

Learning Elastic Stack 6.0

A beginner’s guide to distributed search, analytics, and
visualization using Elasticsearch, Logstash, and Kibana

Pranav Shukla

Sharath Kumar M N

BIRMINGHAM - MUMBAI

Learning Elastic Stack 6.0
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2017

Production reference: 1201217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78728-186-8

www.packtpub.com

http://www.packtpub.com

Credits

Authors
Pranav Shukla
Sharath Kumar M N

Copy Editors
Safis Editing
Vikrant Phadkay

Reviewer
Marcelo Ochoa

Project Coordinator
Nidhi Joshi

Commissioning Editor
Amey Varangaonkar

Proofreader
Safis Editing

Acquisition Editor
Varsha Shetty

Indexer
Aishwarya Gangawane

Content Development Editor
Cheryl Dsa

Graphics
Tania Dutta

Technical Editor
Sagar Sawant

Production Coordinator
Shantanu Zagade

 

Disclaimer

Elasticsearch is a trademark of Elasticsearch BV, registered in the U.S. and in other
countries.
Kibana is a trademark of Elasticsearch BV, registered in the U.S. and in other countries.
Logstash is a trademark of Elasticsearch BV, registered in the U.S. and in other countries.
Packetbeat is a trademark of Elasticsearch BV, registered in the U.S. and in other countries.
Elastic is a trademark of Elasticsearch BV or Elastic Cloud is a trademark of Elasticsearch
BV or Elastic Cloud Enterprise is a trademark of Elasticsearch BV or X-Pack is a trademark
of Elasticsearch BV or Beats is a trademark of Elasticsearch BV or Winlogbeat is a trademark
of Elasticsearch BV or Libbeat is a trademark of Elasticsearch BV or Metricbeat is a
trademark of Elasticsearch BV or Filebeat is a trademark of Elasticsearch BV or Topbeat is a
trademark of Elasticsearch BV or Heartbeat is a trademark of Elasticsearch BV.

About the Authors
Pranav Shukla is the founder and CEO of Valens DataLabs, a technologist, husband, and
father of two. He is a big data architect and software craftsman who uses JVM-based
languages. Pranav has diverse experience of over 14 years in architecting enterprise
applications for Fortune 500 companies and start-ups. His core expertise lies in building
JVM-based, scalable, reactive, and data-driven applications using Java/Scala, the Hadoop
ecosystem, Apache Spark, and NoSQL databases. He is a big data engineering, analytics,
and machine learning enthusiast.

Pranav founded Valens DataLabs with a vision to help companies leverage data to their
competitive advantage. Valens DataLabs specializes in developing next-generation, cloud-
based, reactive, and data-intensive applications using big data and web technologies. The
company believes in agile practices, lean principles, test-driven and behavior-driven
development, continuous integration, and continuous delivery for sustainable software
systems.

In his free time, he enjoys reading books, playing musical instruments, singing, listening to
music, and watching cricket. You can reach him via email at
pranav.shukla@valensdatalabs.com and follow him on Twitter at @pranavshukla81.

I would like to thank my wife Kruti Shukla for her unconditional love and support, our
sons Sauhadra and Pratishth, my parents Dr Sharad Shukla and Varsha Shukla. I would
like to thank my brother Vishal Shukla for playing an inspirational role in my career and
also for inspiring me to write this book. I would like to thank Parth Mistry, Gopal
Ghanghar, and Krishna Meet for their valuable feedback for the book. I am grateful to
many who have contributed in shaping my career through fruitful interactions,
particularly I would like to thank Umesh Kakkad, Eddie Moojen, Wart Fransen, Praveen
Sameneni, Vinod Patel, Gopal Shah, and Sachin Bakshi.

Sharath Kumar M N has done his masters in Computer Science at The University of Texas,
Dallas, USA. He has been in the IT industry for more than ten years now and is the
Elasticsearch Solutions Architect at Oracle. He is an Elastic Stack advocate, and being an
avid speaker he has also given several tech talks in conferences such as the Oracle Code
Event. Sharath is a certified trainer—Elastic Certified Instructor—one of the few
technology experts in the world who has been certified by Elastic Inc to deliver their official
from the creators of Elastic training. He is also a data science and machine learning enthusiast.

In his free time, he enjoys trekking, listening to music, playing with his lovely pets Guddu
and Milo and the geek in him loves exploring his Python skills for stock market
analysis. You can reach him via email at mnsk07@gmail.com.

I would like to thank my parents, Geetha and Nanjaiah, sister Dr Shilpa M N, brother-in-
law Dr Sridhar and my friends - without their support I wouldn't have been able to finish
my part of this book in time. I would also like to thank Packt Publishing team(specially
Cheryl, Samuel, Varsha, Sagar) for providing a great opportunity for me to take part in
this exciting journey.

About the Reviewer
Marcelo Ochoa works at the systems laboratory of Facultad de Ciencias Exactas,
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina. He is the CTO
at www.scotas.com, a company that specializes in near-real-time search solutions using
Apache Solr and Oracle. He divides his time between university jobs and external projects
related to Oracle and big data technologies. He has worked on several Oracle-related
projects, such as the translation of Oracle manuals and multimedia CBTs. His background is
in database, network, web, and Java technologies. In the XML world, Marcelo is known as
the developer of DB Generator for the Apache Cocoon project. He has worked on the open
source projects DBPrism and DBPrism CMS, Lucene-Oracle integration using the Oracle
JVM Directory implementation, and the Restlet.org project, where he worked on the Oracle
XDB Restlet Adapter, an alternative to writing native REST web services inside a database-
resident JVM.

Since 2006, he has been part of an Oracle ACE program and has recently linked to a Docker
Mentor program.

Marcelo has coauthored Oracle Database Programming Using Java and Web Services by Digital
Press and Professional XML Databases by Wrox Press. He has been a technical reviewer on
several Packt books, such as Mastering Elastic Stack, Mastering Elasticsearch 5.x - Third Edition,
Elasticsearch 5.x Cookbook - Third Edition, and so on.

http://www.scotas.com

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available?

You can upgrade to the eBook version at www.PacktPub.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

https:/​/​www.​packtpub. ​com/ ​mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https:/​/​www.​amazon. ​in/ ​dp/ ​1787281868.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.in/dp/1787281868
https://www.amazon.in/dp/1787281868
https://www.amazon.in/dp/1787281868
https://www.amazon.in/dp/1787281868
https://www.amazon.in/dp/1787281868
https://www.amazon.in/dp/1787281868
https://www.amazon.in/dp/1787281868
https://www.amazon.in/dp/1787281868
https://www.amazon.in/dp/1787281868
https://www.amazon.in/dp/1787281868
https://www.amazon.in/dp/1787281868
https://www.amazon.in/dp/1787281868
https://www.amazon.in/dp/1787281868

Table of Contents
Preface 1

Chapter 1: Introducing Elastic Stack 7

What is Elasticsearch, and why use it? 8
Schemaless and document-oriented 9
Searching 9
Analytics 10
Rich client library support and the REST API 11
Easy to operate and easy to scale 11
Near real time 12
Lightning fast 12
Fault tolerant 12

Exploring the components of Elastic Stack 12
Elasticsearch 13
Logstash 14
Beats 14
Kibana 15
X-Pack 15

Security 15
Monitoring 15
Reporting 16
Alerting 16
Graph 16

Elastic Cloud 17
Use cases of Elastic Stack 17

Log and security analytics 17
Product search 19
Metrics analytics 19
Web search and website search 20

Downloading and installing 20
Installing Elasticsearch 21
Installing Kibana 22

Summary 22

Chapter 2: Getting Started with Elasticsearch 23

Using the Kibana Console UI 23

Table of Contents

[ii]

Core concepts 26
Index 27
Type 28
Document 28
Node 29
Cluster 30
Shards and replicas 30
Mappings and data types 33

Data types 33
Core datatypes 34
Complex datatypes 35
Other datatypes 35

Mappings 35
Creating an index with the name catalog 36
Defining the mappings for the type of product 36

Inverted index 38
CRUD operations 40

Index API 40
Indexing a document by providing an ID 41
Indexing a document without providing an ID 41

Get API 42
Update API 43
Delete API 45

Creating indexes and taking control of mapping 45
Creating an index 46
Creating type mapping in an existing index 47
Updating a mapping 49

REST API overview 50
Common API conventions 51

Formatting the JSON response 51
Dealing with multiple indices 52

Searching all documents in one index 54
Searching all documents in multiple indexes 54
Searching all documents of a particular type in all indices 54

Summary 54

Chapter 3: Searching-What is Relevant 55

Basics of text analysis 55
Understanding Elasticsearch analyzers 56

Character filters 57
Tokenizer 58

Standard Tokenizer 59
Token filters 60

Table of Contents

[iii]

Using built-in analyzers 61
Standard Analyzer 61

Implementing autocomplete with a custom analyzer 66
Searching from structured data 70

Range query 72
Range query on numeric types 73
Range query with score boosting 74
Range query on dates 75

Exists query 76
Term query 77

Searching from full text 78
Match query 80

Operator 82
minimum_should_match 82
Fuzziness 83

Match phrase query 84
Multi match query 86

Querying multiple fields with defaults 86
Boosting one or more fields 87
With types of multi match queries 87

Writing compound queries 88
Constant score query 88
Bool query 90

Combining OR conditions 91
Combining conditions AND and OR conditions 92
Adding NOT conditions 93

Summary 95

Chapter 4: Analytics with Elasticsearch 96

The basics of aggregations 96
Bucket aggregations 98
Metric aggregations 98
Matrix aggregations 99
Pipeline aggregations 99

Preparing data for analysis 99
Understanding the structure of data 100
Loading the data using Logstash 102

Metric aggregations 104
Sum, average, min, and max aggregations 104

Sum aggregation 105
Average aggregation 106
Min aggregation 107

Table of Contents

[iv]

Max aggregation 107
Stats and extended stats aggregations 108

Stats aggregation 108
Extended stats Aggregation 109

Cardinality aggregation 110
Bucket aggregations 111

Bucketing on string data 112
Terms aggregation 112

Bucketing on numeric data 117
Histogram aggregation 118
Range aggregation 119

Aggregations on filtered data 121
Nesting aggregations 123
Bucketing on custom conditions 126

Filter aggregation 127
Filters aggregation 128

Bucketing on date/time data 129
Date Histogram aggregation 129

Creating buckets across time 130
Using a different time zone 131
Computing other metrics within sliced time intervals 132
Focusing on a specific day and changing intervals 133

Bucketing on geo-spatial data 135
Geo distance aggregation 135
GeoHash grid aggregation 137

Pipeline aggregations 139
Calculating the cumulative sum of usage over time 139

Summary 141

Chapter 5: Analyzing Log Data 142

Log analysis challenges 143
Logstash 145

Installation and configuration 147
Prerequisites 147

Downloading and installing Logstash 147
Installing on Windows 148
Installing on Linux 149
Running Logstash 149

Logstash architecture 150
Overview of Logstash plugins 153

Installing or updating plugins 154
Input plugins 154
Output plugins 155
Filter plugins 155

Table of Contents

[v]

Codec plugins 156
Exploring plugins 156

Exploring Input plugins 156
File 156
Beats 158
JDBC 160
IMAP 162

Output plugins 163
Elasticsearch 163
CSV 164
Kafka 165
PagerDuty 166

Codec plugins 167
JSON 167
Rubydebug 167
Multiline 168

Filter plugins 168
Ingest node 168

Defining a pipeline 169
Ingest APIs 170

Put pipeline API 170
Get Pipeline API 172
Delete pipeline API 173
Simulate pipeline API 173

Summary 174

Chapter 6: Building Data Pipelines with Logstash 175

Parsing and enriching logs using Logstash 176
Filter plugins 176

CSV filter 177
Mutate filter 178
Grok filter 180
Date filter 182
Geoip filter 183
Useragent filter 184

Introducing Beats 184
Beats by Elastic.co 186

Filebeat 186
Metricbeat 186
Packetbeat 186
Heartbeat 187
Winlogbeat 187
Auditbeat 187

Community Beats 187
Logstash versus Beats 188

Table of Contents

[vi]

Filebeat 189
Downloading and installing Filebeat 189

Installing on Windows 190
Installing on Linux 190

Architecture 191
Configuring Filebeat 193

Filebeat prospectors 197
Filebeat global options 199
Filebeat general options 200
Output configuration 201
Filebeat modules 202

Summary 205

Chapter 7: Visualizing data with Kibana 206

Downloading and installing Kibana 206
Installing on Windows 207
Installing on Linux 208
Configuring Kibana 209

Data preparation 210
Kibana UI 212

User interaction 213
Configuring the index pattern 215
Discover 216

Elasticsearch query string 221
Elasticsearch DSL query 227

Visualize 233
Kibana aggregations 235

Bucket aggregations 235
Metric 237

Creating a visualization 237
Visualization types 239

Line, area, and bar charts 239
Data table 239
MarkDown widget 239
Metric 239
Goal 240
Gauge 240
Pie charts 240
Co-ordinate maps 240
Region maps 240
Tag cloud 241

Visualizations in action 241
Response codes over time 241
Top 10 URLs requested 243

Table of Contents

[vii]

Bandwidth usage of top five countries over time 244
Web traffic originating from different countries 247
Most used user agent 248

Dashboards 249
Creating a dashboard 250
Saving the dashboard 252
Cloning the dashboard 253
Sharing the dashboard 254

Timelion 254
Timelion UI 255
Timelion expressions 256

Using plugins 259
Installing plugins 259
Removing plugins 260

Summary 260

Chapter 8: Elastic X-Pack 261

Installing X-Pack 261
Installing X-Pack on Elasticsearch 262
Installing X-Pack on Kibana 264
Uninstalling X-Pack 266

Configuring X-Pack 267
Security 268

User authentication 268
User authorization 270
Security in action 272

New user creation 273
Deleting a user 276
Changing the password 276

New role creation 277
How to Delete/Edit a role 280

Document-level security or field-level security 281
X-Pack security APIs 286

User management APIs 287
Role management APIs 288

Monitoring Elasticsearch 290
Monitoring UI 292

Elasticsearch metrics 293
Overview tab 293
Nodes tab 295
The Indices tab 297

Alerting 299
Anatomy of a watch 300

Table of Contents

[viii]

Alerting in action 305
Create a new alert 306

Threshold Alert 307
Advanced Watch 310

How to Delete/Deactivate/Edit a Watch 312
Summary 313

Chapter 9: Running Elastic Stack in Production 314

Hosting Elastic Stack on a managed cloud 315
Getting up and running on Elastic Cloud 315
Using Kibana 317
Overriding configuration 318
Recovering from a snapshot 319

Hosting Elastic Stack on your own 320
Selecting hardware 320
Selecting an operating system 321
Configuring Elasticsearch nodes 321

JVM heap size 322
Disable swapping 322
File descriptors 322
Thread pools and garbage collector 323

Managing and monitoring Elasticsearch 323
Running in Docker containers 323
Special considerations while deploying to a cloud 324

Choosing instance type 325
Changing default ports; do not expose ports! 325
Proxy requests 325
Binding HTTP to local addresses 325
Installing EC2 discovery plugin 326
Installing S3 repository plugin 326
Setting up periodic snapshots 326

Backing up and restoring 327
Setting up a repository for snapshots 327

Shared filesystem 328
Cloud or distributed filesystems 329
Taking snapshots 330
Restoring a specific snapshot 330

Setting up index aliases 331
Understanding index aliases 331
How index aliases can help 332

Setting up index templates 333
Defining an index template 333

Table of Contents

[ix]

Creating indexes on the fly 334
Modeling time series data 335

Scaling the index with unpredictable volume over time 335
Unit of parallelism in Elasticsearch 335

The effect of the number of shards on the relevance score 336
The effect of the number of shards on the accuracy of aggregations 336

Changing the mapping over time 337
New fields get added 337
Existing fields get removed 337

Automatically deleting older documents 338
How index-per-timeframe solves these issues 338

Scaling with index-per-timeframe 338
Changing the mapping over time 339
Automatically deleting older documents 339

Summary 339

Chapter 10: Building a Sensor Data Analytics Application 340

Introduction to the application 341
Understanding the sensor-generated data 343
Understanding the sensor metadata 344
Understanding the final stored data 346

Modeling data in Elasticsearch 347
Defining an index template 347
Understanding the mapping 349

Setting up the metadata database 350
Building the Logstash data pipeline 351

Accept JSON requests over the web 351
Enrich the JSON with the metadata we have in the MySQL database 353

The jdbc_streaming plugin 354
The mutate plugin 355

Move the looked-up fields that are under lookupResult directly in JSON 356
Combine the latitude and longitude fields under lookupResult as a location field 356
Remove the unnecessary fields 357

Store the resulting documents in Elasticsearch 357
Sending data to Logstash over HTTP 358
Visualizing the data in Kibana 359

Set up an index pattern in Kibana 360
Build visualizations 361

How does the average temperature change over time? 361
How does the average humidity change over time? 363
How do temperature and humidity change at each location over time? 364
Can I visualize temperature and humidity over a map? 365
How are the sensors distributed across departments? 367

Table of Contents

[x]

Create a dashboard 368
Summary 372

Chapter 11: Monitoring Server Infrastructure 373

Metricbeat 373
Downloading and installing Metricbeat 374

Installing on Windows 375
Installing on Linux 375

Architecture 376
Event structure 378

Configuring Metricbeat 380
Module configuration 380

Enabling module configs in the modules.d directory 381
Enabling module config in the metricbeat.yml file 383

General settings 383
Output configuration 384
Logging 387

Capturing system metrics 388
Running Metricbeat with the system module 389
Specifying aliases 392
Visualizing system metrics using Kibana 394

 Deployment architecture 396
Summary 398

Index 399

Preface
Elastic Stack is a powerful combination of tools for the distributed search, analytics,
logging, and visualization of data from medium to massive data sets. The newly released
Elastic Stack 6.0 brings new features and capabilities that empower users to find unique,
actionable insights through these techniques. This book will give you a fundamental
understanding of what the stack is all about, and how to use it efficiently to build powerful
real-time data processing applications.
After a quick overview of the newly introduced features in Elastic Stack 6.0, you'll learn
how to set up the stack by installing the tools, and see their basic configurations. Then the
book shows you how to use Elasticsearch for distributed searching and analytics, along
with Logstash for logging, and Kibana for data visualization. It also demonstrates the
creation of custom plugins using Kibana and Beats. You'll find out about Elastic X-Pack, a
useful extension for effective security and monitoring. We also provide useful tips on how
to use the Elastic Cloud and deploy Elastic Stack in production environments.

What this book covers
Chapter 1, Introducing Elastic Stack, motivates the reader by introducing the core
components of Elastic Stack, importance of distributed, scalable search and analytics that
Elastic Stack offers with use cases of ElasticSearch. The chapter gives a brief introduction to
all core components, shows where do they fit in the overall stack, and details the purpose of
each component. It concludes with instructions for downloading and installing
ElasticSearch and Kibana to get started.

Chapter 2, Getting Started with ElasticSearch, introduces the core concepts involved in
ElasticSearch, which forms the backbone of the Elastic Stack. Concepts such as indexes,
types, nodes, and clusters are introduced. The reader is introduced to the REST API for
performing essential operations, datatypes, and mappings.

Chapter 3, Searching What Is Relevant, focuses on the search use-case for ElasticSearch. It
introduces the concepts of text analysis, tokenizers, analyzers, and the need for analysis and
relevance-based searching. The chapter uses and example use-case to cover the relevance
based search topics.

Preface

[2]

Chapter 4, Analytics with ElasticSearch, covers various types of aggregations with examples
to gain fundamental understanding. It starts off with very simple to complex aggregations
to get powerful insights from terabytes of data. The chapter also covers reasons for using
different types of aggregations.

Chapter 5, Analyzing Log Data, lays the foundation for the motivation behind logstash, the
architecture of logstash, and installing and configuring logstash to set up basic data
pipelines. Elastic 5 introduced Ingest Node, which can be used instead of a dedicated
Logstash setup. We will also cover building pipelines using Elastic Ingest Nodes.

Chapter 6, Building Data Pipelines with Logstash, builds on the fundamental knowledge of
Logstash by transformations and aggregation related filters. It covers how a rich set of
filters brings Logstash closer to the other real-time and near-real-time stream processing
frameworks with zero coding. It introduces the Beats platform, and the FileBeat component,
which is used to transport log files from the edge machines.

Chapter 7, Visualizing Data with Kibana, covers how to effectively use Kibana to build
beautiful dashboards for effective storytelling about your data. It uses a sample dataset and
provides step-by-step guidance on creating visualizations in a few clicks.

Chapter 8, Elastic X-Pack, since we have covered ElasticSearch and the core components
that help us build data pipelines and visualize data, it's now time to add the extensions
needed for specific use cases. This chapter shows you how to install and configure X-Pack
components in Elastic Stack and teaches you to secure, monitor, and use alerting
extensions.

Chapter 9, Building a Sensor Data Analytics Application, puts together a complete application
for sensor data analytics with the concepts learned so far. It shows you how to model your
data in ElasticSearch, how to build the data-pipeline to ingest the data and how to visualize
it using Kibana. The chapter also demonstrates how to effectively use X-Pack components
to secure and monitor your pipeline, and get alerts when certain conditions are met.

Chapter 10, Running Elastic Stack in Production, covers recommendations on how to deploy
Elastic Stack to production. It provides recommendations for taking your application to
production and guidelines on typical configurations that need to be looked at for different
use cases. It also covers deploying into cloud-based hosted providers such as Elastic Cloud.

Preface

[3]

Chapter 11, Monitoring Server Infrastructure, shows how we can use Elastic Stack to set up a
real-time monitoring solution for your servers, applications that are built completely using
Elastic Stack. It introduces another component of the Beats platform, MetricBeat, which is
used to monitor servers/applications.

What you need for this book
This book will guide you through the installation of all the tools that you need to follow the
examples and download the following files with the version:

Elasticsearch 6.0
Kibana 6.0

Who this book is for
This book is for data professionals who want to get amazing insights and business metrics
from their data sources. If you want to get a fundamental understanding of Elastic Stack for
the distributed, real-time processing of data, this book will help you. A fundamental
knowledge of JSON would be useful, but is not mandatory. No previous experience with
Elastic Stack is required.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The next
lines of code read the link and assign it to the BeautifulSoup function." A block of code is
set as follows:

#import packages into the project
from bs4 import BeautifulSoup
from urllib.request import urlopen
import pandas as pd

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default] exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

C:\Python34\Scripts> pip install -upgrade pip
C:\Python34\Scripts> pip install pandas

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

http://www.packtpub.com/authors

Preface

[5]

Downloading the example code
You can download the example code files for this book from your account at http:/ ​/​www.
packtpub.​com. If you purchased this book elsewhere, you can visit http:/ ​/​www. ​packtpub.
com/​support and register to have the files emailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your email address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Learning- ​Elastic- ​Stack- ​6. We also have other code bundles from our
rich catalog of books and videos available at https:/ ​/​github. ​com/ ​PacktPublishing/ ​.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from
https://www.packtpub.com/sites/default/files/downloads/LearningElasticStack6_Co

lorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-Elastic-Stack-6
https://github.com/PacktPublishing/Learning-Elastic-Stack-6
https://github.com/PacktPublishing/Learning-Elastic-Stack-6
https://github.com/PacktPublishing/Learning-Elastic-Stack-6
https://github.com/PacktPublishing/Learning-Elastic-Stack-6
https://github.com/PacktPublishing/Learning-Elastic-Stack-6
https://github.com/PacktPublishing/Learning-Elastic-Stack-6
https://github.com/PacktPublishing/Learning-Elastic-Stack-6
https://github.com/PacktPublishing/Learning-Elastic-Stack-6
https://github.com/PacktPublishing/Learning-Elastic-Stack-6
https://github.com/PacktPublishing/Learning-Elastic-Stack-6
https://github.com/PacktPublishing/Learning-Elastic-Stack-6
https://github.com/PacktPublishing/Learning-Elastic-Stack-6
https://github.com/PacktPublishing/Learning-Elastic-Stack-6
https://github.com/PacktPublishing/Learning-Elastic-Stack-6
https://github.com/PacktPublishing/Learning-Elastic-Stack-6
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/LearningElasticStack6_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningElasticStack6_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningElasticStack6_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningElasticStack6_ColorImages.pdf

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ ​/​www. ​packtpub. ​com/ ​submit- ​errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https:/ ​/​www. ​packtpub. ​com/
books/​content/​support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Introducing Elastic Stack

We are living in an advanced stage of the information age. The emergence of the web,
mobiles, social networks, blogs, and photo sharing has created a massive amount of data in
recent years. These new data sources create information that cannot be handled using
traditional data storage technology, typically relational databases. As an application
developer or business intelligence developer, your job is to fulfill the search and analytics
needs of the application.

A number of big data scale data stores have emerged in the last few years. This includes
Hadoop ecosystem projects, several NoSQL databases, and search and analytics engines
such as Elasticsearch. Hadoop and each NoSQL database have their own strengths and use
cases.

Elastic Stack is a rich ecosystem of components serving as a full search and analytics stack.
The main components of Elastic Stack are Kibana, Logstash, Beats, X-Pack, and
Elasticsearch. Elasticsearch is at the heart of Elastic Stack, providing storage, search, and
analytics capabilities. Kibana, which is also called a window into Elastic Stack, is a great
visualization and user interface for Elastic Stack. Logstash and Beats help in getting the data
into Elastic Stack. X-Pack provides powerful features including monitoring, alerting, and
security to make your system production ready. Since Elasticsearch is at the heart of Elastic
Stack, we will cover the stack inside-out, starting from the heart and moving on to the
surrounding components.

In this chapter, we will cover the following topics:

What is Elasticsearch, and why use it?
A brief history of Elasticsearch and Apache Lucene
Elastic Stack components
Use cases of Elastic Stack

Introducing Elastic Stack Chapter 1

[8]

We will look at what Elasticsearch is and why you should consider it as your data
store. Once you know the key strengths of Elasticsearch, we will look at the history of
Elasticsearch and its underlying technology, Apache Lucene. We will then look at some use
cases of Elastic Stack, and we will provide an overview of the Elastic Stack components.

What is Elasticsearch, and why use it?
Since you are reading this book, you probably already know what Elasticsearch is. For the
sake of completeness, let us define Elasticsearch.

Elasticsearch is a realtime, distributed search and analytics engine that is horizontally
scalable and capable of solving a wide variety of use cases. At the heart of Elastic Stack, it
centrally stores your data so you can discover the expected and uncover the unexpected.

Elasticsearch is at the core of Elastic Stack, playing the central role of a search and analytics
engine. Elasticsearch is built on a radically different technology, Apache Lucene. This
fundamentally different technology in Elasticsearch sets it apart from traditional relational
databases and other NoSQL solutions. Let us look at the key benefits of using Elasticsearch
as your data store:

Schemaless, document-oriented
Searching
Analytics
Rich client library support and the REST API
Easy to operate and easy to scale
Near real time
Lightning fast
Fault tolerant

Let us look at each benefit one by one.

Introducing Elastic Stack Chapter 1

[9]

Schemaless and document-oriented
Elasticsearch does not impose a strict structure on your data; you can store any JSON
documents. JSON documents are first class citizens in Elasticsearch as opposed to rows and
columns in a relational database. A document is roughly equivalent to a record in a
relational database table. Traditional relational databases require a schema to be defined
beforehand to specify a fixed set of columns and their datatypes and sizes. Often the nature
of data is very dynamic, requiring support for new or dynamic columns. The JSON
documents naturally support this type of data. For example, take a look at the following
document:

{
 "name": "John Smith",
 "address": "121 John Street, NY, 10010",
 "age": 40
}

This document may represent a customer's record. Here the record has the name, address,
and age of the customer. Another record may look like the following one:

{
 "name": "John Doe",
 "age": 38,
 "email": "john.doe@company.org"
}

Note that the second customer doesn't have the address field, but instead has an email
address. In fact, other customer documents may have completely different sets of fields.
This provides a tremendous amount of flexibility in terms of what can be stored.

Searching
The core strength of Elasticsearch lies in its text processing capabilities. Elasticsearch is great
at searching, especially a full-text search. Let us understand what a full-text search is.

Introducing Elastic Stack Chapter 1

[10]

Full-text search means searching through all the terms of all the
documents available in the database. This requires the entire contents of
all documents to be parsed and stored beforehand. When you hear full-
text search, think of Google Search. You can enter any search term
and Google looks through all of the web pages on the internet to find the
best matching web pages. This is quite different from simple SQL queries
run against columns of type string in relational databases. Normal SQL
queries with a WHERE clause and an equals (=) or LIKE clause try to do an
exact or wild-card match with underlying data. SQL queries can, at best,
just match the search term to a sub-string within the text column.

When you want to perform a search similar to Google search on your own data,
Elasticsearch is your best bet. You can index emails, text documents, PDF files, web pages,
or practically any unstructured text documents and search across all your documents with
search terms.

At a high level, Elasticsearch breaks up text data into terms and makes every term
searchable by building Lucene indexes. You can build your own Google-like search for your
application which is very fast and flexible.

In addition to supporting text data, Elasticsearch also supports other data types such as
numbers, dates, geolocations, IP addresses, and many more. We will take an in-depth look
at search in Chapter 3, Searching-What is Relevant.

Analytics
Apart from search, the second most important functional strength of Elasticsearch is
analytics. Yes, what was originally known just as a full-text search engine is now used as an
analytics engine in a variety of use cases. Many organizations are running analytics
solutions powered by Elasticsearch in production.

Search is like zooming in and finding a needle in a haystack. Search helps zoom in on
precisely what is needed in huge amounts of data. Analytics is exactly the opposite of
search; it is about zooming out and taking a look at the bigger picture. For example, you
may want to know how many visitors on your website are from the United States as
opposed to every other country, or you may want to know how many of your websites
visitors use macOS, Windows, or Linux.

Introducing Elastic Stack Chapter 1

[11]

Elasticsearch supports a wide variety of aggregations for analytics. Elasticsearch
aggregations are quite powerful and can be applied to various datatypes. We will take a
look at the analytics capabilities of Elasticsearch in Chapter 4, Analytics with Elasticsearch.

Rich client library support and the REST API
Elasticsearch has very rich client library support to make it accessible by many
programming languages. There are client libraries available for Java, C#, Python, JavaScript,
PHP, Perl, Ruby, and many more. Apart from the official client libraries, there
are community driven libraries for 20 plus programming languages.

Additionally, it has a very rich REST (Representational State Transfer) API which works
on an HTTP protocol. The REST API is very well documented and quite comprehensive,
making all operations available over HTTP.

All this means that Elasticsearch is very easy to integrate in any application to fulfill your
search and analytics needs.

Easy to operate and easy to scale
Elasticsearch can run on a single node and easily scale out to hundreds of nodes. It is very
easy to start a single node instance of Elasticsearch; it works out of the box without any
configuration changes and scales to hundreds of nodes.

Horizontal scalability is the ability to scale a system horizontally by
starting up multiple instances of the same type rather than making
one instance more and more powerful. Vertical scaling is about
upgrading a single instance by adding more processing power (by
increasing the number of CPUs or CPU cores), memory, or storage
capacity. There is a practical limit to how much a system can be scaled
vertically due to cost and other factors, such as the availability of higher
end hardware.

Unlike most traditional databases which only allow vertical scaling, Elasticsearch can be
scaled horizontally. It can run on tens or hundreds of commodity nodes instead of one
extremely expensive server. Adding a node to an existing Elasticsearch cluster is as easy as
starting up a new node in the same network, with virtually no extra configuration. The
client application doesn't need to change, whether it is running against a single node or a
hundred node cluster.

Introducing Elastic Stack Chapter 1

[12]

Near real time
Data is available for querying typically within a second after it has been indexed (saved).
Not all big data storage systems are real-time capable. Elasticsearch allows you to index
thousands to hundreds of thousands of documents per second and makes them available
for searching almost immediately.

Lightning fast
Elasticsearch uses Apache Lucene as its underlying technology. By default, Elasticsearch
indexes all the fields of your documents. This is extremely invaluable as you can query or
search by any field in your records. You will never be in a situation in which you think if
only I had chosen to create an index on this field. Elasticsearch contributors have
leveraged Apache Lucene to its best advantage, and there are other optimizations which
make it lightning fast.

Fault tolerant
Elasticsearch clusters can keep running even when there are hardware failures such as node
failure and network failure. In the case of node failure, it replicates all the data that was on
the failed node to another node in the cluster. In the case of network failure, Elasticsearch
seamlessly elects master replicas to keep the cluster running. Whether it is node or network
failure, you can rest assured that your data is safe.

Now that you know when and why Elasticsearch could be a great choice, let us take a high
level view of the ecosystem—the Elastic Stack.

Exploring the components of Elastic Stack
The Elastic Stack components are shown in the following figure. It is not necessary to
include all of them in your solution. Some components are general purpose and they can be
used outside of Elastic Stack without using any of the other components.

Introducing Elastic Stack Chapter 1

[13]

Let us look at the purpose of each component and how they fit in the stack:

Elasticsearch
Elasticsearch is at the heart of Elastic Stack. It stores all your data and provides search and
analytic capabilities in a scalable way. We have already looked at the strengths of
Elasticsearch and why you would want to use it. Elasticsearch can be used without using
any other components to power your application in terms of search and analytics. We will
cover Elasticsearch in great detail in Chapter 2, Getting Started with Elasticsearch, Chapter 3,
Searching-What is Relevant, and Chapter 4, Analytics with Elasticsearch.

Introducing Elastic Stack Chapter 1

[14]

Logstash
Logstash helps in centralizing event data such as logs, metrics, or any other data in any
format. It can perform a number of transformations before sending it to a stash of your
choice. It is a key component of Elastic Stack, used to centralize the collection and
transformation processes in your data pipeline.

Logstash is a server side component. Its role is to centralize the collection of data from a
wide number of input sources in a scalable way, and transform and send the data to an
output of your choice. Typically, the output is sent to Elasticsearch, but Logstash is capable
of sending it to a wide variety of outputs. Logstash has a plugin-based, extensible
architecture. It supports three types of plugin: input plugins, filter plugins, and output
plugins. Logstash has a collection of 200 plus supported plugins and the count is ever
increasing.

Logstash is an excellent general purpose data flow engine which helps in building real-time,
scalable data pipelines.

Beats
Beats is a platform of open source lightweight data shippers. Its role is complementary to
Logstash. Logstash is a server-side component, whereas Beats has a role on the client side.
Beats consists of a core library, libbeat, which provides an API for shipping data from the
source, configuring the input options, and implementing logging. Beats is installed on
machines that are not part of server-side components such as Elasticsearch, Logstash, or
Kibana. These agents reside on non-cluster nodes which may also be called edge nodes
sometimes.

There are many Beat components that have already been built by the Elastic team and the
open source community. The Elastic team has built Beats including, Packetbeat, Filebeat,
Metricbeat, Winlogbeat, Audiobeat, and Heartbeat.

Filebeat is a single-purpose Beat built to ship log files from your servers to a centralized
Logstash server or Elasticsearch server. Metricbeat is a server monitoring agent that
periodically collects metrics from the operating systems and services running on your
servers. There are already around 40 community Beats built for specific purposes such as
monitoring Elasticsearch, Cassandra, the Apache web server, JVM performance, and so on.
You can build your own beat using libbeat if you don't find one that fits your needs.

Introducing Elastic Stack Chapter 1

[15]

We will take a deep dive into Logstash and Beats in Chapter 5, Analyzing Log Data and
Chapter 6, Building Data Pipelines with Logstash.

Kibana
Kibana is the visualization tool of Elastic Stack which can help you gain powerful insights
about your data in Elasticsearch. It is often called a window into Elastic Stack. It offers
many visualizations including histograms, maps, line charts, time series, and more. You can
build visualizations with just a few clicks and interactively explore the data. It lets you
build beautiful dashboards by combining different visualizations, sharing with others, and
exporting high quality reports.

Kibana also has management and development tools. You can manage settings
and configure X‑Pack security features for the Elastic Stack. Kibana also has development
tools which enable developers to build and test REST API requests.

We will explore Kibana in Chapter 7, Visualizing Data with Kibana.

X-Pack
X-Pack adds essential features to make Elastic Stack production ready. It adds security,
monitoring, alerting, reporting, and graph capabilities to Elastic Stack.

Security
The security plugin within X-Pack adds authentication and authorization capabilities to
Elasticsearch and Kibana so that only authorized people have access to the data, and they
see only what they are allowed to see. The security plugin works across components
seamlessly, securing access to Elasticsearch and Kibana.

The security extension also lets you configure fields and document level security with the
licensed version.

Monitoring
You can monitor your Elastic Stack components so that there is no downtime. The
monitoring component in X-Pack lets you monitor your Elasticsearch clusters and Kibana.

Introducing Elastic Stack Chapter 1

[16]

You can monitor clusters, nodes, and index level metrics. The monitoring plugin maintains
a history of performance so that you can compare the current metrics with the past metrics.
It also has a capacity planning feature.

Reporting
The reporting plugin within X-Pack allows for generating printable, high-quality reports
from Kibana visualizations. The reports can be scheduled to run periodically or on a per
event basis.

Alerting
X-Pack has sophisticated alerting capabilities that can alert you in multiple possible ways
when certain conditions are met. It gives tremendous flexibility in terms of when, how, and
who to alert.

You may be interested in detecting security breaches, such as when someone has five login
failures within an hour from different locations, or when your product is trending on social
media. You can use the full power of Elasticsearch queries to check when complex
conditions are met.

Alerting provides a wide variety of options in terms of how alerts are sent. It can send alerts
via email, Slack, Hipchat, and PagerDuty.

Graph
Graph lets you explore relationships in your data. The data in Elasticsearch is generally
perceived as a flat list of entities without connections to other entities. This relationship
opens up the possibility of new use cases. Graph can surface relationships among entities
which share common properties such as people, places, products, or preferences.

Graph consists of Graph API and a UI within Kibana to let you explore this relationship.
Under the hood, it leverages distributed querying, indexing at scale, and the relevance
capabilities of Elasticsearch.

We will look at the some of X-Pack components in Chapter 8, Elastic X-Pack.

Introducing Elastic Stack Chapter 1

[17]

Elastic Cloud
Elastic Cloud is the cloud-based, hosted, and managed setup of Elastic Stack components.
The service is provided by the company Elastic (https:/ ​/ ​www.​elastic. ​co/ ​). Elastic is the
company behind the development of Elasticsearch and other Elastic Stack components. All
Elastic Stack components are open source except X-Pack (and Elastic Cloud). The company
Elastic provides services for Elastic Stack components including training, development,
support, and cloud hosting.

Apart from Elastic Cloud, there are other hosted solutions available for Elasticsearch
including one from Amazon Web Services (AWS). The advantage of Elastic Cloud is that it
is developed and maintained by the original creators of Elasticsearch and other Elastic Stack
components.

Use cases of Elastic Stack
Elastic Stack components have a variety of practical use cases, and new use cases are
emerging as more plugins are added to existing components. As mentioned earlier, you
may use a subset of the components for your use case. The following example use cases are
by no means exhaustive, but are some of the most common ones:

Log and security analytics
Product search
Metrics analytics
Web search and website search

Let us look at each use case.

Log and security analytics
The Elasticsearch, Logstash, and Kibana trio was very popular as an ELK stack previously.
The presence of Elasticsearch, Logstash, and Kibana (also known as ELK) makes Elastic
Stack an excellent stack for aggregating and analyzing logs in a central place.

https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/

Introducing Elastic Stack Chapter 1

[18]

The application support teams face a great challenge administering and managing large
numbers of applications deployed across tens or hundreds of servers. The application
infrastructure could have the following components:

Web servers
Application servers
Database servers
Message brokers

Typically, enterprise applications have all or most of the types of servers which were
explained earlier, and there are multiple instances of each server. In the event of an error or
production issue, the support team has to log in to individual servers and look at the errors.
It is quite inefficient to log in to individual servers and look at the raw log files. Elastic Stack
provides a complete tool set to collect, centralize, analyze, visualize, alert, and report the
errors as they occur. Here is how each component can be used to solve this problem:

The Beats framework, Filebeat in particular, can run as a lightweight agent to
collect and forward the logs.
Logstash can centralize the events received from Beats, and parse and transform
each log entry before sending it to the Elasticsearch cluster.
Elasticsearch indexes the logs. It enables both search and analytics on the parsed
logs.
Kibana then lets you create visualizations based on errors, warnings, and other
information logs. It lets you create dashboards where you can centrally monitor
events as they occur, in real time.
With X-Pack, you can secure the solution, configure alerts, get reports, and
analyze relationships in the data.

As you can see, you can get a complete log aggregation and monitoring solution using
Elastic Stack.

A security analytics solution would be very similar to this; the logs and events being fed
into the system would pertain to firewalls, switches, and other key network elements.

Introducing Elastic Stack Chapter 1

[19]

Product search
Product search involves searching for the most relevant product from thousands or tens of
thousands of products and presenting the most relevant products at the top of the list
before the other less relevant products. You can directly relate this problem to e-commerce
websites which sell huge numbers of products sold by many vendors or resellers.

Elasticsearch's full-text and relevance search capabilities can find the best matching results.
Presenting the best matches on the first page has great value as it increases the chances of
the customer actually buying the product. Imagine a customer searching for the iPhone 7,
and the results on the first page showing different cases, chargers, and accessories for
previous iPhone versions. The text analysis capabilities backed by Lucene, and innovations
added by Elasticsearch, ensure that you get iPhone 7 chargers and cases after the best
match.

This problem, however, is not limited to e-commerce websites. Any application that needs
to find the most relevant item from millions or billions of items can use Elasticsearch to
solve this problem.

Metrics analytics
Elastic Stack has excellent analytics capabilities thanks to the rich aggregations API in
Elasticsearch. This makes it a perfect tool for analyzing data with lots of metrics. Metric data
consists of numeric values as opposed to unstructured text such as documents and web
pages. Some examples are data generated by sensors, IoT devices, metrics generated by
mobile devices, servers, virtual machines, network routers, switches, and so on. The list is
endless.

Metric data is typically also of the time series nature, that is, values or measures are
recorded over the period of time. The metrics that are recorded are usually related to some
entity. For example, a temperature reading (which is a metric) is recorded for a particular
sensor device with a certain identifier. The type, name of the building, department, floor,
and so on are the dimensions associated with the metric. The dimensions may also include
the location of the sensor device, that is, the longitude and latitude.

Introducing Elastic Stack Chapter 1

[20]

Elasticsearch and Kibana allow for the slicing and dicing of metric data along different
dimensions to provide deep insight about your data. Elasticsearch is very powerful at
handling time-series and geo-spatial data, which means you can plot your metrics on line
charts and area charts aggregating millions of metrics. You can also do geo-spatial analysis
on a map.

We will build a metrics analytics application using Elastic Stack in Chapter 9, Building a
Sensor Data Analytics Application.

Web search and website search
Elasticsearch can serve as a search engine for your website and perform a Google-like
search across the entire contents of your site. GitHub, Wikipedia, and many other platforms
power their searches using Elasticsearch.

Elasticsearch can be leveraged to build content aggregation platforms. What is a content
aggregator or a content aggregation platform? Content aggregators scrape/crawl multiple
websites, index the web pages, and provide a search functionality on the underlying
content. This is a powerful way to build domain specific aggregated platforms.

Apache Nutch, an open source, large scale web crawler, was created by Doug Cutting, the
original creator of Apache Lucene. Apache Nutch crawls the web, parses the HTML pages,
stores them, and also builds indexes to make the content searchable. Apache Nutch
supports indexing into Elasticsearch or Apache Solr for its search engine.

As it is evident, Elasticsearch and Elastic Stack have many practical use cases. Elastic
Stack is a platform with a complete set of tools to build end-to-end search and analytics
solutions. It is a very approachable platform for developers, architects, business intelligence
analysts, and system administrators. It is possible to put together an Elastic Stack solution
with almost zero coding and with only configuration. At the same time, Elasticsearch is
very customizable, that is, developers and programmers can build powerful applications
using its rich programming language support and the REST API.

Downloading and installing
Now that we have enough motivation and reasons to learn about Elasticsearch and Elastic
Stack, let us start by downloading and installing the key components. Firstly, we will
download and install Elasticsearch and Kibana. We will install the other components as we
need them on the course of our journey. We also need Kibana because, apart from
visualizations, it also has a UI for developer tools and for interacting with Elasticsearch.

Introducing Elastic Stack Chapter 1

[21]

Starting from Elastic Stack 5.x, all Elastic Stack components are now released
together; they share the same version, and are tested for compatibility with each other. This
is true for Elastic Stack 6.x components as well.

At the time of this writing, the current released version of Elastic Stack is 6.0.0. We will use
this version for all components.

Installing Elasticsearch
Elasticsearch can be downloaded as a ZIP, TAR, DEB, or RPM package. If you are on
Ubuntu, Red Hat, or CentOS Linux, it can be directly installed using apt or yum.

We will use the ZIP format as it is the least intrusive and the easiest for development
purposes.

Go to https:/ ​/​www. ​elastic. ​co/​downloads/ ​elasticsearch and download the1.
ZIP distribution. You can also download an older version if you are looking for
an exact version.
Extract the file and change your directory to the top level extracted folder. Run2.
bin/elasticsearch or bin/elasticsearch.bat.
Run curl http://localhost:9200 or open the URL in your favorite browser.3.

You should see an output like this:

Congratulations! You have just set up a single node Elasticsearch cluster.

https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch

Introducing Elastic Stack Chapter 1

[22]

Installing Kibana
Kibana is also available in a variety of packaging formats such as ZIP, TAR.GZ, RMP, and
DEB for 32-bit and 64-bit architecture machines:

Go to https:/ ​/​www. ​elastic. ​co/​downloads/ ​kibana and download the ZIP or1.
TAR.GZ distribution for the platform that you are on.
Extract the file and change your directory to the top level extracted folder. Run2.
bin/kibana or bin/kibana.bat.
Open the URL http://localhost:5601 in your favorite browser.3.

Congratulations! You have a working setup of Elasticsearch and Kibana.

Summary
In this chapter, we started off by understanding the motivations of alternate search and
analytics technologies other than relational databases and NoSQL stores. We looked at the
strengths of Elasticsearch, which is at the heart of Elastic Stack. We then looked at the rest of
the components of Elastic Stack and how they fit into the ecosystem. We also looked at real-
world use cases of Elastic Stack. We have successfully downloaded and installed
Elasticsearch and Kibana to begin the journey of learning about Elastic Stack.

In the next chapter, we will understand the core concepts of Elasticsearch. We will learn
about indexes, types, shards, data types, mappings, and other fundamentals. We will also
interact with Elasticsearch by using CRUD (Create, Read, Update, and Delete) operations,
and learn the basics of search.

https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana

2
Getting Started with

Elasticsearch
In the first chapter we looked at the reasons for learning about and using Elastic Stack, and
the use cases of Elastic Stack.
In this chapter, we will start our journey of learning about Elastic Stack, starting at the core
of Elastic Stack—Elasticsearch. Elasticsearch is the search and analytics engine behind
Elastic Stack. We will learn the core concepts of Elasticsearch while doing some hands-on
practice; we will learn about querying, filtering, and searching.

We will cover the following topics in this chapter:

Using the Kibana Console UI
Core concepts
CRUD (Create, Read, Update, Delete) operations
Creating indexes and taking control of mapping
REST API overview

Using the Kibana Console UI
Before we start writing our first queries to interact with Elasticsearch, we should familiarize
ourselves with a very important tool: Kibana Console. This is important because
Elasticsearch has a very rich REST API, allowing you to do all possible operations with
Elasticsearch. Kibana Console has an editor which is very capable and aware of the REST
API. It allows for auto-completion, and for the formatting of queries as you write them.

Getting Started with Elasticsearch Chapter 2

[24]

What is a REST API? REST stands for Representational State Transfer. It
is an architectural style to make systems inter-operate and interact with
each other. REST has evolved along with the HTTP protocol, and almost
all REST-based systems use HTTP as their protocol. HTTP supports
different methods including GET, POST, PUT, DELETE, HEAD, and so
on, which are used for different semantics. For example, GET is used
for getting or searching for something. POST is used for creating a new
resource, PUT may be used for creating or updating an existing resource,
and DELETE may be used for deleting a resource permanently.

In Chapter 1, Introducing Elastic Stack, we successfully installed Kibana and launched the UI
at http://localhost:5601. As previously said, Kibana is the window into Elastic Stack.
It not only provides insight into the data through visualizations, but it also has developer
tools like the Console. The following diagram shows the Console UI:

Fig 2.1 Kibana Console

Getting Started with Elasticsearch Chapter 2

[25]

After launching Kibana, you need to click on the Dev Tools link from the left-hand side
navigation pane. The Console is divided into two parts, the editor pane and the results
pane. You can type the REST API command and press the green triangle-like icon, which
sends the query to the Elasticsearch instance (or cluster).

Here, we have simply sent the query GET /. This is equivalent to the curl command that
we sent to Elasticsearch for testing the setup, curl http://localhost:9200. As you can
see, the length of the command sent via the Console is already more concise than the curl
command. You don't need to type http followed by the host and port of the Elasticsearch
node, that is, http://localhost:9200. But as mentioned earlier, there is much more to it
than just skipping the host and port with every request. As you start typing in the Console
editor, you will get an auto suggestion dropdown, as displayed in the following screenshot:

Fig 2.2 Kibana Dev Tools Console auto suggestions

Now that we have the right tool to generate and send queries to Elasticsearch, let's continue
learning the core concepts.

Getting Started with Elasticsearch Chapter 2

[26]

Core concepts
Relational databases have concepts such as rows, columns, tables, and schema. Elasticsearch
and other document-oriented stores are based on different abstractions. Elasticsearch is a
document-oriented store. JSON documents are first class citizens in Elasticsearch. These
JSON documents are organized within different types and indexes. We will look at the
following core abstractions of Elasticsearch:

Index
Type
Document
Cluster
Node
Shards and replicas
Mappings and types
Inverted index

Let us start learning these with an example:

PUT /catalog/product/1
{
 "sku": "SP000001",
 "title": "Elasticsearch for Hadoop",
 "description": "Elasticsearch for Hadoop",
 "author": "Vishal Shukla",
 "ISBN": "1785288997",
 "price": 26.99
}

Copy and paste this example into the editor of your Kibana Console UI and execute it. This
will index a document which represents a product in the product catalog of a system. All
examples written for the Kibana Console UI can be very easily converted to curl
commands that can be executed from the command line. The following is the curl version of
the previous Kibana console UI command:

curl -XPUT http://localhost:9200/catalog/product/1 -d '{ "sku": "SP000001",
"title": "Elasticsearch for Hadoop", "description": "Elasticsearch for
Hadoop", "author": "Vishal Shukla", "ISBN": "1785288997", "price": 26.99}'

We will use this example to understand the following concepts: indexes, types, and
documents.

Getting Started with Elasticsearch Chapter 2

[27]

In the previous code block, the first line is PUT /catalog/product/1, which is followed
by a JSON document.

PUT is the HTTP method used to index a new document. PUT is among the other HTTP
methods covered earlier. Here, catalog is the name of the index, product is the name of type
where the document will be indexed, and 1 is the ID to be assigned to the document after it
is indexed.

The following sections explain each concept in depth.

Index
Index is a container which stores and manages documents of a single Type in Elasticsearch.
We will look at Type in the next section. Index can contain documents of a single Type as
depicted in the following figure:

Fig 2.3 Organization of Index, Type, and Documents

Index is a logical container of a type. Some configuration parameters are defined at the
Index level while other configuration parameters are defined at the Type level as we will
see in the later parts of this chapter.

Getting Started with Elasticsearch Chapter 2

[28]

The concept of Index in Elasticsearch is roughly analogous to the database schema in a
relational database. Going by that analogy, the Type in Elasticsearch is equivalent to a table
and Document is equivalent to a record in the table. But please keep in mind that this
analogy is just for ease of understanding. Unlike relational database schemas which almost
always contain multiple tables, one Index can just contain one Type.

Prior to Elasticsearch 6.0, one Index could contain multiple Types. This has
been changed since 6.0 to allow only one Type within an Index. If you
have an existing index with multiple types created prior to 6.0 and you are
upgrading to Elasticsearch 6.0, you can still use your old index. You
cannot create a new index with more than one type in Elasticsearch 6.0
and above.

Type
In our example, of a product catalog, the document that was indexed was of the product
type. Each document stored in the product type represents one product. As the same index
cannot have other types such as customers, orders, and order line items etc. Types help in
logically grouping or organizing the same kind of documents within an index.

Typically, documents with mostly common sets of fields are grouped under
one type. Elasticsearch is schemaless, allowing you to store any JSON document with any
set of fields into a type. In practice, we should avoid mixing completely different entities
like customers & products into a single type. It makes sense to store them in separate types
within separate indexes.

Document
As mentioned earlier, JSON documents are first class citizens in Elasticsearch.
Document consists of multiple fields and is the basic unit of information stored in
Elasticsearch. For example, you may have a document representing a single product, a
single customer, or a single order line item.

As depicted in the figure showing the relationship between index, type, and documents,
documents are contained within indexes and types.

Getting Started with Elasticsearch Chapter 2

[29]

Documents contain multiple fields. Each field in the JSON document is of a particular type.
In the product catalog example that we saw earlier, these fields were sku, title,
description, price, and so on. Each field and its value can be seen as a key value pair in
the document, where key is the field name and value is the field value. The field name is
similar to a column name in a relational database. The field value can be thought of as value
of the column for a given row, that is, the value of a given cell in the table.

In addition to the fields that are sent by the user in the document, Elasticsearch maintains
internal meta fields. These fields are as follows:

_id: This is the unique identifier of the document within the type, just like a
primary key in a database table. It can be autogenerated or specified by the user.
_type: This field contains the type of the document.
_index: This field contains the index name of the document.

Node
Elasticsearch is a distributed system. It consists of multiple processes running across
different machines in a network and communicating with the other processes. In Chapter
1, Introducing Elastic Stack, we downloaded, installed, and started Elasticsearch. It started
what is called a single node of Elasticsearch or a single node Elasticsearch cluster.

An Elasticsearch node is a single server of Elasticsearch which may be part of a larger
cluster of nodes. It participates in indexing, searching, and performing other operations
supported by Elasticsearch. Every Elasticsearch node is assigned a unique ID and name
when it is started. A node can also be assigned a static name via the node.name parameter
in the Elasticsearch configuration file, config/elasticsearch.yml.

Every Elasticsearch node or instance has a main configuration file which is
located in the config subdirectory. The file is in YML format (full
form—YAML Ain't Markup Language). This configuration file can be
used to change defaults such as node name, ports, and cluster name.

At the lowest level, a node corresponds to one instance of the Elasticsearch process. It is
responsible for managing its share of data.

Getting Started with Elasticsearch Chapter 2

[30]

Cluster
A cluster hosts one or more indices and is responsible for providing operations such as
searching, indexing, and aggregations. A cluster is formed by one or more nodes. Every
Elasticsearch node is always part of a cluster, even if it is just a single node cluster. By
default, every Elasticsearch node tries to join a cluster with the name Elasticsearch. If you
start multiple nodes on the same network without modifying the cluster.name property
in config/elasticsearch.yml, they form a cluster automatically.

It is advisable to modify the cluster.name property in the Elasticsearch
config file to avoid joining another cluster in the same network. Since the
default behavior of a node is to join an existing cluster within the
network, your local node may try to join another node and form a
cluster. This can happen in developer machines and also in other
environments as long as the nodes are in the same network.

A cluster consists of multiple nodes, where each node takes responsibility for storing and
managing its share of data. One cluster can host one or more indexes. An index is logical
grouping of related types of documents.

Shards and replicas
Let us first understand what a shard is. One index contains documents of one or more
types. Shards help in distributing an index over the cluster. Shards help in dividing the
documents of a single index over multiple nodes. There is a limit to the amount of data that
can be stored on a single node, and that limit is dictated by the storage, memory, and
processing capacities of that node. Shards help by splitting the data of a single index over
the cluster and hence allowing the storage, memory, and processing capacities of the cluster
to be utilized.

The process of dividing the data among shards is called sharding. Sharding is inherent in
Elasticsearch and is a way to scale and parallelize, as follows:

It helps in utilizing storage across different nodes of the cluster
It helps in utilizing the processing power of different nodes of the cluster

By default, every index is configured to have five shards in Elasticsearch. At the time of
creating the index, you can specify the number of shards from which the data will be
divided for your index. Once an index is created, the number of shards cannot be modified.

Getting Started with Elasticsearch Chapter 2

[31]

The following figure illustrates how five shards of one index may be distributed on a three-
node cluster:

Fig 2.4 Organization of shards across the nodes of a cluster

The shards are named P1 to P5 in this figure. Each shard contains roughly one fifth of the
total data stored in the index. When a query is made against this index, Elasticsearch takes
care of going through all shards and consolidating the result.

Now, imagine that one of the nodes (Node 1) goes down. With Node 1, we also lose the
share of data which was stored in shards P1 and P2:

Fig 2.5 Failure of one node along with the loss of its shards

Getting Started with Elasticsearch Chapter 2

[32]

Distributed systems like Elasticsearch are expected to run in spite of hardware failure. This
issue is addressed by replica shards or replicas. Each shard in an index can be configured
to have zero or more replica shards. Replica shards are extra copies of the original or
primary shard and provide a high availability of data.

For example, with one replica of each shard, we will have one extra copy of each replica. In
the following figure, we have five primary shards with one replica of each shard:

Fig 2.6 Organization of shards with replicas on cluster nodes

Primary shards are depicted in green and replica shards are in yellow. With the replicas in
place, if Node 1 goes down, we still have all shards available in Node 2 and Node 3. Replica
shards may be promoted to primary shards when the corresponding primary shard fails.

Getting Started with Elasticsearch Chapter 2

[33]

Apart from providing high availability and failover, replica shards also enable the querying
workload to be executed over replicas. Read operations such as search, query, and
aggregations can be executed on replicas as well. Elasticsearch transparently distributes the
execution of queries across nodes of the cluster where the required shards or replicas are
located.

To summarize, nodes get together to form a cluster. Clusters provide a physical layer of
services on which multiple indexes can be created. An index may contain one or
more types, with each type containing millions or billions of documents. Indexes are split
into shards, which are partitions of underlying data within an index. Shards are distributed
across the nodes of a cluster. Replicas are copies of primary shards and provide high
availability and failover.

Mappings and data types
Elasticsearch is schema-less, meaning you can store documents with any number of fields
and types of fields. In a real-world scenario, data is never completely schema-less or
unstructured. There are always some sets of fields that are common across all documents in
a type. In fact, types within the indexes should be created based on common fields.
Typically, one type of document in an index shares some common fields.

Relational databases impose a strict structure. In a relational database, you need to define
the structure of the table with column names and data types for each column at the time of
creating the table. You cannot insert a record with a new column or a different data-typed
column at runtime.

It is important to understand the data types supported by Elasticsearch.

Data types
Elasticsearch supports a wide variety of data types for supporting different scenarios where
you want to store text data, numbers, booleans, binary objects, arrays, objects, nested types,
geo-points, geo-shapes, and many other specialized datatypes such as IPv4 and IPv6
addresses.

Getting Started with Elasticsearch Chapter 2

[34]

In a document, each field has a datatype associated with it. A summary of the datatypes
supported by Elasticsearch is as follows.

Core datatypes
The core datatypes supported by Elasticsearch are as follows:

String datatypes:
text: The text datatype is useful for supporting full-text search
for fields which contain a description or lengthy text values. These
fields are analyzed before indexing to support full-text search.
keyword: The keyword type enables analytics on string fields.
Fields of this type support sorting, filtering, and aggregations.

Numeric datatypes:
byte, short, integer, and long: Signed integers with 8-bit, 16-
bit, 32-bit, and 64-bit precisions respectively
float and double: IEEE 754 floating point numbers with single-
precision 32-bit and double-precision 64-bit representations
half_float: IEEE 754 floating point number with half-precision
16-bit representation
scaled_float: Floating point number backed by a long and a
fixed scaling factor

Date datatype:
date: Date with an optional timestamp component capable of
storing precision timestamps down to the millisecond

Boolean datatype:
boolean: The Boolean datatype that is common in all
programming languages

Binary datatype:
binary: Allows the storing of arbitrary binary values after
performing Base64 encoding

Range datatypes:
integer_range, float_range, long_range, double_range,
and date_range: Defines ranges of integers, floats, longs, and so
on

Getting Started with Elasticsearch Chapter 2

[35]

scaled_float is a very useful datatype for storing something such as
price, which always has a precision of a limited number of decimal places.
Price can be stored with a scaling factor of 100, so a price of $10.98 would
be internally stored as 1,098 cents and can be treated as an integer.
Internally, scaled_float is much more storage efficient as integers can
be compressed much better.

Complex datatypes
The complex datatypes supported by Elasticsearch are as follows:

Array datatype: Arrays of the same types of instances. For example, arrays of
strings, integers, and so on. Doesn't allow the mixing of datatypes in arrays.
Object datatype: Allows inner objects within JSON documents.
Nested datatype: Useful for supporting arrays of inner objects where each inner
object needs to be independently queriable.

Other datatypes
The other datatypes supported by Elasticsearch are as follows:

Geo-point datatype: Allows the storing of geo-points as longitude and latitude.
The geo-point datatype enables queries such as searching across all ATMs within
a distance of 2 km from a point.
Geo-Shape datatype: Allows the storing of geometric shapes such as polygons,
maps, and so on. Geo-Shape enables queries such as searching for all items within
a shape.
IP datatype: Allows the storing of IPv4 and IPv6 addresses.

Mappings
To understand mappings, let's add another product to the product catalog:

PUT /catalog/product/2
{
 "sku": "SP000002",
 "title": "Google Pixel Phone 32GB - 5 inch display",
 "description": "Google Pixel Phone 32GB - 5 inch display (Factory
Unlocked US Version)",
 "price": 400.00,
 "resolution": "1440 x 2560 pixels",

Getting Started with Elasticsearch Chapter 2

[36]

 "os": "Android 7.1"
}

Copy and paste this example into the editor of your Kibana Console UI and execute it.

As you can see, the product has many different fields, as it is of a completely different
category. Yet, there are some fields that are common in all products. The common fields are
the precise reason why all these documents are called products.

Remember, unlike relational databases, we didn't have to define the fields that would be
part of each document. In fact, we didn't even have to create an index with the name
catalog. When the first document about the product type was indexed in the index catalog,
the following tasks were performed by Elasticsearch:

Creating an index with the name catalog
Defining the mappings for the type of product

Creating an index with the name catalog
The first step involves creating an index, because the index doesn't exist already. The index
is created using the default number of shards. We will look at a concept called index
templates—you can create template for any new indexes. Sometimes, an index needs to be
created on the fly, just like in this case where the insertion of the first document triggers the
creation of a new index. The index template kicks in and provides the matching template
for the index while creating the new index. This helps in creating indexes in a controlled
way, that is, with desired defaults like the number of shards and type mappings for the
types within them.

An index can be created beforehand as well. Elasticsearch has a separate index API
(https:/​/​www.​elastic. ​co/ ​guide/ ​en/ ​elasticsearch/ ​reference/ ​current/ ​indices. ​html)
which deals with index level operations. This includes create, delete, get, create mapping,
and many more advanced operations.

Defining the mappings for the type of product
The second step involves defining the mappings for the type of product. This step is
executed because the type catalog did not exist before the first document was indexed.
Remember the analogy of type with a relational database table. The table needs to exist
before any row can be inserted. When a table is created in an RDBMS, we define the fields
(columns) and their datatypes in the CREATE TABLE statement.

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html

Getting Started with Elasticsearch Chapter 2

[37]

When the first document is indexed within a type that doesn't yet exist, Elasticsearch tries
to infer the datatypes of all the fields. This feature is called the dynamic mapping of types.
By default, the dynamic mapping of types is enabled in Elasticsearch.

To see the mappings of the product type in the catalog index, execute the following
command in the Kibana Console UI:

GET /catalog/_mapping/product

This is an example of a Get Mapping API (https:/ ​/​www. ​elastic. ​co/ ​guide/ ​en/
elasticsearch/​reference/ ​current/ ​indices- ​get- ​mapping. ​html). You can request
mappings of a specific type, all types within an index, or within multiple indexes.

The response should look like the following:

{
 "catalog": {
 "mappings": {
 "product": {
 "properties": {
 "ISBN": {
 "type": "text"
 }
 },
 "author": {
 "type": "text"
 }
 },
 "description": {
 "type": "text"
 }
 },
 "price": {
 "type": "float"
 },
 "sku": {
 "type": "text"
 },
 "title": {
 "type": "text"
 }
 }
 }
 }
 }
}

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html

Getting Started with Elasticsearch Chapter 2

[38]

At the top level of the JSON response, catalog is the index for which we requested
mappings. The mappings child product signifies the fact that these are mappings for the
product type. The actual datatype mappings for each field are under the properties
element.

The actual type mappings returned will be slightly different from the ones shown in the
preceding code. It has been simplified slightly. As you can see, only the price is of
the float datatype; other fields were mapped to the text type. In reality, each text
datatype field is mapped as follows:

"field_name": {
 "type": "text",
 "fields": {
 "keyword": {
 "type": "keyword",
 "ignore_above": 256
 }
 }
}

As you may notice, each field that was sent as a string is assigned the text datatype. The
text datatype enables full-text search on a field. Additionally, the same field is also stored as
a multi-field and it is also stored as a keyword. This effectively enables full-text search and
analytics (sorting, aggregations, and filtering) on the same field. We will look at both search
and analytics in the upcoming chapters of this book.

Inverted index
Inverted index is the core data structure of Elasticsearch and any other system supporting
full-text search. Inverted index is similar to the index that you see at the end of any book. It
maps the terms that appear in the documents to the documents.

For example, you may build an inverted index from the following strings:

Document ID Document

1 It is Sunday tomorrow.

2 Sunday is the last day of the week.

3 The choice is yours.

Getting Started with Elasticsearch Chapter 2

[39]

Elasticsearch builds a data structure, which looks like the following, from the three
documents indexed. The following data structure is called the inverted index:

Term Frequency Documents (Postings)

choice 1 3

day 1 2

is 3 1, 2, 3

it 1 1

last 1 2

of 1 2

sunday 2 1, 2

the 3 2, 3

tomorrow 1 1

week 1 2

yours 1 3

Notice the following things:

Documents were broken down into terms after removing punctuation and
placing them in lowercase.
Terms are sorted alphabetically.
The Frequency column captures how many times the term appears in the entire
document set.
The third column captures the documents in which the term was found.
Additionally, it may also contain the exact locations (offsets within the document)
where the term was found.

When searching for terms in the documents, it is blazingly fast to locate the documents in
which the given term appears. If the user searches for the term sunday, then the looking up
of sunday from the terms column will be really fast, because the terms are sorted in the
index. Even if there were millions of terms, it is quick to look up terms when they are
sorted.

Getting Started with Elasticsearch Chapter 2

[40]

Subsequently, consider a scenario in which the user searches for two words, for example
last sunday. Inverted index can be used to individually search for the occurrence of last and
sunday; document two contains both terms, so it is a better match than document one,
which contains only one term.

Inverted index is the building block for performing fast searches. Similarly, it is easy to look
up how many occurrences of terms are present in the index. This is a simple count
aggregation. Of course, Elasticsearch uses lots of innovation on top of the bare inverted
index explained here. It caters to both search and analytics.

By default, Elasticsearch builds an inverted index on all the fields in the document, pointing
back to the Elasticsearch document in which the field was present.

CRUD operations
In this section we will look at how to perform basic CRUD operations, which are the most
fundamental operations required by any data store. Elasticsearch has a very well designed
REST API, and the CRUD operations are targeted at documents.

To understand how to perform CRUD operations, we will cover the following APIs. These
APIs fall under the category of Document APIs that deal with documents:

Index API
Get API
Update API
Delete API

Index API
In Elasticsearch terminology, adding (or creating) a document into a type within an index of
Elasticsearch is called an indexing operation. Essentially, it involves adding the document
to the index by parsing all fields within the document and building the inverted index. This
is why this operation is known as an indexing operation.

Getting Started with Elasticsearch Chapter 2

[41]

There are two ways we can index a document:

Indexing a document by providing an ID
Indexing a document without providing an ID

Indexing a document by providing an ID
We have already seen this version of the indexing operation. The user can provide the ID of
the document using the PUT method.

The format of this request is PUT /<index>/<type>/<id>, with the JSON document as
the body of the request:

PUT /catalog/product/1
{
 "sku": "SP000001",
 "title": "Elasticsearch for Hadoop",
 "description": "Elasticsearch for Hadoop",
 "author": "Vishal Shukla",
 "ISBN": "1785288997",
 "price": 26.99
}

Indexing a document without providing an ID
If you don't want to control the ID generation for the documents, you can use the
POST method.

The format of this request is POST /<index>/<type>, with the JSON document as the
body of the request:

POST /catalog/product
{
 "sku": "SP000003",
 "title": "Mastering Elasticsearch",
 "description": "Mastering Elasticsearch",
 "author": "Bharvi Dixit",
 "price": 54.99
}

Getting Started with Elasticsearch Chapter 2

[42]

The ID in this case will be generated by Elasticsearch. It is a hash string, as highlighted in
the response:

{
 "_index": "catalog",
 "_type": "product",
 "_id": "AVrASKqgaBGmnAMj1SBe",
 "_version": 1,
 "result": "created",
 "_shards": {
 "total": 2,
 "successful": 1,
 "failed": 0
 },
 "created": true
}

As per pure REST conventions, POST is used for creating a new resource
and PUT is used for updating an existing resource. Here, the usage of PUT
is equivalent to saying I know the ID that I want to assign, so use this ID while
indexing this document.

Get API
The Get API is useful for retrieving a document when you already know the ID of the
document. It is essentially a get by primary key operation:

GET /catalog/product/AVrASKqgaBGmnAMj1SBe

The format of this request is GET /<index>/<type>/<id>. The response would be as
expected:

{
 "_index": "catalog",
 "_type": "product",
 "_id": "AVrASKqgaBGmnAMj1SBe",
 "_version": 1,
 "found": true,
 "_source": {
 "sku": "SP000003",
 "title": "Mastering Elasticsearch",
 "description": "Mastering Elasticsearch",

Getting Started with Elasticsearch Chapter 2

[43]

 "author": "Bharvi Dixit",
 "price": 54.99
 }
}

Update API
The Update API is useful for updating the existing document by ID.

The format of an update request is POST <index>/<type>/<id>/_update with a JSON
request as the body:

POST /catalog/product/1/_update
{
 "doc": {
 "price": "28.99"
 }
}

The properties specified under the "doc" element are merged into the existing document.
The previous version of this document with ID 1 had price of 26.99. This update operation
just updates the price and leaves the other fields of the document unchanged. This type of
update means "doc" is specified and used as a partial document to merge with an existing
document; there are other types of updates supported.

The response of the update request is as follows:

{
 "_index": "catalog",
 "_type": "product",
 "_id": "1",
 "_version": 2,
 "result": "updated",
 "_shards": {
 "total": 2,
 "successful": 1,
 "failed": 0
 }
}

Internally, Elasticsearch maintains the version of each document. Whenever a document is
updated, the version number is incremented.

Getting Started with Elasticsearch Chapter 2

[44]

The partial update that we have seen above will work only if the document existed
beforehand. If the document with the given id did not exist, Elasticsearch will return an
error saying that document is missing. Let us understand how do we do an upsert
operation using the Update API. The term upsert loosely means update or insert, i.e. update
the document if it exists otherwise insert new document.

The parameter doc_as_upsert checks if the document with the given id already exists and
merges the provided doc with the existing document. If the document with the given id
doesn't exist, it inserts a new document with the given document contents.

The following example uses doc_as_upsert to merge into the document with id 3 or insert
a new document if it doesn't exist.

POST /catalog/product/3/_update
{
 "doc": {
 "author": "Albert Paro",
 "title": "Elasticsearch 5.0 Cookbook",
 "description": "Elasticsearch 5.0 Cookbook Third Edition",
 "price": "54.99"
 },
 "doc_as_upsert": true
}

We can update the value of a field based on the existing value of that field or another field
in the document. The following update uses an inline script to increase the price by two for
a specific product:

POST /catalog/product/AVrASKqgaBGmnAMj1SBe/_update
{
 "script": {
 "inline": "ctx._source.price += params.increment",
 "lang": "painless",
 "params": {
 "increment": 2
 }
 }
}

Scripting support allows for the reading of the existing value, incrementing the value by a
variable, and storing it back in a single operation. The inline script used here is
Elasticsearch's own painless scripting language. The syntax for incrementing an existing
variable is similar to most other programming languages.

Getting Started with Elasticsearch Chapter 2

[45]

Delete API
The Delete API lets you delete a document by ID:

DELETE /catalog/product/AVrASKqgaBGmnAMj1SBe

The response of the delete operations is as follows:

{
 "found": true,
 "_index": "catalog",
 "_type": "product",
 "_id": "AVrASKqgaBGmnAMj1SBe",
 "_version": 4,
 "result": "deleted",
 "_shards": {
 "total": 2,
 "successful": 1,
 "failed": 0
 }
}

This is how basic CRUD operations are performed with Elasticsearch. Please bear in mind
that Elasticsearch maintains data in a completely different data structure, that is, an
inverted index, using the capabilities of Apache Lucene. A relational database builds and
maintains B-trees, which are more suitable for typical CRUD operations.

Creating indexes and taking control of
mapping
In the previous section, we learnt how to perform CRUD operations with Elasticsearch. In
the process, we saw how indexing the first document to an index which doesn't yet exist
results in the creation of the new index and the mapping of the type.

Getting Started with Elasticsearch Chapter 2

[46]

Usually, you wouldn't want to let things happen automatically, as you would want to
control how indices are created and also how mapping is created. We will see how you can
take control of this process in this section and look at the following:

Creating an index
Create a mapping
Updating a mapping

Creating an index
You can create an index and specify the number of shards and replicas to create:

PUT /catalog
{
 "settings": {
 "index": {
 "number_of_shards": 5,
 "number_of_replicas": 2
 }
 }
}

It is possible to specify a mapping for a type at the time of index creation. The following
command will create an index called catalog with five shards and two replicas.
Additionally, it also defines a type called my_type with two fields, one of the text type and
another of the keyword type:

PUT /catalog
{
 "settings": {
 "index": {
 "number_of_shards": 5,
 "number_of_replicas": 2
 }
 },
 "mappings": {
 "my_type": {
 "properties": {
 "f1": {
 "type": "text"
 },
 "f2": {
 "type": "keyword"
 }

Getting Started with Elasticsearch Chapter 2

[47]

 }
 }
 }
}

Creating type mapping in an existing index
A type can be added within an index after the index is created. The mappings for the type
can be specified as follows:

PUT /catalog/_mapping/category
{
 "properties": {
 "name": {
 "type": "text"
 }
 }
}

This command creates a type called category, with one field of the text type in the existing
index catalog. Let us add a couple of documents after creating the new type:

POST /catalog/category
{
 "name": "books"
}
POST /catalog/category
{
 "name": "phones"
}

After a few documents are indexed, you realize that you need to add fields for storing the
description of the category. Elasticsearch will assign a type automatically based on the
value that you insert for the new field. It takes into consideration only the first value that it
sees to guess the type of that field:

POST /catalog/category
{
 "name": "music",
 "description": "On-demand streaming music"
}

Getting Started with Elasticsearch Chapter 2

[48]

When the new category is indexed with fields, the field is assigned a datatype based on
its value in the initial document. Let us look at the mapping after this document is indexed:

{
 "catalog": {
 "mappings": {
 "category": {
 "properties": {
 "description": {
 "type": "text",
 "fields": {
 "keyword": {
 "type": "keyword",
 "ignore_above": 256
 }
 }
 },
 "name": {
 "type": "text"
 }
 }
 }
 }
 }
}

The field description has been assigned the text datatype, with a field with the
name keyword, which is of the keyword type. What this means is that logically there are
two fields, description and description.keyword. The description field is analyzed
at the time of indexing, whereas the description.keyword field is not analyzed and is
stored as is without any analysis. By default, fields that are indexed with double quotes for
the first time are stored as both text and keyword types.

If you want to take control of the type, you should define the mapping for the field before
the first document containing that field is indexed. A field's type cannot be changed after
one or more documents are indexed within that field. Let us see how to update the
mapping to add a field with the desired type.

Getting Started with Elasticsearch Chapter 2

[49]

Updating a mapping
Mapping for new fields can be added after a type has been created. Mapping can be
updated for a type with the PUT mapping API. Let us add a code field, which is of
the keyword type, only with no analysis:

PUT /catalog/_mapping/category
{
 "properties": {
 "code": {
 "type": "keyword"
 }
 }
}

This mapping is merged into the existing mappings of the category type. The mapping
looks like the following after it is merged:

{
 "catalog": {
 "mappings": {
 "category": {
 "properties": {
 "code": {
 "type": "keyword"
 },
 "description": {
 "type": "text",
 "fields": {
 "keyword": {
 "type": "keyword",
 "ignore_above": 256
 }
 }
 },
 "name": {
 "type": "text"
 }
 }
 }
 }
 }
}

Getting Started with Elasticsearch Chapter 2

[50]

Any subsequent documents that are indexed with the code field are assigned the right
datatype:

POST /catalog/category
{
 "name": "sports",
 "code": "C004",
 "description": "Sports equipment"
}

This is how we can take control of the index creation and type mapping process, and add
fields after the type is created.

REST API overview
We just looked at how to perform basic CRUD operations. Elasticsearch supports a wide
variety of operation types. Some operations deal with documents, that is, creating, reading,
updating, deleting, and so on. Some operations provide search and aggregations, while
other operations are for providing cluster related operations, such as monitoring health.
Broadly, the APIs that deal with Elasticsearch are categorized into the following types of
APIs:

Document APIs
Search APIs
Aggregations APIs
Indices APIs
Cluster APIs
cat APIs

The Elasticsearch reference documentation has documented these APIs very nicely. In this
book, we will not go into the APIs down to the last detail. We will conceptually understand,
with examples, how the APIs can be leveraged to get the best out of Elasticsearch and other
components of Elastic Stack.

We will look at the search and aggregation APIs in Chapter 3, Searching-What is Relevant
and Chapter 4, Analytics with Elasticsearch respectively.

Getting Started with Elasticsearch Chapter 2

[51]

In the following section we will cover the Common API conventions applicable for all REST
APIs.

Common API conventions
All Elasticsearch REST APIs share some common features. They can be used across almost
all APIs. We will cover the following features:

Formatting the JSON response
Dealing with multiple indices

Let us look at each item one-by-one.

Formatting the JSON response
By default, the response of all the requests is not formatted. It returns an unformatted JSON
string in a single line:

curl -XGET http://localhost:9200/catalog/product/1

The response is not formatted:

{"_index":"catalog","_type":"product","_id":"1","_version":3,"found":true,"
_source":{
 "sku": "SP000001",
 "title": "Elasticsearch for Hadoop",
 "description": "Elasticsearch for Hadoop",
 "author": "Vishal Shukla",
 "ISBN": "1785288997",
 "price": 26.99
}}

Passing pretty=true formats the response:

curl -XGET http://localhost:9200/catalog/product/1?pretty=true
{
 "_index" : "catalog",
 "_type" : "product",
 "_id" : "1",
 "_version" : 3,
 "found" : true,
 "_source" : {
 "sku" : "SP000001",
 "title" : "Elasticsearch for Hadoop",

Getting Started with Elasticsearch Chapter 2

[52]

 "description" : "Elasticsearch for Hadoop",
 "author" : "Vishal Shukla",
 "ISBN" : "1785288997",
 "price" : 26.99
 }
}

When you are using Kibana Console UI, all responses are formatted by default.

Dealing with multiple indices
Operations such as search and aggregations can run against multiple indices in the same
query. It is possible to specify which indexes should be searched by using different URLs in
the get request. Let us understand how the URLs can be used to search in different indexes
and the types within them. We will cover the following scenarios when dealing with
multiple indices within a cluster:

Searching all documents in all indices
Searching all documents in one index
Searching all documents of one type in an index
Searching all documents in multiple indices
Searching all documents of a particular type in all indices

The following query matches all documents. The documents actually returned by the query
will be limited to 10 in this case. The default size of the result is 10, unless it is specified in
the query:

GET /_search

This will return all documents from all indices of the cluster. The response looks similar to
the following, and it is truncated to remove the unnecessary repetition of documents:

{
 "took": 3,
 "timed_out": false,
 "_shards": {
 "total": 16,
 "successful": 16,
 "failed": 0
 },
 "hits": {
 "total": 4,
 "max_score": 1,
 "hits": [

Getting Started with Elasticsearch Chapter 2

[53]

 {
 "_index": ".kibana",
 "_type": "doc",
 "_id": "config:6.0.0",
 "_score": 1,
 "_source": {
 "type": "config",
 "config": {
 "buildNum": 16070
 }
 }
 },
 ...
 ...
]
 }
}

Clearly, this is not a very useful operation. But let's use it to understand the search
response:

took: The number of milliseconds taken by the cluster to return the result.
timed_out: false: this means that the operation completed successfully without
timing out.
_shards: Shows the summary of how many shards across the entire cluster were
searched for successfully, or failed.
hits: Contains the actual documents matched. It contains total which signifies
the total documents that matched the search criteria across all indices.
The max_score displays the score of the best matching document from the
search hits. The hits child of this element contains the actual document list.

The hits list contained within an array doesn't contain all matched
documents. It would be wasteful to return everything that matched the
search criteria, as there could be millions or billions of such matched
documents. Elasticsearch truncates the hits by size, which can be
optionally specified as a request parameter using GET
/_search?size=100. The default value for the size is 10, hence the
search hits array will contain up to 10 records by default.

Getting Started with Elasticsearch Chapter 2

[54]

Searching all documents in one index
The following will search for all documents, but only within the catalog index:

GET /catalog/_search

You can also be more specific and also include the type in addition to the index name; like it
is done in the following query.

GET /catalog/product/_search

Searching all documents in multiple indexes
The following will search for all documents within the catalog index and an index named
my_index:

GET /catalog,my_index/_search

Searching all documents of a particular type in all indices
The following will search all indices in the cluster, but only documents of the
product type will be searched:

GET /_all/product/_search

 This feature can be quite handy when you have multiple indices; each index containing the
exact same type. This type of query can help you query data for that type from all indices.

Summary
In this chapter, we learned about the essential Kibana Console UI and curl commands to
interact with Elasticsearch with the REST API. Then we looked at the core concepts of
Elasticsearch. We performed customary CRUD operations that are required as support for
any data store. We took a closer look at how to create indexes, and how to create and
manage mappings. We ended the chapter with an overview of the REST API in
Elasticsearch, and the common conventions used in most APIs.

In the next chapter, we will take a deep dive into the search capabilities of Elasticsearch to
understand the maximum benefits of Elasticsearch as a search engine.

3
Searching-What is Relevant

One of the core strengths of Elasticsearch is its search capabilities. In the previous chapter,
we gained a good understanding of Elasticsearch's core concepts, its REST API, and its basic
operations. With all that knowledge at hand, we will further our journey by learning about
Elastic Stack. We will cover the following topics in this chapter.

Basics of text analysis
Searching from structured data
Writing compound queries
Searching from full-text

Basics of text analysis
Analysis of text data is different to other types of data analysis such as numbers, dates, and
time. The analysis of numeric and date/time datatypes can be done in a very definitive way.
For example, if you are looking for all records with a price greater than or equal to 50, the
result is a simple yes or no for each record. Either the record in question qualifies or doesn't
qualify for inclusion in the query's result. Similarly, when querying something by date or
time, the criteria for searching through the records is very clearly defined—a record either
falls into the date/time range or it doesn't.

However, the analysis of text/string data can be different. Text data can be of a different
nature, and it can be used for structured analysis or unstructured analysis.

Some examples of structured types of string fields are as follows: country codes, product
codes, non-numeric serial numbers/identifiers, and so on. The datatype of these fields may
be a string, but often you may want to do exact-match queries on these fields.

Searching-What is Relevant Chapter 3

[56]

We will first cover the analysis of unstructured text, which is also known as full-text search.

We already understood in the previous chapter the concepts of Elasticsearch indexes, types,
and mappings within the type. All fields that are of the text type are analyzed by what is
known as an analyzer.

In the following sections, we will cover the following topics:

Understanding Elasticsearch analyzers
Using built-in analyzers
Implementing auto-complete with a custom analyzer

Understanding Elasticsearch analyzers
The main task of an analyzer is to take the value of a field and break it down into terms. In
Chapter 2, Getting Started with Elasticsearch, we looked at the structure of an inverted index.
The job of the analyzer is take documents, and each field of the document, and extract terms
from them. These terms make the index searchable, that is, it can help us find out which
documents contain particular search terms.

The analyzer performs this process of breaking up input character streams into terms. This
happens twice:

At the time of indexing
At the time of searching

The core task of the analyzer is to parse the document fields and build the actual index.

Every field of text type needs to be analyzed before the document is indexed. This process
of analysis is what makes the documents searchable by any search term that is used at the
time of searching.

Analyzers can be configured on a per field basis, that is, it is possible to have two fields of
the type text within the same document, each one using different analyzers.

Elasticsearch uses analyzers to analyze the text data. An analyzer has the following
components:

Character filters: Zero or more
Tokenizer: Exactly one
Token filters: Zero or more

Searching-What is Relevant Chapter 3

[57]

The following diagram depicts how these components are used to compose an analyzer:

Figure 3.1 Anatomy of an analyzer

Let us understand the role of each component one by one.

Character filters
While composing an analyzer, we can configure zero or more character filters. A character
filter works on a stream of characters from the input field; each character filter can add,
remove, or change the characters in the input field.

Elasticsearch ships with a few built-in character filters which you can use to compose or
create your own custom analyzer.

For example, one of the character filters that Elasticsearch ships with is the Mapping Char
Filter. It can map a character or sequence of characters into target characters.

For example, you may want to transform emoticons into some text that represents that
emoticon:

:) should be translated to _smile_
:(should be translated to _sad_
:D should be translated to _laugh_

This can be achieved through the following character filter. The short name of the Char
Mapping Filter is mapping filter:

 "char_filter": {
 "my_char_filter": {

Searching-What is Relevant Chapter 3

[58]

 "type": "mapping",
 "mappings": [
 ":) => _smile_",
 ":(=> _sad_",
 ":D => _laugh_"
]
 }
 }

When this character filter is used to create an analyzer, it will have the following effect:

Good morning everyone :) will be transformed to Good morning everyone
smile.

I am not feeling well today :(will be transformed to I am not feeling well
today _sad_.

Since character filters are at the very beginning of the processing chain in an analyzer (see
Figure 3.1), the tokenizer will always see the replaced characters. Character filters can be
useful to replace characters with something more meaningful in certain cases, such as
replacing the numeric characters from other languages with English language decimals-that
is, digits from Hindi, Arabic, and other languages can be turned into zero, one, two, and so
on.

You can find list of available built-in character filters here: https:/ ​/​www. ​elastic. ​co/
guide/​en/​elasticsearch/ ​reference/ ​current/ ​analysis- ​charfilters. ​html.

Tokenizer
An analyzer has exactly one tokenizer. The responsibility of a tokenizer is to receive a
stream of characters and generate a stream of tokens. These tokens are used to build the
inverted index. A token is roughly equivalent to a word. In addition to breaking down
characters into words or tokens, it also produces in its output the start and end offset of
each token in the input stream.

Elasticsearch ships with a number of tokenizers that can be used to compose a custom
analyzer; these tokenizers are also used by Elasticsearch itself to compose its built-in
analyzers.

You can find list of available built-in tokenizers here: https:/ ​/​www. ​elastic. ​co/​guide/ ​en/
elasticsearch/​reference/ ​current/ ​analysis- ​tokenizers. ​html.

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html

Searching-What is Relevant Chapter 3

[59]

The Standard Tokenizer is one of the most popular tokenizers as it is suitable for most
languages. Let us look at what Standard Tokenizer does.

Standard Tokenizer
Loosely speaking, the Standard Tokenizer breaks down the stream of characters by
separating them by white space characters and punctuation.

The following example shows how Standard Tokenizer breaks the character stream into
tokens:

POST _analyze
{
 "tokenizer": "standard",
 "text": "Tokenizer breaks characters into tokens!"
}

This command produces the following output. Notice the start_offset,
end_offset, and positions in the output:

{
 "tokens": [
 {
 "token": "Tokenizer",
 "start_offset": 0,
 "end_offset": 9,
 "type": "<ALPHANUM>",
 "position": 0
 },
 {
 "token": "breaks",
 "start_offset": 10,
 "end_offset": 16,
 "type": "<ALPHANUM>",
 "position": 1
 },
 {
 "token": "characters",
 "start_offset": 17,
 "end_offset": 27,
 "type": "<ALPHANUM>",
 "position": 2
 },
 {
 "token": "into",
 "start_offset": 28,

Searching-What is Relevant Chapter 3

[60]

 "end_offset": 32,
 "type": "<ALPHANUM>",
 "position": 3
 },
 {
 "token": "tokens",
 "start_offset": 33,
 "end_offset": 39,
 "type": "<ALPHANUM>",
 "position": 4
 }
]
}

This token stream can be further processed by the token filters of the analyzer, if any.

Token filters
There can be zero or more token filters in an analyzer. Every token filter can add, remove,
or change tokens in the input token stream that it receives. Since it is possible to have
multiple token filters in an analyzer, the output of each token filter is sent to the next one
until all token filters are considered.

Elasticsearch comes with a number of token filters, and they can be used to compose your
own custom analyzers.

Some examples of built-in token filters are:

Lowercase Token Filter: Replaces all tokens in the input with their lowercase
versions.
Stop Token Filter: Removes stopwords, that is, words that do not add more
meaning to the context. For example, in English sentences, words like is, a, an,
and the, do not add extra meaning to the sentence. For many text search
problems, it makes sense to remove such words as they don't add any extra
meaning or context to the content.

You can find list of available built-in token filters here: https:/ ​/​www. ​elastic. ​co/​guide/
en/​elasticsearch/​reference/ ​current/ ​analysis- ​tokenfilters. ​html.

Thus far, we have understood the role of character filters, tokenizers, and token filters. This
sets us up to understand how some of the built-in analyzers in Elasticsearch are composed.

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html

Searching-What is Relevant Chapter 3

[61]

Using built-in analyzers
Elasticsearch comes with a number of built-in analyzers which can be used directly. Almost
all of these analyzers work without any need for additional configuration, but they provide
the flexibility of configuring some parameters.

Some analyzers come packaged with Elasticsearch. Some popular analyzers are:

Standard Analyzer: It is the default analyzer in Elasticsearch. If not overridden
by any other field level, type level or index level analyzer, all fields are analyzed
using this analyzer.
Language Analyzers: Different languages have different grammatical rules.
There is a difference in some languages as to how a stream of characters is
tokenized into words or tokens. Additionally, each language has its own set of
stopwords which can be configured while configuring language analyzers.
Whitespace Analyzer: The whitespace analyzer breaks down the input into
tokens wherever it finds a whitespace token such as a space, tab, new line, or
carriage return.

You can find a list of available built-in analyzers here: https:/ ​/​www. ​elastic. ​co/​guide/ ​en/
elasticsearch/​reference/ ​current/ ​analysis- ​analyzers. ​html.

Standard Analyzer
The Standard Analyzer is suitable for many languages and situations. It can also be
customized for the underlying language or situation. The Standard Analyzer is composed
of the following components:

Tokenizer:

Standard Tokenizer: A tokenizer that splits tokens on whitespace characters

Token Filters:

Standard Token Filter: Standard Token Filter is used as a placeholder token filter
within the Standard Analyzer. It does not change any of the input tokens but may
be used in future to perform some tasks.
Lowercase Token Filter: Makes all tokens in the input lowercase.
Stop Token Filter: Removes the specified stopwords. The default settings has a
stopword list set to _none_ which doesn't remove any stopwords by default.

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html

Searching-What is Relevant Chapter 3

[62]

Let us see how the Standard Analyzer works by default with an example:

PUT index_standard_analyzer
{
 "settings": {
 "analysis": {
 "analyzer": {
 "std": {
 "type": "standard"
 }
 }
 }
 },
 "mappings": {
 "my_type": {
 "properties": {
 "my_text": {
 "type": "text",
 "analyzer": "std"
 }
 }
 }
 }
}

Here, we created an index, index_standard_analyzer. There are two things to notice
here:

Under the settings element, we explicitly defined one analyzer with the
name std. The type of the analyzer is standard. Apart from this, we did not do
any additional configuration on the Standard Analyzer.
We created one type called my_type in the index and explicitly set a field level
analyzer on the only field, my_text.

Let us check how Elasticsearch will do the analysis for the my_text field whenever any
document is indexed in this index. We can do this test using the _analyze API, as we saw
earlier:

POST index_standard_analyzer/_analyze
{
 "field": "my_text",
 "text": "The Standard Analyzer works this way."
}

Searching-What is Relevant Chapter 3

[63]

The output of this command shows the following tokens:

{
 "tokens": [
 {
 "token": "the",
 "start_offset": 0,
 "end_offset": 3,
 "type": "<ALPHANUM>",
 "position": 0
 },
 {
 "token": "standard",
 "start_offset": 4,
 "end_offset": 12,
 "type": "<ALPHANUM>",
 "position": 1
 },
 {
 "token": "analyzer",
 "start_offset": 13,
 "end_offset": 21,
 "type": "<ALPHANUM>",
 "position": 2
 },
 {
 "token": "works",
 "start_offset": 22,
 "end_offset": 27,
 "type": "<ALPHANUM>",
 "position": 3
 },
 {
 "token": "this",
 "start_offset": 28,
 "end_offset": 32,
 "type": "<ALPHANUM>",
 "position": 4
 },
 {
 "token": "way",
 "start_offset": 33,
 "end_offset": 36,
 "type": "<ALPHANUM>",
 "position": 5
 }
]
}

Searching-What is Relevant Chapter 3

[64]

Please note that in this case, the field level analyzer for the my_field field was set to
Standard Analyzer explicitly. Even if it wasn't set explicitly for the field, the Standard
Analyzer is the default analyzer if no other analyzer is specified.

As you can see, all tokens in the output are lowercase. Even though the Standard Analyzer
has a stop token filter, none of the tokens are filtered out. This is why the _analyze output
has all words as tokens.

Let us create another index that uses English language stopwords:

PUT index_standard_analyzer_english_stopwords
{
 "settings": {
 "analysis": {
 "analyzer": {
 "std": {
 "type": "standard",
 "stopwords": "_english_"
 }
 }
 }
 },
 "mappings": {
 "my_type": {
 "properties": {
 "my_text": {
 "type": "text",
 "analyzer": "std"
 }
 }
 }
 }
}

Notice the difference here. This new index is using _english_ stopwords. You can also
specify a list of stopwords directly, such as stopwords: (a, an, the).
The _english_ value includes all such English words.

Searching-What is Relevant Chapter 3

[65]

When you try the _analyze API on the new index, you will see it removes the stopwords,
such as the and this:

POST index_standard_analyzer_english_stopwords/_analyze
{
 "field": "my_text",
 "text": "The Standard Analyzer works this way."
}

It returns a response like the following:

{
 "tokens": [
 {
 "token": "standard",
 "start_offset": 4,
 "end_offset": 12,
 "type": "<ALPHANUM>",
 "position": 1
 },
 {
 "token": "analyzer",
 "start_offset": 13,
 "end_offset": 21,
 "type": "<ALPHANUM>",
 "position": 2
 },
 {
 "token": "works",
 "start_offset": 22,
 "end_offset": 27,
 "type": "<ALPHANUM>",
 "position": 3
 },
 {
 "token": "way",
 "start_offset": 33,
 "end_offset": 36,
 "type": "<ALPHANUM>",
 "position": 5
 }
]
}

English stopwords such as the and this are removed. As you can see, with little
configuration, the Standard Analyzer can be used for English and many other languages.

Searching-What is Relevant Chapter 3

[66]

Let us go through a practical application of creating a custom analyzer.

Implementing autocomplete with a custom
analyzer
In certain situations, you may want to create your own custom analyzer by composing
character filters, tokenizers, and token filters of your choice. Please remember that most of
the requirements can be fulfilled by one of the built-in analyzers with some configuration.
Let us create an analyzer that can help when implementing autocomplete functionality.

To support auto-complete, we cannot rely on the Standard Analyzer or one of the pre-built
analyzers in Elasticsearch. The analyzer is responsible for generating the terms at indexing
time. Our analyzer should be able to generate the terms that can help with auto-completion.
Let us understand this through a concrete example.

If we were to use the Standard Analyzer at indexing time, the following terms would be
generated for the field with the "Learning Elastic Stack 6" value:

GET /_analyze
{
 "text": "Learning Elastic Stack 6",
 "analyzer": "standard"
}

The response of this request would contain the terms Learning, Elastic, Stack, and 6.
These are the terms that Elasticsearch would create and store in the index if the Standard
Analyzer was used. Now, what we want to support is that when the user starts typing a few
characters, we should be able to match possible matching products. For example, if the user
has typed elas, it should still recommend Learning Elastic Stack 6 as a product. Let us
compose an analyzer which can generate terms such as el, ela, elas, elast, elasti, elastic, le,
lea, and so on:

PUT /custom_analyzer_index
{
 "settings": {
 "index": {
 "analysis": {
 "analyzer": {
 "custom_analyzer": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": [
 "lowercase",

Searching-What is Relevant Chapter 3

[67]

 "custom_edge_ngram"
]
 }
 },
 "filter": {
 "custom_edge_ngram": {
 "type": "edge_ngram",
 "min_gram": 2,
 "max_gram": 10
 }
 }
 }
 }
 },
 "mappings": {
 "my_type": {
 "properties": {
 "product": {
 "type": "text",
 "analyzer": "custom_analyzer",
 "search_analyzer": "standard"
 }
 }
 }
 }
}

This index definition creates a custom analyzer that uses a Standard Tokenizer to create the
tokens, and uses two token filters—a lowercase token filter and the edge_ngram token
filter. The edge ngram token filter breaks down each token into the lengths of two
characters, three characters, and four characters, up to 10 characters. One incoming token,
such as elastic, will generate tokens such as el, ela, and so on, from one token. This will
enable auto-completion searches.

Given that the following two products are indexed, and the user has typed Ela so far, the
search should return both the products:

POST /custom_analyzer_index/my_type
{
 "product": "Learning Elastic Stack 6"
}

POST /custom_analyzer_index/my_type
{
 "product": "Mastering Elasticsearch"
}

Searching-What is Relevant Chapter 3

[68]

GET /custom_analyzer_index/_search
{
 "query": {
 "match": {
 "product": "Ela"
 }
 }
}

Since the index contains the terms el, ela, and so on, the query would return both the
products. This would not have been possible if the index was built using the Standard
Analyzer at indexing time. We will cover the match query later in this chapter. For now,
you can assume that it applies the Standard Analyzer (the analyzer configured as the
search_analyzer) on the given search terms and then uses the output terms for
performing the search. In this case, it would search for the term ela in the index. Since the
index was built using a custom analyzer using an _ngram edge token filter, it would find a
match for both the products.

In this section, we have learnt about analyzers. Analyzers play a vital role in the functioning
of Elasticsearch. Analyzers decide which terms get stored in the index. As a result, what
kind of search operations can be performed on the index after it has been built are decided
by the analyzer used at index time. For example, a Standard Analyzer cannot fulfill the
requirement of supporting the auto-completion feature. We have looked at the anatomy of
analyzers, tokenizers, token filters, character filters, and some built-in support in
Elasticsearch. We also looked at a scenario in which building a custom analyzer solves a
real business problem regarding supporting the auto-complete function in your application.

Before we move onto the next section and start looking at different query types, let us set up
the necessary index with the data required for the next section. We are going to use product
catalog data taken from popular e-commerce site www.amazon.com. The data is
downloadable from http:/ ​/ ​dbs. ​uni- ​leipzig. ​de/​file/ ​Amazon- ​GoogleProducts. ​zip.

Before we start with the queries, let us create the required index and import some data:

PUT /amazon_products
{
 "settings": {
 "number_of_shards": 1,
 "number_of_replicas": 0,
 "analysis": {
 "analyzer": {
 }
 }
 },
 "mappings": {

http://www.amazon.com
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip

Searching-What is Relevant Chapter 3

[69]

 "products": {
 "properties": {
 "id": {
 "type": "keyword"
 },
 "title": {
 "type": "text"
 },
 "description": {
 "type": "text"
 },
 "manufacturer": {
 "type": "text",
 "fields": {
 "raw": {
 "type": "keyword"
 }
 }
 },
 "price": {
 "type": "scaled_float",
 "scaling_factor": 100
 }
 }
 }
 }
}

The title and description fields are analyzed text fields on which analysis should be
performed. This will enable full-text queries on these fields. The manufacturer field is of the
text type, but it also has a field with the name raw. The manufacturer field is stored in two
ways, as text, and manufacturer.raw is stored as keyword. All fields of the keyword
type internally use the keyword analyzer. The keyword analyzer consists of just
the keyword tokenizer, which is a noop tokenizer, simply returning the whole input as one
token. Remember, in an analyzer, character filters and token filters are optional. Thus, by
using the keyword type on the field, we are choosing a noop analyzer and hence skipping
the whole analysis process on that field.

Searching-What is Relevant Chapter 3

[70]

The price field is chosen to be of the scaled_float type. This is a new type introduced
with Elastic 6.0 which internally stores floats as scaled whole numbers. For example, 13.99
will be stored as 1399 with a scaling factor of 100. This is space efficient as float or double
datatypes occupy much more space.

To import the data, please follow the instructions in the book's accompanying source code
repository at GitHub: https:/ ​/​github. ​com/ ​pranav- ​shukla/ ​learningelasticstack.

The instructions for importing data are in chapter-03/README.md.

After you have imported the data, verify that your data is imported with the following
query:

GET /amazon_products/products/_search
{
 "query": {
 "match_all": {}
 }
}

In the next section, we will look at structured search queries.

Searching from structured data
In certain situations, we want to find out whether the given document should be included
or not; that is, a simple binary answer. On the other hand, there are other types of queries
which are relevance-based. Such relevance-based queries also return a score against each
document to say how well that document fits the query. Most structured queries do not
need relevance-based scoring, and the answer is a simple yes/no for any item to be included
or excluded from the result. These structured search queries are also referred to as term
level queries.

https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-03#import-product-data-into-elasticsearch

Searching-What is Relevant Chapter 3

[71]

Let us understand the flow of a term-level query's execution:

Fig-3.2 Term level query flow

Searching-What is Relevant Chapter 3

[72]

As you can see, the figure is divided into two parts. The left half of the figure depicts what
happens at the time of indexing, and the right half of the figure depicts what happens at
query time when a term-level query is executed.

Looking at the left half of the figure, we can see what happens during indexing. Here,
specifically, we are looking at how the inverted index is built and queried for
the manufacturer.raw field. Remember, from our definition of the
index, manufacturer.raw field is of the keyword type. The keyword type fields are not
analyzed; the field's value is directly stored as a term in the inverted index.

At query time, when we search using a term query, which is a term-level query, we see the
flow of execution on the right half of the figure. The term query, as we will see in this
section later, is a term-level query which directly passes on the search term's victor
multimedia without breaking it down using an analyzer. This is how term-level queries
completely skip the analysis process at query time and directly search for the given term in
the inverted index.

These term-level queries create a foundation layer on which other, high-level, full-text
queries are built. We will look at high-level queries in the next section.

We will cover the following structured or term-level queries:

Range query
Exists query
Term query
Terms query

Range query
Range queries can be applied to the fields with datatypes that have natural ordering. For
example, integers, longs, and dates have a natural order. There is no ambiguity in deciding
whether one value is less, equal to, or greater than the other values. Because of this well-
defined order of these datatypes, a range query can be applied on them.

We will look at how to apply range queries in the following ways:

On numeric types
With score boosting
On dates

Let us look at the most typical range query on a numeric field.

Searching-What is Relevant Chapter 3

[73]

Range query on numeric types
Suppose we are storing products with their prices in an Elasticsearch index and we want to
get all products within a range. The following is the query to get products in the range of
$10 to $20:

GET /amazon_products/products/_search
{
 "query": {
 "range": {
 "price": {
 "gte": 10,
 "lte": 20
 }
 }
 }
}

The response of this query looks like the following:

{
 "took": 1,
 "timed_out": false,
 "_shards": {
 "total": 1,
 "successful": 1,
 "failed": 0
 },
 "hits": {
 "total": 201, 1
 "max_score": 1, 2
 "hits": [
 {
 "_index": "amazon_products",
 "_type": "products",
 "_id": "AV5lK4WiaMctupbz_61a",
 "_score": 1, 3
 "_source": {
 "price": "19.99", 4
 "description": "reel deal casino championship edition (win 98 me
nt 2000 xp)",
 "id": "b00070ouja",
 "title": "reel deal casino championship edition",
 "manufacturer": "phantom efx",
 "tags": []
 }
 },

Searching-What is Relevant Chapter 3

[74]

Please take a note of the following:

The hits.total field in the response shows how many search hits were found.
Here, there were 201 search hits.
The hits.max_score field shows the score of the best matching document to the
query. Since a range query is a structured query without any importance or
relevance, it is executed as a filter. It doesn't do scoring. All documents have a
score of one.
The hits.hits array lists all the actual hits. Elasticsearch doesn't return all 201
hits in a single pass by default. It just returns the first 10 records. If you wish to
scroll through all results, you can do so easily by issuing multiple queries, as we
will see later.
The price field in all search hits would be within the requested range, that is,
10: <= price <= 20.

Range query with score boosting
By default, the range query assigns a score of 1 to each matching document. What if you
are using a range query in conjunction with some other query and you want to assign a
higher score to the resulting document if it satisfies some criteria? We will look at
compound queries like the bool query, where you can combine multiple types of queries.
The range query allows you to provide a boost parameter to boost its score relative to other
query/queries that it is combined with:

GET /amazon_products/products/_search
{
 "from": 0,
 "size": 10,
 "query": {
 "range": {
 "price": {
 "gte": 10,
 "lte": 20,
 "boost": 2.2
 }
 }
 }
}

All documents which pass the filter will have a score of 2.2 instead of 1 in this query.

Searching-What is Relevant Chapter 3

[75]

Range query on dates
The range query can also be applied to date fields since dates are also inherently ordered.
You can specify the date format while querying on a date range:

GET /orders/order/_search
{
 "query": {
 "range" : {
 "orderDate" : {
 "gte": "01/09/2017",
 "lte": "30/09/2017",
 "format": "dd/MM/yyyy"
 }
 }
 }
}

The preceding query will filter all the orders that were placed in the month of September
2017.

Elasticsearch allows us to use dates with or without the time in its queries. It also supports
the usage of special terms including now to denote the current time. For example, the
following query queries data from the last 7 days up until now, that is, data from exactly 24
x 7 hours till now with the precision of milliseconds.

GET /orders/order/_search
{
 "query": {
 "range" : {
 "orderDate" : {
 "gte": "now-7d",
 "lte": "now"
 }
 }
 }
}

The ability to use terms such as now makes this easier to comprehend.

Searching-What is Relevant Chapter 3

[76]

Elasticsearch supports many date math operations. As part of its date
support, it supports the special keyword now. It also supports adding or
subtracting time with different units of measurement. It supports single
character shorthands such as y (year), M (month), w (week), d (day), h or H
(hours), m (minutes), and s (seconds). For example, now - 1y would
mean a time of exactly one year ago till this moment. It is possible to
round time into different units. For example, to round the interval by day
inclusive of both the start and end interval day, use "gte": "now -
7d/d" or "lte": "now/d". Specifying /d rounds the time by days.

The range query runs in filter context by default. It doesn't calculate any scores and the
score is always set to one for all matching documents.

Exists query
Sometimes it is useful to get only those records which have non-null and non-empty values
in a certain field. For example, getting all products which have description fields defined:

GET /amazon_products/products/_search
{
 "query": {
 "exists": {
 "field": "description"
 }
 }
}

The exists query turns the query into a filter; in other words, it runs in a Filter Context. This
is similar to the range query where the scores don't matter.

What is a Filter Context? When the query is just about filtering our
documents, that is, deciding whether to include the document in the result
or not, it is sufficient to skip the scoring process. Elasticsearch can skip the
scoring process for certain types of queries and assign a uniform score of
one to each document which passes the filter criteria. This not only speeds
up the query (as the scoring process is skipped), but also allows
Elasticsearch to cache the results of filters. Elasticsearch caches the results
of filters by maintaining arrays of zeros and ones.

Searching-What is Relevant Chapter 3

[77]

Term query
How would you find all products made by a particular manufacturer? We know that the
manufacturer field in our data is of the string type. The name of a manufacturer can
possibly contain white spaces. What we are looking for here is an exact search. For example,
when we search for victory multimedia, we don't want any results which have a
manufacturer that contains just victory or just multimedia. You can use the term query to
achieve that.

When we defined the manufacturer field, we had stored it as both a text and keyword
field. When doing an exact match, we have to use the field with the keyword type:

GET /amazon_products/products/_search
{
 "query": {
 "term": {
 "manufacturer.raw": "victory multimedia"
 }
 }
}

The term query is a low-level query in the sense that it doesn't perform any analysis on the
term. Also, it directly runs against the inverted index constructed from the mentioned term
field, in this case against the manufacturer.raw field. By default, the term query runs
in query context and hence calculates scores.

The response looks like the following (only the partial response is included):

{
 ...
 "hits": {
 "total": 3,
 "max_score": 5.965414,
 "hits": [
 {
 "_index": "amazon_products",
 "_type": "products",
 "_id": "AV5rBfPNNI_2eZGciIHC",
 "_score": 5.965414,
 ...

Searching-What is Relevant Chapter 3

[78]

As we can see, each document is scored by default. To run the term query in Filter Context
without scoring, it needs to be wrapped inside a constant_score filter:

GET /amazon_products/products/_search
{
 "query": {
 "constant_score": {
 "filter": {
 "term": {
 "manufacturer.raw": "victory multimedia"
 }
 }
 }
 }
}

This query will now return results with a score of one for all matching documents. We will
look at the constant_score query later in the chapter. For now, you can imagine that it
turns a scoring query into a non-scoring query. In all queries where we don't need to know
how well a document fits the query, we can speed up the query by wrapping it
inside constant_score with a filter. There are also other types of compound queries
that can help in converting different types of queries and combining other queries; we will
look at them when we examine compound queries.

Searching from full text
Full-text queries can work on unstructured text fields. These queries are aware of the
analysis process. Full-text queries apply the analyzer on the search terms before performing
the actual search operation. It finds out the right analyzer to be applied by first checking if a
field-level search_analyzer is defined, and then by checking if a field-level analyzer is
defined. If analyzers at field level are not defined, it tries the analyzer defined at the index
level.

The full-text queries are thus aware of the analysis process on the underlying field and
apply the right analysis process before forming the actual search queries. These analysis-
aware queries are also called high-level queries. Let us understand how the high-level
query flow works.

Searching-What is Relevant Chapter 3

[79]

Here, we can see how one high-level query on the field title will be executed. Remember
from our index definition earlier that the title field is of the text type. At indexing time, the
value is analyzed using the analyzer for the field. In this case, it was a Standard Analyzer,
and hence the inverted index contains all broken down terms such as gods, heroes, rome,
and so on, as depicted in the following figure:

Fig-3.3 High-level query flow

Searching-What is Relevant Chapter 3

[80]

At query time (see the right half of the figure), we issue a match query which is a high-level
query. We will cover the match query in this section later on; it is one of the high-level
queries. The search terms passed to the match query are analyzed using the Standard
Analyzer. The individual terms after applying the Standard Analyzer are then used to come
up with individual term-level queries.

The example here results in multiple term queries—one for each term after applying the
analyzer. The original search term was gods heroes which results in two terms, gods
and heroes, which are used as individual terms in their own term queries. The two term
queries are then combined using a bool query, which is a compound query. We will also
look at different compound queries like bool queries in the next section about compound
queries.

We will cover the following full-text queries in the following sections:

Match query
Match phrase query
Multi match query

Match query
A match query is the default query for most full-text search requirements. It is one of the
high-level queries which is aware of the analyzer used for the underlying field. Let us
understand what this means under the hood.

For example, when you use the match query on a keyword field, it knows that the
underlying field is a keyword field and hence the search terms are not analyzed at the time
of querying:

GET /amazon_products/products/_search
{
 "query": {
 "match": {
 "manufacturer.raw": "victory multimedia"
 }
 }
}

Searching-What is Relevant Chapter 3

[81]

The match query in this case behaves just like a term query, which we understood in the
previous section. It does not analyze the search term's victory multimedia as the separate
terms victory and multimedia. This is because we are querying
a keyword field, manufacturer.raw. In fact, in this particular case the match query gets
converted into a term query, such as the following one:

GET /amazon_products/products/_search
{
 "query": {
 "term": {
 "manufacturer.raw": "victory multimedia"
 }
 }
}

The term query returns the same scores as the match query in this case, as they are both
executed against a keyword field.

Let us see what happens if you execute a match query against a text field, which is the real
use case of a full-text query:

GET /amazon_products/products/_search
{
 "query": {
 "match": {
 "manufacturer": "victory multimedia"
 }
 }
}

When we execute the match query, we expect it to do the following things:

Search for the terms victory multimedia across all documents within the
manufacturer field
Find the best matching documents sorted by score in descending order
If both terms appear in the same order right next to each other in a document,
that document should get a higher score than other documents which have both
terms but not in the same order, or not next to each other
Include the documents which have either victory or multimedia in the result but
give them a lower score

The match query with default parameters does all of these things to find the best matching
documents in order, according to their scores (high to low).

Searching-What is Relevant Chapter 3

[82]

By default, when only search terms are specified, this is how the match query behaves. It is
possible to specify additional options to the match query. Let us look at some typical
options that you would specify:

Operator
minimum_should_match
Fuzziness

Operator
By default, if the search term specified results in multiple terms after applying the analyzer,
we need a way to combine the results from individual terms. As we saw in the preceding
example, the default behavior of the match query is to combine the results using
the or operator, that is, one of the terms has to be present in the document's field.

This can be changed to use the and operator using the following query:

GET /amazon_products/products/_search
{
 "query": {
 "match": {
 "manufacturer": {
 "query": "victory multimedia",
 "operator": "and"
 }
 }
 }
}

In this case, both the terms victory and multimedia should be present in the document's
manufacturer field.

minimum_should_match
Instead of applying the and operator, we can keep the or operator and specify at least how
many terms should match in a given document for it to be included in the result. This
allows for finer grained control:

GET /amazon_products/products/_search
{
 "query": {
 "match": {

Searching-What is Relevant Chapter 3

[83]

 "manufacturer": {
 "query": "victory multimedia",
 "minimum_should_match": 2
 }
 }
 }
}

The preceding query behaves in a similar way to the and operator, as there are two terms in
the query and we have specified that, at the minimum, two terms should match.

With minimum_should_match, we can specify something similar to at least three of the
terms matching in the document.

Fuzziness
With the fuzziness parameter, we can turn the match query into a fuzzy query. This
fuzziness is based on the Levenshtein edit distance to turn one term into another by making
a number of edits to the original text. The edits can be insertions, deletions, substitutions, or
the transposition of characters in the original term. The fuzziness parameter can take one
of the following values: 0, 1, 2, or AUTO.

For example, the following query has a misspelled word, victor instead of victory. Since we
are using a fuzziness of 1, it will still be able to find all victory multimedia records:

GET /amazon_products/products/_search
{
 "query": {
 "match": {
 "manufacturer": {
 "query": "victor multimedia",
 "fuzziness": 1
 }
 }
 }
}

If we wanted to still allow more room for errors to be correctible, the fuzziness should be
increased to 2. For example, a fuzziness of 2 will even match victer. Victory is two edits
away from victer:

GET /amazon_products/products/_search
{
 "query": {
 "match": {

Searching-What is Relevant Chapter 3

[84]

 "manufacturer": {
 "query": "victer multimedia",
 "fuzziness": 2
 }
 }
 }
}

The value AUTO means that the fuzziness numeric value of 0, 1, 2 is determined
automatically based on the length of the original term. With AUTO, terms of up to two
characters have fuzziness = 0 (must match exactly), terms from three to five characters have
fuzziness = 1, and terms with more than five characters have fuzziness = 2.

Fuzziness comes at its own cost because Elasticsearch has to generate extra terms to match
against. To control the number of terms, it supports the following additional parameters:

max_expansions: The maximum number of terms after expanding.
prefix_length: A number, such as zero, one, two, and so on. The edits for
introducing fuzziness will not be done in the prefix characters as defined by the
prefix_length parameter.

Match phrase query
When you want to match a sequence of words as opposed to separate terms in the
document, the match phrase query can be useful.

For example, the following text is present as part of the description for one of the products:

real video saltware aquarium on your desktop!

What we want is all the products which have this exact sequence of words right next to each
other: real video saltware aquarium. We can use the match_phrase query to achieve
it. The match query will not work as it doesn't consider the sequence of terms and their
proximity to each other. The match query can include all those documents that have any of
the terms, even when they are out of order within the document:

GET /amazon_products/products/_search
{
 "query": {
 "match_phrase": {
 "description": {
 "query": "real video saltware aquarium"
 }

Searching-What is Relevant Chapter 3

[85]

 }
 }
}

The response will look like the following:

{
 ...,
 "hits": {
 "total": 1,
 "max_score": 22.338196,
 "hits": [
 {
 "_index": "amazon_products",
 "_type": "products",
 "_id": "AV5rBfasNI_2eZGciIbg",
 "_score": 22.338196,
 "_source": {
 "price": "19.95",
 "description": "real video saltware aquarium on your
desktop!product information see real fish swimming on your desktop in full-
motion video! you'll find exotic saltwater fish such as sharks angelfish
and more! enjoy the beauty and serenity of a real aquarium at yourdeskt",
 "id": "b00004t2un",
 "title": "sales skills 2.0 ages 10+",
 "manufacturer": "victory multimedia",
 "tags": []
 }
 }
]
 }
}

The match_phrase query also supports the slop parameter which allows you to specify an
integer: 0, 1, 2, 3, and so on. slop relaxes the number of words/terms that can be skipped at
the time of querying.

For example, a slop value of 1 would allow one missing word in the search text but would
still match the document:

GET /amazon_products/products/_search
{
 "query": {
 "match_phrase": {
 "description": {
 "query": "real video aquarium",
 "slop": 1

Searching-What is Relevant Chapter 3

[86]

 }
 }
 }
}

The slop of 1 would allow the user to search with real video aquarium or real
saltware aquarium and still match the document that contains the exact phrase real
video saltware aquarium. The default value of slop is zero.

Multi match query
The multi match query is extension of the match query. The multi match query allows us to
run the match query across multiple fields, and also allows many options to calculate the
overall score of the documents.

The multi match query can be used with different options. We will look at the following
options:

Querying multiple fields with defaults
Boosting one or more fields
With types of multi match queries

Let us look at each option, one by one.

Querying multiple fields with defaults
We want to provide a product search functionality in our web application. When the end
user searches for some terms, we want to query both the title and description fields. This
can be done using the multi match query.

The following query will find all documents which have the terms monitor or aquarium in
the title or the description fields:

GET /amazon_products/products/_search
{
 "query": {
 "multi_match": {
 "query": "monitor aquarium",
 "fields": ["title", "description"]
 }
 }
}

Searching-What is Relevant Chapter 3

[87]

This query gives equal importance to both the fields. Let us look at how to boost one or
more fields.

Boosting one or more fields
In an e-commerce type of web application, often the user intends to search for some item,
and he/she might search for some keywords. What if we want the title field to be more
important than the description? If one or more of the search terms appears in the title, it is
definitely a more relevant product than the ones that have those values only in the
description. It is possible to boost the score of the document if a match is found in a
particular field.

Let us make the title field three times more important than the description field. This can be
done by using the following syntax:

GET /amazon_products/products/_search
{
 "query": {
 "multi_match": {
 "query": "monitor aquarium",
 "fields": ["title^3", "description"]
 }
 }
}

The multi match query offers more control regarding how to combine the scores from
different fields. Let us look at the options.

With types of multi match queries
In this section, we have learnt about full-text queries which are also known as high-level
queries. These queries find the best matching documents according to the score. The high-
level queries internally make use of some of the term-level queries. In the next section, we
will understand how to write compound queries.

Searching-What is Relevant Chapter 3

[88]

Writing compound queries
This class of queries can be used to combine one or more queries to come up with a more
complex query. Some compound queries convert scoring queries into non-scoring queries,
and combine multiple scoring and non-scoring queries. We will look at the following
compound queries:

Constant score query
Bool query

Constant score query
Elasticsearch supports querying both structured data and full text. While full-text queries
need scoring mechanisms to find the best matching documents, structured searches don't
need scoring. The constant score query allows us to convert a scoring query which normally
runs in query context to a non-scoring filter context. The constant score query is a very
important tool in your toolbox.

For example, the term query is normally run in a query context. That means when
Elasticsearch executes a term query, it not only filters the documents but also scores all of
them:

GET /amazon_products/products/_search
{
 "query": {
 "term": {
 "manufacturer.raw": "victory multimedia"
 }
 }
}

Notice the highlighted part, the bold text. This part is the actual term query. By default,
the query JSON element that contains the bold text defines a query context.

The response contains the score for every document. Please see the following partial
response:

{
 ...,
 "hits": {
 "total": 3,
 "max_score": 5.966147,
 "hits": [

Searching-What is Relevant Chapter 3

[89]

 {
 "_index": "amazon_products",
 "_type": "products",
 "_id": "AV5rBfasNI_2eZGciIbg",
 "_score": 5.966147,
 "_source": {
 "price": "19.95",
 ...
}

Here we just intended to filter the documents, so there was no need to calculate the
relevance score of each document.

The original query can be converted to run in a filter context using the following constant
score query:

GET /amazon_products/products/_search
{
 "query": {
 "constant_score": {
 "filter": {
 "term": {
 "manufacturer.raw": "victory multimedia"
 }
 }
 }
 }
}

As you can see, we have wrapped the original highlighted term element and its child. It
assigns a neutral score of 1 to each document by default. Please see the partial response in
the following code:

{
 ...,
 "hits": {
 "total": 3,
 "max_score": 1,
 "hits": [
 {
 "_index": "amazon_products",
 "_type": "products",
 "_id": "AV5rBfasNI_2eZGciIbg",
 "_score": 1,
 "_source": {
 "price": "19.95",
 "description": ...

Searching-What is Relevant Chapter 3

[90]

 }
 ...
}

It is possible to specify a boost parameter which will assign that score instead of the
neutral score of 1:

GET /amazon_products/products/_search
{
 "query": {
 "constant_score": {
 "filter": {
 "term": {
 "manufacturer.raw": "victory multimedia"
 }
 },
 "boost": 1.2
 }
 }
}

What is the benefit of boosting the score of every document in this filter to 1.2? Well, there is
no benefit if this query is used in an isolated way. When this query is combined with other
queries, using a query such as the bool query, the boosted score becomes important. All the
documents that pass this filter will have higher scores compared to other documents that
are combined from other queries.

Let us look at the bool query next.

Bool query
The bool query in Elasticsearch is your Swiss Army knife. It can help you write many types
of complex queries. If you are coming from an SQL background, you already know how to
filter based on multiple AND and OR conditions in the WHERE clause. The bool query allows
you to combine multiple scoring and non-scoring queries.

Let us first see how to implement simple AND and OR conjunctions.

A bool query has the following sections:

GET /amazon_products/products/_search
{
 "query": {
 "bool": {
 "must": [...], scoring queries executed in query context

Searching-What is Relevant Chapter 3

[91]

 "should": [...], scoring queries executed in query context
 "filter": {}, non-scoring queries executed in filter context
 "must_not": [...] non-scoring queries executed in filter context
 }
 }
}

The queries included in must and should clauses are executed in a query context unless the
whole bool query is included inside a filter context.

The filter and must_not queries are always executed in the filter context. They will always
return a score of zero and only contribute to filtering the documents.

Let us understand how to form a non-scoring query that just performs a structured search.
We will understand how to formulate the following types of structured search queries
using the Bool query:

Combining OR conditions
Combining AND and OR conditions
Adding NOT conditions

Combining OR conditions
Find all products in the price range 10 to 13 OR manufactured by valuesoft:

GET /amazon_products/products/_search
{
 "query": {
 "constant_score": {
 "filter": {
 "bool": {
 "should": [
 {
 "range": {
 "price": {
 "gte": 10,
 "lte": 13
 }
 }
 },
 {
 "term": {
 "manufacturer.raw": {
 "value": "valuesoft"

Searching-What is Relevant Chapter 3

[92]

 }
 }
 }
]
 }
 }
 }
 }
}

Since we want to OR the conditions, we have placed them under should. Since we are not
interested in the scores, we have wrapped our bool query inside a constant score query.

Combining conditions AND and OR conditions
Find all products in the price range 10 to 13 AND manufactured
by valuesoft or pinnacle:

GET /amazon_products/products/_search
{
 "query": {
 "constant_score": {
 "filter": {
 "bool": {
 "must": [
 {
 "range": {
 "price": {
 "gte": 10,
 "lte": 30
 }
 }
 }
],
 "should": [
 {
 "term": {
 "manufacturer.raw": {
 "value": "valuesoft"
 }
 }
 },
 {
 "term": {
 "manufacturer.raw": {
 "value": "pinnacle"

Searching-What is Relevant Chapter 3

[93]

 }
 }
 }
]
 }
 }
 }
 }
}

Please notice that all conditions that need to be ORed together are placed
inside should. The conditions that need to be ANDed together, can be placed inside
the must element. Although it is also possible to put all the conditions to be ANDed in
the filter element as well.

Adding NOT conditions
It is possible to add NOT conditions, that is, specifically filtering out certain clauses using
the must_not clause in the bool filter.

For example, find all products in the price range 10 to 20, but they must not be
manufactured by encore. The following query will do just that:

GET /amazon_products/products/_search
{
 "query": {
 "constant_score": {
 "filter": {
 "bool": {
 "must": [
 {
 "range": {
 "price": {
 "gte": 10,
 "lte": 20
 }
 }
 }
],
 "must_not": [
 {
 "term": {
 "manufacturer.raw": "encore"
 }
 }

Searching-What is Relevant Chapter 3

[94]

]
 }
 }
 }
 }
}

The bool query with the must_not element is useful to negate any query. For negating or
applying a NOT filter to the query, it should be wrapped inside the bool with must_not, as
follows.

GET /amazon_products/products/_search
{
 "query": {
 "bool": {
 "must_not": {
 original query to be negated ...
 }
 }
 }
}

Notice that we do not need to wrap the query into a constant score query when we are only
using must_not to negate a query. The must_not query is always executed in a filter
context.

This concludes our understanding of the different types of compound queries. There are
more compound queries supported by Elasticsearch. They include the following:

Dis Max query
Function Score query
Boosting query
Indices query

Covering all these queries is beyond the scope of this book. Having learnt the other
compound queries in depth, you are now well equipped to try the other queries which
aren't covered here. Please refer to the Elasticsearch reference documentation to learn about
their usage.

Searching-What is Relevant Chapter 3

[95]

Summary
In this chapter, we took a deep dive into the search capabilities of Elasticsearch. We
understood the role of analyzers and the anatomy of an analyzer. We have seen how to use
some of the built-in analyzers that come with Elasticsearch, and we have also seen how to
create custom analyzers. Along with a solid background regarding analyzers, we learnt
about two main types of queries—term-level queries and full-text queries. We also
understood how to compose different queries into more complex queries using one of the
compound queries.

This chapter provided you with sound knowledge to get a foothold for querying
Elasticsearch data. There are many more types of queries supported by Elasticsearch, but
we have covered most essential ones. This should help you get started and help you
understand other types of queries from the Elasticsearch reference documentation.

In Chapter 4, Analytics with Elasticsearch, we will learn about the analytics capabilities of
Elasticsearch. With that chapter under your belt, we will conclude by learning the core
component of Elastic Stack and Elasticsearch, and we will be well equipped to understand
the other components of Elastic Stack.

4
Analytics with Elasticsearch

On our journey of learning about Elastic Stack 6.0, we have gained a strong understanding
of Elasticsearch. We have learned about the strong foundations of Elasticsearch in the
previous two chapters, and gained an in-depth understanding of its search use cases.

The underlying technology Apache Lucene was originally developed for text search use
cases. Due to innovations in Apache Lucene and additional innovations in Elasticsearch, it
has also emerged as a very powerful analytics engine. In this chapter, we will understand
how Elasticsearch can serve as your analytics engine. We will look at the following:

The basics of aggregations
Preparing data for analysis
Metric aggregations
Bucket aggregations
Pipeline aggregations

We will learn all of this by using a real-world dataset. Let us start by understanding the
basics of aggregations.

The basics of aggregations
In contrast to search, analytics deals with the bigger picture. Searching addresses the need
for zooming in to a few records; analytics addresses the need for zooming out and slicing
the data in different ways. While learning about searching, we used the API of the following
form:

POST /<index_name>/<type_name>/_search
{
 "query":

Analytics with Elasticsearch Chapter 4

[97]

 {
 ... type of query ...
 }
}

All aggregation queries take a common form. Let us understand the structure.

The aggregations or aggs element allows us to aggregate data. All aggregation requests
take the following form:

POST /<index_name>/<type_name>/_search
{
 "aggs": {
 ... type of aggregation ...
 },
 "query": { ... type of query ... }, //optional query part
 "size": 0 //size typically set to
0
}

The aggs element should contain the actual aggregation query. The body depends on the
type of aggregation that we want to do. We will cover these aggregations in this chapter.

The optional query element defines the context of the aggregation. The aggregation
considers all of the documents in the given index and type if the query element is not
specified (you can imagine it to be equivalent to the match_all query when no query is
present). If we want to limit the context of the aggregation, it can be done by specifying the
query. For example, we may not want to consider all the data for aggregation, but only
certain documents which satisfy a particular condition. This query filters the documents to
be fed to the actual aggs query.

The size element specifies how many of the search hits should be returned in the response.
The default value of size is 10. If size is not specified, the response will contain 10 hits
from the context under the query. Typically, if we are only interested in getting aggregation
results, we should set the size to zero to avoid getting any results along with the
aggregation result.

Broadly, there are four types of aggregations that Elasticsearch supports:

Bucket aggregations
Metric aggregations
Matrix aggregations
Pipeline aggregations

Analytics with Elasticsearch Chapter 4

[98]

Bucket aggregations
Bucket aggregations segment the data in question (defined by the query context) into
various buckets identified by the buckets key. Bucket aggregation evaluates each document
in the context by deciding which bucket it falls into. At the end, bucket aggregation has a set
of distinct buckets with their respective bucket keys and documents that fall into those
buckets.

For people who come from an SQL background, a query that has GROUP BY, such as the
following query, is doing this:

SELECT column1, count(*) FROM table1 GROUP BY column1;

This query divides the table by the different values of column 1 and returns a count of
documents within each value of column 1. This is an example of bucket aggregation. There
are many different types of bucket aggregation supported by Elasticsearch which we will go
through in this chapter.

Bucket aggregations can be present on the top or outermost level in an aggregation query.
Bucket aggregations can also be nested inside other bucket aggregations.

Metric aggregations
Metric aggregations work on numeric types of fields. They compute the aggregate value of
a numeric field in the given context. For example, we have a table containing the results of a
students examination. Each record contains marks obtained by the student. A metric
aggregation can compute different aggregates of that numeric score column. Some
examples are sum, average, minimum, maximum, and so on.

In SQL terms, the following query gives a rough analogy of what a metric aggregation may
do:

SELECT avg(score) FROM results;

This query computes the average score in the given context. Here the context is the whole
table, that is, all students. This is an example of metric aggregation.

Metric aggregation can be placed on the top or outermost level in the aggregations query.
Metric aggregations can also be nested inside bucket aggregations. Metric aggregations
cannot nest other types of aggregations inside of them.

Analytics with Elasticsearch Chapter 4

[99]

Matrix aggregations
Matrix aggregations were introduced with Elasticsearch version 5.0. Matrix aggregations
work on multiple fields and compute matrixes across all the documents within the query
context.

Matrix aggregations can be nested inside bucket aggregations but bucket aggregations
cannot be nested inside of matrix aggregations. This is still a relatively new feature.
Coverage of matrix aggregations is not within the scope of this book.

Pipeline aggregations
Pipeline aggregations are higher order aggregations which can aggregate the output of
other aggregations. These are useful for computing something, such as derivatives. We will
look at some pipeline aggregations later in the chapter.

This was an overview about the different types of aggregations supported by Elasticsearch
at a high level. Pipeline aggregations and matrix aggregations are relatively new and have
fewer use cases compared to metric and bucket aggregations. We will look at metric and
bucket aggregations in greater depth later in the chapter.

In the next section, we will load and prepare data to understand these aggregations
throughout this chapter.

Preparing data for analysis
We will consider an example of network traffic data generated from Wi-Fi routers.
Throughout this chapter, we will analyze the data from this example. It is important to
understand what the records in the underlying system look like and what they represent.
We will cover the following topics while we prepare and load the data into the local
Elasticsearch instance:

Understanding the structure of data
Loading the data using Logstash

Analytics with Elasticsearch Chapter 4

[100]

Understanding the structure of data
The following diagram depicts the design of the system, to help you gain a better
understanding of the problem and the structure of data collected:

Fig 4.1 Network traffic and bandwidth usage data for Wi-Fi traffic and storage in Elasticsearch

The data is collected by the system with the following objectives:

In the left half of the figure, there are multiple squares representing one
customer's premises, with the Wi-Fi routers deployed on that site, along with all
devices connected to those Wi-Fi routers. The connected devices include laptops,
mobile devices, desktop computers, and so on. Each device has a unique MAC
address and a user associated with that device.

Analytics with Elasticsearch Chapter 4

[101]

The right half of the figure represents the centralized system which collects and
stores data from multiple customers into a centralized Elasticsearch cluster. Our
focus will be on how to design this centralized Elasticsearch cluster and the index
to gain meaningful insight.
The routers at each customer site collect additional metrics for each connected
device, such as data downloaded, data uploaded, and URLs or domain names
accessed by the client in a specific time interval. The Wi-Fi routers collect such
metrics and send them periodically to the centralized API server for long-term
storage and analysis.
When the data is sent by the Wi-Fi routers, it contains fewer fields, mainly the
metrics captured by the Wi-Fi routers and the MAC address of the end-device for
which those metrics are collected. The API server looks up and enriches the
records with more information useful for analytics before storing it into
Elasticsearch. The MAC address is looked up to find out the associated user to
whom the device is assigned. It also looks up additional dimensions such as
department of the user.

What are metrics and dimensions? Metric is a common term used in the
analytics world to represent a numeric measure. A common example of a
metric is the amount of data downloaded or uploaded in a given time
period. The term dimension is usually used to refer to extra/auxiliary
information, usually of the string datatype. In the current example, we use
a MAC address to look up auxiliary information related to that MAC
address, namely the username of the user to whom the device is assigned
in the system. Additionally, the name of the department to which the user
belongs is also another dimension.

Finally, the enriched records are stored in Elasticsearch in a flat data structure. One record
looks like the following one:

"_source": {
 "customer": "Google" // Customer to which the WiFi router and
device belongs to
 "accessPointId": "AP-59484", // Identifier of the WiFi router or Access
Point
 "time": 1506148631061, // Time of the record in milliseconds since
Epoch Jan 1, 1970
 "mac": "c6:ec:7d:c6:3d:8d", // MAC address of the client device

 "username": "Pedro Harrison", // Name of the user to whom the device is
assigned
 "department": "Operations", // Department of the user to which the
device belongs to

Analytics with Elasticsearch Chapter 4

[102]

 "application": "CNBC", // Application name or domain name for
which traffic is reported
 "category": "News", // Category of the application

 "networkId": "Internal", // SSID of the network
 "band": "5 GHz", // Band 5 GHz or 2.4 GHz

 "location": "23.102789,72.595381", // latitude & longitude separated by
comma

 "uploadTotal": 1340, // Bytes uploaded since the last report
 "downloadTotal": 2129, // Bytes downloaded since the last report
 "usage": 3469, // Total bytes downloaded and uploaded in
current period

 "uploadCurrent": 22.33, // Upload speed in bytes/sec in current period
 "downloadCurrent": 35.48, // Download speed in bytes/sec in current
period
 "bandwidth": 57.82, // Total speed in bytes/sec (Upload speed +
download speed)

 "signalStrength": -25, // Signal strength between WiFi router and
device
 ...
}

One record contains various metrics for the given end-client device at the given time.

Please note that all the data included in this example is synthentic. Although the names of
customers, users, and MAC addresses look realistic, the data was generated using a
simulator. The data doesn't belong to any real customers.

Now that we know what our data represents and what each record represents, let's load the
data in our local instance.

Loading the data using Logstash
To import the data, please follow the instructions in the book's accompanying source code
repository on GitHub: https:/ ​/​github. ​com/​pranav- ​shukla/ ​learningelasticstack.

Please clone or download the repository from GitHub. The instructions for importing data
are at the following path within the project: chapter-04/README.md.

https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack
https://github.com/pranav-shukla/learningelasticstack/blob/master/chapter-04/README.md

Analytics with Elasticsearch Chapter 4

[103]

After you have imported the data, verify that your data is imported with the following
query:

GET /bigginsight/usageReport/_search
{
 "query": {
 "match_all": {}
 },
 "size": 1
}

You should see a response like the following one:

{
 ...
 "hits":
 {
 "total": 242835,
 "max_score": 1,
 "hits": [
 {
 "_index": "bigginsight",
 "_type": "usageReport",
 "_id": "AV7Sy4FofN33RKOLlVH0",
 "_score": 1,
 "_source": {
 "inactiveMs": 1316,
 "bandwidth": 51.03333333333333,
 "signalStrength": -58,
 "accessPointId": "AP-1D7F0",
 "usage": 3062,
 "downloadCurrent": 39.93333333333333,
 "uploadCurrent": 11.1,
 "mac": "d2:a1:74:28:c0:5a",
 "tags": [],
 "@timestamp": "2017-09-30T12:38:25.867Z",
 "application": "Dropbox",
 "downloadTotal": 2396,
 "@version": "1",
 "networkId": "Guest",
 "location": "23.102900,72.595611",
 "time": 1506164775655,
 "band": "2.4 GHz",
 "department": "HR",
 "category": "File Sharing",
 "uploadTotal": 666,
 "username": "Cheryl Stokes",
 "customer": "Microsoft"

Analytics with Elasticsearch Chapter 4

[104]

 }
 }
]
 }
}

Now that we have the data that we want, we can get started with learning about different
types of aggregations. We will learn different types of aggregations on the data that we just
loaded. You can find all the queries used in this chapter in the accompanying source code at
the GitHub repository, at the location chapter-04/queries.txt. The queries can be run
directly in Kibana Dev Tools, as we have seen earlier.

Metric aggregations
Metric aggregations work with numeric data, computing one or more aggregate metrics
within the given context. The context could be a query, filter, or no query to include the
whole index/type. Metric aggregations can also be nested inside other bucket aggregations.
In this case, these metrics will be computed for each bucket in the bucket aggregations.

We will start with simple metric aggregations without nesting them inside bucket
aggregations. When we learn about bucket aggregations later in the chapter, we will also
learn how to use metric aggregations inside bucket aggregations.

We will learn about the following metric aggregations:

Sum, average, min, and max aggregations
Stats and extended stats aggregations
Cardinality aggregation

Let us learn about them one by one.

Sum, average, min, and max aggregations
Finding the sum of a field, the minimum value for a field, the maximum value for a field, or
an average, are very common operations. For the people who are familiar with SQL, the
query to find the sum would look like the following:

SELECT sum(downloadTotal) FROM usageReport;

https://github.com/pranav-shukla/learningelasticstack/blob/master/chapter-04/queries.txt

Analytics with Elasticsearch Chapter 4

[105]

The preceding query will calculate the sum of the downloadTotal field across all records
in the table. This requires going through all records of the table or all records in the given
context and adding the values of the given fields.

In Elasticsearch, a similar query can be written using the sum aggregation. Let us
understand the sum aggregation first.

Sum aggregation
Here is how to write a simple sum aggregation:

GET bigginsight/_search
{
 "aggregations": { 1
 "download_sum": { 2
 "sum": { 3
 "field": "downloadTotal" 4
 }
 }
 },
 "size": 0 5
}

The aggs or aggregations element at the top level should wrap any aggregation.
Give a name to the aggregation; here we are doing the sum aggregation on the
downloadTotal field and hence the name we chose is download_sum. You can
name it anything. This field will be useful while looking up this particular
aggregation's result in the response.
We are doing a sum aggregation, hence the sum element.
We want to do term aggregation on the downloadTotal field.
Specify size = 0 to prevent raw search results from being returned. We just
want aggregation results and not the search results in this case. Since we haven't
specified any top level query elements, it matches all documents. We do not
want any raw documents (or search hits) in the result.

The response should look like the following:

{
 "took": 92,
 ...
 "hits": {
 "total": 242836, 1
 "max_score": 0,

Analytics with Elasticsearch Chapter 4

[106]

 "hits": []
 },
 "aggregations": { 2
 "download_sum": { 3
 "value": 2197438700 4
 }
 }
}

Let us understand the key aspects of the response. The key parts are numbered 1, 2, 3, and
so on, and are explained in the following points:

The hits.total element shows the number of documents that were considered
or were in the context of the query. If there was no additional query or filter
specified, it will include all documents in the type or index.
Just like the request, this response is wrapped inside aggregations to indicate as
such.
The response of the aggregation requested by us was named download_sum,
hence we get our response from the sum aggregation inside an element with the
same name.
The actual value after applying the sum aggregation.

The average, min, and max aggregations are very similar. Let's look at them briefly.

Average aggregation
The average aggregation finds an average across all documents in the querying context:

GET bigginsight/_search
{
 "aggregations": {
 "download_average": { 1
 "avg": { 2
 "field": "downloadTotal"
 }
 }
 },
 "size": 0
}

Analytics with Elasticsearch Chapter 4

[107]

The only notable differences from the sum aggregation are as follows:

We chose a different name, download_average, to make it apparent that the
aggregation is trying to compute the average.
The type of aggregation that we are doing is avg instead of the sum aggregation
that we were doing earlier.

The response structure is identical but the value field will now represent the average of the
requested field.

The min and max aggregations are the exactly same.

Min aggregation
Here is how we will find the minimum value of the downloadTotal field in the entire
index/type:

GET bigginsight/_search
{
 "aggregations": {
 "download_min": {
 "min": {
 "field": "downloadTotal"
 }
 }
 },
 "size": 0
}

Let's finally look at max aggregation also.

Max aggregation
Here is how we will find the maximum value of the downloadTotal field in the entire
index/type:

GET bigginsight/_search
{
 "aggregations": {
 "download_max": {
 "max": {
 "field": "downloadTotal"
 }

Analytics with Elasticsearch Chapter 4

[108]

 }
 },
 "size": 0
}

These aggregations were really simple. Now let's look at some more advanced yet simple
stats and extended stats aggregations.

Stats and extended stats aggregations
These aggregations compute some common statistics in a single request without having to
issue multiple requests. This saves resources on the Elasticsearch side as well because the
statistics are computed in a single pass rather than being requested multiple times. The
client code also becomes simpler if you are interested in more than one of these statistics.
Let's look at the stats aggregation first.

Stats aggregation
The stats aggregation computes the sum, average, min, max, and count of documents in a
single pass:

GET bigginsight/_search
{
 "aggregations": {
 "download_stats": {
 "stats": {
 "field": "downloadTotal"
 }
 }
 },
 "size": 0
}

The structure of the stats request is the same as the other metric aggregations we have seen
so far, so nothing special is going on here.

The response should look like the following:

{
 "took": 4,
 ...,
 "hits": {
 "total": 242836,
 "max_score": 0,

Analytics with Elasticsearch Chapter 4

[109]

 "hits": []
 },
 "aggregations": {
 "download_stats": {
 "count": 242835,
 "min": 0,
 "max": 241213,
 "avg": 9049.102065188297,
 "sum": 2197438700
 }
 }
}

As you can see, the response with the download_stats element contains count, min, max,
average, and sum; everything is included in the same response. This is very handy as it
reduces the overhead of multiple requests and also simplifies the client code.

Let us look at the extended stats aggregation.

Extended stats Aggregation
The extended stats aggregation returns a few more statistics in addition to the ones
returned by the stats aggregation:

GET bigginsight/_search
{
 "aggregations": {
 "download_estats": {
 "extended_stats": {
 "field": "downloadTotal"
 }
 }
 },
 "size": 0
}

Analytics with Elasticsearch Chapter 4

[110]

The response looks like the following:

{
 "took": 15,
 "timed_out": false,
 ...,
 "hits": {
 "total": 242836,
 "max_score": 0,
 "hits": []
 },
 "aggregations": {
 "download_estats": {
 "count": 242835,
 "min": 0,
 "max": 241213,
 "avg": 9049.102065188297,
 "sum": 2197438700,
 "sum_of_squares": 133545882701698,
 "variance": 468058704.9782911,
 "std_deviation": 21634.664429528162,
 "std_deviation_bounds": {
 "upper": 52318.43092424462,
 "lower": -34220.22679386803
 }
 }
 }
}

It also returns the sum of squares, variance, standard deviation, and standard deviation
bounds.

Cardinality aggregation
Finding the count of unique elements can be done with the cardinality aggregation. It is
similar to finding the result of a query such as the following:

select count(*) from (select distinct username from usageReport) u;

Finding the cardinality or the number of unique values for a specific field is a very common
requirement. If you have click-stream from the different visitors on your website, you may
want to find out how many unique visitors you got in a given day, week, or month.

Analytics with Elasticsearch Chapter 4

[111]

Let us understand how we find out the count of unique users for which we have network
traffic data:

GET bigginsight/_search
{
 "aggregations": {
 "unique_visitors": {
 "cardinality": {
 "field": "username"
 }
 }
 },
 "size": 0
}

The cardinality aggregation response is just like the other metric aggregations:

{
 "took": 110,
 ...,
 "hits": {
 "total": 242836,
 "max_score": 0,
 "hits": []
 },
 "aggregations": {
 "unique_visitors": {
 "value": 79
 }
 }
}

Now that we have understood the simplest forms of aggregations, we can look at some of
the bucket aggregations.

Bucket aggregations
Bucket aggregations are useful to analyze how the whole relates to its parts to gain better
insight. They help in segmenting the data into smaller parts. Each type of bucket
aggregation slices the data into different segments or buckets. Bucket aggregations are the
most common type of aggregation used in any analysis process.

Analytics with Elasticsearch Chapter 4

[112]

We will cover the following topics, keeping the network traffic data example at the center:

Bucketing on string data
Bucketing on numeric data
Aggregating filtered data
Nesting aggregations
Bucketing on custom conditions
Bucketing on date/time data
Bucketing on geo-spatial data

Bucketing on string data
Sometimes, we may need to bucket the data or segment the data based on a field that has a
string datatype, typically keyword typed fields in Elasticsearch. This is very common. Some
examples of scenarios in which you may want to segment the data by a string typed field
are:

Segmenting the network traffic data per department
Segmenting the network traffic data per user
Segmenting the network traffic data per application or per category

The most common way to bucket or segment your string typed data is by using terms
aggregation. Let us take a look at terms aggregation.

Terms aggregation
Terms aggregation is probably the most widely used aggregation. It is useful for
segmenting or grouping the data by a given field's distinct values. Suppose that in the
network traffic data example which we have loaded, we have the following question:

Which are the top categories, that is, categories that are surfed the most by users?

We are interested in the most surfed categories, not in terms of bandwidth used but just in
terms of counts (record counts). In a relational database, we could write a query like the
following one:

SELECT category, count(*) FROM usageReport GROUP BY category ORDER BY
count(*) DESC;

Analytics with Elasticsearch Chapter 4

[113]

The Elasticsearch aggregation query, which would do a similar job, can be written as
follows:

GET /bigginsight/usageReport/_search
{
 "aggs": { 1
 "byCategory": { 2
 "terms": { 3
 "field": "category" 4
 }
 }
 },
 "size": 0 5
}

Let us understand the terms of the aggregation query here. Notice the numbers that refer to
different parts of the query:

The aggs or aggregations element at the top level should wrap any
aggregation.
Give a name to the aggregation. Here we are doing term aggregation by the
category field and hence the name we chose is byCategory.
We are doing a term aggregation, hence the element terms.
We want to do a term aggregation on the category field.
Specify size = 0 to prevent raw search results from being returned. We just
want aggregation results and not the search results in this case. Since we haven't
specified any top level query element, it matches all documents. We do not want
any raw documents (or search hits) in the result.

The response looks like the following:

{
 "took": 11,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 242835, 1
 "max_score": 0,
 "hits": [] 2
 },

Analytics with Elasticsearch Chapter 4

[114]

 "aggregations": { 3
 "byCategory": { 4
 "doc_count_error_upper_bound": 0, 5
 "sum_other_doc_count": 0, 6
 "buckets": [8
 {
 "key": "Chat", 9
 "doc_count": 52277 10
 },
 {
 "key": "File Sharing",
 "doc_count": 46912
 },
 {
 "key": "Other HTTP",
 "doc_count": 38535
 },
 {
 "key": "News",
 "doc_count": 25784
 },
 {
 "key": "Email",
 "doc_count": 21003
 },
 {
 "key": "Gaming",
 "doc_count": 19578
 },
 {
 "key": "Jobs",
 "doc_count": 19429
 },
 {
 "key": "Blogging",
 "doc_count": 19317
 }
]
 }
 }
}

Analytics with Elasticsearch Chapter 4

[115]

Please notice the following in the response, and notice the numbers annotated in the
response:

The total element under hits (we will refer to this as hits.total navigating the
path from the top JSON element) is 242835. This is the number of total
documents considered in this aggregation.
The hits.hits array is empty. This is because we specified "size": 0 so as not
include any search hits here. What we were interested in were the aggregations
and not search results.
The aggregations element at the top level in the JSON response contains all the
aggregation results.
The name of the aggregation is byCategory. This is the name that was given by
us to this term aggregation. This name helps us relate the response to the request,
as the request can be generated for several aggregations at once.
doc_count_error_upper_bound is the measure of error while doing this
aggregation. Data is distributed in shards; if each shard sends data for all bucket
keys, this results in too much data sent across the network. Elasticsearch sends
across only the top n buckets across the network if the aggregation was requested
for top n items. Here n is the number of aggregation buckets determined by size
parameter to the bucket aggregation. We will look at bucket aggregation's size
parameter later in this chapter.
sum_other_doc_count is the total count of documents that are not included in
the buckets returned. By default, term aggregations return the top 10 buckets if
there are more than 10 distinct buckets. The remaining documents other than
these 10 buckets are summed and returned in this field. In this case, there are
only eight categories and hence this field is set to zero.
The list of buckets returned by the aggregation.
The key of one of the buckets, that is, the category of Chat.
The count of documents in the bucket.

As we can see, there are only eight distinct buckets in the results of the query.

Analytics with Elasticsearch Chapter 4

[116]

Next, we want to find out the top applications in terms of the maximum number of records
for each application:

GET /bigginsight/usageReport/_search?size=0
{
 "aggs": {
 "byApplication": {
 "terms": {
 "field": "application"
 }
 }
 }
}

Notice how we have added size=0 as a request parameter in the URL itself.

This returns a response like the following one:

{
 ...,
 "aggregations": {
 "byApplication": {
 "doc_count_error_upper_bound": 6325,
 "sum_other_doc_count": 129002,
 "buckets": [
 {
 "key": "Skype",
 "doc_count": 26115
 },
 ...
}

Notice the sum_other_doc_count has a big value, 129002. This is a big number relative to
the total hits; as we saw in the previous query, there are around 242,000 documents in the
index. The reason for this is that term aggregation returns only 10 buckets by default. In the
current setting, the top 10 buckets with the highest documents are returned in descending
order. The remaining documents which are not covered in the top 10 buckets are indicated
in sum_other_doc_count. There are actually 30 different applications for which we have
network traffic data. The number in sum_other_doc_count is the sum of the counts for
the remaining 20 applications which were not included in the buckets list.

Analytics with Elasticsearch Chapter 4

[117]

To get the top n buckets instead of the default 10, we can use the size parameter inside the
term aggregation:

GET /bigginsight/usageReport/_search?size=0
{
 "aggs": {
 "byApplication": {
 "terms": {
 "field": "application",
 "size": 15
 }
 }
 }
}

Notice that this size (specified inside the terms aggregation) is different from the size
specified at the top level. At the top level, the size parameter is to prevent any search hits,
whereas the size inside the term aggregation denotes the maximum number of term
buckets to be returned.

Term aggregation is very useful for generating data for pie charts or bar charts, where we
may want to analyze the relative counts of string typed field in a set of documents. In
Chapter 7, Visualizing Data with Kibana, you will learn that Kibana term aggregation is
useful for generating pie and bar charts.

Next, we will look at how to do bucketing on numeric types of fields.

Bucketing on numeric data
Another common scenario is when we want to segment or slice the data into various
buckets based on a numeric field. For example, we may want to slice the product data by
different price ranges such as up to $10, $10 to $50, $50 to $100, and so on. You may want to
segment the data by age group, employee count, and so on.

We will look at the following aggregations in this section:

Histogram aggregation
Range aggregation

Analytics with Elasticsearch Chapter 4

[118]

Histogram aggregation
Histogram aggregation can slice the data into different buckets based on one numeric field.
The range of each slice, also called the interval, can be specified in the input of the query.

We have records of network traffic usage data. The usage field has the number of bytes
used for uploading or downloading data. Let us try to divide or slice all the data based on
the usage:

POST /bigginsight/_search?size=0
{
 "aggs": {
 "by_usage": {
 "histogram": {
 "field": "usage",
 "interval": 1000
 }
 }
 }
}

The above aggregation query will slice all the data into the following buckets:

0 to 999: All records that have usage >= 0 and < 1000 will fall into this bucket
1,000 to 1,999: All records that have usage >= 1000 and < 2000 will fall into this
bucket
2,000 to 2,999: All records that have usage >= 2000 and < 3000 will fall into this
bucket

And so on.

The response should look like the following (truncated for brevity):

{
 ...,
 "aggregations": {
 "by_usage": {
 "buckets": [
 {
 "key": 0,
 "doc_count": 30060
 },
 {
 "key": 1000,
 "doc_count": 42880
 },

Analytics with Elasticsearch Chapter 4

[119]

 {
 "key": 2000,
 "doc_count": 42041
 },
...
}

This is how the histogram aggregation creates buckets of equal ranges by using
the interval specified in the query. By default, it includes all buckets with the given
interval regardless of whether there are any documents in that bucket or not. It is possible
to get back only those buckets which have at least some documents. It can be done by using
the min_doc_count parameter. If specified, the histogram aggregation only returns those
buckets that have at least the specified number of documents.

Let us look at another aggregation, range aggregation, which can be used on numeric data.

Range aggregation
What if we do not want all buckets to have the same interval? It is possible to create
unequal sized buckets by using range aggregation.

The following range aggregation slices the data into three buckets: up to 1 KB, 1 KB to 100
KB, and 100 KB or more. Notice that we can specify from and to in the ranges. Both from
and to are optional in the range. If only to is specified, that bucket includes all documents
up to the specified value in that bucket. The to value is exclusive and is not included in the
current bucket's range:

POST /bigginsight/_search?size=0
{
 "aggs": {
 "by_usage": {
 "range": {
 "field": "usage",
 "ranges": [
 { "to": 1024 },
 { "from": 1024, "to": 102400 },
 { "from": 102400 }
]
 }
 }
 }
}

Analytics with Elasticsearch Chapter 4

[120]

The response of this request looks like the following one:

{
 ...,
 "aggregations": {
 "by_usage": {
 "buckets": [
 {
 "key": "*-1024.0",
 "to": 1024,
 "doc_count": 31324
 },
 {
 "key": "1024.0-102400.0",
 "from": 1024,
 "to": 102400,
 "doc_count": 207498
 },
 {
 "key": "102400.0-*",
 "from": 102400,
 "doc_count": 4013
 }
]
 }
 }
}

It is possible to specify custom key labels for the range buckets as follows:

POST /bigginsight/_search?size=0
{
 "aggs": {
 "by_usage": {
 "range": {
 "field": "usage",
 "ranges": [
 { "key": "Upto 1 kb", "to": 1024 },
 { "key": "1 kb to 100 kb","from": 1024, "to": 102400 },
 { "key": "100 kb and more", "from": 102400 }
]
 }
 }
 }
}

Analytics with Elasticsearch Chapter 4

[121]

The resulting buckets will have the keys set with each bucket. This is helpful for looking up
the relevant bucket from the response without iterating through all buckets.

There are more aggregations available for numeric data, but covering all of the aggregations
is beyond the scope of this book.

Next, we will understand a couple of important concepts related to bucket aggregation and
aggregations in general.

Aggregations on filtered data
In our quest to learn different bucket aggregations, let us take a very short detour to
understand how to apply aggregations on filtered data. So far, we have been applying all
aggregations on all the data of the given index/type. In the real world, you will almost
always need to apply some filters before applying aggregations (either metric or bucket
aggregations).

Let us revisit the example that we looked at in the Terms aggregation section. We found out
the top categories in the whole index and type. Now what we want to do is to find the top
category for a specific customer, and not for all the data for all customers:

GET /bigginsight/usageReport/_search?size=0
{
 "query": {
 "term": {
 "customer": "Linkedin"
 }
 },
 "aggs": {
 "byCategory": {
 "terms": {
 "field": "category"
 }
 }
 }
}

We modified the original query, which found the top categories, with an additional query
(highlighted in the query above in bold). We added a query, and inside that query, we
added a term filter for a specific customer that we were interested in.

Analytics with Elasticsearch Chapter 4

[122]

This type of query, when used with any type of aggregation, changes the context of the data
on which aggregations are calculated. The query/filter decides the data on which the
aggregations will be run.

Let us look at the response of this query to understand this better:

{
 "took": 18,
 ...,
 "hits": {
 "total": 76607,
 "max_score": 0,
 "hits": []
 },
 ...
}

The hits total element in the response is now much less than the earlier aggregation query,
which was run on the whole index and type. We may additionally want to apply more
filters to limit the query to a smaller time window.

The following query applies multiple filters and makes the scope of the aggregation more
specific, for a customer and within some subset of the time interval:

GET /bigginsight/usageReport/_search?size=0
{
 "query": {
 "bool": {
 "must": [
 {"term": {"customer": "Linkedin"}},
 {"range": {"time": {"gte": 1506277800000, "lte": 1506294200000}}}
]
 }
 },
 "aggs": {
 "byCategory": {
 "terms": {
 "field": "category"
 }
 }
 }
}

Analytics with Elasticsearch Chapter 4

[123]

This is how the scope of aggregation can be modified by using filters. We will continue on
our detour of learning about different bucket aggregations and look at how to nest metric
aggregations inside bucket aggregations.

Nesting aggregations
Bucket aggregations split the context into one or more bucket. We can restrict the context of
the aggregation by specifying the query element, as we have seen in the previous section.

When a metric aggregation is nested inside a bucket aggregation, the metric aggregation is
computed within each bucket. Let us understand this by taking the following question that
we may want to get an answer for:

What is the total bandwidth consumed by each user or a specific customer on a given day?

We have to take the following steps:

First filter the overall data for the given customer and for the given day. This can1.
be done using a global query element of the bool type.
Once we have the filtered data, we want to create some buckets per user.2.
Once we have one bucket for each user, we want to compute the sum metric3.
aggregation on the total usage field (which includes upload and download).

The following query does exactly this. Please refer to the annotated numbers which
correspond to the three main objectives of the the following query:

GET /bigginsight/usageReport/_search?size=0
{
 "query": { 1
 "bool": {
 "must": [
 {"term": {"customer": "Linkedin"}},
 {"range": {"time": {"gte": 1506257800000, "lte": 1506314200000}}}
]
 }
 },
 "aggs": {
 "by_users": { 2
 "terms": {
 "field": "username"
 },
 "aggs": {
 "total_usage": { 3
 "sum": { "field": "usage" }

Analytics with Elasticsearch Chapter 4

[124]

 }
 }
 }
 }
}

The thing to notice here is that the top level by_users aggregation, which is a terms
aggregation, contains another aggs element with the metric aggregation total_usage
inside it.

The response should look like the following:

{
 ...,
 "aggregations": {
 "by_users": {
 "doc_count_error_upper_bound": 0,
 "sum_other_doc_count": 453,
 "buckets": [
 {
 "key": "Jay May",
 "doc_count": 2170,
 "total_usage": {
 "value": 6516943
 }
 },
 {
 "key": "Guadalupe Rice",
 "doc_count": 2157,
 "total_usage": {
 "value": 6492653
 }
 },
 ...
}

As you can see, each of the term aggregation buckets contain a total_usage child which
has the metric aggregation value. The buckets are sorted by the number of documents in
each bucket in descending order. It is possible to change the order of buckets by specifying
the order parameter within the bucket aggregation.

Analytics with Elasticsearch Chapter 4

[125]

Please see the following partial query, modified to sort the buckets in descending order of
the total_usage metric:

GET /bigginsight/usageReport/_search
{
 ...,
 "aggs": {
 "by_users": {
 "terms": {
 "field": "username",
 "order": { "total_usage": "desc"}
 },
 "aggs": {
 ...
...
}

The highlighted order clause sorts the buckets using the total_usage nested aggregation
in descending order.

Bucket aggregations can be nested inside other bucket aggregations. Let us understand this
by getting an answer to the following question:

Who are the top two users in each department, given the total bandwidth consumed by
each user? The following query will help us get that answer:

GET /bigginsight/usageReport/_search?size=0
{
 "query": { 1
 "bool": {
 "must": [
 {"term": {"customer": "Linkedin"}},
 {"range": {"time": {"gte": 1506257800000, "lte": 1506314200000}}}
]
 }
 },
 "aggs": {
 "by_departments": { 2
 "terms": { "field": "department" },
 "aggs": {
 "by_users": { 3
 "terms": {
 "field": "username",
 "size": 2,
 "order": { "total_usage": "desc"}
 },
 "aggs": {

Analytics with Elasticsearch Chapter 4

[126]

 "total_usage": {"sum": { "field": "usage" }} 4
 }
 }
 }
 }
 }
}

Please see the following explanation of the annotated numbers in the query:

Query that filters the specific customer and time range.
The top level terms aggregation to get a bucket for each department.
The second level terms aggregation to get the top two users (notice size = 2)
within each bucket.
The metric aggregation that has the sum of usage within its parent bucket. The
immediate parent bucket of the total_usage aggregation is the by_users
aggregation which causes the sum of usage to be calculated for each user.

This is how we can nest bucket and metric aggregations to answer complex questions, in a
very fast and efficient way, about big data stored in Elasticsearch.

Bucketing on custom conditions
Sometimes what we want is more control over how the buckets are created. The
aggregations that we have looked at so far dealt with a single type of field. If the given field
that we want to slice data from is of the string type, we generally use term aggregation. If
the field is of numeric type, we have a few choices including histogram, range aggregation,
and others to slice the data into different segments.

The following aggregations allow us to create one or more buckets based on the
queries/filters chosen by us:

Filter aggregation
Filters aggregation

Let us look at them one by one.

Analytics with Elasticsearch Chapter 4

[127]

Filter aggregation
Why one would use filter aggregation? Filter aggregation allows us to create a single bucket
using any arbitrary filter and computes the metrics within that bucket.

For example, if we wanted to create a bucket of all records for the Chat category, we could
use a term filter. We want to create a bucket of all records that have category = Chat.

POST /bigginsight/_search?size=0
{
 "aggs": {
 "chat": {
 "filter": {
 "term": {
 "category": "Chat"
 }
 }
 }
 }
}

The response should look like the following:

{
 "took": 4,
 ...,
 "hits": {
 "total": 242836,
 "max_score": 0,
 "hits": []
 },
 "aggregations": {
 "chat": {
 "doc_count": 52277
 }
 }
}

As you can see, the aggregations element contains just one item corresponding to the
category Chat. It has 52277 documents. This response can be seen as subset of the term
aggregation response, which contained all categories apart from Chat.

Let us look at the filters aggregation next, which allows you to bucket on more than one
custom filter.

Analytics with Elasticsearch Chapter 4

[128]

Filters aggregation
With filters aggregation, you can create multiple buckets, each with its own specified filter
that will cause those documents satisfying that filter to fall into the related bucket. Let's
understand it with an example.

We want to create multiple buckets to understand how much of the network traffic was
caused by the Chat category. At the same time, we want to understand how much of it was
caused by the Skype application versus other applications in the Chat category. This can be
achieved using filters aggregation as it allows us to write arbitrary filters to create buckets:

GET bigginsight/_search?size=0
{
 "aggs": {
 "messages": {
 "filters": {
 "filters": {
 "chat": { "match": { "category": "Chat" }},
 "skype": { "match": { "application": "Skype" }},
 "other_than_skype": {
 "bool": {
 "must": {"match": {"category": "Chat"}},
 "must_not": {"match": {"application": "Skype"}}
 }
 }
 }
 }
 }
 }
}

We created three filters for the three buckets that we want, as follows:

Bucket with chat key: We specify the filter category = Chat. Remember that
the match query that we have used is a high-level query which understands the
mapping of the underlying field. Here, the underlying field category is a
keyword field and hence the match query looks for the exact term Chat.
Bucket with Skype key: We specify the application = Skype filter and
include only Skype traffic.
Bucket with other_than_skype key: Here we use a bool query to filter
documents that are in the Chat category but not Skype.

Analytics with Elasticsearch Chapter 4

[129]

As you can see, filters aggregation is very powerful when you want custom buckets using
different filters. It allows you to take full control of the bucketing process. You can choose
your own fields and your own conditions to create the buckets of your choice for
segmenting the data in customized ways.

Next, we will understand how to slice data on a date type column to slice it into different
time intervals.

Bucketing on date/time data
We have seen how to bucket (or segment or slice) your data on different types of
columns/fields. The analysis of data across the time dimension is another very common
requirement. We may have questions such as the following, which require the aggregation
of data on the time dimension:

How are sales volumes growing over a period of time?
How is profit changing month to month?

In the context of the network traffic example that we are going through, the following
questions can be answered through time series analysis of the data:

How are the bandwidth requirements changing for my organization over a
period of time?
Which are the top applications, over a period of time, in terms of bandwidth
usage?

Elasticsearch has a very powerful Date Histogram aggregation that can answer questions
like these. Let us look at how we can get answers to questions like the previous ones.

Date Histogram aggregation
Using Date Histogram aggregation, we will see how to first create buckets on a date field. In
the process, we will go through the following:

Creating buckets across time periods
Using a different time zone
Computing other metrics within sliced time intervals
Focusing on a specific day and changing intervals

Analytics with Elasticsearch Chapter 4

[130]

Creating buckets across time
The following query will slice the data into intervals of 1 day. Just like how we were able to
create buckets on different values of strings, the following query will create buckets on
different values of time, grouping it by 1 day intervals.

GET /bigginsight/usageReport/_search?size=0 1
{
 "aggs": {
 "counts_over_time": {
 "date_histogram": { 2
 "field": "time",
 "interval": "1d" 3
 }
 }
 }
}

We have specified size=0 as a request parameter instead of specifying it in the
request body.
We are using the date_histogram aggregation.
We want to slice the data by day; that's why we specify the interval for slicing the
data as 1 d (for 1 day). Intervals can take values like 1 d (1 day), 1 h (1 hour), 4 h
(4 hours), 30 m (30 minutes), and so on. This gives tremendous flexibility when
specifying a dynamic criteria.

The response to the request should look like the following:

{
 ...,
 "aggregations": {
 "counts_over_time": {
 "buckets": [
 {
 "key_as_string": "2017-09-23T00:00:00.000Z",
 "key": 1506124800000,
 "doc_count": 62493
 },
 {
 "key_as_string": "2017-09-24T00:00:00.000Z",
 "key": 1506211200000,
 "doc_count": 5312
 },
 {
 "key_as_string": "2017-09-25T00:00:00.000Z",
 "key": 1506297600000,

Analytics with Elasticsearch Chapter 4

[131]

 "doc_count": 175030
 }
]
 }
 }
}

As you can see, the simulated data that we have in our index is only for a 3 day period. The
returned buckets contain keys in two forms, key and key_as_string. The key field is
milliseconds since the epoch (January 1st 1970) and key_as_string is the beginning of the
time interval in UTC. In our case, we have chosen the interval of 1 day. The first bucket with
the 2017-09-23T00:00:00.000Z key is the bucket that has documents between
September 23rd 2017 UTC and September 24th 2017 UTC.

Using a different time zone
We actually want to slice the data by IST time zone rather than slicing it according to the
UTC time zone. This is possible by specifying the time_zone parameter. We need to
separate the offset of the required time zone from the UTC time zone. In this case we need
to provide +05:30 as the offset, as IST is 5 hours and 30 minutes ahead of UTC:

GET /bigginsight/usageReport/_search?size=0
{
 "aggs": {
 "counts_over_time": {
 "date_histogram": {
 "field": "time",
 "interval": "1d",
 "time_zone": "+05:30"
 }
 }
 }
}

The response now looks like the following:

{
 ...,
 "aggregations": {
 "counts_over_time": {
 "buckets": [
 {
 "key_as_string": "2017-09-23T00:00:00.000+05:30",
 "key": 1506105000000,
 "doc_count": 62493
 },

Analytics with Elasticsearch Chapter 4

[132]

 {
 "key_as_string": "2017-09-24T00:00:00.000+05:30",
 "key": 1506191400000,
 "doc_count": 0
 },
 {
 "key_as_string": "2017-09-25T00:00:00.000+05:30",
 "key": 1506277800000,
 "doc_count": 180342
 }
]
 }
 }
}

As you can see, the key and key_as_string for all buckets have changed. The keys are
now at the beginning of the day in the IST time zone. There are no documents for
September 24th 2017 now, as it is a Sunday.

Computing other metrics within sliced time intervals
So far, we have just sliced the data across time by using the Date Histogram to create the
buckets on the time field. This gave us document counts in each bucket. Next we will try to
answer the following question:

What is the day-wise total bandwidth usage for a given customer? The following query will
provide us precisely that:

GET /bigginsight/usageReport/_search?size=0
{
 "query": { "term": {"customer": "Linkedin"} },
 "aggs": {
 "counts_over_time": {
 "date_histogram": {
 "field": "time",
 "interval": "1d",
 "time_zone": "+05:30"
 },
 "aggs": {
 "total_bandwidth": {
 "sum": { "field": "usage" }
 }
 }
 }
 }
}

Analytics with Elasticsearch Chapter 4

[133]

We added a term filter to consider only one customer's data. Within the date_histogram
aggregation, we nested another metric aggregation, sum aggregation, to count the sum of
the usage field within each bucket. This is how we will get the total data consumed each
day. The following is the shortened response to the query:

{
 ..,
 "aggregations": {
 "counts_over_time": {
 "buckets": [
 {
 "key_as_string": "2017-09-23T00:00:00.000+05:30",
 "key": 1506105000000,
 "doc_count": 18892,
 "total_bandwidth": {
 "value": 265574303
 }
 },
 ...
]
 }
 }
}

Focusing on a specific day and changing intervals
Next, we will see how to focus on a specific day, by filtering the data for the other time
periods and changing the value of the interval to a smaller value. We are trying to get an
hourly breakdown of data usage on September 25th 2017.

What we are doing is also called drilling down in the data. Often, the result of the previous
query is displayed as a line chart with time on the x axis and data used on the y axis. If we
want to zoom in on a specific day from that line chart, the following query can be useful:

GET /bigginsight/usageReport/_search?size=0
{
 "query": {
 "bool": {
 "must": [
 {"term": {"customer": "Linkedin"}},
 {"range": {"time": {"gte": 1506277800000}}}
]
 }
 },
 "aggs": {
 "counts_over_time": {

Analytics with Elasticsearch Chapter 4

[134]

 "date_histogram": {
 "field": "time",
 "interval": "1h",
 "time_zone": "+05:30"
 },
 "aggs": {
 "hourly_usage": {
 "sum": { "field": "usage" }
 }
 }
 }
 }
}

The shortened response would look like the following:

{
 ...,
 "aggregations": {
 "counts_over_time": {
 "buckets": [
 {
 "key_as_string": "2017-09-25T00:00:00.000+05:30",
 "key": 1506277800000,
 "doc_count": 465,
 "hourly_usage": {
 "value": 1385524
 }
 },
 {
 "key_as_string": "2017-09-25T01:00:00.000+05:30",
 "key": 1506281400000,
 "doc_count": 478,
 "hourly_usage": {
 "value": 1432123
 }
 },
 ...
}

As you can see, now we have buckets for 1 hour intervals with data for those hours
aggregated within each bucket.

Analytics with Elasticsearch Chapter 4

[135]

The Date Histogram aggregation allows you to do many powerful time series analyses. As
we have seen in the examples, aggregating from a 1 day interval to a 1 hour interval is
extremely easy. You can slice your data in the required interval with demand without
planning it in advance. You can do this with big data; there are hardly any other data stores
which can provide this type of flexibility with big data.

Bucketing on geo-spatial data
Another powerful feature is the ability to do geo-spatial analysis on the data. If your data
contains fields of the geo-point data type where the coordinates are captured, you could
perform some interesting analysis which could be rendered on a map to give you better
insight into the data.

We will cover two types of geo-spatial aggregations:

Geo distance aggregation
GeoHash grid aggregation

Geo distance aggregation
Geo distance aggregation helps in creating buckets of distances from a given geo-point. This
is better understood using a diagram:

Fig 4.2 Geo distance aggregation with only to specified (left), and both to and from specified (right)

Analytics with Elasticsearch Chapter 4

[136]

The shaded area in blue represents the area included in the geo distance aggregation.

The following aggregation will form a bucket with all the documents within the given
distance from the given geo-point. This corresponds to the first (left) circle in Fig 4.2. The
shaded area is from the center up to the given radius, forming a circle:

GET bigginsight/usageReport/_search?size=0
{
 "aggs": {
 "within_radius": {
 "geo_distance": {
 "field": "location",
 "origin": {"lat": 23.102869,"lon": 72.595692},
 "ranges": [{"to": 5}]
 }
 }
 }
}

As you can see, the ranges parameter is similar to the range aggregation that we saw
earlier. It includes all the points up to 5 meters away from the given origin specified. This
is helpful in aggregations such as getting the counts of things that are within 2 kilometers
from a given location, and is often used on many websites. This is a good way to find all
businesses within a given distance from your location (such as all coffee shops or hospitals
within 2 km).

The default unit of distance is meters, but you can specify the unit parameter as km or mi
and others to switch to different units.

Now let's look at what happens if you specify both from and to in the geo distance
aggregation. This will correspond to the right circle in Fig 4.2:

GET bigginsight/usageReport/_search?size=0
{
 "aggs": {
 "within_radius": {
 "geo_distance": {
 "field": "location",
 "origin": {"lat": 23.102869,"lon": 72.595692},
 "ranges": [{"from": 5, "to": 10}]
 }
 }
 }
}

Analytics with Elasticsearch Chapter 4

[137]

Here, we are bucketing the points which are at least 5 meters away but less than 10 meters
away from the given point. Similarly, it is possible to form a bucket of a point which is at
least x units away from the given origin by specifying only the from parameter.

Let us look at GeoHash grid aggregation.

GeoHash grid aggregation
GeoHash grid aggregation uses the GeoHash mechanism to divide the map into smaller
units. You can read about GeoHash at https:/ ​/ ​en.​wikipedia. ​org/ ​wiki/ ​Geohash. The
GeoHash system divides the world map into a grid of rectangular regions of different
precisions. Lower values of precision represent larger geographical areas and higher values
represent smaller, more precise geographical areas:

GET bigginsight/usageReport/_search?size=0
{
 "aggs": {
 "geo_hash": {
 "geohash_grid": {
 "field": "location",
 "precision": 7
 }
 }
 }
}

The data that we have in our network traffic example is spread over a very small
geographical area, so we have used a precision of 7. The supported values for precision are
from 1 to 12. Let us look at the response to this request:

{
 ...,
 "aggregations": {
 "geo_hash": {
 "buckets": [
 {
 "key": "ts5e7vy",
 "doc_count": 161893
 },
 {
 "key": "ts5e7vw",
 "doc_count": 80942
 }
]
 }

https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash

Analytics with Elasticsearch Chapter 4

[138]

 }
}

After aggregating the data onto GeoHash blocks of precision 7, all the documents fell into
two GeoHash regions, with the respective document counts seen in the response. We can
zoom in on this map, or request the data to be aggregated on smaller hashes by increasing
the value of the precision.

When you try a precision value of 9, you will see the following response:

{
 ...,
 "aggregations": {
 "geo_hash": {
 "buckets": [
 {
 "key": "ts5e7vy80k",
 "doc_count": 131034
 },
 {
 "key": "ts5e7vwrdb",
 "doc_count": 60953
 },
 {
 "key": "ts5e7vy84c",
 "doc_count": 30859
 },
 {
 "key": "ts5e7vwxfn",
 "doc_count": 19989
 }
]
 }
 }
}

As you can see, the GeoHash grid aggregation can allow you to slice or aggregate the data
over geographical regions of different sizes/precisions, which is quite powerful. This data
can be visualized in Kibana or it can be used in your application with a library that can
render the data on a map.

We have covered a wide variety of bucket aggregations that let us slice and dice data on
fields of various datatypes. We have looked at how to aggregate over text data, numeric
data, dates/times, and geo-spatial data. Next we will understand what pipeline
aggregations are.

Analytics with Elasticsearch Chapter 4

[139]

Pipeline aggregations
Pipeline aggregations, as their name suggests, allow you to aggregate over the result of
another aggregation. They let you pipe the result of an aggregation as an input to another
aggregation. Pipeline aggregations are a relatively new feature and they are still
experimental. At a high level, there are two types of pipeline aggregation:

Parent pipeline aggregations have the pipeline aggregation nested inside other
aggregations
Sibling pipeline aggregations have the pipeline aggregation as the sibling of the
original aggregation from which pipelining is done

Let us understand how the pipeline aggregations work by taking one example of
cumulative sum aggregation, which is a parent of pipeline aggregation.

Calculating the cumulative sum of usage over
time
While understanding the Date Histogram aggregation and in the section Focusing on a
specific day and changing intervals, we looked at the aggregation, to compute hourly
bandwidth usage for one particular day. After completing that exercise, we had data for
September 24th with hourly consumption between 12 am to 1 am, 1 am to 2 pm, and so on.
Using cumulative sum aggregation, we could also compute the cumulative bandwidth
usage at the end of every hour of the day. Let's look at the query and try to understand it:

GET /bigginsight/usageReport/_search?size=0
{
 "query": {
 "bool": {
 "must": [
 {"term": {"customer": "Linkedin"}},
 {"range": {"time": {"gte": 1506277800000}}}
]
 }
 },
 "aggs": {
 "counts_over_time": {
 "date_histogram": {
 "field": "time",
 "interval": "1h",
 "time_zone": "+05:30"
 },

Analytics with Elasticsearch Chapter 4

[140]

 "aggs": {
 "hourly_usage": {
 "sum": { "field": "usage" }
 },
 "cumulative_hourly_usage": { 1
 "cumulative_sum": { 2
 "buckets_path": "hourly_usage" 3
 }
 }
 }
 }
 }
}

Only the part highlighted in bold is the new addition over the query that we saw
previously. What we wanted was to calculate the cumulative sum over the buckets
generated by the previous aggregation. Let's understand the newly added part with
annotated numbers inside:

Gives an easy to understand name to this aggregation, places it inside the parent
Date Histogram aggregation which is the bucket aggregation containing this
aggregation.
We are using the cumulative sum aggregation and hence we refer to its
name, cumulative_sum, here.
The buckets_path element refers to the metric over which we want to do the
cumulative sum. In our case, we want to sum over the hourly_usage metric that
was created before.

The response should look as follows. It is truncated for brevity:

{
 ...,
 "aggregations": {
 "counts_over_time": {
 "buckets": [
 {
 "key_as_string": "2017-09-25T00:00:00.000+05:30",
 "key": 1506277800000,
 "doc_count": 465,
 "hourly_usage": {
 "value": 1385524
 },
 "cumulative_hourly_usage": {
 "value": 1385524
 }

Analytics with Elasticsearch Chapter 4

[141]

 },
 {
 "key_as_string": "2017-09-25T01:00:00.000+05:30",
 "key": 1506281400000,
 "doc_count": 478,
 "hourly_usage": {
 "value": 1432123
 },
 "cumulative_hourly_usage":
 {
 "value": 2817647
 }
}

As we can see, the cumulative_hourly_usage contains the sum of the hourly_usage so
far. In the first bucket, hourly usage and cumulative hourly usage are the same. In the
second bucket onwards, cumulative hourly usage has the sum of all hourly buckets seen so
far.

Pipeline aggregations are powerful. They can compute derivatives, moving averages,
average over the other buckets (also min, max, and so on), and average over previously
calculated aggregations.

Summary
In this chapter, we have learnt how to use Elasticsearch to build powerful analytics
applications. We have covered how to slice and dice the data to get powerful insight. We
started with metric aggregation to deal with numeric datatypes. We then covered bucket
aggregation to find out how to slice the data into buckets or segments in order to drill down
into specific segments.

We also understood how pipeline aggregations work. We did all of this while dealing with
a real-world-like dataset of network traffic data. We have seen how flexible Elasticsearch is
as an analytics engine. Without much additional data modelling and extra effort, we can
analyze any field, even when the data is on a big data scale. This is a rare capability not
offered by many data stores. As you will see in Chapter 7, Visualizing Data with
Kibana, Kibana leverages many of the aggregations that we learnt about in this chapter.

This concludes the chapters on Elasticsearch, the core of Elastic Stack. We have a very
strong foundation to learn about the rest of the ecosystem of Elastic Stack. Starting from the
next chapter, we shift our focus to learning about Logstash, which primarily deals with
getting data into Elasticsearch from a variety of sources.

5
Analyzing Log Data

Logs contain rich information about the state and behavior of a system or an
application. Each system/application generates the logs whenever an event occurs, and the
frequency, amount of information, and format of the information it logs varies from one
system/application to another. With so much information at our disposal, collecting them,
extracting the relevant information from them, and analyzing them in near real time can be
a daunting task.

In the previous chapters, we have already explored how Elasticsearch, with its rich
aggregation features, assists in analyzing huge amounts of data in near real time. Before
analysis can be performed, we need a tool which can assist/ease the process of collecting
logs, extracting the relevant information from them, and pushing them to Elasticsearch.

In this chapter, we will be exploring Logstash, another key component of Elastic Stack
which is mainly used as an ETL (Extract, Transform, and Load) engine. We will also be
exploring the following topics:

Challenges of log analysis
How Logstash addresses those challenges
High-level architecture of Logstash
Logstash plugins
Ingest node, a new Elasticsearch 5.x feature; it's a lightweight solution for pre-
processing and enriching documents within Elasticsearch

Analyzing Log Data Chapter 5

[143]

Log analysis challenges
Logs are defined as records of incidents or observations. Logs are generated by a wide
variety of resources such as systems, applications, devices, humans, and so on. A log is
typically made of two things; that is, a timestamp (time the event was generated) and data
(the information related to the event):

Log = Timestamp + Data

Logs are typically used for the following:

Troubleshooting: When a bug or issue is reported, the first place to look for what
might have caused the issue is the logs. For example, when looking at an
exception stack trace in the logs one might easily find the root cause of the issue.
To understand system/application behavior: When an application/system is
running, it's like a black box, and in order to investigate or understand what's
happening within the system/application one has to rely on logs. For example,
one might log the time taken by various code blocks within the application and
can use it for understanding the bottlenecks and fine-tuning their code for better
performance.
Auditing: Many organizations have to adhere to some compliance
procedures and are compelled to maintain the logs. For example, login activity or
transaction activities carried out by a user are commonly captured and
maintained in logs for a certain duration of time, for the purpose of auditing or
for the analysis of malicious activity by users/hackers.
Predictive analytics: With advancements in machine learning, data mining, and
Artificial Intelligence, a recent trend in analytics is predictive analytics. It is a
branch of advanced analytics that is used to predict unknown events that may
occur in the future. The patterns that result in historical and transactional data
can then be utilized to identify opportunities as well as risks for the
future. Predictive analytics also lets organizations become proactive and forward
thinking, anticipating outcomes and behaviors based on the results acquired and
not just on some assumptions. Some examples of the use cases of predictive
analytics are when suggesting movies or items for users to purchase, detecting
fraud, optimizing marketing campaigns, and so on.

Analyzing Log Data Chapter 5

[144]

Based on the previous sample/typical usages of logs, we can come to the conclusion that
logs are data rich and can be used in a wide variety of use cases. However, logs come with
their own set of own challenges. Some of the challenges are as follows:

No common/consistent format: Every system generates logs in it own format,
and as an administrator or end user it would require expertise in understanding
the formats of logs raised by each system/application. As the formats are
different, searching across different types of logs would be difficult. For the
following example, the screenshot shows the typical format of SQL server logs,
Elasticsearch exceptions/logs, and NGNIX logs:

Logs are decentralized: As logs are generated by a wide variety of resources such
as systems, applications, devices, and so on, logs are typically spread across
multiple servers. With the advent of cloud computing and disturbed computing,
it is now much more challenging to search across the logs, as typical tools like
SSH and grep won't be scalable in these cases. Hence there is need for centralized
log management, which assists the analyst/administrators in searching for the
required information easily.

Analyzing Log Data Chapter 5

[145]

No consistent time format: As logs are made up of timestamps, each
system/application logs the time in its own format, thus making it difficult to
identify the exact time of the occurrence of the event (some formats are more
machine-friendly than human-friendly). Correlating events occurs across
multiple systems at the same time. Some example time formats seen in the logs
are:

Nov 14 22:20:10
[10/Oct/2000:13:55:36 -0700]
172720538
053005 05:45:21
1508832211657

Data is unstructured: Log data is unstructured and thus it becomes difficult to
perform analysis on it directly. Before analysis can be performed on it, the data
would have to transformed into the right structure so that searching or
performing analysis would become easier. Most analysis tools depend on
structured/semi-structured data.

In the next section, let's explore how Logstash can help us in addressing the preceding
challenges and thus ease the log analysis process.

Logstash
Logstash is a popular open source data collection engine with real-time pipelining
capabilities. Logstash allows us to easily build a pipeline that can help in collecting data
from a wide variety of input sources, and parse, enrich, unify, and store it in a wide variety
of destinations. Logstash provides a set of plugins known as input filters and output
plugins which are easy to use and are pluggable in nature, thus easing the process of
unifying and normalizing huge volumes and varieties of data. Logstash does the work of
the ETL engine:

Analyzing Log Data Chapter 5

[146]

Some of the salient features of logstash are:

Pluggable data pipeline architecture: Logstash contains over 200 plugins
developed by Elastic and the open source community, which can be used to mix,
match, and orchestrate different inputs, filters, and outputs while building
pipelines for data processing.
Extensibility: Logstash is written in JRuby and, as it supports pluggable pipeline
architecture, one can easily build/create custom plugins to meet their custom
needs.
Centralized data processing: Data from disparate sources can be easily pulled
using the various input plugins it provides and can be enriched and transformed
and sent to different/multiple destinations.
Variety and volume: Logstash handles all types of logging data, for example
Apache, NGNIX logs, system logs, and window event logs, and also collects
metrics from a wide range of application platforms over TCP and UDP. Logstash
can transform HTTP requests to events and provides webhooks for applications
like Meetup, GitHub, JIRA, and so on. It also supports consuming data from
existing relational/NO-SQL databases and queues including Kafka, RabbitMQ,
and so on. The Logstash data processing pipeline can be easily scaled
horizontally, and since Logstash 5 it supports persistent queues, thus providing
the ability to reliably process huge volumes of incoming events/data.

Analyzing Log Data Chapter 5

[147]

Synergy: Logstash has a strong synergy with Elasticsearch, Beats, and Kibana,
thus allowing one to build end-to-end log analysis solutions with ease.

Installation and configuration
In the following sections we will take a look at how to install and configure Logstash on
your system.

Prerequisites
Java runtime is required to run Logstash. Logstash requires Java 8. Make sure JAVA_HOME is
set as an environment variable, and to check your Java version, run the following
command:

java -version

You should see the following output:

java version "1.8.0_65"
Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)

For Java, you can use the official Oracle distribution
(http://www.oracle.com/technetwork/java/javase/downloads/index.h
tml), or an open source distribution such as OpenJDK
(http://openjdk.java.net/).

Downloading and installing Logstash
Just like the other components of Elastic Stack, downloading and installing Logstash is
pretty simple and straightforward. Navigate to https:/ ​/​www. ​elastic. ​co/​downloads/
logstash#ga-​release, and depending on your operating system download the ZIP/TAR
file as shown in the following screenshot:

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://openjdk.java.net/
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release

Analyzing Log Data Chapter 5

[148]

The Elastic developer community is quite vibrant, and newer releases with
new features/fixes get released quite often. During your reading of this
book, the latest Logstash version might have changed. Instructions in this
book are based on Logstash version 6.0.0. You can click on the past
releases link and download version 6.0.0 if you want to follow as is. The
instructions/explanations in this book should hold good for any 6.x
release.

Unlike Kibana, which requires major and minor version compatibility
with Elasticsearch, Logstash versions starting from 5.6 are compatible with
Elasticsearch 6.x. The compatibility matrix can be found at https:/ ​/​www.
elastic. ​co/ ​support/ ​matrix#matrix_ ​compatibility. ​

Installing on Windows
Unzip the downloaded file. Once unzipped, navigate to the newly created folder as shown
in the following code snippet:

D:\>cd D:\packt\logstash-6.0.0

https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility

Analyzing Log Data Chapter 5

[149]

The Logstash installation folder with be referred to as LOGSTASH_HOME.

Installing on Linux
Unzip the tar.gz package and navigate to the newly created folder, shown as follows:

$> tar -xzf logstash-6.0.0.tar.gz
$>cd logstash/

Running Logstash
Logstash requires configuration to be specified while running it. Configuration can be
specified directly as an argument using the -e option by specifying the configuration file
(the .conf file) using the -f option/flag.

Using the terminal/command prompt, navigate to LOGSTASH_HOME/bin. Let's ensure that
Logstash works fine after installation by running the following command with a simple
configuration (the logstash pipeline) as a parameter:

D:\packt\logstash-6.0.0\bin>logstash -e 'input { stdin { } } output {
stdout {} }'

You should get the following logs:

Sending Logstash's logs to D:/packt/logstash-6.0.0/logs which is now
configured via log4j2.properties
[2017-10-30T12:42:12,046][INFO][logstash.modules.scaffold]

Initializing module {:module_name=>"fb_apache",
:directory=>"D:/packt/logstash-6.0.0/modules/fb_apache/configuration"}
[2017-10-30T12:42:12,052][INFO][logstash.modules.scaffold]

Initializing module {:module_name=>"netflow",
:directory=>"D:/packt/logstash-6.0.0/modules/netflow/configuration"}
 [2017-10-30T12:42:12,094][INFO][logstash.agent]

No persistent UUID file found. Generating new UUID
{:uuid=>"fd6c25ed-6450-40fd-912a-c83bf2aec638",
:path=>"D:/packt/logstash-6.0.0/data/uuid"}
 [2017-10-30T12:42:12,429][INFO][logstash.pipeline]

Starting pipeline {"id"=>"main", "pipeline.workers"=>4,

Analyzing Log Data Chapter 5

[150]

"pipeline.batch.size"=>125, "pipeline.batch.delay"=>5,
"pipeline.max_inflight"=>500}
 [2017-10-30T12:42:12,490][INFO][logstash.pipeline]

Pipeline main started
 The stdin plugin is now waiting for input:
 [2017-10-30T12:42:12,703][INFO][logstash.agent] Successfully started
Logstash API endpoint {:port=>9600}

Now enter any text and press Enter. Logstash adds a timestamp and IP address information
to the input text message. Exit Logstash by issuing a CTRL-C command in the shell where
Logstash is running. We just ran Logstash with some simple configurations (pipeline). In
the next section, let's explore more about Logstash pipeline,.

Logstash architecture
The Logstash event processing pipeline has three stages, they are: Inputs, Filters
and Outputs. A Logstash pipeline has two required elements; input, output, and,
optionally, filters:

Inputs create events, Filters modify the input events, and Outputs ship them to the
destination. Inputs and outputs support codecs which enable you to encode or decode the
data as and when it enters or exits the pipeline without having to use a separate filter.

Analyzing Log Data Chapter 5

[151]

Logstash uses in-memory bounded queues between pipeline stages by default
(Input to Filter and Filter to Output) to buffer events. If Logstash terminates unsafely, any
events that are stored in memory will be lost. To prevent data loss, you can enable Logstash
to persist in-flight events to the disk by making use of persistent queues.

Persistent queues can be enabled by setting the property queue.type:
persisted in the logstash.yml file found under
the LOGSTASH_HOME/config folder. logstash.yml is a configuration file
containing settings related to Logstash.

By default, Logstash starts with a heap size of 1 GB. This can be
overridden by setting the Xms and Xmx properties in
the jvm.options file, found under the LOGSTASH_HOME/config folder.

The Logstash pipeline is stored in a configuration file ending with a .conf extension. The
three sections of the configuration file are:

input
{
}
filter
{
}
output
{
}

Each of these sections contains one or more plugin configurations. A plugin can be
configured by providing the name of the plugin and then its settings as a key value pair.
The value is assigned to a key using the => operator.

Let's use the same configuration that we used in the previous section, with some little
modifications, and store it in a file:

#simple.conf
#A simple logstash configuration

input {
 stdin { }
}

filter {
 mutate {
 uppercase => ["message"]
 }

Analyzing Log Data Chapter 5

[152]

}

output {
 stdout {
 codec => rubydebug
 }
}

Create a conf folder under LOGSTASH_HOME. Create a file called simple.conf under the
LOGSTASH_HOME/conf folder.

It's a good practice to place all the configurations in a separate directory
either under LOGSTASH_HOME or outside of it rather than placing the files
into the LOGSTASH_HOME/bin folder.

We may notice that this file contains two required elements, input and output, and the
input section has a plugin named stdin which accepts default parameters. The output
section has a stdout plugin which accepts the rubydebug codec. stdin is used for reading
input from the standard input and the stdout plugin is used for writing the event
information to standard outputs. The rubydebug codec will output your Logstash event
data using the Ruby Awesome Print library. It also contains a filter section that has a
mutate plugin, which converts the incoming event message to uppercase.

Let's run Logstash using this new pipeline/configuration stored in the simple.conf file as
follows:

D:\packt\logstash-6.0.0\bin>logstash -f ../conf/simple.conf

Once Logstash has started, enter any input, say LOGSTASH IS AWESOME, and you should
see the response as follows:

{
 "@version" => "1",
 "host" => "SHMN-IN",
 "@timestamp" => 2017-11-03T11:42:56.221Z,
 "message" => "LOGSTASH IS AWESOME\r"
}

As seen in the preceding code, along with the input message, Logstash automatically adds
the timestamp at which the event was generated, and information such as the host and
version number. The output is prettily printed due to the use of the rubydebug codec. The
incoming event is always stored in the field named message.

Analyzing Log Data Chapter 5

[153]

 As the configuration was specified using the file note, we used the -
f flag/option when running Logstash.

Overview of Logstash plugins
Logstash has a rich collection of input, filter, codec, and output plugins. Plugins are
available as self-contained packages called gems and hosted on RubyGems.org. By default,
as part of the Logstash distribution many common plugins are available out of the box. One
can verify the list of plugins that are part of the current installation by executing
the following command:

D:\packt\logstash-6.0.0\bin>logstash-plugin list

By passing the --verbose flag to the preceding command, one can find out
the version info of each plugin.

Using the -- group flag followed by either input, filter, output, or codec, one can find the
list of installed input, filters, output, codecs, and plugins respectively. For example:

D:\packt\logstash-6.0.0\bin>logstash-plugin list --group filter

One can list all plugins containing a name fragment by passing the name fragment to
logstash-plugin list. For example:

D:\packt\logstash-6.0.0\bin>logstash-plugin list 'pager'

In the previous example commands, D:\packt\logstash-6.0.0\bin>
would refer to the LOGSTASH_HOME\bin directory on your machine.

Analyzing Log Data Chapter 5

[154]

Installing or updating plugins
If the required plugin is not bundled by default, one can install it using the bin\logstash-
plugin install command. For example, to install the logstash-output-email plugin,
execute the following command:

D:\packt\logstash-6.0.0\bin>logstash-plugin install logstash-output-email

Using the bin\logstash-plugin update command and passing the plugin name as a
parameter to the command, one can get the latest version of the plugin:

D:\packt\logstash-6.0.0\bin>logstash-plugin update logstash-output-s3

Executing just the bin\logstash-plugin update command would
update all the plugins.

Input plugins
An input plugin is used to configure a set of events to be fed to Logstash. The plugin allows
one to configure single or multiple input sources. It acts as the first section, which is
required in the Logstash configuration file. The list of available input plugins out of the box
is as follows:

logstash-input-beats logstash-input-couchdb_changes logstash-input-elasticsearch logstash-input-ganglia

logstash-input-xmpp logstash-input-unix logstash-input-syslog logstash-input-stdin

logstash-input-udp logstash-input-twitter logstash-input-tcp logstash-input-sqs

logstash-input-snmptrap logstash-input-redis logstash-input-pipe logstash-input-log4j

logstash-input-s3 logstash-input-rabbitmq logstash-input-lumberjack logstash-input-http_poller

logstash-input-exec logstash-input-file logstash-input-http logstash-input-imap

logstash-input-gelf logstash-input-jdbc logstash-input-irc logstash-input-generator

logstash-input-heartbeat logstash-input-graphite

Details of each of these plugins and the list of other available plugins that are not part of the
default distribution can be can be found
at https://www.elastic.co/guide/en/logstash/6.0/input-plugins.html.

https://www.elastic.co/guide/en/logstash/6.0/input-plugins.html

Analyzing Log Data Chapter 5

[155]

Output plugins
The output plugin is used to send data to a destination. Output plugins allow one to
configure single or multiple output sources. It acts as the last section, which is required in
the Logstash configuration file. The list of available output plugins out of the box is as
follows:

logstash-output-cloudwatch logstash-output-nagios logstash-output-irc logstash-output-pagerduty

logstash-output-xmpp logstash-output-tcp logstash-output-stdout logstash-output-redis

logstash-output-webhdfs logstash-output-statsd logstash-output-sns logstash-output-rabbitmq

logstash-output-udp logstash-output-sqs logstash-output-s3 logstash-output-pipe

logstash-output-csv logstash-output-graphite logstash-output-file logstash-output-elasticsearch

logstash-output-http

Details of each of the preceding plugins and the list of other available plugins that are not
part of the default distribution can be can be found
at https://www.elastic.co/guide/en/logstash/6.0/output-plugins.html.

Filter plugins
A filter plugin is used to perform transformations on the data. It allows you to combine one
or more plugins, and the order of the plugins defines the order in which the data is
transformed. It acts as the intermediate section between input and output and its an
optional section in the Logstash configuration. The list of available filter plugins out of the
box is as follows:

logstash-filter-cidr logstash-filter-clone logstash-filter-grok logstash-filter-geoip

logstash-filter-date logstash-filter-csv logstash-filter-throttle logstash-filter-xml

logstash-filter-fingerprint logstash-filter-dns logstash-filter-drop logstash-filter-dissect

logstash-filter-syslog_pri logstash-filter-useragent logstash-filter-split logstash-filter-translate

logstash-filter-uuid logstash-filter-urldecode logstash-filter-sleep logstash-filter-ruby

logstash-filter-mutate logstash-filter-metrics logstash-filter-kv logstash-filter-json

Details of each of the preceding plugins and the list of other available plugins that are not
part of the default distribution can be can be found
at https://www.elastic.co/guide/en/logstash/6.0/filter-plugins.html.

https://www.elastic.co/guide/en/logstash/6.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/filter-plugins.html

Analyzing Log Data Chapter 5

[156]

Codec plugins
Codec plugins are used to encode or decode incoming or outgoing events from Logstash.
Codecs can be used in input and output as well. Input codecs render a convenient way to
decode your data before it even enters the input. Output codecs provide a convenient way
to encode your data before it leaves the output. The list of available codec plugins out of the
box is as follows:

logstash-codec-netflow logstash-codec-cef logstash-codec-es_bulk logstash-codec-dots

logstash-codec-collectd logstash-codec-multiline logstash-codec-msgpack logstash-codec-line

logstash-codec-rubydebug logstash-codec-json logstash-codec-json_lines logstash-codec-fluent

logstash-codec-plain logstash-codec-graphite logstash-codec-edn_lines logstash-codec-edn

Details of each of the preceding plugins and the list of other available plugins that are not
part of the default distribution can be can be found at https:/ ​/​www. ​elastic. ​co/ ​guide/ ​en/
logstash/​6.​0/​codec- ​plugins. ​html.

Exploring plugins
In these sections, let's explore some commonly used input, output, filters, and codec
plugins.

Exploring Input plugins
Let us walk through some of the most commonly used input plugins in detail.

File
The file plugin is used to stream events from file(s) line by line. It works in a similar fashion
to the tail -0f linux\unix command. For each file, it keeps track of any changes in the
file, and the last location from where the file was read only sends the data since it was last
read. It also automatically detects file rotation. This plugin also provides the option to read
the file from the beginning of the file.

The file plugin keeps account of the current position in each file. It does so by recording the
current position in a separate file named sincedb. This not only makes it possible but also
convenient to stop and restart Logstash and have it pick up where it left off without missing
the lines that were added to the file while Logstash was stopped.

https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/6.0/codec-plugins.html

Analyzing Log Data Chapter 5

[157]

The location of sincedb file is by default set to <path.data>/plugins/inputs/file,
which can be overridden by providing the file path for the sincedb_path plugin
parameter. The only required parameter for this plugin is the path parameter, which
accepts one or more files to read from.

Let's take some example configurations to understand this plugin better:

#sample configuration 1
#simple1.conf

input
{ file{
 path => "/usr/local/logfiles/*"
 }
}
 output
{
 stdout {
 codec => rubydebug
 }
}

The preceding configuration specifies the streaming of all the new entries (that is, tailing the
files) to the files found under the location /usr/local/logfiles/:

#sample configuration 2
#simple2.conf
input
{
 file{
 path => ["D:\es\app*","D:\es\logs*.txt"]
 start_position => "beginning"
 exclude => ["*.csv]
 discover_interval => "10s"
 type => "applogs"
 }
}

output
{
 stdout {
 codec => rubydebug
 }
}

Analyzing Log Data Chapter 5

[158]

The preceding configuration specifies the streaming of all the log entries/lines in the files
found under the D:\es\app* location, and only files of the .txt type. Files found under
the location D:\es\logs*.txt, starting from the beginning (specified by the
parameter start_position => "beginning"), and while looking for files it excludes
files of the .csv type (specified by the exclude => ["*.csv] parameter, which takes an
array of values). Every line streamed would be stored in the message field by default and
the preceding configuration also specified to add a new additional field type with the
applogs value (specified by the type => "applogs" parameter). Adding additional fields
would be helpful while transforming events in filter plugins or identifying the events in the
output. The discover_interval parameter is used to define how often the path will be
expanded to search for new files created inside the location specified in the path parameter.

Specifying the parameter/setting as start_position => "beginning"
and sincedb_path => "NULL" would force the file to stream from the
beginning every time Logstash is restarted.

Beats
The Beats input plugin enables Logstash to receive events from the Elastic Beats framework.
Beats are a collection of lightweight daemons that collect operational data from your servers
and ship to the configured outputs such as Logstash, Elasticsearch, Redis, and so on. There
are several beats including Metricbeat, Filebeat, Winlogbeat, and so on. Filebeat ships log
files from your servers. Metricbeat is a server monitoring agent, it periodically collects
metrics from the services and operating systems running on your servers. Winlogbeat ships
Windows event logs. We will be exploring the Beats framework and some of these Beats in
the upcoming chapters.

By using the beats input plugin, we can make Logstash listen on desired ports for
incoming beats connections:

#beats.conf

input {
 beats {
 port => 1234
 }

}

Analyzing Log Data Chapter 5

[159]

output {
 elasticsearch {
 }
}

port is the only required setting for this plugin. The preceding configuration makes
Logstash listen for incoming beats connections and index into Elasticsearch. When you start
Logstash with the preceding configuration, you may notice Logstash starting an input
listener on port 1234 in the logs as follows:

D:\packt\logstash-6.0.0\bin>logstash -f ../conf/beats.conf -r
Sending Logstash's logs to D:/packt/logstash-6.0.0/logs which is now
configured via log4j2.properties
[2017-11-06T15:16:46,534][INFO][logstash.modules.scaffold] Initializing
module {:module_name=>"fb_apache",
:directory=>"D:/packt/logstash-6.0.0/modules/fb_apache/configuration"}
[2017-11-06T15:16:46,539][INFO][logstash.modules.scaffold] Initializing
module {:module_name=>"netflow",
:directory=>"D:/packt/logstash-6.0.0/modules/netflow/configuration"}
[2017-11-06T15:16:47,905][INFO][logstash.pipeline] Starting pipeline
{"id"=>"main", "pipeline.workers"=>4, "pipeline.batch.size"=>125,
"pipeline.batch.delay"=>5, "pipeline.max_inflight"=>500
[2017-11-06T15:16:48,491][INFO][logstash.inputs.beats] Beats inputs:
Starting input listener {:address=>"0.0.0.0:1234"}
[2017-11-06T15:16:48,554][INFO][logstash.pipeline] Pipeline main started
[2017-11-06T15:16:48,563][INFO][org.logstash.beats.Server] Starting server
on port: 1234
[2017-11-06T15:16:48,800][INFO][logstash.agent] Successfully started
Logstash API endpoint {:port=>9600}

Logstash starts the input listener on the address 0.0.0.0, which is the default value of the
host parameter/setting of the plugin.

One can start multiple listeners to listen for incoming beats connections which is shown as
follows:

#beats.conf

input {
 beats {
 host => "192.168.10.229"
 port => 1234
 }
 beats {
 host => "192.168.10.229"
 port => 5065
 }

Analyzing Log Data Chapter 5

[160]

}

output {
 elasticsearch {
 }
}

Using the -r flag during running of Logstash allows you to automatically
reload the configuration whenever changes are made to it and saved. This
would be useful when testing new configurations as you can modify it so
that Logstash need not be started manually every time a change is made to
the configuration.

JDBC
This plugin is used to import data from a database to Logstash. Each row in the results set
would become an event and each column would get converted into fields in the event.
Using this plugin, one can import all the data at once by running a query, or one can
periodically schedule the import using a cron syntax (using the
schedule parameter/setting). When using this plugin the user would need to specify the
path of the JDBC drivers appropriate to the database, and the driver library can be specified
using the jdbc_driver_library parameter.

The SQL query can be specified using the statement parameter or can be stored in a file;
the path of the file can be specified using the statement_filepath parameter. One can
use either statement or statement_filepath for specifying the query. It is good practice
to store the bigger queries in a file. This plugin accepts only one SQL statement and
multiple SQL statements aren't supported. If the user needs to execute multiple queries to
ingest data from multiple tables/views then the user needs to define multiple JDBC inputs
(that is, one JDBC input for one query) in the input section of Logstash configuration.

The results set size can be specified by using the jdbc_fetch_size parameter. The plugin
will persist the sql_last_value parameter in the form of a metadata file stored in the
configured last_run_metadata_path parameter. Upon query execution, this file will be
updated with the current value of sql_last_value. The sql_last_value value is used to
incrementally import data from the database every time the query is run based on the
schedule set. Parameters to the SQL statement can be specified using
the parameters setting which accepts a hash of the query parameter.

Analyzing Log Data Chapter 5

[161]

Let's see an example:

#jdbc.conf
input {
 jdbc {
 # path of the jdbc driver
 jdbc_driver_library => "/path/to/mysql-connector-java-5.1.36-
bin.jar"

 # The name of the driver class
 jdbc_driver_class => "com.mysql.jdbc.Driver"

 # Mysql jdbc connection string to company database
 jdbc_connection_string => "jdbc:mysql://localhost:3306/company"
 # user credentials to connect to the DB
 jdbc_user => "user"
 jdbc_password => "password"

 # when to periodically run statement, cron format (ex: every 30
minutes)
 schedule => "30 * * * *"

 # query parameters
 parameters => { "department" => "IT" }

 # sql statement
 statement => "SELECT * FROM employees WHERE department=
:department AND
 created_at >= :sql_last_value"
 }
}

output {
 elasticsearch {
 index => "company"
 document_type => "employee"
 hosts => "localhost:9200"
 }
}

Analyzing Log Data Chapter 5

[162]

The previous configuration is used to connect to company schema belonging to MySQLdb
and is used to pull employee records from the IT department. The SQL statement is run
every 30 minutes to check for new employees created since the last run. The fetched rows
are sent to Elasticsearch and configured as the output.

sql_last_value by default is set to Thursday, January 1st 1970 before
the execution of the query, and is updated with the timestamp every
time the query is run. One can force it to store a column value other than
the last execution time by setting the use_column_value parameter to
true and specifying the column name to be used using
the tracking_column parameter.

IMAP
This plugin is used to read emails from an IMAP server. This plugin can be used to read
emails, and depending on the email context, the subject of the email, or specific senders, it
can be conditionally processed in Logstash and can be used to raise JIRA tickets, pagerduty
events, and so on. The required configurations are host, password, and user. Depending
on the settings required by the IMAP server that you want to connect to, you might need to
set values for additional configurations such as port, secure, and so on. host is where
you would specify your IMAP server host details, and user and password is where one
needs to specify the user credentials to authenticate/connect to IMAP server:

#email_log.conf
input {
 imap {
 host => "imap.packt.com"
 password => "secertpassword"
 user => "user1@pact.com"
 port => 993
 check_interval => 10
 folder => "Inbox"

 }
}

output {
 stdout {
 codec => rubydebug
 }
 elasticsearch {
 index => "emails"
 document_type => "email"

Analyzing Log Data Chapter 5

[163]

 hosts => "localhost:9200"
 }
}

By default, the logstash-input-imap plugin reads from the INBOX folder, and it polls the
IMAP server every 300 seconds. In the preceding configuration, when using
the check_interval parameter, the interval is overridden to every 10 seconds. Each new
email would be considered an event, and as per the preceding configuration it would be
sent to to the standard output and Elasticsearch.

Output plugins
In this sections, let us walk through some of the most commonly used output plugins in
detail.

Elasticsearch
This plugin is used for transferring events from Logstash to Elasticsearch. This plugin is the
recommended approach for pushing events/log data from Logstash to Elasticsearch. Once
the data is in Elasticsearch, it can be easily visualized using Kibana. This plugin requires no
mandatory parameters and it automatically tries to connect to Elasticsearch, hosted on
localhost:9200.

The simple configuration of this plugin would be as follows:

#elasticsearch1.conf

input {
 stdin{
 }
 }

output {
 elasticsearch {
 }
}

Often Elasticsearch would be hosted on a different server, usually secured, and we might
want to store the incoming data in specific indexes. Let's see an example of this:

#elasticsearch2.conf

input {
 stdin{

Analyzing Log Data Chapter 5

[164]

 }
 }

output {
 elasticsearch {
 index => "company"
 document_type => "employee"
 hosts => "198.162.43.30:9200"
 user => "elastic"
 password => "elasticpassword"
 }
}

As seen in the preceding code, incoming events would be stored in an Elasticsearch index
named company (specified using the index parameter) under the employee type (specified
using the document_type parameter). Elasticsearch is hosted at
the 198.162.43.30:9200 address (specified using the document_type parameter), and
the user credentials of Elasticsearch are elastic and elasticpassword (specified
using user and password parameters).

If the index is not specified by default, the index pattern would be logstash-
%(+YYYY.MM.dd) and the document_type would be set to the type event, if it existed,
otherwise the document type would be assigned the value of logs/events.

One can also specify the document_type index and the document_id dynamically by
using the syntax %(fieldname). In the hosts parameter, a list of hosts can be specified
too. By default the protocol used would be HTTP if not specified explicitly while defining
hosts.

It is recommended that you specify either the data nodes or ingest nodes
in the hosts field.

CSV
This plugin is used for storing output in the CSV format. The required parameters for this
plugin are the path parameter, which is used to specify the location of the output file, and
the other required parameter is fields, which specifies the field names from the event that
should be written to the CSV file. If a field does not exist on the event, an empty string will
be written.

Analyzing Log Data Chapter 5

[165]

Let's see an example. In the following configuration, Elasticsearch is queried against
the "apachelogs" index for all documents matching the statuscode:200 and
the "message", "@timestamp", and "host" fields are written to a .csv file:

#csv.conf

input {
 elasticsearch {
 hosts => "localhost:9200"
 index => "apachelogs"
 query => '{ "query": { "match": { "statuscode": 200 } }}'
 }
}
output {
 csv {
 fields => ["message", "@timestamp","host"]
 path => "D:\es\logs\export.csv"
 }
}

Kafka
This plugin is used to write events to a Kafka topic. It uses the Kafka Producer API to write
messages to a topic on the broker. The only required configuration is the topic_id.

Let's see a basic Kafka configuration:

#kafka.conf

input {
 stdin{
 }
 }

output {
 kafka {
 bootstrap_servers => "localhost:9092"
 topic_id => 'logstash'
 }
}

Analyzing Log Data Chapter 5

[166]

The bootstrap_servers parameter takes the list of all server connections in the form of
host1:port1, host2:port2 and the producer will only use it for getting metadata (topics,
partitions, and replicas). The socket connections for sending the actual data will be
established based on the broker information returned in the metadata. topic_id refers to
the topic name where messages will published.

Note: Only Kafka version 0.10.0.x is compatible with Logstash
version 2.4.x to 5.x.x and the Kafka output plugin version 5.x.x

PagerDuty
This output plugin will send notifications based on pre-configured services and escalation
policies. The only required parameter for this plugin is the service_key to specify
the Service API Key.

Let's see a simple example with basic pagerduty configuration. In the following
configuration, Elasticsearch is queried against the index "ngnixlogs" for all documents
matching the statuscode:404, and pagerduty events are raised for each document
returned by Elasticsearch:

#kafka.conf
input {
 elasticsearch {
 hosts => "localhost:9200"
 index => "ngnixlogs"
 query => '{ "query": { "match": { "statuscode": 404} }}'
 }
}

output {
 pagerduty {
 service_key => "service_api_key"
 details => {
 "timestamp" => "%{[@timestamp]}"
 "message" => "Problem found: %{[message]}"
 }
 event_type => "trigger"
 }
}

Analyzing Log Data Chapter 5

[167]

Codec plugins
In the following sections we will take a look at some of the most commonly used codec
plugins in detail.

JSON
This codec is useful if the data consists of .json documents and it is used to encode (if used
in output plugins) or decode (if used in input plugins) the data in the .json format. If the
data being sent is a JSON array at its root, multiple events will be created (that is, one per
element).

The simple usage of a JSON codec plugin is as follows:

input{
 stdin{
 codec => "json"
 }
}

If there are multiple JSON records, and those are delimited by \n, then use
the json_lines codec.

If the "json" codec receives a payload from an input that is not valid JSON, then it will fall back to plain text and
add a tag _jsonparsefailure.

Rubydebug
This codec will output your Logstash event data using the Ruby Awesome Print library.

The simple usage of this codec plugin is as follows:

output{
 stdout{
 codec => "rubydebug"
 }
}

Analyzing Log Data Chapter 5

[168]

Multiline
This codec is useful for merging multiple lines of data with a single event. This codec comes
in very handy when dealing with stack traces or single event information that is spread
across multiple lines.

The sample usage of this codec plugin is shown in the following snippet:

input {
 file {
 path => "/var/log/access.log"
 codec => multiline {
 pattern => "^\s "
 negate => false
 what => "previous"
 }
 }
}

The preceding multiline codec combines any line starting with a space with the previous
line.

Filter plugins
As we will be covering different ways of transforming and enriching logs using various
filter plugins in the next chapter, we won't be covering anything about filter plugins here.

Ingest node
Prior to Elasticsearch 5.0, if we wanted to pre-process documents before indexing them to
Elasticsearch, then the only way was to make use of Logstash or pre-process them
programmatically/manually and then index them to Elasticsearch. Elasticsearch lacked the
ability to pre-process/transform the documents, and it just indexed the document as they
were. However, the introduction of a feature called ingest node in Elasticsearch 5.x onwards
provided a lightweight solution for pre-processing and enriching documents within
Elasticsearch itself before they are indexed.

Analyzing Log Data Chapter 5

[169]

If an Elasticsearch node is implemented with the default configuration, by default it would
be master, data, and ingest enabled (that is, it would act as a master node, data node, and
ingest node). To disable ingest on a node, configure the following setting in the
elasticsearch.yml file:

node.ingest: false

The ingest node can be used to pre-process documents before the actual indexing is
performed on the document. This pre-processing is performed via an ingest node that
intercepts bulk and index requests, it applies the transformations to the data, and then
passes the documents back to the index or bulk APIs. With the release of the new ingest
feature, Elasticsearch has taken out the filter part of Logstash so that we can do our
processing of raw logs and enrichment within Elasticsearch.

To pre-process a document before indexing, we must define the pipeline (which contains
sequences of steps known as processors for transforming an incoming document). To use a
pipeline, we simply specify the pipeline parameter on an index or bulk request to tell the
ingest node which pipeline to use:

POST my_index/my_type?pipeline=my_pipeline_id
{
 "key": "value"
}

Defining a pipeline
A pipeline defines a series of processors. Each processor transforms the document in some
way. Each processor is executed in the order in which it is defined in the pipeline. A
pipeline consists of two main fields: a description and a list of processors.
The description parameter is a non-required field which is used to store some
descriptions/the usage of the pipeline; using the processors parameter, one can list the
processors to transform the document.

The typical structure of a pipeline is shown as follows:

{
 "description" : "...",
 "processors" : [...]
}

Analyzing Log Data Chapter 5

[170]

The ingest node has around 20 plus built-in processors including gsub, grok, convert,
remove, rename, and so on. These can be used while building a pipeline. Along with built-
in processors, ingest plugins such as ingest attachment, ingest geo-ip, and ingest user-agent
are available and can be used while building a pipeline. These plugins are not available by
default and can be installed just like any other Elasticsearch plugin.

Ingest APIs
The ingest node provides a set of APIs known as ingest APIs which can be used to define,
simulate, remove, or find information about pipelines. The ingest API endpoint is
_ingest.

Put pipeline API
This API is used to define a new pipeline. This API is also used to add a new pipeline or
update an existing pipeline.

Let's see an example. As seen in the following code, we have defined a new pipeline named
firstpipeline which converts the value present in the message field to upper case:

curl -X PUT http://localhost:9200/_ingest/pipeline/firstpipeline -H
'content-type: application/json'
 -d '{
 "description" : "uppercase the incoming value in the message field",
 "processors" : [
 {
 "uppercase" : {
 "field": "message"
 }
 }
]
}'

Analyzing Log Data Chapter 5

[171]

When creating a pipeline, multiple processors can be defined, and the order of the execution
depends on the order in which it is defined in the definition. Let's see an example for this.
As seen in the following code, we have created a new pipeline called secondpipeline that
converts the uppercase value present in the "message" field and renames the "message"
field to "data". It creates a new field named "label" with the value testlabel:

curl -X PUT http://localhost:9200/_ingest/pipeline/secondpipeline -H
'content-type: application/json'
-d '{
 "description" : "uppercase the incomming value in the message field",
 "processors" : [
 {
 "uppercase" : {
 "field": "message",
 "ignore_failure" : true
 }
 },
 {
 "rename": {
 "field": "message",
 "target_field": "data",
 "ignore_failure" : true
 }
 },
 {
 "set": {
 "field": "label",
 "value": "testlabel",
 "override": false
 }
 }
]
}'

Let's make use of the second pipeline to index a sample document:

curl -X PUT 'http://localhost:9200/myindex/mytpe/1?pipeline=secondpipeline'
H 'content-type: application/json' -d '{
 "message":"elk is awesome"
}'

Analyzing Log Data Chapter 5

[172]

Let's retrieve the same document and validate the transformation:

curl -X GET http://localhost:9200/myindex/mytpe/1 -H 'content-type:
application/json'

Response:
{
 "_index": "myindex",
 "_type": "mytpe",
 "_id": "1",
 "_version": 1,
 "found": true,
 "_source": {
 "label": "testlabel",
 "data": "ELK IS AWESOME"
 }
}

If the field used in the processor is missing, then the processor throws an
exception and the document won't be indexed. In order to prevent the
processor from throwing an exception, we can make use of
the "ignore_failure" : true parameter.

Get Pipeline API
This API is used to retrieve the definition of an existing pipeline. Using this API, one can
find the details of a single pipeline definition or find the definitions of all the pipelines.

The command to find the definition of all the pipelines is:

curl -X GET http://localhost:9200/_ingest/pipeline -H 'content-type:
application/json'

To find the definition of an existing pipeline, pass the pipeline ID to the get the
pipelines .api. The following is an example of finding the definition of the pipeline named
secondpipeline:

curl -X GET http://localhost:9200/_ingest/pipeline/secondpipeline -H
'content-type: application/json'

Analyzing Log Data Chapter 5

[173]

Delete pipeline API
The delete pipeline API deletes pipelines by ID or wildcard match. Following is the
example to delete the pipeline named firstpipeline.:

curl -X DELETE http://localhost:9200/_ingest/pipeline/firstpipeline -H
'content-type: application/json'

Simulate pipeline API
This pipeline can be used to simulate the execution of a pipeline against the set of
documents provided in the body of the request. One can either specify an existing pipeline
to execute against the provided documents or supply a pipeline definition in the body of
the request. To simulate the ingest pipeline, add the "_simulate" endpoint to the pipeline
API.

The following is an example of simulating an existing pipeline:

curl -X POST
http://localhost:9200/_ingest/pipeline/firstpipeline/_simulate -H 'content-
type: application/json' -d '{
 "docs" : [
 { "_source": {"message":"first document"} },
 { "_source": {"message":"second document"} }
]
}'

The following is an example of a simulated request with the pipeline definition in the body
of the request itself:

curl -X POST http://localhost:9200/_ingest/pipeline/_simulate -H 'content-
type: application/json' -d '{
 "pipeline" : {
 "processors":[
 {
 "join": {
 "field": "message",
 "separator": "-"
 }
 }]
 },
 "docs" : [
 { "_source": {"message":["first","document"]} }
]
}'

Analyzing Log Data Chapter 5

[174]

Summary
In this chapter, we laid out the foundations of Logstash. We walked you through the steps
to install and configure Logstash to set up basic data pipelines, and studied Logstash's
architecture.

We also learned about the ingest node that was introduced in Elastic 5.x, which can be used
instead of a dedicated Logstash setup. We saw how the ingest node can be used to pre-
process documents before the actual indexing takes place, and also studied its different
APIs.

In the next chapter, we will show you how a rich set of filters brings Logstash closer to the
other real-time and near real-time stream processing frameworks with zero coding.

6
Building Data Pipelines with

Logstash
In the previous chapter, we understood the importance of Logstash in the log analysis
process. We also covered its usage and its high-level architecture, and went through some
commonly used plugins. One of the important processes of Logstash is converting
unstructured log data into structured data, which helps in searching for relevant
information easily and also assists in analysis. Apart from parsing the log data to make it
structured, it would also be helpful if we could enrich the log data during this process so
that we can gain further insight about our logs. Logstash comes in handy for enriching our
log data, too. Also, we have seen in the previous chapter that Logstash can read from a
wide range of inputs and that Logstash is a heavy process. Installing Logstash on the edge
nodes of shipping logs might not always be feasible. Is there an alternative or lightweight
agent that can be used to ship logs? Let's explore that in this chapter as well.

In this chapter, we will be covering the following topics:

Parsing and enriching logs using Logstash
The Elastic Beats platform
Installing and configuring Filebeats for shipping logs

Building Data Pipelines with Logstash Chapter 6

[176]

Parsing and enriching logs using Logstash
The analysis of structured data is easier and helps us find meaningful/deeper analysis,
rather than trying to perform analysis on unstructured data. Most analysis tools depend on
structured data. Kibana, which we will be making use of for analysis and visualization, can
be used effectively if the data in Elasticsearch is right (the information in the log data is
loaded into appropriate fields, and the data type of the fields are more appropriate than just
having all the values of the log data in a single field).

Log data is typically made up of two parts:

logdata = timestamp + data

timestamp is the time when the event occurred and data is the information about the
event. data may contain just a single piece of information or it may contain many pieces of
information. For example, if we take apache-access logs, the data piece will contain the
response code, request URL, IP address, and so on. We would need to have a mechanism
for extracting this information from the data and thus converting the unstructured
data/event into a structured data/event. This is where the filter section of the Logstash
pipeline comes in handy. The filter section is made up of one or more filter plugins that
assist in parsing and enriching the log data.

Filter plugins
A filter plugin is used to perform transformations on the data. It allows us to combine one
or more plugins, and the order of the plugins defines the order in which the data is
transformed. A sample filter section in Logstash pipeline would look as follows:

Building Data Pipelines with Logstash Chapter 6

[177]

The generated event from the input plugin goes through each of the plugins defined in the
filter section, during which it transforms the event based on the plugins defined. Finally, it
is sent to the output plugin to send the event to the appropriate destination.

In the following sections, let's explore some common filter plugins used for transformation.

CSV filter
This filter is useful for parsing .csv files. This plugin takes the event containing CSV data,
parses it, and stores it as individual fields.

Let's take some sample data and use a CSV filter to parse data out of it. Store the following
data in a file named users.csv:

FName,LName,Age,Salary,EmailId,Gender
John,Thomas,25,50000,John.Thomas,m
Raj, Kumar,30,5000,Raj.Kumar,f
Rita,Tony,27,60000,Rita.Tony,m

The following code block shows the usage of the CSV filter plugin. The CSV plugin has no
required parameters. It scans each row of data and uses default column names such
as column1, column2, and so on to place the data. This plugin by default uses , (a comma)
as a field separator. The default separator can be changed by using the separator
parameter of the plugin. One can either specify the list of column names using the columns
parameter, which accepts an array of column names, or by using the
autodetect_column_names parameter set to true. In doing so, one can let the plugin
know that it needs to detect the column names automatically:

#csv_file.conf
input {
 file{
 path => "D:\es\logs\users.csv"
 start_position => "beginning"
 }
}

filter {
 csv{
 autodetect_column_names => true
 }
}

output {
 stdout {

Building Data Pipelines with Logstash Chapter 6

[178]

 codec => rubydebug
 }
}

Mutate filter
This filter allows one to perform general mutations on fields. One can rename, convert,
strip, and modify fields in the events.

Lets enhance the csv_file.conf created in the previous section with the mutate filter and
understand its usage. The following code block shows the use of the mutate filter:

#csv_file_mutuate.conf
input {
 file{
 path => "D:\es\logs\users.csv"
 start_position => "beginning"
 sincedb_path => "NULL"
 }

}

filter {
 csv{
 autodetect_column_names => true
 }
 mutate {
 convert => {
 "Age" => "integer"
 "Salary" => "float"
 }
 rename => { "FName" => "Firstname"
 "LName" => "Lastname" }
 gsub => [
 "EmailId", "\.", "_"
]
 strip => ["Firstname", "Lastname"]
 uppercase => ["Gender"]
 }
}

output {
 stdout {
 codec => rubydebug
 }
}

Building Data Pipelines with Logstash Chapter 6

[179]

As seen in the preceding example, the convert setting within the filter helps to change the
data type of a field. The valid conversion targets are integer, string, float, and Boolean.

If the conversion type is Boolean, the acceptable values are:
True: true, t, yes, y, and 1.
False: false, f, no, n, and 0.

The rename setting within the filter helps to rename one or more fields. The preceding
example renames the FName field to Firstname and LName to Lastname.

gsub is used to match a regular expression against a field value and replace all matches
with a replacement string. As regular expressions work only on strings, this field can only
take a field containing string or an array of strings. It takes an array consisting of three
elements per substitution (that is, it takes the field name, regex, and the replacement string).
In the preceding example, . in the EmailId field is replaced with _.

Make sure to escape special characters such as \, ., +, and ? when
building regex.

strip is used to strip the leading and training white spaces.

The order of the settings within the mutate filter matters. The fields are
mutated in the order the settings are defined. For example, as
the FName and LName fields in the incoming event were renamed
to Firstname and Lastname using the rename setting, other settings can
no longer refer to FName and LName. Rather, to refer they would have to
use the newly renamed fields.

uppercase is used to convert the string to upper case. In the preceding example, the value
in the Gender field is converted to upper case.

Similarly, by using various settings of the mutate filter, such as lowercase, update,
replace, join, and merge, one can lower case a string, update an exiting field, replace the
value of a field, join an array of values, or merge fields.

Building Data Pipelines with Logstash Chapter 6

[180]

Grok filter
This is a powerful and often used plugin for parsing the unstructured data into structured
data, thus making the data easily queryable/filterable. In simple terms, Grok is a way of
matching a line against a pattern (which is based on a regular expression) and mapping
specific parts of the line to dedicated fields. The general syntax of a grok pattern is as
follows:

%{PATTERN:FIELDNAME}

PATTERN is the name of the pattern that will match the text. The FIELDNAME is the identifier
for the piece of text being matched.

By default, grok'ed fields are strings. To cast either to float or int values, one can use the
following format:

%{PATTERN:FIELDNAME:type}

Logstash ships with about 120 patterns by default. These patterns are reusable and
extensible. One can create a custom pattern by combining existing patterns. These patterns
are based on the Oniguruma regular expression library.

Patterns consist of a label and a regex. For example:

USERNAME [a-zA-Z0-9._-]+

Patterns can contain other patterns. For example:

HTTPDATE %{MONTHDAY}/%{MONTH}/%{YEAR}:%{TIME} %{INT}

The complete list of patterns can be found at https:/ ​/​github. ​com/ ​logstash- ​plugins/
logstash-​patterns- ​core/ ​blob/ ​master/ ​patterns/ ​grok- ​patterns.

If a pattern is not available then one can use a regular expression using the following
format:

(?<field_name>regex)

For example, the regex (?<phone>\d\d\d-\d\d\d-\d\d\d\d) would match telephone
numbers, such as 123-123-1234, and place the parsed value into the phone field.

https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns

Building Data Pipelines with Logstash Chapter 6

[181]

Let's look at some examples to understand grok better:

#grok1.conf

input {
 file{
 path => "D:\es\logs\msg.log"
 start_position => "beginning"
 sincedb_path => "NULL"
 }

}

filter {
 grok{
 match => {"message" => "%{TIMESTAMP_ISO8601:eventtime} %{USERNAME:userid}
%{GREEDYDATA:data}" }
 }
}

output {
 stdout {
 codec => rubydebug
 }
}

If the input line is of the format "2017-10-11T21:50:10.000+00:00 tmi_19 001 this
is a random message", then the output would be as shown in the following block:

{
 "path" => "D:\\es\\logs\\msg.log",
 "@timestamp" => 2017-11-24T12:30:54.039Z,
 "data" => "this is a random message\r",
 "@version" => "1",
 "host" => "SHMN-IN",
 "messageId" => 1,
 "eventtime" => "2017-10-11T21:50:10.000+00:00",
 "message" => "2017-10-11T21:50:10.000+00:00 tmi_19 001 this is a
random message\r",
 "userid" => "tmi_19"
}

If the pattern does not match the text, it will add a
_grokparsefailure tag to the tags field.

Building Data Pipelines with Logstash Chapter 6

[182]

There is a tool hosted at http:/ ​/​grokdebug. ​herokuapp. ​com which helps one to build grok
patterns that match the log.

X-Pack 5.5 onwards contains the Grok Debugger utility and
is automatically enabled when you install X-Pack into Kibana. It is located
under the DevTools tab in Kibana.

Date filter
This plugin is used for parsing the date from the fields. This plugin is very handy and
useful when working with time series events. By default, Logstash adds a @timestamp field
for each event, representing the time it processed the event. But the user might be interested
in the actual timestamp of the generated event rather than the processed timestamp. So,
using this filter, one can parse the date/timestamp from the fields and then use it as
the timestamp of the event.

We can use the plugin as follows:

filter {
 date {
 match => ["timestamp", "dd/MMM/YYYY:HH:mm:ss Z"]
 }
}

By default, the date filter overwrites the @timestamp field, but this can be changed by
providing an explicit target field, as shown in the following code snippet. Thus, the user can
keep the event time processed by Logstash too:

filter {
 date {
 match => ["timestamp", "dd/MMM/YYYY:HH:mm:ss Z"]
 target => "event_timestamp"
 }
}

By default, the timezone will be the server local time unless specified. To
manually specify the timezone, use the timezone parameter/setting of the
plugin. The valid timezone values can be found at http:/ ​/ ​joda- ​time.
sourceforge. ​net/ ​timezones. ​html. ​

http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html

Building Data Pipelines with Logstash Chapter 6

[183]

If the time field has multiple possible time formats, then those can be specified as an array
of values to the match parameter:

match => ["eventdate", "dd/MMM/YYYY:HH:mm:ss Z", "MMM dd yyyy
HH:mm:ss","MMM d yyyy HH:mm:ss", "ISO8601"]

Geoip filter
This plugin is used to enrich the log information. Given the IP address, it adds the
geographical location of the IP address. It finds the geographical information by performing
a lookup against the GeoLite2 City database for valid IP addresses and populates fields
with results. GeoLite2 City database is a product of the Maxmind organization and is
available under the CCA-ShareAlike 4.0 license. Logstash comes bundled
with GeoLite2 City database, so when performing a lookup it need not perform any
network call; hence the lookup is fast.

The only required parameter for this plugin is the source, which accepts an IP address in
string format. This plugin creates a geoip field with geographical details such as country,
postal code, region, city, and so on. A [geoip][location] field is created if the GeoIP
lookup returns a latitude and longitude, and it is mapped to the geo_point type when
indexing to Elasticsearch. geop_point fields can be used for Elasticsearch's geospatial
query, facet, and filter functions, and can be used to generate Kibana's map visualization:

Building Data Pipelines with Logstash Chapter 6

[184]

Geoip filter supports both IPv4 and IPv6 lookups.

Useragent filter
This filter parses user agent strings into structured data based on BrowserScope (http:/ ​/
www.​browserscope.​org/ ​) data. It adds information about the user agent such as family,
operating system, version, device, and so on. To extract the user agent details, this filter
plugin makes use of the regexes.yaml database that is bundled with Logstash. The only
required parameter for this plugin is the source parameter, which accepts string containing
user agent details:

Introducing Beats
Beats are lightweight data shippers that are installed as agents on edge servers to ship
operational data to Elasticsearch. Just like Elasticsearch, Logstash, Kibana, and Beats are
open source products too. Depending on the use case, Beats can be configured to ship the
data to Logstash for transforming the events prior to pushing the events to Elasticsearch.

http://www.browserscope.org/
http://www.browserscope.org/
http://www.browserscope.org/
http://www.browserscope.org/
http://www.browserscope.org/
http://www.browserscope.org/
http://www.browserscope.org/
http://www.browserscope.org/
http://www.browserscope.org/

Building Data Pipelines with Logstash Chapter 6

[185]

The Beats framework is made up of a library called libbeat which provides infrastructure
to simplify the process of shipping the operation data to Elasticsearch. It offers the API that
all Beats can use to ship data to an output (such as Elasticsearch, Logstash, Redis, Kafka,
and so on), configure the input/output options, process the events, implement logging, and
more. The Libbeat library is built using the Go programming language. Go was chosen to
build Beats because it's easy to learn, very resource friendly, and as it's statically compiled
it's easy to deploy.

Elastic.co has built and maintained several Beats such as Filebeat, Packetbeat, Metricbeat,
Heartbeat, and Winlogbeat. There are several community Beats including amazonbeat,
mongobeat, httpbeat, and nginxbeat, which have been built into the Beats framework by the
open source community. Some of the Beats can be extended to meet business needs, as
some of them provide extension points. If a beat for one's specific use case is not available,
then custom Beats can be easily built with the libbeat library:

Building Data Pipelines with Logstash Chapter 6

[186]

Beats by Elastic.co
Let us take a look at some of the commonly used beats by Elastic.co in the following
sections.

Filebeat
Filebeat is an open source, lightweight log shipping agent that ships logs from local files.
Filebeat runs as a binary and no runtime, such as JVM, is needed, hence it's very
lightweight, executable, and also consumes less resources. It is installed as an agent on the
edge servers from where the logs needs to be shipped. It monitors the log directories or
specific log files, tails the files, and forwards them to Elasticsearch, Logstash, Redis, or
Kafka. It is easily salable and provides the ability to ship logs from multiple systems to a
centralized system/server, from which the logs can be parsed and processed.

Metricbeat
Metricbeat is a lightweight shipper that periodically collects metrics from the operating
system and from services running on the server. It helps one to monitor servers by
collecting metrics from the system, and services such as Apache, MondoDB, Redis, and so
on, that are running on the server. Metricbeat can push the collected metrics directly into
Elasticsearch or send them to Logstash, Redis, or Kafka. To monitor services, Metricbeat can
be installed on the edge server where services are running; it provides the ability to collect
metrics from a remote server as well. However, it's recommended to have it installed on the
edge servers where the services are running.

Packetbeat
Packetbeat is a real-time network packet analyzer that works by capturing the network
traffic between the application servers, decoding the application layer protocols (HTTP,
MySQL, Redis, Memcache, and many more), correlating the requests with the responses,
and recording the interesting fields for each transaction. Packetbeat sniffs the traffic
between the servers, parses the application-level protocols on the fly, and converts the
messages into transactions. It can help one to easily notice issues with the backend
application, such as bugs or performance problems, and it makes troubleshooting them
easy. Packetbeat can run on the same server, which contains application processes, or on its
own servers. Packetbeat ships the collected transaction details to the configured output,
such as Elasticsearch, Logstash, Redis, or Kafka.

Building Data Pipelines with Logstash Chapter 6

[187]

Heartbeat
Heatbeat is a new addition to the beat ecosystem and is used to check if a service is up or
not, and checks if the services are reachable. Heartbeat is a lightweight daemon that is
installed on a remote server to periodically check the status of services running on the host.
Heartbeat supports ICMP, TCP, and HTTP monitors for checking hosts/services.

Winlogbeat
Winlogbeat is a beat dedicated to the Windows platform. Winlogbeat is installed as a
Windows service on Windows XP or later to read from one or more event log using
Windows APIs. It filters the events based on user-configured criteria and then sends the
event data to the configured output, such as Elasticsearch or Logstash.

Winlogbeat can capture event data such as application events, hardware events, security
events, and system events.

Auditbeat
Auditbeat is a new addition to the Beats family, first implemented in Elastic Stack
6.0. Auditbeat is a lightweight shipper that is installed on servers to monitor user activity
and processes and analyze the event data in the Elastic Stack without touching Linux's
auditd. Auditbeat communicates directly with the Linux audit framework, collects the same
data as auditd, and sends the events to Elastic Stack in real time. Auditbeat also allows one
to carefully watch lists of directories for any changes. File changes are sent in real time to
the configured output, and thus it can be used to identify potential security policy
violations.

Community Beats
These are the beats that are developed by the open source community using the beats
framework. Some of the open source beats are as follows:

Beat Name Description

springbeat Collects health and metrics data from Spring Boot applications running
within the actuator module.

rsbeat Ships redis slow logs to Elasticsearch.

nginxbeat Reads the status from Nginx.

Building Data Pipelines with Logstash Chapter 6

[188]

mysqlbeat Runs any query in MySQL and send the results to Elasticsearch.

mongobeat Monitors MongoDB instances and can be configured to send multiple document
types to Elasticsearch.

gabeat Collects data from the Google Analytics Realtime API.

apachebeat Reads the status from Apache HTTPD server-status.

amazonbeat Reads the data from a specified Amazon product.

The complete list of community beats can be found at https:/ ​/​www. ​elastic. ​co/​guide/ ​en/
beats/​devguide/​current/ ​community- ​beats. ​html.

Elastic.co doesn't support or provide warranties for community Beats.

The Beats Developer guide provides the necessary information to create a
custom beat. The developer guide can be found at https:/ ​/​www. ​elastic.
co/​guide/ ​en/ ​beats/ ​devguide/ ​current/ ​index. ​html.

Logstash versus Beats
After reading through the Logstash and Beats introduction, one might get confused as to
whether Beats is a replacement for Logstash, the difference between them, or when to use
one over the other. Beats are lightweight agents and consume less resources, and hence are
installed on the edge servers where the operational data needs to be collected and shipped.
Beats lack the powerful features of Logstash for parsing and transforming events. Logstash
comes with a broad array of input, filter, and output plugins for collecting, enriching, and
transforming data from a variety of sources. However, it is very resource intensive and can
also be used as an independent product outside of Elastic Stack. Logstash is
recommended to be installed on a dedicated server rather than edge servers, and listens for
incoming events for processing. Beats and Logstash are complimentary products, and
depending on the use case both of them are used or just one of them is used, as described in
the Introducing Beats section.

https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html

Building Data Pipelines with Logstash Chapter 6

[189]

Filebeat
Filebeat is an open source, lightweight log shipping agent that is installed as an agent to
ship logs from local files. It monitors the log directories or specific log files, tails the files,
and forwards them to Elasticsearch, Logstash, Redis, or Kafka. It is salable and provides the
ability to ship logs from multiple systems to a centralized system/server, from which the
logs can be parsed and processed.

Downloading and installing Filebeat
Navigate to https:/ ​/​www. ​elastic. ​co/ ​downloads/ ​beats/ ​filebeat and, depending on your
operating system, download the .zip/.tar file. The installation of Filebeat is simple and
straightforward:

https://www.elastic.co/downloads/beats/filebeat
https://www.elastic.co/downloads/beats/filebeat
https://www.elastic.co/downloads/beats/filebeat
https://www.elastic.co/downloads/beats/filebeat
https://www.elastic.co/downloads/beats/filebeat
https://www.elastic.co/downloads/beats/filebeat
https://www.elastic.co/downloads/beats/filebeat
https://www.elastic.co/downloads/beats/filebeat
https://www.elastic.co/downloads/beats/filebeat
https://www.elastic.co/downloads/beats/filebeat
https://www.elastic.co/downloads/beats/filebeat
https://www.elastic.co/downloads/beats/filebeat
https://www.elastic.co/downloads/beats/filebeat
https://www.elastic.co/downloads/beats/filebeat
https://www.elastic.co/downloads/beats/filebeat

Building Data Pipelines with Logstash Chapter 6

[190]

Beats version 6.0.x is compatible with Elasticsearch 5.6.x and 6.0.x, and
Logstash 5.6.x and 6.0.x. The compatibility matrix can be found at https:/
/​www. ​elastic. ​co/ ​support/ ​matrix#matrix_ ​compatibility. When you
come across Elasticsearch and Logstash examples or usages with Beats in
the chapter, make sure you have compatible versions of Elasticsearch and
Logstash installed.

Installing on Windows
Unzip the downloaded file and navigate to the extracted location as follows:

D:> cd D:\packt\filebeat-6.0.0-windows-x86_64

To install Filebeat as a service on Windows, refer to the following steps:

Open Windows PowerShell as an administrator and navigate to1.
the extracted location.
From the PowerShell prompt, run the following commands to2.
install Filebeat as a Windows service:

PS >cd D:\packt\filebeat-6.0.0-windows-x86_64
PS D:\packt\filebeat-6.0.0-windows-
x86_64>.\install-service-filebeat.ps1

If script execution is disabled on your system, you need to set the
execution policy for the current session to allow the script to run. For
example: PowerShell.exe -ExecutionPolicy UnRestricted -File
.\install-service-filebeat.ps1.

Installing on Linux
Unzip the tar.gz package and navigate to the newly created folder as follows:

$> tar -xzf filebeat-6.0.0-linux-x86_64.tar.gz
$> cd filebeat

https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility

Building Data Pipelines with Logstash Chapter 6

[191]

To install using dep or rpm, execute the appropriate commands in the
terminal:

deb:
curl -L -O
https://artifacts.elastic.co/downloads/beats/filebeat/fil
ebeat-6.0.0-amd64.deb
sudo dpkg -i filebeat-6.0.0-amd64.deb

rpm:
curl -L -O
https://artifacts.elastic.co/downloads/beats/filebeat/fil
ebeat-6.0.0-x86_64.rpm
sudo rpm -vi filebeat-6.0.0-x86_64.rpm

Filebeat will be installed in the /usr/share/filebeat directory. The
configuration files will be present in /etc/filebeat. The init script will
be present in /etc/init.d/filebeat. The log files will be present
within the /var/log/filebeat directory.

Architecture
Filebeat is made up of key components called Prospectors, Harvesters, and Spooler. These
components work together to tail files and send event data to the output that you specify. A
Prospector is responsible for identifying the list of files to read logs from. A prospector is
configured with one or many file paths, from which it identifies the files to read logs from;
it starts a harvester for each file. Harvester is responsible for reading the contents of the
file. The harvester reads each file, line by line, and sends the content to the output. One
harvester is started for each file. The harvester is responsible for opening and closing the
file, which means that the file descriptor remains open while the harvester is running.
Harvester sends the read content (that is, events) to the spooler, where its aggregated and
sent to the configured output.

Building Data Pipelines with Logstash Chapter 6

[192]

Each instance of Filebeat can be configured with one or more prospectors. Currently, there
are two types of prospectors the filebeat supports, which are of the types log and stdin. If
the input type is log, the prospector finds all files on the drive that match the defined glob
paths and starts a harvester for each file. Each prospector runs in its own Go routine. If the
type is stdin, it reads from standard inputs.

Every time Filbebeat reads a file, the state of the last read is offset by harvester, and if the
read line is sent to the output, it is maintained in a registry file which is flushed periodically
to a disk. If the output (such as Elasticsearch, Logstash, Kafka, or Redis) is not reachable,
Filebeat keeps track of the last lines sent and will continue reading the files as soon as the
output becomes available again. While Filebeat is running, the state information is also kept
in memory by each prospector. When Filebeat is restarted, data from the registry file is used
to rebuild the state, and Filebeat continues each harvester at the last known position.

Filebeat will not consider a log line shipped until the output acknowledges the request and,
as the state of the delivery of the lines to the configured output is maintained in the
registry file, Filebeat guarantees that events will be delivered to the configured output at
least once, and with no data loss.

The location of the registry would be as follows:
data/registry for .tar.gz for .zip archives,
/var/lib/filebeat/registry for DEB and RPM packages,
C:\ProgramData\filebeat\registry for the Windows .zip file, and
if Filebeat is installed as a service.

Building Data Pipelines with Logstash Chapter 6

[193]

(Reference: https:/ ​/ ​www. ​elastic. ​co/ ​guide/ ​en/​beats/ ​filebeat/ ​6. ​0/​images/ ​filebeat.
png)

Configuring Filebeat
The configurations related to Filebeat are stored in a configuration file named
filebeat.yml. It uses YAML syntax.

The filebeat.yml file contains the following sections:

Filebeat prospectors
Filebeat global options
Filebeat general options

https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png
https://www.elastic.co/guide/en/beats/filebeat/6.0/images/filebeat.png

Building Data Pipelines with Logstash Chapter 6

[194]

Output configuration
Processors configuration
Paths configuration
Modules configuration
Dashboard configuration
Logging configuration

The filebeat.yml file will be present in the installation directory if .zip
or .tar files are used. If dep or rpm is used for installation, then it will be
present in the /etc/filebeat location.

Some of these sections are common for all type of Beats. Before we look into some of these
sections, let's see what a simple configuration would look like. As seen in the following
configuration, when Filebeat is started, it looks for files ending with the .log extension in
the path D:\packt\logs\. It ships the log entries of each file to Elasticsearch, which is
configured as the output, and is hosted at localhost:9200:

#filebeat.yml
#=========================== Filebeat prospectors
=============================

filebeat.prospectors:
- input_type: log

 # Paths that should be crawled and fetched. Glob based paths.
 paths:
 - D:\packt\logs*.log

#================================ Outputs
=====================================

#-------------------------- Elasticsearch output --------------------------

output.elasticsearch:
 # Array of hosts to connect to.
 hosts: ["localhost:9200"]

Any changes made to filebeat.yml require a restart of Filebeat for it to
pick up the changes.

Building Data Pipelines with Logstash Chapter 6

[195]

It is always advisable to test the configuration after editing it. To test the configuration, use
the -configtest flag:

D:\packt\filebeat-6.0.0-windows-x86_64>filebeat.exe -configtest
filebeat.yml
Config OK

To specify flags, Filebeat needs to be started in the foreground. One can't
specify command-line flags if the init.d script is used to start Filebeat on
deb or rpm, or if it is run as a service on Windows.

Place some log files under D:\packt\logs\. To get Filebeat to ship the logs, execute the
following command:

Windows:
D:\packt\filebeat-6.0.0-windows-x86_64>filebeat.exe

Linux:
[locationOfFilebeat]$./filebeat

To validate if the logs were shipped to Elasticsearch, execute the following command:

D:\packt>curl -X GET http://localhost:9200/filebeat*/_search?pretty

Sample Response:
{
 "took" : 1,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 6,
 "max_score" : 1.0,
 "hits" : [
 {
 "_index" : "filebeat-2017.11.23",
 "_type" : "doc",
 "_id" : "AV_niRjbPYptcfAHfGNx",
 "_score" : 1.0,
 "_source" : {
 "@timestamp" : "2017-11-23T06:20:36.577Z",
 "beat" : {
 "hostname" : "SHMN-IN",

Building Data Pipelines with Logstash Chapter 6

[196]

 "name" : "SHMN-IN",
 "version" : "6.0.0"
 },
 "input_type" : "log",
 "message" : "line2",
 "offset" : 14,
 "source" : "D:\\packt\\logs\\test.log",
 "type" : "log"
 }
 },
 {
 "_index" : "filebeat-2017.11.23",
 "_type" : "doc",
 "_id" : "AV_niRjbPYptcfAHfGNy",
 "_score" : 1.0,
 "_source" : {
 "@timestamp" : "2017-11-23T06:20:36.577Z",
 "beat" : {
 "hostname" : "SHMN-IN",
 "name" : "SHMN-IN",
 "version" : "6.0.0"
 },
 "input_type" : "log",
 "message" : "line3",
 "offset" : 21,
 "source" : "D:\\packt\\logs\\test.log",
 "type" : "log"
 }
 },
 ...
 ...
 ...

Filebeat places the shipped logs under an index filebeat, which is a time-
based index based on the filebeat-YYYY.MM.DD pattern. The log data
would be placed in the message field.

To start filebeat on deb or rpm installations, execute the
sudo service filebeat start command. If installed as a service on
Windows, then use Powershell to execute the following command:
PS C:\> Start-Service filebeat

Building Data Pipelines with Logstash Chapter 6

[197]

Filebeat prospectors
This section contains list of prospectors that Filebeat uses to locate and process log files.
Each prospector item begins with a dash (-) and contains prospector-specific configuration
options including one or more path to search for files to be crawled.

A sample configuration is as follows:

Building Data Pipelines with Logstash Chapter 6

[198]

Prospector-specific configuration options are as follows:

input_type: It accepts the type as either log or stdin. The log type is used to
read every log line from the file, and the stdin type is used to read from
standard input. The log type is the default option.
paths: It is used to specify one or more paths to look for files that need to be
crawled. One path needs to be specified per line starting with a dash (-). It
accepts Golang glob-based paths, and all the patterns Golang glob (https:/ ​/
golang.​org/ ​pkg/ ​path/ ​filepath/ ​#Glob) supports are accepted by
the paths parameter.
exclude_lines: It accepts a list of regular expressions to match. It drops the
lines that match any regular expression from the list. In the preceding
configuration example, it drops all the lines beginning with DBG.
include_lines: It accepts a list of regular expressions to match. It exports the
lines that match any regular expressions from the list. In the preceding
configuration example, it exports all the lines beginning with either ERR or WARN.

Regular expressions are based on RE2 (https:/ ​/​godoc. ​org/​regexp/
syntax). You can refer to this link for all the supported regex patterns.

tags: It accepts a list of tags that will be included in the tags field of every event
Filebeat ships. tags helps with the conditional filtering of events in Kibana or
Logstash. In the preceding configuration example, java_logs is appended to the
tags list.
fields: It is used to specify option fields that need to be included in each event
Filebeat ships. Like tags, it helps with the conditional filtering of events in
Kibana or Logstash. Fields can be scalar values, arrays, dictionaries, or any nested
combination of these. By default, the fields that one specifies will be grouped
under a fields sub-dictionary in the output document. In the preceding
configuration example, a new field called env with the staging value would be
created under the fields field.

To store the custom fields as top-level fields, set the fields_under_root
option to true.

https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax

Building Data Pipelines with Logstash Chapter 6

[199]

scan_frequency: It is used to specify the time interval after which the
prospector checks for any new files under the configured paths. In the preceding
configuration example, the prospector checks for new files every second. By
default, the scan_frequency is set to 10 seconds.
document_type: It is used to specify the index type if the output is Elasticsearch.
The default type is log. In the preceding configuration example, Apache logs are
set to the apache type so that when indexed to Elasticsearch, Apache logs can be
found under the apache type. The index name would still be of the pattern
filebeat-YYYY.MM.DD.
multiline: It specifies how logs that are spread over multiple lines need to be
processed. This is very beneficial for processing stack traces/exception messages.

It is made up of a pattern that specifies the regular expression pattern to
match: negate, which specifies whether or not the pattern is negated, and match,
which specifies how Filebeat combines matching lines with an event. The values
for the negate setting are either true or false; by default it is false. The values
for the match setting are either after or before. In the preceding configuration
example, all the consecutive lines that begin with the space pattern are appended
to the previous line that doesn't begin with a space.

The after setting is similar to the previous Logstash multi-line setting,
and before is similar to the next Logstash multi-line setting.

Filebeat global options
This section contains configuration options to control the behavior of Filebeat on a global
level.

Some of the configuration options are as follows:

registry_file: It is used to specify the location of the registry file, which is
used to maintain information about files, such as the last offset read and if the
read lines are acknowledge by the configured outputs or not. The default location
of the registry is ${path.data}/registry:

filebeat.registry_file: /etc/filebeat/registry

Building Data Pipelines with Logstash Chapter 6

[200]

One can specify a relative path or an absolute path as a value for this
setting. If a relative path is specified, it is considered relative to
the ${path.data} setting.

shutdown_timeout: This setting specifies how long Filebeat waits on shutdown
for the publisher to finish. If Filebeat shuts down while it's in the process of
sending events, it does not wait for the output to acknowledge all events before
shutting down. This setting can help Filebeat to wait a specific amount of time
before shutting down, as follows:

filebeat.shutdown_timeout: 10s

Filebeat general options
This section contains configuration options and some general settings to control the
behavior of Filebeat.

Some of the configuration options/settings are as follows:

name: The name of the shipper that publishes the network data. By default,
hostname is used for this field.

name: "dc1-host1"

tags: The list of tags that will be included in the tags field of every event
Filebeat ships. Tags make it easy to group servers by different logical properties
and help with the filtering of events in Kibana and Logstash:

tags: ["staging", "web-tier","dc1"]

max_procs: The maximum number of CPUs that can be executed
simultaneously. The default is the number of logical CPUs available in the
system:

max_procs: 2

Building Data Pipelines with Logstash Chapter 6

[201]

Output configuration
This section is used to configure outputs where the events need to be shipped. Events can
be sent to single or multiple outputs simultaneously. The allowed outputs are Elasticsearch,
Logstash, Kafka, Redis, file, and console.

Some of the outputs that can be configured are as follows:

elasticsearch: It is used to send the events directly to Elasticsearch.

A sample Elasticsearch output configuration is as follows:

output.elasticsearch:
 enabled: true
 hosts: ["localhost:9200"]

By using the enabled setting, one can enable or disable the output. hosts accepts
one or more Elasticsearch node/server. Multiple hosts can be defined for failover
purposes. When multiple hosts are configured, the events are distributed to these
nodes in round robin order. If Elasticsearch is secured, then the credentials can be
passed using the username and password settings:

output.elasticsearch:
 enabled: true
 hosts: ["localhost:9200"]
 username: "elasticuser"
 password: "password"

To ship the event to the Elasticsearch ingest node pipeline so that it can be pre-
processed before it is stored in Elasticsearch, the pipeline information can be
provided using the pipleline setting:

output.elasticsearch:
 enabled: true
 hosts: ["localhost:9200"]
 pipeline: "apache_log_pipeline"

logstash: It is used to send the events to Logstash.

To use Logstash as output, Logstash needs to be configured with the Beats
input plugin to receive incoming Beats events.

Building Data Pipelines with Logstash Chapter 6

[202]

A sample Logstash output configuration is as follows:

output.logstash:
 enabled: true
 hosts: ["localhost:5044"]

By using the enabled setting, one can enable or disable the output. hosts accepts
one or more Logstash server. Multiple hosts can be defined for failover purposes.
If the configured host is unresponsive, then the event will be sent to one of the
other configured hosts. When multiple hosts are configured, the events are
distributed in random order. To enable load balancing of events across the
Logstash hosts, use the loadbalance flag, set to true:

output.logstash:
 hosts: ["localhost:5045", "localhost:5046"]
 loadbalance: true

console: It is used to send the events to stdout. The events are written in JSON
format. It is useful during debugging or testing.

A sample console configuration is as follows:

output.console:
 enabled: true
 pretty: true

Filebeat modules
Filebeat modules simplify the process of collecting, parsing, and visualizing logs of
common formats.

A module is made up of one or more fileset. A fileset is made up of the following:

Filebeat prospector configurations that contain the default paths needed to look
out for logs. It also provides configuration for combining multi line events when
needed.
An Elasticsearch Ingest pipeline definition to parse and enrich logs.
Elasticsearch templates that define the field definitions so that appropriate
mappings are set to the fields of the events.
Sample Kibana dashboards, which can be used for visualizing the logs.

Building Data Pipelines with Logstash Chapter 6

[203]

Filebeat modules require the Elasticsearch Ingest Node, and the version of
Elasticsearch should be greater that 5.2.

The default modules that are shipped with Filebeat are:

Apache2 module
Auditd module
MySQL module
Nginx module
Redis module
Icinga module
System module

The modules.d directory contains the default configurations for all the modules available
in Filebeat. The configuration specific to a module is stored in a .yml file, with the name of
the file being the name of the module. For example, the configuration related to the redis
module would be stored in a redis.yml file.

As each module comes with the default configuration, make the appropriate changes in the
module configuration file.

The basic configuration for the redis module would look like the following:

#redis.yml
- module: redis
 # Main logs
 log:
 enabled: true

 # Set custom paths for the log files. If left empty,
 # Filebeat will choose the paths depending on your OS.
 #var.paths: ["/var/log/redis/redis-server.log*"]

 # Slow logs, retrieved via the Redis API (SLOWLOG)
 slowlog:
 enabled: true

 # The Redis hosts to connect to.
 #var.hosts: ["localhost:6379"]

 # Optional, the password to use when connecting to Redis.
 #var.password:

Building Data Pipelines with Logstash Chapter 6

[204]

To enable modules, execute the modules enable command, passing one or more module
name:

Windows:
D:\packt\filebeat-6.0.0-windows-x86_64>filebeat.exe modules enable redis
mysql

Linux:
[locationOfFileBeat]$./filebeat modules enable redis mysql

If a module is disabled, then in the modules.d directory, the configuration
related to the module will be stored with a .disabled extension.

Similarly, to disable modules, execute the modules disable command, passing one or
more module name to it. For example:

Windows:
D:\packt\filebeat-6.0.0-windows-x86_64>filebeat.exe modules disable redis
mysql

Linux:
[locationOfFileBeat]$./filebeat modules disable redis mysql

Once the module is enabled, to load the recommended index template for writing to
Elasticsearch, and to deploy the sample dashboards for visualizing the data in Kibana,
execute the setup command as follows:

Windows:
D:\packt\filebeat-6.0.0-windows-x86_64>filebeat.exe -e setup

Linux:
[locationOfFileBeat]$./filebeat -e setup

The -e flag specifies to log the output to stdout. Once the modules are enabled and
the setup command is run, to load index templates and sample dashboards, start Filebeat
as usual so that it can start shipping logs to Elasticsearch.

The setup command has to be executed during the installation or
upgrading of Filebeat, or after a new module is enabled.

Most of the modules have dependency plugins such as ingest-geoip and
ingest-user-agent, which need to be installed on Elasticsearch prior to
setting up the modules, else the setup will fail.

Building Data Pipelines with Logstash Chapter 6

[205]

Rather than enabling the modules by passing them as command-line parameters, one can
enable the modules in the configuration file filebeat.yml itself, and start the Filebeat as
usual:

filebeat.modules:
- module: nginx
- module: mysql

Each of the modules has associated filesets which contain certain variables that can be
overridden either using the configuration file or by passing it as command line parameter
using the -M flag when running Filebeat.

For the configuration file, do as follows:

filebeat.modules:
- module: nginx
 access:
 var.paths: ["C:\ngnix\access.log*"]

For the command line, do as follows:

Windows:
D:\packt\filebeat-6.0.0-windows-x86_64>filebeat.exe -e -modules=nginx -M
"nginx.access.var.paths=[C:\ngnix\access.log*]"

Linux:
[locationOfFileBeat]$./filebeat -e -modules=nginx -M
"nginx.access.var.paths=[\var\ngnix\access.log*]"

Summary
In this chapter, we have covered the powerful filter section of Logstash that can be used for
parsing and enriching log events. We have also covered some of the commonly used filter
plugins. We also covered the Beats framework and looked at an overview of various beats
including Filebeat, Heartbeat, Packetbeat, and so on, and covered Filebeat in detail.

In the next chapter, we will be covering the various features of X-Pack, a commercial
offering by Elastic.co which contains features such as the security to secure Elastic stack,
monitoring, alerting, graphs, reporting, and many more.

7
Visualizing data with Kibana

Kibana is an open source web-based analytics and visualization tool that lets you visualize
the data stored in Elasticsearch using a variety of tables, maps, and charts. Using its simple
interface, users can easily explore large volumes of data stored in Elasticsearch and perform
advanced analysis of data in real time.

In this tutorial, let's explore the various components of Kibana and explore how one can use
it for data analysis.

We will cover the following topics in this chapter:

Downloading and installing Kibana
Data discovery using Kibana
Visualizations in Kibana
Analysis of time-series data with Kibana
Configuring and developing well known plugins in Kibana

Downloading and installing Kibana
Just like with other components of Elastic Stack, downloading and installing Kibana is
pretty simple and straightforward.

Visualizing data with Kibana Chapter 7

[207]

Navigate to https:/ ​/​www. ​elastic. ​co/ ​downloads/ ​kibana#ga- ​release and, depending on
your operating system, download the ZIP/TAR file as shown in the following screenshot:

The Elastic developer community is quite vibrant, and newer releases with
new features/fixes get released quite often. While you have been reading
this book, the latest Kibana version might have changed. The instructions
in this book are based on Kibana version 6.0.0. You can click on the past
releases link and download version 6.0.0 if you want to follow as is, but
the instructions/explanations in this book should hold good for any 6.x
release.

Kibana is a visualization tool that relies on Elasticsearch for querying data that is used for
generating visualizations. Hence, before proceeding further, make sure Elasticsearch is up
and running.

Installing on Windows
Unzip the downloaded file. Once unzipped, navigate to the newly created folder as shown
in the following code block:

D:\>cd D:\packt\kibana-6.0.0-windows-x86_64

https://www.elastic.co/downloads/kibana#ga-release
https://www.elastic.co/downloads/kibana#ga-release
https://www.elastic.co/downloads/kibana#ga-release
https://www.elastic.co/downloads/kibana#ga-release
https://www.elastic.co/downloads/kibana#ga-release
https://www.elastic.co/downloads/kibana#ga-release
https://www.elastic.co/downloads/kibana#ga-release
https://www.elastic.co/downloads/kibana#ga-release
https://www.elastic.co/downloads/kibana#ga-release
https://www.elastic.co/downloads/kibana#ga-release
https://www.elastic.co/downloads/kibana#ga-release
https://www.elastic.co/downloads/kibana#ga-release
https://www.elastic.co/downloads/kibana#ga-release
https://www.elastic.co/downloads/kibana#ga-release
https://www.elastic.co/downloads/kibana#ga-release

Visualizing data with Kibana Chapter 7

[208]

To start Kibana, navigate to the bin folder, type kibana.bat, and press Enter.

Installing on Linux
Unzip the tar.gz package and navigate to the newly created folder, shown as follows:

$> tar -xzf kibana-6.0.0-darwin-x86_64.tar.gz
$> cd kibana/

To start Kibana, navigate to the bin folder, type ./kibana, and press Enter.

You should get the following logs:

 log [04:52:06.749] [info][optimize] Optimizing and caching bundles for
kibana, stateSessionStorageRedirect, timelion and status_page. This may
take a few minutes
 log [04:55:20.118] [info][optimize] Optimization of bundles for kibana,
stateSessionStorageRedirect, timelion and status_page complete in 193.36
seconds
 log [04:55:20.241] [info][status][plugin:kibana@6.0.0] Status changed from
uninitialized to green - Ready
 log [04:55:20.402] [info][status][plugin:elasticsearch@6.0.0] Status
changed from uninitialized to yellow - Waiting for Elasticsearch
 log [04:55:20.426] [info][status][plugin:console@6.0.0] Status changed
from uninitialized to green - Ready
 log [04:55:20.454] [info][status][plugin:metrics@6.0.0] Status changed
from uninitialized to green - Ready
 log [04:55:21.987] [info][status][plugin:timelion@6.0.0] Status changed
from uninitialized to green - Ready
 log [04:55:22.001] [info][listening] Server running at
http://localhost:5601
 log [04:55:22.008] [info][status][ui settings] Status changed from
uninitialized to yellow - Elasticsearch plugin is yellow
 log [04:55:22.270] [info][status][plugin:elasticsearch@6.0.0] Status
changed from yellow to green - Kibana index ready
 log [04:55:22.273] [info][status][ui settings] Status changed from yellow
to green - Ready

Kibana is a web application, and unlike Elasticsearch and Logstash which run on JVM,
Kibana is powered by node.js. During bootup, Kibana tries to connect to Elasticsearch
running on http://localhost:9200. Kibana is started on the default port 5601. Kibana
can be accessed from a web browser using the http://localhost:5601 URL. You can
navigate to the http://localhost:5601/status URL to find the Kibana server status.

Visualizing data with Kibana Chapter 7

[209]

The status page displays information about the server's resource usage and lists the
installed plugins, as shown in the following screenshot:

Kibana should be configured to run against an Elasticsearch node of the
same version. Running different patch version releases of Kibana and
Elasticsearch (for example, Kibana 6.0.0 and Elasticsearch 6.0.1) is
generally supported, but not highly encouraged.

Running different major version releases of Kibana and Elasticsearch (for
example, Kibana 5.x and Elasticsearch 2.x) is not supported, nor is running
minor versions of Kibana that are newer than the version of Elasticsearch
(for example, Kibana 6.1 and Elasticsearch 6.0).

Configuring Kibana
When Kibana was started, it started on port 5601, and it tried to connect to Elasticsearch
running on port 9200. What if we want to change some of these settings? All the
configurations of Kibana are stored in a file called kibana.yml which is present under the
folder config under $KIBANA_HOME. When this file is opened in your favorite text editor, it
contains many properties (key-value pairs) that are commented by default. What this means
is that unless those are overridden, the value specified in the property is considered the
default value. To uncomment the property, remove the # before the property and save the
file.

Visualizing data with Kibana Chapter 7

[210]

The following are some of the key configuration settings that you should look for when
starting out with Kibana.

server.port
This setting specifies the port Kibana would be serving
requests. It defaults to 5601.

server.host
Specifies the address to which the Kibana server will bind.
IP addresses and host names are both valid values. It
defaults to localhost.

elasticsearch.url

The URL of the Elasticsearch instance to use for all your
queries. It defaults to http://localhost:9200. If your
Elasticsearch is running on a different host/port, make sure
you update this property.

elasticsearch.username
elasticsearch.password

If Elasticsearch is secured, specify the username/password
details that have access to Elasticsearch here. In the next
chapter (X-pack), we will be exploring how to secure
Elasticsearch.

server.name
A human-readable display name that identifies this Kibana
instance. Defaults to hostname.

kibana.index

Kibana uses an index in Elasticsearch to store saved
searches, visualizations, and dashboards. Kibana creates a
new index if the index doesn't already exist. Defaults to
.kibana.

The .yml file is space sensitive or indentation aware. Make sure all the
uncommented properties have the same indentation, or else an error will
be thrown upon Kibana startup and it will fail to start.

Data preparation
As Kibana is all about gaining insight from data, let's load some sample data that we will
use as we follow the tutorial. One of the most common use cases is log analysis. For this
tutorial, we will be loading Apache server logs into Elasticsearch using Logstash and then
using it in Kibana for analysis/building visualizations.

Visualizing data with Kibana Chapter 7

[211]

https:/​/​github.​com/ ​elastic/ ​elk- ​index- ​size- ​tests hosts a dump of Apache server logs
that were collected for the site www.logstash.net for the period of May 2014 to June 2014. It
contains 300,000 log events.

Navigate to https:/ ​/​github. ​com/ ​elastic/ ​elk-​index- ​size- ​tests/ ​blob/ ​master/ ​logs. ​gz
and click the Download button. Unzip the logs.gz file.

Make sure you have Logstash version 5.6 and above installed. Create a config file named
apache.conf in the $LOGSTASH_HOME\bin folder, as shown in the following code block:

input
{
 file {
 path => "D:\Learnings\data\logs\logs"
 type => "logs"
 start_position => "beginning"
 }
}

filter
{
 grok {
 match => {
 "message" => "%{COMBINEDAPACHELOG}"
 }
 }
 mutate {
 convert => { "bytes" => "integer" }
 }
 date {
 match => ["timestamp", "dd/MMM/YYYY:HH:mm:ss Z"]
 locale => en
 remove_field => "timestamp"
 }
 geoip {
 source => "clientip"
 }
 useragent {
 source => "agent"
 target => "useragent"
 }
}

output
{
 stdout {
 codec => dots

https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
http://www.logstash.net
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz

Visualizing data with Kibana Chapter 7

[212]

 }
 elasticsearch { }
}

Start the Logstash, shown as follows, so that it can begin processing the logs, and index it to
Elasticsearch. Logstash will take a while to start and then you should see a series of dots (a
dot per processed log line):

$LOGSTASH_HOME\bin>logstash –f apache.conf

Let's verify the total number of documents (log events) indexed into Elasticsearch:

curl -X GET http://localhost:9200/logstash-*/_count

In the response, you should see a count of 300,000.

Kibana UI
Open up Kibana from the browser using the http:/ ​/ ​localhost:5601 URL. The landing
page will look as follows:

Visualizing data with Kibana Chapter 7

[213]

User interaction
Let's understand the user interaction before diving into the core components of Kibana. A
typical user interaction flow is as depicted in the following diagram:

The following points will give you a clear idea of user interaction flow in Kibana:

Prior to using Kibana for data analysis, the user would have already loaded the
data in Elasticsearch.
In order to analyze the data using Kibana, the user has to first make Kibana
aware of the data stored in ES indexes. So the user would need to configure the
indexes on which he wants to perform analysis.

Visualizing data with Kibana Chapter 7

[214]

Once configured, the user has to find out the data structure, such as the fields
present in the document and the type of fields present in the document, and
explore the data. This is done so that he can decide how he can visualize this, and
what type of questions he wants to pose and find answers for in terms of the
data.
After understanding the data, and having formed questions to find answers for,
he would create appropriate visualizations that would help him in seeking the
answers easily from huge amounts of data.
The user then creates a dashboard from the set of visualizations created earlier,
which would tell the story about the data.
This is an iterative process and the user would juggle around the various stages
to find answers to his questions. Thus in this process he might gain deeper
insight about the data, and discover answers to newly formed questions which he
might not even have thought of before the beginning of this process.

Now that we have an idea about how the user would use Kibana and interact with it, let's
understand what Kibana is made up of. As seen in the left side of the collapsible menu/side
bar, the Kibana UI consists of the following components:

Discover: This page assists in exploring the data present in ES Indexes. It
provides the ability to query data, filter data, and inspect the document structure.
Visualize: This page assists in building visualizations. It contains a variety of
visualizations such as bar charts, line charts, maps, tag clouds, and so on. The
user can pick and choose the appropriate visualizations that help in analyzing the
data.
Dashboard: This page assists in bringing multiple visualizations onto a single
page, and thus builds a story about the data.
Timelion: This page assists in visualizing time-series data using a simple
expression language and enables the user to combine totally independent data
sources (data from disparate indexes) within a single visualization
Dev Tools: This page consists of a set of plugins, each of which assists in
performing different functionalities. By default this page contains only a single
plugin called Console, which provides a UI to interact with the REST API of
Elasticsearch.

Visualizing data with Kibana Chapter 7

[215]

Management: This page assists in the configuring and managing of indexes. It
also assists in the management (deleting, exporting, and importing) of existing
visualizations, dashboards, and search queries.

Configuring the index pattern
Before you can start working with data and creating visualizations to analyze the data,
Kibana requires you to configure the index pattern. Index patterns are used to identify the
Elasticsearch index which will have search and analytics run against it. They are also used
to configure fields. An index pattern is a string with optional wildcards that can match
multiple indices. Typically, two types of index exist within Elasticsearch:

Time-series indexes: If there is a correlation between the timestamp and data, the
data is called time-series data. This data will have a timestamp field. Examples
would be logs data, metrics data, and tweet data. When this data is stored in
Elasticsearch, the data is stored in multiple indexes (rolling indexes) with index
names appended by a timestamp, usually. For example, unixlogs-2017.10.10,
tweets-2017.05, logstash-2017.08.10.
Regular indexes: If the data doesn't contain any timestamp and the data has no
correlation with time, then the data is called regular data. Typically, this data is
stored in single indexes. For example, departments data and product catalog
data.

On the Configure an Index Pattern screen, during configuration of an index pattern, if the
index has a datetime field (that is, it is a time-series index), the Time Filter field name
dropdown is visible and allows the user to select the appropriate datetime field, else the
field is not visible.

Visualizing data with Kibana Chapter 7

[216]

As we loaded sample data in the previous section, let's configure it so that we can make use
of it for the rest of the chapter's examples. In the Index Name or Pattern field, type
logstash-*. For the Time Filter field name, select @timestamp and click Create.

You should see the following page:

Discover
The Discover page helps you to interactively explore the data. It allows the user to
interactively perform search queries, filter search results, and view document data. It also
allows the user to save the search, or filter criteria so that it can be reused or used to create
visualizations on top of the filtered results.

Visualizing data with Kibana Chapter 7

[217]

By default Discover Page displays the events of last 15 minutes. As the log events are from
the period May 2014 to June 2014, set the appropriate date range in the time filter. Navigate
to Time Filter | Absolute Time Range and set From as 2014-05-28 00:00:00.000 and To to
2014-07-01 00:00:00.000. Click Go:

Discover page contains the sections as shown in the following image:

Visualizing data with Kibana Chapter 7

[218]

Index Pattern (1), Fields List (2), Document Table (3), Query Bar (4), Hits (5), Histogram (6),
Toolbar (7), Time Picker (8), and Filters (9).

Let's look at each one of them:

Index Pattern: All the configured Index patterns are shown here in a dropdown
and the default one is selected automatically. The user can choose the appropriate
index pattern for data exploration.
Fields List: All the fields that are part of the document are shown in this section.
Clicking on the field shows the Quick Count, that is, how many of the
documents in the documents table contain a particular field, what the top five
values are, and what percentage of documents contain each value:

Visualizing data with Kibana Chapter 7

[219]

Document Table: This section shows the actual document data. The table shows
the 500 most recent documents that match the user entered query/filters, sorted
by timestamp (if the field exists). By clicking the Expand button found to the left
of the document's table entry, data can be visualized in table format or JSON
format:

During data exploration, we are often interested in a subset of fields rather than
the whole of the document. In order to add fields to the document table,
either hover over the field on the fields list and click its add button, or expand the
document and click the field's Toggle column in table button:

Visualizing data with Kibana Chapter 7

[220]

Added field columns replace the _source column in the Documents table. Field
columns in the table can be shuffled by clicking the right or left arrows found
when hovering over the column name. Similarly, when clicking the remove
button, x, columns can be removed from the table:

Query Bar: Using the query bar/search bar, the user can enter queries to filter the
search results. Submitting a search request results in the histogram being updated
(if the time field is configured for the selected index pattern), and the documents
table, fields lists, and hits being updated to reflect the search results. Matching
search text is highlighted in the document table. To search your data, enter your
search criteria in the query bar and press Enter, or click the search icon.

The query bar accepts two types of queries:

An Elasticsearch Query String Query, which is based on Lucene query
syntax: https:/ ​/​lucene. ​apache. ​org/ ​core/ ​2_ ​9_​4/​queryparsersyntax. ​html

Full JSON-based Elasticsearch Query DSL: https:/ ​/​www. ​elastic. ​co/​guide/ ​en/
elasticsearch/ ​reference/ ​5. ​5/ ​query- ​dsl. ​html

Let's explore the two options in detail.

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html

Visualizing data with Kibana Chapter 7

[221]

Elasticsearch query string
This provides the ability to perform various types of searches ranging from simple to
complex queries that adhere to Lucene query syntax. Let's see some examples:

Free Text search: To search for text present in any of the fields, simply enter a text string in
the query bar:

When you enter a group of words to search for, as long as the document contains any of the
words or all or part of the words in any order, the document is included in search result.

If you are doing an exact phrase search, that is, the documents should contain all the words
given the search criteria, and the words should be in same order, then surround the phrase
with quotes. For example, file logstash or files logstash.

Visualizing data with Kibana Chapter 7

[222]

Field search: To search for values against a specific field use the syntax field: value:

Boolean search: One can make use of Boolean operators such as AND, OR, and - (must not
match) to build complex queries. Using Boolean operators, one can combine field: value
and free text as well.

Note that the operators AND and OR are case sensitive.

Must Not match.

Visualizing data with Kibana Chapter 7

[223]

The following is an example of a Must Not operator with a field:

The following is an example of a Must Not operator with free text:

Visualizing data with Kibana Chapter 7

[224]

There should be no space between the - operator and the search text/field.

Grouping searches: When we want to build complex queries, often we have to group the
search criteria. Grouping both by field and value is supported, as shown in the following
example:

Visualizing data with Kibana Chapter 7

[225]

Range search: This allows you to search within a range of values. Inclusive ranges are
specified with square brackets, for example [START_VALUE TO END_VALUE], and
exclusive ranges with curly brackets, for example { START _VALUE TO END_VALUE }.
Ranges can be specified for dates and numeric or string fields:

The TO operator is case sensitive and its range values should be numeric
values.

Visualizing data with Kibana Chapter 7

[226]

Wild card and Regex search: By using the * and ? wildcards with search text, queries can
be executed. * denotes zero or more matches and ? denotes zero or one match:

Wildcard searches can be computationally expensive. It is always
preferable to add a wildcard as a suffix rather than a prefix of the search
text.

Like wildcards, regex queries are supported too. By using slashes (/) and square brackets
([]), regex patterns can be specified. But be cautious when using regex queries as this is very
computationally expensive.

Visualizing data with Kibana Chapter 7

[227]

For example, search for any city starting with either g, b, or a:

Elasticsearch DSL query
By using the DSL query, queries can be performed from the query bar. The query part of the
DSL query can be used to perform searches.

The following image is an example of searching for documents that have IE in
the useragent.name and Washington in the geoip.region_name field:

Visualizing data with Kibana Chapter 7

[228]

Hits: Hits represent the total number of documents that match the user inputted
query/criteria.

Histogram: This section is only visible if a time field is configured for the selected index
pattern. This section displays the distribution of documents over time in a histogram. By
default, the best time interval for generating the histogram is automatically inferred based
on the time set in the time filter. However, the histogram interval can be changed by
selecting the interval from the dropdown:

During data exploration, the user can slice and dice through the histogram and filter the
search results. Hovering over the histogram converts the mouse pointer to a + symbol.
When left clicking, the user can draw a rectangle to inspect/filter the documents that fall in
those selected intervals.

Visualizing data with Kibana Chapter 7

[229]

After slicing through a histogram, the time interval/period changes. To
revert back, click the browser's back button.

Toolbar: User entered search queries and applied filters can be saved so that they can be
reused or used to build visualizations on top of the filtered search results. The toolbar
provides options for saving, reusing, and sharing the search queries. The user can refer to
existing stored searches later and modify the query, and can either overwrite the existing
search or save it as a new search (by checking the Save as new search checkbox in the Save
window).

Create a new search based on an existing saved search:

Clicking the Open button displays the Saved Searches:

In Kibana, the state of the current page/UI is stored in the URL itself, thus allowing it to be
easily shareable. Clicking the share button allows you to share the Saved Search:

Visualizing data with Kibana Chapter 7

[230]

Time Picker: This section is only visible if a time field is configured for the selected index
pattern. The time filter restricts the search results to a specific time period, thus assisting in
analyzing the data belonging to the period of interest. When the Discover page is opened,
by default the time filter is set to the last 15 minutes.

Time Filter provides the following options to select the time periods. Click on Time Filter to
access the following options:

Quick time filter: This helps you to filter quickly based on some
already available time ranges:

Relative time filter: This helps you to filter based on the relative time with
respect to the current time. Relative times can be in the past or the future. A
checkbox is provided to round the time:

Visualizing data with Kibana Chapter 7

[231]

Absolute time filter: This helps you to filter based on inputted start and end
times:

Auto Refresh: During the analysis of real-time data or data that is continuously
generated, a feature to automatically fetch the latest data would be very useful.
Auto Refresh provides such a functionality. By default, refresh interval is turned
off. The user can choose the appropriate refresh interval that assists his analysis:

Time Filter is present on the Discover, Visualize, and Dashboard pages.
The time range that gets selected/set in either of these pages gets carried
over to other pages, too.

Even the Timelion page has a Time Filter, however it is not affected by the
time set on other pages.

Visualizing data with Kibana Chapter 7

[232]

Filters: By using positive filters, one can refine the the search results to display only those
documents that contain a particular value in a field. One can also create negative filters that
exclude documents that contain the specified field value.

One can add field filters from the Fields list or the Documents table, and even manually add
a filter. In addition to creating positive and negative filters, the Documents table enables
one to filter whether or not a field is present.

To add a positive or negative filter, in the Fields List or Documents Table, click on the
positive icon or negative icon respectively. Similarly, to filter a search through whether or
not a field is present, click on the * icon (exists filter):

One can also add filters manually by clicking the Add a Filter button found below the
query bar. Clicking on the button will launch a popup in which filters can be specified and
applied by clicking the Save button:

Visualizing data with Kibana Chapter 7

[233]

The applied filters are shown below the query bar. Negative filters are shown in red. One
can add multiple filters, and the following actions can be applied on the applied filters:

Enable/Disable Filter: This icon allows the enabling/disabling of the filter
without removing it. Diagonal stripes indicate that a filter is disabled.
Pin Filter: Pin the filter. Pinned filters persist when you switch contexts in
Kibana. For example, you can pin a filter in Discover and it remains in place
when you switch to the Visualize/Dashboard page.
Toggle Filter: Allows you to switch from a positive filter to a negative filter and
vice versa.
Remove Filter: Allows you to remove the applied filter.
Edit Filter: Allows you to edit the applied filter.

Visualize
The Visualize page helps to create visualizations in the form of graphs, tables, and charts,
thus assisting in visualizing all the data that has been stored in Elasticsearch easily. By
creating visualizations, the user can easily make sense of data and can obtain answers to the
questions he might have formed during the data discovery process. These built
visualizations can be used when building dashboards.

Visualizing data with Kibana Chapter 7

[234]

For our Apache access log analysis use case, he can easily find out answers to some of the
typical questions raised in log analysis, such as:

What's the traffic in different regions of the world?
What are the top URLs requested?
What are the top IP addresses making requests?
How's the bandwidth usage over time?
Is there any suspicious or malicious activity from any region/IP address?

All visualizations in Kibana are based on the aggregation queries of Elasticsearch.
Aggregations provide the multi-dimensional grouping of results. For example, finding the
top user agents by device and by country. Kibana provides a variety of visualizations,
shown as follows:

Visualizing data with Kibana Chapter 7

[235]

Kibana aggregations
Kibana supports two types of aggregations:

Bucket aggregations
Metric aggregations

As aggregation concepts are key to understanding how visualizations are built, let's get an
overview of it before jumping into building visualizations.

Bucket aggregations
The grouping of documents by a common criteria is called bucketing. Bucketing is very
similar to the GROUP BY functionality in SQL. Depending on the aggregation type, each
bucket is associated with a criterion which determines whether or not a document in the
current context belongs to the bucket or not. Each bucket provides the information about
the total number of documents it contains.

Bucket aggregations can do the following:

Given an employee index containing employee documents
Find the number of employees based on their age group or location
Given the Apache access logs index, find the number of 404 responses by country

Bucket aggregation supports sub aggregations, that is, given a bucket, all the documents
present in the given bucket can be further bucketed (grouped based on criteria). For
example, finding the number of 404 responses by country and also by state.

Depending on the type of bucket aggregation, some define a single bucket, some define
fixed number of multiple buckets, and others dynamically create the buckets during the
aggregation process.

Bucket aggregations can be combined with metric aggregations. For example, finding the
average age of employees per age group.

Kibana supports the following types of bucket aggregations:

Histogram: This aggregation works only on numeric fields and, given the value
of the numeric field and the interval, it works by distributing them into fixed-size
interval buckets. For example, histogram can be used to find the number of
products per price range, with an interval of 100.

Visualizing data with Kibana Chapter 7

[236]

Date Histogram: This is a type of histogram aggregation that works only on date
fields. It works by distributing them into fixed-size date interval buckets. It
supports date/time oriented intervals such as 2 hours, days, weeks, and so on.
Kibana provides various intervals including auto, millisecond, second, minute,
hourly, daily, weekly, monthly, yearly, and custom, for ease of use. Using the
Custom option, date/time oriented intervals such as 2 hours, days, weeks, and so
on can be supplied. This histogram is ideal for analyzing time-series data. For
example, finding the total number of incoming web requests per week/day.
Range: This is similar to histogram aggregations, however rather than fixed
intervals, ranges can be specified. Also, it not only works on numeric fields, but
can work on dates and IP addresses also. Multiple ranges can be specified using
from and to values. For example, finding the number of employees falling in the
age range of 0-25, 25-35, 35-50, and 50 and higher.

This aggregation includes the from value and excludes the to value for
each range.

Terms: This aggregation works by grouping the documents based on each unique
term in the field. This aggregation is ideal for finding the top n values for a field.
For example, finding the top five countries based on the number of incoming web
requests.

This aggregation works on keyword fields only.

Filters: This aggregation is used to create buckets based on a filter condition. This
aggregation allows for the comparison of specific values. For example, finding
the average number of web requests in India compared to the US.
GeoHash Grid: This aggregation works with fields containing geo_point
values. This aggregation is used for plotting the geo_points on a map by
grouping them into buckets. For example, visualizing web request traffic over
different geographies.

Visualizing data with Kibana Chapter 7

[237]

Metric
This is used to compute metrics based on values extracted from the fields of the document.
Metrics are used in conjunction with buckets. The different metrics that are available are:

Count: The default metric in Kibana visualizations, returns the count of
documents
Average: Used to compute the average value (for a field) of all the documents in
the bucket
Sum: Used to compute the sum value (for a field) of all the documents in the
bucket
Median: Used to compute the median value (for a field) of all the documents in
the bucket
Min: Used to compute the minimum value (for a field) of all the documents in the
bucket
Max: Used to compute the maximum value (for a field) of all the documents in
the bucket
Standard deviation: Used to compute the standard deviation (for a field) of all
the documents in the bucket
Percentiles: Used to compute the number of percentile values
Percentile ranks: For a set of percentiles, this is used to compute the
corresponding values

Creating a visualization
The following are the steps to create visualizations:

Navigate to the Visualize page and click the Create a new Visualization button1.
or the + button
Select a visualization type2.
Select a data source3.
Build the visualizations4.

Visualizing data with Kibana Chapter 7

[238]

The Visualize Interface looks as follows:

The following are the components of the visualize interface as depicted in the image:

Visualization designer: This is used for choosing appropriate metrics and
buckets for creating visualizations.
Visualization preview: Based on the metrics, buckets, queries, filters, and time
frame selected, the visualization is dynamically changed.
Spy Panel: This allows you to inspect raw Elasticsearch requests, responses,
tabular data, and HTTP request statistics.
Query Bar/Field filters: This is used to filter the search results.
Label: This reflects the metric type and bucket keys as labels. Colors in the
visualization can be changed by clicking on Label and choosing the color from
the color palette.
Toolbar/Time filter: This provides the option to save or share the visualizations.
Also, using the time filter, the user can restrict the time to filter the search results.

Time filters, the query bar, and field filters are explained in the Discover
section.

Visualizing data with Kibana Chapter 7

[239]

Visualization types
Let us take a look at each visualization type in detail.

Line, area, and bar charts
These charts are used for visualizing the data distribution by plotting it against an X/Y axis.
These charts are also used for visualizing the time-series data to analyze trends. Bar and
area charts are very useful for visualizing stacked data (that is, when sub aggregations are
used).

Kibana 5.5 onwards provides the option to dynamically switch the chart type, that is, the
user can start off with a line chart but can change its type to either bar or area, thus allowing
for the flexibility of choosing the right visualizations for analysis.

Data table
This is used to display aggregated data in a tabular format. This aggregation is useful for
analyzing data that has a high degree of variance and which would be difficult to analyze
using charts. For example, a data table is useful for finding the top 20 URLs or top 20 IP
addresses. It helps identify the top n types of aggregations.

MarkDown widget
This visualization is used to create formatted text containing general information,
comments, and instructions pertaining to a dashboard. This widget accepts GitHub-
flavored Markdown text (https:/ ​/​help. ​github. ​com/ ​categories/ ​writing- ​on-​github/ ​).

Metric
Metric aggregations work only on numeric fields and display a single numeric value for the
aggregations that are selected.

https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/

Visualizing data with Kibana Chapter 7

[240]

Goal
Goal is a metric aggregation that provides visualizations that display how the metric
progresses towards a fixed goal. It is a new visualization that was introduced in Kibana 5.5.

Gauge
A gauge is a metric aggregation which provides visualizations that are used to show how a
metric value relates to the predefined thresholds/ranges. For example, this visualization can
be used to show whether a server load is within a normal range or instead has reached
critical capacity. It is a new visualization that was introduced in Kibana 5.5.

Pie charts
This visualization is used to represent part to whole relationships. Parts are represented by
slices in the visualization.

Co-ordinate maps
This visualization is used to display the geographical area mapped to the data determined
by the specified buckets/aggregations. In order to make use of this visualization, the
documents must have some fields mapped to the geo_point datatype. It uses a GeoHash
grid aggregation and groups points into buckets that represent cells in a grid. This
visualization was earlier named a tile map.

Region maps
Region maps are thematic maps in which boundary vector shapes are colored using a
gradient; higher intensity colors indicate larger values, and lower intensity colors indicate
smaller values. These are also known as choropleth maps (https:/ ​/​en. ​wikipedia. ​org/
wiki/​Choropleth_​map). Kibana offers two vector layers by default, one for countries of the
world and one for US shapes. It is a new visualization that was introduced in Kibana 5.5.

https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map

Visualizing data with Kibana Chapter 7

[241]

Tag cloud
A tag cloud is a visual representation of text data typically used to visualize free form text.
Tags are usually single words, and the importance of each tag is shown with a font size or
color. The font size for each word is determined by the metrics aggregation. For example, if
a count (metric) is used, then the most frequently occurring word has the biggest font size
and the least occurring word has the smallest font size.

Visualizations in action
Let’s see how different visualizations can help us in doing the following:

Analyzing the response codes over time
Finding the top 10 URLs requested
Analyzing the bandwidth usage of the top five countries over time
Finding the most used user agent
Analyzing the web traffic originating from different countries

As the log events are from the period May 2014 to June 2014, set the
appropriate date range in the time filter. Navigate to Time Filter |
Absolute Time Range and set From as 2014-05-28 00:00:00.000 and To to
2014-07-01 00:00:00.000. Click Go.

Response codes over time
This can be visualized easily using a bar graph.

Create a new visualization:

Click on New and select Vertical Bar1.
Select Logstash-* under From a New Search, Select Index2.
In the X axis, select Date Histogram and @timestamp as the field3.
Click Add sub-buckets and select Split Series4.
Select Terms as the sub aggregation5.
Select response.keyword as the field6.

Visualizing data with Kibana Chapter 7

[242]

Click the Play (Apply Changes) button7.

Save the visualization as Response Codes By Time

As seen in the visualization, on a few days, such as June 9th, June 16th, and so on, there is a
significant amount of 404. Now, to analyze just the 404 events, from the labels/keys panel
click on 404 and then click positive filter:

Visualizing data with Kibana Chapter 7

[243]

The resulting graph is shown as follows:

You can expand the labels/keys and choose the colors from the color
palette and thus change the colors in the visualization. Pin the filter and
navigate to the Discover page to see the requests resulting in 404s.

Top 10 URLs requested
This can be visualized easily using a data table.

The steps are as follows:

Create a new visualization1.
Click on New and select Data Table2.
Select Logstash-* under From a New Search, Select Index3.
Select buckets type as the Split Rows4.
Select Aggregation as the Terms5.
Select the request.keyword field6.

Visualizing data with Kibana Chapter 7

[244]

Set the Size to 107.
Click the Play (Apply Changes) button8.

Save the visualization as Top 10 URLs.

Custom Label fields can be used to provide meaningful names to the
aggregated results. Most of the visualizations support custom labels. Data
table visualizations can be exported as .csv file by clicking Raw or
Formatted links found under the data table visualization.

Bandwidth usage of top five countries over time
The steps to demonstrate this are as follows:

Create a new visualization1.
Click on New and select Area Chart2.
Select Logstash-* under From a New Search, Select Index3.
In Y axis, select Aggregation type as the Sum and bytes as the field4.
In X axis, select Date Histogram and @timestamp as the field5.

Visualizing data with Kibana Chapter 7

[245]

Click Add sub-buckets and select Split Series6.
Select Terms as the sub aggregation7.
Select geoip.country_name.keyword as the field8.
Click the Play (Apply Changes) button:9.

Save the visualization as Top 5 Countries by Bandwidth Usage.

Visualizing data with Kibana Chapter 7

[246]

What if we were not interested in finding only the top five countries? Rearrange the
aggregation and click Play:

The order of aggregations is important.

Visualizing data with Kibana Chapter 7

[247]

Web traffic originating from different countries
This can be visualized easily using a coordinate map.

The steps are as follows:

Create a new visualization1.
Click on New and select Coordinate Map2.
Select logstash-* under From a New Search, Select Index3.
Set the bucket type to Geo Coordinates 4.
Select the aggregation as Geohash5.
Select the geoip.location field6.
In the options tab select Map Type as Heatmap7.
Click the Play (Apply Changes) button:8.

Save the visualization as Traffic By Country.

Based on this visualization, most of the traffic is originating from California.

Visualizing data with Kibana Chapter 7

[248]

For the same visualization, if the metric is changed to bytes, the resulting visualization is as
follows:

You can click on the +/- button found at the top left of the map and zoom
in/zoom out.

Using the Draw Rectangle button found at the top left, below the zoom in
and zoom out buttons, you can draw a region for filtering the documents.
Then you can pin the filter and navigate to the Discover page to see the
documents belonging to that region.

Most used user agent
This can be visualized easily using a variety of charts. Let's use tag cloud.

The steps are as follows:

Create a new visualization1.
Click on New and select Tag Cloud2.
Select logstash-* under From a New Search, Select Index3.

Visualizing data with Kibana Chapter 7

[249]

Set the bucket type to Tags4.
Select the Terms aggregation5.
Select the useragent.name.keyword field6.
Set the Size to 10 and click the Play (Apply Changes) button:7.

Save the visualization as Most used user agent. Chrome, followed by Firefox, is the user
agent the majority of traffic is originating from.

Dashboards
Dashboards help one bring different visualizations into a single page. By using the
previously stored visualizations and saved queries, one can build a dashboard that tells a
story about the data.

Visualizing data with Kibana Chapter 7

[250]

A sample dashboard would look like the following:

Let's see how we can build a dashboard for our log analysis use case.

Creating a dashboard
In order to create a new dashboard, navigate to the Dashboard page and click the Create a
Dashboard button or the + button:

Visualizing data with Kibana Chapter 7

[251]

On the resulting page, the user can click the Add button which shows all the stored
visualizations and saved searches that are available to be added. Clicking on the saved
search/visualizations will result in them getting added to the page:

The user can expand, edit, rearrange, or remove the visualizations using the buttons
available at the top corner of each visualization:

Visualizing data with Kibana Chapter 7

[252]

By using the query bar, field filters, and time filters, search results can be
filtered. The dashboard reflects those changes via the changes to the
embedded visualizations.
For example, you might be only interested in knowing the top user agents
and top devices by country when the response code is 404.

Usage of the query bar, field filters, and time filters is explained in
the Discover section.

Saving the dashboard
Once the required visualizations are added to the dashboard, make sure to save the
dashboard by clicking the Save button available in the toolbar, and provide a title. When a
dashboard is saved, all the query criteria and filters get saved, too. If one wants to save the
time filters, then while saving the dashboard select the Store time with
dashboard checkbox. Saving the time along with the dashboard might be useful when you
want to share/reopen the dashboard in its current state:

Visualizing data with Kibana Chapter 7

[253]

Cloning the dashboard
Using the Clone feature, you can copy the current dashboard, along with its queries and
filters, and create a new dashboard. For example, you might want to create new dashboards
for continents or countries:

The dashboard background theme can be changed from light to dark.
When you click the Edit button in the toolbar, it provides a button called
Options which provides the feature to change the dashboard theme.

Visualizing data with Kibana Chapter 7

[254]

Sharing the dashboard
Using the Share feature, you can either share a direct link to a Kibana dashboard with
another user, or embed the dashboard in a web page as an Iframe:

Timelion
Timelion is a visualization tool for analyzing time-series data in Kibana. It enables you to
combine totally independent data sources within the same visualization. Using its simple
expression language, you can execute advanced mathematical calculations, such as dividing
and subtracting metrics, calculating derivatives and moving averages, and visualizing the
results of these calculations.

Visualizing data with Kibana Chapter 7

[255]

Timelion UI
Timelion is present in the left pane of the Kibana UI, between the Dashboard and Dev
Tools icons:

The main component/feature of the Timelion UI is the Timelion query bar that allows one
to define expressions that influence the generation of the graphs. It allows one to define
multiple expressions separated by commas, and also allows you to chain functions.

The Timelion UI also offers the following options:

New: This is used to create a new Timelion sheet for creating graphs.
Add: One can create multiple charts on the same same Timelion sheet using this
option.
Save: This is used to save the Timelion page. It provides two options, which are
to save the Timelion sheet or save the current expression as a Kibana dashboard
panel.
Open: This is used to open the existing saved Timelion sheet.
Options: This provides the option of specifying the number of rows and columns
in the Timelion sheet.
Docs: This provides the documentation for starting out with Timelion and also
provides the documentation for all the supported functions in Timelion
expressions.
Time Filter: This provides the time-filter options for filtering the data.

Visualizing data with Kibana Chapter 7

[256]

Timelion expressions
The simplest Timelion expression used for generating graphs is as follows:

.es(*)

Timelion expressions always start with a dot followed by the function name which can
accept one or more parameters. The .es(*) expression queries data from all the indexes
present in Elasticsearch. By default, it will just count the number of documents, resulting in
a graph showing the number of documents over time.

If you'd like to restrict Timelion to data within a specific index (for example, logstash-*) ,
you can specify the index within the function as follows:

.es(index=logstash-*)

As Timelion is a time-series visualizer, it uses the @timestamp field present in the index as
the time field for plotting the values on an x axis. One can change it by passing the
appropriate time field as a value to the timefield parameter.

Timelion's helpful auto-completion feature will help you build the expression as you go
along:

Let's see some examples in action to understand Timelion better.

As the log events are from the period May 2014 to June 2014, set the
appropriate date range in the time filter. Navigate to Time Filter |
Absolute Time Range and set From to 2014-05-28 00:00:00.000 and To to
2014-07-01 00:00:00.000. Click Go.

Visualizing data with Kibana Chapter 7

[257]

Let's find the average bytes usage over time for the US. The expression for this would be:

.es(q='geoip.country_code3:US',metric='avg:bytes')

Timelion allows for the plotting of multiple graphs in the same chart as well. By separating
the expressions with commas, one can plot multiple graphs.

Let's find the average bytes usage over time for the US and the average bytes usage over
time for China. The expression for this would be:

 .es(q='geoip.country_code3:US',metric='avg:bytes'),
.es(q='geoip.country_code3:CN',metric='avg:bytes')

Visualizing data with Kibana Chapter 7

[258]

Timelion also allows for the chaining of functions. Let's change the label and color of the
preceding graphs. The expression for this would be:

 .es(q='geoip.country_code3:US',metric='avg:bytes').label('United
States').color('yellow'),
.es(q='geoip.country_code3:CN',metric='avg:bytes').label('China').color('re
d')

One more useful option in Timelion is using offsets to analyze old data. This is useful for
comparing current trends with earlier patterns. Let's compare the sum of bytes usage over
the previous week for the US. The expression for this would be:

.es(q='geoip.country_code3:US',metric='sum:bytes').label('Current Week'),

.es(q='geoip.country_code3:US',metric='sum:bytes',
offset=-1w).label('Previous Week')

Visualizing data with Kibana Chapter 7

[259]

The preceding screenshot demonstrates the ability to add multiple charts
to the same Timelion sheet. By clicking the Add button, one can add
multiple charts. Selecting the chart changes the associated expression in
the Timelion Query Bar.

Timelion also supports the pulling of data from external data sources using a public API.
Timelion has a native API for pulling data from the World Bank, Quandl, and Graphite.

Timelion expressions support around 50 different functions (https:/ ​/
github. ​com/ ​elastic/ ​timelion/ ​blob/ ​master/ ​FUNCTIONS. ​md), which you
can use to build expressions.

Using plugins
Plugins are a way to enhance the functionality of Kibana. All the plugins that are installed
will be placed under the $KIBANA_HOME/plugins folder. Elastic, the company behind
Kibana, provides many plugins that can be installed, and there are quite a number of public
plugins that are not maintained by Elastic which can be installed, too.

Installing plugins
Navigate to KIBANA_HOME and execute the install command, as shown in the following
code, to install any plugins. During installation, either the name of the plugin can be given
(if it's hosted by Elastic itself), or the URL of the location where the plugin is hosted can be
given:

$ KIBANA_HOME>bin/kibana-plugin install <package name or URL>

For example, to install x-pack, a plugin developed and maintained by Elastic, execute the
following command:

$ KIBANA_HOME>bin/kibana-plugin install x-pack

https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md

Visualizing data with Kibana Chapter 7

[260]

To install a public plugin, for example LogTrail (https:/ ​/ ​github. ​com/ ​sivasamyk/
logtrail), execute the following command:

$ KIBANA_HOME>bin/kibana-plugin install
https://github.com/sivasamyk/logtrail/releases/download/v0.1.23/logtrail-6.
0.0-0.1.23.zip

LogTrail is a plugin to view, analyze, search, and tail log events from
multiple hosts in real time with a developer friendly interface, inspired
by Papertrail (https:/ ​/ ​papertrailapp. ​com/​).

A list of publicly available Kibana plugins can be found at https:/ ​/​www.
elastic. ​co/ ​guide/ ​en/ ​kibana/ ​6.​0/ ​known- ​plugins. ​html.

Removing plugins
To remove a plugin, navigate to KIBANA_HOME and execute the remove command followed
by the plugin name:

$ KIBANA_HOME>bin/kibana-plugin remove x-pack

Summary
In this chapter, we covered how to effectively use Kibana to build beautiful dashboards for
effective storytelling about your data.

We learned how to configure Kibana to visualize data from Elasticsearch. We also looked at
how to add custom plugins to Kibana.

In the next chapter, we will cover ElasticSearch, and the core components that help when
building data pipelines. We will also cover visualizing data to add the extensions needed
for specific use cases.

https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://papertrailapp.com/
https://papertrailapp.com/
https://papertrailapp.com/
https://papertrailapp.com/
https://papertrailapp.com/
https://papertrailapp.com/
https://papertrailapp.com/
https://papertrailapp.com/
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html

8
Elastic X-Pack

X-Pack is an Elastic Stack extension that bundles security, alerting, monitoring, reporting,
machine learning, and graph capabilities into one easy-to-install package. It adds essential
features to make Elastic Stack production ready. Unlike the components of Elastic Stack,
which are open source, X-Pack is a commercial offering from Elastic.co, and so it requires a
paid license for usage. When you install X-Pack for the first time, you are given a 30-day
trial. The basic or free version will provide only monitoring and Dev Tools such as Search
Profiler and Grok Debugger. Even though X-Pack comes as a bundle, it allows one to easily
enable or disable the features one wants to use.

In this chapter, let's explore the following topics:

Installing X-Pack on Elasticsearch and Kibana
Securing Elasticsearch and Kibana
Monitoring Elasticsearch
Exploring alerting

Installing X-Pack
As X-Pack is an extension of Elastic Stack, prior to installing X-Pack, you need to have both
Elasticsearch and Kibana installed. You must run the version of X-Pack that matches the
version of Elasticsearch and Kibana.

Elastic X-Pack Chapter 8

[262]

Installing X-Pack on Elasticsearch
X-Pack is installed just like any plugin to extend Elasticsearch.

These are the steps to install X-Pack in Elasticsearch:

Navigate to the ES_HOME folder.1.
Install X-Pack using the following command:2.

$ ES_HOME> bin/elasticsearch-plugin install x-pack

During installation, it will ask you to grant extra permissions to X-Pack, which are
required by Watcher to send email alerts and also to enable Elasticsearch to
launch the machine learning analytical engine. Specify y to continue the
installation or N to abort the installation.

You should get the following logs/prompts during installation:

-> Downloading x-pack from elastic
[===] 100%
@@@
@ WARNING: plugin requires additional permissions @
@@@
* java.io.FilePermission \\.\pipe* read,write
* java.lang.RuntimePermission
accessClassInPackage.com.sun.activation.registries
* java.lang.RuntimePermission getClassLoader
* java.lang.RuntimePermission setContextClassLoader
* java.lang.RuntimePermission setFactory
* java.net.SocketPermission * connect,accept,resolve
* java.security.SecurityPermission createPolicy.JavaPolicy
* java.security.SecurityPermission getPolicy
* java.security.SecurityPermission putProviderProperty.BC
* java.security.SecurityPermission setPolicy
* java.util.PropertyPermission * read,write
* java.util.PropertyPermission sun.nio.ch.bugLevel write
See
http://docs.oracle.com/javase/8/docs/technotes/guides/security/perm
issions.html
for descriptions of what these permissions allow and the associated
risks.

Continue with installation? [y/N]y
@@@
@ WARNING: plugin forks a native controller @
@@@

Elastic X-Pack Chapter 8

[263]

This plugin launches a native controller that is not subject to the
Java
security manager nor to system call filters.

Continue with installation? [y/N]y
Elasticsearch keystore is required by plugin [x-pack], creating...
-> Installed x-pack

Restart Elasticsearch:3.

$ ES_HOME> bin/elasticsearch

Generate the passwords for the default/reserved users—elastic, kibana, and4.
logstash_system—by executing this command:

$ ES_HOME>bin/x-pack/setup-passwords interactive

You should get the following logs/prompts to enter the password for the
reserved/default users:

Initiating the setup of reserved user
elastic,kibana,logstash_system passwords.
You will be prompted to enter passwords as the process progresses.
Please confirm that you would like to continue [y/N]y
Enter password for [elastic]: elastic
Reenter password for [elastic]: elastic
Enter password for [kibana]: kibana
Reenter password for [kibana]:kibana
Enter password for [logstash_system]: logstash
Reenter password for [logstash_system]: logstash
Changed password for user [kibana]
Changed password for user [logstash_system]
Changed password for user [elastic]

Please make a note of the passwords set for the reserved/default
users. You can choose any password of your liking. We have chosen the
passwords as elastic, kibana, and logstash for elastic, kibana, and
logstash_system users, respectively, and we will be using them
throughout this chapter.

Elastic X-Pack Chapter 8

[264]

To verify the X-Pack installation and enforcement of security, point your web browser
to http://localhost:9200/ to open Elasticsearch. You should be prompted to log in to
Elasticsearch. To log in, you can use the built-in elastic user and the password elastic.
Upon a successful log in, you should see the following response:

{
name: "fwDdHSI",
cluster_name: "elasticsearch",
cluster_uuid: "08wSPsjSQCmeRaxF4iHizw",
version: {
number: "6.0.0",
build_hash: "8f0685b",
build_date: "2017-11-10T18:41:22.859Z",
build_snapshot: false,
lucene_version: "7.0.1",
minimum_wire_compatibility_version: "5.6.0",
minimum_index_compatibility_version: "5.0.0"
},
tagline: "You Know, for Search"
}

A typical cluster in Elasticsearch is made up of multiple nodes, and X-Pack needs to be
installed on each node belonging to the cluster.

To skip the install prompt, use the—batch parameters during installation:
$ES_HOME>bin/elasticsearch-plugin install x-pack --batch.

You installation of X-Pack will have created folders named x-pack in bin,
config, and plugins found under ES_HOME. We shall explore these in
later sections of the chapter.

Installing X-Pack on Kibana
X-Pack is installed just like any plugins to extend Kibana.

Elastic X-Pack Chapter 8

[265]

The following are the steps to install X-Pack in Kibana:

Navigate to the KIBANA_HOME folder.1.
Install X-Pack using the following command:2.

$KIBANA_HOME>bin/kibana-plugin install x-pack

You should get the following logs/prompts during installation:

Attempting to transfer from x-pack
Attempting to transfer from
https://artifacts.elastic.co/downloads/kibana-plugins/x-pack/x-pack
-6.0.0.zip
Transferring 120307264 bytes....................
Transfer complete
Retrieving metadata from plugin archive
Extracting plugin archive
Extraction complete
Optimizing and caching browser bundles...
Plugin installation complete

Add the following credentials in the kibana.yml file found under3.
$KIBANA_HOME/config and save it:

elasticsearch.username: "kibana"
elasticsearch.password: "kibana"

If you have chosen a different password for the kibana user during
password setup, use that value for
the elasticsearch.password property.

Start Kibana:4.

$KIBANA_HOME>bin/kibana

Elastic X-Pack Chapter 8

[266]

To verify the X-Pack installation, go to http://localhost:5601/ to open Kibana. You
should be prompted to log in to Kibana. To log in, you can use the built-in elastic user
and the password elastic.

Your installation of X-Pack will have created a folder named x-pack in
the plugins folder found under KIBANA_HOME.

You can also optionally install X-Pack on Logstash. However, X-Pack
currently supports only monitoring of Logstash.

Uninstalling X-Pack
To uninstall X-Pack:

Stop Elasticsearch.1.
Remove X-Pack from Elasticsearch:2.

$ES_HOME>bin/elasticsearch-plugin remove x-pack

Elastic X-Pack Chapter 8

[267]

Restart Elasticsearch and stop Kibana 2. Remove X-Pack from Kibana:3.

$KIBANA_HOME>bin/kibana-plugin remove x-pack

Restart Kibana.4.

Configuring X-Pack
X-Pack comes bundled with security, alerting, monitoring, reporting, machine learning, and
graph capabilities. By default, all of these features are enabled. However, one might not be
interested in all the features it provides. One can selectively enable and disable the
features that they are interested in from the elasticsearch.yml and kibana.yml
configuration files.

Elasticsearch supports the following features and settings in the elasticsearch.yml file:

Feature Setting Description

Machine Learning xpack.ml.enabled
Set this to false to disable X-Pack
machine learning features

Monitoring xpack.monitoring.enabled
Set this to false to disable Elasticsearch's
monitoring features

Security xpack.security.enabled
Set this to false to disable X-Pack
security features

Watcher xpack.watcher.enabled Set this to false to disable Watcher

Kibana supports these features and settings in the kibana.yml file:

Feature Setting Description

Machine learning xpack.ml.enabled
Set to false to disable X-Pack machine
learning features

Monitoring xpack.monitoring.enabled
Set to false to disable Kibana's
monitoring features

Security xpack.security.enabled
Set to false to disable X-Pack security
features

Graph xpack.graph.enabled
Set to false to disable X-Pack graph
features

Elastic X-Pack Chapter 8

[268]

Reporting xpack.reporting.enabled
Set to false to disable X-Pack reporting
features

If X-Pack is installed on Logstash, you can disable the monitoring by
setting the xpack.monitoring.enabled property to false in
the logstash.yml configuration file.

Security
Components of Elastic Stack are unsecured, as it doesn't contain inherent security built into
it and can be accessed by anyone. This poses a security risk when running Elastic Stack in
production. In order to prevent unauthorized access in production, different mechanisms of
imposing security such as running Elastic Stack behind a firewall and securing via reverse
proxies (such as nginx, HAProxy, and so on) are employed. Elastic.co offers a commercial
product to secure Elastic Stack. The offering is part of X-Pack and the module is called
Security.

The X-Pack Security module provides the following ways to secure Elastic Stack:

User authentication and User authorization
Node/Client Authentication and Channel Encryption
Auditing

User authentication
User authentication is a process of validating the user and thus preventing unauthorized
access to Elastic Cluster. In the X-Pack Security module, the authentication process is
handled by one or more authentication services called realms. The Security module
provides two types of realms, namely internal realms and external realms.

Two types of built-in internal realms are native and file. The native realm is the default
realm and the user credentials are stored in a special index called .security-6 on
Elasticsearch itself. The users are managed using the User Management API or the
Management page of the Kibana UI. We will be exploring more of this in a later section of
this chapter.

Elastic X-Pack Chapter 8

[269]

If the realm is of type file, then the user credentials are stored in a file on each node. The
users are managed via dedicated tools that are provided by X-Pack on installation. These
tools can be found at $ES_HOME\bin\x-pack. The files are stored under
the $ES_HOME\config\x-pack folder. As the credentials are stored in a file, it is the
responsibility of the administrator to create users with the same credentials on each node.

Built-in external realms are ldap, active_directory, and pki, which use external LDAP
server, external Active Directory Server, and Public Key Infrastructure respectively to
authenticate users.

Depending on the realms configured, the user credentials need to be attached to
the requests sent to Elasticsearch. Realms live within a realm chain. The realms order
configured in the elasticsearch.yml file determines the order in which realms are
consulted during the authentication process. Each realm is consulted one by one based on
the order defined until the authentication is successful. Once one of the realms successfully
authenticates the request, the authentication is considered to be successful. If none of the
realms is able to authenticate the user, then the authentication is considered unsuccessful
and an authentication error (HTTP 401) will be returned to caller. The default realm chain
consists of internal realm types, that is, native and file.

If none of the realms are specified in elasticsearch.yml, then the default realm used is
native. To use the file type realm or external realms, they need to be specified in the
elasticsearch.yml file.

For example, the following snippet shows the configuration for the realm chain containing
native, file, and ldap:

xpack.security.authc:
 realms:
 native:
 type: native
 order: 0
 file:
 type: file
 order: 1
 ldap_server:
 type: ldap
 order: 2
 url: 'url_to_ldap_server'

Elastic X-Pack Chapter 8

[270]

 To disable a specific realm type, use the enabled:false property, as
shown in the following example:
ldap_server:
 type: ldap
 order: 2
 enabled: false
 url: 'url_to_ldap_server'

User authorization
Once the user is successfully authenticated, the authorization process kicks in.
Authorization determines whether the user behind the request has enough permissions to
execute a particular request.

In X-Pack security, Secured Resources are the foundation of user-based security. A secured
resource is a resource that needs access, such as indexes, documents, fields or access, to
perform Elasticsearch cluster operations. X-Pack Security enables authorization by
assigning permissions to roles that are assigned to users. A permission is one or more
privileges against a secured resource. A privilege is a named group representing one or
more actions that a user may execute against a secured resource. A user can have one or
more roles and the total set of permissions that a user has is defined as a union of the
permissions in all its roles:

Elastic X-Pack Chapter 8

[271]

The X-Pack security module provides three types of privileges:

Cluster Privileges: Cluster Privileges provide privileges for performing various1.
operations on the cluster. For example:

all: Allows one to execute cluster administration operations settings,
update, rerouting, or managing users and roles
monitor: Allows one to execute all cluster read-only operations, such as
fetching cluster health, cluster state, nodes' state, and so on, for
monitoring purposes
manage: This allows one to execute and perform cluster operations that
can update the cluster, such as rerouting and updating cluster settings

Index Privileges: Indices Privileges provide privileges for performing various2.
operations on indices. For example:

all: Allows you to execute any operation on an index
read: Allows you to execute read-only operations on an index, such as
invoking search, get, suggest, and many more APIs
create_index: This privilege allows you to create a new index
create: This privilege allows you to index new documents into an index

Run As Privilege: This provides the ability to perform user impersonation; that3.
is, it enables an authenticated user to test out another users' access rights without
knowing their credentials.

The complete list of privileges can be obtained at https:/ ​/​www. ​elastic.
co/​guide/ ​en/ ​x-​pack/ ​master/ ​security- ​privileges. ​html.

Node/Client Authentication and Channel Encryption: By encrypting the4.
communication, X-Pack security prevents network-based attacks. It provides the
ability to encrypt traffic to and from the Elasticsearch cluster to outside
applications as well as encrypt the communication between nodes in the cluster.
To prevent unintended nodes from joining the cluster, one can configure the
nodes to authenticate as they join the cluster using SSL certificates. X-Pack
security IP filtering can prevent unintended application clients, node clients, or
transport clients from joining the cluster.

https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html
https://www.elastic.co/guide/en/x-pack/master/security-privileges.html

Elastic X-Pack Chapter 8

[272]

Auditing: Auditing allows us to capture suspicious activity in our cluster.5.
One can enable auditing to keep track of security-related events, such as
authentication failures and refused connections. Logging these events enables
one to monitor the cluster for suspicious activity and provides evidence in the
event of an attack.

Security in action
In this section, let's look into creating new users, creating new roles, and associating roles
with users. Let's import sample data and use it to understand how security works.

Save the following data to a file named data.json:

{"index" : {"_index":"employee","_type":"employee"}}
{ "name":"user1", "email":"user1@packt.com","salary":5000, "gender":"M",
"address1":"312 Main St", "address2":"Walthill", "state":"NE"}
{"index" : {"_index":"employee","_type":"employee"}}
{ "name":"user2", "email":"user2@packt.com","salary":10000, "gender":"F",
"address1":"5658 N Denver Ave", "address2":"Portland", "state":"OR"}
{"index" : {"_index":"employee","_type":"employee"}}
{ "name":"user3", "email":"user3@packt.com","salary":7000, "gender":"F",
"address1":"300 Quinterra Ln", "address2":"Danville", "state":"CA"}
{"index" : {"_index":"department","_type":"department"}}
{ "name":"IT", "employees":50 }
{"index" : {"_index":"department","_type":"department"}}
{ "name":"SALES", "employees":500 }
{"index" : {"_index":"department","_type":"department"}}
{ "name":"SUPPORT", "employees":100 }

The _bulk API requires the last line of the file to end with the newline
character, \n. While saving the file, make sure you have a newline as the
last line of the file.

Elastic X-Pack Chapter 8

[273]

Navigate to the directory where the file is stored and execute the following command to
import the data into Elasticsearch:

$ directoy_of_data_file> curl -s -H "Content-Type: application/json" -u
elastic:elastic -XPOST http://localhost:9200/_bulk --data-binary @data.json

To check whether the import was successful, execute the following command and validate
the count of documents:

D:\packt\book>curl -s -H "Content-Type: application/json" -u
elastic:elastic -XGET http://localhost:9200/employee,department/_count
{"count":6,"_shards":{"total":10,"successful":10,"skipped":0,"failed":0}}

New user creation
Let's explore the creation of a new user in this section. Log in to Kibana
(http://locahost:5601) as the elastic user:

To create a new user, Navigate to Management UI and select Users in the
Security Section:

Elastic X-Pack Chapter 8

[274]

The Users screen displays the available users and their roles. By default, it
displays the default/reserved users that are part of the X-Pack security native
realm:

To create a new user, click on the Create User button and enter the details as
shown in the following screenshot. Click on Save:

Elastic X-Pack Chapter 8

[275]

Now that the user is created, let's try to access some Elasticsearch REST APIs with
the new user credentials and see what happens. Execute the following command
and check the response returned. As the user is not having any role associated,
even the authentication is successful. The user gets HTTP status code 403, stating
that the user is not authorized to carry out the operation:

D:\packt\book>curl -s -H "Content-Type: application/json" -u
user1:password -XGET http://localhost:9200
Response:
{"error":{"root_cause":[{"type":"security_exception","reason":"acti
on [cluster:monitor/main] is unauthorized for user
[user1]"}],"type":"security_exception","reason":"action
[cluster:monitor/main] is unauthorized for user
[user1]"},"status":403}

Similarly, go ahead and create one more user called user2 as shown in the
following screenshot:

Elastic X-Pack Chapter 8

[276]

Deleting a user
To delete a role, navigate to Users UI, select the custom users created and click on
the Delete button. One cannot delete built-in users:

Changing the password
Navigate to Users UI and select the custom user for whom the password needs to be
changed. This will take you to the User Details page. One can edit the user details,
change the password, or delete the user from the user details screen. To change the
password, click on the Change Password link and enter the new password details. Click on
the Save button:

Elastic X-Pack Chapter 8

[277]

The passwords must be at minimum 6 characters long.

New role creation
To create a new user, navigate to the Management UI and select Roles in the
Security Section, or if you are currently on the Users screen, click on the Roles tab.
The Roles screen displays all the roles that are defined/available. By default, it displays the
built-in/reserved roles that are part of the X-Pack Security native realm:

X-Pack security also provides a set of built-in roles that can be assigned to users. These roles
are reserved and the privileges associated to these roles cannot be updated. Some of the
built-in roles are:

kibana_system: This role grants the necessary access to read from and write to
Kibana indices, manage index templates, and check the availability of the
Elasticsearch cluster. This role also grants read access for monitoring
(.monitoring-*) and read-write access to reporting (.reporting-*) indices.
The default user kibana, has these privileges.

Elastic X-Pack Chapter 8

[278]

superuser: This role grants access to perform all operations on clusters, indices,
and data. This role also grants rights to create/modify users or roles. The default
user elastic, has superuser privileges.
ingest_admin: This role grants permissions to manage all pipeline
configurations and all index templates.

To find the complete list of built-in roles and their descriptions, please
refer to https:/ ​/​www. ​elastic. ​co/ ​guide/ ​en/​x- ​pack/ ​master/ ​built- ​in-
roles. ​html.

Users with the superuser role one can create custom roles and assign them to the users
using the Kibana UI.

Let's create a new role with cluster privilege monitor and assign it to user1 so that the user
can cluster read-only operations such as cluster state, cluster health, nodes info, nodes stats,
and so on.

Click on the Create Role button in the Roles page/tab and fill in the details as shown in the
following screenshot:

https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html

Elastic X-Pack Chapter 8

[279]

To assign the newly created role to user1, click on the Users Tab and select user1. In the
User Details page, from the roles dropdown, select the monitor_role role and click on
the Save button, as shown in this screenshot:

A user can be assigned multiple roles.

Now let's validate that user1 can access some cluster/node details APIs:

curl -u user1:password "http://localhost:9200/_cluster/health?pretty"
{
 "cluster_name" : "elasticsearch",
 "status" : "yellow",
 "timed_out" : false,
 "number_of_nodes" : 1,
 "number_of_data_nodes" : 1,
 "active_primary_shards" : 53,
 "active_shards" : 53,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 52,
 "delayed_unassigned_shards" : 0,
 "number_of_pending_tasks" : 0,
 "number_of_in_flight_fetch" : 0,
 "task_max_waiting_in_queue_millis" : 0,
 "active_shards_percent_as_number" : 50.476190476190474
}

Elastic X-Pack Chapter 8

[280]

Let's also execute the same command that we executed when we created user1 but without
assigning any roles to it, and let's see the difference:

curl -u user1:password "http://localhost:9200"
{
 "name" : "fwDdHSI",
 "cluster_name" : "elasticsearch",
 "cluster_uuid" : "08wSPsjSQCmeRaxF4iHizw",
 "version" : {
 "number" : "6.0.0",
 "build_hash" : "8f0685b",
 "build_date" : "2017-11-10T18:41:22.859Z",
 "build_snapshot" : false,
 "lucene_version" : "7.0.1",
 "minimum_wire_compatibility_version" : "5.6.0",
 "minimum_index_compatibility_version" : "5.0.0"
 },
 "tagline" : "You Know, for Search"
}

How to Delete/Edit a role
To delete a role, navigate to the Roles UI/Tab, select the custom roles created, and click
on Delete. One cannot delete built-in roles:

Elastic X-Pack Chapter 8

[281]

To edit a role, navigate to the Roles UI/Tab and click on the custom role that needs to be
edited. The user is taken to the Roles Details page. Make the required changes in the
privileges section and click on the Save button. One can also delete the role from this page:

Document-level security or field-level security
Now that we know how to create a new user, create a new role, and assign roles to a user,
let's explore how security can be imposed on documents and fields for a given
index/document.

The sample data that we imported before, at the beginning of this chapter, contained two
indexes: employee and department.

Use Case 1: When a user searches for employee details, the user should not be able to find
the salary/address details contained in the documents belonging to the employee index.

Elastic X-Pack Chapter 8

[282]

This is where field-level security helps. Let's create a new role (employee_read) with
read index privileges on the employee index. To restrict the fields, choose the fields that
are allowed to be accessed by the user in the Granted Fields section shown in the
following screenshot:

When creating a role, one can specify the same set of privileges on
multiple indexes by adding one or more index names to the
Indices field, or one can specify different privileges for different indexes
by clicking on the + button found in the Index Privileges section.

Elastic X-Pack Chapter 8

[283]

Assign the newly created role to user2:

Now let's search in the employee index and check what all fields were returned in the
response. As seen in the following response, we have successfully restricted the user from
accessing salary and address details:

curl -u user2:password "http://localhost:9200/employee/_search?pretty"
{
 "took" : 20,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "skipped" : 0,
 "failed" : 0
 },
 "hits" : {
 "total" : 3,
 "max_score" : 1.0,
 "hits" : [
 {
 "_index" : "employee",
 "_type" : "employee",
 "_id" : "3QuULGABsx353N7xt4k6",
 "_score" : 1.0,
 "_source" : {
 "gender" : "F",
 "name" : "user2",
 "state" : "OR",
 "email" : "user2@packt.com"
 }

Elastic X-Pack Chapter 8

[284]

 },
 {
 "_index" : "employee",
 "_type" : "employee",
 "_id" : "3guULGABsx353N7xt4k6",
 "_score" : 1.0,
 "_source" : {
 "gender" : "F",
 "name" : "user3",
 "state" : "CA",
 "email" : "user3@packt.com"
 }
 },
 {
 "_index" : "employee",
 "_type" : "employee",
 "_id" : "3AuULGABsx353N7xt4k6",
 "_score" : 1.0,
 "_source" : {
 "gender" : "M",
 "name" : "user1",
 "state" : "NE",
 "email" : "user1@packt.com"
 }
 }
]
 }
}

Use Case 2: We want to have a multi-tenant index and restrict certain documents to certain
users. Say, user1 should be able to search in the department index and retrieve only
documents belonging to the IT department.

Elastic X-Pack Chapter 8

[285]

Let's create a role, department_IT_role, and provide the read privilege for the index
department. To restrict the documents, specify the query in the Granted Documents
Query section. The query should be in the Elatsicsearch Query DSL format:

Associate the newly created role with user1:

Elastic X-Pack Chapter 8

[286]

Lets verify that it is working as expected by executing a search against the department
index, using the user1 credentials:

curl -u user1:password "http://localhost:9200/department/_search?pretty"
{
 "took" : 1,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "skipped" : 0,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 1.0,
 "hits" : [
 {
 "_index" : "department",
 "_type" : "department",
 "_id" : "3wuULGABsx353N7xt4k6",
 "_score" : 1.0,
 "_source" : {
 "name" : "IT",
 "employees" : 50
 }
 }
]
 }
}

X-Pack security APIs
In the previous section, we learned how to manage users and roles using the Kibana UI.
However, many times we would like to carry out these operations programmatically from
our applications. This is where the X-Pack Security APIs come in handy. X-Pack Security
APIs are REST APIs that can be used for user/role management, role mapping to users,
performing authentication, and checking whether the authenticated user has specified list of
privileges. These APIs perform operations on the native realm. The Kibana UI internally
makes use of these APIs for user/role management. In order to execute these APIs, the user
should have superuser or the latest manage_security privileges. Let's explore some of
these APIs in this section.

Elastic X-Pack Chapter 8

[287]

User management APIs
This provides a set of APIs to create, update, or delete users from the native realm.

The list of APIs available:

GET /_xpack/security/user -- To list all the
user
GET /_xpack/security/user/<username> -- To get the details
of a specific user
DELETE /_xpack/security/user/<username> -- To Delete a user
POST /_xpack/security/user/<username> -- To Create a new
user
PUT /_xpack/security/user/<username> -- To Update an
existing user
PUT /_xpack/security/user/<username>/_disable -- To disable an
existing user
PUT /_xpack/security/user/<username>/_enable -- To enable an
existing disabled user
PUT /_xpack/security/user/<username>/_password -- to Change the
password

The username in the path parameter specifies the user against which the operation is
carried out. The body of the request accepts parameters such as email, full_name,
and password as string and roles as list.

Example 1: Create a new user, user3, with monitor_role assigned to it:

curl -u elastic:elastic -X POST
http://localhost:9200/_xpack/security/user/user3 -H 'content-type:
application/json' -d '
{
 "password" : "randompassword",
 "roles" : ["monitor_role"],
 "full_name" : "user3",
 "email" : "user3@packt.com"
}'

Response:
user":{"created":true}}

 Example 2: Get the list of all users:

curl -u elastic:elastic -XGET
http://localhost:9200/_xpack/security/user?pretty

Elastic X-Pack Chapter 8

[288]

Example 3: Delete user3:

curl -u elastic:elastic -XDELETE
http://localhost:9200/_xpack/security/user/user3
Response:
{"found":true}

Example 4: Change the password:

curl -u elastic:elastic -XPUT
http://localhost:9200/_xpack/security/user/user2/_password -H "content-
type: application/json" -d "{ \"password\": \"newpassword\"}"

When using curl commands on Windows machines, note that they don't
work if they have single quotes (') in them. The preceding example
showed the use of a curl command on a Windows machine. Also make
sure you escape double quotes within the body of the command as shown
in the preceding example.

Role management APIs
This provides a set of APIs to create, update, remove, and retrieve roles from the
native realm.

The list of APIs available is as follows:

GET /_xpack/security/role -- To retrieve the
list of all roles
GET /_xpack/security/role/<rolename> -- To retrieve
details of a specific role
POST /_xpack/security/role/<rolename>/_clear_cache -- To
evict/clear roles from the native role cache
POST /_xpack/security/role/<rolename> -- To create a
role
PUT /_xpack/security/role/<rolename> -- To update an
existing role

The rolename in the path parameter specifies the role against which the operation is
carried out. The body of the request accepts parameters such as cluster, which accepts a
list of cluster privileges; indices, which accepts a list of objects that specify the indices
privileges ; and run_as, containing a list of users that the owners of this role can
impersonate.

Elastic X-Pack Chapter 8

[289]

The indices contains an object with parameters such as names, which accepts a list of
index names; field_security, which accepts a list of fields to provide read
access; privileges, which accepts a list of index privileges; and the query parameter,
which accepts the query to filter the documents.

Example 1: Create a new role with field-level security imposed on the employee index:

curl -u elastic:elastic -X POST
http://localhost:9200/_xpack/security/role/employee_read_new -H 'content-
type: application/json' -d '{

 "indices": [
 {
 "names": ["employee"],
 "privileges": ["read"],
 "field_security" : {
 "grant" : ["*"],
 "except": ["address*","salary"]
 }
 }
]
}'

Response:
role":{"created":true}}

Unlike the Kibana UI, which doesn't have any way to exclude fields from
user access, using the security API, one can easily exclude or include fields
as part of field-level security. In the preceding example, we have restricted
access to the salary field and any fields starting with
the address text/string.

Example 2: Get the details of a specific role:

curl -u elastic:elastic -XGET
http://localhost:9200/_xpack/security/role/employee_read_new?pretty
Response:
{
 "employee_read" : {
 "cluster" : [],
 "indices" : [
 {
 "names" : [
 "employee"
],
 "privileges" : [

Elastic X-Pack Chapter 8

[290]

 "read"
],
 "field_security" : {
 "grant" : [
 "*"
],
 "except" : [
 "address*",
 "salary"
]
 }
 }
],
 "run_as" : [],
 "metadata" : { },
 "transient_metadata" : {
 "enabled" : true
 }
 }
}

Example 3: Delete a role:

curl -u elastic:elastic -XDELETE
http://localhost:9200/_xpack/security/role/employee_read

Response:
{"found":true}

Similar to User Management and Role Management APIs, using Role
Mapping APIs, one can associate roles to users. Details about Role
Mapping APIs can be found at https:/ ​/​www. ​elastic. ​co/​guide/ ​en/
elasticsearch/ ​reference/ ​master/ ​security- ​api- ​role- ​mapping. ​html.

Monitoring Elasticsearch
Elasticsearch exposes a rich set of APIs known as stats APIs to monitor Elasticsearch at
cluster, node, and indices levels. Some of those APIs are _cluster/stats, _nodes/stats,
and myindex/stats. These APIs provide state/monitoring information in real time and the
statistics presented in these APIs is point-in-time and in .json format. As an
administrator/developer, when working with Elasticsearch, one would be interested in both
real-time statistics as well as historical statistics, which would help them in
understanding/analyzing the behavior (health or performance) of a cluster better.

https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html

Elastic X-Pack Chapter 8

[291]

Also, reading through a set of numbers for a period of time (say, for example, to find out the
JVM utilization over time) would be very difficult. Rather, a UI that pictorially represents
these numbers as graphs would be very useful in visualizing and analyzing the current and
past trends/behaviors (health or performance) of the Elasticsearch cluster. This is where the
monitoring feature of X-Pack comes in handy.

The X-Pack monitoring components enable you to easily monitor the Elastic
Stack (Elasticsearch, Kibana, and Logstash) from Kibana. X-Pack consists of a monitoring
agent that runs on each of the instances (Elasticsearch, Kibana, and Logstash) and
periodically collects and indexes the health and performance metrics. These can then be
easily visualized using the Monitoring UI component of Kibana. The Monitoring UI of
Kibana comes with predefined dashboards, which let you easily visualize and analyze real-
time and past performance data.

By default, the metrics collected by X-Pack are indexed within the cluster you are
monitoring. However, in production, it is strongly recommended to have a separated
dedicated cluster to store these metrics. A dedicated cluster for monitoring has the
following benefits:

Enables you to monitor multiple clusters from a central location
Reduces the load and storage on your production clusters as the metrics are
stored in a dedicated monitoring cluster
There is access to Monitoring even when some clusters are unhealthy or down
Separate security levels from Monitoring and production clusters can be
enforced:

Elastic X-Pack Chapter 8

[292]

As stated earlier, the metrics collected by X-Pack are indexed within the cluster you are
monitoring. If a dedicated monitoring cluster is set up, then we need to configure where to
send/ship the metrics to in the monitored instances. This can be configured in the
elasticsearch.yml file of each node, as shown in the following code:

xpack.monitoring.exporters:
 id1:
 type: http
 host: ["http://dedicated_monitoring_cluster:port"]

It's optional to have X-Pack installed on a dedicated monitoring cluster;
however, it is recommended to have it installed there too. If X-Pack is
installed on a dedicated monitoring cluster, then make sure you provide
the user credentials (auth.username and auth.password) as well while
configuring the monitored instances. Monitored metrics are stored in a
system-level index that has the index pattern .monitoring-*.

Monitoring UI
To access the Monitoring UI, log in to Kibana and click on Monitoring from the side
navigation. The resulting page will be as shown in the following screenshot:

Elastic X-Pack Chapter 8

[293]

This page provides a summary of the metrics available for Elasticsearch and Kibana. By
clicking on links such as Overview, Nodes, Indices or Instances, one can get
additional/detailed information. The metrics displayed on the page are automatically
refreshed every 10 seconds, and by default, one can view the data of the past 1 hour, which
can be changed in the Time Filter found towards the top left of the screen. Also, one can see
the cluster name, which in this case is only one—elasticsearch.

The monitoring agent installed on the instances being monitored sends
metrics every 10 seconds by default. This can be changed in the
configuration file (elasticsearch.yml) by setting the appropriate value
to the pack.monitoring.collection.interval property.

Elasticsearch metrics
One can monitor the Elasticsearch performance data at a cluster level, node level, and index
level. The Elasticsearch Monitoring UI provides three tabs, each displaying the metrics at
cluster, node, and index levels. The three tabs are Overview, Nodes, and Indices. To
navigate to the Elasticsearch Monitoring UI, click on one of the links (Overview, Nodes,
and Indices) found under the Elasticsearch section.

Overview tab
Cluster-level metrics provide aggregated information across all the nodes and is the first
place one should look when monitoring an Elasticsearch cluster. Cluster-level metrics are
displayed in the Overview tab and can be navigated to by clicking on the Overview link
under the Elasticsearch section found in the landing page of the Monitoring UI.

Elastic X-Pack Chapter 8

[294]

The Overview tab provides key metrics that indicate the overall health of an Elasticsearch
cluster:

The key metrics that are displayed are cluster status, number of nodes and number of
indices present, memory used, total number of shards present, total number of unassigned
shards, total number of documents present in the indices, the disk space used for storing the
documents, uptime, and version of Elasticsearch. The Overview tab also displays charts
that show the search and indexing performance over time, and the table at the bottom
shows information about any shards that are being recovered.

Clicking on the information icon present at the top right of each chart
provides a description of the metrics.

In the Overview Tab, the metrics are aggregated at the cluster level; so when monitoring
the Elasticsearch cluster, one might miss out some vital parameters that might eventually
affect the overall cluster state. For example, the Memory Used metric showcases the
average memory used by combining the memory used across all the nodes. However, one
node might be running with full memory utilization and an other nodes memory might
have hardly been used. Hence, as an administrator, one should always monitor at
the Node level too.

Elastic X-Pack Chapter 8

[295]

Nodes tab
Clicking on the Nodes tab displays the summary details of each node present in the cluster,
as shown in this screenshot:

For each node, it provides information such as the name of the node, status of the
node, CPU usage (average, min, and max usage), load average (average, min, and max
usage), JVM memory (average, min, and max usage), disk free space (average, min, and
max usage), and total number of assigned Shards. It also provides information such as
whether a node is a Master node or not (indicated by a star next to the node name) and
details about the transport host and port.

Clicking on the Node name provides detailed information about the node. This detailed
information of the node is displayed in two tabs, namely Overview and Advanced. The
Node Overview tab looks like this:

Elastic X-Pack Chapter 8

[296]

The node Overview tab provides information in the top pane, such as the status of the
node, transport IP address of the node, JVM Heap Utilization in percent, free disk space
available, total number of documents present on the node (this number includes documents
present in both replica and primary shards), total disk space used, total number of indices
in the node, total number of shards, and type of node (master, data, ingest, and
coordinating node).

The Node Overview tab also provides visualizations for JVM Heap usage, Index Memory,
CPU utilization in percent, system load average, Latency (in ms) and Segment Count. The
statuses of shards of various indices are provided under the Shard Legend section.

If the Show system indices checkbox is checked, then the shard status of
all the indexes created by X-Pack can be seen.

The Node Advanced tab provides visualizations of other metrics such as garbage collection
(GC) count and duration, detailed Index Memory usage at Lucene and Elasticsearch
levels, Indexing Time (in ms), Request rate, Indexing, Read Threads, and Cgroup stats.

Elastic X-Pack Chapter 8

[297]

The Indices tab
Clicking on the Indices tab displays the summary details of each index present in the
cluster, as shown in the following screenshot:

If the Show system indices checkbox is checked, then the shard status of
all indexes created by X-Pack can be seen.

For each index, it provides information such as the name of the index, status of the index,
total count of documents present, disk space used, index rate per second, search rate per
second, and number of unassigned shards.

Elastic X-Pack Chapter 8

[298]

Clicking on an Index name provides detailed information about the Index. The detailed
information is displayed in two tabs, namely Overview and Advanced. The Index
Overview tab looks like this:

This tab provides information in the top pane, such as the status of the index, total number
of documents present in the index, disk space used, total number of shards (primary +
replicas), and unassigned shards.

The Index Overview tab also provides visualizations for Index Memory (in KB), Index size
(in MB), Search rate per second, Indexing rate per second, total count of segments and total
count of documents. Shard Legend displays the status of shards belonging to the index and
the information of the nodes the shards are assigned to.

The Index Advanced tab provides visualizations of other metrics such as detailed Index
Memory usage at Lucene and Elasticsearch levels, Indexing Time (in ms), Request rate and
time, Refresh Time (in ms), Disk usage, and Segment counts:

Elastic X-Pack Chapter 8

[299]

From the landing page of the Monitoring UI, by clicking on Overview or
Instances under the Kibana section, the metrics of Kibana can be
visualized/monitored in a similar way.

Alerting
Kibana UI provides beautiful visualizations that help in analyzing and detecting anomalies
in data in real time. However, as an administrator or an analyst, it wouldn't be possible to
sit in front of dashboards for hours together to detect anomalies and take appropriate
action. Wouldn't it be nice if the administrator gets notified when, for example, the
following events occur?

There is an outage in one of the servers being monitored
Elasticsearch Cluster turns red/yellow due to some nodes leaving the cluster
Disk space/CPU utilization crosses a specific threshold
There is an intrusion in the network
There are errors reported in the logs

Elastic X-Pack Chapter 8

[300]

This is where the X-Pack Alerting component comes to the rescue. The X-Pack Alerting
component, named Watcher, provides the ability to automatically watch for
changes/anomalies in data stored on Elasticsearch and take the required action. X-Pack
Alerting is enabled by default as part of the X-Pack default installation.

Watcher provides a set of REST APIs for creating, managing, and testing watches. Kibana
also provides a Watcher UI for creating, managing, and testing. Watcher UI internally
makes use of Watcher REST APIs for management of watches.

Anatomy of a watch
A Watch is made of the following components:

schedule: This is used to specify the time interval for scheduling/triggering the
watch.
query: Used to specify a query to retrieve data from Elasticsearch and run as
input to the condition. Elasticsearch Query DSL/Lucene queries can be used to
specify the queries.
condition: This is used to specify conditions against the input data obtained
from the query and check whether any action needs to be taken or not.
action: This is used to specify actions such as sending an email, sending a slack
notification, logging the event to a specific log, and much more on meeting the
condition.

Elastic X-Pack Chapter 8

[301]

Let's look into a sample watch and understand the building blocks of a watch in detail. The
following code snippet creates a watch:

curl -u elastic:elastic -X POST
http://localhost:9200/_xpack/watcher/watch/logstash_error_watch -H
'content-type: application/json' -d '{

 "trigger" : { "schedule" : { "interval" : "30s" }},
 "input" : {
 "search" : {
 "request" : {
 "indices" : ["logstash*"],
 "body" : {
 "query" : {
 "match" : { "message": "error" }
 }
 }
 }
 }
 },
 "condition" : {
 "compare" : { "ctx.payload.hits.total" : { "gt" : 0 }}
 },
 "actions" : {
 "log_error" : {
 "logging" : {
 "text" : "The number of errors in logs is
{{ctx.payload.hits.total}}"
 }
 }
 }
}'

In order to create a watch, the user should have watcher_admin cluster
privileges.

trigger: This section is used to provide a schedule to specify how often the
watch needs to be executed. Once the watch is created, Watcher immediately
registers its trigger with the scheduler trigger engine and the trigger engine
evaluates the trigger and runs the watch accordingly.

Elastic X-Pack Chapter 8

[302]

Several types of schedule triggers can be defined to specify when the watch
execution should start. The different types of schedule triggers are interval,
hourly, daily, weekly, monthly, yearly, and cron.

In the preceding code snippet, a trigger was specified with a schedule of 30
seconds, which meant the watch is executed every 30 seconds.

Example to specify hourly trigger: The following snippet shows how to specify
an hourly trigger that triggers the watch every 45th minute of an hour:

{
 "trigger" : {
 "schedule" : {
 "hourly" : { "minute" : 45 }
 }
 }
}

One can specify an array of minutes too. The following snippet shows how to
specify an hourly trigger that triggers the watch every 15th and 45th minute of an
hour:

{
 "trigger" : {
 "schedule" : {
 "hourly" : { "minute" : [15, 45] }
 }
 }
}

An example to specify the watch to trigger daily at 8 pm:

{
 "trigger" : {
 "schedule" : {
 "daily" : { "at" : "20:00" }
 }
 }
}

Elastic X-Pack Chapter 8

[303]

An example to specify a watch to trigger weekly on Mondays at 10 a.m. and on
Friday at 8 pm:

{
 "trigger" : {
 "schedule" : {
 "weekly" : [
 { "on" : "monday", "at" : "10:00" },
 { "on" : "friday", "at" : "10:00" }
]
 }
 }
}

An example to specify a schedule using cron syntax. The following snippet
specifies a watch to be triggered hourly at the 45th minute:

{
 "trigger" : {
 "schedule" : {
 "cron" : "0 45 * * * ?"
 }
 }
}

input: This section is used to specify the input to load the data into the Watcher
execution context. This data is refereed as Watcher Payload and this payload will
be available/accessible in subsequent phases of the watcher execution so that it
can be used to create conditions on it or used when generating actions. The
payload can be accessed using the ctx.payload.* variable:

"input" : {
 "search" : {
 "request" : {
 "indices" : ["logstash*"],
 "body" : {
 "query" : {
 "match" : { "message": "error" }
 }
 }
 }
 }
 }

Elastic X-Pack Chapter 8

[304]

As seen in the preceding code snippet, an input of type search is used to specify
the query to be executed against Elasticsearch to load the data into Watcher
Payload. The query fetches all the documents present in the indices of pattern
logstash* containing error in the message field.

Inputs of type simple to load static data, http to load an http response,
and chain to provide a series of inputs can also be used in the
input section.

condition: This section is used to specify a condition against the payload in
order to determine whether an action needs to be executed or not:

"condition" : {
 "compare" : { "ctx.payload.hits.total" : { "gt" : 0 }}
 }

As seen in the preceding code snippet, it uses a condition of type compare to
determine whether the payload has any documents, and if it finds any, then the
action will be invoked.

A condition of type compare is used to specify simple comparisons eq, not-
eq, gt, gte, lt, and lte against a value in the watch payload.

Conditions of type always, which always evaluates watch condition to
true and never which always evaluates watch condition to false,
array_compare to compare against a array of values to determine the
watch condition, and script to script that used to be used to determine
the watch condition are also supported.

actions: This section is used to specify one or more actions that need to be taken
when the watch condition evaluates to true:

 "actions" : {
 "log_error" : {
 "logging" : {
 "text" : "The number of errors in logs is
{{ctx.payload.hits.total}}"
 }
 }
 }

Elastic X-Pack Chapter 8

[305]

As seen in the preceding code snippet, it uses logging action to log the specified text when
the watch condition is met. The logs would be logged into Elasticsearch logs. The number of
errors found is dynamically obtained using the field (hits.total) of the payload. The
payload is accessed using the variable ctx.payload.*.

Watcher supports the following types of actions: email, webhook, index,
logging, hipchat, Slack, and pagerduty.

During the watch execution, once the condition is met, a decision is made per configured
action as to whether it should be throttled or to continue executing the action. The main
purpose of action throttling is to prevent too many executions of the same action for the
same watch.

Watcher supports two types of throttling:

Time Based Throttling: One can define a throttling period using the parameter
throttle_period as part of the action configuration or a the watch level (which
applies to all actions) to limit how often the action is executed. The global default
throttle period is 5 seconds.

Ack-based Throttling: Using ACK Watch APIs, one can prevent watch actions
from being executed again while the watch condition remains true.

Watches are stored in a special index named .watches. Every time a watch is executed, a
watch_record containing details such as watch details, the time of watch execution, watch
payload, and the result of the condition is stored in the watch history index, named
.watches-history-6-*.

A user with the watcher_user privilege can view watches and watch
history.

Alerting in action
Now that we know what a Watch is made up of, in this section, let's explore how to create,
delete, and manage watches.

Elastic X-Pack Chapter 8

[306]

One can create/delete/manage watches using:

Kibana Watcher UI
X-Pack Watcher REST APIs

Watcher UI internally makes use of Watcher REST APIs for management of watches. In this
section, let's explore the creation, deletion, and managing of watches using Kibana Watcher
UI.

Create a new alert
To create a watch, log in to Kibana (http://localhost:5601) as elastic/elastic and
navigate to Management UI; click on Watcher in the Elasticsearch Section:

Elastic X-Pack Chapter 8

[307]

Clicking on Create New Watch provides two options for creating alerts:

Threshold Alert
Advanced Watch

Using the Threshold Alert option, one can create a threshold-based alert to get
notified when a metric goes above or below a given threshold. Using this UI, users can
easily create threshold-based alerts without worrying about directly working with raw
JSON requests. This UI provides options for creating alerts on time-based indices only (that
is, the index has a timestamp).

Using Advanced Watch options, one can create watches by directly working with the raw
.json required for the watches API.

The Watcher UI requires a user with kibana_user and watcher_admin
privileges to create, edit, delete, and deactivate a watch.

Threshold Alert
Click on Create New Watch and choose the Threshold Alert option. This brings up
the Threshold Alert UI.

Elastic X-Pack Chapter 8

[308]

Specify the name of the alert; choose the index to be used to query against, time field, and
trigger frequency in the Threshold Alert UI:

Then specify the condition that will cause the alert to trigger. As the expressions/conditions
are changed or modified, the visualization is updated automatically to show the threshold
value and data as red and blue lines respectively:

Finally specify the action that needs to be triggered when the action is met by clicking on
the Add new action button. It provides for creation of three types of actions, that is, email,
slack and logging actions. One or more actions can be configured:

Finally, click on the Save button to create the watch.

Elastic X-Pack Chapter 8

[309]

Clicking on Save will save the watch in the watches index, as shown in the following
screenshot:

Elastic X-Pack Chapter 8

[310]

Advanced Watch
Click on the Create New Watch button and choose the Advanced Watch option. This brings
up the Advanced Watch UI.

Specify the Watch ID and watch name and paste the JSON to create a watch in the Watch
JSON box; click on Save to create a watch. Watch ID refers to the identifier used by
Elasticsearch when creating a Watch, whereas name is the more user-friendly way to
identify the watch:

The Simulate Tab provides a UI to override parts of the watch and then run a simulation of
it:

Elastic X-Pack Chapter 8

[311]

Watch Name will be stored in the metadata section of the watch body. One
can use the metadata section when creating the watch to store custom
metadata, tags, or information to represent/identify a watch.

Clicking on Save will save the watch in the watches index, as shown in the following
screenshot:

Elastic X-Pack Chapter 8

[312]

How to Delete/Deactivate/Edit a Watch
To delete a watch, navigate to the Management UI and click on Watcher in the
Elasticsearch Section. From the Watches list, select one or more watches that need to be
deleted and click on the Delete button:

To deactivate a watch (that is, to temporarily disable watch execution), navigate to
the Management UI and click on Watcher in the Elasticsearch section. From the
Watches list, click on the custom watch. On Clicking, it displays the watch history. Click on
the Deactivate Button. One can also delete a watch from this screen too.

Clicking on a execution time (link) in the watch history displays the details of a particular
watch_record:

Elastic X-Pack Chapter 8

[313]

To edit a watch, click on the Edit tab and modify the watch details; click on the Save button
to save your changes.

Summary
In this chapter, we explored how to install and configure the X-Pack components in Elastic
Stack and how to to secure the elastic cluster by creating users and roles. We also learned
how to monitor the ElasticSearch server and alerting for generating notifications when there
are changes or anomalies in the data.

In the next chapter, we'll put together a complete application using Elastic Stack for sensor
data analytics with the concepts learned so far.

9
Running Elastic Stack in

Production
In our quest to learn Elastic Stack, we have covered good ground and have a solid footing in
all of its components. We have a solid foundation of the core Elasticsearch with its search
and analytics capabilities, and we have covered how to effectively use Logstash and Kibana
to build a powerful platform that can deliver analytics on big data. We have also seen how
X-Pack makes it easy to secure and monitor big data, generate alerts, and perform graph
analysis and machine learning.

Taking the Elastic Stack components to production requires that you be aware of some
common pitfalls, patterns, and strategies that can help you run your solution smoothly in
production. In this chapter, we will see some common patterns, tips, and tricks to run
Elasticsearch, Logstash, Kibana, and other components in production.

We will start with Elasticsearch and then move on to other components. There are various
ways one could run Elasticsearch in production. There may be various factors that influence
your decision on how you should deploy. We will cover the following topics to help you
take your next Elastic Stack project to production:

Hosting Elastic Stack on a managed cloud
Hosting Elastic Stack on your own, that is, self-hosting
Backing up and restoring
Setting up index aliases
Setting up index templates
Modeling time series data

Running Elastic Stack in Production Chapter 9

[315]

Let's first understand how we can go about taking the Elastic Stack to production with one
of the managed cloud providers. This option requires a minimum amount of work to set up
a production-ready cluster.

Hosting Elastic Stack on a managed cloud
Cloud providers make the process of setting up a production ready cluster much easier. As
a user, we don't have to do low-level configuration or the selection and management of
hardware, an operating system, and many of the Elasticsearch and Kibana configuration
parameters.

There are multiple cloud providers that provide managed clusters for Elastic Stack, such as
Elastic Cloud, QBox.io, Bonsai, and many more. In this section, we will go through how to
get started with Elastic Cloud. Elastic Cloud is the official cloud offering by the company
Elastic.co, which is the main company contributing to the development of Elasticsearch and
other Elastic Stack components. We will cover the following topics while working with
Elastic Cloud:

Getting up and running on Elastic Cloud
Using Kibana
Overriding configuration
Recovering from a snapshot

Getting up and running on Elastic Cloud
Sign up for Elastic Cloud using https:/ ​/​www.​elastic. ​co/ ​cloud/ ​as-​a- ​service/ ​signup,
provide your email address, and verify your email. You will be asked to set your initial
password.

After your initial password is set, you can log in to the Elastic Cloud console at https:/ ​/
cloud.​elastic.​co. The Elastic Cloud console offers an easy to use user interface to manage
your clusters. Since you just signed up for a trial account, you get a free cluster with 4 GB
RAM and a 96 GB storage capacity for the initial trial period.

https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://cloud.elastic.co
https://cloud.elastic.co
https://cloud.elastic.co
https://cloud.elastic.co
https://cloud.elastic.co
https://cloud.elastic.co
https://cloud.elastic.co
https://cloud.elastic.co

Running Elastic Stack in Production Chapter 9

[316]

We can choose AWS (Amazon Web Services) or GCE (Google Compute Engine) while
launching the cluster. Upon logging in, you can create a cluster from the following screen:

Fig-9.1 Creating a new cluster on Elastic Cloud

You can choose RAM and storage space, and decide whether you want to replicate your
cluster in multiple availability zones. It also allows you to configure additional plugins that
you want to install to your Elasticsearch cluster. Select the version to be the latest 6.x
version that is available. At the time of writing this book, the 6.0.0 version is the latest
version available on Elastic Cloud.

When you enter a name for the cluster, hit the Create button; your cluster will be created
and started with production-grade configuration. The cluster will be secured. It will also
start with a Kibana instance. At this point, it should provide you with a username/password
to be used for logging into your Elasticsearch and Kibana nodes. Please note it down. It also
provides a Cloud ID, which is a helpful string when connecting to your cloud cluster from
your beats agents and Logstash servers.

Running Elastic Stack in Production Chapter 9

[317]

You should see the following page when viewing the cluster:

Fig-9.2 - Cluster Overview screen on Elastic Cloud

As you can see, the cluster is up and running. It also has a Kibana instance set up, which is
accessible at the given URL. The Elasticsearch cluster is available at the given secured
HTTPS URL.

The cluster has two nodes: one in each AWS availability zone and one tiebreaker node. The
tiebreaker node helps to elect a master node. Tiebreaker nodes are special nodes on Elastic
Cloud that help in the re-election of masters whenever some nodes become unreachable in
the cluster.

Now that we have the cluster up and running with a Kibana instance, let's use it!

Using Kibana
The link to the Kibana instance is already made available to us on the cluster overview page
on Elastic Cloud. You can click on it to launch the Kibana UI. Unlike the local instance of
Kibana that we initially created, this instance is secured by X-Pack security. You will have to
log in using the credentials provided to you after you created the Elastic Cloud cluster in
the previous section.

Running Elastic Stack in Production Chapter 9

[318]

After logging in, you should see the Kibana UI as follows:

Fig-9.3 Kibana UI on Elastic Cloud after logging in

You can view all indexes, analyze data on your Elasticsearch cluster, and monitor your
Elasticsearch cluster from this Kibana UI.

Overriding configuration
It is possible to override the configuration of your Elasticsearch nodes via the
Configuration tab in Elastic Cloud. Elastic Cloud doesn't allow you to edit the
elasticsearch.yml file directly. However, it provides a section called User Settings
which allows you to override a subset of the configuration parameters.

The configuration parameters that can be overridden are documented in the Elastic Cloud
reference documentation at https:/ ​/ ​www. ​elastic. ​co/ ​guide/ ​en/ ​cloud/ ​current/ ​cluster-
config.​html#user- ​settings.

https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings
https://www.elastic.co/guide/en/cloud/current/cluster-config.html#user-settings

Running Elastic Stack in Production Chapter 9

[319]

Recovering from a snapshot
Elastic Cloud automatically creates a snapshot of all indices in your cluster periodically
(every 30 minutes) and keeps them for recovery purposes, if required. This happens
automatically without doing any additional setup or code. You can visit the Snapshots tab
to view the available list of snapshots, as follows:

Fig-9.4-Listing of snapshots on Elastic Cloud

You can choose the snapshot that you want to restore from and you will be presented with
the following screen:

Fig-9.5 - Restoring from a specific snapshot

The snapshot contains the saved state for all indices in the cluster. It is possible to choose a
subset of the indices for restoring and also to rename it while restoring it. It is also possible
to restore the snapshot on a separate cluster.

Running Elastic Stack in Production Chapter 9

[320]

Next, we will see how to get started with Elastic Stack if you are planning to manage the
Elastic Stack components yourself. This is also called self-hosting, in the context that you
will be hosting and managing it on your own.

Hosting Elastic Stack on your own
Hosting Elastic Stack on your own, that is, self-hosting Elastic Stack, requires you to install,
configure, and manage your Elasticsearch and other Elastic Stack products. This can be
done in one of two ways:

Self-hosting on-premise
Self-hosting on a cloud

Regardless of whether you run Elastic Stack on-premise (in your own data center) or run it
on one of the cloud providers, such as AWS, Azure, or GCE, there are some common
aspects that you should take into consideration. While self-hosting, you will be faced with
the following choices:

Selecting hardware
Selecting the operating system
Configuring Elasticsearch nodes
Managing and monitoring Elasticsearch nodes
Special considerations while self-hosting on a cloud

Except for the last item, which is applicable only if you are self-hosting on a cloud, the
others are equally applicable for cloud as well as on-premise deployments.

Selecting hardware
Elasticsearch primarily has memory-bound tasks which rely on the inverted index. The
more data that it can fit in the RAM, the faster the performance will be. But this statement
can not always be generalized. It depends on the nature of your data and the type of
operations or workload that you are going to have.

Running Elastic Stack in Production Chapter 9

[321]

Using Elasticsearch doesn't mean that it has to perform all operations in-memory.
Elasticsearch also uses on-disk data very efficiently, especially for aggregation operations.

All datatypes (except analyzed strings) support a special data structure
called doc_values, which organizes the data on the disk in a columnar
fashion. doc_values is useful for sorting and aggregation operations.
Since doc_values are enabled by default for all datatypes except
analyzed strings, they make sort and aggregations run mostly off the disk.
Those fields do not need to be loaded in memory for aggregating or
sorting by them.

As Elasticsearch can scale horizontally, this is a relatively easy decision to make. It is fine to
start with nodes of around 16 or 32 GB RAM, with around 8 CPU cores. As we will see in
the coming sections, you cannot have Elasticsearch JVM with more than 32 GB of heap;
effectively, there is no point in having a machine with more than 64 GB RAM. SSD hard
disks are recommended if you are planning to do heavy aggregations.

It is important to benchmark with the initial hardware and then add more nodes or upgrade
your nodes.

Selecting an operating system
Linux is the preferred choice when deploying Elasticsearch and the Elastic Stack
components. Your choice of operating system will mostly depend on the preferred
technologies of your organization. Elastic Stack can also be deployed on Windows if your
organization prefers the Microsoft stack.

Configuring Elasticsearch nodes
Elasticsearch, which is the heart of the Elastic Stack, needs some configuration before
starting it in production. Most of the configuration should work out of the box, but will
require the following things to be reviewed on the OS level or JVM level.

Running Elastic Stack in Production Chapter 9

[322]

JVM heap size
Set -Xms and -Xmx to be the same. More heap means Elasticsearch can keep more data in
memory for faster access. But more heap also means that when the Java heap is close to full,
the JVM's garbage collector will run a full garbage collection. At that point, all other
processing within the Elasticsearch node experiences a pause. So, the larger the heap size,
the longer the pauses will be. The maximum heap size that one can configure is around 32
GB. Another recommendation to keep in mind is that we should allocate no more than 50%
of the total available RAM on the machine to the Elasticsearch JVM. The reason behind it is
that the system needs enough memory for the filesystem cache for Apache Lucene.
Ultimately, all the data stored on the Elasticsearch node is managed as Apache Lucene
indexes, which needs RAM for fast access to the files.

So, if you are planning to store huge amounts of data in Elasticsearch, there is no point in
having one single node with more than 64 GB RAM (50% of which is 32 GB, the max heap
size). Instead, add more nodes if you want to scale.

Disable swapping
When swapping is enabled, an OS generally has a tendency to reclaim the memory from an
application by swapping the data to disk to make more memory available for other
programs.

On the Elasticsearch node, this can result in the OS swapping out the heap memory of
Elasticsearch. This process of swapping out from memory to disk and then swapping back
from disk to memory can slow down the process. This is why swapping should be disabled
on the node that is running Elasticsearch.

File descriptors
On the Linux and macOS operating systems, there is a limit to the number of open file
handles or file descriptors that a process can keep. This often needs to be increased in the
case of Elasticsearch, as the default value is generally quite low for the open file descriptor
limit.

Running Elastic Stack in Production Chapter 9

[323]

Thread pools and garbage collector
Elasticsearch does many types of operations, such as indexing, searching, sorting, and
aggregations, and uses the JVM thread pools to accomplish its tasks. It is advisable to not
tune the settings related to thread pools in Elasticsearch. They generally do more harm than
help to improve performance. Another thing not to tune in Elasticsearch is the garbage
collector settings.

Managing and monitoring Elasticsearch
When you self-host Elasticsearch, the entire monitoring and management activities for the
cluster are on you. It is necessary to monitor your Elasticsearch node process status,
memory, and disk space on the node. If a node crashes for any reason, or becomes
unavailable, it needs to be started back again.

The Snapshots of the Elasticsearch indexes need to be taken regularly for taking backups.
We will discuss the snapshot/restore functionalities for backing up. Most of the monitoring
part can be achieved via X-Pack and Kibana, but management processes need to be set up
manually.

Running in Docker containers
Docker is a popular way of containarizing and shipping software. The advantage of docker
is that the software that is dockerized, runs inside a light-weight container which has
minimum overhead as compared to a virtual machine. As a result of its very less overhead
and large pool of publicly available docker images, docker is a great way to run software in
production in a predictable way without the need of much configuration.

Official Elasticsearch docker images are available for download in different flavours.

Elasticsearch with basic X-Pack license
Elasticsearch with full X-Pack license and 30-day evaluation
Open source version of Elasticsearch without X-Pack

Running Elastic Stack in Production Chapter 9

[324]

Getting started with an Elasticsearch instance running inside docker is as easy as installing
docker and running the docker pull command with the Elasticsearch image of your
choice. The following simple commands will get your single-node Elasticsearch 6.0.0 up
and running if you have docker installed on your system.

docker pull docker.elastic.co/elasticsearch/elasticsearch:6.0.0

docker run -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node"
docker.elastic.co/elasticsearch/elasticsearch:6.0.0

Docker is a highly recommended way of running applications in a predictable way in
production. You can find out more about how to run Elasticsearch in docker in a production
environment in the reference documentation—https:/ ​/​www. ​elastic. ​co/ ​guide/ ​en/
elasticsearch/​reference/ ​6. ​0/ ​docker. ​html.

Special considerations while deploying to a cloud
While self-hosting on a cloud, you may choose one of the cloud providers, such as AWS,
Microsoft Azure, GCE, and so on. They provide compute resources, networking
capabilities, virtual private clouds, and much more, to get control over your servers. Using
a cloud provider as opposed to running on your own hardware comes with the following
advantages:

No upfront investment in hardware
Ability to upgrade/downgrade servers
Ability to add or remove servers as and when needed

It is typical to not be sure how much CPU, RAM, and so on, is required for your nodes
when you start. Choosing the cloud gives the flexibility to benchmark on one type of
configuration and then upgrade/downgrade or add/remove nodes as needed without
incurring upfront costs. We will take EC2 as an example and try to understand the
considerations to take into account. Most of the considerations should remain similar for
other cloud providers as well. The following are some of the aspects to consider on AWS
EC2:

Choosing instance type
Changing the ports; do not expose ports!
Proxy requests
Binding HTTP to local addresses
Installing EC2 discovery plugin

https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/docker.html

Running Elastic Stack in Production Chapter 9

[325]

Installing S3 repository plugin
Setting up periodic snapshots

Let's focus on them one by one.

Choosing instance type
EC2 offers different types of instances to meet different requirements. A typical starting
point for Elasticsearch is to consider the m3.2xlarge instance; it has 8 CPU cores, 30 GB
RAM, and 2 SSD disks with 80 GB. It is always good to benchmark on your data and
monitor the resource usage on your nodes. You can upgrade or downgrade the nodes as per
your findings.

Changing default ports; do not expose ports!
Running any type of service in a cloud involves different security risks. It is important that
none of the ports used by Elasticsearch are exposed and accessible from the public internet.
EC2 allows detailed control over which ports are accessible and from which IP addresses or
subnets. Generally, you should not need to make any ports accessible from outside
anywhere other than port 22 in order to log in remotely.

By default, Elasticsearch uses port 9200 for HTTP traffic and 9300 for inter-node
communication. It is advisable to change these default ports by editing
elasticsearch.yml on all nodes.

Proxy requests
Use a reverse proxy such as nginx (pronounced engine x) or Apache to proxy your requests
to Elasticsearch/Kibana.

Binding HTTP to local addresses
You should run your Elasticsearch nodes in a VPC (Virtual Private Cloud). More recently,
AWS creates all nodes in a VPC. The nodes which do not need to interface with the clients,
that is, accept the queries from clients over HTTP. This can be done by setting
http.host in elasticsearch.yml. You can find out more about the HTTP host/port
bindings in the reference documentation at https:/ ​/​www. ​elastic. ​co/​guide/ ​en/
elasticsearch/​reference/ ​current/ ​modules- ​http. ​html.

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html

Running Elastic Stack in Production Chapter 9

[326]

Installing EC2 discovery plugin
Elasticsearch nodes discover their peers via multicast when they are in the same network.
This works very well in a regular LAN. When it comes to EC2, the network is shared and
the node to node communication and automatic discovery don't work. It requires the
installation of the EC2 discovery plugin on all nodes to be able to discover new nodes.

To install the EC2 discovery plugin, follow the instructions https:/ ​/​www. ​elastic. ​co/
guide/​en/​elasticsearch/ ​plugins/ ​current/ ​discovery- ​ec2. ​html and install it on all
nodes.

Installing S3 repository plugin
It is important to back up your data in Elasticsearch regularly to restore the data if a
catastrophic event occurs or if you want to revert to a last known healthy state. We will look
at how to backup and restore using the snapshot/restore APIs of Elasticsearch in the next
section. In order to take regular backups and store them in centralized and resilient data
storage, we need to set up a snapshot mechanism. When you are running Elasticsearch in
EC2, it makes sense to store snapshots in an AWS S3 bucket.

S3 stands for Simple Storage Service. It is a scalable, durable, and reliable
storage service to store large amounts of data. It provides comprehensive
security for your data and accessibility from many different platforms. It
can meet very stringent compliance requirements due to its
comprehensive security support. It is often the preferred solution for
storing long-term data, especially when systems that generate the data are
hosted on AWS.

The S3 repository plugin can be installed using the following command; it needs to be
installed on every node of your Elasticsearch cluster:

sudo bin/elasticsearch-plugin install repository-s3

Setting up periodic snapshots
Once you have a repository set up on S3, we need to ensure that actual snapshots are taken
periodically. What this means is that we need a scheduled job that triggers the command to
take a snapshot at regular intervals. The interval could be 15 minutes, 30 minutes, one hour,
and so on, depending on the sensitivity of your data. We will see how to establish the
snapshot/restore process for your cluster in depth later in this chapter.

https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html

Running Elastic Stack in Production Chapter 9

[327]

These are some of the considerations that you have to address while running Elasticsearch
in production on AWS or other clouds.

So far, we have covered how to get your production up and running on a managed cloud or
self-hosted environment. If you opted to self-host, you will need to set up a back-up and
restore process so that you don't lose your data. The next section is only applicable if you
are self-hosting your Elasticsearch cluster.

Backing up and restoring
Taking regular backups of your data to recover in the event of catastrophic failures is
absolutely critical. It is important that all of your data is saved periodically at fixed time
intervals and a sufficient number of such backups are preserved.

A common strategy is to take a full backup of your data at regular intervals and keep a
fixed number of backups. Your cluster may be deployed on-premise in your own data
center or it may be deployed on a cloud hosted service such as AWS, where you may be
managing the cluster yourself.

We will look at the following topics on how to manage your backups and restore a specific
backup if it is needed:

Setting up a repository for snapshots
Taking snapshots
Restoring a specific snapshot

Let's look at how to do these one by one.

Setting up a repository for snapshots
The first step in setting up a regular backup process is setting up a repository for storing
snapshots. There are different places where we could store snapshots:

A shared filesystem
Cloud or distributed filesystems (S3, Azure, GCS, or HDFS)

Running Elastic Stack in Production Chapter 9

[328]

Depending upon where the Elasticsearch cluster is deployed, and which storage options are
available, you may want to set up the repository for your snapshots in a certain way.

Let's first understand how you would do this in the simplest of scenarios, when you want to
store it in a shared filesystem directory.

Shared filesystem
When your cluster has a shared filesystem accessible from all the nodes of the cluster, you
have to ensure that the shared filesystem is accessible on a common path. You should
mount that shared folder on all nodes and add the path of the mounted directory. The
shared, mounted filesystem's path should be added to each node's elasticsearch.yml as
follows:

path.repo: ["/mount/es_backups"]

If you are running a single node cluster and haven't set up a real
distributed cluster, there is no need for a mounted shared drive. The
path.repo parameter can be set to a local directory of your node. It is not
recommended to run a production server on a single node cluster.

Once this setting is added to config/elasticsearch.yml on all nodes, please restart all
the nodes of your cluster.

The next step is to register a named repository under this registered folder. This is done
using the following curl command, where we are registering a named repository with the
name backups:

curl -XPUT 'http://localhost:9200/_snapshot/backups' -H 'Content-Type:
application/json' -d '{
 "type": "fs",
 "settings": {
 "location": "/mount/es_backups/backups",
 "compress": true
 }
}'

Running Elastic Stack in Production Chapter 9

[329]

You will need to replace localhost with the hostname or IP address of one of the nodes on
your cluster. The type parameter set to fs is for the shared filesystem. The
settings parameter's body depends on the type parameter's value.

Since we are currently looking at a shared filesystem snapshot repository, the body of
the settings parameter has specific parameters to set up the shared filesystem based
repository. If the location parameter is specified as an absolute path, it must be under one
of the folders registered with the path.repo parameter in elasticsearch.yml. If
the location parameter is not an absolute path, Elasticsearch will assume it is a relative
path from the path.repo parameter. The parameter compress saves the snapshots in
compressed format.

Cloud or distributed filesystems
When you are running your Elasticsearch cluster on AWS, Azure, or Google Cloud, it
makes sense to store the snapshots in one of the alternatives provided by the cloud platform
to store the data in robust, fault tolerant storage, rather than storing it on a shared drive.

Elasticsearch has official plugins that allow you to store the snapshots in S3. All you need to
do is install the repository—s3 plugin on all nodes of your cluster and set up the repository
settings in a similar way to how we set up the shared filesystem repository:

curl -XPUT 'http://localhost:9200/_snapshot/backups' -H 'Content-Type:
application/json' -d '{
 "type": "s3",
 "settings": {
 "bucket": "bucket_name",
 "region": "us-west",
 ...
 }
}'

The type should be s3 and settings would have relevant values for s3.

Running Elastic Stack in Production Chapter 9

[330]

Taking snapshots
Once the repository is set up, we can take named snapshots under a specific repository:

curl -XPUT
'http://localhost:9200/_snapshot/backups/backup_201710101930?pretty' -H
'Content-Type: application/json' -d'
{
 "indices": "bigginsight,logstash-*",
 "ignore_unavailable": true,
 "include_global_state": false
}
'

In this command, we specified that we want a snapshot to be taken in the repository
backups with the name backup_201710101900. The name of the snapshot could be
anything, but it should help you identify the snapshot at a later stage. One typical strategy
would be to take a snapshot every 30 minutes and set snapshot names with prefixes like
backup_yyyyMMddHHmm. In the event of any failure, you could then identify the snapshot
that can be restored.

Snapshots are incremental by default. They don't store all the redundant data in all
snapshots.

Having taken the snapshots periodically, you would want to list all the snapshots that exist
in a repository. This can be done using the following command:

curl -XGET 'http://localhost:9200/_snapshot/backups/_all?pretty'

Restoring a specific snapshot
If the need arises, you can restore the state from a specific snapshot using the following
command:

curl -XPOST
'http://localhost:9200/_snapshot/backups/backup_201710101930/_restore'

This will restore the snapshot backup_201710101930 from the backups repository.

Running Elastic Stack in Production Chapter 9

[331]

Once we have set up a periodic job that takes and stores a snapshot, we are safe in the event
of any failure. We now have a cluster that is recoverable from any disaster-like situation.
Remember, the output of snapshots should be stored in resilient storage. At least, it should
not be saved on the same Elasticsearch cluster; it should be saved on different storage,
preferably a robust filesystem that is highly available, such as S3, HDFS, and so on.

So far in this chapter, we have got up and running with a cluster that is reliable and is
backed up regularly. In the upcoming sections, we will see how to address some common
scenarios in data modeling. We will see some common strategies for setting up aliases for
indexes, index templates, modeling time-series data, and so on.

Setting up index aliases
Index aliases let you create aliases for one or more indexes or index name patterns. We will
cover the following topics in order to learn how index aliases work:

Understanding index aliases
How index aliases can help

Understanding index aliases
An index alias just provides an extra name to refer to an index; it can be defined in the
following way:

POST /_aliases
{
 "actions" : [
 { "add" : { "index" : "index1", "alias" : "current_index" } }
]
}

Here, index1 can be referred to with the alias current_index. Similarly, the index alias
can be removed with the remove action of the _aliases REST API:

POST /_aliases
{
 "actions" : [
 { "remove" : { "index" : "index1", "alias" : "current_index" } }
]
}

Running Elastic Stack in Production Chapter 9

[332]

The preceding call will remove the alias current_index. Two actions can be combined in a
single invocation of the _aliases API. When two calls are combined, the operations are
done automatically. For example, the following call would be completely transparent to the
client:

POST /_aliases
{
 "actions" : [
 { "remove" : { "index" : "index1", "alias" : "current_index" } },
 { "add" : { "index" : "index2", "alias" : "current_index" } }
]
}

Before the call, the alias current_index was referring to the index index1, and after the
call, the alias will refer to the index index2.

How index aliases can help
Once in production, it often happens that we need to reindex data from one index to
another. We might have one or more applications developed in JAVA, Python, .NET, or
other programming environments that may be referring to these indexes. In the event that
the production index needs to be changed from index1 to index2, it will require a change
in all client applications.

Aliases come to the rescue here. They offer extra flexibility, and hence, they are a
recommended feature to use in production. The key thing is to create an alias for your
production index and use the alias instead of the actual index name in the client
applications that use them.

In the event that the current production index needs to change, we just need to update the
alias to point to the new index instead of the old one. Using this feature, we can achieve
zero downtime in production in the case of data migration or the need for reindexing.
Aliases use a famous principle in computer science—an extra layer of indirection can solve
most problems in computer science—https:/ ​/​en. ​wikipedia. ​org/​wiki/ ​Indirection.

Apart from the ones discussed here, there are more features that aliases offer; these include
the ability to use index patterns, routing, the ability to specify filters, and many more. We
will see how index aliases can be leveraged when creating time-based indices later in the
chapter.

https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection

Running Elastic Stack in Production Chapter 9

[333]

Setting up index templates
One important step while setting up your index is defining the mapping for the types,
number of shards, replica, and other configurations. Depending upon the complexity of the
types within your index, this step can involve a substantial amount of configuration.

Index templates allow you to create indexes based on a given template, rather than creating
each index manually beforehand. Index templates allow you to specify settings
and mappings for the index to be created. Let's understand this by going through the
following points:

Defining an index template
Creating indexes on the fly

Let's say we want to store sensor data from various devices and we would like to create one
index per day. At the beginning of every day, we want a new index to be created whenever
the first sensor reading is indexed for that day. We will look into the details as to why we
should use such time-based indices in the next section.

Defining an index template
We start by defining an index template:

PUT _template/readings_template 1
{
 "index_patterns": ["readings*"], 2
 "settings": { 3
 "number_of_shards": 1
 },
 "mappings": { 4
 "reading": {
 "properties": {
 "sensorId": {
 "type": "keyword"
 },
 "timestamp": {
 "type": "date"
 },
 "reading": {
 "type": "double"
 }
 }
 }

Running Elastic Stack in Production Chapter 9

[334]

 }
}

In this _template call, we define the following things:

A template with the name readings_template.
The index name patterns that will match this template. We configured
readings* as the one and only index pattern. Any attempt to index into an index
that does not exist but matches this pattern would use this template.
The settings to be applied to the newly created index from this template.
The mappings to be applied to the newly created index from this template.

Let's try to index data into this new index.

Creating indexes on the fly
When any client tries to index the data for a particular sensor device, it should use the index
name with the current day appended in yyyy-mm-dd format after readings. A call to
index data for 2017-01-01 would look like the following:

POST /readings-2017-01-01/reading
{
 "sensorId": "a11111",
 "timestamp": 1483228800000,
 "reading": 1.02
}

When the first record for the date 2017-01-01 is being inserted, the client should use the
index name readings-2017-01-01. Since this index doesn't exist yet, and we have an
index template in place, Elasticsearch creates a new index using the index template we
defined. As a result, the settings and mappings defined in our index template get applied to
this new index.

This is how we create indexes based on index templates. In the next section, let's
understand why these types of time-based indices are useful and how to use them in
production with your time-series data.

Running Elastic Stack in Production Chapter 9

[335]

Modeling time series data
Often, we have a need to store time series data in Elasticsearch. Typically, one would create
a single index to hold all documents. This typical approach of one big index to hold all
documents has its own limitations, especially for the following reasons:

Scaling the index with an unpredictable volume over time
Changing the mapping over time
Automatically deleting older documents

Let's look at how each problem manifests itself when we choose a single monolithic index.

Scaling the index with unpredictable volume over
time
One of the most difficult choices when creating an Elasticsearch cluster and its indices is
deciding how many primary shards should be created and how many replica shards should
be created.

Let's understand how the number of shards becomes important in the following sub
sections:

Unit of parallelism in Elasticsearch:
The effect of the number of shards on the relevance score
The effect of the number of shards on the accuracy of aggregations

Unit of parallelism in Elasticsearch
We have to decide the number of shards at the time of creating the index. The number of
shards cannot be changed once the index is created. There is no golden rule that will help
you decide how many shards should be created at the time of creating an index. The
number of shards actually decides the level of parallelism in the index. Let's understand this
by taking an example of how a search query might be executed.

Running Elastic Stack in Production Chapter 9

[336]

When a search or aggregation query is sent by a client, it is first received by one of the
nodes in the cluster. That node acts as a coordinator for that request. The coordinating node
sends requests to all the shards on the cluster and waits for the response from all shards.
Once the response is received by the coordinating node from all shards, it collates the
response and sends it back to the original client.

What this means is, when we have a greater number of shards, each shard has to do
relatively less work and parallelism can be increased.

But can we choose an arbitrarily big number of shards? Let's look at this in the next couple
of subsections.

The effect of the number of shards on the relevance score
A large number of small shards is not always the solution, as it can affect the relevance of
the search results. In the context of search queries, the relevance score is calculated within
the context of a shard. The relative frequencies of documents are calculated within the
context of each shard and not across all shards. This is why the number of shards can affect
the overall scores observed for a query. In particular, having too many shards to address the
future scalability problem is not a solution.

The effect of the number of shards on the accuracy of aggregations
Similar to the execution of the search query, an aggregation query is also coordinated by a
coordinating node. Let's say that the client has requested terms aggregation on a field that
can take a large number of unique values. By default, the terms aggregation returns the top
10 terms to the client.

For coordinating the execution of terms aggregation, the coordinator node does not request
all the buckets from all shards. All shards are requested to give their top n buckets. By
default, this number, n, is equal to the size parameter of the terms aggregation, that is, the
number of top buckets that the client has requested. So, if the client requested the top 10
terms, the coordinating node in turn requests the top 10 buckets from each shard.

Since the data can be skewed across the shards to a certain extent, some of the shards may
not even have certain buckets, even though those buckets might be one of the top buckets in
some shards. If a particular bucket is in the top n buckets returned by one of the shards and
that bucket is not one of the top n buckets by one of the other shards, the final count
aggregated by the coordinating node will be off for that bucket. A large number of shards,
just to ensure future scalability, does not help the accuracy of aggregations.

Running Elastic Stack in Production Chapter 9

[337]

We have understood why the number of shards is important and how deciding the number
of shards upfront is difficult. Next, we will see how changing the mapping of indices
becomes difficult over a period of time.

Changing the mapping over time
Once an index is created and documents start getting stored, the requirements can change.
There is only one thing that is constant, change.

When the schema changes, the following types of change may happen with respect to the
schema:

New fields get added
Existing fields get removed

New fields get added
When the first document with a new field gets indexed, the new field's mapping is
automatically created if it doesn't already exist. Elasticsearch infers the datatype of the field
based on the value of that field in the first document in order to create the mapping. The
mappings of one particular type of document can grow over a period of time.

Once a document with a new field is indexed, the mapping is created for that new field and
its mapping remains.

Existing fields get removed
Over a period of time, the requirements of a project can change. Some fields might become
obsolete and may no longer be used. In the case of Elasticsearch indexes, the fields that are
no longer used are not removed automatically; the mapping remains in the index for all the
fields that were ever indexed. Each extra field in the Elasticsearch index carries an
overhead; this is especially true if you have hundreds or thousands of fields. If, in your use
case, you have a very high number of fields that are not used, it can increase the burden on
your cluster.

Running Elastic Stack in Production Chapter 9

[338]

Automatically deleting older documents
No cluster has infinite capacity to retain data forever. With the volume growing over a
period of time, you may decide to only store necessary data in Elasticsearch. Typically, you
may want to retain data for the past few weeks, months, or years in Elasticsearch,
depending on your use case.

Prior to Elasticsearch 2.x, this was achieved using TTL (Time to Live) set on individual
documents. Each document could be configured to remain in the index for a configurable
amount of time. But, the TTL feature was deprecated with the 2.x version because of its
overheads in maintaining time-to-live on a per-document basis.

We have seen some problems that one might face while dealing with time series data. Now,
let's look at how the use of time-based indices addresses these issues. Time-based indices
are also called index-per-timeframe.

How index-per-timeframe solves these issues
How to set up index-per-timeframe

How index-per-timeframe solves these issues
Instead of going with one big monolithic index, we now create one index per timeframe.
The timeframe could be one day, one week, one month, or any arbitrary time duration. For
example, in our example in the Index Template section, we had chosen index-per-day. The
names of the index would reflect that—we had indexes like readings-2017-01-01,
readings-2017-01-02, and so on. If we had chosen index-per-month, the index names
would look like readings-2017-01, readings-2017-02, readings-2017-03, and so on.

Let's look at how this scheme solves the issues we saw earlier one by one.

Scaling with index-per-timeframe
Since we no longer have a monolithic index that needs to hold all historic data, scaling-up
or scaling-down according to the recent volumes becomes easier. The choice of the number
of shards is not an upfront and permanent decision. Start with an initial estimated number
of shards for the given time period. This number, the chosen number of shards, can be put
in the index template.

Running Elastic Stack in Production Chapter 9

[339]

Since that choice of shards can be changed before the next timeframe begins, you are not
stuck with a bad choice. With each time period, it gives a chance to adjust the index
template to increase or decrease the number of shards for the next index to be created.

Changing the mapping over time
Changing the mapping becomes easier, as we could just update the index template that is
used for creating new indices. When the index template is updated, the new index that is
created for the new timeframe uses the new mappings in the template.

Again, each timeframe gives us an opportunity to change.

Automatically deleting older documents
With time-based indices, deleting the older documents becomes easier. We could just drop
older indices rather than deleting individual documents. If we were using monthly indices
and wanted to enforce six-month retention of data, we could delete all indices older than 6
months. This may be set up as a scheduled job to look for and delete older indices.

As we have seen in this section, setting up index-per-timeframe has obvious advantages
when we are dealing with time-series data.

Summary
In this chapter, we have seen essential techniques necessary to take your next Elastic Stack
application to production. We have seen various deployment options, including cloud-
based and on-premise. We have seen how to use a managed cloud service provider like
Elastic Cloud and have also covered how to self-host Elastic Stack. We have covered some
common concerns and decision choices that you will face, whether you self-host or use a
managed cloud provider.

Additionally, we have seen various techniques useful in a production grade Elastic Stack
deployment. These include the usage of index aliases, index templates, and modeling time-
series data. This is definitely not a comprehensive guide covering all the nuances of running
Elastic Stack in production, but we have definitely covered enough for you to comfortably
take your next Elastic Stack project to production.

Equipped with all these techniques, we will build a sensor data analytics application in the
next chapter, Chapter 10, Building a Sensor Data Analytics Application.

10
Building a Sensor Data

Analytics Application
In the previous chapter, we saw how you can take an Elastic Stack application to
production. Armed with all the knowledge of Elastic Stack and the techniques for taking
applications to production, we are ready to apply these concepts in a real-world
application. In this chapter, we will build one such application using Elastic Stack that can
handle a large amount of data applying the techniques that we have learnt so far.

In this chapter, we will cover the following topics as we build a sensor data analytics
application:

Introduction to the application
Modeling data in Elasticsearch
Setting up the metadata database
Building the Logstash data pipeline
Sending data to Logstash over HTTP
Visualizing the data in Kibana

Let's go through the topics.

Building a Sensor Data Analytics Application Chapter 10

[341]

Introduction to the application
IoT (Internet of things) has found a wide range of applications in modern times. IoT can be
defined as follows:

The Internet of things (IoT) is the collective web of connected smart devices that can sense
and communicate with each other by exchanging data via the Internet.

IoT devices are connected to the Internet; they sense and communicate. They are equipped
with different types of sensors that collect the data they observe and transmit it over the
Internet. This data can be stored, analyzed, and often acted upon in near-real time. The
number of such connected devices is projected to rise rapidly; according to Wikipedia, there
will be an estimated 30 billion connected devices by 2020. Since each device can capture the
current value of a metric and transmit it over the Internet, this can result in massive
amounts of data.

A plethora of types of sensors have emerged in recent times for temperature, humidity,
light, motion, and airflow; these can be used in different types of applications. Each sensor
can be programmed to take a current reading and send it over the Internet.

Building a Sensor Data Analytics Application Chapter 10

[342]

Let's consider the following diagram for our understanding:

Fig-9.1: Connected devices and sensors sending data to Elastic Stack

Building a Sensor Data Analytics Application Chapter 10

[343]

Figure 9.1 provides an idea of the high-level architecture of the system that we will discuss
in this chapter. The left-hand side of the figure depicts various types of devices equipped
with sensors. These devices are capable of capturing different metrics and sending the
metrics over the Internet for long-term storage and analysis. In the right half of the figure,
you see the server-side components on the other side of the Internet. The server-side
components primarily consist of Elastic Stack.

In this chapter, we will look at an application where we want to store and analyze sensor
data from two types of sensors: Temperature and Humidity sensors, placed at various
locations.

Sensors can be deployed across multiple sites or locations, with each site connected to the
internet as shown in the figure. Our example demonstrates two types of sensors,
Temperature and Humidity, but the application can be extended to support any kind of
sensor data.

We will cover the following points about the system in this section:

Understanding the sensor-generated data
Understanding the sensor metadata
Understanding the final stored data

Let's go deep into the application by understanding each topic one by one.

Understanding the sensor-generated data
What does the data look like when it is generated by the sensor? The sensor sends JSON
format data over the internet and each reading looks like the following one:

{
 "sensor_id": 1,
 "time": 1511935948000,
 "value": 21.89
}

Building a Sensor Data Analytics Application Chapter 10

[344]

Here:

The sensor_id field is the unique identifier of the sensor that has emitted the
record
The time field is the time of the reading in milliseconds since the epoch, i.e.
00:00:00 on 1 January, 1970
The value field is the actual metric value emitted by the sensor

This type of JSON payload is generated every minute by all the sensors in the system. Since
all sensors are registered in the system, the server-side system has the associated metadata
with each sensor. Let us look at the sensor-related metadata that is available to us on the
server side in a database.

Understanding the sensor metadata
The metadata about all the sensors across all locations is available to us in a relational
database. In our example, we have stored it in MySQL. This type of metadata can be stored
in any relational database other than MySQL. It can also be stored in Elasticsearch in an
index.

The metadata about sensors contains primarily the following details:

Type of sensor: What type of sensor is it? It can be a temperature sensor,
Humidity sensor, and so on.
Location-related metadata: Where is the sensor with the given sensor
ID physically located? Which customer is it associated with?

This information is stored in the following three tables in MySQL:

sensor_type: Defines various sensor types and their sensor_type_id:

sensor_type_id sensor_type

1 Temperature

2 Humidity

Building a Sensor Data Analytics Application Chapter 10

[345]

location: This defines locations with their latitude/longitude and address
within a physical building:

location_id customer department building_name room floor location_on_floor latitude longitude

1 Abc Labs R & D 222 Broadway 101 1 C-101 40.710936 -74.008500

sensors: This maps sensor_id with sensor types and locations:

sensor_id sensor_type_id location_id

1 1 1

2 2 1

Given this database design, it is possible to look up all the of metadata associated for the
given sensor_id using the following SQL query:

select
 st.sensor_type as sensorType,
 l.customer as customer,
 l.department as department,
 l.building_name as buildingName,
 l.room as room,
 l.floor as floor,
 l.location_on_floor as locationOnFloor,
 l.latitude,
 l.longitude
from
 sensors s
 inner join
 sensor_type st ON s.sensor_type_id = st.sensor_type_id
 inner join
 location l ON s.location_id = l.location_id
where
 s.sensor_id = 1;

The result of the previous query will look like this:

sensorType customer department buildingName room floor locationOnFloor latitude longitude

Temperature Abc Labs R & D 222 Broadway 101 Floor1 C-101 40.710936 -74.0085

Building a Sensor Data Analytics Application Chapter 10

[346]

Up until now, we have seen the format of incoming sensor data from the client side. We
have also established a mechanism to look up the associated metadata for the given sensor.

Next, we will see what the final enriched record should look like.

Understanding the final stored data
By combining the data that is coming from the client side and contains the sensor's metric
value for a given metric at a given time, we can construct an enriched record of the
following fields:

sensorId

sensorType

customer

department

buildingName

room

floor

locationOnFloor

latitude

longitude

time

reading

Fields number 1, 11, and 12 are present in the payload sent by the sensor to our application.
The remaining fields are looked up or enriched using the SQL query that we saw in the
previous section—using the sensorId. This way, we can generate a denormalized sensor
reading record for every sensor for every minute.

We have understood what the application is about and what the data represents. As we
start developing the application, we will start the solution from the inside out. It is better to
attack the problem at hand at the very heart and try to piece together its core. In the Elastic
Stack, Elasticsearch is at the core of the stack, and so we will start defining our solution
from the very heart of it by first building the data model in Elasticsearch. Let us do that in
the next section.

Building a Sensor Data Analytics Application Chapter 10

[347]

Modeling data in Elasticsearch
We have seen the structure of the final record after enriching the data. That should help us
model the data in Elasticsearch. Given that our data is time series data, we can apply some
of the techniques mentioned in Chapter 9, Running Elastic Stack in Production, to model the
data:

Defining an index template
Understanding the mapping

Let us look at the index template that we will define.

Defining an index template
Since we are going to be storing time series data that is immutable, we do not want to create
one big monolithic index. We'll use the techniques discussed in the section Modeling time
series data in Chapter 9, Running Elastic Stack in Production.

The source code of the application in this chapter is within the GitHub repository
at https:/​/​github. ​com/ ​pranav- ​shukla/ ​learningelasticstack/ ​tree/ ​master/ ​chapter- ​10.
As we go through the chapter, we will perform the steps mentioned in the README.md file
located at that path.

Please create the index template mentioned in Step 1 of README.md or execute the following
script in your Kibana Dev Tools Console:

POST _template/sensor_data_template
{
 "index_patterns": ["sensor_data*"],
 "settings": {
 "number_of_replicas": "1",
 "number_of_shards": "5"
 },
 "mappings": {
 "doc": {
 "properties": {
 "sensorId": {
 "type": "integer"
 },
 "sensorType": {
 "type": "keyword",
 "fields": {
 "analyzed": {

https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10

Building a Sensor Data Analytics Application Chapter 10

[348]

 "type": "text"
 }
 }
 },
 "customer": {
 "type": "keyword",
 "fields": {
 "analyzed": {
 "type": "text"
 }
 }
 },
 "department": {
 "type": "keyword",
 "fields": {
 "analyzed": {
 "type": "text"
 }
 }
 },
 "buildingName": {
 "type": "keyword",
 "fields": {
 "analyzed": {
 "type": "text"
 }
 }
 },
 "room": {
 "type": "keyword",
 "fields": {
 "analyzed": {
 "type": "text"
 }
 }
 },
 "floor": {
 "type": "keyword",
 "fields": {
 "analyzed": {
 "type": "text"
 }
 }
 },
 "locationOnFloor": {
 "type": "keyword",
 "fields": {
 "analyzed": {

Building a Sensor Data Analytics Application Chapter 10

[349]

 "type": "text"
 }
 }
 },
 "location": {
 "type": "geo_point"
 },
 "time": {
 "type": "date"
 },
 "reading": {
 "type": "double"
 }
 }
 }
 }
}

This index template will create a new index with the name sensor_data-YYYY.MM.dd
when any client attempts to index the first record in this index. We will see later in this
chapter how this can be done from Logstash under Building the Logstash data pipeline.

Understanding the mapping
The mapping that we defined in the index template contains all the fields that will be
present in the denormalized record after lookup. A few things to notice in the index
template mapping are as follows:

All the fields that contain text type of data are stored as the keyword type;
additionally, they are stored as text in an analyzed field. For an example, please
have a look at the customer field.
The latitude and longitude fields that we had in the enriched data are now
mapped to a geo_point type of field with the field name as location.

At this point, we have defined an index template that will trigger the creation of an index
with the mapping we defined in the template.

Building a Sensor Data Analytics Application Chapter 10

[350]

Setting up the metadata database
We need to have a database that has metadata about the sensors. This database will hold the
tables that we discussed in the Introduction to the application section.

We are storing the data in a relational database MySQL, but you can use any other
relational database equally well. Since we are using MySQL, we will be using the MySQL
JDBC driver to connect to the database. Please ensure that you have following things set up
on your system:

MySQL database community version 5.5, 5.6, or 5.7. You can use an existing1.
database if you already have it on your system.
Install the downloaded MySQL database and log in with the root user. Execute2.
the script at this path: https:/ ​/​github. ​com/ ​pranav- ​shukla/
learningelasticstack/ ​tree/ ​master/ ​chapter- ​10/ ​files/ ​create_ ​sensor_
metadata. ​sql.
Log in to the newly created sensor_metadata database and verify that the three3.
tables—sensor_type, locations, and sensors—exist in the database.

You can verify that the database was created and populated successfully by executing the
following query:

select
 st.sensor_type as sensorType,
 l.customer as customer,
 l.department as department,
 l.building_name as buildingName,
 l.room as room,
 l.floor as floor,
 l.location_on_floor as locationOnFloor,
 l.latitude,
 l.longitude
from
 sensors s
 inner join
 sensor_type st ON s.sensor_type_id = st.sensor_type_id
 inner join
 location l ON s.location_id = l.location_id
where
 s.sensor_id = 1;

https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/create_sensor_metadata.sql

Building a Sensor Data Analytics Application Chapter 10

[351]

The result of the previous query will look like this:

sensorType customer department buildingName room floor locationOnFloor latitude longitude

Temperature Abc Labs R & D 222 Broadway 101 Floor1 C-101 40.710936 -74.0085

Our sensor_metadata database is ready to look up the necessary sensor metadata. In the
next section, let us build the Logstash data pipeline.

Building the Logstash data pipeline
Having set up the mechanism to automatically create the Elasticsearch index and also the
metadata database, we can now focus on building the data pipeline using Logstash. What
should our data pipeline do? It should perform the following steps:

Accept JSON requests over the web (over HTTP)
Enrich the JSON with the metadata we have in the MySQL database
Store the resulting documents in Elasticsearch

These three main functions that we want to perform correspond exactly to the Logstash
data pipeline's input, filter, and output plugins respectively. The full Logstash configuration
file for this data pipeline is in the code base at https:/ ​/​github. ​com/ ​pranav- ​shukla/
learningelasticstack/ ​tree/ ​master/ ​chapter- ​10/ ​files/ ​logstash_ ​sensor_ ​data_ ​http.
conf.

Let us look at how to achieve the end goal of our data pipeline by following
the aforementioned steps. We will start with accepting JSON requests over the web (over
HTTP).

Accept JSON requests over the web
This function is achieved by the input plugin. Logstash has support for the http input
plugin, which does precisely that. It builds an HTTP interface using which different types of
payloads can be submitted to Logstash as an input.

https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/files/logstash_sensor_data_http.conf

Building a Sensor Data Analytics Application Chapter 10

[352]

The relevant part from logstash_sensor_data_http.conf that has the input filter is as
follows:

input {
 http {
 id => "sensor_data_http_input"
 }
}

Here, the id field is a string that can uniquely identify this input filter later in the file if
needed. We will not need to reference this name in the file; we just chose a name
sensor_data_http_input.

The reference documentation of the HTTP input plugin is available here: https:/ ​/​www.
elastic.​co/​guide/ ​en/ ​logstash/ ​current/ ​plugins- ​inputs- ​http. ​html. In this instance,
since we are using the default configuration of the http input plugin, we have just specified
id. We should secure this HTTP endpoint as it will be exposed over the internet to allow
sensors to send data from anywhere. We can configure user and password to protect this
endpoint with the desired username and password, as follows:

input {
 http {
 id => "sensor_data_http_input"
 user => "sensor_data"
 password => "sensor_data"
 }
}

When Logstash is started with this input plugin, it starts an HTTP server on port 8080,
which is secured using basic authentication with the given username and password. We can
send a request to this Logstash pipeline using a curl command, as follows:

curl -XPOST -u sensor_data:sensor_data --header "Content-Type:
application/json" "http://localhost:8080/" -d
'{"sensor_id":1,"time":1512102540000,"reading":16.24}'

Let us see how we will enrich the JSON payload with the metadata we have in MySQL.

https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html

Building a Sensor Data Analytics Application Chapter 10

[353]

Enrich the JSON with the metadata we have in the
MySQL database
The enrichment and other processing part of the data pipeline can be done using filter
plugins. We have built a relational database that contains the tables and the necessary
lookup data for enriching the incoming JSON requests.

Logstash has a jdbc_streaming filter plugin that can be used to do lookups from any
relational database and enrich the incoming JSON documents. Let us zoom into the filter
plugin section in our Logstash configuration file:

filter {
 jdbc_streaming {
 jdbc_driver_library => "/path/to/mysql-connector-java-5.1.45-bin.jar"
 jdbc_driver_class => "com.mysql.jdbc.Driver"
 jdbc_connection_string => "jdbc:mysql://localhost:3306/sensor_metadata"
 jdbc_user => "root"
 jdbc_password => "<password>"
 statement => "select st.sensor_type as sensorType, l.customer as
customer, l.department as department, l.building_name as buildingName,
l.room as room, l.floor as floor, l.location_on_floor as locationOnFloor,
l.latitude, l.longitude from sensors s inner join sensor_type st on
s.sensor_type_id=st.sensor_type_id inner join location l on
s.location_id=l.location_id where s.sensor_id= :sensor_identifier"
 parameters => { "sensor_identifier" => "sensor_id"}
 target => lookupResult
 }

 mutate {
 rename => {"[lookupResult][0][sensorType]" => "sensorType"}
 rename => {"[lookupResult][0][customer]" => "customer"}
 rename => {"[lookupResult][0][department]" => "department"}
 rename => {"[lookupResult][0][buildingName]" => "buildingName"}
 rename => {"[lookupResult][0][room]" => "room"}
 rename => {"[lookupResult][0][floor]" => "floor"}
 rename => {"[lookupResult][0][locationOnFloor]" => "locationOnFloor"}
 add_field => {
 "location" =>
"%{lookupResult[0]latitude},%{lookupResult[0]longitude}"
 }
 remove_field => ["lookupResult", "headers", "host"]
 }

}

Building a Sensor Data Analytics Application Chapter 10

[354]

As you will notice, there are two filter plugins used in the file:

jdbc_streaming

mutate

Let us see what each filter plugin is doing.

The jdbc_streaming plugin
We essentially specify the whereabouts of the database that we want to connect to,
username/password, JDBC driver .jar file, and class. We have already created the
database in the Setting up the metadata database section.

Download the latest MySQL JDBC Driver, also known as Connector/J, from https:/ ​/​dev.
mysql.​com/​downloads/ ​connector/ ​j/ ​. At the time of writing this book, the latest version is
5.1.45, which works with MySQL 5.5, 5.6, and 5.7. Download the .tar/.zip file containing
the driver and extract it into your system. The path of this extracted .jar file should be
updated in the jdbc_driver_library parameter.

To summarize, you should review and update the following parameters in the Logstash
configuration to point to your database and driver .jar file:

jdbc_connection_string

jdbc_password

jdbc_driver_library

The statement parameter has the same SQL query that we saw earlier. It looks up the
metadata for the given sensor_id. A successful query will fetch all additional fields for
that sensor_id. The result of the lookup query is stored in a new field, lookupResult, as
specified by the target parameter.

The resulting document up to this point should look like:

{
 "sensor_id": 1,
 "time": 1512102540000,
 "reading": 16.24,
 "lookupResult": [
 {
 "buildingName": "222 Broadway",
 "sensorType": "Temperature",
 "latitude": 40.710936,

https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/

Building a Sensor Data Analytics Application Chapter 10

[355]

 "locationOnFloor": "Desk 102",
 "department": "Engineering",
 "floor": "Floor 1",
 "room": "101",
 "customer": "Linkedin",
 "longitude": -74.0085
 }
],
 "@timestamp": "2017-12-07T12:12:37.477Z",
 "@version": "1",
 "host": "0:0:0:0:0:0:0:1",
 "headers": {
 "remote_user": "sensor_data",
 "http_accept": "*\/*",
 ...
 }
}

As you can see, the jdbc_streaming filter plugin added some fields apart from the
lookupResult field. These fields were added by Logstash and the headers field was
added by the HTTP input plugin.

In the next section, we will use the mutate filter plugin to modify this JSON to the desired
end result that we want in Elasticsearch.

The mutate plugin
As we have seen in the previous section, the output of the jdbc_streaming filter plugin
has some undesired aspects. Our JSON payload needs the following modifications:

Move the looked-up fields that are under lookupResult directly in JSON
Combine the latitude and longitude fields under lookupResult as a location field
Remove the unnecessary fields

mutate {
 rename => {"[lookupResult][0][sensorType]" => "sensorType"}
 rename => {"[lookupResult][0][customer]" => "customer"}
 rename => {"[lookupResult][0][department]" => "department"}
 rename => {"[lookupResult][0][buildingName]" => "buildingName"}
 rename => {"[lookupResult][0][room]" => "room"}
 rename => {"[lookupResult][0][floor]" => "floor"}
 rename => {"[lookupResult][0][locationOnFloor]" =>
"locationOnFloor"}
 add_field => {

Building a Sensor Data Analytics Application Chapter 10

[356]

 "location" =>
"%{lookupResult[0]latitude},%{lookupResult[0]longitude}"
 }
 remove_field => ["lookupResult", "headers", "host"]
 }

Let us see how the mutate filter plugin achieves these objectives.

Move the looked-up fields that are under lookupResult directly in JSON
As we have seen, lookupResult is an array with just one element, the element at index 0 in
the array. We need to move all the fields under this array element directly under the JSON
payload. This is done field by field using the rename operation.

For example, the following operation renames the existing sensorType field directly under
the JSON payload:

rename => {"[lookupResult][0][sensorType]" => "sensorType"}

We do this for all the looked-up fields that are returned by the SQL query.

Combine the latitude and longitude fields under lookupResult as a location
field
Remember when we defined the index template mapping for our index? We had defined
the location field to be of geo_point type. The geo_point type accepts a value that is
formatted as a string with latitude and longitude appended together, separated by a
comma.

This is achieved by using the add_field operation to construct the location field, as
follows:

 add_field => {
 "location" => "%{lookupResult[0]latitude},%{lookupResult[0]longitude}"
 }

By now, we should have a new field called location added to our JSON payload, exactly
as desired. Next, we will remove the undesirable fields.

Building a Sensor Data Analytics Application Chapter 10

[357]

Remove the unnecessary fields
After moving all the elements from the lookupResult field directly in the JSON, we don't
need that field anymore. Similarly, we don't want to store the headers and the host fields
in the Elasticsearch index. So, we remove them all at once using the following operation:

remove_field => ["lookupResult", "headers", "host"]

We finally have the JSON payload in the structure that we want in the Elasticsearch index.
Next, let us see how to send it to Elasticsearch.

Store the resulting documents in Elasticsearch
We use the Elasticsearch output plugin that comes with Logstash to send data to
Elasticsearch. The usage is very simple; we just need to have elasticsearch under the
output tag:

output {
 elasticsearch {
 hosts => ["localhost:9200"]
 index => "sensor_data-%{+YYYY.MM.dd}"
 }
}

We have specified hosts and index to send the data to the right index within the right
cluster. Notice that the index name has %{YYYY.MM.dd}. It calculates the index name to be
used by using the event's current time and formats the time in this format.

Remember that we had defined an index template with the index pattern sensor_data*.
When the first event on 1st December 2017 is sent, the output plugin defined here will send
the event to index sensor_data-2017.12.01.

If you want to send events to a secured Elasticsearch cluster as we did using X-Pack in
Chapter 8, Elastic X-Pack, you can configure the user and password as follows:

output {
 elasticsearch {
 hosts => ["localhost:9200"]
 index => "sensor_data-%{+YYYY.MM.dd}"
 user => "elastic"
 password => "elastic"
 }
}

Building a Sensor Data Analytics Application Chapter 10

[358]

This way, we will have one index for every day, where each day's data will be stored within
its index. We had learned index per time frame in Chapter 9, Running Elastic Stack in
Production.

Now that we have our Logstash data pipeline ready, let us send some data.

Sending data to Logstash over HTTP
At this point, sensors can start sending their readings to the Logstash data pipeline that we
have created in the previous section. They just need to send data as follows:

curl -XPOST -u sensor_data:sensor_data --header "Content-Type:
application/json" "http://localhost:8080/" -d
'{"sensor_id":1,"time":1512102540000,"reading":16.24}'

Since we don't have real sensors, we will simulate the data by sending these types of
requests. The simulated data and script that sends this data are incorporated in the code
at https:/​/​github. ​com/ ​pranav- ​shukla/ ​learningelasticstack/ ​tree/ ​master/ ​chapter- ​10/
data.

If you are on Linux or macOS, open the terminal and change the directory to your Learning
Elasticstack workspace that was checked out from GitHub.

If your machine has a Windows operating system, you will need a Linux-
like shell that supports the curl command and basic BASH (Bourne
Again SHell) commands. As you may already have a GitHub workspace
checked out, you may be using Git for Windows, which has Git BASH. This
can be used to run the script that loads data. If you don't have Git BASH,
please download and install Git for Windows from https:/ ​/​git- ​scm.​com/
download/ ​win and launch Git BASH to run the commands mentioned in
this section.

Now, go to the chapter-10/data directory and execute load_sensor_data.sh:

$ pwd
/Users/pranavshukla/workspace/learningelasticstack
$ cd chapter-10/data
$ ls
load_sensor_data.sh sensor_data.json
$./load_sensor_data.sh

https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win

Building a Sensor Data Analytics Application Chapter 10

[359]

The load_sensor_data.sh script reads the sensor_data.json line by line and submits
to Logstash using the curl command we just saw.

We have just played 1 days worth of sensor readings, taken every minute from different
sensors across a few geographical locations, to Logstash. The Logstash data pipeline that we
had built earlier should have enriched and sent the data to our Elasticsearch.

It is time to switch over to Kibana and get some insights from the data.

Visualizing the data in Kibana
We have successfully set up the Logstash data pipeline and also loaded some data using the
pipeline into Elasticsearch. It is time to explore the data and build a dashboard that will
help us gain some insights into the data.

Let's start by doing a sanity check to see if the data is loaded correctly. We can do so by
going to Kibana Dev Tools and executing the following query:

GET /sensor_data-*/_search?size=0
{
 "query": {"match_all": {}}
}

This query will search data across all indices matching the sensor_data-* pattern. There
should be a good number of records in the index if the data was indexed correctly.

We will cover the following topics:

Set up an index pattern in Kibana
Build visualizations
Create a dashboard using the visualizations

Let us go through each step.

Building a Sensor Data Analytics Application Chapter 10

[360]

Set up an index pattern in Kibana
Before we can start building visualizations, we need to set up the index pattern for all
indexes that we will potentially have for the Sensor Data Analytics application. We need to
do this because our index names are dynamic. We will have one index per day, but we want
to be able to create visualizations and dashboards that work across multiple indices of
Sensor Data even when there are multiple indices. To do this, go to the Management tab on
Kibana and click on the Index Patterns link:

Fig-10.6: Create an Index Pattern

Click on the Create Index Pattern button and add the sensor_data* index pattern as
shown in the following screenshot. In Time Filter Field Name, choose the time field as
follows and click on Create:

Fig-10.7: Create an Index Pattern

Building a Sensor Data Analytics Application Chapter 10

[361]

We have successfully created the index pattern for our sensor data. Next, we will start
building some visualizations.

Build visualizations
Before we embark on an analytics project, we often already have some questions that we
want to get answered quickly from visualizations. These visualizations, which answer
different questions, may be packaged as a dashboard or may be used as and when needed.
We will also start with some questions and try to build visualizations to get answers to
those questions.

We will try to answer the following questions:

How does the average temperature change over time?
How does the average humidity change over time?
How do temperature and humidity change at each location over time?
Can I visualize temperature and humidity over a map?
How are the sensors distributed across departments?

Let us build visualizations to get the answers, starting with the first question.

How does the average temperature change over time?
Here, we are just looking for an aggregate statistic. We want to know the average
temperature across all temperature sensors regardless of their location or any other criteria.
As we saw in Chapter 7, Visualizing Data with Kibana, we should go to the Visualize tab to
create new visualizations and click on the button with a + sign.

Choose Basic Charts, and then choose the Line chart item. In the next screen, to configure
the line chart, follow Steps 1 to 5 as shown in the following screenshot:

Building a Sensor Data Analytics Application Chapter 10

[362]

Fig-10.8: Create the visualization for Average temperature over time

Click on the small clock icon at the top-right corner, choose Absolute, and select1.
the date range as 1st December 2017 to 2nd December 2017. We have to do this
because our simulated sensor data is from 1st December 2017.
Click on Add a filter as shown in Fig-10.8; choose the Filter as follows—2.
sensorType is Temperature. Click on the Save button. We have two types of
sensors, Temperature and Humidity. In the current visualization that we are
building, we are only interested in the temperature readings. This is why we've
added this filter.
From the Metrics section, choose the values as shown in Figure 10.8. We are3.
interested in the average value of the readings. We have also modified the label
to be Average Temperature.
From the Buckets section, choose the Date Histogram aggregation and the time4.
field, with the other options left as is.
Click on the triangular Apply changes button.5.

Building a Sensor Data Analytics Application Chapter 10

[363]

The result is the average temperature across all temperature sensors over the selected time
period. This is what we were looking for when we started building this visualization. From
the preceding graph, we can quickly see that on 1st December 2017 at 15:00 IST, the
temperature became unusually high. The time may be different on your machine. We may
want to find out which underlying sensors reported higher-than-normal temperatures that
caused this peak.

We can click on the Save link at the top bar and give this visualization a name. Let's call it
Average temperature over time. Later, we will use this visualization in a dashboard.

Let us proceed to the next question.

How does the average humidity change over time?
This question is very similar to the previous question. We can reuse the previous
visualization, make a slight modification, and create another copy to answer this question.
We will start by opening the first visualization, which we saved with the name Average
temperature over time.

Execute the steps mentioned as follows to update the visualization:

Hover on the filter with label sensorType: "Temperature" and click on the Edit1.
icon as shown in figure 10.8.
Change the Filter value from Temperature to Humidity and click on Save.2.
Modify Custom Label from Average Temperature to Average Humidity and3.
click on the Apply changes button.

Fig-10.9: Create the visualization for Average humidity over time

Building a Sensor Data Analytics Application Chapter 10

[364]

As you will see, the chart gets updated for the Humidity sensors. You can click on the Save
link at the top navigation bar. You can give a new name to the visualization as Average
humidity over time, check the Save as a new visualization box, and click on Save. This
completes our second visualization and answers our second question.

How do temperature and humidity change at each
location over time?
This time, we are looking to get more details than the first two questions. We want to know
how the temperature and humidity vary at each location over time. We will solve it for
temperature.

Go to the Visualizations tab in Kibana and create a new Line chart visualization, the same
as how we did before:

Fig-10.10: Create the visualization for Temperature at locations over time

Building a Sensor Data Analytics Application Chapter 10

[365]

Add a filter for sensorType: "Temperature" as we have done before.1.
Set the Metrics section as shown in fig-10.10 to do Average aggregation on2.
the reading field.
Since we are aggregating the data over the time field, we need to choose3.
the Date Histogram aggregation in the Buckets section. Here we should choose
the time field and leave the aggregation Interval to be Auto.
Up to this point, this visualization is the same as Average temperature over time.4.
We don't just want to see the average temperature over time; we want to see it
per locationOnFloor, which is our most fine-grained unit of identifying a
location. This is why we are splitting the series using Terms aggregation on the
field locationOnFloor in this step. We select Order By to be metric: Average
Temperature and keep 5 as the Order Size to keep only the top five locations.

We have now built a visualization that shows how the temperature changes for each value
of locationOnFloor in our data. You can clearly see that there is spike in O-201 on 1st
December 2017 at 15:00 IST. Because of this spike, we had seen the average temperature in
our first visualization spike at that time. This is an important insight that we have
uncovered.

A visualization for humidity can be created by following the same steps but just replacing
Temperature with Humidity.

Can I visualize temperature and humidity over a map?
We can visualize temperature and humidity over the map using the the Coordinate Map
visualization. Create a new Coordinate Map visualization and perform the following steps:

Building a Sensor Data Analytics Application Chapter 10

[366]

Fig-10.11: Create a visualization to view sensor locations over a map

As in previous visualizations, add a filter for sensorType: "Temperature"1.
In the Metrics section, choose Average aggregation on the reading field as done2.
previously
Since this is a Coordinate Map, we need to choose the GeoHash Grid aggregation3.
and then select the geo_point field that we have in our data—location is the
field to aggregate

As you can see, it helps in visualizing our data on the map. We can immediately see the
average temperature at each site when we hover over a specific location. Focus on the
relevant part of the map and save the visualization with the name Temperature over
locations.

You can create a similar Coordinate Map visualization for the humidity sensors.

Building a Sensor Data Analytics Application Chapter 10

[367]

How are the sensors distributed across departments?
What if we want to see how the sensors distributed across different departments?
Remember, we have the department field in our data, which we had got after enriching the
data using the sensor_id. Pie charts are particularly useful to visualize how data is
distributed across multiple values of a keyword type of field, such as department. We will
start by creating a new Pie chart visualization.

Follow the steps as shown in Fig-10.12:

Fig-10.12: Creating a visualization for Locations across departments

In the Metrics section, choose Unique Count aggregation and locationOnFloor1.
field. You may modify the Custom Label to Number of locations.
In the Buckets section, we need to choose Terms aggregation on the department2.
field as we want to aggregate the data across different departments.

Building a Sensor Data Analytics Application Chapter 10

[368]

Click on Apply changes and save this visualization as Locations across departments.
You can also create another similar visualization to visualize Locations across different
buildings. Lets call that visualization Locations across buildings. That will help us
see how many locations are being monitored in each building.

Next, we will create a dashboard to bring together all the visualizations we have built.

Create a dashboard
A dashboard lets you organize multiple visualizations together, save, and share with other
people. The ability to look at multiple visualizations has its own benefits. You can filter the
data using some criteria and all visualizations will show the data filtered by the same
criteria. This ability lets you uncover some powerful insights. It can also answer more
complex questions.

Let us build a dashboard from the visualizations that we have created so far. Please click on
the Dashboard tab from the left-hand-side navigation bar in Kibana. Click on the + button
to create a new dashboard.

Click on the Add menu bar item at the top to add visualizations to your newly created
dashboard. As you click, you will see all the visualizations we have built in a drop-down
selection. You can add all the visualizations one by one and drag/resize to create a
dashboard that suits your requirements.

Building a Sensor Data Analytics Application Chapter 10

[369]

Let us see what a dashboard may look like for the application that we are building:

fig-10.13: Dashboard for Sensor Data Analytics application

With dashboard, you can add filters by clicking on the Add a filter link near the top-left
corner of the dashboard. The selected filter will be applied to all the charts.

The visualizations are interactive; for example, clicking on one of the pies of the donut
charts will apply that filter globally. Let's see how it can be helpful.

When you click on the pie for 222 Broadway building in the donut chart at the bottom-right
corner, you will see the filter for buildingName: "222 Broadway" added to the filters. This
lets you see all of the data from the perspective of all the sensors in that building:

Building a Sensor Data Analytics Application Chapter 10

[370]

Fig-10.13 - Interacting with the visualizations in a dashboard

Let us delete that filter by hovering over the buildingName: "222 Broadway" filter and
clicking on the trash icon. Next, we will try to interact with one of the line charts, that is, the
Temperature at locations over time visualization.

As we observed earlier, there was a spike on 1st December 2017 at 15:00 IST. It is possible to
zoom into a particular time period by clicking, dragging, and drawing a rectangle around
the time interval that we want to zoom into within any line chart. In other words, just draw
a rectangle around the spike, dragging your mouse while it is clicked. The result is that the
time filter applied on the entire dashboard (which is displayed in the top-right corner) is
changed.

Building a Sensor Data Analytics Application Chapter 10

[371]

Let's see whether we get any new insights from this simple operation to focus on that time
period:

Fig-10.15: Zooming into a time interval from a line chart

We uncover the following facts:

The temperature sensor at location O-201 (pink legend in fig-10.15) is steadily1.
rising around this time.
In the Coordinate Map visualization, you can see that the highlighted circle is2.
red, compared to the other locations, which are yellow. This highlights that the
location has an abnormally high temperature compared to the other locations.

Interacting with charts and applying different filters can provide powerful insights like the
ones we just saw.

This concludes our application and demonstration of what we can do using the Elastic Stack
components.

Building a Sensor Data Analytics Application Chapter 10

[372]

Summary
In this chapter, we built a sensor data analytics application that has a wide variety of
applications, as it is related to the emerging IoT field. We understood the problem domain
and the data model, including metadata related to sensors. We wanted to build an analytics
application using only Elastic Stack components, without using any other tools and
programming languages, to get a powerful tool that can handle large volumes of data.

We started at the very core by designing the data model for Elasticsearch. Then we
designed a data pipeline that is secured and can accept data over the internet using HTTP.
We enriched the incoming data using the metadata that we had in a relational database and
stored in Elasticsearch. We sent some test data over HTTP just like real sensors send over
the internet. We built some meaningful visualizations that will give answers to some typical
questions. Then we put together all visualizations in a powerful, interactive dashboard.

In Chapter 11, Monitoring Server Infrastructure, we will build another real-world application
where Elastic Stack excels.

11
Monitoring Server Infrastructure

In the previous chapter, we covered how to effectively run Elastic Stack in a production
environment, and the best practices to follow when running Elastic Stack in production.

In this chapter, we will be covering how to use the Beats platform for monitoring server
infrastructure. We will learn in detail about Metricbeat, a Beat which helps IT
administrators and application support teams in monitoring their applications and server
infrastructure, and in responding in a timely manner in case of infrastructure outage.

In this chapter, we will cover:

Metricbeat, a Beat used for collecting system and application metrics
Installation and configuration of Metricbeat
Deployment architectures

Metricbeat
Metricbeat is a lightweight shipper that periodically collects metrics from the operating
system and from services running on the server. It helps one to monitor servers by
collecting metrics from the system and services such as Apache, MongoDB, Redis, and so
on, running on the server. Metricbeat can push the collected metrics directly into
Elasticsearch or send them to Logstash, Redis, or Kafka. To monitor services, Metricbeat can
be installed on the edge server where services are running, but it also provides the ability to
collect metrics from remote servers, as well. However, it's recommended to have it installed
on the edge servers where the services are running.

Monitoring Server Infrastructure Chapter 11

[374]

Downloading and installing Metricbeat
Navigate to https:/ ​/​www. ​elastic. ​co/ ​downloads/ ​beats/ ​metricbeat and, depending on
your operating system, download the ZIP/TAR file as shown in the following screenshot.
The installation of Metricbeat is simple and straightforward:

Beats version 6.0.x is compatible with Elasticsearch 5.6.x and 6.0.x, and
Logstash 5.6.x and 6.0.x. The compatibility matrix can be found at https:/
/​www. ​elastic. ​co/ ​support/ ​matrix#matrix_ ​compatibility. When you
come across Elasticsearch and Logstash examples or usages with Beats in
this chapter, make sure you have compatible versions of Elasticsearch and
Logstash installed.

https://www.elastic.co/downloads/beats/metricbeat
https://www.elastic.co/downloads/beats/metricbeat
https://www.elastic.co/downloads/beats/metricbeat
https://www.elastic.co/downloads/beats/metricbeat
https://www.elastic.co/downloads/beats/metricbeat
https://www.elastic.co/downloads/beats/metricbeat
https://www.elastic.co/downloads/beats/metricbeat
https://www.elastic.co/downloads/beats/metricbeat
https://www.elastic.co/downloads/beats/metricbeat
https://www.elastic.co/downloads/beats/metricbeat
https://www.elastic.co/downloads/beats/metricbeat
https://www.elastic.co/downloads/beats/metricbeat
https://www.elastic.co/downloads/beats/metricbeat
https://www.elastic.co/downloads/beats/metricbeat
https://www.elastic.co/downloads/beats/metricbeat
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility

Monitoring Server Infrastructure Chapter 11

[375]

Installing on Windows
Unzip the downloaded file and navigate to the extracted location, as follows:

D:>cd D:\packt\metricbeat-6.0.0-windows-x86_64

To install Metricbeat as a service on Windows, refer to the following steps:

Open Windows PowerShell as an administrator and navigate to1.
the extracted location
From the PowerShell prompt, run the following commands to2.
install Metricbeat as a Windows service:

PS >cd D:\packt\metricbeat-6.0.0-windows-x86_64
PS D:\packt\metricbeat-6.0.0-windows-x86_64>.\install-
service-metricbeat.ps1

If script execution is disabled on your system, you need to set the
execution policy for the current session to allow the script to run. For
example, PowerShell.exe -ExecutionPolicy UnRestricted -File
.\install-service-metricbeat.ps1.

Installing on Linux
Unzip the tar.gz package and navigate to the newly created folder as shown in the
following code snippet:

$> tar -xzf metricbeat-6.0.0-linux-x86_64.tar.gz
$>cd metricbeat

Monitoring Server Infrastructure Chapter 11

[376]

To install using dep/rpm, execute the appropriate commands in the
terminal:

deb:
curl -L -O
https://artifacts.elastic.co/downloads/beats/metricbeat/m
etricbeat-6.0.0-amd64.deb
sudo dpkg -i metricbeat-6.0.0-amd64.deb

rpm:
curl -L -O
https://artifacts.elastic.co/downloads/beats/metricbeat/m
etricbeat-6.0.0-x86_64.rpm
sudo rpm -vi metricbeat-6.0.0-x86_64.rpm

Metricbeat will be installed in the /usr/share/metricbeat directory.
The configuration files will be present in /etc/metricbeat. The init
script will be present in /etc/init.d/metricbeat. The log files will be
present within the /var/log/metricbeat directory.

Architecture
Metricbeat is made up of two components. One is modules and the other is metricsets. A
Metricbeat module defines the basic logic of collecting data from a specific service such as
MongoDB, Apache, and so on. The module specifies details about the service, including
how to connect, how often to collect metrics, and which metrics to collect.

Each module has one or more metricsets. A metricset is the component which collects the
list of related metrics from services or the operating system using a single request. It
structures the event data and ships it to the configured outputs, such as Elasticsearch or
Logstash.

Metricbeat collects the metrics periodically based on the interval specified in
the metricbeat.yml configuration file, and publishes the event to the configured output
asynchronously. As the events are published asynchronously, just like in Filebeat which
guarantees delivery at least once, if the configured output is not available then the events
will be lost.

Monitoring Server Infrastructure Chapter 11

[377]

For example, the MongoDB module provides the status and dbstats metricsets, which
collect the information and statistics by parsing the returned response obtained from
running the db.serverStatus() and db.stats() commands on MongoDB, as shown in
the following figure:

The key benefits of Metricbeat are as follows:

Metricbeat sends error events too: When the service is not reachable or down,
Metricbeat will still send the events containing full error messages obtained
during fetching from the host systems. This is beneficial for troubleshooting or
identifying the reason behind the outage of the service.
Combines multiple related metrics into a single event: Metricbeat fetches all the
related metrics from the host system, making a single request rather than making
multiple requests for fetching each metrics one by one, thus resulting in less load
on the services/host systems. Fetched metrics are combined into a single event
and sent to the configured output.

Monitoring Server Infrastructure Chapter 11

[378]

Sends metadata information: Metrics sent by Metricbeat contain both numbers
as well as strings contacting the status information. It also ships basic metadata
information about each metric as part of each event. This is helpful for mapping
appropriate data types during storage and helps with querying/filtering data,
identifying events based on meta data information, and so on.
Sends raw data as it is: Metricbeat sends the obtained raw data as it is without
performing any processing or any aggregation operations on it, thus reducing the
complexity of Metricbeat.

Event structure
Metricbeat sends two type of events:

Regular events containing the fetched metrics
Error events when the service is down/unreachable

Irrespective of the type of event, all the events have the same basic structure and contain at
minimum the following fields, irrespective of the type of module enabled:

@timestamp: Time when the event was captured
beat.hostname: Hostname of the server on which the Beat is running
beat.name: Name given to the Beat (defaults to hostname)
beat.version: Version of the Beat
metricset.module: Name of the module that the data is from
metricset.name: Name of the metricset that the data is from
metricset.rtt: Round trip time of the request in microseconds
@metadata.beat: Beat type (that is, Metricbeat)
@metadata.type: Defaults to doc
@metadata.version: Version of the Beat

In case of error events, an error field such as error.message, error.code,
and error.type, containing the error message, code, and type, will be appended to the
event.

Monitoring Server Infrastructure Chapter 11

[379]

An example of a regular event is as follows:

{
 "@timestamp": "2017-11-25T11:48:33.269Z",
 "@metadata": {
 "beat": "metricbeat",
 "type": "doc",
 "version": "6.0.0"
 },
 "system": {
 "fsstat": {
 "total_size": {
 "free": 189415194624,
 "used": 305321828352,
 "total": 494737022976
 },
 "count": 2,
 "total_files": 0
 }
 },
 "metricset": {
 "name": "fsstat",
 "rtt": 2000,
 "module": "system"
 },
 "beat": {
 "version": "6.0.0",
 "name": "SHMN-IN",
 "hostname": "SHMN-IN"
 }
}

An example of an error event when mongodb is not reachable is as follows:

{
 "@timestamp": "2017-11-25T11:53:08.056Z",
 "@metadata": {
 "beat": "metricbeat",
 "type": "doc",
 "version": "6.0.0"
 },
 "metricset": {
 "host": "localhost:27017",
 "rtt": 1003057,
 "module": "mongodb",
 "name": "status"
 },
 "error": {

Monitoring Server Infrastructure Chapter 11

[380]

 "message": "no reachable servers"
 },
 "mongodb": {
 "status": {}
 }

Along with the minimum fields (basic structure of the event) that the Metricbeat ships,
depending on the modules enabled, it ships fields related to the module. The complete list
of fields it ships per module can be obtained at https:/ ​/​www. ​elastic. ​co/​guide/ ​en/​beats/
metricbeat/​current/ ​exported- ​fields. ​html.

Configuring Metricbeat
The configurations related to Metricbeat are stored in a configuration file named
metricbeat.yml, and it uses YAML syntax.

The metricbeat.yml file contains the following:

Module configuration
General settings
Output configuration
Processor configuration
Path configuration
Dashboard configuration
Logging configuration

Let's explore some of these sections.

The location of the metricbeat.yml file will be present in the installation
directory if .zip or .tar files are used for installation. If .dep or .rpm is
used for installation, then it will be present in the /etc/metricbeat
location.

Module configuration
Metricbeat comes bundled with various modules to collect metrics from the system and
applications such as Apache, MongoDB, Redis, MySQL, and so on.

https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html

Monitoring Server Infrastructure Chapter 11

[381]

Metricbeat provides two ways of enabling modules and metricsets:

Enabling module configs in the modules.d directory
Enabling module configs in the metricbeat.yml file

Enabling module configs in the modules.d directory
The modules.d directory contains default configurations for all the modules available in
Metricbeat. The configuration specific to a module is stored in a .yml file with the name of
the file being the name of the module. For example, the configuration related to the
MySQL module would be stored in the mysql.yml file. By default, excepting the
system module, all other modules are disabled. To list the modules that are available in
Metricbeat, execute the following command:

Windows:
D:\packt\metricbeat-6.0.0-windows-x86_64>metricbeat.exe modules list

Linux:
[locationOfMetricBeat]$./metricbeat modules list

The modules list command displays all the available modules and also lists which
modules are currently enabled/disabled.

If a module is disabled, then in the modules.d directory, the configuration
related to the module will be stored with the .disabled extension.

As each module comes with the default configurations, make the appropriate changes in the
module configuration file.

The basic configuration for mongodb module will look as follows:

- module: mongodb
 metricsets: ["dbstats", "status"]
 period: 10s
 hosts: ["localhost:27017"]
 username: user
 password: pass

Monitoring Server Infrastructure Chapter 11

[382]

To enable it, execute the modules enable command, passing one or more module name.
For example:

Windows:
D:\packt\metricbeat-6.0.0-windows-x86_64>metricbeat.exe modules enable
redis mongodb

Linux:
[locationOfMetricBeat]$./metricbeat modules enable redis mongodb

Similar to disable modules, execute the modules disable command, passing one or more
module names to it. For example:

Windows:
D:\packt\metricbeat-6.0.0-windows-x86_64>metricbeat.exe modules disable
redis mongodb

Linux:
[locationOfMetricBeat]$./metricbeat modules disable redis mongodb

To enable dynamic config reloading, set reload.enabled to true and to
specify the frequency to look for config file changes. Set
the reload.period parameter under the metricbeat.config.modules
property.

For example:
#metricbeat.yml

metricbeat.config.modules:
path: ${path.config}/modules.d/*.yml
reload.enabled: true
reload.period: 20s

Monitoring Server Infrastructure Chapter 11

[383]

Enabling module config in the metricbeat.yml file
If one is used to earlier versions of Metricbeat, one can enable the modules and metricsets in
the metricbeat.yml file directly by adding entries to the metricbeat.modules list. Each
entry in the list begins with a dash (-) and is followed by the settings for that module. For
example:

metricbeat.modules:
#------------------ Memcached Module -----------------------------
- module: memcached
 metricsets: ["stats"]
 period: 10s
 hosts: ["localhost:11211"]

#------------------- MongoDB Module ------------------------------
- module: mongodb
 metricsets: ["dbstats", "status"]
 period: 5s

It is possible to specify the module multiple times and specify a different
period to use for one or more metricset. For example:

#------- Couchbase Module -----------------------------
- module: couchbase
metricsets: ["bucket"]
period: 15s
hosts: ["localhost:8091"]

- module: couchbase
metricsets: ["cluster", "node"]
period: 30s
hosts: ["localhost:8091"]

General settings
This section contains configuration options and some general settings to control the
behavior of Metricbeat.

Monitoring Server Infrastructure Chapter 11

[384]

Some of the configuration options/settings are:

name: The name of the shipper that publishes the network data. By default,
hostname is used for this field:

name: "dc1-host1"

tags: The list of tags that will be included in the tags field of every event
Metricbeat ships. Tags make it easy to group servers by different logical
properties and help when filtering events in Kibana and Logstash:

tags: ["staging", "web-tier","dc1"]

max_procs: The maximum number of CPUs that can be executing
simultaneously. The default is the number of logical CPUs available in the
system:

max_procs: 2

Output configuration
This section is used to configure outputs where the events need to be shipped. Events can
be sent to single or multiple outputs simultaneously. The allowed outputs are Elasticsearch,
Logstash, Kafka, Redis, file, and console.

Some of the outputs that can be configured are as follows:

elasticsearch: It is used to send the events directly to Elasticsearch. A sample
Elasticsearch output configuration is shown in the following code snippet:

output.elasticsearch:
 enabled: true
 hosts: ["localhost:9200"]

Monitoring Server Infrastructure Chapter 11

[385]

Using the enabled setting, one can enable or disable the output. hosts accepts
one or more Elasticsearch node/server. Multiple hosts can be defined for failover
purposes. When multiple hosts are configured, the events are distributed to these
nodes in round robin order. If Elasticsearch is secured, then the credentials can be
passed using the username and password settings:

output.elasticsearch:
 enabled: true
 hosts: ["localhost:9200"]
 username: "elasticuser"
 password: "password"

To ship the events to the Elasticsearch ingest node pipeline so that they can be
pre-processed before being stored in Elasticsearch, the pipeline information can be
provided using the pipleline setting:

output.elasticsearch:
 enabled: true
 hosts: ["localhost:9200"]
 pipeline: "ngnix_log_pipeline"

The default index the data gets written to is of the format metricbeat-
%{[beat.version]}-%{+yyyy.MM.dd}. This will create a new index every day.
For example if today is December 2, 2017 then all the events are placed in
the metricbeat-6.0.0-2017-12-02 index. One can override the index name or
the pattern using the index setting. In the following configuration snippet, a new
index is created for every month:

output.elasticsearch:
 hosts: ["http://localhost:9200"]
 index: "metricbeat-%{[beat.version]}-%{+yyyy.MM}"

Using the indices setting, one can conditionally place the events in the
appropriate index that matches the specified condition. In the following code
snippet, if the message contains the DEBUG string, it will be placed in the debug-
%{+yyyy.MM.dd} index. If the message contains the ERR string, it will be placed
in the error-%{+yyyy.MM.dd} index. If the message contains neither of these
texts, then those events will be pushed to the logs-%{+yyyy.MM.dd} index as
specified in the index parameter:

output.elasticsearch:
 hosts: ["http://localhost:9200"]
 index: "logs-%{+yyyy.MM.dd}"
 indices:

Monitoring Server Infrastructure Chapter 11

[386]

 - index: "debug-%{+yyyy.MM.dd}"
 when.contains:
 message: "DEBUG"
 - index: "error-%{+yyyy.MM.dd}"
 when.contains:
 message: "ERR"

When the index parameter is overridden, disable templates and
dashboards by adding the following setting in:

setup.dashboards.enabled: false
setup.template.enabled: false

Alternatively, provide the value for setup.template.name and
setup.template.pattern in the metricbeat.yml configuration file, or
else Metricbeat will fail to run.

logstash: It is used to send the events to Logstash.

To use Logstash as the output, Logstash needs to be configured with the
Beats input plugin to receive incoming Beats events.

A sample Logstash output configuration is as follows:

output.logstash:
 enabled: true
 hosts: ["localhost:5044"]

Using the enabled setting, one can enable or disable the output. hosts accepts
one or more Logstash servers. Multiple hosts can be defined for failover purposes.
If the configured host is unresponsive, then the event will be sent to one of the
other configured hosts. When multiple hosts are configured, the events are
distributed in random order. To enable load balancing of events across the
Logstash hosts, use the loadbalance flag, set to true:

output.logstash:
 hosts: ["localhost:5045", "localhost:5046"]
 loadbalance: true

Monitoring Server Infrastructure Chapter 11

[387]

console: It is used to send the events to stdout. The events are written in JSON
format. It is useful during debugging or testing.

A sample console configuration is as follows:

output.console:
 enabled: true
 pretty: true

Logging
This section contains the options for configuring the Filebeat logging output. The logging
system can write logs to syslog or rotate log files. If logging is not explicitly configured, file
output is used on Windows systems, and syslog output is used on Linux and OS X.

A sample configuration is as follows:

logging.level: debug
logging.to_files: true
logging.files:
 path: C:\logs\metricbeat
 name: metricbeat.log
 keepfiles: 10

Some of the configuration options are:

level: To specify the logging level.
to_files: To write all logging output to files. The files are subject to file rotation.
This is the default value.
to_syslog: To write the logging output to syslogs if this setting is set to true.
files.path, files.name, and files.keepfiles: These are used to specify the
location of the file, the name of the file, and the number of most recently rotated
log files to keep on the disk.

Monitoring Server Infrastructure Chapter 11

[388]

Capturing system metrics
In order to monitor and capture metrics related to servers, Metricbeat provides
the system module. The system module provides the following metricsets to capture
server metrics:

core: This metricset provides usage statistics for each CPU core.
cpu: This metricset provides CPU statistics.
diskio: This metricset provides disk IO metrics collected from the operating
system. One event is created for each disk mounted on the system.
filesystem: This metricset provides file system statistics. For each file system,
one event is created.
process: This metricset provides process statistics. One event is created for each
process.
process_summary: This metricset collects high-level statistics about the running
processes.
fsstat: This metricset provides overall file system statistics.
load: This metricset provides load statistics.
memory: This metricset provides memory statistics.
network: This metricset provides network IO metrics collected from the
operating system. One event is created for each network interface.
socket: This metricset reports an event for each new TCP socket that it sees. This
metricset is available on Linux only and requires kernel 2.6.14 or newer.

Some of the metricsets provide configuration options to fine tune the returned metrics. For
example, the cpu metricset provides cpu.metrics configuration to control the CPU
metrics reported. However, metricsets such as memory and diskio don't provide any
configuration options. Unlike other modules, which can be monitored from other servers by
configuring the hosts appropriately (not a highly recommended approach),
system modules are local to the server and can collect the metrics of underlying hosts only.

The complete list of fields per metricset exported by the system module
can be found at https:/ ​/ ​www.​elastic. ​co/​guide/ ​en/​beats/ ​metricbeat/
current/ ​exported- ​fields- ​system. ​html. ​

https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html

Monitoring Server Infrastructure Chapter 11

[389]

Running Metricbeat with the system module
Let's make use of Metricbeat and capture the system metrics.

Make sure Kibana 6.0 and Elasticsearch 6.0 are running:

Replace the content of metricbeat.yml with the following configuration and1.
save the file:

############### Metricbeat Configuration Example ################
#============== Modules configuration =========================

metricbeat.config.modules:
 # Glob pattern for configuration loading
 path: ${path.config}/modules.d/*.yml

 # Set to true to enable config reloading
 reload.enabled: false

 # Period on which files under path should be checked for changes
 #reload.period: 10s

#=========== Elasticsearch template setting =================

setup.template.settings:
 index.number_of_shards: 1
 index.codec: best_compression
 #_source.enabled: false

#=================== General
Settings===============================
name: metricbeat_inst1

tags: ["system-metrics", "localhost"]

fields:
 env: test-env

#============================== Dashboards
===========================
setup.dashboards.enabled: true

#============================== Kibana Settings
===========================
setup.kibana:
 host: "localhost:5601"
 #username: "elastic"

Monitoring Server Infrastructure Chapter 11

[390]

 #password: "changeme"

#-------------------------- Elasticsearch output Settings ---------

output.elasticsearch:
 # Array of hosts to connect to.
 hosts: ["localhost:9200"]
 #username: "elastic"
 #password: "changeme"

The setup.dashboards.enabled: true setting loads sample
dashboards to the Kibana index during startup, and the dashboards are
loaded via the Kibana API. If Elasticsearch and Kibana are secured, make
sure to un-comment username and password parameters and set the
appropriate values.

By default, the system module is enabled. Make sure it is enabled by executing2.
the following command:

Windows:
D:\packt\metricbeat-6.0.0-windows-x86_64>metricbeat.exe modules
enable system
Module system is already enabled

Linux:
[locationOfMetricBeat]$./metricbeat modules enable system
Module system is already enabled

You can verify the metricsets that are enabled for the system module by opening3.
the system.yml file, found under the modules.d directory:

#system.yml
- module: system
 period: 10s
 metricsets:
 - cpu
 #- load
 - memory
 - network
 - process
 - process_summary
 #- core
 #- diskio
 #- socket
 processes: ['.*']
 process.include_top_n:

Monitoring Server Infrastructure Chapter 11

[391]

 by_cpu: 5 # include top 5 processes by CPU
 by_memory: 5 # include top 5 processes by memory

- module: system
 period: 1m
 metricsets:
 - filesystem
 - fsstat
 processors:
 - drop_event.when.regexp:
 system.filesystem.mount_point:
'^/(sys|cgroup|proc|dev|etc|host|lib)($|/)'

As seen in the preceding code, the configuration module is defined twice
with different periods to use for a set of metricsets.
The cpu, memory, network, process, process_summary, filesystem, and
fsstats metricsets are enabled.

Start the Metricbeat by executing the following command:4.

Windows:
D:\packt\metricbeat-6.0.0-windows-x86_64>metricbeat.exe -e

Linux:
[locationOfMetricBeat]$./metricbeat -e

Once Metricbeat is started, it loads sample Kibana dashboards and starts shipping
metrics to Elasticsearch. To validate, execute the following command:

curl -X GET 'http://localhost:9200/_cat/indices?v=&format=json'

Sample Response:
[
 {
 "health": "yellow",
 "status": "open",
 "index": "metricbeat-6.0.0-2017.11.26",
 "uuid": "w2WoP2IhQ9eG7vSU_HmgnA",
 "pri": "1",
 "rep": "1",
 "docs.count": "29",
 "docs.deleted": "0",
 "store.size": "45.3kb",
 "pri.store.size": "45.3kb"
 },
 {

Monitoring Server Infrastructure Chapter 11

[392]

 "health": "yellow",
 "status": "open",
 "index": ".kibana",
 "uuid": "sSzeYu-YTtWR8vr2nzKrbg",
 "pri": "1",
 "rep": "1",
 "docs.count": "108",
 "docs.deleted": "59",
 "store.size": "289.3kb",
 "pri.store.size": "289.3kb"
 }
]

curl -X GET 'http://localhost:9200/_cat/indices?v'

health status index uuid pri rep docs.count docs.deleted store.size
pri.store.size
yellow open metricbeat-6.0.0-2017.11.26 w2WoP2IhQ9eG7vSU_HmgnA 1 1
29 0 45.3kb 45.3kb
yellow open .kibana sSzeYu-YTtWR8vr2nzKrbg 1 1 108 59 289.3kb
289.3kb

Specifying aliases
Elasticsearch allows the user to create an alias—a virtual index name that can be used to
refer to an index or multiple indices. The Elasticsearch index aliases API allows for aliasing
an index with a name, with all APIs automatically converting the alias name to the actual
index name.

Say, for example, we want to query against a set of similar indexes. Rather than specifying
each of the index names in the query, we can make use of aliases and execute the query
against the alias. The alias will internally point to all the indexes and perform a query
against them. This will be highly beneficial if we added certain indexes dynamically on a
regular basis, so that one application/user performing the query need not worry about
including those indexes in the query as long as the index is updated with the alias (which
can be done manually by an admin or specified during index creation).

Monitoring Server Infrastructure Chapter 11

[393]

Let's say the IT admin creates an alias pointing to all the indexes containing the metrics for a
specific month. For example, as shown in the following code snippet, an alias called
november_17_metrics is created for all indexes of the
metricbeat-6.0.0-2017.11.* pattern, that is, the metricbeat indexes that are created on
a daily basis in the month of November:

curl -X POST http://localhost:9200/_aliases -H 'content-type:
application/json' -d '{
 "actions":
 [
 {"add":{ "index" : "metricbeat-6.0.0-2017.11.*", "alias":
"november_17_metrics"} }
]
}'

Now, using the november_17_metrics alias name, the query can be executed against all
the indexes of the metricbeat-6.0.0-2017.11.* pattern:

curl -X GET http://localhost:9200/november_17_metrics/_search

In the following example, the "sales" alias is created against the
"it_sales" and "retail_sales" indexes. In future, if a new sales index gets created,
then that index can also point to the "sales" index so that the end user/application can
always make use of the "sales" endpoint for querying all sales data:

curl -X POST http://localhost:9200/_aliases -d '{
"actions" : [
 { "add" : { "index" : "it_sales", "alias" : "sales" } },
 { "add" : { "index" : "retail_sales", "alias" : "sales" } }
] }

To remove an alias from an index, use the "remove" action of the aliases API:

curl -X POST http://localhost:9200/_aliases -d '
{ "actions" : [{ "remove" : { "index" : "retail_sales", "alias" : "sales"
} }] }

Monitoring Server Infrastructure Chapter 11

[394]

Visualizing system metrics using Kibana
To visualize the system metrics using Kibana, execute the following steps:

Navigate to http://localhost:5601 and open up Kibana. 1.
Click on the Dashboard link found in the left navigation menu and select either2.
[Metricbeat System] Overview or [Metricbeat System] Host Overview from the
dashboard:

[Metricbeat System] Overview Dashboard: This dashboard provides an overview of all the
systems that are being monitored. As we are monitoring only a single host, we will see that
the number of hosts is 1:

Monitoring Server Infrastructure Chapter 11

[395]

[Metricbeat Host] Overview Dashboard: This dashboard is useful for finding the detailed
metrics of individual systems/hosts. In order to filter the metrics based on a particular host,
enter the search/filter criteria in the search/query bar. In the following screenshot, the search
criteria is beat.name:metricbeat_inst1. Any attribute that uniquely identifies a
system/host can be used, for example, one can filter based on beat.hostname:

As the diskio and load metricsets were disabled in the system module configuration, we
will see empty visualizations for diskio and system load visualizations:

Monitoring Server Infrastructure Chapter 11

[396]

To see the dashboard refresh in real time, in the top right corner, select the time and choose
the appropriate Refresh Interval:

To view the dashboard in full screen mode, click the Full screen button on
the top navigation bar. This hides the browser and the top navigation bar.
To exit full screen mode, hover over and click the Kibana button on the
lower left side of the page, or simply press the ESC key.

Refer to Chapter 7, Visualizing Data with Kibana to learn how to effectively
use Kibana and the different sections of Kibana for gaining insight into
your data.

 Deployment architecture
The following diagram depicts commonly used Elastic Stack deployment architecture:

Monitoring Server Infrastructure Chapter 11

[397]

The diagram depicts three possible architectures:

Ship the operation metrics directly to Elasticsearch: As seen in the preceding
diagram, one will install various types of Beats such as Metricbeat, Filebeat,
Packetbeat, and so on, on the edge servers from which they would like to ship
the operation metrics/logs. If no further processing of events is required, then the
generated events can be shipped directly to the Elasticsearch cluster. Once the
data is present in Elasticsearch, it can then be visualized/analyzed using Kibana.
In this architecture, the flow of events would be Beats → Elasticsearch →
Kibana.
Ship the operation metrics to Logstash: The operation metrics/logs captured by
the Beats and installed on edge servers is sent to Logstash for further processing
such as, for instance, parsing the logs or enriching log events. Then the
parsed/enriched events are pushed to Elasticsearch. To increase the processing
capacity, one can scale up Logstash instances, such as, for example, configuring a
set of Beats to send data to Logstash instance 1 and configuring another set of
Beats to send data to Logstash instance 2, and so on. In this architecture, the flow
of events would be Beats → Logstash → Elasticsearch → Kibana.
Ship the operation metrics to a resilient queue: If the generated events are at a
very high rate and if Logstash is unable to cope up with the load or to prevent
loss of data/events when Logstash is down, one can go for resilient queues such
as Apache Kafka, so that the events are queued. Then Logstash can process it at
its own speed, thus avoiding the loss of operation metrics/logs captured by Beats.
In this architecture, the flow of events would be Beats → Kafka → Logstash →
Elasticsearch → Kibana.

In Logstash 5.x, one can make use of the persistent queue settings of
Logstash and make use of it as queue, too. However, it doesn't offer a high
degree of resilience like Kafka.

In the previously mentioned architectures, one can easily scale up/scale down instances of
Elasticsearch, Logstash, and Kibana based on the use case.

Monitoring Server Infrastructure Chapter 11

[398]

Summary
In this chapter, we have covered in detail another Beat library called Metricbeat. We
covered how to install and configure Metricbeat so that it can send operational metrics to
Elasticsearch. We also covered the various deployment architectures for building real-
time monitoring solutions using Elastic Stack, in order to monitor servers and applications.
This helps IT administrators and application support folks gain insight into the behavior of
the applications and servers and allows them to respond in a timely manner in case of
infrastructure outage.

Index

A
Ack-based Throttling 305
aggregations
 about 96
 bucket aggregations 98
 matrix aggregations 99
 metric aggregations 98
 pipeline aggregations 99
Amazon Web Services (AWS) 17, 315
analyzer 56
auditbeat 187
Average humidity over time 364
Average temperature over time 363

B
BASH (Bourne Again SHell) 358
Beats
 about 184
 auditbeat 187
 community beats 187
 filebeat 186
 heartbeat 187
 metricbeat 186
 packetbeat 186
 used, by Elastic.co 186
 versus, Logstash 188
 winlogbeat 187
bool query
 about 90
 AND condition, combining with OR condition 92
 NOT conditions, adding 93
 OR conditions, combining 91
BrowserScope
 URL 184
bucket aggregations
 about 98, 111, 235

 aggregations, nesting 123
 custom conditions, bucketing 126
 date data, bucketing 129
 date histogram 236
 Date Histogram aggregation 129
 filter aggregation 127
 filtered data, aggregations 121
 filters 236
 filters aggregation 128
 geo distance aggregation 135
 geo-spatial data, bucketing 135
 GeoHash Grid 236
 GeoHash grid aggregation 137
 histogram 235
 histogram aggregation 118
 numeric data, bucketing 117
 range 236
 range aggregation 119
 string data, bucketing 112
 terms 236
 terms aggregation 112, 117
 time data, bucketing 129
bucketing 235
built-in analyzers
 URL 61
 using 61

C
category 47
character filters
 about 57
 URL 58
cluster 30
codec plugins
 about 156, 167
 JSON 167

[400]

 multiline 168
 Rubydebug 167
 URL 156
communicate 341
community beats
 about 187
 URL 188
complex datatypes
 array datatype 35
 nested datatype 35
 object datatype 35
compound queries
 bool query 90
 constant score query 88
 writing 88
core datatypes
 binary datatype 34
 boolean datatype 34
 date datatype 34
 numeric datatypes 34
 range datatypes 34
 string datatypes 34
CRUD (Create, Read, Update, Delete) operations
 about 40
 delete API 45
 document, indexing with ID 41
 document, indexing without ID 41
 Get API 42
 Index API 40
 Update API 43
CSV filter 177
custom analyzer
 used, for implementing autocomplete 66
custom conditions
 bucketing 126

D
dashboards, Kibana UI
 about 249
 cloning 253
 creating 250
 saving 252
 sharing 254
data preparation 210
data types

 about 33
 complex datatypes 35
 core datatypes 34
 geo-point datatype 35
 geo-Shape datatype 35
 IP datatype 35
data
 loading, with Logstash 102
 preparing, for analysis 99
 structure 100
date filter 182
Date Histogram aggregation
 about 129
 buckets, creating across time 130
 day, focusing 133
 intervals, modifying 133
 metrics, computing within sliced time intervals

132

 time zone, using 131
Delete API 45
delete pipeline API 173
deployment architecture 396
dimension 101
Docker containers
 executing 323
 URL 324
documents 29, 40

E
EC2 discovery plugin
 URL 326
edge nodes 14
Elastic Cloud
 about 17, 315
 configuration, overriding 318
 executing 315
 Kibana, using 317
 references 315
 snapshot, recovering 319
 URL 17, 318
Elastic Stack, use cases
 log 17
 metrics analytics 19
 product search 19
 security analytics 17

[401]

 web search 20
 website search 20
Elastic Stack
 beats 14
 components, exploring 12, 13
 Elastic Cloud 17
 Elasticsearch 13
 hosting, on managed cloud 315
 Kibana 15
 Logstash 14
 use cases 17
 X-Pack 15
Elasticsearch analyzers
 about 56
 built-in analyzers, using 61
 character filters 57
 token filters 60
 tokenizer 58
Elasticsearch DSL query
 absolute time filter 231
 Auto Refresh 231
 filters 232
 histogram 228
 quick time filter 230
 relative time filter 230
 time picker 230
 toolbar 229
Elasticsearch Query String
 boolean search 222
 Field search 222
 Free Text search 221
 range search 225
 regex search 226
 searches, grouping 224
 wild card 226
Elasticsearch, benefits
 analytics 10
 document-oriented 9
 fault tolerant 12
 lightning fast 12
 operation ease 11
 real time 12
 REST API 11
 rich client library support 11
 scaling ease 11

 schemaless 9
 searching 9
Elasticsearch, concepts
 cluster 30
 data types 33
 document 28, 29
 index 27
 inverted index 38, 40
 mappings 33
 node 29
 replicas 30, 31, 33
 shards 30, 31, 33
 type 28
Elasticsearch
 about 8, 13, 293
 core concepts 26
 data, modeling 347
 index template, defining 347
 Indices tab 297
 installing 21
 mapping 349
 metrics 293
 monitoring 290
 monitoring UI 292
 nodes tab 295
 overview tab 293
 using 8
 X-Pack, installing 262
ETL (Extract, Transform, and Load) 142
exists query 76

F
fields 29
Filebeat
 about 186, 189
 architecture 191
 configuring 193
 downloading 189
 general options 200
 global options 199
 installing 189
 installing, on Linux 190
 installing, on Windows 190
 modules 202
 output configuration 201

[402]

 prospectors 197
filter aggregation 127
Filter Context 76
filter plugins
 about 155, 168, 176
 CSV filter 177
 date filter 182
 geoip filter 183
 grok filter 180
 mutate filter 178
 URL 155
 useragent filter 184
full text
 searching from 78
full-text search 10, 56

G
garbage collection (GC) 296
GCE (Google Compute Engine) 316
geo distance aggregation 135
geo-spatial data
 bucketing 135
GeoHash grid aggregation
 about 137
 URL 137
geoip filter 183
Get API 42
Get Mapping API
 URL 37
Get Pipeline API 172
grok filter 180

H
Harvesters 191
heartbeat 187
high-level queries
 about 78
 match phrase query 84
 match query 80
 multi match query 86
histogram aggregation 118
Horizontal scalability 11
HTTP
 Logstash, data sending 358

I
index 27
index aliases
 about 331
 setting up 331
 using 332
index API
 URL 36
index pattern
 regular indexes 215
 time-series indexes 215
index templates
 about 36
 creating 334
 defining 333
 setting up 333
index-per-timeframe
 about 338
 map, modifying over time 339
 older documents, deleting 339
 scaling with 338
 used, for solving issues 338
indexes
 creating 45, 46
 type mapping, creating 47
indexing operation 40
ingest APIs
 about 170
 delete pipeline API 173
 Get Pipeline API 172
 put pipeline API 170
 simulate pipeline API 173
ingest node
 about 168
 ingest APIs 170
 pipeline, defining 169
input plugins
 about 154
 beats 158
 exploring 156
 file 156
 IMAP 162
 JDBC 160
 URL 154

[403]

inverted index 38
IoT (Internet of things) 341

J
JVM heap size 322

K
Kibana Console UI
 using 23, 25
Kibana UI, components
 dashboard 214
 dev tools 214
 discover 214
 management 215
 timelion 214
 visualize 214
Kibana UI
 about 212
 dashboards 249
 Discover 216, 220
 Elasticsearch DSL query 227
 Elasticsearch Query String 221
 index pattern, configuring 215
 user interaction 213
 visualization, creating 237
 visualization, using 241
 Visualize page 233
Kibana, aggregations
 bucket aggregations 235
 metric aggregation 237
Kibana
 about 15
 configuring 209
 dashboard, creating 368
 data, visualizing 359
 downloading 206
 index pattern, setting up 360
 installing 22, 206
 installing, on Linux 208
 installing, on Windows 207
 URL 207
 using 317
 visualizations 361, 363, 364, 365, 367
 visualizations, building 361

 X-Pack, installing 264

L
Language Analyzer 61
Linux
 Filebeat, installing 190
 Kibana, installing 208
 Metricbeat, installing 375
log analysis
 challenges 143
 Logstash 145
logs
 enriching, with Logstash 176
 filter plugins 176
 parsing, with Logstash 176
 usage 143, 144
Logstash data pipeline
 building 351
 jdbc_streaming plugin 354
 JSON requests, accepting 351
 JSON, enriching with metadata 353
 latitude, combining with longitude fileds under

lookupResults 356
 looked-up fields, moving in JSON 356
 mutate plugin 355
 resulting documents, storing in Elasticsearch 357
 unnecessary fields, removing 357
Logstash
 about 14, 145
 architecture 150, 152
 centralized data processing 146
 codec plugins 156, 167
 data, sending over HTTP 358
 downloading 147
 executing 149
 extensibility 146
 filter plugins 155, 168
 input plugins 154
 installing 147
 installing, on Linux 149
 installing, on Windows 148
 output plugins 155, 163
 pluggable data pipeline architecture 146
 plugins, exploring 156
 plugins, installing 154

[404]

 plugins, overview 153
 plugins, updating 154
 prerequisites 147
 synergy 147
 URL 147
 used, for enriching logs 176
 used, for loading data 102
 used, for parsing logs 176
 variety 146
 versus Beats 188
 volume 146

M
mappings
 about 35
 controlling 45
 defining, for type of product 36
 index, creating with name catalog 36
 updating 49
MarkDown text
 URL 239
match phrase query 84
match query
 about 80
 fuzziness parameter 83
 minimum_should_match 82
 operator 82
matrix aggregations 99
metadata database
 setting up 350
metric 101
metric aggregations
 about 98, 104
 average aggregation 106
 cardinality aggregation 110
 extended stats aggregations 108
 max aggregation 107
 min aggregation 107
 stats aggregation 108
 sum aggregations 104, 105
Metricbeat
 about 186, 373
 architecture 376
 benefits 377
 configuring 380

 downloading 374
 event structure 378
 executing, with system module 389
 general settings 383
 installing 374
 installing, on Linux 375
 installing, on Windows 375
 logging 387
 metricsets 376
 module config, enabling in metricbeat.yml file

383

 module configs, enabling in modules.d directory
381

 module, configuration 380
 modules 376
 output configuration 384
metrics
 about 237
 average 237
 count 237
 max 237
 median 237
 min 237
 percentile ranks 237
 percentiles 237
 standard deviation 237
 sum 237
multi match query
 about 86
 fields, boosting 87
 multiple fields, querying with defaults 86
 types 87
mutate filter 178

N
node 29

O
output plugins
 about 155, 163
 CSV 164
 Elasticsearch 163
 Kafka 165
 PagerDuty 166
 URL 155

[405]

P
packetbeat 186
pipeline aggregations
 about 99, 139
 cumulative sum of usage over time, calculating

139

plugins
 installing 259
 removing 260
 using 259
products 36
Prospectors 191
put pipeline API 170

R
range aggregation 119
range query
 about 72
 applying, on dates 75
 applying, on numeric types 73, 74
 used, with score boosting 74
realms 268
regular data 215
replica shards 32
replicas 30, 32
repository
 setting up, for snapshots 327
Representational State Transfer (REST) 11, 24
REST API
 common API conventions 51
 document, searching in one index 54
 documents, searching in all indices 54
 documents, searching in multiple indexes 54
 JSON response, formatting 51
 multiple indices, dealing with 52
 overview 50
roles, X-Pack
 URL 278

S
Secured Resources 270
self-hosting, Elastic Stack
 about 320
 considerations, while deploying to cloud 324

 default ports, modifying 325
 Docker containers, executing 323
 EC2 discovery plugin, installing 326
 Elasticsearch nodes, configuring 321
 Elasticsearch, managing 323
 Elasticsearch, monitoring 323
 file descriptors 322
 garbage collectors 323
 hardware, selecting 320
 HTTP, binding to local addresses 325
 instance type, selecting 325
 JVM heap size 322
 operating system, selecting 321
 periodic snapshots, setting up 326
 proxy requests 325
 S3 repository plugin, installing 326
 swap, disabling 322
 thread pools 323
sense 341
sensor data analytics application
 final stored data 346
 sensor metadata 344
 sensor-generated data 343
sharding 30
Simple Storage Service (S3) 326
simulate pipeline API 173
snapshots
 backing up, in distributed filesystems 329
 obtaining 330
 repository, setting up 327
 restoring 331
 restoring, in cloud 329
 shared filesystem 328
Spooler 191
Standard Analyzer
 about 61, 66
 token filters 61
 tokenizer 61
Standard Tokenizer 61
structured data
 searching from 70
system metrics
 aliases, specifying 392
 capturing 388
 Metricbeat, executing 389

[406]

 visualizing, with Kibana 394
system modules
 URL 388

T
term level queries
 about 70
 exists query 76
 range query 72
 term query 77, 78
term query 77, 78
text analysis
 about 55
 autocomplete, implementing with custom

analyzer 66, 70
 built-in analyzers, using 61
 Elasticsearch analyzers 56
Time Based Throttling 305
time series data
 about 215
 fields, adding 337
 fields, removing 337
 index, scaling with unpredictable volume over

time 335
 index-per-timeframe, used for solving issues 338
 map, modifying over time 337
 modeling 335
 older documents, deleting 338
 parallelism unit, in Elasticsearch 335
 shards, effect on accuracy of aggregations 336
 shards, effect on relevance score 336
time-based indices 338
Timelion
 about 254
 expressions 256, 259
 Timelion UI 255
token filters
 about 60
 Lowercase Token Filter 61
 Standard Token Filter 61
 Stop Token Filter 61
 URL 60
tokenizer
 about 58
 Standard Tokenizer 59

 URL 58
TTL (Time to Live) 338

U
Update API 43
User Management API 268
User Setting 318
useragent filter 184

V
Vertical scaling 11
victor multimedia 72
victory multimedia 77, 81
visualization, Kibana UI
 area chart 239
 bandwidth usage, of countries over time 244
 bar chart 239
 co-ordinate maps 240
 creating 237
 data table 239
 gauge 240
 goal 240
 line chart 239
 MarkDown widget 239
 metric 239
 pie charts 240
 region maps 240
 response codes over time 241
 tag cloud 241
 URLs requested 243
 used user agent 248
 web traffic, originating from different countries

247

Visualize page, Kibana UI
 about 233
 Kibana aggregations 235
VPC (Virtual Private Cloud) 325

W
Watch
 action 300
 actions 304
 anatomy 300
 condition 300, 304

 input 303
 query 300
 schedule 300
 trigger 301
Watcher Payload 303
Watcher UI 300
Whitespace Analyzer 61
window 7
Windows
 Filebeats, installing 190
 Kibana, installing 207
 Logstash, installing 148
 Metricbeat, installing 375
winlogbeat 187

X
X-Pack, alerting
 about 299
 ack-based throttling 305
 advanced watch 310
 alert, creating 306
 implementing 305
 threshold alert 307
 Time Based Throttling 305
 Watch 300
 watch, deactivating 312
 watch, deleting 312
 watch, editing 312
X-Pack, security
 about 268
 APIs 286
 auditing 272
 Channel Encryption 271

 cluster privileges 271
 document-level security 281
 field-level security 281
 implementing 272
 index privileges 271
 new user creation 273
 Node/Client Authentication 271
 password, modifying 276
 role management APIs 288
 role, creating 277
 role, deleting 280
 role, editing 280
 Run As Privilege 271
 URL, for packages 271
 user authentication 268
 user authorization 270
 User management APIs 287
 user, deleting 276
X-Pack
 about 15
 alerting 16
 configuring 267
 graph 16
 installing 261
 installing, on Elasticsearch 262
 installing, on Kibana 265
 monitoring 15
 reporting 16
 security 15
 uninstalling 266

Y
YAML Ain't Markup Language (YML) 29

	Cover

	Copyright
	Credits
	Disclaimer
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Introducing Elastic Stack

	What is Elasticsearch, and why use it?
	Schemaless and document-oriented
	Searching
	Analytics
	Rich client library support and the REST API
	Easy to operate and easy to scale
	Near real time
	Lightning fast
	Fault tolerant

	Exploring the components of Elastic Stack
	Elasticsearch
	Logstash
	Beats
	Kibana
	X-Pack
	Security
	Monitoring
	Reporting
	Alerting
	Graph

	Elastic Cloud

	Use cases of Elastic Stack
	Log and security analytics
	Product search
	Metrics analytics
	Web search and website search

	Downloading and installing
	Installing Elasticsearch
	Installing Kibana

	Summary

	Chapter 2: Getting Started with Elasticsearch

	Using the Kibana Console UI
	Core concepts
	Index
	Type
	Document
	Node
	Cluster
	Shards and replicas
	Mappings and data types
	Data types
	Core datatypes
	Complex datatypes
	Other datatypes

	Mappings
	Creating an index with the name catalog
	Defining the mappings for the type of product

	Inverted index

	CRUD operations
	Index API
	Indexing a document by providing an ID
	Indexing a document without providing an ID

	Get API
	Update API
	Delete API

	Creating indexes and taking control of mapping
	Creating an index
	Creating type mapping in an existing index
	Updating a mapping

	REST API overview
	Common API conventions
	Formatting the JSON response
	Dealing with multiple indices
	Searching all documents in one index
	Searching all documents in multiple indexes
	Searching all documents of a particular type in all indices

	Summary

	Chapter 3: Searching-What is Relevant

	Basics of text analysis
	Understanding Elasticsearch analyzers
	Character filters
	Tokenizer
	Standard Tokenizer

	Token filters

	Using built-in analyzers
	Standard Analyzer

	Implementing autocomplete with a custom analyzer

	Searching from structured data
	Range query
	Range query on numeric types
	Range query with score boosting
	Range query on dates

	Exists query
	Term query

	Searching from full text
	Match query
	Operator
	minimum_should_match
	Fuzziness

	Match phrase query
	Multi match query
	Querying multiple fields with defaults
	Boosting one or more fields
	With types of multi match queries

	Writing compound queries
	Constant score query
	Bool query
	Combining OR conditions
	Combining conditions AND and OR conditions
	Adding NOT conditions

	Summary

	Chapter 4: Analytics with Elasticsearch

	The basics of aggregations
	Bucket aggregations
	Metric aggregations
	Matrix aggregations
	Pipeline aggregations

	Preparing data for analysis
	Understanding the structure of data
	Loading the data using Logstash

	Metric aggregations
	Sum, average, min, and max aggregations
	Sum aggregation
	Average aggregation
	Min aggregation
	Max aggregation

	Stats and extended stats aggregations
	Stats aggregation
	Extended stats Aggregation

	Cardinality aggregation

	Bucket aggregations
	Bucketing on string data
	Terms aggregation

	Bucketing on numeric data
	Histogram aggregation
	Range aggregation

	Aggregations on filtered data
	Nesting aggregations
	Bucketing on custom conditions
	Filter aggregation
	Filters aggregation

	Bucketing on date/time data
	Date Histogram aggregation
	Creating buckets across time
	Using a different time zone
	Computing other metrics within sliced time intervals
	Focusing on a specific day and changing intervals

	Bucketing on geo-spatial data
	Geo distance aggregation
	GeoHash grid aggregation

	Pipeline aggregations
	Calculating the cumulative sum of usage over time

	Summary

	Chapter 5: Analyzing Log Data

	Log analysis challenges
	Logstash
	Installation and configuration
	Prerequisites

	Downloading and installing Logstash
	Installing on Windows
	Installing on Linux
	Running Logstash

	Logstash architecture
	Overview of Logstash plugins
	Installing or updating plugins
	Input plugins
	Output plugins
	Filter plugins
	Codec plugins

	Exploring plugins
	Exploring Input plugins
	File
	Beats
	JDBC
	IMAP

	Output plugins
	Elasticsearch
	CSV
	Kafka
	PagerDuty

	Codec plugins
	JSON
	Rubydebug
	Multiline

	Filter plugins

	Ingest node
	Defining a pipeline
	Ingest APIs
	Put pipeline API
	Get Pipeline API
	Delete pipeline API
	Simulate pipeline API

	Summary

	Chapter 6: Building Data Pipelines with Logstash

	Parsing and enriching logs using Logstash
	Filter plugins
	CSV filter
	Mutate filter
	Grok filter
	Date filter
	Geoip filter
	Useragent filter

	Introducing Beats
	Beats by Elastic.co
	Filebeat
	Metricbeat
	Packetbeat
	Heartbeat
	Winlogbeat
	Auditbeat

	Community Beats
	Logstash versus Beats

	Filebeat
	Downloading and installing Filebeat
	Installing on Windows
	Installing on Linux

	Architecture
	Configuring Filebeat
	Filebeat prospectors
	Filebeat global options
	Filebeat general options
	Output configuration
	Filebeat modules

	Summary

	Chapter 7: Visualizing data with Kibana

	Downloading and installing Kibana
	Installing on Windows
	Installing on Linux
	Configuring Kibana

	Data preparation
	Kibana UI
	User interaction
	Configuring the index pattern
	Discover
	Elasticsearch query string
	Elasticsearch DSL query

	Visualize
	Kibana aggregations
	Bucket aggregations
	Metric

	Creating a visualization
	Visualization types
	Line, area, and bar charts
	Data table
	MarkDown widget
	Metric
	Goal
	Gauge
	Pie charts
	Co-ordinate maps
	Region maps
	Tag cloud

	Visualizations in action
	Response codes over time
	Top 10 URLs requested
	Bandwidth usage of top five countries over time
	Web traffic originating from different countries
	Most used user agent

	Dashboards
	Creating a dashboard
	Saving the dashboard
	Cloning the dashboard
	Sharing the dashboard

	Timelion
	Timelion UI
	Timelion expressions

	Using plugins
	Installing plugins
	Removing plugins

	Summary

	Chapter 8: Elastic X-Pack

	Installing X-Pack
	Installing X-Pack on Elasticsearch
	Installing X-Pack on Kibana
	Uninstalling X-Pack

	Configuring X-Pack
	Security
	User authentication
	User authorization
	Security in action
	New user creation
	Deleting a user
	Changing the password

	New role creation
	How to Delete/Edit a role

	Document-level security or field-level security
	X-Pack security APIs
	User management APIs
	Role management APIs

	Monitoring Elasticsearch
	Monitoring UI
	Elasticsearch metrics
	Overview tab
	Nodes tab
	The Indices tab

	Alerting
	Anatomy of a watch
	Alerting in action
	Create a new alert
	Threshold Alert
	Advanced Watch

	How to Delete/Deactivate/Edit a Watch

	Summary

	Chapter 9: Running Elastic Stack in Production

	Hosting Elastic Stack on a managed cloud
	Getting up and running on Elastic Cloud
	Using Kibana
	Overriding configuration
	Recovering from a snapshot

	Hosting Elastic Stack on your own
	Selecting hardware
	Selecting an operating system
	Configuring Elasticsearch nodes
	JVM heap size
	Disable swapping
	File descriptors
	Thread pools and garbage collector

	Managing and monitoring Elasticsearch
	Running in Docker containers
	Special considerations while deploying to a cloud
	Choosing instance type
	Changing default ports; do not expose ports!
	Proxy requests
	Binding HTTP to local addresses
	Installing EC2 discovery plugin
	Installing S3 repository plugin
	Setting up periodic snapshots

	Backing up and restoring
	Setting up a repository for snapshots
	Shared filesystem

	Cloud or distributed filesystems
	Taking snapshots
	Restoring a specific snapshot

	Setting up index aliases
	Understanding index aliases
	How index aliases can help

	Setting up index templates
	Defining an index template
	Creating indexes on the fly

	Modeling time series data
	Scaling the index with unpredictable volume over time
	Unit of parallelism in Elasticsearch
	The effect of the number of shards on the relevance score
	The effect of the number of shards on the accuracy of aggregations

	Changing the mapping over time
	New fields get added
	Existing fields get removed

	Automatically deleting older documents
	How index-per-timeframe solves these issues
	Scaling with index-per-timeframe
	Changing the mapping over time
	Automatically deleting older documents

	Summary

	Chapter 10: Building a Sensor Data Analytics Application

	Introduction to the application
	Understanding the sensor-generated data
	Understanding the sensor metadata
	Understanding the final stored data

	Modeling data in Elasticsearch
	Defining an index template
	Understanding the mapping

	Setting up the metadata database
	Building the Logstash data pipeline
	Accept JSON requests over the web
	Enrich the JSON with the metadata we have in the MySQL database
	The jdbc_streaming plugin
	The mutate plugin
	Move the looked-up fields that are under lookupResult directly in JSON
	Combine the latitude and longitude fields under lookupResult as a location field
	Remove the unnecessary fields

	Store the resulting documents in Elasticsearch

	Sending data to Logstash over HTTP
	Visualizing the data in Kibana
	Set up an index pattern in Kibana
	Build visualizations
	How does the average temperature change over time?
	How does the average humidity change over time?
	How do temperature and humidity change at each location over time?
	Can I visualize temperature and humidity over a map?
	How are the sensors distributed across departments?

	Create a dashboard

	Summary

	Chapter 11: Monitoring Server Infrastructure�
	Metricbeat
	Downloading and installing Metricbeat
	Installing on Windows
	Installing on Linux

	Architecture
	Event structure

	Configuring Metricbeat
	Module configuration
	Enabling module configs in the modules.d directory
	Enabling module config in the metricbeat.yml file

	General settings
	Output configuration
	Logging

	Capturing system metrics
	Running Metricbeat with the system module
	Specifying aliases
	Visualizing system metrics using Kibana

	 Deployment architecture
	Summary

	Index

