

Modern Big Data Processing
with Hadoop

Expert techniques for architecting end-to-end big data
solutions to get valuable insights

V. Naresh Kumar
Prashant Shindgikar

BIRMINGHAM - MUMBAI

Modern Big Data Processing with Hadoop
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amey Varangaonkar
Acquisition Editor: Varsha Shetty
Content Development Editor: Cheryl Dsa
Technical Editor: Sagar Sawant
Copy Editors: Vikrant Phadke, Safis Editing
Project Coordinator: Nidhi Joshi
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Tania Dutta
Production Coordinator: Arvindkumar Gupta

First published: March 2018

Production reference: 1280318

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78712-276-5

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the authors
V. Naresh Kumar has more than a decade of professional experience in designing,
implementing, and running very-large-scale Internet applications in Fortune 500
Companies. He is a full-stack architect with hands-on experience in e-commerce, web
hosting, healthcare, big data, analytics, data streaming, advertising, and databases. He
admires open source and contributes to it actively. He keeps himself updated with
emerging technologies from Linux systems internals to frontend technologies. He studied in
BITS- Pilani, Rajasthan, with a dual degree in computer science and economics.

Prashant Shindgikar is an accomplished big data Architect with over 20 years of experience
in data analytics. He specializes in data innovation and resolving data challenges for major
retail brands. He is a hands-on architect having an innovative approach to solving data
problems. He provides thought leadership and pursues strategies for engagements with the
senior executives on innovation in data processing and analytics. He presently works for a
large USA-based retail company.

About the reviewers
Sumit Pal is a published author with Apress. He has 22+ years of experience in software
from startups to enterprises and is an independent consultant working with big data, data
visualization, and data science. He builds end-to-end data-driven analytic systems.

He has worked for Microsoft (SQLServer), Oracle (OLAP Kernel), and Verizon. He advises
clients on their data architectures and builds solutions in Spark and Scala. He has spoken at
many conferences in North America and Europe and has developed a big data analyst
training for Experfy. He has an MS and BS in computer science.

Manoj R. Patil is a big data architect at TatvaSoft—an IT services and consulting firm. He
has a bachelor's degree in engineering from COEP, Pune. He is a proven and highly skilled
business intelligence professional with 18 years of experience in IT. He is a seasoned BI and
big data consultant with exposure to all the leading platforms.

Earlier, he has served for organizations such as Tech Mahindra and Persistent Systems.
Apart from authoring a book on Pentaho and big data, he has been an avid reviewer for
different titles in the respective fields from Packt and other leading publishers.

Manoj would like to thank his entire family, especially his two beautiful angels Ayushee
and Ananyaa for understanding him during the review process. He would also like to
thank the Packt publication for giving this opportunity, the project co-ordinator and the
author.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Enterprise Data Architecture Principles 7
Data architecture principles 9

Volume 9
Velocity 9
Variety 10
Veracity 10

The importance of metadata 11
Data governance 13

Fundamentals of data governance 13
Data security 14

Application security 16
Input data 16
Big data security 17
RDBMS security 17
BI security 18
Physical security 18
Data encryption 19
Secure key management 19

Data as a Service 19
Evolution data architecture with Hadoop 22

Hierarchical database architecture 23
Network database architecture 24
Relational database architecture 26

Employees 27
Devices 27
Department 27
Department and employee mapping table 28

Hadoop data architecture 28
Data layer 28
Data management layer 30
Job execution layer 30

Summary 30

Chapter 2: Hadoop Life Cycle Management 31
Data wrangling 31

Data acquisition 32
Data structure analysis 32
Information extraction 32

Table of Contents

[ii]

Unwanted data removal 33
Data transformation 33
Data standardization 34

Data masking 34
Substitution 35

Static 35
Dynamic 36

Encryption 36
Hashing 37

Hiding 38
Erasing 39
Truncation 39
Variance 40
Shuffling 41

Data security 42
What is Apache Ranger? 42
Apache Ranger installation using Ambari 42

Ambari admin UI 43
Add service 44
Service placement 44
Service client placement 45
Database creation on master 46
Ranger database configuration 47
Configuration changes 48
Configuration review 49
Deployment progress 50
Application restart 50

Apache Ranger user guide 51
Login to UI 51
Access manager 52
Service details 52
Policy definition and auditing for HDFS 54

Summary 56

Chapter 3: Hadoop Design Consideration 57
Understanding data structure principles 58
Installing Hadoop cluster 58

Configuring Hadoop on NameNode 60
Format NameNode 60
Start all services 60

Exploring HDFS architecture 61
Defining NameNode 61

Secondary NameNode 61
NameNode safe mode 62

DataNode 62
Data replication 62

Rack awareness 62
HDFS WebUI 64

Table of Contents

[iii]

Introducing YARN 64
YARN architecture 64

Resource manager 64
Node manager 64

Configuration of YARN 65
Configuring HDFS high availability 66

During Hadoop 1.x 66
During Hadoop 2.x and onwards 66
HDFS HA cluster using NFS 67

Important architecture points 67
Configuration of HA NameNodes with shared storage 68
HDFS HA cluster using the quorum journal manager 69

Important architecture points 70
Configuration of HA NameNodes with QJM 70

Automatic failover 71
Important architecture points 71

Configuring automatic failover 72
Hadoop cluster composition 72

Typical Hadoop cluster 72
Best practices Hadoop deployment 74
Hadoop file formats 75

Text/CSV file 76
JSON 76
Sequence file 76
Avro 76
Parquet 77
ORC 77
Which file format is better? 77

Summary 78

Chapter 4: Data Movement Techniques 79
Batch processing versus real-time processing 80

Batch processing 80
Real-time processing 81

Apache Sqoop 81
Sqoop Import 82

Import into HDFS 82
Import a MySQL table into an HBase table 86

Sqoop export 87
Flume 88

Apache Flume architecture 89
Data flow using Flume 90
Flume complex data flow architecture 90

Flume setup 91
Log aggregation use case 92

Table of Contents

[iv]

Apache NiFi 95
Main concepts of Apache NiFi 95
Apache NiFi architecture 96
Key features 97
Real-time log capture dataflow 99

Kafka Connect 99
Kafka Connect – a brief history 99
Why Kafka Connect? 100
Kafka Connect features 100
Kafka Connect architecture 101
Kafka Connect workers modes 102

Standalone mode 102
Distributed mode 102

Kafka Connect cluster distributed architecture 103
Example 1 104
Example 2 106

Summary 106

Chapter 5: Data Modeling in Hadoop 107
Apache Hive 108

Apache Hive and RDBMS 108
Supported datatypes 109
How Hive works 110
Hive architecture 110
Hive data model management 111

Hive tables 111
Managed tables 111
External tables 112

Hive table partition 113
Hive static partitions and dynamic partitions 116

Hive partition bucketing 119
How Hive bucketing works 120
Creating buckets in a non-partitioned table 121
Creating buckets in a partitioned table 122

Hive views 125
Syntax of a view 125
Hive indexes 126

Compact index 127
Bitmap index 127

JSON documents using Hive 128
Example 1 – Accessing simple JSON documents with Hive (Hive 0.14 and
later versions) 128
Example 2 – Accessing nested JSON documents with Hive (Hive 0.14 and
later versions) 129
Example 3 – Schema evolution with Hive and Avro (Hive 0.14 and later
versions) 130

Table of Contents

[v]

Apache HBase 135
Differences between HDFS and HBase 135
Differences between Hive and HBase 136
Key features of HBase 136
HBase data model 137
Difference between RDBMS table and column - oriented data store 137
HBase architecture 140

HBase architecture in a nutshell 142
HBase rowkey design 142

Example 4 – loading data from MySQL table to HBase table 143
Example 5 – incrementally loading data from MySQL table to HBase table 144
Example 6 – Load the MySQL customer changed data into the HBase table 145
Example 7 – Hive HBase integration 146

Summary 146

Chapter 6: Designing Real-Time Streaming Data Pipelines 147
Real-time streaming concepts 147

Data stream 147
Batch processing versus real-time data processing 148
Complex event processing 149
Continuous availability 149
Low latency 150
Scalable processing frameworks 150
Horizontal scalability 150
Storage 150

Real-time streaming components 151
Message queue 151

So what is Kafka? 152
Kafka features 152
Kafka architecture 153

Kafka architecture components 153
Kafka Connect deep dive 154
Kafka Connect architecture 155

Kafka Connect workers standalone versus distributed mode 156
Install Kafka 157
Create topics 158
Generate messages to verify the producer and consumer 158
Kafka Connect using file Source and Sink 159
Kafka Connect using JDBC and file Sink Connectors 160

Apache Storm 163
Features of Apache Storm 164
Storm topology 164

Storm topology components 165
Installing Storm on a single node cluster 167
Developing a real-time streaming pipeline with Storm 169

Streaming a pipeline from Kafka to Storm to MySQL 170
Streaming a pipeline with Kafka to Storm to HDFS 174

Table of Contents

[vi]

Other popular real-time data streaming frameworks 178
Kafka Streams API 178
Spark Streaming 179
Apache Flink 181

Apache Flink versus Spark 183
Apache Spark versus Storm 183
Summary 184

Chapter 7: Large-Scale Data Processing Frameworks 185
MapReduce 185
Hadoop MapReduce 189

Streaming MapReduce 190
Java MapReduce 192
Summary 195

Apache Spark 2 195
Installing Spark using Ambari 196

Service selection in Ambari Admin 196
Add Service Wizard 196
Server placement 198
Clients and Slaves selection 199
Service customization 199
Software deployment 201
Spark installation progress 202
Service restarts and cleanup 203

Apache Spark data structures 203
RDDs, DataFrames and datasets 204

Apache Spark programming 205
Sample data for analysis 207
Interactive data analysis with pyspark 208
Standalone application with Spark 211
Spark streaming application 212
Spark SQL application 215

Summary 216

Chapter 8: Building Enterprise Search Platform 217
The data search concept 217
The need for an enterprise search engine 218

Tools for building an enterprise search engine 218
Elasticsearch 219

Why Elasticsearch? 219
 Elasticsearch components 219

Index 219
Document 220
Mapping 220
Cluster 221
Type 221

How to index documents in Elasticsearch? 221

Table of Contents

[vii]

Elasticsearch installation 222
Installation of Elasticsearch 223
Create index 225
Primary shard 225
Replica shard 226

Ingest documents into index 229
Bulk Insert 230
Document search 231
Meta fields 233

Mapping 233
Static mapping 235
Dynamic mapping 236

Elasticsearch-supported data types 236
Mapping example 237

Analyzer 238
Elasticsearch stack components 239

Beats 239
Logstash 240
Kibana 241
Use case 242
Summary 249

Chapter 9: Designing Data Visualization Solutions 250
Data visualization 250

Bar/column chart 251
Line/area chart 252
Pie chart 253
Radar chart 254
Scatter/bubble chart 255
Other charts 256

Practical data visualization in Hadoop 256
Apache Druid 257

Druid components 257
Other required components 258
Apache Druid installation 258

Add service 258
Select Druid and Superset 259
Service placement on servers 259
Choose Slaves and Clients 261
Service configurations 261
Service installation 262
Installation summary 263
Sample data ingestion into Druid 264

MySQL database 265
Sample database 266

Download the sample dataset 266
Copy the data to MySQL 266
Verify integrity of the tables 267

Table of Contents

[viii]

Single Normalized Table 268
Apache Superset 269

Accessing the Superset application 269
Superset dashboards 270
Understanding Wikipedia edits data 272
Create Superset Slices using Wikipedia data 275

Unique users count 275
Word Cloud for top US regions 277
Sunburst chart – top 10 cities 278
Top 50 channels and namespaces via directed force layout 280
Top 25 countries/channels distribution 282

Creating wikipedia edits dashboard from Slices 283
Apache Superset with RDBMS 285

Supported databases 286
Understanding employee database 288

Employees table 288
Departments table 288
Department manager table 289
Department Employees Table 289
Titles table 289
Salaries table 290
Normalized employees table 290

Superset Slices for employees database 291
Register MySQL database/table 291

Slices and Dashboard creation 297
Department salary breakup 297
Salary Diversity 297
Salary Change Per Role Per Year 299
Dashboard creation 300

Summary 301

Chapter 10: Developing Applications Using the Cloud 302
What is the Cloud? 303
Available technologies in the Cloud 303
Planning the Cloud infrastructure 307

Dedicated servers versus shared servers 307
Dedicated servers 307
Shared servers 308

High availability 308
Business continuity planning 311

Infrastructure unavailability 311
Natural disasters 311
Business data 311
BCP design example 312

The Hot–Hot system 313
The Hot–Cold system 313

Security 313
Server security 314
Application security 314
Network security 314

Table of Contents

[ix]

Single Sign On 315
The AAA requirement 316

Building a Hadoop cluster in the Cloud 317
Google Cloud Dataproc 320

Getting a Google Cloud account 320
Activating the Google Cloud Dataproc service 321
Creating a new Hadoop cluster 321
Logging in to the cluster 323
Deleting the cluster 324

Data access in the Cloud 324
Block storage 326
File storage 327
Encrypted storage 328
Cold storage 329

Summary 329

Chapter 11: Production Hadoop Cluster Deployment 330
Apache Ambari architecture 330

The Ambari server 331
Daemon management 332
Software upgrade 332
Software setup 332
LDAP/PAM/Kerberos management 333
Ambari backup and restore 333
Miscellaneous options 333

Ambari Agent 333
Ambari web interface 334
Database 334

Setting up a Hadoop cluster with Ambari 334
Server configurations 335
Preparing the server 335
Installing the Ambari server 336
Preparing the Hadoop cluster 340
Creating the Hadoop cluster 341
Ambari web interface 342
The Ambari home page 342

Creating a cluster 343
Managing users and groups 343
Deploying views 344

The cluster install wizard 344
Naming your cluster 344
Selecting the Hadoop version 345
Selecting a server 345
Setting up the node 347
Selecting services 347
Service placement on nodes 349
Selecting slave and client nodes 351

Table of Contents

[x]

Customizing services 351
Reviewing the services 352
Installing the services on the nodes 353
Installation summary 355
The cluster dashboard 355

Hadoop clusters 356
A single cluster for the entire business 357
Multiple Hadoop clusters 358

Redundancy 358
A fully redundant Hadoop cluster 360
A data redundant Hadoop cluster 360

Cold backup 360
High availability 361
Business continuity 361
Application environments 362

Hadoop data copy 362
HDFS data copy 362

Summary 364

Index 365

Preface
The complex structure of data these days requires sophisticated solutions for data
transformation and its semantic representation to make information more accessible to
users. Apache Hadoop, along with a host of other big data tools, empowers you to build
such solutions with relative ease. This book lists some unique ideas and techniques that
enable you to conquer different data processing and analytics challenges on your path to
becoming an expert big data architect.

The book begins by quickly laying down the principles of enterprise data architecture and
showing how they are related to the Apache Hadoop ecosystem. You will get a complete
understanding of data life cycle management with Hadoop, followed by modeling
structured and unstructured data in Hadoop. The book will also show you how to design
real-time streaming pipelines by leveraging tools such as Apache Spark, as well as building
efficient enterprise search solutions using tools such as Elasticsearch. You will build
enterprise-grade analytics solutions on Hadoop and learn how to visualize your data using
tools such as Tableau and Python.

This book also covers techniques for deploying your big data solutions on-premise and on
the cloud, as well as expert techniques for managing and administering your Hadoop
cluster.

By the end of this book, you will have all the knowledge you need to build expert big data
systems that cater to any data or insight requirements, leveraging the full suite of modern
big data frameworks and tools. You will have the necessary skills and know-how to become
a true big data expert.

Who this book is for
This book is for big data professionals who want to fast-track their career in the Hadoop
industry and become expert big data architects. Project managers and mainframe
professionals looking forward to build a career in big data and Hadoop will also find this
book useful. Some understanding of Hadoop is required to get the best out of this book.

Preface

[2]

What this book covers
Chapter 1, Enterprise Data Architecture Principles, shows how to store and model data in
Hadoop clusters.

Chapter 2, Hadoop Life Cycle Management, covers various data life cycle stages, including
when the data is created, shared, maintained, archived, retained, and deleted. It also further
details data security tools and patterns.

Chapter 3, Hadoop Design Considerations, covers key data architecture principles and
practices. The reader will learn how modern data architects adapt to big data architect use
cases.

Chapter 4, Data Movement Techniques, covers different methods to transfer data to and from
our Hadoop cluster to utilize its real power.

Chapter 5, Data Modeling in Hadoop, shows how to build enterprise applications using cloud
infrastructure.

Chapter 6, Designing Real-Time Streaming Data Pipelines, covers different tools and
techniques of designing real-time data analytics.

Chapter 7, Large-Scale Data Processing Frameworks, describes the architecture principles of
enterprise data and the importance of governing and securing that data.

Chapter 8, Building an Enterprise Search Platform, gives a detailed architecture design to
build search solutions using Elasticsearch.

Chapter 9, Designing Data Visualization Solutions, shows how to deploy your Hadoop cluster
using Apache Ambari.

Chapter 10, Developing Applications Using the Cloud, covers different ways to visualize your
data and the factors involved in choosing the correct visualization method.

Chapter 11, Production Hadoop Cluster Deployment, covers different data processing
solutions to derive value out of our data.

Preface

[3]

To get the most out of this book
It would be great if proper installation of Hadoop is done as explained in the earlier set of
chapters. Detailed or even little knowledge of Hadoop will serve as an added advantage.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Modern-Big-Data-Processing-with-Hadoop. In
case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Modern-Big-Data-Processing-with-Hadoop
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ ​/​www. ​packtpub. ​com/​sites/ ​default/ ​files/
downloads/​ModernBigDataProcessingwithHadoop_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

export HADOOP_CONF_DIR="${HADOOP_CONF_DIR:-$YARN_HOME/etc/hadoop}"
export HADOOP_COMMON_HOME="${HADOOP_COMMON_HOME:-$YARN_HOME}"
export HADOOP_HDFS_HOME="${HADOOP_HDFS_HOME:-$YARN_HOME}"

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

$ hadoop fs -cat /tmp/output-7/part*
 NewDelhi, 440
 Kolkata, 390
 Bangalore, 270

Any command-line input or output is written as follows:

useradd hadoop
passwd hadoop1

http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ModernBigDataProcessingwithHadoop_ColorImages.pdf

Preface

[5]

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

[6]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

1
Enterprise Data Architecture

Principles
Traditionally, enterprises have embraced data warehouses to store, process, and access
large volumes of data. These warehouses are typically large RDBMS databases capable of
storing a very-large-scale variety of datasets. As the data complexity, volume, and access
patterns have increased, many enterprises have started adopting big data as a model to
redesign their data organization and define the necessary policies around it.

This figure depicts how a typical data warehouse looks in an Enterprise:

Enterprise Data Architecture Principles Chapter 1

[8]

As Enterprises have many different departments, organizations, and geographies, each one
tends to own a warehouse of their own and presents a variety of challenges to the
Enterprise as a whole. For example:

Multiple sources and destinations of data
Data duplication and redundancy
Data access regulatory issues
Non-standard data definitions across the Enterprise.
Software and hardware scalability and reliability issues
Data movement and auditing
Integration between various warehouses

It is becoming very easy to build very-large-scale systems at less costs compared to what it
was a few decades ago due to several advancements in technology, such as:

Cost per terabyte
Computation power per nanometer
Gigabits of network bandwidth
Cloud

With globalization, markets have gone global and the consumers are also global. This has
increased the reach manifold. These advancements also pose several challenges to the
Enterprises in terms of:

Human capital management
Warehouse management
Logistics management
Data privacy and security
Sales and billing management
Understanding demand and supply

In order to stay on top of the demands of the market, Enterprises have started collecting
more and more metrics about themselves; thereby, there is an increase in the dimensions
data is playing with in the current situation.

Enterprise Data Architecture Principles Chapter 1

[9]

In this chapter, we will learn:

Data architecture principles
The importance of metadata
Data governance
Data security
Data as a Service
Data architecture evolution with Hadoop

Data architecture principles
Data at the current state can be defined in the following four dimensions (four Vs).

Volume
The volume of data is an important measure needed to design a big data system. This is an
important factor that decides the investment an Enterprise has to make to cater to the
present and future storage requirements.

Different types of data in an enterprise need different capacities to store, archive, and
process. Petabyte storage systems are a very common in the industry today, which was
almost impossible to reach a few decades ago.

Velocity
This is another dimension of the data that decides the mobility of data. There exist varieties
of data within organizations that fall under the following categories:

Streaming data:
Real-time/near-real-time data

Data at rest:
Immutable data
Mutable data

Enterprise Data Architecture Principles Chapter 1

[10]

This dimension has some impact on the network architecture that Enterprise uses to
consume and process data.

Variety
This dimension talks about the form and shape of the data. We can further classify this into
the following categories:

Streaming data:
On-wire data format (for example, JSON, MPEG, and Avro)

Data At Rest:
Immutable data (for example, media files and customer invoices)
Mutable data (for example, customer details, product inventory, and
employee data)

Application data:
Configuration files, secrets, passwords, and so on

As an organization, it's very important to embrace very few technologies to reduce the
variety of data. Having many different types of data poses a very big challenge to an
Enterprise in terms of managing and consuming it all.

Veracity
This dimension talks about the accuracy of the data. Without having a solid understanding
of the guarantee that each system within an Enterprise provides to keep the data safe,
available, and reliable, it becomes very difficult to understand the Analytics generated out
of this data and to further generate insights.

Necessary auditing should be in place to make sure that the data that flows through the
system passes all the quality checks and finally goes through the big data system.

Enterprise Data Architecture Principles Chapter 1

[11]

Let's see how a typical big data system looks:

As you can see, many different types of applications are interacting with the big data
system to store, process, and generate analytics.

The importance of metadata
Before we try to understand the importance of Metadata, let's try to understand what
metadata is. Metadata is simply data about data. This sounds confusing as we are defining
the definition in a recursive way.

In a typical big data system, we have these three levels of verticals:

Applications writing data to a big data system
Organizing data within the big data system
Applications consuming data from the big data system

Enterprise Data Architecture Principles Chapter 1

[12]

This brings up a few challenges as we are talking about millions (even billions) of data
files/segments that are stored in the big data system. We should be able to correctly identify
the ownership, usage of these data files across the Enterprise.

Let's take an example of a TV broadcasting company that owns a TV channel; it creates
television shows and broadcasts it to all the target audience over wired cable networks,
satellite networks, the internet, and so on. If we look carefully, the source of content is only
one. But it's traveling through all possible mediums and finally reaching the user’s Location
for viewing on TV, mobile phone, tablets, and so on.

Since the viewers are accessing this TV content on a variety of devices, the applications
running on these devices can generate several messages to indicate various user actions and
preferences, and send them back to the application server. This data is pretty huge and is
stored in a big data system.

Depending on how the data is organized within the big data system, it's almost impossible
for outside applications or peer applications to know about the different types of data being
stored within the system. In order to make this process easier, we need to describe and
define how data organization takes place within the big data system. This will help us
better understand the data organization and access within the big data system.

Let's extend this example even further and say there is another application that reads from
the big data system to understand the best times to advertise in a given TV series. This
application should have a better understanding of all other data that is available within the
big data system. So, without having a well-defined metadata system, it's very difficult to do
the following things:

Understand the diversity of data that is stored, accessed, and processed
Build interfaces across different types of datasets
Correctly tag the data from a security perspective as highly sensitive or
insensitive data
Connect the dots between the given sets of systems in the big data ecosystem
Audit and troubleshoot issues that might arise because of data inconsistency

Enterprise Data Architecture Principles Chapter 1

[13]

Data governance
Having very large volumes of data is not enough to make very good decisions that have a
positive impact on the success of a business. It's very important to make sure that only
quality data should be collected, preserved, and maintained. The data collection process
also goes through evolution as new types of data are required to be collected. During this
process, we might break a few interfaces that read from the previous generation of data.
Without having a well-defined process and people, handling data becomes a big challenge
for all sizes of organization.

To excel in managing data, we should consider the following qualities:

Good policies and processes
Accountability
Formal decision structures
Enforcement of rules in management

The implementation of these types of qualities is called data governance. At a high level,
we'll define data governance as data that is managed well. This definition also helps us to
clarify that data management and data governance are not the same thing. Managing data is
concerned with the use of data to make good business decisions and ultimately run
organizations. Data governance is concerned with the degree to which we use disciplined
behavior across our entire organization in how we manage that data.

It's an important distinction. So what's the bottom line? Most organizations manage data,
but far fewer govern those management techniques well.

Fundamentals of data governance
Let's try to understand the fundamentals of data governance:

Accountability
Standardization
Transparency

Enterprise Data Architecture Principles Chapter 1

[14]

Transparency ensures that all the employees within an organization and outside the
organization understand their role when interacting with the data that is related to the
organization. This will ensure the following things:

Building trust
Avoiding surprises

Accountability makes sure that teams and employees who have access to data describe
what they can do and cannot do with the data.

Standardization deals with how the data is properly labeled, describe, and categorized. One
example is how to generate email address to the employees within the organization. One
way is to use firstname-lastname@company.com, or any other combination of these. This
will ensure that everyone who has access to these email address understands which one is
first and which one is last, without anybody explaining those in person.

Standardization improves the quality of data and brings order to multiple data dimensions.

Data security
Security is not a new concept. It's been adopted since the early UNIX time-sharing
operating system design. In the recent past, security awareness has increased among
individuals and organizations on this security front due to the widespread data breaches
that led to a lot of revenue loss to organizations.

Security, as a general concept, can be applied to many different things. When it comes to
data security, we need to understand the following fundamental questions:

What types of data exist?
Who owns the data?
Who has access to the data?
When does the data exit the system?
Is the data physically secured?

Let's have a look at a simple big data system and try to understand these questions in more
detail. The scale of the systems makes security a nightmare for everyone. So, we should
have proper policies in place to keep everyone on the same page:

mailto:firstname-lastname@company.com

Enterprise Data Architecture Principles Chapter 1

[15]

In this example, we have the following components:

Heterogeneous applications running across the globe in multiple geographical
regions.
Large volume and variety of input data is generated by the applications.
All the data is ingested into a big data system.
ETL/ELT applications consume the data from a big data system and put the
consumable results into RDBMS (this is optional).
Business intelligence applications read from this storage and further generate
insights into the data. These are the ones that power the leadership team's
decisions.

You can imagine the scale and volume of data that flows through this system. We can also
see that the number of servers, applications, and employees that participate in this whole
ecosystem is very large in number. If we do not have proper policies in place, its not a very
easy task to secure such a complicated system.

Enterprise Data Architecture Principles Chapter 1

[16]

Also, if an attacker uses social engineering to gain access to the system, we should make
sure that the data access is limited only to the lowest possible level. When poor security
implementations are in place, attackers can have access to virtually all the business secrets,
which could be a serious loss to the business.

Just to think of an example, a start-up is building a next-generation computing device to
host all its data on the cloud and does not have proper security policies in place. When an
attacker compromises the security of the servers that are on the cloud, they can easily figure
out what is being built by this start-up and can steal the intelligence. Once the intelligence is
stolen, we can imagine how hackers use this for their personal benefit.

With this understanding of security's importance, let's define what needs to be secured.

Application security
Applications are the front line of product-based organizations, since consumers use these
applications to interact with the products and services provided by the applications. We
have to ensure that proper security standards are followed while programming these
application interfaces.

Since these applications generate data to the backend system, we should make sure only
proper access mechanisms are allowed in terms of firewalls.

Also, these applications interact with many other backend systems, we have to ensure that
the correct data related to the user is shown. This boils down to implementing proper
authentication and authorization, not only for the user but also for the application when
accessing different types of an organization's resources.

Without proper auditing in place, it is very difficult to analyze the data access patterns by
the applications. All the logs should be collected at a central place away from the
application servers and can be further ingested into the big data system.

Input data
Once the applications generate several metrics, they can be temporarily stored locally that
are further consumed by periodic processes or they are further pushed to streaming
systems like Kafka.

Enterprise Data Architecture Principles Chapter 1

[17]

In this case, we should carefully think through and design where the data is stores and
which uses can have access to this data. If we are further writing this data to systems like
Kafka or MQ, we have to make sure that further authentication, authorization, and access
controls are in place.

Here we can leverage the operating-system-provided security measures such as process
user ID, process group ID, filesystem user ID, group ID, and also advanced systems (such
as SELinux) to further restrict access to the input data.

Big data security
Depending on which data warehouse solution is chosen, we have to ensure that authorized
applications and users can write to and read from the data warehouse. Proper security
policies and auditing should be in place to make sure that this large scale of data is not
easily accessible to everyone.

In order to implement all these access policies, we can use the operating system provided
mechanisms like file access controls and use access controls. Since we're talking about
geographically distributed big data systems, we have to think and design centralized
authentication systems to provide a seamless experience for employees when interacting
with these big data systems.

RDBMS security
Many RDBMSes are highly secure and can provide the following access levels to users:

Database
Table
Usage pattern

They also have built-in auditing mechanisms to tell which users have accessed what types
of data and when. This data is vital to keeping the systems secure, and proper monitoring
should be in place to keep a watch on these system's health and safety.

Enterprise Data Architecture Principles Chapter 1

[18]

BI security
These can be applications built in-house for specific needs of the company, or external
applications that can power the insights that business teams are looking for. These
applications should also be properly secured by practicing single sign-on, role-based access
control, and network-based access control.

Since the amount of insights these applications provide is very much crucial to the success
of the organization, proper security measures should be taken to protect them.

So far, we have seen the different parts of an enterprise system and understood what things
can be followed to improve the security of the overall enterprise data design. Let's talk
about some of the common things that can be applied everywhere in the data design.

Physical security
This deals with physical device access, data center access, server access, and network access.
If an unauthorized person gains access to the equipment owned by an Enterprise, they can
gain access to all the data that is present in it.

As we have seen in the previous sections, when an operating system is running, we are able
to protect the resources by leveraging the security features of the operating system. When
an intruder gains physical access to the devices (or even decommissioned servers), they can
connect these devices to another operating system that's in their control and access all the
data that is present on our servers.

Care must be taken when we decommission servers, as there are ways in which data that's
written to these devices (even after formatting) can be recovered. So we should follow
industry-standard device erasing techniques to properly clean all of the data that is owned
by enterprises.

In order to prevent those, we should consider encrypting data.

Enterprise Data Architecture Principles Chapter 1

[19]

Data encryption
Encrypting data will ensure that even when authorized persons gain access to the devices,
they will not be able to recover the data. This is a standard practice that is followed
nowadays due to the increase in mobility of data and employees. Many big Enterprises
encrypt hard disks on laptops and mobile phones.

Secure key management
If you have worked with any applications that need authentication, you will have used a
combination of username and password to access the services. Typically these secrets are
stored within the source code itself. This poses a challenge for programs which are non-
compiled, as attackers can easily access the username and password to gain access to our
resources.

Many enterprises started adopting centralized key management, using which applications
can query these services to gain access to the resources that are authentication protected. All
these access patterns are properly audited by the KMS

Employees should also access these systems with their own credentials to access the
resources. This makes sure that secret keys are protected and accessible only to the
authorized applications.

Data as a Service
Data as a Service (DaaS) is a concept that has become popular in recent times due to the
increase in adoption of cloud. When it comes to data. It might some a little confusing that
how can data be added to as a service model?

DaaS offers great flexibility to users of the service in terms of not worrying about the scale,
performance, and maintenance of the underlying infrastructure that the service is being run
on. The infrastructure automatically takes care of it for us, but given that we are dealing
with a cloud model, we have all the benefits of the cloud such as pay as you go, capacity
planning, and so on. This will reduce the burden of data management.

If we try to understand this carefully we are taking out the data management part alone.
But data governance should be well-defined here as well or else we will lose all the benefits
of the service model.

Enterprise Data Architecture Principles Chapter 1

[20]

So far, we are talking about the Service in the cloud concept. Does it mean that we cannot use
this within the Enterprise or even smaller organizations? The answer is No. Because this is a
generic concept that tells us the following things.

When we are talking about a service model, we should keep in mind the following things,
or else chaos will ensue:

Authentication
Authorization
Auditing

This will guarantee that only well-defined users, IP addresses, and services can access the
data exposed as a service.

Let's take an example of an organization that has the following data:

Employees
Servers and data centers
Applications
Intranet documentation sites

As you can see, all these are independent datasets. But, as a whole when we want the
organization to succeed. There is lot of overlap and we should try to embrace the DaaS
model here so that all these applications that are authoritative for the data will still manage
the data. But for other applications, they are exposed as a simple service using REST API;
therefore, this increases collaboration and fosters innovation within the organization.

Let's take further examples of how this is possible:

The team that manages all the employee data in the form of a database can
provide a simple Data Service. All other applications can use this dataset without
worrying about the underlying infrastructure on which this employee data is
stored:

This will free the consumers of the data services in such a way that the
consumers:

Need not worry about the underlying infrastructure
Need not worry about the protocols that are used to communicate
with these data servers
Can just focus on the REST model to design the application

Enterprise Data Architecture Principles Chapter 1

[21]

Typical examples of this would be:
Storing the employee data in a database like LDAP or
the Microsoft Active directory

The team that manages the infrastructure for the entire organization can design
their own system to keep off the entire hardware inventory of the organization,
and can provide a simple data service. The rest of the organization can use this to
build applications that are of interest to them:

This will make the Enterprise more agile
It ensures there is a single source of truth for the data about the entire
hardware of the organization
It improves trust in the data and increases confidence in the applications
that are built on top of this data

Every team in the organization might use different technology to build and
deploy their applications on to the servers. Following this, they also need to build
a data store that keeps track of the active versions of software that are deployed
on the servers. Having a data source like this helps the organization in the
following ways:

Services that are built using this data can constantly monitor and see
where the software deployments are happening more often
The services can also figure out which applications are vulnerable and are
actively deployed in production so that further action can be taken to fix
the loopholes, either by upgrading the OS or the software
Understanding the challenges in the overall software deployment life
cycle
Provides a single platform for the entire organization to do things in a
standard way, which promotes a sense of ownership

Documentation is one of the very important things for an organization. Instead of
running their own infrastructure, with the DaaS model, organizations and teams
can focus on the documents that are related to their company and pay only for
those. Here, services such as Google Docs and Microsoft Office Online are very
popular as they give us flexibility to pay as we go and, most importantly, not
worry about the technology required to build these.

Having such a service model for data will help us do the following:
Pay only for the service that is used
Increase or decrease the scale of storage as needed

Enterprise Data Architecture Principles Chapter 1

[22]

Access the data from anywhere if the service is on the Cloud and
connected to the internet
Access corporate resources when connected via VPN as decided
by the Enterprise policy

In the preceding examples, we have seen a variety of applications that are used in
Enterprises and how data as a model can help Enterprises in variety of ways to bring
collaboration, innovation, and trust.

But, when it comes to big data, what can DaaS Do?

Just like all other data pieces, big data can also be fit into a DaaS model and provides the
same flexibility as we saw previously:

No worry about the underlying hardware and technology
Scale the infrastructure as needed
Pay only for the data that is owned by the Enterprise
Operational and maintenance challenges are taken away
Data can be made geographically available for high availability
Integrated backup and recovery for DR requirements

With these few advantages, enterprises can be more agile and build applications that can
leverage this data as service.

Evolution data architecture with Hadoop
Hadoop is a software that helps in scalable and distributed computing. Before Hadoop
came into existence, there were many technologies that were used by the industry to take
care of their data needs. Let's classify these storage mechanisms:

Hierarchical database
Network database
Relational database

Let's understand what these data architectures are.

Enterprise Data Architecture Principles Chapter 1

[23]

Hierarchical database architecture
This model of storing Enterprise data was invented by IBM in the early 60s and was used in
their applications. The basic concept of hierarchical databases is that the data is organized in
the form of a rooted tree. The root node is the beginning of the tree and then all the children
are linked only to one of its parent nodes. This is a very unique way of storing and
retrieving things.

If you have some background in computer science, trees are one of the unique ways of
storing data so that it has some relation with each other (like a parent and child
relationship).

This picture illustrates how data is organized in a typical HDBMS:

Enterprise Data Architecture Principles Chapter 1

[24]

As we can see, the root node is the organization itself and all the data associated with the
organization follows a tree structure which depicts several relationships. These
relationships can be understood like this:

Employee owns Laptop, Mobile phone, Workstation, and iMac
Employee belongs to organization
Many vendors supply different requirements:

Computer vendors supply iMac and Workstation
Catering is in both India and USA; two vendors, The Best Caterers and Bay Area
Caterers, serve these

Even though we have expressed multiple types of relationships in this one gigantic data
store, we can see that the data gets duplicated and also querying data for different types of
needs becomes a challenge.

Let's take a simple question like: Which vendor supplied the iMac owned by Employee-391?

In order to do this, we need to traverse the tree and find information from two different
sub-trees.

Network database architecture
The network database management system also has its roots in computer science: graph
theory, where there are a vast and different types of nodes and relationships connect them
together. There is no specific root node in this structure. It was invented in the early 70s:

Enterprise Data Architecture Principles Chapter 1

[25]

As we can see, in this structure, there are a few core datasets and there are other datasets
linked with the core datasets.

This is how we can understand it:

The main hospital is defined
It has many subhospitals
Subhospitals are in India and USA
The Indian hospital uses the data in patients
The USA hospital uses the data in patients
The patients store is linked to the main hospital
Employees belong to the hospital and are linked with other organizations

In this structure, depending upon the design we come up with, the data is represented as a
network of elements.

Enterprise Data Architecture Principles Chapter 1

[26]

Relational database architecture
This system was developed again in IBM in the early 80s and is considered one of the most
reputed database systems to date. A few notable examples of the software that adopted this
style are Oracle and MySQL.

In this model, data is stored in the form of records where each record in turn has several
attributes. All the record collections are stored in a table. Relationships exist between the
data attributes across tables. Sets of related tables are stored in a database.

Let's see a typical example of how this RDBMS table looks:

We are defining the following types of tables and relationships

Enterprise Data Architecture Principles Chapter 1

[27]

Employees
The table consists of all the employee records
Each record is defined in terms of:

Employee unique identifier
Employee name
Employee date of birth
Employee address
Employee phone
Employee mobile

Devices
The table consists of all the devices that are owned by employees
Each ownership record is defined in terms of the following:

Device ownership identifier
Device model
Device manufacturer
Device ownership date
Device unique number
Employee ID

Department
A table consisting of all the departments in the organization:

Unique department ID
Unique department name

Enterprise Data Architecture Principles Chapter 1

[28]

Department and employee mapping table
This is a special table that consists of only the relationships between the department and
employee using their unique identifiers:

Unique department ID
Unique employee ID

Hadoop data architecture
So far, we have explored several types of data architectures that have been in use by
Enterprises. In this section, we will understand how the data architecture is made in
Hadoop.

Just to give a quick introduction, Hadoop has multiple components:

Data
Data management
Platform to run jobs on data

Data layer
This is the layer where all of the data is stored in the form of files. These files are internally
split by the Hadoop system into multiple parts and replicated across the servers for high
availability.

Since we are talking about the data stored in terms of files, it is very important to
understand how these files are organized for better governance.

The next diagram shows how the data can be organized in one of the Hadoop storage
layers. The content of the data can be in any form as Hadoop does not enforce them to be in
a specific structure. So, we can safely store Blu-Ray™ Movies, CSV (Comma Separated
Value) Files, AVRO Encoded Files, and so on inside this data layer.

You might be wondering why we are not using the word HDFS (Hadoop
Distributed File System) here. It's because Hadoop is designed to run on
top of any distributed file system.

Enterprise Data Architecture Principles Chapter 1

[29]

Enterprise Data Architecture Principles Chapter 1

[30]

Data management layer
This layer is responsible for keeping track of where the data is stored for a given file or path
(in terms of servers, offsets, and so on). Since this is just a bookkeeping layer, it's very
important that the contents of this layer are protected with high reliability and durability.
Any corruption of the data in this layer will cause the entire data files to be lost forever.

In Hadoop terminology, this is also called NameNode.

Job execution layer
Once we have the data problem sorted out, next come the programs that read and write
data. When we talk about data on a single server or a laptop, we are well aware where the
data is and accordingly we can write programs that read and write data to the
corresponding locations.

In a similar fashion, the Hadoop storage layer has made it very easy for applications to give
file paths to read and write data to the storage as part of the computation. This is a very big
win for the programming community as they need not worry about the underlying
semantics about where the data is physically stored across the distributed Hadoop cluster.

Since Hadoop promotes the compute near the data model, which gives very high performance
and throughput, the programs that were run can be scheduled and executed by the Hadoop
engine closer to where the data is in the entire cluster. The entire transport of data and
movement of the software execution is all taken care of by Hadoop.

So, end users of Hadoop see the system as a simple one with massive computing power and
storage. This abstraction has won everyone’s requirements and has become the standard in
big data computing today.

Summary
In this chapter, we have seen how many organizations have adopted data warehouses to
store, process, and access large volumes of data they possess. We learned about data
architecture principles, their governance, and security. In the next chapter, we will take a
look at some concepts of data pre-processing.

2
Hadoop Life Cycle

Management
In this chapter, we will understand the following topics:

Data wrangling
Data masking
Data security

Data wrangling
If you have some experience working on data of some sort, you will recollect that most of
the time data needs to be preprocessed so that we can further use it as part of a bigger
analysis. This process is called data wrangling.

Let's see what the typical flow in this process looks like:

Data acquisition
Data structure analysis
Information extraction
Unwanted data removal
Data transformation
Data standardization

Let's try to understand these in detail.

Hadoop Life Cycle Management Chapter 2

[32]

Data acquisition
Even though not a part of data wrangling, this phase deals with the process of acquiring
data from somewhere. Typically, all data is generated and stored in a central location or is
available in files located on some shared storage.

Having an understanding of this step helps us to build an interface or use existing libraries
to pull data from the acquired data source location.

Data structure analysis
Once data is acquired, we have to understand the structure of the data. Remember that the
data we are getting can be in any of the following forms:

Text data:
Structured data
Unstructured data

Binary data

This is where we need certain tools to help us understand the structure of the data.

Once we have a thorough understanding of the data we are dealing with, the next task is to
understand the bits and pieces we need to extract from this structure. Sometimes,
depending on the complexity and size of the data we are dealing with, it might take time for
us to really find and extract the information we are looking for.

Once we know what we are looking for and also have a solid understanding of the structure
of the data, it becomes easier for us to come up with simple algorithms to extract the
required information from the input data.

Information extraction
In this phase, we are interested in extracting the necessary details from the input data. In
the previous phase, we already identified the necessary pieces that are of interest to us.
Here is where we can adopt the following techniques for information extraction:

Identify and locate where the text is present

Hadoop Life Cycle Management Chapter 2

[33]

Analyze and come up with the best method of information
extraction:
Tokenize and extract information
Go to offset and extract information
Regular expression-based information extraction
Complex algorithm-based information extraction

Depending on the complexity of the data, we might have to adopt one or more of the
aforementioned techniques to extract the information from the target data.

Unwanted data removal
This phase can occur before the information extraction step or after the information
extraction step. It depends on which one is easier (shortening the text or the extraction of
information). This is a design choice the analyst can make.

In this phase, we are removing unwanted data from the information or input data so that
the data is further distilled and can easily be consumed for our business needs.

Data transformation
This is also a very important phase, where we enforce the standards defined by the
enterprise to define the final data output. For example, an organization can suggest that all
the country codes should be in ISO 3166-1 alpha-2 format. In order to adhere to this
standard, we might have to transform the input data, which can contain countries with their
full names. So a mapping and transformation has to be done.

Many other transformations can be performed on the input data to make the final data
consumable by anyone in the organization in a well-defined form and as per the
organizations standards.

This step also gives some importance to having an enterprise level standard to improve
collaboration.

Hadoop Life Cycle Management Chapter 2

[34]

Data standardization
Once the information extraction is complete and any necessary cleanup is done, we need to
decide how we are going to save the outcome of this process. Typically, we can use a simple
CSV (comma separated value) format for this data. If we are dealing with a complicated
output format, we can choose XML (Extensible Markup Language) or JSON (javascript
object notation) formats.

These formats are very much standard and almost all the technologies that we have today
understand these very easily. But to keep things simple at first, it's good to start with CSV
format.

Data masking
Businesses that deal with customer data have to make sure that the PII (personally
identifiable information) of these customers is not moving freely around the entire data
pipeline. This criterion is applicable not only to customer data but also to any other type of
data that is considered classified, as per standards such as GDPR, SOX, and so on. In order
to make sure that we protect the privacy of customers, employees, contractors, and vendors,
we need to take the necessary precautions to ensure that when the data goes through
several pipelines, users of the data see only anonymized data. The level of anonymization
we do depends upon the standards the company adheres to and also the prevailing country
standards.

So, data masking can be called the process of hiding/transforming portions of original data
with other data without losing the meaning or context.

In this section, we will understand various techniques that are available to accomplish this:

Substitution:
Static
Dynamic:

Encryption
Hashing

Hiding
Erasing
Truncation
Variance
Shuffling

Hadoop Life Cycle Management Chapter 2

[35]

Substitution
Substitution is the process of replacing portions of data with computed data. It can be
mathematically be defined as:

Where x is the source and y is the output from this function.

In order to choose the correct substitution mechanism, we need to understand how this data
is going to be used, the target audience, and the data flow environment as well. Let's look at
the various available substitution mechanisms.

Static
In this method, we have a Lookup table; it consists of all possible substitutions for a given
set of inputs. This Lookup table can be visualized like this:

Source Text (y) Substituted Text (y)

Steve Jobs AAPL-1

Cat 123456789

Tennis Cricket

This table illustrates how a Lookup table can be constructed for substituting source text
with a different text. This method scales well when there is a predefined quantity of
substitutions available.

Another example of this Lookup table-based substitution is when we follow a naming
standard for country codes, for example, ISO-8661:

Source Text (x) Substituted Text (y)

Egypt EG

India IN

Saint Vincent and Grenadines VN

United Kingdom GB

United States of America US

Hadoop Life Cycle Management Chapter 2

[36]

Dynamic
These substitution techniques are useful when there are a large number of possibilities and
we want to change the data using some algorithms. These methods can be classified into
two types.

Encryption
This is the process of changing a given text to some other form by using some form of
secret. These are mathematically defined functions:

As you can see, these functions take an input and a secret and generate data that can be
decrypted using the same secret and the output:

If we observe carefully, it is the secret that is playing an important role here. In
cryptography, there are two types of algorithms that are available based on this secret. The
usage of these depends on the situation and the secret transportation challenges.

Without going too deep into cryptography, let's try to understand what these methods are:

Symmetric key encryption
Asymmetric key encryption

The basic difference between the two is that in the first one, we use the same secret for both
encryption and decryption. But in the latter, we use two different keys for encryption and
decryption.

Let's take a look at a few examples of symmetric key encryption in action:

Algorithm Input Data Output Data Method

ROT13 hello uryyb Encryption

uryyb hello Decryption

DES hello yOYffF4rl8lxCQ4HS2fpMg==
Encryption
(secret is
hello)

Hadoop Life Cycle Management Chapter 2

[37]

yOYffF4rl8lxCQ4HS2fpMg== hello
Decryption
(secret is
hello)

RIJNDAEL-256 hello

v8QbYPszQX/TFeYKbSfPL/
rNJDywBIQKtxzOzWhBm16/
VSNN4EtlgZi3/
iPqJZpCiXXzDu0sKmKSl6IxbBKhYw==

Encryption
(secret is
hello)

v8QbYPszQX/TFeYKbSfPL/
rNJDywBIQKtxzOzWhBm16/
VSNN4EtlgZi3/
iPqJZpCiXXzDu0sKmKSl6IxbBKhYw==

hello
Encryption
(secret is
hello)

As you can see, the data that is generated varies in both complexity and length depending
on the encryption algorithm we use. It also depends on the secret key that is used for
encryption.

Encryption poses a challenge of more computational requirements and storage space. We
need to plan our system accordingly if we want to use encryption as one of the methods in
the masking process.

Hashing
This is also a cryptography-based technique where the original data is converted to an
irreversible form. Let's see the mathematical form for this:

Here, unlike in the case of encryption, we cannot use the output to discover what the input
is.

Let's see a few examples to understand this better:

Input Output Method

10-point 7d862a9dc7b743737e39dd0ea3522e9f MD5

10th 8d9407b7f819b7f25b9cfab0fe20d5b3 MD5

10-point c10154e1bdb6ea88e5c424ee63185d2c1541efe1bc3d4656a4c3c99122ba9256 SHA256

10th 5b6e8e1fcd052d6a73f3f0f99ced4bd54b5b22fd4f13892eaa3013ca65f4e2b5 SHA256

We can see that depending upon the encryption algorithm we have used, the output size
varies. Another thing to note is that a given hash function produces the same output size
irrespective of the input size.

Hadoop Life Cycle Management Chapter 2

[38]

Hiding
In this approach, the data is considered too sensitive even to reveal it to the original owners.
So, to protect the confidentiality of the data, certain portions of the text are masked with a
predefined character, say X (or anything), so that only the person with complete knowledge
about those pieces can extract the necessary information.

Examples: Credit card information is considered highly confidential and should never be
revealed to anyone. If you have some experience of purchasing online on websites such as
Amazon and so on, you would have seen that your full credit card information is not
shown; only the last four digits are shown. Since I am the genuine owner of such a credit
card, I can easily identify it and continue with the transaction.

Similarly, when there is a need for portions of data to be seen by analysts, it's important to
mask significant pieces of it so that the end users will not get the complete picture but will
use this data at the same time for any analysis that they are doing.

Let's see a few examples to understand this better:

Data type Input Output Network

Creditcard 4485 4769 3682 9843 4485 XXXX XXXX 9843 Visa

Creditcard 5402 1324 5087 3314 5402 XXXX XXXX 3314 Mastercard

Creditcard 3772 951960 72673 3772 XXXXXX 72673 American Express

In the preceding examples, these numbers follow a predefined algorithm and size. So a
simple technique of masking digits at fixed locations can work better.

Let's take up another example of hiding out portions of email addresses which vary in both
size and complexity. In this case we have to follow different techniques to hide the
characters to not reveal complete information:

Data type Input Output Method

Email hello@world.com h.l.o@w.r.d.com Even Hide

simple@book.com .i.p.e@.o.k.c.m Odd Hide

something@something.com s...th.ng@..me...com Complex Hide

Hadoop Life Cycle Management Chapter 2

[39]

The techniques can be as simple as:

Even Hide: In this technique, we hide the every character that is in the even
position
Odd Hide: We hide every odd character in the input data
Complex Hide: In this technique, we understand the data we are dealing with
using NLP and then try to apply an algorithm that doesn't reveal too much
information that would allow any intelligent person to decode

Erasing
As the name suggests, this causes data loss when applied to the input data. Depending on
the significance of the data we are dealing with, we need to apply this technique. Typical
examples of this technique is to set a NULL value for all the records in a column. Since this
null data cannot be used to infer anything that is meaningful, this technique helps in
making sure that confidential data is not sent to the other phases of data processing.

Let's take few examples of erasing:

Input Data Output Data What's erased

NULL earns 1000 INR per month Ravi earns NULL per month Salary and name

NULL mobile number is
0123456789

Ravi's mobile number is
NULL

Mobile number and
name

From the examples, you might be wondering: why do we nullify these values? This
technique is useful when we are not really interested in the PII but interested in a summary
of how many salary records or mobile number records are there in our database/input.

This concept can be extended to other use cases as well.

Truncation
Another variant of erasing is truncation, where we make all the input data a uniform size.
This is useful when we are pretty sure that information loss is accepted in the further
processing of the pipelines.

Hadoop Life Cycle Management Chapter 2

[40]

This can also be an intelligent truncation where we are aware of the data we are dealing
with. Let's see this example of email addresses:

Input Output What's truncated

alice@localhost.com alice @localhost.com

bob@localhost.com bob @localhost.com

rob@localhost.com rob @localhost.com

From the preceding examples, we can see that all the domain portions from the email are
truncated as all of them belong to the same domain. This technique saves storage space.

Variance
This technique is useful for data types that are numeric in nature. It can also be applied to
Date/Time values.

This follows a statistical approach where we try to algorithmically vary the input data by a
factor of +/- X percent. The value of X purely depends on the analysis we are doing and
shouldn’t have an overall impact on understanding the business figures.

Let's see a few examples:

Input Data Output Data Method Explanation

100 110 Fixed variance Increase by 10%

-100 90 Fixed variance Decrease by 10%

1-Jan-2000 1-Feb-2000 Fixed variance Add 1 month

1-Aug-2000 1-Jul-2000 Fixed variance Reduce by 1 month

100 101 Dynamic variance 1% to 5% increase or decrease

100 105 Dynamic 1% to 5% increase or decrease

Hadoop Life Cycle Management Chapter 2

[41]

Shuffling
This is also considered one of the standard techniques of achieving anonymity of data. This
process is more applicable where we have records of data with several attributes (columns
in database terminology). In this technique, the data in the records is shuffled around a
column so as to make sure that the record-level information is changed. But statistically, the
data value remains the same in that column.

Example: When doing an analysis on the salary ranges of an organization, we can actually
do a shuffle of the entire salary column, where the salaries of all the employees never match
reality. But we can use this data to do an analysis on the ranges.

Complex methods can also be employed in this case, where we can do a shuffle based on
other fields such as seniority, geography, and so on. The ultimate objective of this technique
is to preserve the meaning of the data and, at the same time, make it impossible to discover
the original owners of these attributes.

Let's see this with some example data:

There are five sample employee records with their salary information. The top table has
original salary details and the table below has shuffled salary records. Look at the data
carefully and you will understand. Remember that while shuffling, a random algorithm can
be applied to increase the complexity of discovering the truth.

Hadoop Life Cycle Management Chapter 2

[42]

Data security
Data has become a very important asset for businesses when making very critical decisions.
As the complexity of the infrastructure that generates and uses this data, its very important
to have some control over the access patterns of this data. In the Hadoop ecosystem, we
have Apache Ranger, which is another open source project that helps in managing the
security of big data.

What is Apache Ranger?
Apache Ranger is an application that enables data architects to implement security policies
on a big data ecosystem. The goal of this project is to provide a unified way for all Hadoop
applications to adhere to the security guidelines that are defined.

Here are some of the features of Apache Ranger:

Centralized administration
Fine grained authorization
Standardized authorization
Multiple authorization methods
Centralized auditing

Apache Ranger installation using Ambari
In this section, we will install Ranger using Apache Ambari. This section assumes that there
is already a running Ambari instance.

Hadoop Life Cycle Management Chapter 2

[43]

Ambari admin UI
Open the Ambari web interface running on master node; then click on Add Service, as
shown in the screenshot:

This will open a modal window, Add Service Wizard, which will take us through several
steps for a complete installation of Apache Ambari.

Hadoop Life Cycle Management Chapter 2

[44]

Add service
Once the modal window is in view, select the Apache Ranger service from the list and click
on Next on the screen.

This is shown in the following screenshot:

Service placement
Once the service is selected, we are presented the next step in the UI where we need to
chose the servers on which this service is going to be installed and run.

Hadoop Life Cycle Management Chapter 2

[45]

I have selected node-3 for Ranger (see the green labels):

Screenshot showing how to choose servers on which this services is going to be installed and run

After this, select Next, which is at the bottom of the page.

Service client placement
In this step, we can choose where the clients for this service can be installed. Use the
checkboxes to mark your preferences.

Hadoop Life Cycle Management Chapter 2

[46]

They look something like this:

Click on Next when your choices are made.

Database creation on master
We have installed the MySQL database server on the master node. Before we continue to
the next step in the Ambari wizard, we have to create a new database and assign a few
privileges:

Hadoop Life Cycle Management Chapter 2

[47]

We also have to register the JDBC driver using the ambari-server setup command:

bash-$ sudo ambari-server setup --jdbc-db=mysql --jdbc-
driver=/usr/share/java/mysql-connector-java.jar
Using python /usr/bin/python
Setup ambari-server
Copying /usr/share/java/mysql-connector-java.jar to /var/lib/ambari-
server/resources
If you are updating existing jdbc driver jar for mysql with mysql-
connector-java.jar. Please remove the old driver jar, from all hosts.
Restarting services that need the driver, will automatically copy the new
jar to the hosts.
JDBC driver was successfully initialized.
Ambari Server 'setup' completed successfully.

After this step, we can go back to the Ambari wizard.

Ranger database configuration
In the wizard, we are prompted with the database name, username, and password. Please
fill them according to the choices we made in the previous step:

Hadoop Life Cycle Management Chapter 2

[48]

Once the settings are added, please click on Test Connection. This will save lot of time
later.

If there are any errors, please go back to the previous step; see whether there are any
spelling mistakes and rerun those.

Click on Next when done with the changes.

Configuration changes
Since we are adding Ranger a service, Ambari shows a list of configuration changes that are
required for Ranger to work correctly. Mostly leave these on default.

These changes look like the following screenshot. Once the changes look good, click on OK
to continue:

Hadoop Life Cycle Management Chapter 2

[49]

Configuration review
In this step, we are shown the list of changes that we have made so far in the wizard, and
are shown choices to print a changes summary and deploy Ranger.

Only when we click on Deploy will the Ranger software get installed. Until then, it is all
kept in the browser cache.

The screen looks like this:

Hadoop Life Cycle Management Chapter 2

[50]

Deployment progress
Once the installation of Ranger starts, it should look something like the one in the
screenshot. There should not be any failures as we have set up all the configurations
correctly. If there is any failure, check the logs and review the configuration by clicking on
the Back button:

Application restart
Once the deployment is complete, we need to restart all the affected Hadoop components,
as shown in the following screenshot:

Hadoop Life Cycle Management Chapter 2

[51]

Once all the components are restarted, the Ambari dashboard looks pretty healthy and we
are done with the Apache Ranger installation.

In the next step, we will see how to use Apache Ranger for handling our data security.

Apache Ranger user guide
Once the deployment of Apache Ranger is complete, we can manage our entire Hadoop
infrastructure security using the web interface provided by Apache Ranger.

Login to UI
If you have not changed the default settings, Ranger runs on port 6080 by default in non-
SSL Mode. Open up a web browser on the server where its installed on port 6080
(http://<server-ip>:6080) and you will be prompted with a screen like this:

Log in with the default username admin and password admin (please change the password
after you log in for the first time, for security reasons).

Once the login is successful, we are taken to the Access manager section.

Hadoop Life Cycle Management Chapter 2

[52]

Access manager
Access manager lets us define policies based on services and tags. This screenshot shows
the default list of services and the configured policies:

As you can see, there is already a policy defined for HDFS service and KAFKA service as
they are already installed in the Ambari setup.

When we want to define a new service, we can click on the + icon and define the service
details.

Service details
Before we start defining the authorization rules for the service, we need to define a service
and then add authorization policies to the service. These are the mandatory properties
which are needed to define a service from the UI:

UI Element name Description

Service Name Name of the service as defined in agent configuration

Username Name of the service user

Password Password for the service user

Namenode URL URL to the namenode

A new service can be defined by clicking on the + icon below the application (for
example, HDFS, Kafka, and so on)

Hadoop Life Cycle Management Chapter 2

[53]

After that, the service definition screen looks like this:

Screenshot of the service definition screen after defining new services

We need to fill in all the necessary values for our service definition and hit save. Later, we
need to add policies to this service to access enforcement and auditing.

Hadoop Life Cycle Management Chapter 2

[54]

Policy definition and auditing for HDFS
For every service in Ranger, we can associate different policies to the resources in the
service. In case of HDFS, the resources will be the file/directory paths.

In this section, we will define a new policy for an HDFS path called projects for three
users: hdfs-alice, hdfs-bob, and hdfs-tom. Where only hdfs-alice is allowed all
permissions and rest of the users have only read access.

We will see how Ranger enforces access restrictions once the policy is in place.

Let's see the screen for the policy creation:

Screenshot showing how Ranger enforces access restrictions

Once we hit the Add button, this policy is registered and added under the current service.

Now, let's get back to the Unix terminal and see how Ranger enforces the policies.

Hadoop Life Cycle Management Chapter 2

[55]

This screen shows how hdfs and hdfs-alice users are allowed to create directories
/projects and /projects/1, but how this is denied for hdfs-tom:

Apache Ranger also has an audit section in the web interface, where we can see these access
patterns.

This screen shows that hdfs-tom is denied and hdfs-alice is granted access by the
policy:

Screenshot showing access denied to hdfs-tom and access granted to hdfs-alice by the policy

Like this, we can define our own policies and customize how hdfs should allow/deny
access to several resources.

The power and flexibility of Ranger comes from the its configurability. There is no need for
any configuration files and restarts of applications for the access control to play a significant
role.

Hadoop Life Cycle Management Chapter 2

[56]

Summary
In this chapter, we learned about the different data life cycle stages, including when data is
created, shared, maintained, archived, retained, and deleted.

This chapter gave you a detailed understanding of how big data is managed, considering
the fact that it is either unstructured or semi-structured and it has a fast arrival rate and
large volume.

As the complexity of the infrastructure that generates and uses data in business
organizations has increased drastically, it has become imperative to secure your data
properly. This chapter further covered data security tools, such as Apache Ranger, and
patterns to help us learn how to have control over the access patterns of data.

In the next chapter, we will take a look at Hadoop installation, its architecture and key
components.

3
Hadoop Design Consideration

Big data does not necessarily mean huge data. If a dataset is small, it's very easy to analyze
it. We can load it on to an Excel spreadsheet and do the required calculations. But, as the
volume of data gets bigger, we have to find other alternatives to process it. We may have to
load it to an RDMBS table and run a SQL query to find the trend and patterns on the given
structure. Further, if the dataset format changes to something like email, then loading to
RDBMS becomes a huge challenge. To add more complexity to it, if the data speed changes
to something like real time, it becomes almost impossible to analyze the given dataset with
traditional RDBMS-based tools. In the modern world, the term big data can be expressed
using the five most famous Vs. Following is the explanation of each V in a nutshell.

Hadoop Design Consideration Chapter 3

[58]

In this chapter, we will cover the following topics:

Data structure principles
Installing Hadoop cluster
Exploring Hadoop architecture
Introducing YARN
Hadoop cluster composition
Hadoop file formats

Understanding data structure principles
Let's go through some important data architecture principles:

Data is an asset to an enterprise: Data has a measurable value. It provides some
real value to the enterprise. In modern times, data is treated like real gold.
Data is shared enterprise-wide: Data is captured only once and then used and
analyzed many times. Multiple users access the same data for different uses cases
and requirements.
Data governance: Data is governed to ensure data quality.
Data management: Data needs to be managed to attain enterprise objectives.
Data access: All users should have access to data.
Data security: Data should be properly secured and protected.
Data definition: Each attribute of the data needs to be consistently defined
enterprise-wide.

Now that we know the basics of big data and its principles, let's get into some real action.

Installing Hadoop cluster
The following steps need to be performed in order to install Hadoop cluster. As the time of
writing this book, Hadoop Version 2.7.3 is a stable release. We will install it.

Check the Java version using the following command:1.

Java -version
Java(TM) SE Runtime Environment (build 1.8.0_144-b01)
Java HotSpot(TM) 64-Bit Server VM (build 25.144-b01, mixed mode)
You need to have Java 1.6 onwards

Hadoop Design Consideration Chapter 3

[59]

Create a Hadoop user account on all the servers, including all NameNodes and2.
DataNodes with the help of the following commands:

useradd hadoop
passwd hadoop1

Assume that we have four servers and we have to create a Hadoop cluster using
all four servers. The IPs of these four servers are as follows: 192.168.11.1,
192.168.11.2, 192.168.11.3, and 192.168.11.4. Out of these four servers,
we will first use a server as a master server (NameNode) and all remaining
servers will be used as slaves (DataNodes).

On both servers, NameNode and DataNodes, change the /etc/hosts file using3.
the following command:

vi /etc/hosts--

Then add the following to all files on all servers:4.

NameNode 192.168.11.1
DataNode1 192.168.11.2
DataNode2 192.168.11.3
DataNode3 192.168.11.4

Now, set up SSH on NamesNodes and DataNodes:5.

su - hadoop
ssh-keygen -t rsa
ssh-copy-id -i ~/.ssh/id_ras.pub hadoop@namenode
ssh-copy-id -i ~/.ssh/id_ras.pub hadoop@datanode1
ssh-copy-id -i ~/.ssh/id_ras.pub hadoop@datanode2
ssh-copy-id -i ~/.ssh/id_ras.pub hadoop@datanode3
chmod 0600 ~/.ssh/authorized_keys
exit

Download and install Hadoop on NameNode and all DataNodes:6.

mkdir /opt/hadoop
cd /opt/hadoop
wget
http://www-eu.apache.org/dist/hadoop/common/hadoop-2.7.3/hadoop-2.7
.3.tar.gz
tar -xvf hadoop-2.7.3.tar.gz
mv Hadoop-2.7.3 hadoop
chown -R hadoop /opt/hadoop
cd /opt/hadoop/Hadoop

Hadoop Design Consideration Chapter 3

[60]

Configuring Hadoop on NameNode
Log in to NameNode:

cd /opt/Hadoop/conf
vi core-site.xml

Find and change the following properties with these values:

Filename Property name Property value

core-site.xml fs.default.name hdfs://namenode:9000/

dfs.permissions False

hdfs-site.xml dfs.data.dir /opt/hadoop/hadoop/dfs/namenode/data

dfs.name.dir /opt/hadoop/hadoop/dfs/namenode

dfs.replication 1

mapred-site.xml mapred.job.tracker namenode:9001

 vi masters
 namenode
 vi slaves
 datanode1
 datanode2
 datanode3

Format NameNode
The following code is used to format the NameNode:

 cd /opt/Hadoop/Hadoop/bin
 hadoop -namenode -format

Start all services
We start all the services with the following line of code:

 ./start-all.sh

For details about how to set up a Hadoop single-node and multi-node cluster, please use
the following link: https:/ ​/​hadoop. ​apache. ​org/ ​docs/ ​r2. ​7.​0/ ​hadoop- ​project- ​dist/
hadoop-​common/​ClusterSetup. ​html.

https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-common/ClusterSetup.html

Hadoop Design Consideration Chapter 3

[61]

Exploring HDFS architecture
The HDFS architecture is based on master and slave patterns. NameNode is a master node
and all DataNodes are SlaveNodes. Following are some important points to be noted about
these two nodes.

Defining NameNode
The NameNode is a master node of all DataNodes in the Hadoop cluster. It stores only the
metadata of files and directories stored in the form of a tree. The important point is
NameNode never stores any other data other than metadata. NameNode keeps track of all
data written to DataNodes in the form of blocks. The default block size is 256 MB (which is
configurable). Without the NameNode, the data on the DataNodes filesystem cannot be
read. The metadata is stored locally on the NameNode using two files—filesystem
namespace image file, FSImage, and edit logs. FSImage is the snapshot of the filesystem
from the start of the NameNode edit logs—all the changes of the filesystem since the
NameNode started, when the NameNode starts, it reads FSImage file and edits log files. All
the transactions (edits) are merged into the FSImage file. The FSImage file is written to disk
and a new, empty edits log file is created to log all the edits. Since NameNode is not
restarted very often, the edits log file becomes very large and unmanageable. When
NameNode is restarted, it takes a very long time to restart it as all the edits need to be
applied to the FSImage file. In the event of NameNode crashing, all the metadata in the
edits log file will not be written to the FSImage file and will be lost.

Secondary NameNode
The name secondary NameNode is confusing. It does not act as a NameNode. Its main
function is to get the filesystem changes from the NameNode and merge it to NameNode
FSImage at regular intervals. Writing edits log file changes to FSImage are called commits.
Regular commits help to reduce the NameNode start time. The secondary NameNode is
also known as the commit node.

Hadoop Design Consideration Chapter 3

[62]

NameNode safe mode
It is a read-only mode for the HDFS cluster. Clients are not allowed any modifications to the
filesystem or blocks. During startup, NameNode automatically starts in safe mode, applies
edits to FSImage, disables safe mode automatically, and restarts in normal mode.

DataNode
DataNodes are the workhorses of the Hadoop cluster. Their main function is to store and
retrieve data in the form of blocks. They always communicate their status to the NameNode
in the form of heartbeats. That's how NameNode keeps track of any DataNodes, whether
they are alive or dead. DataNodes keep three copies of the blocks known and the replication
factor. DataNodes communicate with other DataNodes to copy data blocks to maintain data
replication.

Data replication
HDFS architecture supports placing very large files across the machines in a cluster. Each
file is stored as a series of blocks. In order to ensure fault tolerance, each block is replicated
three times to three different machines. It is known as a replication factor, which can be
changed at the cluster level or at the individual file level. It is a NameNode that makes all
the decisions related to block replication. NameNode gets heartbeat and block reports from
each DataNode. Heartbeat makes sure that the DataNode is alive. A block report contains a
list of all blocks on a DataNode.

Rack awareness
HDFS block placement will use rack awareness for fault tolerance by placing one block
replica on a different rack, as shown in the following diagram:

Hadoop Design Consideration Chapter 3

[63]

Let's understand the figure in detail:

The first replica is placed on the same rack as the initiating request DataNode, for
example, Rack 1 and DataNode 1
The second replica is placed on any DataNode of another rack, for example, Rack
2, DataNode 2
The third replica is placed on any DataNode of the same rack, for example, Rack
2, DataNode 3

A custom rack topology script, which contains an algorithm to select appropriate
DataNodes, can be developed using a Unix shell, Java, or Python. It can be activated on the
cluster by changing the topology.script.file.name parameter in Core-site.xml file.

Hadoop Design Consideration Chapter 3

[64]

HDFS WebUI
The following table shows the services in the HDFS WebUI:

Service Protocol Port URL

NameNode WebUI HTTP 50070 http://namenode:50070/

DataNode WebUI HTTP 50075 http://datanode:50075/

Secondary NameNode HTTP 50090 http://Snamenode:50090/

Introducing YARN
The Yet Another Resource Negotiator (YARN) separates the resource management,
scheduling, and processing components. It helps to achieve 100% resource utilization of the
cluster resources. YARN manages the CPU and memory of the cluster based on the Hadoop
scheduler policy. YARN supports any type of application and is not restricted to just
MapReduce. It supports applications written in any type of language, provided binaries can
be installed on the Hadoop cluster.

YARN architecture
Let's understand the YARN architecture in detail in the following sections.

Resource manager
The resource manager is responsible for tracking the resources in a cluster and scheduling
applications. The resource manager has two main components: the scheduler and the
applications manager.

Node manager
The node manager is responsible for launching and managing containers on a node.
Containers execute tasks as specified by the application master. It acts as a slave for the
resource manager. Each node manager tracks the available data processing resources on its
SlaveNode and sends regular reports to the resource manager. The processing resources in
a Hadoop cluster are consumed in byte-size pieces called containers.

Hadoop Design Consideration Chapter 3

[65]

Configuration of YARN
You can perform the following steps for the configuration of YARN:

Start Hadoop NameNode, secondary NameNode, and DataNode1.
Alter yarn-env.sh.2.

Find corresponding XML files based on your Hadoop installation.

Add the following under the definition of YARN_CONF_DIR:3.

export HADOOP_CONF_DIR="${HADOOP_CONF_DIR:-$YARN_HOME/etc/hadoop}"
export HADOOP_COMMON_HOME="${HADOOP_COMMON_HOME:-$YARN_HOME}"
export HADOOP_HDFS_HOME="${HADOOP_HDFS_HOME:-$YARN_HOME}"

Alter yarn-site.xml:4.

<?xml version="1.0"?>
<configuration>
 <property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce.shuffle</value>
 </property>
 <property>
 <name>yarn.nodemanager.aux-
services.mapreduce.shuffle.class</name>
 <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 </property>
</configuration>

Alter mapred-site.xml:5.

<?xml version="1.0"?>
<?xml-stylesheet href="configuration.xsl"?>
<configuration>
 <property>
 <name>mapreduce.framework.name </name>
 <value>yarn</value>
 </property>
</configuration>

Hadoop Design Consideration Chapter 3

[66]

Start the YARN services:6.

yarn resourcemanager
yarn nodemanager

Configuring HDFS high availability
Let's take a look at the changes brought about in Hadoop over time.

During Hadoop 1.x
Hadoop 1.x started with the architecture of a single NameNode. All DataNodes used to
send their block reports to that single NameNode. There was a secondary NameNode in the
architecture, but its sole responsibility was to merge all edits to FSImage. With this
architecture, the NameNode became the single point of failure (SPOF). Since it has all the
metadata of all the DataNodes of the Hadoop cluster, in the event of NameNode crash, the
Hadoop cluster becomes unavailable till the next restart of NameNode repair. If the
NameNode cannot be recovered, then all the data in all the DataNodes would be
completely lost. In the event of shutting down NameNode for planned maintenance, the
HDFS becomes unavailable for normal use. Hence, it was necessary to protect the existing
NameNode by taking frequent backups of the NameNode filesystem to minimize data loss.

During Hadoop 2.x and onwards
In order to overcome HDFS high availability (HA) problems and make NameNode a SPOF,
the architecture has changed. The new architecture provides a running of two redundant
NameNodes in the same cluster in an active/passive configuration with a hot standby. This
allows a fast failover to a new NameNode in the event of a machine crashing, or a graceful
administrator-initiated failover for the purpose of planned maintenance. The following two
architectural options are provided for HDFS HA:

Using shared storage
Using quorum journal manager

Hadoop Design Consideration Chapter 3

[67]

HDFS HA cluster using NFS
The following diagram depicts the HDFS HA cluster using NFS for shared storage required
by the NameNodes architecture:

Important architecture points
Following are some important points to remember about the HDFS HA using shared
storage architecture:

In the cluster, there are two separate machines: active state NameNode and
standby state NameNode.
At any given point in time, one-and-only, one of the NameNodes is in the active
state, and the other is in the standby state.

Hadoop Design Consideration Chapter 3

[68]

The active NameNode manages the requests from all client DataNodes in the
cluster, while the standby remains a slave.
All the DataNodes are configured in such a way that they send their block reports
and heartbeats to both the active and standby NameNodes.
The standby NameNode keeps its state synchronized with the active NameNode.
Active and standby nodes both have access to a filesystem on a shared storage
device (for example, an NFS mount from a NAS)
When a client makes any filesystem change, the active NameNode makes the
corresponding change (edits) to the edit log file residing on the network shared
directory.
The standby NameNode makes all the corresponding changes to its own
namespace. That way, it remains in sync with the active NameNode.
In the event of the active NameNode being unavailable, the standby NameNode
makes sure that it absorbs all the changes (edits) from the shared network
directory and promotes itself to an active NameNode.
The Hadoop administrator should apply the fencing method to the shared
storage to avoid a scenario that makes both the NameNodes active at a given
time. In the event of failover, the fencing method cuts the access to the previous
active NameNode to make any changes to the shared storage to ensure smooth
failover to standby NameNode. After that, the standby NameNode becomes the
active NameNode.

Configuration of HA NameNodes with shared
storage
Add the following properties to the hdfs-site.xml:

Property Value

dfs.nameservices cluster_name

dfs.ha.namenodes.cluster_name NN1, NN2

dfs.namenode.rpc-address.cluster_name.NN1 machine1:8020

dfs.namenode.rpc-address.cluster_name.NN2 machine2:8020

dfs.namenode.http-address.cluster_name.NN1 machine1:50070

dfs.namenode.http-address.cluster_name.NN2 machine2:50070

dfs.namenode.shared.edits.dir file:///mnt/filer1/dfs/ha-name-dir-shared

dfs.client.failover.proxy.provider.cluster_name org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider

dfs.ha.fencing.methods sshfence

dfs.ha.fencing.ssh.private-key-files /home/myuser/.ssh/id_rsa

dfs.ha.fencing.methods sshfence([[username][:port]])

dfs.ha.fencing.ssh.connect-timeout 30000

Hadoop Design Consideration Chapter 3

[69]

Add the following properties to core-site.xml:

Property Value

fs.defaultFS hdfs://cluster_name

HDFS HA cluster using the quorum journal
manager
The following diagram depicts the quorum journal manager (QJM) architecture to share
edit logs between the active and standby NameNodes:

Hadoop Design Consideration Chapter 3

[70]

Important architecture points
Following are some important points to remember about the HDFS HA using the QJM
architecture:

In the cluster, there are two separate machines—the active state NameNode and
standby state NameNode.
At any point in time, exactly one of the NameNodes is in an active state, and the
other is in a standby state.
The active NameNode manages the requests from all client DataNodes in the
cluster, while the standby remains a slave.
All the DataNodes are configured in such a way that they send their block reports
and heartbeats to both active and standby NameNodes.
Both NameNodes, active and standby, remain synchronized with each other by
communicating with a group of separate daemons called JournalNodes (JNs).
When a client makes any filesystem change, the active NameNode durably logs a
record of the modification to the majority of these JNs.
The standby node immediately applies those changes to its own namespace by
communicating with JNs.
In the event of the active NameNode being unavailable, the standby NameNode
makes sure that it absorbs all the changes (edits) from JNs and promotes itself as
an active NameNode.
To avoid a scenario that makes both the NameNodes active at a given time, the
JNs will only ever allow a single NameNode to be a writer at a time. This allows
the new active NameNode to safely proceed with failover.

Configuration of HA NameNodes with QJM
Add the following properties to hdfs-site.xml:

Property Value

dfs.nameservices cluster_name

dfs.ha.namenodes.cluster_name NN1, NN2

dfs.namenode.rpc-address.cluster_name.NN1 machine1:8020

dfs.namenode.rpc-address.cluster_name.NN2 machine2:8020

dfs.namenode.http-address.cluster_name.NN1 machine1:50070

dfs.namenode.http-address.cluster_name.NN2 machine2:50070

dfs.namenode.shared.edits.dir qjournal://node1:8485;node2:8485;node3:8485/cluster_name

dfs.client.failover.proxy.provider.cluster_name org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider

dfs.ha.fencing.methods sshfence

Hadoop Design Consideration Chapter 3

[71]

dfs.ha.fencing.ssh.private-key-files /home/myuser/.ssh/id_rsa

dfs.ha.fencing.methods sshfence([[username][:port]])

dfs.ha.fencing.ssh.connect-timeout 30000

Add the following properties to core-site.xml:

Property Value

fs.defaultFS hdfs://cluster_name

dfs.journalnode.edits.dir /path/to/journal/node/local/datat

Automatic failover
It's very important to know that the above two architectures support only manual failover.
In order to do automatic failover, we have to introduce two more components a ZooKeeper
quorum, and the ZKFailoverController (ZKFC) process, and more configuration changes.

Important architecture points
Each NameNode, active and standby, runs the ZKFC process.
The state of the NameNode is monitored and managed by the ZKFC.
The ZKFC pings its local NameNode periodically to make sure that that the
NameNode is alive. If it doesn't get the ping back, it will mark that NameNode
unhealthy.
The healthy NameNode holds a special lock. If the NameNode becomes
unhealthy, that lock will be automatically deleted.
If the local NameNode is healthy, and the ZKFC sees the lock is not currently
held by any other NameNode, it will try to acquire the lock. If it is successful in
acquiring the lock, then it has won the election. It is now the responsibility of this
NameNode to run a failover to make its local NameNode active.

Hadoop Design Consideration Chapter 3

[72]

Configuring automatic failover
Add the following properties to hdfs-site.xml to configure automatic failover:

Property Value

dfs.ha.automatic-failover.enabled true

ha.zookeeper.quorum zk1:2181, zk2:2181, zk3:2181

Hadoop cluster composition
As we know, a Hadoop cluster consists of master and slave servers: MasterNodes—to
manage the infrastructure, and SlaveNodes—distributed data store and data processing.
EdgeNodes are not a part of the Hadoop cluster. This machine is used to interact with the
Hadoop cluster. Users are not given any permission to directly log in to any of the
MasterNodes and DataNodes, but they can log in to the EdgeNode to run any jobs on the
Hadoop cluster. No application data is stored on the EdgeNode. The data is always stored
on the DataNodes on the Hadoop cluster. There can be more than one EdgeNode,
depending on the number of users running jobs on the Hadoop cluster. If enough hardware
is available, it's always better to host each master and DataNode on a separate machine. But,
in a typical Hadoop cluster, there are three MasterNodes.

Please note that it is assumed that we are using HBase as a NoSQL datastore in our cluster.

Typical Hadoop cluster
The Hadoop cluster composition will look like the following:

Hadoop Design Consideration Chapter 3

[73]

The following are some hardware specifications to be taken into account:

NameNode and standby NameNodes.
The memory requirement depends on the number of files and block replicas to be
created. Typically, at least 64 GB - 96 GB memory is recommended for
NameNodes.
NameNodes need reliable storage to host FSImage and edit logs. It is
recommended that these MasterNodes should have at least 4 TB - 6 TB SAS
storage. It is a good idea to have RAID 5 - 6 storage for NameNodes. If the cluster
is a HA cluster, then plan your Hadoop cluster in such a way that JNs should be
configured on the master node.

Hadoop Design Consideration Chapter 3

[74]

As far as processors are concerned, it is recommended to have at least 2 quad core CPUs
running at 2 GHz, to handle messaging traffic for the MasterNodes.

DataNodes/SlaveNodes should have at least 64 GB RAM per node. It is
recommended that, typically, 2 GB - 3 GB memory is required for each Hadoop
daemon, such as DataNode, node manager ZooKeeper, and so on; 5 GB for OS
and other services; and 5 GB - 8 GB for each MapReduce task.
DataNodes may have commodity storage with at least 8 TB - 10 TB disk storage
with 7,200 RPM SATA drives. Hard disk configuration should be in Just a Bunch
Of Disks (JBOD).
It is recommended to have at least 8 processors—2.5 GHz cores and 24 cores
CPUs for all DataNodes.
It is recommended to have 1 GbE to 10 GbE network connectivity within each
RACK. For all slaves, 1 GB network bandwidth, and for MasterNodes, 10 GB
bandwidth is recommended.
If you plan to expand your Hadoop cluster in future, you can also add additional
machines.

Please read the following articles from Hortonworks and Cloudera for additional reference:

http:/​/​docs. ​hortonworks. ​com/ ​HDPDocuments/ ​HDP1/ ​HDP- ​1. ​3.​3/​bk_ ​cluster-
planning- ​guide/ ​content/ ​conclusion. ​html

http:/​/​blog. ​cloudera. ​com/ ​blog/ ​2013/ ​08/ ​how- ​to-​select- ​the-​right-
hardware- ​for- ​your- ​new- ​hadoop- ​cluster/ ​

Best practices Hadoop deployment
Following are some best practices to be followed for Hadoop deployment:

Start small: Like other software projects, an implementation Hadoop also
involves risks and cost. It's always better to set up a small Hadoop cluster of four
nodes. This small cluster can be set up as proof of concept (POC). Before using
any Hadoop component, it can be added to the existing Hadoop POC cluster as
proof of technology (POT). It allows the infrastructure and development team to
understand big data project requirements. After successful completion of POC
and POT, additional nodes can be added to the existing cluster.

http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.3/bk_cluster-planning-guide/content/conclusion.html
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/

Hadoop Design Consideration Chapter 3

[75]

Hadoop cluster monitoring: Proper monitoring of the NameNode and all
DataNodes is required to understand the health of the cluster. It helps to take
corrective actions in the event of node problems. If a service goes down, timely
action can help avoid big problems in the future. Setting up Gangalia and Nagios
are popular choices to configure alerts and monitoring. In the case of the
Hortonworks cluster, Ambari monitoring, and the Cloudera cluster, Cloudera
(CDH) manager monitoring can be an easy setup.
Automated deployment: Use of tools like Puppet or Chef is essential for Hadoop
deployment. It becomes super easy and productive to deploy the Hadoop cluster
with automated tools instead of manual deployment. Give importance to data
analysis and data processing using available tools/components. Give preference
to using Hive or Pig scripts for problem solving rather than writing heavy,
custom MapReduce code. The goal should be to develop less and analyze more.
Implementation of HA: While deciding about HA infrastructure and
architecture, careful consideration should be given to any increase in demand
and data growth. In the event of any failure or crash, the system should be able to
recover itself or failover to another data center/site.
Security: Data needs to be protected by creating users and groups, and mapping
users to the groups. Setting appropriate permissions and enforcing strong
passwords should lock each user group down.
Data protection: The identification of sensitive data is critical before moving it to
the Hadoop cluster. It's very important to understand privacy policies and
government regulations for the better identification and mitigation of compliance
exposure risks.

Hadoop file formats
In Hadoop, there are many file formats available. A user can select any format based on the
use case. Each format has special features in terms of storage and performance. Let's discuss
each file format in detail.

Hadoop Design Consideration Chapter 3

[76]

Text/CSV file
Text and CSV files are very common in Hadoop data processing algorithms. Each line in the
file is treated as a new record. Typically, each line ends with the n character. These files do
not support column headers. Hence, while processing, an extra line of the code is always
required to remove column headings. CSV files are typically compressed using GZIP codec
because they do not support block level compression; it adds to more processing costs.
Needless to mention they do not support schema evolution.

JSON
The JSON format is becoming very popular in all modern programming languages. These
files are collection name/value pairs. The JSON format is typically used in data exchange
applications and it is treated as an object, record, struct, or an array. These files are text files
and support schema evolutions. It's very easy to add or delete attributes from a JSON file.
Like text/CSV files, JSON files do not support block-level compression.

Sequence file
A sequence file is a flat file consisting of binary key/value pairs. They are extensively used
in MapReduce (https:/ ​/ ​wiki. ​apache. ​org/ ​hadoop/ ​MapReduce) as input/output formats.
They are mostly used for intermediate data storage within a sequence of MapReduce jobs.
Sequence files work well as containers for small files. If there are too many small files in
HDFS, they can be packed in a sequence file to make file processing efficient. There are
three formats of sequence files: uncompressed, record compressed, and block compressed
key/value records. Sequence files support block-level compression but do not support
schema evolution.

Avro
Avro is a widely used file type within the Hadoop community. It is popular because it helps
schema evolution. It contains serialized data with a binary format. An Avro file is splittable
and supports block compression. It contains data and metadata. It uses a separate JSON file
to define the schema format. When Avro data is stored in a file, its schema is stored with it
so that files may be processed later by any program. If the program reading the data expects
a different schema, this can be easily resolved, since both schemas are present.

https://wiki.apache.org/hadoop/MapReduce
https://wiki.apache.org/hadoop/MapReduce
https://wiki.apache.org/hadoop/MapReduce
https://wiki.apache.org/hadoop/MapReduce
https://wiki.apache.org/hadoop/MapReduce
https://wiki.apache.org/hadoop/MapReduce
https://wiki.apache.org/hadoop/MapReduce
https://wiki.apache.org/hadoop/MapReduce
https://wiki.apache.org/hadoop/MapReduce
https://wiki.apache.org/hadoop/MapReduce
https://wiki.apache.org/hadoop/MapReduce
https://wiki.apache.org/hadoop/MapReduce
https://wiki.apache.org/hadoop/MapReduce

Hadoop Design Consideration Chapter 3

[77]

Parquet
Parquet stores nested data structures in a flat columnar format. Parquet is more efficient in
terms of storage and performance than any row-level file formats. Parquet stores binary
data in a column-oriented way. In the Parquet format, new columns are added at the end of
the structure. Cloudera mainly supports this format for Impala implementation but is
aggressively becoming popular recently. This format is good for SQL queries, which read
particular columns from a wide table having many columns because only selective columns
are read to reduce I/O cost.

ORC
ORC files are optimized record columnar file format and are the extended version of RC
files. These are great for compression and are best suited for Hive SQL performance when
Hive is reading, writing, and processing data to reduce access time and the storage space.
These files do not support true schema evolution. They are mainly supported by
Hortonworks and are not suitable for Impala SQL processing.

Which file format is better?
The answer is: it depends on your use cases. Generally, the criteria for selecting a file format
is based on query-read and query-write performance. Also, it depends on which Hadoop
distribution you are using. The ORC file format is the best for Hive and Tez using the
Hortonworks distribution and a parquet file is recommended for Cloudera Impala
implementations. For a use case involving schema evolution, Avro files are best suited. If
you want to import data from RDBMS using Sqoop, text/CSV file format is the better choice.
For storing map intermediate output, a sequence file is the ultimate choice.

Hadoop Design Consideration Chapter 3

[78]

Summary
In this chapter, the main objective was to learn about various Hadoop design alternatives.
We've learned a lot when it comes to the Hadoop cluster and its best practices for
deployment in a typical production environment. We started with a basic understanding
about Hadoop and we proceeded to Hadoop configuration, installation, and HDFS
architecture. We also learned about various techniques for achieving HDFS high
availability. We also looked into YARN architecture. Finally, we looked at various file
formats and how to choose one based on your use case.

In the next chapter, we will see how to ingest data into a newly created Hadoop cluster.

4
Data Movement Techniques

In the last chapter, we learned about how to create and configure a Hadoop cluster, HDFS
architecture, various file formats, and the best practices for a Hadoop cluster. We also
learned about Hadoop high availability techniques.

Since we now know how to create and configure a Hadoop cluster, in this chapter, we will
learn about various techniques of data ingestion into a Hadoop cluster. We know about the
advantages of Hadoop, but now, we need data in our Hadoop cluster to utilize its real
power.

Data ingestion is considered the very first step in the Hadoop data life cycle. Data can be
ingested into Hadoop as either a batch or a (real-time) stream of records. Hadoop is a
complete ecosystem, and MapReduce is a batch ecosystem of Hadoop.

The following diagram shows various data ingestion tools:

Data Movement Techniques Chapter 4

[80]

We will learn about each tool in detail in the next few sections.

In this chapter, we will cover the following methods of transferring data to and from our
Hadoop cluster:

Apache Sqoop
Apache Flume
Apache NiFi
Apache Kafka Connect

Batch processing versus real-time
processing
Before we dive deep into different data ingestion techniques, let's discuss the difference
between batch and real-time (stream) processing. The following explains the difference
between these two ecosystems.

Batch processing
The following points describe the batch processing system:

Very efficient in processing a high volume of data.
All data processing steps (that is, data collection, data ingestion, data processing,
and results presentation) are done as one single batch job.
Throughput carries more importance than latency. Latency is always more than a
single minute.
Throughput directly depends on the size of the data and available computational
system resources.
Available tools include Apache Sqoop, MapReduce jobs, Spark jobs, Hadoop
DistCp utility, and so on.

Data Movement Techniques Chapter 4

[81]

Real-time processing
The following points describe how real-time processing is different from batch processing:

Latency is extremely important, for example, less than one second
Computation is relatively simple
Data is processed as an independent unit
Available tools include Apache Storm, Spark Streaming, Apache Fink, Apache
Kafka, and so on

Apache Sqoop
Apache Sqoop is a tool designed for efficiently transferring bulk data between a Hadoop
cluster and structured data stores, such as relational databases. In a typical use case, such as
a data lake, there is always a need to import data from RDBMS-based data warehouse
stores into the Hadoop cluster. After data import and data aggregation, the data needs to be
exported back to RDBMS. Sqoop allows easy import and export of data from structured
data stores like RDBMS, enterprise data warehouses, and NoSQL systems. With the help of
Sqoop, data can be provisioned from external systems into a Hadoop cluster and populate
tables in Hive and HBase. Sqoop uses a connector-based architecture, which supports
plugins that provide connectivity to external systems. Internally, Sqoop uses MapReduce
algorithms to import and export data. By default, all Sqoop jobs run four map jobs. We will
see Sqoop import and export functions in detail in the next few sections.

Data Movement Techniques Chapter 4

[82]

Sqoop Import
The following diagram shows the Sqoop Import function to import data from an RDBMS
table into a Hadoop cluster:

Import into HDFS
The following is a sample command to import data into HDFS:

$sqoop import -connect jdbc:mysql://localhost/dbname -table <table_name>
--username <username> --password >password> -m 4

The import is done in two steps, which are as follows.

Sqoop scans the database and collects the table metadata to be imported1.
Sqoop submits a map-only job and transfers the actual data using necessary2.
metadata

Data Movement Techniques Chapter 4

[83]

The imported data is saved in HDFS folders. The user can specify alternative folders. The
imported data is saved in a directory on HDFS, based on the table being imported. As is the
case with most aspects of a Sqoop operation, the user can specify any alternative directory
where the files should be populated. You can easily override the format in which data is
copied over by explicitly specifying the field separator and record terminator characters.
The user can use different formats, like Avro, ORC, Parquet, sequence files, text files, and so
on, to store files onto HDFS, for example, importing a MySQL table to HDFS. The following
is an example to import a MySQL table to HDFS:

$ mysql> create database sales;
$ mysql> use sales;
$ mysql> create table customer
 (cust_num int not null,cust_fname varchar(30),cust_lname varchar
(30),cust_address varchar (30),cust_city varchar (20),cust_state
varchar (3), cust_zip varchar (6),primary key (cust_num));
$ ctrl-C -- to exit from MySQL

On the Command Prompt, run the following sqoop command to import the MySQL sales
database table, customer:

$ sqoop import --connect jdbc:mysql://127.0.0.1:3306/sales --username root
--password hadoop --table customer --fields-terminated-by "," --driver
com.mysql.jdbc.Driver --target-dir /user/data/customer

Verify the customer folder on HDFS as follows:

$ hadoop fs -ls /user/data/customerFound 5 items-rw-r--r-- 1 root hdfs
0 2017-04-28 23:35 /user/data/customer/_SUCCESS-rw-r--r-- 1 root hdfs
154 2017-04-28 23:35 /user/data/customer/part-m-00000-rw-r--r-- 1 root
hdfs 95 2017-04-28 23:35 /user/data/customer/part-m-00001-rw-r--r--
1 root hdfs 96 2017-04-28 23:35 /user/data/customer/part-m-00002-
rw-r--r-- 1 root hdfs 161 2017-04-28 23:35
/user/data/customer/part-m-00003

Data Movement Techniques Chapter 4

[84]

Let's create an external Hive table to verify the records, as shown in the following snippet:

$ hive$hive > CREATE EXTERNAL TABLE customer_H
(cust_num int,cust_fname string,cust_lname string,cust_address string,
cust_city string,cust_state string,cust_zip string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','LINES TERMINATED BY
'n'LOCATION '/user/data/customer';
$hive> select * from customer_H;

Custnum Cust Fname Cust Lname Cust address City State Zip

1 James Butt 6649 N Blue Gum St New Orleans LA 70116

2 Art Venere 8 W Cerritos Ave #54 Bridgeport NJ 8014

3 Lenna Paprocki 639 Main St Anchorage AK 99501

4 Donette Foller 34 Center St Hamilton OH 45011

5 Simona Morasca 3 Mcauley Dr Ashland OH 44805

6 Mitsue Tollner 7 Eads St Chicago IL 60632

7 Leota Dilliard 7 W Jackson Blvd San Jose CA 95111

8 Sage Wieser 5 Boston Ave #88 Sioux Falls SD 57105

9 Kris Marrier 228 Runamuck Pl #2808 Baltimore MD 21224

10 Minna Amigon 2371 Jerrold Ave Kulpsville PA 19443

The following is an example of importing a MySQL table to Hive:

$ sqoop import --connect jdbc:mysql://127.0.0.1:3306/sales --username root
--password hadoop --table customer --driver com.mysql.jdbc.Driver --m 1 --
hive-import --hive-table customor_H

Verify the table Hive:

$hive$use default;
$ show tables;

Data Movement Techniques Chapter 4

[85]

You will see that the customer_H table is created under a default database. If you want to
create the customer_H table under a different database, for example, a sales database, you
have to create the sales database in advance. Also, you have to change the -hive-table
parameter to the --hive-table sales cutomer_H incremental load (insert only). It's a
typical data load requirement of loading only the incremental changes happening in the
source table. Let's assume that a new customer, 11, is inserted into the source customer
MySQL table:

insert into customer values (11,'Abel','Maclead','25 E 75th St #69','Los
Angeles','CA','90034');

To accommodate only the new record (that is, customer 11), we have to add a few
additional parameters to our original sqoop command. The new sqoop command is as
follows:

sqoop import --connect jdbc:mysql://127.0.0.1:3306/sales --username root --
password hadoop --table customer --driver com.mysql.jdbc.Driver --
incremental append --check-column cust_num
 --last-value 10
 --m 1 --split-by cust_state --target-dir /user/data/customer

After running this command, Sqoop will pick up only the new row (that is, cust_num,
which is 11):

$hive> select * from customer_H;

Custnum Cust Fname Cust Lname Cust address City State Zip

1 James Butt 6649 N Blue Gum St New Orleans LA 70116

2 Art Venere 8 W Cerritos Ave #54 Bridgeport NJ 8014

3 Lenna Paprocki 639 Main St Anchorage AK 99501

4 Donette Foller 34 Center St Hamilton OH 45011

5 Simona Morasca 3 Mcauley Dr Ashland OH 44805

6 Mitsue Tollner 7 Eads St Chicago IL 60632

7 Leota Dilliard 7 W Jackson Blvd San Jose CA 95111

8 Sage Wieser 5 Boston Ave #88 Sioux Falls SD 57105

9 Kris Marrier 228 Runamuck Pl #2808 Baltimore MD 21224

10 Minna Amigon 2371 Jerrold Ave Kulpsville PA 19443

Data Movement Techniques Chapter 4

[86]

11 Abel Maclead 25 E 75th St #69 Los Angeles CA 90034

For incremental load we cannot update the data directly using Sqoop import.

Please follow the steps in the given link for row-level updates: http:/ ​/​hortonworks. ​com/
blog/​four-​step-​strategy- ​incremental- ​updates- ​hive/ ​.
Now, let's look at an example of importing a subset of a MySQL table into Hive. The
following command shows how to import only a subset of a customer table in MySQL into
Hive. For example, we have import-only customer data of State = "OH":

$ sqoop import --connect jdbc:mysql://127.0.0.1:3306/sales --username root
--password hadoop --table sales.customer --driver com.mysql.jdbc.Driver --
m 1 --where "city = 'OH' --hive-import --hive-table customer_H_1$ hive>
select * from customer_H_1;

Custnum Cust Fname Cust Lname Cust address City State Zip

4 Donette Foller 34 Center St Hamilton OH 45011

5 Simona Morasca 3 Mcauley Dr Ashland OH 44805

Import a MySQL table into an HBase table
The following is a sample command to import data into an HBase table:

$sqoop import -connect jdbc:mysql://localhost/dbname -table <table_name> -
-username <username> --password >password> --hive-import -m 4
--hbase-create-table --hbase-table <table_name>--column-family <col family
name>

Sqoop imports data into the HBase table column family. The data is converted and inserted
as a UTF-8 bytes format.

http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/
http://hortonworks.com/blog/four-step-strategy-incremental-updates-hive/

Data Movement Techniques Chapter 4

[87]

Sqoop export
The following diagram shows the Sqoop Export function to export data from a Hadoop
cluster:

Data processed in a data lake-like use case may be needed for additional business functions.
Sqoop can be used to export that data back to RDBMS from HDFS or from a Hive table. In
the case of exporting data back to an RDBMS table, the target table must exist in a MySQL
database. The rows in HDFS files or records from a Hive table are given as input to the
sqoop command and are called rows in a target table. Those records are read and parsed
into a set of records and delimited with a user-specified delimiter.

The following are the commands to export data from HDFS to a MySQL table. Let's create a
table in MySQL to store data exported from HDFS:

$ mysql> use sales;$ mysql> create table customer_export (
cust_num int not null, cust_fname varchar(30), cust_lname
varchar (30), cust_address varchar (30), cust_city varchar (20),
cust_state varchar (3), cust_zip varchar (6), primary key
(cust_num));

$ sqoop export --connect jdbc:mysql://127.0.0.1:3306/sales --driver
com.mysql.jdbc.Driver --username root --password hadoop --table
customer_exported --export-dir /user/data/customer

Data Movement Techniques Chapter 4

[88]

The --table parameter specifies the table which will be populated. Sqoop splits the data
and uses individual map tasks to push the splits into the database. Each map task does the
actual data transfer. The --export-dir <directory h> is the directory from which data
will be exported:

$ mysql> use sales;$ mysql> select * from customer_exported;

Custnum Cust Fname Cust Lname Cust Address City State Zip

1 James Butt 6649 N Blue Gum St New Orleans LA 70116

2 Art Venere 8 W Cerritos Ave #54 Bridgeport NJ 8014

3 Lenna Paprocki 639 Main St Anchorage AK 99501

4 Donette Foller 34 Center St Hamilton OH 45011

5 Simona Morasca 3 Mcauley Dr Ashland OH 44805

6 Mitsue Tollner 7 Eads St Chicago IL 60632

7 Leota Dilliard 7 W Jackson Blvd San Jose CA 95111

8 Sage Wieser 5 Boston Ave #88 Sioux Falls SD 57105

9 Kris Marrier 228 Runamuck Pl #2808 Baltimore MD 21224

10 Minna Amigon 2371 Jerrold Ave Kulpsville PA 19443

Flume
Flume is a reliable, available and distributed service to efficiently collect, aggregate, and
transport large amounts of log data. It has a flexible and simple architecture that is based on
streaming data flows. The current version of Apache Flume is 1.7.0, which was released in
October 2016.

Data Movement Techniques Chapter 4

[89]

Apache Flume architecture
The following diagram depicts the architecture of Apache Flume:

Let's take a closer look at the components of the Apache Flume architecture:

Event: An event is a byte payload with optional string headers. It represents the
unit of data that Flume can carry from its source to destination.
Flow: The transport of events from source to destination is considered a data
flow, or just flow.
Agent: It is an independent process that hosts the components of Flume, such as
sources, channels, and sinks. It thus has the ability to receive, store, and forward
events to its next-hop destination.
Source: The source is an interface implementation. It has the ability to consume
events that are delivered to it with the help of a specific mechanism.
Channel: It is a store where events are delivered to the channel through sources
that operate within the agent. An event placed in a channel remains there until a
sink takes it out for further transport. Channels play an important role in
ensuring this.
Sink: It is an interface implementation, just like the source. It can remove events
from a channel and transport them to the next agent in the flow, or to its final
destination.
Interceptors: They help to change an event in transit. An event can be removed or
modified on the basis of the chosen criteria. Interceptors are the classes, which
implement the org.apache.flume.interceptor.Interceptor interface.

Data Movement Techniques Chapter 4

[90]

Data flow using Flume
The entire Flume agent runs in a JVM process, which includes all the components (source,
channel, and sink). The Flume source receives events from the external sources, like a web
server, external files, and so on. The source pushes events to the channel, which stores it
until picked up by the sink. The channel stores the payload (message stream) in either the
local filesystem or in a memory, depending on the type of the source. For example, if the
source is a file, the payload is stored locally. The sink picks up the payload from the channel
and pushes it to external data stores. The source and sink within the agent run
asynchronously. Sometimes, it may be possible for the sink to push the payload to yet
another Flume agent. We will talk about that scenario in the next section.

Flume complex data flow architecture
In the following architecture, there are three sources (servers). In order to pull data from the
log files stored on these servers, we have to install Flume software on each of these servers.
After installation, the filenames need to be added to the flume.conf file. Flume collects all
the data from files and pushes it to the corresponding sink through channels. There are
multiple sinks in the above architecture; Hive HDFS, and another sink, which is connected
to another installation of the Flume agent installed on another server. It pushes data from
sink to source and writes data to the Cassendra data store.

Please note that this is not a good architecture, but I have mentioned it to explain how a
Flume sink and Flume sources can be connected.

The following diagram shows complex data flow involving multiple agents:

Data Movement Techniques Chapter 4

[91]

Flume setup
Flume agent configuration is stored in a local text file. Please refer to the sample Flume
agent configuration file in the code repository of this book. Flume 1.7.0 supports various
sources and sinks. Widely used Flume sources (a summary) are as follows:

Source Description

Avro source Listens on Avro port and receives events from external Avro client
streams

Exec source Runs a given Unix command and expects that process to
continuously produce data on standard out

Spooling directory
source Ingests data from files on disk

Taildir source Tails files in near real-time after new lines are detected in the files

Kafka source Reads messages from Kafka topics

Syslog source Reads syslog data (supports syslog-TCP and syslog-UDP)

HTTP source Accepts Flume events by HTTP POST and GET

The widely used Flume sinks can be summarized as follows:

Sink Description

Avro sink Events are turned into Avro events and sent to the configured
hostname/port pair

HDFS sink Writes events into the HDFS

Hive sink Writes text or JSON data into a Hive table

HBase sink Writes data to HBase

Morphline Solr sink Loads it in near real-time into Apache Solr servers

Elasticsearch sink Writes data to an Elasticsearch cluster

Kafka sink Writes data to a Kafka topic

Data Movement Techniques Chapter 4

[92]

The widely used Flume channels (a summary) are as follows:

Channel Description

JDBC channel Events are stored in storage supported by database

Kafka channel Events are stored in a Kafka cluster

File channel Events are stored in files

Spillable memory channel Events are stored in memory; if memory gets full, then stored on
disk

The widely used Flume interceptors can be summarized as follows:

Interceptor Description

Timestamp interceptor Adds the processing time of an event into event headers

Host interceptor Adds hostname of agent

Search and replace interceptor Supports Java regular expressions

Regex filtering interceptor Filters the events against RegEx

Regex extractor interceptor Extracts and appends the match RegEx groups as headers on
the event

Log aggregation use case
In day-to-day business scenarios, we always find the need to get log files and make sense
out of them. For example, we always find the need to get logs from different applications
and servers and merge them together to find trends and patterns. Let me extend this
example further. Let's assume that we have five web servers deployed on five different
servers. We want to get all five web server logs and merge/aggregate them together to
analyze them further by storing one copy on HDFS and another copy to be shipped on to a
Kafka topic for real-time analytics. The question is how we design Flume-based log
aggregation architecture. The following is the Flume architecture for our web server log
aggregation scenario:

Data Movement Techniques Chapter 4

[93]

Let us walk through the architecture in detail: There are a total of five web servers. Each
web server generates a log file and stores it locally. The Flume agent is installed on each
web server. The Flume agent is nothing but a (JVM) process that hosts the components
through which events flow from an external source to the next destination (hop). Each
Flume agent accesses log files based on local configuration of flume.conf. Each Flume
agent reads the log files and pushes data to the Flume collector. Each line of the log file is
treated as one message (a payload). The Flume collector gets messages from all web servers,
fitters and aggregates all messages, and pushes these messages to the data store. The
following is the sample flume.conf of the Flume agent and the collectors agent
flume.conf:

Sample Flume Agent Configuration
This conf file should deploy on each webserver
##
a1.sources = apache
a1.sources.apache.type = exec

Data Movement Techniques Chapter 4

[94]

a1.sources.apache.command = gtail -F /var/log/httpd/access_log
a1.sources.apache.batchSize = 1
a1.sources.apache.channels = memoryChannel

a1.channels = memoryChannel
a1.channels.memoryChannel.type = memory
a1.channels.memoryChannel.capacity = 100

Collector Details

a1.sinks = AvroSink
a1.sinks.AvroSink.type = avro
a1.sinks.AvroSink.channel = memoryChannel
a1.sinks.AvroSink.hostname = 10.0.0.10
a1.sinks.AvroSink.port = 6565

The collector flume.conf file is as follows:

Collector get data from all agents

collector.sources = AvroIn
collector.sources.AvroIn.type = avro
collector.sources.AvroIn.bind = 0.0.0.0
collector.sources.AvroIn.port = 4545
collector.sources.AvroIn.channels = mc1 mc2

collector.channels = mc1 mc2
collector.channels.mc1.type = memory
collector.channels.mc1.capacity = 100

collector.channels.mc2.type = memory
collector.channels.mc2.capacity = 100

Write copy to Local Filesystem (Debugging)
http://flume.apache.org/FlumeUserGuide.html#file-roll-sink
collector.sinks.LocalOut.type = file_roll
collector.sinks.LocalOut.sink.directory = /var/log/flume
collector.sinks.LocalOut.sink.rollInterval = 0
collector.sinks.LocalOut.channel = mc1

Write to HDFS
collector.sinks.HadoopOut.type = hdfs
collector.sinks.HadoopOut.channel = mc2
collector.sinks.HadoopOut.hdfs.path = /flume/events/%{log_type}/%{host}/%y-
%m-%d

Data Movement Techniques Chapter 4

[95]

collector.sinks.HadoopOut.hdfs.fileType = DataStream
collector.sinks.HadoopOut.hdfs.writeFormat = Text
collector.sinks.HadoopOut.hdfs.rollSize = 0
collector.sinks.HadoopOut.hdfs.rollCount = 10000
collector.sinks.HadoopOut.hdfs.rollInterval = 600

Apache NiFi
What is Apache NiFi? In any organization, we know that there is a variety of systems. Some
systems generate the data and other systems consume that data. Apache NiFi is built to
automate that data flow from one system to another. Apache NiFi is a data flow
management system that comes with a web UI that helps to build data flows in real time. It
supports flow-based programming. The graph programming includes a series of nodes and
edges through which data moves. In NiFi, these nodes are translated into processors, and
the edges into connectors. The data is stored in a packet of information called a FlowFile.
This FlowFile includes content, attributes, and edges. As a user, you connect processors
together using connectors to define how the data should be handled.

Main concepts of Apache NiFi
The following table describes the main components of Apache NiFi:

Component name Description

FlowFile Data packet running through the system

FlowFile processor Performs the actual work of data routing, transformation, and data
movement

Connetion Actual data linkage between processors

Flow controller Facilitates the exchange of FlowFiles between the processors

Process group Specific group of data inputs and data output processors

Data Movement Techniques Chapter 4

[96]

Apache NiFi architecture
The following diagram shows the components of the Apache NiFi architecture (source:
https:/​/​nifi.​apache. ​org/ ​docs. ​html):

The components are as follows:

Web server: This hosts NiFi's HTTP-based UI
File controller: This provides threads and manages the schedule for the
extensions to run on
Extensions: The extensions operate and execute within the JVM
FileFlow repository: This keeps track of the state of what it knows about a given
FlowFile that is presently active in the flow
Content repository: This is where the actual content bytes of a given FlowFile
live
Provenance repository: This is where all provenance event data is stored

https://nifi.apache.org/docs.html
https://nifi.apache.org/docs.html
https://nifi.apache.org/docs.html
https://nifi.apache.org/docs.html
https://nifi.apache.org/docs.html
https://nifi.apache.org/docs.html
https://nifi.apache.org/docs.html
https://nifi.apache.org/docs.html
https://nifi.apache.org/docs.html
https://nifi.apache.org/docs.html
https://nifi.apache.org/docs.html
https://nifi.apache.org/docs.html
https://nifi.apache.org/docs.html

Data Movement Techniques Chapter 4

[97]

Key features
The following are the key features of Apache NiFi:

Guaranteed delivery: In the event of increased volume of data, power failures,
and network and system failures in NiFi, it becomes necessary to have a robust
guaranteed delivery of the data. NiFi ensures, within the dataflow system itself,
the transactional communication between NiFi and the data where it is coming to
the points to which it is delivered to.
Data buffering with back pressure and pressure release: In any dataflow, it may
be possible that there are some issues with the systems involved; some might be
down or some might be slow. In that case, data buffering becomes very essential
to coping with the data coming into or going out of the dataflow.

NiFi supports the buffering of all queues with back pressure when it reaches
specific limits and age of the data. NiFi does it with a maximum possible
throughput rate, while maintaining a good response time.

Prioritized queuing: In general, the data queues maintain natural order or
insertion order. But, many times, when the rate of data insertion is faster than the
bandwidth, you have to prioritize your data retrieval from the queue. The default
is the oldest data first. But NiFi supports prioritization of queues to pull data out
based on size, time, and so on that is, largest first or newest first.
Flow-specific quality of service (QoS): There are some situations where we have
to process the data in a specific time period, for example, within a second and so
on, otherwise the data loses its value. The fine-grained flow of specific
configuration of these concerns is enabled by Apache NiFi.
Data provenance: NiFi automatically records, indexes, and makes available
provenance data as objects flow through the system—even across fan-in, fan-out,
transformations, and more. This information becomes extremely critical in
supporting compliance, troubleshooting, optimization, and other scenarios.
Visual command and control: Apache NiFi allows users to have interactive
management of dataflow. It provides immediate feedback to each and every
change to the dataflow. Hence, users understand and immediately correct any
problems, mistakes, or issues in their dataflows. Based on analytical results of the
dataflows, users can make changes to their dataflow, prioritize of queues, add
more data flows, and so on.
Flow templates: Data flows can be developed, designed, and shared. Templates
allow subject matter experts to build and publish their flow designs and for
others to benefit and collaborate on them.

Data Movement Techniques Chapter 4

[98]

Extension: NiFi allows us to extend its key components.
Points of extension: Processors, controller services, reporting tasks, prioritizers,
and customer UIs.
Multi-role security: Multi-grained, multi-role security can be applied to each
component, which allows the admin user to have a fine-grained level of access
control.
Clustering: NiFi is designed to scale-out through the use of clustering many
nodes together. That way, it can handle more data by adding more nodes to the
cluster.

For getting started with Apache NiFi, please use this link: https:/ ​/​nifi. ​apache. ​org/​docs/
nifi-​docs/​html/​getting- ​started. ​html.

Let's imagine a scenario. I have a running log file. It is updated on the fly. I want to capture
and monitor each line in that file, based on its contents. I want to send it to my Kafka
brokers. I also want to deliver all my error records to HDFS for archival and further
analysis. Different line types will be sent to different Kafka brokers. For example, error, info,
and success types will be sent to three different Kafka topics, namely error, info, and
success. I have developed the following NiFi workflow for that. The following table gives
the detailed explanation of each processor:

Processor Purpose Property Value

TailFile To tail log files File to tail /var/log/apache.log

SplitText To split the log entries to
the lines Line split count 1

RouteOnContent To make a routing decision

PutHDFS To send errors to HDFS HDFS details

PublishKafka To deliver data to Kafka
topic

Broker and topic
name Hostname: port, topic pane

https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html

Data Movement Techniques Chapter 4

[99]

Real-time log capture dataflow
The following example workflow shows how log file data can be pushed to HDFS and then
to moved to Kafka brokers:

Kafka Connect
Kafka Connect is a part of Apache Kafka. It is a framework to ingest data from one to
another system using connectors. There are two types of connectors: source connectors and
sink connectors. The sink connectors import data from source systems and write to Kafka
topics. The sink connectors read data from the Kafka topic and export it to target systems.
Kafka Connect provides various source and sink connectors out of the box.

Kafka Connect – a brief history
Kafka Connect was mainly introduced in November 2015 in Kafka 0.9.x. In addition to the
various features of Kafka 0.9.x, Connect APIs was a brand new feature. Then, in May 2016,
the new version Kafka 0.10.0 was released. In that version, Kafka Streams API was a new
and exciting feature. But, in March 2017, it was Kafka Version 0.10.2 where Kafka Connect
got its real momentum. As a part of Kafka 0.10.2, improved simplified Connect APIs and
single message transform APIs were released.

Data Movement Techniques Chapter 4

[100]

Why Kafka Connect?
Kafka Connect helps to simplify getting data in and out of Kafka. It provides a lot of
connectors to do that out of the box. In my opinion, that's the best incentive to a developer
like me, because I do not have to develop a separate code to develop my own connector to
import and export data; I can always reuse the out-of-the-box connector for that. Also, if I
want, I can always develop my own unique connector using Kafka Connect APIs. Also, all
the connectors are configuration-based. The common sources and targets are databases,
search engines, NoSQL data stores, and applications like SAP, GoldenGate, Salesforce,
HDFS, Elasticsearch, and so on. For a detailed listing of all available sources and connectors,
please refer to https:/ ​/​www. ​confluent. ​io/​product/ ​connectors/ ​.

Kafka Connect features
The following are some features of Kafka connect:

Scalable: This is a framework for scalable and reliable streaming data between
Apache Kafka and other systems
Simple: This makes it simple to define connectors that move large collections of
data into and out of Kafka
Offset management: The framework does most of the hard work of properly
recording the offsets of the connectors
Easy operation: This has a service that has a RESTful API for managing and
deploying connectors
Distributed: The framework can be clustered and will automatically distribute
the connectors across the cluster, ensuring that the connector is always running
Out-of-the-box connectors: For a detailed listing of all available sources and
connectors, please refer to https:/ ​/​www. ​confluent. ​io/ ​product/ ​connectors/ ​

https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/

Data Movement Techniques Chapter 4

[101]

Kafka Connect architecture
The following diagram represents the Kafka Connect architecture:

The Kafka cluster is made of Kafka brokers: three brokers, as shown in the diagram. Sources
can be of any type, for example, databases, NoSQL, Twitter, and so on. In between the
source and Kafka cluster, there is a Kafka Connect cluster, which is made up of workers.
The working of Kafka Connect comprises the following steps:

Workers, based on configuration, pull data from sources1.
After getting data, the connector pushes data to the Kafka cluster2.
If data needs to be transformed, filtered, joined, or aggregated using stream3.
applications such as Spark, Storm, and so on, stream APIs will change data in and
out of Kafka
Based on the configuration, the connector will pull data out of Kafka and write it4.
to the sink

Data Movement Techniques Chapter 4

[102]

Some Kafka Connect concepts are as follows:

Source connectors get data from common data sources.
Sink connectors publish data to common data sources.
Kafka Connect makes it easy to quickly get data reliably into Kafka.
It is a part of the ETL pipeline.
Scaling from a small pipeline to a company-wide pipeline is very easy.
The code is reusable.
The Kafka Connect cluster has multiple loaded connectors. Each connector is a
reusable piece of code, (Java JARs). There are a lot of open source connectors
available, which can be leveraged.
Each connector task is a combination of connector class and configuration. A task
is linked to a connector configuration. A job creation may create multiple tasks.
So, if you have one connector and one configuration, then two or more tasks can
be created.
Kafka Connect workers and servers execute tasks. A worker is a single java
process. A worker can be standalone or distributed.

Kafka Connect workers modes
There are two modes of Kafka Connect workers:

Standalone mode
Distributed mode

Standalone mode
Standalone mode is a single process (worker) that runs all the connectors and tasks. The
configuration is bundled in a single process. It is not fault tolerant or scalable, and it is very
difficult to monitor. Since it is easy to set up, it is mainly used during development and
testing.

Distributed mode
With distributed mode, multiple workers (processes) run your connectors and tasks. The
configuration is submitted using the REST API. It is scalable and fault tolerant. It
automatically rebalances all the tasks on the cluster if any worker dies. Since it is scalable
and fault tolerant, it is mainly used in a production environment.

Data Movement Techniques Chapter 4

[103]

Kafka Connect cluster distributed architecture
The following is the representation of the Kafka Connect cluster distributed architecture
details:

In the preceding diagram, we can see the following details:

We have source Connector 1, with three tasks: Task 1, Task 2, and Task 3. These
three tasks are spread out among four workers: Worker 1, Worker 3, and Worker
4.
We also have source Connector 2, with two tasks: Task 1 and Task 2. These two
tasks are spread out between two workers: Worker 2 and Worker 3.
We also have sink Connector 3 with four tasks: Task 1, Task 2, Task 3, and Task
4. These four tasks are spread out among four workers: Worker 1, Worker 2,
Worker 3, and Worker 4.
Now, something happens and Worker 4 dies and we lose that worker completely.
As a part of fault tolerance, the rebalance activity kicks off. Connector 1 and Task
3 move from Worker 4 to Worker 2. Similarly, Connector 3 and Task 4 move
from Connector 4 to Connector 1.

Data Movement Techniques Chapter 4

[104]

The following diagram represents the Kafka Connect cluster after rebalance:

Example 1
Streamed data from source file Demo-Source.txt is moved to destination file Demo-
Sink.txt in standalone mode, as shown in the following diagram:

In order to stream data from source file Demo-Source.txt to destination file Demo-
Sink.txt in standalone mode, we need to perform the following steps:

Start Kafka:1.

$ /bin/kafka-server-start.sh config/server.properties

Create topic:2.

$.bin/kafka-topics --create --topic demo-1-standalone --partitions
3 --replication-factor 1 --zookeeper 127.0.0.1:2181

Data Movement Techniques Chapter 4

[105]

Configure the source-file-stream-standalone.properties file:3.

name=source-file-stream-standalone
connector.class=org.apache.kafka.connect.file.FileStreamSourceConne
ctor
tasks.max=1
file=demo-source.txt
topic=file-source-topic

Configure file-stream-standalone.properties file:4.

name=sinkfile-stream-standalone
connector.class=org.apache.kafka.file.FileStreamSourceConnector
tasks.max=1
file=demo-sink.txt
topics=file-source-topic

Configure file-worker.properties file:5.

bootstrap.servers=127.0.0.1:9092
key.converter=org.apache.kafka.connect.json.JsonConverter
key.converter.schemas.enable=false
value.converter=org.apache.kafka.connect.json.JsonConverter
value.converter.schemas.enable=false
we always leave the internal key to JsonConverter
internal.key.converter=org.apache.kafka.connect.json.JsonConverter
internal.key.converter.schemas.enable=false
internal.value.converter=org.apache.kafka.connect.json.JsonConverte
r
internal.value.converter.schemas.enable=false
rest.port=8086
rest.host.name=127.0.0.1
this config is only for standalone workers
offset.storage.file.filename=standalone.offsets
offset.flush.interval.ms=10000

Start Kafka Connect. Open another terminal and run the following command:6.

$.bin/connect-standalone config/file-worker.properties
config/source-file-stream-standalone.properties config/ sink-file-
stream-standalone.properties

Data Movement Techniques Chapter 4

[106]

Add data to the demo-source.txt file. Open another terminal and run the7.
following command:

$ touch demo-source.txt

$ echo "Test Line 1 " >> demo-source.txt

$ echo "Test Line 2 " >> demo-source.txt

$ echo "Test Line 2 " >> demo-source.txt

Read the demo-sink.txt file:8.

$ cat demo-sink.file

Example 2
Streamed data from source file Demo-Source.txt is moved to destination file Demo-
Sink.txt in distributed mode. If you want to run the previous example using distributed
mode, you have to add the following parameter to source-file-stream and sink-file-
stream in steps 3 and 4:

key.converter=org.apache.kafka.connect.json.JsonConverter
key.converter.schemas.enable=true
value.converter=org.apache.kafka.connect.json.JsonConverter
value.converter.schemas.enable=true

Summary
In this chapter, we have learned all the popular data ingestion tools used in production
environments. Sqoop is mainly used to import and export data in and out of RDBMS data
stores. Apache Flume is used in real-time systems to import data, mainly from files sources.
It supports a wide variety of sources and sinks. Apache NiFi is a fairly new tool and getting
very popular these days. It also supports GUI-based ETL development. Hortonworks has
started supporting this tool since their HDP 2.4 release. Apache Kafka Connect is another
popular tool in the market. It is also a part of the Confluent Data Platform. Kafka Connect
can ingest entire databases or collect metrics from all your application servers into Kafka
topics, making the data available for stream processing with low latency.

Since we so far know how to build Hadoop clusters and how to ingest data in them, we will
learn data modeling techniques in the next chapter.

5
Data Modeling in Hadoop

So far, we've learned how to create a Hadoop cluster and how to load data into it. In the
previous chapter, we learned about various data ingestion tools and techniques. As we
know by now, there are various open source tools available in the market, but there is a
single silver bullet tool that can take on all our use cases. Each data ingestion tool has
certain unique features; they can prove to be very productive and useful in typical use
cases. For example, Sqoop is more useful when used to import and export Hadoop data
from and to an RDBMS.

In this chapter, we will learn how to store and model data in Hadoop clusters. Like data
ingestion tools, there are various data stores available. These data stores support different
data models—that is, columnar data storage, key value pairs, and so on; and they support
various file formats, such as ORC, Parquet, and AVRO, and so on. There are very popular
data stores, widely used in production these days, for example, Hive, HBase, Cassandra,
and so on. We will learn more about the following two data stores and data modeling
techniques:

Apache Hive
Apache HBase

First, we will start with basic concepts and then we will learn how we can apply modern
data modeling techniques for faster data access. In a nutshell, we will cover the following
topics in this chapter:

Apache Hive and RDBMS
Supported datatypes
Hive architecture and how it works

Data Modeling in Hadoop Chapter 5

[108]

Apache Hive
Hive is a data processing tool in Hadoop. As we have learned in the previous chapter, data
ingestion tools load data and generate HDFS files in Hadoop; we need to query that data
based on our business requirements. We can access the data using MapReduce
programming. But data access with MapReduce is extremely slow. To access a few lines of
HDFS files, we have to write separate mapper, reducer, and driver code. So, in order to
avoid this complexity, Apache introduced Hive. Hive supports an SQL-like interface that
helps access the same lines of HDFS files using SQL commands. Hive was initially
developed by Facebook but was later taken over by Apache.

Apache Hive and RDBMS
I mentioned that Hive provides an SQL-like interface. Bearing this in mind, the question
that arises is: is Hive the same as RDBMS on Hadoop? The answer is no. Hive is not a database.
Hive does not store any data. Hive stores table information as a part of metadata, which is
called schema, and points to files on HDFS. Hive accesses data stored on HDFS files using
an SQL-like interface called HiveQL (HQL). Hive supports SQL commands to access and
modify data in HDFS. Hive is not a tool for OLTP. It does not provide any row-level insert,
update, or delete. The current version of Hive (version 0.14), does support insert, update,
and delete with full ACID properties, but that feature is not efficient. Also, this feature does
not support all file formats. For example, the update supports only ORC file format.
Basically, Hive is designed for batch processing and does not support transaction
processing like RDBMS does. Hence, Hive is better suited for data warehouse applications
for providing data summarization, query, and analysis. Internally, Hive SQL queries are
converted into MapReduce by its compiler. Users need not worry about writing any
complex mapper and reducer code. Hive supports query structured data only. It is very
complex to access unstructured data using Hive SQL. You may have to write your own
custom functions for that. Hive supports various file formats such as text files, sequence
files, ORC, and Parquet, which provide significant data compression.

Data Modeling in Hadoop Chapter 5

[109]

Supported datatypes
The following datatypes are supported by Hive version 0.14:

Datatype group Datatype Format

String

STRING column_name STRING

VARCHAR column_name VARCHAR(max_length)

CHAR column_name CHAR(length)

Numeric

TINYINT column_name TINYINT

SMALLINT column_name SMALLINT

INT column_name INT

BIGINT column_name BIGINT

FLOAT column_name FLOAT

DOUBLE column_name DOUBLE

DECIMAL column_name DECIMAL[(precision[,scale])]

Date/time type

TIMESTAMP column_name TIMESTAMP

DATE column_name DATE

INTERVAL column_name INTERVAL year to month

Miscellaneous
type

BOOLEAN column_name BOOLEAN

BINARY column_name BINARY

Complex type

ARRAY column_name ARRAY < type >

MAPS column_name MAP < primitive_type, type >

STRUCT
column_name STRUCT < name : type [COMMENT
'comment_string'] >

UNION
column_name UNIONTYPE <int, double, array,
string>

Data Modeling in Hadoop Chapter 5

[110]

How Hive works
Hive databases are comprised of tables which are made up of partitions. Data can be
accessed via a simple query language and Hive supports overwriting or appending of data.
Within a particular database, data in tables is serialized and each table has a corresponding
HDFS directory. Each table can be sub-divided into partitions that determine how data is
distributed within subdirectories of the table directory. Data within partitions can be further
broken down into buckets.

Hive architecture
The following is a representation of Hive architecture:

The preceding diagram shows that Hive architecture is divided into three parts—that is,
clients, services, and metastore. The Hive SQL is executed as follows:

Hive SQL query: A Hive query can be submitted to the Hive server using one of
these ways: WebUI, JDBC/ODBC application, and Hive CLI. For a thrift-based
application, it will provide a thrift client for communication.

Data Modeling in Hadoop Chapter 5

[111]

Query execution: Once the Hive server receives the query, it is compiled,
converted into an optimized query plan for better performance, and converted
into a MapReduce job. During this process, the Hive Server interacts with the
metastore for query metadata.
Job execution: The MapReduce job is executed on the Hadoop cluster.

Hive data model management
Hive handles data in the following four ways:

Hive tables
Hive table partition
Hive partition bucketing
Hive views

We will see each one of them in detail in the following sections.

Hive tables
A Hive table is very similar to any RDBMS table. The table is divided into rows and
columns. Each column (field) is defined with a proper name and datatype. We have already
seen all the available datatypes in Hive in the Supported datatypes section. A Hive table is
divided into two types:

Managed tables
External tables

We will learn about both of these types in the following sections.

Managed tables
The following is a sample command to define a Hive managed table:

Create Table < managed_table_name>
 Column1 <data type>,
 Column2 <data type>,
 Column3 <data type>
Row format delimited Fields Terminated by "t";

Data Modeling in Hadoop Chapter 5

[112]

When the preceding query is executed, Hive creates the table and the metadata is updated
in the metastore accordingly. But the table is empty. So, data can be loaded into this table by
executing the following command:

Load data inpath <hdfs_folder_name> into table <managed_table_name>;

After executing the previous command, the data is moved from <hdfs_folder_name> to
the Hive table's default location /user/hive/warehouse/<managed_table_name. This
default folder, /user/hive/warehouse, is defined in hive-site.xml and can be changed
to any folder. Now, if we decide to drop the table, we can do so by issuing the following
command:

Drop table <managed_table_name>;

The /user/hive/warehouse/<managed_table_name folder will be dropped and the
metadata stored in the metastore will be deleted.

External tables
The following is a sample command to define a Hive external table:

Create Table < external_table_name>
 Column1 <data type>,
 Column2 <data type>,
 Column3 <data type>
Row format delimited Fields Terminated by "t"
Location <hdfs_folder_name>;

When the preceding query is executed, Hive creates the table and the metadata is updated
in the metastore accordingly. But, again, the table is empty. So, data can be loaded into this
table by executing the following command:

Load data inpath <hdfs_folder_name> into table <external_table_name>;

This command will not move any file to any folder but, instead, creates a pointer to the
folder location, and it is updated in the metadata in the metastore. The file remains at the
same location (<hdfs_folder_name>) of the query. Now, if we decide to drop the table,
we can do so by issuing the following command:

Drop table <managed_table_name>;

Data Modeling in Hadoop Chapter 5

[113]

The folder /user/hive/warehouse/<managed_table_name will not be dropped and
only the metadata stored in the metastore will be deleted. The file remains in the same
location—<hdfs_folder_name>.

Hive table partition
Partitioning a table means dividing a table into different parts based on a value of a
partition key. A partition key can be any column, for example, date, department, country,
and so on. As data is stored in parts, the query response time becomes faster. Instead of
scanning the whole table, partition creates subfolders within the main table folders. Hive
will scan only a specific part or parts of the table based on the query's WHERE clause. Hive
table partition is similar to any RDBMS table partition. The purpose is also the same. As we
keep inserting data into a table, the table becomes bigger in data size. Let's say we create
an ORDERS table as follows:

hive> create database if not exists ORDERS;
OK
Time taken: 0.036 seconds

hive> use orders;
OK
Time taken: 0.262 seconds

hive> CREATE TABLE if not exists ORDEERS_DATA
 > (Ord_id INT,
 > Ord_month INT,
 > Ord_customer_id INT,
 > Ord_city STRING,
 > Ord_zip STRING,
 > ORD_amt FLOAT
 >)
 > ROW FORMAT DELIMITED
 > FIELDS TERMINATED BY ','
 > ;
OK
Time taken: 0.426 seconds
hive>

We will load the following sample file ORDERS_DATA table as follows:

101,1,100,'Los Angeles','90001',1200
102,2,200,'Los Angeles','90002',1800
103,3,300,'Austin','78701',6500
104,4,400,'Phoenix','85001',7800

Data Modeling in Hadoop Chapter 5

[114]

105,5,500,'Beverly Hills','90209',7822
106,6,600,'Gaylord','49734',8900
107,7,700,'Los Angeles','90001',7002
108,8,800,'Los Angeles','90002',8088
109,9,900,'Reno','89501',6700
110,10,1000,'Los Angeles','90001',8500
111,10,1000,'Logan','84321',2300
112,10,1000,'Fremont','94539',9500
113,10,1000,'Omaha','96245',7500
114,11,2000,'New York','10001',6700
115,12,3000,'Los Angeles','90003',1000

Then we load orders.txt to the /tmp HDFS folder:

[root@sandbox order_data]# hadoop fs -put /root/order_data/orders.txt /tmp

[root@sandbox order_data]# hadoop fs -ls /tmp
Found 3 items
-rw-r--r-- 1 root hdfs 530 2017-09-02 18:06 /tmp/orders.txt

Load the ORDERS_DATA table as follows:

hive> load data inpath '/tmp/orders.txt' into table ORDERS_DATA;
Loading data to table orders.orders_data
Table orders.orders_data stats: [numFiles=1, numRows=0, totalSize=530,
rawDataSize=0]
OK
Time taken: 0.913 seconds

hive> select * from ORDERS_DATA;
OK
101 1 100 'Los Angeles' '90001' 1200.0
102 2 200 'Los Angeles' '90002' 1800.0
103 3 300 'Austin' '78701' 6500.0
104 4 400 'Phoenix' '85001' 7800.0
105 5 500 'Beverly Hills' '90209' 7822.0
106 6 600 'Gaylord' '49734' 8900.0
107 7 700 'Los Angeles' '90001' 7002.0
108 8 800 'Los Angeles' '90002' 8088.0
109 9 900 'Reno' '89501' 6700.0
110 10 1000 'Los Angeles' '90001' 8500.0
111 10 1000 'Logan' '84321' 2300.0
112 10 1000 'Fremont' '94539' 9500.0
113 10 1000 'Omaha' '96245' 7500.0
114 11 2000 'New York' '10001' 6700.0
115 12 3000 'Los Angeles' '90003' 1000.0
Time taken: 0.331 seconds, Fetched: 15 row(s)

Data Modeling in Hadoop Chapter 5

[115]

Let's assume we want to insert cities data in an ORDERS_DATA table. Each city orders data is
of 1 TB in size. So the total data size of the ORDERS_DATA table will be 15 TB (there are 15
cities in the table). Now, if we write the following query to get all orders booked in Los
Angeles:

hive> select * from ORDERS where Ord_city = 'Los Angeles' ;

The query will run very slowly as it has to scan the entire table. The obvious idea is that we
can create 10 different orders tables for each city and store orders data in the
corresponding city of the ORDERS_DATA table. But instead of that, we can partition the
ORDERS_PART table as follows:

hive> use orders;

hive> CREATE TABLE orders_part
 > (Ord_id INT,
 > Ord_month INT,
 > Ord_customer_id INT,
 > Ord_zip STRING,
 > ORD_amt FLOAT
 >)
 > PARTITIONED BY (Ord_city INT)
 > ROW FORMAT DELIMITED
 > FIELDS TERMINATED BY ','
 > ;
OK
Time taken: 0.305 seconds
hive>

Now, Hive organizes the tables into partitions for grouping similar types of data together
based on a column or partition key. Let's assume that we have 10 orders files for each city,
that is, Orders1.txt to Orders10.txt. The following example shows how to load each
monthly file to each corresponding partition:

load data inpath '/tmp/orders.txt' into table orders_part
partition(Ord_city='Los Angeles');
load data inpath '/tmp/orders.txt' into table orders_part
partition(Ord_city='Austin');
load data inpath '/tmp/orders.txt' into table orders_part
partition(Ord_city='Phoenix');
load data inpath '/tmp/orders.txt' into table orders_part
partition(Ord_city='Beverly Hills');
load data inpath '/tmp/orders.txt' into table orders_part
partition(Ord_city='Gaylord');
load data inpath '/tmp/orders.txt' into table orders_part
partition(Ord_city=Reno');

Data Modeling in Hadoop Chapter 5

[116]

load data inpath '/tmp/orders.txt' into table orders_part
partition(Ord_city='Fremont');
load data inpath '/tmp/orders.txt' into table orders_part
partition(Ord_city='Omaha');
load data inpath '/tmp/orders.txt' into table orders_part
partition(Ord_city='New York');
load data inpath '/tmp/orders.txt' into table orders_part
partition(Ord_city='Logan');

[root@sandbox order_data]# hadoop fs -ls
/apps/hive/warehouse/orders.db/orders_part
Found 10 items
drwxrwxrwx - root hdfs 0 2017-09-02 18:32
/apps/hive/warehouse/orders.db/orders_part/ord_city=Austin
drwxrwxrwx - root hdfs 0 2017-09-02 18:32
/apps/hive/warehouse/orders.db/orders_part/ord_city=Beverly Hills
drwxrwxrwx - root hdfs 0 2017-09-02 18:32
/apps/hive/warehouse/orders.db/orders_part/ord_city=Fremont
drwxrwxrwx - root hdfs 0 2017-09-02 18:32
/apps/hive/warehouse/orders.db/orders_part/ord_city=Gaylord
drwxrwxrwx - root hdfs 0 2017-09-02 18:33
/apps/hive/warehouse/orders.db/orders_part/ord_city=Logan
drwxrwxrwx - root hdfs 0 2017-09-02 18:32
/apps/hive/warehouse/orders.db/orders_part/ord_city=Los Angeles
drwxrwxrwx - root hdfs 0 2017-09-02 18:32
/apps/hive/warehouse/orders.db/orders_part/ord_city=New York
drwxrwxrwx - root hdfs 0 2017-09-02 18:32
/apps/hive/warehouse/orders.db/orders_part/ord_city=Omaha
drwxrwxrwx - root hdfs 0 2017-09-02 18:32
/apps/hive/warehouse/orders.db/orders_part/ord_city=Phoenix
drwxrwxrwx - root hdfs 0 2017-09-02 18:33
/apps/hive/warehouse/orders.db/orders_part/ord_city=Reno
[root@sandbox order_data]

Partitioning the data can greatly improve the performance of queries because the data is
already separated into files based on the column value, which can decrease the number of
mappers and greatly decrease the amount of shuffling and sorting of data in the resulting
MapReduce job.

Hive static partitions and dynamic partitions
If you want to use a static partition in Hive, you should set the property as follows:

set hive.mapred.mode = strict;

Data Modeling in Hadoop Chapter 5

[117]

In the preceding example, we have seen that we have to insert each monthly order file to
each static partition individually. Static partition saves time in loading data compared to
dynamic partition. We have to individually add a partition to the table and move the file
into the partition of the table. If we have a lot partitions, writing a query to load data in each
partition may become cumbersome. We can overcome this with a dynamic partition. In
dynamic partitions, we can insert data into a partition table with a single SQL statement but
still load data in each partition. Dynamic partition takes more time in loading data
compared to static partition. When you have large data stored in a table, dynamic partition
is suitable. If you want to partition a number of columns but you don't know how many
columns they are, then dynamic partition is also suitable. Here are the hive dynamic
partition properties you should allow:

SET hive.exec.dynamic.partition = true;
SET hive.exec.dynamic.partition.mode = nonstrict;

The following is an example of dynamic partition. Let's say we want to load data from
the ORDERS_PART table to a new table called ORDERS_NEW:

hive> use orders;
OK
Time taken: 1.595 seconds
hive> drop table orders_New;
OK
Time taken: 0.05 seconds
hive> CREATE TABLE orders_New
 > (Ord_id INT,
 > Ord_month INT,
 > Ord_customer_id INT,
 > Ord_city STRING,
 > Ord_zip STRING,
 > ORD_amt FLOAT
 >)
 >)
 > PARTITIONED BY (Ord_city STRING)
 > ROW FORMAT DELIMITED
 > FIELDS TERMINATED BY ','
 > ;
OK
Time taken: 0.458 seconds
hive>

Load data into the ORDER_NEW table from the ORDERS_PART table. Here, Hive will load all
partitions of the ORDERS_NEW table dynamically:

hive> SET hive.exec.dynamic.partition = true;
hive> SET hive.exec.dynamic.partition.mode = nonstrict;

Data Modeling in Hadoop Chapter 5

[118]

hive>
 > insert into table orders_new partition(Ord_city) select * from
orders_part;
Query ID = root_20170902184354_2d409a56-7bfc-416e-913a-2323ea3b339a
Total jobs = 1
Launching Job 1 out of 1
Status: Running (Executing on YARN cluster with App id
application_1504299625945_0013)

 VERTICES STATUS TOTAL COMPLETED RUNNING PENDING FAILED
KILLED

Map 1 SUCCEEDED 1 1 0 0 0
0

VERTICES: 01/01 [==========================>>] 100% ELAPSED TIME: 3.66 s

Loading data to table orders.orders_new partition (ord_city=null)
 Time taken to load dynamic partitions: 2.69 seconds
 Loading partition {ord_city=Logan}
 Loading partition {ord_city=Los Angeles}
 Loading partition {ord_city=Beverly Hills}
 Loading partition {ord_city=Reno}
 Loading partition {ord_city=Fremont}
 Loading partition {ord_city=Gaylord}
 Loading partition {ord_city=Omaha}
 Loading partition {ord_city=Austin}
 Loading partition {ord_city=New York}
 Loading partition {ord_city=Phoenix}
 Time taken for adding to write entity : 3
Partition orders.orders_new{ord_city=Austin} stats: [numFiles=1, numRows=1,
totalSize=13, rawDataSize=12]
Partition orders.orders_new{ord_city=Beverly Hills} stats: [numFiles=1,
numRows=1, totalSize=13, rawDataSize=12]
Partition orders.orders_new{ord_city=Fremont} stats: [numFiles=1,
numRows=1, totalSize=15, rawDataSize=14]
Partition orders.orders_new{ord_city=Gaylord} stats: [numFiles=1,
numRows=1, totalSize=13, rawDataSize=12]
Partition orders.orders_new{ord_city=Logan} stats: [numFiles=1, numRows=1,
totalSize=15, rawDataSize=14]
Partition orders.orders_new{ord_city=Los Angeles} stats: [numFiles=1,
numRows=6, totalSize=82, rawDataSize=76]
Partition orders.orders_new{ord_city=New York} stats: [numFiles=1,

Data Modeling in Hadoop Chapter 5

[119]

numRows=1, totalSize=15, rawDataSize=14]
Partition orders.orders_new{ord_city=Omaha} stats: [numFiles=1, numRows=1,
totalSize=15, rawDataSize=14]
Partition orders.orders_new{ord_city=Phoenix} stats: [numFiles=1,
numRows=1, totalSize=13, rawDataSize=12]
Partition orders.orders_new{ord_city=Reno} stats: [numFiles=1, numRows=1,
totalSize=13, rawDataSize=12]
OK
Time taken: 10.493 seconds
hive>

Let's see how many partitions are created in ORDERS_NEW:

hive> show partitions ORDERS_NEW;
OK
ord_city=Austin
ord_city=Beverly Hills
ord_city=Fremont
ord_city=Gaylord
ord_city=Logan
ord_city=Los Angeles
ord_city=New York
ord_city=Omaha
ord_city=Phoenix
ord_city=Reno
Time taken: 0.59 seconds, Fetched: 10 row(s)
hive>

Now it is very clear when to use static and dynamic partitions. Static partitioning can be
used when the partition column values are known well in advance before loading data into
a hive table. In the case of dynamic partitions, partition column values are known only
during loading of the data into the hive table.

Hive partition bucketing
Bucketing is a technique of decomposing a large dataset into more manageable groups.
Bucketing is based on the hashing function. When a table is bucketed, all the table records
with the same column value will go into the same bucket. Physically, each bucket is a file in
a table folder just like a partition. In a partitioned table, Hive can group the data in multiple
folders. But partitions prove effective when they are of a limited number and when the data
is distributed equally among all of them. If there are a large number of partitions, then their
use becomes less effective. So in that case, we can use bucketing. We can create a number of
buckets explicitly during table creation.

Data Modeling in Hadoop Chapter 5

[120]

How Hive bucketing works
The following diagram shows the working of Hive bucketing in detail:

If we decide to have three buckets in a table for a column, (Ord_city) in our example, then
Hive will create three buckets with numbers 0-2 (n-1). During record insertion time, Hive
will apply the Hash function to the Ord_city column of each record to decide the hash key.
Then Hive will apply a modulo operator to each hash value. We can use bucketing in non-
partitioned tables also. But we will get the best performance when the bucketing feature is
used with a partitioned table. Bucketing has two key benefits:

Improved query performance: During joins on the same bucketed columns, we
can specify the number of buckets explicitly. Since each bucket is of equal size of
data, map-side joins perform better on a bucketed table than a non-bucketed
table. In a map-side join, the left-hand side table bucket will exactly know the
dataset in the right-hand side bucket to perform a table join efficiently.
Improved sampling: Because the data is already split up into smaller chunks.

Let's consider our ORDERS_DATA table example. It is partitioned in the CITY column. It may
be possible that all of the cities do not have an equal distribution of orders. Some cities may
have more orders than others. In that case, we will have lopsided partitions. This will affect
query performance. Queries with cities that have more orders will be slower than for cities
with fewer orders. We can solve this problem by bucketing the table. Buckets in the table
are defined by the CLUSTER clause in the table DDL. The following examples explain the
bucketing feature in detail.

Data Modeling in Hadoop Chapter 5

[121]

Creating buckets in a non-partitioned table
First, we will create a ORDERS_BUCK_non_partition table:

SET hive.exec.dynamic.partition = true;
SET hive.exec.dynamic.partition.mode = nonstrict;
SET hive.exec.mx_dynamic.partition=20000;
SET hive.exec.mx_dynamic.partition.pernode=20000;
SET hive.enforce.bucketing = true;

hive> use orders;
OK
Time taken: 0.221 seconds
hive>
 > CREATE TABLE ORDERS_BUCKT_non_partition
 > (Ord_id INT,
 > Ord_month INT,
 > Ord_customer_id INT,
 > Ord_city STRING,
 > Ord_zip STRING,
 > ORD_amt FLOAT
 >)
 > CLUSTERED BY (Ord_city) into 4 buckets stored as textfile;
OK
Time taken: 0.269 seconds
hive>

To refer to all Hive SET configuration parameters, please use this URL:
https:/ ​/​cwiki. ​apache. ​org/​confluence/ ​display/ ​Hive/
Configuration+Properties.

Load the newly created non-partitioned bucket table:

hive> insert into ORDERS_BUCKT_non_partition select * from orders_data;
Query ID = root_20170902190615_1f557644-48d6-4fa1-891d-2deb7729fa2a
Total jobs = 1
Launching Job 1 out of 1
Tez session was closed. Reopening...
Session re-established.
Status: Running (Executing on YARN cluster with App id
application_1504299625945_0014)

 VERTICES STATUS TOTAL COMPLETED RUNNING PENDING FAILED
KILLED

https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties

Data Modeling in Hadoop Chapter 5

[122]

Map 1 SUCCEEDED 1 1 0 0 0
0
Reducer 2 SUCCEEDED 4 4 0 0 0
0

VERTICES: 02/02 [==========================>>] 100% ELAPSED TIME: 9.58 s

Loading data to table orders.orders_buckt_non_partition
Table orders.orders_buckt_non_partition stats: [numFiles=4, numRows=15,
totalSize=560, rawDataSize=545]
OK
Time taken: 15.55 seconds
hive>

The following command shows that Hive has created four buckets
(folders), 00000[0-3]_0, in the table:

[root@sandbox order_data]# hadoop fs -ls
/apps/hive/warehouse/orders.db/orders_buckt_non_partition
Found 4 items
-rwxrwxrwx 1 root hdfs 32 2017-09-02 19:06
/apps/hive/warehouse/orders.db/orders_buckt_non_partition/000000_0
-rwxrwxrwx 1 root hdfs 110 2017-09-02 19:06
/apps/hive/warehouse/orders.db/orders_buckt_non_partition/000001_0
-rwxrwxrwx 1 root hdfs 104 2017-09-02 19:06
/apps/hive/warehouse/orders.db/orders_buckt_non_partition/000002_0
-rwxrwxrwx 1 root hdfs 314 2017-09-02 19:06
/apps/hive/warehouse/orders.db/orders_buckt_non_partition/000003_0
[root@sandbox order_data]#

Creating buckets in a partitioned table
First, we will create a bucketed partition table. Here, the table is partitioned into four
buckets on the Ord_city column, but subdivided into Ord_zip columns:

SET hive.exec.dynamic.partition = true;
SET hive.exec.dynamic.partition.mode = nonstrict;
SET hive.exec.mx_dynamic.partition=20000;
SET hive.exec.mx_dynamic.partition.pernode=20000;
SET hive.enforce.bucketing = true;

Data Modeling in Hadoop Chapter 5

[123]

hive> CREATE TABLE ORDERS_BUCKT_partition
 > (Ord_id INT,
 > Ord_month INT,
 > Ord_customer_id INT,
 > Ord_zip STRING,
 > ORD_amt FLOAT
 >)
 > PARTITIONED BY (Ord_city STRING)
 > CLUSTERED BY (Ord_zip) into 4 buckets stored as textfile;
OK
Time taken: 0.379 seconds

Load the bucketed partitioned table with another partitioned table (ORDERS_PART) with a
dynamic partition:

hive> SET hive.exec.dynamic.partition = true;
hive> SET hive.exec.dynamic.partition.mode = nonstrict;
hive> SET hive.exec.mx_dynamic.partition=20000;
Query returned non-zero code: 1, cause: hive configuration
hive.exec.mx_dynamic.partition does not exists.
hive> SET hive.exec.mx_dynamic.partition.pernode=20000;
Query returned non-zero code: 1, cause: hive configuration
hive.exec.mx_dynamic.partition.pernode does not exists.
hive> SET hive.enforce.bucketing = true;
hive> insert into ORDERS_BUCKT_partition partition(Ord_city) select * from
orders_part;
Query ID = root_20170902194343_dd6a2938-6aa1-49f8-a31e-54dafbe8d62b
Total jobs = 1
Launching Job 1 out of 1
Status: Running (Executing on YARN cluster with App id
application_1504299625945_0017)

 VERTICES STATUS TOTAL COMPLETED RUNNING PENDING FAILED
KILLED

Map 1 SUCCEEDED 1 1 0 0 0
0
Reducer 2 SUCCEEDED 4 4 0 0 0
0

VERTICES: 02/02 [==========================>>] 100% ELAPSED TIME: 7.13 s

Data Modeling in Hadoop Chapter 5

[124]

Loading data to table orders.orders_buckt_partition partition
(ord_city=null)
 Time taken to load dynamic partitions: 2.568 seconds
 Loading partition {ord_city=Phoenix}
 Loading partition {ord_city=Logan}
 Loading partition {ord_city=Austin}
 Loading partition {ord_city=Fremont}
 Loading partition {ord_city=Beverly Hills}
 Loading partition {ord_city=Los Angeles}
 Loading partition {ord_city=New York}
 Loading partition {ord_city=Omaha}
 Loading partition {ord_city=Reno}
 Loading partition {ord_city=Gaylord}
 Time taken for adding to write entity : 3
Partition orders.orders_buckt_partition{ord_city=Austin} stats:
[numFiles=1, numRows=1, totalSize=22, rawDataSize=21]
Partition orders.orders_buckt_partition{ord_city=Beverly Hills} stats:
[numFiles=1, numRows=1, totalSize=29, rawDataSize=28]
Partition orders.orders_buckt_partition{ord_city=Fremont} stats:
[numFiles=1, numRows=1, totalSize=23, rawDataSize=22]
Partition orders.orders_buckt_partition{ord_city=Gaylord} stats:
[numFiles=1, numRows=1, totalSize=23, rawDataSize=22]
Partition orders.orders_buckt_partition{ord_city=Logan} stats: [numFiles=1,
numRows=1, totalSize=26, rawDataSize=25]
Partition orders.orders_buckt_partition{ord_city=Los Angeles} stats:
[numFiles=1, numRows=6, totalSize=166, rawDataSize=160]
Partition orders.orders_buckt_partition{ord_city=New York} stats:
[numFiles=1, numRows=1, totalSize=23, rawDataSize=22]
Partition orders.orders_buckt_partition{ord_city=Omaha} stats: [numFiles=1,
numRows=1, totalSize=25, rawDataSize=24]
Partition orders.orders_buckt_partition{ord_city=Phoenix} stats:
[numFiles=1, numRows=1, totalSize=23, rawDataSize=22]
Partition orders.orders_buckt_partition{ord_city=Reno} stats: [numFiles=1,
numRows=1, totalSize=20, rawDataSize=19]
OK
Time taken: 13.672 seconds
hive>

Data Modeling in Hadoop Chapter 5

[125]

Hive views
A Hive view is a logical table. It is just like any RDBMS view. The concept is the same.
When a view is created, Hive will not store any data into it. When a view is created, Hive
freezes the metadata. Hive does not support the materialized view concept of any RDBMS.
The basic purpose of a view is to hide the query complexity. At times, HQL contains
complex joins, subqueries, or filters. With the help of view, the entire query can be flattened
out in a virtual table.

When a view is created on an underlying table, any changes to that table, or even adding or
deleting the table, are invalidated in the view. Also, when a view is created, it only changes
the metadata. But when that view is accessed by a query, it triggers the MapReduce job. A
view is a purely logical object with no associated storage (no support for materialized views
is currently available in Hive). When a query references a view, the view's definition is
evaluated in order to produce a set of rows for further processing by the query. (This is a
conceptual description. In fact, as part of query optimization, Hive may combine the view's
definition with the queries, for example, pushing filters from the query down into the
view.)

A view's schema is frozen at the time the view is created; subsequent changes to underlying
tables (for example, adding a column) will not be reflected in the view's schema. If an
underlying table is dropped or changed in an incompatible fashion, subsequent attempts to
query the invalid view will fail. Views are read-only and may not be used as the target of
LOAD/INSERT/ALTER for changing metadata. A view may contain ORDER BY and LIMIT
clauses. If a referencing query also contains these clauses, the query-level clauses are
evaluated after the view clauses (and after any other operations in the query). For example,
if a view specifies LIMIT 5 and a referencing query is executed as (select * from v
LIMIT 10), then at most five rows will be returned.

Syntax of a view
Let's see a few examples of views:

CREATE VIEW [IF NOT EXISTS] [db_name.]view_name [(column_name [COMMENT
column_comment], ...)]
 [COMMENT view_comment]
 [TBLPROPERTIES (property_name = property_value, ...)]
 AS SELECT ...;

Data Modeling in Hadoop Chapter 5

[126]

I will demonstrate the advantages of views using the following few examples. Let's assume
we have two tables, Table_X and Table_Y, with the following schema: Table_XXCol_1
string, XCol_2 string, XCol_3 string, Table_YYCol_1 string, YCol_2 string, YCol_3 string,
and YCol_4 string. To create a view exactly like the base tables, use the following code:

Create view table_x_view as select * from Table_X;

To create a view on selective columns of base tables, use the following:

Create view table_x_view as select xcol_1,xcol_3 from Table_X;

To create a view to filter values of columns of base tables, we can use:

Create view table_x_view as select * from Table_X where XCol_3 > 40 and
XCol_2 is not null;

To create a view to hide query complexities:

create view table_union_view as select XCol_1, XCol_2, XCol_3,Null from
Table_X
 where XCol_2 = "AAA"
 union all
 select YCol_1, YCol_2, YCol_3, YCol_4 from Table_Y
 where YCol_3 = "BBB";
 create view table_join_view as select * from Table_X
 join Table_Y on Table_X. XCol_1 = Table_Y. YCol_1;

Hive indexes
The main purpose of the indexing is to search through the records easily and speed up the
query. The goal of Hive indexing is to improve the speed of query lookup on certain
columns of a table. Without an index, queries with predicates like WHERE tab1.col1 =
10 load the entire table or partition and process all the rows. But if an index exists for col1,
then only a portion of the file needs to be loaded and processed. The improvement in query
speed that an index can provide comes at the cost of additional processing to create the
index and disk space to store the index. There are two types of indexes:

Compact index
Bitmap index

The main difference is in storing mapped values of the rows in the different blocks.

Data Modeling in Hadoop Chapter 5

[127]

Compact index
In HDFS, the data is stored in blocks. But scanning which data is stored in which block is
time consuming. Compact indexing stores the indexed column's value and its blockId. So
the query will not go to the table. Instead, the query will directly go to the compact index,
where the column value and blockId are stored. No need to scan all the blocks to find
data! So, while performing a query, it will first check the index and then go directly into
that block.

Bitmap index
Bitmap indexing stores the combination of indexed column value and list of rows as a
bitmap. Bitmap indexing is commonly used for columns with distinct values. Let's review a
few examples: Base table, Table_XXCol_1 Integer, XCol_2 string, XCol_3 integer,
and XCol_4 string. Create an index:

CREATE INDEX table_x_idx_1 ON TABLE table_x (xcol_1) AS 'COMPACT';
SHOW INDEX ON table_x_idx;
DROP INDEX table_x_idx ON table_x;

CREATE INDEX table_x_idx_2 ON TABLE table_x (xcol_1) AS 'COMPACT' WITH
DEFERRED REBUILD;
ALTER INDEX table_x_idx_2 ON table_x REBUILD;
SHOW FORMATTED INDEX ON table_x;

The preceding index is empty because it is created with the DEFERRED REBUILD clause,
regardless of whether or not the table contains any data. After this index is created,
the REBUILD command needs to be used to build the index structure. After creation of the
index, if the data in the underlying table changes, the REBUILD command must be used to
bring the index up to date. Create the index and store it in a text file:

CREATE INDEX table_x_idx_3 ON TABLE table_x (table_x) AS 'COMPACT' ROW
FORMAT DELIMITED
FIELDS TERMINATED BY 't'
STORED AS TEXTFILE;

Create a bitmap index:

CREATE INDEX table_x_bitmap_idx_4 ON TABLE table_x (table_x) AS 'BITMAP'
WITH DEFERRED REBUILD;
ALTER INDEX table_x_bitmap_idx_4 ON table03 REBUILD;
SHOW FORMATTED INDEX ON table_x;
DROP INDEX table_x_bitmap_idx_4 ON table_x;

Data Modeling in Hadoop Chapter 5

[128]

JSON documents using Hive
JSON, is a minimal readable format for structuring data. It is used primarily to transmit
data between a server and web application as an alternative to XML. JSON is built on two
structures:

A collection of name/value pairs. In various languages, this is realized as an
object, record, struct, dictionary, hash table, keyed list, or associative array.
An ordered list of values. In most languages, this is realized as an array, vector,
list, or sequence.

Please read more on JSON at the following URL: http:/ ​/​www. ​json. ​org/ ​.

Example 1 – Accessing simple JSON documents
with Hive (Hive 0.14 and later versions)
In this example, we will see how to query simple JSON documents using HiveQL. Let's
assume we want to access the following Sample-Json-simple.json file in HiveSample-
Json-simple.json:

{"username":"abc","tweet":"Sun shine is bright.","time1": "1366150681" }
{"username":"xyz","tweet":"Moon light is mild .","time1": "1366154481" }

View the Sample-Json-simple.json file:

[root@sandbox ~]# cat Sample-Json-simple.json
{"username":"abc","tweet":"Sun shine is bright.","timestamp": 1366150681 }
{"username":"xyz","tweet":"Moon light is mild .","timestamp": 1366154481 }
[root@sandbox ~]#

Load Sample-Json-simple.json into HDFS:

[root@sandbox ~]# hadoop fs -mkdir /user/hive-simple-data/
[root@sandbox ~]# hadoop fs -put Sample-Json-simple.json /user/hive-simple-
data/

Create an external Hive table, simple_json_table:

hive> use orders;
OK
Time taken: 1.147 seconds
hive>
CREATE EXTERNAL TABLE simple_json_table (

http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/

Data Modeling in Hadoop Chapter 5

[129]

username string,
tweet string,
time1 string)
ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'
LOCATION '/user/hive-simple-data/';
OK
Time taken: 0.433 seconds
hive>

Now verify the records:

hive> select * from simple_json_table ;
OK
abc Sun shine is bright. 1366150681
xyz Moon light is mild . 1366154481
Time taken: 0.146 seconds, Fetched: 2 row(s)
hive>

Example 2 – Accessing nested JSON documents
with Hive (Hive 0.14 and later versions)
We will see how to query Nested JSON documents using HiveQL. Let's assume we want to
access the following Sample-Json-complex.json file in HiveSample-Json-
complex.json:

{"DocId":"Doc1","User1":{"Id":9192,"Username":"u2452","ShippingAddress":{"A
ddress1":"6373 Sun Street","Address2":"apt 12","City":"Foster
City","State":"CA"},"Orders":[{"ItemId":5343,"OrderDate":"12/23/2017"},{"It
emId":7362,"OrderDate":"12/24/2017"}]}}

Load Sample-Json-simple.json into HDFS:

[root@sandbox ~]# hadoop fs -mkdir /user/hive-complex-data/
[root@sandbox ~]# hadoop fs -put Sample-Json-complex.json /user/hive-
complex-data/

Create an external Hive table, json_nested_table:

hive>
CREATE EXTERNAL TABLE json_nested_table(
DocId string,
user1 struct<Id: int, username: string,
shippingaddress:struct<address1:string,address2:string,city:string,state:st
ring>, orders:array<struct<ItemId:int,orderdate:string>>>
)

Data Modeling in Hadoop Chapter 5

[130]

ROW FORMAT SERDE
'org.apache.hive.hcatalog.data.JsonSerDe'
LOCATION
'/user/hive-complex-data/';
OK
Time taken: 0.535 seconds
hive>

Verify the records:

hive> select DocId,user1.username,user1.orders FROM json_nested_table;
OK
Doc1 u2452
[{"itemid":5343,"orderdate":"12/23/2017"},{"itemid":7362,"orderdate":"12/24
/2017"}]
Time taken: 0.598 seconds, Fetched: 1 row(s)
hive>

Example 3 – Schema evolution with Hive and
Avro (Hive 0.14 and later versions)
In production, we have to change the table structure to address new business requirements.
The table schema has to change to add/delete/rename table columns. Any of these changes
affect downstream ETL jobs adversely. In order avoid these, we have to make
corresponding changes to ETL jobs and target tables.

Schema evolution allows you to update the schema used to write new data while
maintaining backwards compatibility with the schemas of your old data. Then you can read
it all together as if all of the data has one schema. Please read more on Avro serialization at
the following URL: https:/ ​/​avro. ​apache. ​org/ ​. In the following example, I will
demonstrate how Avro and Hive tables absorb the changes of source table's schema
changes without ETL job failure. We will create a customer table in the MySQL database
and load it to the target Hive external table using Avro files. Then we will add one more
column to the source tables to see how a Hive table absorbs that change without any errors.
Connect to MySQL to create a source table (customer):

mysql -u root -p

GRANT ALL PRIVILEGES ON *.* TO 'sales'@'localhost' IDENTIFIED BY 'xxx';

mysql -u sales -p

mysql> create database orders;

https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/

Data Modeling in Hadoop Chapter 5

[131]

mysql> use orders;

CREATE TABLE customer(
cust_id INT ,
cust_name VARCHAR(20) NOT NULL,
cust_city VARCHAR(20) NOT NULL,
PRIMARY KEY (cust_id)
);

Insert records into the customer table:

INSERT into customer (cust_id,cust_name,cust_city) values (1,'Sam
James','Austin');
INSERT into customer (cust_id,cust_name,cust_city) values (2,'Peter
Carter','Denver');
INSERT into customer (cust_id,cust_name,cust_city) values (3,'Doug
Smith','Sunnyvale');
INSERT into customer (cust_id,cust_name,cust_city) values (4,'Harry
Warner','Palo Alto');

On Hadoop, run the following sqoop command to import the customer table and store
data in Avro files into HDFS:

hadoop fs -rmr /user/sqoop_data/avro
sqoop import -Dmapreduce.job.user.classpath.first=true
--connect jdbc:mysql://localhost:3306/orders
--driver com.mysql.jdbc.Driver
--username sales --password xxx
--target-dir /user/sqoop_data/avro
--table customer
--as-avrodatafile

Verify the target HDFS folder:

[root@sandbox ~]# hadoop fs -ls /user/sqoop_data/avro
Found 7 items
-rw-r--r-- 1 root hdfs 0 2017-09-09 08:57
/user/sqoop_data/avro/_SUCCESS
-rw-r--r-- 1 root hdfs 472 2017-09-09 08:57
/user/sqoop_data/avro/part-m-00000.avro
-rw-r--r-- 1 root hdfs 475 2017-09-09 08:57
/user/sqoop_data/avro/part-m-00001.avro
-rw-r--r-- 1 root hdfs 476 2017-09-09 08:57
/user/sqoop_data/avro/part-m-00002.avro
-rw-r--r-- 1 root hdfs 478 2017-09-09 08:57
/user/sqoop_data/avro/part-m-00003.avro

Data Modeling in Hadoop Chapter 5

[132]

Create a Hive external table to access Avro files:

use orders;
drop table customer ;
CREATE EXTERNAL TABLE customer
(
cust_id INT ,
cust_name STRING ,
cust_city STRING
)
STORED AS AVRO
location '/user/sqoop_data/avro/';

Verify the Hive customer table:

hive> select * from customer;
OK
1 Sam James Austin
2 Peter Carter Denver
3 Doug Smith Sunnyvale
4 Harry Warner Palo Alto
Time taken: 0.143 seconds, Fetched: 4 row(s)
hive>

Perfect! We have no errors. We successfully imported the source customer table to the
target Hive table using Avro serialization. Now, we add one column to the source table and
import it again to verify that we can access the target Hive table without any schema
changes. Connect to MySQL and add one more column:

mysql -u sales -p

mysql>
ALTER TABLE customer
ADD COLUMN cust_state VARCHAR(15) NOT NULL;

mysql> desc customer;
+------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+-------+
cust_id	int(11)	NO	PRI	0	
cust_name	varchar(20)	NO		NULL	
cust_city	varchar(20)	NO		NULL	
CUST_STATE	varchar(15)	YES		NULL	
+------------+-------------+------+-----+---------+-------+
4 rows in set (0.01 sec)

mysql>

Data Modeling in Hadoop Chapter 5

[133]

Now insert rows:

INSERT into customer (cust_id,cust_name,cust_city,cust_state) values
(5,'Mark Slogan','Huston','TX');
INSERT into customer (cust_id,cust_name,cust_city,cust_state) values
(6,'Jane Miller','Foster City','CA');

On Hadoop, run the following sqoop command to import the customer table so as to
append the new address column and data. I have used the append and where "cust_id
> 4" parameters to import only the new rows:

sqoop import -Dmapreduce.job.user.classpath.first=true
--connect jdbc:mysql://localhost:3306/orders
--driver com.mysql.jdbc.Driver
--username sales --password xxx
--table customer
--append
--target-dir /user/sqoop_data/avro
--as-avrodatafile
--where "cust_id > 4"

Verify the HDFS folder:

[root@sandbox ~]# hadoop fs -ls /user/sqoop_data/avro
Found 7 items
-rw-r--r-- 1 root hdfs 0 2017-09-09 08:57
/user/sqoop_data/avro/_SUCCESS
-rw-r--r-- 1 root hdfs 472 2017-09-09 08:57
/user/sqoop_data/avro/part-m-00000.avro
-rw-r--r-- 1 root hdfs 475 2017-09-09 08:57
/user/sqoop_data/avro/part-m-00001.avro
-rw-r--r-- 1 root hdfs 476 2017-09-09 08:57
/user/sqoop_data/avro/part-m-00002.avro
-rw-r--r-- 1 root hdfs 478 2017-09-09 08:57
/user/sqoop_data/avro/part-m-00003.avro
-rw-r--r-- 1 root hdfs 581 2017-09-09 09:00
/user/sqoop_data/avro/part-m-00004.avro
-rw-r--r-- 1 root hdfs 586 2017-09-09 09:00
/user/sqoop_data/avro/part-m-00005.avro

Data Modeling in Hadoop Chapter 5

[134]

Now, let's verify that our target Hive table is still able to access old and new Avro files:

hive> select * from customer;
OK
1 Sam James Austin
2 Peter Carter Denver
3 Doug Smith Sunnyvale
4 Harry Warner Palo Alto
Time taken: 0.143 seconds, Fetched: 4 row(s

Great! No errors. Still, it's business as usual; now we will add one new column to the Hive
table to see the newly added Avro files:

hive> use orders;
hive> ALTER TABLE customer ADD COLUMNS (cust_state STRING);
hive> desc customer;
OK
cust_id int
cust_name string
cust_city string
cust_state string
Time taken: 0.488 seconds, Fetched: 4 row(s

Verify the Hive table for new data:

hive> select * from customer;
OK
1 Sam James Austin NULL
2 Peter Carter Denver NULL
3 Doug Smith Sunnyvale NULL
4 Harry Warner Palo Alto NULL
5 Mark Slogan Huston TX
6 Jane Miller Foster City CA
Time taken: 0.144 seconds, Fetched: 6 row(s)
hive>

Awesome! Take a look at customer IDs 5 and 6. We can see the newly added column
(cust_state) with values. You can experiment the delete column and replace column
feature with the same technique. Now we have a fairly good idea about how to access data
using Apache Hive. In the next section, we will learn about accessing data using HBase,
which is a NoSQL data store.

Data Modeling in Hadoop Chapter 5

[135]

Apache HBase
We have just learned about Hive, which is a database where users can access data using
SQL commands. But there are certain databases where users cannot use SQL commands.
Those databases are known as NoSQL data stores. HBase is a NoSQL database. So, what is
actually meant by NoSQL? NoSQL means not only SQL. In NoSQL data stores like HBase,
the main features of RDBMS, such as validation and consistency, are relaxed. Also, another
important difference between RDBMS or SQL databases and NoSQL databases is schema
on write versus schema on read. In schema on write, the data is validated at the time of
writing to the table, whereas schema on read supports validation of data at the time of
reading it. In this way, NoSQL data stores support storage of huge data velocity due to the
relaxation of basic data validation at the time of writing data. There are about 150 NoSQL
data stores in the market today. Each of these NoSQL data stores has some unique features
to offer. Some popular NoSQL data stores are HBase, Cassandra, MongoDB, Druid, Apache
Kudu, and Accumulo, and so on.

You can get a detailed list of all types of NoSQL databases at http:/ ​/
nosql- ​database. ​org/ ​.

HBase is a popular NoSQL database used by many big companies such as Facebook,
Google, and so on.

Differences between HDFS and HBase
The following explains the key difference between HDFS and HBase. Hadoop is built on top
of HDFS, which has support for storing large volumes (petabytes) of datasets. These
datasets are accessed using batch jobs, by using MapReduce algorithms. In order to find a
data element in such a huge dataset, the entire dataset needs to be scanned. HBase, on the
other hand, is built on top of HDFS and provides fast record lookups (and updates) for
large tables. HBase internally puts your data in indexed StoreFiles that exist on HDFS for
high-speed lookup.

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/

Data Modeling in Hadoop Chapter 5

[136]

Differences between Hive and HBase
HBase is a database management system; it supports both transaction processing and
analytical processing. Hive is a data warehouse system, which can be used only for
analytical processing. HBase supports low latency and random data access operations. Hive
only supports batch processing, which leads to high latency. HBase does not support any
SQL interface to interact with the table data. You may have to write Java code to read and
write data to HBase tables. At times, Java code becomes very complex to process data sets
involving joins of multiple data sets. But Hive supports very easy access with SQL, which
makes it very easy to read and write data to its tables. In HBase, data modeling involves
flexible data models and column-oriented data storage, which must support data
denormalization. The columns of HBase tables are decided at the time of writing data into
the tables. In Hive, the data model involves tables with a fixed schema like an RDBMS data
model.

Key features of HBase
The following are a few key features of HBase:

Sorted rowkeys: In HBase, data processing is down with three basic
operations/APIs: get, put, and scan. All three of these APIs access data using
rowkeys to ensure smooth data access. As scans are done over a range of rows,
HBase lexicographically orders rows according to their rowkeys. Using these
sorted rowkeys, a scan can be defined simply from its start and stop rowkeys.
This is extremely powerful to get all relevant data in a single database call. The
application developer can design a system to access recent datasets by querying
recent rows based on their timestamp as all rows are stored in a table in sorted
order based on the latest timestamp.
Control data sharding: HBase Table rowkey strongly influences data sharding.
Table data is sorted in ascending order by rowkey, column families, and column
key. A solid rowkey design is very important to ensure data is evenly distributed
across the Hadoop cluster. As rowkeys determine the sort order of a table's row,
each region in the table ends up being responsible for the physical storage of a
part of the row key space.
Strong consistency: HBase favors consistency over availability. It also supports
ACID-level semantics on a per row basis. It, of course, impacts the write
performance, which will tend to be slower. Overall, the trade-off plays in favor of
the application developer, who will have the guarantee that the data store always
the right value of the data.

Data Modeling in Hadoop Chapter 5

[137]

Low latency processing: HBase supports fast, random reads and writes to all
data stored.
Flexibility: HBase supports any type—structured, semi-structured, unstructured.
Reliability: HBase table data block is replicated multiple times to ensure
protection against data loss. HBase also supports fault tolerance. The table data is
always available for processing even in case of failure of any regional server.

HBase data model
These are the key components of an HBase data model:

Table: In HBase, data is stored in a logical object, called table, that has multiple
rows.
Row: A row in HBase consists of a row key and one or more columns. The row
key sorts rows. The goal is to store data in such a way that related rows are near
each other. The row key can be a combination of one of more columns. The row
key is like the primary key of the table, which must be unique. HBase uses row
keys to find data in a column. For example, customer_id can be a row key for
the customer table.
Column: A column in HBase consists of a column family and a column qualifier.
Column qualifier: It is the column name of a table.
Cell: This is a combination of row, column family, and column qualifier, and
contains a value and a timestamp which represents the value's version.
Column family: It is a collection of columns that are co-located and stored
together, often for performance reasons. Each column family has a set of storage
properties, such as cached, compression, and data encodation.

Difference between RDBMS table and column -
oriented data store
We all know how data is stored in any RDBMS table. It looks like this:

ID Column_1 Column_2 Column_3 Column_4

1 A 11 P XX

2 B 12 Q YY

Data Modeling in Hadoop Chapter 5

[138]

3 C 13 R ZZ

4 D 14 S XX1

The column ID is used as a unique/primary key of the table to access data from other
columns of the table. But in a column-oriented data store like HBase, the same table is
divided into key and value and is stored like this:

Key Value

Row Column Column Value

1 Column_1 A

1 Column_2 11

1 Column_3 P

1 Column_4 XX

2 Column_1 B

2 Column_2 12

2 Column_3 Q

2 Column_4 YY

3 Column_1 C

3 Column_2 13

3 Column_3 R

3 Column_4 ZZ

Data Modeling in Hadoop Chapter 5

[139]

In HBase, each table is a sorted map format, where each key is sorted in ascending order.
Internally, each key and value is serialized and stored on the disk in byte array format. Each
column value is accessed by its corresponding key. So, in the preceding table, we define a
key, which is a combination of two columns, row + column. For example, in order to access
the Column_1 data element of row 1, we have to use a key, row 1 + column_1. That's the
reason the row key design is very crucial in HBase. Before creating the HBase table, we have
to decide a column family for each column. A column family is a collection of columns,
which are co-located and stored together, often for performance reasons. Each column
family has a set of storage properties, such as cached, compression, and data encodation.
For example, in a typical CUSTOMER table, we can define two column families, namely
cust_profile and cust_address. All columns related to the customer address are
assigned to the column family cust_address; all other columns, namely cust_id,
cust_name, and cust_age, are assigned to the column family cust_profile. After
assigning the column families, our sample table will look like the following:

Key Value

Row Column Column family Value Timestamp

1 Column_1 cf_1 A 1407755430

1 Column_2 cf_1 11 1407755430

1 Column_3 cf_1 P 1407755430

1 Column_4 cf_2 XX 1407755432

2 Column_1 cf_1 B 1407755430

2 Column_2 cf_1 12 1407755430

2 Column_3 cf_1 Q 1407755430

2 Column_4 cf_2 YY 1407755432

3 Column_1 cf_1 C 1407755430

3 Column_2 cf_1 13 1407755430

3 Column_3 cf_1 R 1407755430

3 Column_4 cf_2 ZZ 1407755432

Data Modeling in Hadoop Chapter 5

[140]

While inserting data into a table, HBase will automatically add a timestamp for each version
of the cell.

HBase architecture
If we want to read data from an HBase table, we have to give an appropriate row ID, and
HBase will perform a lookup based on the given row ID. HBase uses the following sorted
nested map to return the column value of the row ID: row ID a column family, a column at
timestamp, and value. HBase is always deployed on Hadoop. The following is a typical
installation:

It is a master server of the HBase cluster and is responsible for the administration,
monitoring, and management of RegionServers, such as assignment of regions to
RegionServer, region splits, and so on. In a distributed cluster, the HMaster typically runs
on the Hadoop NameNode.

Data Modeling in Hadoop Chapter 5

[141]

ZooKeeper is a coordinator of HBase cluster. HBase uses ZooKeeper as a distributed
coordination service to maintain server state in the cluster. ZooKeeper maintains which
servers are alive and available, and provides server failure notification. RegionServer is
responsible for management of regions. RegionServer is deployed on DataNode. It serves
data for reads and writes. RegionServer is comprised of the following additional
components:

Regions: HBase tables are divided horizontally by row key range into regions. A
region contains all rows in the table between the region's start key and end key.
Write-ahead logging (WAL) is used to store new data that has not yet stored on
disk.
MemStore is a write cache. It stores new data that has not yet been written to
disk. It is sorted before writing to disk. There is one MemStore per column family
per region. Hfile stores the rows as sorted key/values on disk/HDFS:

Data Modeling in Hadoop Chapter 5

[142]

HBase architecture in a nutshell
The HBase cluster is comprised of one active master and one or more backup
master servers
The cluster has multiple RegionServers
The HBase table is always large and rows are divided into partitions/shards
called regions
Each RegionServer hosts one or many regions
The HBase catalog is known as META table, which stores the locations of table
regions
ZooKeeper stores the locations of the META table
During a write, the client sends the put request to the HRegionServer
Data is written to WAL
Then data is pushed into MemStore and an acknowledgement is sent to the client
Once enough data is accumulated in MemStore, it flushes data to the Hfile on
HDFS
The HBase compaction process activates periodically to merge multiple HFiles
into one Hfile (called compaction)

HBase rowkey design
Rowkey design is a very crucial part of HBase table design. During key design, proper care
must be taken to avoid hotspotting. In case of poorly designed keys, all of the data will be
ingested into just a few nodes, leading to cluster imbalance. Then, all the reads have to be
pointed to those few nodes, resulting in slower data reads. We have to design a key that
will help load data equally to all nodes of the cluster. Hotspotting can be avoided by the
following techniques:

Key salting: It means adding an arbitrary value at the beginning of the key to
make sure that the rows are distributed equally among all the table regions.
Examples are aa-customer_id, bb-customer_id, and so on.
Key hashing: The key can be hashed and the hashing value can be used as a
rowkey, for example, HASH(customer_id).
Key with reverse timestamp: In this technique, you have to define a regular key
and then attach a reverse timestamp to it. The timestamp has to be reversed by
subtracting it from any arbitrary maximum value and then attached to the key.
For example, if customer_id is your row ID, the new key will be customer_id
+ reverse timestamp.

Data Modeling in Hadoop Chapter 5

[143]

The following are the guidelines while designing a HBase table:

Define no more than two column families per table
Keep column family names as small as possible
Keep column names as small as possible
Keep the rowkey length as small as possible
Do not set the row version at a high level
The table should not have more than 100 regions

Example 4 – loading data from MySQL table to
HBase table
We will use the same customer table that we created earlier:

mysql -u sales -p
mysql> use orders;
mysql> select * from customer;
+---------+--------------+--------------+------------+
| cust_id | cust_name | cust_city | InsUpd_on |
+---------+--------------+--------------+------------+
1	Sam James	Austin	1505095030
2	Peter Carter	Denver	1505095030
3	Doug Smith	Sunnyvale	1505095030
4	Harry Warner	Palo Alto	1505095032
5	Jen Turner	Cupertino	1505095036
6	Emily Stone	Walnut Creek	1505095038
7	Bill Carter	Greenville	1505095040
8	Jeff Holder	Dallas	1505095042
10	Mark Fisher	Mil Valley	1505095044
11	Mark Fisher	Mil Valley	1505095044
+---------+--------------+--------------+------------+
10 rows in set (0.00 sec)

Start HBase and create a customer table in HBase:

hbase shell
create 'customer','cf1'

Data Modeling in Hadoop Chapter 5

[144]

Load MySQL customer table data in HBase using Sqoop:

hbase
sqoop import --connect jdbc:mysql://localhost:3306/orders --driver
com.mysql.jdbc.Driver --username sales --password sales1 --table customer -
-hbase-table customer --column-family cf1 --hbase-row-key cust_id

Verify the HBase table:

hbase shell
scan 'customer'

You must see all 11 rows in the HBase table.

Example 5 – incrementally loading data from
MySQL table to HBase table

mysql -u sales -p
mysql> use orders;

Insert a new customer and update the existing one:

mysql> Update customer set cust_city = 'Dublin', InsUpd_on = '1505095065'
where cust_id = 4;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> INSERT into customer (cust_id,cust_name,cust_city,InsUpd_on) values
(12,'Jane Turner','Glen Park',1505095075);
Query OK, 1 row affected (0.00 sec)

mysql> commit;
Query OK, 0 rows affected (0.00 sec)

mysql> select * from customer;
+---------+--------------+--------------+------------+
| cust_id | cust_name | cust_city | InsUpd_on |
+---------+--------------+--------------+------------+
1	Sam James	Austin	1505095030
2	Peter Carter	Denver	1505095030
3	Doug Smith	Sunnyvale	1505095030
4	Harry Warner	Dublin	1505095065
5	Jen Turner	Cupertino	1505095036
6	Emily Stone	Walnut Creek	1505095038
7	Bill Carter	Greenville	1505095040

Data Modeling in Hadoop Chapter 5

[145]

8	Jeff Holder	Dallas	1505095042
10	Mark Fisher	Mil Valley	1505095044
11	Mark Fisher	Mil Valley	1505095044
12	Jane Turner	Glen Park	1505095075
+---------+--------------+--------------+------------+
11 rows in set (0.00 sec)
mysql>

Example 6 – Load the MySQL customer changed
data into the HBase table
Here, we have used the InsUpd_on column as our ETL date:

sqoop import --connect jdbc:mysql://localhost:3306/orders --driver
com.mysql.jdbc.Driver --username sales --password sales1 --table customer -
-hbase-table customer --column-family cf1 --hbase-row-key cust_id --append
-- -m 1 --where "InsUpd_on > 1505095060"

hbase shell
hbase(main):010:0> get 'customer', '4'
COLUMN CELL
cf1:InsUpd_on timestamp=1511509774123, value=1505095065
cf1:cust_city timestamp=1511509774123, value=Dublin
cf1:cust_name timestamp=1511509774123, value=Harry Warner
3 row(s) in 0.0200 seconds

hbase(main):011:0> get 'customer', '12'
COLUMN CELL
cf1:InsUpd_on timestamp=1511509776158, value=1505095075
cf1:cust_city timestamp=1511509776158, value=Glen Park
cf1:cust_name timestamp=1511509776158, value=Jane Turner
3 row(s) in 0.0050 seconds

hbase(main):012:0>

Data Modeling in Hadoop Chapter 5

[146]

Example 7 – Hive HBase integration
Now, we will access the HBase customer table using the Hive external table:

create external table customer_hbase(cust_id string, cust_name string,
cust_city string, InsUpd_on string)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'with
serdeproperties
("hbase.columns.mapping"=":key,cf1:cust_name,cf1:cust_city,cf1:InsUpd_on")t
blproperties("hbase.table.name"="customer");

hive> select * from customer_hbase;
OK
1 Sam James Austin 1505095030
10 Mark Fisher Mil Valley 1505095044
11 Mark Fisher Mil Valley 1505095044
12 Jane Turner Glen Park 1505095075
2 Peter Carter Denver 1505095030
3 Doug Smith Sunnyvale 1505095030
4 Harry Warner Dublin 1505095065
5 Jen Turner Cupertino 1505095036
6 Emily Stone Walnut Creek 1505095038
7 Bill Carter Greenville 1505095040
8 Jeff Holder Dallas 1505095042
Time taken: 0.159 seconds, Fetched: 11 row(s)
hive>

Summary
In this chapter, we saw how data is stored and accessed using a Hadoop SQL interface
called Hive. We studied various partitioning and indexing strategies in Hive. The working
examples helped us to understand JSON data access and schema evolution using Avro in
Hive. In the second section of the chapter, we studied a NoSQL data store called HBase and
its difference with respect to RDBMS. The row design of the HBase table is very crucial to
balancing reads and writes to avoid region hotspots. One has to keep in mind the HBase
table design best practices discussed in this chapter. The working example shows the easier
paths of data ingestions into an HBase table and its integration with Hive.

In the next chapter, we will take a look at tools and techniques for designing real-time data
analytics.

6
Designing Real-Time Streaming

Data Pipelines
The first three chapters of this book all dealt with batch data. Having learned about the
installation of Hadoop, data ingestion tools and techniques, and data stores, let's turn to
data streaming. Not only will we look at how we can handle real-time data streams, but
also how to design pipelines around them.

In this chapter, we will cover the following topics:

Real-time streaming concepts
Real-time streaming components
Apache Flink versus Spark
Apache Spark versus Storm

Real-time streaming concepts
Let's understand a few key concepts relating to real-time streaming applications in the
following sections.

Data stream
The data stream is a continuous flow of data from one end to another end, from sender to
receiver, from producer to consumer. The speed and volume of the data may vary; it may
be 1 GB of data per second or it may be 1 KB of data per second or per minute.

Designing Real-Time Streaming Data Pipelines Chapter 6

[148]

Batch processing versus real-time data
processing
In batch processing, data is collected in batches and each batch is sent for processing. The
batch interval can be anything from one day to one minute. In today's data analytics and
business intelligence world, data will not be processed in a batch for more than one day.
Otherwise, business teams will not have any insight about what's happening to the business
in a day-to-day basis. For example, the enterprise data warehousing team may collect all the
orders made during the last 24 hours and send all these collected orders to the analytics
engine for reporting.

The batch can be of one minute too. In the Spark framework (we will learn Spark in Chapter
7, Large-Scale Data Processing Frameworks), data is processed in micro batches.

In real-time processing, data (event) is transferred (streamed) from the producer (sender) to
the consumer (receiver) as soon as an event is produced at the source end. For example, on
an e-commerce website, orders gets processed immediately in an analytics engine as soon as
the customer places the same order on that website. The advantage is that the business team
of that company gets full insights about its business in real time (within a few milliseconds
or sub milliseconds). It will help them adjust their promotions to increase their revenue, all
in real-time.

The following image explains stream-processing architecture:

Designing Real-Time Streaming Data Pipelines Chapter 6

[149]

Complex event processing
Complex event processing (CEP) is event processing that combines data from multiple
sources to discover complex relationships or patterns. The goal of CEP is to identify
meaningful events (such as opportunities or threats) and respond to them as quickly as
possible. Fundamentally, CEP is about applying business rules to streaming event data. For
example, CEP is used in use cases, such as stock trading, fraud detection, medical claim
processing, and so on.

The following image explains stream-processing architecture:

Continuous availability
Any real-time application is expected to be available all the time with no stoppage
whatsoever. The event collection, processing, and storage components should be configured
with the underlined assumptions of high availability. Any failure to any components will
cause major disruptions to the running of the business. For example, in a credit card fraud
detection application, all the fraudulent transactions need to be declined. If the application
stops midway and is unable to decline fraudulent transactions, then it will result in heavy
losses.

Designing Real-Time Streaming Data Pipelines Chapter 6

[150]

Low latency
In any real-time application, the event should flow from source to target in a few
milliseconds. The source collects the event, and a processing framework moves the event to
its target data store where it can be analyzed further to find trends and patterns. All these
should happen in real time, otherwise it may impact business decisions. For example, in a
credit card fraud detection application, it is expected that all incoming transactions should
be analyzed to find possible fraudulent transactions, if any. If the stream processing takes
more than the desired period of time, it may be possible that these transactions may pass
through the system, causing heavy losses to the business.

Scalable processing frameworks
Hardware failure may cause disruption to the stream processing application. To avoid this
common scenario, we always need a processing framework that offers built-in APIs to
support continuous computation, fault tolerant event state management, checkpoint
features in the event of failures, in-flight aggregations, windowing, and so on. Fortunately,
all the recent Apache projects such as Storm, Spark, Flink, and Kafka do support all and
more of these features out of the box. The developer can use these APIs using Java, Python,
and Scala.

Horizontal scalability
The stream-processing platform should support horizontal scalability. That means adding
more physical servers to the cluster in the event of a higher incoming data load to maintain
throughput SLA. This way, the performance of processing can be increased by adding more
nodes rather than adding more CPUs and memory to the existing servers; this is called
vertical scalability.

Storage
The preferable format of a stream is key-value pair. This format is very well represented by
the JSON and Avro formats. The preferred storage to persist key-value type data is NoSQL
data stores such as HBase and Cassandra. There are in total 100 NoSQL open source
databases in the market these days. It's very challenging to choose the right database, one
which supports storage to real-time events, because all these databases offer some unique
features for data persistence. A few examples are schema agnostic, highly distributable,
commodity hardware support, data replication, and so on.

Designing Real-Time Streaming Data Pipelines Chapter 6

[151]

The following image explains all stream processing components:

In this chapter we will talk about message queue and stream processing frameworks in
detail. In the next chapter, we will focus on data indexing techniques.

Real-time streaming components
In the following sections we will walk through some important real-time streaming
components.

Message queue
The message queue lets you publish and subscribe to a stream of events/records. There are
various alternatives we can use as a message queue in our real-time stream architecture. For
example, there is RabbitMQ, ActiveMQ, and Kafka. Out of these, Kafka has gained
tremendous popularity due to its various unique features. Hence, we will discuss the
architecture of Kafka in detail. A discussion of RabbitMQ and ActiveMQ is beyond the
scope of this book.

Designing Real-Time Streaming Data Pipelines Chapter 6

[152]

So what is Kafka?
Kafka is a fast, scalable, durable, and fault-tolerant publish-subscribe messaging system.
Apache Kafka is an open-source stream-processing project. It provides a unified, high-
throughput, and is a low-latency platform for handling real-time data streams. It provides a
distributed storage layer, which supports massively scalable pub/sub message queues.
Kafka Connect supports data import and export by connecting to external systems. Kafka
Streams provides Java APIs for stream processing. Kafka works in combination with
Apache Spark, Apache Cassandra, Apache HBase, Apache Spark, and more for real-time
stream processing.

Apache Kafka was originally developed by LinkedIn, and was subsequently open sourced
in early 2011. In November 2014, several engineers who worked on Kafka at LinkedIn
created a new company named Confluent with a focus on Kafka. Please use this URL
https:/​/​www.​confluent. ​io/ ​ to learn more about the Confluent platform.

Kafka features
The following are features of Kafka:

Kafka is scalable: Kafka Cluster consists of more than one physical server, which
helps to distribute the data load. It is easily scalable in the event that additional
throughputs are required as additional servers can be added to maintain the SLA.
Kafka is durable: During stream processing, Kafka persists messages on the
persistent storage. This storage can be server local disks or Hadoop Cluster. In
the event of message processing failure, the message can be accessed from the
disk and replayed to process the message again. By default, the message is stored
for seven days; this can be configured further.
Kafka is reliable: Kafka provides message reliability with the help of a feature
called data replication. Each message is replicated at least three times (this is
configurable) so that in the event of data loss, the copy of the message can be
used for processing.
Kafka supports high performance throughput: Due to its unique architecture,
partitioning, message storage, and horizontal scalability, Kafka helps to process
terabytes of data per second.

https://www.confluent.io/
https://www.confluent.io/
https://www.confluent.io/
https://www.confluent.io/
https://www.confluent.io/
https://www.confluent.io/
https://www.confluent.io/
https://www.confluent.io/
https://www.confluent.io/
https://www.confluent.io/

Designing Real-Time Streaming Data Pipelines Chapter 6

[153]

Kafka architecture
The following image shows Kafka's architecture:

Kafka architecture components
Let's take a look at each component in detail:

Producers: Producers publish messages to a specific Kafka topic. Producers may
attach a key to each message record. By default, producers publish messages to
topic partitions in round robin fashion. Sometimes, producers can be configured
to write messages to a particular topic partition based on the hash value of
message key.
Topic: All messages are stored in a topic. A topic is a category or feed name to
which records are published. A topic can be compared to a table in a relational
database. Multiple consumers can be subscribed to a single topic to consume
message records.

Designing Real-Time Streaming Data Pipelines Chapter 6

[154]

Partition: A topic is divided into multiple partitions. Kafka offers topic
parallelism by dividing topic into partitions and by placing each partition on a
separate broker (server) of a Kafka Cluster. Each partition has a separate partition
log on a disk where messages are stored. Each partition contains an ordered,
immutable sequence of messages. Each message is assigned unique sequence
numbers called offset. Consumers can read messages from any point from a
partition—from the beginning or from any offset.
Consumers: A consumer subscribes to a topic and consumes the messages. In
order to increase the scalability, consumers of the same application can be
grouped into a consumer group where each consumer can read messages from a
unique partition.
Brokers: Kafka is divided into multiple servers called brokers. All the brokers
combined are called Kafka Cluster. Kafka brokers handle message writes from
producers and message reads from consumers. Kafka Brokers stores all the
messages coming from producers. The default period is of seven days. This
period (retention period) can be configured based on the requirements. The
retention period directly impacts the local storage of Kafka brokers. It takes more
storage if a higher retention period is configured. After the retention period is
over, the message is automatically discarded.
Kafka Connect: According to Kafka documentation, Kafka Connect allows the
building and running of reusable producers or consumers that connect Kafka
topics to existing applications or data systems. For example, a connector to a
relational database might capture every change to a table.
Kafka Streams: Stream APIs allow an application to act as a stream processor,
consuming an input stream from one or more topics and producing an output
stream to one or more output topics, effectively transforming the input streams to
output streams.

Kafka Connect deep dive
Kafka Connect is a part of the Confluent platform. It is integrated with Kafka. Using Kafka
Connect, it's very easy to build data pipelines from multiple sources to multiple targets.
Source Connectors import data from another system (for example, from a relational
database into Kafka) and Sink Connectors export data (for example, the contents of a Kafka
topic to an HDFS file).

Designing Real-Time Streaming Data Pipelines Chapter 6

[155]

Kafka Connect architecture
The following image shows Kafka Connect's architecture:

The data flow can be explained as follows:

Various sources are connected to Kafka Connect Cluster. Kafka Connect Cluster
pulls data from the sources.
Kafka Connect Cluster consists of a set of worker processes that are containers
that execute connectors, and tasks automatically coordinate with each other to
distribute work and provide scalability and fault tolerance.
Kafka Connect Cluster pushes data to Kafka Cluster.
Kafka Cluster persists the data on to the broker local disk or on Hadoop.

Designing Real-Time Streaming Data Pipelines Chapter 6

[156]

Streams applications such as Storm, Spark Streaming, and Flink pull the data
from Kafka Cluster for stream transformation, aggregation, join, and so on.
These applications can send back the data to Kafka or persist it to external data
stores such as HBase, Cassandra, MongoDB, HDFS, and so on.
Kafka Connect Cluster pulls data from Kafka Cluster and pushes it Sinks.
Users can extend the existing Kafka connectors or develop brand new connectors.

Kafka Connect workers standalone versus distributed
mode
Users can run Kafka Connect in two ways: standalone mode or distributed mode.

In standalone mode, a single process runs all the connectors. It is not fault tolerant. Since it
uses only a single process, it is not scalable. Generally, it is useful for users for development
and testing purposes.

In distributed mode, multiple workers run Kafka Connect. In this mode, Kafka Connect is
scalable and fault tolerant, so it is used in production deployment.

Let's learn more about Kafka and Kafka Connect (standalone mode). In this example, we
will do the following:

Install Kafka1.
Create a topic2.
Generate a few messages to verify the producer and consumer3.
Kafka Connect-File-source and file-sink4.
Kafka Connect-JDBC -Source5.

The following image shows a use case using Kafka Connect:

Designing Real-Time Streaming Data Pipelines Chapter 6

[157]

Let's see how Kafka and Kafka Connect works by running a few examples. For more details,
use the following link for Kafka Confluent's documentation: https:/ ​/ ​docs. ​confluent. ​io/
current/​.

Install Kafka
Let's perform the following steps to install Kafka:

Download Confluent from https:/ ​/ ​www.​confluent. ​io/ ​download/ ​1.
Click on Confluent Open Source2.
Download the file confluent-oss-4.0.0-2.11.tar.gz from tar.gz and3.
perform the following:

tar xvf confluent-oss-4.0.0-2.11.tar.gz
cd /opt/confluent-4.0.0/etc/kafka
vi server.properties

Uncomment listeners=PLAINTEXT://:90924.
Start Confluent:5.

$./bin/confluent start schema-registry

Start zookeeper:6.

zookeeper is [UP]

Start kafka:7.

kafka is [UP]

Start schema-registry:8.

schema-registry is [UP]
A4774045:confluent-4.0.0 m046277$

https://docs.confluent.io/current/
https://docs.confluent.io/current/
https://docs.confluent.io/current/
https://docs.confluent.io/current/
https://docs.confluent.io/current/
https://docs.confluent.io/current/
https://docs.confluent.io/current/
https://docs.confluent.io/current/
https://docs.confluent.io/current/
https://docs.confluent.io/current/
https://docs.confluent.io/current/
https://www.confluent.io/download/
https://www.confluent.io/download/
https://www.confluent.io/download/
https://www.confluent.io/download/
https://www.confluent.io/download/
https://www.confluent.io/download/
https://www.confluent.io/download/
https://www.confluent.io/download/
https://www.confluent.io/download/
https://www.confluent.io/download/
https://www.confluent.io/download/
https://www.confluent.io/download/

Designing Real-Time Streaming Data Pipelines Chapter 6

[158]

Create topics
Perform the following steps to create topics:

List the existing topics1.
Open another terminal and enter the following command:2.

/opt/confluent-4.0.0
bin/kafka-topics --list --zookeeper localhost:2181
_schemas

Create a topic:3.

bin/kafka-topics --create --zookeeper localhost:2181 --replication-
factor 1 --partitions 3 --topic my-first-topic

Created topic "my-first-topic"

Double check the newly created topic:4.

bin/kafka-topics --list --zookeeper localhost:2181
_schemas
my-first-topic

Generate messages to verify the producer and consumer
Perform the following steps to generate messages to verify the producer and consumer:

Send messages to Kafka my-first-topic:1.

bin/kafka-console-producer --broker-list localhost:9092 --topic my-
first-topic
test1
test2
test3

Start consumer to consume messages2.
Open another terminal and enter the following command:3.

$ bin/kafka-console-consumer --bootstrap-server localhost:9092 --
topic my-first-topic --from-beginning
test3
test2
test1

Designing Real-Time Streaming Data Pipelines Chapter 6

[159]

Go to the producer terminal and enter another message:4.

test4

Verify the consumer terminal to check whether you can see the message test45.

Kafka Connect using file Source and Sink
Let's take a look at how to create topics using file Source and Sink, with the help of the
following:

cd /opt/confluent-4.0.0/etc/kafka
vi connect-file-test-source.properties
name=local-file-source
connector.class=FileStreamSource
tasks.max=1
file=/opt/kafka_2.10-0.10.2.1/source-file.txt
topic=my-first-topic
vi connect-file-test-sink.properties
name=local-file-sink
connector.class=FileStreamSink
tasks.max=1
file=/opt/kafka_2.10-0.10.2.1/target-file.txt
topics=my-first-topic

Perform the following steps:

Start the Source Connector and Sink Connector:1.

cd /opt/confluent-4.0.0
$./bin/connect-standalone config/connect-standalone.properties
config/connect-file-test-source.properties config/connect-file-
test-sink.properties

echo 'test-kafka-connect-1' >> source-file.txt
echo 'test-kafka-connect-2' >> source-file.txt
echo 'test-kafka-connect-3' >> source-file.txt
echo 'test-kafka-connect-4' >> source-file.txt

Double check whether the Kafka topic has received the messages:2.

$./bin/kafka-console-consumer.sh --zookeeper localhost:2181 --
from-beginning --topic my-first-topic

test3
test1
test4

Designing Real-Time Streaming Data Pipelines Chapter 6

[160]

{"schema":{"type":"string","optional":false},"payload":"test-kafka-
connect-1"}
{"schema":{"type":"string","optional":false},"payload":"test-kafka-
connect-2"}
{"schema":{"type":"string","optional":false},"payload":"test-kafka-
connect-3"}
{"schema":{"type":"string","optional":false},"payload":"test-kafka-
connect-4"}

test2

Verify target-file.txt:3.

$ cat target-file.txt

{"schema":{"type":"string","optional":false},"payload":"test-kafka-
connect-1"}
{"schema":{"type":"string","optional":false},"payload":"test-kafka-
connect-2"}
{"schema":{"type":"string","optional":false},"payload":"test-kafka-
connect-3"}
{"schema":{"type":"string","optional":false},"payload":"test-kafka-
connect-4"}

Kafka Connect using JDBC and file Sink Connectors
The following image shows how we can push all records from the database table to a text
file:

Designing Real-Time Streaming Data Pipelines Chapter 6

[161]

Let's implement the preceding example using Kafka Connect:

Install SQLite:1.

$ sqlite3 firstdb.db

SQLite version 3.16.0 2016-11-04 19:09:39
Enter ".help" for usage hints.

sqlite>
sqlite> CREATE TABLE customer(cust_id INTEGER PRIMARY KEY
AUTOINCREMENT NOT NULL, cust_name VARCHAR(255));
sqlite> INSERT INTO customer(cust_id,cust_name) VALUES(1,'Jon');
sqlite> INSERT INTO customer(cust_id,cust_name) VALUES(2,'Harry');
sqlite> INSERT INTO customer(cust_id,cust_name) VALUES(3,'James');
sqlite> select * from customer;

1|Jon
2|Harry
3|James

Configure the JDBC Source Connector:2.

cd /opt/confluent-4.0.0
vi ./etc/kafka-connect-jdbc/source-quickstart-sqlite.properties
name=test-sqlite-jdbc-autoincrement
connector.class=io.confluent.connect.jdbc.JdbcSourceConnector
tasks.max=1
connection.url=jdbc:sqlite:firstdb.db
mode=incrementing
incrementing.column.name=cust_id
topic.prefix=test-sqlite-jdbc-

Configure the file Sink Connector:3.

cd /opt/confluent-4.0.0
vi etc/kafka/connect-file-sink.properties
name=local-file-sink
connector.class=FileStreamSink
tasks.max=1
file=/opt/confluent-4.0.0/test.sink.txt
topics=test-sqlite-jdbc-customer

Designing Real-Time Streaming Data Pipelines Chapter 6

[162]

Start Kafka Connect (.jdbs source and file Sink):4.

./bin/connect-standalone ./etc/schema-registry/connect-avro-
standalone.properties ./etc/kafka-connect-jdbc/source-quickstart-
sqlite.properties ./etc/kafka/connect-file-sink.properties

Verify the consumer:5.

$./bin/kafka-avro-console-consumer --new-consumer --bootstrap-
server localhost:9092 --topic test-sqlite-jdbc-customer --from-
beginning

The --new-consumer option is deprecated and will be removed in a future major
release. The new consumer is used by default if the --bootstrap-server option
is provided:

{"cust_id":1,"cust_name":{"string":"Jon"}}
{"cust_id":2,"cust_name":{"string":"Harry"}}
{"cust_id":3,"cust_name":{"string":"James"}}

Verify the target file:6.

tail -f /opt/confluent-4.0.0/test.sink.txt

Struct{cust_id=1,cust_name=Jon}
Struct{cust_id=2,cust_name=Harry}
Struct{cust_id=3,cust_name=James}

Insert a few more records in the customer table:7.

sqlite> INSERT INTO customer(cust_id,cust_name) VALUES(4,'Susan');
sqlite> INSERT INTO customer(cust_id,cust_name) VALUES(5,'Lisa');

Verify the target file:8.

tail -f /opt/confluent-4.0.0/test.sink.txt

You will see all customer records (cust_id) in the target file. Using the preceding example,
you can customize and experiment with any other Sink.

Designing Real-Time Streaming Data Pipelines Chapter 6

[163]

The following table presents the available Kafka connectors on the Confluent platform
(developed and fully supported by Confluent):

Connector Name Source/Sink

JDBC Source and Sink

HDFS Sink

Elasticsearch Sink

Amazon S3 Sink

For more information on other certified Connectors by Confluent, please use this
URL: https:/​/​www. ​confluent. ​io/ ​product/ ​connectors/ ​.

You must have observed that Kafka Connect is a configuration-based stream-processing
framework. It means we have to configure only the Source and Sink Connector files. We
don't need to write any code using low-level languages like Java or Scala. But, now, let's
turn to one more popular real-time stream processing framework called Apache Storm.
Let's understand some cool features of Apache Storm.

Apache Storm
Apache Storm is a free and open source distributed real-time stream processing framework.
At the time of writing this book, the stable release version of Apache Storm is 1.0.5. The
Storm framework is predominantly written in the Clojure programming language.
Originally, it was created and developed by Nathan Marz and the team at Backtype. The
project was later acquired by Twitter.

During one of his talks on the Storm framework, Nathan Marz talked about stream
processing applications using any framework, such as Storm. These applications involved
queues and worker threads. Some of the data source threads write messages to queues and
other threads pick up these messages and write to target data stores. The main drawback
here is that source threads and targets threads do not match the data load of each other and
this results in data pileup. It also results in data loss and additional thread maintenance.

To avoid the preceding challenges, Nathan Marz came up with a great architecture that
abstracts source threads and worker threads into Spouts and Bolts. These Spouts and Bolts
are submitted to the Topology framework, which takes care of entire stream processing.

https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/
https://www.confluent.io/product/connectors/

Designing Real-Time Streaming Data Pipelines Chapter 6

[164]

Features of Apache Storm
Apache Storm is distributed. In case of an increase in a stream's workload, multiple nodes
can be added to the Storm Cluster to add more workers and more processing power to
process.

It is a truly real-time stream processing system and supports low-latency. The event can be
reached from source to target in in milliseconds, seconds, or minutes depending on the use
cases.

Storm framework supports multiple programming languages, but Java is the top
preference. Storm is fault-tolerant. It continues to operate even though the failure of any
node in the cluster. Storm is reliable. It supports at least once or exactly-once processing.

There is no complexity to using Storm framework. For more detail information, refer to the
Storm documentation: http:/ ​/ ​storm. ​apache. ​org/ ​releases/ ​1.​0. ​4/​index. ​html.

Storm topology
The following image shows a typical Storm Topology:

http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html
http://storm.apache.org/releases/1.0.4/index.html

Designing Real-Time Streaming Data Pipelines Chapter 6

[165]

Storm topology components
The following sections explain all the components of a Storm topology:

Topology: A topology is a DAG (directed acyclic graph) of spouts and bolts that
are connected with stream groupings. A topology runs continuously untill it is
killed.
Stream: A stream is an unbounded sequence of tuples. A tuple can be of any data
type. It supports all the Java data types.
Stream groupings: Stream grouping decides which bolt receives a tuple from a
spout. Basically, these are the strategies about how the stream will flow among
different bolts. The following are the built-in stream groupings in Storm.
Shuffle grouping: It is a default grouping strategy. Tuples are randomly
distributed and each bolt gets an equal number of streams to process.
Field grouping: In this strategy, the same value of a stream field will be sent to
one bolt. For example, if all the tuples are grouped by customer_id, then all the
tuples of the same customer_id will be sent one bolt task and all the tuples of
another customer_id will be sent to another bolt task.
All grouping: In all grouping, each tuple is sent to each bolt task. It can be used
when two different functions have to be performed on the same set of data. In
that case, the stream can be replicated and each function can be calculated on
each copy of the data.
Direct grouping: This is a special kind of grouping. Here, the developer can
define the grouping logic within the component where tuple is emitted itself. The
producer of the tuple decides which task of the consumer will receive this tuple.
Custom grouping: The developer may decide to implement his/her own
grouping strategy by implementing the CustomGrouping method.
Spout: A spout connects to the data source and ingests streams into a Storm
topology.
Bolt: A spout emits a tuple to a bolt. A bolt is responsible for event
transformation, joining events to other events, filtering, aggregation, and
windowing. It emits the tuple to another bolt or persists it to a target. All
processing in topologies is done in bolts. Bolts can do anything from filtering to
functions, aggregations, joins, talking to databases, and more.

Designing Real-Time Streaming Data Pipelines Chapter 6

[166]

Storm Cluster: The following image shows all the components of a Storm
Cluster:

Storm Cluster nodes: The three main nodes of a Storm Cluster are Nimbus,
Supervisor, and Zookeeper. The following section explains all the components in
detail.
Nimbus node: In Storm, this is the master node of a Storm Cluster. It distributes
code and launches the worker tasks across the cluster. Basically, it assigns tasks to
each node in a cluster. It also monitors the status of each job submitted. In the
case of any job failure, Nimbus reallocates the job to a different supervisor within
a cluster. In the case of Nimbus being unavailable, the workers will still continue
to function. However, without Nimbus, workers won't be reassigned to other
machines when necessary. In the case of an unavailable node, the tasks assigned
to that node will time-out and Nimbus will reassign those tasks to other
machines. In the case of both Nimbus and Supervisor being unavailable, they
need to be restarted like nothing happened and no worker processes will be
affected.
Supervisor node: In Storm, this is a slave node. It communicates with Nimbus
through ZooKeeper. It starts and stops the worker processes within a supervisor
itself. For example, if Supervisor finds that a particular worker process has died,
then it immediately restarts that worker process. If Supervisor fails to restart the
worker after trying few times, then it communicates this to Nimbus and Nimbus
will restart that worker on a different Supervisor node.

Designing Real-Time Streaming Data Pipelines Chapter 6

[167]

Zookeeper node: It acts as a coordinator between masters (Nimbus) and slaves
(supervisors) within a Storm Cluster. In a production environment, it is typical to
set up a Zookeeper cluster that has three instances (nodes) of Zookeeper.

Installing Storm on a single node cluster
The following are the steps to install Storm Cluster on a single machine:

Install jdk. Make sure you have installed 1.8:1.

$ java -version

You should see the following output:

openjdk version "1.8.0_141"
OpenJDK Runtime Environment (build 1.8.0_141-b16)
OpenJDK 64-Bit Server VM (build 25.141-b16, mixed mod

Create a folder to download the .tar file of Storm:2.

$ mkdir /opt/storm
$ cd storm

Create a folder to persist Zookeeper and Storm data:3.

$ mkdir /usr/local/zookeeper/data
$ mkdir /usr/local/storm/data

Download Zookeeper and Storm:4.

$ wget http:/ ​/​apache. ​osuosl. ​org/ ​zookeeper/ ​stable/ ​zookeeper- ​3.​4. ​10.
tar. ​gz
$ gunzip zookeeper-3.4.10.tar.gz
$ tar -xvf zookeeper-3.4.10.tar
$ wget http:/ ​/​mirrors. ​ibiblio. ​org/ ​apache/ ​storm/ ​apache- ​storm- ​1. ​0.​5/
apache- ​storm- ​1.​0. ​5. ​tar. ​gz
$ gunzip apache-storm-1.0.5.tar.gz
$ tar -xvf apache-storm-1.0.5.tar

http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://apache.osuosl.org/zookeeper/stable/zookeeper-3.4.10.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz
http://mirrors.ibiblio.org/apache/storm/apache-storm-1.0.5/apache-storm-1.0.5.tar.gz

Designing Real-Time Streaming Data Pipelines Chapter 6

[168]

Configure Zookeeper and set the following to Zookeeper (zoo.cfg):5.

$ cd zookeeper-3.4.10
$ vi con/zoo.cfg
tickTime = 2000
dataDir = /usr/local/zookeeper/data
clientPort = 2181

Configure Storm as follows:6.

$ cd /opt/ apache-storm-1.0.5
$ vi conf/storm.yaml

Add the following:7.

storm.zookeeper.servers:
 - "127.0.0.1"
 nimbus.host: "127.0.0.1"
 storm.local.dir: "/usr/local/storm/data"
 supervisor.slots.ports:
 - 6700
 - 6701
 - 6702
 - 6703

(for additional workers, add more ports, such as 6704 and so on)

Start Zookeeper:8.

$ cd /opt/zookeeper-3.4.10
$ bin/zkServer.sh start &amp;

Start Nimbus:9.

$ cd /opt/ apache-storm-1.0.5
$ bin/storm nimbus &amp;

Start Supervisor:10.

$ bin/storm supervisor &amp;

Verify installation in the Storm UI:11.

http://127.0.0.1:8080

Designing Real-Time Streaming Data Pipelines Chapter 6

[169]

Developing a real-time streaming pipeline with
Storm
In this section, we will create the following three pipelines:

Streaming pipeline with Kafka - Storm - MySQL
Streaming pipeline with Kafka - Storm - HDFS - Hive

In this section, we will see how data streams flow from Kafka to Storm to MySQL table.

The whole pipeline will work as follows:

We will ingest customer records (customer_firstname and1.
customer_lastname) in Kafka using the Kafka console-producer API.
After that, Storm will pull the messages from Kafka.2.
A connection to MySQL will be established.3.
Storm will use MySQL-Bolt to ingest records into MySQL table. MySQL will4.
automatically generate customer_id.
The MySQL table data (customer_id, customer_firstname,5.
and customer_lastname) will be accessed using SQL.

We will develop the following Java classes:

MysqlConnection.java: This class will establish a connection with the local
MySQL database.
MysqlPrepare.java: This class will prepare the SQL statements to be inserted
into the database.
MysqlBolt: This class is a storm bolt framework to emit the tuple from Kafka to
MySQL.
MySQLKafkaTopology: This is a Storm Topology Framework that builds a
workflow to bind spouts (Kafka) to Bolts (MySQL). Here, we are using a Local
Storm Cluster.

Designing Real-Time Streaming Data Pipelines Chapter 6

[170]

Streaming a pipeline from Kafka to Storm to MySQL
The following image shows the components of the pipeline. In this pipeline, we will learn
how the messages will flow from Kafka to Storm to MySQL in real-time:

The following is the complete Java code for MysqlConnection.java:

package com.StormMysql;
import java.sql.Connection;
import java.sql.DriverManager;
public class MysqlConnection {
private String server_name;
 private String database_name;
 private String user_name;
 private String password;
 private Connection connection;

public MysqlConnection(String server_name, String database_name, String
user_name, String password)
 {
 this.server_name=server_name;
 this.database_name=database_name;
 this.user_name=user_name;
 this.password=password;
 }

public Connection getConnection()
 {
 return connection;
 }

Designing Real-Time Streaming Data Pipelines Chapter 6

[171]

public boolean open()
 {
 boolean successful=true;
 try{
 Class.forName("com.mysql.jdbc.Driver");
 connection =
DriverManager.getConnection("jdbc:mysql://"+server_name+"/"+database_name+"
?"+"user="+user_name+"&amp;password="+password);
 }catch(Exception ex)
 {
 successful=false;
 ex.printStackTrace();
 }
 return successful;
 }

public boolean close()
 {
 if(connection==null)
 {
 return false;
 }

boolean successful=true;
 try{
 connection.close();
 }catch(Exception ex)
 {
 successful=false;
 ex.printStackTrace();
 }

return successful;
 }
 }

Designing Real-Time Streaming Data Pipelines Chapter 6

[172]

The following is the complete code for MySqlPrepare.java:

package com.StormMysql;
import org.apache.storm.tuple.Tuple;
import java.sql.PreparedStatement;
public class MySqlPrepare {
 private MysqlConnection conn;

public MySqlPrepare(String server_name, String database_name, String
user_name, String password)
 {
 conn = new MysqlConnection(server_name, database_name, user_name,
password);
 conn.open();
 }

public void persist(Tuple tuple)
 {
 PreparedStatement statement=null;
 try{
 statement = conn.getConnection().prepareStatement("insert into customer
(cust_id,cust_firstname, cust_lastname) values (default, ?,?)");
 statement.setString(1, tuple.getString(0));

statement.executeUpdate();
 }catch(Exception ex)
 {
 ex.printStackTrace();
 }finally
{
 if(statement != null)
 {
 try{
 statement.close();
 }catch(Exception ex)
 {
 ex.printStackTrace();
 }
 }
 }
 }

public void close()
 {
 conn.close();
 }
 }

Designing Real-Time Streaming Data Pipelines Chapter 6

[173]

The following is the complete code for MySqlBolt.java:

package com.StormMysql;

import java.util.Map;

import org.apache.storm.topology.BasicOutputCollector;
 import org.apache.storm.topology.OutputFieldsDeclarer;
 import org.apache.storm.topology.base.BaseBasicBolt;
 import org.apache.storm.tuple.Fields;
 import org.apache.storm.tuple.Tuple;
 import org.apache.storm.tuple.Values;
 import org.apache.storm.task.TopologyContext;

import java.util.Map;

public class MySqlBolt extends BaseBasicBolt {

private static final long serialVersionUID = 1L;
 private MySqlPrepare mySqlPrepare;

@Override
 public void prepare(Map stormConf, TopologyContext context)
 {
 mySqlPrepare=new MySqlPrepare("localhost", "sales","root","");
 }

public void execute(Tuple input, BasicOutputCollector collector) {
 // TODO Auto-generated method stub
mySqlPrepare.persist(input);
 //System.out.println(input);
}
@Override
 public void cleanup() {
 mySqlPrepare.close();
 }
}

The following is the complete code for KafkaMySQLTopology.java:

package com.StormMysql;

import org.apache.storm.Config;
 import org.apache.storm.spout.SchemeAsMultiScheme;
 import org.apache.storm.topology.TopologyBuilder;
 import org.apache.storm.kafka.*;
 import org.apache.storm.LocalCluster;
 import org.apache.storm.generated.AlreadyAliveException;

Designing Real-Time Streaming Data Pipelines Chapter 6

[174]

 import org.apache.storm.generated.InvalidTopologyException;

public class KafkaMySQLTopology
 {
 public static void main(String[] args) throws AlreadyAliveException,
InvalidTopologyException
 {
 ZkHosts zkHosts=new ZkHosts("localhost:2181");

String topic="mysql-topic";
 String consumer_group_id="id7";

SpoutConfig kafkaConfig=new SpoutConfig(zkHosts, topic, "",
consumer_group_id);

kafkaConfig.scheme=new SchemeAsMultiScheme(new StringScheme());

KafkaSpout kafkaSpout=new KafkaSpout(kafkaConfig);

TopologyBuilder builder=new TopologyBuilder();
 builder.setSpout("KafkaSpout", kafkaSpout);
 builder.setBolt("MySqlBolt", new
MySqlBolt()).globalGrouping("KafkaSpout");

LocalCluster cluster=new LocalCluster();

Config config=new Config();

cluster.submitTopology("KafkaMySQLTopology", config,
builder.createTopology());

try{
 Thread.sleep(10000);
 }catch(InterruptedException ex)
 {
 ex.printStackTrace();
 }

// cluster.killTopology("KafkaMySQLTopology");
 // cluster.shutdown();
}
 }

Use the pom.xml file to build your project in IDE.

Designing Real-Time Streaming Data Pipelines Chapter 6

[175]

Streaming a pipeline with Kafka to Storm to HDFS
In this section, we will see how the data streams will flow from Kafka to Storm to HDFS
and access them with a Hive external table.

The following image shows the components of the pipeline. In this pipeline, we will learn
how the messages will flow from Kafka to Storm to HDFS in real-time:

The whole pipeline will work as follows:

We will ingest customer records (customer_id, customer_firstname, and1.
customer_lastname) in Kafka using the Kafka console-producer API
After that, Storm will pull the messages from Kafka2.
A Connection to HDFS will be established3.
Storm will use HDFS-Bolt to ingest records into HDFS4.
Hive external table will be created to store (customer_id,5.
customer_firstname, and customer_lastname)
The Hive table data (customer_id, customer_firstname, and6.
customer_lastname) will be accessed using SQL

We will develop the following Java classes:

KafkaTopology.java: This is a Storm Topology framework that builds a workflow to bind
spouts (Kafka) to Bolts (HDFS). Here we are using a Local Storm cluster.

In the previous example pipeline, multiple separate classes for data streams parsing and
transformations can be developed to handle Kafka producers and consumers.

Designing Real-Time Streaming Data Pipelines Chapter 6

[176]

The following is the complete Java code for KafkaToplogy.java:

package com.stormhdfs;

import org.apache.storm.Config;
 import org.apache.storm.LocalCluster;
 import org.apache.storm.generated.AlreadyAliveException;
 import org.apache.storm.generated.InvalidTopologyException;
 import org.apache.storm.hdfs.bolt.HdfsBolt;
 import org.apache.storm.hdfs.bolt.format.DefaultFileNameFormat;
 import org.apache.storm.hdfs.bolt.format.DelimitedRecordFormat;
 import org.apache.storm.hdfs.bolt.format.RecordFormat;
 import org.apache.storm.hdfs.bolt.rotation.FileRotationPolicy;
 import org.apache.storm.hdfs.bolt.rotation.FileSizeRotationPolicy;
 import org.apache.storm.hdfs.bolt.sync.CountSyncPolicy;
 import org.apache.storm.hdfs.bolt.sync.SyncPolicy;
 import org.apache.storm.kafka.KafkaSpout;
 import org.apache.storm.kafka.SpoutConfig;
 import org.apache.storm.kafka.StringScheme;
 import org.apache.storm.kafka.ZkHosts;
 import org.apache.storm.spout.SchemeAsMultiScheme;
 import org.apache.storm.topology.TopologyBuilder;

public class KafkaTopology {
 public static void main(String[] args) throws
AlreadyAliveException, InvalidTopologyException {

// zookeeper hosts for the Kafka cluster
ZkHosts zkHosts = new ZkHosts("localhost:2181");

// Create the KafkaSpout configuartion
 // Second argument is the topic name
 // Third argument is the zookeeper root for Kafka
 // Fourth argument is consumer group id
SpoutConfig kafkaConfig = new SpoutConfig(zkHosts,
 "data-pipleline-topic", "", "id7");

// Specify that the kafka messages are String
kafkaConfig.scheme = new SchemeAsMultiScheme(new StringScheme());

// We want to consume all the first messages in the topic everytime
 // we run the topology to help in debugging. In production, this
 // property should be false
kafkaConfig.startOffsetTime = kafka.api.OffsetRequest.EarliestTime();

RecordFormat format = new DelimitedRecordFormat().withFieldDelimiter("|");
 SyncPolicy syncPolicy = new CountSyncPolicy(1000);

FileRotationPolicy rotationPolicy = new

Designing Real-Time Streaming Data Pipelines Chapter 6

[177]

FileSizeRotationPolicy(1.0f,FileSizeRotationPolicy.Units.MB);

DefaultFileNameFormat fileNameFormat = new DefaultFileNameFormat();

fileNameFormat.withPath("/user/storm-data");

fileNameFormat.withPrefix("records-");

fileNameFormat.withExtension(".txt");

HdfsBolt bolt =
 new HdfsBolt().withFsUrl("hdfs://127.0.0.1:8020")
 .withFileNameFormat(fileNameFormat)
 .withRecordFormat(format)
 .withRotationPolicy(rotationPolicy)
 .withSyncPolicy(syncPolicy);

// Now we create the topology
TopologyBuilder builder = new TopologyBuilder();

// set the kafka spout class
builder.setSpout("KafkaSpout", new KafkaSpout(kafkaConfig), 1);

// configure the bolts
 // builder.setBolt("SentenceBolt", new SentenceBolt(),
1).globalGrouping("KafkaSpout");
 // builder.setBolt("PrinterBolt", new PrinterBolt(),
1).globalGrouping("SentenceBolt");
builder.setBolt("HDFS-Bolt", bolt).globalGrouping("KafkaSpout");

// create an instance of LocalCluster class for executing topology in local
mode.
LocalCluster cluster = new LocalCluster();
 Config conf = new Config();

// Submit topology for execution
cluster.submitTopology("KafkaTopology", conf, builder.createTopology());

try {
 // Wait for some time before exiting
System.out.println("Waiting to consume from kafka");
 Thread.sleep(10000);
 } catch (Exception exception) {
 System.out.println("Thread interrupted exception : " + exception);
 }

// kill the KafkaTopology
 //cluster.killTopology("KafkaTopology");

Designing Real-Time Streaming Data Pipelines Chapter 6

[178]

// shut down the storm test cluster
 // cluster.shutdown();
}
 }

The Hive table for the same is as follows:

CREATE EXTERNAL TABLE IF NOT EXISTS customer (
customer_id INT,
customer_firstname String,
customer_lastname String))
COMMENT 'customer table'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
STORED AS TEXTFILE
location '/user/storm-data';
$ hive > select * from customer;

Other popular real-time data streaming
frameworks
Apart from Apache Storm, there are quite a few other open source real-time data streaming
frameworks. In this section, I will discuss in brief only open source non-commercial
frameworks. But, at the end of this section, I will provide a few URLs for a few commercial
vendor products that offer some very interesting features.

Kafka Streams API
Kafka Streams is a library for building streaming applications. Kafka Streams is a client
library for building applications and microservices, where the input and output data are
stored in Kafka Clusters. The Kafka Streams API transforms and enriches the data.

The following are the important features of the Kafka Streams API:

It is part of the open source Apache Kafka project.
It supports per record streams processing with a very low latency (milliseconds).
There is no micro- batching concept in the Kafka Streams API. Every record that
comes into the stream is processed on its own.

Designing Real-Time Streaming Data Pipelines Chapter 6

[179]

It supports stateless processing (filtering and mapping), stateful processing (joins
and aggregations), and windowing operations (for example, counting the last
minute, last 5 minutes, last 30 minutes, or last day's worth of data, and so on).
To run the Kafka Streams API, there is no need to build a separate cluster that has
multiple machines. Developers can use the Kafka Streams API in their Java
applications or microservices to process real-time data.
The Kafka Streams API is highly scalable and fault-tolerant.
The Kafka Streams API is completely deployment agnostic. It can be deployed on
a bare metal machine, VMs, Kubernetes containers, and on Cloud. There are no
restrictions at all. Stream APIs are never deployed on Kafka Brokers. It is a
separate application just like any other Java application, which is deployed
outside of Kafka brokers.
It uses the Kafka security model.
It supports exactly-once semantics since version 0.11.0.

Let's review the earlier image again to find out the exact place of the Kafka Streams API in
the overall Kafka architecture.

Here are a few useful URLs to understand Kafka Streams in detail:

https:/​/ ​kafka. ​apache. ​org/ ​documentation/ ​

https:/​/ ​www. ​confluent. ​io/ ​blog/ ​

https:/​/ ​www. ​confluent. ​io/ ​blog/ ​introducing- ​kafka- ​streams- ​stream-
processing- ​made- ​simple/ ​

https:/​/ ​docs. ​confluent. ​io/ ​current/ ​streams/ ​index. ​html

Spark Streaming
Please note that we will discuss Spark in Chapter 7, Large-Scale Data Processing Frameworks,
which is fully dedicated to Spark. However, in this section, I will discuss some important
features of Spark Streaming. For better understanding, readers are advised to study Chapter
7, Large-Scale Data Processing Frameworks first and come back to read this section further to
understand more about Spark Streaming.

It is a general practice to use Hadoop MapReduce for batch processing and Apache Storm
for real-time stream processing.

https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://www.confluent.io/blog/
https://www.confluent.io/blog/
https://www.confluent.io/blog/
https://www.confluent.io/blog/
https://www.confluent.io/blog/
https://www.confluent.io/blog/
https://www.confluent.io/blog/
https://www.confluent.io/blog/
https://www.confluent.io/blog/
https://www.confluent.io/blog/
https://www.confluent.io/blog/
https://www.confluent.io/blog/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://docs.confluent.io/current/streams/index.html
https://docs.confluent.io/current/streams/index.html
https://docs.confluent.io/current/streams/index.html
https://docs.confluent.io/current/streams/index.html
https://docs.confluent.io/current/streams/index.html
https://docs.confluent.io/current/streams/index.html
https://docs.confluent.io/current/streams/index.html
https://docs.confluent.io/current/streams/index.html
https://docs.confluent.io/current/streams/index.html
https://docs.confluent.io/current/streams/index.html
https://docs.confluent.io/current/streams/index.html
https://docs.confluent.io/current/streams/index.html
https://docs.confluent.io/current/streams/index.html
https://docs.confluent.io/current/streams/index.html
https://docs.confluent.io/current/streams/index.html
https://docs.confluent.io/current/streams/index.html
https://docs.confluent.io/current/streams/index.html

Designing Real-Time Streaming Data Pipelines Chapter 6

[180]

The use of these two different programming models causes an increase in code size, number
of bugs to fix, and development effort; it also introduces a learning curve and causes other
issues. Spark Streaming helps fix these issues and provides a scalable, efficient, resilient,
and integrated (with batch processing) system.

The strength of Spark Streaming lies in its ability to combine with batch processing. It's
possible to create a RDD using normal Spark programming and join it with a Spark stream.
Moreover, the code base is similar and allows easy migration if required—and there is zero
to no learning curve from Spark.

Spark Streaming is an extension of the core Spark API. It extends Spark for doing real-time
stream processing. Spark Streaming has the following features:

It's scalable—it scales on hundreds of nodes
It provides high-throughput and achieves second level latency
It's fault-tolerant and it efficiently receives from the failures
It integrates with batch and interactive data processing

Spark Streaming processes data streams application as a series of very small, deterministic
batch jobs.

Spark Streaming provides an API in Scala, Java, and Python. Spark Streaming divides live
stream of data into multiple batches based on time. The time can range from one second to a
few minutes/hours. In general, batches are divided into a few seconds. Spark treats each
batch as a RDD and process each based on RDD operations (map, filter, join flatmap,
distinct, reduceByKey, and so on). Lastly, the processed results of RDDs are returned in
batches.

The following image depicts the Spark Streaming data flow:

Here are few useful URLs for understanding Spark Streaming in detail:

https:/​/ ​databricks. ​com/ ​blog

https:/​/ ​databricks. ​com/ ​blog/ ​category/ ​engineering/ ​streaming

https:/​/ ​spark. ​apache. ​org/ ​streaming/ ​

https://databricks.com/blog
https://databricks.com/blog
https://databricks.com/blog
https://databricks.com/blog
https://databricks.com/blog
https://databricks.com/blog
https://databricks.com/blog
https://databricks.com/blog
https://databricks.com/blog
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/blog/category/engineering/streaming
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/

Designing Real-Time Streaming Data Pipelines Chapter 6

[181]

Apache Flink
Apache Flink's documentation describes Flink in the following way: Flink is an open-source
framework for distributed stream processing.

Flink provides accurate results and supports out-of-order or late-arriving datasets. It is
stateful and fault-tolerant and can seamlessly recover from failures while maintaining an
exactly-once application state. It performs at a large scale, running on thousands of nodes
with very good throughput and latency characteristics.

The following are the features of Apache Flink:

Flink guarantees exactly-once semantics for stateful computations
Flink supports stream processing and windowing with event time semantics
Flink supports flexible windowing based on time, count, or sessions, in addition
to data-driven windows
Flink is capable of high throughput and low latency
Flink's savepoints provide a state versioning mechanism, making it possible to
update applications or reprocess historic data with no lost state and minimal
downtime
Flink is designed to run on large-scale clusters with many thousands of nodes,
and, in addition to a standalone cluster mode, Flink provides support for YARN
and Mesos

Flink's core is a distributed streaming dataflow engine. It supports processing one stream at
a time rather than processing an entire batch of streams at a time.

Flink supports the following libraries:

CEP
Machine learning
Graph processing
Apache Storm compatibility

Flink supports the following APIs:

DataStream API: This API helps all the streams, transformations, that is, filtering,
aggregations, counting, and windowing
DataSet API: This API helps all the batch data transformations, that is, join,
group, map, and filter

Designing Real-Time Streaming Data Pipelines Chapter 6

[182]

Table API: Supports SQL over relational data streams
Streaming SQL: Supports SQL over batch and streaming tables

The following image describes the Flink programming model:

The following image describes the Flink architecture:

The following are the components of the Flink programming model:

Source: A data source where data is collected and sent to the Flink engine
Transformation: In this component the whole transformation takes place
Sink: A target where processed streams are sent

Designing Real-Time Streaming Data Pipelines Chapter 6

[183]

Here are a few useful URLs to understand Spark Streaming in detail:

https:/​/ ​ci. ​apache. ​org/ ​projects/ ​flink/ ​flink- ​docs- ​release- ​1. ​4/​

https:/​/ ​www. ​youtube. ​com/ ​watch? ​v= ​ACS6OM1- ​xgE ​amp;amp;feature= ​youtu. ​be

In the following sections, we will take a look at a comparison of various stream
frameworks.

Apache Flink versus Spark
The main focus of Spark Streaming is stream-batching operation, called micro-batching.
This programming model suits many use cases, but not all use cases require real-time
stream processing with sub-second latency. For example, a use case such as credit card
fraud prevention requires millisecond latency. Hence, the micro-batching programming
model is not suited there. (But, the latest version of Spark, 2.4, supports millisecond data
latency).

Apache Flink supports millisecond latency and is suited for use cases such as fraud
detection and like.

Apache Spark versus Storm
Spark uses micro-batches to process events while Storm processes events one by one. It
means that Spark has a latency of seconds while Storm provides a millisecond of latency.
Spark Streaming provides a high-level abstraction called a Discretized Stream or DStream,
which represents a continuous sequence of RDDs. (But, the latest version of Spark, 2.4
supports millisecond data latency.) The latest Spark version supports DataFrames.

Almost the same code (API) can be used for Spark Streaming and Spark batch jobs. That
helps to reuse most of the code base for both programming models. Also, Spark supports
Machine learning and the Graph API. So, again, the same codebase can be used for those
use cases as well.

https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be
https://www.youtube.com/watch?v=ACS6OM1-xgE&feature=youtu.be

Designing Real-Time Streaming Data Pipelines Chapter 6

[184]

Summary
In this chapter, we started with a detailed understanding of real-time stream processing
concepts, including data stream, batch vs. real-time processing, CEP, low latency,
continuous availability, horizontal scalability, storage, and so on. Later, we learned about
Apache Kafka, which is a very important component of modern real-time stream data
pipelines. The main features of Kafka are scalability, durability, reliability, and high
throughput.

We also learned about Kafka Connect; its architecture, data flow, sources, and connectors.
We studied case studies to design a data pipeline with Kafka Connect using file source, file
Sink, JDBC source, and file Sink Connectors.

In the later sections, we learned about various open source real-time stream-processing
frameworks, such as the Apache Storm framework. We have seen a few practical examples,
as well. Apache Storm is distributed and supports low-latency and multiple programming
languages. Storm is fault-tolerant and reliable. It supports at least once or exactly-once
processing.

Spark Streaming helps to fix these issues and provides a scalable, efficient, resilient, and
integrated (with batch processing) system. The strength of Spark Streaming lies in its ability
to combine with batch processing. Spark Streaming is scalable, and provides high-
throughput. It supports micro-batching for second level latency, is fault-tolerant, and
integrates with batch and interactive data processing.

Apache Flink guarantees exactly-once semantics, supports event time semantics, high
throughput, and low latency. It is designed to run on large-scale clusters.

7
Large-Scale Data Processing

Frameworks
As the volume and complexity of data sources are increasing, deriving value out of data is
also becoming increasingly difficult. Ever since Hadoop was made, it has built a massively
scalable filesystem, HDFS. It has adopted the MapReduce concepts from functional
programming to approach the large-scale data processing challenges. As technology is
constantly evolving to overcome the challenges posed by data mining, enterprises are also
finding ways to embrace these changes to stay ahead.

In this chapter, we will focus on these data processing solutions:

MapReduce
Apache Spark
Spark SQL
Spark Streaming

MapReduce
MapReduce is a concept that is borrowed from functional programming. The data
processing is broken down into a map phase, where data preparation occurs, and a reduce
phase, where the actual results are computed. The reason MapReduce has played an
important role is the massive parallelism we can achieve as the data is sharded into
multiple distributed servers. Without this advantage, MapReduce cannot really
perform well.

Large-Scale Data Processing Frameworks Chapter 7

[186]

Let's take up a simple example to understand how MapReduce works in functional
programming:

The input data is processed using a mapper function of our choice
The output from the mapper function should be in a state that is consumable by
the reduce function
The output from the mapper function is fed to the reduce function to generate the
necessary results

Let's understand these steps using a simple program. This program uses the following text
(randomly created) as input:

Bangalore,Onion,60
Bangalore,Chilli,10
Bangalore,Pizza,120
Bangalore,Burger,80
NewDelhi,Onion,80
NewDelhi,Chilli,30
NewDelhi,Pizza,150
NewDelhi,Burger,180
Kolkata,Onion,90
Kolkata,Chilli,20
Kolkata,Pizza,120
Kolkata,Burger,160

The input consists of data with the following fields: City Name, Product Name, and Item
Price on that day.

We want to write a program that will show the total cost of all products in a given city. This
can be done in many ways. But let's try to approach this using MapReduce and see how it
works.

The mapper program is like this:

#!/usr/bin/env perl -wl

use strict;
use warnings;

while(<STDIN>) {
 chomp;
 my ($city, $product, $cost) = split(',');
 print "$city $cost";
}

Large-Scale Data Processing Frameworks Chapter 7

[187]

The reduce program is:

#!/usr/bin/perl

use strict;
use warnings;

my %reduce;

while(<STDIN>) {
 chomp;
 my ($city, $cost) = split(/\s+/);
 $reduce{$city} = 0 if not defined $reduce{$city};
 $reduce{$city} += $cost;
}

print "-" x 24;
printf("%-10s : %s\n", "City", "Total Cost");
print "-" x 24;

foreach my $city (sort keys %reduce) {
 printf("%-10s : %d\n", $city, $reduce{$city});
}

We create a data pipeline using the UNIX terminal like this:

[user@node-1 ~]$ cat input.txt | perl map.pl | perl reduce.pl

City : Total Cost

Bangalore : 270
Kolkata : 390
NewDelhi : 440

As we can see, the result is as expected. This is a very simple case of MapReduce. Let's try to
see what is happening:

Each input line is processed by the map.pl program and prints the city and price
The output from the map.pl program is fed to reduce.pl, which performs a
SUM() operation for all records and categorizes them per city

Let's shuffle the input.txt and see if we get the desired results.

Large-Scale Data Processing Frameworks Chapter 7

[188]

Here is the modified input.txt:

Bangalore,Onion,60
NewDelhi,Onion,80
Bangalore,Pizza,120
Bangalore,Burger,80
Kolkata,Onion,90
Kolkata,Pizza,120
Kolkata,Chilli,20
NewDelhi,Chilli,30
NewDelhi,Burger,180
Kolkata,Burger,160
NewDelhi,Pizza,150
Bangalore,Chilli,10

And the output from the MapReduce operation is:

[user@node-1 ~]$ cat input-shuffled.txt | perl map.pl | perl reduce.pl

City : Total Cost

Bangalore : 270
Kolkata : 390
NewDelhi : 440

There is no difference because both the map and reduce operations are being performed
independently in one go. There is no data parallelism here. The entire process can be
visualized in this diagram:

As we can see, there is one copy of the input data after the Map Phase, and the final output
after Reduce Phase is what we are interested in.

Large-Scale Data Processing Frameworks Chapter 7

[189]

Running a single-threaded process is useful and is needed when we don’t have to deal with
massive amounts of data. When the input sizes are unbounded and cannot be fit into a
single server, we need to start thinking of distributed/parallel algorithms to attack the
problem at hand.

Hadoop MapReduce
Apache MapReduce is a framework that makes it easier for us to run MapReduce
operations on very large, distributed datasets. One of the advantages of Hadoop is a
distributed file system that is rack-aware and scalable. The Hadoop job scheduler is
intelligent enough to make sure that the computation happens on the nodes where the data
is located. This is also a very important aspect as it reduces the amount of network IO.

Let's see how the framework makes it easier to run massively parallel computations with
the help of this diagram:

This diagram looks a bit more complicated than the previous diagram, but most of the
things are done by the Hadoop MapReduce framework itself for us. We still write the code
for mapping and reducing our input data.

Large-Scale Data Processing Frameworks Chapter 7

[190]

Let's see in detail what happens when we process our data with the Hadoop MapReduce
framework from the preceding diagram:

Our input data is broken down into pieces
Each piece of the data is fed to a mapper program
Outputs from all the mapper programs are collected, shuffled, and sorted
Each sorted piece is fed to the reducer program
Outputs from all the reducers are combined to generate the output data

Streaming MapReduce
Streaming MapReduce is one of the features that is available in the Hadoop MapReduce
framework, where we can use any of the external programs to act as Mapper and Reducer.
As long as these programs can be executed by the target operating system, they are
accepted to run the Map and Reduce tasks.

Here are a few things to keep in mind while writing these programs:

These programs should read the input from the STDIN
They should be able to process infinite amount of data (stream) or else they crash
The memory requirements of these programs should be known well ahead of
time before they are used in the streaming MapReduce, or else we might see
unpredictable behavior

In the previous section, we have written simple Perl scripts to do mapping and reduction.
In the current scenario also, we will use the same programs to understand how they
perform our task.

If you observe carefully, map.pl can process infinite amounts of data and
will not have any memory overhead. But the reduce.pl program uses the
Perl Hash data structure to perform the reduction operation. Here, we
might face some memory pressure with real-world data.

Large-Scale Data Processing Frameworks Chapter 7

[191]

In this exercise, we use randomized input data as shown here:

[user@node-3 ~]$ cat ./input.txt
 Bangalore,Onion,60
 NewDelhi,Onion,80
 Bangalore,Pizza,120
 Bangalore,Burger,80
 Kolkata,Onion,90
 Kolkata,Pizza,120
 Kolkata,Chilli,20
 NewDelhi,Chilli,30
 NewDelhi,Burger,180
 Kolkata,Burger,160
 NewDelhi,Pizza,150
 Bangalore,Chilli,10

Later, we need to copy the mapper and reducer scripts to all the Hadoop nodes:

We are using the same Hadoop cluster that's built as part of Chapter
10, Production Hadoop Cluster Deployment for this exercise. If you
remember, the nodes are master, node-1, node-2, and node-3.

[user@master ~]$ scp *.pl node-1:~
[user@master ~]$ scp *.pl node-2:~
[user@master ~]$ scp *.pl node-3:~

In this step, we are copying the input to the hadoop /tmp/ directory.

Please use a sensible directory in your production environments as per
your enterprise standards. Here the /tmp directory is used for illustration
purposes only.

[user@node-3 ~]$ hadoop fs -put ./input.txt /tmp/

Large-Scale Data Processing Frameworks Chapter 7

[192]

In this step, we are using the Hadoop streaming MapReduce framework to use our scripts
for performing the computation:

The contents of the map.pl and reduce.pl are exactly the same as we
have used in the previous examples.

[user@node-3 ~]$ hadoop jar \
 /usr/hdp/current/hadoop-mapreduce-client/hadoop-streaming.jar \
 -input hdfs:///tmp/input.txt \
 -output hdfs:///tmp/output-7 \
 -mapper $(pwd)/map.pl \
 -reducer $(pwd)/reduce.pl

The output is stored in HDFS, which we can view like this:

[user@node-3 ~]$ hadoop fs -cat /tmp/output-7/part*
 NewDelhi, 440
 Kolkata, 390
 Bangalore, 270
[user@node-3 ~]$

If we observe carefully, the results match exactly with our traditional program.

Java MapReduce
In the previous section, we have seen how to use any arbitrary programming language to
run a MapReduce operation on Hadoop. But in most practical scenarios, it's good if we
leverage the libraries provided by the Hadoop MapReduce infrastructure as they are
powerful and take care of many requirements for us.

Let's try to write a simple Java program using the MapReduce libraries and see whether we
can generate the same output as in the previous exercises. In this example, we will use the
official MapReduce implementation from the official docs.

Documents at: https:/ ​/​hadoop. ​apache. ​org/ ​docs/ ​r2.​8. ​0/​hadoop- ​mapreduce- ​client/
hadoop-​mapreduce- ​client- ​core/ ​MapReduceTutorial. ​html

https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

Large-Scale Data Processing Frameworks Chapter 7

[193]

Since our input is very different from the example, and we also want to find the Total price
of all products in a given city, we have to change the mapper program as per our CSV
input.txt file. The reduce function is the same as the one in the official documents where
our mapper function generates a <City, Price> pair. This can easily be consumed by the
existing implementation.

We have called our program TotalPrice.java. Let's see how our source code looks:

[user@node-3 ~]$ cat TotalPrice.java
import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class TotalPrice {
 public static class TokenizerMapper extends Mapper<Object, Text, Text,
IntWritable>{
 public void map(Object key, Text value, Context context) throws
IOException, InterruptedException {
 StringTokenizer itr = new StringTokenizer(value.toString(), ",");
 Text city = new Text(itr.nextToken());
 itr.nextToken();
 IntWritable price = new
IntWritable(Integer.parseInt(itr.nextToken()));
 context.write(city, price);
 }
 }

 public static class IntSumReducer extends
Reducer<Text,IntWritable,Text,IntWritable> {

 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values, Context
context) throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }

Large-Scale Data Processing Frameworks Chapter 7

[194]

 result.set(sum);
 context.write(key, result);
 }
 }

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf, "TotalPriceCalculator");
 job.setJarByClass(TotalPrice.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

Once we have the source code, we need to compile it to create a Java Archive (JAR) file. It’s
done in the following manner:

 [user@node-3 ~]$ javac -cp `hadoop classpath` TotalPrice.java
 [user@node-3 ~]$ jar cf tp.jar TotalPrice*.class

Once we have the JAR file created, we can use the Hadoop command to submit the job to
process the input.txt, and produce the output in the /tmp/output-12 directory:

As in the case of streaming MapReduce, we need not copy the source to all
the Hadoop servers.

 [user@node-3 ~]$ hadoop jar tp.jar TotalPrice /tmp/input.txt
/tmp/output-12

This run should go through fine and will produce the output files in the /tmp/output-12
directory. We can see the contents of the output using this command:

[user@node-3 ~]$ hadoop fs -cat /tmp/output-12/part*
Bangalore 270
Kolkata 390
NewDelhi 440

Large-Scale Data Processing Frameworks Chapter 7

[195]

This exactly matches with the previous runs as well.

As we can see, the Hadoop Mapreduce framework has taken all the necessary steps to make
sure that the entire pipeline progress is kept within its control, giving us the desired result.

Even though we have used a very simple dataset for our computation, Hadoop Mapreduce
makes sure that, regardless of the size of data we are dealing with, the same program we
have written before yields the results we are looking for. This makes it a very powerful
architecture for batch jobs.

Summary
So far, we have seen that Hadoop Mapreduce is a powerful framework that offers both
streaming and batch modes of operation to process vast amounts of data with very simple
instructions. Even though Mapreduce was originally the choice of computation framework
in Hadoop, it has failed to meet the ever-changing demands of the market, and new
architectures were developed to address those concerns. We will learn about one such
framework called Apache Spark in the next section.

Apache Spark 2
Apache Spark is a general-purpose cluster computing system. It's very well suited for large-
scale data processing. It performs 100 times better than Hadoop when run completely in-
memory and 10 times better when run entirely from disk. It has a sophisticated directed
acyclic graph execution engine that supports an acyclic data flow model.

Apache Spark has first-class support for writing programs in Java, Scala, Python, and R
programming languages to cater to a wider audience. It offers more than 80 different
operators to build parallel applications without worrying about the underlying
infrastructure.

Apache Spark has libraries catering to Structured Query Language, known as Spark SQL;
this supports writing queries in programs using ANSI SQL. It also has support for
computing streaming data, which is very much needed in today's real-time data processing
requirements such as powering dashboards for interactive user experience systems. Apache
Spark also has machine learning libraries such as Mlib, which caters to running scientific
programs. Then it has support for writing programs for data that follows graph data
structures, known as GraphX. This makes it a really powerful framework that supports
most advanced ways of computing.

Large-Scale Data Processing Frameworks Chapter 7

[196]

Apache Spark runs not only on the Hadoop platform but also on a variety of systems, such
as Apache Mesos, Kubernetes, Standalone, or the Cloud. This makes it a perfect choice for
today's enterprise to chose the way it wants to leverage the power of this system.

In the coming sections, we will learn more about Spark and its ecosystem. We are using
Spark 2.2.0 for this exercise.

Installing Spark using Ambari
From the previous chapter, we have an existing Ambari installation that is running. We will
leverage the same installation to add Spark support. Let's see how we can accomplish this.

Service selection in Ambari Admin
Once we log in to the Ambari Admin interface, we see the main cluster that is created. On
this page, we click on the Actions button on the left-hand-side menu. It shows a screen as
follows. From this menu, we click on the Add Service option:

Large-Scale Data Processing Frameworks Chapter 7

[197]

Add Service Wizard
Once we click on the Add Service menu item, we are shown a Wizard, where we have to
select Spark 2 from the list of all supported services in Ambari. The screen looks like this:

Click on the Next button when the service selection is complete.

Large-Scale Data Processing Frameworks Chapter 7

[198]

Server placement
Once the Spark 2 service is selected, other dependent services are also automatically
selected for us and we are given a choice to select the placement of the master servers. I
have left the default selection as is:

Click on the Next button when the changes look good.

Large-Scale Data Processing Frameworks Chapter 7

[199]

Clients and Slaves selection
In this step, we are given a choice to select the list of nodes that act as clients for the masters
we have selected in the previous step. We can also select the list of servers on which we can
install the client utilities. Make the selection as per your choice:

Click on the Next button when the changes are done.

Service customization
Since Hive is also getting installed as part of the Spark 2 selection, we are given a choice to
customize the details of the Hive datasource. I have created the database on the master
node with the username as hive, password as hive, and the database also as hive. Please
choose a strong password while making changes in production.

Large-Scale Data Processing Frameworks Chapter 7

[200]

The customization screen looks like this:

Click on Next once the changes are done correctly.

Large-Scale Data Processing Frameworks Chapter 7

[201]

Software deployment
In this screen, we are shown a summary of the selections we have made so far. Click on
Deploy to start deploying the Spark 2 software on the selected servers. We can always
cancel the wizard and start over again in this step if we feel that we have missed any
customization:

Large-Scale Data Processing Frameworks Chapter 7

[202]

Spark installation progress
In this step, we are shown the progress of Spark software installation and its other
dependencies. Once everything is deployed, we are shown a summary of any warnings and
errors. As we can see from the following screen, there are some warnings encountered
during the installation, which indicates that we need to restart a few services once the
wizard is complete. Don't worry its pretty normal to see these errors. We will correct these
in the coming steps to have a successfully running Spark system:

Clicking on Complete finishes the wizard.

Large-Scale Data Processing Frameworks Chapter 7

[203]

Service restarts and cleanup
Since there were warnings during the installation process, we have to restart all the affected
components. The restart process is shown in this screen:

Once we give a confirmation, all the associated services will be restarted and we will have a
successfully running system.

This finishes the installation of Spark 2 on an existing Hadoop cluster managed by Ambari.
We will now learn more about various data structures and libraries in Spark in the coming
sections.

Apache Spark data structures
Even though Mapreduce provides a powerful way to process large amounts of data, it is
restricted due to several drawbacks:

Lack of support for variety of operators
Real-time data processing
Caching the results of data for faster iterations

Large-Scale Data Processing Frameworks Chapter 7

[204]

This is to name a few. Since Apache Spark was built from the ground up, it has approached
the big data computation problem in a very generic way and has provided the developers
with data structures that makes it easier to represent any type of data and use those to
compute in a better way.

RDDs, DataFrames and datasets
At the core of Apache Spark are distributed datasets called RDD, also known as Resilient
Distributed Datasets. These are immutable datasets that are present in the cluster, which
are highly available and fault tolerant. The elements in the RDD can be operated in parallel,
giving a lot of power to the Spark cluster.

Since the data is already present in storage systems, such as HDFS, RDBMS, S3, and so on,
RDDs can easily be created from these external datasources. The API also provides us with
the power to create RDDs from existing in-memory data elements.

These RDDs do not have any pre-defined structure. So, they can assume any form and, by
leveraging the different operators in the Spark library, we can write powerful programs that
give us necessary results without worrying too much about the data complexities.

In order to cater to the RDBMS needs, DataFrames come into play where a DataFrame can
be compared with a table in a relational database system. As we know, tables have rows
and columns and the structure of the data is known ahead of time. By knowing the
structure of the data, several optimizations can be performed during data processing.

Spark datasets are somewhat similar to the DataFrames. But they extend the functionality of
the DataFrames by supporting semi-structured data objects with native language objects
(Java and Scala). DataFrames are an immutable collection of objects with semantics of a
relational schema. Since we are dealing with semi-structured data and native language
objects, there is an encoder/decoder system that takes care of automatically converting
between the types.

Large-Scale Data Processing Frameworks Chapter 7

[205]

Here is a quick comparison chart:

Feature RDDs DataFrame Dataset

Data type Unstructured data Structured data Semi-structured data

Schema requirement Completely free
form Strict datatypes Loosely coupled

Optimization provided
by Spark

Not needed as data
is unstructured

Leverages
optimizations as
datatypes are known

Inferred datatypes
provide some level of
optimization

High level
expressions/filters

Difficult as the data
form is complex in
nature

Can leverage these as
we know the data we
are dealing with

Can leverage here too

Apache Spark programming
Apache Spark has very good programming language support. It provides first-class support
for Java, Scala, Python, and R programming languages. Even though the data structures
and operators that are available with the programming languages are similar in nature, we
have to use programming-language-specific constructs to achieve the desired logic.
Throughout this chapter, we will use Python as the programming language of choice.
However, Spark itself is agnostic to these programming languages and produces the same
results regardless of the programming language used.

Large-Scale Data Processing Frameworks Chapter 7

[206]

Apache Spark with Python can be used in two different ways. The first way is to launch the
pyspark interactive shell, which helps us run Python instructions. The experience is similar
to the Python shell utility. Another way is to write standalone programs that can be invoked
using the spark-submit command. In order to use standalone Spark programs, we have to
understand the basic structure of a Spark program:

The typical anatomy of a spark program consists of a main function that executes different
operators on the RDDs to generate the desired result. There is support for more than 80
different types of operators in the Spark library. At a high level, we can classify these
operators into two types: transformations and actions. Transformation operators convert
data from one form to another. Actions generate the result from the data. In order to
optimize the resources in the cluster for performance reasons, Apache Spark actually
executes the programs in checkpoints. Each checkpoint is arrived at only when there is a
action operator. This is one important thing to remember, especially if you are new to
programming with Spark. Even the most advanced programmers sometimes get confused
about why they don't see the desired result as they did not use any action operator on the
data.

Large-Scale Data Processing Frameworks Chapter 7

[207]

Coming back to the preceding diagram, we have a driver program that has main routine
which performs several actions/transformations on the data thats stored in a filesystem like
HDFS and gives us the desired result. We are aware that RDDs are the basic parallel
datastore in the Spark programming language. Spark is intelligent enough to create these
RDDs from the seed storage like HDFS and once they are created, it can cache the RDDs in
Memory and also make these RDDs highly available by making them fault-tolerant. Even if
the copy of the RDD goes offline due to a node crash, future access on the same RDDs will
quickly be generated from the computation from which it was originally generated.

Sample data for analysis
In order to understand the programming API of spark, we should have a sample dataset on
which we can perform some operations to gain confidence. In order to generate this dataset,
we will import the sample table from the employees database from the previous chapter.

These are the instructions we follow to generate this dataset:

Log in to the server and switch to Hive user:

ssh user@node-3
[user@node-3 ~]$ sudo su - hive

This will put us in a remote shell, where we can dump the table from the MySQL database:

[hive@node-3 ~]$ mysql -usuperset -A -psuperset -h master employees -e
"select * from vw_employee_salaries" > vw_employee_salaries.tsv
[hive@node-3 ~]$ wc -l vw_employee_salaries.tsv
2844048 vw_employee_salaries.tsv
[hive@node-3 ~]$

Next, we should copy the file to Hadoop using the following command:

[hive@node-3 ~]$ hadoop fs -put ./vw_employee_salaries.tsv
/user/hive/employees.csv

Now, the data preparation is complete as we have successfully copied it to HDFS. We can
start using this data with Spark.

Large-Scale Data Processing Frameworks Chapter 7

[208]

Interactive data analysis with pyspark
Apache Spark distribution comes with an interactive shell called pyspark. Since we are
dealing with interpreted programming languages like Python, we can write interactive
programs while learning.

If you remember, we have installed Spark with Apache Ambari. So we have to follow the
standard directory locations of Apache Ambari to access the Spark-related binaries:

[hive@node-3 ~]$ cd /usr/hdp/current/spark2-client/
[hive@node-3 spark2-client]$./bin/pyspark
Python 2.7.5 (default, Aug 4 2017, 00:39:18)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-16)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use
setLogLevel(newLevel).
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 2.2.0.2.6.4.0-91
 /_/

Using Python version 2.7.5 (default, Aug 4 2017 00:39:18)
SparkSession available as 'spark'.
>>>

The preceding steps launch the interactive Spark shell.

As a first step in understanding Spark's data structures, we will load the employees.csv
file from the HDFS and count the total number of lines in the file using these instructions:

>>> ds = spark.read.text("employees.csv")
>>> ds.count()
2844048
>>>

As we can see, the count matches with the previous load operation on the Unix shell.

Now, let's try to load the first five records from the file and try to see the schema of the data
structure object:

>>> ds.first()
Row(value=u'emp_no\tbirth_date\tfirst_name\tlast_name\tgender\thire_date\ts
alary\tfrom_date\tto_date')
>>> ds.head(5)

Large-Scale Data Processing Frameworks Chapter 7

[209]

[Row(value=u'emp_no\tbirth_date\tfirst_name\tlast_name\tgender\thire_date\t
salary\tfrom_date\tto_date'),
Row(value=u'10001\t1953-09-02\tGeorgi\tFacello\tM\t1986-06-26\t60117\t1986-
06-26\t1987-06-26'),
Row(value=u'10001\t1953-09-02\tGeorgi\tFacello\tM\t1986-06-26\t62102\t1987-
06-26\t1988-06-25'),
Row(value=u'10001\t1953-09-02\tGeorgi\tFacello\tM\t1986-06-26\t66074\t1988-
06-25\t1989-06-25'),
Row(value=u'10001\t1953-09-02\tGeorgi\tFacello\tM\t1986-06-26\t66596\t1989-
06-25\t1990-06-25')]
>>> ds.printSchema()
root
 |-- value: string (nullable = true)

>>>

As we can see, even though we have a CSV (tab separated file), Spark has read the file as a
normal text file separated by newlines and the schema contains only one value, which is of
string datatype.

In this mode of operation, where we treat each record as a line, we can perform only a few
types of operations, such as counting all occurrences of a given name:

>>> ds.filter(ds.value.contains("Georgi")).count()
2323
>>>

This mode of operations is somewhat similar to log processing. But the true power of Spark
comes from the power of treating the data as a table with rows and columns, also known as
DataFrames:

>>> ds = spark.read.format("csv").option("header",
"true").option("delimiter", "\t").load("employees.csv")
>>> ds.count()
2844047

>>> ds.show(5)
+------+----------+----------+---------+------+----------+------+----------
+----------+
|emp_no|birth_date|first_name|last_name|gender| hire_date|salary|
from_date| to_date|
+------+----------+----------+---------+------+----------+------+----------
+----------+
| 10001|1953-09-02| Georgi| Facello| M|1986-06-26|
60117|1986-06-26|1987-06-26|
| 10001|1953-09-02| Georgi| Facello| M|1986-06-26|
62102|1987-06-26|1988-06-25|

Large-Scale Data Processing Frameworks Chapter 7

[210]

| 10001|1953-09-02| Georgi| Facello| M|1986-06-26|
66074|1988-06-25|1989-06-25|
| 10001|1953-09-02| Georgi| Facello| M|1986-06-26|
66596|1989-06-25|1990-06-25|
| 10001|1953-09-02| Georgi| Facello| M|1986-06-26|
66961|1990-06-25|1991-06-25|
+------+----------+----------+---------+------+----------+------+----------
+----------+
only showing top 5 rows

>>>

>>> ds.printSchema()
root
 |-- emp_no: string (nullable = true)
 |-- birth_date: string (nullable = true)
 |-- first_name: string (nullable = true)
 |-- last_name: string (nullable = true)
 |-- gender: string (nullable = true)
 |-- hire_date: string (nullable = true)
 |-- salary: string (nullable = true)
 |-- from_date: string (nullable = true)
 |-- to_date: string (nullable = true)

>>>

Now, we can see that Spark has automatically converted the input CSV text into a
DataFrame. But all the fields are treated as strings.

Let's try to use the schema inference feature of spark to automatically find the datatype of
the fields:

>>> ds = spark.read.format("csv").option("header",
"true").option("delimiter", "\t").option("inferSchema",
"true").load("employees.csv")
18/03/25 19:21:15 WARN FileStreamSink: Error while looking for metadata
directory.
18/03/25 19:21:15 WARN FileStreamSink: Error while looking for metadata
directory.
>>> ds.count()
2844047
>>> ds.show(2)
+------+-------------------+----------+---------+------+-------------------
+------+-------------------+-------------------+
|emp_no| birth_date|first_name|last_name|gender|
hire_date|salary| from_date| to_date|
+------+-------------------+----------+---------+------+-------------------
+------+-------------------+-------------------+

Large-Scale Data Processing Frameworks Chapter 7

[211]

| 10001|1953-09-02 00:00:00| Georgi| Facello| M|1986-06-26
00:00:00| 60117|1986-06-26 00:00:00|1987-06-26 00:00:00|
| 10001|1953-09-02 00:00:00| Georgi| Facello| M|1986-06-26
00:00:00| 62102|1987-06-26 00:00:00|1988-06-25 00:00:00|
+------+-------------------+----------+---------+------+-------------------
+------+-------------------+-------------------+
only showing top 2 rows

>>> ds.printSchema()
root
 |-- emp_no: integer (nullable = true)
 |-- birth_date: timestamp (nullable = true)
 |-- first_name: string (nullable = true)
 |-- last_name: string (nullable = true)
 |-- gender: string (nullable = true)
 |-- hire_date: timestamp (nullable = true)
 |-- salary: integer (nullable = true)
 |-- from_date: timestamp (nullable = true)
 |-- to_date: timestamp (nullable = true)

>>>

Now we can see that all the fields have a proper datatype that is closest to the MySQL table
definition.

We can apply simple actions on the data to see the results. Let's try to find the total male
records:

>>> ds.filter(ds.gender == "M").count()
1706321

Also, try to find the male records that have more than $100K of pay:

>>> ds.filter(ds.gender == "M").filter(ds.salary > 100000).count()
57317

It's so simple, right? There are many more operators that are available for exploration in the
official Spark documentation.

Standalone application with Spark
In the previous section, we have seen how to use the interactive shell pyspark to learn the
Spark Python API. In this section, we will write a simple Python program that we will run
on the Spark cluster. In real-world scenarios, this is how we run our applications on the
Spark cluster.

Large-Scale Data Processing Frameworks Chapter 7

[212]

In order to do this, we will write a program called MyFirstApp.py with the following
contents:

[hive@node-3 ~]$ cat MyFirstApp.py
from pyspark.sql import SparkSession

Path to the file in HDFS
csvFile = "employees.csv"

Create a session for this application
spark = SparkSession.builder.appName("MyFirstApp").getOrCreate()

Read the CSV File
csvTable = spark.read.format("csv").option("header",
"true").option("delimiter", "\t").load(csvFile)

Print the total number of records in this file
print "Total records in the input : {}".format(csvTable.count())

Stop the application
spark.stop()
[hive@node-3 ~]$

In order to run this program on the Spark cluster, we have to use the spark-submit
command, which does the needful in terms of scheduling and coordinating the complete
application life cycle:

[hive@node-3 ~]$ /usr/hdp/current/spark2-client/bin/spark-submit
./MyFirstApp.py 2>&1 | grep -v -e INFO -e WARN
Total records in the input : 2844047

As expected, those are the total number of records in our input file (excluding the header
line).

Spark streaming application
One of the powerful features of spark is building applications that process real-time
streaming data and produce real-time results. In order to understand this more, we will
write a simple application that tries to find duplicate messages in an input stream and
prints all the unique messages.

This kind of application is helpful when we are dealing with an unreliable stream of data
and we want to submit only the data that is unique.

Large-Scale Data Processing Frameworks Chapter 7

[213]

The source code for this application is given here:

[hive@node-3 ~]$ cat StreamingDedup.py
from pyspark import SparkContext
from pyspark.streaming import StreamingContext

context = SparkContext(appName="StreamingDedup")
stream = StreamingContext(context, 5)

records = stream.socketTextStream("localhost", 5000)
records
 .map(lambda record: (record, 1))
 .reduceByKey(lambda x,y: x + y)
 .pprint()

ssc.start()
ssc.awaitTermination()

In this application, we connect to a remote service on port 5000, which emits the messages
at its own page. The program summarizes the result of operation every 5 seconds as defined
in the StreamingContext parameter.

Now, let's start a simple TCP server using the UNIX netcat command (nc) and a simple
loop:

for i in $(seq 1 10)
do
 for j in $(seq 1 5)
 do
 sleep 1
 tail -n+$(($i * 3)) /usr/share/dict/words | head -3
 done
done | nc -l 5000

After this, submit our program to the spark cluster:

[hive@node-3 ~]$ /usr/hdp/current/spark2-client/bin/spark-submit
./StreamingDedup.py 2>&1 | grep -v -e INFO -e WARN

After the program starts, we see the following output:

Time: 2018-03-26 04:33:45

(u'16-point', 5)
(u'18-point', 5)
(u'1st', 5)

Large-Scale Data Processing Frameworks Chapter 7

[214]

Time: 2018-03-26 04:33:50

(u'2', 5)
(u'20-point', 5)
(u'2,4,5-t', 5)

We see that every word has exactly 5 as the count, which is expected as we are printing it
five times in the Unix command loop.

We can understand this with the help of this diagram:

INPUT STREAM produces a continuous stream of data, which is consumed in real time by
the Spark Program. After that, the results are printed by eliminating the duplicates

If we see this in chronological order, the data from time zero to time five seconds (T0 - T5) is
processed and results are available in T5 time. Same thing for all other time slots.

In this simple example, we have just learned the basics of how Spark Streaming can be used
to build real-time applications.

Large-Scale Data Processing Frameworks Chapter 7

[215]

Spark SQL application
When writing applications using Spark, developers have the option to use SQL on
structured data to get the desired results. An example makes this easier for us to
understand how to do this:

[hive@node-3 ~]$ cat SQLApp.py
from pyspark.sql import SparkSession

Path to the file in HDFS
csvFile = "employees.csv"

Create a session for this application
spark = SparkSession.builder.appName("SQLApp").getOrCreate()

Read the CSV File
csvTable = spark.read.format("csv").option("header",
"true").option("delimiter", "\t").load(csvFile)
csvTable.show(3)

Create a temporary view
csvView = csvTable.createOrReplaceTempView("employees")

Find the total salary of employees and print the highest salary makers
highPay = spark.sql("SELECT first_name, last_name, emp_no, SUM(salary) AS
total FROM employees GROUP BY emp_no, first_name, last_name ORDER BY
SUM(salary)")

Generate list of records
results = highPay.rdd.map(lambda rec: "Total: {}, Emp No: {}, Full Name: {}
{}".format(rec.total, rec.emp_no, rec.first_name, rec.last_name)).collect()

Show the top 5 of them
for r in results[:5]:
 print(r)

Stop the application
spark.stop()
[hive@node-3 ~]$

In this example, we build a DataFrame from employees.csv and then create a view in
memory called employees. Later, we can use ANSI SQL to write and execute queries to
generate the necessary results.

Large-Scale Data Processing Frameworks Chapter 7

[216]

Since we are interested in finding the top paid employees, the results are shown as
expected:

[hive@node-3 ~]$ /usr/hdp/current/spark2-client/bin/spark-submit
./SQLApp.py 2>&1 | grep -v -e INFO -e WARN
[rdd_10_0]
+------+----------+----------+---------+------+----------+------+----------
+----------+
|emp_no|birth_date|first_name|last_name|gender| hire_date|salary|
from_date| to_date|
+------+----------+----------+---------+------+----------+------+----------
+----------+
| 10001|1953-09-02| Georgi| Facello| M|1986-06-26|
60117|1986-06-26|1987-06-26|
| 10001|1953-09-02| Georgi| Facello| M|1986-06-26|
62102|1987-06-26|1988-06-25|
| 10001|1953-09-02| Georgi| Facello| M|1986-06-26|
66074|1988-06-25|1989-06-25|
+------+----------+----------+---------+------+----------+------+----------
+----------+
only showing top 3 rows

Total: 40000.0, Emp No: 15084, Full Name: Aloke Birke
Total: 40000.0, Emp No: 24529, Full Name: Mario Antonakopoulos
Total: 40000.0, Emp No: 30311, Full Name: Tomofumi Coombs
Total: 40000.0, Emp No: 55527, Full Name: Kellyn Ouhyoung
Total: 40000.0, Emp No: 284677, Full Name: Richara Eastman

As we can see, the simplified API provided by Apache Spark makes it easier to write SQL
Queries on top of CSV data (without the need for an RDBMS) to get what we are looking
for.

Summary
In this chapter, you looked at the basic concepts of large-scale data processing frameworks
and also learned that one of the powerful features of spark is building applications that
process real-time streaming data and produce real-time results.

In the next few chapters, we will discuss how to build real-time data search pipelines with
Elasticsearch stack.

8
Building Enterprise Search

Platform
After learning data ingestions and data persistence approaches, let's learn about searching
the data. In this chapter, we will learn about the following important things:

Data search techniques
Building real-time search engines.
Searching real-time, full-text data
Data indexing techniques
Building a real-time data search pipeline

The data search concept
In our everyday life, we always keep on searching something. In the morning, we search for
a toothbrush, newspaper, search stock prices, bus schedule, office bag, and so on. The list
goes on and on. This search activity stops when we go to bed at the end of the day. We use
a lot of tools and techniques to search these things to minimize the actual search time. We
use Google to search most of the things such as news, stock prices, bus schedule, and
anything and everything we need. To search a particular page of a book, we use the book's
index. So, the point is that search is a very important activity of our life. There are two
important concepts can be surfaced out of this, that is, search tool and search time. Just
think of a situation where you want to know about a particular stock price of a company
and it takes a few minutes to load that page. You will definitely get very annoyed. It is
because the Search Time in this case is not acceptable to you. So then the question is, How to
reduce this search time? We will learn that in this chapter.

Building Enterprise Search Platform Chapter 8

[218]

The need for an enterprise search engine
Just like we all need a tool to search our own things, every company also needs a search
engine to build so that internal and external entities can find what they want.

For example, an employee has to search for his/her PTO balance, paystub of a particular
month, and so on. The HR department may search for employees who are in finance group
or so. In an e-commerce company, a product catalog is the most searchable object. It is a
very sensitive object because it directly impacts the revenue of the company. If a customer
wants to buy a pair of shoes, the first thing he/she can do is search the company product
catalog. If the search time is more than a few seconds, the customer may lose interest in the
product. It may also be possible that the same customer goes to another website to buy a
pair of shoes, resulting in a loss of revenue.

It appears that even with all the tech and data in the world, we can't do much without two
crucial components:

Data search
Data index

Companies such as Google, Amazon, and Apple have changed the word's expectations of
search. We all expect them to search anything, anytime, and using any tool such as website,
mobile, and voice-activated tools like Google Echo, Alexa, and HomePad. We expect these
tools to answer all our questions, from How's the weather today? to give me a list of gas
stations near me.

As these expectations are growing, the need to index more and more data is also growing.

Tools for building an enterprise search engine
The following are some popular tools/products/technologies available:

Apache Lucene
Elasticsearch
Apache Solr
Custom (in-house) search engine

In this chapter, I will focus on Elasticsearch in detail. I will discuss Apache
Solr on a conceptual level only.

Building Enterprise Search Platform Chapter 8

[219]

Elasticsearch
Elasticsearch is an open source search engine. It is based on Apache Lucene. It is distributed
and supports multi-tenant capability. It uses schema-free JSON documents and has a built-
in, HTTP-based web interface. It also supports analytical RESTful query workloads. It is a
Java-based database server. Its main protocol is HTTP/JSON.

Why Elasticsearch?
Elasticsearch is the most popular data indexing tool as of today. It is because of its the
following features:

It is fast. Data is indexed at a real-time speed.
It is scalable. It scales horizontally.
It is flexible. It supports any data format, structured, semi-structured, or
unstructured.
It is distributed. If one node fails, the cluster is still available for business.
It supports data search query in any language: Java, Python Ruby, C#, and so on.
It has a Hadoop connector, which facilitates smooth communication between
Elasticsearch and Hadoop.
It supports robust data aggregation on huge datasets to find trends and patterns.
The Elastic stack (Beats, Logstash, Elasticsearch, and Kibana) and X-Pack offers
out-of-the-box support for data ingestion, data indexing, data visualization, data
security, and monitoring.

 Elasticsearch components
Before we take a deep dive, let's understand a few important components of Elasticsearch.

Index
Elasticsearch index is a collection of JSON documents. Elasticsearch is a data store that may
contain multiple indices. Each index may be divided into one or many types. A type is a
group of similar documents. A type may contain multiple documents. In terms of database
analogy, an index is a database and each of its types is a table. Each JSON document is a
row in that table.

Building Enterprise Search Platform Chapter 8

[220]

Indices created in Elasticsearch 6.0.0 or later may only contain a single
mapping type.

Mapping types will be completely removed in Elasticsearch 7.0.0.

Document
Document in Elasticsearch means a JSON document. It is a basic unit of data to be stored in
an index. An index comprises multiple documents. In the RDBMS world, a document is
nothing but a row in a table. For example, a customer document may look like the
following:

{
"name": "Sam Taylor",
"birthdate": "1995-08-11",
"address":
{
"street": "155 rabbit Street",
"city": "San Francisco",
"state": "ca",
"postalCode": "94107"
},
"contactPhone":
[
{
"type": "home",
"number": "510-415-8929"
},
{
"type": "cell",
"number": "408-171-8187"
}
]
}

Mapping
Mapping is schema definition of an index. Just like a database, we have to define a data
structure of a table. We have to create a table, its columns, and column data types. In
Elasticsearch, we have define a structure of an index during its creation. We may have to
define which field can be indexed, searchable, and storable.

Building Enterprise Search Platform Chapter 8

[221]

The good news is that, Elasticsearch supports dynamic mapping. It means that mapping is
not mandatory at index creation time. An index can be created without mapping. When a
document is sent to Elasticsearch for indexing, Elasticsearch automatically defines the data
structure of each field and make each field a searchable field.

Cluster
Elasticsearch is a collection of nodes (servers). Each node may store part of the data in index
and provides federated indexing and search capabilities across all nodes. Each cluster has a
unique name, elasticsearch, by default. A cluster is divided into multiple types of
nodes, namely Master Node and Data Node. But an Elasticsearch cluster can be created
using just one node having both Master and Data nodes installed on the same node:

Master node: This controls the entire cluster. There can be more than one master
node in a cluster (three are recommended). Its main function is index creation or
deletion and allocation of shards (partitions) to data nodes.
Data node: This stores the actual index data in shards. They support all data-
related operations such as aggregations, index search, and so on.

Type
Documents are divided into various logical types for example, order document, product
document, customer document, and so on. Instead of creating three separate order, product,
and customer indices, a single index can be logically divided into order, product and
customer types. In RDBMS analogy, a type is nothing but a Table in a database. So, a type is
a logical partition of an index.

Type is deprecated in Elasticsearch version 6.0.

How to index documents in Elasticsearch?
Let's learn how Elasticsearch actually works by indexing these three sample documents.
While learning this, we will touch upon a few important functions/concepts of
Elasticsearch.

Building Enterprise Search Platform Chapter 8

[222]

These are the three sample JSON documents to be indexed:

{
"name": "Angela Martin",
"birthdate": "1997-11-02",
"street": "63542 Times Square",
"city": "New York",
"state": "NY",
"zip": "10036",
"homePhone": "212-415-8929",
"cellPhone": "212-171-8187"
} ,
{
"name": "Sam Taylor",
"birthdate": "1995-08-11",
"street": "155 rabbit Street",
"city": "San Francisco",
"state": "ca",
"zip": "94107",
"homePhone": "510-415-8929",
"cellPhone": "408-171-8187"
} ,
{
"name": "Dan Lee",
"birthdate": "1970-01-25",
"street": "76336 1st Street",
"city": "Los Angeles",
"state": "ca",
"zip": "90010",
"homePhone": "323-892-5363",
"cellPhone": "213-978-1320"
}

Elasticsearch installation
First things first. Let's install Elasticsearch.

Please do the following steps to install Elasticsearch on your server. It is assumed that you
are installing Elasticsearch using CentOS 7 on your server.

What minimum Hardware is required?

RAM: 4 GB
CPU: 2

Building Enterprise Search Platform Chapter 8

[223]

Which JDK needs to be installed? We need JDK 8. If you don't have JDK 8 installed on your
server, do the following steps to install JDK 8:

Change to home folder:1.

 $ cd ~

Download JDK RPM:2.

$ wget --no-cookies --no-check-certificate --header "Cookie:
gpw_e24=http%3A%2F%2Fwww.oracle.com%2F; oraclelicense=accept-
securebackup-cookie"
http://download.oracle.com/otn-pub/java/jdk/8u73-b02/jdk-8u73-linux
-x64.rpm

Install RMP using YUM (it is assumed that you have sudo access):3.

$ sudo yum -y localinstall jdk-8u73-linux-x64.rpm

Since, we have installed JDK 8 on our server successfully, let's start installing Elasticsearch.

Installation of Elasticsearch
For detailed installation steps, please refer to the following URL:

https://www.elastic.co/guide/en/elasticsearch/reference/current/rpm.html

The RPM for Elasticsearch v6.2.3 can be downloaded from the website and1.
installed as follows:

$ wget
https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-
6.1.2.rpm
$ sudo rpm --install elasticsearch-6.1.2.rpm

To configure Elasticsearch to start automatically when the system boots up, run2.
the following commands.

sudo /bin/systemctl daemon-reload
sudo /bin/systemctl enable elasticsearch.service

Elasticsearch can be started and stopped as follows:3.

sudo systemctl start elasticsearch.service
sudo systemctl stop elasticsearch.service

https://www.elastic.co/guide/en/elasticsearch/reference/current/rpm.html

Building Enterprise Search Platform Chapter 8

[224]

The main configuration file is located in the config folder called elasticsearch.yml.

Let's do the following initial config changes in elasticsearch.yml. Find and replace the
following parameters:

cluster.name: my-elaticsearch
path.data: /opt/data
path.logs: /opt/logs
network.host: 0.0.0.0
http.port: 9200

Now start Elasticsearch:

sudo systemctl start elasticsearch.service

Check whether Elasticsearch is running using the following URL:

http://localhost:9200

We will get the following response:

// 20180320161034
// http://localhost:9200/
{
 "name": "o7NVnfX",
"cluster_name": "my-elasticsearch",
"cluster_uuid": "jmB-_FEuTb6N_OFokwxF1A",
"version": {
"number": "6.1.2",
"build_hash": "5b1fea5",
"build_date": "2017-01-10T02:35:59.208Z",
"build_snapshot": false,
"lucene_version": "7.1.0",
"minimum_wire_compatibility_version": "5.6.0",
"minimum_index_compatibility_version": "5.0.0"
},
"tagline": "You Know, for Search"
}

Now, our Elasticsearch is working fine. Let's create an index to store our documents.

Building Enterprise Search Platform Chapter 8

[225]

Create index
We will use the following curl command to create our first index named my_index:

curl -XPUT 'localhost:9200/my_index?pretty' -H 'Content-Type:
application/json' -d'
{
"settings" : {
"index" : {
"number_of_shards" : 2,
"number_of_replicas" : 1
}
}
}
'

We will get this response:

{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "my_index"
}

In the index creation URL, we used settings, shards, and replica. Let's understand what is
meant by shard and replica.

Primary shard
We have created index with three shards. It means Elasticsearch will divide index into three
partitions. Each partition is called a shard. Each shard is a full-fledged, independent Lucene
index. The basic idea is that Elasticsearch will store each shard on a separate data node to
increase the scalability. We have to mention how many shards we want at the time of index
creation. Then, Elasticsearch will take care of it automatically. During document search,
Elasticsearch will aggregate all documents from all available shards to consolidate the
results so as to fulfill a user search request. It is totally transparent to the user. So the
concept is that index can be divided into multiple shards and each shard can be hosted on
each data node. The placement of shards will be taken care of by Elasticsearch itself. If we
don't specify the number of shards in the index creation URL, Elasticsearch will create five
shards per index by default.

Building Enterprise Search Platform Chapter 8

[226]

Replica shard
We have created index with one replica. It means Elasticsearch will create one copy (replica)
of each shard and place each replica on separate data node other than the shard from which
it is copied. So, now there are two shards, primary shard (the original shard) and replica
shard (the copy of the primary shard). During a high volume of search activity,
Elasticsearch can provide query results either from primary shards or from replica shards
placed on different data nodes. This is how Elasticsearch increases the query throughput
because each search query may go to different data nodes.

In the summary, both, primary shards and replica shards provide horizontal scalability and
throughput. It scales out your search volume/throughput since searches can be executed on
all replicas in parallel.

Elasticsearch is a distributed data store. It means data can be divided into multiple data
nodes. For example, assume if we have just one data node and we keep on ingesting and
indexing documents on the same data node, it may possible that after reaching out the
hardware capacity of that node, we will not be to ingest documents. Hence, in order to
accommodate more documents, we have to add another data node to the existing
Elasticsearch cluster. If we add another data node, Elasticsearch will re-balance the shards
to the newly created data node. So now, user search queries can be accommodated to both
the data nodes. If we created one replica shard, then two replicas per shard will be created
and placed on these two data nodes. Now, if one of the data nodes goes down, then still
user search queries will be executed using just one data node.

Building Enterprise Search Platform Chapter 8

[227]

This picture shows how user search queries are executed from both the data nodes:

Building Enterprise Search Platform Chapter 8

[228]

The following picture shows that even if data nodes A goes down, still, user queries are
executed from data node B:

Let's verify the newly created index:

curl -XGET 'localhost:9200/_cat/indices?v&amp;amp;pretty'

We will get the following response:

health status index uuid pri rep docs.count docs.deleted store.size
pri.store.size
yellow open my_index 2MXqDHedSUqoV8Zyo0l-Lw 5 1 1 0 6.9kb 6.9kb

Building Enterprise Search Platform Chapter 8

[229]

Let's understand the response:

Health: This means the overall cluster health is yellow. There are three statuses:
green, yellow, and red. The status Green" means the cluster is fully functional
and everything looks good. The status "Yellow" means cluster is fully available
but some of the replicas are not allocated yet. In our example, since we are using
just one node and 5 shards and 1 replica each, Elasticsearch will not allocate all
the replicas of all the shards on just one data node. The cluster status "Red" means
cluster is partially available and some datasets are not available. The reason may
be that the data node is down or something else.
Status: Open. It means the cluster is open for business.
Index : Index name. In our example, the index name is my_index.
Uuid : This is unique index ID.
Pri : Number of primary shards.
Rep : Number of replica shards.
docs.count : Total number of documents in an index.
docs.deleted : Total number of documents deleted so far from an index.
store.size : The store size taken by primary and replica shards.
pri.store.size : The store size taken only by primary shards.

Ingest documents into index
The following curl command can be used to ingest a single document in the my_index
index:

curl -X PUT 'localhost:9200/my_index/customer/1' -H 'Content-Type:
application/json' -d '
{
"name": "Angela Martin",
"birthdate": "1997-11-02",
"street": "63542 Times Square",
"city": "New York",
"state": "NY",
"zip": "10036",
"homePhone": "212-415-8929",
"cellPhone": "212-171-8187"
}'

In the previous command, we use a type called customer, which is a logical partition of an
index. In a RDBMS analogy, a type is like a table in Elasticsearch.

Building Enterprise Search Platform Chapter 8

[230]

Also, we used the number 1 after the type customer. It is an ID of a customer. If we omit it,
then Elasticsearch will generate an arbitrary ID for the document.

We have multiple documents to be inserted into the my_index index. Inserting documents
one by one in the command line is very tedious and time consuming. Hence, we can include
all the documents in a file and do a bulk insert into my_index.

Create a sample.json file and include all the three documents:

{"index":{"_id":"1"}}

{"name": "Sam Taylor","birthdate": "1995-08-11","address":{"street": "155
rabbit Street","city": "San Francisco","state": "CA","zip":
"94107"},"contactPhone":[{"type": "home","number": "510-415-8929"},{"type":
"cell","number": "408-171-8187"}]}

{"index":{"_id":"2"}}
{"name": "Dan Lee","birthdate": "1970-01-25","address":{"street": "76336
1st Street","city": "Los Angeles","state": "CA","zip":
"90010"},"contactPhone":[{"type": "home","number": "323-892-5363"},{"type":
"cell","number": "213-978-1320"}]}

{"index":{"_id":"3"}}

{"name": "Angela Martin","birthdate": "1997-11-02","address":{"street":
"63542 Times Square","city": "New York","state": "NY","zip":
"10036"},"contactPhone":[{"type": "home","number": "212-415-8929"},{"type":
"cell","number": "212-171-8187"}]}

Bulk Insert
Let's ingest all the documents in the file sample.json at once using the following
command:

curl -H 'Content-Type: application/json' -XPUT
'localhost:9200/my_index/customer/_bulk?pretty&amp;amp;refresh' --data-
binary "@sample.json"

Let's verify all the records using our favorite browser. It will show all the three records:

http://localhost:9200/my_index/_search

Building Enterprise Search Platform Chapter 8

[231]

Document search
Since we have documents in our my_index index, we can search these documents:

Find out a document where city = " Los Angeles? and query is as follows:

curl -XGET 'http://localhost:9200/my_index2/_search?pretty' -H 'Content-
Type: application/json' -d' {
"query": {
"match": {
"city": "Los Angeles" }
}
}'

Response:

{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 3,"successful" : 3,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 1,
"max_score" : 1.3862944,
"hits" : [
{
"_index" : "my_index",
"_type" : "customer",
"_id" : "3",
"_score" : 1.3862944,
"_source" : {
"name" : "Dan Lee",
"birthdate" : "1970-01-25",
"street" : "76336 1st Street",
"city" : "Los Angeles",
"state" : "ca",
"postalCode" : "90010",
"homePhone" : "323-892-5363",
"cellPhone" : "213-978-1320"
}
}
]
}
}

Building Enterprise Search Platform Chapter 8

[232]

If we analyze the response, we can see that the source section gives a back the document we
were looking for. The document is in the index my_index, "_type" : "customer",
"_id" : "3". Elasticsearch searches all three _shards successfully.

Under the hits section, there is a field called _score. Elasticsearch calculates the relevance
frequency of each field within a document and stores it in index. It is called the weight of
the document. This weight is calculated based on four important factors: term frequency,
inverse frequency, document frequency, and field length frequency. This brings up another
question, How does Elasticsearch index a document?

For example, we have the following four documents to index in Elasticsearch:

I love Elasticsearch
Elasticsearch is a document store
HBase is key value data store
I love HBase

Term Frequency Document No.

a 2 2

index 1 2

Elasticsearch 2 1,2

HBase 2 1

I 2 1,4

is 2 2,3

Key 1 3

love 2 1,4

store 2 2,3

value 1 3

When we ingest three documents in Elasticsearch, an Inverted Index is created, like the
following.

Building Enterprise Search Platform Chapter 8

[233]

Now, if we want to query term Elasticsearch, then only two documents need to be searched:
1 and 2. If we run another query to find love Elasticsearch, then three documents need to be
searched (documents 1,2, and 4) before sending the results from only the first document.

Also, there is one more important concept we need to understand.

Meta fields
When we ingest a document into index, Elasticsearch adds a few meta fields to each index
document. The following is the list of meta fields with reference to our sample my_index:

_index: Name of the index. my_index.
_type: Mapping type. "customer" (deprecated in version 6.0).
_uid: _type + _id (deprecated in version 6.0).
_id: document_id (1).
_all: This concatenates all the fields of an index into a searchable string
(deprecated in version 6.0).
_ttl: Life a document before it can be automatically deleted.
_timestamp: Provides a timestamp for a document.
_source: This is an actual document, which is automatically indexed by default.

Mapping
In RDBMS analogy, mapping means defining a table schema. We always define a table
structure, that is, column data types. In Elasticsearch, we also need to define the data type
for each field. But then comes another question. Why did we not define it before when we
ingested three documents into the my_index index? The answer is simple. Elasticsearch
doesn't care. It is claimed that Elasticsearch is a schema-less data model.

If we don't define a mapping, Elasticsearch dynamically creates a mapping for us by
defining all fields as text. Elasticsearch is intelligent enough to find out date fields to assign
the date data type to them.

Let's find the existing dynamic mapping of index my_index:

curl -XGET 'localhost:9200/my_index2/_mapping/?pretty'

Building Enterprise Search Platform Chapter 8

[234]

Response:

{
"my_index" : {
"mappings" : {
customer" : {
"properties" : {
"birthdate" : {
"type" : "date"
},
"cellPhone" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"city" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"homePhone" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"name" : {
"type" : "text",
"fields" : {
"keyword" : {
type" : "keyword",
"ignore_above" : 256
}
}
},
"postalCode" : {
"type" : "text",

Building Enterprise Search Platform Chapter 8

[235]

"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"state" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"street" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
}
}
}
}

Elasticsearch supports two mapping types as follows:

Static mapping
Dynamic mapping

Static mapping
In static mapping, we always know our data and we define the appropriate data type for
each field. Static mapping has to be defined at the time of index creation.

Building Enterprise Search Platform Chapter 8

[236]

Dynamic mapping
We have already used dynamic mapping for our documents in our example. Basically, we
did not define any data type for any field. But when we ingested documents using _Bulk
load, Elasticsearch transparently defined text and date data types appropriately for each
field. Elasticsearch intelligently found our Birthdate as a date field and assigned the
date data type to it.

Elasticsearch-supported data types
The following spreadsheet summarizes the available data types in Elasticsearch:

Common Complex Geo Specialized

String Array Geo_Point ip

Keyword Object (single Json) Geo_Shape completion

Date Nested (Json array) token_count

Long join

Short percolator

Byte murmur3

Double

Float

Boolean

Binary

Integer_range

Float_range

Long_range

Double_range

Date_range

Building Enterprise Search Platform Chapter 8

[237]

Most of the data types need no explanation. But the following are a few explanations for
specific data types:

Geo-Point: You can define latitude and longitude points here
Geo-Shape: This is for defining shapes
Completion: This data type is for defining auto completion of words.
Join: To define parent/child relationships
Percolator: This is for query-dsl
Murmur3: During index time, it is for calculations hash value and store it into
index

Mapping example
Let's re-create another index, second_index, which is similar to our first_index with
static mapping, where we will define the data type of each field separately:

curl -XPUT localhost:9200/second_index -d '{
"mappings": {
"customer": {
"_source": {
"enabled": false
},
"properties": {
"name": {"type": "string", "store": true},
"birthdate": {"type": "string"},
"street": {"type": "string"},
"city": {"type": "date"},
"state": {"type": "string", "index": "no", "store": true}
"zip": {"type": "string", "index": "no", "store": true}}
}
}
}

Let's understand the preceding mapping. We disable the _source field for the customer
type. It means, we get rid of the default behavior, where Elasticsearch stores and indexes
the document by default. Now, since we have disabled it, we will deal with each and every
field separately to decide whether that field should be indexed stored or both.

So, in the preceding example, we want to store only three fields, name, state and zip.
Also, we don't want to index the state and zip fields. It means state and zip fields are
not searchable.

Building Enterprise Search Platform Chapter 8

[238]

Analyzer
We have already learned about an inverted index. We know that Elasticsearch stores a
document into an inverted index. This transformation is known as analysis. This is required
for a successful response of the index search query.

Also, many of the times, we need to use some kind of transformation before sending that
document to Elasticsearch index. We may need to change the document to lowercase,
stripping off HTML tags if any from the document, remove white space between two
words, tokenize the fields based on delimiters, and so on.

Elasticsearch offers the following built-in analyzers:

Standard analyzer: It is a default analyzer. This uses standard tokenizer to divide
text. It normalizes tokens, lowercases tokens, and also removes unwanted tokens.
Simple analyzer: This analyzer is composed of lowercase tokenizer.
Whitespace analyzer: This uses the whitespace tokenizer to divide text at spaces.
Language analyzers: Elasticsearch provides many language-specific analyzers
such as English, and so on.
Fingerprint analyzer: The fingerprint analyzer is a specialist analyzer. It creates a
fingerprint, which can be used for duplicate detection.
Pattern analyzer: The pattern analyzer uses a regular expression to split the text
into terms.
Stop analyzer: This uses letter tokenizer to divide text. It removes stop words
from token streams. for example, all stop words like a, an, the, is and so on.
Keyword analyzer: This analyzer tokenizes an entire stream as a single token. It
can be used for zip code.
Character filter: Prepare a string before it is tokenize. Example: remove html tags.
Tokenizer: MUST have a single tokenizer. It's used to break up the string into
individual terms or tokens.
Token filter: Change, add or remove tokens. Stemmer is a token filter, it is used
to get base of word, for example: learned, learning => learn

Example of atandard analyzer:

curl -XPOST 'localhost:9200/_analyze?pretty' -H 'Content-Type:
application/json' -d'
{
"analyzer": "standard",
"text": " 1. Today it's a Sunny-day, very Bright."
}'

Building Enterprise Search Platform Chapter 8

[239]

Response:

[today, it's , a, sunny, day, very, bright]

Example of simple analyzer:

curl -XPOST 'localhost:9200/_analyze?pretty' -H 'Content-Type:
application/json' -d'
{
"analyzer": "simple",
"text": " 1. Today it's a Sunny-day, very Bright."
}'

Response:

[today, it's , a, sunny, day, very, bright]

Elasticsearch stack components
The Elasticsearch stack consists of following

Beats
Logstash
Elasticsearch
Kibana

Let's study them in brief.

Beats
Please refer to the following URL to know more about beats: https:/ ​/​www. ​elastic. ​co/
products/​beats.

Beats are lightweight data shippers. Beats are installed on to servers as agents. Their main
function is collect the data and send it to either Logstash or Elasticsearch. We can configure
beats to send data to Kafka topics also.

https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats

Building Enterprise Search Platform Chapter 8

[240]

There are multiple beats. Each beat is meant for collecting specific datasets and metrics. The
following are various types of Beats:

Filebeat: For collection of log files. They simplify the collection, parsing, and
visualization of common log formats down to a single command. Filebeat comes
with internal modules (auditd, Apache, nginx, system, and MySQL).
Metricbeat: For collection of metrics. They collect metrics from any systems and
services, for example, memory, COU, and disk. Metricbeat is a lightweight way
to send system and service statistics.
Packetbeat: This is for collection of network data. Packetbeat is a lightweight
network packet analyzer that sends data to Logstash or Elasticsearch.
Winlogbeat: For collection of Windows event data. Winlogbeat live-streams
Windows event logs to Elasticsearch and Logstash.
Auditbeat: For collection of audit data. Auditbeat collects audit framework data.
Heartbeat: For collection of uptime monitoring data. Heartbeat ships this
information and response time to Elasticsearch.

Installation of Filebeat:

$wget
https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-6.1.2-x86_64
.rpm
$ sudo rpm --install filebeat-6.1.2-x86_64.rpm
sudo /bin/systemctl daemon-reload
sudo /bin/systemctl enable filebeat.service

Logstash
Logstash is a lightweight, open source data processing pipeline. It allows collecting data
from a wide variety of sources, transforming it on the fly, and sending it to any desired
destination.

It is most often used as a data pipeline for Elasticsearch, a popular analytics and search
engine. Logstash is a popular choice for loading data into Elasticsearch because of its tight
integration, powerful log processing capabilities, and over 200 prebuilt open source plugins
that can help you get your data indexed the way you want it.

Building Enterprise Search Platform Chapter 8

[241]

The following is a structure of Logstash.conf:

input {
...
}
filter {
...
}
output {
..
}

Installation of Logstash:

$ wget https://artifacts.elastic.co/downloads/logstash/logstash-6.1.2.rpm
$ sudo rpm --install logstash-6.1.2.rpm
$ sudo /bin/systemctl daemon-reload
$ sudo systemctl start logstash.service

Kibana
Kibana is an open-source data visualization and exploration tool used for log and time
series analytics, application monitoring, and operational intelligence use cases. Kibana
offers tight integration with Elasticsearch, a popular analytics and search engine, which
makes Kibana the default choice for visualizing data stored in Elasticsearch. Kibana is also
popular due to its powerful and easy-to-use features such as histograms, line graphs, pie
charts, heat maps, and built-in geospatial support.

Installation of Kibana:

$wget https://artifacts.elastic.co/downloads/kibana/kibana-6.1.2-x86_64.rpm
$ sudo rpm --install kibana-6.1.2-x86_64.rpm
sudo /bin/systemctl daemon-reload
sudo /bin/systemctl enable kibana.service

Building Enterprise Search Platform Chapter 8

[242]

Use case
Let's assume that we have an application deployed on an application server. That
application is logging on to an access log. Then how can we analyze this access log using a
dashboard? We would like to create a real-time visualization of the following info:

Number of various response codes
Total number of responses
List of IPs

Proposed technology stack:

Filebeat: To read access log and write to Kafka topic
Kafka: Message queues and o buffer message
Logstash: To pull messages from Kafka and write to Elasticsearch index
Elasticsearch: For indexing messages
Kibana: Dashboard visualization

In order to solve this problem, we install filebeat on Appserver. Filebeat will read each line
from the access log and write to the kafka topic in real time. Messages will be buffered in
Kafka. Logstash will pull messages from the Kafka topic and write to Elasticsearch.

Kibana will create real-time streaming dashboard by reading messages from Elasticsearch
index. The following is the architecture of our use case:

Building Enterprise Search Platform Chapter 8

[243]

Here is the step-by-step code sample, Acccss.log:

127.0.0.1 - - [21/Mar/2017:13:52:29 -0400] "GET /web-
portal/performance/js/common-functions.js HTTP/1.1" 200 3558
127.0.0.1 - - [21/Mar/2017:13:52:30 -0400] "GET /web-
portal/performance/js/sitespeed-functions.js HTTP/1.1" 200 13068
127.0.0.1 - - [21/Mar/2017:13:52:34 -0400] "GET /web-portal/img/app2-icon-
dark.png HTTP/1.1" 200 4939
127.0.0.1 - - [21/Mar/2017:13:52:43 -0400] "GET /web-search-
service/service/performanceTest/release/list HTTP/1.1" 200 186
127.0.0.1 - - [21/Mar/2017:13:52:44 -0400] "GET /web-
portal/performance/fonts/opan-sans/OpenSans-Light-webfont.woff HTTP/1.1"
200 22248
127.0.0.1 - - [21/Mar/2017:13:52:44 -0400] "GET /web-
portal/performance/img/icon/tile-actions.png HTTP/1.1" 200 100
127.0.0.1 - - [21/Mar/2017:13:52:44 -0400] "GET /web-
portal/performance/fonts/fontawesome/fontawesome-webfont.woff?v=4.0.3
HTTP/1.1" 200 44432

The following is the complete Filebeat.ymal:

In the Kafka output section, we have mentioned Kafka broker details. output.kafka:

initial brokers for reading cluster metadata
hosts: ["localhost:6667"]

The following is the complete Filebeat.ymal:

###################### Filebeat Configuration Example
#########################
This file is an example configuration file highlighting only the most
common
options. The filebeat.reference.yml file from the same directory contains
all the
supported options with more comments. You can use it as a reference.
#
You can find the full configuration reference here:
https://www.elastic.co/guide/en/beats/filebeat/index.html
For more available modules and options, please see the
filebeat.reference.yml sample
configuration file.
#======================== Filebeat prospectors========================
filebeat.prospectors:
Each - is a prospector. Most options can be set at the prospector level,
so
you can use different prospectors for various configurations.
Below are the prospector specific configurations.
- type: log

Building Enterprise Search Platform Chapter 8

[244]

Change to true to enable this prospector configuration.
enabled: true
Paths that should be crawled and fetched. Glob based paths.
paths:
- /var/log/myapp/*.log
#- c:programdataelasticsearchlogs*
#json.keys_under_root: true
#json.add_error_key: true
Exclude lines. A list of regular expressions to match. It drops the lines
that are
matching any regular expression from the list.
#exclude_lines: ['^DBG']
Include lines. A list of regular expressions to match. It exports the
lines that are
matching any regular expression from the list.
#include_lines: ['^ERR', '^WARN']
Exclude files. A list of regular expressions to match. Filebeat drops the
files that
are matching any regular expression from the list. By default, no files
are dropped.
#exclude_files: ['.gz$']
Optional additional fields. These fields can be freely picked
to add additional information to the crawled log files for filtering
#fields:
level: debug
review: 1
fields:
app: myapp
env: dev
dc: gce
Multiline options
Mutiline can be used for log messages spanning multiple lines. This is
common
for Java Stack Traces or C-Line Continuation
The regexp Pattern that has to be matched. The example pattern matches
all lines starting with [#multiline.pattern: ^[
Defines if the pattern set under pattern should be negated or not.
Default is false.
#multiline.negate: false
Match can be set to "after" or "before". It is used to define if lines
should be append to a pattern
that was (not) matched before or after or as long as a pattern is not
matched based on negate.
Note: After is the equivalent to previous and before is the equivalent to
to next in Logstash
#multiline.match: after
#============================= Filebeat modules
===============================

Building Enterprise Search Platform Chapter 8

[245]

filebeat.config.modules:
Glob pattern for configuration loading
path: ${path.config}/modules.d/*.yml
Set to true to enable config reloading
reload.enabled: false
Period on which files under path should be checked for changes
#reload.period: 10s
#==================== Elasticsearch template setting
==========================
setup.template.settings:
index.number_of_shards: 3
#index.codec: best_compression
#_source.enabled: false
#================================ General
=====================================
The name of the shipper that publishes the network data. It can be used
to group
all the transactions sent by a single shipper in the web interface.
#name:
The tags of the shipper are included in their own field with each
transaction published.
#tags: ["service-X", "web-tier"]
Optional fields that you can specify to add additional information to the
output.
#fields:
env: staging
#============================== Dashboards
=====================================
These settings control loading the sample dashboards to the Kibana index.
Loading
the dashboards is disabled by default and can be enabled either by
setting the
options here, or by using the `-setup` CLI flag or the `setup` command.
#setup.dashboards.enabled: false
The URL from where to download the dashboards archive. By default this
URL
has a value which is computed based on the Beat name and version. For
released
versions, this URL points to the dashboard archive on the
artifacts.elastic.co
website.
#setup.dashboards.url:
#============================== Kibana
=====================================
Starting with Beats version 6.0.0, the dashboards are loaded via the
Kibana API.
This requires a Kibana endpoint configuration.
setup.kibana:

Building Enterprise Search Platform Chapter 8

[246]

Kibana Host
Scheme and port can be left out and will be set to the default (http and
5601)
In case you specify and additional path, the scheme is required:
http://localhost:5601/path
IPv6 addresses should always be defined as: https://[2001:db8::1]:5601
#host: "localhost:5601"
#============================= Elastic Cloud
==================================
These settings simplify using filebeat with the Elastic Cloud
(https://cloud.elastic.co/).
The cloud.id setting overwrites the `output.elasticsearch.hosts` and
`setup.kibana.host` options.
You can find the `cloud.id` in the Elastic Cloud web UI.
#cloud.id:
The cloud.auth setting overwrites the `output.elasticsearch.username` and
`output.elasticsearch.password` settings. The format is `<user>:<pass>`.
#cloud.auth:
#================================ Outputs
=====================================
Configure what output to use when sending the data collected by the beat.
#-----------------------------------Kafka Output---------------------------

output.kafka:
initial brokers for reading cluster metadata
hosts: ["localhost:6667"]
message topic selection + partitioning
topic: logs-topic
partition.round_robin:
reachable_only: false
required_acks: 1
compression: gzip
max_message_bytes: 1000000
#-------------------------- Elasticsearch output --------------------------

#output.elasticsearch:
Array of hosts to connect to.
#hosts: ["localhost:9200"]
Optional protocol and basic auth credentials.
#protocol: "https"
#username: "elastic"
#password: "changeme"
#----------------------------- Logstash output ----------------------------
----#output.logstash:
The Logstash hosts
#hosts: ["localhost:5044"]
Optional SSL. By default is off.
List of root certificates for HTTPS server verifications

Building Enterprise Search Platform Chapter 8

[247]

#ssl.certificate_authorities: ["/etc/pki/root/ca.pem"]
Certificate for SSL client authentication
#ssl.certificate: "/etc/pki/client/cert.pem"
Client Certificate Key
#ssl.key: "/etc/pki/client/cert.key"
#================================ Logging
=====================================
Sets log level. The default log level is info.
Available log levels are: error, warning, info, debug
logging.level: debug
At debug level, you can selectively enable logging only for some
components.
To enable all selectors use ["*"]. Examples of other selectors are
"beat",
"publish", "service".
#logging.selectors: ["*"]
#============================== Xpack Monitoring
===============================
filebeat can export internal metrics to a central Elasticsearch
monitoring
cluster. This requires xpack monitoring to be enabled in Elasticsearch.
The
reporting is disabled by default.
Set to true to enable the monitoring reporter.
#xpack.monitoring.enabled: false
Uncomment to send the metrics to Elasticsearch. Most settings from the
Elasticsearch output are accepted here as well. Any setting that is not
set is
automatically inherited from the Elasticsearch output configuration, so
if you
have the Elasticsearch output configured, you can simply uncomment the
the following line.
#xpack.monitoring.elasticsearch:

We have to create a logs-topic topic in Kafka before we start ingesting messages into it. It
is assumed that we have already installed Kafka on the server. Please refer to Chapter
2, Hadoop Life Cycle Management to read more about Kafka.

Create logs-topic:

bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-
factor 1 --partitions 1 --topic logs-topic

Building Enterprise Search Platform Chapter 8

[248]

The following is the Logstash.conf (to read messages from Kafka and push them to
Elasticseach):

input
{
kafka
{
bootstrap_servers => "127.0.0.1:6667"
group_id => "logstash_logs"
topics => ["logs-topic"]
consumer_threads => 1
type => "kafka_logs"
}
}
filter {
if [type] == "kafka_logs"
{
json {
source => "message"
}
grok {
match => { "message" => "%{IP:ip} - - [%{GREEDYDATA:log_timestamp}]
%{GREEDYDATA:middle} %{NUMBER:status} %{NUMBER:bytes}" }
}
mutate {
add_field => {
"App" => "%{[fields][app]}"
}
}
}
}
output {
if [App] == "myapp"
{
elasticsearch
{
action => "index"
codec => "plain"
hosts => ["http://127.0.0.1:9200"]
index => "log_index-%{+YYYY-MM-dd}"
}
}
}

Building Enterprise Search Platform Chapter 8

[249]

In the Kafka section, we've mentioned the following things:

Kafka bootstrap_servers => "127.0.0.1:6667"
Kafka topics => ["logs-topic"]

In the filter section, we are converting each message into JSON format. After that, we are
parsing each message and dividing it into multiple fields such as ip, timestamp, and
status. Also, we add the application name myapp field to each message.

In the output section, we are writing each message to Elasticsearch. The index name is
log_index-YYYY-MM-dd.

Summary
In this chapter, you looked at the basic concepts and components of an Elasticsearch cluster.

After this, we discussed how Elasticsearch indexes a document using inverted index. We
also discussed mapping and analysis techniques. We learned how we can denormalize an
event before ingesting into Elasticsearch. We discussed how Elasticsearch uses horizontal
scalability and throughput. After learning about Elasticstack components such as Beats,
Logstash, and Kibana, we handled a live use case, where we demonstrated how access log
events can be ingested into Kafka using Filebeat. We developed a code to pull messages
from Kafka and ingest into Elasticsearch using Logstash. At the end, we learned data
visualization using Kibana.

In the next chapter, we will see how to build analytics to design data visualization solutions
that drive business decisions.

9
Designing Data Visualization

Solutions
Once we have the data living in the Hadoop ecosystem and it's been processed, the next
logical step is to build the analytics that drive the business decisions.

In this chapter, we will learn the following topics:

Data visualization
Apache Druid
Apache Superset

Data visualization
Data visualization is the process of understanding the relationships between various
entities in the raw data via graphical means. This is a very powerful technique because it
enables end users to get the message in a very easy form without even knowing anything
about the underlying data.

Data visualization plays a very important role in visual communication of insights from big
data. Its both an art and a science, and requires some effort in terms of understanding the
data; at the same time we need some understanding of the target audience as well.

So far, we have seen that any type of data can be stored in the Hadoop filesystem (HDFS).
In order to convert complex data structures into a visual form, we need to understand the
standard techniques that are used to represent the data.

In data visualization, the message is conveyed to the end users in the form of graphics
which can be in 1D, 2D, 3D, or even higher dimensions. This purely depends on the
meaning we are trying to convey.

Designing Data Visualization Solutions Chapter 9

[251]

Let's take a look at the standard graphics that are used to convey visual messages to users:

Bar/column chart
Line/area chart
Pie chart
Radar chart
Scatter/bubble chart
Tag Cloud
Bubble chart

Bar/column chart
This is a 2D graphical representation of data where the data points are shown as
vertical/horizontal bars. Each bar represents one data point. When there is no time
dimension involved with reference to the data points, the order in which these points are
shown might not make any difference. When we deal with time series data for representing
bar charts, we generally follow the chronological order of display along the X (horizontal)
axis.

Let's take a look at a sample chart that is generated with four data points. The data
represents the amount each user has:

Designing Data Visualization Solutions Chapter 9

[252]

Interpretation: The graph has both text data in rows and columns, and also visuals. If you
observe carefully, the textual data is smaller in size and has only four records. But the visual
graphic conveys the message straightaway without knowing anything about the data.

The message the graph conveys is that:

Sita has more money than everyone
Gita has the least money

Other interpretations are also possible. They are left to the reader.

Line/area chart
This is also typically a 2D chart where each data point is represented as a point on canvas
and all these points belonging to the same dataset are connected using a line. This chart
becomes an area chart when the region from the horizontal/vertical axis is completely
covered up to the line.

There can be more than one line in the same graph, which indicates multiple series of data
for the same entities.

Let's take a look at the sample of this area chart based on the same data as before:

Designing Data Visualization Solutions Chapter 9

[253]

These are the properties of the chart:

The x axis has the list of all the people
The y axis indicates the amount from 0 to 100
Points are drawn on the graph at four places, corresponding to the values in
tabular form
Points are connected with straight lines
The area is filled below the line to make it an area chart

Pie chart
This is also a 2D chart drawn as multiple sectors in a circle. This chart is useful when we
want to highlight the relative importance of all the data points.

Let's take a look at the example chart that is drawn with the same dataset as before to
understand it better:

Designing Data Visualization Solutions Chapter 9

[254]

As you can see, it's easy to understand the relative importance of the amounts owned by
each of the persons using this chart.

The conclusions that are drawn are similar to the previous charts. But the graph is a simple
circle and there are no multiple dimensions here to burden the user.

Radar chart
This is also a 2D graphic where the data axes are the edges of equidistant sectors (like a pie
chart's edges). This graph is useful when there are multiple dimensions in which we want
to understand the relative significance of each data point.

To understand this graph better, let's take a look at this sample data and the graphic:

The data consists of eight columns:

First column: List of all users
Second to Eighth column: Days in a week and the dollars owned by each person
on that day

Designing Data Visualization Solutions Chapter 9

[255]

We want to draw a graph that shows us the following things:

Total dollars per day
Dollars owned by every person every day

We have drawn all this information in the radar chart, where the axes are the sectors (days)
and are capped at a maximum value of 400. Each user's worth is drawn one on top of
another so that we will know the total worth instead of relative worth (this is similar to area
stacking).

Scatter/bubble chart
A scatter chart can be a multi-dimensional graphic. This is one of the simpler graphics to
understand as we render each data point on the canvas corresponding to the numeric value
along the axis. This graph is useful to understand the relative importance of each point
along the axes.

A bubble chart is a variant of a scatter chart, where the points on the canvas show the
values as big bubbles (to signify their importance).

Let's take a look at both these graphics with this example:

The graphic on the left-hand side is a bubble chart and the right one is a scatter plot.

Designing Data Visualization Solutions Chapter 9

[256]

Let's take a look at the data and the charts that are generated.

The input data:

Consists of five rows, whereas we have Sales and Number of Products in
columns

With a bubble chart:

The y axis shows the number of products
The x axis is just positional and doesn't reflect the value from the input data
Each point on the canvas shows the sales corresponding to the number of
products

With the scatter chart:

The y axis shows the sales done
The x axis shows the products sold
Each point on the canvas shows each row in the input

Other charts
There are many other types of graphics possible that are not covered in this section but are
worth exploring on the https:/ ​/​d3js. ​org website. This will give you an understanding of
how data can be represented to convey a very good message to the users.

Practical data visualization in Hadoop
Hadoop has a rich ecosystem of data sources and applications that help us build rich
visualizations. In the coming sections, we will understand two such applications:

Apache Druid
Apache Superset

We will also learn how to use Apache Superset with data in RDBMSes such as MySQL.

https://d3js.org
https://d3js.org
https://d3js.org
https://d3js.org
https://d3js.org
https://d3js.org
https://d3js.org

Designing Data Visualization Solutions Chapter 9

[257]

Apache Druid
Apache Druid is a distributed, high-performance columnar store. Its official website is
https:/​/​druid.​io.

Druid allows us to store both real-time and historical data that is time series in nature. It
also provides fast data aggregation and flexible data exploration. The architecture supports
storing trillions of data points on petabyte sizes.

In order to understand more about the Druid architecture, please refer to this white paper
at http:/​/​static. ​druid. ​io/ ​docs/ ​druid. ​pdf.

Druid components
Let's take a quick look at the different components of the Druid cluster:

Component Description

Druid Broker
These are the nodes that are aware of where the data lies in the
cluster. These nodes are contacted by the applications/clients to get
the data within Druid.

Druid Coordinator These nodes manage the data (they load, drop, and load-balance it) on
the historical nodes.

Druid Overlord This component is responsible for accepting tasks and returning the
statuses of the tasks.

Druid Router These nodes are needed when the data volume is in terabytes or
higher range. These nodes route the requests to the brokers.

Druid Historical
These nodes store immutable segments and are the backbone of the
Druid cluster. They serve load segments, drop segments, and serve
queries on segments' requests.

https://druid.io
https://druid.io
https://druid.io
https://druid.io
https://druid.io
https://druid.io
https://druid.io
http://static.druid.io/docs/druid.pdf
http://static.druid.io/docs/druid.pdf
http://static.druid.io/docs/druid.pdf
http://static.druid.io/docs/druid.pdf
http://static.druid.io/docs/druid.pdf
http://static.druid.io/docs/druid.pdf
http://static.druid.io/docs/druid.pdf
http://static.druid.io/docs/druid.pdf
http://static.druid.io/docs/druid.pdf
http://static.druid.io/docs/druid.pdf
http://static.druid.io/docs/druid.pdf
http://static.druid.io/docs/druid.pdf
http://static.druid.io/docs/druid.pdf
http://static.druid.io/docs/druid.pdf
http://static.druid.io/docs/druid.pdf

Designing Data Visualization Solutions Chapter 9

[258]

Other required components
The following table presents a couple of other required components:

Component Description

Zookeeper Apache Zookeeper is a highly reliable distributed coordination service

Metadata Storage MySQL and PostgreSQL are the popular RDBMSes used to keep track
of all segments, supervisors, tasks, and configurations

Apache Druid installation
Apache Druid can be installed either in standalone mode or as part of a Hadoop cluster. In
this section, we will see how to install Druid via Apache Ambari.

Add service
First, we invoke the Actions drop-down below the list of services in the Hadoop cluster.

The screen looks like this:

Designing Data Visualization Solutions Chapter 9

[259]

Select Druid and Superset
In this setup, we will install both Druid and Superset at the same time. Superset is the
visualization application that we will learn about in the next step.

The selection screen looks like this:

Click on Next when both the services are selected.

Service placement on servers
In this step, we will be given a choice to select the servers on which the application has to be
installed. I have selected node 3 for this purpose. You can select any node you wish.

Designing Data Visualization Solutions Chapter 9

[260]

The screen looks something like this:

Click on Next when when the changes are done.

Designing Data Visualization Solutions Chapter 9

[261]

Choose Slaves and Clients
Here, we are given a choice to select the nodes on which we need the Slaves and Clients for
the installed components. I have left the options that are already selected for me:

Service configurations
In this step, we need to select the databases, usernames, and passwords for the metadata
store used by the Druid and Superset applications. Feel free to choose the default ones. I
have given MySQL as the backend store for both of them.

Designing Data Visualization Solutions Chapter 9

[262]

The screen looks like this:

Once the changes look good, click on the Next button at the bottom of the screen.

Service installation
In this step, the applications will be installed automatically and the status will be shown at
the end of the plan.

Designing Data Visualization Solutions Chapter 9

[263]

Click on Next once the installation is complete. Changes to the current screen look like this:

Installation summary
Once everything is successfully completed, we are shown a summary of what has been
done. Click on Complete when done:

Designing Data Visualization Solutions Chapter 9

[264]

Sample data ingestion into Druid
Once we have all the Druid-related applications running in our Hadoop cluster, we need a
sample dataset that we must load in order to run some analytics tasks.

Let's see how to load sample data. Download the Druid archive from the internet:

[druid@node-3 ~$ curl -O
http://static.druid.io/artifacts/releases/druid-0.12.0-bin.tar.gz
% Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 222M 100 222M 0 0 1500k 0 0:02:32 0:02:32 --:--:-- 594k

Extract the archive:

[druid@node-3 ~$ tar -xzf druid-0.12.0-bin.tar.gz

Copy the sample Wikipedia data to Hadoop:

[druid@node-3 ~]$ cd druid-0.12.0
[druid@node-3 ~/druid-0.12.0]$ hadoop fs -mkdir /user/druid/quickstart
[druid@node-3 ~/druid-0.12.0]$ hadoop fs -put
quickstart/wikiticker-2015-09-12-sampled.json.gz /user/druid/quickstart/

Submit the import request:

[druid@node-3 druid-0.12.0]$ curl -X 'POST' -H 'Content-
Type:application/json' -d @quickstart/wikiticker-index.json
localhost:8090/druid/indexer/v1/task;echo
{"task":"index_hadoop_wikiticker_2018-03-16T04:54:38.979Z"}

After this step, Druid will automatically import the data into the Druid cluster and the
progress can be seen in the overlord console.

Designing Data Visualization Solutions Chapter 9

[265]

The interface is accessible via http://<overlord-ip>:8090/console.html. The screen
looks like this:

Once the ingestion is complete, we will see the status of the job as SUCCESS.

In case of FAILED imports, please make sure that the backend that is
configured to store the Metadata for the Druid cluster is up and running.

Even though Druid works well with the OpenJDK installation, I have
faced a problem with a few classes not being available at runtime. In order
to overcome this, I have had to use Oracle Java version 1.8 to run all Druid
applications.

Now we are ready to start using Druid for our visualization tasks.

MySQL database
Apache Superset also allows us to read the data present in an RDBMS system such as
MySQL. We will also create a sample database in this section, which we can use later with
Superset to create visualizations.

Designing Data Visualization Solutions Chapter 9

[266]

Sample database
The employees database is a standard dataset that has a sample organization and their
employee, salary, and department data. We will see how to set it up for our tasks.

This section assumes that the MySQL database is already configured and running.

Download the sample dataset
Download the sample dataset from GitHub with the following command on any server that
has access to the MySQL database:

[user@master ~]$ sudo yum install git -y

[user@master ~]$ git clone https://github.com/datacharmer/test_db
Cloning into 'test_db'...
remote: Counting objects: 98, done.
remote: Total 98 (delta 0), reused 0 (delta 0), pack-reused 98
Unpacking objects: 100% (98/98), done.

Copy the data to MySQL
In this step, we will import the contents of the data in the files to the MySQL database:

[user@master test_db]$ mysql -u root < employees.sql
INFO
CREATING DATABASE STRUCTURE
INFO
storage engine: InnoDB
INFO
LOADING departments
INFO
LOADING employees
INFO
LOADING dept_emp
INFO
LOADING dept_manager
INFO
LOADING titles
INFO
LOADING salaries
data_load_time_diff
NULL

Designing Data Visualization Solutions Chapter 9

[267]

Verify integrity of the tables
This is an important step, just to make sure that all of the data we have imported is correctly
stored in the database. The summary of the integrity check is shown as the verification
happens:

[user@master test_db]$ mysql -u root -t < test_employees_sha.sql
+----------------------+
| INFO |
+----------------------+
| TESTING INSTALLATION |
+----------------------+
+--------------+------------------+--
--+
| table_name | expected_records | expected_crc
|
+--------------+------------------+--
--+
employees	300024	4d4aa689914d8fd41db7e45c2168e7dcb9697359
departments	9	4b315afa0e35ca6649df897b958345bcb3d2b764
dept_manager	24	
9687a7d6f93ca8847388a42a6d8d93982a841c6c		
dept_emp	331603	d95ab9fe07df0865f592574b3b33b9c741d9fd1b
titles	443308	d12d5f746b88f07e69b9e36675b6067abb01b60e
salaries	2844047	b5a1785c27d75e33a4173aaa22ccf41ebd7d4a9f
+--------------+------------------+--		
--+		
+--------------+------------------+--		
--+		
table_name	found_records	found_crc
+--------------+------------------+--		
--+		
employees	300024	4d4aa689914d8fd41db7e45c2168e7dcb9697359
departments	9	4b315afa0e35ca6649df897b958345bcb3d2b764
dept_manager	24	
9687a7d6f93ca8847388a42a6d8d93982a841c6c		
dept_emp	331603	d95ab9fe07df0865f592574b3b33b9c741d9fd1b
titles	443308	d12d5f746b88f07e69b9e36675b6067abb01b60e
salaries	2844047	b5a1785c27d75e33a4173aaa22ccf41ebd7d4a9f
+--------------+------------------+--
--+

+--------------+---------------+-----------+
| table_name | records_match | crc_match |
+--------------+---------------+-----------+
employees	OK	ok
departments	OK	ok
dept_manager	OK	ok

Designing Data Visualization Solutions Chapter 9

[268]

dept_emp	OK	ok
titles	OK	ok
salaries	OK	ok
+--------------+---------------+-----------+		
+------------------+		
computation_time		
+------------------+		
00:00:11		
+------------------+		
+---------+--------+		
summary	result	
+---------+--------+		
CRC	OK	
count	OK	
+---------+--------+

Now the data is correctly loaded in the MySQL database called employees.

Single Normalized Table
In data warehouses, its a standard practice to have normalized tables when compared to
many small related tables. Lets create a single normalized table that contains details of
employees, salaries, departments

MariaDB [employees]> create table employee_norm as select e.emp_no,
e.birth_date, CONCAT_WS(' ', e.first_name, e.last_name) full_name ,
e.gender, e.hire_date, s.salary, s.from_date, s.to_date, d.dept_name,
t.title from employees e, salaries s, departments d, dept_emp de, titles t
where e.emp_no = t.emp_no and e.emp_no = s.emp_no and d.dept_no =
de.dept_no and e.emp_no = de.emp_no and s.to_date < de.to_date and
s.to_date < t.to_date order by emp_no, s.from_date;
Query OK, 3721923 rows affected (1 min 7.14 sec)
Records: 3721923 Duplicates: 0 Warnings: 0

MariaDB [employees]> select * from employee_norm limit 1\G
*************************** 1. row ***************************
 emp_no: 10001
birth_date: 1953-09-02
 full_name: Georgi Facello
 gender: M
 hire_date: 1986-06-26
 salary: 60117
 from_date: 1986-06-26
 to_date: 1987-06-26
 dept_name: Development
 title: Senior Engineer
1 row in set (0.00 sec)

Designing Data Visualization Solutions Chapter 9

[269]

MariaDB [employees]>

Once we have normalized data, we will see how to use the data from this table to generate
rich visualisations.

Apache Superset
Superset is a modern, enterprise-grade business intelligence application. The important
feature of this application is that we can run all analyses directly from the browser. There is
no need to install any special software for this.

If you remember, we have already installed Superset along with Druid in the previous
sections. Now we need to learn how to use Superset to build rich visualizations.

Accessing the Superset application
Open http://<SERVER-IP>:9088/ in your web browser. If everything is running fine, we
will see a login screen like this:

Enter admin as the username and the password as chosen during the installation.

Designing Data Visualization Solutions Chapter 9

[270]

Superset dashboards
Dashboards are important pieces of the Superset application. They let us showcase the
results of the analytics computation in a graphical form. Dashboards are created from Slices,
which in turn are built from the various data sources configured in the Superset application.

After successful login, there won’t be any dashboards created automatically for us. We will
see a blank list of dashboards, like this:

In order to build dashboards, we first need to configure the data sources. So, let's click on
the Sources menu from the top navigation and click on Refresh Druid Metadata:

Designing Data Visualization Solutions Chapter 9

[271]

After this step, we are taken to the data sources page and a new data source automatically
appears here. Remember we uploaded this dataset to Druid before?

Now we can click on the data source name (in green), which will take us to the data source
exploration page:

Designing Data Visualization Solutions Chapter 9

[272]

As we can see, this page is divided into multiple sections.

Left Side UI:
Datasource and Chart Type: In this column, we can select the data source
that we need to use and also the type of graphic we want to see on the
right.
Time: This is the column where we can restrict the data from the data
source to a given time range. Beginners tend to make a mistake with this
column as they won’t see any data on the right side. So, choose a start
time value (a relative value like 100 years ago is recommended for better
results).
Group By: This column is used to group data based on the dimensions of
the input data.
Other Options: There are other options that are available below Group
By, which we will explore in the coming steps.

Right Side UI:
This UI contains the results of the options that we have selected on the
left-hand side.

Understanding Wikipedia edits data
Before we jump into building visualizations. Let's take a closer look at the data we have
ingested into Druid and what types of graphics we can render from that data:

Metric/Dimension Datatype Description

delta LONG Change represented in numeric form

deleted LONG Deleted data from the article in numeric form

added LONG Added data, measured in numeric form

isMinor STRING Boolean, indicating whether this is a minor edit or not

page STRING The page where the change has happened in Wikipedia

isRobot STRING
Is the change done by a robot (not a human but some form
of program)

channel STRING Wikipedia channel where the change has happened

regionName STRING
Geographical region name from which the change has been
done

Designing Data Visualization Solutions Chapter 9

[273]

cityName STRING City name from which the change has been done

countryIsoCode STRING
ISO code of the country from which the change has been
done

user STRING Wikipedia user or IP address that has made the change

countryName STRING
Name of the country from which the change has been
made

isAnonymous STRING
Has the change been done by a anonymous user (not
logged-in state)?

regionIsoCode STRING
ISO code of the geographical region from which the change
has been done

metroCode STRING
This is similar to ZIP code in the United States (see http:/ ​/
www. ​nlsinfo. ​org/ ​usersvc/ ​NLSY97/
NLSY97Rnd9geocodeCodebookSupplement/ ​gatt101. ​html)

namespace STRING Wikipedia article/page namespace

comment STRING Comment that was added for this change

isNew STRING
true if this is a new page (see https:/ ​/​en. ​wikipedia.
org/ ​wiki/ ​Wikipedia:Glossary#N)

isUnpatrolled STRING
true if the change is not a patrolled one (see https:/ ​/​en.
wikipedia. ​org/ ​wiki/ ​Wikipedia:New_ ​pages_ ​patrol)

So, we have listed all the attributes of the data. Let's take a look at the sample one to get a
better understanding of what we are talking about:

{
 "time": "2015-09-12T00:47:21.578Z",
 "channel": "#en.wikipedia",
 "cityName": null,
 "comment": "Copying assessment table to wiki",
 "countryIsoCode": null,
 "countryName": null,
 "isAnonymous": false,
 "isMinor": false,
 "isNew": false,
 "isRobot": true,
 "isUnpatrolled": false,
 "metroCode": null,
 "namespace": "User",

http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
http://www.nlsinfo.org/usersvc/NLSY97/NLSY97Rnd9geocodeCodebookSupplement/gatt101.html
https://en.wikipedia.org/wiki/Wikipedia:Glossary#N
https://en.wikipedia.org/wiki/Wikipedia:Glossary#N
https://en.wikipedia.org/wiki/Wikipedia:Glossary#N
https://en.wikipedia.org/wiki/Wikipedia:Glossary#N
https://en.wikipedia.org/wiki/Wikipedia:Glossary#N
https://en.wikipedia.org/wiki/Wikipedia:Glossary#N
https://en.wikipedia.org/wiki/Wikipedia:Glossary#N
https://en.wikipedia.org/wiki/Wikipedia:Glossary#N
https://en.wikipedia.org/wiki/Wikipedia:Glossary#N
https://en.wikipedia.org/wiki/Wikipedia:Glossary#N
https://en.wikipedia.org/wiki/Wikipedia:Glossary#N
https://en.wikipedia.org/wiki/Wikipedia:Glossary#N
https://en.wikipedia.org/wiki/Wikipedia:New_pages_patrol
https://en.wikipedia.org/wiki/Wikipedia:New_pages_patrol
https://en.wikipedia.org/wiki/Wikipedia:New_pages_patrol
https://en.wikipedia.org/wiki/Wikipedia:New_pages_patrol
https://en.wikipedia.org/wiki/Wikipedia:New_pages_patrol
https://en.wikipedia.org/wiki/Wikipedia:New_pages_patrol
https://en.wikipedia.org/wiki/Wikipedia:New_pages_patrol
https://en.wikipedia.org/wiki/Wikipedia:New_pages_patrol
https://en.wikipedia.org/wiki/Wikipedia:New_pages_patrol
https://en.wikipedia.org/wiki/Wikipedia:New_pages_patrol
https://en.wikipedia.org/wiki/Wikipedia:New_pages_patrol
https://en.wikipedia.org/wiki/Wikipedia:New_pages_patrol
https://en.wikipedia.org/wiki/Wikipedia:New_pages_patrol
https://en.wikipedia.org/wiki/Wikipedia:New_pages_patrol
https://en.wikipedia.org/wiki/Wikipedia:New_pages_patrol
https://en.wikipedia.org/wiki/Wikipedia:New_pages_patrol

Designing Data Visualization Solutions Chapter 9

[274]

 "page": "User:WP 1.0 bot/Tables/Project/Pubs",
 "regionIsoCode": null,
 "regionName": null,
 "user": "WP 1.0 bot",
 "delta": 121,
 "added": 121,
 "deleted": 0
}

Once we have some understanding of the data dimensions, we need to see what types of
questions we can answer from this data. These questions are the insights that are readily
available to us. Later, we can represent these in the graphical form that best suits us.

So let's see some of the questions we can answer from this data.

Uni-dimensional insights:

Which are the cities from which changes were made?
Which pages were changed?
Which are the countries from which changes were made?
How many new pages were created?

Counts along the dimension:

How many changes were made from each city?
Which are the top cities from which changes were made?
Which are the top users who have contributed to the changes?
What are the namespaces that were changed frequently?

Multi-dimensional insights:

How many changes were made between 9.00 am to 10.00 am across all countries?
What are the wall clock hours when the edits are made by robots?
Which country has the most origin of changes that are targeted by robots and at
what times?

Looks interesting, right? Why don't we try to use Apache Superset to create a dashboard
with some of these insights?

Designing Data Visualization Solutions Chapter 9

[275]

In order to do this we need to follow this simple workflow in the Superset application:

Data sources:1.
Define new data sources from supported databases
Refresh the Apache Druid data sources

Create Slices2.
Use the Slices to make a dashboard3.

If we recollect, we have already done Step 1 in previous sections. So, we can go right away
to the second and third steps.

Create Superset Slices using Wikipedia data
Let's see what types of graphics we can generate using the Slices feature in the Superset
application.

Unique users count
In this Slice, we see how to generate a graphic to find unique users who have contributed to
the edits in the dataset.

First, we need to go to the Slices page from the top navigation. After this, the screen looks
like this:

Designing Data Visualization Solutions Chapter 9

[276]

From this page, click on the plus icon (+) to add a new slice:

After this, we see a list of data sources that are configured in the system. We have to click
on the data source name:

After we click on wikiticker, we are taken to the visualization page, where we define the
dimensions that we want to render as a graphic.

For the current use case, let's choose the following options from the UI:

UI
Location Graphic Explanation

Sidebar

Choose the Datasource as [druid-ambari].[wikiticker]
and the graphic type as Big Number. In the Time section,
choose the value for since as 5 years ago and leave the rest
of the values to their defaults. In the Metric section.
Choose COUNT(DISTINCT user_unique) from the
autocomplete. In the Subheader Section, add Unique User
Count, which is displayed on the screen. After this, click
on the Query button at the top.

Designing Data Visualization Solutions Chapter 9

[277]

Graphic
Output We see the result of the query in this graphic.

Save Slice

Clicking on the Save As button on top will show a pop-up
window like this, where we need to add the
corresponding values. Save the slice as Unique
Users and add it to a new dashboard with the name My
Dashboard 1.

Sounds so simple, right? Let's not hurry to see the dashboard yet. Let's create some more
analytics from the data in the coming sections.

Word Cloud for top US regions
In this section, we will learn how to build a word cloud for the top US regions that have
contributed to the Wikipedia edits in the datasource we have in Druid. We can continue
editing the same Slice from the previous section or go to a blank Slice, as mentioned in the
previous section.

Let's concentrate on the values that we need to select for generating a word cloud:

UI
Location Graphic Explanation

Sidebar

Choose the Datasource as [druid-ambari].[wikiticker]
and the graphic type as Word Cloud. In the Time
section, choose the value for Since as 5 years ago and
leave the rest of the values to their defaults.

Designing Data Visualization Solutions Chapter 9

[278]

In the Series section. Choose the regionName from the
dropdown. In Metric, choose COUNT(*), which is the
total edit count.

In the Filters section, choose countryIsoCode; it
should be in US. Add another filter to select only valid
regions (skip null codes). Add the values as shown
here in the graphic.

Graphic
Output

After clicking on Query, we see this beautiful word
cloud.

Save Slice

Clicking on the Save As button at the top will show a
pop-up window like this, where we need to add the
corresponding values. Save the Slice as Word Cloud -
Top US Regions and add it to a new dashboard
named My Dashboard 1.

The significance of the word cloud is that we can see the top words according to their
relative sizes. This type of visualization is helpful when there are fewer words for which we
want to see the relative significance.

Let's try to generate another graphic from the data.

Sunburst chart – top 10 cities
In this section, we will learn about a different type of chart that we have not seen so far in
this chapter. But first, let's put forward the use case.

Designing Data Visualization Solutions Chapter 9

[279]

We want to find the unique users per channel, city name, and namespace at all three levels;
that is, the graphic should be able to show us the:

Unique users per channel
Unique users per channel/city name
Unique users per channel/city name/namespace

In order to show this kind of hierarchical data, we can use a sunburst chart.

Let's check out what type of values we need to select to render this type of chart:

UI
Location Graphic Explanation

Sidebar

Choose the Datasource as [druid-
ambari].[wikiticker] and the graphic type as
Sunburst. In the Time section, choose the value for
Since as 5 years ago and leave the rest of the values
to their defaults.

In the Hierarchy section, choose the channel,
cityName, and namespace from the dropdown. In
the Primary Metric and Secondary Metric, choose
COUNT(DISTINCT user_unique), which is the
total user count.

In the Filters section, choose cityName and add the
not null condition using regex matching

Clicking on the Save As button at the top will show
a pop-up window like this. We need to add the
corresponding values here. Save the Slice as
Sunburst - Top 10 Cities and add it to a new
dashboard named My Dashboard 1.

Designing Data Visualization Solutions Chapter 9

[280]

Graphic
Output

After clicking on Query, we see this beautiful
graphic.

As we can see there are three concentric rings in the graphic:

The innermost ring is the channel dimension
The middle ring shows the cityName dimension
The outermost ring is the namespace dimension

When we hover over the innermost ring, we can see how it spreads out into the outermost
circles. The same thing happens with the other rings as well.

This type of graphic is very helpful when we want to do funnel analysis on our data. Let's
take a look at another type of analysis in the next section.

Top 50 channels and namespaces via directed force layout
Directed force layout (DFL) is a network layout with points that are interconnected to each
other. Since it's a force layout, we can see the points moving on the screen as d3.js applies
the physics engine.

In this network graph, we want to understand the connectivity between the namespace and
channel over the unique users count metric. Since this is a network graph, we will see the
nodes getting repeated in different paths.

Let's see how we can arrive at this graph:

UI
Location Graphic Explanation

Sidebar

Choose the Datasource as [druid-ambari].[wikiticker]
and the Graphic type as Directed Force Layout. In the
Time section, choose the value for since as 5 years
ago and leave the rest of the values to their defaults.

Designing Data Visualization Solutions Chapter 9

[281]

In the Source / Target section, choose the
channel and namespace from the dropdown. In the
Metric section, choose COUNT(DISTINCT
user_unique) which is the total user count. We keep
the Row limit at 50 so that we will see only the top 50.

Clicking on the Save As button at the top will show a
pop up window like this, where we need to add the
corresponding values. Save the Slice as DFL - Top 50
Channels & Namespaces. Add it to a new dashboard
with the name My Dashboard 1.

Graphic
Output After clicking on Query, we see this beautiful graphic.

Feel free to drag the nodes in the graphic to learn more about how they are interconnected
to each other. The size of the nodes indicates the unique user count and its breakdown
(similar to a sunburst chart).

Let's spend some time learning another visualization and business use case in the next
section.

Designing Data Visualization Solutions Chapter 9

[282]

Top 25 countries/channels distribution
Now we will learn the Sankey chart, a waterfall-like way of representing of breakdown and
interconnectivity between data. In this case, we want to find out how the channelName and
countryName dimensions are related when it comes to the unique users metric:

UI
Location Graphic Explanation

Sidebar

Choose the Datasource as [druid-
ambari].[wikiticker] and the Graphic Type as
Sankey. In the Time section, choose the value for
Since as 5 years ago and leave the rest as default.

In the Source / Target section, choose channel and
countryName from the drop-down. In the Metric,
choose COUNT(*), which is the total edit count.
Keep the row limit at 25; so we will see only the top
25 items.

In the Filters section, choose countryName and
enable the regex filter so as to choose only those
records that have a valid country name.

Clicking on the Save As button at the top will show a
pop-up window. We need to add the corresponding
values here. Save the Slice as Top 25
Countries/Channels Distribution and add it to
a new dashboard with the name My Dashboard 1.

Graphic
Output

After clicking on Query, we see this beautiful
graphic.

Designing Data Visualization Solutions Chapter 9

[283]

This completes the list of all the analytics that we can generate so far. Now in the next
section, we will see how to use this in the dashboard (which was our original goal anyway).

Creating wikipedia edits dashboard from Slices
So far we have seen how to create slices in the Apache Superset application for the
wikipedia edits data, that is stored in the Apache Druid database. Its now time for us to see
how to create a dashboard so that we can share it with the Business Teams or any other
teams for which we want to share the insights.

In this process, the first step would be to click on the Dashboard menu on the top
navigation bar. Which will take us to Add New Dashboard Page, where we need to fill the
following details.

Element Description Value

Title This is the name of the dashboard that we want to
create My Dashboard 1

Slug Short alias for the dashboard dash1

Slices List of Slices that we want to add to the dashboard.

• Sunburst - Top 10 Cities
• DFL - Top 50 Channels
& Namespaces
• Top 25 Countries /
Channels Contribution
• Word Cloud - Top US
Regions
• Unique Users

Other Fields We can leave the other fields as empty as they are not
mandatory to create the dashboard

Designing Data Visualization Solutions Chapter 9

[284]

Here is the graphic for this page:

Click on Save button at the bottom of the screen once the changes look good.

This will take us to the next step where we can see that the dashboard is successfully
created:

Designing Data Visualization Solutions Chapter 9

[285]

We can see the My Dashboard 1 in the list of dashboards. In order to access this dashboard
click on it, Where we are taken to the dashboard screen:

As we can see we have a very powerful way of representing all the raw data. This will
definitely have an impact on the end users in making sure that the message is conveyed.

So far we have learned how to create slices and Dashboards from the data that is stored in
the Apache Druid Columnar Database. In the next section we will see how to connect to
RDBMS and generate slices and dashboards from that data.

Apache Superset with RDBMS
Apache Superset is built using Python programming language and supports many
relational databases as it uses SQLAlchemy as the database driver. The installation of these
drivers are out of scope in this section. But, it should be very easy to install those. Most of
the time the Operating system vendors package them for us. So, we need not worry about
the manual installation of these.

Designing Data Visualization Solutions Chapter 9

[286]

Supported databases
Here are some of the database that are supported by Apache Superset:

Database
Name Python Package Name Driver URI Prefix Details

MySQL mysqlclient mysql://
Oracle
MySQL
Database

PostgreSQL psycopg2 postgresql+psycopg2://

The worlds
most
advanced
opensource
database

Presto pyhive presto://

Opensource
distributed
query
Engine

Oracle cx_Oracle oracle://

Multi-model
Database
management
system
created by
Oracle
Corporation.

Sqlite sqlite://

Fast,
Scalable
Embedded
Database
Library

Redshift sqlalchemy-redshift postgresql+psycopg2://

Amazon
Redshift is
Columnar
database
built on
PostgreSQL

MSSQL pymssql mssql://
Microsoft
SQL Server

Designing Data Visualization Solutions Chapter 9

[287]

Impala impyla impala://

Apache
Impala is
Massively
Parallel
Processing
SQL Engine
that runs on
Hadoop

SparkSQL pyhive jdbc+hive://

Apache
Spark
Module for
writing SQL
in Spark
Programs.

Greenplum psycopg2 postgresql+psycopg2://

Greenplum
is advanced ,
fully
featured
opensource
data
platform

Athena PyAthenaJDBC awsathena+jdbc://

Amazon
Athena is
Serverless
Interactive
Query
Service

Vertica sqlalchemy-vertica-python vertica+vertica_python://

Vertica is
Bigdata
analytics
software

ClickHouse sqlalchemy-clickhouse clickhouse://

Opensource
distributed,
columnar
datastore

Designing Data Visualization Solutions Chapter 9

[288]

Portions of the above table is extracted from the official documentation of
Apache Superset (https:/ ​/ ​superset. ​incubator. ​apache. ​org/
installation. ​html#database- ​dependencies)

Understanding employee database
If you remember, in the previous sections we have imported a sample database called
Employees and loaded it into the MySQL Database. We will dig further into this sample
datastore so that we will learn what types of analytics we can generate from this.

Employees table
The employees table contains details of Employees (randomly generated data) with the
following properties

Column Datatype Description

emp_no INTEGER Employee Number

birth_date DATE Employee Date Of Birth

first_name STRING First Name of Employee

last_name STRING Last Name of Employee

gender STRING Gender of Employee, M if Male, F if Female

hire_date STRING Latest Joining date of Employee

Departments table
The departments table consists of basic details of every department in the organisation.
This is further understood with this table:

Table Column Datatype Description

dept_no STRING Department Number

dept_name STRING Department Name

https://superset.incubator.apache.org/installation.html#database-dependencies
https://superset.incubator.apache.org/installation.html#database-dependencies
https://superset.incubator.apache.org/installation.html#database-dependencies
https://superset.incubator.apache.org/installation.html#database-dependencies
https://superset.incubator.apache.org/installation.html#database-dependencies
https://superset.incubator.apache.org/installation.html#database-dependencies
https://superset.incubator.apache.org/installation.html#database-dependencies
https://superset.incubator.apache.org/installation.html#database-dependencies
https://superset.incubator.apache.org/installation.html#database-dependencies
https://superset.incubator.apache.org/installation.html#database-dependencies
https://superset.incubator.apache.org/installation.html#database-dependencies
https://superset.incubator.apache.org/installation.html#database-dependencies
https://superset.incubator.apache.org/installation.html#database-dependencies
https://superset.incubator.apache.org/installation.html#database-dependencies
https://superset.incubator.apache.org/installation.html#database-dependencies
https://superset.incubator.apache.org/installation.html#database-dependencies

Designing Data Visualization Solutions Chapter 9

[289]

Department manager table
The dept_manager table has records about Employee acting as manager for a given
department. More details are in this table:

Table Column Dataype Description

emp_no INT Employee ID who is acting as manager for this department

dept_no STRING Department ID

from_date DATE
Starting date from which Employee is acting as Manager for this
department.

to_date DATE
Ending date till where the Employee has acted as Manager for this
department.

Department Employees Table
The dept_emp table consists of all the records which show how long each employee
belonged to a department.

Table Column Datatype Description

emp_no INT Employee ID

dept_no STRING Department ID

from_date DATE Starting date from which employee belongs to this department

to_date DATE Last date of employee in this department

Titles table
The titles table consists of all the roles of employees from a given date to end date. More
details are shown as follows:

Table Column Datatype Description

emp_no INT Employee Id

title STRING Designation of the employee

from_date DATE Starting date from which employee has assumed this role

to_date DATE Last date where the employee has performed this role

Designing Data Visualization Solutions Chapter 9

[290]

Salaries table
The salaries table consists of salary history of a given employee. More details are
explained in the following table:

Table Column Datatype Description

emp_no INT Employee Id

salary INT Salary of Employee

from_date DATE Starting day for which salary is calculated

to_date DATE Last day for which salary is calculated.

Normalized employees table
The employee_norm table consists of data from employees, salaries, departments,
dept_emp and titles table. Lets look at this table in detail:

Table Column Datatype Description

emp_no INT Employee ID

birth_date DATE Date of Birth of Employee

full_name STRING Employee Full Name

gender STRING Gender of Employee

hire_date DATE Joining date of Employee

salary INT Salary of Employee for the period

from_date DATE Salary period start

to_date DATE Salary period end

dept_name STRING
Department where the employee is working during this salary
period

title STRING Designation of the employee during this time period

With this knowledge of various tables in the Employee database we now have some
understanding of the data we have so far. Now, the next task is to find out what types of
analytics we can generate from this data. We will learn this in the next section.

Designing Data Visualization Solutions Chapter 9

[291]

Superset Slices for employees database
Once we have some basic understanding of the type of data that is stored in the MySQL
database. We will now see what types of we can answer from this data.

Uni-dimensional insights:

How many employees are there in the organisation?
What is the total salary paid for all employees in the organisation?
How many departments are there?

Multi dimensional insights

What is the total salary paid for every year?
What is the total salary per department?
Who is the top paid employee for every year?

If we think along these lines we should be able to answer very important questions
regarding the data and should be able generate nice graphics.

Lets take few examples of what types of visualisations we can generate in the coming
sections.

Register MySQL database/table
Before we start generating Slices for the employee tables, We should first register it. The
registration process includes the following steps.

Open the Databases by clicking on the Databases dropdown from the Sources menu in the
top navigation bar as shown here:

Designing Data Visualization Solutions Chapter 9

[292]

After this we need to click on the plus (+) icon from the page:

This will take us to a page where we can register the new database. The screen looks like
this:

Designing Data Visualization Solutions Chapter 9

[293]

We will fill the following details as shown here.

Field Name Value Description

Database employees

Name of the
database that
we want to
register. (Enter
the same name
as its in the
MySQL
Database)

SQLAlchemy
URI

mysql+pymysql://superset:superset@master:3306/employees

URI to access
this database
programatically.
This will
include the
protocol/driver,
username,
password,
hostname &
dbname

Other Fields Keep them as
default

After this click on Save Button, which will save the database details with Apache Superset.
We are taken to the list of tables page which looks like this:

As we can see, we have the employees database registered with MySQL backend.

Designing Data Visualization Solutions Chapter 9

[294]

In the next step we need to chose the tables from the top menu:

Since we do not have any tables registered, we will see a empty page like this:

In order to register a new table we have to click on the plus (icon) in the UI, Which takes us
to the following page:

Designing Data Visualization Solutions Chapter 9

[295]

Enter the values for the fields as shown below and click Save once done:

Field Name Value Description

Table name employee_norm Name of the table that we want to register.

Database employees Select the database that is already registered with Superset.

Now we can see that the table is successfully registered as shown in the screen in the
following screenshot:

One of the important features of Superset is that it will automatically select the different
types of operations that we can perform on the columns of the table according to the
datatype. This drives what types of dimensions, metrics we are shown in the rest of the UI.

In order to select these options, we need to edit the table by clicking on the edit icon and we
are shown this page:

Designing Data Visualization Solutions Chapter 9

[296]

As we can see, Apache Superset has automatically recognized the datatype of each and
every field and it also provided us with an option to chose these dimensions for various
activities. These activities are listed in the following table:

Activity Description

Groupable If the checkbox is selected, then the field can be used as part of Grouping
operations (GROUP BY in SQL).

Filterable If the checkbox is selected, then the field can be used as part of Conditional
operations (WHERE clause).

Count Distinct If the checkbox is selected, then the field can be used as part of count
(DISTINCT) operation on the field.

Sum If the checkbox is selected, then the field can be used as part of SUM()
function.

Min/Max Indicates that the field can be used as part of finding minimum and maximum
value.

Is Temporal Indicates the field is a time dimension.

Designing Data Visualization Solutions Chapter 9

[297]

Make changes as shown above and click on Save button.

Now we are ready to start creating slices and dashboard in the next steps.

Slices and Dashboard creation
As we have seen in the previous sections, In order to create Dashboards we first need to
create slices. In this section we will learn to create few slices.

Department salary breakup
In this slice we will learn how to create a visualization that will show the percentage of
salary breakdown per department:

UI Location Graphic Description

Sidebar

Datasource & Chart Type: select
[employees].[employee_norm] as the datasource and
Distribution - NVD3 - Pie Chart as chart type
In the Time section, select birth_date as Time
Column and 100 years ago as Since column.
In the Metrics section, select sum_salary as the value
from dropdown and dept_name as Group By.

Graphic
Output

Clicking on Query button will render this good liking
chart. Save it with the name Department Salary
Breakup.

Just like in the previous section, See how easy it is to create good looking graphic without
any programming knowledge.

In the next section we will learn about another type of graphic from the same employees
database.

Designing Data Visualization Solutions Chapter 9

[298]

Salary Diversity
This is a important graphic, where we identify how the salary diversity is between genders
across the history of organisation. Here we use average salary as a basis for the analysis.

UI
Location Graphic Description

Sidebar

Datasource & Chart Type: select
[employees].[employee_norm] as the
datasource and Time Series - line chart as
chart type
In the Time section, select birth_date as
Time Column & 100 years ago as since
column.
In the Metrics section, select avg_salary
as the Metric and gender as Group By.

Output
Graphic showing the average salary per
Gender for every Year. Save this with the
title Salary Diversity

As we can see from the graphic, the salary breakup is even between genders and are very
close. There is also a similar increase in the average salary over the period.

In the next section we will learn to generate another type of graphic that will give us
different insight into the data.

Designing Data Visualization Solutions Chapter 9

[299]

Salary Change Per Role Per Year
This is a important statistic where we want to find out how much salary change is there for
different Titles in the organisation across years.

UI
Location Graphic Description

Sidebar

Datasource & Chart Type: select
[employees].[employee_norm] as the
datasource and Time Series - Percentage
Change as chart type
In the Time section, Select from_date as
Time column , Year as Time Granularity &
100 years ago as Since column.
In the Metrics Section, select sum_salary as
the Metric and title as Group By.

Output
Clicking on Query, yields us the following
graphic. Save this with the name Salary
Change Per Role Per Year.

From this graphic we can find out that few roles have very large difference in the total
salary within the organisation.

So far we have created three slices, we will create a new dashboard with the slices created
so far.

Designing Data Visualization Solutions Chapter 9

[300]

Dashboard creation
In this step we will create a new dashboard by going to the dashboards page and clicking
on the Add Dashboard icon (as shown in previous sections).

We are presented with the following screen where we select the three slices we have created
so far and click Save:

Once the dashboard is saved successfully we can see it like this:

As we can see, Dashboards are very powerful way to express large amounts of data in a
simple fashion.

Designing Data Visualization Solutions Chapter 9

[301]

Summary
In this chapter, we learned about data visualization and how it helps the users to receive the
required message without any knowledge of the underlying data. We then saw the different
ways to visualize our data graphically.

We walked through Hadoop applications such as Apache Druid and Apache Superset that
are used to visualize data and learned how to use them with RDBMses such as MySQL. We
also saw a sample database to help us understand the application better.

In the next chapter, we will learn how to build our Hadoop cluster on the cloud.

10
Developing Applications Using

the Cloud
In the early days of computing, CPU power and storage were very scarce, and so the cost of
purchasing relevant equipment was very high. With the advances in the development of
personal computing in the early 80s by Apple and Microsoft, more and more individuals
and organizations have gained access to these computing devices. As the industry has
developed the way chips are made and billions if not trillions of transistors are now put on
single chips, the size of these computing devices has drastically reduced, from taking up
entire rooms to comprising a single unit of a rack in the data center. When the computation
speed and storage device capacity started increasing, individuals and enterprises started to
realize that efficiently managing their computing resources was becoming a challenge.

The widespread use of the internet has also made a significant contribution to how
individuals can access resources.

In this chapter, we will cover the following topics:

What is the Cloud?
Available technologies in the Cloud
Planning Cloud infrastructure

High availability in the Cloud
Business continuity planning in the Cloud
Security in the Cloud

Building a Hadoop cluster in the Cloud
Cloud and in-house applications
Data access in the Cloud

Developing Applications Using the Cloud Chapter 10

[303]

What is the Cloud?
Cloud computing, or simply the Cloud, is a simple way to rent and use resources such as
electronic storage space, computing power, network bandwidth, IP addresses, databases,
web servers, and so on, on the internet. The Cloud has promoted the pay per use paradigm,
where customers are only billed for the use of these resources, in the same way that a power
grid bills its customers for their power consumption.

Cloud computing has transformed the way individuals and organizations access and
manage their servers and applications on the internet. Before Cloud computing, everyone
used to manage their servers and applications on their own premises or in dedicated data
centers. The increase in the raw computing power of computing (CPU and GPU) of
multiple-cores on a single chip and the increase in the storage space (HDD and SSD) present
challenges in efficiently utilizing the available computing resources.

Available technologies in the Cloud
With the increased adoption of Cloud computing, enterprises have started building a
variety of technologies and making them available to consumers. We will go through the
list of organizations that have pioneered Cloud offerings, and also the different types of
technologies they offer.

Here is a list of companies that offer Cloud services:

 Microsoft Azure (Azure)
 Amazon Web Services
 Google Cloud Platform
 IBM
 Salesforce
 SAP
 Oracle
 VMware

Developing Applications Using the Cloud Chapter 10

[304]

Various types of resources are being offered to the consumers in the form of:

Platform as a Service
Infrastructure as a Service
Software as a Service
Backend as a Service
Network as a Service

With the increase in offerings such as these, many organizations need not focus on the
infrastructure such as real estate, servers, firewalls, load balancers, switches, power supply,
and so on. But they can instead just purchase these services from Cloud providers, and then
just focus on what applications they are building.

Now, let's see what technologies are provided by the top providers, Microsoft, Amazon,
and Google:

Technology Azure Amazon Web
Services

Google
Cloud Description

Servers Azure
compute Amazon EC2

Google
Compute
Engine
(GCE)

This technology deals with
providing servers that are on
demand and that can be
virtualized or
dedicated/baremetal in nature.

Storage Azure
storage Amazon EBS Google

storage

This is on-demand storage that
can be attached to the compute
nodes as needed. Some vendors
provide the ability to scale the
size of these storage devices on
demand.

Network Azure
networking Yes

Google
network
services

Providers supply network
bandwidth from 100 Mbps to
10 Gbps, depending on the
network requirements of the
applications.

Developing Applications Using the Cloud Chapter 10

[305]

Databases Azure
databases Amazon RDS Google

Cloud SQL

With managed databases, we
need not worry about the
maintenance of the database
servers as the vendors take care
of the support for these
automatically. Bear in mind
that, in some cases, we need to
plan the high availability for
ourselves.

Content
delivery Azure CDN Amazon

CloudFront
Google
Cloud CDN

This is very helpful if we want
to push our static assets to our
users by leveraging the
delivery network as it brings
down the latency significantly.
We can also use this as a
private store to store all the
files such as backups,
conference recordings, and so
on.

Domain
Name
System
(DNS)

Azure DNS Amazon
Route S3

Google
Cloud DNS

DNS is critical in running our
applications on the internet.
This service makes our life
easier by taking care of making
our servers accessible to the
rest of the infrastructure,
without having to run our own
DNS servers.

Business
mail

Microsoft
o365

Amazon
WorkMail Google Mail

This is a must-have for
organizations that demand
access to emails and
calendaring in a secure and
scalable fashion.

Developing Applications Using the Cloud Chapter 10

[306]

Machine
learning

Azure AI +
machine
learning

Amazon
machine
learning

Google ML
Engine

Machine learning technology
has become the buzzword these
days. Vendors are offering
several technologies that are
related to machine learning, as
we just have to focus on what
we need to do, rather than
worrying about the
infrastructure that needs to run
these algorithms.

Distributed
Denial of
Service
(DDoS)
Protection

Azure DDoS
Protection AWS Shield –

This is a very important thing
to have for organizations that
cannot afford to have
downtime for their services and
when large-scale denial of
service attacks happen that
impact regular visitors of their
sites.

Monitoring Azure
Monitor

Amazon
CloudWatch

Google
monitoring

Without monitoring our
applications and infrastructure,
we can fail to see how we are
performing. These services help
us keep our business on track
and to respond to events that
trigger downtime of our
applications, and infrastructure
that runs on the Cloud.

Containers

Azure
Container
Service
(AKS)

Amazon
Elastic
Container
Service For
Kubernetes
(Amazon
EKS)

Google
Kubernetes
Engine

This is infrastructure that
allows you to run applications
as containers, rather than
owning full compute
environments to run them.

Developing Applications Using the Cloud Chapter 10

[307]

Planning the Cloud infrastructure
Traditional organizations have their own IT/infrastructure teams to manage their dedicated
servers and network. When planning migration to the Cloud, we have to keep the following
things in mind for better operability of the infrastructure.

Planning the Cloud infrastructure deals with:

Dedicated or shared servers
High availability
Business continuity planning
Security
Network architecture

Dedicated servers versus shared servers
Cloud providers give you the option of renting servers that completely own the physical
hardware or share the physical hardware with other Cloud users like us. In order to reach a
decision on this, we need to understand the advantages and disadvantages of each of these
models.

Dedicated servers
These are the type of servers where the type of ownership belongs to a single user or an
organization and is not shared with any other user. There are several advantages to this
setup, as follows:

We completely own the physical server and any further servers that we allocate
will be provisioned on the same hardware
We might be billed more for this kind of setup
With Spectre and Meltdown, we are better protected as the hardware is not
shared with anyone
We are not impacted by the neighbors as we completely own the hardware

Developing Applications Using the Cloud Chapter 10

[308]

Shared servers
Owning a complete server is expensive for simple experimentation. In this scenario, we can
go for a shared setup where we rent a few resources in a given physical hardware. Some
advantages of shared servers are as follows:

We are billed only for the virtual servers that we rent on demand.
Even though Cloud vendors provide absolute isolation, with Spectre and
Meltdown, we need to be a bit careful.
Easier to provision than dedicated servers.

High availability
Depending on the type of applications we are planning to run, we have to understand the
service-level agreement (SLA) that is provided by the vendors for these applications in
terms of uptime, and we need to plan our applications accordingly.

Let's look at a simple way of using DNS to achieve high availability of our application:

Developing Applications Using the Cloud Chapter 10

[309]

In this design, the following things happen:

When the user tries to connect to our website using a web browser such as
Google Chrome or Firefox, it first tries to contact the DNS server
The DNS server is aware of our frontend servers and returns a list of all the
servers
The browser will connect to the frontend server directly
The frontend server connects to the database and returns the requested resource

In this design, we need to keep the following things in mind:

Frontend servers are directly exposed to the internet, so we should have proper
security measures in place such as a firewall or DDos protection to protect our
servers
These frontend servers should also be patched with the latest OS software so that
any attacks can be prevented
A database server should not be visible to the outside world, so an appropriate
firewall should be in place to allow requests from the frontend servers

Cloud providers provide a private IP address. In order to minimize the
risk of DB servers being accidentally exposed to the internet, we should
block the public internet access to these servers.

Let's look at another design that also keeps our web servers secure from attacks on the
internet:

Developing Applications Using the Cloud Chapter 10

[310]

In this design, we have made the following changes when compared to the previous one:

When the Browser contacts the DNS server to connect to our website, the DNS
server supplies the IP address of the Load Balancer (LB)/proxy server
The browser connects to this LB
The LB keeps track of which of the backend servers are available and then
forwards the request to the server:

The server talks to the database (DB) and finishes building the
response
The response is sent back to the LB

The LB sends the response to the Browser

If we look at this design carefully, we will see that these are the advantages over the
previous one:

The LB hides our infrastructure, so outsiders cannot easily know how many
servers are there in our infrastructure

Developing Applications Using the Cloud Chapter 10

[311]

The LB protects our web servers from several attacks
The LB can do SSL offloading where all the encryption/decryption of traffic
happens at the LB level and our servers can be free from the SSL overhead

Depending on the security policy of the organization, you might need to
enable SSL on the web servers as well.

Business continuity planning
Business continuity planning (BCP) is a very important thing to consider when the
organization is in its growth phase. Any downtime of the network, servers or databases, or
any other Cloud infrastructure components can bring down the whole business.

There are several key things to keep in mind when planning for BCP:

Infrastructure unavailability
Natural disasters
Business data

Infrastructure unavailability
If there is an unplanned outage of the services provided by the Cloud provider, it will take
down all our services with it. In order to maximize the availability of our business, we need
to build a backup setup in another geographical region. This might be expensive for some
organizations as the entire setup is going to be duplicated, but in the interest of business
continuity, this is an important feature to consider when planning the Cloud infrastructure.

Natural disasters
Events such as earthquakes, floods, fire accidents, and so on are hard to predict. We
therefore need to make the necessary plans to keep our business running, depending on
where our servers are located on the Cloud, and on what technology standards are followed
by the vendors for the data center build-out.

Developing Applications Using the Cloud Chapter 10

[312]

Business data
Business data exists in several forms and is stored in the form of files, database servers, and
big data systems. For BCP, we need to carefully analyze in what other remote locations we
can plan to keep the copies of our data, and carry out test runs to see if our applications can
be seamlessly run from either of the geographical locations with a single click of a button.

As we are dealing with multiple geographies here, we need to understand that, when the
volume of data is huge, it takes time for things to get replicated from one data center to
another. Our applications must also be redesigned in case we did not consider BCP in the
original design.

BCP design example
This diagram tries to explain how we can achieve BCP by setting up the same applications
in multiple data centers:

Developing Applications Using the Cloud Chapter 10

[313]

The system can be either:

Hot–Hot
Hot–Cold

The Hot–Hot system
In the Hot-Hot system, both the data centers are active at the same time and serve the user's
traffic. Here, we employ several CDN and geolocation techniques to route the user to a
given data center.

The challenge we face in doing so is that if one region goes completely blank, the other
region should have enough headroom to ensure that traffic for the other region is absorbed

The advantage of employing this system is that the user experience is a good one, as in this
design the users are routed to the nearest system

The Hot–Cold system
In this system/design, only one of the regions is active at any time and only in the event of
BCP (Business Continuity Planning) do we fall back to the other region.

The challenges we face in using this system are as follows:

It's easy to forget the other region until the problem comes into play; it's very
important to keep using both the regions in sync w.r.t both Data & Software on a
continuous basis.
As only one region is active, the correct failover of users to another data center
has to be thought through well

The advantage of employing this system is that all the writes happen in one region which
keeps database designs simple.

Security
Security is very important when you consider moving to the Cloud. The following are the
things to keep in mind:

Server security
Application security

Developing Applications Using the Cloud Chapter 10

[314]

Network security
Single Sign On
AAA requirements

Server security
As we are talking about the Cloud, we will never be able to access the servers physically
(unless we get permission from the Cloud vendors). In such a scenario, we have to
understand what level of policies and practices are followed by the Cloud providers to
ensure the physical security of the servers on which our applications are going to be run.

For example, governments might need a whole set of different physical security restrictions
when considering a move to the Cloud. On the same lines, there are several standards such
as PCI and HIPAA which enforce even stronger rules on this model.

If our business needs to adhere to these standards, we need to choose the Cloud variant
which supports all these.

Application security
On the Cloud, we can either choose to host the applications on our own or use the
applications provided as a service Software As A Service (SaaS). If we are hosting the
applications on our own provisioned servers (either dedicated or shared), we need to
enforce the correct firewall rules at server level, and also the correct user access rules to
make sure that our software allows only authorized and properly authenticated users.

If the applications are internal, we should ensure that our employees are given 2FA or 3FA
methods to log in to these services.

Network security
In order to safeguard our servers on the Cloud, we need to enforce proper firewall rules,
DNS zones, or even have our own virtual private networks to make sure all our assets are
not compromised and exposed to the internet.

The Cloud is synonymous with the internet and there is a continuous threat to our data and
infrastructure. Unless we enforce proper security measures, everything is wide open for
everyone to grab whatever they like from our systems.

Developing Applications Using the Cloud Chapter 10

[315]

Single Sign On
Single Sign On (SSO) has become popular with organizations that use several applications
on the Cloud for various departments. Lately, organizations have stopped building their
own applications for running businesses and instead have started adopting the use of other
services. When the number of such applications increases, users of these applications are
constantly faced with the challenge of entering their usernames and passwords in all these
websites.

In order to provide a seamless browsing experience, and at the same time adhere to
enterprise security standards, many providers implement OAuth and SAML, as they are
industry recognized.

These SSO/identity providers integrate with the corporate employee database to further
assimilate the Cloud applications for the enterprise, as depicted here:

Developing Applications Using the Cloud Chapter 10

[316]

This design tries to explain how organizations are leveraging SSO using identity providers:

Organizations share the employee and organization details with the identity
provider:

Passwords may or may not be shared as it can compromise the entire
organization if there is a breach
SSO systems can enforce their own passwords on the employees

When the user tries to open any of the applications in the organization, it
redirects the user to the SSO provider
The SSO provider completes the authentication and shares necessary credentials
with the application
The application authorizes the user based on the feedback from the SSO
The application opens the user specific details and then the user can interact with
the application

Now, the biggest advantage of these SSOs is that once the user has established a session
with the system, they can log in to other corporate-approved applications without further
logins.

Confidentiality is the biggest challenge when interacting with SSO providers, so
organizations should carefully evaluate and pick the right solution that meets their security
requirements.

The AAA requirement
When it comes to security, it is important to understand that applications following the
AAA standard will take care of many challenges that enterprises face.

The AAA standard deals with:

Authentication
Authorization
Auditing

Authentication makes sure that the identity of the user is properly validated.

Authorization further controls whether a given user is allowed to access certain resources
or not, as per company policies.

Developing Applications Using the Cloud Chapter 10

[317]

Auditing makes sure that all attempts to access and use the resources are tracked—this can
also be used in case of any investigation, and provide proper accounting and billing (if
needed).

By following these best practices, we can be sure that things run smoothly on a large scale.

Building a Hadoop cluster in the Cloud
We saw earlier that the Cloud offers a flexible and easy way to rent resources such as
servers, storage, networking, and so on. The Cloud has made it very easy for consumers
with the pay-as-you-go model, but much of the complexity of the Cloud is hidden from us
by the providers.

In order to better understand whether Hadoop is well suited to being on the Cloud, let's try
to dig further and see how the Cloud is organized internally.

At the core of the Cloud are the following mechanisms:

A very large number of servers with a variety of hardware configurations
Servers connected and made available over IP networks
Large data centers to host these devices
Data centers spanning geographies with evolved network and data center
designs

If we pay close attention, we are talking about the following:

A very large number of different CPU architectures
A large number of storage devices with a variety of speeds and performance
Networks with varying speed and interconnectivity

Developing Applications Using the Cloud Chapter 10

[318]

Let's look at a simple design of such a data center on the Cloud:

We have the following devices in the preceding diagram:

S1, S2: Rack switches
U1-U6: Rack servers
R1: Router
Storage area network
Network attached storage

As we can see, Cloud providers have a very large number of such architectures to make
them scalable and flexible.

You would have rightly guessed that when the number of such servers increases and when
we request a new server, the provider can allocate the server anywhere in the region.

This makes it a bit challenging for compute and storage to be together but also provides
elasticity.

Developing Applications Using the Cloud Chapter 10

[319]

In order to address this co-location problem, some Cloud providers give the option of
creating a virtual network and taking dedicated servers, and then allocating all their virtual
nodes on these servers. This is somewhat closer to a data center design, but flexible enough
to return resources when not needed.

Let's get back to Hadoop and remind ourselves that in order to get the best from the
Hadoop system, we should have the CPU power closer to the storage. This means that the
physical distance between the CPU and the storage should be much less, as the BUS speeds
match the processing requirements.

The slower the I/O speed between the CPU and the storage (for example, iSCSI, storage area
network, network attached storage, and so on) the poorer the performance we get from the
Hadoop system, as the data is being fetched over the network, kept in memory, and then
fed to the CPU for further processing.

This is one of the important things to keep in mind when designing Hadoop systems on the
Cloud.

Apart from performance reasons, there are other things to consider:

Scaling Hadoop
Managing Hadoop
Securing Hadoop

Now, let's try to understand how we can take care of these in the Cloud environment.

In the previous chapters, we saw that Hadoop can be installed by the following methods:

Standalone
Semi-distributed
Fully-distributed

Developing Applications Using the Cloud Chapter 10

[320]

When we want to deploy Hadoop on the Cloud, we can deploy it using the following ways:

Custom shell scripts
Cloud automation tools (Chef, Ansible, and so on)
Apache Ambari
Cloud vendor provided methods

Google Cloud Dataproc
Amazon EMR
Microsoft HDInsight

Third-party managed Hadoop
Cloudera

Cloud agnostic deployment
Apache Whirr

Google Cloud Dataproc
In this section, we will learn how to use Google Cloud Dataproc to set up a single node
Hadoop cluster.

The steps can be broken down into the following:

Getting a Google Cloud account.1.
Activating Google Cloud Dataproc service.2.
Creating a new Hadoop cluster.3.
Logging in to the Hadoop cluster.4.
Deleting the Hadoop cluster.5.

Getting a Google Cloud account
This section assumes that you already have a Google Cloud account.

Developing Applications Using the Cloud Chapter 10

[321]

Activating the Google Cloud Dataproc service
Once you log in to the Google Cloud console, you need to visit the Cloud Dataproc service.
The activation screen looks something like this:

Creating a new Hadoop cluster
Once the Dataproc is enabled in the project, we can click on Create to create a new Hadoop
cluster.

Developing Applications Using the Cloud Chapter 10

[322]

After this, we see another screen where we need to configure the cluster parameters:

I have left most of the things to their default values. Later, we can click on the Create button
which creates a new cluster for us.

Developing Applications Using the Cloud Chapter 10

[323]

Logging in to the cluster
After the cluster has successfully been created, we will automatically be taken to the cluster
lists page. From there, we can launch an SSH window to log in to the single node cluster we
have created.

The SSH window looks something like this:

As you can see, the Hadoop command is readily available for us and we can run any of the
standard Hadoop commands to interact with the system.

Developing Applications Using the Cloud Chapter 10

[324]

Deleting the cluster
In order to delete the cluster, click on the DELETE button and it will display a confirmation
window, as shown in the following screenshot. After this, the cluster will be deleted:

Looks so simple, right? Yes. Cloud providers have made it very simple for users to use the
Cloud and pay only for the usage.

Data access in the Cloud
The Cloud has become an important destination for storing both personal data and business
data. Depending upon the importance and the secrecy requirements of the data,
organizations have started using the Cloud to store their vital datasets.

Developing Applications Using the Cloud Chapter 10

[325]

The following diagram tries to summarize the various access patterns of typical enterprises
and how they leverage the Cloud to store their data:

Cloud providers offer different varieties of storage. Let's take a look at what these types are:

Block storage
File-based storage
Encrypted storage
Offline storage

Developing Applications Using the Cloud Chapter 10

[326]

Block storage
This type of storage is primarily useful when we want to use this along with our compute
servers, and want to manage the storage via the host operating system.

To understand this better, this type of storage is equivalent to the hard disk/SSD that comes
with our laptops/MacBook when we purchase them. In case of laptop storage, if we decide
to increase the capacity, we need to replace the existing disk with another one.

When it comes to the Cloud, if we want to add more capacity, we can just purchase another
larger capacity storage and attach it to our server. This is one of the reasons why the Cloud
has become popular as it has made it very easy to add or shrink the storage that we need.

It's good to remember that, since there are many different types of access patterns for our
applications, Cloud vendors also offer block storage with varying storage/speed
requirements measured with their own capacity/IOPS, and so on.

Let's take an example of this capacity upgrade requirement and see what we do to utilize
this block storage on the Cloud.

In order to understand this, let's look at the example in this diagram:

Imagine a server created by the administrator called DB1 with an original capacity of 100
GB. Later, due to unexpected demand from customers, an application started consuming all
the 100 GB of storage, so the administrator has decided to increase the capacity to 1 TB
(1,024 GB).

Developing Applications Using the Cloud Chapter 10

[327]

This is what the workflow looks like in this scenario:

Create a new 1 TB disk on the Cloud1.
Attach the disk to the server and mount it2.
Take a backup of the database3.
Copy the data from the existing disk to the new disk4.
Start the database5.
Verify the database6.
Destroy the data on the old disk and return the disk7.

This process is simplified but in production this might take some time, depending upon the
type of maintenance that is being performed by the administrator. But, from the Cloud
perspective, acquiring new block storage is very quick.

File storage
Files are the basics of computing. If you are familiar with UNIX/Linux environments, you
already know that, everything is a file in the Unix world. But don't get confused with that as
every operating system has its own way of dealing with hardware resources. In this case we
are not worried about how the operating system deals with hardware resources, but we are
talking about the important documents that the users store as part of their day-to-day
business.

These files can be:

Movie/conference recordings
Pictures
Excel sheets
Word documents

Even though they are simple-looking files in our computer, they can have significant
business importance and should be dealt with in a careful fashion, when we think of storing
these on the Cloud.

Most Cloud providers offer an easy way to store these simple files on the Cloud and also
offer flexibility in terms of security as well.

Developing Applications Using the Cloud Chapter 10

[328]

A typical workflow for acquiring the storage of this form is like this:

Create a new storage bucket that's uniquely identified1.
Add private/public visibility to this bucket2.
Add multi-geography replication requirement to the data that is stored in this3.
bucket

Some Cloud providers bill their customers based on the number of features they select as
part of their bucket creation.

Please choose a hard-to-discover name for buckets that contain
confidential data, and also make them private.

Encrypted storage
This is a very important requirement for business critical data as we do not want the
information to be leaked outside the scope of the organization. Cloud providers offer an
encryption at rest facility for us. Some vendors choose to do this automatically and some
vendors also provide flexibility in letting us choose the encryption keys and methodology
for the encrypting/decrypting data that we own. Depending upon the organization policy,
we should follow best practices in dealing with this on the Cloud.

With the increase in the performance of storage devices, encryption does not add significant
overhead while decrypting/encrypting files. This is depicted in the following image:

Developing Applications Using the Cloud Chapter 10

[329]

Continuing the same example as before, when we choose to encrypt the underlying block
storage of 1 TB, we can leverage the Cloud-offered encryption where they automatically
encrypt and decrypt the data for us. So, we do not have to employ special software on the
host operating system to do the encryption and decryption.

Remember that encryption can be a feature that's available in both the block storage and
file-based storage offer from the vendor.

Cold storage
This storage is very useful for storing important backups in the Cloud that are rarely
accessed. Since we are dealing with a special type of data here, we should also be aware that
the Cloud vendor might charge significantly high amounts for data access from this storage,
as it's meant to be written once and forgetten (until it's needed). The advantage with this
mechanism is that we have to pay lesser amounts to store even petabytes of data.

Summary
In this chapter, we looked at what Cloud computing means and saw how the Cloud has
completely revolutionized how we can access and manage our servers and applications on
the internet. We then walked through a list of different technologies offered on the Cloud
by different providers.

We also learned how to plan our Cloud infrastructure and looked at the different steps
involved in building our own Hadoop cluster on the Cloud. Finally, we saw different ways
of storing and accessing our data on the Cloud.

In the next chapter we will take a look at some strategies and best practices to deploy your
Hadoop cluster.

11
Production Hadoop Cluster

Deployment
Hadoop itself started with a strong core and File System designed to handle the big data
challenges. Later, many applications were developed on top of this, creating a big
ecosystem of applications that play nicely with each other. As the number of applications
started increasing, the challenges to create and manage the Hadoop environment increased
as well.

In this chapter, we will look at the following:

Apache Ambari
A Hadoop cluster with Ambari

Apache Ambari architecture
Apache Ambari follows a master/slave architecture where the master node instructs the
slave nodes to perform certain actions and report back the state of every action. The master
node is responsible for keeping track of the state of the infrastructure. In order to do this,
the master node uses a database server, which can be configured during setup time.

Production Hadoop Cluster Deployment Chapter 11

[331]

In order to have a better understanding of how Ambari works, let's take a look at the high
level architecture of Ambari, in the following diagram:

At the core, we have the following applications:

Ambari server
Ambari agent
Ambari web UI
Database

The Ambari server
The Ambari server (ambari-server) is a shell script which is the entry point for all
administrative activities on the master server. This script internally uses Python
code, ambari-server.py, and routes all the requests to it.

Production Hadoop Cluster Deployment Chapter 11

[332]

The Ambari server has the following entry points which are available when passed different
parameters to the ambari-server program:

Daemon management
Software upgrade
Software setup
LDAP/PAM/Kerberos management
Ambari backup and restore
Miscellaneous options

Daemon management
The daemon management mode is activated when the script is invoked with start, stop,
reset, restart arguments from the command line.

For example, if we want to start the Ambari background server, we can run the following
command:

Example: ambari-server start

Software upgrade
Once Ambari is installed, we can use this mode to upgrade the Ambari server itself. This is
triggered when we call the ambari-server program with the upgrade flag. In case we
want to upgrade the entire stack of Ambari, we can pass the upgradestack flag:

Example: ambari-server upgrade

Software setup
Once Ambari is downloaded from the internet (or installed via YUM and APT), we need to
do a preliminary setup of the software. This mode can be triggered when we pass
the setup flag to the program. This mode will ask us several questions that we need to
answer. Unless we finish this step, Ambari cannot be used for any kind of management of
our servers:

Example: ambari-server setup

Production Hadoop Cluster Deployment Chapter 11

[333]

LDAP/PAM/Kerberos management
The Lightweight Directory Access Protocol (LDAP) is used for identity management in
enterprises. In order to use LDAP-based authentication, we need to use the following
flags: setup-ldap (for setting up ldap properties with ambari) and sync-ldap (to
perform a synchronization of the data from the ldap server):

Example: ambari-server setup-ldap
Example: ambari-server sync-ldap

Pluggable Authentication Module (PAM) is at the core of the authentication and
authorization in any UNIX or Linux operating systems. If we want to leverage the PAM-
based access for Ambari then we need to run it with the setup-pam option. If we then want
to move from LDAP to PAM-based authentication, we need to run it with migrate-ldap-
pam:

Example: ambari-server setup-pam
Example: ambari-server migrate-ldap-pam

Kerberos is another advanced authentication and authorization mechanism which is very
helpful in networked environments. This simplifies Authenticity, Authorisation and
Auditing (AAA) on large-scale servers. If we want to use Kerberos for Ambari, we can use
the setup-kerberos flag:

Example: ambari-server setup-kerberos

Ambari backup and restore
If we want to take a snapshot of the current installation of Ambari (excluding the database),
we can enter this mode. This supports both backup and restore methods invoked via
the backup and restore flags:

Example: ambari-server backup
Example: ambari-server restore

Miscellaneous options
In addition to these options, there are other options that are available with the Ambari
server program which you can invoke with the -h (help) flag.

Production Hadoop Cluster Deployment Chapter 11

[334]

Ambari Agent
Ambari Agent is a program which runs on all the nodes that we want to be managed with
Ambari. This program periodically heartbeats to the master node. Using this agent,
ambari-server executes many of the tasks on the servers.

Ambari web interface
This is one of the powerful features of the Ambari application. This web application is
exposed by the Ambari server program that is running on the master host; we can access
this application on port 8080 and it is protected by authentication.

Once we log in to this web portal, we can control and view all aspects of our Hadoop
clusters.

Database
Ambari supports multiple RDBMS to keep track of the state of the entire Hadoop
infrastructure. During the setup of the Ambari server for the first time, we can choose the
database we want to use.

At the time of writing, Ambari supports the following databases:

PostgreSQL
Oracle
MySQL or MariaDB
Embedded PostgreSQL
Microsoft SQL Server
SQL Anywhere
Berkeley DB

Setting up a Hadoop cluster with Ambari
In this section, we will learn how to set up a brand new Hadoop cluster from scratch using
Ambari. In order to do this, we are going to need four servers – one server for running the
Ambari server and three other nodes for running the Hadoop components.

Production Hadoop Cluster Deployment Chapter 11

[335]

Server configurations
The following table displays the configurations of the servers we are using as part of this
exercise:

Server Type Name CPU RAM DISK

Ambari Server node master 1 3.7 GB 100 GB

Hadoop node 1 node-1 2 13 GB 250 GB

Hadoop node 2 node-2 2 13 GB 250 GB

Hadoop node 3 node-3 2 13 GB 250 GB

Since this is a sample setup, we are good with this configuration. For real-world scenarios,
please choose the configuration according to your requirements.

Preparing the server
This section and all further sections assume that you have a working internet connection on
all the servers and are safely firewalled to prevent any intrusions.

All the servers are running the CentOS 7 operating system, as it's a system that uses
RPM/YUM for package management. Don't get confused when you see yum in the following
sections.

Before we go ahead and start using the servers, we need to run basic utility programs which
help us troubleshoot various issues with the servers. They are installed as part of the next
command. Don't worry if you are not sure what they are. Except for mysql-connector-
java and wget, all other utilities are not mandatory:

sudo yum install mysql-connector-java wget iftop iotop smartctl -y

Production Hadoop Cluster Deployment Chapter 11

[336]

Installing the Ambari server
The first step in creating the Hadoop cluster is to get our Ambari server application up and
running. So, log in to the master node with SSH and perform the following steps in order:

Download the Ambari YUM repository for CentOS 7 with this command:1.

[user@master ~]$ wget
http://public-repo-1.hortonworks.com/ambari/centos7/2.x/updates/2.6
.1.5/ambari.repo

After this step, we need to move the ambari.repo file to the2.
/etc/yum.repos.d directory using this command:

[user@master ~]$ sudo mv ambari.repo /etc/yum.repos.d/

The next step is to install the ambari-server package with the help of this3.
command:

[user@master ~]$ sudo yum install ambari-server -y

We are going to use a MySQL server for our Ambari server. So, let's install the4.
required packages as well:

[user@master ~]$ sudo yum install mariadb-server -y

Let's configure the MySQL server (or MariaDB) before we touch the Ambari5.
setup process. This is done with the following commands:

[user@master ~]$ sudo service mariadb start
Redirecting to /bin/systemctl start mariadb.service

Then, create a database called ambari and a user called ambari with the6.
password, ambari, so that the Ambari server configuration is easy to set up in
the following steps. This can be done with these SQL queries:

CREATE DATABASE ambari;
GRANT ALL PRIVILEGES ON ambari.* to ambari@localhost identified by
'ambari';
GRANT ALL PRIVILEGES ON ambari.* to ambari@'%' identified by
'ambari';
FLUSH PRIVILEGES;

Production Hadoop Cluster Deployment Chapter 11

[337]

Store these four lines into a text file called ambari.sql and execute with the7.
following command:

[user@master ~] mysql -uroot < ambari.sql

This will create a database, users and give necessary privileges.8.

Please use a strong password for production setup, otherwise your system
will be vulnerable to any attacks.

Now that we have done the groundwork, let's run the Ambari server setup. Note
that we are required to answer a few questions that are highlighted as follows:

[user@master ~]$ sudo ambari-server setup
Using python /usr/bin/python
Setup ambari-server
Checking SELinux...
SELinux status is 'enabled'
SELinux mode is 'enforcing'
Temporarily disabling SELinux
WARNING: SELinux is set to 'permissive' mode and temporarily
disabled.
OK to continue [y/n] (y)? <ENTER>
Customize user account for ambari-server daemon [y/n] (n)? <ENTER>
Adjusting ambari-server permissions and ownership...
Checking firewall status...
WARNING: iptables is running. Confirm the necessary Ambari ports
are accessible. Refer to the Ambari documentation for more details
on ports.
OK to continue [y/n] (y)? <ENTER>
Checking JDK...
[1] Oracle JDK 1.8 + Java Cryptography Extension (JCE) Policy Files
8
[2] Oracle JDK 1.7 + Java Cryptography Extension (JCE) Policy Files
7
[3] Custom JDK
===
===========
Enter choice (1): <ENTER>
To download the Oracle JDK and the Java Cryptography Extension
(JCE) Policy Files you must accept the license terms found at
http://www.oracle.com/technetwork/java/javase/terms/license/index.h
tml and not accepting will cancel the Ambari Server setup and you
must install the JDK and JCE files manually.
Do you accept the Oracle Binary Code License Agreement [y/n] (y)?

Production Hadoop Cluster Deployment Chapter 11

[338]

<ENTER>
Downloading JDK from
http://public-repo-1.hortonworks.com/ARTIFACTS/jdk-8u112-linux-x64.
tar.gz to /var/lib/ambari-server/resources/jdk-8u112-linux-
x64.tar.gz
jdk-8u112-linux-x64.tar.gz... 100% (174.7 MB of 174.7 MB)
Successfully downloaded JDK distribution to /var/lib/ambari-
server/resources/jdk-8u112-linux-x64.tar.gz
Installing JDK to /usr/jdk64/
Successfully installed JDK to /usr/jdk64/
Downloading JCE Policy archive from
http://public-repo-1.hortonworks.com/ARTIFACTS/jce_policy-8.zip to
/var/lib/ambari-server/resources/jce_policy-8.zip

Successfully downloaded JCE Policy archive to /var/lib/ambari-
server/resources/jce_policy-8.zip
Installing JCE policy...
Checking GPL software agreement...
GPL License for LZO:
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
Enable Ambari Server to download and install GPL Licensed LZO
packages [y/n] (n)? y <ENTER>
Completing setup...
Configuring database...
Enter advanced database configuration [y/n] (n)? y <ENTER>
Configuring database...
===
===========
Choose one of the following options:
[1] - PostgreSQL (Embedded)
[2] - Oracle
[3] - MySQL / MariaDB
[4] - PostgreSQL
[5] - Microsoft SQL Server (Tech Preview)
[6] - SQL Anywhere
[7] - BDB
===
===========
Enter choice (1): 3 <ENTER>
Hostname (localhost):
Port (3306):
Database name (ambari):
Username (ambari):
Enter Database Password (bigdata): ambari <ENTER>
Re-enter password: ambari <ENTER>
Configuring ambari database...
Configuring remote database connection properties...
WARNING: Before starting Ambari Server, you must run the following

Production Hadoop Cluster Deployment Chapter 11

[339]

DDL against the database to create the schema: /var/lib/ambari-
server/resources/Ambari-DDL-MySQL-CREATE.sql
Proceed with configuring remote database connection properties
[y/n] (y)? <ENTER>
Extracting system views...
ambari-admin-2.6.1.5.3.jar
...........
Adjusting ambari-server permissions and ownership...
Ambari Server 'setup' completed successfully.

Once the setup is complete, we need to create the tables in the Ambari database9.
by using the previous file that is generated during the setup process. This can be
done with this command:

[user@master ~] mysql -u ambari -pambari ambari < /var/lib/ambari-
server/resources/Ambari-DDL-MySQL-CREATE.sql

The next step is for us to start the ambari-server daemon. This will start the10.
web interface that we will use in the following steps to create the Hadoop cluster:

[user@master ~]$ sudo ambari-server start
Using python /usr/bin/python
Starting ambari-server
Ambari Server running with administrator privileges.
Organizing resource files at /var/lib/ambari-server/resources...
Ambari database consistency check started...
Server PID at: /var/run/ambari-server/ambari-server.pid
Server out at: /var/log/ambari-server/ambari-server.out
Server log at: /var/log/ambari-server/ambari-server.log
Waiting for server start...............................
Server started listening on 8080
DB configs consistency check: no errors and warnings were found.
Ambari Server 'start' completed successfully.

Once the server setup is complete, configure the JDBC driver (which is helpful for11.
all the other nodes as well):

[user@master ~] sudo ambari-server setup --jdbc-db=mysql --jdbc-
driver=/usr/share/java/mysql-connector-java.jar

Production Hadoop Cluster Deployment Chapter 11

[340]

Preparing the Hadoop cluster
There are a few more steps that we need to do before we go ahead and create the Hadoop
cluster.

Since we have the Ambari server up and running, let's generate an RSA key pair that we
can use for communication between the Ambari server and the Ambari agent nodes.

This key pair lets the Ambari server node log in to all the Hadoop nodes and perform the
installation in an automated way.

This step is optional if you have already done this as part of procuring the servers and
infrastructure:

[user@master ~]$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/user/.ssh/id_rsa):
Enter passphrase (empty for no passphrase): <ENTER>
Enter same passphrase again: <ENTER>
Your identification has been saved in /home/user/.ssh/id_rsa.
Your public key has been saved in /home/user/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:JWBbGdAnRHM0JFj35iSAcQk+rC0MhyHlrFawr+d2cZ0 user@master
The key's randomart image is:
+---[RSA 2048]----+
|.oo *@@** |
| +oo +o==*.o |
| .=.. = .oo + |
| .o+ o . o = |
|.. .+ . S . . |
|. . o . E |
| . . o |
| o. . |
| ... |
+----[SHA256]-----+

Production Hadoop Cluster Deployment Chapter 11

[341]

This will generate two files inside the /home/user/.ssh directory:

~/.ssh/id_rsa: This is the private key file which has to be kept in a secret place
~/.ssh/id_rsa.pub: This is the public key file which allows any SSH login
using the private key file

The contents of this id_rsa.pub file should be put in ~/.ssh/authorized_keys on all
the Hadoop nodes. In this case, they are node servers (1–3).

This step of propagating all the public SSH keys can be done during the
server provisioning itself, so a manual step is avoided every time we
acquire new servers.

Now, we will do all the work with only the Ambari web interface.

Creating the Hadoop cluster
In this section, we will build a Hadoop cluster using the Ambari web interface. This section
assumes the following things:

The nodes (1–3) are reachable over SSH from the master server
Admin can log in to the nodes (1–3) using the id-rsa private key from the
master server
A UNIX user can run sudo and perform all administrative actions on the node
(1–3) servers
The Ambari server setup is complete
The Ambari web interface is accessible to the browser without any firewall
restrictions

Production Hadoop Cluster Deployment Chapter 11

[342]

Ambari web interface
Let's open a web browser and connect to the Ambari server web interface using
http://<server-ip>:8080. We are presented with a login screen like this. Please enter
admin as the username and admin as the password to continue:

Once the login is successful, we are taken to the home page.

The Ambari home page
This is the main page where there are multiple options on the UI. Since this is a brand new
installation, there is no cluster data available yet.

Production Hadoop Cluster Deployment Chapter 11

[343]

Let's take a look at the home page with this screenshot:

From this place, we can carry out the following activities:

Creating a cluster
As you may have guessed, this section is used to launch a wizard that will help us create a
Hadoop cluster from the browser.

Managing users and groups
This section is helpful to manage users and groups that can use and manage the Ambari
web application.

Production Hadoop Cluster Deployment Chapter 11

[344]

Deploying views
This interface is helpful in creating views for different types of users and what actions they
can perform via the Ambari web interface.

Since our objective is to create a new Hadoop cluster, we will click on the Launch Install
Wizard button and start the process of creating a Hadoop cluster.

The cluster install wizard
Hadoop cluster creation is broken down into multiple steps. We will go through all these
steps in the following sections. First, we are presented with a screen where we need to name
our Hadoop cluster.

Naming your cluster
I have chosen packt as the Hadoop cluster name. Click Next when the Hadoop name is
entered in the screen. The screen looks like this:

Production Hadoop Cluster Deployment Chapter 11

[345]

Selecting the Hadoop version
Once we name the Hadoop cluster, we are presented with a screen to select the version of
Hadoop we want to run.

At the time of writing, Ambari supports the following Hadoop versions:

Hadoop 2.3
Hadoop 2.4
Hadoop 2.5
Hadoop 2.6 (upto 2.6.3.0)

You can choose any version for the installation. I have selected the default option which is
version 2.6.3.0, which can be seen in this screenshot:

Click Next at the bottom of the screen to continue to the next step.

Selecting a server
The next logical step is to select the list of servers on which we are going to install the
Hadoop-2.6.3.0 version. If you remember the original table, we named our node servers
(1–3). We will enter those in the UI.

Since the installation is going to be completely automated, we also need to provide the RSA
private key that we generated in the previous section in the UI. This will make sure that the
master node can log in to the servers without any password over SSH.

Production Hadoop Cluster Deployment Chapter 11

[346]

Also, we need to provide a UNIX username that's already been created on all the node (1–3)
servers that can also accept RSA key for authentication.

Add id_rsa.pub to ~/.ssh/authorized_keys on the node (1–3)
servers.

Please keep in mind that these hostnames should have proper entries in the DNS (Domain
Name System) Servers otherwise the installation won't be able to proceed from this step.

The names that I have given can be seen in this following screenshot:

After the data is entered, click on Register and Confirm.

Production Hadoop Cluster Deployment Chapter 11

[347]

Setting up the node
In this step, the Ambari agent is automatically installed on the given nodes, provided the
details are accurate. Success confirmation looks like this:

If we want to remove any nodes, this is the screen in which we can do it. Click Next when
we are ready to go to the next step.

Selecting services
Now, we need to select the list of applications/services that we want to install on the three
servers we have selected.

At the time of writing, Ambari supports the following services:

Application/Service Application Description

HDFS Hadoop Distributed File System

YARN + MapReduce2 Next generation Map Reduce framework

Tez Hadoop query processing framework built on top of YARN

Hive Data warehouse system for ad hoc queries

Production Hadoop Cluster Deployment Chapter 11

[348]

HBase Non-relational distributed database

Pig Scripting platform to analyze datasets in HDFS

Sqoop Tool to transfer data between Hadoop and RDBMS

Oozie Workflow co-ordination for Hadoop jobs with a web UI

ZooKeeper Distributed system coordination providing service

Falcon Data processing and management platform

Storm Stream processing framework

Flume Distributed system to collect, aggregate, and move streaming data
to HDFS

Accumulo Distributed key/value store

Ambari Infra Shared service used by Amari components

Ambari Metrics Grafana-based system for metric collection and storage

Atlas Metadata and governance platform

Kafka Distributed streaming platform

Knox Single-point authentication provider for all Hadoop components

Log Search Ambari-managed services log aggregator and viewer

Ranger Hadoop data security application

Ranger KMS Key management server

SmartSense Hortonworks Smart Sense tool to diagnose applications

Spark Large-scale data processing framework

Zeppelin Notebook Web-based notebook for data analytics

Druid Column-oriented data store

Mahout Machine learning algorithms

Slider Framework to monitor applications on YARN

Superset Browser-based data exploration platform for RDBMS and Druid

Production Hadoop Cluster Deployment Chapter 11

[349]

As part of the current step, we have selected only HDFS and its dependencies. The screen is
shown as follows:

Once you have made your choices, click the Next button at the bottom of the UI.

Service placement on nodes
In this step, we are shown the automatic selection of services on the three nodes we have
selected for installation. If we want to customize the placement of the services on the nodes,
we can do so. The placement looks like this:

Production Hadoop Cluster Deployment Chapter 11

[350]

Click Next when the changes look good.

Production Hadoop Cluster Deployment Chapter 11

[351]

Selecting slave and client nodes
Some applications support slaves and client utilities. In this screen, we need to select the
nodes on which we want these applications to be installed. If you are unsure, click Next.
The screen looks like this:

Customizing services
Even though Ambari automatically selects most of the properties and linkage between the
applications, it provides us with some flexibility to choose values for some of the features,
such as:

Databases
Usernames
Passwords

And other properties that help the applications run smoothly. These are highlighted in the
current screen in red.

Production Hadoop Cluster Deployment Chapter 11

[352]

In order to customize these, we need to go to the tab with the highlighted properties and
choose the values according to our need. The screen looks like this:

After all the service properties are configured correctly, we will not see anything in red in
the UI and can click the Next button at the bottom of the page.

Reviewing the services
In this step, we are shown a summary of the changes we have made so far. We are given an
option to print the changes so that we will not forget them (don't worry, all these are
available on the UI later). For now we can click Deploy. This is when the actual changes
will be made to the nodes.

Production Hadoop Cluster Deployment Chapter 11

[353]

No changes will be made to the servers if we cancel this process. The current state of the
wizard looks like this now:

Installing the services on the nodes
After we've clicked Deploy in the previous step, a deployment plan is generated by the
Ambari server and applications will be deployed on all the nodes in parallel, using the
Ambari agents running on all the nodes.

We are shown the progress of what is being deployed in real time in this step.

Production Hadoop Cluster Deployment Chapter 11

[354]

Once all the components have been installed, they will be automatically started and we can
see the successful completion in this screen:

Click Next when everything is done successfully. In the case of any failures, we are shown
what has failed and will be given an option to retry the installation. If there are any failures,
we need to dig into the errors and fix the underlying problems.

If you have followed the instructions given at the beginning of the section you should have
everything running smoothly.

Production Hadoop Cluster Deployment Chapter 11

[355]

Installation summary
In this step, we are shown the summary of what has been installed. The screen looks like
this:

Click on the Complete button which marks the end of the Hadoop cluster setup. Next, we
will be taken to the cluster dashboard.

The cluster dashboard
This is the home page of the Hadoop cluster we have just created where we can see the list
of all the services that have been installed and the health sensors.

We can manage all aspects of the Hadoop cluster in this interface. Feel free to explore the
interface and play with it to understand more:

Production Hadoop Cluster Deployment Chapter 11

[356]

This marks the end of the Hadoop cluster creation with Ambari.

Hadoop clusters
So far, we have seen how to create a single Hadoop cluster using Ambari. But, is there ever
a requirement for multiple Hadoop clusters?

The answer depends on the business requirements. There are trade-offs for both single
versus multiple Hadoop clusters.

Before we jump into the advantages and disadvantages of both of these, let's see in what
scenarios we might use either.

Production Hadoop Cluster Deployment Chapter 11

[357]

A single cluster for the entire business
This is the most straightforward approach and every business starts with one cluster, at
least. As the diversity of the business increases, organizations tend to choose one cluster per
department, or business unit.

The following are some of the advantages:

Ease of operability: Since there is only one Hadoop cluster, managing it is very
easy and the team sizes will also be optimal when administering it.
One-stop shop: Since all the company data is in a single place, it's very easy to
come up with innovative ways to use and generate analytics on top of the data.
Integration cost: Teams and departments within the enterprise can integrate with
this single system very easily. They have less complex configurations to deal with
when managing their applications.
Cost to serve: Enterprises can have a better understanding of their entire big data
usage and can also plan, in a less stringent way, on scaling their system.

Some disadvantages of employing this approach are as follows:

Scale becomes a challenge: Even though Hadoop can be run on hundreds and
thousands of servers, it becomes a challenge to manage such big clusters,
particularly during upgrades and other changes.
Single point of failure: Hadoop internally has replication built-in to it in the
HDFS File System. When more nodes fail, the chances are that there is loss of data
and it's hard to recover from that.
Governance is a challenge: As the scale of data, applications, and users increase,
it is a challenge to keep track of the data without proper planning and
implementation in place.

Security and confidential data management: Enterprises deal with
a variety of data that varies from highly sensitive to transient data.
When all sorts of data is put in a big-data solution, we have to
employ very strong authentication and authorization rules so that
the data is visible only to the right audience.

With these thoughts, let's take a look at the other possibility of having Hadoop clusters in
an enterprise.

Production Hadoop Cluster Deployment Chapter 11

[358]

Multiple Hadoop clusters
Even though having a single Hadoop cluster is easier to maintain within an organization,
sometimes its important to have multiple Hadoop clusters to keep the business running
smoothly and reduce dependency on a single point of failure system.

These multiple Hadoop clusters can be used for several reasons:

Redundancy
Cold backup
High availability
Business continuity
Application environments

Redundancy
When we think of redundant Hadoop clusters, we should think about how much
redundancy we can keep. As we already know, the Hadoop Distributed File System
(HDFS) has internal data redundancy built in to it.

Given that a Hadoop cluster has lot of ecosystem built around it (services such as YARN,
Kafka, and so on), we should think and plan carefully about whether to have the entire
ecosystem made redundant or make only the data redundant by keeping it in a different
cluster.

It's easier to make the HDFS portion of the Hadoop redundant as there are tools to copy the
data from one HDFS to another HDFS.

Production Hadoop Cluster Deployment Chapter 11

[359]

Let's take a look at possible ways to achieve this via this diagram:

As we can see here, the main Hadoop cluster runs a full stack of all its applications, and
data is supplied to it via multiple sources.

Production Hadoop Cluster Deployment Chapter 11

[360]

We have defined two types of redundant clusters:

A fully redundant Hadoop cluster
This cluster runs the exact set of applications as the primary cluster and the data is copied
periodically from the main Hadoop cluster. Since this is a one-way copy from the main
cluster to the second cluster, we can be 100% sure that the main cluster isn't impacted when
we make any changes to this fully redundant cluster.

One important thing to understand is that we are running all other instances of applications
in this cluster. Since every application maintains its state in its own predefined location, the
application states are not replicated from the main Hadoop cluster to this cluster, which
means that the jobs that were created in the main Hadoop cluster are not visible in this
cluster. The same applies to the Kafka topics, zookeeper nodes, and many more.

This type of cluster is helpful for running different environments such as QA, Staging, and
so on.

A data redundant Hadoop cluster
In this type of cluster setup, we create a new Hadoop cluster and copy the data from the
main cluster, like in the previous case; but here we are not worried about the other
applications that are run in this cluster.

This type of setup is good for:

Having data backup for Hadoop in a different geography
Sharing big data with other enterprises/organizations

Cold backup
Cold backup is important for enterprises as the data gets older. Even though Hadoop is
designed to store unlimited amounts of data, it's not always necessary to keep all the data
available for processing.

It is sometimes necessary to preserve the data for auditing purposes and also for historical
reasons. In such cases, we can create a dedicated Hadoop cluster with only the HDFS (File
System) component and periodically sync all the data into this cluster.

The design for this system is similar to the data redundant Hadoop cluster.

Production Hadoop Cluster Deployment Chapter 11

[361]

High availability
Even though Hadoop has multiple components within the architecture, not all the
components are highly available due to the internal design.

The core component of Hadoop is its distributed, fault-tolerant, filesystem HDFS. HDS has
multiple components one of them is the NameNode which is the registry of where the files
are located in the HDFS. In the earlier versions of HDS NameNode was Single point of
Failure, In the recent versions Secondary NameNode has been added to assist with high
availability requirements for Hadoop Cluster.

In order to make every component of the Hadoop ecosystem a highly available system, we
need to add multiple redundant nodes (they come with their own cost) which work
together as a cluster.

One more thing to note is that high availability with Hadoop is possible within a single
geographical region, as the locality of the data with applications is one of the key things
with Hadoop. The moment we have multiple data centers in play we need to think
alternatively to achieve high availability across the data centers.

Business continuity
This is part of Business Continuity Planning (BCP) where natural disasters can bring an
end to the Hadoop system, if not planned correctly.

Here, the strategy would be to use multiple geographical regions as providers to run the big
data systems. When we talk about multiple data centers, the obvious challenge is the
network and the cost associated with managing both systems. One of the biggest challenges
is how to keep multiple regions in sync.

One possible solution is to build a fully redundant Hadoop cluster in other geographical
regions and keep the data in sync, periodically. In the case of any disaster/breakdown of
one region, our businesses won't come to halt as we can smoothly run our operations.

Production Hadoop Cluster Deployment Chapter 11

[362]

Application environments
Many businesses internally follow different ways of releasing their software to production.
As part of this, they follow several continuous integration methodologies, in order to have
better control over the stability of the Hadoop environments. It's good to build multiple
smaller Hadoop clusters with X% of the data from the main production environment and
run all the applications here.

Applications can build their integration tests on these dedicated environments (QA,
Staging, and so on) and can release their software to production once everything is good.

One practice that I have come across is that organizations tend to directly ship the code to
production and end up facing outage of their applications because of an untested workflow
or bug. It's good practice to have dedicated Hadoop application environments to test the
software thoroughly and achieve higher uptime and happier customers.

Hadoop data copy
We have seen in the previous sections that, having highly available data is very important
for a business to succeed and stay up to date with its competition.

In this section, we will explore the possible ways to achieve highly available data setup.

HDFS data copy
Hadoop uses HDFS as its core to store the files. HDFS is rack aware and is intelligent
enough to reduce the network data transfer when applications are run on the data nodes.

One of the preferred ways of data copying in an HDFS environment is to use the DistCp.
The official documentation for this is available at the following URL http:/ ​/​hadoop.
apache.​org/​docs/ ​r1. ​2. ​1/ ​distcp. ​html.

http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html
http://hadoop.apache.org/docs/r1.2.1/distcp.html

Production Hadoop Cluster Deployment Chapter 11

[363]

We will see a few examples of copying data from one Hadoop cluster to another Hadoop
cluster. But before that, let's look at how the data is laid out:

In order to copy the data from the production Hadoop cluster to the backup Hadoop
cluster, we can use distcp. Let's see how to do it:

hadoop distcp hdfs://NameNode1:8020/projects hdfs://NameNode2:8020/projects
hadoop distcp hdfs://NameNode1:8020/users hdfs://NameNode2:8020/users
hadoop distcp hdfs://NameNode1:8020/streams hdfs://NameNode2:8020/streams
hadoop distcp hdfs://NameNode1:8020/marketing
hdfs://NameNode2:8020/marketing
hadoop distcp hdfs://NameNode1:8020/sales hdfs://NameNode2:8020/sales

When we run the distcp command, a MapReduce job is created to automatically find out
the list of files and then copy them to the destination.

The full command syntax looks like this:

Distcp [OPTIONS] <source path …> <destination path>

OPTIONS: These are the multiple options the command takes which control the
behavior of the execution.
source path: A source path can be any valid File System URI that's supported
by Hadoop. DistCp supports taking multiple source paths in one go.
destination path: This is a single path where all the source paths need to be
copied.

Production Hadoop Cluster Deployment Chapter 11

[364]

Let's take a closer look at a few of the important options:

Flag/Option Description

append
Incrementally writes the data to the destination files if they already
exist (only append is performed, no block level check is performed to
do incremental copy).

async Performs the copy in a non-blocking way.

atomic Perform all the file copy or aborts even if one fails.

Tmp <path> Path to be used for atomic commit.

delete
Deletes the files from the destination if they are not present in the
source tree.

Bandwidth <arg>
Limits how much network bandwidth to be used during the copy
process.

f <file-path> Filename consisting of a list of all paths which need to be copied.

i Ignores any errors during file copy.

Log <file-path> Location where the execution log is saved.

M <number> Maximum number of concurrent maps to use for copying.

overwrite Overwrites the files even if they exist on destination.

update Copies only the missing files and directories.

skipcrccheck If passed, CRC checks are skipped during transfer.

Summary
In this chapter, we learned about Apache Ambari and studied its architecture in detail. We
then understood how to prepare and create our own Hadoop cluster with Ambari. In order
to do this, we also looked into configuring the Ambari server as per the requirement before
preparing our cluster. We also learned about single and multiple Hadoop clusters and how
they can be used, based on the business requirement.

Index

A
Ambari agent 334
Ambari home page
 about 342, 343
 cluster, creating 343
 groups, managing 343
 users, managing 343
 views, deploying 344
Ambari server
 about 331, 332
 backup 333
 daemon management 332
 Kerberos management 333
 LDAP management 333
 miscellaneous options 333
 PAM management 333
 restoring 333
 software setup 332
 software upgrade 332
Ambari web interface 334
Ambari
 cleanup 203
 clients selection 199
 Hadoop cluster, setting up 334
 server placement 198
 service customization 199
 service restarts 203
 service selection 196
 Service Wizard, adding 197
 slaves selection 199
 software deployment 201
 Spark installation progress 202
 used, for installing Apache Spark 196
Analyzer
 about 238
 character filter 238

 fingerprint analyzer 238
 keyword analyzer 238
 language analyzer 238
 pattern analyzer 238
 simple analyzer 238
 standard analyzer 238
 stop analyzer 238
 token filter 238
 tokenizer 238
 whitespace analyzer 238
Apache Ambari architecture 330, 331
Apache Druid architecture
 reference link 257
Apache Druid, installation
 sample data ingestion 264, 265
 service, adding 258
 summary 263
Apache Druid, installing
 Druid, selecting 259
Apache Druid
 about 257
 clients, selecting 261
 components 257
 installation 258
 other required components 258
 service configuration 261
 service installation 262
 service placement, on servers 259
 slaves, selecting 261
 Superset, selecting 259
 URL 257
Apache Flink
 about 181
 DataSet API 181
 DataStream API 181
 features 181
 Streaming SQL 182

[366]

 Table API 182
 versus Apache Spark 183
Apache Flume, architecture
 agent 89
 channel 89
 event 89
 flow 89
 interceptors 89
 sink 89
 source 89
Apache Flume
 about 88
 aggregation use case, logging 92
 architecture 89
 complex data flow architecture 90
 setting up 91
 used, for data flow 90
Apache HBase, data model
 about 137
 cell 137
 column 137
 column family 137
 column qualifier 137
 row 137
 table 137
Apache HBase, features
 about 136
 control data sharding 136
 flexibility 137
 low latency processing 137
 reliability 137
 sorted rowkeys 136
 strong consistency 136
Apache HBase, rowkey design
 about 142
 key hashing 142
 key salting 142
 key with reverse timestamp 142
Apache HBase
 about 135
 architecture 140
 architecture, in nutshell 142
 versus HDFS 135
 versus Hive 136
Apache Hive

 about 108
 architecture 110
 working 110
Apache NiFi, architecture
 content repository 96
 extensions 96
 file controller 96
 FileFlow repositorty 96
 provenance repository 96
 web server 96
Apache NiFi
 about 95
 architecture 96
 concepts 95
 features 97
 real-time log capture dataflow 99
Apache Ranger
 about 42
 access manager 52
 Ambari admin UI 43
 application, restarting 50, 51
 configuration changes 48
 configuration review 49
 database, configuring 47, 48
 database, creating on master 46, 47
 deployment progress 50
 HDFS, auditing 54, 55
 installing, Ambari used 42
 policy, defining 54, 55
 service client placement 45, 46
 service details 52, 53
 service placement 44, 45
 service, adding 44
 UI, login 51
 user guide 51
Apache Spark 2 195, 196
Apache Spark data structures 203, 204
Apache Spark programming
 about 205, 206, 207
 interactive data analysis, with pyspark 208
 sample data, for analysis 207
 Spark SQL application 215, 216
 Spark streaming application 212, 213
 standalone application, with Spark 211, 212
Apache Spark

[367]

 about 195
 installing, Ambari used 196
 versus Apache Storm 183
Apache Sqoop
 about 81
 exporting 87
 importing 82
 importing, into HDFS 82, 86
 MySQL table, importing into HBase table 86
Apache Storm
 about 163
 features 164
 installing, on single node cluster 167
 real-time streaming pipeline, developing 169
 Storm Topology 164
Apache Superset
 about 269
 application, accessing 269, 272
 channels distribution 282
 channels, via directed force layout 280
 countries distribution 282
 dashboard creation 297
 dashboards 270, 271
 database, supporting 286
 employee database 288
 namespaces, via directed force layout 280
 Slices creation 297
 slices, for employees database 291
 sunburst chart 278, 279
 Superset Slices, creating Wikipedia data used

275

 users count 275, 276
 Wikipedia edits dashboard, creating from Slices

283, 284, 285
 Wikipedia edits data 272, 274, 275
 with RDBMS 285
 word cloud, for top US regions 277
auditing 317
authentication 316
Authenticity, Authorization and Auditing (AAA) 333
authorization 316
automatic failover
 about 71
 architecture points 71
 configuring 72

B
batch processing
 about 80
 versus real-time processing 80
Beats
 about 239
 Auditbeat 240
 Filebeat 240
 Heartbeat 240
 Metricbeat 240
 Packetbeat 240
 URL 239
 Winlogbeat 240
block storage 326, 327
brokers 154
Business continuity planning (BCP)
 about 311, 361
 business data 312
 design, example 312
 Hot–Cold system 313
 Hot–Hot system 313
 infrastructure unavailability 311
 natural disasters 311

C
Cloud infrastructure
 Business continuity planning (BCP) 311
 dedicated servers, versus shared servers 307
 high availability 308, 309, 311
 planning 307
 security 313
Cloud storage 329
Cloud
 about 303
 block storage 326, 327
 data access 324, 325
 encrypted storage 328, 329
 file storage 327, 328
 Hadoop cluster, building 317, 318, 320
 technologies 303, 304
Cloudera
 reference link 74
column-oriented data store
 versus RDBMS table 137

[368]

comma separated value (CSV) 34
Comma Separated Value (CSV) 28
commits 61
compaction 142
complex event processing (CEP) 149
components, Storm Topology
 all grouping 165
 bolt 165
 custom grouping 165
 direct grouping 165
 field grouping 165
 Nimbus node 166
 shuffle grouping 165
 spout 165
 Storm Cluster 166
 Storm Cluster nodes 166
 stream 165
 stream grouping 165
 Supervisor node 166
 topology 165
 Zookeeper node 167
Confluent
 URL 152

D
dashboard creation 297, 300
data about data 11
data access
 in Cloud 324, 325
data architecture principles
 about 9
 variety 10
 velocity 9, 10
 veracity 10, 11
 volume 9
Data as a Service (DaaS) 19, 20, 21, 22
data governance
 about 13
 fundamentals 13, 14
data masking 34
data node 221
data replication 62, 152
data search
 concept 217
data security

 about 14, 16, 42
 Apache Ranger 42
 Apache Ranger, installing Ambari used 42
 application security 16
 BI security 18
 big data security 17
 data encryption 19
 input data 16, 17
 physical security 18
 RDBMS security 17
 secure key management 19
Data Service 20
data structure principles 58
data visualization
 about 250, 251
 area chart 252, 253
 bar chart 251
 bubble chart 255
 column chart 251
 in Hadoop 256
 line chart 252, 253
 other charts 256
 pie chart 253, 254
 radar chart 254, 255
 scatter chart 255, 256
data wrangling
 about 31
 acquisition 32
 information extraction 32, 33
 standardization 34
 structure analysis 32
 transformation 33
 unwanted data removal 33
data
 copying, to MySQL 266
 loading, from MySQL table to HBase table 143,

144

database 334
DataFrames 204, 205, 209
DataNode
 about 62
 data replication 62
datasets 204, 205
datatypes 109
dedicated servers

[369]

 about 307
 versus shared servers 307
directed acyclic graph (DAG) 165
Directed force layout (DFL) 280
Discretized Stream (DStream) 183
DistCp
 reference link 362
documents
 ingesting, into index 229
dynamic mapping 236
dynamic
 about 36
 encryption 36
 hashing 37

E
Elasticsearch components
 about 219
 cluster 221
 document 220
 index 219
 mapping 220
 type 221
Elasticsearch installation
 about 222, 223
 bulk insert 230
 document search 231
 index, creating 225
 meta fields 233
 primary shard 225
 replica shard 226
Elasticsearch stack components
 about 239
 Beats 239
Elasticsearch
 about 219
 data types 236
 documents, indexing 221
 features 219
 mapping, example 237
employee database
 about 288
 department employees table 289
 department manager table 289
 departments table 288

 employee table 288
 normalized employees table 290
 salaries table 290
 titles table 289
employees 268
encrypted storage 328, 329
enterprise search engine
 need for 218
 tools, building 218
erasing 39
evolution data architecture
 with Hadoop 22
Extensible Markup Language (XML) 34

F
fault-tolerant 164
features, Kafka
 about 152
 durable 152
 high performance throughput 152
 reliable 152
 scalable 152
file storage 327, 328

G
Google Cloud account
 obtaining 320
Google Cloud Dataproc
 about 320
 service, activating 321
GraphX 195

H
HA NameNodes
 Automatic failover 71
 configuring, with QJM 70
Hadoop cluster composition 72
Hadoop cluster
 about 356
 Ambari home page 342, 343
 Ambari server, installing 336, 337
 Ambari web interface 342
 building, in Cloud 317, 318, 320
 client nodes, selecting 351

[370]

 cluster dashboard 355
 creating 321, 322, 341
 data copy 362
 deleting 324
 disadvantages 357
 installation summary 355
 installing 58
 logging 323
 multiple Hadoop cluster 358
 naming 344
 node, setting up 347
 preparing 340, 341
 server configurations 335
 server, preparing 335
 server, selecting 345, 346
 service placement, on nodes 349
 services, customizing 351, 352
 services, installing on nodes 353, 354
 services, reviewing 352, 353
 services, selecting 347, 349
 setting up, with Ambari 334
 single Hadoop cluster 357
 slave nodes, selecting 351
 version, selecting 345
 wizard, installing 344
Hadoop data architecture
 about 28
 data layer 28
 data management layer 30
 job execution layer 30
Hadoop deployment
 automated deployment 75
 best practices 74
 data protection 75
 HA, implementing 75
 Hadoop cluster monitoring 75
 security 75
 setting up 74
Hadoop Distributed File System (HDFS) 28, 358
Hadoop file formats
 about 75, 77
 Avro 76
 JSON 76
 ORC 77
 parquet 77

 sequence file 76
 text/CSV file 76
Hadoop filesystem (HDFS) 250
Hadoop MapReduce 189, 190, 195
Hadoop multi-node cluster
 reference link 60
Hadoop single-node
 reference link 60
Hadoop
 Apache Druid 257
 Apache Superset 269
 configuring, on NameNode 60
 data visualization in 256
 MySQL database 265
HBase table
 data, loading from MySQL table 144
 MySQL customer changed data, loading 145
HDFS architecture
 exploring 61
 HDFS WebUI 64
 NameNode, defining 61
 rack awareness 62
HDFS data copy 362, 363, 364
HDFS HA cluster
 architecture points 67, 70
 NFS, used 67
 QJM, used 69
HDFS high availability (HA)
 configuring 66
 HA NameNodes, configuring with shared storage

68

 Hadoop 1.x 66
 Hadoop 2.x 66
HDFS WebUI 64
HDFS
 versus Apache HBase 135
hiding
 about 38, 39
 Complex Hide 39
 Even Hide 39
 Odd Hide 39
hierarchical database architecture 23, 24
Hive data model management 111
Hive dynamic partitions 116, 119
Hive HBase integration 146

[371]

Hive indexes
 about 126
 bitmap index 127
 compact index 127
Hive partition bucketing
 about 119
 creating, in partitioned table 122
 creating, into non-partitioned table 121
 query performance 120
 sampling 120
 working 120
Hive SET configuration parameters
 reference link 121
Hive SQL
 job execution 111
 query 110
 query execution 111
Hive static partitions 116, 119
Hive table partition 113, 115, 116
Hive tables
 about 111
 external tables 112
 managed tables 111
Hive views
 about 125
 syntax 125
Hive
 used, for JSON documents 128
 versus Apache HBase 136
HiveQL (HQL) 108
Hortonworks
 reference link 74

I
interpretation 252

J
Java Archive (JAR) 194
Java MapReduce 192, 193, 194, 195
javascript object notation (JSON)
 about 34
 URL 128
JournalNodes (JNs) 70
JSON documents

 Hive used 128
Just a Bunch Of Disks (JBOD) 74

K
Kafka architecture, components
 brokers 154
 consumers 154
 Kafka Connect 154
 Kafka Streams 154
 partition 154
 producers 153
 topic 153
Kafka architecture
 about 153
 components 153
Kafka Cluster 154
Kafka Connect architecture 155
Kafka Connect Cluster 155
Kafka Connect workers standalone
 versus distributed mode 156
Kafka Connect
 about 99
 architecture 101
 cluster distributed architecture 103
 cluster distributed architecture, example 104,

106

 concepts 102
 distributed mode 102
 features 100
 file Sink Connectors, used 160
 file Sink, used 159
 file Source, using 159
 history 99
 JDBC, used 160
 need for 100
 standalone mode 102
 worker mode 102
Kafka Streams API 178
Kafka Streams
 references 179
Kafka
 about 152
 installing 157
Kerberos 333

[372]

L
Lightweight Directory Access Protocol (LDAP) 333
low-latency 164

M
machine learning libraries (Mlib) 195
Map Phase 188
mapping
 about 233
 dynamic mapping 236
 static mapping 235
MapReduce 185, 186, 187, 188, 189
 reference link 76
master node 221
message queue
 about 151
 Kafka 152
messages
 generating, to verify consumer 158
 generating, to verify producer 158
metadata 11, 12
multiple Hadoop cluster
 about 358
 application environments 362
 business continuity 361
 cold backup 360
 high availability 361
multiple programming languages 164
MySQL customer changed data
 loading, into HBase table 145
MySQL database/table
 registering 291, 292, 293, 294, 295, 297
MySQL database
 about 265
 sample database 266
MySQL table
 data, loading to HBase table 143, 144

N
NameNode
 about 30
 defining 61
 formating 60
 Hadoop, configuring 60

 safe mode 62
 secondary NameNode 61
nested JSON documents
 accessing, with Hive 129
network database architecture 24
NoSQL data stores 135
NoSQL databases, types
 reference link 135

O
offset 154

P
personally identifiable information (PII) 34
Pluggable Authentication Module (PAM) 333
proof of concept (POC) 74
proof of technology (POT) 74
pyspark 208

Q
quorum journal manager (QJM) 66

R
rack awareness 62
RDBMS 108
RDBMS table
 versus column-oriented data store 137
real-time data streaming frameworks
 about 178
 Apache Flink 181
 Kafka Streams API 178
 Spark Streaming 179
real-time processing
 about 81
 versus batch processing 80
real-time streaming components
 about 151
 Kafka architecture 153
 Kafka Connect architecture 155
 Kafka Connect deep dive 154
 Kafka features 152
 message queue 151
real-time streaming concepts
 about 147

[373]

 batch processing, versus real-time data
processing 148

 complex event processing (CEP) 149
 continuous availability 149
 data stream 147
 horizontal scalability 150
 low latency 150
 scalable processing frameworks 150
 storage 150
redundancy, multiple Hadoop cluster
 about 358, 359
 data redundant Hadoop cluster 360
 fully redundant Hadoop cluster 360
relational database architecture
 about 26
 department 27, 28
 devices 27
 employee mapping table 28
 employees 27
reliable 164
Resilient Distributed Datasets (RDD) 204, 205
rooted tree 23
row-level updates
 reference link 86

S
sample dataset
 downloading 266
schema evolution
 with Avro 130, 132, 134
 with Hive 130, 132, 134
secondary NameNode 61
 DataNode 62
security
 AAA requisites 316
 about 313
 application security 314
 network security 314
 server security 314
 Single Sign On (SSO) 315, 316
service-level agreement (SLA) 308
services
 starting 60
shared servers
 about 308

 versus dedicated servers 307
shuffling 41
simple JSON documents
 accessing, with Hive 128
single Hadoop cluster
 about 357
 advantages 357
single normalized table 268
single point of failure (SPOF) 66
Sink Connectors 154
Slices creation 297
slices creation
 department salary breakup 297
 salary change 299
 salary diversity 298
Software as a Service (SaaS) 314
Source Connectors 154
Spark SQL 195
Spark Streaming
 about 179
 references 180
static 35
static mapping 235
Storm Topology
 about 164
 components 165
streaming MapReduce 190, 191, 192
streaming pipeline
 from Kafka, to MySQL 170
 from Kafka, to Storm 170
 with Kafka, to HDFS 175
 with Kafka, to Storm 175
Structured Query Language 195
substitution, data masking
 about 35
 dynamic 36
 erasing 39
 hiding 38, 39
 shuffling 41
 static 35
 truncation 39, 40
 variance 40

T
tables
 integrity, verifying 267
titles table 289
topics
 creating 158
truncation 39, 40

V
variance 40

W

Write-ahead logging (WAL) 141

Y
YARN architecture
 about 64
 node manager 64
 resource manager 64
Yet Another Resource Negotiator (YARN)
 about 64
 configuring 65

Z
ZKFailoverController (ZKFC) 71

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Enterprise Data Architecture Principles
	Data architecture principles
	Volume
	Velocity
	Variety
	Veracity

	The importance of metadata
	Data governance
	Fundamentals of data governance

	Data security
	Application security
	Input data
	Big data security
	RDBMS security
	BI security
	Physical security
	Data encryption
	Secure key management

	Data as a Service
	Evolution data architecture with Hadoop
	Hierarchical database architecture
	Network database architecture
	Relational database architecture
	Employees
	Devices
	Department
	Department and employee mapping table

	Hadoop data architecture
	Data layer
	Data management layer
	Job execution layer

	Summary

	Chapter 2: Hadoop Life Cycle Management
	Data wrangling
	Data acquisition
	Data structure analysis
	Information extraction
	Unwanted data removal
	Data transformation
	Data standardization

	Data masking
	Substitution
	Static
	Dynamic
	Encryption
	Hashing

	Hiding
	Erasing
	Truncation
	Variance
	Shuffling

	Data security
	What is Apache Ranger?
	Apache Ranger installation using Ambari
	Ambari admin UI
	Add service
	Service placement
	Service client placement
	Database creation on master
	Ranger database configuration
	Configuration changes
	Configuration review
	Deployment progress
	Application restart

	Apache Ranger user guide
	Login to UI
	Access manager
	Service details
	Policy definition and auditing for HDFS

	Summary

	Chapter 3: Hadoop Design Consideration
	Understanding data structure principles
	Installing Hadoop cluster
	Configuring Hadoop on NameNode
	Format NameNode
	Start all services

	Exploring HDFS architecture
	Defining NameNode
	Secondary NameNode
	NameNode safe mode

	DataNode
	Data replication

	Rack awareness
	HDFS WebUI

	Introducing YARN
	YARN architecture
	Resource manager
	Node manager

	Configuration of YARN

	Configuring HDFS high availability
	During Hadoop 1.x
	During Hadoop 2.x and onwards
	HDFS HA cluster using NFS
	Important architecture points

	Configuration of HA NameNodes with shared storage
	HDFS HA cluster using the quorum journal manager
	Important architecture points

	Configuration of HA NameNodes with QJM
	Automatic failover
	Important architecture points

	Configuring automatic failover

	Hadoop cluster composition
	Typical Hadoop cluster

	Best practices Hadoop deployment
	Hadoop file formats
	Text/CSV file
	JSON
	Sequence file
	Avro
	Parquet
	ORC
	Which file format is better?

	Summary

	Chapter 4: Data Movement Techniques
	Batch processing versus real-time processing
	Batch processing
	Real-time processing

	Apache Sqoop
	Sqoop Import
	Import into HDFS
	Import a MySQL table into an HBase table

	Sqoop export

	Flume
	Apache Flume architecture
	Data flow using Flume
	Flume complex data flow architecture
	Flume setup

	Log aggregation use case

	Apache NiFi
	Main concepts of Apache NiFi
	Apache NiFi architecture
	Key features
	Real-time log capture dataflow

	Kafka Connect
	Kafka Connect – a brief history
	Why Kafka Connect?
	Kafka Connect features
	Kafka Connect architecture
	Kafka Connect workers modes
	Standalone mode
	Distributed mode

	Kafka Connect cluster distributed architecture
	Example 1
	Example 2

	Summary

	Chapter 5: Data Modeling in Hadoop
	Apache Hive
	Apache Hive and RDBMS

	Supported datatypes
	How Hive works
	Hive architecture
	Hive data model management
	Hive tables
	Managed tables
	External tables

	Hive table partition
	Hive static partitions and dynamic partitions

	Hive partition bucketing
	How Hive bucketing works
	Creating buckets in a non-partitioned table
	Creating buckets in a partitioned table

	Hive views
	Syntax of a view
	Hive indexes
	Compact index
	Bitmap index

	JSON documents using Hive
	Example 1 – Accessing simple JSON documents with Hive (Hive 0.14 and later versions)
	Example 2 – Accessing nested JSON documents with Hive (Hive 0.14 and later versions)
	Example 3 – Schema evolution with Hive and Avro (Hive 0.14 and later versions)

	Apache HBase
	Differences between HDFS and HBase
	Differences between Hive and HBase
	Key features of HBase
	HBase data model
	Difference between RDBMS table and column - oriented data store
	HBase architecture
	HBase architecture in a nutshell
	HBase rowkey design

	Example 4 – loading data from MySQL table to HBase table
	Example 5 – incrementally loading data from MySQL table to HBase table
	Example 6 – Load the MySQL customer changed data into the HBase table
	Example 7 – Hive HBase integration

	Summary

	Chapter 6: Designing Real-Time Streaming Data Pipelines
	Real-time streaming concepts
	Data stream
	Batch processing versus real-time data processing
	Complex event processing
	Continuous availability
	Low latency
	Scalable processing frameworks
	Horizontal scalability
	Storage

	Real-time streaming components
	Message queue
	So what is Kafka?

	Kafka features
	Kafka architecture
	Kafka architecture components

	Kafka Connect deep dive
	Kafka Connect architecture
	Kafka Connect workers standalone versus distributed mode
	Install Kafka
	Create topics
	Generate messages to verify the producer and consumer
	Kafka Connect using file Source and Sink
	Kafka Connect using JDBC and file Sink Connectors

	Apache Storm
	Features of Apache Storm
	Storm topology
	Storm topology components

	Installing Storm on a single node cluster
	Developing a real-time streaming pipeline with Storm
	Streaming a pipeline from Kafka to Storm to MySQL
	Streaming a pipeline with Kafka to Storm to HDFS

	Other popular real-time data streaming frameworks
	Kafka Streams API
	Spark Streaming
	Apache Flink

	Apache Flink versus Spark
	Apache Spark versus Storm
	Summary

	Chapter 7: Large-Scale Data Processing Frameworks
	MapReduce
	Hadoop MapReduce
	Streaming MapReduce
	Java MapReduce
	Summary

	Apache Spark 2
	Installing Spark using Ambari
	Service selection in Ambari Admin
	Add Service Wizard
	Server placement
	Clients and Slaves selection
	Service customization
	Software deployment
	Spark installation progress
	Service restarts and cleanup

	Apache Spark data structures
	RDDs, DataFrames and datasets

	Apache Spark programming
	Sample data for analysis
	Interactive data analysis with pyspark
	Standalone application with Spark
	Spark streaming application
	Spark SQL application

	Summary

	Chapter 8: Building Enterprise Search Platform
	The data search concept
	The need for an enterprise search engine
	Tools for building an enterprise search engine

	Elasticsearch
	Why Elasticsearch?
	 Elasticsearch components
	Index
	Document
	Mapping
	Cluster
	Type

	How to index documents in Elasticsearch?
	Elasticsearch installation
	Installation of Elasticsearch
	Create index
	Primary shard
	Replica shard
	Ingest documents into index

	Bulk Insert
	Document search
	Meta fields

	Mapping
	Static mapping
	Dynamic mapping

	Elasticsearch-supported data types
	Mapping example

	Analyzer
	Elasticsearch stack components
	Beats

	Logstash
	Kibana
	Use case
	Summary

	Chapter 9: Designing Data Visualization Solutions
	Data visualization
	Bar/column chart
	Line/area chart
	Pie chart
	Radar chart
	Scatter/bubble chart
	Other charts

	Practical data visualization in Hadoop
	Apache Druid
	Druid components
	Other required components
	Apache Druid installation
	Add service
	Select Druid and Superset
	Service placement on servers
	Choose Slaves and Clients
	Service configurations
	Service installation
	Installation summary
	Sample data ingestion into Druid

	MySQL database
	Sample database
	Download the sample dataset
	Copy the data to MySQL
	Verify integrity of the tables
	Single Normalized Table

	Apache Superset
	Accessing the Superset application
	Superset dashboards
	Understanding Wikipedia edits data
	Create Superset Slices using Wikipedia data
	Unique users count
	Word Cloud for top US regions
	Sunburst chart – top 10 cities
	Top 50 channels and namespaces via directed force layout
	Top 25 countries/channels distribution

	Creating wikipedia edits dashboard from Slices

	Apache Superset with RDBMS
	Supported databases
	Understanding employee database
	Employees table
	Departments table
	Department manager table
	Department Employees Table
	Titles table
	Salaries table
	Normalized employees table

	Superset Slices for employees database
	Register MySQL database/table

	Slices and Dashboard creation
	Department salary breakup
	Salary Diversity
	Salary Change Per Role Per Year
	Dashboard creation

	Summary

	Chapter 10: Developing Applications Using the Cloud
	What is the Cloud?
	Available technologies in the Cloud
	Planning the Cloud infrastructure
	Dedicated servers versus shared servers
	Dedicated servers
	Shared servers

	High availability
	Business continuity planning
	Infrastructure unavailability
	Natural disasters
	Business data
	BCP design example
	The Hot–Hot system
	The Hot–Cold system

	Security
	Server security
	Application security
	Network security
	Single Sign On
	The AAA requirement

	Building a Hadoop cluster in the Cloud
	Google Cloud Dataproc
	Getting a Google Cloud account
	Activating the Google Cloud Dataproc service
	Creating a new Hadoop cluster
	Logging in to the cluster
	Deleting the cluster

	Data access in the Cloud
	Block storage
	File storage
	Encrypted storage
	Cold storage

	Summary

	Chapter 11: Production Hadoop Cluster Deployment
	Apache Ambari architecture
	The Ambari server
	Daemon management
	Software upgrade
	Software setup
	LDAP/PAM/Kerberos management
	Ambari backup and restore
	Miscellaneous options

	Ambari Agent
	Ambari web interface
	Database

	Setting up a Hadoop cluster with Ambari
	Server configurations
	Preparing the server
	Installing the Ambari server
	Preparing the Hadoop cluster
	Creating the Hadoop cluster
	Ambari web interface
	The Ambari home page
	Creating a cluster
	Managing users and groups
	Deploying views

	The cluster install wizard
	Naming your cluster
	Selecting the Hadoop version
	Selecting a server
	Setting up the node
	Selecting services
	Service placement on nodes
	Selecting slave and client nodes
	Customizing services
	Reviewing the services
	Installing the services on the nodes
	Installation summary
	The cluster dashboard

	Hadoop clusters
	A single cluster for the entire business
	Multiple Hadoop clusters
	Redundancy
	A fully redundant Hadoop cluster
	A data redundant Hadoop cluster

	Cold backup
	High availability
	Business continuity
	Application environments

	Hadoop data copy
	HDFS data copy

	Summary

	Index

