plus	 660.0	 phone	 silver	20	 ["phone","iphone","cell"]

Advanced Data Analysis Using Hive

112

Samsung S6	 600.0	 phone	 white	 10	 ["phone","samsung","cell"]
Macbook Pro	 800.0	 computer	 silver	8	 ["laptop","apple"]
Samsung Refrigerator 13 Ltr	 400.0	 fridge	red	 10
 ["fridge","samsung"]
Time taken: 0.763 seconds, Fetched: 5 row(s)

We can run a query to get product counts by their category, as shown here:

SELECT category, count(*) FROM products_json
GROUP BY category;

This will start a map reduce job, and on its completion, we will have results like this:

computer	 1
fridge	 1
phone	 3

JSON SerDe supports nested JSON as well. Consider a situation where we have an attribute
called a feature, as shown here:

{
 "name": "iPhone 6",
 "price": 600,
 "category": "phone",
 "color": "gold",
 "stock": 10,
 "tags": ["phone", "iphone", "cell"],
 "features": {
 "storage": "64GB",
 "battery": "15Hrs",
 "warranty": "1 Yr"
 }
}

To have this type of data, we need to update the create table statement:

CREATE TABLE products_json (
name STRING,
price DOUBLE,
category STRING,
color STRING,
stock INT,
tags ARRAY<STRING>,
features STRUCT<
storage:STRING,
battery:STRING,

Chapter 5

113

warranty:STRING>)
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
LOCATION '/data/products';

How it works...
ff While reading the input, Hive's execution engine first reads the records using the

default InputFormat. RecordReader keeps sending one record at a time. Here,
we don't provide InputFormat, so the default is text. The engine then invokes
Serde.deserialize()to deserialize the record. The Hive engine also gets hold
of an object inspector by invoking the Serde.getObjectInspector()method.
The engine then passes the deserialized object and object inspector to the operators
for their use. Each operator uses this deserialized object and object inspector to get
data from the data structure.

Hive also supports the writing of your own custom SerDe; the
documentation for this can be found at https://cwiki.apache.org/
confluence/display/Hive/DeveloperGuide#DeveloperGuide-
HowtoWriteYourOwnSerDe.

Processing XML data in Hive using
XML SerDe

XML has been one of the most important data structures and has been used for quite a long
time for data transfers and storage. Parsing XML data and then processing it is always a tricky
task as parsing XML is one of the most costliest operations. Hive does not have any built-in
support for XML data processing, but many organizations and individuals have made open
source contributions to XML SerDe.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Hive installed on it. Here, I am using Hive 1.2.1. Apart from Hive, we also need XML SerDe.

There are various XML SerDe that have been made available by open source developers.
Out of these, XML SerDe at https://github.com/dvasilen/Hive-XML-SerDe is
well developed and quite useful. So, we can download the jar from http://search.
maven.org/remotecontent?filepath=com/ibm/spss/hive/serde2/xml/
hivexmlserde/1.0.5.3/hivexmlserde-1.0.5.3.jar.

https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://github.com/dvasilen/Hive-XML-SerDe
http://search.maven.org/remotecontent?filepath=com/ibm/spss/hive/serde2/xml/hivexmlserde/1.0.5.3/hivexmlserde-1.0.5.3.jar
http://search.maven.org/remotecontent?filepath=com/ibm/spss/hive/serde2/xml/hivexmlserde/1.0.5.3/hivexmlserde-1.0.5.3.jar
http://search.maven.org/remotecontent?filepath=com/ibm/spss/hive/serde2/xml/hivexmlserde/1.0.5.3/hivexmlserde-1.0.5.3.jar

Advanced Data Analysis Using Hive

114

How to do it...
Now, let's assume that in our e-commerce project, we have data that is stored in the XML
format, as follows:

<products>
 <product id="1">
 <name>iPhone 6</name>
 <category>phone</category>
 <price>600</price>
 <stock>14</stock>
 <features>
 <storage>64GB</storage>
 <battery>20Hrs</battery>
 </features>
 </product>
 <product id="2">
 <name>iPhone 6 Plus</name>
 <category>phone</category>
 <price>800</price>
 <stock>15</stock>
 <features>
 <storage>64GB</storage>
 <battery>10Hrs</battery>
 </features>
 </product>
 <product id="3">
 <name>Samsung S6</name>
 <category>phone</category>
 <price>650</price>
 <stock>12</stock>
 <features>
 <storage>16GB</storage>
 <battery>10Hrs</battery>
 </features>
 </product>
</products>

We will be using the XML SerDe to analyze this data. First of all, we need to start a Hive
prompt and add the downloaded jar:

hive> ADD JAR hivexmlserde-1.0.5.3.jar;
Added [hivexmlserde-1.0.5.3.jar] to class path
Added resources: [hivexmlserde-1.0.5.3.jar]

Chapter 5

115

Next, we'll write create a table statement, as shown here:

CREATE TABLE product_xml(
id STRING,
name STRING,
category STRING,
price DOUBLE,
stock BIGINT,
features map<string,string>)
ROW FORMAT SERDE 'com.ibm.spss.hive.serde2.xml.XmlSerDe'
WITH SERDEPROPERTIES (
"column.xpath.id"="/product/@id",
"column.xpath.name"="/product/name/text()",
"column.xpath.category"="/product/category/text()",
"column.xpath.price"="/product/price/text()",
"column.xpath.stock"="/product/stock/text()",
"column.xpath.features"="/product/features/*"
)
STORED AS
INPUTFORMAT 'com.ibm.spss.hive.serde2.xml.XmlInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.IgnoreKeyTextOutputFormat'
TBLPROPERTIES (
"xmlinput.start"="<product id",
"xmlinput.end"="</product>"
);

Now that the table is created, we can load the data into this table and execute the select
query to check whether the data is loaded properly:

LOAD DATA LOCAL INPATH 'products.xml' INTO TABLE product_xml;
hive> select * from product_xml;
OK
1	 iPhone 6	 phone	 600.0	 14	 {"battery":"20Hrs","storage":"64G
B"}
2	 iPhone 6 Plus	phone	 800.0	 15	 {"battery":"10Hrs","storage":"64G
B"}
3	 Samsung S6	 phone	 650.0	 12
 {"battery":"10Hrs","storage":"16GB"}
Time taken: 0.071 seconds, Fetched: 3 row(s)

We can execute various queries, such as other Hive queries, and the XML SerDe will
automatically take care of serialization and deserialization:

hive> select * from product_xml
>where price > 620;
OK

Advanced Data Analysis Using Hive

116

2	 iPhone 6 Plus	phone	 800.0	 15	 {"battery":"10Hrs","storage":"64G
B"}
3	 Samsung S6	 phone	 650.0	 12	 {"battery":"10Hrs","storage":"16G
B"}
Time taken: 0.123 seconds, Fetched: 2 row(s)

How it works
All SerDe work in the manner that is explained in the How it works section of the
previous recipe.

Processing Hive data in the Avro format
Avro is an evolvable schema-driven binary data format. It is hosted and maintained by
the Apache Software Foundation (http://avro.apache.org/). It provides a rich data
structure to store compact, fast binary data, and it relies on schemas. Avro files store data
and schemas together; this helps faster reading of data as the files do not need to look for
schema anywhere else. It can also be used in Remote Procedure Calls (RPC). There, the
schema is transferred at the time of handshake between a client and server. In this recipe,
we will take a look at how to process Avro files in Hive.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Hive installed on it. Here, I am using Hive 1.2.1. Hive has built-in support for the Avro file
format, so we don't need to import any third-party JARs.

How to do it...
Using Avro SerDe, we can either read data that is already in the Avro format or write new data
in the Avro file. We cannot write the Avro file using an editor, so we will be using a sample file
that's provided along with the Hive installation, that is, doctors.avro. This contains a list of
doctors. To read the Avro data, we need to create a table in the following manner:

CREATE TABLE doctors(
number INT,
first_name STRING,
last_name STRING)
STORED AS AVRO;

Now, let's load data into this table, as shown here:

LOAD DATA LOCAL INPATH '/usr/local/hive/examples/files/doctors.avro'
INTO TABLE doctors;

http://avro.apache.org/

Chapter 5

117

We can execute the SELECT query to check whether we are able read the records:

hive> select * from doctors;

OK

 6	 Colin	 Baker

 3	 Jon	 Pertwee

 4	 Tom	 Baker

 5	 Peter	 Davison

 11	Matt	 Smith

 1	 William	 Hartnell

 7	 Sylvester	 McCoy

 8	 Paul	 McGann

 2	 Patrick	 Troughton

 9	 Christopher	 Eccleston

 10	David	 Tennant

 Time taken: 0.051 seconds, Fetched: 11 row(s)

We can execute any query just like other Hive queries in this table.

We can also write the output of a Hive query in the Avro format by creating another table,
as shown here:

CREATE TABLE doctors_selected(
number INT,
first_name STRING,
last_name STRING)
STORED AS AVRO;

We import the selected data from the previous table, as shown here:

INSERT INTO TABLE doctors_selected
SELECT * FROM doctors where number > 5;

Once the map reduce execution is complete, we can take a look at the imported data:

hive> select * from doctors_selected;

OK

 6	 Colin	 Baker

 11	Matt	 Smith

 7	 Sylvester	 McCoy

 8	 Paul	 McGann

 9	 Christopher	 Eccleston

 10	David	 Tennant

 Time taken: 0.061 seconds, Fetched: 6 row(s)

Advanced Data Analysis Using Hive

118

We can also take a look at the generated file:

hadoop fs -ls /user/hive/warehouse/doctors_selected

 Found 1 items

 -rwxr-xr-x 1 admin1 supergroup 420 2015-12-06 12:44
 /user/hive/warehouse/doctors_selected/000000_0

Here the 000000_0 file is in the Avro file format.

How it works...
All SerDe work in a similar manner as explained in the How it works sections of the recipe—
Processing JSON data using Hive JSON SerDe.

Writing a user-defined function in Hive
In the previous chapter, we talked about how to write user-defined functions in Pig; in this recipe,
we are going to do the same for Hive. Hive supports the adding of temporary functions, which
can be used to process data. We will be writing UDF in Java and will also create functions that
can be used in data processing.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest
version of Hive installed on it. Here, I am using Hive 1.2.1. We will also need the Eclipse
IDE for development.

How to do it
There are various system functions that are supported by Hive, but sometimes, you will need
to do something different that cannot be handled by system provided functions. To do this,
we will need to write a custom function.

Take a situation where we have census data and a person's income, and we want to
categorize them into three parts based on the person's income. The following is some
sample data where we have the ID, name, and salary:

1|Tanmay|10000

2|Sneha|12000

3|Sakalya|14000

4|Ramesh|3000

5|Rahul|4000

Chapter 5

119

6|Rajesh|18000

7|Ram|3000

Now, we will create a Hive table and load this data into the table:

CREATE TABLE census(
id INT,
name STRING,
salary INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
STORED AS TEXTFILE;

LOAD DATA LOCAL INPATH 'census.txt' INTO TABLE census;

We can check the loaded data, as shown here:

hive> select * from census;

OK

 1	 Tanmay	10000

 2	 Sneha	 12000

 3	 Sakalya	 14000

 4	 Ramesh	3000

 5	 Rahul	 4000

 6	 Rajesh	18000

 7	 Ram	 3000

 Time taken: 0.052 seconds, Fetched: 7 row(s)

Let's write a UDF to segregate people based on their income group. To do so, we will need to
create a maven project, and add the following dependency in it:

<dependency>
 <groupId>org.apache.hive</groupId>
 <artifactId>hive-exec</artifactId>
 <version>1.2.1</version>
</dependency>

Here is the Java class that provides logic for the income group function. To write a UDF, we
need to extend the UDF class from hive-exec jar:

packagecom.demo.hive.udfs;

importorg.apache.hadoop.hive.ql.exec.UDF;
importorg.apache.hadoop.io.IntWritable;

Advanced Data Analysis Using Hive

120

importorg.apache.hadoop.io.Text;

public class IncomeClassifier extends UDF {

 public Text evaluate(IntWritable income) {
 Text incomeGroup = new Text();
 if (income.get() <= 5000) {
 incomeGroup.set("lower");
 } else if (income.get() >= 5001 &&income.get() <= 15000) {
 incomeGroup.set("middle");
 } else if (income.get() >= 15001) {
 incomeGroup.set("upper");
 }
 returnincomeGroup;
 }
}

We compile this code and create a jar out of it. Now, we copy this jar to the place where Hive
is installed, and do the following things to create a function:

LOAD DATA LOCAL INPATH 'census.txt' INTO TABLE census;
ADD JAR hive-udfs.jar
CREATE TEMPORARY FUNCTION income_group as 'com.demo.hive.udf.
IncomeClassifier';

Use this UDF in the following manner:

SELECT id, name, income_group(salary)

FROM census;

hive> SELECT id, name, income_group(salary)

> FROM census;

OK

 1	 Tanmay	middle

 2	 Sneha	 middle

 3	 Sakalya	 middle

 4	 Ramesh	lower

 5	 Rahul	 lower

 6	 Rajesh	upper

 7	 Ram	 lower

 Time taken: 0.058 seconds, Fetched: 7 row(s)

Chapter 5

121

How it works...
Whenever UDF is referenced during execution, the respective class is invoked and the
evaluate method is executed. Based on the logic provided, a value is returned. UDFs
are effective till the time your session is alive. When the terminal is closed, the same
UDF cannot be referenced again. If we want to do that, we need add the jar again.

Performing table joins in Hive
In the previous chapter, we talked about how to perform joins in Pig. In this recipe, we are
going to take a look at how to perform joins in Hive. Hive supports various types of joins
such as inner, outer, and so on.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Hive installed on it. Here, I am using Hive 1.2.1.

How to do it...
To perform joins, we will need two types of datasets, which have something in common to
join. Consider a situation where we have two employee tables and departments, and every
employee table has a structure (ID, name, salary, and department ID) and every department
table has an ID and a name. We will quickly create tables and load data into them:

 CREATE TABLE emp(
 id INT,
 name STRING,
 salary DOUBLE,
 deptId INT)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '|'
 STORED AS TEXTFILE;

 LOAD DATA LOCAL INPATH 'emp.txt' INTO TABLE emp;

 hive> select * from emp;

 OK

 1	 Tanmay	3500.0	101

 2	 Sneha	 5599.0	101

 3	 Avinash	 6700.0	102

 4	 Manisha	 6400.0	103

Advanced Data Analysis Using Hive

122

 5	 Sakalya	 3200.0	102

 6	 Vinit	 3200.0	105

 Time taken: 0.064 seconds, Fetched: 6 row(s)

 CREATE TABLE dept(
 id INT,
 name STRING)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '|'
 STORED AS TEXTFILE;
 LOAD DATA LOCAL INPATH 'dept.txt' INTO TABLE dept;

 hive> select * from dept;

 OK

 101	 Engineering

 102	 HR

 103	 Finance

 104	 Facilities

 Time taken: 0.061 seconds, Fetched: 4 row(s)

Now, let's start performing various joins.

For the inner join, here is the code:

SELECT e.name, d.name FROM
emp e JOIN dept d
ON (e.deptId = d.id);

The result will look similar to the following code. The inner join only returns matching records
from both tables:

Tanmay	Engineering

Sneha	 Engineering

Avinash	 HR

Manisha	 Finance

Sakalya	 HR

Left outer join
The Left outer join gives all records from the left-hand side of a table and only matches
records with the other table:

SELECT e.name, d.name FROM
emp e LEFT OUTER JOIN dept d
ON (e.deptId = d.id);

Chapter 5

123

The results of this are as follows:

 Tanmay	 Engineering

 Sneha	 Engineering

 Avinash	 HR

 Manisha	 Finance

 Sakalya	 HR

 Vinit	 NULL

Right outer join
The right outer join gives all the records from the right-hand side of a table and only matches
records from the other table:

SELECT e.name, d.name FROM
emp e RIGHT OUTER JOIN dept d
ON (e.deptId = d.id);

The results of this are as follows:

 Tanmay	 Engineering

 Sneha	 Engineering

 Avinash	 HR

 Sakalya	 HR

 Manisha	 Finance

 NULL	 Facilities

Full outer join
The full outer join gives a complete set of matching and non-matching records from both tables:

SELECT e.name, d.name FROM
emp e FULL OUTER JOIN dept d
ON (e.deptId = d.id);

The results of this are as follows:

 Sneha	 Engineering

 Tanmay	 Engineering

 Sakalya	 HR

 Avinash	 HR

 Manisha	 Finance

 NULL	 Facilities

 Vinit	 NULL

Advanced Data Analysis Using Hive

124

Left semi join
The left semi join can be used when you want columns from only one table. When compared
to the inner join, it gives a similar output except that it does not return columns from the
right-hand side of the table:

SELECT e.name, e. salary FROM
emp e LEFT SEMI JOIN dept d
ON (e.deptId = d.id);

The results of this are as follows:

 Tanmay	 3500.0

 Sneha	 5599.0

 Avinash	 6700.0

 Manisha	 6400.0

 Sakalya	 3200.0

How it works...
In every join operation, Hive will execute a Map Reduce job. In Chapter 3, Mastering Map
Reduce Programs, we took a look at the code that gets implemented for various join operations.
Refer to those recipes for more details.

Executing map side joins in Hive
Map side joins are special types of optimizations; Hive executes these automatically based on
table sizes. In this recipe, we are going to explore map side joins in further detail.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Hive installed on it. Here, I am using Hive 1.2.1.

How to do it...
To perform map joins, we need two types of datasets that have something in common to join.
One dataset also has to be big, and the other has to be small in comparison. Consider a situation
where we have two tables for employees and departments; the employee table has a structure
(ID, name, salary, and department ID) and the department table has an ID and a name.

Chapter 5

125

We will quickly create tables and load data into them:

CREATE TABLE emp(
id INT,
name STRING,
salary DOUBLE,
deptId INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
STORED AS TEXTFILE;

 LOAD DATA LOCAL INPATH 'emp.txt' INTO TABLE emp;

 hive> select * from emp;

 OK

 1	 Tanmay	3500.0	101

 2	 Sneha	 5599.0	101

 3	 Avinash	 6700.0	102

 4	 Manisha	 6400.0	103

 5	 Sakalya	 3200.0	102

 6	 Vinit	 3200.0	105

 Time taken: 0.064 seconds, Fetched: 6 row(s)

CREATE TABLE dept(
id INT,
name STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
STORED AS TEXTFILE;

 LOAD DATA LOCAL INPATH 'dept.txt' INTO TABLE dept;

 hive> select * from dept;

 OK

 101	Engineering

 102	HR

 103	Finance

 104	Facilities

 Time taken: 0.061 seconds, Fetched: 4 row(s)

Advanced Data Analysis Using Hive

126

To execute map side joins, we don't need to do anything special; Hive automatically decides
when to execute the map side join and convert it into a map side join:

> SELECT * FROM
>emp e JOIN dept d
> ON (e.deptId = d.id);
Query ID = admin1_20151213081130_ad7a6c17-0c98-4e82-bd51-b9a6a9d687b7
Total jobs = 1
15/12/13 08:11:32 WARN util.NativeCodeLoader: Unable to load native-
hadoop library for your platform... using builtin-java classes where
applicable
Execution log at: /tmp/admin1/admin1_20151213081130_ad7a6c17-0c98-
4e82-bd51-b9a6a9d687b7.log
2015-12-13 08:11:33	 Starting to launch local task to process map
join;	 maximum memory = 477364224
2015-12-13 08:11:35	 Dump the side-table for tag: 1 with group
count: 4 into file: file:/tmp/admin1/4406a7b1-64cf-44e3-968f-
857c4bd17bb7/hive_2015-12-13_08-11-30_543_7059067307272955469-1/-
local-10003/HashTable-Stage-3/MapJoin-mapfile51--.hashtable
2015-12-13 08:11:35	 Uploaded 1 File to: file:/tmp/
admin1/4406a7b1-64cf-44e3-968f-857c4bd17bb7/hive_2015-12-13_08-11-
30_543_7059067307272955469-1/-local-10003/HashTable-Stage-3/MapJoin-
mapfile51--.hashtable (370 bytes)
2015-12-13 08:11:35	 End of local task; Time Taken: 1.255 sec.
Execution completed successfully
MapredLocal task succeeded
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1449972302581_0007, Tracking URL = http://
admin1:8088/proxy/application_1449972302581_0007/
Kill Command = /usr/local/hadoop/bin/hadoopjob -kill
job_1449972302581_0007
Hadoop job information for Stage-3: number of mappers: 1; number of
reducers: 0
2015-12-13 08:11:40,923 Stage-3 map = 0%, reduce = 0%
2015-12-13 08:11:46,201 Stage-3 map = 100%, reduce = 0%, Cumulative
CPU 1.7 sec
MapReduce Total cumulative CPU time: 1 seconds 700 msec
Ended Job = job_1449972302581_0007
MapReduce Jobs Launched:
Stage-Stage-3: Map: 1 Cumulative CPU: 1.7 sec HDFS Read: 6787 HDFS
Write: 160 SUCCESS

Chapter 5

127

 Total MapReduce CPU Time Spent: 1 seconds 700 msec

 OK

 1	 Tanmay	3500.0	101	 101	 Engineering

 2	 Sneha	 5599.0	101	 101	 Engineering

 3	 Avinash	 6700.0	102	 102	 HR

 4	 Manisha	 6400.0	103	 103	 Finance

 5	 Sakalya	 3200.0	102	 102	 HR

 Time taken: 17.748 seconds, Fetched: 5 row(s)

The preceding execution shows that Hive informs you when it has converted this join into a
map side join.

How it works...
Map side joins are performed when we have one small table and a very big table join. While
executing, Hive reads the small table completely into memory and writes this table to a hash
table. This hash table is referenced by each mapper to join the bigger table. By getting one
table in its memory, Hive has fewer disk I/O operations, and this means less time to get
records. There are limits that are set in the Hive configurations that decide whether the table
is small or not. The hive.auto.convert.join.noconditionaltask and hive.auto.
convert.join.noconditionaltask.size configurations decide the auto conversion
of joins and the size of the table that can fit into the memory.

You can read more about map side joins at https://www.facebook.
com/notes/facebook-engineering/join-optimization-in-
apache-hive/470667928919.

Performing context Ngram in Hive
Ngrams are sequences that are collected from specific sets of words and are based on their
occurrence in a given text. N-grams are generally used to find the occurrence of certain words
in a sequence, which helps in the calculation of sentiment analysis. Hive provides built-in
support for Ngram calculations by providing a function. In this recipe, we will take a look at
how to use this function in order to analyze text data.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Hive installed on it. Here, I am using Hive 1.2.1.

https://www.facebook.com/notes/facebook-engineering/join-optimization-in-apache-hive/470667928919
https://www.facebook.com/notes/facebook-engineering/join-optimization-in-apache-hive/470667928919
https://www.facebook.com/notes/facebook-engineering/join-optimization-in-apache-hive/470667928919

Advanced Data Analysis Using Hive

128

How to do it...
N-gram can be used to find the most frequently used word after a sequence of words in
a give text dataset. To do this, let's first create a Hive table and load data into it.

Take a situation where we have data from Twitter where people are writing about their
sentiments about chocolate. Let's assume that we have text data, as follows:

Chocolate is good

Chocolate is bad

Chocolate is harmful

Chocolate is sweet

Chocolate is good

Chocolate is bad

Chocolate is good

Chocolate is bad

Chocolate is good

Chocolate is bad

Chocolate is harmful

Chocolate is sweet Chocolate is harmful

Chocolate is sweet Chocolate is harmful

Chocolate is sweet Chocolate is harmful

Chocolate is sweet

Chocolate is good

Chocolate is bad

Let's load this data into the Hive table:

CREATE TABLE textData(
data STRING)
ROW FORMAT DELIMITED;

LOAD DATA LOCAL INPATH 'twitter.txt' INTO TABLE textData;

Now, we will write a Hive query to find out what the most frequent word after Chocolate is is:

SELECT context_ngrams(sentences(data),
array("Chocolate","is",null),10) FROM
textData;

Chapter 5

129

On complete execution, we will get the following output:

[{
 "ngram": ["bad"],
 "estfrequency": 5.0
}, {
 "ngram": ["good"],
 "estfrequency": 5.0
}, {
 "ngram": ["harmful"],
 "estfrequency": 5.0
}, {
 "ngram": ["sweet"],
 "estfrequency": 5.0
}]

This way, we can easily find out frequent words after a set of strings. This also helps in
performing natural language processing on unstructured text data.

How it works...
Context Ngrams looks for a specific sequence of words and keep counting them using the
map reduce program. On complete execution, they sort out the output by the given frequency
of words in order to know the top word/s being used after a set of strings.

To know more about Ngrams, you can visit
https://en.wikipedia.org/wiki/N-gram.

Call Data Record Analytics using Hive
Call Data Records (CDR) are special types of records that are used in the telecom domain to
keep track of calls made by individuals. We can use Hive to analyze these records in order to
give special offers to customers.

You can read more about CDR at
https://en.wikipedia.org/wiki/Call_detail_record.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Hive installed on it. Here, I am using Hive 1.2.1.

https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/Call_detail_record

Advanced Data Analysis Using Hive

130

How to do it...
First of all, let's consider a situation where we have the following type of dataset with us.
To analyze it, we first need to create a Hive table and load data into it:

CALLER_PHONE_NO|RECEIVER_PHONE_NUMBER|START_TIME|END_TIME|CALL_TYPE

11111|22222|2015-01-12 01:20:00|2015-01-12 01:30:00|VOICE

11111|22222|2015-02-12 01:35:00|2015-02-12 01:35:30|VOICE

11111|22222|2015-02-12 02:20:00|2015-02-12 02:20:00|SMS

33333|44444|2015-01-12 01:20:00|2015-01-12 01:30:00|VOICE

11111|33333|2015-05-12 04:02:00|2015-05-12 05:12:00|VOICE

22222|44444|2015-07-12 06:12:00|2015-07-12 06:12:00|SMS

22222|33333|2015-08-12 08:45:00|2015-08-12 08:50:00|VOICE

Let's create this Hive table and load data into it:

CREATE TABLE CDR(
caller_phone_no string,
receiver_phone_no string,
start_time timestamp,
end_time timestamp,
call_type string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
STORED AS TEXTFILE;

LOAD DATA LOCAL INPATH 'cdr.txt' INTO TABLE CDR;	

Now that the data is loaded, we can execute the query to find out the duration of voice calls
made by each subscriber in the given data:

SELECT caller_phone_no,
SUM(UNIX_TIMESTAMP(end_time) - UNIX_TIMESTAMP(start_time))
FROM cdr
WHERE call_type = 'VOICE'
GROUP BY caller_phone_no;

This will use the caller phone number and calculate the number of seconds it made calls for:

11111	 4830
22222	 300
33333	 600

Chapter 5

131

Next, we can execute queries to find out what the most frequently used medium of
communication is. To know this, we will execute the following query:

SELECT call_type, count(*) as call_count FROM
CDR
GROUP BY call_type
ORDER BYcall_count DESC;

On execution, we will get the following results:

 VOICE	 5

 SMS	 2

How it works...
The preceding section explains regular Hive queries, and we already know how they work.

Twitter sentiment analysis using Hive
Twitter is one of the most important data sources that helps you to know the sentiments
behind various things. In this recipe, we will take a look at how to perform sentiment analysis
using Hive on Twitter data.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Hive installed on it. Here, I am using Hive 1.2.1.

How to do it...
First of all, we need a dataset to perform this recipe. We will be using a dataset that can be
found at http://s3.amazonaws.com/hw-sandbox/tutorial13/SentimentFiles.
zip.

Next, we will unzip this data and upload it on HDFS. The zip contains three folders: the first
for raw Twitter data, the second for a dictionary, and the third for a time zone:

hadoop fs -mkdir /data
hadoop fs -put tweets_raw /data
hadoop fs -put time_zone_map /data
hadoop fs -put dictionary /data

http://s3.amazonaws.com/hw-sandbox/tutorial13/SentimentFiles.zip
http://s3.amazonaws.com/hw-sandbox/tutorial13/SentimentFiles.zip

Advanced Data Analysis Using Hive

132

We use Hive's JSON SerDe jar to read the tweeter data, as shown here:

ADD JAR json-serde-1.1.9.9-Hive1.2-jar-with-dependencies.jar;
CREATE EXTERNAL TABLE tweets_raw (
id BIGINT,
created_at STRING,
source STRING,
favorited BOOLEAN,
retweet_count INT,
retweeted_status STRUCT<
text:STRING,
user_rt:STRUCT<screen_name:STRING,name:STRING>>,
entities STRUCT<
urls:ARRAY<STRUCT<expanded_url:STRING>>,
user_mentions:ARRAY<STRUCT<screen_name:STRING,name:STRING>>,
hashtags:ARRAY<STRUCT<text:STRING>>>,
text STRING,
user_struct STRUCT<
screen_name:STRING,
name:STRING,
friends_count:INT,
followers_count:INT,
statuses_count:INT,
verified:BOOLEAN,
utc_offset:STRING,
time_zone:STRING>,
in_reply_to_screen_name STRING
)
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
WITH SERDEPROPERTIES ("mapping.user_rt" = "user", "mapping.user_
struct" = "user")
LOCATION '/data/tweets_raw';

This will create a Hive table and link data to it. Hive 1.2.1 puts certain constraints on reserve
keywords such as user. So, we have to explicitly map these words to some other words.

Next, we load the dictionary and time zone tables. The dictionary will be used to determine
whether a word is positive or negative:

CREATE EXTERNAL TABLE dictionary (
type string,
lengthint,
word string,
pos string,
stemmed string,

Chapter 5

133

polarity string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE
LOCATION '/data/dictionary';

CREATE EXTERNAL TABLE time_zone_map (
time_zone string,
country string,
notes string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE
LOCATION '/data/time_zone_map';

We only select text column from the tweets_raw table and then clean it up:

CREATE VIEW tweets_simple AS
SELECT
id,
 cast (from_unixtime(unix_timestamp(concat('2013 ',
substring(created_at,5,15)), 'yyyy MMM ddhh:mm:ss')) as timestamp) ts,
text,
user_struct.time_zone
FROM tweets_raw;

CREATE VIEW tweets_clean AS
SELECT
id,
ts,
text,
m.country
 FROM tweets_simple t LEFT OUTER JOIN time_zone_map m ON t.time_zone =
m.time_zone;

We execute some queries in order to add the tweet ID and calculated sentiment:

create view l1 as select id, words from tweets_raw lateral view
explode(sentences(lower(text))) dummy as words;

create view l2 as select id, word from l1 lateral view explode(words
) dummy as word ;

create view l3 as select
id,
 l2.word,

Advanced Data Analysis Using Hive

134

cased.polarity
when 'negative' then -1
when 'positive' then 1
else 0 end as polarity
from l2 left outer join dictionary d on l2.word = d.word;

 -- give rights to hive user on tmpdir
 !hadoop fs -chmod -R 777 /tmp;

create table tweets_sentiment stored as RCFILE as select
id,
case
when sum(polarity) > 0 then 'positive'
when sum(polarity) < 0 then 'negative'
else 'neutral' end as sentiment
from l3 group by id;

CREATE TABLE tweets_senti
STORED AS RCFILE
AS
SELECT
t.*,
cases.sentiment
when 'positive' then 2
when 'neutral' then 1
when 'negative' then 0
end as sentiment
FROM tweets_clean t LEFT OUTER JOIN tweets_sentiment s on t.id = s.id;

As a result, you have now reached the tweet and its sentiment.

How it works
To perform the sentiment analysis, we first get only the text column from the raw table.
Next, we explode each word in the text using the lateral view. Then, we join these words
with the dictionary to know how they're polarized. Now that we know how each word's
polarized, we perform 'group by' on the tweet ID to sum up the polarization. Once we
have the final polarization, we check whether it is positive, negative, or neutral and
save it against each tweet.

Chapter 5

135

Implementing Change Data Capture
using Hive

Change Data Capture or CDC is one the most painful areas in Data Warehousing. CDC
captures the changes that occur in a table. A change could be in the form of new records
getting added, updated, or getting deleted. In this recipe, we are going to take a look at
how to perform CDC in Hive.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Hive installed on it. Here, I am using Hive 1.2.1.

How to do it
First of all, we need a data sample. Consider a simple employee table that has columns, such
as the employee ID, name, and salary. Let's say we import this table from a source table in
week 1, and after a week, we want to know about the changes that have taken place in the
same table. Let's say we have a table, employee1, which was imported in week 1, and we have
another table, which was imported in week 2. Week 2 being the latest week, we want to know
the changes that have taken place. Here is some sample data:

Table – employee1

1,A,1000

2,B,2000

3,C,3000

4,D,2000

5,E,1000

6,F,3000

7,G,1000

8,H,3000

9,I,1000

10,J,2000

11,K,1000

12,L,1000

13,M,1000

14,N,3000

15,O,3000

Advanced Data Analysis Using Hive

136

16,P,1000

17,Q,1000

18,R,1000

19,S,2000

20,T,3000

Table – employee2

1,A,1000

2,B,2000

3,C,5000

4,D,2000

5,EE,1000

6,F,3000

7,G,1000

8,H,3000

10,J,2000

11,K,1000

12,L,1000

13,MM,1000

14,N,3000

15,O,3000

16,PQ,1000

17,Q,1000

19,S,2000

20,T,3000

21,S,2000

22,T,3000

23,S,2000

24,T,3000

Now, we want to know which row is updated, which row is deleted, and which rows are newly
added. In order to do know this, we can execute the following query:

Create the employee1 table and load data into it:

CREATE TABLE employee1 (

id INT,

name STRING,

Chapter 5

137

salary BIGINT

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

STORED AS TEXTFILE;

Create the employee2 table and load into data:

LOAD DATA LOCAL INPATH 'emp1.txt' INTO TABLE employee1;

CREATE TABLE employee2 (

id INT,

name STRING,

salary BIGINT

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

STORED AS TEXTFILE;

LOAD DATA LOCAL INPATH 'emp2.txt' INTO TABLE employee2;

Now, we write a query in order to know the CDC:

select

case when b1.cdc_codes = 'Updates' then b1.employee1s

 when b1.cdc_codes = 'NoChange' then b1.employee2s

 when b1.cdc_codes = 'New' then b1.employee2s

 when b1.cdc_codes = 'Deletes' then b1.employee1s

else 'Error' end as fin_cols

from (select case when e1.id = e2.id and concat(e1.name,e1.salary) =
concat(e2.name,e2.salary) then 'NoChange'

when e1.id = e2.id and concat(e1.name,e1.salary) <> concat(e2.name,e2.
salary) then 'Updates'

when e1.id is null then 'New'

when e2.id is null then 'Deletes'

else 'Error' end as cdc_codes,

concat(e1.id,',',e1.name,',',e1.salary) as employee1s,

concat(e2.id,',',e2.name,',',e2.salary) as employee2s

from employee1 as e1 full outer join employee2 as e2

on e1.id = e2.id) as b1

Advanced Data Analysis Using Hive

138

Once we execute the preceding query, we get the following data, which is the updated data:

1,A,1000

2,B,2000

3,C,3000

4,D,2000

5,E,1000

6,F,3000

7,G,1000

8,H,3000

9,I,1000

10,J,2000

11,K,1000

12,L,1000

13,M,1000

14,N,3000

15,O,3000

16,P,1000

17,Q,1000

18,R,1000

19,S,2000

20,T,3000

21,S,2000

22,T,3000

23,S,2000

24,T,3000

How it works
In order to find the changed data, we perform a full outer join of two tables. This will include the
entries from both tables that match with their IDs. Next, we check the data that is present and
then decide whether the record is new, updated, or deleted. This way, we can easily capture the
changes that have taken place. This technique is very useful in cases where you have built your
data warehouse using Hive.

Chapter 5

139

Multiple table inserting using Hive
Hive allows you to write data to multiple tables or directories at a time. This is an optimized
solution as a source table needs to be read only once, which helps reduce the time. In this
recipe, we are going to take a look at how write data to multiple tables/directories in a
single query.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Hive installed on it. Here, I am using Hive 1.2.1.

How to do it
Let's say we have an employee table with columns such as ID, name, and salary:

Table – employee

1,A,1000

2,B,2000

3,C,3000

4,D,2000

5,E,1000

6,F,3000

7,G,1000

8,H,3000

9,I,1000

10,J,2000

11,K,1000

12,L,1000

13,M,1000

14,N,3000

15,O,3000

16,P,1000

17,Q,1000

18,R,1000

19,S,2000

20,T,3000

Advanced Data Analysis Using Hive

140

Let's create the table and load the data into it:

CREATE TABLE employee (

id INT,

name STRING,

salary BIGINT

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

STORED AS TEXTFILE;

LOAD DATA LOCAL INPATH 'emp.txt' INTO TABLE employee;

First, we need to create tables, and data from the employee table is inserted into these table:

CREATE TABLE emp1 LIKE employee;

CREATE TABLE emp2 LIKE employee;

Now, in order to insert data into two tables at a time, we can execute the following query:

FROM employee

INSERT INTO TABLE emp1

SELECT * WHERE id <= 10

INSERT INTO TABLE emp2

SELECT * WHERE id > 10 ;

As a result, you should see something like this:

hive> select * from emp1;

OK

1	 A	 1000

2	 B	 2000

3	 C	 3000

4	 D	 2000

5	 E	 1000

6	 F	 3000

7	 G	 1000

8	 H	 3000

9	 I	 1000

10	 J	 2000

Chapter 5

141

Time taken: 0.161 seconds, Fetched: 10 row(s)

hive> select * from emp2;

OK

11	 K	 1000

12	 L	 1000

13	 M	 1000

14	 N	 3000

15	 O	 3000

16	 P	 1000

17	 Q	 1000

18	 R	 1000

19	 S	 2000

20	 T	 3000

We can also write data to the HDFS directory and table at a time, as shown here:

FROM employee1

INSERT INTO TABLE emp1

SELECT * WHERE id <= 10

INSERT OVERWRITE DIRECTORY '/data/emp1'

SELECT * WHERE id > 10 ;

This will write data to both the table and directory at one go.

How it works
The preceding queries read the data from the source table only once and write it in multiple
places using multiple jobs. The benefit of doing it in this way is that you only read the data
once, which optimizes the data read time.

143

6
Data Import/Export

Using Sqoop and Flume

The chapter covers the following topics:

ff Importing data from RDMBS to HDFS using Sqoop

ff Exporting data from HDFS to RDBMS

ff Using query operator in Sqoop import

ff Importing data using Sqoop in compressed format

ff Performing Atomic export using Sqoop

ff Importing data into Hive tables using Sqoop

ff Importing data into HDFS from Mainframes

ff Incremental import using Sqoop

ff Creating and executing Sqoop job

ff Importing data from RDBMS to Hbase using Sqoop

ff Importing Twitter data into HDFS using Flume

ff Importing data from Kafka into HDFS using Flume

ff Importing web logs data into HDFS using Flume

Introduction
In the previous chapter, we talked about advanced analytics options using Apache Hive. In
this chapter, we are going to talk about two very important tools, Sqoop and Flume, which do
not directly help us do analytics but help us get the data in and out of Hadoop. So, let's try to
understand more about these technologies.

Data Import/Export Using Sqoop and Flume

144

Importing data from RDMBS to HDFS
using Sqoop

Most organizations use RDBMS databases as their primary storage for their data. To analyze
the data, we need to first import that data on HDFS. Sqoop is a tool that helps us achieve this
with ease, and with just a single command, we can import data into HDFS as required. In this
recipe, we are going to see how to import data from MySQL to Hadoop using Sqoop.

Getting ready
To perform this recipe, you should have a Hadoop cluster running with you as well as the latest
version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need MySQL
database to be present in the network. Installing Sqoop is easy by downloading Sqoop tar
ball and setting it in the system path. As we are going to import data from MySQL, we would
also need to download MySQL connector from https://dev.mysql.com/downloads/
connector/. Based on your MySQL version, download the right connector jar and copy it
into the lib directory of Sqoop installation.

How to do it...
Perform the following steps:

1.	 First we will log into MySQL and create a database called company and create a table
in it called employee.

The schema for the same is as follows:

mysql> desc employee;

+-------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+-------------+------+-----+---------+-------+

| id | int(11) | YES | | NULL | |

| name | varchar(20) | YES | | NULL | |

+-------+-------------+------+-----+---------+-------+

2 rows in set (0.00 sec)

2.	 Next we will add some records into it, so the MySQL employee table would look like as
shown in the following:
mysql> select * from employee;

+------+--------+

| id | name |

https://dev.mysql.com/downloads/connector/
https://dev.mysql.com/downloads/connector/

Chapter 6

145

+------+--------+

| 16 | john |

| 17 | robert |

| 18 | andrew |

| 19 | katty |

| 21 | tom |

| 22 | tim |

| 23 | james |

| 24 | paul |

| 27 | edward |

| 29 | alan |

| 31 | kerry |

| 34 | terri |

+------+--------+

12 rows in set (0.00 sec)

3.	 Now we are going to execute Sqoop command to import this data into the HDFS
directory called /data/employee.
$sqoop import --connect jdbc:mysql://localhost:3306/company
--username root --password password --table employee --target-dir
/data/employee -m 1

Once you execute the preceding command, a Map Reduce job will start and import
the records and write them to HDFS. Here we need to provide the host on which
MySQL is running, its credentials, which table to import, and in which directory on
HDFS you wish to store the data. I have also given m = 1, which means using a
single mapper to do sequential import. This is a mandatory setting if your table
does not have a primary ID. The console output would look like the following:
16/02/28 09:29:24 INFO impl.YarnClientImpl: Submitted application
application_1456628547885_0004
16/02/28 09:29:24 INFO mapreduce.Job: The url to track the job:
http://admin1:8088/proxy/application_1456628547885_0004/
16/02/28 09:29:24 INFO mapreduce.Job: Running job:
job_1456628547885_0004
16/02/28 09:29:37 INFO mapreduce.Job: Job job_1456628547885_0004
running in uber mode : false
16/02/28 09:29:37 INFO mapreduce.Job: map 0% reduce 0%
16/02/28 09:29:49 INFO mapreduce.Job: map 100% reduce 0%
16/02/28 09:29:49 INFO mapreduce.Job: Job job_1456628547885_0004
completed successfully
16/02/28 09:29:49 INFO mapreduce.Job: Counters: 30

Data Import/Export Using Sqoop and Flume

146

 File System Counters
 FILE: Number of bytes read=0
 FILE: Number of bytes written=132328
 FILE: Number of read operations=0
 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=87
 HDFS: Number of bytes written=104
 HDFS: Number of read operations=4
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=2
 Job Counters
 Launched map tasks=1
 Other local map tasks=1
 Total time spent by all maps in occupied slots (ms)=8607
 Total time spent by all reduces in occupied slots (ms)=0
 Total time spent by all map tasks (ms)=8607
 Total vcore-seconds taken by all map tasks=8607
 Total megabyte-seconds taken by all map tasks=8813568
 Map-Reduce Framework
 Map input records=12
 Map output records=12
 Input split bytes=87
 Spilled Records=0
 Failed Shuffles=0
 Merged Map outputs=0
 GC time elapsed (ms)=57
 CPU time spent (ms)=1960
 Physical memory (bytes) snapshot=142516224
 Virtual memory (bytes) snapshot=407183360
 Total committed heap usage (bytes)=85983232
 File Input Format Counters
 Bytes Read=0
 File Output Format Counters
 Bytes Written=104
16/02/28 09:29:49 INFO mapreduce.ImportJobBase: Transferred 104
bytes in 29.694 seconds (3.5024 bytes/sec)
16/02/28 09:29:49 INFO mapreduce.ImportJobBase: Retrieved 12
records.

4.	 Now we can look at the HDFS directory to see the records getting imported:
hadoop fs -cat /data/employee/part-m-00000

 16,john

 17,robert

Chapter 6

147

 18,andrew

 19,katty

 21,tom

 22,tim

 23,james

 24,paul

 27,edward

 29,alan

 31,kerry

 34,terri

By default, Sqoop uses a comma (,) as a column delimiter. We can also specify our
own delimited data, as shown in the following:
sqoop import --connect jdbc:mysql://localhost:3306/company
--username root --password password --table employee --target-dir
/data/employee_pipe --fields-terminated-by '|' -m 1

$ hadoop fs -cat /data/employee_pipe/part-m-00000

 16|john

 17|robert

 18|andrew

 19|katty

 21|tom

 22|tim

 23|james

 24|paul

 27|edward

 29|alan

 31|kerry

 34|terri

In case you feel that providing a password in plain text is not safe, you may also provide
that interactively:

sqoop import --connect jdbc:mysql://localhost:3306/company --username
root --table employee --target-dir /data/employee_pipe_1 --fields-
terminated-by '|' -m 1 –P

Data Import/Export Using Sqoop and Flume

148

It will ask you to enter your password.

You can also get the password from the password file. For that, first you need to upload that
file to HDFS and then point that in the sqoop command:

echo "password" > mysql.password
hadoop fs -put mysql.password /user/admin
hadoop fs -chown 400 /user/admin1/mysql.password

Now we can use this file in password:

sqoop import --connect jdbc:mysql://localhost:3306/company --username
root --table employee --target-dir /data/employee_pipe_3 --fields-
terminated-by '|' -m 1 --password-file /user/admin1/mysql.password

How it works...
When sqoop command is executed, it generates a Map Reduce job, rather a map only job,
to import the data from the given RDBMS. By default, it uses four mappers to import the data
from a given table. If the table has a primary key, then each mapper takes care of importing
an equal number of records based on their primary ID. If the table does not have a primary
ID, we need to use only a single mapper that will import the data sequentially. Based on the
delimiter provided, the columns would be separated by the given characters.

Exporting data from HDFS to RDBMS
In the previous recipe, we spoke about how to import data from MySQL to HDFS. Now it is time
to see how to export data from HDFS to RDBMS using Sqoop. Generally, this is required when
you want to keep processed data in RDBMS to be used by some reporting tools.

Getting ready
To perform this recipe, you should have a Hadoop cluster running with you as well as the
latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need the
MySQL database to be present in the network. Installing Sqoop is easy; by downloading Sqoop
tar ball and setting it in system path. As we are going to import data from MySQL, we would
also need to download MySQL connector. Based on your MySQL version, download the right
connector jar and copy it into the lib directory of Sqoop installation.

Chapter 6

149

How to do it...
In the previous recipe, we imported data from MySQL into HDFS. Now we are going to export
this data back to some different MySQL table.

1.	 To do this, first we need to create the table in MySQL:
mysql> create table employee_export like employee;
Query OK, 0 rows affected (0.02 sec)

2.	 Now we will execute the sqoop export command to fetch the data fromthe /data/
employee directory and put it into the employee_export table we just created in
the previous step:
sqoop export --connect jdbc:mysql://localhost/company --username
root --password password --table employee_export --export-dir /
data/employee

The console output for this will look like the following:
16/02/28 09:34:23 INFO mapreduce.Job: Running job:
job_1456628547885_0005
16/02/28 09:34:36 INFO mapreduce.Job: Job job_1456628547885_0005
running in uber mode : false
16/02/28 09:34:36 INFO mapreduce.Job: map 0% reduce 0%
16/02/28 09:35:04 INFO mapreduce.Job: map 100% reduce 0%
16/02/28 09:35:09 INFO mapreduce.Job: Job job_1456628547885_0005
completed successfully
16/02/28 09:35:10 INFO mapreduce.Job: Counters: 30
 File System Counters
 FILE: Number of bytes read=0
 FILE: Number of bytes written=528692
 FILE: Number of read operations=0
 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=788
 HDFS: Number of bytes written=0
 HDFS: Number of read operations=16
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=0
 Job Counters
 Launched map tasks=4
 Data-local map tasks=4
 Total time spent by all maps in occupied slots (ms)=109699
 Total time spent by all reduces in occupied slots (ms)=0
 Total time spent by all map tasks (ms)=109699
 Total vcore-seconds taken by all map tasks=109699

Data Import/Export Using Sqoop and Flume

150

 Total megabyte-seconds taken by all map tasks=112331776
 Map-Reduce Framework
 Map input records=12
 Map output records=12
 Input split bytes=516
 Spilled Records=0
 Failed Shuffles=0
 Merged Map outputs=0
 GC time elapsed (ms)=838
 CPU time spent (ms)=8110
 Physical memory (bytes) snapshot=507035648
 Virtual memory (bytes) snapshot=1635950592
 Total committed heap usage (bytes)=317456384
 File Input Format Counters
 Bytes Read=0
 File Output Format Counters
 Bytes Written=0
16/02/28 09:35:10 INFO mapreduce.ExportJobBase: Transferred 788
bytes in 51.1218 seconds (15.4142 bytes/sec)
16/02/28 09:35:10 INFO mapreduce.ExportJobBase: Exported 12
records.

3.	 Once the command execution is completed, you can go to mysql prompt and check
if the data import is proper:
mysql> select * from employee_export;

+------+--------+

| id | name |

+------+--------+

| 24 | paul |

| 27 | edward |

| 29 | alan |

| 19 | katty |

| 21 | tom |

| 22 | tim |

| 23 | james |

| 31 | kerry |

| 34 | terri |

| 16 | john |

| 17 | robert |

| 18 | andrew |

+------+--------+

12 rows in set (0.01 sec)

Chapter 6

151

If, in your HDFS files, the column delimiter is other than a comma (,) then we have to
specify the delimiter as shown in the following:
sqoop export --connect jdbc:mysql://localhost/company --username
root --password password --table employee_export --export-dir /
data/employee --fields-terminated-by '|'

This will read the | delimited data from the given HDFS directory and save it into the
employee_export table.

Here you can protect the plain text password being mentioned in the command
directly by using the following options.

First, we can choose the – + P option, which would ask for the password in
interactive mode:
sqoop export --connect jdbc:mysql://localhost/company --username
root --table employee_export --export-dir /data/employee -P

Second, you can also create a password file as explained in the previous recipe:
sqoop export --connect jdbc:mysql://localhost/company --username
root --table employee_export --export-dir /data/employee
--password-file /user/admin1/mysql.password

How it works...
sqoop export also creates a Map Reduce job for exporting data to RDBMS. It uses the
provided credentials to insert records into a given table. Here it is important to match the data
type in files with the data type in table. We should also make sure that the destination table
exists before starting the sqoop export job, otherwise it would fail. In case the column
delimiter is other than comma, then make sure you mention that in the sqoop export
command to avoid wrong entries.

Using query operator in Sqoop import
In previous examples, we saw how we import/export complete table. Sometimes you may
want to only use selective data, so to achieve this, Sqoop provides a query operation in which
we can write SQL query as we need to import data into HDFS.

Getting ready
To perform this recipe, you should have a Hadoop cluster running with you as well as the
latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need a
MySQL database to be present in the network. Installing Sqoop is easy by downloading Sqoop
tar ball and setting it in system path. As we are going to import data from MySQL, we would
also need to download MySQL connector. Based on your MySQL version, download the right
connector jar and copy it into the lib directory of the Sqoop installation.

Data Import/Export Using Sqoop and Flume

152

How to do it...
1.	 Now we, again, log in to MySQL and take a look at the employee table. Let's say we

want to import only those employees whose IDs are greater than 20. Then we can
either use query or use where condition as shown in the following:
sqoop import --connect jdbc:mysql://localhost:3306/company
--username root --password password --target-dir /data/employee_
query_1 --query 'SELECT * FROM employee WHERE $CONDITIONS AND id>
20' -m 1

2.	 On successful execution, you should see only those records on HDFS whose IDs are
greater than 20:
$hadoop fs -cat /data/employee_query_1/part-m-00000

 21,tom

 22,tim

 23,james

 24,paul

 27,edward

 29,alan

 31,kerry

 34,terri

You can also use query options to import data from multiple tables together. You can also
import joined records using query options:

sqoop import --connect jdbc:mysql://localhost:3306/company --username
root --password password --target-dir /data/a_b_join --query SELECT
a.*, b.* FROM a JOIN b on (a.id == b.id) WHERE $CONDITIONS' -m 1

The preceding sqoop job would join two tables a and b on column ID and would be imported
into the /data/a_b_join folder.

How it works...
With query option, Sqoop import works exactly the same the way it works for other cases.
The only difference is that we can write a free-form query with it.

Chapter 6

153

Importing data using Sqoop in compressed
format

In this recipe, we are going to talk about a very important feature of Sqoop that allows us to
compress the imported data. We can also choose the compression algorithm.

Getting ready
To perform this recipe, you should have a Hadoop cluster running with you as well as the
latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need
a MySQL database to be present in the network. Installing Sqoop is easy; by downloading
Sqoop tar ball and setting it in the system path. As we are going to import data from MySQL,
we would also need to download MySQL connector. Based on your MySQL version, download
the right connector jar and copy it into the lib directory of the Sqoop installation.

How to do it...
1.	 Sqoop import allows us to import the data in a compressed format. We don't need to

install anything else apart from default installation. The following query will import the
employee data into a compressed format and will store in a given directory:
sqoop import \
--connect jdbc:mysql://localhost/company \
--username root \
--password password \
--table employee \
--compress \
--target-dir /data/employee_compressed \
--m 1

2.	 Once the job execution is complete, we can take a look at the HDFS directory:
hadoop fs -ls /data/employee_compressed

 Found 2 items

 -rw-r--r-- 1 admin1 supergroup 0 2015-12-29
 14:41 /data/employee_compressed/_SUCCESS

 -rw-r--r-- 1 admin1 supergroup 106 2015-12-29
 14:41 /data/employee_compressed/part-m-00000.gz

By default, the data is compressed in gun zip format. In case you want any other
compression format, then you can specify the same as shown in the following:
sqoop import \
--connect jdbc:mysql://localhost/company \

Data Import/Export Using Sqoop and Flume

154

--username root \
--password password \
--table employee \
--compress \
--target-dir /data/employee_compressed_bz2 \
--m 1 \
--compression-codec org.apache.hadoop.io.compress.BZip2Codec

3.	 On completion, you can take a look at the target directory:
hadoop fs -ls /data/employee_compressed_bz2

 Found 2 items

 -rw-r--r-- 1 admin1 supergroup 0 2015-12-29
 14:45 /data/employee_compressed_bz2/_SUCCESS

 -rw-r--r-- 1 admin1 supergroup 113 2015-12-29
 14:45 /data/employee_compressed_bz2/part-m-00000.bz2

Similarly, you can choose which compression algorithm you need and specify it in the sqoop
import command.

How it works...
As Sqoop has come from the Hadoop family, it inherits support for various compression
algorithms. It's very handy to import compressed data and save it on HDFS for efficient
space utilization. We have to be very careful while choosing the compression algorithm as
some algorithms do not allow splitting files. LZOP is one algorithm that allows file splitting;
you can think about using it.

Performing Atomic export using Sqoop
We have learned in basic database concepts about atomicity, which means doing a complete job
or doing nothing. Similarly, if you are exporting data using Sqoop to a table that is very important
from the application's point of view and you want make sure that Sqoop should export all data
present in HDFS or do nothing, this recipe will help. In this recipe, we are going to see how to
ensure atomicity of data export.

Getting ready
To perform this recipe, you should have a Hadoop cluster running with you as well as the
latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need
a MySQL database to be present in the network. Installing Sqoop is easy; by downloading
Sqoop tar ball and setting it in the system path. As we are going to import data from MySQL,
we would also need to download MySQL connector. Based on your MySQL version, download
the right connector jar and copy it into the lib directory of the Sqoop installation.

Chapter 6

155

How to do it...
1.	 To perform the atomic export, first we need to create a table that can be used as a

staging table:
mysql> create table staging_employee like employee;

Query OK, 0 rows affected (0.01 sec)

2.	 Then you can execute the sqoop export command specifying the destination table
as well as the staging table:
sqoop export \
--connect jdbc:mysql://localhost/company \
--username root \
--password password \
--table atomic_employee \
--export-dir /data/employee \
--staging-table staging_employee

3.	 Last couple of lines of the job log will inform you that Sqoop is migrating data from
the staging table to the destination table:
15/12/29 15:11:04 INFO mapreduce.ExportJobBase: Transferred 788
bytes in 21.6322 seconds (36.4272 bytes/sec)
15/12/29 15:11:04 INFO mapreduce.ExportJobBase: Exported 12
records.
15/12/29 15:11:04 INFO mapreduce.ExportJobBase: Starting to
migrate data from staging table to destination.
15/12/29 15:11:04 INFO manager.SqlManager: Migrated 12 records
from `staging_employee` to `atomic_employee`

Sqoop makes sure that if any parallel executing jobs fail, it will not copy anything to the
destination table.

How it works...
During atomic export, Sqoop first writes data to the staging table. If any of the parallel executing
jobs fail, Sqoop will not copy data to the destination table. This way we make sure that no
half writes would go to the destination table. The only disadvantage of using the staging table
is we would need to have that much space available for us in our database. Generally, it is
recommended to use the staging table while exporting data to production tables.

Data Import/Export Using Sqoop and Flume

156

Importing data into Hive tables using Sqoop
Till now we have seen how to import data into HDFS folders. Now it's time to understand how
to import data directly into Hive table.

Getting ready
To perform this recipe, you should have a Hadoop cluster running with you as well as the
latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need
a MySQL database to be present in the network. Installing Sqoop is easy; by downloading
Sqoop tar ball and setting it in the system path. As we are going to import data from MySQL,
we would also need to download MySQL connector. Based on your MySQL version, download
the right connector jar and copy it into the lib directory of Sqoop installation.

How to do it...
Sqoop provides us the facility to directly import data into Hive table. This saves our time
in creating Hive tables, specifying matching schema, loading data into HDFS, and then
creating external Hive table. We can do this in a couple of commands:

1.	 The following first command creates a table in Hive as per the schema of the source
table, and the second command imports the actual data from the source RDBMS
table and stores it into Hive table:
sqoop create-hive-table --connect jdbc:mysql://localhost/company \

--table employee --hive-table employee_sqoop \

--username root \

--password password \

2.	 The following creates a table in Hive as per the schema of the source table; we can
go to Hive and check if the table is created:
hive> desc employee_sqoop;

OK

id int

name string

Time taken: 0.114 seconds, Fetched: 2 row(s)

3.	 Next, we execute the following command to import the data into the newly created
Hive table:
sqoop import --hive-import --connect jdbc:mysql://localhost/
company \
--table employee --hive-table employee_sqoop \

Chapter 6

157

--username root \
--password password \
--m 1

4.	 We can then go to the Hive prompt and see if the data is present:
hive> select * from employee_sqoop;

 OK

 16	john

 17	robert

 18	andrew

 19	katty

 21	tom

 22	tim

 23	james

 24	paul

 27	edward

 29	alan

 31	kerry

 34	terri

 Time taken: 1.297 seconds, Fetched: 12 row(s)

How it works...
Sqoop Hive import works similar to regular import; the only extra thing it does is copying data
under the Hive warehouse directory. The create-hive-table command reads the source
table schema first and then creates Hive table accordingly.

Importing data into HDFS from Mainframes
Mainframes is one of the most used datasets in financial domain for quite a long time. Sqoop
supports importing datasets from Mainframes into HDFS. This is an important recipe for those
who are looking to migrate from Mainframes to Hadoop base systems.

Getting ready
To perform this recipe, you should have a Hadoop cluster running with you as well as the
latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need
a MySQL database to be present in the network. Installing Sqoop is easy by downloading
Sqoop tar ball and setting it in the system path.

Data Import/Export Using Sqoop and Flume

158

How to do it...
Sqoop provides a tool called import-mainframe, using which, we can connect to a certain
mainframe host and select the dataset to be imported. The following command connects to
a mainframe host with the provided credentials and then imports the mentioned dataset into
the HDFS target directory:

 sqoop import-mainframe --connnect <mainframes-host> \
--dataset <dataset-to-be-imported> \
--target-dir /dest \
 --username foo\
 --password bar

You can also choose in which format you wish to import the data, if it needs to be compressed
and if you wish to have different field delimiter than the default.

How it works...
Sqoop mainframes imports sequential data into a partitioned dataset. It has certain
limitations like records in a dataset should be character data only. Once imported data
will be saved as a single text record, and it would still be in its early stages. It would get
more mature as time passes.

Incremental import using Sqoop
In an enterprise world, the data gets increased every single day, hour, minute, and second.
It's important to import data in an incremental way to do our analysis on up-to-date data.
In this recipe, we are going to learn how to import data incrementally.

Getting ready
To perform this recipe, you should have a Hadoop cluster running with you as well as the
latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need
a MySQL database to be present in the network. Installing Sqoop is easy by downloading
Sqoop tar ball and setting it in the system path. As we are going to import data from MySQL,
we would also need to download MySQL connector. Based on your MySQL version, download
the right connector jar and copy it into the lib directory of the Sqoop installation.

Chapter 6

159

How to do it...
1.	 To learn about incremental import, we will create a new table in MySQL called

newemployee and add some records in it:
create table newemployee(id INT NOT NULL AUTO_INCREMENT,
 name varchar(20) ,
 salary float,
 PRIMARY KEY (id));
insert into newemployee (name, salary) values ("Tanmay", 2000.00);
insert into newemployee (name, salary) values ("Sneha", 5000.00);
insert into newemployee (name, salary) values ("Avinash",
8000.00);
insert into newemployee (name, salary) values ("Sakalya",
6000.00);
insert into newemployee (name, salary) values ("Manisha",
4000.00);

So, the table would like the following:
mysql> select * from newemployee;

+----+---------+--------+

| id | name | salary |

+----+---------+--------+

| 1 | Tanmay | 2000 |

| 2 | Sneha | 5000 |

| 3 | Avinash | 8000 |

| 4 | Sakalya | 6000 |

| 5 | Manisha | 4000 |

+----+---------+--------+

5 rows in set (0.00 sec)

2.	 First, we import data in a regular manner:
sqoop import \
--connect jdbc:mysql://localhost/company \
--username root \
--password password \
--table newemployee \
--target-dir /data/newemployee \
--m 1

Data Import/Export Using Sqoop and Flume

160

Now let's assume that a few more rows got added into our newemployee table:
 insert into newemployee (name, salary) values
 ("Kapila",4400.00);
 insert into newemployee (name, salary) values ("Vinit",
 6500.00);

mysql> select * from newemployee;

+----+---------+--------+

| id | name | salary |

+----+---------+--------+

| 1 | Tanmay | 2000 |

| 2 | Sneha | 5000 |

| 3 | Avinash | 8000 |

| 4 | Sakalya | 6000 |

| 5 | Manisha | 4000 |

| 6 | Kapila | 4400 |

| 7 | Vinit | 6500 |

+----+---------+--------+

7 rows in set (0.00 sec)

3.	 Now to import only new rows, we can use the incremental option in sqoop import.
Following is the command we need to use:
sqoop import \
--connect jdbc:mysql://localhost/company \
--username root \
--password password \
--table newemployee \
--target-dir /data/newemployee \
--incremental append \
--check-column id \
--last-value 5 \
--m 1

4.	 Here we need to specify which column Sqoop should look at and what its last value
is. Append mode is helpful when you have incremental IDs and you wish to import
only those rows.

Once you execute the job, you will see that only two new rows get imported into HDFS.

Chapter 6

161

5.	 In case you wish to import updated rows using Sqoop, you can use --incremental
lastmodified. To use this, first we need to have a column where we can save the
last modified date and make sure that on every update, you update the last modified
data column as well. Then you can execute the following command to get only
updated records:
sqoop import \
--connect jdbc:mysql://localhost/company \
--username root \
--password password \
--table newemployee \
--target-dir /data/newemployee \
--incremental lastmodified \
--check-column lastmod \
--last-value 01-01-1970 \
--m 1

Here lastmod is my column in MySQL table where I am storing the lastmodified date.

How it works...
Sqoop incremental import modifies the underlying Map Reduce job based on the conditions
given in the command. It filters out values for the columns specified in the command. This is
a very useful tool where the database gets updated periodically.

Creating and executing Sqoop job
Sqoop provides you the facility to store certain jobs that can be used easily. In this recipe,
we are going to see how to create a job and execute the same.

Getting ready
To perform this recipe, you should have a Hadoop cluster running with you as well as the
latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need
a MySQL database to be present in the network. Installing Sqoop is easy by downloading
Sqoop tar ball and setting it in system path. As we are going to import data from MySQL,
we would also need to download MySQL connector. Based on your MySQL version, download
the right connector jar and copy it into the lib directory of Sqoop installation.

Data Import/Export Using Sqoop and Flume

162

How to do it...
1.	 We will create a sqoop job for incremental import that we performed in the last

recipe. Following is the command to create a sqoop job:
sqoop job \
--create incremental_import_job \
-- import \
--connect jdbc:mysql://localhost/company \
--username root \
--password password \
--table newemployee \
--target-dir /data/newemployee \
--incremental append \
--check-column id \
--last-value 7 \
--m 1

2.	 We can see the list of jobs as shown in the following:
$ sqoop job --list
15/12/30 12:00:38 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
Available jobs:
 incremental_import_job

We can also view details of a particular job:
$ sqoop job --show incremental_import_job
15/12/30 12:05:51 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
Job: incremental_import_job
Tool: import
Options:

verbose = false
incremental.last.value = 7
db.connect.string = jdbc:mysql://localhost/company
codegen.output.delimiters.escape = 0
codegen.output.delimiters.enclose.required = false
codegen.input.delimiters.field = 0
hbase.create.table = false
db.require.password = true
hdfs.append.dir = true
db.table = newemployee
codegen.input.delimiters.escape = 0
import.fetch.size = null
accumulo.create.table = false

Chapter 6

163

codegen.input.delimiters.enclose.required = false
db.username = root
reset.onemapper = false
codegen.output.delimiters.record = 10
import.max.inline.lob.size = 16777216
hbase.bulk.load.enabled = false
hcatalog.create.table = false
db.clear.staging.table = false
incremental.col = id
codegen.input.delimiters.record = 0
enable.compression = false
hive.overwrite.table = false
hive.import = false
codegen.input.delimiters.enclose = 0
accumulo.batch.size = 10240000
hive.drop.delims = false
codegen.output.delimiters.enclose = 0
hdfs.delete-target.dir = false
codegen.output.dir = .
codegen.auto.compile.dir = true
relaxed.isolation = false
mapreduce.num.mappers = 1
accumulo.max.latency = 5000
import.direct.split.size = 0
codegen.output.delimiters.field = 44
export.new.update = UpdateOnly
incremental.mode = AppendRows
hdfs.file.format = TextFile
codegen.compile.dir = /tmp/sqoop-admin1/compile/
b125ff516f7a0143479b9582373230e7
direct.import = false
hdfs.target.dir = /data/newemployee
hive.fail.table.exists = false
db.batch = false

3.	 Next, we can execute the job using the following command:
sqoop job --exec incremental_import_job

This will execute the job we had specified. Now you can add more records into the MySQL
table and execute this job. It will automatically keep on updating the lastvalue parameter.

Data Import/Export Using Sqoop and Flume

164

How it works...
Sqoop saves the configuration provided in the job, and the next time you execute, it will
remember the parameters you provided. It will also make sure to update the last-value
attribute in case of incremental imports. It's a very handy tool for taking care of daily
imports with ease.

Importing data from RDBMS to Hbase
using Sqoop

These days, lots of people want to make use of the power of NoSQL databases. In order to
do so, they need to migrate their existing application from RDBMS to NoSQL databases like
Hbase. In this recipe, we are going to learn how to import data from MySQL to Hbase.

Getting ready
To perform this recipe, you should have a Hadoop cluster running with you as well as the
latest version of Sqoop installed on it. Here I am using Sqoop 1.4.6. We would also need
a MySQL database to be present in the network. Installing Sqoop is easy; by downloading
Sqoop tar ball and setting it in the system path. As we are going to import data from MySQL,
we would also need to download MySQL connector. Based on your MySQL version, download
the right connector jar and copy it into the lib directory of the Sqoop installation.

How to do it...
First of we need to create a table in MySQL and insert some records in it:

mysql> desc employee;

+-------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+-------------+------+-----+---------+-------+

| id | int(11) | YES | | NULL | |

| name | varchar(20) | YES | | NULL | |

+-------+-------------+------+-----+---------+-------+

2 rows in set (0.00 sec)

mysql> select * from employee;

+------+--------+

| id | name |

+------+--------+

Chapter 6

165

| 16 | john |

| 17 | robert |

| 18 | andrew |

| 19 | katty |

| 21 | tom |

| 22 | tim |

| 23 | james |

| 24 | paul |

| 27 | edward |

| 29 | alan |

| 31 | kerry |

| 34 | terri |

+------+--------+

12 rows in set (0.02 sec)

Next we need to create a table in Hbase:

hbase>create 'emp', 'personal data', 'professional data'

Now we can write a Sqoop job in order to fetch data from this MySQL table as shown in
the following:

sqoop import \
 --connect jdbc:mysql://localhost:3306/company \
 --username root -P \
 --table employee \
 --columns "id,name" \
 --hbase-table emp \
 --column-family 'personal data' \
 --hbase-row-key id -m 1

In the preceding command, we are specifying the source table, destination table, columns to
be imported, and which column should be used as the key.

Executing the preceding command will start a Map Reduce job and you will see records
getting imported into Hbase:

16/02/28 08:44:53 INFO mapreduce.Job: The url to track the job: http://
admin1:8088/proxy/application_1456628547885_0002/

16/02/28 08:44:53 INFO mapreduce.Job: Running job: job_1456628547885_0002

16/02/28 08:45:08 INFO mapreduce.Job: Job job_1456628547885_0002 running
in uber mode : false

16/02/28 08:45:08 INFO mapreduce.Job: map 0% reduce 0%

Data Import/Export Using Sqoop and Flume

166

16/02/28 08:45:23 INFO mapreduce.Job: map 100% reduce 0%

16/02/28 08:45:24 INFO mapreduce.Job: Job job_1456628547885_0002
completed successfully

16/02/28 08:45:24 INFO mapreduce.Job: Counters: 30

 File System Counters

 FILE: Number of bytes read=0

 FILE: Number of bytes written=159042

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=87

 HDFS: Number of bytes written=0

 HDFS: Number of read operations=1

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=0

 ob Counters

 Launched map tasks=1

 Other local map tasks=1

 Total time spent by all maps in occupied slots (ms)=11945

 Total time spent by all reduces in occupied slots (ms)=0

 Total time spent by all map tasks (ms)=11945

 Total vcore-seconds taken by all map tasks=11945

 Total megabyte-seconds taken by all map tasks=12231680

 Map-Reduce Framework

 Map input records=12

 Map output records=12

 Input split bytes=87

 Spilled Records=0

 Failed Shuffles=0

 Merged Map outputs=0

 GC time elapsed (ms)=194

 CPU time spent (ms)=4060

 Physical memory (bytes) snapshot=160456704

 Virtual memory (bytes) snapshot=418877440

 Total committed heap usage (bytes)=81002496

 File Input Format Counters

Chapter 6

167

 Bytes Read=0

 File Output Format Counters

 Bytes Written=0

16/02/28 08:45:24 INFO mapreduce.ImportJobBase: Transferred 0 bytes in
38.7996 seconds (0 bytes/sec)

16/02/28 08:45:24 INFO mapreduce.ImportJobBase: Retrieved 12 records.

Now we can check in the Hbase table as shown in the following:

hbase(main):006:0> scan 'emp'
ROW COLUMN+CELL
 16 column=personal data:name, timestamp=1456629321444,
value=
 John
 17 column=personal data:name, timestamp=1456629321444,
value=
 Robert
 18 column=personal data:name, timestamp=1456629321444,
value=
 Andrew
 19 column=personal data:name, timestamp=1456629321444,
value=
 Katty
 21 column=personal data:name, timestamp=1456629321444,
value=
 Tom
 22 column=personal data:name, timestamp=1456629321444,
value=
 Tim
 23 column=personal data:name, timestamp=1456629321444,
value=
 James
 24 column=personal data:name, timestamp=1456629321444,
value=
 Paul
 27 column=personal data:name, timestamp=1456629321444,
value=
 Edward
 29 column=personal data:name, timestamp=1456629321444,
value=
 Alan
 31 column=personal data:name, timestamp=1456629321444,
value=
 Kerry
 34 column=personal data:name, timestamp=1456629321444,
value=
 Terri
12 row(s) in 0.2990 seconds

Data Import/Export Using Sqoop and Flume

168

How it works...
Sqoop reads the command provided and makes a JDBC connection to MySQL. It verifies
the existence of source and destination tables and then starts the import. Hbase being a
columnar store database, means it writes row data and a column definition in each record.

Importing Twitter data into HDFS
using Flume

Flume is another tool that helps us import data from various other sources into HDFS.
In this recipe, we are going to see how to import Twitter data using Flume. Twitter data
is a great source of information provided by individuals. This data can be used to do
sentiment analytics of certain products, persons, companies, and so on.

Getting ready
To perform this recipe, you should have a Hadoop cluster running with you as well as the
latest version of Flume installed on it. Here I am using Flume 1.6.

How to do it...
To import data using Flume, first of all we need to have a Twitter account and we need to
generate credentials. These credentials would be used by Flume agent to import the data.
Flume by default supports sources to import data from Twitter, so there is no need to do
anything else other than having an account and generating credentials.

Following is the step-by-step process to generate Twitter authorization tokens:

1.	 Log in to https://apps.twitter.com/.

https://apps.twitter.com/

Chapter 6

169

2.	 Click on Create New Application. Fill in the required form as shown in the
following screenshot:

3.	 Read and accept the Developer Agreement if you think it's good for you:

Data Import/Export Using Sqoop and Flume

170

4.	 Click on Create your Twitter application to save your application. Now we can use
this handle to import data from Twitter:

5.	 Click on Keys and Access Tokens; there you will find the application specific Consumer
Key and Consumer Secret Key. Keep a copy of it as we will need it in the next steps.

Chapter 6

171

6.	 On scrolling down, you will also see an option to generate an access token, so do that
and keep a copy of it for future use.

7.	 Now edit $FLUME_HOME/conf/flume.conf to copy the exact values of the access
key, secret key, access token, and access token secret. Save the changes made to
the file.

The following is how your flume.conf should look like:
TwitterAgent for collecting Twitter data to Hadoop HDFS

TwitterAgent.sources = Twitter
TwitterAgent.channels = FileChannel
TwitterAgent.sinks = HDFS

TwitterAgent.sources.Twitter.type = org.apache.flume.source.
twitter.TwitterSource
TwitterAgent.sources.Twitter.channels = FileChannel
TwitterAgent.sources.Twitter.consumerKey = <consumer-key>
TwitterAgent.sources.Twitter.consumerSecret = <consume-secret>
TwitterAgent.sources.Twitter.accessToken = <access-token>
TwitterAgent.sources.Twitter.accessTokenSecret = <access-token-
secret>
TwitterAgent.sources.Twitter.maxBatchSize = 50000
TwitterAgent.sources.Twitter.maxBatchDurationMillis = 100000

#TwitterAgent.sources.Twitter.keywords = Apache, Hadoop,
Mapreduce, hadooptutorial, Hive, Hbase, MySql

TwitterAgent.sinks.HDFS.channel = FileChannel
TwitterAgent.sinks.HDFS.type = hdfs
TwitterAgent.sinks.HDFS.hdfs.path = hdfs://localhost:9000/user/
flume/tweets/
TwitterAgent.sinks.HDFS.hdfs.fileType = DataStream
TwitterAgent.sinks.HDFS.hdfs.writeFormat = Text
TwitterAgent.sinks.HDFS.hdfs.batchSize = 200000
TwitterAgent.sinks.HDFS.hdfs.rollSize = 0
TwitterAgent.sinks.HDFS.hdfs.rollCount = 2000000

TwitterAgent.channels.FileChannel.type = file
TwitterAgent.channels.FileChannel.checkpointDir = /var/log/flume/
checkpoint/
TwitterAgent.channels.FileChannel.dataDirs = /var/log/flume/data/

Data Import/Export Using Sqoop and Flume

172

8.	 Now it's time to execute Flume agent to start fetching data from Twitter and save it
on HDFS:
/usr/local/flume/bin/flume-ng agent -n TwitterAgent -c /usr/local/
flume/conf -f /usr/local/flume/conf/flume.conf

Execute the preceding command to fetch data from Twitter and save it on HDFS.

9.	 Now you can take a look at the HDFS path /user/flume/tweets to see the actual
Twitter data.

How it works
Flume has built-in support for the Twitter source. It uses Twitter exposed APIs to download the
data and store it on HDFS. It internally browses through the tweets available for your user and
downloads them. It keeps on creating a new file based on time. You can also download only
those tweets with certain keywords by uncommenting the following line from flume.conf
and rerunning the Flume agent:

TwitterAgent.sources.Twitter.keywords = Apache, Hadoop, Mapreduce,
hadooptutorial, Hive, Hbase, MySql

Please make a note that the application you have created has all of the
same rights as a user. So don't share the keys with anyone else.

Chapter 6

173

Importing data from Kafka into HDFS
using Flume

Kafka is one the most popular message queue systems being used these days. We can listen
to Kafka topics and put the message data directly into HDFS using Flume. The latest Flume
version supports importing data from Kafka easily. In this recipe, we are going to learn how to
import Kafka messages to HDFS.

Getting ready
To perform this recipe, you should have a Hadoop cluster running with you as well as the latest
version of Flume installed on it. Here I am using Flume 1.6. We also need Kafka installed and
running on one of the machines. I am using kafka_2.10-0.9.0.0.

How to do it...
1.	 To import the data from Kafka, first you need to have Kafka running on your machine.

The following command starts Kafka and Zookeeper:
bin/zookeeper-server-start.sh config/zookeeper.properties
bin/kafka-server-start.sh config/server.properties

2.	 Next I create a topic called weblogs which we will be listening to:
bin/kafka-topics.sh --create --zookeeper localhost:2181
--replication-factor 1 --partitions 1 --topic weblogs

3.	 Next we will start a producer which we will write to weblogs topic:
bin/kafka-console-producer.sh --broker-list localhost:9092 --topic
weblogs

4.	 Now that all Kafka-related infra is set up, we need to also create Flume configuration,
which will be listening to the weblogs topic and writing it to HDFS:
Flume config to listen to Kakfa topic and write to HDFS.
flume1.sources = kafka-source-1
flume1.channels = hdfs-channel-1
flume1.sinks = hdfs-sink-1

For each source, channel, and sink, set
standard properties.
flume1.sources.kafka-source-1.type = org.apache.flume.source.
kafka.KafkaSource
flume1.sources.kafka-source-1.zookeeperConnect = localhost:2181
flume1.sources.kafka-source-1.topic = weblogs
flume1.sources.kafka-source-1.batchSize = 100

Data Import/Export Using Sqoop and Flume

174

flume1.sources.kafka-source-1.channels = hdfs-channel-1

flume1.channels.hdfs-channel-1.type = memory
flume1.sinks.hdfs-sink-1.channel = hdfs-channel-1
flume1.sinks.hdfs-sink-1.type = hdfs
flume1.sinks.hdfs-sink-1.hdfs.writeFormat = Text
flume1.sinks.hdfs-sink-1.hdfs.fileType = DataStream
flume1.sinks.hdfs-sink-1.hdfs.filePrefix = test-events
flume1.sinks.hdfs-sink-1.hdfs.useLocalTimeStamp = true
flume1.sinks.hdfs-sink-1.hdfs.path = /tmp/kafka/%{topic}/%y-%m-%d
flume1.sinks.hdfs-sink-1.hdfs.rollCount=100
flume1.sinks.hdfs-sink-1.hdfs.rollSize=0

Other properties are specific to each type of
source, channel, or sink. In this case, we
specify the capacity of the memory channel.
flume1.channels.hdfs-channel-1.capacity = 10000

5.	 I am saving this configuration as kafka.conf. Now to execute this Flume agent, we
use the following command:
/usr/local/flume/bin/flume-ng agent -n flume1 -c /usr/local/
flume/conf -f /usr/local/flume/conf/kafka.conf -Dflume.root.
logger=INFO,console

This will start a process that will be listening to the weblogs topic in Kafka. Now to test this
setup, go to the screen where we are running the Kafka producers and send some messages
to the weblogs topic. As soon as you send a message to the topic, you will see logs on Flume
agent conveying that it is writing to HDFS.

You can now check out the HDFS path to see if the messages are being written there:

hadoop fs -cat /tmp/kafka/weblogs/16-01-02/test-events.1451730937398
Hello World

Chapter 6

175

How it works
Flume agent listens to a given topic. As soon as the message is received, it uses the defined
HDFS sinks to write the data to the HDFS path. First it creates a .tmp file, and after a
certain message is received, it renames it to a regular file. Flume, by default, uses the group
ID as Flume to avoid any message loss from the actual application. We can also run multiple
Flume agents to distribute the load.

Importing web logs data into HDFS
using Flume

One of the most important use cases of Flume is importing logs data into HDFS as and when
it is produced. In this recipe, we will be executing a Flume agent which will be listening to the
logs file.

Getting ready
To perform this recipe, you should have a Hadoop cluster running with you as well as the
latest version of Flume installed on it.

How to do it...
1.	 To import data into HDFS from web servers, we have to install Flume agent on

each web server instance.Following is the configuration we have to use for Flume
agent configuration:
flume1.sources = weblogs-source-1
flume1.channels = hdfs-channel-1
flume1.sinks = hdfs-sink-1

For each source, channel, and sink, set
standard properties.
flume1.sources.weblogs-source-1.type = exec
flume1.sources.weblogs-source-1.command = tail -f /path/to/log/
file.log
flume1.sources.weblogs-source-1.batchSize = 100
flume1.sources.weblogs-source-1.channels = hdfs-channel-1

flume1.channels.hdfs-channel-1.type = memory
flume1.sinks.hdfs-sink-1.channel = hdfs-channel-1
flume1.sinks.hdfs-sink-1.type = hdfs
flume1.sinks.hdfs-sink-1.hdfs.writeFormat = Text

Data Import/Export Using Sqoop and Flume

176

flume1.sinks.hdfs-sink-1.hdfs.fileType = DataStream
flume1.sinks.hdfs-sink-1.hdfs.filePrefix = test-events
flume1.sinks.hdfs-sink-1.hdfs.useLocalTimeStamp = true
flume1.sinks.hdfs-sink-1.hdfs.path = /logs/web/%y-%m-%d
flume1.sinks.hdfs-sink-1.hdfs.rollCount=100
flume1.sinks.hdfs-sink-1.hdfs.rollSize=0

Other properties are specific to each type of
source, channel, or sink. In this case, we
specify the capacity of the memory channel.
flume1.channels.hdfs-channel-1.capacity = 10000

2.	 This will be listening to the given log file path. Here we are using exec source, which
executes given command after a certain time interval.

Here the source is an output of the exec command we have provided. The channel
transfers the data to Sink, which writes it to HDFS.

3.	 To execute the preceding configuration, we have to run the following command:
/usr/local/flume/bin/flume-ng agent -n flume1 -c /usr/local/
flume/conf -f /usr/local/flume/conf/weblogs.conf -Dflume.root.
logger=INFO,console

Now, as and when the log file is updated, the data will be written to HDFS as well:

How it works...
Exec source executes the command on a given instance and redirects the output to
a channel. The Channel then makes sure that it is given to the sink. Here we are using
HDFS sink, which writes the data to HDFS in the given format.

177

7
Automation of Hadoop

Tasks Using Oozie

In this chapter, we'll take a look at the following recipes:

ff Implementing a Sqoop action job using Oozie

ff Implementing a Map Reduce action job using Oozie

ff Implementing a Java action job using Oozie

ff Implementing a Hive action job using Oozie

ff Implementing a Pig action job using Oozie

ff Implementing an e-mail action job using Oozie

ff Executing parallel jobs using Oozie (fork)

ff Scheduling a job in Oozie

Introduction
In the previous chapter, we talked about two very important tools, Sqoop and Flume, which help
us seamlessly import and export data in and out of Hadoop. Now that we have talked about
most of the Hadoop ecosystem tools and their advanced usage, it's time to understand how
to automate these tasks using another interesting tool called Oozie. Oozie is a job scheduler,
which helps us execute a series of Hadoop tasks in a workflow.

Automation of Hadoop Tasks Using Oozie

178

Implementing a Sqoop action job using Oozie
In the previous chapter, we took a look at how to use Sqoop to import and export data from
RDBMS to HDFS. In this recipe, you are going to learn how to automate this Sqoop import and
export using Oozie.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Sqoop and Oozie installed on it.

How to do it...
Any Oozie job execution consists of two important things, a workflow.xml and a properties
file. The workflow.xml file is where we need to specify the flow of an execution. The following
is an example of workflow.xml, which uses the Sqoop action:

<workflow-app xmlns="uri:oozie:workflow:0.2" name="sqoop-wf">
<start to="sqoop-node"/>

<action name="sqoop-node">
<sqoop xmlns="uri:oozie:sqoop-action:0.2">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>

<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<command>import --connect jdbc:mysql://localhost:3306/company
--username root --password password --table employee --target-dir /
data/employee-oozie -m 1</command>
</sqoop>
<ok to="end"/>
<error to="fail"/>
</action>

Chapter 7

179

<kill name="fail">
<message>Sqoop failed, error message[${wf:errorMessage(wf:lastErrorNo
de())}]</message>
</kill>
<end name="end"/>
</workflow-app>

This is the command section where we need to provide the actual command that is to be
executed from Sqoop.

Now, we have to upload workflow.xml to HDFS. After this, we need to create a job.
properties file, which would invoke this workflow. Here is a sample code snippet for
this purpose:

nameNode=hdfs://localhost:9000
jobTracker=localhost:8032
queueName=default
examplesRoot=examples
oozie.libpath=${nameNode}/user/admin1/share/lib
oozie.use.system.libpath=true

oozie.wf.application.path=${nameNode}/user/admin1/share/examples/apps/
sqoop

We have a property called jobTracker for which we have to give ResourceManager a host
and a port.

Now, we have to submit this job using the following command:

oozie job -oozie http://localhost:11000/oozie -config job.properties
–run

This will start the workflow which will fetch data from MySQL and store it in the given HDFS
directory. From Oozie's UI, you can track the progress of this job.

How it works
Oozie internally calls Sqoop libraries in order to import and export data as given in the
command section. You can also use the <prepare> statements in order to make sure
that directory where you export the data has been cleared before executing the job.

Automation of Hadoop Tasks Using Oozie

180

Implementing a Map Reduce action job
using Oozie

In the previous recipe, we talked about how to use a Sqoop action to import data to HDFS.
In this recipe, we are going to take a look at how to execute Map Reduce jobs using Oozie.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Oozie installed on it.

How to do it...
Any Oozie job execution consists of two important things, workflow.xml and a properties
file. The Workflow.xml file is where we need to specify the flow of execution. The following
is an example of workflow.xml, which uses the MR action. Here, we also need to provide
the jar file that contains the the map reduce code:

<workflow-app xmlns="uri:oozie:workflow:0.2" name="map-reduce-wf">
<start to="mr-node"/>
<action name="mr-node">
<map-reduce>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>
<delete path="${nameNode}/user/${wf:user()}/${examplesRoot}/output-
data/${outputDir}"/>
</prepare>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
<property>
<name>mapred.mapper.class</name>
<value>com.demo.WordMapper</value>
</property>
<property>
<name>mapred.reducer.class</name>
<value>com.demo.SumReducer</value>
</property>
<property>

Chapter 7

181

<name>mapred.input.dir</name>
<value>/in</value>
</property>
<property>
<name>mapred.output.dir</name>
<value>${outputDir}</value>
</property>
</configuration>
</map-reduce>
<ok to="end"/>
<error to="fail"/>
</action>
<kill name="fail">
<message>Map/Reduce failed, error message[${wf:errorMessage(wf:lastErr
orNode())}]</message>
</kill>
<end name="end"/>
</workflow-app>

In the preceding workflow.xml, it is important to provide the mapper and reducer
classes, respectively.

Now, we have to upload workflow.xml and the jar file to HDFS. After this, we need to create
the job.properties file, which will invoke this workflow. Here is a sample code snippet for
this purpose:

nameNode=hdfs://localhost:9000
jobTracker=localhost:8032
queueName=default

oozie.wf.application.path=${nameNode}/user/admin1/share/examples/apps/
map-reduce/workflow.xml
outputDir=/newout

For the property called jobTracker, we can pass the ResourceManager host and
port number.

We have to submit this job using the following command:

oozie job -oozie http://localhost:11000/oozie -config job.properties
–run

This will start the workflow, which will start reading data from the /in directory, calculate the
word count, and write the output to the /newout directory.

Automation of Hadoop Tasks Using Oozie

182

How it works...
Oozie internally submits the map reduce job to the Resource Managers and works similar to
our regular map reduce jobs. You can also use the <prepare> statements in order to make
sure that the directory where you export the data has been cleared before executing the job.

Implementing a Java action job using Oozie
In the previous recipe, we talked about how to use Oozie to execute the Map Reduce job.
In this recipe, we are going to take a look at how to execute any Java class using Oozie.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Oozie installed on it.

How to do it
Any Oozie job execution consists of two important things, workflow.xml and a properties
file. The workflow.xml is where we need to specify the flow of execution. The following is an
example of workflow.xml, which uses a Java action. Here, we need to provide the jar file in
which the code is present:

<workflow-app xmlns="uri:oozie:workflow:0.2" name="java-main-wf">
<start to="java-node"/>
<action name="java-node">
<java>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<main-class>com.demo.JavaMain</main-class>
<arg>Hello</arg>
<arg>Oozie!</arg>
</java>
<ok to="end"/>
<error to="fail"/>
</action>

Chapter 7

183

<kill name="fail">
<message>Java failed, error message[${wf:errorMessage(wf:lastErrorNo
de())}]</message>
</kill>
<end name="end"/>
</workflow-app>

In the preceding e workflow.xml, we need to provide the main class that should be the
entry point of our Java program. We can also provide arguments that can be passed to the
Java class.

Now, we have to upload workflow.xml and the jar file to HDFS. After this, we need to create
the job.properties file, which will invoke this workflow. Here is a sample code snippet for
this purpose:

nameNode=hdfs://localhost:8020
jobTracker=localhost:8032
queueName=default
examplesRoot=examples

oozie.wf.application.path=${nameNode}/user/admin1/${examplesRoot}/
apps/java-main

Here, we have a property called jobTracker for which we have to provide ResourceManager
a host and a port.

Now, we have to submit this job using the following command:

oozie job -oozie http://localhost:11000/oozie -config job.properties
–run

This will start the workflow, which will execute the code given in the Main class using the
arguments that are passed.

How it works
Oozie executes the Main class provided along with the arguments in workflow.xml. It is
important to note that while using Oozie, if you are trying to access any resources, make sure
that a user has access to them.

Automation of Hadoop Tasks Using Oozie

184

Implementing a Hive action job using Oozie
In this recipe, we are going to take a look at how to use a Hive action in order to automate
Hive query executions.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Oozie and Hive installed on it.

How to do it...
Any Oozie job execution consists of two important things, workflow.xml and a properties
file. The workflow.xml file is where we need to specify the flow of execution. The following
is an example of workflow.xml, which uses the Hive action:

<workflow-app xmlns="uri:oozie:workflow:0.2" name="hive-wf">
<start to="hive-node"/>

<action name="hive-node">
<hive xmlns="uri:oozie:hive-action:0.2">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<script>script.q</script>
</hive>
<ok to="end"/>
<error to="fail"/>
</action>

<kill name="fail">
<message>Hive failed, error message[${wf:errorMessage(wf:lastErrorNo
de())}]</message>
</kill>
<end name="end"/>
</workflow-app>

Chapter 7

185

Here, we can provide the Hive commands that are to be executed in the script.q file.
The following is an example of the contents of script.q:

CREATE EXTERNAL TABLE test (a INT) STORED AS TEXTFILE LOCATION '/data/
input/test';
CREATE TABLE test_new (a INT) STORED AS TEXTFILE;
INSERT OVERWRITE TABLE test_new SELECT * FROM test;

In this script, you can write as many Hive queries as you wish to execute using Oozie.

Now, we have to upload workflow.xml and script.q to HDFS. After this, we need to
create the job.properties file, which will invoke this workflow. Here is a sample code
snippet for this purpose:

nameNode=hdfs://localhost:9000
jobTracker=localhost:8032
queueName=default
examplesRoot=examples

oozie.use.system.libpath=true

oozie.wf.application.path=${nameNode}/user/admin1/share/examples/apps/
hive

Here, we have a property called jobTracker for which we have to give ResourceManager a
host and a port.

Now, we have to submit this job using the following command:

oozie job -oozie http://localhost:11000/oozie -config job.properties
–run

This will start the workflow, which will execute the given Hive queries.

How it works...
Oozie internally calls Hive to execute the given Hive query. It is important to provide fully
qualified paths for input directories and not relative directories so there are no errors because
of invalid paths. Each and everytime this can be performed from the Hive action as well.

Automation of Hadoop Tasks Using Oozie

186

Implementing a Pig action job using Oozie
In this recipe, we are going to take a look at how to use a Pig action in order to automate the
Pigscripts executions.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Oozie and Pig installed on it.

How to do it...
A Oozie job execution consists of two important things, workflow.xml and a properties file.
The workflow.xml file is where we need to specify the flow of execution. The following is an
example of workflow.xml, which uses the Pig action:

<workflow-app xmlns="uri:oozie:workflow:0.2" name="pig-wf">
<start to="pig-node"/>
<action name="pig-node">
<pig>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>
<delete path="${nameNode}/user/${wf:user()}/${examplesRoot}/output-
data/pig"/>
</prepare>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<script>script.pig</script>
<param>INPUT=/user/${wf:user()}/${examplesRoot}/input-data/text</
param>
<param>OUTPUT=/user/${wf:user()}/${examplesRoot}/output-data/pig</
param>
</pig>
<ok to="end"/>
<error to="fail"/>
</action>
<kill name="fail">

Chapter 7

187

<message>Pig failed, error message[${wf:errorMessage(wf:lastErrorNo
de())}]</message>
</kill>
<end name="end"/>
</workflow-app>

Here, we can provide the Pig commands to be executed in the script.pig file. The following
is an example of the contents of script.pig:

A = load '$INPUT' using PigStorage(':');
B = foreach A generate $0 as id;
store B into '$OUTPUT' USING PigStorage();

In this script, you can write any Pig command that you wish to execute using Oozie.

Now, we have to upload workflow.xml and script.pig to HDFS. After this, we need to
create the job.properties file, which will invoke this workflow. Here is a sample code
snippet for this purpose:

nameNode=hdfs://localhost:9000
jobTracker=localhost:8032
queueName=default
examplesRoot=examples

oozie.use.system.libpath=true

oozie.wf.application.path=${nameNode}/user/admin1/share/examples/apps/
pig

Here, we have a property, called jobTracker, for which we have to give ResourceManager
a host and a port.

Now, we have to submit this job using the following command:

oozie job -oozie http://localhost:11000/oozie -config job.properties
–run

This will start the workflow, which will execute the given Pigcommands.

How it works
Oozie internally calls Pig to execute the given Pig script. It is important to provide fully
qualified paths for input directories and not relative directories. Each and everytime,
this can be performed from the Pig action as well.

Automation of Hadoop Tasks Using Oozie

188

Implementing an e-mail action job
using Oozie

In this recipe, we are going to take a look at how to use an e-mail action in order to notify
users about job executions in Oozie.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Oozie installed on it.

How to do it...
An Oozie job execution consists of two important things, workflow.xml and a properties file.
The workflow.xml file is where we need to specify the flow of execution. The following is an
example of workflow.xml, which uses the e-mail action:

<workflow-app xmlns="uri:oozie:workflow:0.2" name="pig-wf">
<start to="notify"/>
<action name="notify">
<email xmlns="uri:oozie:email-action:0.1">
<to>a@.b.com</to>
<cc>b@b.com</cc>
<subject>Email notifications for ${wf:id()}</subject>
<body>The wf ${wf:id()} successfully completed.</body>
</email>
<error to="fail"/>
</action>
<kill name="fail">
<message>Email, error message[${wf:errorMessage(wf:lastErrorNo
de())}]</message>
</kill>
<end name="end"/>
</workflow-app>

To use the e-mail action, we first need to configure SMTP settings in oozie-site.xml,
and the following properties need to be set:

ff oozie.email.smtp.host: The host where the e-mail action may find the
SMTP server (the localhost by default)

ff oozie.email.smtp.port: The port to connect to for the SMTP server (25 by default)

Chapter 7

189

ff oozie.email.from.address: The from address to be used for the purpose of
mailing all e-mails (oozie@localhost by default)

ff oozie.email.smtp.auth: The Boolean property that toggles when an
authentication is to be done or not (false by default)

ff oozie.email.smtp.username: If an authentication is enabled, this shows the
username to login as (empty by default)

ff oozie.email.smtp.password: If the authentication is enabled, this shows the
username's password (empty by default)

Now, we have to upload workflow.xml to HDFS. After this, we need to create the
job.properties file, which will invoke this workflow. Here is a sample code snippet
for this purpose:

nameNode=hdfs://localhost:9000
jobTracker=localhost:8032
queueName=default
examplesRoot=examples

oozie.use.system.libpath=true

oozie.wf.application.path=${nameNode}/user/admin1/share/examples/apps/
email

Here, we have a property, called jobTracker, for which we have to give ResourceManager
a host and a port.

Now, we have to submit this job using the following command:

oozie job -oozie http://localhost:11000/oozie -config job.properties
–run

This will start the workflow, which will send the e-mail with given the details.

How it works...
The e-mail action is very important as it helps us notify users about the progress.
My recommendation is that you should use this action at the start of the workflow,
in case of any errors, and on successful completion.

Automation of Hadoop Tasks Using Oozie

190

Executing parallel jobs using Oozie (fork)
In this recipe, we are going to take a look at how to execute parallel jobs using the Oozie fork
node. Here, we will be executing one Hive and one Pig job in parallel.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Oozie, Hive, and Pig installed on it.

How to do it...
For parallel execution, we need to use the fork node given by Oozie. The following is a sample
workflow that executes Hive and Pig jobs in parallel:

<workflow-app xmlns="uri:oozie:workflow:0.2" name="demo-wf">

<start to="fork-node"/>

<fork name="fork-node">
<path start="pig-node"/>
<path start="hive-node"/>
</fork>

<action name="pig-node">
<pig>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>
<delete path="${nameNode}/user/${wf:user()}/${examplesRoot}/output-
data/pig"/>
</prepare>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<script>script.pig</script>
<param>INPUT=/user/${wf:user()}/${examplesRoot}/input-data/text</
param>

Chapter 7

191

<param>OUTPUT=/user/${wf:user()}/${examplesRoot}/output-data/pig</
param>
</pig>
<ok to="join-node"/>
<error to="fail"/>
</action>

<action name="hive-node">
<hive xmlns="uri:oozie:hive-action:0.2">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<script>script.q</script>
</hive>
<ok to="join-node"/>
<error to="fail"/>
</action>

<join name="join-node" to="end"/>

<kill name="fail">
<message>Demo workflow failed, error message[${wf:errorMessage(wf:last
ErrorNode())}]</message>
</kill>

<end name="end"/>

</workflow-app>

We can provide any number of jobs in the fork node to execute it in parallel. Each forked node
should be joined back in a join node.

Now, we have to submit this job using the following command:

oozie job -oozie http://localhost:11000/oozie -config job.properties
–run

This will start the workflow that will execute Hive and Pig scripts in parallel.

Automation of Hadoop Tasks Using Oozie

192

How it works...
The fork node is helpful when we have two more processes which are independent of each
other. This helps reduce the time for execution by consuming available resources.

Scheduling a job in Oozie
In this recipe, we are going to take a look at a schedule that has recurring jobs using the
Oozie coordinator.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Oozie installed on it.

How to do it...
Oozie provides one more type of job called a coordinator job. This type of job is used to
schedule application jobs. With the help of a coordinator job, we can execute an application
job. The following is an example of a coordinator job that runs daily:

<coordinator-app name="sample-coordinator"
 frequency="${coord:days(1)}"
 start="2016-01-01T18:56Z" end="2017-01-01T18:56Z" timezone="UTC"
 xmlns="uri:oozie:coordinator:0.2">

<controls>

<concurrency>1</concurrency>
<execution>FIFO</execution>
<throttle>5</throttle>
</controls>

<action>
<workflow>
<app-path>${applicationPath}</app-path>
<configuration>
 ...
</configuration>
</workflow>
</action>
</coordinator-app>

Chapter 7

193

Coordinator jobs contain one important attribute called frequency, which decides the
frequency of job executions within a given start and end time.

Here is sample job.properties to execute the preceding workflow:

nameNode=hdfs://localhost:9000
jobTracker=localhost:8032
queueName=default
examplesRoot=examples

oozie.use.system.libpath=true

oozie.coord.application.path=${nameNode}/user/admin1/share/examples/
apps/coordinator

Now, we have to submit this job using the following command:

oozie job -oozie http://localhost:11000/oozie -config job.properties
–run

This will start the coordinator workflow, which will keep on running as per the schedule.

How it works...
Coordinator jobs work like crontab, where you set the frequency of certain task executions.
Internally, it then invokes the application workflow provided in the coordinator workflow.

195

8
Machine Learning and

Predictive Analytics
Using Mahout and R

In this chapter, we'll cover the following recipes:

ff Setting up the Mahout development environment

ff Creating an item-based recommendation engine using Mahout

ff Creating a user-based recommendation engine using Mahout

ff Using predictive analytics for the marketing data of a bank

ff Clustering text data using K-Means

ff Performing population data analytics using R

ff Performing Twitter Sentiment Analytics using R

ff Performing Predictive Analytics using R

Introduction
In the previous chapter, we talked about how to automate Hadoop and its ecosystem tasks
using Oozie. In this chapter, we will go deeper into the concepts of machine learning using
Mahout and R. Mahout is a machine learning library, which allows us to solve machine
learning problems with ease, whereas R is a statistical tool, which helps us build models.
So, let's get started.

Machine Learning and Predictive Analytics Using Mahout and R

196

Setting up the Mahout development
environment

In this recipe, we are going to take a look at how to set up the Mahout development environment.

Getting ready
To perform this recipe, you should have a running Hadoop cluster.

How to do it...
Setting up the Mahout environment is very easy:

1.	 To start with, we first need to download the latest version of Mahout from
http://www.apache.org/dyn/closer.cgi/mahout/.

2.	 I am going to use version 0.11.1 ,which can be found at http://www.eu.apache.
org/dist/mahout/0.11.1/apache-mahout-distribution-0.11.1.tar.gz.

3.	 Next, unzip the tar and rename the folder as Mahout for simplicity's sake:
sudo tar -xzf apache-mahout-distribution-0.11.1.tar.gz

sudo mv apache-mahout-distribution-0.11.1 mahout

4.	 To use the Mahout commands from everywhere, we add the distribution path to PATH.

Edit ~/.bashrc and add the following commands to it:
export MAHOUT_HOME=/usr/local/mahout

export PATH=$PATH:$MAHOUT_HOME/bin

5.	 Execute the following command to take a look at whether the changes are effective:
source ~/.bashrc

6.	 Now you are all set to use Mahout:
$ mahout
Running on hadoop, using /usr/local/hadoop/bin/hadoop and HADOOP_
CONF_DIR=
MAHOUT-JOB: /usr/local/mahout/mahout-examples-0.11.1-job.jar
An example program must be given as the first argument.
Valid program names are:
 arff.vector: : Generate Vectors from an ARFF file or directory
 baumwelch: : Baum-Welch algorithm for unsupervised HMM training
 canopy: : Canopy clustering
 cat: : Print a file or resource as the logistic regression
models would see it

http://www.apache.org/dyn/closer.cgi/mahout/
http://www.eu.apache.org/dist/mahout/0.11.1/apache-mahout-distribution-0.11.1.tar.gz
http://www.eu.apache.org/dist/mahout/0.11.1/apache-mahout-distribution-0.11.1.tar.gz

Chapter 8

197

 cleansvd: : Cleanup and verification of SVD output
 clusterdump: : Dump cluster output to text
 clusterpp: : Groups Clustering Output In Clusters
 cmdump: : Dump confusion matrix in HTML or text formats
 cvb: : LDA via Collapsed Variation Bayes (0th deriv. approx)
 cvb0_local: : LDA via Collapsed Variation Bayes, in memory
locally.
 describe: : Describe the fields and target variable in a data
set
 evaluateFactorization: : compute RMSE and MAE of a rating matrix
factorization against probes
 fkmeans: : Fuzzy K-means clustering
 hmmpredict: : Generate random sequence of observations by given
HMM
 itemsimilarity: : Compute the item-item-similarities for item-
based collaborative filtering
 kmeans: : K-means clustering
 lucene.vector: : Generate Vectors from a Lucene index
 matrixdump: : Dump matrix in CSV format
 matrixmult: : Take the product of two matrices
 parallelALS: : ALS-WR factorization of a rating matrix
 qualcluster: : Runs clustering experiments and summarizes
results in a CSV
 recommendfactorized: : Compute recommendations using the
factorization of a rating matrix
 recommenditembased: : Compute recommendations using item-based
collaborative filtering
 regexconverter: : Convert text files on a per line basis based
on regular expressions
 resplit: : Splits a set of SequenceFiles into a number of equal
splits
 rowid: : Map SequenceFile<Text,VectorWritable> to {SequenceFile<
IntWritable,VectorWritable>, SequenceFile<IntWritable,Text>}
 rowsimilarity: : Compute the pairwise similarities of the rows
of a matrix
 runAdaptiveLogistic: : Score new production data using a
probably trained and validated AdaptivelogisticRegression model
 runlogistic: : Run a logistic regression model against CSV data
 seq2encoded: : Encoded Sparse Vector generation from Text
sequence files
 seq2sparse: : Sparse Vector generation from Text sequence files
 seqdirectory: : Generate sequence files (of Text) from a
directory
 seqdumper: : Generic Sequence File dumper
 seqmailarchives: : Creates SequenceFile from a directory
containing gzipped mail archives

Machine Learning and Predictive Analytics Using Mahout and R

198

 seqwiki: : Wikipedia xml dump to sequence file
 spectralkmeans: : Spectral k-means clustering
 split: : Split Input data into test and train sets
 splitDataset: : split a rating dataset into training and probe
parts
 ssvd: : Stochastic SVD
 streamingkmeans: : Streaming k-means clustering
 svd: : Lanczos Singular Value Decomposition
 testnb: : Test the Vector-based Bayes classifier
 trainAdaptiveLogistic: : Train an AdaptivelogisticRegression
model
 trainlogistic: : Train a logistic regression using stochastic
gradient descent
 trainnb: : Train the Vector-based Bayes classifier
 transpose: : Take the transpose of a matrix
 validateAdaptiveLogistic: : Validate an
AdaptivelogisticRegression model against hold-out data set
 vecdist: : Compute the distances between a set of Vectors (or
Cluster or Canopy, they must fit in memory) and a list of Vectors
 vectordump: : Dump vectors from a sequence file to text
viterbi: : Viterbi decoding of hidden states from given output
states sequence

How it works...
We have just set the Mahout home, and it shows all the algorithms that are supported along
with their purpose. Not all Mahout algorithms are able to use Hadoop/Map Reduce in order to
understand that in a better manner.

I suggest that you take a look at https://mahout.apache.org/
users/basics/algorithms.html.

Creating an item-based recommendation
engine using Mahout

In this recipe, we are going to take a look at how to use Mahout to generate item-based
recommendations. Recommendation engine is one of the most seen use cases. A
recommendation engine generates recommendations based on the input data provided
to it. In this recipe, we are going to take a look at how to generate recommendations based
on user preferences for certain items.

https://mahout.apache.org/users/basics/algorithms.html
https://mahout.apache.org/users/basics/algorithms.html

Chapter 8

199

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Mahout installed on it.

How to do it...
Mahout provides built-in support for item-based recommendations. In order to execute a
program using Mahout, we first need to prepare the input data and store it in a certain folder.
The input data needs to be in a specified format (userId, itemId, and preference). Here,
userId is the unique user identifier, itemId, is the unique item identifier, while the preference
can be a rating given by a user to a specific item, number of items that are ordered, and so on.

First, we capture and prepare our data and store it in HDFS:

hadoop fs -mkdir /recommender-in

hadoop fs -put user-item.txt /recommender-in

Here is some sample input:

1,10,1.0

1,11,2.0

1,12,5.0

1,13,5.0

1,14,5.0

1,15,4.0

1,16,5.0

1,17,1.0

1,18,5.0

2,10,1.0

2,11,2.0

2,15,5.0

2,16,4.5

2,17,1.0

2,18,5.0

3,11,2.5

3,12,4.5

3,13,4.0

3,14,3.0

3,15,3.5

Machine Learning and Predictive Analytics Using Mahout and R

200

3,16,4.5

3,17,4.0

3,18,5.0

4,10,5.0

4,11,5.0

4,12,5.0

4,13,0.0

4,14,2.0

4,15,3.0

4,16,1.0

4,17,4.0

4,18,1.0

To start the job, we have to execute the following command:

mahout recommenditembased -s SIMILARITY_LOGLIKELIHOOD -i /recommender-in
-o /recommender-out --numRecommendations 5

The preceding command starts a series of Map Reduce programs, which run over the input
data. SIMILARITY_LOGLIKELIHOOD is the name of a class that determines the similarity
between items. You can either use this default, or you can choose from a variety of similar
algorithms that are available.

Once the execution is complete, the output that's generated is as follows:

$ hadoop fs -ls /recommender-out

 Found 2 items

 -rw-r--r-- 1 admin1 supergroup 0 2016-01-28 11:46
 /recommender-out/_SUCCESS

 -rw-r--r-- 1 admin1 supergroup 28 2016-01-28 11:46
 /recommender-out/part-r-00000

$ hadoop fs -cat /recommender-out/part-r-00000

 3	 [10:3.8597424]

 4	 [13:4.0]

This output indicates that the recommender has generated two recommendations. For user 3,
it recommends item 10, and for user 4, it recommends item 13.

This way, you can keep on putting your data in HDFS and keep running the recommendation
jobs every time that the data is updated. You can write custom code to use this output and
integrate it into your application.

Chapter 8

201

How it works...
Mahout uses various algorithms to generate the recommendations. It first puts the data that's
been given as the input in the form of model data. It uses a similarity calculation algorithm
given by the user in order to do this. These two things are used as input in order to calculate
the similarity between the items. Once this is calculated, based on the items that are not used
by users, it recommends them.

This implementation can used as is without any modifications if it can get your data in the
given format. You can use this recommendation engine to generate recommendations on
e-commerce websites for production recommendations, or it can also be used to track web
user activity and recommend web pages accordingly.

Creating a user-based recommendation
engine using Mahout

In this recipe, we are going to take a look at how to use Mahout to generate user-based
recommendations. The user-based recommendation engine is not available directly to be
used as a Map Reduce job. We have to run it in a sequential manner, as described in the
next section.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Mahout installed on it. We will also need an Eclipse-like IDE or any other IDE of your choice
for code development.

How to do it...
User-based recommendations work on the simple principle of user similarities and their
likelihood toward the same set of items. To implement them, we first need to create a
Maven project, and add the following dependency to it:

<dependency>
 <groupId>org.apache.mahout</groupId>
 <artifactId>mahout-mr</artifactId>
 <version>0.10.0</version>
</dependency>

Machine Learning and Predictive Analytics Using Mahout and R

202

Next, we create a Java class, as shown here:

package com.demo.recommender;

import java.io.File;
import java.io.IOException;
import java.util.List;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.
ThresholdUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.
GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.
PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.UserBasedRecommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;

public class MyUserBasedRecommender
{
 public static void main(String[] args) throws IOException,
TasteException
 {
 ClassLoader classLoader = MyUserBasedRecommender.class.
getClassLoader();
 DataModel model = new FileDataModel(new File(classLoader.
getResource("dataset.csv").getFile()));
 UserSimilarity similarity = new PearsonCorrelationSimilarity(mod
el);
 UserNeighborhood neighborhood = new ThresholdUserNeighborhood(0.1,
similarity, model);
 UserBasedRecommender recommender = new GenericUserBasedRecomme
nder(model, neighborhood, similarity);
 List<RecommendedItem> recommendations = recommender.recommend(2,
3);
 for (RecommendedItem recommendation : recommendations) {
 System.out.println(recommendation);
 }
 }
}

Chapter 8

203

In the preceding code, we first need data from a resource folder. We have copied the
dataset.csv file into the src/main/resources folder. The following code shows
you the contents of this folder. You should read the data in the file in the specified
format such as UserId, ItemId, and preference:

1,10,1.0
1,11,2.0
1,12,5.0
1,13,5.0
1,14,5.0
1,15,4.0
1,16,5.0
1,17,1.0
1,18,5.0
2,10,1.0
2,11,2.0
2,15,5.0
2,16,4.5
2,17,1.0
2,18,5.0
3,11,2.5
3,12,4.5
3,13,4.0
3,14,3.0
3,15,3.5
3,16,4.5
3,17,4.0
3,18,5.0
4,10,5.0
4,11,5.0
4,12,5.0
4,13,0.0
4,14,2.0
4,15,3.0
4,16,1.0
4,17,4.0
4,18,1.0

In order to create a user-based recommendation, we need to first calculate the similarity
between these users. Here, we choose the Pearson Similarity Algorithm to calculate the
similarity. Next, we pass the similarity, model, and the threshold to decide the neighborhood.
Then, we create a user-based recommender by providing the preceding calculated values.

In the preceding code, on execution, we want the top three item recommendations for user 2.

Machine Learning and Predictive Analytics Using Mahout and R

204

On the execution of the code, we will get the following output. This is the list of items that are
to be recommended along with the recommendation score:

RecommendedItem[item:12, value:4.8328104]
RecommendedItem[item:13, value:4.6656213]
RecommendedItem[item:14, value:4.331242]

How it works...
Mahout's user-based recommendation first tries to calculate the similarity between the users,
and then it recommends other similar users from their kitty. There are various similarity
calculations available, and you can choose any one of them; the preceding example uses the
Pearson Similarity Algorithm. More on this can be found at https://en.wikipedia.org/
wiki/Pearson_product-moment_correlation_coefficient.

Make a note that this recommendation can only be run in a sequential manner, so there is no
Map Reduce implementation for this.

Using predictive analytics on Bank Data
using Mahout

In this recipe, we are going to take a look at how to use Mahout to generate a predictive
model and validate how good this model is against some sample data. Here, we will be
using the sample data collected by a bank during their marketing operations.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Mahout installed on it.

How to do it...
In this recipe, we are going to use Logistic Regression in order to predict the occurrence
of an event. It uses predictors from the given data in order to calculate the probability.
The Mahout implementation uses the Stochastic Gradient Descent (SGD) algorithm for
logistic regression. You can learn more about SGD for logistic regression at http://
blog.trifork.com/2014/02/04/an-introduction-to-mahouts-logistic-
regression-sgd-classifier/.

SGD is, by default, a sequential algorithm so we cannot run any parallel activities on it.
Even though it is sequential, it runs blazing fast on large datasets for which we don't
need to worry about the size of data that we are handling.

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://blog.trifork.com/2014/02/04/an-introduction-to-mahouts-logistic-regression-sgd-classifier/
http://blog.trifork.com/2014/02/04/an-introduction-to-mahouts-logistic-regression-sgd-classifier/
http://blog.trifork.com/2014/02/04/an-introduction-to-mahouts-logistic-regression-sgd-classifier/

Chapter 8

205

Now, we are going to take a look at how to execute this algorithm in our data. The following is
sample data from a bank's marketing team, which has the last column labelled as 'out'. This
is the output that is shown when a customer who's given their details has said yes to the term
deposit or not:

age,job,marital,education,out
30,unemployed,married,primary,no
33,services,married,secondary,yes
35,management,single,tertiary,no
30,management,married,tertiary,no
59,blue-collar,married,secondary,no
35,management,single,tertiary,no,
36,self-employed,married,tertiary,yes
39,technician,married,secondary,no
41,entrepreneur,married,tertiary,no
43,services,married,primary,no
39,services,married,secondary,no
43,admin.,married,secondary,no
36,technician,married,tertiary,yes
20,student,single,secondary,no
31,blue-collar,married,secondary,yes

We save this data in a file called bank.csv. Now, let's execute the Mahout program to train a
model for this data using this command:

mahout trainlogistic --input bank.csv --output ./model --target out
--categories 2 --predictors age job marital education --types word
--features 4

Here is the input file in the CSV format, which is used to train the model. We want the
output to be created in a file called model. We expect a type of output called categories
(yes/no), predictors called columns are used to generate the mode, and types can be
words/numerical. And no. of features to be used for generating model.

On execution, you will get the following output:

Running on hadoop, using /usr/local/hadoop/bin/hadoop and HADOOP_CONF_
DIR=
MAHOUT-JOB: /usr/local/mahout/mahout-examples-0.11.1-job.jar
4
out ~
-0.003*Intercept Term + -0.007*age=20 + -0.006*age=30 +
-0.005*age=31 + -0.002*age=33 + -0.005*age=35 + -0.006*age=36 +
-0.005*age=39 + -0.006*age=41 + -0.006*age=43 + -0.004*age=59
+ -0.007*education=primary + -0.002*education=secondary +
-0.004*education=tertiary + -0.002*job=admin. + -0.005*job=blue-
collar + -0.005*job=entrepreneur + -0.004*job=management +
-0.007*job=self-employed + -0.006*job=services + -0.005*job=student +
-0.006*job=technician + -0.006*job=unemployed + -0.006*marital=married
+ -0.007*marital=single

Machine Learning and Predictive Analytics Using Mahout and R

206

 Intercept Term -0.00298
 age=20 -0.00696
 age=30 -0.00645
 age=31 -0.00457
 age=33 -0.00159
 age=35 -0.00545
 age=36 -0.00645
 age=39 -0.00545
 age=41 -0.00557
 age=43 -0.00645
 age=59 -0.00398
 education=primary -0.00696
 education=secondary -0.00159
 education=tertiary -0.00406
 job=admin. -0.00159
 job=blue-collar -0.00457
 job=entrepreneur -0.00457
 job=management -0.00398
 job=self-employed -0.00696
 job=services -0.00557
 job=student -0.00457
 job=technician -0.00557
 job=unemployed -0.00645
 marital=married -0.00645
 marital=single -0.00696
 -0.003981019 -0.002976461 -0.001590416 -0.002469779
16/01/28 12:44:01 INFO MahoutDriver: Program took 644 ms (Minutes:
0.010733333333333333)

Now that we have generated the model to predict the outcome, we can validate it against the
data shown here:

mahout runlogistic --input "bank.csv" --model ./model --auc –confusion
Running on hadoop, using /usr/local/hadoop/bin/hadoop and HADOOP_CONF_
DIR=
MAHOUT-JOB: /usr/local/mahout/mahout-examples-0.11.1-job.jar
AUC = 0.73
confusion: [[11.0, 4.0], [0.0, 0.0]]
entropy: [[-0.7, -0.4], [-0.7, -0.4]]

This will run the logistic regression on bank.csv using the model generated in the previous
step in order to calculate AUC and a confusion matrix.

AUC stands for the Area Under a Curve. You can read more about AUC at
http://www.mathwords.com/a/area_under_a_curve.htm.

The AUC should lie between 0.5 and 1.0 in scenarios where you're using a good model, while
1.0 indicates a perfect model.

http://www.mathwords.com/a/area_under_a_curve.htm

Chapter 8

207

A Confusion Matrix is a matrix that shows the performance of an algorithm by comparing its
actual results with its predicted results. You can read more about the confusion matrix at
https://en.wikipedia.org/wiki/Confusion_matrix.

How it works...
Mahout's implementation of SGD calculates the probability of the occurrence of a certain
event based on the values considered as predictors. When creating a model, it considers the
values of given predictors and these are used for predictions as well. In order to understand
Logistic Regression and how it works internally.

I would suggest that you read http://blog.trifork.
com/2014/02/04/an-introduction-to-mahouts-
logistic-regression-sgd-classifier/.

Clustering text data using K-Means
In this recipe, we are going to take a look at how to use Mahout to cluster text data using
Mahout's implementation of the K-Means algorithm. K-Means is very popular clustering
algorithm; you can read more about it at https://en.wikipedia.org/wiki/K-means_
clustering.

Getting ready
To perform this recipe, you should have a running Hadoop cluster as well as the latest version
of Mahout installed on it.

How to do it...
In this recipe, we are going to use Mahout's K Means algorithm to cluster the text data that is
available. To do this, we first need to get some text data and copy it to HDFS:

hadoop fs –mkdir /kmeans

hadoop fs –put mydata.txt /kmeans/input

In order to execute the K-Means job on the given data, we first need to convert it into
sequential files and from these sequential files to TF-IDF vectors. Mahout provides built-in
utilities to perform these actions. The following are the commands to do this.

https://en.wikipedia.org/wiki/Confusion_matrix
http://blog.trifork.com/2014/02/04/an-introduction-to-mahouts-logistic-regression-sgd-classifier/
http://blog.trifork.com/2014/02/04/an-introduction-to-mahouts-logistic-regression-sgd-classifier/
http://blog.trifork.com/2014/02/04/an-introduction-to-mahouts-logistic-regression-sgd-classifier/
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering

Machine Learning and Predictive Analytics Using Mahout and R

208

To convert text data into a sequential file, here is the code:

mahout seqdirectory -i /kmeans/input/ -o /kmeans/sequencefiles

To convert a sequential file to a vector, here is the code:

mahout seq2sparse -i /kmeans/sequencefiles -o /kmeans/sparse

This command will take some time to work as it will run a series of Map Reduce programs to
transform the data.

Next, we can run a clustering job on vectors that have been generated in the previous steps:

mahout kmeans -i hdfs://localhost:9000/kmeans/sparse/tfidf-vectors/ -c
hdfs://localhost:9000/kmeans/cl/ -o hdfs://localhost:9000/kmeans/out -dm
org.apache.mahout.common.distance.CosineDistanceMeasure -x 10 –clustering

This will start a Map Reduce program that performs the actual clustering.

The output of the clustering will be available in the /kmeans/out folder. We can also use the
clusterdump command to view the output:

mahout clusterdump -dt sequencefile -d /kmeans/sparse/dictionary. file-0
-i /kmeans/out/clusters-1-final

In this way, we can use Mahout to perform the clustering of text data.

How it works...
The K-Means algorithm plots a graph of points. It then calculates the distance between nodes in
order to classify them. In order to optimize the clustering, iterations are performed, and in each
new iteration, the centroid of each cluster becomes the mean of the next set of calculations.

Apart from K-Means, Mahout supports various other clustering algorithms such as Canopy,
Fuzzy K-means, Streaming K-Means, and so on.

Performing population Data Analytics using R
So far, we talked about how to use Mahout to solve various machine learning problems.
Now, we are going to explain another tool/language called R, which has built-in support
for various mathematical and statistical operations.

Getting ready
To perform this recipe, you should have R installed on your machine. You can download the
installer from https://cran.r-project.org/bin/windows/base/.

https://cran.r-project.org/bin/windows/base/

Chapter 8

209

How to do it...
In this recipe, we are going to learn some basic operations that one can perform using R.
To start with, we will have one dataset that has information about Australia's population
in various states. This is what the dataset looks like:

Year NSW Vic. Qld SA WA Tas. NT ACT Aust.
1917 1904 1409 683 440 306 193 5 3 4941
1927 2402 1727 873 565 392 211 4 8 6182
1937 2693 1853 993 589 457 233 6 11 6836
1947 2985 2055 1106 646 502 257 11 17 7579
1957 3625 2656 1413 873 688 326 21 38 9640
1967 4295 3274 1700 1110 879 375 62 103 11799
1977 5002 3837 2130 1286 1204 415 104 214 14192
1987 5617 4210 2675 1393 1496 449 158 265 16264
1997 6274 4605 3401 1480 1798 474 187 310 18532

I am saving this data in a file called auspop.txt. Now, we start R and load this file in an R
object by executing the following command:

>austpop <- read.table("H:/workspace/austpop.txt", header=TRUE)

We can check whether the data is loaded properly by printing it:

>print(austpop)

 Year NSW Vic. Qld SA WA Tas. NT ACT Aust.
1 1917 1904 1409 683 440 306 193 5 3 4941
2 1927 2402 1727 873 565 392 211 4 8 6182
3 1937 2693 1853 993 589 457 233 6 11 6836
4 1947 2985 2055 1106 646 502 257 11 17 7579
5 1957 3625 2656 1413 873 688 326 21 38 9640
6 1967 4295 3274 1700 1110 879 375 62 103 11799
7 1977 5002 3837 2130 1286 1204 415 104 214 14192
8 1987 5617 4210 2675 1393 1496 449 158 265 16264
9 1997 6274 4605 3401 1480 1798 474 187 310 18532

We can print the column names using the following command:

> names(austpop)
 [1] "Year" "NSW" "Vic." "Qld" "SA" "WA" "Tas." "NT"
"ACT" "Aust."

Next, we can plot a graph. Let's plot a graph of the population in the state of NSW for the past
few years. In order to do so, we have to execute the following command. The input to this will
appear in the form of the x axis, y axis, and the size of the graph:

>plot(NSW ~ Year, data=austpop, pch=16)

Machine Learning and Predictive Analytics Using Mahout and R

210

The graph will look like this:

There are various options that are available for different types of graphs. This is how you can
plot a bar graph for the total population of this state over the last few years:

> barplot(austpop$Aust.)

Chapter 8

211

You can also easily get the summary of the values for each state by executing the
following command:

> summary(austpop)
 Year NSW Vic. Qld SA
WA
 Min. :1917 Min. :1904 Min. :1409 Min. : 683 Min. :
440.0 Min. : 306
 1st Qu.:1937 1st Qu.:2693 1st Qu.:1853 1st Qu.: 993 1st Qu.:
589.0 1st Qu.: 457
 Median :1957 Median :3625 Median :2656 Median :1413 Median :
873.0 Median : 688
 Mean :1957 Mean :3866 Mean :2847 Mean :1664 Mean :
931.3 Mean : 858
 3rd Qu.:1977 3rd Qu.:5002 3rd Qu.:3837 3rd Qu.:2130 3rd
Qu.:1286.0 3rd Qu.:1204
 Max. :1997 Max. :6274 Max. :4605 Max. :3401 Max.
:1480.0 Max. :1798
 Tas. NT ACT Aust.
 Min. :193.0 Min. : 4 Min. : 3.0 Min. : 4941
 1st Qu.:233.0 1st Qu.: 6 1st Qu.: 11.0 1st Qu.: 6836
 Median :326.0 Median : 21 Median : 38.0 Median : 9640
 Mean :325.9 Mean : 62 Mean :107.7 Mean :10663
 3rd Qu.:415.0 3rd Qu.:104 3rd Qu.:214.0 3rd Qu.:14192
 Max. :474.0 Max. :187 Max. :310.0 Max. :18532

In case you want the summary of only one column, you can get it by executing the
following command:

> summary(austpop$Aust.)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 4941 6836 9640 10660 14190 18530

You can also perform operations such as sorting the given data, as shown here:

> sort_pop <- sort(austpop$ACT)
> sort_pop
[1] 3 8 11 17 38 103 214 265 310

How it works...
As mentioned earlier, R has been built keeping statisticians in mind, so whatever they require
on a daily basis is provided by R. There are various packages also available in case you wish
to do something different. The working of the preceding commands is self-explanatory.

Machine Learning and Predictive Analytics Using Mahout and R

212

Performing Twitter Sentiment Analytics
using R

In an earlier chapter, we saw how to perform Twitter sentiment analytics using Hive and Hadoop.
In this recipe, we are going to take a look at how to do this using R.

Getting ready
To perform this recipe, you should have R installed on your machine. You should also have
a Twitter account and an application that has an API key, API secret, Access Token, and an
Access Secret with you so that you can receive tweets in real time.

How to do it...
To get started, first of all, we need to install certain R packages, which will be required in this
recipe. The following are the commands:

>install.packages("twitteR")
>install.packages("plyr")
>install.packages("stringr")
>install.packages(c("devtools", "rjson", "bit64", "httr"))

Once the installation is complete, load the following packages:

>library(devtools)
>library(twitteR)

Next, we need to provide the keys provided that are by Twitter on its application page, as follows:

>api_key <- "XXXXXX"
>api_secret <- "XXXXXX"
>access_token <- "XXXXXX"
>access_secret <- "XXXXXXX"
>ssetup_twitter_oauth(api_key, api_secret, access_token, access_
secret)

Here, instead of XXXX, add your own keys.

If the keys that are provided by you are correct, you will not see any errors. If there are any
missing keys, you will see an appropriate error message.

Next, we need some dictionary words, which are segregated as positive or negative, in order to
determine the sentiment of each tweet. So, we download a list of words from http://www.
cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar and store them in a certain
place. Download, extract, and save these files.

http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar
http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar

Chapter 8

213

Then, we load these lists of words into objects, as shown here:

>pos.from.file = scan('H:/opinion-lexicon-English/positive-words.
txt',what='character', comment.char=';')
>neg.from.file = scan('H:/opinion-lexicon-English/negative-words.
txt',what='character', comment.char=';')

We also remove the comments that are labelled as headers in the text files.

We can also add some more words if they are not already part of the given files, as shown here:

>pos.words = c(pos.from.file,'upgrade', 'love','achievement','impress
ed')
>neg.words = c(neg.from.file, 'wtf', 'wait', 'waiting','hate', 'die')

Now, we are going to download the tweets using the searchTwitter method of the
TwitterR package:

hadoop.tweets = searchTwitter('#hadoop', n=1000)

The preceding command will download 1,000 tweets with the hadoop hash tag and save it as
the hadoop.tweets object.

You can check whether the data is imported properly:

> hadoop.tweets
[[1]]
[1] "bviallet: RT @IBMAnalytics: See how the video game industry is
using analytics to create happy customers: https://t.co/LcyTEFqUrT
#Hadoop https://t.c…"

[[2]]
[1] "sheltonmkagande: RT @SAS_Cares: Learn five ways #SAS gets to data
in #hadoop https://t.co/yMsXTVw7Dd #SASusers"

[[3]]
[1] "thinkittraining: Secondary Indexing for MapR-DB using
Elasticsearch @https://www.mapr.com/blog #Hadoop #Mapr #training"

[[4]]
[1] "BigDataTweetBot: RT @andnegr: https://t.co/Yd87vicDlz @SASitaly
#BigData #Hadoop @ClouderaITA"

[[5]]
[1] "BigDataTweetBot: RT @techjunkiejh: Is Apache #Hadoop the only
option to implement #BigData ? https://t.co/b4z7ZSHTiJ https://t.co/
mGRFXqS6Dx"

Machine Learning and Predictive Analytics Using Mahout and R

214

[[6]]
[1] "shakamunyi: RT @andnegr: https://t.co/Yd87vicDlz @SASitaly
#BigData #Hadoop @ClouderaITA"

[[7]]
[1] "shakamunyi: RT @techjunkiejh: Is Apache #Hadoop the only option
to implement #BigData ? https://t.co/b4z7ZSHTiJ https://t.co/
mGRFXqS6Dx"

[[8]]
[1] "andnegr: https://t.co/Yd87vicDlz @SASitaly #BigData #Hadoop @
ClouderaITA"

[[9]]
[1] "techjunkiejh: Is Apache #Hadoop the only option to implement
#BigData ? https://t.co/b4z7ZSHTiJ https://t.co/mGRFXqS6Dx"

[[10]]
[1] "gitsacademy: #fact of the day\n#Hadoop was created by Doug
Cutting (while at #Yahoo) and named it after his son's elephant
https://t.co/RUnDJzSpml"

Now, we want only the tweet text from the preceding data, so we execute the following command:

>hadoop.text = laply(hadoop.tweets, function(t) t$getText())

We will be writing one algorithm that takes each tweet and then computes how many positive
and negative words it has. It will give a score based on the sentiment of the overall tweet:

score.sentiment = function(sentences, pos.words, neg.words,
.progress='none')
{
require(plyr)
require(stringr)

#Get vectors from the list
scores = laply(sentences, function(sentence, pos.words, neg.words) {

clean up sentences, remove punctuations etc.
sentence = gsub('[[:punct:]]', '', sentence)
sentence = gsub('[[:cntrl:]]', '', sentence)
sentence = gsub('\\d+', '', sentence)
and convert to lower case:
sentence = tolower(sentence)

split into words.

Chapter 8

215

word.list = str_split(sentence, '\\s+')
words = unlist(word.list)

compare our words to the dictionaries of positive & negative terms
pos.matches = match(words, pos.words)
neg.matches = match(words, neg.words)

match() returns the position of the matched term or NA
we just want a TRUE/FALSE so we remove all NA
pos.matches = !is.na(pos.matches)
neg.matches = !is.na(neg.matches)

and conveniently enough, TRUE/FALSE will be treated as 1/0 by sum():
score = sum(pos.matches) - sum(neg.matches)

return(score)
}, pos.words, neg.words, .progress=.progress)

scores.df = data.frame(score=scores, text=sentences)
return(scores.df)
}

We can test this algorithm by using some sample text, as shown here:

> sample = c("You're awesome and I love you",
"I hate and hate and hate. So angry. Die!",
"Impressed and amazed: you are peerless in your
achievement of unparalleled mediocrity.")

> result = score.sentiment(sample, pos.words, neg.words)

Now, we can see the results:

> result
 score text
1 2
You're awesome and I love you
2 -5 I hate and hate
and hate. So angry. Die!
3 3 Impressed and amazed: you are peerless in your\nachievement of
unparalleled mediocrity.

This means that our algorithm works, so we will test on real Twitter data now:

>hadoop.scores = score.sentiment(hadoop.text, pos.words, neg.words,
.progress='text')

Machine Learning and Predictive Analytics Using Mahout and R

216

Here are the results:

> hadoop.scores
 score
text
1 1 RT @IBMAnalytics: See how the video game industry is using
analytics to create happy customers: https://t.co/LcyTEFqUrT #Hadoop
https://t.c…
2 0 RT @SAS_Cares:
Learn five ways #SAS gets to data in #hadoop https://t.co/yMsXTVw7Dd
#SASusers
3 0 Secondary Indexing for
MapR-DB using Elasticsearch @https://www.mapr.com/blog #Hadoop #Mapr
#training
4 0
RT @andnegr: https://t.co/Yd87vicDlz @SASitaly #BigData #Hadoop @
ClouderaITA
5 0 RT @techjunkiejh: Is Apache #Hadoop the only
option to implement #BigData ? https://t.co/b4z7ZSHTiJ https://t.co/
mGRFXqS6Dx
6 0
RT @andnegr: https://t.co/Yd87vicDlz @SASitaly #BigData #Hadoop @
ClouderaITA
7 0 RT @techjunkiejh: Is Apache #Hadoop the only
option to implement #BigData ? https://t.co/b4z7ZSHTiJ https://t.co/
mGRFXqS6Dx
8 0
https://t.co/Yd87vicDlz @SASitaly #BigData #Hadoop @ClouderaITA
9 0 Is Apache #Hadoop the only
option to implement #BigData ? https://t.co/b4z7ZSHTiJ https://t.co/
mGRFXqS6Dx
10 0 #fact of the day\n#Hadoop was created by Doug Cutting
(while at #Yahoo) and named it after his son's elephant https://t.co/
RUnDJzSpml

This way, you can perform sentiment analytics for any kind of Twitter data.

How it works...
Our sentiment analysis algorithm is very simple. We first get the sentence, break it into words,
remove any punctuation, and so on. Later, we compare each word with a predefined list of
positive and negative words. Next, we subtract the number of negative words from the number
of positive words and get the score. If the score is a positive number, then it means that the
sentiment of the tweet is positive, and if the score is negative, it means that the tweet is
negative. If the score is zero, this means that it is a neutral tweet.

This algorithm can be extended further to understand sarcasm.

Chapter 8

217

Performing Predictive Analytics using R
In the previous recipe, we talked about how to perform sentiment analytics using R. In this
recipe, we are going to take a look at how to perform predictive analytics using R. Here, we
will be using the IRIS flower classification data in order to predict its species based on the
features. You can learn more about this at https://en.wikipedia.org/wiki/Iris_
flower_data_set.

Getting ready
To perform this recipe, you should have R installed on your machine.

How to do it...
To get started, we need to install an R package called e1071:

>install.packages("e1071")

This package contains the IRIS flower dataset. So, we load the library and then load the data
into it:

>library(e1071)
>data(iris)

You can check whether the data is loaded properly or not by executing the following command:

>iris

In this example, we are going to use the Naive Bayes algorithm to classify the data into
specifies. So, now we have to train the model using Naive Bayes, as shown here:

>model<- naiveBayes(Species~., data=iris)

You can print the model in order to take a look at how it has calculated probabilities:

>model

Naive Bayes Classifier for Discrete Predictors

Call:
naiveBayes.default(x = X, y = Y, laplace = laplace)

A-priori probabilities:
Y
 setosa versicolor virginica
 0.3333333 0.3333333 0.3333333

https://en.wikipedia.org/wiki/Iris_flower_data_set
https://en.wikipedia.org/wiki/Iris_flower_data_set

Machine Learning and Predictive Analytics Using Mahout and R

218

Conditional probabilities:
 Sepal.Length
Y [,1] [,2]
 setosa 5.006 0.3524897
 versicolor 5.936 0.5161711
 virginica 6.588 0.6358796

 Sepal.Width
Y [,1] [,2]
 setosa 3.428 0.3790644
 versicolor 2.770 0.3137983
 virginica 2.974 0.3224966

 Petal.Length
Y [,1] [,2]
 setosa 1.462 0.1736640
 versicolor 4.260 0.4699110
 virginica 5.552 0.5518947

 Petal.Width
Y [,1] [,2]
 setosa 0.246 0.1053856
 versicolor 1.326 0.1977527
 virginica 2.026 0.2746501

> summary(model)
 Length Class Mode
apriori 3 table numeric
tables 4 -none- list
levels 3 -none- character
call 4 -none- call

Now, we test this model against actual data:

>predictions <- predict(model, iris[,1:4])

This will give us the model and data to be used for predictions. On execution, the predictions
object will have these predicted values:

> predictions

 [1] setosa setosa setosa setosa setosa setosa
setosa
 [8] setosa setosa setosa setosa setosa setosa
setosa
 [15] setosa setosa setosa setosa setosa setosa
setosa

Chapter 8

219

 [22] setosa setosa setosa setosa setosa setosa
setosa
 [29] setosa setosa setosa setosa setosa setosa
setosa
 [36] setosa setosa setosa setosa setosa setosa
setosa
 [43] setosa setosa setosa setosa setosa setosa
setosa
 [50] setosa versicolor versicolor virginica versicolor
versicolor versicolor
 [57] versicolor versicolor versicolor versicolor versicolor
versicolor versicolor
 [64] versicolor versicolor versicolor versicolor versicolor
versicolor versicolor
 [71] virginica versicolor versicolor versicolor versicolor
versicolor versicolor
 [78] virginica versicolor versicolor versicolor versicolor
versicolor versicolor
 [85] versicolor versicolor versicolor versicolor versicolor
versicolor versicolor
 [92] versicolor versicolor versicolor versicolor versicolor
versicolor versicolor
 [99] versicolor versicolor virginica virginica virginica virginica
virginica
[106] virginica versicolor virginica virginica virginica virginica
virginica
[113] virginica virginica virginica virginica virginica virginica
virginica
[120] versicolor virginica virginica virginica virginica virginica
virginica
[127] virginica virginica virginica virginica virginica virginica
virginica
[134] versicolor virginica virginica virginica virginica virginica
virginica
[141] virginica virginica virginica virginica virginica virginica
virginica
[148] virginica virginica virginica
Levels: setosa versicolor virginica

Next, we can build the confusion matrix in order to show how good our model is:

> table(predictions, iris$Species)

predictions setosa versicolor virginica
 setosa 50 0 0
 versicolor 0 47 3
 virginica 0 3 47

This way, you can build a model using various algorithms and validate them.

Machine Learning and Predictive Analytics Using Mahout and R

220

How it works...
R is a platform that allows us to perform various operations. The package we installed
contains implementations of various well-know algorithms; here, we are just making use
of those that are useful for real-world problem solving.

You can do read more about the Naive Bayes algorithm at
https://en.wikipedia.org/wiki/Naive_Bayes_classifier.

https://en.wikipedia.org/wiki/Naive_Bayes_classifier

221

9
Integration with

Apache Spark

In this chapter, we'll take a look at the following recipes:

ff Running Spark standalone

ff Running Spark on YARN

ff Performing Olympics Athletes analytics using the Spark Shell

ff Creating Twitter trending topics using Spark Streaming

ff Analyzing Parquet files using Spark

ff Analyzing JSON data using Spark

ff Processing graphs using Graph X

ff Conducting predictive analytics using Spark MLib

Introduction
In the previous chapter, we talked about how to use Mahout and R to solve machine learning
problems. In this chapter, we are going to talk about the latest sensation in the Big Data
industry called Apache Spark. By now, everyone is aware, and has acknowledged the power
of Apache Spark. This is a general and fast engine that processes large-scale data. It provides
high-level APIs in Java, Scala, Python, and R. Spark can perform batch processing as well as
stream processing. In this chapter, we are going to explore certain important topics related to
Apache Spark such as batch processing, Spark SQL, streaming processing, machine learning
with MLib, and graph processing using Spark's GraphX library. So, let's get started.

Integration with Apache Spark

222

Running Spark standalone
Spark can be executed in various modes. To get started, we are going to take a look at how to
install Apache Spark on a standalone machine.

Getting ready
To perform this recipe, you should download the latest version of Spark. For this recipe, I am
using Apache Spark 1.6.0. You can visit the download page at http://spark.apache.
org/downloads.html.

How to do it...
Apache Spark is a computation engine. It has a built-in cluster manager. It can also use other
cluster managers such as YARN/Mesos and so on. In this recipe, we are going to use the built-
in resource manager that's provided by Spark:

1.	 Copy the downloaded Spark binary to a desired location.

2.	 Extract the tar ball:
$sudo tar –xzfspark-1.6.0-bin-hadoop2.6.tgz

3.	 Rename the spark folder for ease of use:
$sudo mv spark-1.6.0-bin-hadoop2.6 spark

4.	 Add environment variables in ~/.bashrc:
export SPARK_HOME=/usr/local/spark

export PATH=$PATH:$SPARK_HOME/bin

5.	 Source ~/.bashrc to make the changes effective:
$source ~/.bashrc

6.	 In case you want to run Spark in cluster mode, you need to repeat the preceding
commands on each node. Now, we are all set to use Apache Spark.

To start the master, use this code:
$/usr/local/spark/sbin/start-master.sh

To start the slaves, use this code:
$/usr/local/spark/sbin/start-slave.sh spark://<masterhost>:<port>

7.	 Now, visit http://localhost:8080/ to take a look at Spark Master's UI and the
number of workers that are registered with it.

http://spark.apache.org/downloads.html
http://spark.apache.org/downloads.html

Chapter 9

223

8.	 We can now try running one sample Spark application in order to check whether
everything is working. The following command will launch a Spark application,
which will calculate the value for Pi:
./bin/spark-submit --class org.apache.spark.examples.SparkPi \

 --master spark://<master>:7077 \

--deploy-mode cluster \

lib/spark-examples*.jar \

 10

9.	 While the application is being executed, you should be able to take a look at all the
stages that are involved as well as other things in the application web UI. To do this,
visit http://localhost:4040.

Integration with Apache Spark

224

How it works...
Spark works in the master-slave architecture. Here, we have started Spark Master and a worker.
Spark master acts like a coordinator between the slaves. Once you submit the application,
Spark creates a directed acyclic graph of operations. It decides which stages can be executed in
parallel and which need to be executed sequentially. Each task is executed by workers, and the
status is reported back to the master.

Running Spark on YARN
In the previous recipe, we took a look at how to use Spark's built-in cluster manager;
in this recipe, we are going to explore how to use YARN as a cluster manager to execute
the Spark application.

Getting ready
To perform this recipe, you should have a running Hadoop cluster. You should also have
performed the previous recipe.

How to do it...
As mentioned in the previous recipe, we can either use Spark's built-in cluster manager,
or we can use an external cluster manager such as YARN. In order to execute the Spark
application on YARN, we need to edit SPARK_HOME/conf/spark-env.sh, and add the
following properties to it:

export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop
export YARN_CONF_DIR=/usr/local/hadoop/etc/Hadoop

Here, /usr/local/hadoop/etc/hadoop is the directory where we have our Hadoop
and YARN configuration files.

Now, let's execute the same Spark application on YARN using the following command:

./bin/spark-submit --class org.apache.spark.examples.SparkPi \
 --master yarn \
 --deploy-mode cluster \
lib/spark-examples*.jar \
 10

Unlike the previous recipe, we don't need to give YARN IP—PORT, but spark will take it from
YARN's configuration directory. We need to give YARN the keyword for the master property.

Chapter 9

225

Now, we can use the YARN application UI in order to check the progress of the job so far.

Go to http://localhost:8088/cluster for the following output:

How it works...
Working on the Spark application is pretty similar to what was explained in the previous
recipe; the only difference is the executors, Resource Manager, and the Node Managers.
Spark submits the application to the YARN application master, and the application master
then asks the Resource Managers and Node Managers to execute the tasks.

Olympic Athlete Data Analytics using
Spark Shell

Spark supports an interactive Scala-based shell, which can be used to process data as and
when we receive actionable commands. In this recipe, we are going to analyze one sample
dataset, which contains information about the athletes that have participated in the Olympics.

Getting ready
To perform this recipe, you should have Hadoop and Spark installed. You also need to install
Scala. I am using Scala 2.11.0.

Integration with Apache Spark

226

How to do it...
First of all, you need to download data from https://github.com/deshpandetanmay/
hadoop-real-world-cookbook/blob/master/data/OlympicAthletes.csv, and
store it in HDFS using the following commands:

$hadoop fs –mkdir /athletes

$hadoop fs –put OlympicAthletes.csv /athletes

The following is some sample data from the file for your reference. The data comma-separated
file contains various columns in a sequence such as the athlete name, country, year, gold,
silver, bronze, and the total number of medals won by each athlete:

Yang Yilin,China,2008,Gymnastics,1,0,2,3
Leisel Jones,Australia,2000,Swimming,0,2,0,2
Go Gi-Hyeon,South Korea,2002,Short-Track Speed Skating,1,1,0,2
Chen Ruolin,China,2008,Diving,2,0,0,2
Katie Ledecky,United States,2012,Swimming,1,0,0,1
Ruta Meilutyte,Lithuania,2012,Swimming,1,0,0,1
Dániel Gyurta,Hungary,2004,Swimming,0,1,0,1
Arianna Fontana,Italy,2006,Short-Track Speed Skating,0,0,1,1
Olga Glatskikh,Russia,2004,Rhythmic Gymnastics,1,0,0,1
Kharikleia Pantazi,Greece,2000,Rhythmic Gymnastics,0,0,1,1
Kim Martin,Sweden,2002,Ice Hockey,0,0,1,1
Kyla Ross,United States,2012,Gymnastics,1,0,0,1
Gabriela Dragoi,Romania,2008,Gymnastics,0,0,1,1
Tasha Schwikert-Warren,United States,2000,Gymnastics,0,0,1,1
Yang Yun,China,2000,Gymnastics,0,0,1,1
Sophie Lamon,Switzerland,2000,Fencing,0,1,0,1
Alejandra Orozco,Mexico,2012,Diving,0,1,0,1
Yuliya Koltunova,Russia,2004,Diving,0,1,0,1
Shawn Johnson,United States,2008,Gymnastics,1,3,0,4
Carly Patterson,United States,2004,Gymnastics,1,2,0,3

Next, we start the Apache Spark shell using the following command:

$cd /usr/local/spark
$./bin/spark-shell

This will start the Spark shell, and it will prompt Scala. Now, to get started, we will first
initialize the spark context and start with loading files into it from HDFS:

 scala>valatheletes =
 sc.textFile("hdfs://localhost:9000/athletes/OlympicAthletes.csv")

https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/master/data/OlympicAthletes.csv
https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/master/data/OlympicAthletes.csv

Chapter 9

227

Let's check whether the data is loaded properly by executing the following command:

scala>atheletes.take(10).foreach(println)

~

 Yang Yilin,China,2008,Gymnastics,1,0,2,3

 Leisel Jones,Australia,2000,Swimming,0,2,0,2

 Go Gi-Hyeon,South Korea,2002,Short-Track Speed Skating,1,1,0,2

 Chen Ruolin,China,2008,Diving,2,0,0,2

 Katie Ledecky,United States,2012,Swimming,1,0,0,1

 Ruta Meilutyte,Lithuania,2012,Swimming,1,0,0,1

 Dániel Gyurta,Hungary,2004,Swimming,0,1,0,1

 Arianna Fontana,Italy,2006,Short-Track Speed Skating,0,0,1,1

 Olga Glatskikh,Russia,2004,Rhythmic Gymnastics,1,0,0,1

 Kharikleia Pantazi,Greece,2000,Rhythmic Gymnastics,0,0,1,1

 ~

It will print the first 10 athlete records. Next, let's count the total number of records in the
dataset. That can be done by the following command:

scala>atheletes.count

~

 16/02/03 13:05:28 INFO DAGScheduler: Job 2 finished: count at
 <console>:30, took 0.188182 s

 res2: Long = 8613

 ~

Now, let's filter out athletes from India using the following commands:

scala>valindianAthletes = atheletes.filter(_.split(",")(1) == "India").
cache

We can print the records using this command:

scala>indianAthletes.foreach(println)

 Vijender Singh,India,2008,Boxing,0,0,1,1

 Saina Nehwal,India,2012,Badminton,0,0,1,1

 Sushil Kumar,India,2008,Wrestling,0,0,1,1

 Karnam Malleswari,India,2000,Weightlifting,0,0,1,1

 Abhinav Bindra,India,2008,Shooting,1,0,0,1

 Vijay Kumar,India,2012,Shooting,0,1,0,1

 Yogeshwar Dutt,India,2012,Wrestling,0,0,1,1

Integration with Apache Spark

228

 Sushil Kumar,India,2012,Wrestling,0,1,0,1

 Gagan Narang,India,2012,Shooting,0,0,1,1

 M. C. Mary Kom,India,2012,Boxing,0,0,1,1

 Rajyavardhan Rathore,India,2004,Shooting,0,1,0,1

Next, we would like to find out the number of athlete records on the basis of their countries;
thus, we will need to execute the following command:

scala>valatheletesTuples = atheletes.map(line =>line.split(","))

scala>valatheletesKeyValuePairs = atheletesTuples.map(line =>
(line(1), 1))

scala>valgroupByCountry = atheletesKeyValuePairs.reduceByKey(_+_,
1).collect

In the preceding commands, we first split each record by a comma and then emit the country
as the key and 1 as the value. Next, we execute reduce by operation to get the final results.
The output is shown here:

groupByCountry: Array[(String, Int)] = Array((Australia,524),
(Brazil,217), (Mexico,38), (Uzbekistan,19), (France,287),
(South Korea,274), (Finland,112), (Germany,552), (Macedonia,1),
(Montenegro,14), (Uruguay,1), (Cuba,188), (Bahrain,1), (North
Korea,21), (Sweden,167), (Vietnam,2), (Serbia,31), (Iran,24),
(Slovakia,33), (Venezuela,4), (Denmark,89), (Chinese Taipei,20),
(Saudi Arabia,6), (Paraguay,17), (Serbia and Montenegro,38),
(Sudan,1), (Botswana,1), (Greece,59), (Italy,307), (Slovenia,24),
(Iceland,15), (Netherlands,286), (Spain,195), (Kuwait,2),
(Hong Kong,3), (Mongolia,10), (Malaysia,3), (Kazakhstan,42),
(Ukraine,137), (Romania,97), (Egypt,8), (Indonesia,22), (Latvia,17),
(Eritrea,1), (Armenia,10), (Norway,158), (Thailand,18), (Poland,73),
(Tajikistan,3), (Afghanistan,2)

Similarly, we can also execute commands to get the number of athletes by the sport they play:

 scala>valsportsWiseKeyValuePairs = atheletesTuples.map(line =>
 (line(3), 1))

 scala>valgroupBySport = sportsWiseKeyValuePairs.reduceByKey(_+_,
 1).collect

Chapter 9

229

The output for this is as follows:

groupBySport: Array[(String, Int)] = Array((Basketball,287),
(Judo,224), (Football,407), (Modern Pentathlon,24), (Luge,36),
(Table Tennis,67), (Swimming,487), (Synchronized Swimming,109),
(Cycling,261), (Athletics,687), (Baseball,216), (Diving,113), (Cross
Country Skiing,128), (Waterpolo,306), (Equestrian,157), (Skeleton,18),
(Hockey,386), (Alpine Skiing,61), (Rhythmic Gymnastics,84),
(Handball,351), (Softball,134), (Gymnastics,194), (Nordic Combined,39),
(Canoeing,295), (Weightlifting,180), (Wrestling,245), (Sailing,210),
(Taekwondo,112), (Ski Jumping,40), (Trampoline,24), (Short-Track Speed
Skating,96), (Boxing,188), (Biathlon,94), (Tennis,71), (Triathlon,24),
(Figure Skating,54), (Badminton,91), (Curling,82), (Rowing,567),
(Snowboarding,48), (Beach Volleyball,48), (Ice Hockey,384)

This way, you can perform various operations to analyze data interactively.

How it works...
The Spark shell gives us interactive ways to analyze data. Internally, it's the same Spark
application that gets executed, as explained in the previous recipes.

Creating Twitter trending topics using
Spark Streaming

Spark supports various modules. In this recipe, we are going to take a look at its SQL module,
which allows the execution of SQL queries through a Spark application. We are going to
explore how to access Hive from Spark and perform analytics.

Getting ready
To perform this recipe, you should have Hadoop and Spark installed. You also need to install
Scala. I am using Scala 2.11.0. You should also have Hive installed.

How to do it...
To use Hive from Spark, we are going to write one sample spark application in Scala. You can
choose an IDE of your choice. Since we are going to write the application in Scala, you will
need Scala and SBT installed on your machine.

Integration with Apache Spark

230

First of all, I am going to create a folder called HiveFromSpark, and add the following files
to it:

HiveFromSpark\src\main\scala\com\demo\HiveFromSpark.scala
HiveFromSpark\ project\assembly.sbt
HiveFromSpark\build.sbt
HiveFromSpark\src\main\resources\emp.txt

Then, we set build.sbt to add dependencies, as shown here:

name := "HiveFromSpark"

version := "1.0"

scalaVersion := "2.11.7"

libraryDependencies ++= Seq(

 "com.google.guava" % "guava" % "14.0",
 "org.apache.spark" %% "spark-core" % "1.6.0" % "provided",
 "org.apache.spark" %% "spark-sql" % "1.6.0" % "provided",
 "org.apache.spark" %% "spark-hive" % "1.6.0" % "provided"
)
resolvers += "Akka Repository" at "http://repo.akka.io/releases/"

Next, we create the assembly.sbt file so that it is able to generate the fat jar:

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.12.0")

We then add emp.txt, which is a simple file that we are going to use during execution:

 16,john

 17,robert

 18,andrew

 19,katty

 21,tom

 22,tim

 23,james

 24,paul

 27,edward

 29,alan

 31,kerry

 34,terri

Chapter 9

231

Now, we will write a Scala class, which will create a Hive table and load emp.txt into the
table. Later on, we will perform various operations in this table. The following code is from
HiveFromSpark.scala:

packagecom.demo

importcom.google.common.io.ByteStreams
importcom.google.common.io.Files

importjava.io.File

importorg.apache.spark._
importorg.apache.spark.sql._
importorg.apache.spark.sql.hive.HiveContext

objectHiveFromSpark {
case class Record(id: Int, name: String)

 // Copy emp.txt file from classpath to temporary directory
valempStream = HiveFromSpark.getClass.getResourceAsStream("/emp.txt")
valempFile = File.createTempFile("emp", "txt")
empFile.deleteOnExit()
ByteStreams.copy(empStream, Files.newOutputStreamSupplier(empFile))

def main(args: Array[String]) {
valsparkConf = new SparkConf().setAppName("HiveFromSpark")
valsc = new SparkContext(sparkConf)

valhiveContext = new HiveContext(sc)
importhiveContext.implicits._
importhiveContext.sql

sql("CREATE TABLE IF NOT EXISTS empSpark (id INT, name STRING) ROW
FORMAT DELIMITED FIELDS TERMINATED BY ','")
sql(s"LOAD DATA LOCAL INPATH '${empFile.getAbsolutePath}' INTO TABLE
empSpark")

 // Queries are expressed in HiveQL
println("Result of 'SELECT *': ")
sql("SELECT * FROM empSpark").collect().foreach(println)

 // Aggregation queries are also supported.

Integration with Apache Spark

232

val count = sql("SELECT COUNT(*) FROM empSpark").collect().head.
getLong(0)
println(s"COUNT(*): $count")

 // The results of SQL queries are themselves RDDs and support all
normal RDD functions. The
 // items in the RDD are of type Row, which allows you to access
each column by ordinal.
valrddFromSql = sql("SELECT id, name FROM empSpark WHERE id < 20 ORDER
BY id")

println("Result of RDD.map:")
valrddAsStrings = rddFromSql.map {
case Row(id: Int, name: String) =>s"Key: $id, Value: $name"
 }
 // You can also register RDDs as temporary tables within a
HiveContext.
valrdd = sc.parallelize((1 to 100).map(i => Record(i, s"val_$i")))
rdd.toDF().registerTempTable("records")

 // Queries can then join RDD data with data stored in Hive.
println("Result of SELECT *:")
sql("SELECT * FROM records r JOIN src s ON r.key = s.key").collect().
foreach(println)

sc.stop()
 }
}

In order to execute the preceding code, we run the following commands to create the
assembled fat jar of this application:

sbt compile

sbt package

sbt assembly

This will create a fat jar, called HiveFromSpark-assembly-1.0.jar, in the target\
scala-2.11 folder.

Now, we take this jar and copy it in a Spark cluster. Execute the following command to start
the Spark application:

/usr/local/spark/bin/spark-submit \
 --class "com.demo.HiveFromSpark" \
 --master yarn \
 HiveFromSpark-assembly-1.0.jar

Chapter 9

233

If you want to run this on the Spark default master slave, then you will have to execute the
following command:

/usr/local/spark/bin/spark-submit \
 --class "com.demo.HiveFromSpark" \
 --master spark://admin1:7077 \
 HiveFromSpark-assembly-1.0.jar

This will start the Spark application in YARN. This will create a table in Hive, called empspark,
where data from emp.txt will be loaded into it.

You can go to the Hive prompt and check whether this table, called empspark, exists:

hive>descempspark;
hive>select * from empspark;

How it works...
Spark SQL is an interpreter between the underlying technology and Spark. It sends queries
and accepts results. All the features of Spark RDDs are available here.

Twitter trending topics using Spark
streaming

In the previous recipe, we took a look at the SQL integrations of Spark. In this recipe, we are
going to explore yet another powerful module called Spark Streaming. As the name suggests,
Spark Streaming can listen to a stream of events and process data as and when it arrives.

Getting ready
To perform this recipe, you should have Hadoop and Spark installed. You also need to
install Scala. I am using Scala 2.11.0. You should also have a Twitter account and some
keys and tokens.

How to do it...
Spark streaming supports input from various sources such as Flume, HDFS, Kafka, Twitter,
and so on. In this recipe, we are going to use Spark Streaming's Twitter source where we will
be listening to streaming tweets and compute the top trending topics on Twitter.

To perform this recipe, we are going to write one Spark Streaming application in Scala.

Integration with Apache Spark

234

In order to create the application, I am creating a folder called TwitterSpark, and it will
have the following files in it:

TwitterSpark\build.sbt
TwitterSpark\src\main\scala\com\demo\TwitterPopularTags.scala
TwitterSpark\project\assembly.sbt

The contents of build.sbt are as follows:

name := "TwitterSpark"

version := "1.0"

scalaVersion := "2.11.7"

mergeStrategy in assembly <<= (mergeStrategy in assembly) { (old) =>
 {
casePathList("META-INF", xs @ _*) =>MergeStrategy.discard
case x =>MergeStrategy.first
 }
}

libraryDependencies ++= Seq(

 "com.google.guava" % "guava" % "14.0",
 "org.apache.spark" %% "spark-core" % "1.6.0" % "provided",
 "org.apache.spark" %% "spark-streaming" % "1.6.0" % "provided",
 "org.apache.spark" %% "spark-streaming-twitter" % "1.6.0"
)

resolvers += "Akka Repository" at "http://repo.akka.io/releases/"

Here, we need to add dependencies for Spark Streaming and Spark Streaming Twitter.

Next, assembly.sbt will show you the following:

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.12.0")

We need to add a Scala class, which fetches Twitter streams and performs computations
on them:

packagecom.demo

importorg.apache.spark.streaming.{Seconds, StreamingContext}
importorg.apache.spark.SparkContext._

Chapter 9

235

importorg.apache.spark.streaming.twitter._
importorg.apache.spark.SparkConf

objectTwitterPopularTags {
def main(args: Array[String]) {

valconsumerKey = "XXXX"
valconsumerSecret = "XXXX"
valaccessToken = "XXXX"
valaccessTokenSecret = "XXXX"
val filters = args.takeRight(args.length - 4)
 // Set the system properties so that Twitter4j library used by
twitter stream
 // can use them to generat OAuth credentials
System.setProperty("twitter4j.oauth.consumerKey", consumerKey)
System.setProperty("twitter4j.oauth.consumerSecret", consumerSecret)
System.setProperty("twitter4j.oauth.accessToken", accessToken)
System.setProperty("twitter4j.oauth.accessTokenSecret",
accessTokenSecret)

valsparkConf = new SparkConf().setAppName("TwitterPopularTags")
valssc = new StreamingContext(sparkConf, Seconds(2))
val stream = TwitterUtils.createStream(ssc, None, filters)

valhashTags = stream.flatMap(status =>status.getText.split("
").filter(_.startsWith("#")))

valtopCountsInOneMinute = hashTags.map((_, 1)).reduceByKeyAndWindow(_
+ _, Seconds(60))
 .map{case (topic, count) => (count, topic)}
 .transform(_.sortByKey(false))

 // Print popular hashtags
topCountsInOneMinute.foreachRDD(rdd => {
valtopList = rdd.take(10)
println("\nPopular topics in last 1 minute (%s total):".format(rdd.
count()))
topList.foreach{case (count, tag) =>println("%s (%s tweets)".
format(tag, count))}
 })

Integration with Apache Spark

236

ssc.start()
ssc.awaitTermination()
 }
}

Now, we build an assembly jar for this project by executing the following commands:

sbt compile

sbt assembly

This will create a fat jar with the name TwitterSpark-assembly-1.0.jar. To execute it,
we copy it into a Spark cluster and execute the following commands.

Here is the code to execute it:

/usr/local/spark/bin/spark-submit \
 --class "com.demo.TwitterPopularTags" \
 --master local[2] \
 TwitterSpark-assembly-1.0.jar

Here is the code to execute it on the Spark default master:

/usr/local/spark/bin/spark-submit \
 --class "com.demo.TwitterPopularTags" \
 --master spark://host:port \
 TwitterSpark-assembly-1.0.jar

Here is the code to execute it on the YARN cluster:

/usr/local/spark/bin/spark-submit \
 --class "com.demo.TwitterPopularTags" \
 --master yarn \
 TwitterSpark-assembly-1.0.jar

As a result you should see the top trending hash tags of every minute:

#style (1 tweets)
#followmejp (1 tweets)
#amateur (1 tweets)
#VotaSebastianVillalobos (1 tweets)
#poem (1 tweets)
#followme (1 tweets)
#thoughtoftheday (1 tweets)
#followcircle (1 tweets)

Chapter 9

237

How it works...
Spark Streaming internally receives live data streams from the source. It then divides data
into batches and processes these batches one by one. These streams are called DStreams.
Along with the streaming context, we also need to provide the time slot that Spark needs in
order to wait for a batch. In the preceding code, the time period needed is 2 seconds. Once
the batch has been received by the spark engine, the rest of the processing is similar to
what has already been explained in the previous recipes. You can read more about this at
http://spark.apache.org/docs/latest/streaming-programming-guide.html.

Analyzing Parquet files using Spark
Parquet is columnar data file format, which is being used extensively. In this recipe, we are
going to take a look at how to access this data from Spark and then process it.

Getting ready
To perform this recipe, you should have Hadoop and Spark installed. You also need to install
Scala. I am using Scala 2.11.0.

How to do it...
Spark supports the accessing of Parquet files from the SQL context. You can read and write
Parquet files using this SQL context. In this recipe, we are going to take a look at how to read
a Parquet file from HDFS and process it.

First of all, download the sample parquet file, users.parquet, and store it in the HDFS /
parquet path https://github.com/deshpandetanmay/hadoop-real-world-
cookbook/blob/master/data/users.parquet.

We will create a Scala project with the following files:

SparkParquet\build.sbt
SparkParquet\project\assembly.sbt
SparkParquet\src\main\scala\com\demo\SparkParquet.scala

The contents of build.sbt are as follows:

name := "SparkParquet"

version := "1.0"

scalaVersion := "2.11.7"

http://spark.apache.org/docs/latest/streaming-programming-guide.html
https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/master/data/users.parquet
https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/master/data/users.parquet

Integration with Apache Spark

238

libraryDependencies ++= Seq(

 "com.google.guava" % "guava" % "14.0",
 "org.apache.spark" %% "spark-core" % "1.6.0" % "provided",
 "org.apache.spark" %% "spark-sql" % "1.6.0" % "provided"
)

resolvers += "Akka Repository" at "http://repo.akka.io/releases/"

The contents of assembly.sbt are as follows:

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.12.0")

Then, we write a Scala class, which reads the parquet file stored in the given HDFS location
and creates another file from it, .SparkParquet.scala, as follows:

packagecom.demo

importorg.apache.spark._
importorg.apache.spark.sql._

objectSparkParquet {

def main(args: Array[String]) {
valsparkConf = new SparkConf().setAppName("SparkParquet")
valsc = new SparkContext(sparkConf)
valsqlContext = new org.apache.spark.sql.SQLContext(sc)
val users = sqlContext.read.load("/parquet/users.parquet")

users.select("name", "favorite_color").write.save("/parquet/
namesAndFavColors.parquet")

users.registerTempTable("userParquetFile")
users.map(t => "Name: " + t(0)).collect().foreach(println)
sc.stop()
 }
}

We build an assembly jar for this project using the following commands:

sbt compile

sbt assembly

Chapter 9

239

Then, we execute the application using the following commands:

We use this code for local threads:

 /usr/local/spark/bin/spark-submit \
 --class "com.demo.SparkParquet" \
 --master local[2] \
 SparkParquet-assembly-1.0.jar

We use this code for YARN:

 /usr/local/spark/bin/spark-submit \
 --class "com.demo.SparkParquet" \
 --master yarn \
 SparkParquet-assembly-1.0.jar

This will start the application and print something like this:

~
Name: Alyssa
Name: Ben
~

I will also create another parquet file called namesAndFavColors.parquet in the /parquet
HDFS path.

How it works...
The Spark SQL context has features to serialize and deserialize Parquet files. The preceding
code makes use of this feature to read the data and print it. We can also register a temporary
table and use SQL to analyze the parquet file data using its schema.

Analyzing JSON data using Spark
JSON is one of most frequently used data storage and exchange formats in use these days.
In this recipe, we are going to take a look at how to access the JSON file data from Spark
and process it.

Getting ready
To perform this recipe, you should have Hadoop and Spark installed. You also need to install
Scala. I am using Scala 2.11.0 here.

Integration with Apache Spark

240

How to do it...
Spark supports the accessing of JSON files from the SQL context. You can read and write JSON
files using the SQL context. In this recipe, we are going to take a look at how to read a JSON
file from HDFS and process it.

First of all, download the people.json sample JSON file and store it in the /json HDFS
path using this link:

https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/
master/data/people.json.

We will create a Scala project using the following files:

SparkJSON\build.sbt
SparkJSON\project\assembly.sbt
SparkJSON\src\main\scala\com\demo\SparkJSON.scala

Here is the content of build.sbt:

name := "SparkJSON"

version := "1.0"

scalaVersion := "2.11.7"

libraryDependencies ++= Seq(

 "com.google.guava" % "guava" % "14.0",
 "org.apache.spark" %% "spark-core" % "1.6.0" % "provided",
 "org.apache.spark" %% "spark-sql" % "1.6.0" % "provided"
)

resolvers += "Akka Repository" at "http://repo.akka.io/releases/"

The contents of assembly.sbt are as follows:

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.12.0")

Then, we write a Scala class, which reads the JSON file stored in the given HDFS location and
process it. SparkJSON.scala is as follows:

packagecom.demo

importorg.apache.spark._
importorg.apache.spark.sql._

https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/master/data/people.json
https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/master/data/people.json

Chapter 9

241

objectSparkJSON {

def main(args: Array[String]) {
valsparkConf = new SparkConf().setAppName("SPARKJSON")
valsc = new SparkContext(sparkConf)
valsqlContext = new org.apache.spark.sql.SQLContext(sc)
val users = sqlContext.read.json("/json/people.json")

users.map(t => "Name: " + t(0)).collect().foreach(println)
users.show()

 // Print the schema in a tree format
 users.printSchema()

 // Select only the "name" column
 users.select("name").show()

 // Select everybody, but increment the age by 1
 users.select(users("name"), users("age") + 1).show()

 // Select people older than 21
 users.filter(users("age") > 21).show()

 // Count people by age
 users.groupBy("age").count().show()

sc.stop()
 }
}

We build an assembly jar for this project using the following commands:

 sbt compile

 sbt assembly

Then, we execute the application using the following command:

First on local threads

 /usr/local/spark/bin/spark-submit \
 --class "com.demo.SparkJSON" \
 --master local[2] \
 SparkJSON-assembly-1.0.jar

Integration with Apache Spark

242

For YARN, we use the following code:

 /usr/local/spark/bin/spark-submit \
 --class "com.demo.SparkJSON" \
 --master yarn \
 SparkJSON-assembly-1.0.jar

This will start the application and print something like this:

+----+-----+

| age|count|

+----+-----+

|50| 1|

| 19| 1|

| 30| 1|

+----+-----+

How it works...
The Spark SQL context has features that are used to serialize and deserialize JSON files.
The preceding code makes use of these features to read the data from the files and then
print it. We can also register a temporary table and use SQL to analyze the JSON file data
using its schema.

Processing graphs using Graph X
A graph is combination of vertices and edges. Spark provides a module to define a graph and
then process these graphs in real time. In this recipe, we are going to look at a social graph
example and process data using Spark.

Getting ready
To perform this recipe, you should have Hadoop and Spark installed. You also need to install
Scala. I am using Scala 2.11.0 here.

How to do it...
Take a social networking site that has users and other users such as the activities of a user.
Based on the likes, we can conclude who is connected to whom. Consider the following data:

Chapter 9

243

Now, we have to analyze this graph based on the likes that are provided. In order to do so,
we start the Spark Shell, and run the following commands:

Import graph libraries like this:

scala>import org.apache.spark.graphx._
scala>import org.apache.spark.rdd.RDD

Next, we define vertices and edges:

scala>valvertexArray = Array(

 (1L, ("Alice", 28)),
 (2L, ("Bob", 27)),
 (3L, ("Charlie", 65)),
 (4L, ("David", 42)),
 (5L, ("Ed", 55)),
 (6L, ("Fran", 50))
)

Here, we have a username and age as the properties of each vertex:

scala>valedgeArray = Array(
Edge(2L, 1L, 7),
Edge(2L, 4L, 2),
Edge(3L, 2L, 4),
Edge(3L, 6L, 3),
Edge(4L, 1L, 1),
Edge(5L, 2L, 2),
Edge(5L, 3L, 8),
Edge(5L, 6L, 3)
)

Integration with Apache Spark

244

Every edge displays the link between the vertices and the number of likes that are given to
various activities.

Now, we create RDDs of given arrays and orders in order to distribute data in parallel:

scala>valvertexRDD: RDD[(Long, (String, Int))] =
sc.parallelize(vertexArray)
scala>valedgeRDD: RDD[Edge[Int]] = sc.parallelize(edgeArray)

Next, we need to build a graph out of these vertices and edges, as shown here:

scala>val graph: Graph[(String, Int), Int] = Graph(vertexRDD, edgeRDD)

Now, we are ready to process this data. First of all, let's try to print all the users who are more
than 30 years of age:

scala>graph.vertices.filter { case (id, (name, age)) => age > 30
}.collect.foreach {
case (id, (name, age)) =>println(s"$name is $age")
}

The output for this is as follows:

 David is 42

 Fran is 50

 Charlie is 65

 Ed is 55

We want to print the relationship between the users. We can do this as follows:

scala> for (triplet <- graph.triplets.collect) {
println(s"${triplet.srcAttr._1} likes ${triplet.dstAttr._1}")
 }

The output for this is as follows:

 Bob likes Alice

 Bob likes David

 Charlie likes Bob

 Charlie likes Fran

 David likes Alice

 Ed likes Bob

 Ed likes Charlie

 Ed likes Fran

Chapter 9

245

We can conclude that if a user likes another user's activities more than five times, then they
are in love. This can be represented through the following command:

scala>for (triplet <- graph.triplets.filter(t =>t.attr> 5).collect) {
println(s"${triplet.srcAttr._1} loves ${triplet.dstAttr._1}")
 }

The output for this is as follows:

 Bob loves Alice

 Ed loves Charlie

This way, you can analyze various datasets that are available in the graph format.

How it works...
Spark GraphX is used for the parallel computation of graph datasets. GraphX extends the
Spark RDD by introducing a directed multi-attribute graph with vertices and edges. To support
graph processing, it exposes sets of APIs such as subgraphs, join vertices, and so on. It also
includes a set of algorithms, which will be helpful in graph computations such as the Page
Rank Algorithm.

You can read more about Graphx at http://spark.apache.org/
docs/latest/graphx-programming-guide.html.

Conducting predictive analytics using
Spark MLib

Spark has a very rich machine learning library called MLib. This is a collection of various
algorithms that are used for classification, clustering, recommendations, and so on. In this
recipe, we are going to take a look at how to build a predictive model using MLib.

Getting ready
To perform this recipe, you should have Hadoop and Spark installed. You also need to install
Scala. Here, I am using Scala 2.11.0.

How to do it...
For this recipe, we are going use the classic example dataset of iris flowers; you can find out
more about this at https://en.wikipedia.org/wiki/Iris_flower_data_set.

http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
https://en.wikipedia.org/wiki/Iris_flower_data_set

Integration with Apache Spark

246

Here, based on the petal length and width and the sepal length and width, we need to classify
the flowers into species. First, we build a model, and then run tests on it to predict the output.

To start with, we first download iris.txt from https://github.com/deshpandetanmay/
hadoop-real-world-cookbook/blob/master/data/iris.txt.

Next, save it in HDFS.

We start the Spark Shell, and run the following commands:

scala>import org.apache.spark.mllib.classification.NaiveBayes
scala>import org.apache.spark.mllib.linalg.Vectors
scala>import org.apache.spark.mllib.regression.LabeledPoint

This will import the required libraries. We are going to use Naïve Bayes classifiers in this case.

First, we create a class to define the file data model:

scala>case class Iris(
id:java.util.UUID,
sepal_l:Double,
sepal_w:Double,
petal_l:Double,
petal_w:Double,
species:String
)

Next, we load data from HDFS and parse it:

scala>val data = sc.textFile("iris.txt")

scala>val parsed = data.filter(!_.isEmpty).map {row =>
valsplitted = row.split(",")
val Array(sl, sw, pl, pw) = splitted.slice(0,4).map(_.toDouble)
 Iris (java.util.UUID.randomUUID(), sl, sw, pl, pw, splitted(4))
}

We can check whether the data is loaded properly by executing the following command:

parsed.take(10).foreach(println)

It would print something like this:

Iris(006f1567-e7ad-4e2a-8519-45272a66ce9b,5.1,3.5,1.4,0.2,Iris-setosa)
Iris(9ddd68aa-46f4-4d92-8de7-3c783bb5fd2b,4.9,3.0,1.4,0.2,Iris-setosa)

https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/master/data/iris.txt
https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/master/data/iris.txt

Chapter 9

247

Here, we are going to use LabledPoint, which contains labels and features. The labels need
to be in the Double format, and features need to be in the Vector format. Our label is a string
in this case, so in order to convert it to the Double format, we create a map of unique values
and then reverse them:

scala>val class2id = parsed.map(_.species).distinct.collect.
zipWithIndex.map{case (k,v)=>(k, v.toDouble)}.toMap
scala>val id2class = class2id.map(_.swap)

scala>valparsedData = parsed.map { i =>LabeledPoint(class2id(i.
species), Vectors.dense(i.petal_l,i.petal_w,i.sepal_l,i.sepal_w)) }

Next, we train the model using the sample data we have:

scala>val model = NaiveBayes.train(parsedData)

Now, the model is ready to predict the species of the given flower on the basis of its features.
Here is an example of this:

scala> id2class(model.predict(Vectors.dense(5, 1.5, 6.4, 3.2)))
res19: String = Iris-versicolor

This way, you can perform predictive analytics using Spark MLib.

How it works...
Spark MLib provides a huge list of supported algorithms. In the preceding example that uses
a training dataset, Spark builds a model that has probability data. So, once the model is built,
we can start predicting the output for certain given features. There are various classification
algorithms available, so you can choose any of them.

249

10
Hadoop Use Cases

In this chapter, we'll take a look at the following recipes:

ff Call Data Record analytics

ff Web log analytics

ff Sensitive data masking and encryption using Hadoop

Introduction
Throughout this book, we have been discussing Hadoop and its real-world use cases.
In this final chapter, we are going to discuss the end-to-end implementation of a few such
use cases. The motivation for this chapter is to apply the learning you've gathered from the
earlier chapters. We will discuss use cases related the telecom, finance, and e-commerce
domains. So, let's get started.

Call Data Record analytics
Call data records is data that is gathered by telecom operators that are specific to individual
customers. We are going to take a look at telecom domain-specific use cases in this recipe.

Getting ready
To perform this recipe, you should have an up and running Hadoop cluster. We need some
sample data for these use cases; I have written a data generator, which can used for your
reference. You can find it at https://github.com/deshpandetanmay/cdr-data-
generator.

https://github.com/deshpandetanmay/cdr-data-generator
https://github.com/deshpandetanmay/cdr-data-generator

Hadoop Use Cases

250

How to do it...
Before jumping into the solution let's first try to understand a problem statement.

Problem Statement
Telecom companies keep records of each and every call made by their subscribers. They also
keep information such as when a call was made, who it was made to, the start time, end time,
and so on. Detailed information, such as SMSes, data sessions, and so on, is also stored by
these companies. Here, the problem statement is how we can use this data to make company
operations run smoother and help them generate valuable information about their customers.

Solution
Take a situation where a telecom company stores its data in RDMBS such as MySQL or
Postgres. So, our solution flow diagram will look like this:

Now, let's assume that we have our data already present in the MySQL database in the
abctelecom.cdr table:

mysql> desc abctelecom.cdr;

+------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+-------------+------+-----+---------+-------+

| id | varchar(50) | NO | PRI | | |

Chapter 10

251

| caller | varchar(20) | YES | | NULL | |

| calling | varchar(20) | YES | | NULL | |

| start_time | varchar(20) | YES | | NULL | |

| end_time | varchar(20) | YES | | NULL | |

| type | varchar(20) | YES | | NULL | |

| charge | double | YES | | NULL | |

| result | varchar(20) | YES | | NULL | |

+------------+-------------+------+-----+---------+-------+

8 rows in set (0.00 sec)

Now, let's execute the Sqoop command to import this data into HDFS.

First of all, make sure that the data directory is created, and then execute the Sqoop
import command:

$ hadoop fs -mkdir /data
$sqoop import --connect jdbc:mysql://localhost:3306/abctelecom
--username root --password password --table cdr --target-dir /data/cdr
--fields-terminated-by '|'

This will import the data from the MySQL table to the HDFS /data/cdr directory.

Next, we start the Hive prompt and create an external Hive table pointing to the
preceding directory:

CREATE EXTERNAL TABLE cdr (
id STRING,
caller_num STRING,
called_num STRING,
start_time STRING,
end_time STRING,
call_type STRING,
call_charge DOUBLE,
call_result STRING
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
 LOCATION '/data/cdr';

Hadoop Use Cases

252

We can confirm whether the data load is as expected by executing the following commands:

hive> SELECT * FROM cdr LIMIT 2;
OK
02240095-bc62-4973-a143-710a5fb3509a	0989256849	 1238082266
 2016-01-19T11:01:14.	 2016-01-19T11:01:14.	 SMS	
0.35525125
 ANSWERED
30d73a30-6e93-472a-82cb-b1e53c94d1cb	5564259141	 0537330705
 2016-02-15T00:56:17.	 2016-02-15T00:58:53.	 VOICE
 0.29876852	 ANSWERED
Time taken: 1.387 seconds, Fetched: 2 row(s)

Now, let's start analyzing this data. Let's say we want to know how many calls and SMSes
subscribers are making. To know this information, we can execute the following query:

SELECT caller_num, call_type, COUNT(*)
FROM cdr
 GROUP BY caller_num, call_type;

The result for this is as follows:

0537330705	 SMS 53
0537330705	 VOICE 59
0989256849	 SMS 59
0989256849	 VOICE 53
1238082266	 SMS 55
1238082266	 VOICE 56
5314043825	 SMS 56
5314043825	 VOICE 55
5564259141	 SMS 55
5564259141	 VOICE 56

Next, we want to find out the total duration of time for which a subscriber is making voice calls:

SELECT caller_num, SUM(UNIX_TIMESTAMP(end_time , "yyyy-MM-
dd'T'HH:mm:ss.SSSX") - UNIX_TIMESTAMP(start_time, "yyyy-MM-
dd'T'HH:mm:ss.SSSX")) as duration
FROM cdr
group by caller_num, call_type
HAVING call_type = 'VOICE';

This will give us information on how much time each subscriber has spent on voice calls.
Now, we can filter out the subscribers who make voice calls for more than a specific amount
of time and offer them a voice call-specific package.

Chapter 10

253

The result of the preceding query is as follows:

0537330705	 8698
0989256849	 7929
1238082266	 8554
5314043825	 7988
5564259141	 4007

Next, we can find out the customers who spend the most amount of money and offer them
better packages. In order to find the top five billed customers, execute the following query:

SELECT caller_num, sum(call_charge) AS bill
FROM cdr
GROUP BY caller_num
ORDER BY bill DESC LIMIT 5;

The result is as follows:

5314043825	 58.67936635200001
0537330705	 56.971656405699996
1238082266	 56.0622671385
0989256849	 53.69393956600001
5564259141	 42.46016877900002

We can round off the bill as follows:

SELECT caller_num, round(sum(call_charge)) AS bill
FROM cdr
GROUP BY caller_num
ORDER BY bill DESC LIMIT 5;

The result of this is as follows:

5314043825	 59.0
0537330705	 57.0
1238082266	 56.0
0989256849	 54.0
5564259141	 42.0

We can also find out how many times a call was placed but the called number was busy:

SELECT call_result, count(*)
FROM cdr
GROUP BY call_result;

Hadoop Use Cases

254

The result of this is as follows:

ANSWERED	 527
BUSY	 29

This way, the more data you have, the more analysis you can do with it.

How it works...
We have already taken a look at how Hadoop, Sqoop, and Hive work in the previous chapters,
so in case you need more details on any of these, refer to the respective chapters.

Web log analytics
Web logs is data generated by web servers running a website. This use case is applicable to
domains where companies have their websites hosted and want to know more about their
website performance and customer behavior on the website.

Getting ready
To perform this recipe, you should have an up and running Hadoop cluster. I have uploaded
the data of some sample web logs from

https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/
master/data/mylog.txt.

How to do it...
Before jumping into the solution, let's first try to understand the problem statement:

Problem statement
Many companies run businesses on their websites. Their website performance decides
the sales or profitability. Web servers generally log information about the user, browser,
IP address, and so on. We can use this information in order to make the website browsing
experience smoother for users, which would help increase profitability.

Solution
Here, we assume that a company hosting its website on an Apache server and we will be
listening to the logs generated by the server. We will use Flume to copy the logs to the HDFS
folder, and then use Apache Hive to process the data.

https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/master/data/mylog.txt
https://github.com/deshpandetanmay/hadoop-real-world-cookbook/blob/master/data/mylog.txt

Chapter 10

255

To import data into HDFS from web servers, we have to install the Flume agent on each
web server instance. The following is the configuration that we have to use for the Flume
agent configuration:

flume1.sources = weblogs-source-1
flume1.channels = hdfs-channel-1
flume1.sinks = hdfs-sink-1

For each source, channel, and sink, set
standard properties.
flume1.sources.weblogs-source-1.type = exec
flume1.sources.weblogs-source-1.command = tail -f /path/to/log/file.
log
flume1.sources.weblogs-source-1.batchSize = 100
flume1.sources.weblogs-source-1.channels = hdfs-channel-1

flume1.channels.hdfs-channel-1.type = memory
flume1.sinks.hdfs-sink-1.channel = hdfs-channel-1
flume1.sinks.hdfs-sink-1.type = hdfs
flume1.sinks.hdfs-sink-1.hdfs.writeFormat = Text
flume1.sinks.hdfs-sink-1.hdfs.fileType = DataStream
flume1.sinks.hdfs-sink-1.hdfs.filePrefix = test-events
flume1.sinks.hdfs-sink-1.hdfs.useLocalTimeStamp = true
flume1.sinks.hdfs-sink-1.hdfs.path = /logs/web/%y-%m-%d
flume1.sinks.hdfs-sink-1.hdfs.rollCount=100
flume1.sinks.hdfs-sink-1.hdfs.rollSize=0

Other properties are specific to each type of
source, channel, or sink. In this case, we
specify the capacity of the memory channel.
flume1.channels.hdfs-channel-1.capacity = 10000

This would be listening to the given log file path. Here, we are using the exec source, which
executes the given command after a certain time interval.

The source is the output of the exec command that we have provided. The channel transfers
the data to Sink, which writes it to HDFS.

To execute the preceding configuration, we have to run the following command:

/usr/local/flume/bin/flume-ng agent -n flume1 -c /usr/local/flume/conf
-f /usr/local/flume/conf/weblogs.conf -Dflume.root.logger=INFO,console

Now, as and when the log file is updated, the data will be written to HDFS as well.

Hadoop Use Cases

256

The data we get is as follows:

103.22.239.216 - - [10/Feb/2016:23:05:30 -0800] "GET / HTTP/1.1" 304 0
"http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=
rja&uact=8&ved=0ahUKEw
js6N3jku_KAhXFkI4KHbRKBOwQFghGMAQ&url=http%3A%2F%2Fhadooptutorials.co.
in%2F&usg=AFQjCNEnec258W4qoaZBxqTY1SxCekMBtw&sig2=GUz56esk1WQ9ga
H6IoKBFA" "Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like
Gecko"
202.183.129.168 - - [10/Feb/2016:23:03:24 -0800] "GET /js/freelancer.
js HTTP/1.1" 304 0 - "Mozilla/4.0 (compatible;)"
202.168.90.179 - - [10/Feb/2016:23:03:06 -0800] "GET /tutorials/
hadoop/images/understanding-map-reduce-programming/map-reduce-flow.PNG
HTTP/1.1" 304 0 - "Mozilla/4.0 (compatible;)"
115.249.142.9 - - [10/Feb/2016:23:02:54 -0800] "GET /tutorials/
hadoop/images/big-data-analytics-what-is-that/3Vs_of_big_data.png
HTTP/1.1" 200 0 "http://hadooptutorials.co.in/tutorials/elasticsearch/
install-elasticsearch-kibana-logstash-on-windows.html" "Mozilla/5.0
(Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/48.0.2564.97 Safari/537.36"
115.249.142.9 - - [10/Feb/2016:23:02:54 -0800] "GET /tutorials/
sqoop/images/apache-sqoop-advanced-features/apache-sqoop-advanced-
features.png HTTP/1.1" 200 0 "http://hadooptutorials.co.in/tutorials/
elasticsearch/install-elasticsearch-kibana-logstash-on-windows.html"
"Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/48.0.2564.97 Safari/537.36"

Next, we start the Hive prompt and create a table in Hive using RegexSerde:

CREATE TABLE apache_combined_log (
 host STRING,
 identity STRING,
 userid STRING,
 time STRING,
 request STRING,
 status STRING,
 size STRING,
 referer STRING,
 agent STRING)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
 "input.regex" = "([^]*) ([^]*) ([^]*) (-|\\[[^\\]]*\\]) ([^
\"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)(?: ([^ \"]*|\"[^\"]*\") ([^
\"]*|\"[^\"]*\"))?",
 "output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s
%9$s"
)
STORED AS TEXTFILE;

Chapter 10

257

Load the data to this table from HDFS.

Now we are all set to start our analytics.

First of all, let's try to find the most popular pages on the website by executing the
following query:

SELECT request, COUNT(*) AS page_view_count FROM apache_combined_log
GROUP BY request
ORDER BY page_view_count DESC
LIMIT 5;

The output will be shown as follows:

"GET /font-awesome-4.1.0/css/font-awesome.min.css HTTP/1.1"	 409
"GET /css/freelancer.css HTTP/1.1"	 405
"GET /js/classie.js HTTP/1.1"	402
"GET /js/cbpAnimatedHeader.js HTTP/1.1"	 400
"GET /js/freelancer.js HTTP/1.1"	 396

Next, we want to know the most number of hits from the referral page, and for this, we need to
execute the following command:

SELECT referer, COUNT(*) AS referer_count FROM apache_combined_log
GROUP BY referer
ORDER BY referer_count DESC
LIMIT 5;

The output for this is as shown here:

- 1374
"http://hadooptutorials.co.in/"	 1096
"http://hadooptutorials.co.in/tutorials/spark/install-apache-spark-on-
ubuntu.html"	 1029
"http://hadooptutorials.co.in/tutorials/elasticsearch/install-
elasticsearch-kibana-logstash-on-windows.html"	 848
"http://hadooptutorials.co.in/tutorials/hive/hive-best-practices.html"	
573

Next, we want to know which server threw an error for which pages during browsing. We can
work on such pages in order to improve the site performance. Here, an error occurs when the
HTTP status is not 200:

SELECT request, status FROM apache_combined_log
WHERE status != 200;

Hadoop Use Cases

258

The output for this is as follows:

"GET /js/contact_me.js HTTP/1.1"	 304
"GET /js/jqBootstrapValidation.js HTTP/1.1"	304
"GET /js/freelancer.js HTTP/1.1"	 304
"GET /tutorials/spark/images/install-apache-spark-on-ubuntu/WordCount_
Demo.PNG HTTP/1.1"	 304

Next, we want to do analysis based on location. But in our data, we don't have any such
information; however, we can find this information using an IP address.

To do this, we are going to use a UDF, as shown here:

package in.co.hadooptutorials.ip.location.hive.udf;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;

import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;

public class LocationFinder extends UDF {

 public Text evaluate(Text inputIp) throws IOException{
 URL url = new URL("http://freegeoip.net/json/"+inputIp.
toString());
 HttpURLConnection conn = (HttpURLConnection) url.
openConnection();
 conn.setRequestMethod("GET");
 conn.setRequestProperty("Accept", "application/json");

 if (conn.getResponseCode() != 200) {
 throw new RuntimeException("Failed : HTTP error code : "
 + conn.getResponseCode());
 }

 BufferedReader br = new BufferedReader(new InputStreamReader(
 (conn.getInputStream())));

 String output = br.readLine();
 return new Text(output);
 }

}

Chapter 10

259

First, we take out unique IPs:

CREATE TABLE unique_ips as
SELECT DISTINCT(host) FROM apache_combined_log;

Then, we use the UDF to find details about each IP:

ADD JAR ip-location-hive-udf-1.0.jar;
CREATE TEMPORARY FUNCTION get_details AS 'in.co.hadooptutorials.
ip.location.hive.udf.LocationFinder' ;

CREATE TABLE location_details (data string) ;
INSERT INTO location_details
SELECT get_details(host) FROM unique_ips;

Next we create table with JSON SerDe.
ADD JAR json-serde-1.1.9.9-Hive1.2-jar-with-dependencies.jar;

CREATE TABLE ip_location_details (
ip STRING,
country_code STRING,
country_name STRING,
region_code STRING,
region_name STRING,
latitude DOUBLE,
longitude DOUBLE,
zip_code STRING,
time_zone STRING,
city STRING,
metro_code INT
)
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
LOCATION '/user/hive/warehouse/location_details';

We are all set to use the location details by joining the tables. For example, to get the number
of sessions per country, we need to execute the following command:

SELECT ild.country_name, COUNT(*) FROM
ip_location_details ild JOIN apache_combined_log acl
ON (ild.ip = acl.host)
GROUP BY ild.country_name;
For City,
SELECT ild.city, COUNT(*) FROM
ip_location_details ild JOIN apache_combined_log acl
ON (ild.ip = acl.host)
GROUP BY ild.city;

We can also create reports in order to visualize the results of these queries.

Hadoop Use Cases

260

How it works...
We have already seen how Hadoop, Flume, and Hive work in previous chapters, so in case you
need further details on any of these, refer to the respective chapters.

Sensitive data masking and encryption
using Hadoop

A lot of companies handle sensitive information such as SSN numbers, names, credit card
numbers, and so on. In this recipe, we are going to take a look at how to use Hadoop to mask
or encrypt this data in order to secure it. This recipe can be referred to by various domains,
such as finance, retail, telecom, and those people who handle critical information.

Getting ready
To perform this recipe, you should have an up and running Hadoop cluster.

How to do it...
Before jumping into the solution, let's first try to understand the problem statement.

Problem statement
Handling sensitive information is a critical part of today's data operations. Here, the problem
statement is to transform critical information into masked data or completely encrypted data.

Solution
Here, we assume that we already have data with us in flat files and it has been loaded
into HDFS.

Let's say we have some sample data, as shown here, which has the name and credit card
number of a person:

Ryan Levine|4716840526341330
Erika Smith|4539326321106479
Brooklyn Sloan|4916571896673675
Karen Mayer|5428124448681073
Eddie O'neill|5374594066409623
Nancy Stevens|5390742852412406
Chasity Conway|378238168241362

Chapter 10

261

Aaron McCray|374762693530829
Kendra Allen|374606063397725
Jenna Burns|5335126551184557
Jane Mayo|343637926486924
George Suarez|347956127969751
Janet Abbott|6011345775765400
Steven Marshall|6011414499816624
Shane Heath|6011322907488797
Unborn Vega|6011417989731237
Kaitlyn Wilder|6011055063404451
Donald Morgan|5140126646868581

First of all, we will create a Hive table, and then load data into it:

CREATE TABLE personal_details(
name STRING,
ccnum STRING
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|';

LOAD DATA LOCAL INPATH 'personal_details.txt' INTO TABLE personal_
details;

Now, we can write Hive UDFs to mask the name as well as the credit card number. Credit card
numbers are not random numbers, but they are generated through an algorithm called Luhn's
Algorithm, which can be found at https://en.wikipedia.org/wiki/Luhn_algorithm.

We can write algorithms based on our complexity but for the purposes of demonstration, I am
using a simple algorithm, which subtracts each number from 9 and returns it. Before starting
anything, make sure that you add the required dependencies in pom.xml:

<dependency>
 <groupId>org.apache.hive</groupId>
 <artifactId>hive-exec</artifactId>
 <version>1.2.0</version>
</dependency>
<dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.7.1</version>
</dependency>

https://en.wikipedia.org/wiki/Luhn_algorithm

Hadoop Use Cases

262

Our CC number masking UDF code is as follows:

package in.co.hadooptutorials.hive.udf.masking;

import java.io.IOException;

import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;

public class CCMasker extends UDF {
 public Text evaluate(Text ccNumber) throws IOException {
 String[] num = ccNumber.toString().split("");
 StringBuilder sb = new StringBuilder();
 for (String c : num) {
 if(!("".equals(c))){

 int i = 9 - Integer.parseInt(c);
 sb.append(i);
 }
 }
 return new Text(sb.toString());
 }

}

Our name masking UDF code is as follows:

package in.co.hadooptutorials.hive.udf.masking;

import java.io.IOException;
import java.util.Random;

import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;

public class NameMasker extends UDF {
 public Text evaluate(Text name) throws IOException {

 return new Text(mask(name.toString(), 0));
 }

 char randomChar(Random r, String cs, boolean uppercase) {
 char c = cs.charAt(r.nextInt(cs.length()));
 return uppercase ? Character.toUpperCase(c) : c;
 }

Chapter 10

263

 String mask(String str, int seed) {

 final String cons = "bcdfghjklmnpqrstvwxz";
 final String vowel = "aeiouy";
 final String digit = "0123456789";

 Random r = new Random(seed);
 char data[] = str.toCharArray();

 for (int n = 0; n < data.length; ++n) {
 char ln = Character.toLowerCase(data[n]);
 if (cons.indexOf(ln) >= 0)
 data[n] = randomChar(r, cons, ln != data[n]);
 else if (vowel.indexOf(ln) >= 0)
 data[n] = randomChar(r, vowel, ln != data[n]);
 else if (digit.indexOf(ln) >= 0)
 data[n] = randomChar(r, digit, ln != data[n]);
 }

 return new String(data);

 }
}

We build the project and copy the JAR file to the Hadoop cluster:

ADD JAR masking-udf-1.0.jar;

CREATE TEMPORARY FUNCTION ccmask AS 'in.co.hadooptutorials.hive.udf.
masking.CCMasker';

CREATE TEMPORARY FUNCTION namemask AS 'in.co.hadooptutorials.hive.udf.
masking.NameMasker';

And then we execute the query to start masking name and cc number.
CREATE TABLE personal_details_masked AS
SELECT namemask(name), ccmask(ccnum) FROM
personal_details;

Once the execution is complete, you can see these results:

hive> select * from personal_details_masked;

 Buek Typozi	 5283159473658669

 Aleky Rpozs	 5460673678893520

 Bleytryc Zsyyr	 5083428103326324

 Bumyt Ryoos	 4571875551318926

Hadoop Use Cases

264

 Almyy Y'poosw	 4625405933590376

 Bumky Rpoziww	 4609257147587593

 Blekyry Coswyy	 621761831758637

 Aumyt RpCziy	 625237306469170

 Bumkty Ycziw	 625393936602274

 Bumky Ryczs	 4664873448815442

 Bumy Tyyo	656362073513075

 Buekty Poosyw	 652043872030248

 Bumyt Ypcosw	 3988654224234599

 Blekyr Pozswyrd	3988585500183375

 Bleky Ryozs	 3988677092511202

 Almytr Pozi	 3988582010268762

 Buektyp Coswyr	 3988944936595548

 Bumytr Pozsyw	 4859873353131418

This way, you can use Hadoop to mask or encrypt sensitive information.

How it works...
We have already taken a look at how Hadoop and Hive work in previous chapters, so in case
you need further details, refer to the respective chapters.

265

Index
A
access log, formats

%b 39
%h 39
%l 39
%r 39
%>s 39
%t 39
%u 39
referrer 39
user agent 39

Apache Spark
about 221
URL 222

Area Under a Curve (AUC)
reference 206

atomic export
performing, Sqoop used 154, 155

Avro format
Hive data, processing in 116-118

B
balancer command

executing, for uniform data
distribution 14-16

benchmarking
performing, on Hadoop cluster 19-22

C
Call Data Record analytics

defining 249-253
performing, Hive used 130, 131
problem statement 250

solution 250-253
URL 249

Call Data Records (CDR)
about 129
reference 129

Change Data Capture (CDC)
implementing, Hive used 135-138

CLI
Hbase operation, performing in 97-103

combined access logs
reference 38

command options, Hadoop
reference 9

compressed data
saving, on HDFS 34, 35

configuration parameters, Hadoop
core-site.xml 4
hadoop-env.sh 4
hdfs-site.xml 5
mapred-site.xml 5
yarn-site.xml 5

Confusion Matrix
about 207
reference 207

context Ngram
performing, in Hive 127-129

custom SerDe
reference 113

D
data

exporting, from HDFS to local machine 25, 26
exporting, from HDFS to RDBMS 148-151
importing, from Hadoop cluster 31, 32

266

importing from Kafka into HDFS,
Flume used 173-175

importing from RDBMS to Hbase,
Sqoop used 164-168

importing from RDMBS to HDFS,
Sqoop used 144-148

importing into HDFS, from Mainframes 157
importing into Hive table, Sqoop

used 156, 157
loading, from local machine to HDFS 24, 25

Data Encryption Key (DEK) 31
DataNodes

decommissioning 18, 19
deleted data

recycling, from trash to HDFS 32-34
DistCp

-overwrite option 32
-update option 32
about 32
reference 32

distinct values
finding, Map Reduce program used 55-57

E
e-mail action job

implementing, Oozie used 188, 189
Encrypted Data Encryption Key (EDEK) 31
Encryption Zone Key (EZK) 31
Extract-Transform-Load (ETL) 2

F
FILTER By queries

performing, in Pig 83, 84
Flume

about 172
used, for importing data from Kafka

into HDFS 173-175
used, for importing Twitter data into

HDFS 168-172
used, for importing web logs data into

HDFS 175, 176
full outer join 123

G
Google File System (GFS) 1
Graph X

URL 245
used, for processing graphs 242-245

Group By queries
performing, in Pig 84, 85

Group operator
reference 86

H
Hadoop

about 1
configuration parameters 4
problem statement 260
solution 260-263
support, adding for new writable data

type 43-47
used, for encryption 260-264
used, for sensitive data masking 260-264

Hadoop 2.7
download link 2

Hadoop cluster
benchmarking, performing on 19-22
data, importing from 31, 32
Map Reduce program, executing in 42, 43
new nodes, adding to 13, 14

Hadoop, components
processing 23
storage 23

Hbase operation
performing, in CLI 97-103
performing, in Java 103-105

HDFS (Hadoop Distributed File System)
about 5-8
compressed data, saving on 34, 35
data, exporting to local machine 25, 26
replication factor, modifying of

existing file 26, 27
transparent encryption, enabling for 29-31

HDFS block size
setting, for files in cluster 27, 28
setting, for specific file in cluster 28, 29

267

Hive
context Ngram, performing in 127-129
map side joins, executing in 124-127
reference 74
table joins, performing in 121, 122
used, for implementing Change Data

Capture (CDC) 135-138
used, for inserting multiple tables 139-141
used, for performing Call Data Record

analytics 130, 131
used, for performing Twitter sentiment

analysis 131-134
user-defined functions, writing in 118-120

Hive action job
implementing, Oozie used 184, 185

Hive data
processing, in Avro format 116-118
processing, in ORC file format 79, 80
processing, in Parquet file format 81, 82
processing, in RC file format 77-79
processing, in sequential file format 75, 76
storing, in ORC file format 79, 80
storing, in Parquet file format 81, 82
storing, in RC file format 77-79
storing, in sequential file format 75, 76

I
incremental import

defining, Sqoop used 158-160
installation

multi-node Hadoop cluster 9-12
single-node Hadoop cluster 2-7

Iris flower dataset
reference 217

iris.txt
download link 246

item-based recommendation engine
setting up, Mahout used 198-201

J
Java

Hbase operation, performing in 103-105
Java action job

implementing, Oozie used 182, 183

Java JDK
download link 2

job
scheduling, in Oozie 192, 193

JOINS
performing, in Pig 87-89

JSON data
analyzing, Spark used 239-242
processing, JSON SerDe used 110-113

JSON SerDe
used, for processing JSON data 110-113

K
Kafka 173
Key Management Server (KMS) 30
K-Means

reference 207

L
LazyOutputFormat

reference link 63
left outer join 122
left semi join 124
local machine, to HDFS

data, loading from 24, 25
Luhn's Algorithm

URL 261

M
Mahout

about 195
development environment,

setting up 196-198
download link 196
used, for performing predictive analytics

on bank data 204-206
used, for setting up item-based

recommendation engine 198-201
used, for setting up user-based

recommendation engine 201-204
Mainframes

about 157
data, importing into HDFS from 157

268

Map Reduce
about 1
used, for performing Reduce side

Joins 63-69
Map Reduce action job

implementing, Oozie used 180, 181
Map Reduce code

unit testing, MRUnit used 69-72
Map Reduce program

executing, in Hadoop cluster 42, 43
used, for finding distinct values 55-57
used, for finding top X 51-54
user-defined counter, implementing in 47-51
writing, for data partitioning 58-60
writing, in Java for web log data

analysis 38-41
MapReduce programming Hbase Table

executing 105-107
Map Reduce results

writing, to multiple output files 61, 62
map side joins

executing, in Hive 124-127
reference 127

merge joins
about 90
reference 90

MRBench
benchmarking 22

MRUnit
Map Reduce code, unit testing 69-72

multi-node Hadoop cluster
installing 9-12

multiple tables
inserting, Hive used 139-141

MySQL connector
URL 144

N
Naive Bayes algorithm

reference 220
Ngrams

reference 129
NNBench

benchmarking 22
nodes

adding, to existing Hadoop clusters 13, 14

O
Olympics Athletes Data Analytics

performing, Spark Shell used 225-229
URL 226

Oozie
job, scheduling 192, 193
used, for executing parallel jobs 190, 191
used, for implementing e-mail

action job 188, 189
used, for implementing Hive action

job 184, 185
used, for implementing Java action

job 182, 183
used, for implementing Map Reduce

action job 180, 181
used, for implementing Pig action

job 186, 187
used, for implementing Sqoop action

job 178, 179
ORC file format

Hive data, processing in 79, 80
Hive data, storing in 79, 80

Order By queries
performing, in Pig 86, 87

P
parallel jobs

executing, Oozie used 190, 191
Parquet

about 237
files, analyzing with Spark 237-239
URL 237

Parquet file format
Hive data, processing in 81, 82
Hive data, storing in 81, 82
reference 82

Pig
FILTER By queries, performing in 83, 84
Group By queries, performing in 84, 85
JOINS, performing in 87-89
Order By queries, performing in 86, 87
reference 74
used, for analyzing web log data 94-97
user-defined function, writing in 90-92

Pig action job
implementing, Oozie used 186, 187

269

population data analytics
performing, R used 208-211

predictive analytics
performing, R used 217-219
performing, Spark MLib used 245-247

Q
query operator

used, in Sqoop import 151, 152

R
R

about 195
used, for performing population data

analytics 208-211
used, for performing predictive

analytics 217-219
used, for performing Twitter sentiment

analytics 212-216
RC file format

Hive data, processing in 77-79
Hive data, storing in 77-79

reduce side joins
performing, Map Reduce used 63-69

Remote Procedure Calls (RPC) 116
replicated joins

about 89
reference 90

replication factor
modifying, of existing file in HDFS 26, 27

right outer join 123

S
safe mode

entering 17
exiting from 17

sequential file format
Hive data, processing in 75, 76
Hive data, storing in 75, 76

SGD for logistic regression
reference 204

single-node Hadoop cluster
HDFS file operations, performing on 8, 9
installing 2-7

skewed joins
about 90
reference 90

Spark
running, on YARN 224
used, for analyzing JSON data 239-242
used, for analyzing Parquet files 237-239

Spark Shell
used, for performing Olympics Athletes Data

Analytics 225-229
Spark standalone

running 222-224
Spark Streaming

URL 237
used, for creating Twitter trending

topics 229-236
Sqoop

used, for importing data from RDBMS to
Hbase 164-168

used, for importing data from RDMBS to
HDFS 144-148

used, for importing data into Hive
table 156, 157

used, for incremental import 158-160
used, for performing atomic export 154, 155

Sqoop action job
implementing, Oozie used 178, 179

Sqoop import
query operator, using 151, 152

Sqoop, in compressed format
used, for importing data 153, 154

Sqoop job
creating 161, 164
executing 161, 164

Stochastic Gradient Descent (SGD) 204

T
table joins

full outer join 123
left outer join 122
left semi join 124
performing, in Hive 121, 122
right outer join 123

TestDFSIO
benchmarking 20-22

270

text data clustering, K-Means
Mahout used 207, 208

top X
finding, Map Reduce program used 51-54

transparent encryption
enabling, for HDFS 29-31
reference 31

TreeMap
reference link 53

Twitter apps
URL 168

Twitter authorization tokens
generating 168

Twitter data
importing, Flume used 168-172

Twitter sentiment analysis
performing, Hive used 131-134

Twitter sentiment analytics
performing, R used 212-216

Twitter trending topics
creating, Spark Streaming used 229-233
defining, Spark Streaming used 233-236

U
uniform data distribution

balancer command, executing for 14-16
user-based recommendation engine

creating, Mahout used 201-204
user-defined counter

implementing, in Map Reduce
program 47-51

user-defined function
writing, in Hive 118-120
writing, in Pig 90-92

W
web log analytics

defining 254-259
problem statement 254
references 254
solution 254-259

web log data
analyzing, Pig used 94-97
importing into HDFS, Flume used 175, 176

X
XML data

processing, XML SerDe used 113-116
XML SerDe

references 113
used, for processing XML data 113-116

Y
Yet Another Resource Negotiator (YARN)

about 5, 8
Spark, running on 224

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgements
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
with Hadoop 2.X
	Introduction
	Installing a Single Node Hadoop Cluster
	Installing a multi-node Hadoop cluster
	Adding new nodes to existing Hadoop clusters
	Executing balancer command for uniform data distribution
	Entering and exiting from the safe mode in a Hadoop cluster
	Decommissioning DataNodes
	Performing benchmarking on a Hadoop cluster

	Chapter 2: Exploring HDFS
	Introduction
	Loading data from a local machine to HDFS
	Exporting data from HDFS to local machine
	Changing the replication factor of an existing file in HDFS
	Setting the HDFS block size for all the files in a cluster
	Setting the HDFS block size for a specific file in a cluster
	Enabling transparent encryption for HDFS
	Importing data from another Hadoop cluster
	Recycling deleted data from trash to HDFS
	Saving compressed data in HDFS

	Chapter 3: Mastering Map
Reduce Programs
	Introduction
	Writing the Map Reduce program in Java to analyze web log data
	Executing the Map Reduce program in a Hadoop cluster
	Adding support for a new writable data type in Hadoop
	Implementing a user-defined counter in a Map Reduce program
	Map Reduce program to find the top X
	Map Reduce program to find distinct values
	Map Reduce program to partition data using a custom partitioner
	Writing Map Reduce results to multiple output files
	Performing Reduce side Joins using
Map Reduce
	Unit testing the Map Reduce code
using MRUnit

	Chapter 4: Data Analysis Using Hive, Pig, and Hbase
	Introduction
	Storing and processing Hive data in a sequential file format
	Storing and processing Hive data in the
ORC file format
	Storing and processing Hive data in the ORC file format
	Storing and processing Hive data in the Parquet file format
	Performing FILTER By queries in Pig
	Performing Group By queries in Pig
	Performing Order By queries in Pig
	Performing JOINS in Pig
	Writing a user-defined function in Pig
	Analyzing web log data using Pig
	Performing the Hbase operation in CLI
	Performing Hbase operations in Java
	Executing the MapReduce programming with an Hbase Table

	Chapter 5: Advanced Data Analysis Using Hive
	Introduction
	Processing JSON data using Hive
JSON SerDe
	Processing XML data using Hive XML SerDe
	Processing Hive data in AVRO format
	Writing User Defined functions in Hive
	Performing table joins in Hive
	Executing map side joins in Hive
	Performing context Ngram in Hive
	Call Data Record Analytics using Hive
	Twitter sentiment analysis using Hive
	Implementing Change Data Capture
using Hive
	Multiple table inserting using Hive

	Chapter 6: Data Import/Export Using Sqoop and Flume
	Introduction
	Importing data from RDMBS to HDFS
using Sqoop
	Exporting data from HDFS to RDBMS
	Using query operator in Sqoop import
	Importing data using Sqoop in compressed format
	Performing Atomic export using Sqoop
	Importing data into Hive tables using Sqoop
	Importing data into HDFS from Mainframes
	Incremental import using Sqoop
	Creating and executing Sqoop job
	Importing data from RDBMS to Hbase
using Sqoop
	Importing Twitter data into HDFS
using Flume
	Importing data from Kafka into HDFS
using Flume
	Importing web logs data into HDFS
using Flume

	Chapter 7: Automation of Hadoop Tasks Using Oozie
	Introduction
	Implementing a Sqoop action job using Oozie
	Implementing a Map Reduce action job using Oozie
	Implementing a Java action job using Oozie
	Implementing a Hive action job using Oozie
	Implementing a Pig action job using Oozie
	Implementing an e-mail action job
using Oozie
	Executing parallel jobs using Oozie (fork)
	Scheduling a job in Oozie

	Chapter 8: Machine Learning and Predictive Analytics Using Mahout and R
	Introduction
	Setting up the Mahout development environment
	Creating an item-based recommendation
engine using Mahout
	Creating a user-based recommendation
engine using Mahout
	Using predictive analytics on Bank Data
using Mahout

	Clustering text data using K-Means
	Performing population Data Analytics using R
	Performing Twitter Sentiment Analytics
using R
	Performing Predictive Analytics using R

	Chapter 9: Integration with Apache Spark
	Introduction
	Running Spark standalone
	Running Spark on YARN
	Olympic Athlete Data Analytics using
Spark Shell
	Creating Twitter trending topics using
Spark Streaming
	Twitter trending topics using Spark streaming
	Analyzing Parquet files using Spark
	Analyzing JSON data using Spark
	Processing graphs using Graph X
	Conducting predictive analytics using
Spark MLib

	Chapter 10: Hadoop Use Cases
	Introduction
	Call Data Record analytics
	Web log analytics
	Sensitive data masking and encryption using Hadoop

	Index

