

Python Data Analysis
Second Edition

Data manipulation and complex data analysis with Python

Armando Fandango

BIRMINGHAM - MUMBAI

Python Data Analysis
Second Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2017

Production reference: 1230317

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78712-748-7

www.packtpub.com

http://www.packtpub.com

Credits

Author

Armando Fandango

Copy Editor

Safis Editing

Reviewers

Joran Beasley

Ratan Kumar

Project Coordinator

Shweta H Birwatkar

Commissioning Editor

Amey Varangoankar

Proofreader

Safis Editing

Acquisition Editor

Tushar Gupta

Indexer

Aishwarya Gangawane

Content Development Editor

Amrita Noronha

Graphics

Tania Dutta

Technical Editor

Deepti Tuscano

Production Coordinator

Arvindkumar Gupta

  

About the Author
Armando Fandango is Chief Data Scientist at Epic Engineering and Consulting Group, and
works on confidential projects related to defense and government agencies. Armando is an
accomplished technologist with hands-on capabilities and senior executive-level experience
with startups and large companies globally. His work spans diverse industries including
FinTech, stock exchanges, banking, bioinformatics, genomics, AdTech, infrastructure,
transportation, energy, human resources, and entertainment.

Armando has worked for more than ten years in projects involving predictive analytics,
data science, machine learning, big data, product engineering, high performance
computing, and cloud infrastructures. His research interests spans machine learning, deep
learning, and scientific computing.

I would like to thank my wife for supporting me while I was writing this book. I would like to thank
Dr. Paul Wiegand at UCF for always inspiring me to pursue great opportunities. I am highly
indebted to the team at Packt: Tushar, Sumeet, Amrita, Deepti, and many others who made this work
possible for the readers.

About the Reviewers
Joran Beasley received his degree in computer science from the University of Idaho. He
has been programming desktop applications in Python professionally for monitoring large-
scale sensor networks for use in agriculture for the last 7 years. He currently lives in
Moscow, Idaho, and works at METER Group. as a software engineer.

I would like to thank my wife, Nicole, for putting up with my long hours hunched over a keyboard,
and her constant support and help in raising our two wonderful children.

Ratan Kumar has been programming software in various languages and technologies for
the past 4 years. Having used Python in the fields of web services for personal as well as
professional projects since 2013, he finds it to be one of the most elegant, productive, and
easy to pick up programming languages. Ratan is currently based in Bangalore, where he is
part of the core team at smallcase, which simplifies stock market investments.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . p a c k t p u b . c o m /b i g - d a t a - a n d - b u s i n e s s - i n t e l l i g e n c e /p y t h o n - d a t a - a n

a l y s i s - s e c o n d - e d i t i o n .

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-analysis-second-edition

Table of Contents
Preface 1

Chapter 1: Getting Started with Python Libraries 9

Installing Python 3 11
Installing data analysis libraries 12
On Linux or Mac OS X 12
On Windows 12

Using IPython as a shell 13
Reading manual pages 15
Jupyter Notebook 16
NumPy arrays 16
A simple application 17
Where to find help and references 20
Listing modules inside the Python libraries 21
Visualizing data using Matplotlib 21
Summary 23

Chapter 2: NumPy Arrays 24

The NumPy array object 25
Advantages of NumPy arrays 25

Creating a multidimensional array 26
Selecting NumPy array elements 27
NumPy numerical types 28

Data type objects 29
Character codes 30
The dtype constructors 31
The dtype attributes 32

One-dimensional slicing and indexing 32
Manipulating array shapes 33

Stacking arrays 35
Splitting NumPy arrays 38
NumPy array attributes 40
Converting arrays 44

Creating array views and copies 45
Fancy indexing 46
Indexing with a list of locations 48

[ii]

Indexing NumPy arrays with Booleans 50
Broadcasting NumPy arrays 52
Summary 54
References 55

Chapter 3: The Pandas Primer 56

Installing and exploring Pandas 57
The Pandas DataFrames 58
The Pandas Series 61
Querying data in Pandas 64
Statistics with Pandas DataFrames 67
Data aggregation with Pandas DataFrames 69
Concatenating and appending DataFrames 73
Joining DataFrames 74
Handling missing values 76
Dealing with dates 78
Pivot tables 81
Summary 82
References 82

Chapter 4: Statistics and Linear Algebra 83

Basic descriptive statistics with NumPy 84
Linear algebra with NumPy 86

Inverting matrices with NumPy 86
Solving linear systems with NumPy 88

Finding eigenvalues and eigenvectors with NumPy 90
NumPy random numbers 92

Gambling with the binomial distribution 92
Sampling the normal distribution 94
Performing a normality test with SciPy 96

Creating a NumPy masked array 99
Disregarding negative and extreme values 101

Summary 104

Chapter 5: Retrieving, Processing, and Storing Data 105

Writing CSV files with NumPy and Pandas 106
The binary .npy and pickle formats 108
Storing data with PyTables 110
Reading and writing Pandas DataFrames to HDF5 stores 112
Reading and writing to Excel with Pandas 115
Using REST web services and JSON 116

[iii]

Reading and writing JSON with Pandas 118
Parsing RSS and Atom feeds 119
Parsing HTML with Beautiful Soup 121
Summary 127
Reference 128

Chapter 6: Data Visualization 129

The matplotlib subpackages 130
Basic matplotlib plots 130
Logarithmic plots 132
Scatter plots 133
Legends and annotations 136
Three-dimensional plots 138
Plotting in Pandas 141
Lag plots 143
Autocorrelation plots 145
Plot.ly 146
Summary 148

Chapter 7: Signal Processing and Time Series 150

The statsmodels modules 151
Moving averages 152
Window functions 154
Defining cointegration 156
Autocorrelation 159
Autoregressive models 162
ARMA models 165
Generating periodic signals 167
Fourier analysis 169
Spectral analysis 172
Filtering 174
Summary 175

Chapter 8: Working with Databases 176

Lightweight access with sqlite3 177
Accessing databases from Pandas 179
SQLAlchemy 181

Installing and setting up SQLAlchemy 181
Populating a database with SQLAlchemy 183
Querying the database with SQLAlchemy 184

Pony ORM 186

[iv]

Dataset – databases for lazy people 187
PyMongo and MongoDB 188
Storing data in Redis 190
Storing data in memcache 191
Apache Cassandra 191
Summary 194

Chapter 9: Analyzing Textual Data and Social Media 195

Installing NLTK 196
About NLTK 196
Filtering out stopwords, names, and numbers 197
The bag-of-words model 199
Analyzing word frequencies 201
Naive Bayes classification 202
Sentiment analysis 205
Creating word clouds 208
Social network analysis 213
Summary 215

Chapter 10: Predictive Analytics and Machine Learning 217

Preprocessing 219
Classification with logistic regression 221
Classification with support vector machines 223
Regression with ElasticNetCV 225
Support vector regression 228
Clustering with affinity propagation 230
Mean shift 232
Genetic algorithms 234
Neural networks 238
Decision trees 240
Summary 242

Chapter 11: Environments Outside the Python Ecosystem and Cloud
Computing 244

Exchanging information with Matlab/Octave 245
Installing rpy2 package 246
Interfacing with R 246
Sending NumPy arrays to Java 249
Integrating SWIG and NumPy 250
Integrating Boost and Python 254
Using Fortran code through f2py 256

[v]

PythonAnywhere Cloud 257
Summary 260

Chapter 12: Performance Tuning, Profiling, and Concurrency 261

Profiling the code 262
Installing Cython 267
Calling C code 271
Creating a process pool with multiprocessing 274
Speeding up embarrassingly parallel for loops with Joblib 278
Comparing Bottleneck to NumPy functions 279
Performing MapReduce with Jug 280
Installing MPI for Python 282
IPython Parallel 283
Summary 286

Appendix A: Key Concepts 287

Appendix B: Useful Functions 292

Matplotlib 292
NumPy 293
Pandas 295
Scikit-learn 296
SciPy 296

scipy.fftpack 296
scipy.signal 297
scipy.stats 297

Appendix C: Online Resources 298

Index 300

Preface
Data analysis has a rich history in natural, biomedical, and social sciences. In almost every
area of industry, data analysis has gained popularity lately due to the hype around Data
Science. Data analysis and Data Science attempt to extract information from data. For that
purpose, we use techniques from statistics, machine learning, signal processing, natural
language processing, and computer science.

A mind map visualizing Python software that can be used for data analysis can be found in
first chapter of this book. The first noticeable thing is that the Python ecosystem is very
mature, diverse and rich. It includes famous packages such as NumPy, SciPy, and
matplotlib. This should not come as a surprise since Python has been around since 1989.
Python is easy to learn and use, less verbose than other programming languages, and very
readable. Even if you don't know Python, you can pick up the basics within days, especially
if you have experience in another programming language. To enjoy this book, you don't
need more than the basics. There are plenty of books, courses, and online tutorials that
teach Python.

What this book covers
Chapter 1, Getting Started with Python Libraries, gives instructions to install python and
fundamental python data analysis libraries. We create a small application using NumPy
and draw some basic plots with matplotlib.

Chapter 2, NumPy Arrays, introduces us to NumPy fundamentals and arrays. By the end of
this chapter, we will have basic understanding of NumPy arrays and the associated
functions.

Chapter 3, The Pandas Primer, introduces us to basic Pandas functionality, data structures
and operations.

Chapter 4, Statistics and Linear Algebra, gives a quick overview of linear algebra and
statistical functions.

Chapter 5, Retrieving, Processing, and Storing Data, explains how to acquire data in various
formats and how to clean raw data and store it.

Chapter 6, Data Visualization, gives an overview of how to plot data with matplotlib and
pandas plotting functions.

Preface

[2]

Chapter 7, Signal Processing and Time Series, contains time series and signal processing
examples using sunspot cycles data. The examples use NumPy/SciPy, along with
statsmodels.

Chapter 8, Working with Databases, provides information about various databases (relational
and NoSQL) and related APIs.

Chapter 9, Analyzing Textual Data and Social Media, analyzes texts for sentiment analysis
and topics extraction. A small example is also given of network analysis.

Chapter 10, Predictive Analytics and Machine Learning, explains artificial intelligence with
weather prediction as a running example using scikit-learn. Other API are used for
algorithms not covered by scikit-learn.

Chapter 11, Environments Outside the Python Ecosystem and Cloud Computing, gives various
examples on how to integrate existing code not written in Python. Also, using python in
cloud will be demonstrated.

Chapter 12, Performance Tuning, Profiling, and Concurrency, gives hints on improving
performance with profiling and Cythoning as key techniques. Relevant frameworks for
multicore and distributed systems are also discussed.

Appendix A, Key Concepts, gives key terms and their description.

Appendix B, Useful Functions, provides a list of key functions of the libraries, that can be
used as a ready reference.

Appendix C, Online Resources, provides links for the reader to further explore the topics
covered in the book.

What you need for this book
The code examples in this book should work on most modern operating systems. For all
chapters, Python > 3.5.0 and pip3 is required. You can download Python 3.5.x from h t t p s

://w w w . p y t h o n . o r g /d o w n l o a d s /. On this webpage, you can find installers for Windows
and Mac OS X as well as source archives for Linux, Unix, and Mac OS X. You can find
instructions for installing and using python for various operating systems on this webpage:
https://docs.python.org/3/using/index.html. Most of the time, we need to run the following
command with admin privileges to install various python libraries needed for the content of
the book:

$ pip3 install <some library>

https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/
https://www.python.org/download/

Preface

[3]

The following is a list of python libraries used for the examples:

numpy
scipy
pandas
matplotlib
ipython
jupyter
notebook
readline
scikit-learn
rpy2
Quandl
statsmodels
feedparser
beautifulsoup4
lxml
numexpr
tables
openpyxl
xlsxwriter
xlrd
pony
dataset
pymongo
redis
python3-memcache
cassandra-driver
sqlalchemy
nltk
networkx
theanets
nose_parameterized
pydot2
deap
JPype1

Preface

[4]

gprof2dot
line_profiler
cython
cytoolz
joblib
bottleneck
jug
mpi4py

Apart from python libraries we also need the following software:

Redis server
Cassandra
Java 8
Graphviz
Octave
R
SWIG
PCRE
Boost
gfortran
MPI

Usually, the latest version available should work for the above mentioned libraries and
software.

Some of the software listed are used for a single example; therefore, please
check first whether the example is relevant for you before installing the
software.

To uninstall Python packages installed with pip, use the following command:

 $ pip3 uninstall <some library>

Preface

[5]

Who this book is for
This book is for people with basic knowledge of Python and Mathematics who want to
learn how to use Python libraries to analyze data. We try to keep things simple, but it's not
possible to cover all the topics in great detail. It may be useful for you to refresh your
knowledge of Mathematics using online resources such as Khan Academy and Coursera.

I would recommend the following books by Packt Publishing for further reading:

Building Machine Learning Systems with Python, Willi Richert and Luis Pedro
Coelho (2013)
Learning Cython Programming, Philip Herron (2013)
Learning NumPy Array, Ivan Idris (2014)
Learning scikit-learn: Machine Learning in Python, Raúl Garreta and Guillermo
Moncecchi (2013)
Learning SciPy for Numerical and Scientific Computing, Francisco J. Blanco-Silva
(2013)
Matplotlib for Python Developers, Sandro Tosi (2009)
NumPy Beginner's Guide - Second Edition, Ivan Idris (2013)
NumPy Cookbook, Ivan Idris (2012)
Parallel Programming with Python, Jan Palach (2014)
Python Data Visualization Cookbook, Igor Milovanović (2013)
Python for Finance, Yuxing Yan (2014)
Python Text Processing with NLTK 2.0 Cookbook, Jacob Perkins (2010)

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "It may be
necessary to prepend sudo to this command if your current user doesn't have sufficient
rights on your system."

Preface

[6]

A block of code is set as follows:

def pythonsum(n):
 a = list(range(n))
 b = list(range(n))
 c = []

 for i in range(len(a)):
 a[i] = i ** 2
 b[i] = i ** 3
 c.append(a[i] + b[i])

 return c

Any command-line input or output is written as follows:

$ pip3 install numpy scipy pandas matplotlib jupyter notebook

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

http://www.packtpub.com/authors

Preface

[7]

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /P y t h o n - D a t a - A n a l y s i s - S e c o n d - E d i t i o n . We also have other code bundles from
our rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from
https://www.packtpub.com/sites/default/files/downloads/PythonDataAnalysisSecond

Edition_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/PythonDataAnalysisSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PythonDataAnalysisSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PythonDataAnalysisSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PythonDataAnalysisSecondEdition_ColorImages.pdf

Preface

[8]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Getting Started with Python

Libraries
Welcome! Let's get started. Python has become one of the de facto standard language and
platform for data analysis and data science. The mind map that you will see shortly depicts
some of the numerous libraries available in the Python ecosystem that are used by data
analysts and data scientists. NumPy, SciPy, Pandas, and Matplotlib libraries lay the
foundation of Python data analysis and are now part of SciPy Stack 1.0 (h t t p ://w w w . s c i p y

. o r g /s t a c k s p e c . h t m l). We will learn how to install SciPy Stack 1.0 and Jupyter Notebook,
and write some simple data analysis code as a warm-up exercise.

The following are the libraries available in the Python ecosystem that are used by data
analysts and data scientists:

NumPy: This is a general-purpose library that provides numerical arrays, and
functions to manipulate the arrays efficiently.
SciPy: This is a scientific computing library that provides science and engineering
related functions. SciPy supplements and slightly overlaps NumPy. NumPy and
SciPy historically shared their code base but were later separated.
Pandas: This is a data-manipulation library that provides data structures and
operations for manipulating tables and time series data.
Matplotlib: This is a 2D plotting library that provides support for producing
plots, graphs, and figures. Matplotlib is used by SciPy and supports NumPy.
IPython: This provides a powerful interactive shell for Python, kernel for Jupyter,
and support for interactive data visualization. We will cover the IPython shell
later in this chapter.

http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html

Getting Started with Python Libraries

[10]

Jupyter Notebook: This provides a web-based interactive shell for creating and
sharing documents with live code and visualizations. Jupyter Notebook supports
multiple versions of Python through the kernel provided by IPython. We will
cover the Jupyter Notebook later in this chapter.

Installation instructions for the other required software will be given throughout the book
at the appropriate time. At the end of this chapter, you will find pointers on how to find
additional information online if you get stuck or are uncertain about the best way of solving
problems:

Getting Started with Python Libraries

[11]

In this chapter, we will cover the following topics:

Installing Python 3
Using IPython as a shell
Reading manual pages
Jupyter Notebook
NumPy arrays
A simple application
Where to find help and references
Listing modules inside the Python libraries
Visualizing data using matplotlib

Installing Python 3
The software used in this book is based on Python 3, so you need to have Python 3 installed.
On some operating systems, Python 3 is already installed. There are many implementations
of Python, including commercial implementations and distributions. In this book, we will
focus on the standard Python implementation, which is guaranteed to be compatible with
NumPy.

You can download Python 3.5.x from
https://www.python.org/downloads/. On this web page, you can find
installers for Windows and Mac OS X, as well as source archives for Linux,
Unix, and Mac OS X. You can find instructions for installing and using
Python for various operating systems at h t t p s ://d o c s . p y t h o n . o r g /3/u s

i n g /i n d e x . h t m l .

The software we will install in this chapter has binary installers for Windows, various Linux
distributions, and Mac OS X. There are also source distributions, if you prefer. You need to
have Python 3.5.x or above installed on your system. The sunset date for Python 2.7 was
moved from 2015 to 2020, thus Python 2.7 will be supported and maintained until 2020. For
these reasons, we have updated this book for Python 3.

https://www.python.org/download/
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html

Getting Started with Python Libraries

[12]

Installing data analysis libraries
We will learn how to install and set up NumPy, SciPy, Pandas, Matplotlib, IPython, and
Jupyter Notebook on Windows, Linux, and Mac OS X. Let's look at the process in detail. We
shall use pip3 to install the libraries. From version 3.4 onwards, pip3 has been included by
default with the Python installation.

On Linux or Mac OS X
To install the foundational libraries, run the following command line instruction:

$ pip3 install numpy scipy pandas matplotlib jupyter notebook

It may be necessary to prepend sudo to this command if your current user doesn't have
sufficient rights on your system.

On Windows
At the time of writing this book, we had the following software installed as a prerequisite
on our Windows 10 virtual machine:

Python 3.6 from
https://www.python.org/ftp/python/3.6.0/python-3.6.0-amd64.exe

Microsoft Visual C++ Build Tools 2015 from h t t p ://l a n d i n g h u b . v i s u a l s t u d i o .
c o m /v i s u a l - c p p - b u i l d - t o o l s

Download and install the appropriate prebuilt NumPy and Scipy binaries for your
Windows platform from h t t p ://w w w . l f d . u c i . e d u /~g o h l k e /p y t h o n l i b s /:

We downloaded numpy-1.12.0+mkl-cp36-cp36m-win_amd64.whl and
scipy-0.18.1-cp36-cp36m-win_amd64.whl

After downloading, we executed the pip3 install
Downloads\numpy-1.12.0+mkl-cp36-cp36m-win_amd64.whl and pip3 install
Downloads\scipy-0.18.1-cp36-cp36m-win_amd64.whl commands

After these prerequisites are installed, to install the rest of the foundational libraries, run the
following command line instruction:

$ pip3 install pandas matplotlib jupyter

https://www.python.org/ftp/python/3.6.0/python-3.6.0-amd64.exe
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
https://cdp.packtpub.com/bo5924pythondataanalysis/;
https://cdp.packtpub.com/bo5924pythondataanalysis/;
https://cdp.packtpub.com/bo5924pythondataanalysis/;
https://cdp.packtpub.com/bo5924pythondataanalysis/;

Getting Started with Python Libraries

[13]

Installing Jupyter using these commands, installs all the required
packages, such as Notebook and IPython.

Using IPython as a shell
Data analysts, data scientists, and engineers are used to experimenting. IPython was created
by scientists with experimentation in mind. The interactive environment that IPython
provides is comparable to an interactive computing environment provided by Matlab,
Mathematica, and Maple.

The following is a list of features of the IPython shell:

Tab completion, which helps you find a command
History mechanism
Inline editing
Ability to call external Python scripts with %run
Access to system commands
Access to the Python debugger and profiler

The following list describes how to use the IPython shell:

Starting a session: To start a session with IPython, enter the following instruction
on the command line:

 $ ipython3
 Python 3.5.2 (default, Sep 28 2016, 18:08:09)
 Type "copyright", "credits" or "license" for more information.

 IPython 5.1.0 -- An enhanced Interactive Python.
 ? -> Introduction and overview of IPython's features.
 %quickref -> Quick reference.
 help -> Python's own help system.
 object? -> Details about 'object', use 'object??' for extra
 details.

 In [1]: quit()

Getting Started with Python Libraries

[14]

The quit() function or Ctrl + D quits the IPython shell.

Saving a session: We might want to be able to go back to our experiments. In
IPython, it is easy to save a session for later use with the following command:

 In [1]: %logstart
 Activating auto-logging. Current session state plus future
 input saved:
 Filename : ipython_log.py
 Mode : rotate
 Output logging : False
 Raw input log : False
 Timestamping : False State : active

Logging can be switched off as follows:

 In [9]: %logoff
 Switching logging OFF

Executing a system shell command: Execute a system shell command in the
default IPython profile by prefixing the command with the ! symbol. For
instance, the following input will get the current date:

 In [1]: !date

In fact, any line prefixed with ! is sent to the system shell. We can also store
the command output, as shown here:

 In [2]: thedate = !date
 In [3]: thedate

Displaying history: We can show the history of our commands with the %hist
command. For example:

 In [1]: a = 2 + 2
 In [2]: a
 Out[2]: 4
 In [3]: %hist
 a = 2 + 2
 a
 %hist

Getting Started with Python Libraries

[15]

This is a common feature in command line interface (CLI) environments. We can also
search through the history with the -g switch as follows:

 In [5]: %hist -g a = 2
 1: a = 2 + 2

We saw a number of so-called magic functions in action. These functions start with the %
character. If the magic function is used on a line by itself, the % prefix is optional.

Reading manual pages
When the libraries are imported in IPython, we can open manual pages for library functions
with the help command. It is not necessary to know the name of a function. We can type a
few characters and then let the tab completion do its work. Let's, for instance, browse the
available information for the arange() function.

We can browse the available information in either of the following two ways:

Calling the help function: Type in help(followed by a few characters of the
function and press the Tab key. A list of functions will appear. Select the function
from the list using the arrow keys and press the Enter key. Close the help function
call with) and press the Enter key.

Querying with a question mark: Another option is to append a question mark to
the function name. You will then, of course, need to know the function name, but
you don't have to type help, for example:

 In [3]: numpy.arange?

Tab completion is dependent on readline, so you need to make sure that it
is installed. It can be installed with pip by typing the following command:

 $ pip3 install readline

The question mark gives you information from docstrings.

Getting Started with Python Libraries

[16]

Jupyter Notebook
Jupyter Notebook, previously known as IPython Notebooks, provides a tool to create and
share web pages with text, charts, and Python code in a special format. Have a look at these
notebook collections at the following links:

https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPyth
on-Notebooks

https://nbviewer.jupyter.org/

Often, the notebooks are used as an educational tool, or to demonstrate Python software.
We can import or export notebooks either from plain Python code or from the special
notebook format. The notebooks can be run locally, or we can make them available online
by running a dedicated notebook server. Certain cloud computing solutions, such as
Wakari and PiCloud, allow you to run notebooks in the cloud. Cloud computing is one of
the topics of Chapter 11, Environments Outside the Python Ecosystem and Cloud Computing.

To start a session with Jupyter Notebook, enter the following instruction on the command
line:

$ jupyter-notebook

This will start the notebook server and open a web page showing the contents of the folder
from which the command will execute. You can then select New | Python 3 to start a new
notebook in Python 3.

You can also open ch-01.ipynb, provided in the code package for this book. The ch-01
notebook file has the code for the simple applications that we will describe shortly.

NumPy arrays
After going through the installation of NumPy, it's time to have a look at NumPy arrays.
NumPy arrays are more efficient than Python lists when it comes to numerical operations.
NumPy arrays are, in fact, specialized objects with extensive optimizations. NumPy code
requires less explicit loops than equivalent Python code. This is based on vectorization.

https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://nbviewer.jupyter.org/

Getting Started with Python Libraries

[17]

If we go back to high school mathematics, then we should remember the concepts of scalars
and vectors. The number 2, for instance, is a scalar. When we add 2 to 2, we are performing
scalar addition. We can form a vector out of a group of scalars. In Python programming
terms, we will then have a one-dimensional array. This concept can, of course, be extended
to higher dimensions. Performing an operation on two arrays, such as addition, can be
reduced to a group of scalar operations. In straight Python, we will do that with loops going
through each element in the first array and adding it to the corresponding element in the
second array. However, this is more verbose than the way it is done in mathematics. In
mathematics, we treat the addition of two vectors as a single operation. That's the way
NumPy arrays do it too, and there are certain optimizations using low-level C routines that
make these basic operations more efficient. We will cover NumPy arrays in more detail in
the Chapter 2, NumPy Arrays.

A simple application
Imagine that we want to add two vectors called a and b. The word vector is used here in the
mathematical sense, which means a one-dimensional array. We will learn about specialized
NumPy arrays that represent matrices in Chapter 4, Statistics and Linear Algebra. The vector
a holds the squares of integers 0 to n; for instance, if n is equal to 3, a contains 0, 1, or 4. The
vector b holds the cubes of integers 0 to n, so if n is equal to 3, then the vector b is equal to
0, 1, or 8. How would you do that using plain Python? After we come up with a solution,
we will compare it to the NumPy equivalent.

The following function solves the vector addition problem using pure Python without
NumPy:

def pythonsum(n):
 a = list(range(n))
 b = list(range(n))
 c = []

 for i in range(len(a)):
 a[i] = i ** 2
 b[i] = i ** 3
 c.append(a[i] + b[i])

 return c

Getting Started with Python Libraries

[18]

The following is a function that solves the vector addition problem with NumPy:

def numpysum(n):
 a = numpy.arange(n) ** 2
 b = numpy.arange(n) ** 3
 c = a + b
 return c

Note that numpysum() does not need a for loop. We also used the arange() function from
NumPy, which creates a NumPy array for us with integers from 0 to n. The arange()
function was imported; that is why it is prefixed with numpy.

Now comes the fun part. We mentioned earlier that NumPy is faster when it comes to array
operations. How much faster is Numpy, though? The following program will show us by
measuring the elapsed time in microseconds for the numpysum() and pythonsum()
functions. It also prints the last two elements of the vector sum. Let's check that we get the
same answers using Python and NumPy:

#!/usr/bin/env/python

import sys
from datetime import datetime
import numpy as np

"""
This program demonstrates vector addition the Python way.
Run the following from the command line:

 python vectorsum.py n

Here, n is an integer that specifies the size of the vectors.

The first vector to be added contains the squares of 0 up to n.
The second vector contains the cubes of 0 up to n.
The program prints the last 2 elements of the sum and the elapsed time:
"""

def numpysum(n):
 a = np.arange(n) ** 2
 b = np.arange(n) ** 3
 c = a + b

 return c

def pythonsum(n):
 a = list(range(n))
 b = list(range(n))

Getting Started with Python Libraries

[19]

 c = []

 for i in range(len(a)):
 a[i] = i ** 2
 b[i] = i ** 3
 c.append(a[i] + b[i])

 return c

size = int(sys.argv[1])

start = datetime.now()
c = pythonsum(size)
delta = datetime.now() - start
print("The last 2 elements of the sum", c[-2:])
print("PythonSum elapsed time in microseconds", delta.microseconds)

start = datetime.now()
c = numpysum(size)
delta = datetime.now() - start
print("The last 2 elements of the sum", c[-2:])
print("NumPySum elapsed time in microseconds", delta.microseconds)

The output of the program for 1000, 2000, and 3000 vector elements is as follows:

 $ python3 vectorsum.py 1000
 The last 2 elements of the sum [995007996, 998001000]
 PythonSum elapsed time in microseconds 976
 The last 2 elements of the sum [995007996 998001000]
 NumPySum elapsed time in microseconds 87
 $ python3 vectorsum.py 2000
 The last 2 elements of the sum [7980015996, 7992002000]
 PythonSum elapsed time in microseconds 1623
 The last 2 elements of the sum [7980015996 7992002000]
 NumPySum elapsed time in microseconds 143
 $ python3 vectorsum.py 4000
 The last 2 elements of the sum [63920031996, 63968004000]
 PythonSum elapsed time in microseconds 3417
 The last 2 elements of the sum [63920031996 63968004000]
 NumPySum elapsed time in microseconds 237

Getting Started with Python Libraries

[20]

Clearly, NumPy is much faster than the equivalent normal Python code. One thing is
certain; we get the same results whether we are using NumPy or not. However, the result
that is printed differs in representation. Note that the result from the numpysum() function
does not have any commas. How come? Obviously, we are not dealing with a Python list,
but with a NumPy array. We will learn more about NumPy arrays in the Chapter 2, NumPy
Arrays.

Where to find help and references
The following table lists documentation websites for the Python data analysis libraries we
discussed in this chapter.

Packages Description

NumPy and SciPy The main documentation website for NumPy and SciPy is at h t t p ://d o c s

. s c i p y . o r g /d o c /. Through this web page, you can browse NumPy and
SciPy user guides and reference guides, as well as several tutorials.

Pandas h t t p ://p a n d a s . p y d a t a . o r g /p a n d a s - d o c s /s t a b l e /.

Matplotlib h t t p ://m a t p l o t l i b . o r g /c o n t e n t s . h t m l .

IPython h t t p ://i p y t h o n . r e a d t h e d o c s . i o /e n /s t a b l e /.

Jupyter Notebook h t t p ://j u p y t e r - n o t e b o o k . r e a d t h e d o c s . i o /e n /l a t e s t /.

The popular Stack Overflow software development forum has hundreds of questions
tagged NumPy, SciPy, Pandas, Matplotlib, IPython, and Jupyter Notebook. To view them,
go to http://stackoverflow.com/questions/tagged/<your-tag-word-here>.

If you are really stuck with a problem, or you want to be kept informed of the development
of these libraries, you can subscribe to their respective discussion mailing list(s). The
number of e-mails per day varies from list to list. Developers actively involved with the
development of these libraries answer some of the questions asked on the mailing lists.

For IRC users, there is an IRC channel on irc://irc.freenode.net. The channel is called
#scipy, but you can also ask NumPy questions since SciPy users also have knowledge of
NumPy, as SciPy is based on NumPy. There are at least 50 members on the SciPy channel at
all times.

http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://matplotlib.org/contents.html
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/latest/
irc://irc.freenode.net

Getting Started with Python Libraries

[21]

Listing modules inside the Python libraries
The ch-01.ipynb file contains the code for looking at the modules inside the NumPy,
SciPy, Pandas, and Matplotlib libraries. Don't worry about understanding the code just
trying to run it for now. You can modify this code to look at the modules inside other
libraries as well.

Visualizing data using Matplotlib
We shall learn about visualizing the data in a later chapter. For now, let's try loading two
sample datasets and building a basic plot. First, install the sklearn library from which we
shall load the data using the following command:

$ pip3 install scikit-learn

Import the datasets using the following command:

from sklearn.datasets import load_iris
from sklearn.datasets import load_boston

Import the Matplotlib plotting module:

from matplotlib import pyplot as plt
%matplotlib inline

Load the iris dataset, print the description of the dataset, and plot column 1 (sepal length)
as x and column 2 (sepal width) as y:

iris = load_iris()
print(iris.DESCR)
data=iris.data
plt.plot(data[:,0],data[:,1],".")

Getting Started with Python Libraries

[22]

The resulting plot will look like the following image:

Load the boston dataset, print the description of the dataset and plot column 3 (proportion
of non-retail business) as x and column 5 (nitric oxide concentration) as y, each point on the
plot marked with a + sign:

boston = load_boston()
print(boston.DESCR)
data=boston.data
plt.plot(data[:,2],data[:,4],"+")

Getting Started with Python Libraries

[23]

The resulting plot will look like the following image:

Summary
In this chapter, we installed NumPy, SciPy, Pandas, Matplotlib, IPython, and Jupyter
Notebook, all of which we will be using in this book. We got a vector addition program
working, and learned how NumPy offers superior performance. In addition, we explored
the available documentation and online resources. We executed code to find the modules
inside the libraries and loaded some sample datasets to draw some basic plots using
Matplotlib.

In the next chapter, Chapter 2, NumPy Arrays, we will take a look under the hood of
NumPy and explore some fundamental concepts, including arrays and data types.

2
NumPy Arrays

Now that we have worked on a real example utilizing the foundational data analysis
libraries from SciPy stack, it's time to learn about NumPy arrays. This chapter acquaints you
with the fundamentals of NumPy arrays. At the end of this chapter, you will have a basic
understanding of NumPy arrays and related functions.

The topics we will address in this chapter are as follows:

The NumPy array object
Creating a multidimensional array
Selecting NumPy array elements
NumPy numerical types
One-dimensional slicing and indexing
Manipulating array shapes
Creating array views and copies
Fancy indexing
Indexing with a list of locations
Indexing NumPy arrays with Booleans
Broadcasting NumPy arrays

You may want to open the ch-02.ipynb file in Jupyter Notebook to follow along the
examples in this chapter or type them in a new notebook of your own.

NumPy Arrays

[25]

The NumPy array object
NumPy provides a multidimensional array object called ndarray. NumPy arrays are typed
arrays of a fixed size. Python lists are heterogeneous and thus elements of a list may contain
any object type, while NumPy arrays are homogenous and can contain objects of only one
type. An ndarray consists of two parts, which are as follows:

The actual data that is stored in a contiguous block of memory
The metadata describing the actual data

Since the actual data is stored in a contiguous block of memory, hence loading of the large
dataset as ndarray, it is affected by the availability of a large enough contiguous block of
memory. Most of the array methods and functions in NumPy leave the actual data
unaffected and only modify the metadata.

We have already discovered in the preceding chapter how to produce an array by applying
the arange() function. Actually, we made a one-dimensional array that held a set of
numbers. The ndarray can have more than a single dimension.

Advantages of NumPy arrays
The NumPy array is, in general, homogeneous (there is a particular record array type that is
heterogeneous), the items in the array have to be of the same type. The advantage is that if
we know that the items in an array are of the same type, it is easy to ascertain the storage
size needed for the array. NumPy arrays can execute vectorized operations, processing a
complete array, in contrast to Python lists, where you usually have to loop through the list
and execute the operation on each element. NumPy arrays are indexed from 0, just like lists
in Python. NumPy utilizes an optimized C API to make the array operations particularly
quick.

We will make an array with the arange() subroutine again. In this chapter, you will see
snippets from Jupyter Notebook sessions where NumPy is already imported with the
instruction import numpy as np. Here's how to get the data type of an array:

In: a = np.arange(5)
In: a.dtype
Out: dtype('int64')

NumPy Arrays

[26]

The data type of the array a is int64 (at least on my computer), but you may get int32 as
the output if you are using 32 bit Python. In both the cases, we are dealing with integers (64
bit or 32 bit). Besides the data type of an array, it is crucial to know its shape. The example
in Chapter 1, Getting Started with Python Libraries, demonstrated how to create a vector
(actually, a one-dimensional NumPy array). A vector is commonly used in mathematics but
most of the time we need higher-dimensional objects. Let's find out the shape of the vector
we produced a few minutes ago:

In: a
Out: array([0, 1, 2, 3, 4])
In: a.shape
Out: (5,)

As you can see, the vector has five components with values ranging from 0 to 4. The shape
property of the array is a tuple; in this instance, a tuple of 1 element, which holds the length
in each dimension.

Creating a multidimensional array
Now that we know how to create a vector, we are set to create a multidimensional NumPy
array. After we produce the matrix we will again need to show it, as demonstrated in the
following code snippets:

Create a multidimensional array as follows:1.

 In: m = np.array([np.arange(2), np.arange(2)])
 In: m
 Out:
 array([[0, 1],
 [0, 1]])

We can show the array shape as follows:2.

 In: m.shape
 Out: (2, 2)

We made a 2×2 array with the arange() subroutine. The array() function creates an array
from an object that you pass to it. The object has to be an array, for example, a Python list. In
the previous example, we passed a list of arrays. The object is the only required parameter
of the array() function. NumPy functions tend to have a heap of optional arguments with
predefined default options.

NumPy Arrays

[27]

Selecting NumPy array elements
From time to time, we will wish to select a specific constituent of an array. We will take a
look at how to do this, but to kick off, let's make a 2×2 matrix again:

In: a = np.array([[1,2],[3,4]])
In: a
Out:
array([[1, 2],
 [3, 4]])

The matrix was made this time by giving the array() function a list of lists. We will now
choose each item of the matrix one at a time, as shown in the following code snippet. Recall
that the index numbers begin from 0:

In: a[0,0]
Out: 1
In: a[0,1]
Out: 2
In: a[1,0]
Out: 3
In: a[1,1]
Out: 4

As you can see, choosing elements of an array is fairly simple. For the array a, we just
employ the notation a[m,n], where m and n are the indices of the item in the array. Have a
look at the following figure for your reference:

NumPy Arrays

[28]

NumPy numerical types
Python has an integer type, a float type, and complex type; nonetheless, this is not
sufficient for scientific calculations. In practice, we still demand more data types with
varying precisions and, consequently, different storage sizes of the type. For this reason,
NumPy has many more data types. The bulk of the NumPy mathematical types end with a
number. This number designates the count of bits related to the type. The following table
(adapted from the NumPy user guide) presents an overview of NumPy numerical types:

Type Description

bool Boolean (True or False) stored as a bit

inti Platform integer (normally either int32 or int64)

int8 Byte (-128 to 127)

int16 Integer (-32768 to 32767)

int32 Integer (-2 ** 31 to 2 ** 31 -1)

int64 Integer (-2 ** 63 to 2 ** 63 -1)

uint8 Unsigned integer (0 to 255)

uint16 Unsigned integer (0 to 65535)

uint32 Unsigned integer (0 to 2 ** 32 – 1)

uint64 Unsigned integer (0 to 2 ** 64 – 1)

float16 Half precision float; sign bit, 5 bits exponent, and 10 bits mantissa

float32 Single precision float; sign bit, 8 bits exponent, and 23 bits mantissa

float64 or float Double precision float; sign bit, 11 bits exponent, and 52 bits
mantissa

complex64 Complex number, represented by two 32 bit floats (real and
imaginary components)

complex128 or complex Complex number, represented by two 64 bit floats (real and
imaginary components)

NumPy Arrays

[29]

For each data type, there exists a matching conversion function:

In: np.float64(42)
Out: 42.0
In: np.int8(42.0)
Out: 42
In: np.bool(42)
Out: True
In: np.bool(0)
Out: False
In: np.bool(42.0)
Out: True
In: np.float(True)
Out: 1.0
In: np.float(False)
Out: 0.0

Many functions have a data type argument, which is frequently optional:

In: np.arange(7, dtype= np.uint16)
Out: array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)

It is important to be aware that you are not allowed to change a complex number into an
integer. Attempting to do that sparks off TypeError:

In: np.int(42.0 + 1.j)Traceback (most recent call last):
<ipython-input-24-5c1cd108488d> in <module>()
----> 1 np.int(42.0 + 1.j)
TypeError: can't convert complex to int

The same goes for the conversion of a complex number into a floating point number. By the
way, the j component is the imaginary coefficient of a complex number. Even so, you can
convert a floating point number to a complex number; for example, complex(1.0). The
real and imaginary pieces of a complex number can be pulled out with the real() and
imag() functions, respectively.

Data type objects
Data type objects are instances of the numpy.dtype class. Once again, arrays have a data
type. To be exact, each element in a NumPy array has the same data type. The data type
object can tell you the size of the data in bytes. The size in bytes is given by the itemsize
property of the dtype class:

In: a.dtype.itemsize
Out: 8

NumPy Arrays

[30]

Character codes
Character codes are included for backward compatibility with numeric. Numeric is the
predecessor of NumPy. Its use is not recommended, but the code is supplied here because it
pops up in various locations. You should use the dtype object instead. The following table
lists several different data types and character codes related to them:

Type Character code

integer i

unsigned integer u

single precision float f

double precision float d

bool b

complex D

string S

unicode U

void V

Take a look at the following code to produce an array of single precision floats:

In: arange(7, dtype='f')
Out: array([0., 1., 2., 3., 4., 5., 6.], dtype=float32)

Likewise, the following code creates an array of complex numbers:

In: arange(7, dtype='D')
Out: array([0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 5.+0.j,
6.+0.j])

NumPy Arrays

[31]

The dtype constructors
We have a variety of means to create data types. Take the case of floating point data (have a
look at dtypeconstructors.py in this book's code bundle):

We can use the general Python float, as shown in the following lines of code:

 In: np.dtype(float)
 Out: dtype('float64')

We can specify a single precision float with a character code:

 In: np.dtype('f')
 Out: dtype('float32')

We can use a double precision float with a character code:

 In: np.dtype('d')
 Out: dtype('float64')

We can pass the dtype constructor a two character code. The first character
stands for the type; the second character is a number specifying the number of
bytes in the type (the numbers 2, 4, and 8 correspond to floats of 16, 32, and 64
bits, respectively):

 In: np.dtype('f8')
 Out: dtype('float64')

A (truncated) list of all the full data type codes can be found by applying
sctypeDict.keys():

In: np.sctypeDict.keys()
Out: dict_keys(['?', 0, 'byte', 'b', 1, 'ubyte', 'B', 2, 'short', 'h', 3,
'ushort', 'H', 4, 'i', 5, 'uint', 'I', 6, 'intp', 'p', 7, 'uintp', 'P', 8,
'long', 'l', 'L', 'longlong', 'q', 9, 'ulonglong', 'Q', 10, 'half', 'e',
23, 'f', 11, 'double', 'd', 12, 'longdouble', 'g', 13, 'cfloat', 'F', 14,
'cdouble', 'D', 15, 'clongdouble', 'G', 16, 'O', 17, 'S', 18, 'unicode',
'U', 19, 'void', 'V', 20, 'M', 21, 'm', 22, 'bool8', 'Bool', 'b1',
'float16', 'Float16', 'f2', 'float32', 'Float32', 'f4', 'float64',
'Float64', 'f8', 'float128', 'Float128', 'f16', 'complex64', 'Complex32',
'c8', 'complex128', 'Complex64', 'c16', 'complex256', 'Complex128', 'c32',
'object0', 'Object0', 'bytes0', 'Bytes0', 'str0', 'Str0', 'void0', 'Void0',
'datetime64', 'Datetime64', 'M8', 'timedelta64', 'Timedelta64', 'm8',
'int64', 'uint64', 'Int64', 'UInt64', 'i8', 'u8', 'int32', 'uint32',
'Int32', 'UInt32', 'i4', 'u4', 'int16', 'uint16', 'Int16', 'UInt16', 'i2',
'u2', 'int8', 'uint8', 'Int8', 'UInt8', 'i1', 'u1', 'complex_', 'int0',

NumPy Arrays

[32]

'uint0', 'single', 'csingle', 'singlecomplex', 'float_', 'intc', 'uintc',
'int_', 'longfloat', 'clongfloat', 'longcomplex', 'bool_', 'unicode_',
'object_', 'bytes_', 'str_', 'string_', 'int', 'float', 'complex', 'bool',
'object', 'str', 'bytes', 'a'])

The dtype attributes
The dtype class has a number of useful properties. For instance, we can get information
about the character code of a data type through the properties of dtype:

In: t = np.dtype('Float64')
In: t.char
Out: 'd'

The type attribute corresponds to the type of object of the array elements:

In: t.type
Out: numpy.float64

The str attribute of dtype gives a string representation of a data type. It begins with a
character representing endianness, if appropriate, then a character code, succeeded by a
number corresponding to the number of bytes that each array item needs. Endianness, here,
entails the way bytes are ordered inside a 32 or 64 bit word. In the big endian order, the
most significant byte is stored first, indicated by >. In the little endian order, the least
significant byte is stored first, indicated by <, as exemplified in the following lines of code:

In: t.str
Out: '<f8'

One-dimensional slicing and indexing
Slicing of one-dimensional NumPy arrays works just like the slicing of standard Python
lists. Let's define an array containing the numbers 0, 1, 2, and so on up to and including 8.
We can select a part of the array from indexes 3 to 7, which extracts the elements of the
arrays 3 through 6:

In: a = np.arange(9)
In: a[3:7]
Out: array([3, 4, 5, 6])

NumPy Arrays

[33]

We can choose elements from an index of 0 to 7 with an increment of 2:

In: a[:7:2]
Out: array([0, 2, 4, 6])

Just as in Python, we can use negative indices and reverse the array:

In: a[::-1]
Out: array([8, 7, 6, 5, 4, 3, 2, 1, 0])

Manipulating array shapes
We have already learned about the reshape() function. Another repeating chore is the
flattening of arrays. Flattening in this setting entails transforming a multidimensional array
into a one-dimensional array. Let us create an array b that we shall use for practicing the
further examples:

In: b = np.arange(24).reshape(2,3,4)

In: print(b)

Out: [[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],

 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])

We can manipulate array shapes using the following functions:

Ravel: We can accomplish this with the ravel() function as follows:

 In: b
 Out:
 array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])
 In: b.ravel()
 Out:
 array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])

NumPy Arrays

[34]

Flatten: The appropriately named function, flatten(), does the same as
ravel(). However, flatten() always allocates new memory, whereas ravel
gives back a view of the array. This means that we can directly manipulate the
array as follows:

 In: b.flatten()
 Out:
 array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])

Setting the shape with a tuple: Besides the reshape() function, we can also
define the shape straight away with a tuple, which is exhibited as follows:

 In: b.shape = (6,4)
 In: b
 Out:
 array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]])

As you can understand, the preceding code alters the array immediately. Now,
we have a 6×4 array.

Transpose: In linear algebra, it is common to transpose matrices. Transposing is a
way to transform data. For a two-dimensional table, transposing means that rows
become columns and columns become rows. We can do this too by using the
following code:

 In: b.transpose()
 Out:
 array([[0, 4, 8, 12, 16, 20],
 [1, 5, 9, 13, 17, 21],
 [2, 6, 10, 14, 18, 22],
 [3, 7, 11, 15, 19, 23]])

Resize: The resize() method works just like the reshape() method, but
changes the array it works on:

 In: b.resize((2,12))
 In: b
 Out:
 array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
 [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])

NumPy Arrays

[35]

Stacking arrays
Arrays can be stacked horizontally, depth wise, or vertically. We can use, for this goal, the
vstack(), dstack(), hstack(), column_stack(), row_stack(), and concatenate()
functions. To start with, let's set up some arrays:

In: a = np.arange(9).reshape(3,3)
In: a
Out:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])
In: b = 2 * a
In: b
Out:
array([[0, 2, 4],
 [6, 8, 10],
 [12, 14, 16]])

As mentioned previously, we can stack arrays using the following techniques:

Horizontal stacking: Beginning with horizontal stacking, we will shape a tuple of
ndarrays and hand it to the hstack() function to stack the arrays. This is
shown as follows:

 In: np.hstack((a, b))
 Out:
 array([[0, 1, 2, 0, 2, 4],
 [3, 4, 5, 6, 8, 10],
 [6, 7, 8, 12, 14, 16]])

We can attain the same thing with the concatenate() function, which is shown
as follows:

 In: np.concatenate((a, b), axis=1)
 Out:
 array([[0, 1, 2, 0, 2, 4],
 [3, 4, 5, 6, 8, 10],
 [6, 7, 8, 12, 14, 16]])

NumPy Arrays

[36]

The following diagram depicts horizontal stacking:

Vertical stacking: With vertical stacking, a tuple is formed again. This time it is
given to the vstack() function to stack the arrays. This can be seen as follows:

 In: np.vstack((a, b))
 Out:
 array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [0, 2, 4],
 [6, 8, 10],
 [12, 14, 16]])

The concatenate() function gives the same outcome with the axis
parameter fixed to 0. This is the default value for the axis parameter, as
portrayed in the following code:

 In: np.concatenate((a, b), axis=0)
 Out:
 array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [0, 2, 4],
 [6, 8, 10],
 [12, 14, 16]])

Refer to the following figure for vertical stacking:

NumPy Arrays

[37]

Depth stacking: To boot, there is the depth-wise stacking employing dstack()
and a tuple, of course. This entails stacking a list of arrays along the third axis
(depth). For example, we could stack 2D arrays of image data on top of each
other as follows:

 In: np.dstack((a, b))
 Out:
 array([[[0, 0],
 [1, 2],
 [2, 4]],
 [[3, 6],
 [4, 8],
 [5, 10]],
 [[6, 12],
 [7, 14],
 [8, 16]]])

Column stacking: The column_stack() function stacks 1D arrays column-wise.
This is shown as follows:

 In: oned = np.arange(2)
 In: oned
 Out: array([0, 1])
 In: twice_oned = 2 * oned
 In: twice_oned
 Out: array([0, 2])
 In: np.column_stack((oned, twice_oned))
 Out:
 array([[0, 0],
 [1, 2]])

2D arrays are stacked the way the hstack() function stacks them, as
demonstrated in the following lines of code:

 In: np.column_stack((a, b))
 Out:
 array([[0, 1, 2, 0, 2, 4],
 [3, 4, 5, 6, 8, 10],
 [6, 7, 8, 12, 14, 16]])
 In: np.column_stack((a, b)) == np.hstack((a, b))
 Out:
 array([[True, True, True, True, True, True],
 [True, True, True, True, True, True],
 [True, True, True, True, True, True]],
 dtype=bool)

Yes, you guessed it right! We compared two arrays using the == operator.

NumPy Arrays

[38]

Row stacking: NumPy, naturally, also has a function that does row-wise
stacking. It is named row_stack() and for 1D arrays, it just stacks the arrays in
rows into a 2D array:

 In: np.row_stack((oned, twice_oned))
 Out:
 array([[0, 1],
 [0, 2]])

The row_stack() function results for 2D arrays are equal to the vstack()
function results:

 In: np.row_stack((a, b))
 Out:
 array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [0, 2, 4],
 [6, 8, 10],
 [12, 14, 16]])
 In: np.row_stack((a,b)) == np.vstack((a, b))
 Out:
 array([[True, True, True],
 [True, True, True],
 [True, True, True],
 [True, True, True],
 [True, True, True],
 [True, True, True]], dtype=bool)

Splitting NumPy arrays
Arrays can be split vertically, horizontally, or depth wise. The functions involved are
hsplit(), vsplit(), dsplit(), and split(). We can split arrays either into arrays of the
same shape or indicate the location after which the split should happen. Let's look at each of
the functions in detail:

Horizontal splitting: The following code splits a 3×3 array on its horizontal axis
into three parts of the same size and shape:

 In: a
 Out:
 array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])
 In: np.hsplit(a, 3)

NumPy Arrays

[39]

 Out:
 [array([[0],
 [3],
 [6]]),
 array([[1],
 [4],
 [7]]),
 array([[2],
 [5],
 [8]])]

Liken it to a call of the split() function, with an additional argument,
axis=1:

 In: np.split(a, 3, axis=1)
 Out:
 [array([[0],
 [3],
 [6]]),
 array([[1],
 [4],
 [7]]),
 array([[2],
 [5],
 [8]])]

Vertical splitting: vsplit() splits along the vertical axis:

 In: np.vsplit(a, 3)
 Out: [array([[0, 1, 2]]), array([[3, 4, 5]]),
 array([[6, 7, 8]])]

The split() function, with axis=0, also splits along the vertical axis:

 In: np.split(a, 3, axis=0)
 Out: [array([[0, 1, 2]]), array([[3, 4, 5]]),
 array([[6, 7, 8]])]

Depth-wise splitting: The dsplit() function, unsurprisingly, splits depth-wise.
We will require an array of rank 3 to begin with:

 In: c = np.arange(27).reshape(3, 3, 3)
 In: c
 Out:
 array([[[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]],
 [[9, 10, 11],

NumPy Arrays

[40]

 [12, 13, 14],
 [15, 16, 17]],
 [[18, 19, 20],
 [21, 22, 23],
 [24, 25, 26]]])
 In: np.dsplit(c, 3)
 Out:
 [array([[[0],
 [3],
 [6]],
 [[9],
 [12],
 [15]],
 [[18],
 [21],
 [24]]]),
 array([[[1],
 [4],
 [7]],
 [[10],
 [13],
 [16]],
 [[19],
 [22],
 [25]]]),
 array([[[2],
 [5],
 [8]],
 [[11],
 [14],
 [17]],
 [[20],
 [23],
 [26]]])]

NumPy array attributes
Let's learn more about the NumPy array attributes with the help of an example. Let us
create an array b that we shall use for practicing the further examples:

In: b = np.arange(24).reshape(2, 12)
In: b
Out:
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
 [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])

NumPy Arrays

[41]

Besides the shape and dtype attributes, ndarray has a number of other properties, as
shown in the following list:

The ndim property gives the number of dimensions, as shown in the following
code snippet:

 In: b.ndim
 Out: 2

The size property holds the count of elements. This is shown as follows:

 In: b.size
 Out: 24

The itemsize property returns the count of bytes for each element in the array,
as shown in the following code snippet:

 In: b.itemsize
 Out: 8

If you require the full count of bytes the array needs, you can have a look at
nbytes. This is just a product of the itemsize and size properties:

 In: b.nbytes
 Out: 192
 In: b.size * b.itemsize
 Out: 192

The T property has the same result as the transpose() function, which is shown
as follows:

 In: b.resize(6,4)
 In: b
 Out:
 array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]])
 In: b.T
 Out:
 array([[0, 4, 8, 12, 16, 20],
 [1, 5, 9, 13, 17, 21],
 [2, 6, 10, 14, 18, 22],
 [3, 7, 11, 15, 19, 23]])

NumPy Arrays

[42]

If the array has a rank of less than 2, we will just get a view of the array:

 In: b.ndim
 Out: 1
 In: b.T
 Out: array([0, 1, 2, 3, 4])

Complex numbers in NumPy are represented by j. For instance, we can produce
an array with complex numbers as follows:

 In: b = np.array([1.j + 1, 2.j + 3])
 In: b
 Out: array([1.+1.j, 3.+2.j])

The real property returns to us the real part of the array, or the array itself if it
only holds real numbers:

 In: b.real
 Out: array([1., 3.])

The imag property holds the imaginary part of the array:

 In: b.imag
 Out: array([1., 2.])

If the array holds complex numbers, then the data type will automatically be
complex as well:

 In: b.dtype
 Out: dtype('complex128')
 In: b.dtype.str
 Out: '<c16'

The flat property gives back a numpy.flatiter object. This is the only means
to get a flatiter object; we do not have access to a flatiter constructor. The
flat iterator enables us to loop through an array as if it were a flat array, as
shown in the following code snippet:

 In: b = np.arange(4).reshape(2,2)
 In: b
 Out:
 array([[0, 1],
 [2, 3]])
 In: f = b.flat
 In: f
 Out: <numpy.flatiter object at 0x103013e00>

NumPy Arrays

[43]

 In: for item in f: print(item)
 Out:
 0
 1
 2
 3

It is possible to straight away obtain an element with the flatiter object:

 In: b.flat[2]
 Out: 2

Also, you can obtain multiple elements as follows:

 In: b.flat[[1,3]]
 Out: array([1, 3])

The flat property can be set. Setting the value of the flat property leads to
overwriting the values of the entire array:

 In: b.flat = 7
 In: b
 Out:
 array([[7, 7],
 [7, 7]])

We can also obtain selected elements as follows:

 In: b.flat[[1,3]] = 1
 In: b
 Out:
 array([[7, 1],
 [7, 1]])

The following diagram illustrates the various properties of ndarray:

NumPy Arrays

[44]

Converting arrays
We can convert a NumPy array to a Python list with the tolist() function. The following
is a brief explanation:

Convert to a list:

 In: b
 Out: array([1.+1.j, 3.+2.j])
 In: b.tolist()
 Out: [(1+1j), (3+2j)]

The astype() function transforms the array to an array of the specified data
type:

 In: b
 Out: array([1.+1.j, 3.+2.j])
 In: b.astype(int)
 /usr/local/lib/python3.5/site-packages/ipykernel/__main__.py:1:
 ComplexWarning: Casting complex values to real discards the
 imaginary part
 ...
 Out: array([1, 3])
 In: b.astype('complex')
 Out: array([1.+1.j, 3.+2.j])

We are dropping off the imaginary part when casting from the complex type to int. The
astype() function takes the name of a data type as a string too.

The preceding code won't display a warning this time because we used the right data type.

NumPy Arrays

[45]

Creating array views and copies
In the example about ravel(), views were brought up. Views should not be confused with
the construct of database views. Views in the NumPy universe are not read-only and you
don't have the possibility to protect the underlying information. It is crucial to know when
we are handling a shared array view and when we have a replica of the array data. A slice
of an array, for example, will produce a view. This entails that if you assign the slice to a
variable and then alter the underlying array, the value of this variable will change. We will
create an array from the face picture in the SciPy package, and then create a view and alter it
at the final stage:

Get the face image:1.

 face = scipy.misc.face()

Create a copy of the face array:2.

 acopy = face.copy()

Create a view of the array:3.

 aview = face.view()

Set all the values in the view to 0 with a flat iterator:4.

 aview.flat = 0

The final outcome is that only one of the pictures depicts the model. The other ones are
censored altogether, as shown in the following screenshot:

NumPy Arrays

[46]

Refer to the following code of this tutorial, which shows the behavior of array views and
copies:

import scipy.misc
import matplotlib.pyplot as plt

face = scipy.misc.face()
acopy = face.copy()
aview = face.view()
aview.flat = 0
plt.subplot(221)
plt.imshow(face)
plt.subplot(222)
plt.imshow(acopy)
plt.subplot(223)
plt.imshow(aview)
plt.show()

As you can see, by altering the view at the end of the program, we modified the original
Lena array. This resulted in three blue (or black if you are reading the print version of this
book) pictures. The copied array was unchanged. It is crucial to remember that views are
not read-only.

Fancy indexing
Fancy indexing is indexing that does not involve integers or slices, which is conventional
indexing. In this tutorial, we will practice fancy indexing to set the diagonal values of the
Lena photo to 0. This will draw black lines along the diagonals, crossing through them.

The following is the code for this example:

import scipy.misc
import matplotlib.pyplot as plt

face = scipy.misc.face()
xmax = face.shape[0]
ymax = face.shape[1]
face=face[:min(xmax,ymax),:min(xmax,ymax)]
xmax = face.shape[0]
ymax = face.shape[1]
face[range(xmax), range(ymax)] = 0
face[range(xmax-1,-1,-1), range(ymax)] = 0
plt.imshow(face)
plt.show()

NumPy Arrays

[47]

The following is a brief explanation of the preceding code:

Set the values of the first diagonal to 0.1.

To set the diagonal values to 0, we need to specify two different ranges for
the x and y values (coordinates in a Cartesian coordinate system):

 face[range(xmax), range(ymax)] = 0

Set the values of the other diagonal to 0.2.

To set the values of the other diagonal, we need a different set of ranges, but
the rules remain the same:

 face[range(xmax-1,-1,-1), range(ymax)] = 0

At the final stage, we produce the following picture with the diagonals
crossed out:

NumPy Arrays

[48]

We specified different ranges for the x values and y values. These ranges were used to index
the Lena array. Fancy indexing is done based on an internal NumPy iterator object. The
following three steps are performed:

The iterator object is created.1.
The iterator object gets bound to the array.2.
Array elements are accessed via the iterator.3.

Indexing with a list of locations
Let's apply the ix_() function to shuffle the Lena photo. The following is the code for this
example without comments. The finished code for the recipe can be found in ix.py in this
book's code bundle:

import scipy.misc
import matplotlib.pyplot as plt
import numpy as np

face = scipy.misc.face()
xmax = face.shape[0]
ymax = face.shape[1]

def shuffle_indices(size):
 arr = np.arange(size)
 np.random.shuffle(arr)

 return arr

xindices = shuffle_indices(xmax)
np.testing.assert_equal(len(xindices), xmax)
yindices = shuffle_indices(ymax)
np.testing.assert_equal(len(yindices), ymax)
plt.imshow(face[np.ix_(xindices, yindices)])
plt.show()

This function produces a mesh from multiple sequences. We hand in parameters as one-
dimensional sequences and the function gives back a tuple of NumPy arrays, for instance,
as follows:

In : ix_([0,1], [2,3])
Out:
(array([[0],[1]]), array([[2, 3]]))

NumPy Arrays

[49]

To index the NumPy array with a list of locations, execute the following steps:

Shuffle the array indices.1.

Make an array with random index numbers with the shuffle() function of
the numpy.random subpackage. The function modifies the array in place:

 def shuffle_indices(size):
 arr = np.arange(size)
 np.random.shuffle(arr)

 return arr

Plot the shuffled indices, as shown in the following code:2.

 plt.imshow(face[np.ix_(xindices, yindices)])

What we obtain is a totally scrambled Lena:

NumPy Arrays

[50]

Indexing NumPy arrays with Booleans
Boolean indexing is indexing based on a Boolean array and falls in the family of fancy
indexing. Since Boolean indexing is a kind of fancy indexing, the way it works is essentially
the same.

The following is the code for this segment (refer to boolean_indexing.py in this book's
code bundle):

import scipy.misc
import matplotlib.pyplot as plt
import numpy as np

face = scipy.misc.face()
xmax = face.shape[0]
ymax = face.shape[1]
face=face[:min(xmax,ymax),:min(xmax,ymax)]

def get_indices(size):
 arr = np.arange(size)
 return arr % 4 == 0

face1 = face.copy()
xindices = get_indices(face.shape[0])
yindices = get_indices(face.shape[1])
face1[xindices, yindices] = 0
plt.subplot(211)
plt.imshow(face1)
face2 = face.copy()
face2[(face > face.max()/4) & (face < 3 * face.max()/4)] = 0
plt.subplot(212)
plt.imshow(face2)
plt.show()

The preceding code implies that indexing occurs with the aid of a special iterator object.

The following steps will give you a brief explanation of the preceding code:

Image with dots on the diagonal.1.

This is in some manner similar to the Fancy indexing section. This time we
choose modulo 4 points on the diagonal of the picture:

 def get_indices(size):
 arr = np.arange(size)
 return arr % 4 == 0

NumPy Arrays

[51]

Then, we just use this selection and plot the points:

 face1 = face.copy()
 xindices = get_indices(face.shape[0])
 yindices = get_indices(face.shape[1])
 face1[xindices, yindices] = 0
 plt.subplot(211)
 plt.imshow(face1)

Set to 0 based on value.2.

Select array values between one quarter and three quarters of the maximum
value and set them to 0:

 face2[(face > face.max()/4) & (face < 3 * face.max()/4)] = 0

The diagram with the two new pictures is presented as follows:

NumPy Arrays

[52]

Broadcasting NumPy arrays
NumPy attempts to execute a procedure even though the operands do not have the same
shape.

In this recipe, we will multiply an array and a scalar. The scalar is broadened to the shape of
the array operand and then the multiplication is executed. The process described here is
called broadcasting. The following is the entire code for this recipe:

import scipy.io.wavfile as sw
import matplotlib.pyplot as plt
import urllib
import numpy as np

request =
urllib.request.Request('http://www.thesoundarchive.com/austinpowers/smashin
gbaby.wav')
response = urllib.request.urlopen(request)
print(response.info())
WAV_FILE = 'smashingbaby.wav'
filehandle = open(WAV_FILE, 'wb')
filehandle.write(response.read())
filehandle.close()
sample_rate, data = sw.read(WAV_FILE)
print("Data type", data.dtype, "Shape", data.shape)

plt.subplot(2, 1, 1)
plt.title("Original")
plt.plot(data)

newdata = data * 0.2
newdata = newdata.astype(np.uint8)
print("Data type", newdata.dtype, "Shape", newdata.shape)

sw.write("quiet.wav", sample_rate, newdata)

plt.subplot(2, 1, 2)
plt.title("Quiet")
plt.plot(newdata)2

plt.show()

NumPy Arrays

[53]

We will download a sound file and create a new version that is quieter:

Reading a WAV file.1.

We will use standard Python code to download a sound file of Austin
Powers exclaiming, “Smashing, baby.” SciPy has a wavfile subpackage,
which lets you load audio data or generate WAV files. If SciPy is installed,
then we should already have this subpackage. The read() function delivers
a data array and sample rate. In this exercise, we are only concerned about
the data:

 sample_rate, data = scipy.io.wavfile.read(WAV_FILE)

Plot the original WAV data.2.

Plot the original WAV data with Matplotlib and give the subplot the title
Original:

 plt.subplot(2, 1, 1)
 plt.title("Original")
 plt.plot(data)

Create a new array.3.

Now, we will use NumPy to produce a hushed sound sample. It is just a
matter of making a new array with smaller values by multiplying it with a
constant. This is where the trick of broadcasting happens. At the end, we
want to be certain that we have the same data type as in the original array
because of the WAV format:

 newdata = data * 0.2
 newdata = newdata.astype(np.uint8)

Write to a WAV file.4.

This new array can be saved in a new WAV file as follows:

 scipy.io.wavfile.write("quiet.wav",
 sample_rate, newdata)

NumPy Arrays

[54]

Plot the new WAV data.5.

Plot the new data array with Matplotlib as follows:

 plt.subplot(2, 1, 2)
 plt.title("Quiet")
 plt.plot(newdata)
 plt.show()

The result is a diagram of the original WAV file data and a new array with smaller values,
as depicted in the following figure:

Summary
In this chapter, we found out a heap about the NumPy basics–data types and arrays. Arrays
have various properties that describe them. You learned that one of these properties is the
data type, which, in NumPy, is represented by a full-fledged object.

NumPy arrays can be sliced and indexed in an effective way, compared to standard Python
lists. NumPy arrays have the extra ability to work with multiple dimensions.

NumPy Arrays

[55]

The shape of an array can be modified in multiple ways, such as stacking, resizing,
reshaping, and splitting. A large number of convenience functions for shape manipulation
were presented in this chapter.

Having picked up the fundamentals, it's time to proceed to data analysis with the
commonly used functions in Chapter 4, Statistics and Linear Algebra. This includes the usage
of staple statistical and numerical functions.

The reader is encouraged to read the books mentioned in the References section for
exploring NumPy in further detail and depth.

References
I. Idris, NumPy Cookbook – Second edition, Packt Publishing, 2015.
I. Idris, Learning NumPy Array, Packt Publishing, 2014.
I. Idris, Numpy: Beginners Guide – Third Edition, Packt Publishing, 2015.
L. (Liang-H.) Chin and T. Dutta, NumPy Essentials, Packt Publishing, 2016.

3
The Pandas Primer

The Pandas is named after panel data (an econometric term) and Python data analysis, and
is a popular open source Python library. We shall learn about basic Pandas functionalities,
data structures, and operations in this chapter.

The official Pandas documentation insists on naming the project pandas in all lowercase
letters. The other convention the Pandas project insists on is the import pandas as pd
import statement.

We will follow these conventions in this text.

In this chapter, we will install and explore Pandas. Then, we will acquaint ourselves with
the two central Pandas data structures–DataFrame and Series. After that, you will learn
how to perform SQL-like operations on the data contained in these data structures. Pandas
has statistical utilities, including time-series routines, some of which will be demonstrated.
The topics we will look at are as follows:

Installing and exploring Pandas
The Panda DataFrames
The Panda Series
Querying data in Pandas
Statistics with Pandas DataFrames
Data aggregation with Pandas DataFrames
Concatenating and appending DataFrames
Joining DataFrames
Handling missing values
Dealing with dates
Pivot tables

The Pandas Primer

[57]

Installing and exploring Pandas
The minimal dependency set requirements for Pandas is given as follows:

NumPy: This is the fundamental numerical array package that we installed and
covered extensively in the preceding chapters
python-dateutil: This is a date handling library
pytz: This handles time zone definitions

This list is the bare minimum; a longer list of optional dependencies can be located at
http://pandas.pydata.org/pandas-docs/stable/install.html. We can install Pandas via
PyPI with pip or easy_install, using a binary installer, with the aid of our operating
system package manager, or from the source by checking out the code. The binary installers
can be downloaded from http://pandas.pydata.org/getpandas.html.

The command to install Pandas with pip is as follows:

$ pip3 install pandas rpy2

rpy2 is an interface to R and is required because rpy is being deprecated. You may have to
prepend the preceding command with sudo if your user account doesn't have sufficient
rights.

As we saw in IPython Notebook in Chapter 1, Getting Started with Python Libraries, we can
print the version and subpackages of Pandas. The program printed the following output for
Pandas:

pandas version 0.19.0pandas.apipandas.compat DESCRIPTION compat Cross-
compatible functions for Python 2 and 3. Key items to import for 2/3
compatible code: * iterators: range(), map(),
pandas.computationpandas.corepandas.formatspandas.indexespandas.iopandas.ms
gpack DESCRIPTION # coding: utf-8 # flake8: noqa PACKAGE CONTENTS _packer
_unpacker _version exceptions CLASSES ExtType(builtins.tuple) ExtType cl
pandas.rpy DESCRIPTION # GH9602 # deprecate rpy to instead directly use
rpy2 PACKAGE CONTENTS base common mass vars FILE
/usr/local/lib/python3.5/site-
pandas.sparsepandas.statspandas.testspandas.toolspandas.tseriespandas.types
pandas.util

Unfortunately, the documentation of the Pandas subpackages lacks informative
descriptions; however, the subpackage names are descriptive enough for us to get an idea
of what they are about.

http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/getpandas.html

The Pandas Primer

[58]

The Pandas DataFrames
A Pandas DataFrame is a labeled two-dimensional data structure and is similar in spirit to a
worksheet in Google Sheets or Microsoft Excel, or a relational database table. The columns
in Pandas DataFrame can be of different types. A similar concept, by the way, was invented
originally in the R programming language. (For more information, refer to
http://www.r-tutor.com/r-introduction/data-frame). A DataFrame can be created in the
following ways:

Using another DataFrame.
Using a NumPy array or a composite of arrays that has a two-dimensional shape.
Likewise, we can create a DataFrame out of another Pandas data structure called
Series. We will learn about Series in the following section.
A DataFrame can also be produced from a file, such as a CSV file.
From a dictionary of one-dimensional structures, such as one-dimensional
NumPy arrays, lists, dicts, or Pandas Series.

As an example, we will use data that can be retrieved from
http://www.exploredata.net/Downloads/WHO-Data-Set. The original data file is quite
large and has many columns, so we will use an edited file instead, which only contains the
first nine columns and is called WHO_first9cols.csv; the file is in the code bundle of this
book. These are the first two lines, including the header:

Country,CountryID,Continent,Adolescent fertility rate (%),Adult literacy
rate (%),Gross national income per capita (PPP international $),Net primary
school enrolment ratio female (%),Net primary school enrolment ratio male
(%),Population (in thousands) totalAfghanistan,1,1,151,28,,,,26088

In the next steps, we will take a look at Pandas DataFrames and its attributes:

To kick off, load the data file into a DataFrame and print it on the screen:1.

 from pandas.io.parsers import read_csv

 df = read_csv("WHO_first9cols.csv")
 print("Dataframe", df)

http://www.r-tutor.com/r-introduction/data-frame
http://www.exploredata.net/Downloads/WHO-Data-Set

The Pandas Primer

[59]

The printout is a summary of the DataFrame. It is too long to be displayed
entirely, so we will just grab the last few lines:

 199 21732.0
 200 11696.0
 201 13228.0

 [202 rows x 9 columns]

The DataFrame has an attribute that holds its shape as a tuple, similar to2.
ndarray. Query the number of rows of a DataFrame as follows:

 print("Shape", df.shape)
 print("Length", len(df))

The values we obtain comply with the printout of the preceding step:

 Shape (202, 9)
 Length 202

Check the column's header and data types with the other attributes:3.

 print("Column Headers", df.columns)
 print("Data types", df.dtypes)

We receive the column headers in a special data structure:

 Column Headers Index([u'Country', u'CountryID', u'Continent',
 u'Adolescent fertility rate (%)', u'Adult literacy rate (%)',
 u'Gross national income per capita (PPP international $)',
 u'Net primary school enrolment ratio female (%)',
 u'Net primary school enrolment ratio male (%)',
 u'Population (in thousands) total'], dtype='object')

The data types are printed as follows:

The Pandas Primer

[60]

The Pandas DataFrame has an index, which is like the primary key of relational4.
database tables. We can either specify the index or have Pandas create it
automatically. The index can be accessed with a corresponding property, as
follows:

 Print("Index", df.index)

An index helps us search for items quickly, just like the index in this book. In
our case, the index is a wrapper around an array starting at 0, with an
increment of one for each row:

 Index Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, ...],
 dtype='int64')

Sometimes, we wish to iterate over the underlying data of a DataFrame. Iterating5.
over column values can be inefficient if we utilize the Pandas iterators. It's much
better to extract the underlying NumPy arrays and work with those. The Pandas
DataFrame has an attribute that can aid with this as well:

 print("Values", df.values)

Please note that some values are designated nan in the output, for 'not a number'. These
values come from empty fields in the input datafile:

Values [['Afghanistan' 1 1 ..., nan nan 26088.0]
 ['Albania' 2 2 ..., 93.0 94.0 3172.0]
 ['Algeria' 3 3 ..., 94.0 96.0 33351.0]
 ...,
 ['Yemen' 200 1 ..., 65.0 85.0 21732.0]
 ['Zambia' 201 3 ..., 94.0 90.0 11696.0]
 ['Zimbabwe' 202 3 ..., 88.0 87.0 13228.0]]

The preceding code is available in Python Notebook ch-03.ipynb, available in the code
bundle of this book.

The Pandas Primer

[61]

The Pandas Series
The Pandas Series data structure is a one-dimensional, heterogeneous array with labels.
We can create a Pandas Series data structure as follows:

Using a Python dict
Using a NumPy array
Using a single scalar value

When creating a Series, we can hand the constructor a list of axis labels, which is commonly
referred to as the index. The index is an optional parameter. By default, if we use a NumPy
array as the input data, Pandas will index values by autoincrementing the index
commencing from 0. If the data handed to the constructor is a Python dict, the sorted dict
keys will become the index. In the case of a scalar value as the input data, we are required
to supply the index. For each new value in the index, the scalar input value will be
reiterated. The Pandas Series and DataFrame interfaces have features and behaviors
borrowed from NumPy arrays and Python dictionaries, such as slicing, a lookup function
that uses a key, and vectorized operations. Performing a lookup on a DataFrame column
returns a Series. We will demonstrate this and other features of Series by going back to
the previous section and loading the CSV file again:

We will start by selecting the Country column, which happens to be the first1.
column in the datafile. Then, show the type of the object currently in the local
scope:

 country_col = df["Country"]
 print("Type df", type(df))
 print("Type country col", type(country_col))

We can now confirm that we get a Series when we select a column of a
DataFrame:

 Type df <class 'pandas.core.frame.DataFrame'>
 Type country col <class 'pandas.core.series.Series'>

If you want, you can open a Python or IPython shell, import Pandas, and,
using the dir() function, view a list of functions and attributes for the
classes found in the previous printout. However, be aware that you will
get a long list of functions in both cases.

The Pandas Primer

[62]

The Pandas Series data structure shares some of the attributes of DataFrame,2.
and also has a name attribute. Explore these properties as follows:

 print("Series shape", country_col.shape)
 print("Series index", country_col.index)
 print("Series values", country_col.values)
 print("Series name", country_col.name)

The output (truncated to save space) is given as follows:

 Series shape (202,)
 Series index Int64Index([0, 1, 2, 3, 4, 5,
 6, 7, 8, 9, 10, 11, 12, ...], dtype='int64')
 Series values ['Afghanistan' ... 'Vietnam' 'West Bank and
 Gaza' 'Yemen' 'Zambia' 'Zimbabwe']
 Series name Country

To demonstrate the slicing of a Series, select the last two countries of the Country3.
Series and print the type:

 print("Last 2 countries", country_col[-2:])
 print("Last 2 countries type", type(country_col[-2:]))

Slicing yields another Series, as demonstrated here:

 Last 2 countries
 200 Zambia
 201 Zimbabwe
 Name: Country, dtype: object
 Last 2 countries type <class 'pandas.core.series.Series'>

NumPy functions can operate on Pandas DataFrame and Series. We can, for4.
instance, apply the NumPy sign() function, which yields the sign of a number.
1 is returned for positive numbers, -1 for negative numbers, and 0 for zeros.
Apply the function to the DataFrame's last column, which happens to be the
population for each country in the dataset:

 last_col = df.columns[-1]
 print("Last df column signs:\n", last_col,
 np.sign(df[last_col]), "\n")

The Pandas Primer

[63]

The output is truncated here to save space, and is as follows:

 Last df column signs Population (in thousands) total 0 1
 1 1
 [TRUNCATED]
 198 NaN
 199 1
 200 1
 201 1
 Name: Population (in thousands) total, Length: 202, dtype:
 float64

Please note that the population value at index 198 is NaN. The matching
record is given as follows:West Bank and Gaza,199,1,,,,,,

We can perform all sorts of numerical operations between DataFrames, Series, and NumPy
arrays. If we get the underlying NumPy array of a Pandas Series and subtract this array
from the Series, we can reasonably expect the following two outcomes:

An array filled with zeros and at least one NaN (we saw one NaN in the previous
step)
We can also expect to get only zeros

The rule for NumPy functions is to produce NaNs for most operations involving NaNs, as
illustrated by the following IPython session:

In: np.sum([0, np.nan])
Out: nan

Write the following code to perform the subtraction:

print np.sum(df[last_col] - df[last_col].values)

The snippet yields the result predicted by the second option:

0.0

Please refer to the ch-03.ipynb file in this book's code bundle.

The Pandas Primer

[64]

Querying data in Pandas
Since a Pandas DataFrame is structured in a similar way to a relational database, we can
view operations that read data from a DataFrame as a query. In this example, we will
retrieve the annual sunspot data from Quandl. We can either use the Quandl API or
download the data manually as a CSV file from
http://www.quandl.com/SIDC/SUNSPOTS_A-Sunspot-Numbers-Annual. If you want to install
the API, you can do so by downloading installers from
https://pypi.python.org/pypi/Quandl or by running the following command:

$ pip3 install Quandl

Using the API is free, but is limited to 50 API calls per day. If you require
more API calls, you will have to request an authentication key. The code in
this tutorial is not using a key. It should be simple to change the code to
either use a key or read a downloaded CSV file. If you have difficulties,
refer to the Where to find help and references section in Chapter 1, Getting
Started with Python Libraries, or search through the Python docs at
https://docs.python.org/2/.

Without further preamble, let's take a look at how to query data in a Pandas DataFrame:

As a first step, we obviously have to download the data. After importing the1.
Quandl API, get the data as follows:

 import quandl

 # Data from
 http://www.quandl.com/SIDC/SUNSPOTS_A-Sunspot-Numbers-Annual
 # PyPi url https://pypi.python.org/pypi/Quandl
 sunspots = quandl.get("SIDC/SUNSPOTS_A")

The head() and tail() methods have a purpose similar to that of the Unix2.
commands with the same name. Select the first n and last n records of a
DataFrame, where n is an integer parameter:

 print("Head 2", sunspots.head(2))
 print("Tail 2", sunspots.tail(2))

http://www.quandl.com/SIDC/SUNSPOTS_A-Sunspot-Numbers-Annual
https://pypi.python.org/pypi/Quandl
https://docs.python.org/2/

The Pandas Primer

[65]

This gives us the first two and last two rows of the sunspot data (for the sake
of brevity we have not shown all the columns here; your output will have all
the columns form the dataset):

 Head 2 Number
 Year
 1700-12-31 5
 1701-12-31 11

 [2 rows x 1 columns]
 Tail 2 Number
 Year
 2012-12-31 57.7
 2013-12-31 64.9
 [2 rows x 1 columns]

Please note that we only have one column holding the number of sunspots
per year. The dates are a part of the DataFrame index.

The following is the query for the last value using the last date:3.

 last_date = sunspots.index[-1]
 print("Last value", sunspots.loc[last_date])

You can check the following output with the result from the previous step:

 Last value Number 64.9
 Name: 2013-12-31 00:00:00, dtype: float64

Query the date with date strings in the YYYYMMDD format as follows:4.

 print("Values slice by date:\n", sunspots["20020101":
 "20131231"])

This gives the records from 2002 through to 2013:

 Values slice by date Number
 Year
 2002-12-31 104.0
 [TRUNCATED]
 2013-12-31 64.9
 [12 rows x 1 columns]

A list of indices can be used to query as well:5.

 print("Slice from a list of indices:\n", sunspots.iloc[[2, 4,
 -4, -2]])

The Pandas Primer

[66]

The preceding code selects the following rows:

 Slice from a list of indices Number
 Year
 1702-12-31 16.0
 1704-12-31 36.0
 2010-12-31 16.0
 2012-12-31 57.7

 [4 rows x 1 columns]

To select scalar values, we have two options. The second option given here6.
should be faster. Two integers are required, the first for the row and the second
for the column:

 print("Scalar with Iloc:", sunspots.iloc[0, 0])
 print("Scalar with iat", sunspots.iat[1, 0])

This gives us the first and second values of the dataset as scalars:

 Scalar with Iloc 5.0
 Scalar with iat 11.0

Querying with Booleans works much like the Where clause of SQL. The following7.
code queries for values larger than the arithmetic mean. Note that there is a
difference between when we perform the query on the whole DataFrame and
when we perform it on a single column:

 print("Boolean selection", sunspots[sunspots >
 sunspots.mean()])
 print("Boolean selection with column label:\n",
 sunspots[sunspots['Number of Observations'] > sunspots['Number
 of Observations'].mean()])

The notable difference is that the first query yields all the rows, with some
rows not conforming to the condition that has a value of NaN. The second
query returns only the rows where the value is larger than the mean:

 Boolean selection Number
 Year
 1700-12-31 NaN
 [TRUNCATED]
 1759-12-31 54.0
 ...

 [314 rows x 1 columns]
 Boolean selection with column label Number

The Pandas Primer

[67]

 Year
 1705-12-31 58.0
 [TRUNCATED]
 1870-12-31 139.1
 ...

 [127 rows x 1 columns]

The preceding example code is in the ch_03.ipynb file of this book's code bundle.

Statistics with Pandas DataFrames
The Pandas DataFrame has a dozen statistical methods. The following table lists these
methods, along with a short description of each:

Method Description

describe This method returns a small table with descriptive statistics.

count This method returns the number of non-NaN items.

mad This method calculates the mean absolute deviation, which is a robust measure
similar to the standard deviation.

median This method returns the median. This is equivalent to the value at the 50th
percentile.

min This method returns the lowest value.

max This method returns the highest value.

mode This method returns the mode, which is the most frequently occurring value.

std This method returns the standard deviation, which measures dispersion. It is the
square root of the variance.

var This method returns the variance.

skew This method returns skewness. Skewness is indicative of the distribution
symmetry.

kurt This method returns kurtosis. Kurtosis is indicative of the distribution shape.

The Pandas Primer

[68]

Using the same data as the previous example, we will demonstrate these statistical
methods. The full script is in the ch-03.ipynb of this book's code bundle:

import quandl

Data from http://www.quandl.com/SIDC/SUNSPOTS_A-Sunspot-Numbers-Annual
PyPi url https://pypi.python.org/pypi/Quandl
sunspots = quandl.get("SIDC/SUNSPOTS_A")
print("Describe", sunspots.describe(),"\n")
print("Non NaN observations", sunspots.count(),"\n")
print("MAD", sunspots.mad(),"\n")
print("Median", sunspots.median(),"\n")
print("Min", sunspots.min(),"\n")
print("Max", sunspots.max(),"\n")
print("Mode", sunspots.mode(),"\n")
print("Standard Deviation", sunspots.std(),"\n")
print("Variance", sunspots.var(),"\n")
print("Skewness", sunspots.skew(),"\n")
print("Kurtosis", sunspots.kurt(),"\n")

The following is the output of the script:

The Pandas Primer

[69]

Data aggregation with Pandas DataFrames
Data aggregation is a term used in the field of relational databases. In a database query, we
can group data by the value in a column or columns. We can then perform various
operations on each of these groups. The Pandas DataFrame has similar capabilities. We will
generate data held in a Python dict and then use this data to create a Pandas DataFrame.
We will then practice the Pandas aggregation features:

Seed the NumPy random generator to make sure that the generated data will not1.
differ between repeated program runs. The data will have four columns:

Weather (a string)
Food (also a string)

The Pandas Primer

[70]

Price (a random float)
Number (a random integer between one and nine)

The use case is that we have the results of some sort of consumer-purchase
research, combined with weather and market pricing, where we calculate the
average of prices and keep a track of the sample size and parameters:

 import pandas as pd
 from numpy.random import seed
 from numpy.random import rand
 from numpy.random import rand_int
 import numpy as np

 seed(42)

 df = pd.DataFrame({'Weather' : ['cold', 'hot', 'cold',
 'hot', 'cold', 'hot', 'cold'],
 'Food' : ['soup', 'soup', 'icecream', 'chocolate',
 'icecream', 'icecream', 'soup'],
 'Price' : 10 * rand(7), 'Number' : rand_int(1, 9,)})
 print(df)

You should get an output similar to the following:

 Food Number Price Weather
 0 soup 8 3.745401 cold
 1 soup 5 9.507143 hot
 2 icecream 4 7.319939 cold
 3 chocolate 8 5.986585 hot
 4 icecream 8 1.560186 cold
 5 icecream 3 1.559945 hot
 6 soup 6 0.580836 cold

 [7 rows x 4 columns]

Please note that the column labels come from the lexically ordered keys of
the Python dict. Lexical or lexicographical order is based on the alphabetic
order of characters in a string.

Group the data by the Weather column and then iterate through the groups as2.
follows:

 weather_group = df.groupby('Weather')

 i = 0

The Pandas Primer

[71]

 for name, group in weather_group:
 i = i + 1
 print("Group", i, name)
 print(group)

We have two types of weather, hot and cold, so we get two groups:

 Group 1 cold
 Food Number Price Weather
 0 soup 8 3.745401 cold
 2 icecream 4 7.319939 cold
 4 icecream 8 1.560186 cold
 6 soup 6 0.580836 cold

 [4 rows x 4 columns]
 Group 2 hot
 Food Number Price Weather
 1 soup 5 9.507143 hot
 3 chocolate 8 5.986585 hot
 5 icecream 3 1.559945 hot

 [3 rows x 4 columns]

The weather_group variable is a special Pandas object that we get as a result of3.
the groupby() method. This object has aggregation methods, which are
demonstrated as follows:

 print("Weather group first\n", weather_group.first())
 print("Weather group last\n", weather_group.last())
 print("Weather group mean\n", weather_group.mean())

The preceding code snippet prints the first row, last row, and mean of each
group:

 Weather group first
 Food Number Price
 Weather
 cold soup 8 3.745401
 hot soup 5 9.507143

 [2 rows x 3 columns]
 Weather group last
 Food Number Price
 Weather
 cold soup 6 0.580836
 hot icecream 3 1.559945

 [2 rows x 3 columns]

The Pandas Primer

[72]

 Weather group mean Number Price
 Weather
 cold 6.500000 3.301591
 hot 5.333333 5.684558

 [2 rows x 2 columns]

Just as in a database query, we are allowed to group on multiple columns. The4.
groups attribute will then tell us the groups that are formed, as well as the rows
in each group:

 wf_group = df.groupby(['Weather', 'Food'])
 print("WF Groups", wf_group.groups)

For each possible combination of weather and food values, a new group is
created. The membership of each row is indicated by their index values as
follows:

 WF Groups {('hot', 'chocolate'): [3], ('cold', 'icecream'):
 [2, 4], ('hot', 'icecream'): [5], ('hot', 'soup'): [1],
 ('cold', 'soup'): [0, 6]}

Apply a list of NumPy functions on groups with the agg() method:5.

 print("WF Aggregated\n", wf_group.agg([np.mean, np.median]))

Obviously, we could apply even more functions, but it would look messier than the
following output:

WF Aggregated Number Price
 mean median mean median
Weather Food
cold icecream 6 6 4.440063 4.440063
 soup 7 7 2.163119 2.163119
hot chocolate 8 8 5.986585 5.986585
 icecream 3 3 1.559945 1.559945
 soup 5 5 9.507143 9.507143

[5 rows x 4 columns]

The full data aggregation example code is in the ch-03.ipynb file, which can be found in
this book's code bundle.

The Pandas Primer

[73]

Concatenating and appending DataFrames
The Pandas DataFrame allows operations that are similar to the inner and outer joins of
database tables. We can append and concatenate rows as well. To practice appending and
concatenating of rows, we will reuse the DataFrame from the previous section. Let's select
the first three rows:

print("df :3\n", df[:3])

Check that these are indeed the first three rows:

df :3
 Food Number Price Weather
0 soup 8 3.745401 cold
1 soup 5 9.507143 hot
2 icecream 4 7.319939 cold

The concat() function concatenates DataFrames. For example, we can concatenate a
DataFrame that consists of three rows to the rest of the rows, in order to recreate the
original DataFrame:

print("Concat Back together\n", pd.concat([df[:3], df[3:]]))

The concatenation output appears as follows:

Concat Back together
 Food Number Price Weather
0 soup 8 3.745401 cold
1 soup 5 9.507143 hot
2 icecream 4 7.319939 cold
3 chocolate 8 5.986585 hot
4 icecream 8 1.560186 cold
5 icecream 3 1.559945 hot
6 soup 6 0.580836 cold

[7 rows x 4 columns]

To append rows, use the append() function:

print("Appending rows\n", df[:3].append(df[5:]))

The Pandas Primer

[74]

The result is a DataFrame with the first three rows of the original DataFrame and the last
two rows appended to it:

Appending rows
 Food Number Price Weather
0 soup 8 3.745401 cold
1 soup 5 9.507143 hot
2 icecream 4 7.319939 cold
5 icecream 3 1.559945 hot
6 soup 6 0.580836 cold

[5 rows x 4 columns]

Joining DataFrames
To demonstrate joining, we will use two CSV files-dest.csv and tips.csv. The use case
behind it is that we are running a taxi company. Every time a passenger is dropped off at
his or her destination, we add a row to the dest.csv file with the employee number of the
driver and the destination:

EmpNr,Dest5,The Hague3,Amsterdam9,Rotterdam

Sometimes drivers get a tip, so we want that registered in the tips.csv file (if this doesn't
seem realistic, please feel free to come up with your own story):

EmpNr,Amount5,109,57,2.5

Database-like joins in Pandas can be done with either the merge() function or the join()
DataFrame method. The join() method joins onto indices by default, which might not be
what you want. In SQL a relational database query language we have the inner join, left
outer join, right outer join, and full outer join.

An inner join selects rows from two tables, if and only if values match, for
columns specified in the join condition. Outer joins do not require a match,
and can potentially return more rows. More information on joins can be
found at
http://en.wikipedia.org/wiki/Join_%28SQL%29.

http://en.wikipedia.org/wiki/Join_%28SQL%29

The Pandas Primer

[75]

All these join types are supported by Pandas, but we will only take a look at inner joins and
full outer joins:

A join on the employee number with the merge() function is performed as
follows:

 print("Merge() on key\n", pd.merge(dests, tips, on='EmpNr'))

This gives an inner join as the outcome:

 Merge() on key
 EmpNr Dest Amount
 0 5 The Hague 10
 1 9 Rotterdam 5

 [2 rows x 3 columns]

Joining with the join() method requires providing suffixes for the left and right
operands:

 print("Dests join() tips\n", dests.join(tips, lsuffix='Dest',
 rsuffix='Tips'))

This method call joins index values so that the result is different from an SQL
inner join:

 Dests join() tips
 EmpNrDest Dest EmpNrTips Amount
 0 5 The Hague 5 10.0
 1 3 Amsterdam 9 5.0
 2 9 Rotterdam 7 2.5

 [3 rows x 4 columns]

An even more explicit way to execute an inner join with merge() is as follows:

 print("Inner join with merge()\n", pd.merge(dests, tips,
 how='inner'))

The output is as follows:

 Inner join with merge()
 EmpNr Dest Amount
 0 5 The Hague 10
 1 9 Rotterdam 5

 [2 rows x 3 columns]

The Pandas Primer

[76]

To make this a full outer join requires only a small change:

 print("Outer join\n", pd.merge(dests, tips, how='outer'))

The outer join adds rows with NaN values:

 Outer join
 EmpNr Dest Amount
 0 5 The Hague 10.0
 1 3 Amsterdam NaN
 2 9 Rotterdam 5.0
 3 7 NaN 2.5

 [4 rows x 3 columns]

In a relational database query, these values would have been set to NULL. The demo code is
in the ch-03.ipynb file of this book's code bundle.

Handling missing values
We regularly encounter empty fields in data records. It's best that we accept this and learn
how to handle this kind of issue in a robust manner. Real data can not only have gaps-it can
also have wrong values, because of faulty measuring equipment, for example. In Pandas,
missing numerical values will be designated as NaN, objects as None, and the datetime64
objects as NaT. The outcome of arithmetic operations with NaN values is also NaN.
Descriptive statistics methods, such as summation and average, behave differently. As we
observed in an earlier example, in such a case, NaN values are treated as zero values.
However, if all the values are NaN during, say, summation, the sum returned is still NaN. In
aggregation operations, NaN values in the column that we group are ignored. We will again
load the WHO_first9cols.csv file into a DataFrame. Remember that this file contains
empty fields. Let's only select the first three rows, including the headers of the Country and
Net primary school enrolment ratio male (%) columns as follows:

df = df[['Country', df.columns[-2]]][:2]
print("New df\n", df)

We get a DataFrame with two NaN values:

New df
 Country Net primary school enrolment ratio male (%)
0 Afghanistan NaN
1 Albania 94

[2 rows x 2 columns]

The Pandas Primer

[77]

The Pandas isnull() function checks for missing values as follows:

print("Null Values\n", pd.isnull(df))

The output for our DataFrame is as follows:

Null Values
 Country Net primary school enrolment ratio male (%)
0 False True
1 False False

To count the number of NaN values for each column, we can sum the Boolean values
returned by isnull(). This works because, during summation, True values are considered
as ones and False values are treated as zeros:

Total Null Values
Country 0
Net primary school enrolment ratio male (%) 1
dtype: int64

Likewise, we can check with the DataFrame notnull() method for any non-missing values
that are present:

print("Not Null Values\n", df.notnull())

The result of the notnull() method is the opposite of the isnull() function:

Not Null Values
 Country Net primary school enrolment ratio male (%)
0 True False
1 True True

When we double values in a DataFrame that has NaN values, the product will still contain
NaN values, since doubling is an arithmetic operation:

print("Last Column Doubled\n", 2 * df[df.columns[-1]])

We double the last column, which contains numerical values (doubling string values
repeats the string):

Last Column Doubled
0 NaN
1 188
Name: Net primary school enrolment ratio male (%), dtype: float64

The Pandas Primer

[78]

If we add a NaN value, however, the NaN value wins:

print("Last Column plus NaN\n", df[df.columns[-1]] + np.nan)

As you can see, the NaN values declared total victory:

Last Column plus NaN
0 NaN1 NaN
Name: Net primary school enrolment ratio male (%), dtype: float64

Replace the missing values with a scalar value. For example, replace 0 with the fillna()
method (we can't always replace missing values with zeros, but sometimes this is good
enough):

print("Zero filled\n", df.fillna(0))

The effect of the preceding line is to replace the NaN value with 0:

Zero filled
 Country Net primary school enrolment ratio male (%)
0 Afghanistan 0
1 Albania 94

The code for this section is in the ch-03.ipynb file of this book's code bundle:

Dealing with dates
Dates are complicated. Just think of the Y2K bug, the pending Year 2038 problem, and the
confusion caused by time zones. It's a mess. We encounter dates naturally when dealing
with the time-series data. Pandas can create date ranges, resample time-series data, and
perform date arithmetic operations.

Create a range of dates starting from January 1 1900 and lasting 42 days, as follows:

print("Date range", pd.date_range('1/1/1900', periods=42, freq='D'))

January has less than 42 days, so the end date falls in February, as you can check for
yourself:

Date range <class 'pandas.tseries.index.DatetimeIndex'>
[1900-01-01, ..., 1900-02-11]
Length: 42, Freq: D, Timezone: None

The Pandas Primer

[79]

The following table from the Pandas official documentation (refer to
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases)
describes the frequencies used in Pandas:

Short code Description

B Business day frequency

C Custom business day frequency (experimental)

D Calendar day frequency

W Weekly frequency

M Month end frequency

BM Business month end frequency

MS Month start frequency

BMS Business month start frequency

Q Quarter end frequency

BQ Business quarter end frequency

QS Quarter start frequency

BQS Business quarter start frequency

A Year end frequency

BA Business year end frequency

AS Year start frequency

BAS Business year start frequency

H Hourly frequency

T Minutely frequency

S Secondly frequency

L Milliseconds

U Microseconds

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

The Pandas Primer

[80]

Date ranges have their limits in Pandas. Timestamps in Pandas (based on the NumPy
datetime64 data type) are represented by a 64-bit integer with nanosecond resolution (a
billionth of a second). This limits legal timestamps to dates in the range approximately
between the year 1677 and 2262 (not all dates in these years are valid). The exact midpoint
of this range is at January 1 1970. For example, January 1 1677 cannot be defined with a
Pandas timestamp, while September 30 1677 can, as demonstrated in the following code
snippet:

try:
 print("Date range", pd.date_range('1/1/1677', periods=4, freq='D'))
except:
 etype, value, _ = sys.exc_info()
 print("Error encountered", etype, value)

The code snippet prints the following error message:

Date range Error encountered <class 'pandas.tslib.OutOfBoundsDatetime'> Out
of bounds nanosecond timestamp: 1677-01-01 00:00:00

Given all the previous information, calculate the allowed date range with Pandas
DateOffset as follows:

offset = DateOffset(seconds=2 ** 33/10 ** 9)
mid = pd.to_datetime('1/1/1970')
print("Start valid range", mid - offset)
print("End valid range", mid + offset')

We get the following range values:

Start valid range 1969-12-31 23:59:51.410065
End valid range 1970-01-01 00:00:08.589935

We can convert a list of strings to dates with Pandas. Of course, not all strings can be
converted. If Pandas is unable to convert a string, an error is often reported. Sometimes,
ambiguities can arise due to differences in the way dates are defined in different locales. In
this case, use a format string, as follows:

print("With format", pd.to_datetime(['19021112', '19031230'],
format='%Y%m%d'))

The strings should be converted without an error occurring:

With format [datetime.datetime(1902, 11, 12, 0, 0) datetime.datetime(1903,
12, 30, 0, 0)]

The Pandas Primer

[81]

If we try to convert a string, which is clearly not a date, by default the string is not
converted:

print("Illegal date", pd.to_datetime(['1902-11-12', 'not a date']))

The second string in the list should not be converted:

Illegal date ['1902-11-12' 'not a date']

To force conversion, set the coerce parameter to True:

print("Illegal date coerced", pd.to_datetime(['1902-11-12', 'not a date'],
errors='coerce'))

Obviously, the second string still cannot be converted to a date, so the only valid value we
can give it is NaT ('not a time'):

Illegal date coerced <class 'pandas.tseries.index.DatetimeIndex'>
[1902-11-12, NaT]Length: 2, Freq: None, Timezone: None

The code for this example is in ch-03.ipynb of this book's code bundle.

Pivot tables
A pivot table, as used in Excel, summarizes data. So far, the data in CSV files that we have
seen in this chapter has been in flat files. The pivot table aggregates data from a flat file for
certain columns and rows. The aggregating operation can be sum, mean, standard
deviations, and so on. We will reuse the data-generating code from ch-03.ipynb. The
Pandas API has a top-level pivot_table() function and a corresponding DataFrame
method. With the aggfunc parameter, we can specify the aggregation function to, say, use
the NumPy sum() function. The cols parameter tells Pandas the column to be aggregated.
Create a pivot table on the Food column as follows:

print(pd.pivot_table(df, cols=['Food'], aggfunc=np.sum))

The pivot table we get contains totals for each food item:

Food chocolate icecream soup
Number 8.000000 15.000000 19.00000
Price 5.986585 10.440071 13.83338

[2 rows x 3 columns]

The preceding code can be found in ch-03.ipynb in this book's code bundle.

The Pandas Primer

[82]

Summary
In this chapter, we focused on Pandas–a Python data analysis library. This was an
introductory tutorial about the basic Pandas features and data structures. We saw how a
great deal of the Pandas functionality mimics relational database tables, allowing us to
query, aggregate, and manipulate data efficiently. NumPy and Pandas work well together
and make it possible to perform basic statistical analysis. At this point, you might be
tempted to think that Pandas is all we need for data analysis. However, there is more to
data analysis than meets the eye.

Having picked up the fundamentals, it's time to proceed to data analysis with the
commonly used functions in Chapter 4, Statistics and Linear Algebra. This includes the usage
of staple statistical and numerical functions.

The reader is encouraged to read the books mentioned in the references section for
exploring Pandas in further detail and depth.

References
Ted Petrou, Pandas Cookbook, Packt Publishing, 2017.1.
F. Anthony, Mastering pandas, Packt Publishing, 2015.2.
M. Heydt, Mastering pandas for Finance, Packt Publishing, 2015.3.
T. Hauck, Data Intensive Apps with pandas How-to, Packt Publishing, 2013.4.
M. Heydt, Learning pandas, Packt Publishing, 2015.5.

4
Statistics and Linear Algebra

Statistics and linear algebra lay the foundational ground for exploratory data analysis. Both
of the main statistical methodologies, descriptive and inferential, are useful in gaining
insights and making inferences from raw data. For instance, we can compute that the data
for a variable has a certain arithmetic mean and standard deviation. From these numbers,
we can then infer a range and the expected value for this variable. Then, we can run
statistical tests to check how likely it is that we reached the right conclusion.

Linear algebra concerns itself with systems of linear equations. These are easy to solve with
NumPy and SciPy using the linalg package. Linear algebra is useful, for instance, to fit
data to a model. We shall introduce other NumPy and SciPy packages in this chapter for
random number generation and masked arrays.

In this chapter, we will cover the following topics:

Basic descriptive statistics with NumPy
Linera algebra with NumPy
Finding eigenvalues and eigenvectors with NumPy
NumPy Random numbers
Creating a NumPy-masked array

Statistics and Linear Algebra

[84]

Basic descriptive statistics with NumPy
In this book, we will try to use as many varied datasets as possible. This depends on the
availability of the data. Unfortunately, this means that the subject of the data might not
exactly match your interests. Every dataset has its own quirks, but the general skills you
acquire in this book should transfer to your own field. In this chapter, we will load datasets
from the statsmodels library into NumPy arrays in order to analyze the data.

Mauna Loa CO2 measurements is the first dataset we shall use from the statsmodels
datasets package. The following code loads the dataset and prints basics descriptive
statistical values:

import numpy as np
from scipy.stats import scoreatpercentile
import pandas as pd

data = pd.read_csv("co2.csv", index_col=0, parse_dates=True)
co2 = np.array(data.co2)

print("The statistical values for amounts of co2 in atmosphere: \n")
print("Max method", co2.max())
print("Max function", np.max(co2))

print("Min method", co2.min())
print("Min function", np.min(co2))

print("Mean method", co2.mean())
print("Mean function", np.mean(co2))

print("Std method", co2.std())
print("Std function", np.std(co2))

print("Median", np.median(co2))
print("Score at percentile 50", scoreatpercentile(co2, 50))

The preceding code computes the mean, median, maximum, minimum, and standard
deviations of a NumPy array.

If these terms sound unfamiliar to you, please take some time to learn
about them from Wikipedia or any other source. As mentioned in the
Preface, we will assume that you are familiar with basic mathematical and
statistical concepts.

Statistics and Linear Algebra

[85]

The data comes from the statsmodels package, and contains values of atmospheric co2 at
Mauna Loa Observatory at Hawaii, U.S.A.

Now, let's walk through the code:

First, the usual import statements to load the modules of the Python packages as1.
follows:

 import numpy as np
 from scipy.stats import scoreatpercentile
 import pandas as pd

Next, we will load the data with the following lines of code:2.

 data = pd.read_csv("co2.csv", index_col=0, parse_dates=True)
 co2 = np.array(data.co2)

The data in the preceding code is copied into NumPy array, co2, containing
the values of co2 in the atmosphere.

The maximum of an array can be obtained via a method of the ndarray and3.
NumPy functions. The same goes for the minimum, mean, and standard
deviations. The following code snippet prints the various statistics:

 print("Max method", co2.max())
 print("Max function", np.max(co2))

 print("Min method", co2.min())
 print("Min function", np.min(co2))

 print("Mean method", co2.mean())
 print("Mean function", np.mean(co2))

 print("Std method", co2.std())
 print("Std function", np.std(co2))

The output is as follows:

 Max method 366.84
 Max function 366.84
 Min method 313.18
 Min function 313.18
 Mean method 337.053525641
 Mean function 337.053525641
 Std method 14.9502216262
 Std function 14.9502216262

Statistics and Linear Algebra

[86]

The median can be retrieved with a NumPy or SciPy function, which can estimate4.
the 50th percentile of the data with the following lines:

 print("Median", np.median(co2))
 print("Score at percentile 50",scoreatpercentile(co2, 50))

The following is printed:

 Median 335.17
 Score at percentile 50 335.17

Linear algebra with NumPy
Linear algebra is an important subdivision of mathematics. We can use linear algebra, for
instance, to perform linear regression. The numpy.linalg subpackage holds linear algebra
routines. With this subpackage, you can invert matrices, compute eigenvalues, solve linear
equations, and find determinants, among other things. Matrices in NumPy are represented
by a subclass of ndarray.

Inverting matrices with NumPy
The inverse of a square and invertible matrix A in linear algebra is the matrix A-1, which,
when multiplied with the original matrix, is equal to the identity matrix I. This can be
written down as the following mathematical equation:

A A-1 = I

The inv() function in the numpy.linalg subpackage can do this for us. Let's invert an
example matrix. To invert matrices, follow these steps:

Create the demonstration matrix with the mat() function:1.

 A = np.mat("2 4 6;4 2 6;10 -4 18")
 print("A\n", A)

The A matrix is printed as follows:

 A[[2 4 6] [4 2 6] [10 -4 18]]]

Statistics and Linear Algebra

[87]

Invert the matrix.2.

Now we can view the inv() subroutine in action:

 inverse = np.linalg.inv(A)
 print("inverse of A\n", inverse)

The inverse matrix is displayed as follows:

 inverse of A[
 [-0.41666667 0.66666667 -0.08333333]
 [0.08333333 0.16666667 -0.08333333]
 [0.25 -0.33333333 0.08333333]]

If the matrix is singular, or not square, a LinAlgError is raised. If you
wish, you can check the solution manually. This is left as a drill for you,
outside of this exercise. The pinv() NumPy function performs a pseudo
inversion, which can be applied to any matrix, including matrices that are
not square.

Check by multiplication.3.

Let's check what we get when we multiply the original matrix with the result
of the inv() function:

 print("Check\n", A * inverse)

The result is the identity matrix, as expected (ignoring small differences):

 Check
 [[1.00000000e+00 0.00000000e+00 -5.55111512e-17]
 [-2.22044605e-16 1.00000000e+00 -5.55111512e-17]
 [-8.88178420e-16 8.88178420e-16 1.00000000e+00]]

By subtracting the 3×3 identity matrix from the previous result, we get the errors of the
inversion process:

print("Error\n", A * inverse - np.eye(3))

Statistics and Linear Algebra

[88]

The errors should be negligible in general, but in some cases small errors could be
propagated with undesirable side effects:

[[-1.11022302e-16 0.00000000e+00 -5.55111512e-17]
 [-2.22044605e-16 4.44089210e-16 -5.55111512e-17]
 [-8.88178420e-16 8.88178420e-16 -1.11022302e-16]]

In such cases, higher precision data types might help or switch to a superior algorithm. We
computed the inverse of a matrix with the inv() routine of the numpy.linalg subpackage.
We made certain, with matrix multiplication, whether this is indeed the inverse matrix:

import numpy as np

A = np.mat("2 4 6;4 2 6;10 -4 18")
print "A\n", A

inverse = np.linalg.inv(A)
print("inverse of A\n", inverse)

print("Check\n", A * inverse)
print("Error\n", A * inverse - np.eye(3))

Solving linear systems with NumPy
A matrix transforms a vector into another vector in a linear fashion. This operation
numerically corresponds to a system of linear equations. The solve() subroutine of
numpy.linalg solves systems of linear equations of the form Ax = b; here, A is a matrix, b
can be a one-dimensional or two-dimensional array, and x is an unknown quantity. We will
witness the dot() subroutine in action. This function computes the dot product of two
floating point numbers arrays.

Let's solve an instance of a linear system. To solve a linear system, follow these steps:

Create matrix A and array b.1.

The following code will create matrix A and array b:

 A = np.mat("1 -2 1;0 2 -8;-4 5 9")
 print("A\n", A)
 b = np.array([0, 8, -9])
 print("b\n", b)

Statistics and Linear Algebra

[89]

The matrix A and array (vector) b are defined as follows:

Call the solve() function.2.
Solve this linear system with the solve() function:3.

 x = np.linalg.solve(A, b)
 print("Solution", x)

The solution of the linear system is as follows:

 Solution [29. 16. 3.]

Check with the dot() function.4.

Check whether the solution is correct with the dot() function:

 print("Check\n", np.dot(A , x))

The result is as expected:

 Check[[0. 8. -9.]]

We solved a linear system by applying the solve() function from the linalg subpackage
of NumPy and checking the result with the dot() function:

import numpy as np

A = np.mat("1 -2 1;0 2 -8;-4 5 9")
print("A\n", A)

b = np.array([0, 8, -9])
print("b\n", b)

x = np.linalg.solve(A, b)
print("Solution", x)

print("Check\n", np.dot(A , x))

Statistics and Linear Algebra

[90]

Finding eigenvalues and eigenvectors with
NumPy
The eigenvalues are scalar solutions to the equation Ax = ax, where A is a two-
dimensional matrix and x is a one-dimensional vector. The eigenvectors are vectors
corresponding to eigenvalues.

The eigenvalues and eigenvectors are fundamental in mathematics,
and are used in many important algorithms, such as principal component
analysis (PCA). PCA can be used to simplify the analysis of large datasets.

The eigvals() subroutine in the numpy.linalg package computes eigenvalues. The
eig() function gives back a tuple holding eigenvalues and eigenvectors.

We will obtain the eigenvalues and eigenvectors of a matrix with the eigvals() and
eig() functions of the numpy.linalg subpackage. We will check the outcome by applying
the dot() function:

import numpy as np

A = np.mat("3 -2;1 0")
print("A\n", A)

print("Eigenvalues", np.linalg.eigvals(A))

eigenvalues, eigenvectors = np.linalg.eig(A)
print("First tuple of eig", eigenvalues)
print("Second tuple of eig\n", eigenvectors)

for i in range(len(eigenvalues)):
 print("Left", np.dot(A, eigenvectors[:,i]))
 print("Right", eigenvalues[i] * eigenvectors[:,i])

Let's calculate the eigenvalues of a matrix:

Create the matrix.1.

The following code will create a matrix:

 A = np.mat("3 -2;1 0")
 print("A\n", A)

Statistics and Linear Algebra

[91]

The matrix we created looks like this:

 A[[3 -2] [1 0]]

Calculate eigenvalues with the eig() function.2.

Apply the eig() subroutine:

 print("Eigenvalues", np.linalg.eigvals(A))

 The eigenvalues of the matrix are as follows:

 Eigenvalues [2. 1.]

Get eigenvalues and eigenvectors with eig().3.

Get the eigenvalues and eigenvectors with the eig() function. This
routine returns a tuple, where the first element holds eigenvalues and the
second element contains matching eigenvectors, set up column-wise:

 eigenvalues, eigenvectors = np.linalg.eig(A)
 print("First tuple of eig", eigenvalues)
 print("Second tuple of eig\n", eigenvectors)

The eigenvalues and eigenvectors values will be as follows:

 First tuple of eig [2. 1.]
 Second tuple of eig
 [[0.89442719 0.70710678]
 [0.4472136 0.70710678]]

Check the result.4.

Check the answer with the dot() function by computing both sides of the
eigenvalues equation Ax = ax:

 for i in range(len(eigenvalues)):
 print("Left", np.dot(A, eigenvectors[:,i]))
 print("Right", eigenvalues[i] * eigenvectors[:,i])

The output is as follows:

 Left [[1.78885438] [0.89442719]]
 Right [[1.78885438] [0.89442719]]
 Left [[0.70710678] [0.70710678]]
 Right [[0.70710678] [0.70710678]]

Statistics and Linear Algebra

[92]

NumPy random numbers
Random numbers are used in Monte Carlo methods, stochastic calculus, and more. Real
random numbers are difficult to produce, so in practice, we use pseudo-random numbers.
Pseudo-random numbers are sufficiently random for most intents and purposes, except for
some very exceptional instances, such as very accurate simulations. The random number
associated routines can be located in the NumPy random subpackage.

The core random number generator is based on the Mersenne Twister
algorithm (refer to h t t p s ://e n . w i k i p e d i a . o r g /w i k i /M e r s e n n e _ t w i s t e r

).

Random numbers can be produced from discrete or continuous distributions. The
distribution functions have an optional size argument, which informs NumPy how many
numbers are to be created. You can specify either an integer or a tuple as the size. This will
lead to an array of appropriate shapes filled with random numbers. Discrete distributions
include geometric, hypergeometric, and binomial distributions. Continuous distributions
include normal and lognormal distributions.

Gambling with the binomial distribution
Binomial distribution models the number of successes in an integer number of independent
runs of an experiment, where the chance of success in each experiment is a set number.

Envisage a 17th century gambling house where you can wager on tossing pieces of eight.
Nine coins are flipped in a popular game. If fewer than five coins are heads, then you lose
one piece of eight; otherwise, you earn one. Let's simulate this, starting with one thousand
coins in our possession. We will use the binomial() function from the random module for
this purpose:

If you want to follow the code, have a look at ch-04.ipynb in this book's
code bundle.

import numpy as np
from matplotlib.pyplot import plot, show

cash = np.zeros(10000)
cash[0] = 1000
outcome = np.random.binomial(9, 0.5, size=len(cash))

https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister

Statistics and Linear Algebra

[93]

for i in range(1, len(cash)):

 if outcome[i] < 5:
 cash[i] = cash[i - 1] - 1
 elif outcome[i] < 10:
 cash[i] = cash[i - 1] + 1
 else:
 raise AssertionError("Unexpected outcome " + outcome)

print(outcome.min(), outcome.max())

plot(np.arange(len(cash)), cash)
show()

In order to understand the binomial() function, take a look at the following steps:

Calling the binomial() function.1.

Initialize an array, which acts as the cash balance, to zero. Call the
binomial() function with a size of 10000. This represents the 10,000 coin
flips in our casino:

 cash = np.zeros(10000)
 cash[0] = 1000
 outcome = np.random.binomial(9, 0.5, size=len(cash))

Updating the cash balance.2.

Go through the results of the coin tosses and update the cash array. Display
the highest and lowest value of the outcome array, just to make certain we
don't have any unusual outliers:

 for i in range(1, len(cash)):
 if outcome[i] < 5:
 cash[i] = cash[i - 1] - 1
 elif outcome[i] < 10:
 cash[i] = cash[i - 1] + 1
 else:
 raise AssertionError("Unexpected outcome " + outcome)
 print(outcome.min(), outcome.max())

As expected, the values are between 0 and 9:

 0 9

Statistics and Linear Algebra

[94]

Next, plot the cash array with matplotlib:3.

 plot(np.arange(len(cash)), cash)
 show()

In the following plot, you can determine that our cash balance executes a random walk
(random movement not following a pattern):

Of course, each time we execute the code, we will have a different random walk. If you
want to always receive the same results, you will want to hand a seed value to the
binomial() function from the NumPy random subpackage.

Sampling the normal distribution
Continuous distributions are modeled by the probability density function (PDF). The
chance of a specified interval is found by the integration of the PDF. The NumPy random
module has a number of functions that represent continuous distributions, such as beta,
chisquare, exponential, f, gamma, gumbel, laplace, lognormal, logistic,
multivariate_normal, noncentral_chisquare, noncentral_f, normal, and others.

Statistics and Linear Algebra

[95]

We will visualize the normal distribution by applying the normal() function from the
random NumPy subpackage. We will do this by drawing a bell curve and a histogram of
randomly generated values:

import numpy as np
import matplotlib.pyplot as plt

N=10000

normal_values = np.random.normal(size=N)
dummy, bins, dummy = plt.hist(normal_values, np.sqrt(N), normed=True, lw=1)
sigma = 1
mu = 0
plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * np.exp(- (bins - mu)**2 /
(2 * sigma**2)),lw=2)
plt.show()

Random numbers can be produced from a normal distribution and their distribution might
be displayed with a histogram. To plot a normal distribution, follow these steps:

Generate values.1.

Create random numbers for a certain sample size with the aid of the
normal() function from the random NumPy subpackage:

 N=100.00
 normal_values = np.random.normal(size=N)

Draw the histogram and theoretical PDF.2.

Plot the histogram and theoretical PDF with a central value of 0 and a
standard deviation of 1. We will use matplotlib for this:

 dummy, bins, dummy = plt.hist(normal_values, np.sqrt(N),
 normed=True, lw=1)
 sigma = 1
 mu = 0
 plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * np.exp(-
 (bins - mu)**2 / (2 * sigma**2)),lw=2)
 plt.show()

Statistics and Linear Algebra

[96]

In the following plot, we see the famed bell curve:

Performing a normality test with SciPy
Normal distribution is widely used in science and statistics. According to the central limit
theorem, a large, random sample with independent observations will converge towards the
normal distribution. The properties of the normal distribution are well known, and it is
considered convenient to use. However, there are a number of requirements that need to be
met, such as a sufficiently large number of data points which must be independent. It is
good practice to check whether data conforms to the normal distribution or not. A great
number of normality tests exist, some of which have been implemented in the
scipy.stats package. We will apply these tests in this section. As sample data, we will
use flu trends data from h t t p s ://w w w . g o o g l e . o r g /f l u t r e n d s /d a t a . t x t . The original file
has been reduced to include only two columns–a date and values for Argentina. A few lines
are given as follows:

Date,Argentina
29/12/02,
05/01/03,
12/01/03,
19/01/03,
26/01/03,
02/02/03,136

https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt

Statistics and Linear Algebra

[97]

The data can be found in the goog_flutrends.csv file of the code bundle. We will also
sample data from the normal distribution, as we did in the previous tutorial. The resulting
array will have the same size as the flu trends array, and will serve as the golden standard,
which should pass the normality test with flying colors. Refer to ch-04.ipynb in the code
bundle for the following code:

import numpy as np
from scipy.stats import shapiro
from scipy.stats import anderson
from scipy.stats import normaltest

flutrends = np.loadtxt("goog_flutrends.csv", delimiter=',', usecols=(1,),
skiprows=1, converters = {1: lambda s: float(s or 0)}, unpack=True)
N = len(flutrends)
normal_values = np.random.normal(size=N)

print("Normal Values Shapiro", shapiro(normal_values))
print("Flu Shapiro", shapiro(flutrends))

print("Normal Values Anderson", anderson(normal_values))
print("Flu Anderson", anderson(flutrends))

print("Normal Values normaltest", normaltest(normal_values))
print("Flu normaltest", normaltest(flutrends))

As a negative example, we will use an array of the same size as the two previously
mentioned arrays filled with zeros. In real life, we could get these kinds of values if we were
dealing with a rare event (for instance, a pandemic outbreak).

In the data file, some cells are empty. Of course, these types of issues occur frequently, so
we have to get used to cleaning our data. We are going to assume that the correct value
should be 0. A converter can fill in those zero values for us as follows:

flutrends = np.loadtxt("goog_flutrends.csv", delimiter=',', usecols=(1,),
skiprows=1, converters = {1: lambda s: float(s or 0)}, unpack=True)

Statistics and Linear Algebra

[98]

The Shapiro-Wilk test can check for normality. The corresponding SciPy function returns a
tuple of which the first number is a test statistic and the second number is a p-value. It
should be noted that the zeros-filled array caused a warning. In fact, all three functions used
in this example had trouble with this array and gave warnings. We get the following result:

Normal Values Shapiro (0.9967482686042786, 0.2774980068206787)
Flu Shapiro (0.9351990818977356, 2.2945883254311397e-15)

The p-values we get are similar to the results of the third test later in this example. The
analysis is basically the same.

The Anderson-Darling test can check for normality and also for other distributions, such as
exponential, logistic, and Gumbel. The SciPy function relates a test statistic and an array
containing critical values for the 15, 10, 5, 2.5, and 1 percentage significance levels. If the
statistic is larger than the critical value at a significance level, we can reject normality. We
get the following values:

Normal Values Anderson (0.31201465602225653, array([0.572, 0.652, 0.782,
0.912, 1.085]), array([15. , 10. , 5. , 2.5, 1.]))
Flu Anderson (8.258614154768793, array([0.572, 0.652, 0.782, 0.912,
1.085]), array([15. , 10. , 5. , 2.5, 1.]))

We are not allowed to reject normality for our golden standard array, as we would have
expected. However, the statistic returned for the flu trends data is larger than all the
corresponding critical values. We can, therefore, confidently reject normality. Out of the
three test functions, this one seems to be the easiest to use.

The D'Agostino-Pearson test is also implemented in SciPy as the normaltest() function.
This function returns a tuple with a statistic and p-value just like the shapiro() function.
The p-value is a two-sided chi-squared probability. Chi-squared is another well-known
distribution. The test itself is based on z-scores of the skewness and kurtosis tests. Skewness
measures how symmetric a distribution is. The normal distribution is symmetric and has
zero skewness. Kurtosis tells us something about the shape of the distribution (high peak,
fat tail). The normal distribution has a kurtosis of three (the excess kurtosis is zero). The
following values are obtained by the test:

Normal Values normaltest (3.102791866779639, 0.21195189649335339)
Flu normaltest (99.643733363569538, 2.3048264115368721e-22)

Since we are dealing with a probability for the p-value, we want this probability to be as
high as possible and close to one. Furthermore, we can accept normality if the p-value is at
least 0.5. For the golden standard array, we get a lower value, which means that we
probably need to have more observations. It is left as an exercise for you to confirm this.

Statistics and Linear Algebra

[99]

Creating a NumPy masked array
Data is often messy and contains gaps or characters that we do not deal with often. Masked
arrays can be utilized to disregard absent or invalid data points. A masked array from the
numpy.ma subpackage is a subclass of ndarray with a mask. In this section, we will use the
face photo as the data source and act as if some of this data is corrupt. The following is the
full code for the masked array example from the ch-04.ipynb file in this book's code
bundle:

import numpy
import scipy
import matplotlib.pyplot as plt

face = scipy.misc.face()

random_mask = numpy.random.randint(0, 2, size=face.shape)

plt.subplot(221)
plt.title("Original")
plt.imshow(face)
plt.axis('off')

masked_array = numpy.ma.array(face, mask=random_mask)

plt.subplot(222)
plt.title("Masked")
plt.imshow(masked_array)
plt.axis('off')

plt.subplot(223)
plt.title("Log")
plt.imshow(numpy.ma.log(face).astype("float32"))
plt.axis('off')

plt.subplot(224)
plt.title("Log Masked")
plt.imshow(numpy.ma.log(masked_array).astype("float32"))
plt.axis('off')

plt.show()

Statistics and Linear Algebra

[100]

Finally, we will display the original picture, the logarithm values of the original image, the
masked array, and the logarithm values thereof:

Create a mask.1.

To produce a masked array, we have to stipulate a mask. Let's create a
random mask. This mask will have values that are either 0 or 1:

 random_mask = numpy.random.randint(0, 2, size=face.shape)

Create a masked array.2.

By applying the mask in the former step, create a masked array:

 masked_array = numpy.ma.array(face, mask=random_mask)

The resulting pictures are exhibited as follows:

Statistics and Linear Algebra

[101]

We applied a random mask to NumPy arrays. This resulted in disregarding the data
matching the mask. There is an entire range of masked array procedures to be discovered in
the numpy.ma subpackage. In this tutorial, we only presented how to produce a masked
array.

Disregarding negative and extreme values
Masked arrays are useful when we want to ignore negative values; for example, when
taking the logarithm of array values. A second use case for masked arrays is rejecting
outliers. This works based on a higher and lower limit for extreme values. In this tutorial,
we will apply these techniques to the salary data of players in the MLB. The data comes
originally from h t t p ://w w w . e x p l o r e d a t a . n e t /D o w n l o a d s /B a s e b a l l - D a t a - S e t . The data
was edited to contain two columns–the player name and salary. This resulted in
MLB2008.csv, which can be found in the code bundle. The full script for this tutorial is in
the ch-04.ipynb file in this book's code bundle:

import numpy as np
from datetime import date
import sys
import matplotlib.pyplot as plt

salary = np.loadtxt("MLB2008.csv", delimiter=',', usecols=(1,), skiprows=1,
unpack=True)
triples = np.arange(0, len(salary), 3)
print("Triples", triples[:10], "...")

signs = np.ones(len(salary))
print("Signs", signs[:10], "...")

signs[triples] = -1
print("Signs", signs[:10], "...")

ma_log = np.ma.log(salary * signs)
print("Masked logs", ma_log[:10], "...")

dev = salary.std()
avg = salary.mean()
inside = np.ma.masked_outside(salary, avg - dev, avg + dev)
print("Inside", inside[:10], "...")

plt.subplot(311)
plt.title("Original")
plt.plot(salary)

http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set

Statistics and Linear Algebra

[102]

plt.subplot(312)
plt.title("Log Masked")
plt.plot(np.exp(ma_log))

plt.subplot(313)
plt.title("Not Extreme")
plt.plot(inside)

plt.subplots_adjust(hspace=.9)

plt.show()

The following are the steps that will help you execute the aforementioned commands:

Taking the logarithm of negative numbers.1.

We will take the logarithm of an array that holds negative numbers. Firstly,
let's create an array holding numbers divisible by three:

 triples = numpy.arange(0, len(salary), 3)
 print("Triples", triples[:10], "...")

Next, we will produce an array with ones that have the same size as the
salary data array:

 signs = numpy.ones(len(salary))
 print("Signs", signs[:10], "...")

We will set up each third array element to be negative with the aid of
indexing tricks we acquired in Chapter 2, NumPy Arrays:

 signs[triples] = -1
 print("Signs", signs[:10], "...")

In conclusion, we will take the logarithm of this array:

 ma_log = numpy.ma.log(salary * signs)
 print("Masked logs", ma_log[:10], "...")

This ought to print the following for the salary data (note that - represent
NaN values in the data):

 Triples [0 3 6 9 12 15 18 21 24 27] ...
 Signs [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] ...
 Signs [-1. 1. 1. -1. 1. 1. -1. 1. 1. -1.] ...
 Masked logs [-- 14.970818190308929 15.830413578506539 --
 13.458835614025542 15.319587954740548 -- 15.648092021712584
 13.864300722133706 --] ...

Statistics and Linear Algebra

[103]

Ignoring extreme values.2.

Let's specify outliers as being “one standard deviation below the mean” or
“one standard deviation above the mean” (this is not necessarily a correct
definition that is given here, but it is easy to compute). This definition directs
us to compose the following code, which will mask extreme points:

 dev = salary.std()
 avg = salary.mean()
 inside = numpy.ma.masked_outside(salary, avg-dev, avg+dev)
 print("Inside", inside[:10], "...")

The following code displays the output for the initial ten elements:

 Inside [3750000.0 3175000.0 7500000.0 3000000.0 700000.0
 4500000.0 3000000.0 6250000.0 1050000.0 4600000.0] ...

Let's plot the original salary data, the data after taking the logarithm and the
exponent back again, and, finally, the data after applying the standard
deviation-based mask.

It will look something like this:

Statistics and Linear Algebra

[104]

Functions in the numpy.ma subpackage mask array elements, which we view as invalid. For
example, negative values are not allowed for the log() and sqrt() functions. A masked
value is like a null value in relational databases and programming. All operations with a
masked value deliver a masked value.

Summary
In this chapter, you learned a lot about NumPy and SciPy subpackages. We looked at linear
algebra, statistics, continuous and discrete distributions, masked arrays, and random
numbers.

The next chapter, Chapter 5, Retrieving, Processing, and Storing Data, will teach us skills that
are essential, though they may not be considered data analysis by some people. We will use
a broader definition that considers anything conceivably related to data analysis. Usually,
when we analyze data, we don't have a whole team of assistants to help us with retrieving
and storing the data. However, since these tasks are important for a smooth data analysis
flow, we will describe these activities in detail.

5
Retrieving, Processing, and

Storing Data
Data can be found everywhere, in all shapes and forms. We can get it from the web, by e-
mail and FTP, or we can create it ourselves in a lab experiment or marketing poll. An
exhaustive overview of how to acquire data in various formats will require many more
pages than we have available. Sometimes, we need to store data before we can analyze it or
after we are done with our analysis. We will discuss storing data in this chapter. Chapter 8,
Working with Databases, gives information about various databases (relational and NoSQL)
and related APIs. The following is a list of the topics that we are going to cover in this
chapter:

Writing CSV files with NumPy and Pandas
The binary .npy and pickle formats
Storing data with PyTables
Reading and writing Pandas DataFrames to HDF5 stores
Reading and writing to Excel with Pandas
Using REST web services and JSON
Reading and writing JSON with Pandas
Parsing RSS and Atom feeds
Parsing HTML with Beautiful Soup

Retrieving, Processing, and Storing Data

[106]

Writing CSV files with NumPy and Pandas
In the previous chapters, we learned about reading CSV files. Writing CSV files is just as
straightforward, but uses different functions and methods. Let's first generate some data to
be stored in the CSV format. Generate a 3×4 NumPy array after seeding the random
generator in the following code snippet.

Set one of the array values to nan:

np.random.seed(42)

a = np.random.randn(3, 4)
a[2][2] = np.nan
print(a)

This code will print the array as follows:

 [[0.49671415 -0.1382643 0.64768854 1.52302986]
 [-0.23415337 -0.23413696 1.57921282 0.76743473]
 [-0.46947439 0.54256004 nan -0.46572975]]

The NumPy savetxt() function is the counterpart of the NumPy loadtxt() function and
can save arrays in delimited file formats, such as CSV. Save the array we created with the
following function call:

np.savetxt('np.csv', a, fmt='%.2f', delimiter=',', header=" #1, #2, #3,
#4")

In the preceding function call, we specified the name of the file to be saved, the array, an
optional format, a delimiter (the default is space), and an optional header.

The format parameter is documented at
http://docs.python.org/2/library/string.html#format-specificatio

n-mini-language.

View the np.csv file we created with the cat command (cat np.csv) or an editor, such as
Notepad in Windows. The contents of the file should be displayed as follows:

 # #1, #2, #3, #4
 0.50,-0.14,0.65,1.52
 -0.23,-0.23,1.58,0.77
 -0.47,0.54,nan,-0.47

http://docs.python.org/2/library/string.html#format-specification-mini-language
http://docs.python.org/2/library/string.html#format-specification-mini-language

Retrieving, Processing, and Storing Data

[107]

Create a Pandas DataFrame from the random values array:

df = pd.DataFrame(a)
print(df)

As you can see, Pandas automatically comes up with column names for our data:

 0 1 2 3
 0 0.496714 -0.138264 0.647689 1.523030
 1 -0.234153 -0.234137 1.579213 0.767435
 2 -0.469474 0.542560NaN -0.465730

Write a DataFrame to a CSV file with the Pandas to_csv() method as follows:

df.to_csv('pd.csv', float_format='%.2f', na_rep="NAN!")

We gave this method the name of the file, an optional format string analogous to the format
parameter of the NumPy savetxt() function, and an optional string that represents NaN.
View the pd.csv file to see the following:

 ,0,1,2,3
 0,0.50,-0.14,0.65,1.52
 1,-0.23,-0.23,1.58,0.77
 2,-0.47,0.54,NAN!,-0.47

Take a look at the code in the ch-05.ipynb file in this book's code bundle:

import numpy as np
import pandas as pd

np.random.seed(42)

a = np.random.randn(3, 4)
a[2][2] = np.nan
print(a)
np.savetxt('np.csv', a, fmt='%.2f', delimiter=',', header=" #1, #2, #3,
#4")
df = pd.DataFrame(a)
print(df)
df.to_csv('pd.csv', float_format='%.2f', na_rep="NAN!")

Retrieving, Processing, and Storing Data

[108]

The binary .npy and pickle formats
Saving data in the CSV format is fine most of the time. It is easy to exchange CSV files, since
most programming languages and applications can handle this format. However, it is not
very efficient; CSV and other plaintext formats take up a lot of space. Numerous file formats
have been invented that offer a high level of compression, such as .zip, .bzip, and .gzip.

The following is the complete code for this storage comparison exercise, which can also be
found in the ch-05.ipynb file of this book's code bundle:

import numpy as np
import pandas as pd
from tempfile import NamedTemporaryFile
from os.path import getsize

np.random.seed(42)
a = np.random.randn(365, 4)

tmpf = NamedTemporaryFile()
np.savetxt(tmpf, a, delimiter=',')
print("Size CSV file", getsize(tmpf.name))

tmpf = NamedTemporaryFile()
np.save(tmpf, a)
tmpf.seek(0)
loaded = np.load(tmpf)
print("Shape", loaded.shape)
print("Size .npy file", getsize(tmpf.name))

df = pd.DataFrame(a)
df.to_pickle(tmpf.name)
print("Size pickled dataframe", getsize(tmpf.name))
print("DF from pickle\n", pd.read_pickle(tmpf.name))

NumPy offers a NumPy-specific format called .npy, which can be used to store NumPy
arrays. Before demonstrating this format, we will generate a 365×4 NumPy array filled with
random values. This array simulates daily measurements for four variables for a year (for
instance, a weather data station with sensors measuring temperature, humidity,
precipitation, and atmospheric pressure). We will use a standard Python
NamedTemporaryFile to store the data. The temporary file should be automatically
deleted.

Retrieving, Processing, and Storing Data

[109]

Store the array in a CSV file and check its size as follows:

tmpf = NamedTemporaryFile()
np.savetxt(tmpf, a, delimiter=',')
print("Size CSV file", getsize(tmpf.name))

The CSV file size is printed as follows:

 Size CSV file 36693

Save the array in the NumPy .npy format, load the array, check its shape, and the size of
the .npy file:

tmpf = NamedTemporaryFile()
np.save(tmpf, a)
tmpf.seek(0)
loaded = np.load(tmpf)
print("Shape", loaded.shape)
print("Size .npy file", getsize(tmpf.name))

The call to the seek() method was needed to simulate closing and reopening the
temporary file. The shape should be printed with the file size:

Shape (365, 4)
Size .npy file 11760

The .npy file is roughly three times smaller than the CSV file, as expected. Python lets us
store data structures of practically arbitrary complexity. We can store a pandas DataFrame
or Series as a pickle as well.

The Python pickle is a format used to store Python objects to disk or some
other medium. This is called pickling. We can recreate the Python objects
from storage. This reverse process is called unpickling (refer to h t t p ://d o

c s . p y t h o n . o r g /2/l i b r a r y /p i c k l e . h t m l). Pickling has evolved over the
years, and as a result, various pickle protocols exist. Not all Python objects
can be pickled; however, alternative implementations, such as dill, exist,
which allow more types of Python objects to be pickled. If possible, use
cPickle (included in the standard Python distribution) because it is
implemented in C and is, therefore, faster.

http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html

Retrieving, Processing, and Storing Data

[110]

Create a DataFrame from the generated NumPy array, write it to a pickle with the
to_pickle() method, and retrieve it from the pickle with the read_pickle() function:

df = pd.DataFrame(a)
df.to_pickle(tmpf.name)
print("Size pickled dataframe", getsize(tmpf.name))
print("DF from pickle\n", pd.read_pickle(tmpf.name))

The pickle of the DataFrame is slightly larger than the .npy file, as you can see in the
following printout:

Size pickled dataframe 12244
DF from pickle
 0 1 2 3
0 0.496714 -0.138264 0.647689 1.523030
[TRUNCATED]
59 -2.025143 0.186454 -0.661786 0.852433

[365 rows x 4 columns]

Storing data with PyTables
Hierarchical data format (HDF) is a specification and technology for the storage of big
numerical data. HDF was created in the supercomputing community and is now an open
standard. The latest version of HDF is HDF5 and is the one we will be using. HDF5
structures data in groups and datasets. Datasets are multidimensional homogeneous arrays.
Groups can contain other groups or datasets. Groups are like directories in a hierarchical
filesystem.

The two main HDF5 Python libraries are as follows:

h5y
PyTables

In this example, we will be using PyTables. PyTables has a number of dependencies:

The NumPy package, which we installed in Chapter 1, Getting Started with
Python Libraries
The numexpr package, which claims that it evaluates multiple-operator array
expressions many times faster than NumPy can
HDF5

Retrieving, Processing, and Storing Data

[111]

The parallel version of HDF5 also requires MPI. HDF5 can be installed by
obtaining a distribution from h t t p ://w w w . h d f g r o u p . o r g /H D F 5/r e l e a s e

/o b t a i n 5. h t m l and running the following commands (which could take a
few minutes):

 $ gunzip < hdf5-X.Y.Z.tar.gz | tar xf -
 $ cd hdf5-X.Y.Z
 $ make
 $ make install

In all likelihood, your favorite package manager has a distribution for HDF5. Choose the
latest stable version. At the time of writing this book, the installed version was 1.8.12.

The second dependency, numexpr, claims to be able to perform certain operations faster
than NumPy. It supports multithreading and has its own virtual machine implemented in
C. Numexpr and PyTables are available on PyPi, so we can install these with pip as follows:

$ pip3 install numexpr tables

Again, we will generate random values and fill a NumPy array with those random values.
Create an HDF5 file and attach the NumPy array to the root node with the following code:

filename = "pytable_demo.h5"
h5file = tables.openFile(filename, mode='w',)
root = h5file.root
h5file.createArray(root, "array", a)
h5file.close()

Read the HDF5 file and print its file size:

h5file = tables.openFile(filename, "r")
print(getsize(filename))

The value that we get for the file size is 13824. Once we read an HDF5 file and obtain a
handle for it, we would normally traverse it to find the data we need. Since we only have
one dataset, traversing is pretty simple. Call the iterNodes() and read() methods to get
the NumPy array back:

for node in h5file.iterNodes(h5file.root):
 b = node.read()
 print(type(b), b.shape)

The type and shape of the dataset corresponds to our expectations:

 <class 'numpy.ndarray'> (365, 4)

http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html

Retrieving, Processing, and Storing Data

[112]

The following code can be found in the ch-05.ipynb file in this book's code bundle:

import numpy as np
import tables
from os.path import getsize

np.random.seed(42)
a = np.random.randn(365, 4)

filename = "pytable_demo.h5"
h5file = tables.open_file(filename, mode='w',)
root = h5file.root
h5file.create_array(root, "array", a)
h5file.close()

h5file = tables.open_file(filename, "r")
print(getsize(filename))

for node in h5file.root:
 b = node.read()
 print(type(b), b.shape)

h5file.close()

Reading and writing Pandas DataFrames to
HDF5 stores
The HDFStore class is the pandas abstraction responsible for dealing with HDF5 data.
Using random data, we will demonstrate this functionality.

Give the HDFStore constructor the path to a demo file and create a store:

filename = "pytable_df_demo.h5"
store = pd.io.pytables.HDFStore(filename)
print(store)

The preceding code snippet will print the file path to the store and its contents, which is
empty at the moment:

 <class 'pandas.io.pytables.HDFStore'>
 File path: pytable_df_demo.h5
 Empty

Retrieving, Processing, and Storing Data

[113]

HDFStore has a dict-like interface, meaning that we can store values, such as, for instance, a
pandas DataFrame with a corresponding lookup key. Store a DataFrame containing random
data in HDFStore as follows:

store['df'] = df
print(store)

Now the store contains data as illustrated in the following output:

 <class 'pandas.io.pytables.HDFStore'>
 File path: pytable_df_demo.h5
 frame (shape->[365,4])

We can access the DataFrame in three ways: With the get() method, a dict-like lookup, or
dotted access. So let's try this out:

print("Get", store.get('df').shape)
print("Lookup", store['df'].shape)
print("Dotted", store.df.shape)

The shape of the DataFrame is the same for all three access methods:

Get (365, 4)
Lookup (365, 4)
Dotted (365, 4)

We can delete an item in the store by calling the remove() method or with the del
operator. Obviously, we can remove an item only once. Delete the DataFrame from the
store:

del store['df']
print("After del\n", store)

The store is now empty again:

After del
<class 'pandas.io.pytables.HDFStore'>
File path: pytable_df_demo.h5
Empty

The is_open attribute indicates whether the store is open or not. The store can be closed
with the close() method. Close the store and check that it is closed:

print("Before close", store.is_open)
store.close()
print("After close", store.is_open)

Retrieving, Processing, and Storing Data

[114]

Once closed, the store is no longer open as confirmed by the following:

Before close True
After close False

Pandas also provides a DataFrame to_hdf() method and a top-level read_hdf() function
to read and write HDF data. Call the to_hdf() method and read the data:

df.to_hdf(tmpf.name, 'data', format='table')
print(pd.read_hdf(tmpf.name, 'data', where=['index>363']))

The arguments of the reading and writing API are a file path, an identifier for the group in
the store, and an optional format string. The format can either be fixed or table. The fixed
format is faster, but you cannot append or search. The table format corresponds to a
PyTables Table structure and allows searching and selection. We get the following values
for the query on the DataFrame:

 0 1 2 3
 364 0.753342 0.381158 1.289753 0.673181
 [1 rows x 4 columns]

The ch-05.ipynb file in this book's code bundle contains the following code:

import numpy as np
import pandas as pd

np.random.seed(42)
a = np.random.randn(365, 4)

filename = "pytable_df_demo.h5"
store = pd.io.pytables.HDFStore(filename)
print(store)

df = pd.DataFrame(a)
store['df'] = df
print(store)

print("Get", store.get('df').shape)
print("Lookup", store['df'].shape)
print("Dotted", store.df.shape)

del store['df']
print("After del\n", store)

print("Before close", store.is_open)
store.close()
print("After close", store.is_open)

Retrieving, Processing, and Storing Data

[115]

df.to_hdf('test.h5', 'data', format='table')
print(pd.read_hdf('test.h5', 'data', where=['index>363']))

Reading and writing to Excel with Pandas
Excel files contain a lot of important data. Of course, we can export that data in other more
portable formats, such as CSV. However, it is more convenient to read and write Excel files
with Python. As is common in the Python world, there is currently more than one project
working towards the goal of providing Excel I/O capabilities. The modules that we will
need to install to get Excel I/O to work with pandas are somewhat obscurely documented.
The reason is that the projects that pandas depends on are independent and rapidly
developing. The pandas package is picky about the files it accepts as Excel files. These files
must have the .xls or .xlsx suffix, otherwise, we get the following error:

ValueError: No engine for filetype: ''

This is easy to fix. For instance, if we create a temporary file, we just give it the proper
suffix. If you don't install anything, you will get the following error message:

ImportError: No module named openpyxl.workbook

The following command gets rid of the error by installing openpyxl:

$ pip3 install openpyxl xlsxwriter xlrd

The openpyxl module is a port of PHPExcel and supports the reading and writing of
.xlsx files.

If for some reason the pip install method didn't work for you, you can
find alternative installation instructions at
http://pythonhosted.org/openpyxl/.

The xlsxwriter module is also needed to read the .xlsx files. The xlrd module is able to
extract data from the .xls and .xlsx files.

Let's generate random values to populate a pandas DataFrame, create an Excel file from the
DataFrame, recreate the DataFrame from the Excel file, and apply the mean() method to it.
For the sheet of the Excel file, we can either specify a zero-based index or name.

http://pythonhosted.org/openpyxl/

Retrieving, Processing, and Storing Data

[116]

Refer to the ch-05.ipynb file in the book's code bundle, which will contain the following
code:

import numpy as np
import pandas as pd

np.random.seed(42)
a = np.random.randn(365, 4)

filename="excel_demo.xlsx"
df = pd.DataFrame(a)
print(filename)
df.to_excel(filename, sheet_name='Random Data')
print("Means\n", pd.read_excel(filename, 'Random Data').mean()))

Create an Excel file with the to_excel() method:

df.to_excel(tmpf.name, sheet_name='Random Data')

Recreate the DataFrame with the top-level read_excel() function:

print("Means\n", pd.read_excel(tmpf.name, 'Random Data').mean())

The means are printed as follows:

 /var/folders/k_/xx_xz6xj0hx627654s3vld440000gn/T/tmpeBEfnO.xlsx
 Means
 0 0.037860
 1 0.024483
 2 0.059836
 3 0.058417
 dtype: float64

Using REST web services and JSON
Representational State Transfer (REST) web services use the REST architectural style (for
more information, refer to
http://en.wikipedia.org/wiki/Representational_state_transfer). In the usual context
of the HTTP(S) protocol, we have the GET, POST, PUT, and DELETE methods. These
methods can be aligned with common operations on the data to create, request, update, or
delete data items.

http://en.wikipedia.org/wiki/Representational_state_transfer

Retrieving, Processing, and Storing Data

[117]

In a RESTful API, data items are identified by URIs such as
http://example.com/resources or http://example.com/resources/item42. REST
is not an official standard, but is so widespread that we need to know about it. Web services
often use JavaScript Object Notation (JSON) (for more information refer to
http://en.wikipedia.org/wiki/JSON) to exchange data. In this format, data is written
using the JavaScript notation. The notation is similar to the syntax for Python lists and dicts.
In JSON, we can define arbitrarily complex data consisting of a combination of lists and
dicts. To illustrate this, we will use a very simple JSON string that corresponds to a
dictionary, which gives geographical information for a particular IP address:

{"country":"Netherlands","dma_code":"0","timezone":"Europe\/Amsterdam","are
a_code":"0","ip":"46.19.37.108","asn":"AS196752","continent_code":"EU","isp
":"Tilaa V.O.F.","longitude":5.75,
"latitude":52.5,"country_code":"NL","country_code3":"NLD"}

The following is the code from the ch-05.ipynb file:

import json

json_str =
'{"country":"Netherlands","dma_code":"0","timezone":"Europe\/Amsterdam","ar
ea_code":"0","ip":"46.19.37.108","asn":"AS196752","continent_code":"EU","is
p":"Tilaa
V.O.F.","longitude":5.75,"latitude":52.5,"country_code":"NL","country_code3
":"NLD"}'

data = json.loads(json_str)
print("Country", data["country"])
data["country"] = "Brazil"
print(json.dumps(data))

Python has a standard JSON API that is really easy to use. Parse a JSON string with the
loads() function:

data = json.loads(json_str)

Access the country value with the following code:

print "Country", data["country"]

The previous line should print the following:

Country Netherlands

http://en.wikipedia.org/wiki/JSON

Retrieving, Processing, and Storing Data

[118]

Overwrite the country value and create a string from the new JSON data:

data["country"] = "Brazil"
printjson.dumps(data)

The result is JSON with a new country value. The order is not preserved as it usually
happens for dicts:

{"longitude": 5.75, "ip": "46.19.37.108", "isp": "Tilaa V.O.F.",
"area_code": "0", "dma_code": "0", "country_code3": "NLD",
"continent_code": "EU", "country_code": "NL", "country": "Brazil",
"latitude": 52.5, "timezone": "Europe/Amsterdam", "asn": "AS196752"}

Reading and writing JSON with Pandas
We can easily create a pandas Series from the JSON string in the previous example. The
pandas read_json() function can create a pandas Series or pandas DataFrame.

The following example code can be found in ch-05.ipynb of this book's code bundle:

import pandas as pd

json_str =
'{"country":"Netherlands","dma_code":"0","timezone":"Europe\/Amsterdam","ar
ea_code":"0","ip":"46.19.37.108","asn":"AS196752","continent_code":"EU","is
p":"Tilaa
V.O.F.","longitude":5.75,"latitude":52.5,"country_code":"NL","country_code3
":"NLD"}'

data = pd.read_json(json_str, typ='series')
print("Series\n", data)

data["country"] = "Brazil"
print("New Series\n", data.to_json())

We can either specify a JSON string or the path of a JSON file. Call the read_json()
function to create a pandas Series from the JSON string in the previous example:

data = pd.read_json(json_str, typ='series')
print("Series\n", data)

Retrieving, Processing, and Storing Data

[119]

In the resulting Series, the keys are ordered alphabetically:

 Series
 area_code 0
 asn AS196752
 continent_code EU
 country Netherlands
 country_code NL
 country_code3 NLD
 dma_code 0
 ip 46.19.37.108
 ispTilaa V.O.F.
 latitude 52.5
 longitude 5.75
 timezone Europe/Amsterdam
 dtype: object

Change the country value again and convert the pandas Series to a JSON string with the
to_json() method:

data["country"] = "Brazil"
print("New Series\n", data.to_json())

In the new JSON string, the key order is preserved, but we also have a different country
value:

 New Series
{"area_code":"0","asn":"AS196752","continent_code":"EU","country":"Brazil",
"country_code":"NL","country_code3":"NLD","dma_code":"0","ip":"46.19.37.108
","isp":"Tilaa
V.O.F.","latitude":52.5,"longitude":5.75,"timezone":"Europe\/Amsterdam"}

Parsing RSS and Atom feeds
Really Simple Syndication (RSS) and Atom feeds (refer to
http://en.wikipedia.org/wiki/RSS) are often used for blogs and news. These types of
feeds follow the publish/subscribe model. For instance, Packt Publishing has an RSS feed
with article and book announcements. We can subscribe to the feed to get timely updates.
The Python feedparser module allows us to parse RSS and Atom feeds easily without
dealing with a lot of technical details. The feedparser module can be installed with pip as
follows:

$ pip3 install feedparser

http://en.wikipedia.org/wiki/RSS

Retrieving, Processing, and Storing Data

[120]

After parsing an RSS file, we can access the underlying data using a dotted notation. Parse
the Packt Publishing RSS feed and print the number of entries:

import feedparser as fp

rss = fp.parse("http://www.packtpub.com/rss.xml")

print("# Entries", len(rss.entries))

The number of entries is printed (the number may vary for each program run):

Entries 10

Print entry titles and summaries if the entry contains the word Python with the following
code:

for i, entry in enumerate(rss.entries):
 if "Python" in entry.summary:
 print(i, entry.title)
 print(entry.summary)

On this particular run, the following was printed (if you try it for yourself, you may get
something else or nothing at all if the filter is too restrictive):

 42 Create interactive plots with matplotlib using Pack't new book and
eBook
 About the author: Alexandre Devert is a scientist. He is an
enthusiastic Python coder as well and never gets enough of it! He used to
teach data mining, software engineering, and research in numerical
optimization.
 Matplotlib is part of the Scientific Python modules collection. It
provides a large library of customizable plots and a comprehensive set of
backends. It tries to make easy things easy and make hard things possible.
It can help users generate plots, add dimensions to plots, and also make
plots interactive with just a few lines of code. Also, matplotlib
integrates well with all common GUI modules.

Retrieving, Processing, and Storing Data

[121]

The following code can be found in the ch-05.ipynb file of this book's code bundle:

import feedparser as fp

rss = fp.parse("http://www.packtpub.com/rss.xml")

print("# Entries", len(rss.entries))

for i, entry in enumerate(rss.entries):
 if "Java" in entry.summary:
 print(i, entry.title)
 print(entry.summary)

Parsing HTML with Beautiful Soup
Hypertext Markup Language (HTML) is the fundamental technology used to create web
pages. HTML is composed of HTML elements that consist of so-called tags enveloped in
slanted brackets (for example, <html>). Often, tags are paired with a starting and closing
tag in a hierarchical, tree-like structure. An HTML-related draft specification was first
published by Berners-Lee in 1991. Initially, there were only 18 HTML elements. The formal
HTML definition was published by the Internet Engineering Task Force (IETF) in 1993.
The IETF completed the HTML 2.0 standard in 1995. Around 2013, the latest HTML version,
HTML5, was specified. HTML is not a very strict standard compared to XHTML and XML.

Modern browsers tolerate a lot of violations of the standard, making web pages a form of
unstructured data. We can treat HTML as a big string and perform string operations on it
with regular expressions, for example. This approach works only for simple projects.

I have worked on web scraping projects in a professional setting, so from personal
experience, I can tell you that we need more sophisticated methods. In a real-world
scenario, it may be necessary to submit HTML forms programmatically, for instance, to log
in, navigate through pages, and manage cookies robustly. The problem with scraping data
from the web is that if we don't have full control of the web pages that we are scraping, we
may have to change our code quite often. Programmatic access may also be actively blocked
by the website owner, or may even be illegal. For these reasons, you should always try to
use other alternatives first, such as a REST API.

Retrieving, Processing, and Storing Data

[122]

In the event that you must retrieve the data by scraping, it is recommended that you use the
Python Beautiful Soup API. This API can extract data from both HTML and XML files. New
projects should use Beautiful Soup 4, since Beautiful Soup 3 is no longer developed. We can
install Beautiful Soup 4 with the following command (similar to easy_install):

$ pip3 install beautifulsoup4 lxml

If this doesn't work, you are allowed to simply package Beautiful Soup along with your
own code. To demonstrate parsing HTML, I have generated the loremIpsum.html file in
this book's code bundle with the generator from h t t p ://l o r i p s u m . n e t /. Then, I edited the
file a bit. The content of the file is a first century BC text in Latin by Cicero, which is a
traditional way to create mock-ups of websites. Refer to the following screenshot for the top
part of the web page:

In this example, we will be using Beautiful Soup 4 and the standard Python regular
expression library.

Import these libraries with the following lines:

from bs4 import BeautifulSoup
import re

Open the HTML file and create a BeautifulSoup object with the following line:

soup = BeautifulSoup(open('loremIpsum.html'))

http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/
http://loripsum.net/

Retrieving, Processing, and Storing Data

[123]

Using a dotted notation, we can access the first <div> element. The <div> HTML element
is used to organize and style elements. Access the first div element as follows:

print("First div\n", soup.div)

The resulting output is an HTML snippet with the first <div> tag and all the tags it
contains:

 First div
 <div class="tile">
 <h4>Development</h4>
 0.10.1 - July 2014

 </div>

This particular div element has a class attribute with the value tile. The
class attribute pertains to the CSS style that is to be applied to this div
element. Cascading Style Sheets (CSS) is a language used to style
elements of a web page. CSS is a widespread specification that handles the
look and feel of web pages through CSS classes. CSS aids in separating
content and presentation by defining colors, fonts, and the layout of
elements. This separation leads to a simpler and cleaner design.

Attributes of a tag can be accessed in a dict-like fashion. Print the class attribute value of the
<div> tag as follows:

print("First div class", soup.div['class'])
First div class ['tile']

The dotted notation allows us to access elements at an arbitrary depth. For instance, print
the text of the first <dfn> tag as follows:

print("First dfn text", soup.dl.dt.dfn.text)

A line with Latin text is printed (Solisten, I pray):

 First dfn text Quareattende, quaeso

Sometimes, we are only interested in the hyperlinks of an HTML document. For instance,
we may only want to know which document links to which other documents. In HTML,
links are specified with the <a> tag. The href attribute of this tag holds the URL the link
points to. The BeautifulSoup class has a handy find_all() method, which we will use a
lot. Locate all the hyperlinks with the find_all() method:

for link in soup.find_all('a'):
 print("Link text", link.string, "URL", link.get('href'))

Retrieving, Processing, and Storing Data

[124]

There are three links in the document with the same URL, but with three different texts:

Link text loripsum.net URL http://loripsum.net/
Link text Potera tautem inpune; URL http://loripsum.net/
Link text Is es profecto tu. URL http://loripsum.net/

We can omit the find_all() method as a shortcut. Access the contents of all the <div>
tags as follows:

for i, div in enumerate(soup('div')):
 print(i, div.contents)

The contents attribute holds a list with HTML elements:

 0 [u'\n', <h4>Development</h4>, u'\n 0.10.1 - July 2014',
,
u'\n']
 1 [u'\n', <h4>Official Release</h4>, u'\n 0.10.0 June 2014',
,
u'\n']
 2 [u'\n', <h4>Previous Release</h4>, u'\n 0.09.1 June 2013',
,
u'\n']

A tag with a unique ID is easy to find. Select the <div> element with the official ID and
print the third element:

official_div = soup.find_all("div", id="official")
print("Official Version", official_div[0].contents[2].strip())

Many web pages are created on the fly based on visitor input or external data. This is how
most content from online shopping websites is served. If we are dealing with a dynamic
website, we have to remember that any tag attribute value can change in a moment's notice.
Typically, in a large website, IDs are automatically generated, resulting in long
alphanumeric strings. It's best to not look for exact matches but use regular expressions
instead. We will see an example of a match based on a pattern later. The previous code
snippet prints a version number and month as you might find on a website for a software
product:

 Official Version 0.10.0 June 2014

As you know, class is a Python keyword. To query the class attribute in a tag, we match
it with class_. Get the number of <div> tags with a defined class attribute:

print("# elements with class",len(soup.find_all(class_=True)))

We find three tags, as expected:

 # elements with class 3

Retrieving, Processing, and Storing Data

[125]

Find the number of <div> tags with the class "tile":

tile_class = soup.find_all("div", class_="tile")
print("# Tile classes", len(tile_class))

There are two <div> tags with class tile and one <div> tag with class notile:

 # Tile classes 2

Define a regular expression that will match all the <div> tags:

print("# Divs with class containing tile", len(soup.find_all("div",
class_=re.compile("tile"))))

Again, three occurrences are found:

 # Divs with class containing tile 3

In CSS, we can define patterns in order to match elements. These patterns are called CSS
selectors and are documented at http://www.w3.org/TR/selectors/. We can select
elements with the CSS selector from the BeautifulSoup class too. Use the select()
method to match the <div> element with the notile class:

print("Using CSS selector\n", soup.select('div.notile'))

The following is printed on the screen:

 Using CSS selector
 [<div class="notile">
 <h4>Previous Release</h4>
 0.09.1 June 2013

 </div>]

An HTML-ordered list looks like a numbered list of bullets. The ordered list consists of an
 tag and several tags for each list item. The result from the select() method can
be sliced as any Python list. Refer to the following screenshot of the ordered list:

http://www.w3.org/TR/selectors/

Retrieving, Processing, and Storing Data

[126]

Select the first two list items in the ordered list:

print("Selecting ordered list list items\n", soup.select("ol > li")[:2])

The following two list items are shown:

 Selecting ordered list list items
 [Cur id non ita fit?, In qua si nihil est praeter
rationem, sit in una virtute finis bonorum;]

In the CSS selector mini language, we start counting from 1. Select the second list item as
follows:

print("Second list item in ordered list", soup.select("ol>li:nth-of-
type(2)"))

The second list item can be translated in English as In which, if there is nothing contrary to
reason, let him be the power of the end of the good things in one:

 Second list item in ordered list [In qua si nihil est praeter
rationem, sit in una virtute finis bonorum;]

If we are looking at a web page in a browser, we may decide to retrieve the text nodes that
match a certain regular expression. Find all the text nodes containing the string 2014 with
the text attribute:

print("Searching for text string", soup.find_all(text=re.compile("2014")))

This prints the following text nodes:

 Searching for text string [u'\n 0.10.1 - July 2014', u'\n
0.10.0 June 2014']

This was just a brief overview of what the BeautifulSoup class can do for us. Beautiful
Soup can also be used to modify HTML or XML documents. It has utilities to troubleshoot,
pretty print, and deal with different character sets. Please refer to ch-05.ipynb for the
code:

from bs4 import BeautifulSoup
import re

soup = BeautifulSoup(open('loremIpsum.html'),"lxml")

print("First div\n", soup.div)
print("First div class", soup.div['class'])

print("First dfn text", soup.dl.dt.dfn.text)

Retrieving, Processing, and Storing Data

[127]

for link in soup.find_all('a'):
 print("Link text", link.string, "URL", link.get('href'))

Omitting find_all
for i, div in enumerate(soup('div')):
 print(i, div.contents)

#Div with id=official
official_div = soup.find_all("div", id="official")
print("Official Version", official_div[0].contents[2].strip())

print("# elements with class", len(soup.find_all(class_=True)))

tile_class = soup.find_all("div", class_="tile")
print("# Tile classes", len(tile_class))

print("# Divs with class containing tile", len(soup.find_all("div",
class_=re.compile("tile"))))

print("Using CSS selector\n", soup.select('div.notile'))
print("Selecting ordered list list items\n", soup.select("ol > li")[:2])
print("Second list item in ordered list", soup.select("ol > li:nth-of-
type(2)"))

print("Searching for text string", soup.find_all(text=re.compile("2014")))

The reader is encouraged to read the book mentioned in the Reference section for more
details on Beautiful Soup functionality, such as searching for a returned node for subnodes,
getting the nth parent of a returned node, getting the nth sibling of a returned node, and
other advanced features.

Summary
In this chapter, we learned about retrieving, processing, and storing data in different
formats. These were the CSV, NumPy .npy format, Python pickle, JSON, RSS, and HTML
formats. We used the NumPy pandas, JSON, feedparser, and Beautiful Soup libraries.

The next chapter, Chapter 6, Data Visualization, is about the important topic of visualizing
data with Python. Visualization is something we often do when we start analyzing data. It
helps to display relations between variables in the data. By visualizing the data, we can also
get an idea about its statistical properties.

Retrieving, Processing, and Storing Data

[128]

Reference
V. G. Nair, Getting Started with Beautiful Soup, Packt Publishing, 2014.

6
Data Visualization

One of the first steps in data analysis is visualization. Even when looking at a table of
values, we can form a mental image of what the data might look like when graphed. Data
visualization involves the conception and analysis of the visual representation of
information, signifying data that has been abstracted in some formal pattern, including
properties or quantities for units of measurement of the data. Data visualization is closely
associated with scientific visualization and statistical graphics. The Python matplotlib
library is a well-known plotting library based on NumPy, which we will be using in this
chapter. It has an object-oriented and a procedural Matlab-like API, which can be used in
parallel. A gallery with matplotlib examples can be found at h t t p ://m a t p l o t l i b . o r g /g a l l

e r y . h t m l is a cloud based service for data visualization. We shall briefly cover this service
at the end of this chapter. The following is a list of topics that will be covered in this
chapter:

The matplotlib subpackages
Basic matplotlib plots
Logarithmic plots
Scatter plots
Legends and annotations
Three-dimensional plots
Plotting in Pandas
Lag plots
Autocorrelation plots
plot.ly

http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html

Data Visualization

[130]

The matplotlib subpackages
If we change the code in the last section of ch-01.ipynb to list the matplotlib
subpackages, we get the following result:

 matplotlib version 1.3.1
 matplotlib.axes
 matplotlib.backends
 matplotlib.compat
 matplotlib.delaunay DESCRIPTION :Author: Robert Kern
 <robert.kern@gmail.com> :Copyright: Copyright 2005
 Robert Kern.
 :License: BSD-style license. See LICENSE.tx
 matplotlib.projections
 matplotlib.sphinxext
 matplotlib.style
 matplotlib.testing
 matplotlib.tests
 matplotlib.tri

The subpackage names are pretty self-explanatory. Backends refers to the way that the end
result is output. This output can be in one of several file formats or displayed on the screen
in a graphical user interface.

Basic matplotlib plots
We installed matplotlib and IPython in Chapter 1, Getting Started with Python Libraries. You
can go back to that chapter if you need to refresh your memory. The procedural Matlab-like
matplotlib API is considered by many as simpler to use than the object-oriented API, so we
will demonstrate this procedural API first. To create a very basic plot in matplotlib, we need
to invoke the plot() function in the matplotlib.pyplot subpackage. This function
produces a two-dimensional plot for a single list or multiple lists of points with known x
and y coordinates.

Optionally, we can pass a format parameter, for instance, to specify a dashed line style. The
list of format options and parameters for the plot() function is pretty long, but easy to
look up with the following commands (after you have imported the matplotlib.pyplot
library):

In [1]: help(plot)

In this example, we will plot two lines–one with a solid line style (the default) and the other
with a dashed line style.

Data Visualization

[131]

The following demo code is in the ch-06.ipynb file in this book's code bundle:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 20)

plt.plot(x, .5 + x)
plt.plot(x, 1 + 2 * x, '--')
plt.show()

Please follow these steps to plot the aforementioned lines:

First, we will specify the x coordinates with the NumPy linspace() function.1.
Specify a start value of 0 and an end value of 20:

 x = np.linspace(0, 20)

Plot the lines as follows:2.

 plt.plot(x, .5 + x)
 plt.plot(x, 1 + 2 * x, '--')

At this juncture, we can either save the plot to a file with the savefig() function3.
or show the plot on the screen with the show() function. Show the plot on the
screen as follows:

 plt.show()

Refer to the following plot for the end result:

Data Visualization

[132]

Logarithmic plots
Logarithmic plots (or log plots) are plots that use a logarithmic scale. A logarithmic scale
shows the value of a variable which uses intervals that match orders of magnitude, instead
of a regular linear scale. There are two types of logarithmic plots. The log-log plot employs
logarithmic scaling on both axes and is represented in matplotlib by the
matplotlib.pyplot.loglog() function. The semi-log plots use linear scaling on one axis
and logarithmic scaling on the other axis. These plots are represented in the matplotlib API
by the semilogx() and semilogy() functions. On log-log plots, power laws appear as
straight lines. On semi-log plots, straight lines represent exponential laws.

Moore's law is such a law. It's not a physical, but more of an empirical observation. Gordon
Moore discovered a trend of the number of transistors in integrated circuits doubling every
two years. At http://en.wikipedia.org/wiki/Transistor_count#Microprocessors, you
can see a table with the transistor counts for various microprocessors and the corresponding
year of introduction.

From this table, I have prepared a CSV file, transcount.csv, containing only the
transistor count and year. We still need to average the transistor counts for each year.
Averaging and loading can be done with Pandas. If you need to, refer to Chapter 3,
The Pandas Primer, for tips. Once we have the average transistor count for each year in the
table, we can try to fit a straight line to the log of the counts versus the years. The NumPy
polyfit() function allows us to fit data to a polynomial.

Refer to the ch-06.ipynb file in this book's code bundle for the following code:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

df = pd.read_csv('transcount.csv')
df = df.groupby('year').aggregate(np.mean)
years = df.index.values
counts = df['trans_count'].values
poly = np.polyfit(years, np.log(counts), deg=1)
print("Poly", poly)
plt.semilogy(years, counts, 'o')
plt.semilogy(years, np.exp(np.polyval(poly, years)))
plt.show()

http://en.wikipedia.org/wiki/Transistor_count#Microprocessors

Data Visualization

[133]

The following steps will explain the preceding code:

Fit the data as follows:1.

 poly = np.polyfit(years, np.log(counts), deg=1)
 print("Poly", poly)

The result of the fit is a polynomial object (see2.
http://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.p

olynomial.Polynomial.html#numpy.polynomial.polynomial.Polynomial). The
string representation of this object gives the polynomial coefficients with a
descending order of degrees, so the highest degree coefficient comes first. For our
data, we obtain the following polynomial coefficients:

 Poly [3.61559210e-01 -7.05783195e+02]

The NumPy polyval() function enables us to evaluate the polynomial we just3.
obtained. Plot the data and fit it with the semilogy() function:

 plt.semilogy(years, counts, 'o')
 plt.semilogy(years, np.exp(np.polyval(poly, years)))

The trend line is drawn as a solid line and the data points as filled circles. Refer to the
following plot for the end result:

http://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.polynomial.Polynomial.html#numpy.polynomial.polynomial.Polynomial
http://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.polynomial.Polynomial.html#numpy.polynomial.polynomial.Polynomial

Data Visualization

[134]

Scatter plots
A scatter plot shows the relationship between two variables in a Cartesian coordinate
system. The position of each data point is determined by the values of these two variables.
The scatter plot can provide hints of any correlation between the variables under study. An
upward trending pattern suggests positive correlation. A bubble chart is an extension of
the scatter plot. In a bubble chart, the value of a third variable is represented by the relative
size of the bubble surrounding a data point, hence the name.

At http://en.wikipedia.org/wiki/Transistor_count#GPUs, there is a table with transistor
counts for Graphical Processor Units (GPUs).

GPUs are specialized circuits used to display graphics efficiently. Because of the way
modern display hardware works, GPUs can process data with highly parallel operations.
GPUs are a new development in computing. In the gpu_transcount.csv file in this book's
code bundle, you will notice that we don't have many data points. Dealing with missing
data is a recurring bubble chart issue. We will define a default bubble size for missing
values. Again, we will load and average the data annually. Then, we will merge the
transistor counts for the CPUs and GPUs DataFrame on the year indices with an outer join.
The NaN values will be set to 0 (this works for this example, but sometimes it may not be a
good idea to set NaN values to 0). All the functionality described in the preceding text was
covered in Chapter 3, The Pandas Primer, so please refer to this chapter if you need to. The
matplotlib API provides the scatter() function for scatter plots and bubble charts. We can
view the documentation for this function with the following commands:

$ ipython3
ln [1]: import matplotlib as mpl
In [2]: help(mpl.scatter)

In this example, we will specify the s parameter, which is related to the size of the bubble.
The c parameter specifies colors. Unfortunately, you will not be able to see colors in this
book, so you will have to run the examples yourself to see the different colors. The alpha
parameter determines how transparent the bubbles on the plot will be. This value varies
between 0 (fully transparent) and 1 (opaque). Create a bubble chart as follows:

plt.scatter(years, cnt_log, c= 200 * years, s=20 + 200 *
gpu_counts/gpu_counts.max(), alpha=0.5)

http://en.wikipedia.org/wiki/Transistor_count#GPUs

Data Visualization

[135]

The following code for this example can also be found in the ch-06.ipynb file in this
book's code bundle:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

df = pd.read_csv('transcount.csv')
df = df.groupby('year').aggregate(np.mean)

gpu = pd.read_csv('gpu_transcount.csv')
gpu = gpu.groupby('year').aggregate(np.mean)

df = pd.merge(df, gpu, how='outer', left_index=True, right_index=True)
df = df.replace(np.nan, 0)
print(df)
years = df.index.values
counts = df['trans_count'].values
gpu_counts = df['gpu_trans_count'].values
cnt_log = np.log(counts)
plt.scatter(years, cnt_log, c= 200 * years, s=20 + 200 *
gpu_counts/gpu_counts.max(), alpha=0.5)
plt.show()

Refer to the following plot for the end result:

Data Visualization

[136]

Legends and annotations
Legends and annotations are effective tools to display information required to comprehend
a plot at a glance. A typical plot will have the following additional information elements:

A legend describing the various data series in the plot. This is provided by
invoking the matplotlib legend() function and supplying the labels for each
data series.
Annotations for important points in the plot. The matplotlib annotate()
function can be used for this purpose. A matplotlib annotation consists of a label
and an arrow. This function has many parameters describing both style and
position of the label and arrow, so you may need to call help(annotate) for a
detailed description.
Labels on the horizontal and vertical axes. These labels can be drawn by the
xlabel() and ylabel() functions. We need to give these functions the text of
the labels as a string, as well as optional parameters, such as the font size of the
label.
A descriptive title for the graph with the matplotlib title() function. Typically,
we will only give this function a string representing the title.
It is also good to have a grid in order to localize points easily. The matplotlib
grid() function turns the plot grid on and off.

We will modify the bubble chart code from the previous example and add the straight line
fit from the second example in this chapter. In this setup, add a label to the data series as
follows:

plt.plot(years, np.polyval(poly, years), label='Fit')
plt.scatter(years, cnt_log, c= 200 * years, s=20 + 200 *
gpu_counts/gpu_counts.max(), alpha=0.5, label="Scatter Plot")

Let's annotate the first GPU in our dataset. To do this, get a hold of the relevant point,
define the label of the annotation, specify the style of the arrow (the arrowprops
argument), and make sure that the annotation hovers above the point in question:

gpu_start = gpu.index.values.min()
y_ann = np.log(df.at[gpu_start, 'trans_count'])
ann_str = "First GPU\n %d" % gpu_start
plt.annotate(ann_str, xy=(gpu_start, y_ann),
arrowprops=dict(arrowstyle="->"), xytext=(-30, +70), textcoords='offset
points')

Data Visualization

[137]

The complete code example is in the ch-06.ipynb file in this book's code bundle:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

df = pd.read_csv('transcount.csv')
df = df.groupby('year').aggregate(np.mean)
gpu = pd.read_csv('gpu_transcount.csv')
gpu = gpu.groupby('year').aggregate(np.mean)

df = pd.merge(df, gpu, how='outer', left_index=True, right_index=True)
df = df.replace(np.nan, 0)
years = df.index.values
counts = df['trans_count'].values
gpu_counts = df['gpu_trans_count'].values

poly = np.polyfit(years, np.log(counts), deg=1)
plt.plot(years, np.polyval(poly, years), label='Fit')

gpu_start = gpu.index.values.min()
y_ann = np.log(df.at[gpu_start, 'trans_count'])
ann_str = "First GPU\n %d" % gpu_start
plt.annotate(ann_str, xy=(gpu_start, y_ann),
arrowprops=dict(arrowstyle="->"), xytext=(-30, +70), textcoords='offset
points')

cnt_log = np.log(counts)
plt.scatter(years, cnt_log, c= 200 * years, s=20 + 200 *
gpu_counts/gpu_counts.max(), alpha=0.5, label="Scatter Plot")
plt.legend(loc='upper left')
plt.grid()
plt.xlabel("Year")
plt.ylabel("Log Transistor Counts", fontsize=16)
plt.title("Moore's Law & Transistor Counts")
plt.show()

Data Visualization

[138]

Refer to the following plot for the end result:

Three-dimensional plots
Two-dimensional plots are the bread and butter of data visualization. However, if you want
to show off, nothing beats a good three-dimensional plot. I was once in charge of a software
package that could draw contour plots and three-dimensional plots. The software could
even draw plots that, when viewed with special glasses, would pop right in front of you.

The matplotlib API has the Axes3D class for three-dimensional plots. By demonstrating
how this class works, we will also show how the object-oriented matplotlib API works. The
matplotlib Figure class is a top-level container for chart elements:

Create a figure object as follows:1.

 fig = plt.figure()

Create an Axes3D object from the figure object:2.

 ax = Axes3D(fig)

Data Visualization

[139]

The years and CPU transistor counts will be our X and Y axes. It is necessary for3.
us to create coordinate matrices from the years and CPU transistor counts arrays.
Create the coordinate matrices with the NumPy meshgrid() function:

 X, Y = np.meshgrid(X, Y)

Plot the data with the plot_surface() method of the Axes3D class:4.

 ax.plot_surface(X, Y, Z)

The naming convention of the object-oriented API methods is to start with set_5.
and end with the procedural counterpart function name, as shown in the
following code snippet:

 ax.set_xlabel('Year')
 ax.set_ylabel('Log CPU transistor counts')
 ax.set_zlabel('Log GPU transistor counts')
 ax.set_title("Moore's Law & Transistor Counts")

You can also have a look at the following code in the ch-06.ipynb file in this book's code
bundle:

from mpl_toolkits.mplot3d.axes3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

df = pd.read_csv('transcount.csv')
df = df.groupby('year').aggregate(np.mean)
gpu = pd.read_csv('gpu_transcount.csv')
gpu = gpu.groupby('year').aggregate(np.mean)

df = pd.merge(df, gpu, how='outer', left_index=True, right_index=True)
df = df.replace(np.nan, 0)

fig = plt.figure()
ax = Axes3D(fig)
X = df.index.values
Y =
np.where(df['trans_count'].values>0,np.ma.log(df['trans_count'].values), 0)
X, Y = np.meshgrid(X, Y)
Z =
np.where(df['gpu_trans_count'].values>0,np.ma.log(df['gpu_trans_count'].val
ues), 0)
ax.plot_surface(X, Y, Z)
ax.set_xlabel('Year')

Data Visualization

[140]

ax.set_ylabel('Log CPU transistor counts')
ax.set_zlabel('Log GPU transistor counts')
ax.set_title("Moore's Law & Transistor Counts")
plt.show()

Refer to the following plot for the end result:

Data Visualization

[141]

Plotting in Pandas
The plot() method in the Pandas Series and DataFrame classes wraps around the
related matplotlib functions. In its most basic form, without any arguments, the plot()
method displays the following plot for the dataset we have been using throughout this
chapter:

To create a semi-log plot, add the logy parameter:

df.plot(logy=True)

Data Visualization

[142]

This results in the following plot for our data:

To create a scatter plot, specify the kind parameter to be scatter. We also need to specify
two columns. Set the loglog parameter to True to produce a log-log graph (we need at
least Pandas v0.13.0 for this code):

df[df['gpu_trans_count'] > 0].plot(kind='scatter', x='trans_count',
y='gpu_trans_count', loglog=True)

Refer to the following plot for the end result:

Data Visualization

[143]

The following program is in the ch-06.ipynb file in this book's code bundle:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

df = pd.read_csv('transcount.csv')
df = df.groupby('year').aggregate(np.mean)

gpu = pd.read_csv('gpu_transcount.csv')
gpu = gpu.groupby('year').aggregate(np.mean)

df = pd.merge(df, gpu, how='outer', left_index=True, right_index=True)
df = df.replace(np.nan, 0)
df.plot()
df.plot(logy=True)
df[df['gpu_trans_count'] > 0].plot(kind='scatter', x='trans_count',
y='gpu_trans_count', loglog=True)
plt.show()

Lag plots
A lag plot is a scatter plot for a time series and the same data lagged. With such a plot, we
can check whether there is a possible correlation between CPU transistor counts this year
and the counts of the previous year, for instance. The lag_plot() Pandas function in
pandas.tools.plotting can draw a lag plot. Draw a lag plot with the default lag of 1 for
the CPU transistor counts, as follows:

lag_plot(np.log(df['trans_count']))

Data Visualization

[144]

Refer to the following plot for the end result:

The following code for the lag plot example can also be found in the ch-06.ipynb file in
this book's code bundle:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from pandas.tools.plotting import lag_plot

df = pd.read_csv('transcount.csv')
df = df.groupby('year').aggregate(np.mean)

gpu = pd.read_csv('gpu_transcount.csv')
gpu = gpu.groupby('year').aggregate(np.mean)

df = pd.merge(df, gpu, how='outer', left_index=True, right_index=True)
df = df.replace(np.nan, 0)
lag_plot(np.log(df['trans_count']))
plt.show()

Data Visualization

[145]

Autocorrelation plots
Autocorrelation plots graph autocorrelations of time series data for different time lags. In
layman's terms, autocorrelation is the correlation of the values at time n and the values at
time n+l, where l is the time lag. Generally, these plots are used for checking whether the
time series has randomness in its progression. Autocorrelations are near zero for all time-
lag separations in the case of a random time series, and have a non-zero value of
significance at some or all time-lag separations for a non-random time series. We explain
autocorrelation further in Chapter 7, Signal Processing and Time Series.

The autocorrelation_plot() Pandas function in pandas.tools.plotting can draw
an autocorrelation plot. The following is the code from the ch-06.ipynb file in this book's
code bundle:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from pandas.tools.plotting import autocorrelation_plot

df = pd.read_csv('transcount.csv')
df = df.groupby('year').aggregate(np.mean)

gpu = pd.read_csv('gpu_transcount.csv')
gpu = gpu.groupby('year').aggregate(np.mean)

df = pd.merge(df, gpu, how='outer', left_index=True, right_index=True)
df = df.replace(np.nan, 0)
autocorrelation_plot(np.log(df['trans_count']))
plt.show()

Draw an autocorrelation plot for the CPU transistor counts as follows:

autocorrelation_plot(np.log(df['trans_count']))

Data Visualization

[146]

Refer to the following plot for the end result. As we can see in the following plot, more
recent values (smaller lags) are more strongly correlated with the current value than older
values (larger lags), and with extremely large lags, the correlation decays to 0:

Plot.ly
Plot.ly is Software as a Service (SaaS) cloud service for online data visualization tools.
Plot.ly provides a related Python library to be used with python on a user's machine. We
can import and analyze data via the web interface or work entirely in a local environment
and publish the end result on the Plot.ly website. Plots can be easily shared on the website
within a team, allowing for collaboration, which is really the point of the website in the first
place. In this section, we will give an example of how to plot a box plot with the Python
API.

Data Visualization

[147]

A box plot is a special way of visualizing a dataset using quartiles. If we split a sorted
dataset into four equal parts, the first quartile will be the largest value of the part with the
smallest numbers. The second quartile will be the value in the middle of the dataset, which
is also called the median. The third quartile will be the value in the middle between the
median and the highest value. The bottom and the top of the box plot are formed by the
first and third quartiles. The line through the box is the median. The whiskers on both ends
of the box are usually the minimum and maximum of the dataset. At the end of this section,
we will see an annotated box plot, which will clarify matters. Install the Plot.ly API with the
following commands:

$ sudo pip3 install plotly

After installing the API, sign up to get an API key. The following code snippet signs you in
after supplying a valid key:

Change the user and api_key to your own username and api_key
py.sign_in('username', 'api_key')

Create the box plots with the Plot.ly API as follows:

data = Data([Box(y=counts), Box(y=gpu_counts)])
plot_url = py.plot(data, filename='moore-law-scatter')

Please refer to the following code from the ch-06.ipynb file in this book's code bundle:

import plotly.plotly as py
from plotly.graph_objs import *
import numpy as np
import pandas as pd

df = pd.read_csv('transcount.csv')
df = df.groupby('year').aggregate(np.mean)

gpu = pd.read_csv('gpu_transcount.csv')
gpu = gpu.groupby('year').aggregate(np.mean)
df = pd.merge(df, gpu, how='outer', left_index=True, right_index=True)
df = df.replace(np.nan, 0)

Change the user and api_key to your own username and api_key
py.sign_in('username', 'api_key')

counts = np.log(df['trans_count'].values)
gpu_counts = np.log(df['gpu_trans_count'].values)

data = Data([Box(y=counts), Box(y=gpu_counts)])
plot_url = py.plot(data, filename='moore-law-scatter')
print(plot_url)

Data Visualization

[148]

Refer to the following plot for the end result:

Summary
In this chapter, we discussed visualizing data with Python using plotting. To do this, we
used matplotlib and Pandas. We covered box plots, scatter plots, bubble charts, logarithmic
plots, autocorrelation plots, lag plots, three-dimensional plots, legends, and annotations.

Logarithmic plots (or log plots) are plots that use a logarithmic scale. The semi-log plots use
linear scaling on one axis and logarithmic scaling on the other axis. Scatter plots plot two
variables against each other. A bubble chart is a special type of scatter plot. In a bubble
chart, the value of a third variable is relatively represented by the size of the bubble
surrounding a data point. Autocorrelation plots graph autocorrelations of time series data
for different lags.

Data Visualization

[149]

We learnt about plot.ly, an online cloud based service for data visualization and built a box
plot using this service. A box plot visualizes data based on the data's quartiles.

The next chapter, Chapter 7, Signal Processing and Time Series is about a special type of data–
the time series. A time series consists of ordered data points that have been time stamped. A
lot of the physical world data that we measure is in the form of a time series, and can be
considered as a signal, such as a sound, light, or electrical signal. You will learn how to filter
signals and model time series in the next chapter.

7
Signal Processing and Time

Series
Signal processing is a field of engineering and applied mathematics that encompasses
analyzing the variables that vary over time, such data is also known as analog and digital
signals. One of the categories of signal processing techniques is time series analysis. A time
series is an ordered list of data points starting with the oldest measurements first. The data
points are usually equidistant, for instance, hourly, daily, weekly, monthly, or annual
sampling. In time series analysis, the order of the values is important. It's common to try to
derive a relation between a value and another data point or combination of data points, a
fixed number of periods in the past, in the same time series.

The time series examples in this chapter use annual sunspot cycles data. This data is
provided by the statsmodels package (an open source Python project). The examples use
NumPy/SciPy, Pandas, and also statsmodels.

We will cover the following topics in this chapter:

The statsmodels modules
Moving averages
Window functions
Defining cointegration
Autocorrelation
Autoregressive models
ARMA models

Signal Processing and Time Series

[151]

Generating periodic signals
Fourier analysis
Spectral analysis
Filtering

The statsmodels modules
To install statsmodels, execute the following command:

$ pip3 install statsmodels

In the attached ch-07.ipynb file, we list the statsmodels modules to get the following
result:

statmodels version 0.6.1
statsmodels.base
statsmodels.compat
statsmodels.datasets
statsmodels.discrete
statsmodels.distributions
statsmodels.duration
statsmodels.emplike
statsmodels.formula
statsmodels.genmod
statsmodels.graphics
statsmodels.interface
statsmodels.iolib
statsmodels.miscmodels
statsmodels.nonparametric
DESCRIPTION For an overview of this module, see
docs/source/nonparametric.rst PACKAGE CONTENTS _kernel_base
_smoothers_lowess api bandwidths statsmodels.regression
statsmodels.resampling
statsmodels.robust
statsmodels.sandbox
statsmodels.stats
statsmodels.tests
statsmodels.tools
statsmodels.tsa

Signal Processing and Time Series

[152]

Moving averages
Moving averages are frequently used to analyze time series. A moving average specifies a
window of data that is previously seen, which is averaged each time the window slides
forward by one period:

The different types of moving averages differ essentially in the weights used for averaging.
The exponential moving average, for instance, has exponentially decreasing weights with
time:

This means that older values have less influence than newer values, which is sometimes
desirable.

The following code from the ch-07.ipynb file in this book's code bundle plots the simple
moving average for the 11 and 22 year sunspots cycles:

import matplotlib.pyplot as plt
import statsmodels.api as sm
from pandas.stats.moments import rolling_mean

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data
year_range = df["YEAR"].values
plt.plot(year_range, df["SUNACTIVITY"].values, label="Original")
plt.plot(year_range, df.rolling(window=11).mean()["SUNACTIVITY"].values,
label="SMA 11")
plt.plot(year_range, df.rolling(window=22).mean()["SUNACTIVITY"].values,
label="SMA 22")
plt.legend()
plt.show()

Signal Processing and Time Series

[153]

We can express an exponential decreasing weight strategy for the exponential moving
average, as shown in the following NumPy code:

weights = np.exp(np.linspace(-1., 0., N))
weights /= weights.sum()

A simple moving average uses equal weights, which in code looks as follows:

def sma(arr, n):
 weights = np.ones(n) / n

 return np.convolve(weights, arr)[n-1:-n+1]

Since we can load the data into a Pandas DataFrame, it is more convenient to use the
Pandas DataFrame.rolling().mean() function. Load the data as follows using
statsmodels:

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data

Refer to the following plot for the end result:

Signal Processing and Time Series

[154]

Window functions
NumPy has a number of window routines that can compute weights in a rolling window as
we did in the previous section.

A window function is a function that is defined within an interval (the window) or is
otherwise zero valued. We can use window functions for spectral analysis and filter design
(for more background information, refer to
http://en.wikipedia.org/wiki/Window_function). The boxcar window is a rectangular
window with the following formula:

w(n) = 1

The triangular window is shaped like a triangle and has the following formula:

In the preceding formula, L can be equal to N, N+1, or N-1. In the last case, the window
function is called the Bartlett window. The Blackman window is bell-shaped and defined
as follows:

The Hanning window is also bell shaped and defined as follows:

http://en.wikipedia.org/%20wiki/Window_function

Signal Processing and Time Series

[155]

In the Pandas API, the DataFrame.rolling() function provides the same functionality
with different values of the win_type string parameter corresponding to different window
functions. The other parameter is the size of the window, which will be set to 22 for the
middle cycle of the sunspots data (according to research, there are three cycles of 11, 22, and
100 years). The code is straightforward and given in the ch-07.ipynb file in this book's
code bundle (the data here is limited to the last 150 years only for easier comparison in the
plots):

import matplotlib.pyplot as plt
import statsmodels.api as sm
from pandas.stats.moments import rolling_window
import pandas as pd

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data.tail(150)
df = pd.DataFrame({'SUNACTIVITY':df['SUNACTIVITY'].values},
index=df['YEAR'])
ax = df.plot()

def plot_window(wintype):
 df2 = df.rolling(window=22,win_type=wintype,
center=False,axis=0).mean()
 df2.columns = [wintype]
 df2.plot(ax=ax)

plot_window('boxcar')
plot_window('triang')
plot_window('blackman')
plot_window('hanning')
plot_window('bartlett')
plt.show()

Signal Processing and Time Series

[156]

Refer to the following plot for the end result:

Defining cointegration
Cointegration is similar to correlation but is viewed by many as a superior metric to define
the relatedness of two time series. Two time series x(t) and y(t) are cointegrated if a
linear combination of them is stationary. In such a case, the following equation should be
stationary:

y(t) - a x(t)

Consider a drunk man and his dog out on a walk. Correlation tells us whether they are
going in the same direction. Cointegration tells us something about the distance over time
between the man and his dog. We will show cointegration using randomly generated time
series and real data. The Augmented Dickey-Fuller (ADF) test (see
http://en.wikipedia.org/wiki/Augmented_Dickey%E2%80%93Fuller_test) tests for a unit
root in a time series and can be used to determine the cointegration of time series.

http://en.wikipedia.org/wiki/Augmented_Dickey%E2%80%93Fuller_test

Signal Processing and Time Series

[157]

For the following code, have a look at the ch-07.ipynb file in this book's code bundle:

import statsmodels.api as sm
from pandas.stats.moments import rolling_window
import pandas as pd
import statsmodels.tsa.stattools as ts
import numpy as np

def calc_adf(x, y):
 result = sm.OLS(x, y).fit()
 return ts.adfuller(result.resid)

data_loader = sm.datasets.sunspots.load_pandas()
data = data_loader.data.values
N = len(data)

t = np.linspace(-2 * np.pi, 2 * np.pi, N)
sine = np.sin(np.sin(t))
print("Self ADF", calc_adf(sine, sine))

noise = np.random.normal(0, .01, N)
print("ADF sine with noise", calc_adf(sine, sine + noise))

cosine = 100 * np.cos(t) + 10
print("ADF sine vs cosine with noise", calc_adf(sine, cosine + noise))

print("Sine vs sunspots", calc_adf(sine, data))

Let's get started with the cointegration demo:

Define the following function to calculate the ADF statistic:1.

 def calc_adf(x, y):
 result = sm.OLS(x, y).fit()
 return ts.adfuller(result.resid)

Load the sunspots data into a NumPy array:2.

 data_loader = sm.datasets.sunspots.load_pandas()
 data = data_loader.data.values
 N = len(data)

Generate a sine and calculate the cointegration of the sine with itself:3.

 t = np.linspace(-2 * np.pi, 2 * np.pi, N)
 sine = np.sin(np.sin(t))
 print("Self ADF", calc_adf(sine, sine))

Signal Processing and Time Series

[158]

The code should print the following:4.

 Self ADF (-5.0383000037165746e-16, 0.95853208606005591, 0, 308,
 {'5%': -2.8709700936076912, '1%': -3.4517611601803702, '10%':
 -2.5717944160060719}, -21533.113655477719)

The first value in the printout is the ADF metric and the second value is the
p-value. As you can see, the p-value is very high. The following values are
the lag and sample size. The dictionary at the end gives the t-distribution
values for this exact sample size.

Now, add noise to the sine to demonstrate how noise will influence the signal:5.

 noise = np.random.normal(0, .01, N)
 print("ADF sine with noise", calc_adf(sine, sine + noise))

With the noise, we get the following results:6.

 ADF sine with noise (-7.4535502402193075, 5.5885761455106898e-
 11, 3, 305, {'5%': -2.8710633193086648, '1%':
 -3.4519735736206991, '10%': -2.5718441306100512},
 -1855.0243977703672)

The p-value has gone down considerably. The ADF metric -7.45 here is
lower than all the critical values in the dictionary. All these are strong
arguments to reject cointegration.

Let's generate a cosine of a larger magnitude and offset. Again, let's add noise to7.
it:

 cosine = 100 * np.cos(t) + 10
 print("ADF sine vs cosine with noise", calc_adf(sine, cosine +
 noise))

The following values get printed:

ADF sine vs cosine with noise (-17.927224617871534, 2.8918612252729532e-30,
16, 292, {'5%': -2.8714895534256861, '1%': -3.4529449243622383, '10%':
-2.5720714378870331}, -11017.837238220782)

Similarly, we have strong arguments to reject cointegration. Checking for cointegration
between the sine and sunspots gives the following output:

Sine vs sunspots (-6.7242691810701016, 3.4210811915549028e-09, 16, 292,
{'5%': -2.8714895534256861, '1%': -3.4529449243622383, '10%':
-2.5720714378870331}, -1102.5867415291168)

Signal Processing and Time Series

[159]

The confidence levels are roughly the same for the pairs used here because they are
dependent on the number of data points, which don't vary much. The outcome is
summarized in the following table:

Pair Statistic p-value 5% 1% 10% Reject

Sine with self -5.03E-16 0.95 -2.87 -3.45 -2.57 No

Sine versus sine with noise -7.45 5.58E-11 -2.87 -3.45 -2.57 Yes

Sine versus cosine with noise -17.92 2.89E-30 -2.87 -3.45 -2.57 Yes

Sine versus sunspots -6.72 3.42E-09 -2.87 -3.45 -2.57 Yes

Autocorrelation
Autocorrelation is correlation within a dataset and can indicate a trend.

For a given time series, with known mean and standard deviations, we can define the
autocorrelation for times s and t using the expected value operator as follows:

This is, in essence, the formula for correlation applied to a time series and the same time
series lagged.

For example, if we have a lag of one period, we can check if the previous value influences
the current value. For that to be true, the autocorrelation value has to be pretty high.

In the previous chapter, Chapter 6, Data Visualization, we already used a Pandas function
that plots autocorrelation. In this example, we will use the NumPy correlate() function
to calculate the actual autocorrelation values for the sunspots cycle. At the end, we need to
normalize the values we receive. Apply the NumPy correlate() function as follows:

y = data - np.mean(data)
norm = np.sum(y ** 2)
correlated = np.correlate(y, y, mode='full')/norm

Signal Processing and Time Series

[160]

We are also interested in the indices corresponding to the highest correlations. These indices
can be found with the NumPy argsort() function, which returns the indices that would
sort an array:

print np.argsort(res)[-5:]

These are the indices found for the largest autocorrelations:

[9 11 10 1 0]

The largest autocorrelation is by definition for zero lag, that is, the correlation of a signal
with itself. The next largest values are for a lag of 1 and 10 years. Check the ch-07.ipynb
file in this book's code bundle:

import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
from pandas.tools.plotting import autocorrelation_plot

data_loader = sm.datasets.sunspots.load_pandas()
data = data_loader.data["SUNACTIVITY"].values
y = data - np.mean(data)
norm = np.sum(y ** 2)
correlated = np.correlate(y, y, mode='full')/norm
res = correlated[len(correlated)/2:]

print(np.argsort(res)[-5:])
plt.plot(res)
plt.grid(True)
plt.xlabel("Lag")
plt.ylabel("Autocorrelation")
plt.show()
autocorrelation_plot(data)
plt.show()

Signal Processing and Time Series

[161]

Refer to the following plot for the end result:

Compare the previous plot with the plot produced by Pandas:

Signal Processing and Time Series

[162]

Autoregressive models
An autoregressive model can be used to represent a time series with the goal of forecasting
future values. In such a model, a variable is assumed to depend on its previous values. The
relation is also assumed to be linear and we are required to fit the data in order to find the
parameters of the data. The mathematical formula for the autoregressive model is as
follows:

In the preceding formula, c is a constant and the last term is a random component also
known as white noise.

This presents us with the very common problem of linear regression. For practical reasons,
it's important to keep the model simple and only involve necessary lagged components. In
machine learning jargon, these are called features. For regression problems, the Python
machine learning scikit-learn library is a good, if not the best, choice. We will work with this
API in Chapter 10, Predictive Analytics and Machine Learning.

In regression setups, we frequently encounter the problem of overfitting-this issue arises
when we have a perfect fit for a sample, which performs poorly when we introduce new
data points. The standard solution is to apply cross-validation (or use algorithms that avoid
overfitting). In this method, we estimate model parameters on a part of the sample. The rest
of the data is used to test and evaluate the model. This is actually a simplified explanation.
There are more complex cross-validation schemes, a lot of which are supported by scikit-
learn. To evaluate the model, we can compute appropriate evaluation metrics. As you can
imagine, there are many metrics, and these metrics can have varying definitions due to
constant tweaking by practitioners. We can look up these definitions in books or on
Wikipedia. The important thing to remember is that the evaluation of a forecast or fit is not
an exact science. The fact that there are so many metrics only confirms that.

Signal Processing and Time Series

[163]

We will set up the model with the scipy.optimize.leastsq() function using the first
two lagged components we found in the previous section. We could have chosen a linear
algebra function instead. However, the leastsq() function is more flexible and lets us
specify practically any type of model. Set up the model as follows:

def model(p, x1, x10):
 p1, p10 = p
 return p1 * x1 + p10 * x10

def error(p, data, x1, x10):
 return data - model(p, x1, x10)

To fit the model, initialize the parameter list and pass it to the leastsq() function as
follows:

def fit(data):
 p0 = [.5, 0.5]
 params = leastsq(error, p0, args=(data[10:], data[9:-1], data[:-10]))[0]
 return params

Train the model on a part of the data:

cutoff = .9 * len(sunspots)
params = fit(sunspots[:cutoff])
print "Params", params

The following are the parameters we get:

Params [0.67172672 0.33626295]

With these parameters, we will plot predicted values and compute various metrics. The
following are the values we obtain for the metrics:

Root mean square error 22.8148122613
Mean absolute error 17.6515446503
Mean absolute percentage error 60.7817800736
Symmetric Mean absolute percentage error 34.9843386176
Coefficient of determination 0.799940292779

Signal Processing and Time Series

[164]

Refer to the following graph for the end result:

It seems that we have many predictions that are almost spot on, but also a bunch of
predictions that are pretty far off. Overall, we don't have a perfect fit; however, it's not a
complete disaster. It's somewhere in the middle.

The following code is in the ch-07.ipynb file in this book's code bundle:

from scipy.optimize import leastsq
import statsmodels.api as sm
import matplotlib.pyplot as plt
import numpy as np

def model(p, x1, x10):
 p1, p10 = p
 return p1 * x1 + p10 * x10

def error(p, data, x1, x10):
 return data - model(p, x1, x10)

def fit(data):
 p0 = [.5, 0.5]
 params = leastsq(error, p0, args=(data[10:], data[9:-1], data[:-10]))[0]
 return params

data_loader = sm.datasets.sunspots.load_pandas()
sunspots = data_loader.data["SUNACTIVITY"].values

Signal Processing and Time Series

[165]

cutoff = .9 * len(sunspots)
params = fit(sunspots[:cutoff])
print("Params", params)

pred = params[0] * sunspots[cutoff-1:-1] + params[1] *
sunspots[cutoff-10:-10]
actual = sunspots[cutoff:]
print("Root mean square error", np.sqrt(np.mean((actual - pred) ** 2)))
print("Mean absolute error", np.mean(np.abs(actual - pred)))
print("Mean absolute percentage error", 100 * np.mean(np.abs(actual -
pred)/actual))
mid = (actual + pred)/2
print("Symmetric Mean absolute percentage error", 100 *
np.mean(np.abs(actual - pred)/mid))
print("Coefficient of determination", 1 - ((actual - pred) ** 2).sum()/
((actual - actual.mean()) ** 2).sum())
year_range = data_loader.data["YEAR"].values[cutoff:]
plt.plot(year_range, actual, 'o', label="Sunspots")
plt.plot(year_range, pred, 'x', label="Prediction")
plt.grid(True)
plt.xlabel("YEAR")
plt.ylabel("SUNACTIVITY")
plt.legend()
plt.show()

ARMA models
ARMA models are often used to forecast a time series. These models combine
autoregressive and moving average models (see h t t p ://e n . w i k i p e d i a . o r g /w i k i /A u t o r e g

r e s s i v e %E 2%80%93m o v i n g - a v e r a g e _ m o d e l). In moving average models, we assume that a
variable is the sum of the mean of the time series and a linear combination of noise
components.

The autoregressive and moving average models can have different orders.
In general, we can define an ARMA model with p autoregressive terms
and q moving average terms as follows:

http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model

Signal Processing and Time Series

[166]

In the preceding formula, just like in the autoregressive model formula, we have a constant
and a white noise component; however, we try to fit the lagged noise components as well.

Fortunately, it's possible to use the statsmodelssm.tsa.ARMA() routine for this analysis.
Fit the data to an ARMA(10,1) model as follows:

model = sm.tsa.ARMA(df, (10,1)).fit()

Perform a forecast (statsmodels uses strings a lot):

prediction = model.predict('1975', str(years[-1]), dynamic=True)

Refer to the following plot for the end result:

The fit is poor because frankly, we overfit the data. The simpler model in the previous
section worked much better. The example code can be found in the ch-07.ipynb file in this
book's code bundle:

import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import datetime

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data
years = df["YEAR"].values.astype(int)

Signal Processing and Time Series

[167]

df.index = pd.Index(sm.tsa.datetools.dates_from_range(str(years[0]),
str(years[-1])))
del df["YEAR"]

model = sm.tsa.ARMA(df, (10,1)).fit()
prediction = model.predict('1975', str(years[-1]), dynamic=True)

df['1975':].plot()
prediction.plot(style='--', label='Prediction')
plt.legend()
plt.show()

Generating periodic signals
Many natural phenomena are regular and trustworthy like an accurate clock. Some
phenomena exhibit patterns that seem regular. A group of scientists found three cycles in
the sunspot activity with the Hilbert-Huang transform (see h t t p ://e n . w i k i p e d i a . o r g /w i

k i /H i l b e r t %E 2%80%93H u a n g _ t r a n s f o r m). The cycles have a duration of 11, 22, and 100
years approximately. Normally, we would simulate a periodic signal using trigonometric
functions such as a sine function. You probably remember a bit of trigonometry from high
school. That's all we need for this example. Since we have three cycles, it seems reasonable
to create a model, which is a linear combination of three sine functions. This just requires a
tiny adjustment of the code for the autoregressive model. Refer to the periodic.py file in
this book's code bundle for the following code:

from scipy.optimize import leastsq
import statsmodels.api as sm
import matplotlib.pyplot as plt
import numpy as np
def model(p, t):
 C, p1, f1, phi1 , p2, f2, phi2, p3, f3, phi3 = p
 return C + p1 * np.sin(f1 * t + phi1) + p2 * np.sin(f2 * t + phi2) +p3 *
np.sin(f3 * t + phi3)

def error(p, y, t):
 return y - model(p, t)

def fit(y, t):
 p0 = [y.mean(), 0, 2 * np.pi/11, 0, 0, 2 * np.pi/22, 0, 0, 2 *
np.pi/100, 0]
 params = leastsq(error, p0, args=(y, t))[0]
 return params

http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform

Signal Processing and Time Series

[168]

data_loader = sm.datasets.sunspots.load_pandas()
sunspots = data_loader.data["SUNACTIVITY"].values
years = data_loader.data["YEAR"].values

cutoff = .9 * len(sunspots)
params = fit(sunspots[:cutoff], years[:cutoff])
print("Params", params)

pred = model(params, years[cutoff:])
actual = sunspots[cutoff:]
print("Root mean square error", np.sqrt(np.mean((actual - pred) ** 2)))
print("Mean absolute error", np.mean(np.abs(actual - pred)))
print("Mean absolute percentage error", 100 * np.mean(np.abs(actual -
pred)/actual))
mid = (actual + pred)/2
print("Symmetric Mean absolute percentage error", 100 *
np.mean(np.abs(actual - pred)/mid))
print("Coefficient of determination", 1 - ((actual - pred) ** 2).sum()/
((actual - actual.mean()) ** 2).sum())
year_range = data_loader.data["YEAR"].values[cutoff:]
plt.plot(year_range, actual, 'o', label="Sunspots")
plt.plot(year_range, pred, 'x', label="Prediction")
plt.grid(True)
plt.xlabel("YEAR")
plt.ylabel("SUNACTIVITY")
plt.legend()
plt.show()

We get the following output:

Params [47.18800285 28.89947419 0.56827284 6.51168446 4.55214999
0.29372077 -14.30926648 -18.16524041 0.06574835 -4.37789602]
Root mean square error 59.5619175499
Mean absolute error 44.5814573306
Mean absolute percentage error 65.1639657495
Symmetric Mean absolute percentage error 78.4477263927
Coefficient of determination -0.363525210982

Signal Processing and Time Series

[169]

The first line displays the coefficients of the model we attempted. We have a mean absolute
error of 44, which means that we are off by that amount in either direction on average. We
also want the coefficient of determination to be as close to 1 as possible to have a good fit.
Instead, we get a negative value, which is undesirable. Refer to the following graph for the
end result:

Fourier analysis
Fourier analysis is based on the Fourier series named after the mathematician Joseph
Fourier. The Fourier series is a mathematical method used to represent functions as an
infinite series of sine and cosine terms. The functions in question can be real or complex
valued:

Signal Processing and Time Series

[170]

The most efficient algorithm for Fourier analysis is the Fast Fourier Transform (FFT). This
algorithm is implemented in SciPy and NumPy. When applied to the time series data, the
Fourier analysis transforms maps onto the frequency domain, producing a frequency
spectrum. The frequency spectrum displays harmonics as distinct spikes at certain
frequencies. Music, for example, is composed from different frequencies with the note A at
440 Hz. The note A can be produced by a pitch fork. We can produce this and other notes
with musical instruments such as a piano. White noise is a signal consisting of many
frequencies, which are represented equally. White light is a mix of all the visible frequencies
of light, also represented equally.

In the following example, we will import two functions (refer to ch-07.ipynb):

from scipy.fftpack import rfft
from scipy.fftpack import fftshift

The rfft() function performs FFT on real-valued data. We could also have used the fft()
function, but it gives a warning on this particular dataset. The fftshift() function shifts
the zero-frequency component (the mean of the data) to the middle of the spectrum, for
better visualization. We will also have a look at a sine wave because that is easy to
understand. Create a sine wave and apply the FFT to it:

t = np.linspace(-2 * np.pi, 2 * np.pi, len(sunspots))
mid = np.ptp(sunspots)/2
sine = mid + mid * np.sin(np.sin(t))

sine_fft = np.abs(fftshift(rfft(sine)))
print "Index of max sine FFT", np.argsort(sine_fft)[-5:]

The following is the output that shows the indices corresponding to maximum amplitudes:

Index of max sine FFT [160 157 166 158 154]

Perform FFT on the sunspots data:

transformed = np.abs(fftshift(rfft(sunspots)))
print "Indices of max sunspots FFT", np.argsort(transformed)[-5:]

The five largest peaks in the spectrum can be found at the following indices:

Indices of max sunspots FFT [205 212 215 209 154]

Signal Processing and Time Series

[171]

The largest peak is situated at 154 too. Refer to the following plot for the end result:

The complete code is located in the ch-07.ipynb file in this book's code bundle:

import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
from scipy.fftpack import rfft
from scipy.fftpack import fftshift

Signal Processing and Time Series

[172]

data_loader = sm.datasets.sunspots.load_pandas()
sunspots = data_loader.data["SUNACTIVITY"].values

t = np.linspace(-2 * np.pi, 2 * np.pi, len(sunspots))
mid = np.ptp(sunspots)/2
sine = mid + mid * np.sin(np.sin(t))

sine_fft = np.abs(fftshift(rfft(sine)))
print("Index of max sine FFT", np.argsort(sine_fft)[-5:])

transformed = np.abs(fftshift(rfft(sunspots)))
print("Indices of max sunspots FFT", np.argsort(transformed)[-5:])

plt.subplot(311)
plt.plot(sunspots, label="Sunspots")
plt.plot(sine, lw=2, label="Sine")
plt.grid(True)
plt.legend()
plt.subplot(312)
plt.plot(transformed, label="Transformed Sunspots")
plt.grid(True)
plt.legend()
plt.subplot(313)
plt.plot(sine_fft, lw=2, label="Transformed Sine")
plt.grid(True)
plt.legend()
plt.show()

Spectral analysis
In the previous section, we charted the amplitude spectrum of the dataset. The power
spectrum of a physical signal visualizes the energy distribution of the signal. We can
modify the code easily to plot the power spectrum, just by squaring the values as follows:

plt.plot(transformed ** 2, label="Power Spectrum")

Signal Processing and Time Series

[173]

The phase spectrum visualizes the phase (the initial angle of a sine function) and can be
plotted as follows:

plt.plot(np.angle(transformed), label="Phase Spectrum")

Refer to the following graph for the end result:

Please refer to the ch-07.ipynb file in this book's code bundle for the complete code.

Signal Processing and Time Series

[174]

Filtering
Filtering is a type of signal processing, which involves removing or suppressing a part of
the signal. After applying FFT, we can filter high or low frequencies, or we can try to
remove the white noise. White noise is a random signal with a constant power spectrum
and as such doesn't contain any useful information. The scipy.signal package has a
number of utilities for filtering. In this example, we will demonstrate a small sample of
these routines:

The median filter calculates the median in a rolling window (see
http://en.wikipedia.org/wiki/Median_filter). It's implemented by the
medfilt() function, which has an optional window size parameter.
The Wiener filter removes noise using statistics (see
http://en.wikipedia.org/wiki/Wiener_filter). For a filter g(t) and signal
s(t), the output is calculated with the convolution (g * [s + n])(t). It's
implemented by the wiener() function. This function also has an optional
window size parameter.
The detrend filter removes a trend. This can be a linear or constant trend. It's
implemented by the detrend() function.

Please refer to the ch-07.ipynb file in this book's code bundle for the following code:

import statsmodels.api as sm
import matplotlib.pyplot as plt
from scipy.signal import medfilt
from scipy.signal import wiener
from scipy.signal import detrend

data_loader = sm.datasets.sunspots.load_pandas()
sunspots = data_loader.data["SUNACTIVITY"].values
years = data_loader.data["YEAR"].values

plt.plot(years, sunspots, label="SUNACTIVITY")
plt.plot(years, medfilt(sunspots, 11), lw=2, label="Median")
plt.plot(years, wiener(sunspots, 11), '--', lw=2, label="Wiener")
plt.plot(years, detrend(sunspots), lw=3, label="Detrend")
plt.xlabel("YEAR")
plt.grid(True)
plt.legend()
plt.show()

http://en.wikipedia.org/wiki/Median_filter
http://en.wikipedia.org/wiki/Wiener_filter

Signal Processing and Time Series

[175]

Refer to the following graph for the end result:

Summary
In this chapter, the time series examples used annual sunspot cycles data.

You learned that it's common to try to derive a relationship between a value and another
data point or combination of data points a fixed number of periods in the past, in the same
time series.

A moving average specifies a window of previously seen data, which is averaged each time
the window slides forward by one period. In the Pandas API, the DataFrame.rolling()
function provides the window functions functionality with different values of the
win_type string parameter corresponding to different window functions.

Cointegration is similar to correlation and is a metric to define the relatedness of two time
series. In regression setups, we frequently encounter the problem of overfitting. This issue
arises when we have a perfect fit for a sample, which performs poorly when we introduce
new data points. To evaluate a model, we can compute appropriate evaluation metrics.

Databases are an important tool for data analysis. Relational databases have been around
since the 1970s. Recently, NoSQL databases have become a viable alternative. The next
chapter, Chapter 8, Working with Databases, contains information about the various
databases (relational and NoSQL) and related APIs.

8
Working with Databases

This chapter introduces various databases (relational and NoSQL) and related APIs. A
relational database is a database that has a collection of tables containing data organized by
the relations between data items. A relationship can be set up between each row in the table
and a row in another table. Relationships may also be between columns inside a table
(obviously columns within a table have to be related, for instance, a name column and an
address column in a customer table) as well as connections between columns in other
tables.

Not Only SQL (NoSQL) databases are frequently used in big data and web applications.
NoSQL systems may permit SQL-like query languages to be employed. NoSQL databases
allow data to be stored in a more flexible manner than the relational model permits. This
may mean not having a database schema or a flexible database schema. Of course, the
flexibility and speed may come at a price, such as limited support for consistent
transactions. NoSQL databases can store data using a dictionary style or a column-oriented
style, or as documents, objects, graphs, tuples, or a combination thereof. The topics of this
chapter are listed as follows:

Lightweight access with sqlite3
Accessing databases from Pandas
SQLAlchemy
Pony ORM
Dataset-databases for lazy people
PyMongo and MongoDB
Storing data in Redis
Storing data in memcached
Apache Cassandra

Working with Databases

[177]

Lightweight access with sqlite3
SQLite is a very popular relational database. It's very lightweight and used by many
applications, for instance, web browsers such as Mozilla Firefox. Most of the apps in
Android use SQLite as a data store.

The sqlite3 module in the standard Python distribution can be used to work with an
SQLite database. With sqlite3, we can either store the database in a file or keep it in RAM.
For this example, we will do the latter. Import sqlite3 as follows:

import sqlite3

A connection to the database is needed to proceed. If we wanted to store the database in a
file, we would provide a filename. Instead, do the following:

with sqlite3.connect(":memory:") as con:

The with statement is standard Python and relies on the presence of a __exit__() method
in a special context manager class. With this statement, we don't need to explicitly close the
connection. The connection is automatically closed by the context manager. After
connecting to a database, we need a cursor, that's generally how it works with databases, by
the way. A database cursor is similar to a cursor in a text editor, in concept at least. We are
required to close the cursor as well. Create the cursor as follows:

c = con.cursor()

We can now immediately create a table. Usually, you have to create a database first or have
it created for you by a database specialist. In this chapter, you not only need to know
Python, but SQL too. SQL is a specialized language for database querying and
manipulating. We don't have enough space in this chapter to describe SQL completely, but
basic SQL should be easy enough for you to pick up (for more information, go to
http://www.w3schools.com/sql/). To create a table, we pass a SQL string to the cursor as
follows:

c.execute('''CREATE TABLE sensors(date text, city text,
code text, sensor_id real, temperature real)''')

This should create a table with several columns called sensors. In this string, text and
real are data types corresponding to string and numerical values. We can trust the table
creation to have worked properly. If something goes wrong, we will get an error. Listing the
tables in a database is database dependent. There is usually a special table or set of tables
containing metadata about user tables. List the SQLite tables as follows:

for table in c.execute("SELECT name FROM sqlite_master

http://www.w3schools.com/sql/

Working with Databases

[178]

WHERE type = 'table'"):
print("Table", table[0])

As expected, we get the following output:

Table sensors

Let's insert and query some random data as follows:

c.execute("INSERT INTO sensors VALUES ('2016-11-05',
'Utrecht','Red',42,15.14)")
c.execute("SELECT * FROM sensors")
print(c.fetchone())

The record we inserted should be printed as follows:

(u'2016-11-05', u'Utrecht', u'Red', 42.0, 15.14)

When we don't need a table anymore, we can drop it. This is dangerous, so you have to be
absolutely sure you don't need the table. Once a table is dropped, it cannot be recovered
unless it was backed up. Drop the table and show the number of tables after dropping it as
follows:

con.execute("DROP TABLE sensors")
print("# of tables", c.execute("SELECT COUNT(*)
FROM sqlite_master WHERE type = 'table'").fetchone()[0])

We get the following output:

of tables 0

Refer to the ch-08.ipynb file in this book's code bundle for the following code:

import sqlite3

with sqlite3.connect(":memory:") as con:
 c = con.cursor()
 c.execute('''CREATE TABLE sensors(date text, city text,
code text, sensor_id real, temperature real)''')

 for table in c.execute("SELECT name FROM sqlite_master
WHERE type = 'table'"):
 print("Table", table[0])

 c.execute("INSERT INTO sensors VALUES ('2016-11-05',
'Utrecht','Red',42,15.14)")
 c.execute("SELECT * FROM sensors")
 print(c.fetchone())

Working with Databases

[179]

 con.execute("DROP TABLE sensors")

 print("# of tables", c.execute("SELECT COUNT(*)
FROM sqlite_master WHERE type = 'table'").fetchone()[0])

 c.close()

Accessing databases from Pandas
We can give Pandas a database connection, such as the one in the previous example, or an
SQLAlchemy connection. We will cover the latter in the later sections of this chapter. We
will load the statsmodels sunactivity data, just as we did in the previous chapter, Chapter
7, Signal Processing and Time Series:

Create a list of tuples to form the Pandas DataFrame:1.

 rows = [tuple(x) for x in df.values]

Contrary to the previous example, create a table without specifying data
types:

 con.execute("CREATE TABLE sunspots(year, sunactivity)")

The executemany() method executes multiple statements; in this case, we will2.
be inserting records from a list of tuples. Insert all the rows into the table and
show the row count as follows:

 con.executemany("INSERT INTO sunspots(year, sunactivity) VALUES
 (?, ?)", rows)
 c.execute("SELECT COUNT(*) FROM sunspots")
 print(c.fetchone())

The number of rows in the table is printed as follows:

 (309,)

The rowcount attribute of the result of an execute() call gives the number of3.
affected rows. This attribute is somewhat quirky and depends on your SQLite
version. On the other hand, an SQL query, as shown in the previous code snippet,
is unambiguous. Delete the records where the number of events is more than 20:

 print("Deleted", con.execute("DELETE FROM sunspots where
 sunactivity > 20").rowcount, "rows")

Working with Databases

[180]

The following should be printed:

 Deleted 217 rows

If we have the database connection to Pandas, we can execute a query and return4.
a Pandas DataFrame with the read_sql() function. Select the records until 1732
as follows:

 print(read_sql("SELECT * FROM sunspots where year < 1732", con))

The end result is the following Pandas DataFrame:

 year sunactivity
0 1700 5
1 1701 11
2 1702 16
3 1707 20
4 1708 10
5 1709 8
6 1710 3
7 1711 0
8 1712 0
9 1713 2
10 1714 11
11 1723 11

[12 rows x 2 columns]

Refer to the ch-08.ipynb file in this book's code bundle for the following code:

import statsmodels.api as sm
from pandas.io.sql import read_sql
import sqlite3

with sqlite3.connect(":memory:") as con:
 c = con.cursor()

 data_loader = sm.datasets.sunspots.load_pandas()
 df = data_loader.data
 rows = [tuple(x) for x in df.values]

 con.execute("CREATE TABLE sunspots(year, sunactivity)")
 con.executemany("INSERT INTO sunspots(year, sunactivity) VALUES (?,
?)", rows)
 c.execute("SELECT COUNT(*) FROM sunspots")
 print(c.fetchone())
 print("Deleted", con.execute("DELETE FROM sunspots where sunactivity >
20").rowcount, "rows")

Working with Databases

[181]

 print(read_sql("SELECT * FROM sunspots where year < 1732", con))
 con.execute("DROP TABLE sunspots")

 c.close()

SQLAlchemy
SQLAlchemy is renowned for its object-relational mapping (ORM) based on a design
pattern, where Python classes are mapped to database tables. In practice, this means that an
extra abstraction layer is added, so we use the SQLAlchemy API to talk to the database
instead of issuing SQL commands. SQLAlchemy takes care of the details behind the scenes.
The drawback is that you have to learn the API, and may have to pay a small performance
penalty. In this section, you will learn how to set up SQLAlchemy, and populate and query
databases with SQLAlchemy.

Installing and setting up SQLAlchemy
The following is the command to install SQLAlchemy:

$ pip3 install sqlalchemy

The latest version of SQLAlchemy at the time of writing is 1.1.4. The download page for
SQLAlchemy is available at http://www.sqlalchemy.org/download.html, with links to
installers and code repositories. SQLAlchemy also has extensive documentation available at
http://www.sqlalchemy.org/library.html.

SQLAlchemy requires us to define a superclass as follows:

from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()

In this and the following sections, we will make use of a small database with two tables. The
first table defines an observation station. The second table represents sensors in the stations.
Each station has zero, one, or many sensors. A station is identified by an integer ID, which
is automatically generated by the database. A station is also identified by a name, which is
unique and mandatory.

http://www.sqlalchemy.org/download.html
http://www.sqlalchemy.org/library.html

Working with Databases

[182]

A sensor has an integer ID as well. We keep track of the last value measured by the sensor.
This value can have a multiplier related to it. The setup described in this section is
expressed in the ch-08.ipynb file in this book's code bundle (you don't have to run this
script, but it is used by code further down in the chapter):

from sqlalchemy import Column, ForeignKey, Integer, String, Float
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship
from sqlalchemy import create_engine
from sqlalchemy import UniqueConstraint

Base = declarative_base()
class Station(Base):
 __tablename__ = 'station'
 id = Column(Integer, primary_key=True)
 name = Column(String(14), nullable=False, unique=True)

 def __repr__(self):
 return "Id=%d name=%s" %(self.id, self.name)

class Sensor(Base):
 __tablename__ = 'sensor'
 id = Column(Integer, primary_key=True)
 last = Column(Integer)
 multiplier = Column(Float)
 station_id = Column(Integer, ForeignKey('station.id'))
 station = relationship(Station)

 def __repr__(self):
 return "Id={:d} last={:d} multiplier={:.1f} station_id=
 {:d}".format(
 self.id,self.last, self.multiplier, self.station_id)

if __name__ == "__main__":
 print("This script is used by code further down in this notebook.")

Working with Databases

[183]

Populating a database with SQLAlchemy
Creating the tables will be deferred to the next section. In this section, we will prepare a
script that will populate the database (you don't have to run this; it is used by a script in a
later section). With a DBSession object, we can insert data into the tables. An engine is
needed too, but creating the engine will also be deferred until the next section:

Create the DBSession object as follows:1.

 Base.metadata.bind = engine

 DBSession = sessionmaker(bind=engine)
 session = DBSession()

Let's create two stations:2.

 de_bilt = Station(name='De Bilt')
 session.add(de_bilt)
 session.add(Station(name='Utrecht'))
 session.commit()
 print("Station", de_bilt)

The rows are not inserted until we commit the session. The following is
printed for the first station:

 Station Id=1 name=De Bilt

Similarly, insert a Sensor record as follows:3.

 temp_sensor = Sensor(last=20, multiplier=.1, station=de_bilt)
 session.add(temp_sensor)
 session.commit()
 print("Sensor", temp_sensor)

The sensor is in the first station; therefore, we get the following printout:

 Sensor Id=1 last=20 multiplier=0.1 station_id=1

The database population code can be found in the ch-08.ipynb file in this book's code
bundle (again, you don't need to run this code; it's used by another script):

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

from alchemy_entities import Base, Sensor, Station

def populate(engine):

Working with Databases

[184]

 Base.metadata.bind = engine

 DBSession = sessionmaker(bind=engine)
 session = DBSession()

 de_bilt = Station(name='De Bilt')
 session.add(de_bilt)
 session.add(Station(name='Utrecht'))
 session.commit()
 print("Station", de_bilt)

 temp_sensor = Sensor(last=20, multiplier=.1, station=de_bilt)
 session.add(temp_sensor)
 session.commit()
 print("Sensor", temp_sensor)

if __name__ == "__main__":
 print("This script is used by code further down in this notebook")

Querying the database with SQLAlchemy
An engine is created from a URI as follows:

engine = create_engine('sqlite:///demo.db')

In this URI, we specified that we are using SQLite and the data is stored in the demo.db file.
Create the station and sensor tables with the engine we just created:

Base.metadata.create_all(engine)

For SQLAlchemy queries, we need a DBSession object again, as shown in the previous
section.

Select the first row in the station table:

station = session.query(Station).first()

Select all the stations as follows:

print("Query 1", session.query(Station).all())

The following will be the output:

Query 1 [Id=1 name=De Bilt, Id=2 name=Utrecht]

Working with Databases

[185]

Select all the sensors as follows:

print("Query 2", session.query(Sensor).all())

The following will be the output:

Query 2 [Id=1 last=20 multiplier=0.1 station_id=1]

Select the first sensor, which belongs to the first station:

print("Query 3",session.query(Sensor).filter(Sensor.station ==
station).one())

The following will be the output:

Query 3 Id=1 last=20 multiplier=0.1 station_id=1

We can again query with the Pandas read_sql() method:

print(read_sql("SELECT * FROM station", engine.raw_connection())

You will get the following output:

 id name
 0 1 De Bilt
 1 2 Utrecht
 [2 rows x 2 columns]

Inspect the ch-08.ipynb file in this book's code bundle:

from alchemy_entities import Base, Sensor, Station
from populate_db import populate
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
import os
from pandas.io.sql import read_sql

engine = create_engine('sqlite:///demo.db')
Base.metadata.create_all(engine)
populate(engine)
Base.metadata.bind = engine
DBSession = sessionmaker()
DBSession.bind = engine
session = DBSession()

station = session.query(Station).first()

print("Query 1", session.query(Station).all())

Working with Databases

[186]

print("Query 2", session.query(Sensor).all())
print("Query 3", session.query(Sensor).filter(Sensor.station ==
station).one())
print(read_sql("SELECT * FROM station", engine.raw_connection()))

try:
 os.remove('demo.db')
 print("Deleted demo.db")
except OSError:
 pass

Pony ORM
Pony ORM is another Python ORM package. Pony ORM is written in pure Python and has
automatic query optimization and a GUI database schema editor. It also supports automatic
transaction management, automatic caching, and composite keys. Pony ORM uses Python
generator expressions, which are translated in SQL. Install it as follows:

 $ pip3 install pony

Import the packages we will need in this example. Refer to the pony_ride.py file in this
book's code bundle:

from pony.orm import Database, db_session
import statsmodels.api as sm

Create an in-memory SQLite database:

db = Database('sqlite', ':memory:')

Load the sunspots data and write it to the database with the Pandas DataFrame.to_sql
function:

with db_session:
 data_loader = sm.datasets.sunspots.load_pandas()
 df = data_loader.data
 df.to_sql("sunspots", db.get_connection())
 print(db.select("count(*) FROM sunspots"))

The number of rows in the sunspots table is printed as follows:

[309]

Working with Databases

[187]

Dataset – databases for lazy people
Dataset is a Python library which is basically a wrapper around SQLAlchemy. It claims to
be so easy to use that even lazy people like it.

Install dataset as follows:

$ pip3 install dataset

Create a SQLite in-memory database and connect to it:

import dataset
db = dataset.connect('sqlite:///:memory:')

Create a table called books:

table = db["books"]

Actually, the table in the database isn't created yet, since we haven't specified any columns.
We only created a related object. The table schema is created automatically from calls to the
insert() method. Give the insert() method dictionaries with book titles:

table.insert(dict(, author='Ivan Idris'))
table.insert(dict(,
author='Ivan Idris'))
table.insert(dict(,
author='Ivan Idris'))

Print the rows from the table as follows:

for row in db['books']:
 print(row)

The following will be printed:

<dataset.persistence.util.ResultIter object at 0x10d4bf550>
OrderedDict([('id', 1), ('title', "NumPy Beginner's Guide"), ('author',
'Ivan Idris')])
OrderedDict([('id', 2), ('title', 'NumPy Cookbook'), ('author', 'Ivan
Idris')])
OrderedDict([('id', 3), ('title', 'Learning NumPy'), ('author', 'Ivan
Idris')])

Working with Databases

[188]

We can easily show the tables in the database with the following line:

print("Tables", db.tables)

The following is the output of the preceding code:

Tables ['books']

The following is the content of the ch-08.ipynb file in this book's code bundle:

import dataset

db = dataset.connect('sqlite:///:memory:')
table = db["books"]
table.insert(dict(, author='Ivan Idris'))
table.insert(dict(, author='Ivan Idris'))
table.insert(dict(, author='Ivan Idris'))
for row in db['books']:
 print(row)

print("Tables", db.tables)

PyMongo and MongoDB
MongoDB (humongous) is a NoSQL document-oriented database. The documents are
stored in the BSON format, which is JSON-like. You can download a MongoDB distribution
from h t t p ://w w w . m o n g o d b . o r g /d o w n l o a d s . Installing should be just a matter of unpacking
a compressed archive. The version at the time of writing was 3.4.0. In the bin directory of
the distribution, we will find the mongod file, which starts the server. MongoDB expects to
find a /data/db directory. This is the directory where data is stored. We can specify
another directory from the command line as follows:

 $ mkdir /tmp/db

Start the database from the directory containing its binary executables:

./mongod --dbpath /tmp/db

We need to keep this process running to be able to query the database. PyMongo is a
Python driver for MongoDB. Install PyMongo as follows:

$ pip3 install pymongo

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

Working with Databases

[189]

Connect to the MongoDB test database:

from pymongo import MongoClient
client = MongoClient()
db = client.test_database

Remember that we can create JSON from a Pandas DataFrame. Create the JSON and store it
in MongoDB:

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data
rows = json.loads(df.T.to_json()).values()
db.sunspots.insert(rows)

Query the document we just created:

cursor = db['sunspots'].find({})
df = pd.DataFrame(list(cursor))
print(df)

This prints the entire Pandas DataFrame. Refer to the ch-08.ipynb file in this book's code
bundle:

from pymongo import MongoClient
import statsmodels.api as sm
import json
import pandas as pd

client = MongoClient()
db = client.test_database

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data
rows = json.loads(df.T.to_json()).values()
db.sunspots.insert_many(rows)

cursor = db['sunspots'].find({})
df = pd.DataFrame(list(cursor))
print(df)

db.drop_collection('sunspots')

Working with Databases

[190]

Storing data in Redis
Remote Dictionary Server (Redis) is an in-memory, key-value database, written in C. In the
in-memory mode, Redis is extremely fast, with writing and reading being almost equally
fast. Redis follows the publish/subscribe model and uses Lua scripts as stored procedures.
Publish/subscribe makes use of channels to which a client can subscribe in order to receive
messages. I had installed Redis version 3.2.6 at the time of writing the book. Redis can be
downloaded from the Redis home page at h t t p ://r e d i s . i o /. After installing the Redis
distribution, issue the following command to run the server:

$ src/redis-server

Now let's install a Python driver:

$ pip3 install redis

It's pretty easy to use Redis when you realize it's a giant dictionary. However, Redis does
have its limitations. Sometimes, it's just convenient to store a complex object as a JSON
string (or other format). That's what we are going to do with a Pandas DataFrame. Connect
to Redis as follows:

r = redis.StrictRedis()

Create a key-value pair with a JSON string:

r.set('sunspots', data)

Retrieve the data with the following line:

blob = r.get('sunspots')

The code is straightforward and given in the ch-08.ipynb file in this book's code bundle:

import redis
import statsmodels.api as sm
import pandas as pd

r = redis.StrictRedis()
data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data
data = df.T.to_json()
r.set('sunspots', data)
blob = r.get('sunspots')
print(pd.read_json(blob))

http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/

Working with Databases

[191]

Storing data in memcache
The memcache is an in-memory, key-value database store, just like Redis. After you install
and run the memcached server, install the memcache Python client using the following
command:

$ pip3 install python3-memcache

The code in the ch-08.ipynb file creates a memcache client and then stores the DataFrame
to memcache with an auto-expire value of 600 seconds. The code is similar to the code for
Redis:

import memcache
import statsmodels.api as sm
import pandas as pd

client = memcache.Client([('127.0.0.1', 11211)])
data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data
data = df.T.to_json()
client.set('sunspots', data, time=600)
print("Stored data to memcached, auto-expire after 600 seconds")
blob = client.get('sunspots')
print(pd.read_json(blob))

Apache Cassandra
Apache Cassandra mixes features of key-value and traditional relational databases. In a
conventional relational database, the columns of a table are fixed. In Cassandra, however,
rows within the same table can have different columns. Cassandra is, therefore, column-
oriented, since it allows a flexible schema for each row. Columns are organized in so-called
column families, which are equivalent to tables in relational databases. Joins and subqueries
are not possible with Cassandra. Cassandra can be downloaded from h t t p ://c a s s a n d r a . a

p a c h e . o r g /d o w n l o a d /. We used Cassandra version 3.9 at the time of writing this book.
Please refer to h t t p ://w i k i . a p a c h e . o r g /c a s s a n d r a /G e t t i n g S t a r t e d to get started:

Run the server from the command line as follows:1.

 $ bin/cassandra-f

http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted

Working with Databases

[192]

Create the directories listed in conf/cassandra.yaml or tweak them as follows:2.

 data_file_directories:
 /tmp/lib/cassandra/data
 commitlog_directory: /tmp/lib/cassandra/commitlog
 saved_caches_directory: /tmp/lib/cassandra/saved_caches

The following commands make sense if you don't want to keep the data:3.

 $ mkdir -p /tmp/lib/cassandra/data
 $ mkdir -p /tmp/lib/cassandra/commitlog
 $ mkdir -p /tmp/lib/cassandra/saved_caches

Install a Python driver with the following command:4.

 $ pip3 install cassandra-driver

Now it's time for the code. Connect to a cluster and create a session as follows:5.

 cluster = Cluster()
 session = cluster.connect()

Cassandra has the concept of keyspace. A keyspace holds tables. Cassandra has6.
its own query language called Cassandra Query Language (CQL). CQL is very
similar to SQL. Create the keyspace and set the session to use it:

 session.execute("CREATE KEYSPACE IF NOT EXISTS mykeyspace WITH
 REPLICATION = { 'class' : 'SimpleStrategy',
 'replication_factor' : 1 };")
 session.set_keyspace('mykeyspace')

Now, create a table for the sunspots data:7.

 session.execute("CREATE TABLE IF NOT EXISTS sunspots (year
 decimal PRIMARY KEY, sunactivity decimal);")

Create a statement that we will use in a loop to insert rows of the data as tuples:8.

 query = SimpleStatement(
 "INSERT INTO sunspots (year, sunactivity) VALUES (%s, %s)",
 consistency_level=ConsistencyLevel.QUORUM)

The following line inserts the data:9.

 for row in rows:
 session.execute(query, row)

Working with Databases

[193]

Get the count of the rows in the table:10.

 rows=session.execute("SELECT COUNT(*) FROM sunspots")
 for row in rows:
 print(row)

This prints the row count as follows:

 [Row(count=309)]

Drop the keyspace and shut down the cluster:11.

 session.execute('DROP KEYSPACE mykeyspace')
 cluster.shutdown()

Refer to the ch-08.ipynb file in this book's code bundle:

from cassandra import ConsistencyLevel
from cassandra.cluster import Cluster
from cassandra.query import SimpleStatement
import statsmodels.api as sm

cluster = Cluster()
session = cluster.connect()
session.execute("CREATE KEYSPACE IF NOT EXISTS mykeyspace WITH REPLICATION
= { 'class' : 'SimpleStrategy', 'replication_factor' : 1 };")
session.set_keyspace('mykeyspace')
session.execute("CREATE TABLE IF NOT EXISTS sunspots (year decimal PRIMARY
KEY, sunactivity decimal);")

query = SimpleStatement(
 "INSERT INTO sunspots (year, sunactivity) VALUES (%s, %s)",
 consistency_level=ConsistencyLevel.QUORUM)

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data
rows = [tuple(x) for x in df.values]
for row in rows:
 session.execute(query, row)

rows=session.execute("SELECT COUNT(*) FROM sunspots")
for row in rows:
 print(row)

session.execute('DROP KEYSPACE mykeyspace')
cluster.shutdown()

Working with Databases

[194]

Summary
We stored annual sunspots cycles data in different relational and NoSQL databases.

The term relational here does not just pertain to relationships between tables; firstly, it has to
do with the relationship between columns inside a table; secondly, it relates to connections
between tables.

The sqlite3 module in the standard Python distribution can be used to work with a
SQLite database. We can give Pandas an SQLite database connection or an SQLAlchemy
connection.

SQLAlchemy is renowned for its ORM, based on a design pattern, where Python classes are
mapped to database tables. The ORM pattern is a general architectural pattern applicable to
other object-oriented programming languages. SQLAlchemy abstracts away the technical
details of working with databases, including writing SQL.

MongoDB is a document-based store, which can hold a huge amount of data.

In the in-memory mode, Redis is extremely fast, with writing and reading being almost
equally fast. Redis is a key-value store that functions similarly to a Python dictionary.

Apache Cassandra mixes features of key-value and traditional relational databases. It is
column-oriented and its columns are organized into families, which are the equivalent of
tables in relational databases. Rows in Apache Cassandra are not tied to a particular set of
columns.

The next chapter, Chapter 9, Analyzing Textual Data and Social Media, describes analysis
techniques for plaintext data. Plaintext data is found in many organizations and on the
Internet. Generally, plaintext data is very unstructured, and requires a different approach
than data that has been tabulated and cleaned. For the analysis, we will use NLTK–an open
source Python package. NLTK is very comprehensive and comes with its own datasets.

9
Analyzing Textual Data and

Social Media
In the previous chapters, we focused on the analysis of structured data, mostly in tabular
format. Along with structured data, plaintext is another predominant form of data available
today. Text analysis includes the analysis of word frequency distributions, pattern
recognition, tagging, link and association analysis, sentiment analysis, and visualization.
One of the main libraries used for text analysis in Python is the Natural Language Toolkit
(NLTK) library. NLTK comes with a collection of sample texts called corpora. The scikit-
learn library also contains tools for text analysis that we will cover briefly in this chapter. A
small example of network analysis will also be covered. The following topics will be
discussed in this chapter:

Installing NLTK
About NLTK
Filtering out stopwords, names, and numbers
The bag-of-words model
Analyzing word frequencies
Naive Bayes classification
Sentiment analysis
Creating word clouds
Social network analysis

Analyzing Textual Data and Social Media

[196]

Installing NLTK
Let's install the libraries required for this chapter with the following command:

$ pip3 install nltk scikit-learn

About NLTK
NLTK is a Python API for the analysis of texts written in natural languages, such as English.
NLTK was created in 2001 and was originally intended as a teaching tool.

Although we installed NLTK in the previous section, we are not done yet; we still need to
download the NLTK corpora. The download is relatively large (about 1.8 GB); however, we
only have to download it once. Unless you know exactly which corpora you require, it's
best to download all the available corpora. Download the corpora from the Python shell as
follows:

$ python3
>>> import nltk
>>> nltk.download()

A GUI application should appear, where you can specify a destination and what file to
download.

Analyzing Textual Data and Social Media

[197]

If you are new to NLTK, it's most convenient to choose the default option and download
everything. In this chapter, we will need the stopwords, movie reviews, names, and
Gutenberg corpora. Readers are encouraged to follow the sections in the ch-09.ipynb file.

Filtering out stopwords, names, and
numbers
Stopwords are common words that have very low information value in a text. It is a
common practice in text analysis to get rid of stopwords. NLTK has a stopwords corpora for
a number of languages. Load the English stopwords corpus and print some of the words:

sw = set(nltk.corpus.stopwords.words('english'))
print("Stop words:", list(sw)[:7])

The following common words are printed:

Stop words: ['between', 'who', 'such', 'ourselves', 'an', 'ain', 'ours']

Note that all the words in this corpus are in lowercase.

NLTK also has a Gutenberg corpus. The Gutenberg project is a digital library of books,
mostly with expired copyright, which are available for free on the Internet (see h t t p ://w w w

. g u t e n b e r g . o r g /).

Load the Gutenberg corpus and print some of its filenames:

gb = nltk.corpus.gutenberg
print("Gutenberg files:\n", gb.fileids()[-5:])

Some of the titles printed may be familiar to you:

Gutenberg files: ['milton-paradise.txt', 'shakespeare-caesar.txt',
'shakespeare-hamlet.txt', 'shakespeare-macbeth.txt', 'whitman-leaves.txt']

Extract the first couple of sentences from the milton-paradise.txt file, which we will
filter later:

text_sent = gb.sents("milton-paradise.txt")[:2]
print("Unfiltered:", text_sent)

http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.gutenberg.org/

Analyzing Textual Data and Social Media

[198]

The following sentences are printed:

 Unfiltered [['[', 'Paradise', 'Lost', 'by', 'John', 'Milton',
 '1667', ']'], ['Book', 'I']]

Now, filter out the stopwords as follows:

for sent in text_sent:
 filtered = [w for w in sent if w.lower() not in sw]
 print("Filtered:\n", filtered)

For the first sentence, we get the following output:

Filtered ['[', 'Paradise', 'Lost', 'John', 'Milton', '1667', ']']

If we compare this with the previous snippet, we notice that the word by has been filtered
out as it was found in the stopwords corpus. Sometimes, we want to remove numbers and
names too. We can remove words based on part of speech (POS) tags. In this tagging
scheme, numbers correspond to the cardinal number (CD) tag. Names correspond to the
proper noun singular (NNP) tag. Tagging is an inexact process based on heuristics. It's a
big topic that deserves an entire book. Tag the filtered text with the pos_tag() function:

tagged = nltk.pos_tag(filtered)
print("Tagged:\n", tagged)

For our text, we get the following tags:

Tagged [('[', 'NN'), ('Paradise', 'NNP'), ('Lost', 'NNP'), ('John', 'NNP'),
('Milton', 'NNP'), ('1667', 'CD'), (']', 'CD')]

The pos_tag() function returns a list of tuples, where the second element in each tuple is
the tag. As you can see, some of the words are tagged as NNP, although they probably
shouldn't be. The heuristic here is to tag words as NNP if the first character of a word is
uppercase. If we set all the words to be lowercase, we will get a different result. This is left
as an exercise for the reader. It's easy to remove the words in the list with the NNP and CD
tags, as described in the following code:

words= []
 for word in tagged:
 if word[1] != 'NNP' and word[1] != 'CD':
 words.append(word[0])

 print(words)

Analyzing Textual Data and Social Media

[199]

Have a look at the ch-09.ipynb file in this book’s code bundle:

import nltk

sw = set(nltk.corpus.stopwords.words('english'))
print(“Stop words:", list(sw)[:7])

gb = nltk.corpus.gutenberg
print(“Gutenberg files:\n", gb.fileids()[-5:])

text_sent = gb.sents("milton-paradise.txt")[:2]
print(“Unfiltered:", text_sent)

for sent in text_sent:
 filtered = [w for w in sent if w.lower() not in sw]
 print("Filtered:\n", filtered)
 tagged = nltk.pos_tag(filtered)
 print("Tagged:\n", tagged)

 words= []
 for word in tagged:
 if word[1] != 'NNP' and word[1] != 'CD':
 words.append(word[0])

 print(“Words:\n",words)

The bag-of-words model
In the bag-of-words model, we create from a document a bag containing words found in
the document. In this model, we don't care about the word order. For each word in the
document, we count the number of occurrences. With these word counts, we can do
statistical analysis, for instance, to identify spam in e-mail messages.

If we have a group of documents, we can view each unique word in the corpus as a feature;
here, feature means parameter or variable. Using all the word counts, we can build a feature
vector for each document; vector is used here in the mathematical sense. If a word is present
in the corpus but not in the document, the value of this feature will be 0. Surprisingly,
NLTK doesn't currently have a handy utility to create a feature vector. However, the
machine learning Python library, scikit-learn, does have a CountVectorizer class that we
can use. In the next chapter, Chapter 10, Predictive Analytics and Machine Learning, we will
do more with scikit-learn.

Analyzing Textual Data and Social Media

[200]

Load two text documents from the NLTK Gutenberg corpus:

hamlet = gb.raw("shakespeare-hamlet.txt")
macbeth = gb.raw("shakespeare-macbeth.txt")

Create the feature vector by omitting English stopwords:

cv = sk.feature_extraction.text.CountVectorizer(stop_words='english')
print("Feature vector:\n", cv.fit_transform([hamlet, macbeth]).toarray())

These are the feature vectors for the two documents:

Feature vector:
 [[1 0 1 ..., 14 0 1]
 [0 1 0 ..., 1 1 0]]

Print a small selection of the features (unique words) that we found:

print("Features:\n", cv.get_feature_names()[:5])

The features are given in alphabetical order:

Features:
 ['1599', '1603', 'abhominably', 'abhorred', 'abide']

Have a look at the ch-09.ipynb file in this book’s code bundle:

import nltk
import sklearn as sk

hamlet = gb.raw("shakespeare-hamlet.txt")
macbeth = gb.raw("shakespeare-macbeth.txt")

cv = sk.feature_extraction.text.CountVectorizer(stop_words='english')

print(“Feature vector:\n”, cv.fit_transform([hamlet, macbeth]).toarray())
print("Features:\n", cv.get_feature_names()[:5])

Analyzing Textual Data and Social Media

[201]

Analyzing word frequencies
The NLTK FreqDist class encapsulates a dictionary of words and counts for a given list of
words. Load the Gutenberg text of Julius Caesar by William Shakespeare. Let's filter out the
stopwords and punctuation:

punctuation = set(string.punctuation)
filtered = [w.lower() for w in words if w.lower() not in sw and w.lower()
not in punctuation]

Create a FreqDist object and print the associated keys and values with the highest
frequency:

fd = nltk.FreqDist(filtered)
print("Words", fd.keys()[:5])
print("Counts", fd.values()[:5])

The keys and values are printed as follows:

Words ['d', 'caesar', 'brutus', 'bru', 'haue']
Counts [215, 190, 161, 153, 148]

The first word in this list is, of course, not an English word, so we may need to add the
heuristic that words have a minimum of two characters. The NLTK FreqDist class allows
dictionary-like access, but it also has convenience methods. Get the word with the highest
frequency and related count:

print("Max", fd.max())
print("Count", fd['d'])

The following result shouldn't be a surprise:

Max d
Count 215

Up until this point, the analysis has focused on single words, but we can extend the analysis
to word pairs and triplets. These are also called bigrams and trigrams. We can find them
with the bigrams() and trigrams() functions. Repeat the analysis, but this time for
bigrams:

fd = nltk.FreqDist(nltk.bigrams(filtered))
print("Bigrams", fd.keys()[:5])
print("Counts", fd.values()[:5])
print("Bigram Max", fd.max())
print("Bigram count", fd[('let', 'vs')])

Analyzing Textual Data and Social Media

[202]

The following output should be printed:

Bigrams [('let', 'vs'), ('wee', 'l'), ('mark', 'antony'), ('marke',
'antony'), ('st', 'thou')]
 Counts [16, 15, 13, 12, 12]
 Bigram Max ('let', 'vs')
 Bigram count 16

Have a peek at the ch-09.ipynb file in this book's code bundle:

import nltk
import string

gb = nltk.corpus.gutenberg
words = gb.words("shakespeare-caesar.txt")

sw = set(nltk.corpus.stopwords.words('english'))
punctuation = set(string.punctuation)
filtered = [w.lower() for w in words if w.lower() not in sw and w.lower()
not in punctuation]
fd = nltk.FreqDist(filtered)
print("Words", fd.keys()[:5])
print("Counts", fd.values()[:5])
print("Max", fd.max())
print("Count", fd['d'])

fd = nltk.FreqDist(nltk.bigrams(filtered))
print("Bigrams", fd.keys()[:5])
print("Counts", fd.values()[:5])
print("Bigram Max", fd.max())
print("Bigram count", fd[('let', 'vs')])

Naive Bayes classification
Classification algorithms are a type of machine learning algorithm that determine the class
(category or type) of a given item. For instance, we could try to determine the genre of a
movie based on some features. In this case, the genre is the class to be predicted. In the next
chapter, Chapter 10, Predictive Analytics and Machine Learning, we will continue with an
overview of machine learning. In the meantime, we will discuss a popular algorithm called
Naive Bayes classification, which is frequently used to analyze text documents.

Analyzing Textual Data and Social Media

[203]

Naive Bayes classification is a probabilistic algorithm based on the Bayes theorem from
probability theory and statistics. The Bayes theorem formulates how to discount the
probability of an event based on new evidence. For example, imagine that we have a bag
with pieces of chocolate and other items we can't see. We will call the probability of
drawing a piece of dark chocolate P(D). We will denote the probability of drawing a piece
of chocolate as P(C). Of course, the total probability is always 1, so P(D) and P(C) can be at
most 1. The Bayes theorem states that the posterior probability is proportional to the prior
probability times likelihood:

P(D|C) in the preceding notation means the probability of event D given C. When we
haven't drawn any items, P(D) = 0.5 because we don't have any information yet. To
actually apply the formula, we need to know P(C|D) and P(C), or we have to determine
those indirectly.

Naive Bayes classification is called naive because it makes the simplifying assumption of
independence between features. In practice, the results are usually pretty good, so this
assumption is often warranted to a certain level. Recently, it was found that there are
theoretical reasons why the assumption makes sense. However, since machine learning is a
rapidly evolving field, algorithms have been invented with (slightly) better performance.

Let's try to classify words as stopwords or punctuation. As a feature, we will use the word
length, since stopwords and punctuation tend to be short.

This setup leads us to define the following functions:

def word_features(word):
 return {'len': len(word)}

def isStopword(word):
 return word in sw or word in punctuation

Label the words in the Gutenberg shakespeare-caesar.txt based on whether or not
they are stopwords:

labeled_words = ([(word.lower(), isStopword(word.lower())) for word in
words])
random.seed(42)
random.shuffle(labeled_words)
print(labeled_words[:5])

The 5 labeled words will appear as follows:

 [('was', True), ('greeke', False), ('cause', False), ('but', True),
('house', False)]

Analyzing Textual Data and Social Media

[204]

For each word, determine its length:

featuresets = [(word_features(n), word) for (n, word) in labeled_words]

In previous chapters, we mentioned overfitting, and looked at how you could avoid this
with cross-validation by having a train and a test dataset. We will train a naive Bayes
classifier on 90 percent of the words and test the remaining 10 percent. Create the train and
the test set, and train the data:

cutoff = int(.9 * len(featuresets))
train_set, test_set = featuresets[:cutoff], featuresets[cutoff:]
classifier = nltk.NaiveBayesClassifier.train(train_set)

We can now check how the classifier labels the words in the sets:

classifier = nltk.NaiveBayesClassifier.train(train_set)
print("'behold' class", classifier.classify(word_features('behold')))
print("'the' class", classifier.classify(word_features('the')))

Fortunately, the words are properly classified:

'behold' class False
'the' class True

Determine the classifier accuracy on the test set as follows:

print("Accuracy", nltk.classify.accuracy(classifier, test_set))

We get a high accuracy for this classifier of around 85 percent. Print an overview of the
most informative features:

print(classifier.show_most_informative_features(5))

The overview shows the word lengths that are most useful for the classification process:

The code is in the ch-09.ipynb file in this book's code bundle:

import nltk
import string
import random

Analyzing Textual Data and Social Media

[205]

sw = set(nltk.corpus.stopwords.words('english'))
punctuation = set(string.punctuation)

def word_features(word):
 return {'len': len(word)}

def isStopword(word):
 return word in sw or word in punctuation
gb = nltk.corpus.gutenberg
words = gb.words("shakespeare-caesar.txt")

labeled_words = ([(word.lower(), isStopword(word.lower())) for word in
words])
random.seed(42)
random.shuffle(labeled_words)
print(labeled_words[:5])

featuresets = [(word_features(n), word) for (n, word) in labeled_words]
cutoff = int(.9 * len(featuresets))
train_set, test_set = featuresets[:cutoff], featuresets[cutoff:]
classifier = nltk.NaiveBayesClassifier.train(train_set)
print("'behold' class", classifier.classify(word_features('behold')))
print("'the' class", classifier.classify(word_features('the')))

print("Accuracy", nltk.classify.accuracy(classifier, test_set))
print(classifier.show_most_informative_features(5))

Sentiment analysis
Opinion mining or sentiment analysis is a hot new research field dedicated to the
automatic evaluation of opinions as expressed on social media, product review websites, or
other forums. Often, we want to know whether an opinion is positive, neutral, or negative.
This is, of course, a form of classification, as seen in the previous section. As such, we can
apply any number of classification algorithms. Another approach is to semi-automatically
(with some manual editing) compose a list of words with an associated numerical sentiment
score (the word “good” can have a score of 5 and the word “bad” a score of -5). If we have
such a list, we can look up all the words in a text document and, for example, sum up all the
found sentiment scores. The number of classes can be more than three, as in a five-star
rating scheme.

Analyzing Textual Data and Social Media

[206]

We will apply naive Bayes classification to the NLTK movie reviews corpus with the goal of
classifying movie reviews as either positive or negative. First, we will load the corpus and
filter out stopwords and punctuation. These steps will be omitted, since we have performed
them before. You may consider more elaborate filtering schemes, but keep in mind that
excessive filtering may hurt accuracy. Label the movie reviews documents using the
categories() method:

labeled_docs = [(list(movie_reviews.words(fid)), cat)
 for cat in movie_reviews.categories()
 for fid in movie_reviews.fileids(cat)]

The complete corpus has tens of thousands of unique words that we can use as features.
However, using all these words might be inefficient. Select the top 5 percent of the most
frequent words:

words = FreqDist(filtered)
N = int(.05 * len(words.keys()))
word_features = words.keys()[:N]

For each document, we can extract features using a number of methods, including the
following:

Check whether the given document has a word or not
Determine the number of occurrences of a word for a given document
Normalize word counts so that the maximum normalized word count will be less
than or equal to 1
Take the logarithm of counts plus 1 (to avoid taking the logarithm of zero)
Combine all the previous points into one metric

As the saying goes, all roads lead to Rome. Of course, some roads are safer and will bring you
to Rome faster. Define the following function, which uses raw word counts as a metric:

def doc_features(doc):
 doc_words = FreqDist(w for w in doc if not isStopWord(w))
 features = {}
 for word in word_features:
 features['count (%s)' % word] = (doc_words.get(word, 0))
 return features

Analyzing Textual Data and Social Media

[207]

We can now train our classifier just as we did in the previous example. An accuracy of 78
percent is reached, which is decent and comes close to what is possible with sentiment
analysis. Research has found that even humans don't always agree on the sentiment of a
given document (see http://mashable.com/2010/04/19/sentiment-analysis/), and
therefore, we can't have a 100 percent perfect accuracy with sentiment analysis software.

The most informative features are printed as follows:

If we go through this list, we find obvious positive words such as “wonderful” and
“outstanding”. The words “bad”, “stupid”, and “boring” are the obvious negative words. It
would be interesting to analyze the remaining features. This is left as an exercise for the
reader. Refer to the sentiment.py file in this book's code bundle:

import random
from nltk.corpus import movie_reviews
from nltk.corpus import stopwords
from nltk import FreqDist
from nltk import NaiveBayesClassifier
from nltk.classify import accuracy
import string

labeled_docs = [(list(movie_reviews.words(fid)), cat)
 for cat in movie_reviews.categories()
 for fid in movie_reviews.fileids(cat)]
random.seed(42)
random.shuffle(labeled_docs)

review_words = movie_reviews.words()
print("# Review Words", len(review_words))

sw = set(stopwords.words('english'))
punctuation = set(string.punctuation)

def isStopWord(word):

http://mashable.com/2010/04/19/sentiment-analysis/

Analyzing Textual Data and Social Media

[208]

 return word in sw or word in punctuation

filtered = [w.lower() for w in review_words if not isStopWord(w.lower())]
print("# After filter", len(filtered))
words = FreqDist(filtered)
N = int(.05 * len(words.keys()))
word_features = words.keys()[:N]

def doc_features(doc):
 doc_words = FreqDist(w for w in doc if not isStopWord(w))
 features = {}
 for word in word_features:
 features['count (%s)' % word] = (doc_words.get(word, 0))
 return features

featuresets = [(doc_features(d), c) for (d,c) in labeled_docs]
train_set, test_set = featuresets[200:], featuresets[:200]
classifier = NaiveBayesClassifier.train(train_set)
print("Accuracy", accuracy(classifier, test_set))

print(classifier.show_most_informative_features())

Creating word clouds
You may have seen word clouds produced by Wordle or other software before. If not, you
will see them soon enough in this chapter. A couple of Python libraries can create word
clouds; however, these libraries don't seem to be able to beat the quality produced by
Wordle yet. We can create a word cloud via the Wordle web page
at http://www.wordle.net/advanced. Wordle requires a list of words and weights in the
following format:

Word1 : weight
Word2 : weight

Modify the code from the previous example to print the word list. As a metric, we will use
the word frequency and select the top percent. We don't need anything new for this. The
final code is in the ch-09.ipynb file in this book's code bundle:

from nltk.corpus import movie_reviews
from nltk.corpus import stopwords
from nltk import FreqDist
import string

sw = set(stopwords.words('english'))
punctuation = set(string.punctuation)

http://www.wordle.net/advanced

Analyzing Textual Data and Social Media

[209]

def isStopWord(word):
 return word in sw or word in punctuation
review_words = movie_reviews.words()
filtered = [w.lower() for w in review_words if not isStopWord(w.lower())]

words = FreqDist(filtered)
N = int(.01 * len(words.keys()))
tags = words.keys()[:N]

for tag in tags:
 print(tag, ':', words[tag])

Copy and paste the output into the Wordle web page and generate the following word
cloud:

Analyzing Textual Data and Social Media

[210]

If we analyze the word cloud, we may find that the result is far from perfect for our
purposes, so we might want to try something better. For instance, we can try to do the
following things:

Filter more: We could get rid of words that contain numeric characters and
names. NLTK has a names corpus we can use. Also, words that only occur once
in the whole corpus are good to ignore, since they probably don't add enough
information value.
Use a better metric: The phrase term frequency-inverse document frequency (tf-
idf) seems a good candidate.

The tf-idf metric can give us ranking weights for words in our corpus. Its value is
proportional to the number of occurrences of a word (which corresponds to term frequency)
in a particular document. However, it's also inversely proportional to the number of
documents in the corpus (which corresponds to inverse document frequency), where the
word occurs. The tf-idf value is the product of term frequency and inverse document
frequency. If we need to implement tf-idf ourselves, we have to consider logarithmic scaling
as well. Luckily, we don't have to concern ourselves with the implementation details, since
scikit-learn has a TfidfVectorizer class with an efficient implementation. This class
produces a sparse SciPy matrix. This is a term-document matrix with tf-idf values for each
combination of available words and documents. So, for a corpus with 2,000 documents and
25,000 unique words, we get a 2,000 x 25,000 matrix. A lot of the matrix values will be zero,
which is where the sparseness comes in handy. The final rank weights can be found by
summing all the tf-idf values for each word.

You can improve filtering by using the isalpha() method and names corpus:

all_names = set([name.lower() for name in names.words()])

def isStopWord(word):
 return (word in sw or word in punctuation) or not word.isalpha() or
word in all_names

We will again create a NLTK FreqDist so that we can ignore words that occur only once.
The TfidfVectorizer class needs a list of strings representing each document in the
corpus.

Analyzing Textual Data and Social Media

[211]

Create the list as follows:

for fid in movie_reviews.fileids():
 texts.append(" ".join([w.lower() for w in movie_reviews.words(fid) if
not isStopWord(w.lower()) and words[w.lower()] > 1]))

Create the vectorizer; to be safe, let it ignore stopwords:

vectorizer = TfidfVectorizer(stop_words='english')

Create the sparse term-document matrix:

matrix = vectorizer.fit_transform(texts)

Add the tf-idf values for each word and store them in a NumPy array:

sums = np.array(matrix.sum(axis=0)).ravel()

Now, create a pandas DataFrame with the word rank weights and sort it:

ranks = []

for word, val in itertools.izip(vectorizer.get_feature_names(), sums):
 ranks.append((word, val))

 df = pd.DataFrame(ranks, columns=["term", "tfidf"])
 df = df.sort(['tfidf'])
 print(df.head())

The lowest ranking values are printed as follows and can be considered for filtering:

 term tfidf
 8742 greys 0.03035
 2793 cannibalize 0.03035
 2408 briefer 0.03035
 19977 superintendent 0.03035
 14022 ology 0.03035

Analyzing Textual Data and Social Media

[212]

Now it's a matter of printing the top ranking words and presenting them to Wordle in order
to create the following cloud:

Unfortunately, you have to run the code yourself to see the difference in color with the
previous word cloud. The tf-idf metric allows for more variation than mere word frequency,
so we get more varied colors. Also, the words in the cloud seem more relevant. Refer to the
ch-09.ipynb file in this book's code bundle:

from nltk.corpus import movie_reviews
from nltk.corpus import stopwords
from nltk.corpus import names
from nltk import FreqDist
from sklearn.feature_extraction.text import TfidfVectorizer
import itertools
import pandas as pd
import numpy as np
import string

sw = set(stopwords.words('english'))
punctuation = set(string.punctuation)
all_names = set([name.lower() for name in names.words()])

def isStopWord(word):
 return (word in sw or word in punctuation) or not word.isalpha() or
word in all_names

Analyzing Textual Data and Social Media

[213]

review_words = movie_reviews.words()
filtered = [w.lower() for w in review_words if not isStopWord(w.lower())]

words = FreqDist(filtered)

texts = []

for fid in movie_reviews.fileids():
 texts.append(" ".join([w.lower() for w in movie_reviews.words(fid) if
not isStopWord(w.lower()) and words[w.lower()] > 1]))

vectorizer = TfidfVectorizer(stop_words='english')
matrix = vectorizer.fit_transform(texts)
sums = np.array(matrix.sum(axis=0)).ravel()

ranks = []

for word, val in itertools.izip(vectorizer.get_feature_names(), sums):
 ranks.append((word, val))

df = pd.DataFrame(ranks, columns=["term", "tfidf"])
df = df.sort(['tfidf'])
print(df.head())

N = int(.01 * len(df))
df = df.tail(N)

for term, tfidf in itertools.izip(df["term"].values, df["tfidf"].values):
 print(term, ":", tfidf)

Social network analysis
Social network analysis studies social relations using network theory. Nodes represent
participants in a network. Lines between nodes represent relationships. Formally, this is
called a graph. Due to the constraints of this book, we will only have a quick look at a
simple graph that comes with the popular NetworkX Python library. matplotlib will help
with the visualization of the graph.

Install NetworkX with the following command:

$ pip3 install networkx

Analyzing Textual Data and Social Media

[214]

The import convention for NetworkX is as follows:

import networkx as nx

NetworkX provides a number of sample graphs, which can be listed as follows:

print([s for s in dir(nx) if s.endswith('graph')])

Load the Davis Southern women graph and plot a histogram of the degree of connections:

G = nx.davis_southern_women_graph()
plt.figure(1)
plt.hist(nx.degree(G).values())

The resulting histogram is shown as follows:

Draw the graph with node labels as follows:

plt.figure(2)
pos = nx.spring_layout(G)
nx.draw(G, node_size=9)
nx.draw_networkx_labels(G, pos)
plt.show()

Analyzing Textual Data and Social Media

[215]

We get the following graph:

This was a short example, but it should be enough to give you a taste of what is possible.
We can use NetworkX to explore, visualize, and analyze social media networks such as
Twitter, Facebook, and LinkedIn. The subject matter doesn't even have to be a social
network–it can be anything that resembles a graph and that NetworkX can understand.

Summary
This was a chapter about textual analysis. We learned that it's a best practice in textual
analysis to get rid of stopwords.

In the bag-of-words model, we used a document to create a bag containing words found in
that same document. We learned how to build a feature vector for each document using all
the word counts.

Analyzing Textual Data and Social Media

[216]

Classification algorithms are a type of machine learning algorithm, which involve
determining the class of a given item. Naive Bayes classification is a probabilistic algorithm
based on the Bayes theorem from probability theory and statistics. The Bayes theorem states
that the posterior probability is proportional to the prior probability multiplied by the
likelihood.

The next chapter will describe machine learning in more detail. Machine learning is a
research field that shows a lot of promise. One day, it may even replace human labor
completely. We will explore what we can do with scikit-learn, the Python machine learning
package, using weather data as an example.

10
Predictive Analytics and

Machine Learning
Predictive analytics and machine learning have recently been accepted into mainstream
data science and data analytics by many industries. They are now compared to other fields,
and, without a doubt, we can expect a lot of rapid growth. It is even predicted that machine
learning will accelerate so fast that within mere decades human labor will be replaced by
intelligent machines (see http://en.wikipedia.org/wiki/Technological_singularity).
The current state of art for artificial general intelligence (AGI) is far from that utopia, but
machine learning has come a long way, and is being used in self-driving cars, chatbots, and
AI-based assistants, such as Amazon's Alexa, Apple's Siri, and Ok Google. A lot of
computing power and data is still needed to make even simple decisions, such as
determining whether pictures on the Internet contain dogs or cats. Predictive analytics uses
a variety of techniques, including machine learning, to make useful predictions. For
instance, it can be used to determine whether a customer can repay his or her loans, or to
identify female customers who are pregnant (see
http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-tee

n-girl-was-pregnant-before-her-father-did/).

To make these predictions, features are extracted from huge volumes of data. We
mentioned features before. Features, also called predictors, are input variables that can be
used to make predictions. In essence, we find features in our data and look for a function
that maps the features to a target, which may or may not be known. Finding the appropriate
function can be hard. Often, different algorithms and models are grouped together in so-
called ensembles. The output of an ensemble can be a majority vote or an average of a
group of models, but we can also use a more advanced algorithm to produce the final
result. We will not be using ensembles in this chapter, but it is something to keep in mind.

http://en.wikipedia.org/wiki/Technological_singularity
http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/
http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/

Predictive Analytics and Machine Learning

[218]

In the previous chapter, we got a taste of machine learning algorithms–the Naive Bayes
classification algorithm. We can divide machine learning algorithms and methods into three
broad categories:

Supervised learning: Supervised learning refers to methods where training data
is labeled, that is, the algorithm is provided examples of classified data. Using the
labeled training data, we create a function that maps the input variables to the
outcome variable in data. For instance, if we want to classify spam, we need to
provide examples of spam and normal e-mail messages. Examples of supervised
learning algorithms are linear regression, logistic regression, state vector
machines, random forests, k-nearest neighbor, and so on.
Unsupervised learning: Unsupervised learning refers to methods where training
data is not labeled. This type of learning can discover patterns such as clusters in
large datasets. Examples of unsupervised learning algorithms are k-means and
hierarchical clustering.
Reinforcement learning: Reinforcement learning refers to methods where the
computer learns from feedback. For example, a computer can learn to play chess
by playing against itself. Of course, other games and skills can be learned as well,
if you remember the movie War Games from 1983 (see
http://en.wikipedia.org/wiki/WarGames) think of tic-tac-toe and
thermonuclear warfare.

We will use weather prediction as a running example. In this chapter, we will mostly use
the Python scikit-learn library. This library has clustering, regression, and classification
algorithms. However, some machine learning algorithms are not covered by scikit-learn, so
for those, we will be using other APIs. The topics covered in this chapter are as follows:

Preprocessing
Classification with logistic regression
Classification with support vector machines
Regression with ElasticNetCV
Support vector regression
Clustering with affinity propagation
Mean shift
Genetic algorithms
Neural networks
Decision trees

http://en.wikipedia.org/wiki/WarGames

Predictive Analytics and Machine Learning

[219]

Preprocessing
Library scikit-learn has a preprocessing module, which is the topic of this section. In the
previous chapter, Chapter 9, Analyzing Textual Data and Social Media, we installed scikit-
learn, and we practiced a form of data preprocessing by filtering out stopwords. Some
machine learning algorithms have trouble with data that is not distributed as a Gaussian
with a mean of 0 and a variance of 1. The sklearn.preprocessing module takes care of
this issue. We will be demonstrating it in this section. We will preprocess the meteorological
data from the Dutch KNMI institute (original data for De Bilt weather station from
http://www.knmi.nl/climatology/daily_data/datafiles3/260/etmgeg_260.zip). The
data is just one column of the original datafile and contains daily rainfall values. It is stored
in the .npy format discussed in Chapter 5, Retrieving, Processing, and Storing Data. We can
load the data into a NumPy array. The values are integers that we have to multiply by 0.1 in
order to get the amount of daily precipitation in mm.

The data has the somewhat quirky feature that values below 0.05 mm are quoted as -1. We
will set those values equal to 0.025 (0.05 divided by 2). Values are missing for some days in
the original data. We will completely ignore the missing data. We can do that because we
have a lot of data points. Data is missing for about a year at the beginning of the century
and for a couple of days later in the century. The preprocessing module has an Imputer
class with default strategies to deal with missing values. Those strategies, however, seem
inappropriate in this case. Data analysis is about looking through data as if it is a window–a
window to knowledge. Data cleaning and imputing are activities that can make our
window nicer to look through. However, we should be careful not to distort the original
data too much.

The main feature for our machine learning examples will be an array of day-of-the-year
values (1 to 366). This should help explain any seasonal effects.

The mean, variance, and output from the Anderson-Darling test (see Chapter 4, Statistics
and Linear Algebra) are printed as follows:

Rain mean 2.17919594267
Rain variance 18.803443919
Anderson rain (inf, array([0.576, 0.656, 0.787, 0.918,
1.092]), array([15. , 10. , 5. , 2.5, 1.]))

http://www.knmi.nl/climatology/daily_data/datafiles3/260/etmgeg_260.zip

Predictive Analytics and Machine Learning

[220]

We can safely conclude that the data doesn't have a 0 mean and a variance of 1, and it does
not conform to a normal distribution. The data has a large percentage of 0 values
corresponding to days on which it didn't rain. Large amounts of rain are increasingly rare
(which is a good thing). However, the data distribution is completely asymmetric and,
therefore, not Gaussian. We can easily arrange for a 0 mean and a variance of 1. Scale the
data with the scale() function:

scaled = preprocessing.scale(rain)

We now get the required values for the mean and variance, but the data distribution
remains asymmetric:

Scaled mean 3.41301602808e-17
Scaled variance 1.0
Anderson scaled (inf, array([0.576, 0.656, 0.787, 0.918,
1.092]), array([15. , 10. , 5. , 2.5, 1.]))

Sometimes, we want to convert numerical feature values into Boolean values. This is often
used in text analysis in order to simplify computation. Perform the conversion with the
binarize() function:

binarized = preprocessing.binarize(rain)
print(np.unique(binarized), binarized.sum())

By default, a new array is created; we could have also chosen to perform the operation in-
place. The default threshold is at zero, meaning that positive values are replaced by 1 and
negative values by 0:

[0. 1.] 24594.0

The LabelBinarizer class can label integers as classes (in the context of classification):

lb = preprocessing.LabelBinarizer()
lb.fit(rain.astype(int))
print(lb.classes_)

The output is a list of integers from 0 to 62. Refer to the ch-10.ipynb file in this book's
code bundle:

import numpy as np
from sklearn import preprocessing
from scipy.stats import anderson

rain = np.load('rain.npy')
rain = .1 * rain
rain[rain < 0] = .05/2
print("Rain mean", rain.mean())

Predictive Analytics and Machine Learning

[221]

print("Rain variance", rain.var())
print("Anderson rain", anderson(rain))

scaled = preprocessing.scale(rain)
print("Scaled mean", scaled.mean())
print("Scaled variance", scaled.var())
print("Anderson scaled", anderson(scaled))

binarized = preprocessing.binarize(rain)
print(np.unique(binarized), binarized.sum())

lb = preprocessing.LabelBinarizer()
lb.fit(rain.astype(int))
print(lb.classes_)

Classification with logistic regression
Logistic regression is a type of a classification algorithm (see
http://en.wikipedia.org/wiki/Logistic_regression). This algorithm can be used to
predict probabilities associated with a class or an event occurring. A classification problem
with multiple classes can be reduced to a binary classification problem. In this simplest case,
a high probability for one class means a low probability for another class. Logistic
regression is based on the logistic function, which has values in the range between 0 and
1–as is the case with probabilities. The logistic function can therefore be used to transform
arbitrary values into probabilities.

We can define a function that performs classification with logistic regression. Create a
classifier object as follows:

clf = LogisticRegression(random_state=12)

The random_state parameter acts like a seed for a pseudo random generator. Earlier in
this book, we touched upon the importance of cross-validation as a technique to avoid
overfitting. The k-fold cross-validation is a form of cross-validation involving k (a small
integer number) and random data partitions called folds. In k iterations, each fold is used
once for validation and the rest of the data is used for training. The classes in scikit-learn
have a default k value of 3, but typically we may want to set it to a higher value, such as 5 or
10. The results of the iterations can be combined at the end. The scikit-learn has a utility
KFold class for k-fold cross-validation. Create a KFold object with 10 folds as follows:

kf = KFold(len(y), n_folds=10)

http://en.wikipedia.org/wiki/Logistic_regression

Predictive Analytics and Machine Learning

[222]

Train the data with the fit() method as follows:

clf.fit(x[train], y[train])

The score() method measures classification accuracy:

scores.append(clf.score(x[test], y[test]))

In this example, we will use the day of the year and previous day rain amounts as features.
Construct an array with features, as follows:

x = np.vstack((dates[:-1], rain[:-1]))

As classes, define first the rainless days with an amount of rain registered as 0; second,
those with a low amount of rain corresponding to -1 in our data; and third, the rainy days.
These three classes can be linked to the sign of values in our data:

y = np.sign(rain[1:])

Using this setup, we get an average accuracy of 57 percent. For the scikit-learn sample iris
dataset, we get an average accuracy of 41 percent (refer to ch-10.ipynb file in this book's
code bundle):

from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import KFold
from sklearn import datasets
import numpy as np

def classify(x, y):
 clf = LogisticRegression(random_state=12)
 scores = []
 kf = KFold(len(y), n_folds=10)
 for train,test in kf:
 clf.fit(x[train], y[train])
 scores.append(clf.score(x[test], y[test]))

 print("accuracy", np.mean(scores))

rain = np.load('rain.npy')
dates = np.load('doy.npy')

x = np.vstack((dates[:-1], rain[:-1]))
y = np.sign(rain[1:])
classify(x.T, y)

#iris example
iris = datasets.load_iris()
x = iris.data[:, :2]

Predictive Analytics and Machine Learning

[223]

y = iris.target
classify(x, y)

Classification with support vector machines
The support vector machines (SVM) can be used for regression that is support vector
regression (SVR) and support vector classification (SVC). The algorithm was invented by
Vladimir Vapnik in 1993 (see http://en.wikipedia.org/wiki/Support_vector_machine).
SVM maps data points to points in multidimensional space. The mapping is performed by a
so-called kernel function. The kernel function can be linear or nonlinear. The classification
problem is then reduced to finding a hyperplane or hyperplanes that best separate the
points into classes. It can be hard to perform the separation with hyperplanes, which lead to
the emergence of the concept of the soft margin. The soft margin measures the tolerance for
misclassification and is governed by a constant commonly denoted with C. Another
important parameter is the type of the kernel function, which can be one of the following:

A linear function
A polynomial function
A radial basis function
A sigmoid function

A grid search can find the proper parameters for a problem. This is a systematic method
that tries all possible parameter combinations. We will perform a grid search with the scikit-
learn GridSearchCV class. We give this class a classifier or regressor type object with a
dictionary. The keys of the dictionary are the parameters that we want to tweak. The values
of the dictionary are the corresponding lists of parameter values to try. The scikit-learn API
has a number of classes that add cross-validation functionality to a counterpart class. Cross-
validation is turned off by default. Create a GridSearchCV object as follows:

clf = GridSearchCV(SVC(random_state=42, max_iter=100), {'kernel':
['linear', 'poly', 'rbf'], 'C':[1, 10]})

In this line, we specified the number of maximum iterations to not test our patience too
much. Cross-validation was also turned off to speed up the process. Furthermore, we varied
the types of kernels and the soft margin parameter.

http://en.wikipedia.org/wiki/Support_vector_machine

Predictive Analytics and Machine Learning

[224]

The preceding code snippet created a grid of two by three for the possible parameter
variations. If we had more time, we could have created a bigger grid with more possible
values. We would also set the cv parameter of GridSearchCV to the number of folds we
want, such as 5 or 10. The maximum iterations should be set to a higher value as well. The
different kernels can vary wildly in the time required to fit. We can print more information,
such as the execution time for each combination of parameter values with the verbose
parameter set to a non-zero integer value. Typically, we want to vary the soft-margin
parameter by orders of magnitude, for instance, from 1 to 10,000. We can achieve this with
the NumPy logspace() function.

Applying this classifier, we obtain an accuracy of 56 percent for the weather data and an
accuracy of 82 percent for the iris sample dataset. The grid_scores_ field of
GridSearchCV contains scores resulting from the grid search. For the weather data, the
scores are as follows:

[mean: 0.42879, std: 0.11308, params: {'kernel': 'linear', 'C': 1},
 mean: 0.55570, std: 0.00559, params: {'kernel': 'poly', 'C': 1},
 mean: 0.36939, std: 0.00169, params: {'kernel': 'rbf', 'C': 1},
 mean: 0.30658, std: 0.03034, params: {'kernel': 'linear', 'C':10},
 mean: 0.41673, std: 0.20214, params: {'kernel': 'poly', 'C': 10},
 mean: 0.49195, std: 0.08911, params: {'kernel': 'rbf', 'C': 10}]

For the iris sample data, we get the following scores:

[mean: 0.80000, std: 0.03949, params: {'kernel': 'linear', 'C': 1},
 mean: 0.58667, std: 0.12603, params: {'kernel': 'poly', 'C': 1},
 mean: 0.80000, std: 0.03254, params: {'kernel': 'rbf', 'C': 1},
 mean: 0.74667, std: 0.07391, params: {'kernel': 'linear', 'C':10},
 mean: 0.56667, std: 0.13132, params: {'kernel': 'poly', 'C': 10},
 mean: 0.79333, std: 0.03467, params: {'kernel': 'rbf', 'C': 10}]

Refer to the ch-10.ipynb file in this book's code bundle:

from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn import datasets
import numpy as np
from pprint import PrettyPrinter

def classify(x, y):
 clf = GridSearchCV(SVC(random_state=42, max_iter=100), {'kernel':
['linear', 'poly', 'rbf'], 'C':[1, 10]})

 clf.fit(x, y)
 print("Score", clf.score(x, y))
 PrettyPrinter().pprint(clf.grid_scores_)

Predictive Analytics and Machine Learning

[225]

rain = np.load('rain.npy')
dates = np.load('doy.npy')

x = np.vstack((dates[:-1], rain[:-1]))
y = np.sign(rain[1:])
classify(x.T, y)

#iris example
iris = datasets.load_iris()
x = iris.data[:, :2]
y = iris.target
classify(x, y)

Regression with ElasticNetCV
Elastic net regularization is a method that reduces the danger of overfitting in the context of
regression (see http://en.wikipedia.org/wiki/Elastic_net_regularization). The elastic
net regularization linearly combines the least absolute shrinkage and selection operator
(LASSO) and ridge methods. LASSO limits the so-called L1 norm, or Manhattan distance.
This norm measures the sum of the difference between the absolute coordinates of a pair of
points. The ridge method uses a penalty, which is the L1 norm squared. For regression
problems, the goodness of fit is often determined using the coefficient of determination,
also called R squared (see
http://en.wikipedia.org/wiki/Coefficient_of_determination). Unfortunately, there
are several definitions of R squared. Also, the name is a bit misleading, since negative
values are possible. A perfect fit would have a coefficient of determination of 1. Since the
definitions allow for a wide range of acceptable values, we should aim for a score that is as
close to 1 as possible.

Let's use a 10-fold cross-validation. Define an ElasticNetCV object as follows:

clf = ElasticNetCV(max_iter=200, cv=10, l1_ratio = [.1, .5, .7, .9, .95,
.99, 1])

The ElasticNetCV class has an l1_ratio argument with values between 0 and 1. If the
value is 0, we have a ridge regression; if it is 1, we have a LASSO regression. Otherwise, we
have a mixture. We can either specify a single number or a list of numbers to choose from.
For the rain data, we get the following score:

Score 0.0527838760942

http://en.wikipedia.org/wiki/Elastic_net_regularization
http://en.wikipedia.org/wiki/Coefficient_of_determination

Predictive Analytics and Machine Learning

[226]

This score suggests that we are underfitting the data. This can occur for several reasons, for
example, perhaps we are not using enough features, or perhaps the model is wrong. For the
Boston house price data, with all the present features we get the following:

Score 0.683143903455

The predict() method gives a prediction for new data. We will visualize the quality of the
predictions with a scatter plot. For the rain data, we get the following plot:

The plot in the previous figure confirms that we have a bad fit (underfitting). A straight
diagonal line through the origin would indicate a perfect fit. That's almost what we get for
the Boston house price data:

Predictive Analytics and Machine Learning

[227]

Refer to the ch-10.ipynb file in this book's code bundle:

from sklearn.linear_model import ElasticNetCV
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt

def regress(x, y, title):
 clf = ElasticNetCV(max_iter=200, cv=10, l1_ratio = [.1, .5, .7, .9,
.95, .99, 1])

 clf.fit(x, y)
 print("Score", clf.score(x, y))

 pred = clf.predict(x)
 plt.title("Scatter plot of prediction and " + title)
 plt.xlabel("Prediction")
 plt.ylabel("Target")
 plt.scatter(y, pred)
 # Show perfect fit line
 if "Boston" in title:
 plt.plot(y, y, label="Perfect Fit")
 plt.legend()

 plt.grid(True)
 plt.show()

rain = .1 * np.load('rain.npy')
rain[rain < 0] = .05/2
dates = np.load('doy.npy')

x = np.vstack((dates[:-1], rain[:-1]))
y = rain[1:]
regress(x.T, y, "rain data")

boston = datasets.load_boston()
x = boston.data
y = boston.target
regress(x, y, "Boston house prices")

Predictive Analytics and Machine Learning

[228]

Support vector regression
As mentioned before, support vector machines can be used for regression. In the case of
regression, we are using a hyperplane not to separate points, but for a fit. A learning curve
is a way of visualizing the behavior of a learning algorithm. It is a plot of training and test
scores for a range of train data sizes. Creating a learning curve forces us to train the
estimator multiple times and is, therefore, on aggregate, slow. We can compensate for this
by creating multiple concurrent estimator jobs. Support vector regression is one of the
algorithms that may require scaling. If we do this, then we get the following top scores:

Max test score Rain 0.0161004084576
Max test score Boston 0.662188537037

This is similar to the results obtained with the ElasticNetCV class. Many scikit-learn
classes have an n_jobs parameter for that purpose. As a rule of thumb, we often create as
many jobs as there are CPUs in our system. The jobs are created using the standard Python
multiprocessing API. Call the learning_curve() function to perform training and testing:

train_sizes, train_scores, test_scores = learning_curve(clf, X, Y,
n_jobs=ncpus)

Plot the scores by averaging them:

plt.plot(train_sizes, train_scores.mean(axis=1), label="Train score")
plt.plot(train_sizes, test_scores.mean(axis=1), '--', label="Test score")

The rain data learning curve looks like this:

Predictive Analytics and Machine Learning

[229]

A learning curve is something we are familiar with in our daily lives. The more experience
we have, the more we should have learned. In data analysis terms, we should have a better
score if we add more data. If we have a good training score, but a poor test score, this
means that we are overfitting. Our model only works on the training data. The Boston
house price data learning curve looks much better:

The code is in the sv_regress.py file in this book's code bundle:

import numpy as np
from sklearn import datasets
from sklearn.learning_curve import learning_curve
from sklearn.svm import SVR
from sklearn import preprocessing
import multiprocessing
import matplotlib.pyplot as plt

def regress(x, y, ncpus, title):
 X = preprocessing.scale(x)
 Y = preprocessing.scale(y)
 clf = SVR(max_iter=ncpus * 200)

 train_sizes, train_scores, test_scores = learning_curve(clf, X, Y,
n_jobs=ncpus)

 plt.figure()
 plt.title(title)
 plt.plot(train_sizes, train_scores.mean(axis=1), label="Train score")
 plt.plot(train_sizes, test_scores.mean(axis=1), '--', label="Test

Predictive Analytics and Machine Learning

[230]

score")
 print("Max test score " + title, test_scores.max())
 plt.grid(True)
 plt.legend(loc='best')
 plt.show()

rain = .1 * np.load('rain.npy')
rain[rain < 0] = .05/2
dates = np.load('doy.npy')

x = np.vstack((dates[:-1], rain[:-1]))
y = rain[1:]
ncpus = multiprocessing.cpu_count()
regress(x.T, y, ncpus, "Rain")

boston = datasets.load_boston()
x = boston.data
y = boston.target
regress(x, y, ncpus, "Boston")

Clustering with affinity propagation
Clustering aims to partition data into groups called clusters. Clustering is usually
unsupervised in the sense that no examples are given. Some clustering algorithms require a
guess for the number of clusters, while other algorithms don't. Affinity propagation falls in
the latter category. Each item in a dataset can be mapped into Euclidean space using feature
values. Affinity propagation depends on a matrix containing Euclidean distances between
data points. Since the matrix can quickly become quite large, we should be careful not to
take up too much memory. The scikit-learn library has utilities to generate structured data.
Create three data blobs as follows:

x, _ = datasets.make_blobs(n_samples=100, centers=3, n_features=2,
random_state=10)

Call the euclidean_distances() function to create the aforementioned matrix:

S = euclidean_distances(x)

Cluster using the matrix in order to label the data with the corresponding cluster:

aff_pro = cluster.AffinityPropagation().fit(S)
labels = aff_pro.labels_

Predictive Analytics and Machine Learning

[231]

If we plot the cluster, we get the following figure:

Refer to the ch-10.ipynb.py file in this book's code bundle:

from sklearn import datasets
from sklearn import cluster
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import euclidean_distances

x, _ = datasets.make_blobs(n_samples=100, centers=3, n_features=2,
random_state=10)
S = euclidean_distances(x)

aff_pro = cluster.AffinityPropagation().fit(S)
labels = aff_pro.labels_

styles = ['o', 'x', '^']

for style, label in zip(styles, np.unique(labels)):
 print(label)
 plt.plot(x[labels == label], style, label=label)
plt.title("Clustering Blobs")
plt.grid(True)
plt.legend(loc='best')
plt.show()

Predictive Analytics and Machine Learning

[232]

Mean shift
Mean shift is another clustering algorithm that doesn't require an estimate for the number
of clusters. It has been successfully applied to image processing. The algorithm tries to
iteratively find the maxima of a density function. Before demonstrating mean shift, we will
average the rain data on a day-of-the-year basis using a Pandas DataFrame. Create the
DataFrame and average its data as follows:

df = pd.DataFrame.from_records(x.T, columns=['dates', 'rain'])
df = df.groupby('dates').mean()

df.plot()

The following plot is the result:

Cluster the data with the mean shift algorithm as follows:

x = np.vstack((np.arange(1, len(df) + 1) , df.as_matrix().ravel()))
x = x.T
ms = cluster.MeanShift()
ms.fit(x)
labels = ms.predict(x)

Predictive Analytics and Machine Learning

[233]

If we visualize the data with different line widths and shading for the three resulting
clusters, the following figure is obtained:

As you can see, we have three clusters based on the average rainfall in mm on one day of
the year (1-366). The complete code is in the ch-10.ipynb file in this book's code bundle:

import numpy as np
from sklearn import cluster
import matplotlib.pyplot as plt
import pandas as pd

rain = .1 * np.load('rain.npy')
rain[rain < 0] = .05/2
dates = np.load('doy.npy')
x = np.vstack((dates, rain))
df = pd.DataFrame.from_records(x.T, columns=['dates', 'rain'])
df = df.groupby('dates').mean()
df.plot()
x = np.vstack((np.arange(1, len(df) + 1) , df.as_matrix().ravel()))
x = x.T
ms = cluster.MeanShift()
ms.fit(x)
labels = ms.predict(x)

plt.figure()
grays = ['0', '0.5', '0.75']

for gray, label in zip(grays, np.unique(labels)):
 match = labels == label
 x0 = x[:, 0]

Predictive Analytics and Machine Learning

[234]

 x1 = x[:, 1]
 plt.plot(x0[match], x1[match], lw=label+1, label=label)
 plt.fill_between(x0, x1, where=match, color=gray)

plt.grid(True)
plt.legend()
plt.show()

Genetic algorithms
This is the most controversial section in the book so far. Genetic algorithms are based on
the biological theory of evolution (see
http://en.wikipedia.org/wiki/Evolutionary_algorithm). This type of algorithm is
useful for searching and optimization. For instance, we can use it to find the optimal
parameters for a regression or classification problem.

Humans and other life forms on Earth carry genetic information in chromosomes.
Chromosomes are frequently modeled as strings. A similar representation is used in genetic
algorithms. The first step is to initialize the population with random individuals and related
representations of genetic information. We can also initialize with already-known candidate
solutions for the problem. After that, we go through many iterations, called generations.
During each generation, individuals are selected for mating based on a predefined fitness
function. The fitness function evaluates how close an individual is to the desired solution.

Two genetic operators generate new genetic information:

Crossover: This occurs via mating and creates new children. The one-point
crossover process takes a piece of genetic information from one parent and a
complementary piece from the other parent. For example, if the information is
represented by 100 list elements, crossover may take the first 80 elements from
the first parent and the last 20 from the other parent. In genetic algorithms, it is
possible to produce children from more than two parents. This is an area under
research (refer to Eiben, A. E. et al. Genetic algorithms with multi-parent
recombination, Proceedings of the International Conference on Evolutionary
Computation – PPSN III. The Third Conference on Parallel Problem Solving from
Nature: 78-87. ISBN 3-540-58484-6, 1994).
Mutation: This is controlled by a fixed mutation rate. This concept has been
explored in popular culture, including several Hollywood movies. Mutation is
rare and often detrimental or even fatal. However, sometimes mutants can
acquire desirable traits. In certain cases, the trait can be passed on to future
generations.

http://en.wikipedia.org/wiki/Evolutionary_algorithm

Predictive Analytics and Machine Learning

[235]

Eventually, the new individuals replace the old population and we can start a new iteration.
In this example, we will use the Python DEAP library. Install DEAP as follows:

$ pip3 install deap

Start by defining a Fitness subclass that maximizes fitness:

creator.create("FitnessMax", base.Fitness, weights=(1.0,))

Then, define a template for each individual in the population:

creator.create("Individual", array.array, typecode='d',
fitness=creator.FitnessMax)

DEAP has the concept of a toolbox, which is a registry of necessary functions. Create a
toolbox and register the initialization functions as follows:

toolbox = base.Toolbox()
toolbox.register("attr_float", random.random)
toolbox.register("individual", tools.initRepeat, creator.Individual,
toolbox.attr_float, 200)
toolbox.register("populate", tools.initRepeat, list, toolbox.individual)

The first function generates floating-point numbers between 0 and 1. The second function
creates an individual with a list of 200 floating point numbers. The third function creates a
list of individuals. This list represents the population of possible solutions for a search or
optimization problem.

In a society, we want “normal” individuals, but also people like Einstein. In Chapter 4,
Statistics and Linear Algebra, we were introduced to the shapiro() function, which
performs a normality test. For an individual to be normal, the normality test p-value of his
or her list needs to be as high as possible. The following code defines the fitness function:

def eval(individual):
 return shapiro(individual)[1],

Let's define the genetic operators:

toolbox.register("evaluate", eval)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.1)
toolbox.register("select", tools.selTournament, tournsize=4)

Predictive Analytics and Machine Learning

[236]

The following list will give you an explanation about the preceding genetic operators:

evaluate: This operator measures the fitness of each individual. In this example,
the p-value of a normality test is used as a fitness score.
mate: This operator produces children. In this example, it uses two-point
crossover.
mutate: This operator changes an individual at random. For a list of Boolean
values, this means that some values are flipped from True to False and vice
versa.
select: This operator selects the individuals that are allowed to mate.

In the preceding code snippet, we specified that we are going to use two-point crossover
and the probability of an attribute to be flipped. Generate 400 individuals as the initial
population:

pop = toolbox.populate(n=400)

Now start the evolution process as follows:

hof = tools.HallOfFame(1)
stats = tools.Statistics(key=lambda ind: ind.fitness.values)
stats.register("max", np.max)

algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=80,
stats=stats, halloffame=hof)

The program reports statistics, including the maximum fitness for each generation. We
specified the crossover probability, mutation rate, and the number of generations after
which to stop. The following is an extract of the displayed statistics report:

 gen nevals max
 0 400 0.000484774
 1 245 0.000776807
 2 248 0.00135569
 ...
 79 250 0.99826
 80 248 0.99826

Predictive Analytics and Machine Learning

[237]

As you can see, we start out with distributions that are far from normal, but eventually we
get an individual with the following histogram:

Refer to the ch-10.ipynb file in this book's code bundle:

import array
import random
import numpy as np
from deap import algorithms
from deap import base
from deap import creator
from deap import tools
from scipy.stats import shapiro
import matplotlib.pyplot as plt

creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", array.array, typecode='d',
fitness=creator.FitnessMax)

toolbox = base.Toolbox()
toolbox.register("attr_float", random.random)
toolbox.register("individual", tools.initRepeat, creator.Individual,
toolbox.attr_float, 200)
toolbox.register("populate", tools.initRepeat, list, toolbox.individual)

def eval(individual):
 return shapiro(individual)[1],

toolbox.register("evaluate", eval)

Predictive Analytics and Machine Learning

[238]

toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.1)
toolbox.register("select", tools.selTournament, tournsize=4)

random.seed(42)

pop = toolbox.populate(n=400)
hof = tools.HallOfFame(1)
stats = tools.Statistics(key=lambda ind: ind.fitness.values)
stats.register("max", np.max)

algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=80,
stats=stats, halloffame=hof)

print(shapiro(hof[0])[1])
plt.hist(hof[0])
plt.grid(True)
plt.show()

Neural networks
Artificial neural networks (ANN) are models inspired by the animal brain (highly evolved
animals). A neural network is a network of neurons-units with inputs and outputs. For
example, the input of a neuron can be a value related to the pixel of an image and the
output of a neuron can be passed to another neuron and then another, and so on, thus
creating a multilayered network. Neural networks contain adaptive elements, making them
suitable to deal with nonlinear models and pattern recognition problems. We will again try
to predict whether it is going to rain based on day-of-the-year and previous day values.
Let's use the theanets Python library, which can be installed as follows:

$ pip3 install theanets nose_parameterized

One of the technical reviewers encountered an error, which was resolved by updating
NumPy and SciPy. We first create an Experiment corresponding to a neural network and
then train the network. Create a network with two input neurons and one output neuron:

net = theanets.Regressor(layers=[2,3,1])

The network has a hidden layer with three neurons and uses the standard Python
multiprocessing API to speed up computations. Train using a training and validation
dataset:

train = [x[:N], y[:N]]
valid = [x[N:], y[N:]]
net.train(train,valid,learning_rate=0.1,momentum=0.5)

Predictive Analytics and Machine Learning

[239]

Get predictions for the validation data as follows:

pred = net.predict(x[N:]).ravel()

The scikit-learn library has a utility function which computes the accuracy of a classifier.
Compute the accuracy as follows:

print("Pred Min", pred.min(), "Max", pred.max())
print("Y Min", y.min(), "Max", y.max())
print("Accuracy", accuracy_score(y[N:], pred >= .5))

Due to the nature of neural nets, the output values can vary. The output may look like the
following:

Pred Min 0.615606596762 Max 0.615606596762
Y Min 0.0 Max 1.0
Accuracy 0.634133878385

Refer to the ch-10.ipynb file in this book's code bundle:

import numpy as np
import theanets
import multiprocessing
from sklearn import datasets
from sklearn.metrics import accuracy_score

rain = .1 * np.load('rain.npy')
rain[rain < 0] = .05/2
dates = np.load('doy.npy')
x = np.vstack((dates[:-1], np.sign(rain[:-1])))
x = x.T

y = np.vstack(np.sign(rain[1:]),)
N = int(.9 * len(x))

train = [x[:N], y[:N]]
valid = [x[N:], y[N:]]

net = theanets.Regressor(layers=[2,3,1])

net.train(train,valid,learning_rate=0.1,momentum=0.5)

pred = net.predict(x[N:]).ravel()
print("Pred Min", pred.min(), "Max", pred.max())
print("Y Min", y.min(), "Max", y.max())
print("Accuracy", accuracy_score(y[N:], pred >= .5))

Predictive Analytics and Machine Learning

[240]

Decision trees
The if a: else b statement is one of the most common statements in Python
programming. By nesting and combining such statements, we can build a so-called decision
tree. This is similar to an old-fashioned flowchart, although flowcharts also allow loops. The
application of decision trees in machine learning is called decision tree learning. The end
nodes of the trees in decision tree learning, also known as leaves, contain the class labels of
a classification problem. Each non-leaf node is associated with a Boolean condition
involving feature values. The scikit-learn implementation uses Gini impurity and entropy
as information metrics. These metrics measure the probability that an item is misclassified
(see http://en.wikipedia.org/wiki/Decision_tree_learning). Decision trees are easy to
understand, use, visualize, and verify. To visualize the tree, we will make use of Graphviz,
which can be downloaded from http://graphviz.org/. We also need to install pydot2, as
follows:

$ pip3 install pydot2

Split the rain data into a training and test set as follows, using the scikit-learn
train_test_split() function:

x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=37)

Create DecisionTreeClassifier as follows:

clf = tree.DecisionTreeClassifier(random_state=37)

We will use the scikit-learn RandomSearchCV class to try out a range of parameters. Use the
class as follows:

params = {"max_depth": [2, None],
 "min_samples_leaf": sp_randint(1, 5),
 "criterion": ["gini", "entropy"]}
rscv = RandomizedSearchCV(clf, params)
rscv.fit(x_train,y_train)

We get the following best score and parameters from the search:

 Best Train Score 0.703164923517
 Test Score 0.705058763413
 Best params {'criterion': 'gini', 'max_depth': 2, 'min_samples_leaf':
2}

http://en.wikipedia.org/wiki/Decision_tree_learning
http://graphviz.org/

Predictive Analytics and Machine Learning

[241]

It's good to visualize the decision tree, even if it's only to verify our assumptions. Create a
decision tree figure with the following code:

sio = io.StringIO()
tree.export_graphviz(rscv.best_estimator_, out_file=sio,
feature_names=['day-of-year','yest'])
dec_tree = pydot.graph_from_dot_data(sio.getvalue())

print("Best Train Score", rscv.best_score_)
print("Test Score", rscv.score(x_test, y_test))
print("Best params", rscv.best_params_)

from IPython.display import Image
Image(dec_tree.create_png())

Refer to the following plot for the end result:

In the non-leaf nodes, we see the conditions printed as the top line. If the condition is true,
we go to the left child; otherwise, we go to the right. When we reach a leaf node, the class
with the highest value, as given in the bottom line, wins. Inspect the ch-10.ipynb file in
this book's code bundle:

from sklearn.model_selection import train_test_split
from sklearn import tree
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint as sp_randint
import pydotplus as pydot
import io
import numpy as np

Predictive Analytics and Machine Learning

[242]

rain = .1 * np.load('rain.npy')
rain[rain < 0] = .05/2
dates = np.load('doy.npy').astype(int)
x = np.vstack((dates[:-1], np.sign(rain[:-1])))
x = x.T

y = np.sign(rain[1:])

x_train, x_test, y_train, y_test = train_test_split(x, y,
random_state=37)

clf = tree.DecisionTreeClassifier(random_state=37)
params = {"max_depth": [2, None],
 "min_samples_leaf": sp_randint(1, 5),
 "criterion": ["gini", "entropy"]}
rscv = RandomizedSearchCV(clf, params)
rscv.fit(x_train,y_train)

sio = io.StringIO()
tree.export_graphviz(rscv.best_estimator_, out_file=sio,
feature_names=['day-of-year','yest'])
dec_tree = pydot.graph_from_dot_data(sio.getvalue())

print("Best Train Score", rscv.best_score_)
print("Test Score", rscv.score(x_test, y_test))
print("Best params", rscv.best_params_)

from IPython.display import Image
Image(dec_tree.create_png())

Summary
This chapter was devoted to predictive modeling and machine learning. These are very
large fields to cover in one chapter, so you may want to have a look at some of the books
from Packt Publishing (see h t t p ://w w w . p a c k t p u b . c o m). Predictive analytics uses a variety
of techniques, including machine learning, to make useful predictions–for instance, to
determine whether it is going to rain tomorrow.

SVM maps the data points to points in multidimensional space. The classification problem
is then reduced to finding a hyperplane or hyperplanes that best separate the points into
classes.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com

Predictive Analytics and Machine Learning

[243]

The elastic net regularization linearly combines the LASSO and ridge methods. For
regression problems, goodness-of-fit is often determined with the coefficient of
determination, also called R squared. Some clustering algorithms require an estimation of
the number of clusters, while other algorithms don't.

The first step in genetic algorithms is to initialize the population with random individuals
and a related representation of genetic information. During each generation, individuals are
selected for mating based on a predefined fitness function. The application of decision trees
in machine learning is called decision tree learning.

The next chapter, Chapter 11, Environments Outside the Python Ecosystem and Cloud
Computing, describes interoperability and cloud possibilities.

11
Environments Outside the

Python Ecosystem and Cloud
Computing

Outside the Python ecosystem, programming languages such as R, C, Java, and Fortran are
fairly popular. In this chapter, we will delve into the particulars of exchanging information
with these environments.

Cloud computing aims to deliver computing power as a utility over the Internet. This
means that we don't need to have a lot of powerful hardware locally. Instead, we pay as we
go, depending on our current needs. We will also talk about how to get our Python code in
the Cloud. This is a rapidly evolving industry in a fast-paced world. We have many options
available PythonAnywhere. Amazon Web Services (AWS) is deliberately not discussed in
this book, since other books, such as Building Machine Learning Systems with Python, Willi
Richert and Luis Pedro Coelho, Packt Publishing, cover the topic in great detail.

Data science toolbox, available from http://datasciencetoolbox.org/, is a virtual
environment for data analysis based on Linux, which can be run locally or on AWS. The
instructions given on the Data Science Toolbox website are very clear, and should help you
set up an environment with lots of preinstalled Python packages.

The topics that will be covered in this chapter are as follows:

Exchanging information with Matlab/Octave
Installing rpy2 package
Interfacing with R

http://datasciencetoolbox.org/

Environments Outside the Python Ecosystem and Cloud Computing

[245]

Sending NumPy arrays to Java
Integrating SWIG and NumPy
Integrating Boost and Python
Using Fortran code through f2py
PythonAnywhere Cloud

Exchanging information with Matlab/Octave
Matlab and its open source alternative Octave are popular numerical programs and
programming languages. Octave and Matlab have syntax very similar to Python's. In fact,
you can find websites that compare their syntax (for instance, see h t t p ://w i k i . s c i p y . o r g

/N u m P y _ f o r _ M a t l a b _ U s e r s).

Download Octave from h t t p ://w w w . g n u . o r g /s o f t w a r e /o c t a v e /d o w n l o a

d . h t m l .

The Octave version used at the time of writing was 4.2.0. The scipy.io.savemat()
function saves an array in a file compliant to the Octave and Matlab format. The function
accepts the name of the file and a dictionary with a name for the array and the values as
parameters. Refer to the ch-11.ipynb file in this book's code bundle:

import statsmodels.api as sm
from scipy.io import savemat

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data
savemat("sunspots", {"sunspots": df.values})

The preceding code stores sunspot data in a file called sunspots.mat. The extension is
added automatically. Start the Octave Graphical User Interface (GUI) or the command line
interface. Load the file we created and view the data as follows:

 octave:1> load sunspots.mat
 octave:2> sunspots
 sunspots =
 1.7000e+03 5.0000e+00
 1.7010e+03 1.1000e+01
 1.7020e+03 1.6000e+01

http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://wiki.scipy.org/NumPy_for_Matlab_Users
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html

Environments Outside the Python Ecosystem and Cloud Computing

[246]

Installing rpy2 package
The R programming language is popular among statisticians. It is written in C and Fortran
and is available under the GNU General Public License (GPL). R has support for modeling,
statistical tests, time-series analysis, classification, visualization, and clustering. The
Comprehensive R Archive Network (CRAN) and other repository websites offer
thousands of R packages for various tasks.

Download R from h t t p ://w w w . r - p r o j e c t . o r g /.

The rpy2 package facilitates interfacing with R from Python. Install rpy2 as follows with
pip:

$ pip3 install rpy2

If you already have rpy2 installed, follow the instructions on
http://rpy.sourceforge.net/rpy2/doc-dev/html/overview.html as
upgrading is not a straightforward process.

Interfacing with R
R provides a datasets package that contains sample datasets. The morley dataset has data
from measurements of the speed of light made in 1879. The speed of light is a fundamental
physical constant and its value is currently known very precisely. The data is described at
http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/morley.html. The
speed of light value can be found in the scipy.constants module. The R data is stored in
an R DataFrame with three columns:

The experiment number, from one to five
The run number, with twenty runs per experiment, bringing the total number of
measurements to 100
The measured speed of light in kilometers per second with 299,000 subtracted

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://rpy.sourceforge.net/rpy2/doc-dev/html/overview.html
http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/morley.html

Environments Outside the Python Ecosystem and Cloud Computing

[247]

The rpy2.robjects.r() function executes R code in a Python environment. Load the data
as follows:

pandas2ri.activate()
r.data('morley')

The Pandas library's R interface via the pandas.rpy.common module is deprecated, and
thus it is suggested that the reader uses rpy2 objects module. Load the data into a Pandas
DataFrame as follows:

df = r['morley']

Let's group the data by experiment with the following code, which creates a five by two
NumPy array:

samples = dict(list(df.groupby('Expt')))
samples = np.array([samples[i]['Speed'].values for i in samples.keys()])

When we have data from different experiments, it's interesting to know whether the data
points of these experiments come from the same distribution. The Kruskal-Wallis one-way
analysis of variance (refer to
http://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_one-way_analysis_of_varianc

e) is a statistical method, which analyzes samples without making assumptions about their
distributions. The null hypothesis for this test is that all the medians of the samples are
equal. The test is implemented in the scipy.stats.kruskal() function. Perform the test
as follows:

print("Kruskal", kruskal(samples[0], samples[1], samples[2], samples[3],
samples[4]))

The test statistic and pvalue are printed in the following line:

Kruskal KruskalResult(statistic=15.022124661246552,
pvalue=0.0046555484175328015)

We can reject the null hypothesis, but this doesn't tell us which experiment or experiments
have a deviating median. Further analysis is left as an exercise for the reader. If we plot the
minimum, maximum, and mean for each experiment, we get the following figure:

http://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_one-way_analysis_of_variance
http://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_one-way_analysis_of_variance

Environments Outside the Python Ecosystem and Cloud Computing

[248]

Check out the ch-11.ipynb file in this book's code bundle:

import rpy2.robjects as ro
from rpy2.robjects import pandas2ri
from rpy2.robjects import r

from scipy.stats import kruskal
import matplotlib.pyplot as plt
import numpy as np
from scipy.constants import c

pandas2ri.activate()
r.data('morley')

df = r['morley']

df['Speed'] = df['Speed'] + 299000

samples = dict(list(df.groupby('Expt')))
samples = np.array([samples[i]['Speed'].values for i in
samples.keys()])
print("Kruskal", kruskal(samples[0], samples[1], samples[2], samples[3],
samples[4]))

plt.title('Speed of light')
plt.plot(samples.min(axis=1), 'x', label='min')
plt.plot(samples.mean(axis=1), 'o', label='mean')
plt.plot(np.ones(5) * samples.mean(), '--', label='All mean')

Environments Outside the Python Ecosystem and Cloud Computing

[249]

plt.plot(np.ones(5) * c/1000, lw=2, label='Actual')
plt.plot(samples.max(axis=1), 'v', label='max')
plt.grid(True)
plt.legend()
plt.show()

Sending NumPy arrays to Java
Like Python, Java is a very popular programming language. We installed Java in Chapter 8,
Working with Databases, as a prerequisite to using Cassandra. To run Java code, we need the
Java Runtime Environment (JRE). For development, the Java Development Kit (JDK) is
required.

Jython is an implementation of Python written in Java. Jython code can use any Java class.
However, Python modules written in C cannot be imported in Jython. This is an issue
because many numerical and data analysis Python libraries have modules written in C. The
JPype1 package offers a solution, and can be downloaded from
http://pypi.python.org/pypi/JPype1 or http://github.com/originell/jpype. You can
install JPype1 with the following command:

$ pip3 install JPype1

Start the Java Virtual Machine (JVM) with the following line:

jpype.startJVM(jpype.getDefaultJVMPath())

Create a JPype array JArray with some random values:

values = np.random.randn(7)
java_array = jpype.JArray(jpype.JDouble, 1)(values.tolist())

Print each array element as follows:

for item in java_array:
 jpype.java.lang.System.out.println(item)

At the end, we should shut down the JVM with the following line:

jpype.shutdownJVM()

http://pypi.python.org/pypi/JPype1
http://github.com/originell/jpype

Environments Outside the Python Ecosystem and Cloud Computing

[250]

The following is the code listing from the ch-11.ipynb file in this book's code bundle:

import jpype
import numpy as np
from numpy import random
jpype.startJVM(jpype.getDefaultJVMPath())

random.seed(44)
values = np.random.randn(7)
java_array = jpype.JArray(jpype.JDouble, 1)(values.tolist())

for item in java_array:
 jpype.java.lang.System.out.println(item)

jpype.shutdownJVM()

When you execute the preceding code in Jupyter Notebook, you get the following output in
your Jupyter console:

[W 18:23:45.918 NotebookApp] 404 GET
/nbextensions/widgets/notebook/js/extension.js?v=20170305114358 (::1)
4.30ms referer=http://localhost:8888/notebooks/ch-12.ipynb
 -0.7506147172558728
 1.3163573247118194
 1.2461400286434303
 -1.6049157412585944
 -1.468143678979905
 -1.7150704579733684
 1.8587836915125544
 JVM activity report :
 classes loaded : 32
 JVM has been shutdown

Integrating SWIG and NumPy
C is a widespread programming language developed around 1970. Various C dialects exist,
and C has influenced other programming languages. C is not object-oriented. This led to the
creation of C++, which is an object-oriented language with C features, since C is a subset of
C++. C and C++ are compiled languages. We need to compile source code to create so-called
object files. After that, we must link the object files to create dynamically shared libraries.

Environments Outside the Python Ecosystem and Cloud Computing

[251]

The good thing about integrating C and Python is that a lot of options are available to us.
The first option is Simplified Wrapper and Interface Generator (SWIG). SWIG adds an
additional step in the development process, which is the generation of glue code between
Python and C (or C++). Download SWIG from http://www.swig.org/download.html. At
the time of writing, the latest SWIG version is 3.0.12. A prerequisite to installing SWIG is to
install Perl Compatible Regular Expressions (PCRE). PCRE is a C regular expressions
library. Download PCRE from http://www.pcre.org/. The PCRE version at the time of
writing is 8.39. After unpacking PCRE, run the following commands:

$./configure
$ make
$ make install

The last command in the preceding snippet requires root or sudo access. We can install
SWIG with the same commands. We start by writing a header file containing function
definitions. Write a header file that defines the following function:

double sum_rain(int* rain, int len);

We will use the preceding function to sum the rain amount values we analyzed in the
previous chapter. Please refer to the sum_rain.h file in this book's code bundle. The
function is implemented in the sum_rain.cpp file in this book's code bundle:

double sum_rain(int* rain, int len) {

 double sum = 0.;

 for (int i = 0; i < len; i++){
 if(rain[i] == -1) {
 sum += 0.025;
 } else {
 sum += 0.1 * rain[i];
 }
 }

 return sum;
}

Define the following SWIG interface file (refer to the sum_rain.i file in this book's code
bundle):

%module sum_rain

%{
 #define SWIG_FILE_WITH_INIT
 #include "sum_rain.h"

http://www.swig.org/download.html
http://www.pcre.org/

Environments Outside the Python Ecosystem and Cloud Computing

[252]

%}

%include "/tmp/numpy.i"

%init %{
 import_array();
%}

%apply (int* IN_ARRAY1, int DIM1) {(int* rain, int len)};

%include "sum_rain.h"

The preceding code depends on the numpy.i interface file, which can be found at
https://github.com/numpy/numpy/blob/master/tools/swig/numpy.i. In this example, the
file was placed in the /tmp directory, but we can put this file almost anywhere. Generate
the SWIG glue code with the following command:

$ swig -c++ -python sum_rain.i

The preceding step creates a sum_rain_wrap.cxx file. Compile the sum_rain.cpp file as
follows:

$ g++ -O2 -fPIC -c sum_rain.cpp -I<Python headers dir>

In the previous command, we need to specify the actual Python C headers directory. We
can find it with the following command:

$ python3-config --includes

We could also have compiled using the following command:

$ g++ -O2 -fPIC -c sum_rain.cpp $(python3-config --includes)

The location of this directory will differ depending on the Python version and operating
system (it would be something like /usr/include/python3.6). Compile the generated
SWIG wrapper file as follows:

$ g++ -O2 -fPIC -c sum_rain_wrap.cxx $(python3-config --includes) -
I<numpy-dir>/core/include/

The preceding command depends on the location of the installed NumPy. Locate it from the
Python shell as follows:

$ python3
>>> import numpy as np
>>> np.__file__

https://github.com/numpy/numpy/blob/master/tools/swig/numpy.i

Environments Outside the Python Ecosystem and Cloud Computing

[253]

The string printed on the screen should contain the Python version, site-packages, and
end in __init__.pyc. If we strip the last part, we should have the NumPy directory.
Alternatively, we can use the following code:

>>> from imp import find_module
>>> find_module('numpy')

On my computer, the following command is issued:

$ g++ -O2 -fPIC -c sum_rain_wrap.cxx $(python3-config --includes) -
I/usr/local/lib/python3.6/site-packages/numpy/core/include/

The final step is to link the object files created by compiling:

$ g++ -lpython3.6 -dynamiclib sum_rain.o sum_rain_wrap.o -o _sum_rain.so -L
/usr/local/Cellar/python3/3.6.0/Frameworks/Python.framework/Versions/3.6/li
b

The preceding steps will work differently on other operating systems, such as Windows,
unless we use Cygwin. It is recommended that you ask for help on the SWIG user mailing
lists (http://www.swig.org/mail.html) or StackOverflow, if required.

Test the created library with the swig_demo.py file in this book's code bundle:

from _sum_rain import *
import numpy as np

rain = np.load('rain.npy')
print("Swig", sum_rain(rain))
rain = .1 * rain
rain[rain < 0] = .025
print("Numpy", rain.sum())

Execute this file using the following command:

$ python3 swig_demo.py

If everything went fine and we didn't confuse the Python installations, the following lines
will be printed:

Swig 85291.554999999328
Numpy 85291.55

http://www.swig.org/mail.html

Environments Outside the Python Ecosystem and Cloud Computing

[254]

Integrating Boost and Python
Boost is a C++ library that can interface with Python. Download it from
http://www.boost.org/users/download/. The Boost version at the time of writing is 1.63.0.
The easiest, but also slowest, installation method involves the following commands:

$./bootstrap.sh --prefix=/path/to/boost
$./b2 install

The prefix argument specifies the installation directory. In this example, we will assume
that Boost was installed under the user's home directory in a directory called Boost (such as
~/Boost). In this directory, a lib and include directory will be created. For Unix and
Linux, you should run the following command:

export LD_LIBRARY_PATH=$HOME/Boost/lib:${LD_LIBRARY_PATH}

On Mac OS X, set the following environment variable:

export DYLD_LIBRARY_PATH=$HOME/Boost/lib

In our case, we set this variable as follows:

export DYLD_LIBRARY_PATH=/usr/local/Cellar/boost/1.63.0/lib

Redefine a rain summation function as given in the boost_rain.cpp file in this book's
code bundle:

#include <boost/python.hpp>

double sum_rain(boost::python::list rain, int len) {

 double sum = 0.;

 for (int i = 0; i < len; i++){
 int val = boost::python::extract<int>(rain[i]);
 if(val == -1) {
 sum += 0.025;
 } else {
 sum += 0.1 * val;
 }
 }

 return sum;
}

BOOST_PYTHON_MODULE(librain) {
 using namespace boost::python;

http://www.boost.org/users/download/

Environments Outside the Python Ecosystem and Cloud Computing

[255]

 def("sum_rain", sum_rain);
}

The function accepts a Python list and the size of the list. Call the function from Python, as
given in the rain_demo.py file in this book's code bundle:

import numpy as np
import librain

rain_data = np.load('rain.npy')
print("Boost", librain.sum_rain(rain_data.astype(int).tolist(),
len(rain_data)))
rain_data = .1 * rain_data
rain_data[rain_data < 0] = .025
print("Numpy", rain_data.sum())

We will automate the development process with the Makefile file in this book's code
bundle:

CC = g++
PYLIBPATH = $(shell python3-config --exec-prefix)/lib
LIB = -L$(PYLIBPATH) $(shell python3-config --libs) -
L/usr/local/Cellar/boost/1.63.0/lib -L/usr/local/Cellar/boost-
python/1.63.0/lib -lboost_python3
OPTS = $(shell python3-config --include) -O2 -
I/usr/local/Cellar/boost/1.63.0/include

default: librain.so
 @python3 ./rain_demo.py

librain.so: rain.o
 $(CC) $(LIB) -Wl,-rpath,$(PYLIBPATH) -shared $< -o $@

rain.o: boost_rain.cpp Makefile
 $(CC) $(OPTS) -c $< -o $@

clean:
 rm -rf *.so *.o

.PHONY: default clean

From the command line, run the following commands:

$ make clean;make

Environments Outside the Python Ecosystem and Cloud Computing

[256]

The results are identical, as expected:

Boost 85291.54999999328
Numpy 85291.55

Using Fortran code through f2py
Fortran (derived from Formula Translation) is a mature programming language mostly
used for scientific computing. It was developed in the 1950s with newer versions emerging,
such as Fortran 77, Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008 (refer to
http://en.wikipedia.org/wiki/Fortran). Each version added features and new
programming paradigms. We will need a Fortran compiler for this example. The gfortran
compiler is a GNU Fortran compiler, and can be downloaded from
http://gcc.gnu.org/wiki/GFortranBinaries.

The NumPy f2py module serves as an interface between Fortran and Python. If a Fortran
compiler is present, we can create a shared library from Fortran code using this module. We
will write a Fortran subroutine that is intended to sum the rain amount values as given in
the previous examples. Define the subroutine and store it in a Python string. After that, we
can call the f2py.compile() function to produce a shared library from the Fortran code.
The end product is in the fort_src.py file in this book's code bundle:

from numpy import f2py
fsource = '''
 subroutine sumarray(A, N)
 REAL, DIMENSION(N) :: A
 INTEGER :: N
 RES = 0.1 * SUM(A, MASK = A .GT. 0)
 RES2 = -0.025 * SUM(A, MASK = A .LT. 0)
 print*, RES + RES2
 end
 '''
f2py.compile(fsource,modulename='fort_sum',verbose=0)

Execute the file using the following command to generate the module:

$ python3 fort_src.py

Call the subroutine as given in the fort_demo.py file in this book's code bundle:

import fort_sum
import numpy as np
rain = np.load('rain.npy')
fort_sum.sumarray(rain, len(rain))

http://en.wikipedia.org/wiki/Fortran
http://gcc.gnu.org/wiki/GFortranBinaries

Environments Outside the Python Ecosystem and Cloud Computing

[257]

rain = .1 * rain
rain[rain < 0] = .025
print("Numpy", rain.sum())

Execute the file using the following command to generate the output:

$ python3 fort_demo.py

The results of Fortran and NumPy match as expected (we can ignore the last two digits
printed by the Fortran subroutine):

85291.5547
Numpy 85291.55

PythonAnywhere Cloud
PythonAnywhere is a Cloud service for Python development. The interface is completely
web-based and simulates the Bash, Python, and IPython consoles. The preinstalled Python
libraries in the PythonAnywhere environment are listed at h t t p s ://w w w . p y t h o n a n y w h e r e .

c o m /b a t t e r i e s _ i n c l u d e d /.

The software version may lag a little behind the latest stable versions available. At the time
of writing, installing Python software from the PythonAnywhere Bash console appears a bit
problematic and is not recommended.

When you first visit the URL h t t p s ://w w w . p y t h o n a n y w h e r e . c o m /l o g i n /, you will see the
following screen to log into the PythonAnywhere environment:

https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/batteries_included/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/
https://www.pythonanywhere.com/login/

Environments Outside the Python Ecosystem and Cloud Computing

[258]

After you submit your login name and password, you will see the following web
application screen:

Environments Outside the Python Ecosystem and Cloud Computing

[259]

It is recommended that you upload Python source files instead of using the
PythonAnywhere environment, as it is less responsive than our local environment. Upload
the files by clicking on the Files tab in the web application. Upload the bn_demo.py file
from this chapter:

To execute the program, click on the bn_demp.py file and then click on the Run button in
the top right area of the screen:

Environments Outside the Python Ecosystem and Cloud Computing

[260]

You will see the output in the console below the code listing:

Summary
We looked over the borders of Python in this chapter. Outside the Python ecosystem,
programming languages such as R, C, Java, and Fortran are fairly popular. We looked at
libraries that provide glue to connect Python with external code, rpy2 for R, SWIG and
Boost for C, JPype for Java, and f2py for Fortran. Cloud computing aims to deliver
computing power as a utility over the Internet. A brief overview of PythonAnywhere–a
Cloud computing services specialized in Python was also given.

The next chapter, Chapter 12, Performance Tuning, Profiling, and Concurrency, gives hints on
improving performance. Typically, we can speed up Python code by optimizing our code
using parallelization or rewriting parts of our code in C. We will also discuss several
profiling tools and concurrency APIs.

12
Performance Tuning, Profiling,

and Concurrency
“Premature optimization is the root of all evil”
 – Donald Knuth, a renowned computer scientist and mathematician

For real-world applications, performance is as important as features, robustness,
maintainability, testability, and usability. Performance is directly proportional to the
scalability of an application. Ending this book without looking at performance enhancement
was never an option. In fact, we delayed discussing the topic of performance until the last
chapter of the book to avoid premature optimization. In this chapter, we will give hints on
improving performance using profiling as the key technique. We will also discuss the
relevant frameworks for multicore, distributed systems. We will discuss the following
topics in this chapter:

Profiling the code
Installing Cython
Calling the C code
Creating a pool process with multiprocessing
Speeding up embarrassingly parallel for loops with Joblib
Comparing Bottleneck to NumPy functions
Performing MapReduce with Jug
Installing MPI for Python
IPython Parallel

Performance Tuning, Profiling, and Concurrency

[262]

Profiling the code
Profiling involves identifying parts of the code that need performance tuning because they
are either too slow or use a large amount of resources, such as processor power or memory.
We will profile a modified version of sentiment analysis code from Chapter 9, Analyzing
Textual Data and Social Media. The code is refactored to comply with multiprocessing
programming guidelines (you will learn about multiprocessing later in this chapter). We
also simplified the stopwords filtering. The third change was to have fewer word features in
the code so that the reduction doesn't impact accuracy. This last change has the most
impact. The original code ran for about 20 seconds. The new code runs faster than that and
will serve as the baseline in this chapter. Some changes are related to profiling and will be
explained later in this section. Please refer to the prof_demo.py file in this book's code
bundle:

import random
from nltk.corpus import movie_reviews
from nltk.corpus import stopwords
from nltk import FreqDist
from nltk import NaiveBayesClassifier
from nltk.classify import accuracy

import builtins

Define profile function so the profile decorator
does not return error when code is not profiled
try:
 profile = builtins.profile
except AttributeError:
 def profile(func):
 return func

@profile
def label_docs():
 docs = [(list(movie_reviews.words(fid)), cat)
 for cat in movie_reviews.categories()
 for fid in movie_reviews.fileids(cat)]
 random.seed(42)
 random.shuffle(docs)

 return docs

@profile
def isStopWord(word):
 return word in sw or len(word) == 1

Performance Tuning, Profiling, and Concurrency

[263]

@profile
def filter_corpus():
 review_words = movie_reviews.words()
 print("# Review Words", len(review_words))
 res = [w.lower() for w in review_words if not isStopWord(w.lower())]
 print("# After filter", len(res))

 return res

@profile
def select_word_features(corpus):
 words = FreqDist(corpus)
 N = int(.02 * len(words.keys()))
 return list(words.keys())[:N]

@profile
def doc_features(doc):
 doc_words = FreqDist(w for w in doc if not isStopWord(w))
 features = {}
 for word in word_features:
 features['count (%s)' % word] = (doc_words.get(word, 0))
 return features

@profile
def make_features(docs):
 return [(doc_features(d), c) for (d,c) in docs]

@profile
def split_data(sets):
 return sets[200:], sets[:200]

if __name__ == "__main__":
 labeled_docs = label_docs()

 sw = set(stopwords.words('english'))
 filtered = filter_corpus()
 word_features = select_word_features(filtered)
 featuresets = make_features(labeled_docs)
 train_set, test_set = split_data(featuresets)
 classifier = NaiveBayesClassifier.train(train_set)
 print("Accuracy", accuracy(classifier, test_set))
 print(classifier.show_most_informative_features())
 print(classifier.show_most_informative_features())

Performance Tuning, Profiling, and Concurrency

[264]

When we measure time, it helps to have as few processes running as possible. However, we
can't be sure that nothing is running in the background, so we will take the lowest time
measured from three measurements using the time command. This is a command available
on various operating systems and Cygwin. Run the command as follows:

$ time python3 prof_demo.py

We get a real time, which is the time we would measure using a clock. The user and sys
times measure the CPU time used by the program. The sys time is the time spent in the
kernel. On my machine, the following times in seconds were obtained (the lowest values
were placed between brackets):

Types of time Run 1 Run 2 Run 3

real 11.521 10.808 (10.416)

user 9.758 9.826 (9.444)

sys 0.965 0.643 (0.620)

Profile the code with the standard Python profiler as follows:

$ python3 -m cProfile -o /tmp/stat.prof prof_demo.py

The -o switch specifies an output file. We can visualize the profiler output with the
gprof2dot PyPi package. Install it as follows:

$ pip3 install gprof2dot

Create a PNG visualization with the following command:

 $ gprof2dot -f pstats /tmp/stat.prof |dot -Tpng -o /tmp/cprof.png

If you get the dot: command not found error, it means that you don't
have Graphviz installed. You can download Graphviz from h t t p ://w w w . g

r a p h v i z . o r g /D o w n l o a d . p h p .

http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php

Performance Tuning, Profiling, and Concurrency

[265]

The full image is too large to display. Here is a small section of it:

Performance Tuning, Profiling, and Concurrency

[266]

Query the profiler output as follows:

$ python3 -m pstats /tmp/stat.prof

With this command, we enter the profile statistics browser. Strip the filenames from the
output, sort by time, and show the top 10 times:

/tmp/stat.prof% strip
/tmp/stat.prof% sort time
/tmp/stat.prof% stats 10

Refer to the following screenshot for the end result:

The following is a description of the headers:

Headers Description

ncalls This is the number of calls.

tottime This is the total time spent in the given function (excluding the time made
in calls to subfunctions).

percall This is the quotient of tottime divided by ncalls.

Performance Tuning, Profiling, and Concurrency

[267]

cumtime This is the total time spent in this and all subfunctions (from invocation till
exit). This figure is accurate even for recursive functions.

percall (second) This is the quotient of cumtime divided by primitive calls.

Exit the profile browser with the following command:

/tmp/stat.prof% quit

The line_profiler is another profiler we can use. This profiler can display statistics for
each line in functions which have been decorated with the @profile decorator. Install and
run this profiler with the following commands:

$ pip3 install line_profiler
$ kernprof -l -v prof_demo.py

The full report is too long to reproduce here; instead, the following is a per function
summary (there is some overlap):

Function: label_docs at line 9 Total time: 6.19904 s
Function: isStopWord at line 19 Total time: 2.16542 s
File: prof_demo.py Function: filter_corpus at line 23
Function: select_word_features at line 32 Total time: 4.05266 s
Function: doc_features at line 38 Total time: 12.5919 s
Function: make_features at line 46 Total time: 14.566 s
Function: split_data at line 50 Total time: 3.6e-05 s

Installing Cython
The Cython programming language acts as glue between Python and C/C++. With the
Cython tools, we can generate C code from plain Python code, which can then be compiled
into binary, which is closer to the machine level. The cytoolz package contains utilities
created by Cythonizing the handy Python toolz package. The following command will
install cython and cytoolz:

$ pip3 install cython cytoolz

Performance Tuning, Profiling, and Concurrency

[268]

Just as in cooking shows, we will show the results of Cythonizing before going through the
process involved (deferred to the next section). The timeit Python module measures time.
We will use this module to measure different functions. Define the following function,
which accepts a short code snippet, a function call, and the number of times the code will
run as arguments:

def time(code, n):
 times = min(timeit.Timer(code, setup=setup).repeat(3, n))

 return round(1000* np.array(times)/n, 3)

Next, we predefine a large setup string containing all the code. The code is in the
timeits.py file in this book's code bundle (the code uses cython_module, built on your
machine):

import timeit
import numpy as np

setup = '''
import nltk
import cython_module as cm
import collections
from nltk.corpus import stopwords
from nltk.corpus import movie_reviews
from nltk.corpus import names
import string
import pandas as pd
import cytoolz

sw = set(stopwords.words('english'))
punctuation = set(string.punctuation)
all_names = set([name.lower() for name in names.words()])
txt = movie_reviews.words(movie_reviews.fileids()[0])

def isStopWord(w):
 return w in sw or w in punctuation

def isStopWord2(w):
 return w in sw or w in punctuation or not w.isalpha()

def isStopWord3(w):
 return w in sw or len(w) == 1 or not w.isalpha() or w in all_names

def isStopWord4(w):
 return w in sw or len(w) == 1

def freq_dict(words):

Performance Tuning, Profiling, and Concurrency

[269]

 dd = collections.defaultdict(int)

 for word in words:
 dd[word] += 1

 return dd

def zero_init():
 features = {}

 for word in set(txt):
 features['count (%s)' % word] = (0)

def zero_init2():
 features = {}
 for word in set(txt):
 features[word] = (0)

keys = list(set(txt))

def zero_init3():
 features = dict.fromkeys(keys, 0)

zero_dict = dict.fromkeys(keys, 0)

def dict_copy():
 features = zero_dict.copy()
'''

def time(code, n):
 times = min(timeit.Timer(code, setup=setup).repeat(3, n))

 return round(1000* np.array(times)/n, 3)

if __name__ == '__main__':
 print("Best of 3 times per loop in milliseconds")
 n = 10
 print("zero_init ", time("zero_init()", n))
 print("zero_init2", time("zero_init2()", n))
 print("zero_init3", time("zero_init3()", n))
 print("dict_copy ", time("dict_copy()", n))
 print("\n")

 n = 10**2
 print("isStopWord ", time('[w.lower() for w in txt if not
isStopWord(w.lower())]', n))
 print("isStopWord2", time('[w.lower() for w in txt if not
isStopWord2(w.lower())]', n))

Performance Tuning, Profiling, and Concurrency

[270]

 print("isStopWord3", time('[w.lower() for w in txt if not
isStopWord3(w.lower())]', n))
 print("isStopWord4", time('[w.lower() for w in txt if not
isStopWord4(w.lower())]', n))
 print("Cythonized isStopWord", time('[w.lower() for w in txt if not
cm.isStopWord(w.lower())]', n))
 print("Cythonized filter_sw()", time('cm.filter_sw(txt)', n))
 print("\n")
 print("FreqDist", time("nltk.FreqDist(txt)", n))
 print("Default dict", time('freq_dict(txt)', n))
 print("Counter", time('collections.Counter(txt)', n))
 print("Series", time('pd.Series(txt).value_counts()', n))
 print("Cytoolz", time('cytoolz.frequencies(txt)', n))
 print("Cythonized freq_dict", time('cm.freq_dict(txt)', n))

So, we have several isStopword() function versions with the following running times in
milliseconds:

isStopWord 0.843
isStopWord2 0.902
isStopWord3 0.963
isStopWord4 0.869
Cythonized isStopWord 0.924
Cythonized filter_sw() 0.887

For comparison, we also have the running time of a plain pass statement. The Cythonized
isStopWord() is based on the isStopWord3() function (the most elaborate filter). If we
look at the doc_features() function in prof_demo.py, it becomes obvious that we
shouldn't go over each word feature. Instead, we should just intersect the set of words in a
document and the words chosen as features. All the other word counts can be safely set to
zero. In fact, it's best if we initialize all the values to zero once and copy this dictionary. For
the corresponding functions, we get the following execution times:

zero_init 0.61
zero_init2 0.555
zero_init3 0.017
dict_copy 0.011

Another improvement is to use the Python defaultdict class instead of the NLTK
FreqDist class. The related routines have the following run times:

FreqDist 2.206
Default dict 0.674
Counter 0.79
Series 7.006
Cytoolz 0.542
Cythonized freq_dict 0.616

Performance Tuning, Profiling, and Concurrency

[271]

As we can see, the Cythonized versions are consistently faster, although not by much.

Calling C code
We can call C functions from Cython. The C string strlen() function is the equivalent of
the Python len() function. Call this function from a Cython .pyx file by importing it as
follows:

from libc.string cimport strlen

We can then call strlen() from somewhere else in the .pyx file. The .pyx file can contain
any Python code. Have a look at the cython_module.pyx file in this book's code bundle:

from collections import defaultdict
from nltk.corpus import stopwords
from nltk.corpus import names
from libc.string cimport strlen

sw = set(stopwords.words('english'))
all_names = set([name.lower() for name in names.words()])

def isStopWord(w):
 py_byte_string = w.encode('UTF-8')
 cdef char* c_string = py_byte_string
 truth = (w in sw) or (w in all_names) or (not w.isalpha()) or
(strlen(c_string) == 1)
 return truth

def filter_sw(words):
 return [w.lower() for w in words if not isStopWord(w.lower())]

def freq_dict(words):
 dd = defaultdict(int)

 for word in words:
 dd[word] += 1

 return dd

Performance Tuning, Profiling, and Concurrency

[272]

To compile this code we need a setup.py file with the following contents:

from distutils.core import setup
from Cython.Build import cythonize

setup(
 ext_modules = cythonize("cython_module.pyx")
)

Compile the code with the following command:

$ python3 setup.py build_ext --inplace

The following output shows the build of the cython_module extension:

$python3 setup.py build_ext --inplace
running build_ext
building 'cython_module' extension
creating build
creating build/temp.macosx-10.12-x86_64-3.6
clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -
dynamic -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -
I/usr/local/include -I/usr/local/opt/openssl/include -
I/usr/local/opt/sqlite/include -
I/usr/local/Cellar/python3/3.6.0/Frameworks/Python.framework/Versions/3.6/i
nclude/python3.6m -c cython_module.c -o build/temp.macosx-10.12-
x86_64-3.6/cython_module.o
clang -bundle -undefined dynamic_lookup build/temp.macosx-10.12-
x86_64-3.6/cython_module.o -L/usr/local/lib -L/usr/local/opt/openssl/lib -
L/usr/local/opt/sqlite/lib -o
/Users/armando/gdrive/projects/bitbucket/pubs/2016-pda-e2-
packt/chapters/ch-12/cython_module.cpython-36m-darwin.so

We can now modify the sentiment analysis program to call the Cython functions. We will
also add the improvements mentioned in the previous section. As we are going to use some
of the functions over and over again, these functions were extracted into the core.py file in
this book's code bundle. Check out the cython_demo.py file in this book's code bundle (the
code uses cython_module, built on your machine):

from nltk.corpus import movie_reviews
from nltk import NaiveBayesClassifier
from nltk.classify import accuracy
import cython_module as cm
import cytoolz
from core import label_docs
from core import filter_corpus
from core import split_data

Performance Tuning, Profiling, and Concurrency

[273]

def select_word_features(corpus):
 words = cytoolz.frequencies(filtered)
 sorted_words = sorted(words, key=words.get)
 N = int(.02 * len(sorted_words))

 return sorted_words[-N:]

def match(a, b):
 return set(a.keys()).intersection(b)

def doc_features(doc):
 doc_words = cytoolz.frequencies(cm.filter_sw(doc))

 # initialize to 0
 features = zero_features.copy()

 word_matches = match(doc_words, word_features)

 for word in word_matches:
 features[word] = (doc_words[word])

 return features

def make_features(docs):
 return [(doc_features(d), c) for (d,c) in docs]

if __name__ == "__main__":
 labeled_docs = label_docs()
 filtered = filter_corpus()
 word_features = select_word_features(filtered)
 zero_features = dict.fromkeys(word_features, 0)
 featuresets = make_features(labeled_docs)
 train_set, test_set = split_data(featuresets)
 classifier = NaiveBayesClassifier.train(train_set)
 print("Accuracy", accuracy(classifier, test_set))
 print(classifier.show_most_informative_features())

Execute the code with the time command as follows:

$ time python3 cython_demo.py

Performance Tuning, Profiling, and Concurrency

[274]

The following table summarizes the results of the time command (lowest values were
placed between brackets):

Types of time Run 1 Run 2 Run 3

real (9.639) 9.817 9.912

user (9.604) 9.661 9.683

sys (0.404) 0.424 0.451

We can see the performance gains as compared to the previous execution of the code. The
following timing table is reproduced from the previous section for easy comparison:

Types of time Run 1 Run 2 Run 3

real 11.521 10.808 (10.416)

user 9.758 9.826 (9.444)

sys 0.965 0.643 (0.620)

Creating a process pool with
multiprocessing
Multiprocessing is a standard Python module that targets machines with multiple
processors. Multiprocessing works around the Global Interpreter Lock (GIL) by creating
multiple processes.

The GIL locks Python bytecode so that only one thread can access it.

Performance Tuning, Profiling, and Concurrency

[275]

Multiprocessing supports process pools, queues, and pipes. A process pool is a pool of
system processes that can execute a function in parallel. Queues are data structures that are
usually used to store tasks. Pipes connect different processes in such a way that the output
of one process becomes the input of another.

Windows doesn't have an os.fork() function, so we need to make sure
that only imports and def blocks are defined outside the if __name__
== "__main__" block.

Create a pool and register a function as follows:

 p = mp.Pool(nprocs)

The pool has a map() method that is the parallel equivalent of the Python map() function:

p.map(simulate, [i for i in xrange(10, 50)])

We will simulate the movement of a particle in one dimension. The particle performs a
random walk, and we are interested in computing the average end position of the particle.
We repeat this simulation for different walk lengths. The calculation itself is not important.
The important part is to compare the speedup with multiple processes versus a single
process. We will plot the speedup with matplotlib. The full code is in the
multiprocessing_sim.py file in this book's code bundle:

from numpy.random import random_integers
from numpy.random import randn
import numpy as np
import timeit
import argparse
import multiprocessing as mp
import matplotlib.pyplot as plt

def simulate(size):
 n = 0
 mean = 0
 M2 = 0

 speed = randn(10000)

 for i in range(1000):
 n = n + 1
 indices = random_integers(0, len(speed)-1, size=size)
 x = (1 + speed[indices]).prod()
 delta = x - mean
 mean = mean + delta/n

Performance Tuning, Profiling, and Concurrency

[276]

 M2 = M2 + delta*(x - mean)

 return mean

def serial():
 start = timeit.default_timer()

 for i in range(10, 50):
 simulate(i)

 end = timeit.default_timer() - start
 print("Serial time", end)

 return end
def parallel(nprocs):
 start = timeit.default_timer()
 p = mp.Pool(nprocs)
 print(nprocs, "Pool creation time", timeit.default_timer() - start)

 p.map(simulate, [i for i in range(10, 50)])
 p.close()
 p.join()

 end = timeit.default_timer() - start
 print(nprocs, "Parallel time", end)
 return end

if __name__ == "__main__":
 ratios = []
 baseline = serial()

 for i in range(1, mp.cpu_count()):
 ratios.append(baseline/parallel(i))

 plt.xlabel('# processes')
 plt.ylabel('Serial/Parallel')
 plt.plot(np.arange(1, mp.cpu_count()), ratios)
 plt.grid(True)
 plt.show()

Performance Tuning, Profiling, and Concurrency

[277]

If we take the speedup values for process pool sizes ranging from 1 to 8 (the number of
processors is hardware dependent), we get the following figure:

Amdahl's law (see h t t p ://e n . w i k i p e d i a . o r g /w i k i /A m d a h l %27s _ l a w) best describes the
speedups due to parallelization. This law predicts the maximum possible speedup. The
number of processes limits the absolute maximum speedup. However, as we can see in the
preceding plot, we don't get a doubling of speed with two processes, nor does using three
processes triple the speed, but we come close. Some parts of any given Python code may be
impossible to parallelize. For example, we may need to wait for a resource to become
available, or we may be performing a calculation that has to be performed sequentially. We
also have to take into account the overhead from the parallelization setup and related
interprocess communication. Amdahl's law states that there is a linear relationship between
the inverse of the speedup, the inverse of the number of processes, and the portion of the
code, which cannot be parallelized.

http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law

Performance Tuning, Profiling, and Concurrency

[278]

Speeding up embarrassingly parallel for
loops with Joblib
Joblib is a Python library created by the developers of scikit-learn. Its main mission is to
improve the performance of long-running Python functions. Joblib achieves these
improvements through caching and parallelization using multiprocessing or threading
under the hood. Install Joblib as follows:

$ pip3 install joblib

We will reuse the code from the previous example, only changing the parallel()
function. Refer to the joblib_demo.py file in this book's code bundle:

def parallel(nprocs):
 start = timeit.default_timer()
 Parallel(nprocs)(delayed(simulate)(i) for i in xrange(10, 50))

 end = timeit.default_timer() - start
 print(nprocs, "Parallel time", end)
 return end

Refer to the following plot for the end result (the number of processors is hardware
dependent):

Performance Tuning, Profiling, and Concurrency

[279]

Comparing Bottleneck to NumPy functions
Bottleneck is a set of functions inspired by NumPy and SciPy, but written in Cython with
high performance in mind. Bottleneck provides separate Cython functions for each
combination of array dimensions, axis, and data type. This is not shown to the end user,
and the limiting factor for Bottleneck is to determine which Cython function to execute.
Install Bottleneck as follows:

$ pip3 install bottleneck

We will compare the execution times for the numpy.median() and
scipy.stats.rankdata() functions in relation to their Bottleneck counterparts. It can be
useful to determine the Cython function manually before using it in a tight loop or
frequently called function.

This program is given in the bn_demo.py file in this book's code bundle:

import bottleneck as bn
import numpy as np
import timeit

setup = '''
import numpy as np
import bottleneck as bn
from scipy.stats import rankdata

np.random.seed(42)
a = np.random.randn(30)
'''
def time(code, setup, n):
 return timeit.Timer(code, setup=setup).repeat(3, n)

if __name__ == '__main__':
 n = 10**3
 print(n, "pass", max(time("pass", "", n)))
 print(n, "min np.median", min(time('np.median(a)', setup, n)))
 print(n, "min bn.median", min(time('bn.median(a)', setup, n)))
 a = np.arange(7)
 print)"Median diff", np.median(a) - bn.median(a))

 print(n, "min scipy.stats.rankdata", min(time('rankdata(a)', setup,
n)))
 print(n, "min bn.rankdata", min(time('bn.rankdata(a)', setup, n)))

Performance Tuning, Profiling, and Concurrency

[280]

The following is the output with running times and function names:

$ python3 bn_demo.py
1000 pass 7.228925824165344e-06
1000 min np.median 0.019842895912006497
1000 min bn.median 0.0003261091187596321
Median diff 0.0
1000 min scipy.stats.rankdata 0.04070987505838275
1000 min bn.rankdata 0.0011222949251532555

Clearly, Bottleneck is very fast; unfortunately, due to its setup, Bottleneck doesn't have that
many functions yet. The following table lists the implemented functions from h t t p ://p y p i .

p y t h o n . o r g /p y p i /B o t t l e n e c k :

Category Functions

NumPy/SciPy median, nanmedian, rankdata, ss, nansum, nanmin, nanmax, nanmean,
nanstd, nanargmin, and nanargmax

Functions nanrankdata, nanvar, partsort, argpartsort, replace, nn, anynan,
and allnan

Moving window move_sum, move_nansum, move_mean, move_nanmean, move_median,
move_std, move_nanstd, move_min, move_nanmin, move_max, and
move_nanmax

Performing MapReduce with Jug
Jug is a distributed computing framework that uses tasks as central parallelization units.
Jug uses filesystems or the Redis server as backends. The Redis server was discussed in
Chapter 8, Working with Databases. Install Jug with the following command:

$ pip3 install jug

MapReduce (see h t t p ://e n . w i k i p e d i a . o r g /w i k i /M a p R e d u c e) is a distributed algorithm
used to process large datasets with a cluster of computers. The algorithm consists of a Map
and a Reduce phase. During the Map phase, data is processed in a parallel fashion. The
data is split up into parts, and on each part, filtering or other operations are performed. In
the Reduce phase, the results from the Map phase are aggregated, for instance, to create a
statistics report.

http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://pypi.python.org/pypi/Bottleneck
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce

Performance Tuning, Profiling, and Concurrency

[281]

If we have a list of text files, we can compute word counts for each file. This can be done
during the Map phase. At the end, we can combine individual word counts into a corpus
word frequency dictionary. Jug has MapReduce functionality, which is demonstrated in the
jug_demo.py file in this book's code bundle (the code depends on the cython_module
artifact):

import jug.mapreduce
from jug.compound import CompoundTask
import cython_module as cm
import cytoolz
import pickle

def get_txts():
 return [(1, 'Lorem ipsum dolor sit amet, consectetur adipiscing
elit.'), (2, 'Donec a elit pharetra, malesuada massa vitae, elementum
dolor.'), (3, 'Integer a tortor ac mi vehicula tempor at a nunc.')]

def freq_dict(file_words):
 filtered = cm.filter_sw(file_words[1].split())

 fd = cytoolz.frequencies(filtered)

 return fd

def merge(left, right):
 return cytoolz.merge_with(sum, left, right)

merged_counts = CompoundTask(jug.mapreduce.mapreduce, merge, freq_dict,
get_txts(), map_step=1)

In the preceding code, the merge() function is called during the Reduce phase and the
freq_dict() function is called during the Map phase. We define a Jug CompoundTask
consisting of multiple subtasks. Before we run this code, we need to start a Redis server.
Perform MapReduce by issuing the following command:

$ jug execute jug_demo.py --jugdir=redis://127.0.0.1/&

The ampersand (&) at the end means that this command runs in the background. We can
issue the command from multiple computers in this manner, if the Redis server is accessible
in the network. In this example, Redis only runs on the local machine (127.0.0.1 is the IP
address of the localhost). However, we can still run the command multiple times locally.
We can check the status of the jug command as follows:

$ jug status jug_demo.py

Performance Tuning, Profiling, and Concurrency

[282]

By default, Jug stores data in the current working directory if we don't specify the jugdir
option. Clean the jug directory with the following command:

$ jug cleanup jug_demo.py

To query Redis and perform the rest of the analysis, we will use another program. In this
program, initialize Jug as follows:

jug.init('jug_demo.py', 'redis://127.0.0.1/')
import jug_demo

The following line gets the results from the Reduce phase:

words = jug.task.value(jug_demo.merged_counts)

The rest of the code is given in the jug_redis.py file in this book's code bundle:

import jug

def main():
 jug.init('jug_demo.py', 'redis://127.0.0.1/')
 import jug_demo
 print("Merged counts", jug.task.value(jug_demo.merged_counts))

if __name__ == "__main__":
 main()

Installing MPI for Python
The Message Passing Interface (MPI) (see h t t p ://e n . w i k i p e d i a . o r g /w i k i /M e s s a g e _ P a s s

i n g _ I n t e r f a c e) is a standard protocol developed by experts to work on a broad assortment
of distributed machines. Originally, in the nineties, MPI was used to write programs in
Fortran and C. MPI is independent of hardware and programming languages. MPI
functions include the send and receive operations, MapReduce functionality, and
synchronization. MPI has point-to-point functions involving two processors, and operations
involving all processors. MPI has bindings for several programming languages, including
Python. Download MPI from h t t p ://w w w . o p e n - m p i . o r g /s o f t w a r e /o m p i /. MPI 2.0.2 was
installed and used at the time of writing; we can check on the website whether there is a
newer version available. Installing MPI can take a while (nearly 30 minutes). The following
are the commands involved, assuming that we install it in the /usr/local directory:

$./configure --prefix=/usr/local
$ make all
$ sudo make install

http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1
http://www.open-mpi.org/software/ompi/v1.8/%201.8.1

Performance Tuning, Profiling, and Concurrency

[283]

Install Python bindings for MPI as follows:

$ pip3 install mpi4py

IPython Parallel
IPython Parallel is the IPython API for parallel computing. We will set it up to use MPI for
message passing. We may have to set environment variables as follows:

$ export LC_ALL=en_US.UTF-8
$ export LANG=en_US.UTF-8

Issue the following command at the command line:

$ ipython3 profile create --parallel --profile=mpi

The preceding command will create several files in the .ipython/profile_mpi folder
located in your home directory.

Start a cluster that uses the MPI profile as follows:

$ ipcluster start --profile=mpi --engines=MPI --debug

The preceding command specifies that we are using the mpi profile and MPI engine with
debug-level logging. We can now interact with the cluster from an IPython notebook. Start
a notebook with plotting enabled and with NumPy, SciPy, and matplotlib automatically
imported, as follows:

$ jupyter-notebook --profile=mpi --log-level=DEBUG

The preceding command uses the mpi profile with debug log level. The notebook for this
example is stored in the IPythonParallel.ipynb file in this book's code bundle. Import
the IPython Parallel Client class and the statsmodels.api module as follows:

 In [1]:from ipyparallel import Client
 import statsmodels.api as sm

Performance Tuning, Profiling, and Concurrency

[284]

Load the sunspot data and calculate the mean:

 In [2]: data_loader = sm.datasets.sunspots.load_pandas()
 vals = data_loader.data['SUNACTIVITY'].values
 glob_mean = vals.mean()
 glob_mean

The following will be the output:

Out [2]: 49.752103559870541

Create a client as follows:

In [3]: c = Client(profile='mpi')

Create a view to the clients with the following line:

In [4]: view=c[:]

IPython uses the concept of magics. These are special commands specific to IPython
notebooks. Enable magics as follows:

In [5]: view.activate()

Load the mpi_ipython.py file in this book's code bundle:

from mpi4py import MPI
from numpy.random import random_integers
from numpy.random import randn
import numpy as np
import statsmodels.api as sm
import bottleneck as bn
import logging

def jackknife(a, parallel=True):
 data_loader = sm.datasets.sunspots.load_pandas()
 vals = data_loader.data['SUNACTIVITY'].values

 results = []

 for i in a:
 tmp = np.array(vals.tolist())
 tmp[i] = np.nan
 results.append(bn.nanmean(tmp))
 results = np.array(results)

 if parallel:
 comm = MPI.COMM_WORLD

Performance Tuning, Profiling, and Concurrency

[285]

 rcvBuf = np.zeros(0.0, 'd')
 comm.gather([results, MPI.DOUBLE], [rcvBuf, MPI.DOUBLE])

 return results

if __name__ == "__main__":
 skiplist = np.arange(39, dtype='int')
 print(jackknife(skiplist, False))

The preceding program contains a function which performs jackknife resampling.
Jackknife resampling is a type of resampling where we omit one of the observations in the
sample and then calculate the statistical estimator we are interested in. In this case, we are
interested in the mean. We leave one observation out by setting it to NumPy NaN. Then, we
call the Bottleneck nanmean() function on the new sample. The following is the load
command:

In [6]: view.run('mpi_ipython.py')

Next, we split and spread an array with all the indices of the sunspots array:

In [7]: view.scatter('a',np.arange(len(vals),dtype='int'))

The a array can be displayed in the notebook as follows:

In [8]: view['a']

Here is the output of the preceding command:

Out[8]:[array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38]), ... TRUNCATED ...]

Call the jackknife() function on all the clients:

In [9]: %px means = jackknife(a)

Once all the worker processes are done, we can view the result:

In [10]: view['means']

Performance Tuning, Profiling, and Concurrency

[286]

The resulting list displays as many processes as we started. Each process returns a NumPy
array containing the means calculated by jackknife resampling. This structure is not very
useful, so transform it into a flat list:

In [11]: all_means = []

for v in view['means']:
 all_means.extend(v)

mean(all_means)

You will get the following output:

Out [11]: 49.752103559870577

We can also compute the standard deviation, but that is easy, so we will skip it. It's much
more interesting to plot a histogram of the jackknifed means:

In [13]: hist(all_means, bins=sqrt(len(all_means)))

Refer to the following plot for the end result:

For troubleshooting, we can use the following line that displays error messages from the
worker processes:

In [14]: [(k, c.metadata[k]['started'], c.metadata[k]['pyout'],
c.metadata[k]['pyerr']) for k in c.metadata.keys()]

Summary
In this chapter, we tuned the performance of the sentiment analysis script from Chapter 9,
Analyzing Textual Data and Social Media. Using profiling, Cython, and various
improvements, we doubled the execution speed of that example. We also used
multiprocessing, Joblib, Jug, and MPI via IPython Parallel to take advantage of
parallelization.

This was the last chapter of this book. Of course, the learning process should not stop.
Change the code to suit your needs. It's always nice to have a private data analysis project,
even if it is just for practice. If you can't think of a project, join a competition on h t t p ://w w w

. k a g g l e . c o m /. They have several competitions with nice prizes.

http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/

 A
Key Concepts

This appendix gives a brief overview and glossary of technical concepts used throughout
the book.

Amdahl's law predicts the maximum possible speedup due to parallelization. The number
of processes limits the absolute maximum speedup. Some parts of any given Python code
might be impossible to parallelize. We also have to take into account overhead from
parallelization setup and related interprocess communication. Amdahl's law states that
there is a linear relationship between the inverse of the speedup, the inverse of the number
of processes, and the portion of the code that cannot be parallelized.

ARMA models combine autoregressive and moving average models. They are
used to forecast future values of time series.

Artificial Neural Networks (ANN) are models inspired by the animal brain. A neural
network is a network of neurons–units with inputs and outputs. The output of a neuron can
be passed to a neuron and so on, thus creating a multilayered network. Neural networks
contain adaptive elements, making them suitable to deal with nonlinear models and pattern
recognition problems.

Augmented Dickey Fuller (ADF) test is a statistical test related to cointegration. ADF test is
used to check stationarity of a time series.

Autocorrelation is the correlation within a dataset and can indicate a trend. For example, if
we have a lag of one period, we can check whether the previous value influences the
current value. For that to be true, the autocorrelation value has to be pretty high.

Autocorrelation plots graph autocorrelations of time series data for different lags.
Autocorrelation is the correlation of a time series with the same lagged time series.

Key Concepts

[288]

The autoregressive model is a model that uses (usually linear) regression to forecast future
values of a time series using previous values. Autoregressive models are a special case of
the ARMA models. They are equivalent to ARMA models with zero moving average
components.

The bag-of-words model is a simplified model of text, in which the text is represented by a
bag of words. In this representation, the order of the words is ignored. Typically, word
counts or the presence of certain words are used as features in this model.

Bubble charts are an extension of the scatter plot. In a bubble chart, the value of a third
variable is represented by the size of the bubble surrounding a data point.

Cassandra Query Language (CQL) is a query language for Apache Cassandra with a syntax
similar to SQL.

Cointegration is similar to correlation and is a statistical characteristic of time series data.
Cointegration is a measure of how synchronized two time series are.

Clustering aims to partition data into groups called clusters. Clustering is usually
unsupervised in the sense that the training data is not labeled. Some clustering algorithms
require a guess for the number of clusters, while other algorithms don't.

Cascading Style Sheets (CSS) is a language used to style elements of a web page. CSS is
maintained and developed by the World Wide Web Consortium.

CSS selectors are rules used to select content in a web page.

Character codes are included in NumPy for backward compatibility with Numeric.
Numeric is the predecessor of NumPy.

Data type objects are instances of the numpy.dtype class. They provide an object-oriented
interface for manipulation of NumPy data types.

Eigenvalues are scalar solutions to the equation Ax = ax, where A is a two-dimensional
matrix and x is a one-dimensional vector.

Eigenvectors are vectors corresponding to eigenvalues.

The exponential moving average is a type of moving average with exponentially
decreasing weights with time.

Key Concepts

[289]

Fast Fourier Transform (FFT) is a fast algorithm to compute the Fourier transform. FFT is
O(N log N), which is a huge improvement over older algorithms.

Filtering is a type of signal-processing technique, which involves removing or suppressing
part of the signal. Many filter types exist including the median and Wiener filter.

Fourier analysis is based on the Fourier series named after the mathematician Joseph
Fourier. The Fourier series is a mathematical method to represent functions
as an infinite series of sine and cosine terms. The functions in question can be real
or complex valued.

Genetic algorithms are based on the biological theory of evolution. This type of algorithms
is useful for searching and optimization.

Graphical Processor Units (GPUs) are specialized circuits used to display graphics
efficiently. Recently, GPUs have been used to perform massively parallel computations (for
instance, to train neural networks).

The Hierarchical Data Format (HDF) is a specification and technology for the storage of big
numerical data. The HDF group maintains a related software library.

The Hilbert-Huang transform is a mathematical algorithm to decompose a signal. This
method can be used to detect periodic cycles in time series data. It was used successfully to
determine sunspot cycles.

HyperText Markup Language (HTML) is the fundamental technology used to
create web pages. It defines tags for media, text, and hyperlinks.

The Internet Engineering Task Force (IETF) is an open group working on
maintaining and developing the Internet. IETF is open in the sense that anybody
can join in principle.

JavaScript Object Notation (JSON) is a data format. In this format, data is written down
using JavaScript notation. JSON is more succinct than other data formats
such as XML.

k-fold cross-validation is a form of cross-validation involving k (a small integer number)
random data partitions called folds. In k iterations, each fold is used once for validation and
the rest of the data is used for training. The results of the iterations can be combined at the
end.

Key Concepts

[290]

Kruskal-Wallis one-way analysis of variance is a statistical method that analyzes sample
variance without making assumptions about their distributions.

The lag plot is a scatter plot for a time series and the same time series lagged. A lag plot
shows autocorrelation within time series data for a certain lag.

The learning curve is a way to visualize the behavior of a learning algorithm. It is a plot of
training and test scores for a range of train data sizes.

Logarithmic plots (or log plots) are plots that use a logarithmic scale. This type of plots is
useful when the data varies a lot because they display orders of magnitude.

Logistic regression is a type of a classification algorithm. This algorithm can be used to
predict probabilities associated with a class or an event occurring. Logistic regression is
based on the logistic function, which has values in the range between zero and one, just like
in probabilities. The logistic function can therefore be used to transform arbitrary values
into probabilities.

MapReduce is a distributed algorithm used to process large datasets with a cluster of
computers. The algorithm consists of Map and Reduce phases. During the Map phase, data
is processed in parallel fashion. The data is split up in parts and on each part, filtering or
other operations are performed. In the Reduce phase, the results from the Map phase are
aggregated.

Moore's law is the observation that the number of transistors in a modern computer chip
doubles every two years. This trend has continued since Moore's law formulation around
1970. There is also a second Moore's law, which is also known as Rock's law. This law states
that the cost of R and D and manufacturing of integrated circuits increases exponentially.

Moving averages specify a window of previously seen data that is averaged each time the
window slides forward by one period. The different types of moving average differ
essentially in the weights used for averaging.

Naive Bayes classification is a probabilistic classification algorithm based on Bayes
theorem from probability theory and statistics. It is called naive because of its strong
independence assumptions.

Object-relational mapping (ORM) is a software architecture pattern for translation
between database schemas and object-oriented programming languages.

Key Concepts

[291]

Opinion mining or sentiment analysis is a research field with the goal of efficiently finding
and evaluating opinions and sentiments in text.

Part of Speech (POS) tags are tags for each word in a sentence. These tags have a
grammatical meaning such as a verb or noun.

Representational State Transfer (REST) is an architectural style for web services.

Really Simple Syndication (RSS) is a standard for the publication and retrieval of web
feeds such as blogs.

The scatter plot is a two-dimensional plot showing the relationship between two variables
in a Cartesian coordinate system. The values of one variable are represented on one axis
and the values of the other variable are represented by the other axis. We can quickly
visualize correlation this way.

Signal processing is a field of engineering and applied mathematics that handles the
analysis of analog and digital signals, corresponding to variables that vary with time.

SQL is a specialized language for relational database querying and manipulation. This
includes creating tables, inserting rows in tables, and deleting tables.

Stopwords are common words with low-information value. Stopwords are usually
removed before analyzing text. Although filtering stopwords is a common practice, there is
no standard definition for stopwords.

Supervised learning is a type of machine learning that requires labeled training data.

Support vector machines (SVM) can be used for regression (SVR) and classification (SVC).
SVM maps the data points to points in a multidimensional space. The mapping is
performed by a so-called kernel function. The kernel function can be linear or nonlinear.

Term frequency-inverse document frequency (tf-idf) is a metric measuring the importance
of a word in a corpus. It is composed of a term frequency number and an inverse document
frequency number. The term frequency counts the number of times a word occurs in a
document. The inverse document frequency counts the number of documents in which the
word occurs and takes the inverse of the number.

A time series is an ordered list of data points starting with the oldest measurements first.
Usually, each data point has a related timestamp. A time series could be stationary or non-
staionary.

 Β
Useful Functions

This appendix lists useful functions organized by packages for matplotlib, NumPy, Pandas,
scikit-learn, and SciPy.

Matplotlib
The following are useful matplotlib functions:

matplotlib.pyplot.axis(*v, **kwargs): This is the method to get or set axis
properties. For example, axis('off') turns off the axis lines and labels.

matplotlib.pyplot.figure(num=None, figsize=None, dpi=None,
facecolor=None, edgecolor=None, frameon=True, FigureClass=<class

'matplotlib.figure.Figure'>, **kwargs): This function creates a new figure.

matplotlib.pyplot.grid(b=None, which='major', axis='both', **kwargs):
This function turns the plot grids on or off.

matplotlib.pyplot.hist(x, bins=10, range=None, normed=False,
weights=None, cumulative=False, bottom=None, histtype='bar',
align='mid', orientation='vertical', rwidth=None, log=False,

color=None, label=None, stacked=False, hold=None, **kwargs): This function
plots a histogram.

matplotlib.pyplot.imshow(X, cmap=None, norm=None, aspect=None,
interpolation=None, alpha=None, vmin=None, vmax=None, origin=None,
extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None,

resample=None, url=None, hold=None, **kwargs): This function displays an image
for array-like data.

Useful Functions

[293]

matplotlib.pyplot.legend(*args, **kwargs): This function
shows a legend at an optionally specified location (for instance,
plt.legend(loc='best')).

matplotlib.pyplot.plot(*args, **kwargs): This function creates a two-dimensional
plot with single or multiple (x, y) pairs and a corresponding optional format string.

matplotlib.pyplot.scatter(x, y, s=20, c='b', marker='o', cmap=None,
norm=None, vmin=None, vmax=None, alpha=None, linewidths=None,

verts=None, hold=None, **kwargs): This function creates a scatter plot of two arrays.

matplotlib.pyplot.show(*args, **kw): This function displays a plot.

matplotlib.pyplot.subplot(*args, **kwargs): This function creates subplots if the
row number, column number, and index number of the plot are given. All these numbers
start from one. For instance, plt.subplot(221) creates the first subplot in a two-by-two
grid.

matplotlib.pyplot.title(s, *args, **kwargs): This function puts a title on the
plot.

NumPy
The following are useful NumPy functions:

numpy.arange([start,] stop[, step,], dtype=None): This function creates a
NumPy array with evenly spaced values within a specified range.

numpy.argsort(a, axis=-1, kind='quicksort', order=None): This function
returns the indices that will sort the input array.

numpy.array(object, dtype=None, copy=True, order=None, subok=False,

ndmin=0): This function creates a NumPy array from an array-like sequence such as a
Python list.

numpy.dot(a, b, out=None): This function calculates the dot product of two arrays.

numpy.eye(N, M=None, k=0, dtype=<type 'float'>): This function returns the
identity matrix.

Useful Functions

[294]

numpy.load(file, mmap_mode=None): This function loads NumPy arrays or pickled
objects from .npy, .npz, or pickles. A memory-mapped array is stored in the filesystem and
doesn't have to be completely loaded in the memory. This is especially useful for large
arrays.

numpy.loadtxt(fname, dtype=<type 'float'>, comments='#',
delimiter=None, converters=None, skiprows=0, usecols=None,

unpack=False, ndmin=0): This function loads data from a text file into a NumPy array.

numpy.mean(a, axis=None, dtype=None, out=None, keepdims=False): This
function calculates the arithmetic mean along the given axis.

numpy.median(a, axis=None, out=None, overwrite_input=False): This function
calculates the median along the given axis.

numpy.ones(shape, dtype=None, order='C'): This function creates a NumPy array of
a specified shape and data type, containing ones.

numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False): This
function performs a least squares polynomial fit.

numpy.reshape(a, newshape, order='C'): This function changes the shape of a
NumPy array.

numpy.save(file, arr): This function saves a NumPy array to a file in the NumPy .npy
format.

numpy.savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n',

header='', footer='', comments='# '): This function saves a NumPy array to a text
file.

numpy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False):
This function returns the standard deviation along the given axis.

numpy.where(condition, [x, y]): This function selects array elements from input
arrays based on a Boolean condition.

numpy.zeros(shape, dtype=float, order='C'): This function creates a NumPy array
of a specified shape and data type, containing zeros.

Useful Functions

[295]

Pandas
The following are useful pandas functions:

pandas.date_range(start=None, end=None, periods=None, freq='D',

tz=None, normalize=False, name=None, closed=None): This function creates a
fixed frequency date-time index

pandas.isnull(obj): This function finds NaN and None values

pandas.merge(left, right, how='inner', on=None, left_on=None,
right_on=None, left_index=False, right_index=False, sort=False,

suffixes=('_x', '_y'), copy=True): This function merges the DataFrame objects
with a database-like join on columns or indices

pandas.pivot_table(data, values=None, rows=None, cols=None,

aggfunc='mean', fill_value=None, margins=False, dropna=True): This function
creates a spreadsheet-like pivot table as a pandas DataFrame

pandas.read_csv(filepath_or_buffer, sep=',', dialect=None,
compression=None, doublequote=True, escapechar=None, quotechar='"',
quoting=0, skipinitialspace=False, lineterminator=None, header='infer',
index_col=None, names=None, prefix=None, skiprows=None,
skipfooter=None, skip_footer=0, na_values=None, na_fvalues=None,
true_values=None, false_values=None, delimiter=None, converters=None,
dtype=None, usecols=None, engine='c', delim_whitespace=False,
as_recarray=False, na_filter=True, compact_ints=False,
use_unsigned=False, low_memory=True, buffer_lines=None,
warn_bad_lines=True, error_bad_lines=True, keep_default_na=True,
thousands=Nment=None, decimal='.', parse_dates=False,
keep_date_col=False, dayfirst=False, date_parser=None,
memory_map=False, nrows=None, iterator=False, chunksize=None,
verbose=False, encoding=None, squeeze=False, mangle_dupe_cols=True,

tupleize_cols=False, infer_datetime_format=False): This function creates a
DataFrame from a CSV file

pandas.read_excel(io, sheetname, **kwds): This function reads an Excel worksheet
into a DataFrame

pandas.read_hdf(path_or_buf, key, **kwargs): This function returns a pandas
object from an HDF store

Useful Functions

[296]

pandas.read_json(path_or_buf=None, orient=None, typ='frame',
dtype=True, convert_axes=True, convert_dates=True,
keep_default_dates=True, numpy=False, precise_float=False,

date_unit=None): This function creates a pandas object from a JSON string

pandas.to_datetime(arg, errors='ignore', dayfirst=False, utc=None,
box=True, format=None, coerce=False, unit='ns',

infer_datetime_format=False): This function converts a string or list of strings to
datetime

Scikit-learn
The following are useful scikit-learn functions:

sklearn.cross_validation.train_test_split(*arrays, **options): This
function splits arrays into random train and test sets

sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True,

sample_weight=None): This function returns the accuracy classification score

sklearn.metrics.euclidean_distances (X, Y=None, Y_norm_squared=None,

squared=False): This function computes the distance matrix for the input data

SciPy
This section shows useful SciPy functions:

scipy.fftpack
fftshift(x, axes=None): This function shifts the zero-frequency component to the
center of the spectrum

rfft(x, n=None, axis=-1, overwrite_x=0): This function performs a discrete
Fourier transform of an array containing real values

Useful Functions

[297]

scipy.signal
detrend(data, axis=-1, type='linear', bp=0): This function removes the linear
trend or a constant from the data

medfilt(volume, kernel_size=None): This function applies a median filter on an array

wiener(im, mysize=None, noise=None): This function applies a Wiener filter on an
array

scipy.stats
anderson(x, dist='norm'): This function performs the Anderson-Darling test for data
coming from a specified distribution

kruskal(*args): This function performs the Kruskal-Wallis H test for data

normaltest(a, axis=0): This function tests whether data complies to the normal
distribution

scoreatpercentile(a, per, limit=(), interpolation_method='fraction'):
This function computes the score at a specified percentile of the input array

shapiro(x, a=None, reta=False): This function applies the Shapiro-Wilk test for
normality

 C
Online Resources

The following is a list of links to documentation, forums, articles, and other information:

The Apache Cassandra database: h t t p ://c a s s a n d r a . a p a c h e . o r g

Beautiful Soup: h t t p s ://w w w . c r u m m y . c o m /s o f t w a r e /B e a u t i f u l S o u p /

The HDF Group website: h t t p s ://w w w . h d f g r o u p . o r g /

A gallery of interesting IPython notebooks: h t t p s ://g i t h u b . c o m /i p y t h o n /i p y t h o n /w i k i
/A - g a l l e r y - o f - i n t e r e s t i n g - I P y t h o n - N o t e b o o k s

The Graphviz open source graph visualization software: h t t p ://g r a p h v i z . o r g /

The IPython website: h t t p ://i p y t h o n . o r g /

The Jupyter website: h t t p ://j u p y t e r . o r g /

Matplotlib (a Python plotting library): h t t p ://m a t p l o t l i b . o r g /

MongoDB (an open source document database): h t t p ://w w w . m o n g o d b . o r g

The mpi4py docs: h t t p ://m p i 4p y . s c i p y . o r g /d o c s /u s r m a n /i n d e x . h t m l

Natural Language Toolkit (NLTK): h t t p ://w w w . n l t k . o r g /

NumPy and SciPy documentation: h t t p ://d o c s . s c i p y . o r g /d o c /

NumPy and SciPy mailing lists: h t t p ://w w w . s c i p y . o r g /M a i l i n g _ L i s t s

Open MPI (a high performance message passing library): h t t p ://w w w . o p e n - m p i . o r g

Packt Publishing help and support: http://www.packtpub.com/support

http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
http://cassandra.apache.org
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://graphviz.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://ipython.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://www.mongodb.org
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://mpi4py.scipy.org/docs/usrman/index.html
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.packtpub.com/support
http://www.packtpub.com/support

Online Resources

[299]

The pandas home page: h t t p ://p a n d a s . p y d a t a . o r g

Python performance tips: h t t p s ://w i k i . p y t h o n . o r g /m o i n /P y t h o n S p e e d /P e r f o r m a n c e T i
p s

Redis (an open source, key-value store): h t t p ://r e d i s . i o /

Scikit-learn (machine learning with Python): h t t p ://s c i k i t - l e a r n . o r g /s t a b l e /

Scikit-learn performance tips: h t t p ://s c i k i t - l e a r n . o r g /s t a b l e /d e v e l o p e r s /p e r f o r m a
n c e . h t m l

SciPy performance tips: h t t p ://w i k i . s c i p y . o r g /P e r f o r m a n c e T i p s

SQLAlchemy (the Python SQL toolkit and Object Relational Mapper): h t t p ://w w w . s q l a l
c h e m y . o r g

The Toolz utility functions documentation: h t t p ://t o o l z . r e a d t h e d o c s . o r g /e n /l a t e s t /

Plotly matplotlib figure converter: h t t p s ://p l o t . l y /m a t p l o t l i b /g e t t i n g - s t a r t e d /

Using Plotly with Python offline: h t t p s ://p l o t . l y /p y t h o n /o f f l i n e /

Saving static images (PNG, PDF, etc): h t t p s ://p l o t . l y /p y t h o n /s t a t i c - i m a g e - e x p o r t /

Creating HTML or PDF reports in Python: h t t p s ://p l o t . l y /p y t h o n /#r e p o r t - g e n e r a t i o
n

Security and Plotly's server at your company: h t t p s ://p l o t . l y /p r o d u c t s /o n - p r e m i s e /

Creating dashboards with Plotly and Python: h t t p s ://p l o t . l y /p y t h o n /d a s h b o a r d /

Connecting to databases: h t t p s ://p l o t . l y /p y t h o n /#d a t a b a s e s

Plotly and IPython / Jupyter notebook: h t t p s ://p l o t . l y /i p y t h o n - n o t e b o o k s /

http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://scikit-learn.org/stable/developers/performance.html
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://wiki.scipy.org/PerformanceTips
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
http://toolz.readthedocs.org/en/latest/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/matplotlib/getting-started/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/offline/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/static-image-export/
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/python/#report-generation
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/products/on-premise/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/dashboard/
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/python/#databases
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/
https://plot.ly/ipython-notebooks/

Index

A
affinity propagation
 clustering 230
Amazon Web Services (AWS) 244
Amdahl's law 287
 URL 277
annotations 136
Apache Cassandra
 about 191, 192, 193
 references 191
application
 with NumPy arrays 17, 20
ARMA models
 about 165
 URL 165
array copies
 creating 45
array shapes
 flatten() function 34
 manipulating 33
 ravel() function 33
 reshape() function 34
 resize() method 34
 transpose() function 34
array views
 creating 45
arrays, stacking
 about 35
 column stacking 37
 depth stacking 37
 horizontal stacking 35
 row stacking 38
 vertical stacking 36
artificial general intelligence (AGI) 217
Artificial Neural Networks (ANN) 287
artificial neural networks (ANN) 238

Atom feeds 119, 120, 121
Augmented Dickey Fuller (ADF)
 about 287
Augmented Dickey-Fuller (ADF) test
 URL 156
autocorrelation 145, 159, 287
autocorrelation plots 145
autoregressive model 162, 288

B
bag-of-words model 199, 288
Bartlett window 154
Baseball Data Set
 URL 101
Beautiful Soup
 HTML, parsing 121, 122, 123, 124, 125, 126
binary .npy 108, 109, 110
binomial distribution
 gambling, with 92
Blackman window 154
Boolean indexing 50
Boost
 about 254
 integrating, with Python 254
 URL 254
Bottleneck
 about 279
 comparing, to NumPy functions 279
 URL 280
boxcar window 154
broadcasting
 about 52
 NumPy arrays 52
bubble chart 134
bubble charts 288

[301]

C
C code
 calling 271
cardinal number (CD) 198
Cascading Style Sheet (CSS) 123
Cascading Style Sheets (CSS) 288
Cassandra Query Language (CQL) 288
character codes 30, 288
clustering 288
 about 230
 with affinity propagation 230
coefficient of determination
 about 225
 URL 225
cointegration 288
 about 156
 defining 156
command line interface (CLI) 15
Comprehensive R Archive Network (CRAN) 246
corpora 195
CSS selectors
 about 125
 URL 125
CSV files
 writing, with NumPy 106, 107
 writing, with pandas 106, 107
Cython
 about 267
 installing 267

D
data aggregation
 with pandas DataFrame 69
data analysis libraries
 installing 12
data science toolbox
 URL 244
data type object 29
data type objects 288
data
 visualizing, Matplotlib used 21, 22, 23
database cursor 177
dataset 187, 188
dates

 dealing, with 78, 79, 80, 81
decision tree 240
decision tree learning
 about 240
 URL 240
descriptive statistics
 with NumPy 84
detrend filter 174
dill 109
dtype attributes 32
dtype constructors 31

E
eigenvalues
 about 288
 searching, with NumPy 90
eigenvectors
 searching, with NumPy 90
Elastic net regularization
 about 225
 URL 225
ElasticNetCV
 regression, with 225
ensembles 217
Excel
 reading, with pandas 115, 116
 writing, with pandas 115, 116
exponential moving average 152, 288

F
fancy indexing 46
Fast Fourier Transform (FFT) 170, 289
filtering 174, 289
fitness function 234
folds 221
format parameter
 URL 106
Fortran
 references 256
 using, through f2py 256
fourier analysis 289
Fourier analysis 169
Fourier series 169
frequency-inverse document frequency (tf-idf) 210

[302]

G
General Public License (GPL) 246
generations 234
genetic algorithms 234, 289
genetic operators
 about 234
 crossover 234
 mutation 234
Global Interpreter Lock (GIL) 274
Graphical Processor Units (GPUs) 289
 URL 134
Graphical User Interface (GUI) 245
Graphviz
 URL 240, 264
grid search 223
Gutenberg
 URL 197

H
Hanning window 154
HDF5
 about 110
 pandas DataFrames, reading to 112, 113, 114
 pandas DataFrames, writing to 112, 113, 114
 URL 110
Hierarchical Data Format (HDF) 289
Hierarchical data format (HDF) 110
Hilbert-Huang transform
 URL 167
HyperText Markup Language (HTML) 289
Hypertext Markup Language (HTML)
 about 121
 parsing, with Beautiful Soup 121, 122, 123, 124,

125, 126

I
indexing
 with location list 48
Internet Engineering Task Force (IETF) 121, 289
IPython Notebooks
 about 16
 reference link 16
IPython Parallel 283
IPython shell

 features 13
 using 13
IPython
 about 9
 reference link 20
 using, as shell 13, 14

J
jackknife resampling 285
Java Development Kit (JDK) 249
Java Runtime Environment (JRE) 249
Java Virtual Machine (JVM) 249
Java
 NumPy arrays, sending to 249
JavaScript Object Notation (JSON) 289
 reading, with pandas 118, 119
 URL 117
 using 116, 118
 writing, with pandas 118, 119
Joblib
 for loops, parallelizing 278
join
 URL 74
JPype1 package
 references 249
Jug
 about 280
 MapReduce, performing 280
Jupyter 12
Jupyter Notebook
 about 10, 16
 reference link 16, 20
Jython 249

K
k-fold cross-validation 221, 289
kernel function 223
Kruskal-Wallis one-way analysis of variance
 about 290
 URL 247

L
lag plot 143, 290
learning curve 228, 290
least absolute shrinkage and selection operator

[303]

(LASSO) 225
leaves 240
legends 136
linear algebra
 linear equations, solving with NumPy 88
 matrices, inverting 86
 with NumPy 86
Linux
 Python 3, installing 5, 12
logarithmic plots 132, 290
logistic function 221
logistic regression
 about 221, 290
 classification, with 221
 URL 221

M
Mac OS X
 Python 3, installing 5, 12
machine learning
 about 217
 reinforcement learning 218
 supervised learning 218
 unsupervised learning 218
magics 284
manual pages
 reading 15
MapReduce
 about 280, 290
 performing, with Jug 280
 URL 280
Matlab
 about 245
 information, exchanging 245
matplotlib subpackages 130
matplotlib, functions
 matplotlib.pyplot.axis() 292
 matplotlib.pyplot.figure() 292
 matplotlib.pyplot.grid() 292
 matplotlib.pyplot.hist() 292
 matplotlib.pyplot.imshow() 292
 matplotlib.pyplot.legend() 293
 matplotlib.pyplot.plot() 293
 matplotlib.pyplot.scatter() 293
 matplotlib.pyplot.show() 293

 matplotlib.pyplot.subplot() 293
 matplotlib.pyplot.title() 293
Matplotlib
 about 9
 plotting 130
 reference link 20
 URL 129
 used, for visualizing data 21, 22, 23
mean shift 232
median filter
 about 174
 URL 174
memcache
 data, storing 191
Mersenne Twister algorithm
 reference link 92
Message Passing Interface (MPI)
 about 282
 installing, for Python 282
 URL 282
Microsoft Visual C++
 reference link 12
missing values
 handling 76, 78
modules
 listing, in Python libraries 21
MongoDB
 about 188, 189
 URL 188
Moore's law 132, 290
moving averages 152
multidimensional array
 creating 26

N
naive 203
Naive Bayes classification 202, 203, 204, 290
names
 filtering 197, 198
Natural Language Toolkit (NLTK)
 about 195, 196, 197
 installing 196
neural networks 238
normal distribution
 sampling 95

[304]

normality test
 performing, with SciPy 96
Not Only SQL (NoSQL) 176
numbers
 filtering 197, 198
NumPy arrays, splitting
 about 38
 depth-wise splitting 39
 horizontal splitting 38
 verticcal splitting 39
NumPy arrays
 about 16
 advantages 25
 application 17, 20
 attributes 40
 broadcasting 52
 converting 44
 elements, selecting 27
 indexing, with Booleans 50
 object 25
 sending, to Java 249
NumPy functions
 comparing, to Bottleneck 279
NumPy masked array
 creating 99
 extreme values, disregarding 101
 negative values, disregarding 101
NumPy numerical types
 about 28
 character codes 30
 data type object 29
 dtype attributes 32
 dtype constructors 31
NumPy random numbers
 about 92
 gambling, with binomial distribution 92
 normal distribution, sampling 94
 normality test, performing with SciPy 96
NumPy, functions
 numpy.arange() 293
 numpy.argsort() 293
 numpy.array() 293
 numpy.dot() 293
 numpy.eye() 293
 numpy.load() 294

 numpy.loadtxt() 294
 numpy.mean() 294
 numpy.median() 294
 numpy.ones() 294
 numpy.polyfit() 294
 numpy.reshape() 294
 numpy.save() 294
 numpy.savetxt() 294
 numpy.std() 294
 numpy.where() 294
 numpy.zeros() 294
NumPy
 about 9
 CSV files, writing 106
 descriptive statistics 84
 eigenvalues, searching 90
 eigenvectors, searching 90
 integrating, with SWIG 250
 linear algebra 86
 linear systems, solving 88
 matrices, inverting 86
 reference link 12

O
object-relational mapping (ORM) 181, 290
Octave
 about 245
 information, exchanging 245
 URL 245
one-dimensional indexing 32
one-dimensional slicing 32
one-point crossover process 234
openpyxl
 URL 115
opinion mining 205, 291

P
pandas DataFrame, statistical methods
 count 67
 describe 67
 kurt 67
 mad 67
 max 67
 median 67
 min 67

[305]

 mode 67
 skew 67
 std 67
 var 67
pandas DataFrame
 about 58, 59, 60
 appending 73, 74
 concatenating 73, 74
 data aggregation 69
 data, querying 64, 65
 joining 74, 75
 reading, to HDF5 stores 112, 113, 114
 reference link 58
 statistical methods 67, 68
 writing, to HDF5 stores 112, 113, 114
pandas Series 61, 62, 63
Pandas, functions
 pandas.date_range() 295
 pandas.isnull() 295
 pandas.merge() 295
 pandas.pivot_table() 295
 pandas.read_csv() 295
 pandas.read_excel() 295
 pandas.read_hdf() 295
 pandas.to_datetime() 296
Pandas
 about 9
 CSV files, writing 106
 database, accessing 179, 180
 Excel, reading 115, 116
 Excel, writing 115, 116
 exploring 57
 installing 57
 JavaScript Object Notation (JSON), reading 118,

119

 JavaScript Object Notation (JSON), writing 118,
119

 plotting 141, 142
 reference link 20, 79
 references 57
panel data 56
part of speech (POS) 198, 291
periodic signals
 generating 167
Perl Compatible Regular Expressions (PCRE)

 about 251
 URL 251
phase spectrum 173
pickle formats 108, 109, 110
pickling 109
pivot table 81
Pony ORM 186
power spectrum 172
predictive analytics
 about 217
 reference link 217
preprocessing module 219
probability density function (PDF) 94
process pool
 creating, with multiprocessing 274
profiling 262
proper noun singular (NNP) 198
PyMongo 188, 189
PyTables
 data, storing with 110, 112
Python 3
 data analysis libraries, installing 12
 installing 11
 installing, on Linux 12
 installing, on Mac OS X 12
 installing, on Windows 12
Python libraries
 IPython 9
 Jupyter Notebook 10
 Matplotlib 9
 modules, listing 21
 NumPy 9
 Pandas 9
 SciPy 9
Python
 online resources 298
 references 11
 URL 64
PythonAnywhere Cloud
 about 257
 references 257

Q
Quandl API
 references 64

[306]

R
R squared 225
R
 about 246
 interfacing with 246
 URL 246
Really Simple Syndication (RSS) 291
 about 119, 120, 121
 URL 119
relational database 176
Remote Dictionary Server (Redis)
 data, storing 190
Representational State Transfer (REST) 291
Representational State Transfer (REST) web

services
 URL 116
 using 116, 117, 118
ridge methods 225
rpy2 package
 installing 246
 URL 246

S
scatter plot 134, 291
scikit-learn, functions
 sklearn.cross_validation.train_test_split() 296
 sklearn.metrics.accuracy_score() 296
 sklearn.metrics.euclidean_distances () 296
SciPy Stack
 reference link 9
SciPy, functions
 scipy.fftpack 296
 scipy.signal 297
 scipy.stats 297
SciPy
 about 9
 normality test, performing 96
 reference link 12, 20
sentiment analysis 291
 about 205, 206, 207
 reference link 207
shell
 IPython, using as 13, 14
signal processing 150, 291

Simplified Wrapper and Interface Generator (SWIG)
 about 251
 integrating, with NumPy 250
 URL 251, 253
social network analysis 213, 214
soft margin 223
spectral analysis 172
speed of light
 URL 246
SQL 291
 URL 177
SQLAlchemy
 about 181
 database, querying 184, 185
 databases, populating with 183
 installing 181, 182
 references 181
 setting up 181
SQLite 177
sqlite 3
 lightweight access 177
statsmodels modules 151
stopwords 291
 filtering 197, 198
supervised learning 291
Support vector machines (SVM) 291
support vector machines (SVM)
 about 223
 URL 223
support vector regression (SVR) 223, 228

T
technological singularity
 URL 217
term frequency-inverse document frequency (tf-idf)

291

three-dimensional plots 138, 139
time series 150, 291
transistors
 URL 132

U
unpickling
 URL 109

W
Wiener filter
 about 174
 URL 174
window function
 about 154
 URL 154
Windows

 Python 3, installing 12
word clouds
 creating 208, 210, 211, 212
word frequencies
 analyzing 201, 202
Wordle
 about 208
 URL 208

	Cover
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started with Python Libraries
	Installing Python 3
	Installing data analysis libraries
	On Linux or Mac OS X
	On Windows

	Using IPython as a shell
	Reading manual pages
	Jupyter Notebook
	NumPy arrays
	A simple application
	Where to find help and references
	Listing modules inside the Python libraries
	Visualizing data using Matplotlib
	Summary

	Chapter 2: NumPy Arrays
	The NumPy array object
	Advantages of NumPy arrays

	Creating a multidimensional array
	Selecting NumPy array elements
	NumPy numerical types
	Data type objects
	Character codes
	The dtype constructors
	The dtype attributes

	One-dimensional slicing and indexing
	Manipulating array shapes
	Stacking arrays
	Splitting NumPy arrays
	NumPy array attributes
	Converting arrays

	Creating array views and copies
	Fancy indexing
	Indexing with a list of locations
	Indexing NumPy arrays with Booleans
	Broadcasting NumPy arrays
	Summary
	References

	Chapter 3: The Pandas Primer
	Installing and exploring Pandas
	The Pandas DataFrames
	The Pandas Series
	Querying data in Pandas
	Statistics with Pandas DataFrames
	Data aggregation with Pandas DataFrames
	Concatenating and appending DataFrames
	Joining DataFrames
	Handling missing values
	Dealing with dates
	Pivot tables
	Summary
	References

	Chapter 4: Statistics and Linear Algebra
	Basic descriptive statistics with NumPy
	Linear algebra with NumPy
	Inverting matrices with NumPy
	Solving linear systems with NumPy

	Finding eigenvalues and eigenvectors with NumPy
	NumPy random numbers
	Gambling with the binomial distribution
	Sampling the normal distribution
	Performing a normality test with SciPy

	Creating a NumPy masked array
	Disregarding negative and extreme values

	Summary

	Chapter 5: Retrieving, Processing, and Storing Data
	Writing CSV files with NumPy and Pandas
	The binary .npy and pickle formats
	Storing data with PyTables
	Reading and writing Pandas DataFrames to HDF5 stores
	Reading and writing to Excel with Pandas
	Using REST web services and JSON
	Reading and writing JSON with Pandas
	Parsing RSS and Atom feeds
	Parsing HTML with Beautiful Soup
	Summary
	Reference

	Chapter 6: Data Visualization
	The matplotlib subpackages
	Basic matplotlib plots
	Logarithmic plots
	Scatter plots
	Legends and annotations
	Three-dimensional plots
	Plotting in Pandas
	Lag plots
	Autocorrelation plots
	Plot.ly
	Summary

	Chapter 7: Signal Processing and Time Series
	The statsmodels modules
	Moving averages
	Window functions
	Defining cointegration
	Autocorrelation
	Autoregressive models
	ARMA models
	Generating periodic signals
	Fourier analysis
	Spectral analysis
	Filtering
	Summary

	Chapter 8: Working with Databases
	Lightweight access with sqlite3
	Accessing databases from Pandas
	SQLAlchemy
	Installing and setting up SQLAlchemy
	Populating a database with SQLAlchemy
	Querying the database with SQLAlchemy

	Pony ORM
	Dataset – databases for lazy people
	PyMongo and MongoDB
	Storing data in Redis
	Storing data in memcache
	Apache Cassandra
	Summary

	Chapter 9: Analyzing Textual Data and Social Media
	Installing NLTK
	About NLTK
	Filtering out stopwords, names, and numbers
	The bag-of-words model
	Analyzing word frequencies
	Naive Bayes classification
	Sentiment analysis
	Creating word clouds
	Social network analysis
	Summary

	Chapter 10: Predictive Analytics and Machine Learning
	Preprocessing
	Classification with logistic regression
	Classification with support vector machines
	Regression with ElasticNetCV
	Support vector regression
	Clustering with affinity propagation
	Mean shift
	Genetic algorithms
	Neural networks
	Decision trees
	Summary

	Chapter 11: Environments Outside the Python Ecosystem and Cloud Computing
	Exchanging information with Matlab/Octave
	Installing rpy2 package
	Interfacing with R
	Sending NumPy arrays to Java
	Integrating SWIG and NumPy
	Integrating Boost and Python
	Using Fortran code through f2py
	PythonAnywhere Cloud
	Summary

	Chapter 12: Performance Tuning, Profiling, and Concurrency
	Profiling the code
	Installing Cython
	Calling C code
	Creating a process pool with multiprocessing
	Speeding up embarrassingly parallel for loops with Joblib
	Comparing Bottleneck to NumPy functions
	Performing MapReduce with Jug
	Installing MPI for Python
	IPython Parallel
	Summary

	Appendix A: Key Concepts
	Appendix B: Useful Functions
	Matplotlib
	NumPy
	Pandas
	Scikit-learn
	SciPy
	scipy.fftpack
	scipy.signal
	scipy.stats

	Appendix C: Online Resources
	Index

