[image: cover]
Linux for Makers

Understanding the Operating System That Runs Raspberry Pi and Other Maker SBCs

Aaron Newcomb

 Linux for Makers

 by
 Aaron
 Newcomb

 Copyright © 2017 Maker Media. All rights reserved.

 Printed in the United States of America.

 Published by Maker Media, Inc., 1160 Battery Street East, Suite 125, San Francisco, CA 94111.

 Maker Media books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or corporate@oreilly.com.

 	
 Editor:
 Patrick DiJusto

 	
 Production Editor:
 Kristen Brown

 	
 Copyeditor:
 Gillian McGarvey

 	
 Proofreader:
 Rachel Monaghan

 	
 Indexer:
 Angela Howard

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Brian Jepson

 	
 Illustrator:
 Rebecca Demarest

 	
 May 2017:
 First Edition

 Revision History for the First Edition

 	
 2017-04-05:
 First Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781680451832
 for release details.

 Make:, Maker Shed, and Maker Faire are registered trademarks of Maker Media, Inc. The Maker Media
logo is a trademark of Maker Media, Inc. Linux for Makers and related trade dress are trademarks of Maker Media, Inc.

 While the publisher and the author have used good faith efforts to
 ensure that the information and instructions contained in this work are
 accurate, the publisher and the author disclaim all responsibility for
 errors or omissions, including without limitation responsibility for
 damages resulting from the use of or reliance on this work. Use of the
 information and instructions contained in this work is at your own risk.
 If any code samples or other technology this work contains or describes is
 subject to open source licenses or the intellectual property rights of
 others, it is your responsibility to ensure that your use thereof complies
 with such licenses and/or rights.

 978-1-680-45183-2

 [LSI]

Preface

When I started a Makerspace in my local community, I noticed some particularly interesting learning trends. Some people were reluctant to learn a new skill until someone shared some basic techniques that helped get them started down the path of understanding. Other users would jump right into learning a new skill without any idea of what they were doing. This would lead to slow progress until, again, someone provided some assistance that would lead them in the right direction. In both cases, just a little guidance in the beginning greatly accelerated the learning process.

Learning how to use Linux for making and building projects is no easy task. In many cases, Makers cut and paste from a website tutorial into the Linux command line without understanding what they are actually doing, only to be frustrated when they want to modify or tweak something to suit their needs. Also, many Makers shy away from using the Raspberry Pi or similar boards because they feel Linux is too foreign and that using a command line as indicated in many tutorials will be more difficult than using a GUI.

This book aims to overcome those fears and provide a foundation for further learning and exploration when using the Linux operating system for your projects. Linux is just another tool in your Maker tool belt. It might be different from other operating systems you’ve used in the past, but—like all tools—it’s no more challenging to use once you know how to use it effectively. In fact, Linux is so powerful, you may start to prefer it to other operating systems and choose to use it on a daily basis.

Linux is a powerful open source operating system that has been around for many years and is widely used for running servers and websites. But most students and Makers encounter it for the first time when they’re working on projects with their Raspberry Pi or similar single-board computer (SBC), such as BeagleBone Black or Intel Galileo. Linux for Makers is the first book that explains the Linux operating system specifically for Makers as opposed to programmers and administrators. By gaining a deeper understanding of Linux, Makers can add another useful tool to their kit that will help them build projects more easily.

Because this book was written with today’s Maker in mind, it will focus mostly on the Raspbian distribution of Linux running on the Raspberry Pi, as that platform is the most prolific in the ecosystem today. However, most of the topics covered will apply broadly to other Linux distributions, and I will indicate when they may differ. To that end, this book will focus on the basic principles that a Maker needs to know, avoiding details that are not particularly relevant to building projects. After loading the operating system, I will cover the principles of how Linux works, how to use the command line, how to control devices, and loads of tips and tricks that can help you be more effective.

Throughout the book, you will find sections called “Try It for Yourself” where you can get your hands dirty practicing what you just learned and explore additional opportunities to try out new concepts. I have also included illustrations and pictures throughout the book that should help clarify what you can expect to see as you use Linux on your Raspberry Pi.

I have also included a brief history of Linux in Appendix A for those readers who might be wondering “How did all this get started?” or “How did Linux end up getting put together the way it did?”

Conventions Used in This Book

The following typographical conventions are used in this book:

	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.

	Constant width

	

Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	Constant width bold

	

Shows commands or other text that should be typed literally by the user.

	Constant width italic

	

Shows text that should be replaced with user-supplied values or by values determined by context.

Tip

This element signifies a tip, suggestion, or a general note.

Warning

This element indicates a warning or caution.

O’Reilly Safari

Note

Safari (formerly Safari Books Online) is a membership-based training and reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interactive tutorials, and curated playlists from over 250 publishers, including O’Reilly Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	Make:

 	1160 Battery Street East, Suite 125

 	San Francisco, CA 94111

 	877-306-6253 (in the United States or Canada)

 	707-639-1355 (international or local)

We have a web page for this book, where we list errata, examples, and additional information. You can access this page at http://bit.ly/linux_for_makers.

Make: unites, inspires, informs, and entertains a growing community of resourceful people who undertake amazing projects in
their backyards, basements, and garages. Make: celebrates your
right to tweak, hack, and bend any technology to your will. The
Make: audience continues to be a growing culture and community that believes in bettering ourselves, our environment, our
educational system—our entire world. This is much more than
an audience; it’s a worldwide movement that Make is leading. We call it the Maker Movement.

For more information about Make:, visit us online:

 	Make: magazine: http://makezine.com/magazine

 	Maker Faire: http://makerfaire.com

 	Makezine.com: http://makezine.com

 	Maker Shed: http://makershed.com

To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.

Acknowledgments

I would like to thank my wife Jennifer and kids Stephen, Olivia, and James for being so patient with me as I wrote this book. Many nights and weekends were taken out of my already busy schedule to work on it, and they were supportive through it all.

Thanks to James who introduced my to Linux back in 1997. Know someone who might like Linux or Raspberry Pi? Tell them about it!

I am grateful to the support of my editor, Patrick, and all the staff at Maker Media and O’Reilly Media who guided me through the writing, editing, and reviewing process.

I also want to add a big shoutout to the people who gave up their time to help review the book and offer so many great suggestions—Robert Shaver, Christoph Zimmermann, Jim Kennon, Rashed Harun, and Broedy Bowers.

Chapter 1. Getting Started

The Raspberry Pi is a single-board computer (SBC), which means that—as the name suggests—it is a complete computer system built on a single printed circuit board (PCB). Like most SBCs, it doesn’t come out of the box ready to power up and use. It has the same basic components built into the board as any other computer has: a central processing unit (CPU), memory, video processor, audio, and networking.

The one thing it doesn’t have out of the box is a storage device. On a computer or laptop, most people use a hard drive that contains the operating system and all their files. With a Raspberry Pi, you use an SD card as the main storage device. So before we can tackle the ins and outs of making things using Linux, we need to load the operating system you want to use with the Raspberry Pi on the SD card. For best results, you should use an SD card that has at least 8 GB of available capacity.

What Is a Disk Image?

A disk image is a single file that represents a point-in-time copy of an entire storage device. Just like a photograph is an image that can contain different people or objects, a disk image can contain lots of different partitions, directories, and files.

This process can be confusing for some people, so let’s break it down into individual steps and take them one at a time. These steps include downloading a compressed disk image from the internet, uncompressing that image on your local computer, writing that image to your SD card, and finally, booting up your Raspberry Pi. You will find that these steps apply to other SBCs as well, although the exact image file you use will change because the operating system needs to be built specifically for the board you’re using.

I will be mentioning some concepts in this chapter that may be new to you, like filesystems, terminal emulators, and the command line. Don’t worry. We will cover these in depth in Chapter 2. For now, we just need to get things running so you can use your Raspberry Pi as you go through this book. In order to get started, you will need access to a desktop or laptop computer and a connection to the internet.

Choosing and Downloading a Disk Image

The best place to find the most up-to-date disk images for the Raspberry Pi is on the Raspberry Pi Foundation website at http://raspberrypi.org/downloads. When you get to that site, you will see that there are a number of disk images to choose from. The two that have official support from the Raspberry Pi Foundation are NOOBS and Raspbian. NOOBS is essentially an installer for Raspbian as well as several other operating systems that can be run on the Raspberry Pi. NOOBS automates several of the tasks described in this chapter, but is not the actual operating system you will end up using. Instead, the operating system is downloaded as part of the installation process. Raspbian, on the other hand, contains the actual operating system, and the installation method requires you to manually write the disk image to an SD card.

I recommend choosing the Raspbian image for a number of reasons. First, while installing NOOBS might seem less complicated, once you learn the standard installation procedure, Raspbian will actually be easier and faster than using NOOBS. Second, learning the installation process for Raspbian will teach you how to load any disk image you might want to try in the future, and learning how to do things is what this book is all about. Third, since loading Raspbian using this process results in a more standard disk layout and structure on the SD card, it makes it a little easier to back up your image for safekeeping. This is something you definitely want to do to protect your work and prevent data loss in case you break your SD card or damage your Raspberry Pi.

Click on the Raspian link and download the Raspbian Jessie file. Later, if you decide you don’t want to use the desktop (see Chapter 3) you can choose the Raspbian Jessie Lite file, which is smaller in size but does not come prepackaged with a desktop environment. Save the ZIP file in a place you can find easily later, like the Downloads folder. At the time of this writing the filename looks like this: 2017-01-11-raspbian-jessie.zip.

Uncompressing the Disk Image

Disk images are compressed to make them smaller for downloading. Compressing a file basically uses an algorithm to take out all the empty spaces and duplicate existing information. For example, imagine removing all the spaces between the words of an essay or a text to a friend. It makes the finished product much smaller, but also much more difficult to read. So in order to make use of the disk image, you will first need to uncompress it. You will need software in order to uncompress the disk image, and in most cases that software is already available on your desktop or laptop.

Windows

In recent versions of Windows, the decompression software you need is already built into File Explorer. Simply open it up and navigate to the folder where you saved the ZIP file. Double-click on the ZIP file to open it. Clicking on the Extract button will save the disk image to a place of your choosing that you can easily find later. This could be the same folder where you saved the ZIP file originally (see Figure 1-1 for an example of what this looks like).

[image:]
Figure 1-1. Extracting the disk image using Windows

MacOS

When you download the ZIP file with a recent version of Safari, the ZIP file will be automatically uncompressed and saved in your Downloads folder by default. If you are using an older version, macOS has a built-in tool for uncompressing files called Archive Utility. Just double-click on the ZIP file you downloaded, and Archive Utility will uncompress the file for you (see Figure 1-2).

When the process is complete. you will see the extracted .img file appear on your desktop or wherever you saved your ZIP file.

[image:]
Figure 1-2. The Archive Utility running on macOS

Linux

Most distributions of Linux also come with built-in programs to extract compressed files. On the desktop, you can open the file browser and double-click on the ZIP file you downloaded. This will open up Archive Manager and allow you to extract the image file (see Figure 1-3).

[image:]
Figure 1-3. Extracting the disk image using Linux

You can also do this just as easily from the command line. Open a terminal emulator and type:

cd Downloads
unzip 2017-01-11-raspbian-jessie.zip

This assumes that you saved the ZIP file to your default download location and that the filename is correct. Be patient. This is a big file and uncompressing it will take some time. See Figure 1-4 to see what this looks like.

Command-Line Confusion

Not comfortable using the command line yet? That’s a big part of what this book is about. You will learn more about that in the next few chapters.

[image:]
Figure 1-4. Extracting the disk image using the Linux command line

Writing the Disk Image to the SD Card

Be aware that after this step, any files you may have had on your SD card will be deleted.

Windows

Windows is currently the easiest operating system to use when writing a disk image to a card. However, unlike macOS and Linux, it requires you to download some software first. Open your browser and download the Win32 Disk Imager application.

Install the application by double-clicking on the file you downloaded. After it installs successfully, connect your SD card to your computer and make note of the drive letter that Windows assigns to it. Now, open the application. The first thing to check is that the drive letter the application selects is actually the drive letter that corresponds to your SD card. Win32 Disk Imager is pretty good about only selecting SD cards, but always double-check this because you are about to erase the drive, and you definitely don’t want to erase your C: drive on Windows.

Now click on the blue folder icon to select the image file you extracted in the previous step. See Figure 1-5 for an example of what this should look like.

[image:]
Figure 1-5. The Win32 Disk Imager program interface

When you’ve selected the correct file, you can click the Write button. This will overwrite all the data on the SD card. When the process is completed, close the Win32 Disk Imager application. Open File Explorer, right-click on the SD card drive letter, and select Eject. Always do this before removing your SD card to make sure the computer is done writing files in the background.

MacOS

Like Linux, macOS already has all the software you need to write the image to an SD card. However, you will need to use the command line. Open Finder and select Applications→Utilities→Terminal (see Figure 1-6).

[image: mac-terminal1.PNG]
Figure 1-6. Finding the Terminal program on macOS

Insert the SD card and wait a few moments for macOS to recognize it. Use the diskutil list command in the terminal window to print a list of all the disks attached to your Mac:

diskutil list

Identify the disk (not partition) representing your SD card (e.g., disk1, not disk1s1) as shown in Figure 1-7.

[image:]
Figure 1-7. Example output of the diskutil list command

In this case, I have a 64 GB SD card and macOS recognizes it as disk1.

Unmount your SD card by using the diskutil unmountDisk command and the disk name to prepare for copying data to it (see Figure 1-8:

diskutil unmountDisk /dev/disk1

[image:]
Figure 1-8. Using diskutil to unmount a disk

Now we need to copy the image file over to the SD card. We will use the data duplicator, or dd command, for this. Be very careful to get the right disk number so that you don’t overwrite your system disk! You will also need to use SuperUserDO (sudo) for this command. sudo is a secure way for a regular user to run a command that normally requires administrator privileges:

sudo dd if=Desktop/2017-01-11-raspbian-jessie.img of=/dev/rdisk1 bs=1m

You will be asked for your password, since you are using sudo. This may result in an error if you have GNU coreutils installed:

dd: invalid number '1m'

Don’t worry about what that means just yet—all you need to do is use a block size of 1m in the bs= section of the command, as follows:

sudo dd if=Desktop/2017-01-11-raspbian-jessie.img of=/dev/rdisk1 bs=1m

This will take quite a few minutes, depending on the image file size. You can check the progress by pressing Ctrl-T to send a SIGINFO signal (see Figure 1-9). If this command still fails, try using the disk command instead of rdisk.

[image:]
Figure 1-9. Using the dd utility on macOS

In this case, the dd command has transferred 549 1 MB blocks. Once the process is complete, the terminal will bring you back to a prompt. Finally, run one last command before you disconnect your SD card:

sync

This will make sure all the writes to the SD card that may be occurring in the background have finished. You can now remove your SD card.

Linux

Before you connect your SD card to your computer, run this command:

sudo fdisk -l

This will show you all the physical drives connected to your system. Note the size of the drive and the name of the disk. See Figure 1-10.

[image:]
Figure 1-10. Using fdisk to find your physical disks

Now connect your SD card to your computer and wait a few moments for your Linux PC to recognize it. It may automatically mount and display any existing partitions on the drive. Now run the same command again. This time you should notice a new drive. (See Figure 1-11.) Note the disk name and size. The disk name will be important for the next step.

[image:]
Figure 1-11. Using fdisk to find your physical disks (continued)

Now run the following commands to write the image file to your SD card. Be very careful to use the SD card disk name and not your system disk:

sudo umount /dev/YourSDCardName*

Replace /YourSDCardName with the disk name you identified as your SD card with a * on the end:

cd ~/Downloads

sudo dd if=2017-01-11-raspbian-jessie.img of=/dev/sdb bs=4M

Of course, substitute your filename in the if = part of the dd command and substitute the disk name of your SD card in the of= part. This last command could take up to 10 minutes to complete depending on the speed of your computer and SD card. Once it is complete, the prompt will return (see Figure 1-12).

[image:]
Figure 1-12. Using the dd utility on Linux

Finally, run one last command before you disconnect your SD card:

sync

This will make sure all the writes to the SD card that may be occurring in the background have finished. You can now remove your SD card.

Booting the Raspberry Pi for the First Time

Now the magical time has come. You can insert your SD card into the Raspberry Pi, but before you connect the power, be sure your display is connected and that you’re using a power supply that is at least 1 amp (usually displayed on the power supply as 1A) or larger. Two amps (2A) is actually better. Newer smartphone chargers should work, and connecting the Pi to a laptop or PC via USB should also be adequate.

As your Raspberry Pi boots up, you will notice four Raspberry Pi logos at the top of the screen and a bunch of scrolling text on a black screen with a lot of green OK text on each line. Don’t be alarmed. This is normal. Linux is just starting up the operating system and launching some services (more about this in Chapter 2).

When your Raspberry Pi finishes booting up, there are a few settings you might want to adjust before you begin using it for the rest of this book. Other SBCs may or may not require these adjustments. Also, keep in mind that the developers of the operating system are updating the system all the time. Later versions of the Raspbian distribution might not need all of the suggestions that follow here.

Expanding the Filesystem

When that image file you downloaded was created, the people who made it were nice enough to shrink it down first to make the download faster. When you first boot up your system, you only have a total of 4 GB of space and only about 700 MB available to you even though your actual SD card is much bigger than that. Now that you have the image loaded onto your SD card, you probably want to expand the filesystem to get access to all that extra space. In the latest version of Raspbian, this happens automatically on your first boot. You will notice that on the first boot, your system will reboot after a short time. This is normal since the system has to reboot for it to recognize the new size of the filesystem. For older versions of Raspbian, on the Raspberry Pi desktop, click on the icon that looks like a dark monitor. This will open up a terminal emulator, which we’ll use to access the command line. In the window that pops up, run this command:

sudo raspi-config

This will open up the Raspberry Pi configuration application as shown in Figure 1-13.

[image:]
Figure 1-13. The raspi-config screen

Press the Enter key to select the Expand Filesystem option. After a few seconds, another screen will appear telling you that the root filesystem has been resized.

Changing the Localization Options

By default, the Raspbian image comes set up for use in the United Kingdom, since that is where the Raspberry Pi Foundation is located. If you live in another country, you will want to set up your Pi to use your local time zone, keyboard layout, and language settings. Believe me, it can be quite frustrating to type a double-quote character on your keyboard and have the Raspberry Pi interpret that as an @ symbol.

From the same program, use the down arrow on your keyboard to select Localisation Options or press the corresponding number key. We will be configuring all three options on this menu, but for now let’s start with Change Locale. Press the Enter key on this option to continue. You should see a screen similar to Figure 1-14.

[image: locales-revised.PNG]
Figure 1-14. The locales menu in raspi-config

It might be tempting just to select “All locales” from this screen, but that would not be a good idea. Your Raspberry Pi would spend a very long time configuring the settings for hundreds of languages that you will probably never use. Instead, scroll through the choices and pick the locale that matches the language you speak most often. As the description suggests, choose a selection that ends in UTF-8. For example, in the United States you would choose en_US.UTF-8 by pressing the space bar when the selection indicator is next to your choice. I won’t go over what all these codes mean in this book, but you can find a list of language codes online.

Once you’ve selected your locale, press the Enter key to move to the next screen, which will ask you what the default locale should be. Use the arrow keys to select the locale you just chose and press the Enter key again. Your Raspberry Pi will generate the needed information and return you to the main Raspberry Pi configuration screen.

Now it’s time to set your time zone. Select Localisation Options again from the main screen and choose Change Timezone. This will present a screen similar to Figure 1-15.

[image: timezone.PNG]
Figure 1-15. Changing the time zone in raspi-config

Use the arrow keys and Enter key on your keyboard to navigate this menu to select your time zone. If you’re in the United States, you might find it easier to choose the America menu item. You can then type the first letter of the city closest to you to find the right time zone. Press the Enter key to confirm your selection and set your time zone. You will then be returned to the main Raspberry Pi configuration screen.

Last and probably most importantly, we need to set the keyboard layout. Select Localisation Options once again and select Change Keyboard Layout. You should see a screen similar to Figure 1-16.

Use the arrow keys to select the keyboard you are using. For most users, this will either be the Generic 104-key PC if you are in the US, or the Generic 105-key (Intl) PC if you are in Europe or elsewhere. Press the Enter key to move to the next screen.

[image: keyboard.PNG]
Figure 1-16. Changing the keyboard layout in raspi-config

The screen will list the English (UK) layouts that it was previously set up for. If you are not in the UK, you can find your keyboard layout by choosing Other from this menu and pressing the Enter key (see Figure 1-17).

On the next screen, choose the country of origin of your keyboard and press the Enter key. Now you can choose your layout. Use the arrow keys to move the cursor up to the top of the list, where you will find a generic layout you can choose, and press the Enter key to select it.

There are a few more screens to move through. Just select the defaults on those screens by pressing the Enter key for each one. You will then be returned to the main Raspberry Pi configuration screen.

Press the Tab key or use the arrow keys to access the Finish button and press the Enter key. You will be asked if you want to reboot now. Choose Yes and press Enter. Your Raspberry Pi will reboot.

[image: keyboard2.PNG]
Figure 1-17. Changing the keyboard layout in raspi-config (continued)

Changing the Default Password

One last thing you should always do before you forget is to change the default password. You might think a small system like the Raspberry Pi couldn’t be powerful enough to damage other systems on your network or the internet. This is incorrect. Even the smallest systems can be compromised to run and spread malicious software. This is especially true when you leave your password set to the default, as it will be the first thing someone will attempt to use when trying to break into your system.

Changing the password for the “pi” user is easily done via the command line. Open a terminal emulator window like you did previously and run the following command:

passwd

This will prompt you to enter the existing default password, which is “raspberry,” and then enter a new password twice to make sure you have it correct (see Figure 1-18). Be sure to avoid easily guessed passwords like “password” or “12345678.”

[image:]
Figure 1-18. Changing the default password

You are now ready to begin using your Raspberry Pi!

Why This Matters for Makers

As you begin to use the Raspberry Pi and other SBCs more and more for your projects, this process will become commonplace for you. Remember, if things really go haywire, you can always start from scratch by following this process to load a new disk image onto your SD card. Many SBCs available today use a similar process to get an operating system loaded and ready to use, so learning these steps helps you prepare for future exploration of the many great boards out there.

Chapter 2. Linux Principles

You are probably thinking “OK. Let’s go! I am ready to begin my project.” However, there are a few principles of the Linux operating system that you need to know about first. Using Linux in your project will be more complicated than using an Arduino. Linux is a full operating system with users, services, filesystems, and other resources that make it a very powerful and versatile platform for Makers. (By comparison, Arduino is based on a microcontroller with a limited set of instructions to execute.)

The Linux Desktop

A graphical user interface (GUI) is the way most people use their computers. Whether they use Windows, macOS, Android, or iOS (yes, mobile devices are just small computers), a GUI desktop is the canvas people use to make things happen. Linux is no exception here. Almost all Linux distributions come with a desktop environment to make interacting with programs easier and more functional. If you want to actively browse the web, create a document, or edit a photo, the desktop is the place to do it.

Command Line Browser

You can check out the Lynx browser to see what it’s like to browse the internet from the command line.

Single-board computers (SBCs) like the Raspberry Pi that run Linux are no exception. Figure 2-1 shows what the Raspberry Pi’s desktop looks like at the time of this writing.

[image: Raspbian_Desktop_revised.PNG]
Figure 2-1. The Raspbian desktop

Just like Linux distributions (see Chapter 1), Linux desktops come in many flavors. The one used by default on Raspbian is called Lightweight X11 Desktop Environment (LXDE). Lightweight means it requires fewer resources to run and therefore works well on SBCs, which have less powerful CPUs and smaller memory footprints than modern desktops or laptops. Other popular desktop environments that run on Linux include Xfce, Mate, Cinnamon, and Ubuntu’s Unity. These all come with their own unique capabilities and slightly different ways to interact within a desktop environment. Most desktops have a taskbar with a menu of available programs and a few shortcuts to frequently used programs like the browser or terminal emulator. They also usually contain some notification icons that allow the user to get a quick glance at the status of certain functions like the network, CPU utilization, or time of day. To open a program on the desktop, simply click on the shortcut in the taskbar, or click on the menu button and find the program you want to run.

The Terminal or Console

If all you want to do is browse the internet, you could stop reading right here—you already have the information you need to use your Raspberry Pi as a web browser. However, this book is for Makers, and Makers like to build things. So you will need to pull a lot more tools out of the Swiss Army knife that is Linux than just the desktop. To do that, you will need to get comfortable working in the terminal (which is also sometimes referred to as the console), shown in Figure 2-2.

[image:]
Figure 2-2. The Linux console on a Raspberry Pi

If you have ever followed a Raspberry Pi tutorial or how-to guide on the internet (or if you set up your Pi in Chapter 1), you were instructed to type some commands in the terminal or console.

Terminal or Console? What’s the Difference?

These terms are used interchangeably these days. Strictly speaking, the terminal is a way to interface with the operating system by issuing text commands. The console, on the other hand, usually refers to a physical set of hardware (i.e., keyboard, mouse, and monitor) that provides feedback from a given program or user environment. In the early days of computing, before the advent of the desktop and after the days of punch cards, a console was the only way to interact with the computer. So one way to think about this is by saying “You can access the terminal from the console.” In any case, at this point they both refer to a text-based way to interact with a computer in order to run programs.

At first, using the terminal may seem like an archaic and laborious way to get things done, but when you become proficient at using the terminal for your projects you might decide to abandon the desktop altogether (more on this later). Because the terminal was originally the only way to access a computer, and because there was no cut and paste yet, programmers designed many shortcuts in their programs that are still available today. These shortcuts make using the terminal simpler than it seems.

On the desktop, you can open a terminal window by clicking on the icon in the taskbar or by finding it in the menu under Accessories or Applications (see Figure 2-3). Since you are on the desktop, the program you open is actually emulating the console, so it’s known as a terminal emulator. If you are not running the desktop, then once you boot up your Raspberry Pi or other SBC with a monitor attached, the terminal is already staring you in the face. For those not used to working on a Linux system, don’t worry: you won’t feel this way forever.

[image: terminal_emulator_revised.PNG]
Figure 2-3. The default Raspberry Pi terminal emulator

The Shell in a Nutshell

The shell is the part of Linux that runs the terminal. The shell interprets what you type at the command prompt so the operating system knows what to do. For example, when you type the command ls on the command line, the shell knows where that program lives and how it should be invoked to run properly. The shell is also the mechanism that dictates how the console interface looks, and it provides a lot of the shortcuts I mentioned earlier. Think of the shell as your own personal operating system butler. I will be covering some of the most important of these shortcuts for Makers in Chapter 4.

More Than One Version of the Shell

There are many different shell programs that run in Linux, but the one that runs on most distributions, including Raspian, is Bourne-Again shell (bash). bash was written by Brian Fox for the GNU project to add features and functionality to the original Bourne shell (sh) written by Steven Bourne.1 The reason bash is so common is because it is so powerful. bash has features like command-line completion and searchable command history that make it easier to find what you are looking for and enter repeatable commands. It also can be used by itself to interpret a script that can be run as a program. In some cases, you might not need anything else to get your project done.

In addition, you can create a script that the shell will run line by line. As you might expect, this is called a shell script and is simply a text file with some commands that get executed from top to bottom.

Try It for Yourself

At the console or terminal window, type:

echo Hello World!

Then press the Enter key and see what happens.

Now put this into a script that repeats this command 10 times by simply typing:

nano hello.sh

This tells the computer to launch nano, a text editor, and to edit the file hello.sh. If the file doesn’t exist, nano will create it.

When nano launches, type:

#!/bin/bash

for i in `seq 1 10`;

do

echo Hello World!

sleep 1

done

Backticks

The ` characters around seq 1 10 are backticks and not single quotes. In a bash script, backticks will execute the code inside them. On an English-US keyboard, you can find the backtick key in the top-left corner next to the number 1 key. Figure 2-4 shows what this should look like when you type it in the terminal. Try typing seq 1 10 on the command line by itself to see what it does.

Press Ctrl-X, then Y, and then press the Enter key to save the script. Now type:

sh hello.sh

and press Enter. Congratulations! You just wrote your first shell script.

[image: hello_sh.PNG]
Figure 2-4. Example bash script

Filesystems and Structures

Something that sets Linux apart from other operating systems is its approach to filesystems. A filesystem is a way to store and organize files on a computer. As with all other Unix-based systems, almost everything you want to reference in Linux is a file. Sometimes this is intuitive. For example, when you insert a USB thumb drive into a Raspberry Pi, you can browse the files on that drive either on the desktop or in the terminal. Other times, it’s not as obvious. For example, if you plug a mouse or keyboard into the Raspberry Pi, Linux creates a file to reference that device. These are special files that Linux uses to “talk” to those physical devices. Files are also used to access information about the hardware components that make up the computer itself like the CPU, memory, and other resources. If you want to find out the CPU temperature, you can just read a file.

Try It for Yourself

At the console or terminal window, type:

more /sys/class/thermal/thermal_zone0/temp

and press the Enter key. The five-digit number that is returned represents the temperature of the CPU in millidegrees centigrade. So if your result is:

38470

then your Raspberry Pi’s CPU is running at about 38 degrees centigrade.

It is important for Makers to understand the way Linux handles files if they want to use peripherals as part of their projects and if they want to programmatically get information from the operating system about certain resources. It is also important because some special files should be left alone and not deleted or overwritten. Doing so could render your system inoperable, and you might have to reinstall from scratch. Luckily, Linux has users and permissions (see “Users and Groups”) to keep you from doing too much damage by accident.

You can take a look at the files and folders of a Linux system by opening the file manager program on the desktop or by typing:

ls /

in the terminal. The forward slash by itself represents the root folder, which is the highest level in the filesystem hierarchy. On Windows, this would be similar to the C: drive or C:\.

Slash Confusion

Windows uses the backslash (\) to separate folders and filenames, while Linux uses the forward slash (/).

Linux Filesystem Structure

The basic structure of the root filesystem on a Raspberry Pi is listed here. The directories marked with a * contain sensitive information or program data and should not be deleted or changed unless you know what you are doing:

 	/
	
 This is the root filesystem.

	/bin*
	
Essential command binaries or programs are found here.

	/boot*
	
This is a place for files that help boot up the system.

	/dev*
	
Files that represent system devices are found here.

	/etc*
	
This is where many configuration files for the operating system and other programs are located.

	/home
	
Subdirectories are created here for users’ home directories. If you are logged in as the default user “pi” on the Raspberry Pi, you will start in the terminal at /home/pi.

	/lib*
	
This is for libraries or supporting files necessary to run the programs.

	/media
	
Removable media usually gets its own directory here when you insert it into the computer.

	/mnt
	
This is a place to mount other filesystems. It is usually empty at first.

	/opt*
	
Optional software or programs sometimes get installed in this directory.

	/proc*
	
Files that represent process- or kernel-level information are kept here.

	/root*
	
The home directory for the “root” user. It is kept separately from the other users for added security.

	/run*
	
Current information about the running system is kept here.

	/sbin*
	
Here you’ll find essential command binaries or programs that are “secure” and need root access to run.

	/srv*
	
Certain server-specific information sometimes goes here. Usually empty at first, it is sometimes used by web servers and FTP servers.

	/sys*
	
Information about the devices connected to the system is stored here.

	/tmp
	
Temporary files are often created here and then deleted with the system reboots.

	/usr*
	
This directory stores additional binaries and programs that are generally available to all users, although some of them require root access to run.

	/var
	
Variable files and data are kept here. Examples might be buffers to store printer data before it is sent to a printer, resource information, or logfiles.

Users and Groups

The ability to have multiple users with different profiles and setting is a relatively new concept for some operating systems like Windows, macOS, and Android. At the time of this writing, iOS supports multiple users only for educational use. However, since Linux is based on UNIX, and UNIX is a server operating system, it has always had support for multiple users and groups. This makes sense if you consider its roots in the time-sharing methodology (see Chapter 1). Most SBCs you use will come with a default user already set up. On Raspberry Pi, this user is called “pi.” On C.H.I.P., this user is called “chip.” It is always a good idea to use this default user for regular operations, but you can set up other users if you need to. I will cover those procedures in Chapter 6.

The version of Linux that comes with most SCBs will automatically log you in if you are running in desktop mode. You will need to know the password to run any advanced commands or log in when running in console mode. The default password for the “pi” user on Raspberry Pi is “raspberry.” If you are using a different SBC platform, you can usually find the default user and password in the Getting Started documentation on their website. If you install Linux on a desktop or laptop PC, you will be prompted to set up a user and password during the installation process.

Linux also can combine several users together in groups. Using groups makes it easier to manage multiple users at the same time. Permissions granted to a group automatically apply to all users that are members of that group. Makers will most likely not need to manage Linux groups except when it is necessary to be part of a group to gain access to a device or program. I will cover this process in Chapter 6.

In addition to names, Linux also assigns a number to represent users and groups. This number is easier for the system to use than an alphabetical representation and is referred to as the user id (UID) and the group id (GID). However, what you see on the console and in other programs is almost always represented by the alphabetical name to make it easier for humans to decipher.

Every version of Linux comes with a special administrator or superuser called “root.” This user has permission to do almost anything in Linux, so as you can imagine, it is not advised to log in as this user on a normal basis. In fact, most versions of Linux that run on the Raspberry Pi and similar SBCs have disabled the “root” password by default. This can be still be enabled if you really need root access, but it is not recommended. On several occasions, I have been logged in as “root” and typed the wrong command, which deleted important files or changed something I did not intend to.

Sometimes as a Maker using SBCs, it is easy just to reimage your storage and start over. However, if you have been working long and hard on a project and make a mistake while logged in as “root,” it can cost you hours and perhaps days of trying to get things back to normal. This is especially true if you don’t have a backup. Also, running as the “root” user on a daily basis usually leads to weaker security since we all naturally tend to make things easier for ourselves. Over time, you’re bound to add backdoors and easy-to-guess passwords, making it easier for someone else to gain root access and do serious damage to your project or steal your data.

Security is usually not a big concern with most Maker projects, but if your project will be connected to the internet or in a public space, protecting its integrity is important. Several global internet outages in the fall of 2016 were traced to insecure Internet of Things (IoT) devices that had been taken over by hackers and turned into a botnet. One way to prevent your project from being used this way is to follow this basic golden rule of Linux: don’t run as the “root” user unless you have to.

Permissions and sudo

You may be wondering how Linux makes decisions about what a user can and can’t do and which files a user has access to. Perhaps you have tried to run a command or program only to get a message like “cannot remove file: permission denied.” This message indicates that your user doesn’t have the necessary permission level to delete a particular file. Since Linux treats most things like files, and since permissions are set on each file, it becomes important to understand what permissions do and how to use them.

Permissions are set as an attribute on each file and directory, and are arranged as a series of numbers. This series can be broken down into four groupings, which are then further broken down into read (r), write (w), and execute (x) permissions for the owner, group, and all other users, respectively. You can see an example of what this looks like in the terminal in Figure 2-5.

[image: permissions.PNG]
Figure 2-5. Example output of ls-l

In Figure 2-6, I have interpreted what all these numbers and letters mean, using two of the lines from Figure 2-5.

[image:]
Figure 2-6. Breakdown of permission listing on the command line

Here are a few things we know based on this information:

		The Downloads file is actually a directory, as indicated by its special permission. Other options here might be l for link, s to indicate the file should be run with owner permissions, and t to indicate that only the owner can delete or rename the file.

		The owner of both of these files is the “pi” user.

		The group that these files belong to is also called “pi.”

		The “pi” user has read, write, and execute permissions to the Downloads directory, but only read and write permissions for the example.txt file.

		Members of the “pi” group have only read permission for the example.txt file.

		All other users on the system (except “root”) also only have read permission for the example.txt file.

Permissions can also be represented by a series of numbers. For example, 777 is the same as rwx rwx rwx. Sometimes programs will use numbers and sometimes letters to represent the permissions, so it’s useful to know how to map between the two. You accomplish this by assigning a value to each of the three possible choices and then adding them together to get the permission. Here’s how that works:

r = 4
w = 2
x = 1

If you want to represent rxw, you simply add 4+1+2 and you get 7. So a file like example.txt, which has permissions of rw- r-- r--, could also be represented as 644. We will cover how to change permissions and ownership in Chapter 6.

Try It for Yourself

In the console or terminal emulator, type:

ls -l

This will show you all the non-hidden files and directories in your current location in the filesystem. Try to figure out what the permissions are for the user and group for each file listed.

Sometimes you need to run a program or access a file that your user doesn’t normally have permissions to run. You could log in as “root” to run the program, but I have already told you not to log in as “root.” This presents a problem. Luckily, there is a system built into Linux that handles these special cases. That system is called sudo. sudo is short for super user do, and you can use it to run programs that need root permissions without logging in as “root.” Using sudo is as easy as putting sudo in front of the command you want to run. sudo acts as an additional layer of security by:

		Requiring the user’s password even if they are already logged in

		Expiring after a short period of time and requiring reauthentication

		Configuring sudo ability on a user-by-user basis

		Logging all sudo commands

		Eliminating the need to share the “root” password

		Rendering useless any password-cracking utilities that try to guess the “root” password if root access is disabled

Try It for Yourself

Now let’s try a command we should expect to fail. In the console or terminal emulator, type:

apt-get update

Since you don’t have permission to run some of the programs that apt-get uses, this command will fail and tell you:

E: Unable to lock the administration directory (/var/lib/dpkg), are you root?

Now try again, but this time run the same command as “root”:

sudo apt-get update

This time the command should update its information about available software packages if you are connected to the internet. You will learn about using apt-get in Chapter 4.

Services

In Linux, there are some programs that run when the system starts up and continue running in the background. The types of programs, and the processes that run them, are called services. They include things like web servers, network configuration, file sharing, remote access programs, and essential system functions. Services were developed to avoid users having to start a program from the command line every time they wanted to use it. When you boot up a Raspberry Pi, you can see a lot of text scrolling up the screen. Much of this information relates to the various services that are starting up as the system boots. You can set up almost any program to run as a service, and I will cover how to do this in Chapter 6.

Most of the time, you won’t have to worry about interacting with services, and you probably shouldn’t experiment with them unless you know what you are doing. For example, let’s say you are running a Raspberry Pi without a monitor attached as part of a robot you are building. While you are logged in remotely, you decide to stop the networking service. Not only will your remote session immediately end, but you will have to disassemble your robot and physically connect to your Pi in order to start the service again. In the worst case, you might have to kill the power to your Pi in order to reboot it so you can connect to it again. That’s never a good idea, as it could lead to data corruption on the SD card.

There is a system for managing services, which varies somewhat between different versions of Linux. On Raspberry Pis running Raspian Jessie or later, that system is called systemd. systemd (which stands for system daemon) controls not only services, but many other Linux resources that need to be managed, and it is the first thing that runs when the operating system boots up. For each service, there is a script that is put in a special directory when that program is installed. That script defines what happens when the service starts or stops.

Try It for Yourself

In some cases, it is necessary to restart a service or check to see if a service is actually running or not. If you want to see which services are running, you can type systemctl (systemd control) in the console or terminal emulator:

systemctl

Press the space bar to scroll down through the list one page at a time and press the Q key to exit. You can also see how long the operating system took to boot by typing:

systemd-analyze

You can see how long each service took to start by typing:

systemd-analyze blame

There are also functions for controlling each service individually. Just as a reference, I will list them here:

systemctl enable name . service

systemctl disable name . service

systemctl start name . service

systemctl stop name . service

systemctl restart name . service

systemctl status name . service

systemctl reload name . service

Processes

At any given point in time, there are multiple programs running on a Linux system. In order for them all to run at the same time without interfering with each other, there needs to be a way to keep track of them and any other supporting programs that might be needed by the original program. Linux does this with processes. When a program is executed, Linux creates a process to represent the work that is being done by that program. In other words, a process represents a running program. Each process receives access to system resources like the CPU, memory, and shared libraries that are needed in order for the program to work correctly. This also provides a way for the operating system to track which program is doing what in order to keep things organized and running smoothly. Processes are given a process identification number (PID) so they can be referenced more easily.

Processes have a family history. By this, I mean that there is always some program that starts another program. For example, since systemd (also known as the init process) is the first program that runs when the operating system starts, it is given the PID of 1. When systemd starts a service or runs a program, that program will get its own PID, but the operating system will note that its parent PID (PPID) is 1. This parent/child relationship between processes can be helpful to track down problems and issues to see where the root cause lies. I will show you how to manage processes in Chapter 6.

Try It for Yourself

To see what processes your user has started for your current console session, use the ps (process) command:

ps

Because you probably aren’t running that many programs at the moment, this list will be quite small. To see a list of all the processes that are currently running, type:

ps -ef

This will give you a list of not only the processes, but which user ran them, what the PPID is, and when the process was started (see Figure 2-7).

[image: ps.PNG]
Figure 2-7. Example output of ps -ef

Why This Matters for Makers

Let’s face it: Linux can be baffling at times, especially when you haven’t used it before. Sometimes you might be able to follow a tutorial to make something work, but you might not know why it works or how to go about changing things when it doesn’t work. If you’ve used Linux before, perhaps this chapter has answered some questions you’ve had. Getting stuck in the middle of a project because things aren’t working is never fun and can cause days’ worth of delays as you search forums looking for answers. Understanding these basic principles of Linux should give you a clue about how to diagnose the problem, as well as a good foundation for the next chapters, in which we dive into more advanced topics.

1 https://en.wikipedia.org/wiki/Bash_(Unix_shell)

Chapter 3. Using the Desktop

Although you don’t need the desktop to build projects with Linux on SBCs, I will cover it here, as it will most likely be the first thing a new user will interact with when they boot up for the first time. Some people will feel more comfortable using the graphical user interface (GUI), so I will discuss some of the things Linux can do that aren’t always obvious when you’re coming from Windows or Mac.

When to Use the Desktop?

Using the Linux desktop in and of itself will probably not help you build projects with SBCs unless you need to do something graphically on the desktop, like make a game or create a GUI to interact with your project. However, there are some reasons makers might want to use the desktop anyway.

First, maybe you aren’t building a project at all and just want a cheap desktop to use. I am assuming throughout this book that you’re using your SBC as part of a project, like building a robot or reading sensor data. But maybe you want to use a device like the Raspberry Pi as a standalone computer to browse the web, play a small game, or write a document.

Second, you might just feel more comfortable on the desktop than you do on the command line, and there is certainly nothing wrong with that. After all, the desktop gives you an easy way out when something goes wrong. You can always reboot the system from the menu or start a second instance of the terminal emulator to poke around while your program is running in the first one.

Third, the desktop gives you access to GUI tools like a web browser, which you don’t have when you are running solely in the console. This can be helpful if you don’t have access to a secondary device like a laptop, desktop, or phone to look up information about your project.

When Not to Use the Desktop?

SBCs are very powerful platforms for their size. When I was a child, the idea that a fully functional desktop computer could fit in the palm of my hand was the stuff of science fiction. That being said, running anything graphical on an SBC like the Raspberry Pi takes up a lot of CPU and memory resources. If you’ve used a Raspberry Pi before, you may have noticed that using the browser is not the snappy experience you’ve come to expect on your desktop, laptop, or even on your phone. In fact, you can see the impact running programs on the desktop has on your CPU just by looking at the tiny graph in the right corner of the taskbar (see Figure 3-1).

[image: linux-cpu-revised.PNG]
Figure 3-1. The CPU performance applet in the Raspberry Pi taskbar

In this case, just launching the web browser on a Raspberry Pi sends the CPU utilization up to 100% while the program loads. If you were also running a script to control time-sensitive devices or processes, this single act could impact your project. So the first reason you may not want to run the desktop on an SBC is to conserve resources.

Another thing to keep in mind is the KISS rule. This stands for Keep It Simple, Stupid! The idea here is to avoid complexity unless it’s absolutely required to make your program or process work. The more “moving parts” you have in a system, the greater the chance that something will go wrong. For example, if you open the hood of my 1965 Chevy pickup truck, you will only see a handful of parts. Most of the engine compartment is empty. It’s easy to work on. If something goes wrong, it is easy to diagnose and fix. My 2014 Honda Odyssey is a different story. Every bit of space under the hood is taken up with some system, and many of them depend on each other to make the car run. Not only is it difficult to work on, but the complexity means that many times you need an expert to decipher what is going on when something isn’t working right. Similarly, the desktop spawns processes and communication activity on the system that add a level of complexity unnecessary for most projects. You may not run into a problem by running the desktop, but why tempt fate?

For these two reasons, it’s probably best to avoid using the desktop on your SBC when you don’t have to. In fact, when Linux systems are used in large corporations, the desktop is almost always turned off by default to reduce the chance that something will interfere with critical business processes.

Understanding the Layout

In most respects, the layout of the desktop environment on an SBC is similar to Windows or macOS. There is usually a menu button to access programs and features. There is also an area that shows which applications are running, and a notification area that displays information like the time and date or network connectivity. The biggest difference may be that most Linux systems put the panel (also known as the taskbar) at the top of the desktop instead of the bottom. Sometimes the panel is hidden altogether and you need to right-click on the desktop to bring up the menu. See Figure 3-2 for an example of what this looks like on the Raspberry Pi.

[image: Raspbian_Desktop_Annotated_revised.png]
Figure 3-2. Breakdown of the Raspberry Pi desktop

		Menu button

		Application launch bar shortcuts

		Running applications

		Panel applets

		Desktop area

Connecting to the Network

Probably the first thing you will want to do if you’re using the desktop is connect to the network to get internet access. If you are using a wired Ethernet connection, this should be done automatically for you. If you are using WiFi, you just need to click on the network applet icon, choose your SSID, and supply your password.

Changing the Look and Feel

There are many ways to customize the look and feel of a Linux desktop. Let’s take a look at some of the more common things people like to do to personalize their desktop. I will be referencing the Raspian desktop here, but these methods should apply to other LXDEs as well.

Changing the Panel Location

To change the location of the panel from the top of the desktop to the bottom or sides, simply right-click anywhere on the panel and choose Panel Settings from the dialog box that pops up (see Figure 3-3). Then select the edge where you would like the panel to appear. You can also change the alignment, size, font, opacity, and which panel applets are loaded.

[image: panel_properties.PNG]
Figure 3-3. The Panel Preferences dialog box

Changing the Background Image

Don’t care for the Raspberry Pi logo on your desktop? No problem. It is easy to change the background image to something more visually appealing. Simply right-click anywhere on the desktop and choose Desktop Preferences (see Figure 3-4). You can also change the font properties for the text that goes under the desktop shortcuts as well as some of the default icons that appear on the desktop.

[image: desktop_preferences.PNG]
Figure 3-4. The Desktop Preferences dialog box

Changing the Shortcuts in the Application Launch Bar

The shortcuts that appear in the panel are decided by the people working on that version of the distribution and will change over time as new and interesting programs are added or removed. You can usually find shortcuts for the browser, terminal emulator, and file manager, but it’s easy to change these shortcuts in LXDE. Just right-click on the area where the icons appear and choose Application Launch Bar Settings from the pop-up dialog box that appears (see Figure 3-5). The box on the left shows the shortcuts that are currently in the launch bar, and the box on the right shows the shortcuts available to add. You can add or remove application shortcuts by clicking on a shortcut and using the Add and Remove buttons. You can also change the order in which the shortcuts appear in the launch bar using the Up and and Down buttons.

[image: application_launch_bar_settings.PNG]
Figure 3-5. The Application Launch Bar dialog box

In other distributions, you can browse through the menu, right-click on the application you want to add, and choose “Add to panel,” or sometimes you can click and drag the icon to the panel.

Creating a Desktop Shortcut

It is also very straightforward to add an LXDE desktop shortcut to an application that is already in the menu. Just navigate through the menu to the application in question, right-click on it, and choose “Add to desktop.”

The process of creating a desktop shortcut to launch an application that’s not in the menu or for a script that you wrote is a little more cumbersome. Open the built-in text editor by choosing Accessories→Text Editor. Then type in the following information about the shortcut you want to create:

[Desktop Entry]
Name=Some Name
Comment=Click here to run this thing
Icon=/usr/share/pixmaps/openbox.xpm
Exec=/path/to/your/program
Type=Application
Encoding=UTF-8
Terminal=false
Categories=None;

When you’re done, it should look like Figure 3-6. If you are creating a shortcut for a script that normally runs in a terminal emulator, be sure to change the Terminal value to true.

Save the file in the Desktop folder under your home directory. Be sure to give the filename a .desktop suffix.

[image: desktop_shortcut.PNG]
Figure 3-6. An example of a desktop shortcut configuration file

In other Linux desktop environments, you can right-click on the desktop and select “Create launcher” or “Add shortcut.”

Try It for Yourself

Try to create a desktop shortcut that runs the hello.sh shell script that you created in Chapter 2. See Figure 3-6 if you need some hints on what the file should look like.

Why This Matters for Makers

Most Makers who are new to Linux will naturally start by using the desktop. This is a safe and somewhat familiar place to try things out and look around. Later, you may want to disable the desktop and save precious resources on your SBC. We will cover how to do that in Chapter 5.

Chapter 4. Command-Line Basics

In this chapter, I will show you some basic ways to use the command line that work whether you are running a terminal emulator on the desktop or have a keyboard and monitor plugged directly into your Raspberry Pi. Over the years, many tricks and shortcuts have been built into the Linux operating system to make using the command line quick and easy. Let’s take a look at some of the first things every Maker should know how to do when they land on the command line.

Understanding the Prompt

The prompt is the indicator on the command line that shows where you are on the screen. In other words, the computer is “prompting” you to type something at a specific place. The prompt won’t appear until you are logged in to the system. When you type something into the terminal, that something will show up at the prompt. Figure 4-1 shows what the prompt looks like by default on the Raspberry Pi.

[image: prompt_console.PNG]
Figure 4-1. The Linux bash prompt on Raspberry Pi

The default prompt on the Raspberry Pi and most other Linux systems is configured to give us several pieces of useful information at a glance. Let’s change to the Downloads directory and break the prompt down into its component parts (see Figure 4-2):

cd Downloads

[image: prompt_console_annotated.PNG]
Figure 4-2.
Breakdown of the prompt

		Your username.

		The hostname of the Raspberry Pi.

		Your current location in the filesystem.

		The symbol that indicates this is the prompt. If you are “root,” this changes to a #.

		A cursor to show you where text will be placed as you type. You can move this around with the arrow keys to adjust its position.

Notice that the prompt is green and blue. This is just to help distinguish between different parts of the prompt to avoid confusion. When you press Enter, whatever you type and any output of commands that you run will be scrolled up the screen, moving the prompt down to the next available line. If you are on the desktop using a terminal emulator, you can scroll back and forth using the mouse wheel or the scroll bar on the side of the window. If you are not on the desktop, you can scroll back and forth by holding down the Shift key and pressing the Page Up or Page Down keys. The Shift+Page Up/Down function works in almost every version of Linux. Also, while typing a command, you can use the arrow keys or the Home and End buttons to move your cursor where you want it.

Try It for Yourself

Most Linux terminals only display 30 to 40 lines of text before information starts scrolling off the top, depending on the size of your screen or window. Inevitably, there will be some output that you want to see that scrolls off the screen before you can get to it. For example, let’s run a command that I know will generate a lot of output. Display message (dmesg) is a command that prints all the system messages that come from the Linux kernel, going back to when the system was booted. Type the following on the console or terminal emulator and press the Enter key:

dmesg

Looking at the output, there is no way to read all of the information as it scrolls by so fast. Use the Shift+Page Up or Shift+Page Down key combination to scroll up and down through the output one page at a time.

Orienting Yourself in the Filesystem

When using Linux, it’s important to know what directory you are located in before you run a command. It’s also useful to know how to maneuver from one location to another and get information about the files you are working with. Before you do anything else, you need to learn these basic techniques for working on the Linux command line.

Where Am I?: pwd

Most of the time, you can figure out which directory you are in just by looking at the prompt. But some systems don’t offer such a detailed prompt, and other times you might just want to make sure. You can find out where you are with the command pwd, which stands for print working directory. This will print one line that shows you exactly where you are in the directory structure (see Figure 4-3). Remember, the highest-level location in the directory structure is /.

[image: pwd.PNG]
Figure 4-3. An example of the output of the pwd command

So, from Figure 4-3 we know that we are located in a directory called pi, which is a subdirectory of home, which is a subdirectory of /. This is the “pi” user’s home directory. By default, when you log on to the system or open a terminal emulator, you start in your home directory. Anything that you do on the command line (create a file, delete a file, run a script or program) will be done based on where in the filesystem you are currently located. You may be wondering why the prompt in Figure 4-3 isn’t showing /home/pi as the current location; instead, it’s just showing ~. That’s because ~ is an alias for the current user’s home directory. You can find out more about aliases in Chapter 6.

Changing the Working Directory: cd

You change location from one directory to another in Linux by using the command cd, which stands for change directory. To get to a different place in the directory structure, just type cd, then a space followed by the path to your destination. Keep in mind that everything in Linux is case-sensitive. For example, typing:

cd /home/pi/Downloads

will move you from /home/pi into /home/pi/Downloads. You can think of it as moving from room to room in a big house. Even though the house is very large, you can move wherever you want as long as you know the path to that room. In this case, your front door or starting location is always /. You don’t always have to operate linearly when you change to a new location. You can jump wherever you want. For example, typing:

cd /var/log

will move you from wherever you are to /var/log/, the location where logfiles are kept. In this way, the cd command also acts like a teleporter, instantly moving you wherever you want to go in the house. When you compare this to a graphical file manager where you may have to double-click your way back and forth through the directory structure, running a single command on the command line is much quicker and easier, albeit not quite as intuitive.

Typing in the full path to the directory you want to change to can be cumbersome. This full path that starts with / and ends with the desired destination (i.e., /home/pi/Downloads) is called an absolute path. You can also use relative paths that will save you some time. For example, previously when we wanted to move from /home/pi into /home/pi/Downloads we typed:

cd /home/pi/Downloads

However, you can do the same thing by just typing:

cd Downloads

This works because Downloads is a subdirectory of /home/pi and we are already located at /home/pi. Notice there is no leading / in front of Downloads. That’s because we don’t want to move to a top-level subdirectory of /. Instead, we want to move to a subdirectory that is relative to our current location.

Not only can you descend into subdirectories by using relative paths, but you can change to the parent directory of your current location as well by using the .. alias. In Linux, . usually refers to your current location, whereas .. refers to the location one level up from where you are. So if you are located at /home/pi/Downloads and want to move up one level to the /home/pi directory, you can simply type:

cd ..

If instead you wanted to move two levels up to the /home directory, you can type:

cd ../..

Remember I said that ~ is an alias or shortcut for a user’s home directory. You can always get back to your home directory just by typing:

cd ~

You can also get to your home directory just by typing cd with no arguments:

cd

Want to get to your Downloads subdirectory in your home directory from anywhere in the system? Just type:

cd ~/Downloads

This is equivalent to typing:

cd /home/pi/Downloads

Just replace /home/pi with ~ whenever you want to refer to that location.

Printing Out the Contents of a Directory: ls

When you get to the directory that’s your destination, you will certainly want to look around. You can use the command ls, which stands for list. This command prints out an alphabetically sorted list of files and directories in your current location (see Figure 4-4).

[image: ls.PNG]
Figure 4-4. An example of running the ls command

Since we are using a prompt with colors enabled, we can tell the difference between the directories and files just by looking at the colors. In this case, the blue text represents directories and the gray text represents files. However, we can get more detailed information simply by adding the -l option to the end of the command (see Figure 4-5).

[image: ls-l.PNG]
Figure 4-5. An example of running the ls -l command

We covered what all this information means in Chapter 2. However, there are actually more files and directories in this location than are listed here. This is because Linux sometimes hides files to make them slightly more difficult to interact with or so they don’t clutter things up when you’re trying to find something. In Linux, hidden files and directories have a filename that starts with a . character. You can display these hidden files by adding the option -a to the ls command (see Figure 4-6).

Chain Options Together

Many times, you can chain options together on the command line. For example, instead of typing ls -l -a, you can simply type ls -la.

[image:]
Figure 4-6. The output of ls -la

The output of ls -la gives us both detailed output as well as showing all the hidden files and directories in our current location. There are many other useful options for the ls command. Here are some of them:

	-a
	List all files including hidden files starting with “.”

	-l
	List with long format and show permissions

	-lh
	List long format with human-readable file sizes

	-s
	List with file size listed first

	-r
	List in reverse order

	-R
	List recursively directory tree

	-S
	Sort by file size

	-t
	Sort by time and date

	-X
	Sort by extension name

You may wonder what the “total 116” means in the first line returned in Figure 4-6. That represents the total number of disk blocks used by all the files listed by the ls -l command. Not very useful, but now you know.

Creating New Files and Directories: mkdir and touch

Sometimes you want to organize your files into directories other than the ones that already exist. To make a new directory, you can use the command mkdir, which stands for make directory. To use the command, simply type:

mkdir mynewdirectory

To make a series of subdirectories under your new one, go into that subdirectory with the cd command and then type:

mkdir subdirectory1
cd subdirectory1
mkdir subdirectory2
cd subdirectory2
mkdir subdirectory3

Or you could make them all at the same time by using the -p option like this:

mkdir -p subdirectory1/subdirectory2/subdirectory3

You can also create files in your current location. This is done in several ways. Most of the time, files are created by the applications you are using. In Chapter 2, when you created your first shell script, you used the program nano to create the file hello.sh. This file was created when you saved it before exiting nano. However, you can also create empty files with the command touch. These files have no data associated with them except for the filename itself, permissions, and ownership. To create an empty file, just type touch and the name of the file you want to create like this:

touch emptyfile

There are a couple of reasons why you might want to create an empty file. First, you might want to double-check that you have write permissions in your current location. If you can create a file with touch, you know you have write permissions. Second, you might want to create some placeholder files if you are setting up a file structure for a complex project like a website or a program that will use multiple config files and logfiles.

Moving and Deleting Files: cp, mv, and rm

Quite often, you will find you need to move files from one location to another or delete them altogether. You can make a copy of a file by using the command cp, which stands for copy. Likewise, you can move a file using the command mv, which of course stands for move. The copy and mv commands work in similar ways. To copy a file, type cp followed by the file you want to copy, followed by the destination path. For example:

cp /home/pi/hello.sh /home/pi/Downloads/

This will copy the file hello.sh into the Downloads subdirectory of your home directory. Of course, if you are already located in your home directory, you could accomplish the same thing with relative paths like this:

cp hello.sh Downloads

If instead you wanted to move the hello.sh file into the Documents folder, you would type:

mv hello.sh Documents

To delete a file, use the remove command (rm). Be careful with this command! There is no recycle bin or trash can in Linux. Once you delete a file using the command line, it’s gone for good. Though there are utilities that can sometimes recover files, they are for advanced users and don’t always work. If you’re sure you want to delete a file, it’s simply a matter of typing rm followed by the filename:

rm hello.sh

If you want to delete a whole directory including all subdirectories, you can use the -R option like this:

rm -R directory

Again, this is a powerful but dangerous operation, so use it with caution. Occasionally, online trolls will try to prank new Linux users into running the command sudo rm -fR /. This is never a good idea, as it will wipe out your whole filesystem.

Try It for Yourself

Practice navigating around the filesystem by using the command line. Let’s start in our home directory. To make sure you are there, simply type:

cd

Now let’s create a subdirectory called Sub:

mkdir Sub

List the files in reverse time order to make sure that the directory was created:

ls -ltr

Now change into that subdirectory:

cd Sub

Make sure you are now located in that subdirectory:

pwd

Now create a test file:

touch testfile

Verify that the file is there:

ls -l

Make a copy of the file:

cp testfile testfile2

Verify that the copy was made:

ls -l

Now delete the original file:

rm testfile

Change back to your home directory:

cd ../

Now delete the whole subdirectory including the copy of the file we made:

rm -R Sub

Verify that the subdirectory is gone:

ls -l

Figure 4-7 shows a visual example of what this should look like.

[image: Orientation.PNG]
Figure 4-7. Typical output of the previously listed commands

Get Help with a Command: help, man, and info

There are tens of thousands of Linux commands and programs that can be run from the command line, and most of them have several options. There is no way we can cover them all in this book. Luckily, there are easy resources that can help you figure out how to use a command you aren’t familiar with yet. These resources are available even if you are offline, because they are either part of the program itself or automatically installed when the program is installed.

You can usually access the first of these by simply running the command itself with a help option added. This option can take multiple forms depending on the person who wrote the program, but usually it is one of these four:

		--help

		--h

		-help

		-h

Most programmers who write utilities like ls or mkdir include some basic helpful information like usage and common options, which print out when you use the help option. In fact, most utilities will even tell you what the help option is if you don’t use it correctly the first time (see Figure 4-8).

[image: help.PNG]
Figure 4-8. Printing out the help information screen for mkdir

The second resource available in Linux to help you learn how to use a command is man, which stands for manual. Yes, there is actually a built-in manual that comes with every installation of Linux. As new programs or commands are added and installed, pages are added to the manual that explain how to use them. Consider man to be your own offline encyclopedia of Linux commands and utilities. man started in the early days of Linux as a way to document the operating system and associated programs. It has since become a standard for people writing Linux utilities to include a section in the manual.

When you look up information about a specific command or program using man, the content that is displayed is called that program’s manpage. If a program comes as part of Linux or is distributed as part of an official Linux repository, it probably has a manpage. A manpage is typically more detailed than the output of using a command’s help option. Accessing a manpage is a very simple process. Simply type man followed by the command you want to learn about. For example, Figure 4-9 shows the output of typing man mkdir.

[image: man.PNG]
Figure 4-9. The manpage for the mkdir command

Once you open the manpage, you can navigate through the document to find the information you’re looking for. Using the following commands will make that a little easier:

		h
	Help screen

		Down arrow or Enter key
	Move down one line

		Up arrow
	Move up one line

		f, space bar, or Page Down key
	Page down one screen at a time

		b or Page Up key
	Page up one screen at a time

		G
	Jump to the last line in the file

		g
	Jump to the first line in the file

		/pattern
	Search for pattern

		q
	Quit

Manpages have become standardized over the years and always contain at least the following sections:

		Name
	The name of the command or function, followed by a one-line description of what it does.

		Synopsis
	A formal description of how to run the command and what command-line options it takes.

		Description
	A description of how the command functions.

		Examples
	Usage examples.

		See Also
	Related commands or functions.

You will notice in Figure 4-9 that the title is MKDIR(1). The (1) refers to which section of the manual this page is located in. In this case, it is User Commands. Sometimes programs will have information in more than one section. When they do, it will be called out under SEE ALSO. Here is a breakdown of the sections so you will understand what the numbers refer to:

		User Commands

		System Calls

		C Library Functions

		Devices and Special Files

		File Formats and Conventions

		Games et al.

		Miscellanea

		System Administration tools and Daemons

Distributions customize the manual section to their specific needs and often include additional sections. If you notice that the same command is included in a different section and you would like to look at it, simply add the section number before the command name:

man printf

This will give you information on how to use printf (a command used to format text output) on the command line. However:

man 3 printf

will show you the manpage explaining how the printf command can be used in a C program.

The third way to get information in Linux is the info utility. Similar to man, to look up information in an info file, simply type info followed by the command you want to learn about. Figure 4-10 shows the output of typing info mkdir.

[image: info.PNG]
Figure 4-10. The info page for the mkdir command

From the top of the screen, you can tell that we are browsing the file called coreutils.info and have jumped to the node (section) on mkdir. You can also tell that the next node is about mkfifo and the previous node is about ln. To navigate when browsing an info file, you can use the following keys:

		h
	Access the help window.

		x
	Close the help window.

		q
	Quit info altogether.

		H
	Invoke the info tutorial.

		Up
	Move up one line.

		Down
	Move down one line.

		Delete
	Scroll backward one screenful.

		Space bar
	Scroll forward one screenful.

		Home
	Go to the beginning of this node.

		End
	Go to the end of this node.

		Tab
	Skip to the next hypertext link.

		Enter
	Follow the hypertext link under the cursor.

		l
	Go back to the last node seen in this window.

		[
	Go to the previous node in the document.

]
	Go to the next node in the document.

		p
	Go to the previous node on this level.

		n
	Go to the next node on this level.

		u
	Go up one level.

		t
	Go to the top node of this document.

		d
	Go to the main directory node.

		s
	Search forward for a specified string.

		{
	Search for previous occurrence.

		}
	Search for next occurrence.

		i
	Search for a specified string in the index, and select the node referenced by the first entry found.

Those are three ways to get information about a command from within Linux itself. Of course, your best resource these days outside of the operating system is just to search on the internet using your favorite search engine. Also, once you are ready to do a deep dive on something like running a web server or advanced programming, you could buy a great book like this one.

Try It for Yourself

Let’s practice learning about commands using the command line, starting with pwd:

man pwd

Scroll through the manpage using the various directional keys, and when satisfied, press the Q key to quit. Now do the same for the other commands we’ve learned in this chapter:

man cd

man ls

man mkdir

man touch

man cp

man mv

man rm

Eliminate Some Typing

If you’re like me, your spelling and typing abilities may be lacking. Too many times, I have spent 20 or 30 seconds typing a long command with lots of options only to find out after I hit the Enter key that I had typed something wrong and needed to start over from the beginning. Not only that, but it can be hard to remember the exact command you use to perform a certain task from day to day. Luckily, the Linux shell has some tools built in that can help with both of these problems.

Auto-Complete a Command: Tab

You can use the auto-complete feature of the shell by simply pressing the Tab key on the keyboard. This will auto-complete a command that has been partially typed. It will also auto-complete a filename based on the context of what you are typing.

For example, if you type tou and press the Tab key, the shell will fill in the rest of the missing letters to make touch. If there are multiple options that start with the letters you’ve entered, the first time you press Tab, nothing will happen. If you press it again, however, the shell will display a list of all possible commands or filenames that start with the letters you entered. So if you type mkd and press Tab twice, you will be presented with two options for commands that start with mkd: mkdir and mkdosfs (see Figure 4-11).

[image: auto-complete.PNG]
Figure 4-11. Using the Tab key for auto-completion of commands

If you continue to add more characters and then press Tab, you will eventually rule out all the other options and the shell will complete the rest of the command or filename when there is only one choice left. This auto-complete feature is a real time saver with bigger commands and long filenames. It also eliminates spelling errors when you haven’t used a command very often.

To Tab or Not to Tab

When you’re using the default bash shell in Linux, Tab does not know about the available options for a command; it only knows the name of the command and any associated filenames that might be used as part of a command.

Search for a Previous Command: Up, Ctrl-R

Linux keeps a history of all the things you type into the command line. A simple way to review the commands you’ve typed is to use the up arrow key to scroll back through each command starting with the most recent. When the command you’re looking for is far back in your history, you can search for it by typing Ctrl-R on the command line followed by some characters. For example, if you wanted to search for the last time you used nano to edit a file, you would type Ctrl-R followed by nano. It doesn’t matter if there is already some information entered at the cursor when you press Ctrl-R. That text won’t be used for the search—only what you type after you press Ctrl-R. Notice that the prompt changes to (reverse-i-search) followed by the letters you entered when doing this type of search through your command history. If you press one of the arrow keys, Home, End, or Tab, you will finish the search and be able to edit the command that you looked up. You can also continue to search through your history by pressing Ctrl-R multiple times before you exit out of the search (see Figure 4-12).

[image: search_commmand_history.PNG]
Figure 4-12. Using Ctrl-R to search the command history

Try It for Yourself

Change to your home directory and create a file by typing:

cd

tou <Tab> file1

When you press Tab, it should complete the name of the touch command. Now change to your Downloads directory by typing:

cd D <Tab> <Tab>

You should see something similar to Figure 4-13.

[image: auto-complete2.PNG]
Figure 4-13. Using Tab to auto-complete a directory or filename

Add the letters ow and press Tab again to auto-complete the path you want and press Enter.

Now let’s create our second file by using the command history. Press Ctrl-R and then type tou (see Figure 4-14).

[image: auto-complete3.PNG]
Figure 4-14. Using command history to look up a previous command

Press the End key and change file1 to file2. Press Enter to complete the task. Now you’ve created two files: one in your home directory and one in the Downloads directory. You have also saved a lot of typing in the process.

Connecting to the Network via the Command Line

To be honest, configuring your device to connect to a wireless network via the command line is pretty complicated, especially when compared to the point-and-click ease of using the desktop. It is important to know the basics of how to do this, just in case you ever have to. Many times I have taken my projects to a Maker Faire or interview only to find that my network was still configured to connect to my home router. If you’ll be taking your network-connected projects on the road, you will need to know how to configure the network so your project can work properly.

Easy Portability

When traveling, consider connecting your SBC’s WiFi to your tethered phone or other portable hotspot device that creates its own WiFi network. This way, your project will connect and have access to the internet wherever you go, as long as you have cellular service.

The Interfaces File

To configure the network from the command line, you use a configuration file named interfaces. Its full path is /etc/network/interfaces. This file is read when the system boots and whenever a networking interface is enabled. You can use nano or another text editor to make changes to this file. As of this writing, the configuration of the interfaces file looks like Figure 4-15.

[image:]
Figure 4-15. The default interfaces file on Raspberry Pi

Let’s break this down a bit to better understand what’s going on here before we start changing things around.

		Lines that start with the # symbol are comments and are ignored.

		source-directory refers to a location where other configuration files might be stored. By default, this directory is empty and exists just in case you make changes later.

		lo, eth0, wlan0, and wlan1 refer to network interfaces on the SBC. These interfaces either exist currently or might exist at some point in the future. For example, wlan0 or wlan1 might be created when you plug a WiFi adapter into a USB port.

		iface starts the configuration section for a particular interface. All the lines underneath the iface line relate to the configuration of this interface.

		inet specifies that we will be configuring this interface for TCP/IP communication.

		loopback, manual, dhcp, static, and a few others refer to the way configuration data will be assigned to this interface.

		allow-hotplug will automatically attempt to configure the interface when the system detects that it has been connected.

		wpa-conf refers to the location of a separate, securely stored WiFi configuration file.

Wired Ethernet

By default, if your local network is set up to automatically assign an IP address with dhcp, there is nothing more you should have to do to the configuration file to get a wired Ethernet connection working. When you plug in an Ethernet cable to your Raspberry Pi, it should connect to the network, grab the appropriate configuration information, and be ready to browse the internet in just a few seconds.

Static IP Address

Sometimes you may want to manually assign your own IP address and other configuration information. Figure 4-16 shows how you would change the interfaces configuration file to assign static IP address information.

[image:]
Figure 4-16. The interfaces file with eth0 setup for a static IP address

Notice the changes that were made to the eth0 section. Instead of deleting the old iface line, you can just use a # symbol to comment it out so that it is easier to reverse your changes if something goes wrong. The type of configuration has been changed from manual to static. Added under the iface line are the required parameters for a static IP address: an address, a network mask, a network gateway address, and DNS server addresses.

WiFi

In order to use WiFi, we just need to make a few changes to the wlan0 section (see Figure 4-17).

[image:]
Figure 4-17. The interfaces file with wlan0 setup for simple WiFi access

Here, I’ve commented out the line for wpa-conf and added a line to configure the SSID of my wireless access point as well as the password. This is by far the simplest way to get quick access to WiFi. If you wanted a static IP on this interface, you could make the same changes that we made for the eth0 interface in addition to the SSID and password configuration.

More Secure WiFi with Multiple Networks

Sometimes you need more control over your WiFi interfaces. For example, you might want to automatically switch between home and work access points without changing the configuration each time. You might have a hidden SSID that you need to connect to or an enterprise password encryption scheme you need to use. When things get more complex, it’s best to use the wpa_supplicant.conf file in addition to the interfaces file.

WPA stands for WiFi Protected Access. WPA adds more security protocols to make WiFi more secure and harder to break into. Let’s start by reverting our interfaces file to the default to make use of the wpa_supplicant.conf file (see Figure 4-18).

[image:]
Figure 4-18. The interfaces file with wlan0 changes removed

Uncommenting the wpa-conf line and deleting the wpa-ssid and wpa-psk lines means the wlan0 interface will now refer to the wpa_supplicant.conf file for its configuration. Figure 4-19 shows what that file looks like by default on the Raspberry Pi.

[image:]
Figure 4-19. The default wpa_supplicant.conf file

The country setting should be changed automatically if you set up your internationalization settings in Chapter 1. If not, you can find your country code by searching the ISO website.

Updating this file with one or more network sections will allow your WiFi interface to connect to the network. In Figure 4-20, I have updated the file with the necessary information for most situations.

[image:]
Figure 4-20. The wpa_supplicant file with an added network section

The ssid and psk options represent the SSID name and password. The scan_ssid=0 line lets the systems know that this is not a hidden network. If it were a hidden network, you would need to change the value from 0 to 1. The key_mgmt=WPA-PSK line represents the password encryption your access point is using. WPA-PSK should work for most home users. If you are working in an office environment, you may need to change this to something else. You can find out about all the encryption types that wpa_supplicant supports by referencing the manpage for wpa_supplicant.conf.

You can add further network sections to be able to connect to different networks depending on your location (see Figure 4-21). wpa_supplicant will automatically detect the best network based on availability and signal strength.

[image:]
Figure 4-21. The wpa_supplicant file with two network sections

When you’re done configuring your network, the easiest way to implement your changes is simply to reboot your Raspberry Pi.

Installing Software: apt

Adding software to Linux is different from other operating systems. Since much of the software you run on Linux is open source and free, public repositories of software packages are maintained for the various distributions of Linux that exist. A software package manager is used to download a package, install or remove a package, manage any dependencies on other software that may exist, and keep packages up-to-date.

Open Source Software

Open source software is different than proprietary or closed sourced software in many ways. First and foremost, as the word open implies, the source code for the software is available for anyone to look at and inspect. Second, because the code is available, this naturally invites contributions from the community. If there’s a problem with the software, you can correct it yourself by submitting a bug report or a patch that fixes the issue. Third, you can share and distribute open source software to others without breaking the law or violating some sort of license agreement. In fact, this sharing behavior is generally encouraged. This is in stark contrast to what you may typically think of when it comes to sharing content (see Appendix A for more information on the history of open source software).

Because the Rasbian distribution used most often on the Raspberry Pi is based on Debian Linux, it uses the Debian package manager software called apt, which stands for Advanced Package Tool. apt contains a set of tools that can be used to perform various tasks related to software package management. The most frequently used tool is called apt-get, and it handles almost all the functionality you will need when it comes to installing software with the exception of searching, which is done with apt-cache.

Since apt can significantly alter your system, you are required to run some of the apt tools using sudo.

Using apt-get update

There are thousands of software packages for Linux and they are updated frequently. In fact, if you checked on the software updates for your Raspberry Pi, you would find that there are several updates a day. Now, that’s not to say that you need to update your software every day. Most updates are enhancements or minor bug fixes, and not having them won’t mess anything up for you. But sometimes there are updates that are related to system security, and those can be important. A good rule of thumb is to check for software updates once a month or so. You also want to check for updates right before you install any software to make sure the software database on your Raspberry Pi is current.

To check for software updates, type the following on the console:

sudo apt-get update

This will download the list of software from the repositories that have been preconfigured in the system. The list will then be read and the software database will be updated to include information about new and updated software packages (see Figure 4-22).

[image: apt-get-update.PNG]
Figure 4-22. Typical output of the apt-get update command

Using apt-get upgrade

Once you’ve updated your software database, you’re ready to either upgrade the software you have installed or install new software. Upgrade actually installs new versions of your software, whereas update only updates the software database. Upgrade your software by typing the following command:

sudo apt-get upgrade

The first thing that happens during an upgrade is that apt-get will read the package list and check for dependencies. Because software in Linux is open source, it can be built in a modular fashion. If someone else has already built a program that does a certain function, other programs can simply use it instead of rebuilding the functionality from scratch every time. In this way, one program becomes dependent on another program to function correctly, and it is important to manage these dependencies so that everything works properly.

After checking for dependencies, apt-get will calculate which packages need to be updated and output a list of those packages. It will also show the total size of the download and the amount of total disk space the updates will occupy after they’re installed (see Figure 4-23).

[image: apt-get-upgrade.PNG]
Figure 4-23. Example of a rather large upgrade using apt-get upgrade

As you can see, it’s been a while since I have upgraded the software on this particular Raspberry Pi. If you have any concerns about the update, you can press N to exit. Otherwise, type Y or just press Enter to continue.

Accepting the Default Choice

Linux text-based configuration utilities often present multiple choices to the user. Usually, the default is the safest choice and is displayed in caps. You can either type in your choice or just press the Enter key to select the default.

Be aware that when you continue from this point, apt-get will begin downloading the software packages and then start to install them. It could take quite a long time (we’re talking many minutes to a few hours) if you have a lot of updates, are using a slower Raspberry Pi like the Raspberry Pi 1 or Zero, or have a slow network connection (see Figure 4-24).

[image: apt-get-upgrade4.PNG]
Figure 4-24. Example of a rather large upgrade using apt-get upgrade (continued)

If your console screen isn’t wide enough, the text will wrap around as the packages are downloaded. The percentage on the far left of the screen shows the overall download progress. Once all the packages are downloaded, apt-get will begin unpacking, processing, and setting them up one by one. When the process is complete, you will be returned to the prompt (see Figure 4-25).

[image: apt-get-upgrade6.PNG]
Figure 4-25. Example of a rather large upgrade using apt-get upgrade (continued)

This particular upgrade took about 40 minutes to complete on an older Raspberry Pi with a slower-than-average network connection. More frequent upgrades on the order of once a month will prevent the upgrade process from taking so long. Although not technically required, it’s a good idea to reboot your system after upgrading it, especially when the upgrade is a large one.

Using apt-cache

With so many software packages available for Linux, it can be difficult to remember their names. There is a way to search through the database to find the package you’re looking for. The tool apt-cache can be used to search through the software package database and even show useful information about individual packages. To search for a package, type:

apt-cache search pattern

apt-cache will search through the database and return any package name and description that contains the pattern you supplied (see Figure 4-26).

[image: apt-cache.PNG]
Figure 4-26. Example output of the apt-cache search command

Once you find the package name you’re looking for, it can be helpful to get more information about it. You can use apt-cache to display more detailed information by using the show function:

apt-cache show pigpio

You can see who wrote the software, the current version, how much disk space it takes up, what the website for the software package is, a detailed description, and more (see Figure 4-27).

[image: apt-cache2.PNG]
Figure 4-27. Example output of the apt-cache show command

Using apt-get install

Installing new software is handled with the apt-get install command. You can install multiple packages at one time and apt-get will manage installing any required dependencies for you. To install software on your Raspberry Pi, just type:

sudo apt-get update

sudo apt-get install packagename packagename packagename

apt-get will let you know how much data will be downloaded and how much disk space will be used after the install is complete. If there is only one package to be installed, apt-get will not ask you to continue and will install the package without prompting (see Figure 4-28).

Skip the Confirmation Message

You can avoid being prompted to confirm whether you want to install the software packages by using the -y option flag (i.e., sudo apt-get -y install packagename packagename packagename).

[image: apt-get-install.PNG]
Figure 4-28. Example output of the apt-get install command

Notice how man was updated with a new page about this program on the next-to-last line.

apt-get remove

Similar to installing software, removing packages is a straightforward process. To remove packages, simply type:

sudo apt-get remove packagename packagename packagename

apt-get will remove the packages and the associated manpage entries (see Figure 4-29).

[image: apt-get-remove.PNG]
Figure 4-29. Example output of the apt-get remove command

Linux will not remove all the dependencies, however. You will notice that after you install or upgrade software, apt-get might mention that there are packages that are no longer required. You can uninstall these by using the following command:

sudo apt-get autoremove

apt-get will show you how much disk space will be freed up and prompt you to confirm. It will then remove all the programs that are no longer required by any other software packages (see Figure 4-30).

[image: apt-get-autoremove.PNG]
Figure 4-30. Example output of the apt-get autoremove command

apt-get dist-upgrade

There is a special type of upgrade you can perform that will upgrade your whole distribution to the latest and greatest version. You perform this with the command apt-get dist-upgrade. Like an install or upgrade operation, you need to update the software database with apt-get update before you run this. The process is very similar to doing a regular upgrade, but could take quite a bit longer since more packages will need to be downloaded and installed. The benefit of upgrading to the latest distribution is that it would allow you to take advantage of new features that aren’t available in your version. All your personal files and configuration should remain intact.

However, don’t feel like you have to upgrade your distribution just because a new version is available. If everything is working fine, be content to stay where you are. Updating your distribution is not like updating the software version on your smartphone. Very rarely is there a must-have feature that you really need to make your project work. Your version of Linux should work fine and be supported with security updates for at least a few years. To make sure you have those security updates, you can simply use apt-get update instead of apt-get dist-upgrade.

One thing to note is that upgrading your distribution this way may not install software packages that aren’t strictly required. In some cases, it might be easier to start from scratch with the latest released image file as we did in Chapter 1. Just be sure to back up your files first.

Fixing Conflicts

Occasionally, you will get an error that mentions “missing dependencies” or “broken packages” when apt-get is trying to install software. This usually means that you haven’t updated in a while. To fix this, you should first try running:

sudo apt-get update
sudo apt-get upgrade

This will update your software repository and upgrade your installed packages to make sure everything is up-to-date. You can then try to install your software again.

Try It for Yourself

Install the pigpio main library and the associated python pigpio library. In order to do this, you will need to find out the names of the software packages and confirm they are the right ones by reading the description. The first step is to update the package database and then look up the names of the packages:

sudo apt-get update

apt-cache search pigpio

You should get a search result that shows all the packages with pigpio in the title or description (see Figure 4-31).

[image: apt-cache3.PNG]
Figure 4-31.
Using apt-cache search to find a software package

Next, install both packages at the same time without being prompted. Let’s assume we will be using Python 2 to write some programs and not Python 3 for now. Use the apt-get command to install the software (see Figure 4-32):

sudo apt-get -y pigpio python-pigpio

[image: apt-get-install2.PNG]
Figure 4-32. Installing pigpio with apt-get

Rebooting and Shutting Down

The first time I ran Linux without a desktop, I ran into a problem. Everything was going fine until I needed to shut down the system. I was still very new to Linux at the time and I didn’t know how to start the desktop up again (see Chapter 5 for how to do this). Eventually, I ended up shutting off the power to the system. This is a very bad idea on any computer, but especially bad on the Raspberry Pi.

As I mentioned in Chapter 2, everything in Linux is represented by a file, including the state of the operating system. Linux is constantly writing to these files as updates occur on the system. If you kill power to your Raspberry Pi while the system is in the middle of updating a file, you will end up with a corrupt file that can’t be read when the system is powered on again. Depending on what file is corrupted, you might lose some of the project files you were working on, or worse, you might end up being unable to boot up your Raspberry Pi again. This problem is compounded by the fact that the Raspberry Pi uses an SD card for storage and, compared to other storage devices, the write speed of SD cards is still pretty slow.

So it is important that you know how to reboot and shut down your system properly from the command line. The command you use to do either of these is shutdown. The shutdown command should work on almost all Linux and Unix systems. To reboot a Linux system from the command line, type:

sudo shutdown -r now

To shut down a Linux system, type:

sudo shutdown -h now

Notice that the only difference between the two commands is using -r to reboot or -h to halt the system and shut it down entirely. If you are shutting down your system, you will know when the shutdown is complete when the LED on the board blinks on and off 10 times. After that, it is safe to unplug your Raspberry Pi.

Why This Matters for Makers

Knowing the basics of using the command line make it easier to navigate around in Linux, get connected to the internet, and install software. These operations are the bare minimum that a Maker should know before venturing out on their own beyond an online tutorial to start building their own really cool projects. You can go further and impress your family and friends by becoming a command-line wizard with the tips and tricks I will show you in Chapter 6.

Chapter 5. Headless Operation

In this chapter I will explain how to connect to a Raspberry Pi running Linux over a network without a keyboard, mouse, or monitor attached to it (aka headless). The ability to operate and interact with a project remotely is important for any Maker, and opens up new possibilities that would not be available if you always needed a keyboard, mouse, and monitor to be directly attached to an SBC running Linux. This is perfect for projects that you want to be mobile or that are just meant to run quietly in the corner collecting or serving data.

Turning Off the Desktop

Most of the time, a Raspberry Pi running headless doesn’t need the desktop running. Turning off the desktop is a relatively easy process and is configured through the raspi-config utility. On the console, run this command:

sudo raspi-config

This will open up the Raspberry Pi configuration application, as shown in Figure 5-1. Use the arrow keys to move the selection cursor down to Boot Options and press Enter.

[image:]
Figure 5-1. The raspi-config main menu

Choose Desktop/CLI and press Enter (see Figure 5-2).

[image:]
Figure 5-2. The raspi-config Boot Options menu

Now choose Console if you want to be forced to log in when the system boots up, or Console Autologin, which will automatically log in the user “pi” for you. Pressing Enter on your selection will return you to the main raspi-config menu (see Figure 5-3).

[image: boot_options.PNG]
Figure 5-3. The raspi-config Desktop/CLI menu

Press Tab to move the selection cursor to Finish and press the Enter key to exit. You will be asked if you want to reboot. Whether you reboot now or later, the next time you do, you will be brought right to the console instead of the desktop.

If you ever want to get back into the desktop for any reason, you can run the following on the command line:

startx

If you ever want to change back to automatically boot into the desktop, just go through these steps again and choose one of the desktop options in the raspi-config boot options menu.

Finding Your System on the Network

In order to connect to your Raspberry Pi, you need to know its IP address. An IP address is a unique identifier assigned to every computer on your network. You can find your IP address on the Pi itself, from the router on your network, or from an app on your phone.

Raspberry Pi

The easiest way to find the IP address of your Raspberry Pi is by looking it up before you disconnect your monitor, keyboard, and mouse. This can be done from the command line or desktop.

When the Raspberry Pi boots up, it should show you the IP address just before you get to the prompt (see Figure 5-4).

[image: ipaddress.PNG]
Figure 5-4. Finding the Raspberry Pi IP address when it boots up

If you’ve been using your Raspberry Pi and can’t see this information anymore, you can find the IP address by running the command ip addr show (see Figure 5-5).

[image: ipaddress2.PNG]
Figure 5-5. Finding the Raspberry Pi IP address with ip addr show

Use the address listed under the eth0 section if your system is connected to the network via a wired Ethernet cable. If your system is connected via WiFi, use the address listed under wlan0. In the preceding example, we would use 10.0.2.16 without any trailing slashes or other numbers.

Router

Most modern routers will show you the connected devices on your network either in list form or as a network map. Connect to your router’s built-in website and find the configuration page to view this information. In my case, the router shows a network map (see Figure 5-6).

[image: router1.PNG]
Figure 5-6. Network map from a home router

By clicking on the device labeled raspberrypi, I can see its IP address (see Figure 5-7). In this case, it’s 192.168.0.209.

[image: router2.PNG]
Figure 5-7. Device details from home router

Android/iPhone

There are many apps for Android and iPhone that can scan your network and find devices and IP addresses. The one I currently use is called “Fing - Network Tools.” You can find it in the Google Play Store and the Apple App Store. Once the app is installed on your phone, simply open it and click on the refresh button to find your Raspberry Pi (see Figure 5-8).

[image: fing.png]
Figure 5-8. Fing app showing Raspberry Pi IP address

Command-Line Access: ssh

Just because your project is running without a keyboard and mouse doesn’t mean that you don’t need access to it. You will need to upload files, change the configuration, and most importantly, be able to shut down the system gracefully from time to time. The best way to access the command line remotely is with a tool called SSH.

SSH stands for secure shell. As you can guess by the name, it provides secure access to the shell on a remote system. SSH is different than its predecessor telnet, which was the standard for many years. Unfortunately, telnet traffic was sent completely “in the clear”—usernames and passwords were easily readable by any computer the data passed through. SSH is secure because the communication to the remote system is encrypted so that it can’t be read by other systems on the network.

For SSH to work, there needs to be two components: an SSH client on your local computer and an SSH server on the remote system. The Raspberry Pi already has an SSH server installed on it as part of the Raspbian distribution of Linux. However, for security, the server is not running by default. You can turn it on by using the raspi-config tool (see Figure 5-9):

sudo raspi-config

[image:]
Figure 5-9. The raspi-config main menu

Use the arrow keys to move the red selection cursor down to Interfacing Options and press Enter. In the Interfacing Options menu, use the arrow keys to move the red selection cursor down to SSH and press Enter (see Figure 5-10).

[image:]
Figure 5-10. The raspi-config Interfacing Options menu

The next screen will ask you if you would like to enable the SSH server. Choose Yes. Once the SSH server is enabled, select OK to return to the main raspi-config tool screen. Press the Tab key to move the selection cursor to Finish and press the Enter key to exit.

Now you need to install an SSH client on your computer so that you can connect to the SSH server on the Raspberry Pi. In the following sections, I will recommend how to connect to a Raspberry Pi from Windows, macOS, Linux, and Android. Although I won’t cover software installation, I will give examples of how to connect and what to expect on each platform.

Windows

Windows does not have a built-in SSH client, so you need to install one. One of the most widely used SSH clients is PuTTY. You can download the latest version of PuTTY online. Once you’ve installed PuTTY, you can open it from the Windows start menu (see Figure 5-11).

Which PuTTY Do I Use?

The default installation of PuTTY comes with several programs. The one you want is simply called PuTTY.

[image: putty1.png]
Figure 5-11. Launching the PuTTY application from Windows

What Is TTY?

TTY comes from the word TeleTYpe and refers to a way of communicating with a computer. Back in the early days of computing, you needed to use a teletypewriter or teleprinter machine to type out the information that you wanted to feed into the computer. You can still see the remnants of this technology in Linux and in other remote communications programs like PuTTY.

Once you’ve opened PuTTY, type the IP address of your Raspberry Pi in the box labeled “Host Name (or IP address)” (see Figure 5-12). Click the Open button to launch your SSH session.

[image: putty2.png]
Figure 5-12. The PuTTY configuration screen

The first time you connect to your remote system, you will be asked to verify the SSH server’s encryption key (see Figure 5-13). Click Yes.

[image: putty3.png]
Figure 5-13. PuTTY security warning

PuTTY will then open a black terminal window and connect to your remote system. Once connected, it will prompt you for your username and password (see Figure 5-14). Remember: the default username for Rasbian is “pi,” and the default password is “raspberry.” See Chapter 2 for instructions on how to change the default password.

[image: putty4.png]
Figure 5-14. The login prompt to connect with PuTTY

If you get an error screen that says “Network error: Connection timed out,” that means your Raspberry Pi is not reachable on your network. Close the console window, check your IP address, check the connections to your Pi, and try again.

Once you’re connected, you’ll be at the prompt and ready to start entering commands.

MacOS

Because macOS is based on UNIX, it makes sense that there is already an SSH client installed and ready to use. To get to it, in Finder, open the Terminal application under Utilities (see Figure 5-15).

[image: mac-terminal1.PNG]
Figure 5-15. Using Finder to locate the Terminal application

Once open, simply type ssh user@ip-address to connect to your Raspberry Pi (see Figure 5-16).

[image: mac-terminal2.PNG]
Figure 5-16. Using ssh to connect to a Raspberry Pi from macOS

If this is the first time you’ve connected to this remote system, you’ll be prompted to accept the SSH server’s encryption key. Type yes and press the Enter key to continue. Once you’re connected, you will be at the prompt and ready to start entering commands.

Linux

There is already an SSH client installed in Linux. All you need to do is type ssh user@ip-address from the console or a terminal emulator (see Figure 5-17). Since the Raspberry Pi is running Linux, you can even use a Raspberry Pi to ssh into another Raspberry Pi!

ssh pi@192.168.0.209

[image: ssh-linux.PNG]
Figure 5-17. Connecting to a Raspberry Pi using ssh on Linux

As on the Macintosh, if this is the first time you’ve connected to this remote system, you’ll be prompted to accept the SSH server’s encryption key. Type yes and press the Enter key to continue. Once you’re connected, you’ll be at the prompt and ready to start entering commands.

Android/iPhone

There are many SSH client apps available for smartphones. For Android, I recommend ConnectBot, which is a free app that allows for multiple saved connections (see Figure 5-18). You can download ConnectBot from the Google Play Store.

[image: connectbot.png]
Figure 5-18. Using ConnectBot on Android to connect to a Raspberry Pi

For iPhone, I recommend Cathode, which costs $4.99 and emulates the look and feel of classic hardware terminals (see Figure 5-19). You can download Cathode from the Apple App Store.

[image: cathode.jpeg]
Figure 5-19. Cathode running on an Apple iPhone

Remote Desktops: vnc

So, you want to connect to your Raspberry Pi to use the desktop rather than using the command line? No problem. You can do this by using Virtual Network Computing (VNC) tools. Again, this requires two components: a VNC viewer on your local computer and a VNC server on the remote system. The latest version of Raspbian comes with the VNC server and viewer software installed. I won’t cover installation, but will show you how to configure the server and client software necessary to view your Linux desktop remotely.

Setting Up the Raspberry Pi

In order to view the desktop remotely, you must first set up the VNC server on the Raspberry Pi itself. You can do this from the console or terminal emulator locally, or even via ssh remotely. All you need to do is enable it and then start it up.

Enable the VNC Server software by running the following command:

sudo systemctl enable vncserver-x11-serviced.service

Then start the VNC Server by running the following command (see Figure 5-20):

sudo systemctl start vncserver-x11-serviced.service

The VNC Server will now start automatically every time you boot up your Raspberry Pi.

[image: start-vnc-server.PNG]
Figure 5-20. Enabling and starting the VNC server on the Raspberry Pi

The Raspberry Pi auto-senses the display it’s connected to. When you don’t have a display connected anymore, it will default to the lowest resolution possible, which is very small indeed. So in order to use VNC without a monitor attached, you will need to edit some configuration settings to tell your Raspberry Pi to default to a bigger screen size. Connect to your Raspberry Pi and edit the /boot/config.txt file on the command line by typing:

sudo nano /boot/config.txt

Scroll down to the bottom of the file and add the following lines (see Figure 5-21):

hdmi_force_hotplug=1
hdmi_ignore_edid=0xa5000080
hdmi_group=2
hdmi_mode=16

[image: configure_screen.PNG]
Figure 5-21. Editing the config.txt file on the Raspberry Pi

The hdmi_force_hotplug setting tells your Pi that an HDMI display is attached, and the hdmi_mode setting forces a resolution of 1024×768 at 60Hz.

This should give you a workable desktop area even when no monitor is attached. Press Ctrl-X, then Y, then Enter to save your file and quit nano. You will need to reboot your Raspberry Pi for the changes to take effect.

Windows

Download and install the RealVNC software. If you installed VNC Server, you will also need to register for a free personal use license as part of the install process. You can choose during install whether or not you want to install the server and viewer or just the viewer. We will only be using the viewer to connect to the Raspberry Pi. Once it’s installed, launch the viewer from the Windows start menu (see Figure 5-22).

[image: vnc-windows.png]
Figure 5-22. Launching the VNC Viewer application on Windows

When the VNC Viewer application starts, it will ask for the address of the remote system. Enter the IP address of your Raspberry Pi and click Connect (see Figure 5-23).

[image: vnc-windows2.png]
Figure 5-23. Entering the IP address to connect to in VNC Viewer

If this is the first time you’ve connected, you will be shown the server’s unique signature and asked if you want to proceed. After you accept, you’ll be asked for your Raspberry Pi username and password (see Figure 5-24).

[image: vnc-windows3.png]
Figure 5-24. Entering your Raspberry Pi username and password in VNC Viewer

After you click OK, you should be presented with a window showing your Raspberry Pi desktop.

MacOS

Download and install the RealVNC software. If you installed VNC Server, you’ll also need to register for a free personal use license as part of the install process. You can choose during install whether or not you want to install the server and viewer or just the viewer. We will only be using the viewer to connect to the Raspberry Pi. Once it’s installed, launch the viewer by opening Finder and navigating to Applications→RealVNC→VNC Viewer (see Figure 5-25).

[image: mac-vnc1.PNG]
Figure 5-25. Launching the VNC Viewer application on macOS

When the VNC Viewer application starts, it will ask for the address of the remote system. Enter the IP address of your Raspberry Pi and click Connect (see Figure 5-26).

[image: mac-vnc2.PNG]
Figure 5-26. Entering the IP address to connect to in VNC Viewer

If this is the first time you’ve connected, you will be shown the server’s unique signature and asked if you want to proceed. After you accept, you will be asked for your Raspberry Pi username and password (see Figure 5-27).

[image: mac-vnc3.PNG]
Figure 5-27. Entering your Raspberry Pi username and password in VNC Viewer

After you click OK, you should be presented with a window showing your Raspberry Pi desktop.

Linux

Download and install the RealVNC software. RealVNC has many packages available for Linux depending on which distribution you are running. If you are running a Debian- or RedHat-based system, there are preconfigured packages available. Otherwise, you can install a general Linux installation package.

If you installed VNC Server, you’ll also need to register for a free personal use license as part of the install process. You can choose during install whether or not you want to install the server and viewer or just the viewer. We will only be using the viewer to connect to the Raspberry Pi. Once it’s installed, launch the viewer from the menu in the taskbar (see Figure 5-28).

[image: linux-vnc.PNG]
Figure 5-28. Launching the VNC Viewer application on Linux Mint

You can also launch the VNC Viewer from the command line:

vncviewer

Once you launch VNC Viewer, you will need to accept the EULA before you can continue. The process from here is similar to Windows and macOS. Enter the IP address of your Raspberry Pi and click Connect (see Figure 5-29).

[image: linux-vnc3.PNG]
Figure 5-29. Entering the IP address to connect to in VNC Viewer

If this is the first time you’ve connected, you’ll be shown the server’s unique signature and asked if you want to proceed. After you accept, you will be asked for your Raspberry Pi username and password (see Figure 5-30).

[image: linux-vnc4.PNG]
Figure 5-30. Entering your Raspberry Pi username and password in VNC Viewer

After you click OK, you should be presented with a window showing your Raspberry Pi desktop.

Android/iPhone

You can also access your Raspberry Pi desktop from your smartphone or tablet. There are versions of VNC Viewer for Android on the Google Play Store or for iPhone on the Apple App Store. The method for connecting is very similar to the desktop versions of VNC Viewer. Depending on the size of your display, however, you may find it frustrating to use on a small screen (see Figure 5-31).

[image: android-vnc.png]
Figure 5-31. Connecting to the Raspberry Pi with the mobile VNC Viewer app

Transferring Files: scp, sftp

There are many ways to get files to and from an SBC running Linux. However, putting files onto the SD card directly is not easy from Windows and macOS. Since the SD card uses a Linux-based filesystem for primary storage, that part of the card won’t be visible when you plug it into either of those systems. You could mount a network drive or use a USB pen drive to transfer the files, but these processes are cumbersome and time-consuming. This process is made more difficult when you’re running headless since you can’t see the desktop or have direct access to the console.

Luckily, there are easy tools built into Linux that help when you are transferring a few files over a network. Secure Copy (SCP) and Secure File Transfer Protocol (SFTP) use SSH to transfer files to a remote machine securely. scp is best used to transfer a single item like a file or an entire directory, while sftp can be used like regular FTP to create new directories and move a select group of files. This is one time that a graphical client is probably easier to use than the command line, but I will show you both ways where applicable.

Tranferring Files with VNC

You can also copy files with the VNC Viewer software from RealVNC if you are running the desktop on your Raspberry Pi. If not, SCP and SFTP should always work, so it’s good to know how to use them.

Windows

In Windows, you will will need a program to help you use SCP or SFTP. WinSCP is a great program that does both, and has a very nice drag-and-drop interface. As a bonus, it can start a PuTTY session for you if you already have PuTTY installed. You can download WinSCP from its website.

Once you have WinSCP installed, open it and choose an interface style. Personally, I like the Commander style, as it makes it easy to drag files back and forth between your computer and Raspberry Pi. Next, you will be presented with the login screen (see Figure 5-32).

[image: winscp.PNG]
Figure 5-32. Connecting to the Raspberry Pi with WinSCP

Leave the “File protocol” set to SFTP (SFTP and SCP will work the same way with this program) and enter your Raspberry Pi’s IP address in the “Host name” box. Next, fill in the “User name” and “Password” boxes with the username and password for your Raspberry Pi. Click the Login button to connect to your remote system. If this is the first time you’ve connected with WinSCP, you will be asked to verify the server’s encryption key. WinSCP will then connect automatically using the credentials you supplied, and you will see the interface you picked (see Figure 5-33).

[image: winscp2.PNG]
Figure 5-33. The file browser window in WinSCP

You can now transfer files back and forth between your computer and your Raspberry Pi.

MacOS

There are many clients available on macOS for SCP and SFTP file transfer. However, some of them include advanced functionality and can be quite expensive. You can find free tools in the Apple App Store if all you want to do is transfer files to your Raspberry Pi or other SBC. One such tool is Commander One. The free version of Commander One offers a Commander-style view of your files and will connect easily to other computers using many protocols. You can download Commander One from the developer’s website or in the Apple App Store.

Once you have Commander One installed, open it to find the default view of your local files. To open an SFTP session to your Raspberry Pi, click on the Connections Manager icon (see Figure 5-34).

[image: mac-scp1.PNG]
Figure 5-34. Default file manager view in Commander One

The Connections Manager window will allow you to use various methods to connect to remote systems. Click on the SFTP button to create a new SFTP connection (see Figure 5-35).

In the New Connection screen that appears, give this connection a name. Then, fill in the Raspberry Pi’s IP address, your username, and password. Then click the Connect button (see Figure 5-36).

[image: mac-scp2.PNG]
Figure 5-35. Choosing a protocol in the Connections Manger screen of Commander One

[image: mac-scp3.PNG]
Figure 5-36. Connection settings in Commander One

Commander One will replace one pane of the program with the filesystem of your Raspberry Pi. It will also add a link to this connection to the top of each pane. Now you can drag files back and forth between your Mac and your Raspberry Pi. You can also change the permissions on a file or folder by right-clicking on it and choosing “Get info” or by selecting it and pressing Command-I (see Figure 5-37).

[image: mac-scp5.PNG]
Figure 5-37. Changing file permissions in Commander One

Linux

The ability to transfer files to remote systems is built into most Linux file managers. Since there are so many distributions of Linux, I will be using Linux Mint, one of the most popular distributions, to demonstrate.

Open up the built-in file browser (in Linux Mint, the default file browser is Nemo), and click File, then “Connect to Server” (see Figure 5-38).

[image: linux-scp1.PNG]
Figure 5-38. Adding a new connection to a server in the Linux Mint file browser

In the Type drop-down box, select SSH. Fill in the Raspberry Pi’s IP address, username, and password and click the Connect button (see Figure 5-39).

If this is the first time you’ve connected to your Raspberry Pi, you’ll be asked to verify that you want to make the connection. Click on Log In Anyway to continue. The file browser will open a new window displaying the filesystem of your Raspberry Pi. It will also add an icon under your network connections that represents this connection so you can easily get back to it at any time. If you want to end the connection, you can click the eject icon next to the name of the connection (see Figure 5-40).

[image: linux-scp2.PNG]
Figure 5-39. Entering the connection details for a new connection to the Raspberry Pi

[image: linux-scp3.PNG]
Figure 5-40. A new window showing the files on the Raspberry Pi

From the Command Line: MacOS and Linux

Both macOS and Linux have built-in command-line tools that let you use SCP and/or SFTP. Using SCP on the command line is an easy way to transfer a single file or directory to your Raspberry Pi. Using SFTP is a little more complex in that you will need to know how FTP commands work. Since command-line SFTP is probably not going to be used that often, I will only cover SCP in this section.

Open up the Terminal program in macOS or a terminal session on Linux. The scp command syntax is similar to ssh. To transfer a file to your home directory on your Raspberry Pi, just use the scp command by typing:

scp myfile username@IPaddress:/home/pi

where:

		myfile is the name of the file you want to transfer

		username is the username on your remote system

		IPaddress is your remote system’s IP address

Be sure to include a space between your filename and the username of your remote system. After you enter your password, you will see a progress indication while the file is transferred (see Figure 5-41).

[image: command_line_scp.PNG]
Figure 5-41. Tranferring a file using scp on the Linux command line

Why This Matters for Makers

More often than not, I find that Makers want to use the Raspberry Pi or some other SBC in a project where leaving a monitor and keyboard connected at all times is not a practical solution. Robots, security cameras, and LED light displays are all fun projects, but they are best when run headless. Knowing how to communicate with and control your Raspberry Pi remotely will open up a whole new world of possibilities for you to discover.

Chapter 6. Tips and Tricks

Now that you can use the command line effectively from anywhere, I’ll explain some of the functionality an efficient Maker should know when putting their programs to work for them. These are the topics that come up again and again in forums and in conversations with new Linux users that a system administrator would know to do like the back of their hand. This is by no means an exhaustive list, but by learning these tips and tricks, you can save a lot of time when building your projects and impress your friends by demonstrating your mad Linux command-line skillz.

Changing Your Hostname

By default, the hostname of a Raspberry Pi running Rasbian is raspberrypi. If you have more than one Raspberry Pi on your network, it can be confusing to know one from the other. So it is very helpful to have different hostnames for each Raspberry Pi on your network. You can change the hostname to be whatever you want in just a few simple steps.

Don’t Be Afraid of Change

Changing the hostname will not affect your Raspberry Pi’s IP address. The only thing that changes is the name that shows up in network discovery tools like Fing or your router configuration website.

First, verify your existing hostname by running the hostname command:

hostname

This command without any options will only display the hostname and will not change anything (see Figure 6-1).

[image: hostname1.PNG]
Figure 6-1. Running the hostname command to check the hostname

Second, you will need to edit your hosts file. This special file is like a personal map that Linux uses to relate hostnames to IP addresses, and it supersedes information that might come from other devices on the network. Open the file for editing with sudo and replace all occurrences of raspberrypi with whatever you want your new hostname to be (see Figure 6-2):

sudo nano /etc/hosts

You can see in Figures 6-2 and 6-3 that I have replaced raspberrypi with virtualpi.

[image: hostname2.PNG]
Figure 6-2. Editing the hosts file

[image: hostname3.PNG]
Figure 6-3. Host file with new hostname

The last step is to edit the hostname file. This file only contains the name of your system. Open the file for editing with sudo and replace raspberrypi with the same name you just used in the hosts file (see Figure 6-4):

sudo nano /etc/hostname

[image: hostname4.PNG]
Figure 6-4. Editing the hostname file

Once these steps are complete, reboot your Raspberry Pi to make sure all the programs that use the hostname are using the new one. Now your Raspberry Pi should show up in network discovery tools with the new hostname. You will also see the new hostname at the prompt (see Figure 6-5). You can run the hostname command again to verify your hostname at any time.

Make Sure They Match

If the names in the hosts file and the hostname file do not match, you may end up having trouble connecting to your system over the network. If this happens, you will have to connect to the Raspberry Pi directly in order to fix it.

[image: hostname5.PNG]
Figure 6-5. The hostname command displaying the new hostname

Then check your network discovery tools to see the new hostname on your network.

Starting a Script on Bootup: rc.local

Inevitably, you will want to run a script or program automatically when your Raspberry Pi boots up. This is especially important when you are running in headless mode and want your project to come alive all by itself when it’s plugged in. The easiest way to do this is to add the script or program to a file called rc.local, which is located in the /etc directory. All you need to do is edit that file using sudo and insert a line that runs your script or program. You should add your program just before the exit 0 statement (see Figure 6-6):

sudo nano /etc/rc.local

[image: rc-local.PNG]
Figure 6-6. Changing the rc.local file

No Need for sudo

The rc.local script is run as “root,” so you don’t need to use sudo to run commands the way you normally might when you are logged in as the “pi” user. However, you will need to use the full path to your script or program.

Try It for Yourself

Add the hello.sh script to rc.local so it will run automatically when the Raspberry Pi boots up. Start by editing the rc.local file:

sudo nano /etc/rc.local

Now add the command we used in Chapter 2 to run the script, but use the full path to the file (see Figure 6-7).

[image: rc-local2.PNG]
Figure 6-7. Using the rc.local file to run a script or program at boot time

Save the file and exit by pressing Ctrl-X, then Y, then Enter. Now reboot your system with the command:

sudo shutdown -r now

When you system reboots, look for the “Hello World” print statements near the end of the boot process (see Figure 6-8).

[image: rc-local3.PNG]
Figure 6-8. The hello.sh script running at boot time

Aliases

An alias in Linux is a way to tell the shell, “When I type this thing, I want you to actually do this other thing.” For example, when you type ls on your Raspberry Pi, the shell is actually executing ls --color=auto. This is because most terminals support color, but by default the ls command does not turn the color option on. Typing --color=auto every time would be a huge inconvenience, so there is an alias to handle that for you.

Aliases in Linux are handled mostly by running a script called .bashrc when you log into the system. Each user has their own .bashrc file located in their home directory. So to set up a custom command or to change the default way an existing command works, you need to edit this file to set up your own aliases. From the console or terminal emulator, edit the .bashrc file by typing:

nano .bashrc

Be careful editing this file, as it is full of a lot of settings and configuration information for your shell. Scroll down until you see a section that defines the aliases for your session (see Figure 6-9).

[image: aliases.PNG]
Figure 6-9. Editing the .bashrc file

A good place to add your aliases is after the fi statement in this section, as it keeps them all together, but technically it doesn’t matter. Another good place to add statements to a file like this is at the end of the file so that they are easy to find. Syntax is important here, so be sure to make the name of your new alias all one word with no spaces (i.e., “runthis” and not “run this”). Also, make sure there are no spaces before or after the = sign.

Log Out to Apply Changes

The .bashrc file is only read by the system when you log in, so in order to apply any changes you make to that file you need to log out and log in again by using the exit command.

Try It for Yourself

Open the .bashrc file for editing:

nano .bashrc

Add an alias called lsbydate that will sort the output of the ls command by last modified date in ascending order like so (see Figure 6-10):

alias lsbydate='ls -ltr'

[image: aliases2.PNG]
Figure 6-10. Adding the lsbydate alias to the .bashrc file

Save the file and exit by pressing Ctrl-X, then Y, then Enter. Now exit out of your session by typing:

exit

Log back in as the same user and try running your command. You should see the files and directories in your current location sorted by date (see Figure 6-11).

[image: aliases3.PNG]
Figure 6-11. Using the new lsbydate alias

Checking Disk and File Space Usage: df, du

Although you can add extra storage via the USB connections on your Raspberry Pi, your primary storage is your SD card. Since SD card storage is rather limited in size, you will most likely want to know how much of your storage has been used and how much is still available. You can easily see how much space you have on your SD card (or any other mounted filesystem) by using the df utility, which stands for disk filesystem.

The df utility shows you a list of all the mounted filesystem devices, their total size, how much space is used, how much is available, the percentage of space used, and where the filesystem is mounted. The important filesystems to keep track of are the ones mounted on / and /boot because they represent your primary storage and your boot partition, respectively.

By default, the output of df is formatted to display kibibytes (1,024 bytes), but you can change this to display more human-readable output by using the -h option (see Figure 6-12).

[image: df.PNG]
Figure 6-12. The output of the df command

You might also want to know how much space a particular file or directory is occupying on your filesystem. You could use the ls command to get a list of all the files in your current directory and add them all up, but it is easier to use the du tool, which stands for disk usage. By default, the du tool shows the size of every file and directory starting from your current location and proceeding recursively through the filesystem until there is nothing more to show.

Like df, du will display the sizes in kibibytes unless you use the -h option to show human-readable sizes. You can also specify the number of subdirectories from your current location about which you want to display detailed information with the -d option. For example, to show only the summary of your current directory, you would use the option -d 0. If you want to also see the summary for just your directory and all immediate subdirectories, you would use the option -d 1 (see Figure 6-13).

[image: du.PNG]
Figure 6-13. The output of the du command

In Figure 6-12, you can see that the total amount of disk space my current location (/home/pi) is taking up is 172 MB, whereas my Documents subdirectory is taking up 3.9 MB.

Performance Monitoring: top

There are whole books dedicated to the topic of Linux performance. Instead of covering everything possible, I will just touch on the basics here that a Maker should know. Once you’ve discovered all the project possibilities that can happen with an SBC like the Raspberry Pi, you might be tempted to do a lot of different things with it at the same time. Indeed, that is one of the benefits of an SBC over a microcontroller platform like Arduino—the Pi can read sensors and drive motors and send tweets, almost simultaneously.

However, you can push things too far and start running out of resources. Your project may slow to a crawl, or even crash completely. It is important to be able to monitor the performance of your system so you can shut down unimportant functions if things start slowing down. You can monitor CPU utilization right from the desktop, as there is a CPU percentage indicator applet right in the taskbar that shows total CPU usage at that particular point in time (see Figure 6-14).

[image: linux-cpu-revised.PNG]
Figure 6-14. The CPU performance applet on the Raspberry Pi desktop

Unfortunately, this applet doesn’t show memory or storage I/O utilization and, of course, it is only visible when you are running the desktop. So when you want more detailed information, it is good to use the top tool. top stands for table of processes, and as the name suggests, it lists running processes in table form sorted by their resource utilization. By default, the displayed information is refreshed every three seconds and is sorted by CPU utilization. top displays a large amount of information at one time, so let’s take a look at a breakdown of what it all means so you can use it to monitor or debug your project (see Figure 6-15).

[image: top.png]
Figure 6-15. Running the top command

Let’s start with the topmost line (see Figure 6-16).

[image: top2.png]
Figure 6-16. Breakdown of the top command

		Current time

		Uptime in days, hours, and minutes

		Number of users logged in (if you are running the desktop, this will normally be 2)

		Average CPU load over the last 1 minute, 5 minutes, and 15 minutes

Uptime

You can also get this single line of information by running the command uptime.

Now let’s look at the Tasks line (see Figure 6-17).

[image: top3.png]
Figure 6-17. Breakdown of the top command (continued)

		Total number of processes

		Number of processes currently running

		Number of processes currently idle

		Number of processes that have received a stop signal (more on this later)

		Number of processes that have exited but are waiting for another process to finish

Remember that in Chapter 2 you learned about parent and child processes. Zombie processes are usually child processes that have finished what they are doing but are required to wait for their parent process to exit before they can be cleared from the process list. Now let’s examine the %CPU(s) line (see Figure 6-18).

[image: top4.png]
Figure 6-18. Breakdown of the top command (continued)

		Percentage of time the total number of CPUs have spent running normal user processes. This is the key indicator of how busy the system is.

		Percentage of time spent on running system kernel processes.

		Percentage of time spent on running prioritized or de-prioritized processes. In Linux, this is referred to as niceness, but it isn’t often used in small systems like the Raspberry Pi.

		Percentage of time not doing anything, aka idle.

		Percentage of time waiting for I/O to complete. This can be an indicator of using up all the memory or slow storage.

		Percentage of time servicing hardware interrupts. This can happen when external devices need to send information to the CPUs right away.

		Percentage of time servicing software interrupts. This is a less important kind of CPU signal than a hardware interrupt.

		This only applies to virtualized systems and indicates the percentage of time stolen from the system because the host system was busy doing something else.

If you are having poor performance on your Raspberry Pi, it will normally show up as high percentage numbers in the user, system, or wait columns. Remember that the numbers in the %Cpu(s) row should add up to 100%. Now let’s look at the KiB Mem and Kib Swap lines (see Figure 6-19).

[image: top5.png]
Figure 6-19. Breakdown of the top command (continued)

		Total amount of available memory and swap space in kibibytes

		Amount of memory or swap space used

		Amount of memory or swap space available

		Amount of buffers and cached memory used

These two lines refer to different types of memory. Mem refers to physical memory and should be close to the amount of memory installed on the system. In this case, my Raspberry Pi 3 has 1 GB of RAM so the number shown in the total column should be close to that. Swap refers to space on a disk (in this case, the SD card) that is used as virtual memory just in case the system runs out of physical memory. Since the SD card is so much slower than physical memory, using swap will affect the performance of your Raspberry Pi.

Buffers refers to the memory used when the system mounts or accesses the filesystems connected to the system itself. The system keeps some of the information about the files and devices in memory to speed up repeated access. Cached memory refers to the actual data from the files and programs. As the data is read, it is loaded into memory and kept there for a period of time to make it faster to access. The system will move data in and out of memory automatically.

The key thing to be on the lookout for here is the amount of memory used. If you’re constantly running out of memory, you should try and find what is causing it and close memory-hungry applications to free up some space. Now let’s look at the last section of the screen that can help us do just that (see Figure 6-20).

[image: top6.png]
Figure 6-20. Breakdown of the top command (continued)

		PID
	
	The process ID.

		USER
	
	The owner of the process. Usually the user that launched it.

		PR
	
	The current priority of the process.

		NI
	
	The nice value or user-defined priority of the process.

		VIRT
	
	The total amount of memory needed by the process.

		RES
	
	The amount of memory actually used by the process.

		SHR
	
	The amount of shared memory available to a process.

		S
	
	The current status of the process, which may be one of the following letters:

		D = uninterruptible sleep

		R = running

		S = sleeping

		T = traced or stopped

		Z = zombie

		%CPU
	
	The percentage of a single CPU that is being used by a process.

		%MEM
	
	The percentage of total memory that this process is using.

		TIME
	
	The amount of time that the CPUs have spent running this process, in hundredths of a second.

		COMMAND
	
	The command used to launch the process. A + sign at the end of a command means that the command was too long to fit in this column.

The important things to keep track of in this part of the display are the processes that use a lot of CPU and memory. You can do this by watching the %CPU and %MEM columns. Usually any troublesome processes will quickly appear at the top of this list. Running processes will show up with all the columns highlighted for that line. You can also manipulate this list by using case-sensitive command keys.

		x
	
	Highlight the current sort field.

		P
	
	Sort by %CPU (default).

		M
	
	Sort by %MEM.

		N
	
	Sort by PID.

		T
	
	Sort by TIME.

		and
	
	Toggle sort by one column at a time left or right.

		Arrow keys, PgUp, PgDown
	
	Scroll left, right, up, down.

		k
	
	Kill a process.

		h
	
	Help.

		q
	
	Quit.

There are many other options with top. You can find out more by referencing the help screen or by reading the manpage.

Try It for Yourself

Find out how much resources a given app uses when it’s started and after it’s up and running. For now, this is most easily done from the desktop. Later, I will show you how to run a process in the background so you can do this from the command line. Open a terminal emulator window and launch top:

top

Then start another application and watch the output of the top command to see how much resources are used in the first 30 seconds or so after the application is started (the web browser might be a good choice for this). Continue to watch to see what happens as the application finishes loading and is running without any activity. Start using the application (i.e., load a web page, open a file, etc.) to see what happens to CPU and memory while your application performs those functions.

Killing a Process: Ctrl-C, ps, kill

All operating systems have programs that get out of control in one way or another. Sometimes programs become unresponsive or there just isn’t access to them to quit them through normal means. This could be because of a flaw in the program or operating system. In any case, you should know how to stop the program from running in order to prevent it from consuming too many resources and causing usability issues. In Linux, this is known as killing a program or process and is used to forcibly exit and terminate the program. For many programs, killing them doesn’t cause any harm. However, in more complex programs, this could lead to program errors, as the program may not have a chance to clean up open files or network connections before it exits. If your program has an exit function built in (like a close button or an exit key), you should always try using that first before you resort to killing it.

By pressing Ctrl-C, you will send an interrupt signal to the program that’s currently running in the terminal. In most cases, this will exit the program abruptly and return you to the prompt. In the case of a simple script, this can be the quickest way to exit and get on with the next task at hand.

In the case of jobs or programs that were started automatically or in another user session, you will first need to find out the PID of the process you want to kill. To do this, you can use the ps command, which stands for process status. When run without any options, the ps command will only show processes that your current user is running. To get a list of all processes, you can use the options -ef to get a complete list with more details (see Figure 6-21).

[image:]
Figure 6-21. The output of the ps command

Try this for yourself and you’ll soon realize that hundreds of processes can be listed in the output of this command. To find the process you’re looking for, you can use grep to limit the results (see Figure 6-22). The grep command, when added to another command, prints out only the lines that match a given search string (more on grep later in this chapter):

ps -ef | grep search term

[image:]
Figure 6-22. Using grep with the ps command

In this case, you can see that I searched for lighttpd, which represents the web server process I’m running. However, there is an extra result, which represents the grep search for lighttpd itself. You can ignore this result. The one we want is the top result, which in this instance has PID 674.

Let’s suppose for a moment that my Lighttpd web server was locked up for some reason. Since it’s a service, I’ve already tried to stop it with the proper command (sudo service lighttpd stop), but it didn’t respond. In order to kill a process, you can use the kill command. The kill command sends a shutdown signal to the process and thus can stop a process abruptly. There are several options you can use with kill depending on how you want to end the process:

		kill PID
	Send a normal terminate signal to the process.

	

		kill -1 PID
	Send a restart signal to the process.

	

		kill -2 PID
	Send an interrupt signal to the process. This is the same as pressing Ctrl-C.

	

		kill -9 PID
	Send the kill signal and shut down the process immediately.

	

In this case, I want to end Lighttpd normally with a regular terminate signal. Because my current user didn’t start that process, I will need to use sudo (see Figure 6-23).

[image:]
Figure 6-23. Using the kill command

After you send a kill command to a process, it’s a good idea to run ps again to make sure it isn’t running anymore. If a process does not respond to the kill command or a kill command with the -2 option, you can use the -9 option as a last resort. As you can see in Figure 6-23, after I tried to kill the lighttpd process and checked again, the only result I got back was the grep search itself, so the process was killed.

Stop, Background, and Foreground Jobs: Ctrl-Z, &, fg

Sometimes it can be helpful to pause a process, go do something, and then come back and continue where you left off. Other times, it might be nice to run a program in the background from the very beginning if you don’t need to watch it the whole time. Linux has commands that can help you stop a job temporarily and run jobs in the background so they aren’t in your way while you’re working on the command line.

If you want to pause your program and come back to it later, you can use the Ctrl-Z keyboard shortcut. In Linux, this is known as stopping the program and will send your program to the background and return you to the prompt. The program will not process any more instructions until you bring it back to the foreground (see Figure 6-24).

[image:]
Figure 6-24. Using Ctrl-Z to stop a process

When you are ready to unpause the program, you can use the fg command. This will bring the program back to the screen and continue it from where it was stopped (see Figure 6-25).

[image:]
Figure 6-25. Using fg to bring the process back to the foreground

If you want to start a program running in the background when you launch it, you can add the & character to the end of the command. This will start the program and tell you its PID in case you need to reference it later, then return you to the prompt to do other tasks. However, if you have output coming from the program, it will still be printed on the screen, as you can see in Figure 6-26. Later, I will show you how to send this output somewhere else. To pull the program to the foreground, you can use the same fg command.

[image:]
Figure 6-26. Using & to run a program in the background

Try It for Yourself

Create a looping script and practice running it in the background and bringing to the foreground. Find the PID with the ps command. Once you’ve found the PID, you can kill it with the kill command.

Open a new file called loop.py:

nano loop.py

Now, copy the following text into the file:

#!/usr/bin/python

import time

while True:

 print "I am still running :)"

 time.sleep(10)

Save the file by pressing Ctrl-X, then Y, then Enter. Run the program with the following command:

python loop.py

This script will print "I am still running :)" every 10 seconds. Stop it by pressing Ctrl-Z. You should be returned to the prompt, where you can enter some other commands. Bring the script back to the foreground by typing:

fg

Kill the script by using Ctrl-C. Run the script again, but start it in the background:

python loop.py &

This time, look up the PID of the script by searching for it with ps and grep.

ps -ef | grep loop

Kill the script process by using the associated PID.

kill PID

This should kill the process and stop it from printing those annoying messages. :)

Finding USB Devices: lsusb

Since most SBCs like the Raspberry Pi have Universal Serial Bus (USB) ports built in, using USB devices is an easy way to add functionality that your project requires. Keyboards, mice, audio devices, Bluetooth adapters, and WiFi adapters can all be connected via USB. Most Linux distributions support many current and legacy USB devices without requiring you to install any drivers. This is because the Linux kernel has the drivers already built in, thanks to the hard work of the many programmers who have contributed their code over the years.

However, typically you won’t get a nicely formatted pop-up message telling you that your device has been recognized by the system, as you do with Windows. To get a list of USB devices currently recognized by your system, you can use the command lsusb. Similar to ls, this command lists your USB devices along with their hexadecimal device ID. It’s a good idea to run this command once before you plug in your device and then again after you plug it in, as it’s not always easy to tell one device from another (see Figure 6-27).

[image:]
Figure 6-27.
The output of the lsusb command

As you can see, before I plugged in any physical devices to my Raspberry Pi, I still had some USB devices listed when I ran lsusb. This is because some of the built-in devices like the Ethernet adapter are connected to the USB bus internally. Once I plugged in a USB microphone and ran lsusb again, I could see that my device showed up as “C-Media Electronics, Inc. CM108 Audio Controller.” This information might be helpful to you if you need to look up information about your device on the internet. Also, some programs that you create may require you to reference the hexadecimal ID of the device in order to work properly.

Remember

Every device you plug into the USB ports on your Raspberry Pi will draw additional power. Drawing more power than is available will cause your system to crash, especially when you first boot it up. Be sure your power supply has enough current to supply both your Raspberry Pi and all the devices you plug into it.

Logging the Output of a Script: >, >>

There are several situations in which you might want to capture the output of a script. If you have a project that’s collecting data over a long period of time, you will want to be able to capture that data so you can analyze it later. In some cases, you may be getting intermittent errors printing to the screen but don’t have time to see them before they scroll off. If you’re running a script at startup with rc.local, it will run as “root” and you won’t see the output at all when you log in.

In all of these cases, you can capture the output of a script in a logfile that you can reference later to see what’s going on. The way to do that in Linux is to modify the command that launches the script using the greater-than symbols. This will redirect the output.

	>
	
Send the output to a new file.

	>>
	
Append the output to an existing file.

	&>, &>>
	
Create or append file including errors.

For example, if I wanted to send the output of the loop.py script we created earlier to a new file called loop.log, I could do it with the following command:

python loop.py > loop.log

While this script is running, all normal output (like print statements) will be written to the loop.log file. Once the script has exited, you can examine the logfile to see the output with a text editor or simply by using the more command (see Figure 6-28).

[image:]
Figure 6-28. Using > to send output to a new file

If you want to append to this same logfile without overwriting it, you need to use two greater-than symbols like this (see Figure 6-29):

python loop2.py >> loop.log

[image:]
Figure 6-29. Using >> to append output to an existing file

You can see that the output from the first script was added to by the output from the second script. However, the traceback error I caused when I exited the script with Ctrl-C did not get sent to the file. In order to capture errors as well as normal output, you will need to use the &> symbols to overwrite or &>> symbols to append to a file and include error messages (see Figure 6-30):

python loop.py &>> loop.log

[image:]
Figure 6-30. Using &>> to append standard output and errors to an existing file

Searching the Output of a Command: grep

As you saw earlier, you can use the grep command to find a given search string in the output of the ps command. You can also use grep with almost any other command to search through the output it provides. The origins of the grep command are a bit more esoteric than other Linux commands. grep stands for globally search a regular expression and print. To use grep, type your command followed by a | symbol, then follow that with grep and with your search term. For example, if you have a logfile, you could search through it by using the more command to print the contents of the file, combined with the grep command to display only the lines that contain your search term (see Figure 6-31).

more loop.log | grep again

[image:]
Figure 6-31. Using grep to only print lines that have “again” in them

There are many useful options you can use with grep as well. Here are a few of my favorites:

	-e
	Search for multiple terms at the same time.

	-i
	Run a case-insensitive search.

	-c
	Count how many lines contain the search term.

When you combine these options, grep becomes a very powerful tool (see Figure 6-32). There are even more useful options, which you can find in the manpage.

[image:]
Figure 6-32. Using grep to search for multiple patterns

In Figure 6-32, I had grep search and print all lines in a logfile that contained either a lowercase a OR an upper- or lowercase i. I then did the same search, but instead of printing the matching lines, I printed the total number of lines that matched that search. You can also combine multiple grep statements to achieve an AND operation (see Figure 6-33).

[image:]
Figure 6-33. Using grep to search for multiple patterns (continued)

Monitoring a Log File: tail

Sometimes it can be helpful to search the last few lines of a logfile to see what happened just before a script or program crashed or caused an error. You can do this easily on the command line with the tail utility. As the name suggests, tail without any options prints out the last 10 lines of a file (see Figure 6-34).

[image:]
Figure 6-34. Using tail to print the last few lines of a file

There are two very useful options with tail. One is the -n number option, which lets you print any number of lines instead of just 10. The other is the -f option, which will print the last 10 lines but also keep adding lines as they are written to the file. This gives you a way to monitor a logfile as your script or program is running so you can see the information while it is happening.

Adding a User: adduser, addgroup

At some point, you may want to add another user to your Raspberry Pi. For example, you might want to give someone else access to the system without sharing the “pi” user’s password, files, and settings. Or you might want to give your project its own identity on the computer. Linux was built as a multiuser operating system, so adding a new user is a very straightforward process. Simply run the adduser utility using sudo with the command:

sudo adduser username

Then follow the prompts (see Figure 6-35).

[image:]
Figure 6-35. Using adduser to add a new user in Linux

When finished, you will have a new user account with its own home directory in /home and a corresponding group with the same name. Likewise, if you only want to add a new group to the system, you can do that with the addgroup command (see Figure 6-36).

[image:]
Figure 6-36. Using addgroup to add a new group in Linux

You can then add users to this new group by using the adduser command again. This time, follow the command with the username and then the group name (see Figure 6-37):

sudo adduser username groupname

[image:]
Figure 6-37. Using adduser to add a user to a group

Changing File Ownership and Permissions: chown, chmod

In Chapter 2, I explained how permissions work in Linux. Now let’s take a look at how to change them. You might need to do this if you’re getting an error like “Permission denied” when you try to run a script or command that is trying to access a file owned by another user. Some programs want to run as a separate user for security reasons, and you might need to change ownership of files so the program can access them. Also, if you’re creating your own programs or scripts, you’ll need to give them execute permission before they can be run.

Warning

Changing ownership or permissions for a system file that is normally only accessed by the “root” user could compromise the security of your system or lead to instability. You should use sudo to run those commands instead.

To change the ownership of a file (for a user and/or group), use the command chown. If you don’t already have write permissions for the file, you will need to use sudo to change ownership because “root” can always perform these actions. You can change user and group ownership at the same time like this:

sudo chown <user>:<group> filename

If you only want to change the user-level ownership for a file, simply leave off the colon and the group name. It also can be convenient to change ownership for all the files in a given directory. You can do that by using the -R option before the user name:

sudo chown -R user directory

Keep in mind that, in Linux, each user also has a group automatically created for them with the same name as their username. This can be a bit confusing, but it does work nicely when you need to assign ownership to multiple users (see Figure 6-38).

[image:]
Figure 6-38. Examples of using the chown command

As you can see in Figure 6-38, I first changed user and group ownership for the file loop.py to the “user” user and the “user” group. Then I realized I wanted the “pi” user to keep ownership of the file, so I changed the user-level ownership to the “pi” user. Now, “pi” and “user” can both read and execute the loop.py file, but only “pi” can write to the file.

When you create a new file, it will be assigned the permissions 644 or rw-r--r--. This means that the owner can read and write to it, and everyone else can just read it. Notice that, by default, no one can execute the file. This is a problem if this is a script that you want to run as part of your project. So you will need to change the permissions by using chmod, which stands for change file mode. Similar to chown, you may need to use sudo to change a file’s permissions.

You can use chmod to change permissions in two ways. One way is by specifying the numeric representation of the permissions you want to assign:

sudo chmod XXX filename

Here, XXX is the numeric permissions (i.e., 644). You can also add/remove a permission to all levels of ownership at the same time by using the + and - signs followed by the letters x, r, and/or w. So to add execute permissions for all users for a given file, you can type:

sudo chmod +x filename

[image:]
Figure 6-39. Using chmod to change file permissions

As with chown, you can also change the permissions for entire directories by using the -r option. Be careful, though, since giving the wrong permissions to a file can lead to big security problems for your system.

Try It for Yourself

Create a new file and practice changing ownership and permissions.

Create a new file with touch:

touch program.py

Use ls to show the permissions and ownership:

ls -l program.py

Give the “root” group ownership of the file:

sudo chown pi:root program.py

Give all users execute permissions:

sudo chmod +x program.py

Use ls to verify your changes:

ls -l program.py

Running More Than One Command at the Same Time: &&, ||

Sometimes when you have a long-running program on the command line, it can feel like you’re babysitting it. You are just staring at the screen waiting for the program or command to finish so you can run the next one based on whether the first one ran successfully or not. In these cases, it can be helpful to run both commands at the same time, so you can walk away and get a cup of coffee or get back to writing your book. The Linux shell has two built-in operators to help you do this. The first is represented by && and essentially means a logical AND. The other is represented by || and is like a logical OR.

The way this works on the command line is that if I have two commands separated by &&, the shell will run the command on the left side first to see if it ran successfully or not. If it did, the shell will run the command on the right side. If it didn’t run successfully, the shell will not run the command on the right side. Just the opposite will happen if I separate two commands with ||. In this case, the command on the right will only run if the command on the left fails for some reason. You can also chain these together to get actions based on the results of a previous command (see Figure 6-40).

[image:]
Figure 6-40. Using && to run multiple commands sequentially

You will see these operators used in startup scripts and other shell scripts, so it’s good to know what they do even if you don’t use them very often. An example of where a typical Maker might use this is when they want to update the software on their Raspberry Pi. As you know from Chapter 4, when you update your software, you should always run two commands (sudo apt-get update and sudo apt-get upgrade). Using these operators, we can chain these commands together to save some time like this:

sudo apt-get update && sudo apt-get -y upgrade

If you simply want to run two or more commands consecutively and you don’t care about the outcome of the individual commands, you can separate each command with a semicolon (;). However, this is not recommended, as it can lead to all sorts of problems—most of the time when a command fails, it’s a good idea to stop and figure out what went wrong.

Opening Another Console Session

Whether you’re using the desktop or the command line, occasionally a program will misbehave and lock up, preventing you from using the keyboard and mouse in your current session. At that point, it can be difficult to determine whether your whole system is locked up or just the session you happen to be using at that moment. Instead of pulling out the power cord (which can potentially corrupt important system files), you can use a keyboard shortcut to switch to a different session and troubleshoot the problem from there.

When most distributions of Linux boot up, they actually start multiple virtual console sessions in the background. These are referred to in Linux as TTY1, TTY2, and so on. To display a different console session, press Ctrl-Alt-Func key on your keyboard (the Func key represents the F1 through F7 keys). When you do this, Linux will switch you to the corresponding console session TTY1 through TTY7. If you’re running the desktop, it will be running in TTY7. If you are running without the desktop, you will be using TTY1. TTY2 through TTY6 are used for additional command-line console sessions.

So if you are on the desktop and it’s locked up, press Ctrl-Alt-F1 to switch to the TTY1 console session. To go back to the desktop, press Ctrl-Alt-F7. Likewise, if you boot to the command prompt, then you’re already using TTY1, so you can switch to another console session by pressing Ctrl-Alt-F2.

Direct Connect Only

In order for this to work, you need to be connected directly to the system. These commands won’t work if you’re connected remotely via SSH or VNC. They also won’t work if your system has completely crashed and is blocking all keyboard input.

Dealing with Long Commands

As you can tell by now, some commands and programs have many, many options. Though this can be very powerful, it can also make for some very long commands that you have to type at the command prompt. Occasionally, these commands will wrap around your terminal window and make it hard to tell if you have a typo.

The Linux shell has a way to help you deal with this problem. By typing the escape character and pressing the Enter key, you can space out your command so that it doesn’t wrap around the screen or just to make it easier to read. The escape character is the backslash (\) character on your keyboard. Just type it anywhere you want to break a line and press the Enter key. Then just keep typing until you’re done with your command. You can do this as many times as you need to in order to keep your command neat and tidy (see Figure 6-41).

[image:]
Figure 6-41. Using the \ key to allow your commands to wrap to the next line

My \ and Enter Keys Are Right Next to Each Other!

If you hit the escape character by accident and press Enter (like I do sometimes) but are at the end of the command, you can tell the shell the command is done by typing a semicolon (;) and pressing Enter again.

The escape character was created so that you could tell the shell to escape its interpretation of what you were typing and treat the next character in a different or more literal way. For example, you would typically use the double-quote (") character to enclose the text you want to print to the screen when using the echo command. However, if you want to actually print a double-quote character, you need to use the escape character first (see Figure 6-42).

[image:]
Figure 6-42. Using the \ key as an escape character

There are lots of other great examples of how to use the escape character on the internet. Keep in mind that the escape character might behave differently depending on the environment you are using it in. So something that works in the Linux shell might work differently in a programming language like Python or Java.

Scheduling Jobs: cron

Running scripts from the command line is all well and good, but for some projects you will need to run a script at a set interval. Common uses for this would be to back up your project or files on a regular basis for safekeeping. Or perhaps you want to run a script every 10 minutes that gets a reading from a temperature sensor. For running scripts based on time, you can use a Linux utility called cron.

cron traces its roots back to the earliest days of Unix and is derived from the Greek word for time, chronos. cron runs in the background on Linux and is constantly keeping track of whether it’s time to run a given script or command. Each user can configure cron individually by using a special text file called a crontab. This file cannot be edited with a normal text editor. Instead, a user edits their crontab by typing:

crontab -e

If this is the first time you’ve edited your crontab, the system will ask which editor you’d like to use (see Figure 6-43).

[image:]
Figure 6-43. Choosing an editor for a crontab

I will be using nano in this description of how a crontab works. Once you choose your editor, your crontab file will be loaded. The default file has a bit of text that’s commented out as well as an example, but it can be a bit confusing to figure out what is going on. In a single line of text, cron looks for the minute, hour, day, month, and day of the week when the script or command should run. It’s actually quite a flexible system once you know how to configure it. I will break down how this single line is formatted to schedule a task in Figure 6-44.

[image:]
Figure 6-44. Breakdown of the format of lines in the crontab file

If I wanted to run the script hello.sh every Sunday in January at exactly 11:30 p.m., I would add this single line in my crontab (see Figure 6-45):

30 23 * 1 0 /home/pi/hello.sh

[image:]
Figure 6-45. Using cron to schedule a job

Notice that I used an asterisk in the day-of-the-month position. An asterisk means “any.” In this case, I didn’t care which day of the month my script ran on. If I wanted to limit my script further to only run on Sundays that fall on the fifth day of the month, I would have put a 5 instead of the asterisk. You can also divide a particular position into increments by using the / character, or specify multiple values for the same position by using a comma. It is always a good idea to use the full path to your script. Here are some other examples of how to configure a line in your crontab (see Figure 6-46).

[image:]
Figure 6-46. More examples of using cron

Don’t Forget to Save

After you’re done making changes, be sure to save your file. This will automatically update cron so it knows to check this file and run any scheduled jobs that are listed.

Why This Matters for Makers

As you build projects with Linux, you will eventually want to know how to monitor the performance of your system, add users and groups, change the permissions and ownership of files, and schedule jobs to run automatically. You might use some of them multiple times on every project, whereas others you might use rarely. In any case, knowing how to complete these tasks will help you solve problems as they come up. It will also speed up the time it takes to complete your project so you can enjoy your creation instead of troubleshooting it.

Chapter 7. Controlling the Physical World

Most Makers will want to build a project that can manipulate and interact with the physical world by controlling sensors, motors, components, and devices. Controlling the devices and modules is mostly accomplished with programming, but there are some prerequisites to fulfill in Linux before you can jump into controlling them. In this chapter, I will explain how to control the general-purpose input/output (GPIO) pins, the inter-integrated circuit (I²C) protocol, and the serial peripheral interface (SPI) protocol and even how to interact with an Arduino. Though I won’t be able to go into details about how the programming works, I will provide some examples in Python that illustrate the fundamentals of using these interfaces.

GPIO

One of the ways to control an external device is by using the GPIO pins that are built into the Raspberry Pi and many other SBCs and microcontrollers. A 40-pin header on one side of the Raspberry Pi provides an easy way to access the GPIO pins. However, of those 40 pins, only 26 are general-purpose input/output pins. The rest are voltage pins, ground pins, and pins that are only used by add-on boards. In addition, you can configure many of the pins to allow alternative functions like I²C and SPI (more on this in “I²C and SPI”) instead of GPIO. The physical pin numbers are not the same as the GPIO numbers, so it’s important to have a reference when connecting devices to your Raspberry Pi (see Figure 7-1).

[image:]
Figure 7-1. Raspberry Pi B+ pinout

As you can see in Figure 7-1, GPIO 2 is actually located on physical pin 3. If you tried to connect a device to physical pin 2, you would be connecting it to five volts of electricity, which might damage your device. You can also see where the alternative functions are located on the 40-pin header. So if you enable I²C functionality, you would use physical pins 3 and 5 to connect to your device, but you would lose GPIO 2 and 3 in the process.

There are several programming modules or libraries you can use to control the GPIO pins on a Raspberry Pi. One of the more popular is the Python module called RPi.GPIO. It is a nice, simple library used in many programming examples on the internet. However, I prefer another module called pigpio because it runs as a service on your system, and can be called from Python or C, or even from another Raspberry Pi across a network.

If you installed pigpio using apt-get in Chapter 4, you can skip this step. To install pigpio, you must download the latest version from the internet by using wget. wget stands for “web get” and can be used to download files from the internet on the command line as long as you know the complete URL for the file:

wget abyz.co.uk/rpi/pigpio/pigpio.zip

Now uncompress the file with unzip:

unzip pigpio.zip

Change directory into the folder you just unzipped:

cd PIGPIO

Then compile the software and install it:

make -j4
sudo make install

If you’ve never compiled software, you may be surprised at the strange output that’s printed on the screen (see Figure 7-2). However, this is the normal output of many commands run in sequential order to build software.

[image:]
Figure 7-2. Using the make command to build the pigpio program

Now that pigpio is installed, you can run the service in the background like this:

sudo pigpiod &

If you want to run it every time your Raspberry Pi boots up, you can add the previously given line to your rc.local file as shown in Chapter 6. However, there is no need to use sudo if you are running it from rc.local, because rc.local runs as “root” already.

There are many coding examples available on the pigpio website for C, C++, and Python. One useful example is a small Python script that tells you the status of each GPIO pin. This will also ensure that the pigpiod service is running correctly. To use this script, open a new file with nano:

sudo nano gpio_status.py

Then type or copy the following code:

#!/usr/bin/python

import time
import curses
import atexit
import pigpio

GPIOS=32
MODES=["INPUT", "OUTPUT", "ALT5", "ALT4", "ALT0", "ALT1", "ALT2",
"ALT3"]

def cleanup():
 curses.nocbreak()
 curses.echo()
 curses.endwin()
 pi.stop()

pi = pigpio.pi()
stdscr = curses.initscr()
curses.noecho()
curses.cbreak()
atexit.register(cleanup)
cb = []

for g in range(GPIOS):
 cb.append(pi.callback(g, pigpio.EITHER_EDGE))

disable gpio 28 as the PCM clock is swamping the system

cb[28].cancel()
stdscr.nodelay(1)
stdscr.addstr(0, 23, "Status of gpios 0-31", curses.A_REVERSE)

while True:
 for g in range(GPIOS):
 tally = cb[g].tally()
 mode = pi.get_mode(g)
 col = (g / 11) * 25
 row = (g % 11) + 2
 stdscr.addstr(row, col, "{:2}".format(g), curses.A_BOLD)
 stdscr.addstr("={} {:>6}: {:<10}".format(pi.read(g),
 MODES[mode], tally))
 stdscr.refresh()
 time.sleep(0.1)
 c = stdscr.getch()
 if c != curses.ERR:
 break

Save and close the file by pressing Ctrl-X, then Y, then Enter. Now give the file execute permissions, as you learned in Chapter 6:

chmod 755 gpio_status.py

Now you can run the command and check the output (see Figure 7-3):

./gpio_status.py

[image:]
Figure 7-3. The output of gpio_status.py

You can see the status of all the GPIO pins and not just the 26 that are located on the 40-pin header. As you can see in Figure 7-3, most of the GPIO pins are registering as inputs. GPIO 14 and 15 are set to their ALT0 function, which in this case is setting them to be transmit-and-receive serial communication pins (TXD and RXD).

Now let’s put all this information to good use and make something happen. With a short Python script, you can make an LED blink or turn a relay on and off. Connect the positive pin of an LED to GPIO pin 18 (physical pin 12) and the negative pin to ground (see Figure 7-4).

[image:]
Figure 7-4. Raspberry Pi with LED on GPIO 18

Do I Need a Resistor?

The Raspberry Pi uses 3.3V on its GPIO pins. Some blue and white LEDs’ forward voltage requirement is 3.3V, whereas other colors like yellow, red, and green run at lower voltages around 2V. If your LED requires less than 3.3V, you’ll need to put a resistor between the positive pin of the LED and the GPIO pin on the Raspberry Pi. Always check the specifications of your LED to find the forward voltage. Although the LED will probably work without a resistor, it might not last very long. There are many good calculators online, like the one at http://led.linear1.org/1led.wiz, that can help you determine an adequate resistor value.

Now open a new file with nano for the Python script:

nano gpio_blink.py

Type or copy the following code:

#!/usr/bin/python

import pigpio
import time

pi = pigpio.pi()
Set the GPIO mode as output
pi.set_mode(18, pigpio.OUTPUT)
For relays, you want to set the initial mode to off
Sometimes this means the pin is high or low depending on the
relay
pi.write(18, 1)

Now alternate on and off with half a second pause in between
while True:
 time.sleep(.5)
 pi.write(18, 0)
 time.sleep(.5)
 pi.write(18, 1)

Save and close the file by pressing Ctrl-X, then Y, then Enter. Now give the file execute permissions, as you learned in Chapter 6:

chmod 755 gpio_blink.py

Now you can run the command and check the output:

./gpio_blink.py

If everything is hooked up correctly, your LED should blink on for half a second and then off for half a second and then repeat.

You could also use this script to connect your Raspberry Pi to a 5V relay module that turns on and off. Simply connect your relay module input to the same GPIO pin and connect the 5V pin on the relay module to the 5V pin on the Raspberry Pi (see Figure 7-5).

[image:]
Figure 7-5. Raspberry Pi with attached relay module

A relay module, when completely connected, is a simple switch. A signal from the Raspberry Pi activates a small 5V switch, which in turn completes a circuit to control 120V mains power from a wall outlet, which turns on like a floor lamp or string of lights.

CAUTION

Be extremely careful when using mains power! Be sure to turn off the power before you start working on the connections.

I²C and SPI

I²C and SPI are both serial communications protocols used to transmit data back and forth from one board to another. You can find all sorts of premade modules for your Raspberry Pi that use one of these protocols to communicate. I²C isn’t as fast as SPI, but it has the benefit of requiring only two wires to connect multiple devices since each device has its own unique address. SPI, on the other hand, is much faster but requires four wires or more if you want to connect multiple SPI devices to the same board. In practice, I’ve never had to connect more than one device at a time, and the speed of communication isn’t really an issue for most projects. So if I can find a module that supports I²C, I usually prefer it over SPI. However, it is good to know how to connect both types of devices.

In order to start using either of these protocols, you need to enable them on your Raspberry Pi. Remember how I mentioned alternative functions of the GPIO pins? Now we will change some of them to support I²C, SPI, or both at the same time. Note that once you do this, you won’t be able to use those pins as normal GPIO until you change them back.

To enable I²C or SPI, start by running raspi-config in the console or terminal emulator (see Figure 7-6):

sudo raspi-config

[image:]
Figure 7-6. The main raspi-config screen

Use the arrow keys to move the cursor down to Interfacing Options and press the Enter key. Now move the cursor down to the SPI or I2C option, depending on which one you want to enable, and press Enter (see Figure 7-7).

[image:]
Figure 7-7. The Interfacing Options menu in the raspi-config tool

The raspi-config tool will ask if you want to enable the SPI or I²C interface. When you choose Yes, the raspi-config tool will make the necessary changes and let you know that the interface has been enabled. Press Enter to return to the main menu and use the arrow keys to select Finish to exit raspi-config.

If you’re using I²C with an older version of the Raspbian distribution or a different Linux distribution, you might need to install some tools that may be required by the programming libraries you’ll use to control your device. You can install these by running:

sudo apt-get update
sudo apt-get install i2c-tools

The last step is to add your user to a number of groups just to make sure you have the correct permissions to various files and software needed to communicate with your device:

sudo usermod -a -G i2c pi
sudo usermod -a -G spi pi
sudo usermod -a -G gpio pi

You need to reboot at this point to make sure the SPI or I²C interface is enabled and ready for use:

sudo shutdown -r now

Now that the interfaces are enabled, you can begin to use them.

Know Your Device

Getting the Raspberry Pi ready to communicate to a device using I²C or SPI is one thing. Knowing what to say is quite another. Each device will require different instructions to perform the actions the device provides. Finding a programming library written with your device in mind will make this job much easier, especially for beginners.

Since there are so many different devices and modules you can use with the Raspberry Pi, there’s no way for me to cover them all. So let’s take a look at just one example to give you an idea of what is required and how using these protocols works. For this example, I will be connecting a small 128×64-pixel OLED display module to my Raspberry Pi using the I²C protocol. This display could be used in a small project to show minimal information like the weather or the status of a program you’re running. I’ll be using Python to display a simple message on the screen when my program is run.

This particular display uses a display driver called SSD1306, so I need to find a Python module that supports this particular driver. Luckily, there are two good Python modules you can use for these displays. One of them is from Adafruit. It was written to go along with the SSD1306 display modules they sell. The other module was written by Richard Hull. It supports a number of similar display drivers as well as the SSD1306. For this example, I will use the second one, as Hull has included a number of fun demo programs on GitHub that show how to use the display.

First, install the supporting software and make sure it’s up-to-date:

sudo apt-get update
sudo apt-get install python-dev python-pip libfreetype6-dev libjpeg8-dev libsdl2-dev
sudo pip install --upgrade luma.oled

Now we can use the information on the Python module’s website to create a small test program. Open a new file with nano for the Python script:

nano ssd1306_example.py

Type or copy the following code:

#!/usr/bin/python

from luma.oled.serial import i2c
from luma.oled.device import ssd1306, ssd1331, sh1106
from luma.oled.render import canvas

rev.1 users set port=0
substitute spi(device=0, port=0) below if using that
interface
serial = i2c(port=1, address=0x3C)

substitute ssd1331(...) or sh1106(...) below if using
that device

device = ssd1306(serial)
while True:
 with canvas(device) as draw:
 draw.rectangle(device.bounding_box, outline="white",
 fill="black")
 draw.text((30, 40), "Hello World", fill="white")

Save and close the file by pressing Ctrl-X, then Y, then Enter. Give the file execute permissions, as you learned in Chapter 6:

chmod 755 ssd1306_example.py

Now connect the SSD1306 display to the Raspberry Pi as shown in Figure 7-8.

[image:]
Figure 7-8. Raspberry Pi with attached SSD1306 OLED display

Now you can run the command and check the output:

./ssd1306_example.py

The OLED display should now show a rectangle with the words “Hello World” inside (see Figure 7-9).

[image:]
Figure 7-9. An SSD1306 I²C module running the example code

I mentioned before that the author of this software package, Richard Hull, has some example scripts you can run with this type of display. If you’re setting up a similar display and want to try them, you must first download the source code for the Python module. You can do this with wget:

wget https://github.com/rm-hull/luma.examples/archive/master.zip

Then unzip the archive:

unzip master.zip

Change directory into the newly created luma.examples-master/examples directory:

cd luma.examples-master/examples

Then run one of the example programs to see what it looks like (see Figure 7-10):

./demo.py

[image:]
Figure 7-10. Running the example scripts demo.py, bounce.py, and invaders.py on an SSD1306 display

Try It for Yourself

Find a module that uses I²C or SPI and try getting it working with the Raspberry Pi. You could try a display, a temperature sensor, an accelerometer, or many others. Be sure to note if the device uses a particular driver or chipset and use that information to search the internet for a programming library or module that you can use to make your device work.

Talking to Arduino

Sometimes you need to connect a Raspberry Pi to an Arduino, either to improve reliability or processing speed. Or perhaps you are just more comfortable using an Arduino to control sensors, motors, and so on. You can still benefit from the flexibility of a Raspberry Pi and use an Arduino at the same time by setting up the Raspberry Pi to communicate with the Arduino using the I²C protocol.

Double-Check Your Connections

Arduino pin signals generally run at 5V, while the Raspberry Pi’s run at 3.3V. If you’re running the I²C bus with the Raspberry Pi as the master, as shown in the following example, everything should be fine. However, connecting a 5V signal to the wrong pin could damage your Raspberry Pi. Double-check your connections to make sure everything is wired up correctly. In general, if you want to connect 5V signals to 3.3V pins, you should use a logic-level voltage converter in between.

For this exercise, I will show you how to run the Raspberry Pi as the I²C master requesting information and an Arduino as the I²C slave that will be sending the information. Let’s start by programming the Arduino. Using the Arduino IDE, create a new sketch using the following code and upload it into an Arduino:

#include <Wire.h>

void setup()
{
 Wire.begin(8); // join i2c bus with address #8
 Wire.onRequest(requestEvent); // register event
}

char str[17];
int x = 0;

void requestEvent() {
 sprintf(str, "Message %7d\n", x);
 if (++x > 9999999) x=0;
 Wire.write(str); // sends 16 bytes
}

void loop() {
 delay(50);
}

This sketch will tell the Arduino to act as a slave on the I²C bus and respond to requests with the word “Message” along with a number that increments every time a request is made. This simulates data that would otherwise be coming from a sensor or other device connected to the Arduino.

Now open a file on the Raspberry Pi for the Python code that will make the requests to the Arduino:

nano i2c_master.py

Type or copy the following code:

#!/usr/bin/python

import time
import pigpio

BUS=1
I2C_ADDR=8

pi = pigpio.pi()
Open the connection to slave
h = pi.i2c_open(BUS, I2C_ADDR)

while True:
 # Make a generic request without registers
 (c, d) = pi.i2c_read_device(h,16)
 if c >= 0:
 print d
 else:
 print "No data ..."
 time.sleep(.5)

pi.i2c_close(h)
pi.stop()

Save and close the file by pressing Ctrl-X, then Y, then Enter. Now give the file execute permissions, as you learned in Chapter 6:

chmod 755 i2c_master.py

If you haven’t done so already, start the pigpiod service like so:

sudo pigpiod &

Make the connections between your Raspberry Pi and Arduino using Figure 7-11.

[image:]
Figure 7-11. Connections for Raspberry Pi I²C master to Arduino slave

Now you can run the command and check the output:

./i2c_master.py

The Python script uses the pigpio program we installed earlier to make continuous requests to the Arduino and print the response that it receives (see Figure 7-12). If this were actual data, you could then use this in the rest of your program. If the script doesn’t receive a response, it prints “No data...”.

[image:]
Figure 7-12. The Raspberry Pi receiving messages from an Arduino

Why This Matters for Makers

Many projects that Makers build include interacting with devices in an attempt to bring the project to life. Knowing how to use the GPIO pins to control and communicate with other devices while navigating the Linux command line will help you finish your project more quickly and open up many new possibilities to be creative. Because protocols like I²C and SPI are standards, you can learn to communicate with thousands of different modules that provide functionality not natively available on the Raspberry Pi.

Chapter 8. Using Multimedia

A great way to add life to a project is to add sound and video. Recently, I was working on a laser maze exhibit that some colleagues and I take to various Maker Faires and other events around the region. This massive 10×20-foot enclosure is full of laser beams, smoke, and buttons. This is all very cool in and of itself, but we found that by adding a start sound, stop sound, and a little spy-themed music, we could make the exhibit much more engaging.

No matter what you’re making, from a simple doorbell to a complex video kiosk, you will need to know how to incorporate media into your project. There are multiple ways to interact with multimedia on Linux. In this chapter, I will discuss some of the pitfalls and things to watch out for as well as the most effective ways for Makers to use multimedia in their projects.

Choosing HDMI or Analog

The first thing you need to decide when using audio in your project is where you want the audio to go. By default, on a Raspberry Pi the audio will try to play through your HDMI connection. While this is nice if you’re using an HDMI-capable display in your project, many times you won’t have a monitor attached at all or your monitor might not have speakers. In this case, you will need to tell your Raspberry Pi to use the analog audio jack to output sound.

To do this, run the Raspberry Pi configuration script from the command line:

sudo raspi-config

This opens the Raspberry Pi configuration tool (see Figure 8-1).

[image:]
Figure 8-1. The raspi-config main menu

Use the arrow keys to move the cursor down to Advanced Options and press the Enter key. Now move the cursor down to Audio and press Enter again (see Figure 8-2).

[image:]
Figure 8-2. The raspi-config Advanced Options menu

Select the “Force 3.5mm ('headphone') jack” option and press Enter (see Figure 8-3).

[image:]
Figure 8-3. The raspi-config Audio menu

This will make the analog jack the default for sound that you play. You can still override this on an individual basis if you need to (see the next section). You’ll need to reboot your system in order for the changes to take effect.

Playing Audio and Video Files

Linux has many utilities to play audio and video files. For Raspberry Pi, it’s a good idea to use omxplayer, which comes installed with the Raspbian distribution. The first reason for this is that omxplayer has the ability to make use of the graphics processing unit (GPU), which will make playing HD-quality videos much less taxing on the system. Second, omxplayer has the ability to decode many digital formats like MP3 and MP4, which saves time by not having to deal with multiple utilities to play different file formats.

I often get asked whether people should install mplayer or vlc to play video files on the Raspberry Pi. The short answer is no. The reason is because, as of this writing, those utilities cannot use the GPU so they must decode the video file in software mode, which uses up a lot of CPU time and can cause other programs to become unresponsive.

To play a media file with omxplayer, use the following command:

omxplayer -o [local | hdmi] filename

Here, you would use local if you want the audio to play out of the analog audio port or hdmi to play it out of the HDMI-connected display. omxplayer doesn’t always obey the default you chose in raspi-config, so it’s a good idea to always specify this. Also, you could use this to override your default setting for audio output on a case-by-case basis.

After you run the command, the audio or video will display some encoding information about the file and it will play. When the file is done playing, you will be returned to the command prompt. If you want to stop playing the file before it’s finished, press the Q key (see Figure 8-4).

[image:]
Figure 8-4. Using omxplayer to play audio and video files

No Video?

If you’re connected via SSH or VNC, you won’t see any video because the video is sent to the HDMI or analog video port.

Controlling the Volume

There are two ways to control the volume on a Raspberry Pi from the command line. To change the volume of the entire system, you can use the alsamixer utility. When you run this command, you will see a graphical representation of the volume level of the sound device that is built into the Raspberry Pi (see Figure 8-5).

[image:]
Figure 8-5. Using alsamixer on the Raspberry Pi

You can use the up and down arrows to raise or lower the volume or press the M key to mute the volume. When you are done, press the Esc key to exit.

Another way to control the volume is to use omxplayer to change the volume of a file as it’s being played. This can be helpful if most of your media is playing at the right volume but you have one file that needs to be played a little louder or quieter. Just use omxplayer as before, but add the --vol option:

omxplayer -o [local | hdmi] --vol <millibels> filename

In this case, millibels represents a number between 500 (loud) and –4,000 (very quiet) with 0 being normal. If you use numbers outside of this range, your audio is likely to sound distorted.

Playing Media from a Script

Whether you like to program in Python, Perl, Java, Go, or Ruby, there are many ways to play media from a script. Most programming languages have a way to send commands to the underlying operating system. This may not always be the best choice, but for small projects running on an SBC, it can be the easiest way to get predictable results. Given what you’ve just learned, you can now use those commands to play media on your Raspberry Pi from a script. Here is an example in Python:

#!/usr/bin/python

import os

os.system("omxplayer -o local filename.mp3")

In this case, the os.system method simply runs the command inside the quotation marks on the local operating system, which plays the MP3 file.

Why This Matters for Makers

As you build projects, it is important to think about the aesthetics of what you’re building. Many times, that can include audio or video elements. Knowing how to use the command line to play audio and video can help bring your projects to life for those who are using them.

Chapter 9. Accessing Cloud Services

In the age of the Internet of Things (IoT), interacting with cloud services or even creating your own cloud with Linux is becoming an important component of many projects. Perhaps you’d like to sync local files on your Raspberry Pi to a cloud storage service, or set up your own file storage service for your home that the whole family can use. Maybe you’d like to use a Raspberry Pi to turn on your sprinkler system from anywhere in the world, or send you a text message when the lights at home have been on too long. In this chapter, I’ll get you started down the road of accessing and using cloud services with Linux.

Cloud Storage Services from the Command Line

If you’ve been writing your own programs for a while like I have, you’ve probably already started storing them both on your local machine and somewhere in the cloud for safekeeping. Sometimes I want to work on a program from home and then later put that program on my Raspberry Pi to test it out. If my program is in the cloud, I can access it using software that syncs that remote file with a local one.

The confusing wonder of it is that there are numerous services out there that store your files in the cloud. I use Google Drive, but perhaps you prefer Dropbox or some other service. As of this writing, Google Drive still hasn’t released a native client for Linux. Dropbox has a GUI client, but there’s no way to interact with it programmatically. This is a problem if you want to write a backup script using cron but can’t interact with the service you want to use. So even though there are multiple software packages for all the various storage services that exist out there, I’m going to show you one tool you can use to interact with files on many different services.

rclone is a command-line program written in the Go language that can interact with a variety of cloud storage services to copy files or sync entire directories. It can also mount cloud locations locally and sync between two different cloud storage services (i.e., Google Drive to Dropbox). rclone currently supports the following services:

		Amazon Drive

		Amazon S3

		Backblaze B2

		Dropbox

		Google Cloud Storage

		Google Drive

		Hubic

		The local filesystem

 	Microsoft One Drive

		Openstack Swift/Rackspace cloud files/Memset Memstore

		Yandex Disk

	

To install rclone, first download the latest version by using wget. As mentioned earlier, wget stands for “web get” and can be used to download files from the internet on the command line as long as you know the complete URL for the file:

wget http://downloads.rclone.org/rclone-current-linux-arm.zip

Uncompress the downloaded file with the unzip utility. This will extract the files inside a new directory in your current location:

unzip rclone-current-linux-arm.zip

Now change your location to the new directory that was just created. The version number might be different than the following one, so use ls or autocomplete to help you get the right name of the directory:

cd rclone-v1.34-linux-arm

rclone will need to be configured before you can begin using it. To start the configuration, run rclone with the config option. Figure 9-1 shows an example of what this looks like for Google Drive; you can find individual setup guides for the other storage services on the rclone website:

./rclone config

[image:]
Figure 9-1. rclone configuration example for Google Drive

When the configuration script starts, press the N key to set up a new remote service, then give it a descriptive name. Choose the service you want to set up. In this case, I chose Google Drive. At this point, the type of information needed will vary from service to service. You may need to supply an API key or username/password in order to connect to the storage service you want to set up. For Google Drive, you can simply press Enter when the configuration script asks for client_id and client_secret. When the script asks for “auto config,” you can press the N key, but if you’re on the desktop it will try to open a browser window to complete this step anyway. Next, you will be presented with a URL to put in a browser to get the authorization code you need in order to proceed (see Figure 9-2).

[image:]
Figure 9-2. rclone configuration example for Google Drive (continued)

This URL will take you to your Google Drive account where you will need to sign in and grant access to rclone for remote access. You will be given the verification code to enter on the next line. In Figure 9-2, I have hidden the sensitive parts of the configuration, but your screen should look similar. Confirm your settings by pressing the Y key and then quit the configuration script.

Now you can use rclone to transfer files to and from your storage service. rclone will compare the files and transfer only the ones that have changed. The syntax for rclone is similar to cp. Here are some useful commands to use with rclone.

List files:

rclone ls <remote name>:
rclone ls <remote name>:<directory>

List only directories:

rclone lsd <remote name>:
rclone lsd <remote name>:<directory>

Copy files from one location to another:

rclone copy <remote name>:<directory> <local directory>
rclone copy <local directory> <remote name>:<directory>

In this case, I want to transfer some sound files from Google Drive to my Raspberry Pi. So I create a subdirectory on my Raspberry Pi and copy the files to it (see Figure 9-3).

[image:]
Figure 9-3. Using rclone to copy files

IFTTT

IFTTT (aka If This, Then That) is a web-based service that allows you to connect IoT devices through the cloud and trigger certain activities based on given criteria. For example, when a temperature sensor connected to a Raspberry Pi reaches a certain level, you could send yourself an email letting you know the time and date that level was first reached. Or you could tell a digital assistant (Amazon Alexa, Google Home) to open the garage door, and IFTTT would send a signal to your Raspberry Pi to trigger a relay to open the door. It’s possible to do these things without IFTTT, but using IFTTT makes it a lot easier since it already interacts with so many different services and devices.

To enable your system to work with IFTTT, you need to set up either incoming or outgoing communication, or both. To do so, you can use a simple command-line tool called curl to send commands to IFTTT. curl stands for command-line URL and is fine for testing purposes. For more advanced usage, you can run a Python-based web server that responds to incoming commands and sends outgoing messages to IFTTT.

Before you can use your Raspberry Pi with IFTTT, you need to set up an account and subscribe to the Maker service. There are many guides on the internet to help you with these tasks. After you subscribe to the Maker service, go to the settings for the service and make note of your URL (see Figure 9-4).

[image:]
Figure 9-4. Maker service settings on IFTTT

Now you need to create an applet that you can trigger from your Raspberry Pi. Click on your username and choose New Applet to start the Applet Maker. Click on the blue “this” and choose the Maker service (see Figure 9-5).

[image:]
Figure 9-5. The initial Applet Maker page

After you select the Maker service, there will be only one trigger to choose (see Figure 9-6).

[image:]
Figure 9-6. Choosing the trigger for the Maker service

Click on this trigger, and you will be asked to give it a name. I am going to call mine button_pressed. Now click the Create Trigger button, and you will be asked to choose an action to perform by clicking on the blue “that” on the page (see Figure 9-7).

[image:]
Figure 9-7. Choosing the action on IFTTT

This time, you can choose a service to perform an action when the Raspberry Pi triggers the web request. I decided to send myself an email. There is only one trigger for this service, so click on it and fill out the details of the email you will send to yourself (see Figure 9-8).

After you’ve set up things the way you want, click the “Create action” button. Then you can review your applet and click Finish.

[image:]
Figure 9-8. The options for the email service

To use this new applet from the command line, first enter the URL that you looked up before (from the settings of your Maker service) in a browser. You will see your key listed on the top. This page will also show you how to use the applet from a browser, and even gives you an example using curl (see Figure 9-9).

[image:]
Figure 9-9. Maker service URL output with instructions for use

So, for a one-off situation, you can just run this curl command on the command line, replacing {event} with the name of your event. If everything is configured correctly, you should get an email letting you know your event has been triggered (see Figure 9-10).

[image:]
Figure 9-10. Triggering IFTTT with curl

While this is fine for outbound triggers from your Raspberry Pi, it doesn’t handle inbound requests, so you can trigger things locally from external requests. For that, let’s set up a simple web server that can both send a request when a button is pressed and receive a trigger to turn on an LED. You could do this with more complex web servers with lots of features, such as Apache or even Lighttpd, but that’s probably overkill for what most people need here. Instead, we will be using Flask, which is a Python web framework library for processing web requests. Because it’s all written in Python, there are very few requirements and we can do everything we need to in a single script.

Flask should be already installed if you’re running a recent release of Raspbian. If not, you can install Flask by first installing pip, the Python package management tool, like this:

sudo apt-get install python-pip

Then you can use pip to install the Flask library like this:

sudo pip install flask

We will also be using the requests library (which should be installed), and the pigpio library (which I showed you how to install in Chapter 7). To start, save the following Python script to a file on your Raspberry Pi. This script will start a web server and listen for a request to call the /light_switch page. When that happens, it will turn an LED on or off. At the same time, it will wait for a button to be pressed and then send an outbound request to IFTTT to trigger the email event we set up earlier:

#!/usr/bin/python

Import libraries
from flask import Flask
import requests
import pigpio
import time

Define variables
app = Flask(__name__)
event = "button_pressed" #Event name from IFTTT
key = "your key here" # Key from IFTTT Maker service
GPIO pins to use for the LED and button
led = 18
button = 24
pi = pigpio.pi()
Setup the LED initially off
pi.set_mode(led, pigpio.OUTPUT)
pi.write(led, 0)
Setup the button
pi.set_mode(button, pigpio.INPUT)
pi.set_pull_up_down(button, pigpio.PUD_UP)
Debounce the button
pi.set_glitch_filter(button, 100000)

This function will be called when the button is pressed
def button_callback(gpio, level, tick):
 url = "https://maker.ifttt.com/trigger/%s/with/key/%s"
 r = requests.post(url % (event,key))
 print str(r.status_code) + ":" + r.text
 print "Event %s triggered." % event

This detects when the button is pressed and
calls button_callback()
b_detect = pi.callback(button, pigpio.FALLING_EDGE, button_callback)

Set URL used to trigger hello()
@app.route("/")
def hello():
 return "Hello World! Waiting for input."

Set URL used to trigger light_switch()
@app.route("/light_switch")
def light_switch():
 if pi.read(led) == 0:
 pi.write(led, 1)
 else:
 pi.write(led, 0)
 return "Light was been switched."

Start the web server
if __name__ == "__main__":
 app.run(host='0.0.0.0', port=80)

Be sure to change the event variable to match the event name of your email applet from IFTTT. Also, change the key variable to match your IFTTT key that you found before. Don’t forget to give the file executable permissions (chmod 755 filename) so you can run it as a script. Now connect the positive pin of an LED to GPIO pin 18 and the negative pin to ground. Connect a momentary switch between GPIO pin 24 and ground (see Figure 9-11).

[image:]
Figure 9-11. Connecting an LED and switch to the Raspberry Pi

Now run the script as sudo. From another computer on your network, you should be able to enter the IP address of your Raspberry Pi and get a basic web page that says “waiting for input.” If you browse to the /light_switch page (i.e., http://xxx.xxx.xxx.xxx/light_switch) your LED should turn on or off. If you press the button, it should send you an email.

Try It for Yourself

Try setting up an IFTTT applet that will request the /light_switch page on your Raspberry Pi and turn the LED on or off. Perhaps you can use the Twitter service to request the page every time someone mentions you in a tweet. You could also use the Facebook service to request the page every time you’re tagged in a photo.

Use whatever service you want for the “this” part of the applet and use the Maker service for the “that” part.

Accessing Raspberry Pi from IFTTT

Make sure IFTTT can get to your Raspberry Pi from the internet. You might need to use port forwarding on your router to direct incoming traffic on port 80 to your Raspberry Pi’s IP address. You might also need to use a different port number if you’re already running another web server. You can search the internet for instructions on setting up port forwarding on your router model.

Run a Dedicated Web Server

Using Flask to run a simple web server is certainly convenient, but sometimes you need a more full-featured solution. Small dedicated web servers allow for better integration with other software, and better reliability and security than a standalone Python script. Also, many times, a web server can make it easier to integrate with cloud services like IFTTT, as we just demonstrated. Larger web servers like Apache can be run on the Raspberry Pi, but require more resources and may slow things down. Apache can also be quite complicated to configure and manage. Instead, I recommend using Lighttpd, which is easy to install and configure for most projects that will run on the Raspberry Pi.

Installation

You can install Lighttpd using apt-get:

sudo apt-get install lighttpd

Configuration for Python

If you want to run Python Common Gateway Interface (CGI) scripts on your web server, you will need to make a few changes. First, open the configuration file in nano:

sudo nano /etc/lighttpd/lighttpd.conf

Now add the following lines to the end of the file:

$HTTP["url"] =~ "^/" {
 cgi.assign = (".py" => "/usr/bin/python")
}

Save and close the file by pressing Ctrl-X, then Y, then Enter. Now you must enable the CGI module for Lighttpd by running the following command:

sudo lighttpd-enable-mod cgi

Then restart the Lighttpd server:

sudo service lighttpd restart

Test It Out

If you’re running in a desktop environment, you can open a browser and point it to http://localhost. However, I find it’s always best to test a web server from another host on the network to make sure everything is working. On another computer, use your Raspberry Pi’s IP address instead of localhost (see Figure 9-12).

[image:]
Figure 9-12. Default Lighttpd web page

You can now start developing your own web pages or use Python scripts to bring your projects to life across the internet. You can edit the lighttpd.conf configuration file to accept a Python file as the default page (i.e., index.py), or you can edit the index.html file and point to the location of the Python script you want to run, like this:

<html>
<head>
 <meta http-equiv="refresh"
 content="0; url=/cgi-bin/index.py" />
</head>
</html>

Just change the url= part to point to the relative location of your script. For more information on how to program Python scripts to work with web servers, take a look at the CGI module. Keep in mind that /var/www/html is the default directory that the web server looks in for files. So in the preceding example, the location of index.py is /var/www/html/cgi-bin/index.py. Also, the web server runs as the user “www-data.” Thus it’s a good idea to assign ownership of any new files you want to use to that user. To do that, you can use what you learned in Chapter 6.

Roll Your Own

Instead of accessing cloud services on the internet, you can set up your own to run on your Raspberry Pi. This means you can store and share files inside your own network without using any external bandwidth, keeping your data private. There are many cloud storage software options that will run on the Raspberry Pi. OwnCloud and NextCloud are popular options, but are fairly difficult for new users to install. Instead, I will tell you about two other cloud storage services on your Raspberry Pi that are much easier to install and require fewer resources to run.

Nimbus

Nimbus is simple cloud storage software designed to run on the Raspberry Pi. As of this writing, it is still in beta, but it is quite capable and ready for home use. It also has a client for Windows that will sync your files for you. First you need to create a directory for the Nimbus files:

mkdir /home/pi/nimbus
cd /home/pi/nimbus

Now you can download the software to your system by using wget:

wget http://cloudnimbus.org/dist/0.6.2-BETA/nimbus-0.6.2-BETA.tar.gz

This file will have to be extracted before you can use it. You can do that with the tar command:

tar -zxvf nimbus-0.6.2-BETA.tar.gz

Nimbus comes with a script to install all the necessary software that may not already be installed on your Raspberry Pi. Run that script from the command line as sudo:

sudo ./install_helper_programs.sh

Now start Nimbus by running the nimbus.sh script:

./nimbus.sh start

By default, Nimbus uses port 8080, so if you’re running in the desktop environment, you can open a browser and point it to http://localhost:8080 to access Nimbus. If you’re not running the desktop, from another computer you can browse to the IP address of your Raspberry Pi and add :8080 at the end (see Figure 9-13).

[image:]
Figure 9-13. The Nimbus first-run welcome page

The first time you access your Nimbus home page, it will ask you to create an account. Once you do this, you can log in to the service and begin loading and sharing files (see Figure 9-14).

If you’re happy with the way things are working, and you want to run Nimbus every time your Raspberry Pi boots up, you can run the included script to set up Nimbus as a service on your system:

sudo ./add_to_startup_programs.sh

You can also add an external USB hard drive to expand the amount of storage available. For details on how to do this, check out the Nimbus website.

[image:]
Figure 9-14. The Nimbus home screen

Tonido

Tonido is another cloud storage service that you can run on your Raspberry Pi. It was designed to run on SBCs and has been around for quite a while, so the software is mature. With Tonido, you can store, share, and stream files, and there are clients available for PC, Android, and iOS. Even though the public Tonido site does not store your password or any files, it does relay you to your private server when you’re not connected to your network. Tonido is a single-user system, but you can create guest accounts to give other people access to specific files. The installation is very similar to the way Nimbus is installed. First you need to create a directory for the Tonido files:

mkdir /home/pi/tonido
cd /home/pi/tonido

Now you can download the software to your system by using wget:

wget http://patch.codelathe.com/tonido/live/installer/armv6l-rpi/tonido.tar.gz

This file will have to be extracted before you can use it. You can do that with the tar command:

tar -zxvf tonido.tar.gz

Now start Tonido by running the nimbus.sh script:

./tonido.sh start

By default, Nimbus uses port 10001, so if you’re running in the desktop environment, you can open a browser and point it to http://localhost:10001 to access Tonido. If you’re not running the desktop, from another computer you can browse to the IP address of your Raspberry Pi and add :10001 at the end (see Figure 9-15).

[image:]
Figure 9-15. The Tonido first-run welcome page

Follow the prompts to create your account. This will also create a public web address that you can use to make it easier to access your Tonido file-sharing server. Once you’re logged in, you can start uploading and sharing files (see Figure 9-16).

[image:]
Figure 9-16. Tonido user home page

Notice that some of the built-in applications that allow things like searching and connecting from mobile applications may be in a suspended state at first. To fix this, click on the warning that appears on the user’s home page. You can see it highlighted with the blue box in Figure 9-16. Then click individually on each application and select Resume. In my case, clicking the Resume All Applications button did nothing.

You can start Tonido automatically when your Raspberry Pi boots up by adding the start command to your rc.local file, as shown in Chapter 6.

Why This Matters for Makers

Knowing how to set up and use cloud services can open up a whole new world of possibilities for a Maker. Not only does it allow you to transfer and store files, but it also allows you to add internet control of your project. As the popularity of cloud-connected systems grows, you will be able to build your own IoT devices using the Raspberry Pi.

Chapter 10. Virtual Raspberry Pi

Makers are busy people and don’t always have a Raspberry Pi sitting in front of them to experiment with, or perhaps they aren’t sure if they will be able to get over the “Linux hump” and become proficient enough to justify buying a Raspberry Pi or other SBC. For these cases, I created a Virtual Raspberry Pi that runs in Oracle VirtualBox, which you can use to explore Linux and test things out. In fact, many of the images and exercises in this book were made using my Virtual Raspberry Pi. This chapter explains how to run a full Raspberry Pi environment on top of Windows, macOS, or Linux for those times when you don’t have the physical system on hand.

Before you get started, there are a few things to understand about the virtual environment. First, since this is not a physical system, there are no physical GPIO pins to interact with. There is no way to hook up any real-world components to the virtual environment. So if you thought you might use this to test code that interfaces with I²C or SPI devices, be aware that there really is no way to do that. Second, the current emulation environment is limited to 256 MB of memory, so the system will not be very speedy. Third, the Virtual Raspberry Pi image is actually virtualized twice. There is a main guest image running stock Debian Linux, and then I use QEMU to virtualize an ARM environment for the Raspbian disk image inside of Debian. This doesn’t seem to have any ill effects except that it made routing access to the internet a little more cumbersome. Luckily, I have taken care of all of this for you.

Requirements

		A computer running a recent version of Windows, macOS, or Linux

		15 GB of free disk space

Installation

Download and install Oracle VirtualBox from virtualbox.org.

Download the Virtual Raspberry Pi image file from Google Drive and save it somewhere you will remember. This is a 5 GB file, so it could take quite a while to download.

Open VirtualBox and click on File→Import Appliance (see Figure 10-1).

[image:]
Figure 10-1. Importing a preconfigured VirtualBox image

In the file search window, find and select the image file you downloaded from Google Drive. This will import and configure the Virtual RPi system inside of VirtualBox for you.

Usage

To launch the Virtual RPi machine, select it from the list on the left and click the Start button. VirtualBox will then run the system in a separate window. You will notice that the Linux bootup messages appear twice in a row. This is due to the fact that the Raspberry Pi is being virtualized inside of a virtual Debian installation, as I mentioned earlier. Once everything is finished booting, you will be at the Raspberry Pi command prompt (see Figure 10-2).

[image:]
Figure 10-2. The console of the Raspberry Pi image after it has booted up

The desktop does not run by default, but you can start it by typing startx on the command line.

To shut down the Virtual RPi machine, you must first shut down the Virtual Raspberry Pi by rebooting it. Then shut down the Debian environment. To shut down the Virtual Raspberry Pi, type:

sudo shutdown -r now

The Virtual Raspberry Pi will not reboot. Instead, you will be left on the Debian desktop. To shut down the Debian environment, simply click on the menu icon in the bottom-left corner, choose Logout, and then select Shutdown (see Figure 10-3).

Don’t Shut Down

Using shutdown -h is not recommended on this virtual system because it will not return you to the Debian desktop. If this happens, you can press Ctrl-Alt-F to exit full-screen mode and close the emulator window.

[image:]
Figure 10-3. The Debian desktop after the Raspberry Pi image has been rebooted

If you’re stuck in the Raspberry Pi image and would like to get access to the Debian desktop, you can press Ctrl-Alt-F to exit full-screen mode. To toggle the mouse capture mode, press Ctrl-Alt when you’re not in full-screen mode.

Why This Matters for Makers

Because you can! Sometimes it’s fun just to try things out to see how they work. While the lack of memory and physical GPIO pins might not make this the preferred way to learn about the Raspberry Pi, it can still be fun to poke around and see how things work on the system. You can use this virtual installation of the Raspbian distribution as a reference to test the syntax of a program, verify where software resources are located, and get material for documenting an instructional blog post when you don’t have a physical system in front of you. You can also learn a little about virtual computing in the process, or even use this virtual Raspberry Pi to write a book!

Appendix A. Linux Background

This appendix will cover the history of the Linux operating system, as well as some general questions that often come up when Makers start considering using Linux in their projects. Linux is used all over the world on many different platforms. For businesses, it’s the most preferred operating system for running complex transactions in their data centers. It is also used as the base operating system in all Android phones, making it the most used operating system in the world today. In addition, Linux is used in embedded devices like network routers, point-of-sale terminals, medical devices, set-top boxes, and digital TVs. Of course, Makers use it all the time as the operating system for SBCs like Raspberry Pi, BeagleBone Black, C.H.I.P., Pine 64, and Onion platforms. And because there are so many versions available, you can easily bring old hardware back to life by installing Linux on it.

Brief History of the Original Maker Operating System

I think it’s fair to say that Linux started as (and still is) the ultimate Maker project. Before Linux, the easiest and most accepted way to run a Unix-type operating system was to pay for one of the commercial products available in the marketplace. Unix was created by Ken Thompson and Dennis Ritchie while they were working at Bell Labs (now known as AT&T) and was first released in 1970. At that time, operating systems were designed to run on specific hardware platforms. General-purpose computing was still in its infancy; you couldn’t take the software from one hardware platform and run it on a different one. As Unix became more popular, similar operating systems were created, including Berkeley Software Distribution (BSD) and SunOS.

For the next 20 years, the way companies acquired and ran Unix in their data centers was to buy a license from AT&T, HP, IBM, Sun Microsystems, or another vendor that sold a version of Unix. For the most part, these companies developed their operating systems in a vacuum. As you can imagine, they wanted to protect their investments and research from getting into the hands of their competitors. Even though they made improvements and fixes to the code over time, the end user was at the whim of the vendor in terms of which fixes got implemented first and which improvements bubbled up to the top of the list of features for the next release of the software.

Where did this leave the Maker? Pretty much out in the cold. Even though the Unix operating system was very powerful and became more versatile over time, the software licenses were too expensive for most individuals to afford. The computer hardware needed to run Unix was also very expensive, so even if an individual did want to run Unix for a project, they had to rent time on a server from a company that had these systems installed. Imagine if a Raspberry Pi that costs $35 today instead cost $35,000, and Raspian was only available if you first paid $10,000 just for the privilege of running it. Or imagine if the Raspberry Pi Foundation wanted to charge you $50/hour just to use a Raspberry Pi for a little while.

The concept of sharing access to computers and renting that time out to others became known as time sharing. It was a more efficient use of an expensive piece of equipment and allowed companies to recoup some of their investment. However, if you were lucky enough to be a student at a university that had access to these time-sharing systems, you could use them for free. This got a couple of people thinking.

[image:]
Figure A-1. Time sharing ad from 1970 (image from HP Computer Museum)

When Richard Stallman started the GNU’s Not Unix (GNU) Project in 1983, he was working for the Massachusetts Institute of Technology (MIT) as a research assistant in their Artificial Intelligence Laboratory. He was frustrated by the restricted computer access imposed by the lab, as well as the increasing trend toward developing proprietary software that couldn’t be modified or distributed to others. In one case, he had modified the software for a laser printer to be able to notify the owner when the print job was complete. However, when a new printer was installed with proprietary software, he was restricted from making the same changes, which meant people had to walk up and down stairs multiple times to check on their print jobs or wait by the printer until they were done.

The GNU Project’s goal was (and is) to allow people access to software that could be freely used, shared, and distributed in a collaborative way. That meant that if you wanted to improve the software in some way or fix something that wasn’t working, you could just do it without having to ask permission or hack the code. You could also pass on your changes to others so that they could learn from them and use them in their own software. The GNU Project made their own versions of utilities commonly found on Unix systems that were necessary for the development of software, like a text editor (Emacs), code compiler (GCC), and code debugger (GNU debugger), as well as common tools like ls, grep, and make. In many respects, Stallman and the others who worked on the GNU Project were Makers in their own rights. Just like modern-day Makers, they believed people should hack, make, and share their projects with other people who have similar interests.

In an effort to codify these beliefs and make them applicable to the software he and others were developing, Stallman came up with the GNU Public License (GPL). You may have seen this when you installed some software on your computer or phone. Large parts of the Android operating system, WordPress, GIMP, VLC Media Player, and even the Linux kernel itself (we’ll get to that in a minute) use the GPL as their software license. The GPL states that you may modify, copy, and redistribute the software, but if you do, you must keep the GPL license in the new or copied software. This ensures that all users of the software get the same rights no matter how many times the software changes.

This license and several other software licenses created around the same time led to what we now know as open source software. While proprietary, or closed source, software usually imposes restrictions on how the software can be used to protect the company or author, open source software aims to protect the author while providing rights and protections to the user as well. Even though there are many different open source licenses in existence today, the GPL is still the most popular. And this belief that software should be free to be modified and improved eventually spilled over into hardware development as well. Some of the most popular platforms Makers use for building projects like Arduino—including the RepRap project, Lulzbot, BeagleBone Black, and most of the Raspberry Pi—are considered open source hardware. This means their specifications are published publicly and people are free to modify their designs.

Try It for Yourself

Although not strictly required to be offered at no charge, many free software programs use an open source license. Try opening some of your favorite programs and look in the About section under the Help menu and see what license your software uses. You can also search the internet for this information. You might be surprised how much software uses or is based on open source licenses. It represents quite a change from the early days of computing.

Linus Torvalds

Even though work was progressing nicely on the GNU Project’s programs, tools, and utilities, they were still lacking a decent Unix kernel. In 1991, a computer science student at the University of Helsinki named Linus Torvalds had just ordered a new computer and a copy of another Unix clone called Minix. The source code for Minix was available, but it was not allowed to be modified and redistributed. Like all good Makers, Torvalds took this as a problem to be solved. He believed there should be a freely available Unix-like operating system that ran on the still-new x86 computer platform. Here is his note to the Minix community announcing his new operating system.

Hello everybody out there using minix -

I’m doing a (free) operating system (just a hobby, won’t be big and professional like gnu) for 386(486) AT clones. This has been brewing since april, and is starting to get ready. I’d like any feedback on things people like/dislike in minix, as my OS resembles it somewhat (same physical layout of the file-system (due to practical reasons) among other things).

I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work. This implies that I’ll get something practical within a few months, and I’d like to know what features most people would want. Any suggestions are welcome, but I won’t promise I’ll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes - it’s free of any minix code, and it has a multi-threaded fs. It is NOT portable (uses 386 task switching etc), and it probably never will support anything other than AT-harddisks, as that’s all I have :-(.

— Linus Torvalds1

This new operating system would later become known as Linux, which is pronounced ([ˈliːnɵks]). The name is a combination of “Linus” and “Unix.” It is interesting to note that, at the time, it was just a fun project to work on. Torvalds didn’t think it would be “big and professional,” or portable, or support a wide variety of peripherals. My, how things have changed. Today, Red Hat and others have built enormous companies around offering professional software to businesses based on Linux. It is also one of the most portable operating systems in existence today, running on almost every computer architecture available. Not to mention, Linux supports tens of thousands of devices, both new and old. Many times, they are supported with open source drivers that are already in the system so you don’t have to install software.

Linux became popular quickly because it didn’t cost anything to run, was easy to obtain, and was easily modified and improved. You could make a comparison to the Arduino ecosystem that exists in the Maker community today. Arduinos are very inexpensive and easy to order online, and if you don’t like the way your Arduino Uno is laid out, you can build your own from scratch to suit your needs. As Linux grew in popularity, it also developed a multitude of communities thanks to the “open” nature of the development model. Torvalds not only received requests for changes to the code, but he also got actual code samples from programmers who were trying out the operating system. Since the code was openly available for people to read and study, the development cycle for new features and bug fixes was much quicker than with the previous proprietary Unix systems. With the amount of changes being submitted, it quickly became necessary to organize things so that changes could be reviewed before they were included in new versions of Linux.

Linux is still maintained and improved in much the same way today. Torvalds and a handful of others called “Linux kernel maintainers” still govern this process, and it is still open to anyone who wants to improve the code or add new functionality. Don’t have a driver for that new WiFi module? You can write one yourself. Discover a bug in the way the operating system boots up? You can submit a patch to fix it. It truly is the original Maker operating system.

The Linux Kernel

I’ve mentioned the Linux kernel a few times now, and as you learn about using Linux for your projects, you will see it referenced online in tutorials and forums. Similar to a seed at the center of a nut or fruit, the kernel is the core program that manages the functions of the operating system. It is usually the first program that is run when the system starts up. It sits between the applications and the hardware components and governs how and when those components can be accessed. Without the kernel, applications wouldn’t be able to run because they wouldn’t know how to access the CPU, memory, storage, and other hardware that makes up the computer. The kernel also acts like a traffic cop, preventing applications from “running into” each other as they request the same resources. Modern operating systems have thousands of programs running simultaneously. If you didn’t have a kernel, you could really only run one program at a time without causing problems. As you can tell, the Linux kernel is the most important part of the operating system. Because it’s so important, it is loaded into a secure part of system memory so that it’s protected from tampering and changes.

There are many versions of the Linux kernel. It’s updated frequently by the kernel maintainers and can be customized to include all or just some parts depending on the needs of the system. If your system doesn’t have much memory, for example, a developer could take out all the parts they didn’t need in an effort to make the kernel smaller. If your system isn’t very fast, a developer might want to take out the parts that don’t need to run all the time in order to make the kernel more efficient. Some individual users even go so far as to make custom versions of the kernel by changing the included components or modifying certain parameters in an effort to make the system work the way they need it to. This process of compiling your own Linux kernel is mostly unnecessary for the Maker, as this work is already done by those who make and distribute the devices we use, like the Raspberry Pi.

Because the Linux kernel is so configurable, it often includes all the software you need to make your components visible to the operating system. This software is also called a driver and, depending on the manufacturer, might be proprietary or open source. If it’s open source, it can be included in the kernel and that makes adding components to your Linux system a lot easier. For example, when you connect almost any generic mouse or keyboard to your Linux-based system, it will be automatically detected and configured. With other operating systems, like Microsoft Windows, the driver software has to be installed from the internet or from local storage before the device can be used. Sometimes the drivers for older devices can be hard to find or become unsupported. This is less likely to happen with an open source driver in the Linux kernel because once it’s written, it can always be referenced again whenever it’s needed. This is one reason open source software should be important to Makers, and I will talk more about this a little later.

Distributions

I mentioned in the introduction that I would focus mainly on the Raspian distribution of Linux. But what is a distribution anyway? At face value, the word distribution makes it sound like someone is sharing their stuff with a lot of other people. That is not very far off the mark. Anyone can customize an operating system based on Linux by adding and changing the various programs that make it useful. It can then be packaged up in an easy-to-install format that ensures that every installation will be exactly the same. This collection of preconfigured software is called a distribution. A distribution of Linux can be critical for deployment when you are installing more than one system at a time. For example, let’s say you wanted to install Linux on 100 servers at work. Without using a distribution you would have to compile your kernel, choose what desktop you wanted to use, install all your software, and configure all your services for each server one by one. By using a distribution, you can greatly simplify this process by installing a preconfigured set of software on each server, ensuring that each server’s installation will be exactly the same as the one before.

Distributions also allow individuals and companies to publish their particular flavor of Linux to the world. Once all the software is in place, an installer program is added to make installation easy and less time-consuming. Then, all the files that make up the operating system are packaged up into a single file to make it easier to download. Like the Linux kernel itself, distributions are maintained by a group of people and updated on a regular basis to make sure the software stays current, fix bugs, and add new features.

This idea of creating your own distribution of an operating system is fairly unique to Linux. In order to get a customized version of other operating systems like Windows or macOS, you would need to convince Microsoft or Apple to make them for you. Because Linux is based on open source software, you can just make your own choices about what software you need for the task you’re trying to accomplish. Just as you would choose a set of tools in your workshop for a given task, you can choose a Linux distribution that best meets the needs of your project.

Examples of popular Linux distributions include Linux Mint, Debian, Ubuntu, OpenSUSE, and Arch. Some companies, like Red Hat, release a commercial distribution and a community distribution (Fedora). Some distributions are derived from another distribution. For example, Ubuntu and Raspbian are derived from Debian, whereas Linux Mint is derived from Ubuntu. This means that they start with one distribution as a base and then make changes to the software or look-and-feel and redistribute as a standalone system. There are also many distributions that are specialized for a given task or system type. Ubuntu Studio is built to appeal to audio, video, and graphical designers. Tiny Core Linux is a full desktop operating system that occupies as little as 16 MB, runs entirely in memory, and loads from a USB thumb drive or CD. GParted Live is another distribution that runs from external storage. It helps diagnose problems and make changes to storage hardware.

There are many distribution of Linux that run on the Raspberry Pi as well. Raspbian is specifically designed to run on the Raspberry Pi and is the most popular choice of users today. It’s also officially supported by the Raspberry Pi Foundation. Other Raspberry Pi distributions include:

	Ubuntu Mate
	
A version of Ubuntu Mate optimized to run on Raspberry Pi 2 and Raspberry Pi 3. It’s great if you want to use Raspberry Pi as a desktop or are already familiar with Ubuntu.

	OpenElec
	
An embedded operating system built around Kodi, the open source entertainment media hub. This is for users who want to use the Raspberry Pi as a media center only.

	Open Source Media Center
	
Another media center software distribution that is based solely on open source software.

	PiNet
	
A distribution that runs in a network topology to make it easier for educators to use Raspberry Pi in the classroom.

Try It for Yourself

There are thousands of distributions of Linux available for download. You can see some of the most popular ones by taking a look at the DistroWatch website. They track the popularity of Linux distributions as well as the latest updates both for the distributions and popular open source software packages. Click on some of the distributions listed to see what they do and how they are different.

How Open Source Software Works

I’ve talked a little about open source software and how it was critical to the development of Linux, but it is important for Makers to understand how open source software actually works in order to appreciate how it could benefit a project and how to avoid potential problems.

Open source software is different than proprietary or closed source software in many ways. First and foremost, as the word open implies, the source code for the software is available for anyone to look at and inspect. For example, you might be wondering why a program does x when you do y, but not when you do z. Perhaps you want to know because the software is working incorrectly, or perhaps you are a programmer and would like to implement a similar algorithm, function, or programming technique in your software. With proprietary software there is no way to know for sure. You would need to ask the company that wrote the software to file a bug report that may or may not get addressed. With open source software, however, if you know a bit of programming, you can actually look at the code and see what is going on. You may or may not be able to understand all the code or know how to fix the issue, but at least you aren’t operating behind a wall of secrecy and uncertainty.

Because the code is publicly available, some people wrongly assume that this is an enormous security risk. They think that it would be easy for bad actors to take the code and do something malicious with it like insert a virus or malware that could harm people’s computers and devices. While it’s true that the “openness” of open source software might make it an inviting target, it’s also the very thing that keeps this from becoming a real problem. Because the code is open, it is constantly under inspection. The release and acceptance of new code can be reviewed and governed by a team of experts from around the world, and more people can run tests and nightly builds to see how the software is working. Bugs and security risks can be identified and corrected much more quickly than with proprietary software.

Second, because the code is available, this naturally invites contributions from the community. If there’s a problem with the software, you can correct it yourself by submitting a bug report or patch that fixes the issue. If programming is not your thing, there are other great ways to get involved as well. Open source projects are always looking for people to help with non-programming tasks like documentation, translation, marketing, website development, and community relations. Getting involved in an open source project is a great way for people who are thinking of a career in software development, marketing, or developer relations to get some experience.

Third, open source software can be shared and distributed to others that need it without breaking the law or violating some sort of license agreement. In fact, this behavior is generally encouraged. This is in stark contrast to what you may typically think of when it comes to sharing content. Media organizations like the RIAA or MPAA spend vast amounts of time and money discouraging people from sharing their constituents’ legally protected content, but open source projects don’t have those restrictions and post their content on sites that encourage collaboration and sharing, like GitHub and SourceForge. File sharing software like BitTorrent can be used to make downloading easier because there are no legal issues to contend with.

Open source software really benefits the Maker community because ideas and projects can be implemented, shared, and improved more easily when software is readily modified and readily available. However, there are a few things to look out for when using open source software in your project. Just like all software, open source software can exist in various stages of development. An open source project might run out of steam and not be under active development. The risk here is that new features and functionality that you need for your project might never be implemented. Open source software is also more likely to be released early in the development cycle so it can be tested and improved. The risk here is that there may be more bugs in the code and that the software might change in functionality more quickly than with stable code. Imagine you’re using some brand new software that is in the early stages of development and it solves a problem in one of your projects. You get everything working just the way you want it, but the next time you update your software, things go haywire. As it turns out, the code you were using was modified in a way that broke the way you were using it and you need to spend time figuring out how to change things to make it work again. Luckily, with open source software, these types of problems are easy to fix, but it is good to be aware of the maturity of the software you are using to minimize the impact to your project.

Fourth, it is good to be aware of what kind of open source license your software uses. I have already mentioned the widely used GPL, but there are hundreds of other open source licenses as well. Some of them are very permissive and others come with many restrictions. Most of them allow for commercial use, private use, modification, and distribution. They also almost always protect the developer from liability if the software is misused or fails to work. Some of them (like the GPL) require that changes to the code be made available as open source software, and some (like the BSD) do not. If you have ever used macOS on an Apple product, you may have noticed that when you use the command line for anything it feels like Linux. That is because macOS is based in part on a UNIX variant called FreeBSD, which (as you might expect) uses the BSD license. Because the BSD license doesn’t require changes to be made available as open source, Apple is free to take the code and use it, change it, and improve it without sharing back to the community. While they are certainly within their right to do this, wouldn’t it be nice to have those changes benefit the community that started them in the first place? There may come a time when you might want to fork a project or make changes to some code that is under an open source license. It’s important to be aware that you may be required to keep your code under the same license or contribute the code back to the community. You can find out more about the different open source licenses at opensource.org.

Single-Board Computers Versus Microcontrollers

Although it is not strictly related to the history of Linux, this is probably a good place to talk a little about the similarities and differences between single-board computers (SBCs) and microcontrollers. You hear both of these terms quite often in the Maker community, but it can be difficult to determine when and why to use one or the other.

Microcontrollers are chips called integrated circuits (ICs) that contain a processor, a small amount of memory, and some ability to connect to things via input and output connections. These chips are often built into a platform that breaks out the various connections into pins to make it easier to communicate with other devices and modules. Sometimes these platforms include a USB port and controller so that users can connect directly to a computer and upload the firmware that runs on the chips. Examples of microcontroller platforms include Arduino, Teensy, ESP8266, and the Ti MSP430 LaunchPad.

SBCs are, as the name suggests, complete computer architectures that just happen to be built into a single PCB board. They typically include discrete components on the board like memory, a storage controller, USB connections, video and audio capabilities, and networking. They also usually run a complete operating system like Linux. Examples of SBC platforms include Raspberry Pi, BeagleBone, Odroid, and C.H.I.P. See Figure A-2 for an example of a Raspberry Pi and an Arduino.

[image:]
Figure A-2. The Raspberry Pi 3 (left) and the Arduino Genuino Uno (right)

Both SBCs and microcontrollers are very powerful platforms for building things because both can be used to connect to and control the physical world. In recent times, they have both become quite small in size, which makes them useful in small projects where you need to hide them away inside a project box or inside an existing enclosure. Another similarity is that they can be modular in that you can add functionality by plugging in a device or board. Raspberry Pi calls these hats, while Arduino calls them shields.

Microcontrollers are great when you need to do a simple specific task (or set of tasks) repeatedly and reliably. Compared to SBCs, microcontrollers don’t have a lot of memory, so the number of instructions and program size they can process at one time are limited. However, microcontrollers usually don’t have a lot of peripherals and other programs competing for resources, so this makes them very fast at doing what they do. Since the firmware for a microcontroller is stored in memory and always runs when they boot up, they will always behave the same way every time you turn them on. Microcontrollers are great at running strips of LED lights or continually polling sensors to gather data. They are also good at sending instructions repeatedly in the case of motors for a CNC machine or 3D printer.

SBCs can be used more like a regular computer. Because they have more memory and dedicated storage devices, and run a complete operating system, they can be used to do multiple tasks at once. However, since there is more going on at the same time, you might have to deal with resource contention. Also, since the operating system is stored on storage and not entirely in memory all the time, you need to take care not to power off the system abruptly or you could end up with a corrupted filesystem, leaving your SBC unable to boot up or severely unstable. Instead of having to upload the firmware every time you want to make changes to the system, you can use SBCs in a normal desktop environment or run them from a console that allows you to make changes to programs and features while the system is running. Another advantage of SBCs running Linux is that you can write programs in many different programming and scripting languages very easily. Although Python is widely used for building projects with the Raspberry Pi, you could just as easily use Perl, Java, Go, or C.

Why This Matters for Makers

Makers can benefit from powerful, versatile environments for their projects. The freedom to be able to choose from many different types of software and programing tools means that they can pick the one that is right for them. Makers also need access to software on the fly as their projects change and develop, and many projects are developed on a shoestring budget. Linux, a community Maker project in its own right, gives Makers the freedom to work on their projects using the latest technologies without additional cost and simultaneously provides a customizable set of software packages that are just right for their requirements. Many open source projects started because someone had an itch they wanted to scratch. In much the same way that a Maker’s project can start out as an individual effort and grow into a big business, open source software often starts as a pet project and develops into something that thousands of people use on a daily basis, sometimes without even realizing it. Open source software is at the heart of Linux, and it makes sense that Makers would develop a preference for using these tools similar to how they use a screwdriver, hammer, or 3D printer. Using Linux as part of your project may seem like a daunting task at first, but with just a few hints and tips, I think you will come to enjoy the freedom and endless possibilities it provides.

1 Linus Torvalds. “What Would You Like to See Most in Minix?” Usenet group comp.os.minix, August 25, 1991.

Index
Symbols
	& (ampersand), running in background, Stop, Background, and Foreground Jobs: Ctrl-Z, &, fg-Try It for Yourself
	&> or &>> (ampersand, angle brackets), capturing output, Logging the Output of a Script: >, >>-Searching the Output of a Command: grep
	&& (ampersands), running multiple commands, Running More Than One Command at the Same Time: &&, ||-Running More Than One Command at the Same Time: &&, ||
	> or >> (angle brackets), capturing output, Logging the Output of a Script: >, >>-Searching the Output of a Command: grep
	\ (backslash), escape character, Dealing with Long Commands-Scheduling Jobs: cron
	` ` (backticks), Try It for Yourself
	$ (dollar sign) prompt, Understanding the Prompt
	/ (forward slash), Try It for Yourself, Try It for Yourself
	# (hash tag) prompt, Understanding the Prompt
	; (semicolon)	ending a command, Dealing with Long Commands
	running multiple commands, Running More Than One Command at the Same Time: &&, ||

	|| (vertical bars), running multiple commands, Running More Than One Command at the Same Time: &&, ||-Running More Than One Command at the Same Time: &&, ||

A
	absolute paths, Changing the Working Directory: cd
	Adafruit module, I²C and SPI
	addgroup command, Adding a User: adduser, addgroup
	adduser command, Adding a User: adduser, addgroup-Adding a User: adduser, addgroup
	aliases, Aliases-Checking Disk and File Space Usage: df, du
	ampersand (&), running in background, Stop, Background, and Foreground Jobs: Ctrl-Z, &, fg-Try It for Yourself
	ampersand, angle brackets (&> or &>>), capturing output, Logging the Output of a Script: >, >>-Searching the Output of a Command: grep
	ampersands (&&), running multiple commands, Running More Than One Command at the Same Time: &&, ||-Running More Than One Command at the Same Time: &&, ||
	analog audio jack, enabling, Choosing HDMI or Analog-Choosing HDMI or Analog
	Android	determining IP address from, Android/iPhone-Command-Line Access: ssh
	SSH client for, Android/iPhone
	VNC client for, Android/iPhone

	angle brackets (> or >>), capturing output, Logging the Output of a Script: >, >>-Searching the Output of a Command: grep
	application launch bar, Changing the Shortcuts in the Application Launch Bar
	apt tools, Installing Software: apt-Try It for Yourself	apt-cache, Using apt-cache-Using apt-get install
	apt-get dist-upgrade, apt-get dist-upgrade
	apt-get install, Using apt-get install
	apt-get remove, apt-get remove
	apt-get update, Using apt-get update
	apt-get upgrade, Using apt-get upgrade-Using apt-get upgrade

	Arduino, communicating with, Talking to Arduino-Talking to Arduino
	audio files, playing (see multimedia)
	auto-complete for commands, Auto-Complete a Command: Tab

B
	background image for desktop, Changing the Background Image
	background processes, Stop, Background, and Foreground Jobs: Ctrl-Z, &, fg-Try It for Yourself
	backslash (\), escape character, Dealing with Long Commands-Scheduling Jobs: cron
	backticks (` `), Try It for Yourself
	bash (Bourne-Again shell), The Shell in a Nutshell
	.bashrc file, Aliases-Checking Disk and File Space Usage: df, du
	/bin directory, Try It for Yourself
	/boot directory, Try It for Yourself
	booting Raspberry Pi	first time for, Booting the Raspberry Pi for the First Time
	starting scripts or programs when, Starting a Script on Bootup: rc.local-Aliases

	Bourne shell (sh), The Shell in a Nutshell
	Bourne-Again shell (bash), The Shell in a Nutshell
	browser, The Linux Desktop
	button trigger example, IFTTT-IFTTT

C
	Cathode app, Android/iPhone
	cd command, Changing the Working Directory: cd-Changing the Working Directory: cd
	CGI scripts, Configuration for Python, Test It Out
	chaining options on command line, Printing Out the Contents of a Directory: ls
	chmod command, Changing File Ownership and Permissions: chown, chmod-Try It for Yourself
	chown command, Changing File Ownership and Permissions: chown, chmod-Changing File Ownership and Permissions: chown, chmod
	cloud services, Accessing Cloud Services-IFTTT	(see also web server)
	command line access to, Cloud Storage Services from the Command Line-IFTTT
	creating with Nimbus, Nimbus-Nimbus
	creating with Tonido, Tonido-Tonido
	transferring files to and from, Cloud Storage Services from the Command Line-IFTTT

	code examples	button trigger example, IFTTT-IFTTT
	email trigger example, IFTTT-IFTTT
	LED light example, GPIO-GPIO
	pin status example, GPIO-GPIO
	program status example, I²C and SPI-Try It for Yourself
	relay module example, GPIO-GPIO

	command line, Command-Line Basics-Try It for Yourself	(see also shell; terminal; specific commands)
	auto-complete feature for, Auto-Complete a Command: Tab
	chaining options on, Printing Out the Contents of a Directory: ls
	cloud services, accessing, Cloud Storage Services from the Command Line-IFTTT
	desktop, starting, Turning Off the Desktop
	filesystem commands, Orienting Yourself in the Filesystem-Get Help with a Command: help, man, and info
	help for, Get Help with a Command: help, man, and info-Try It for Yourself
	info pages for, Get Help with a Command: help, man, and info-Get Help with a Command: help, man, and info
	installing software, Installing Software: apt-Try It for Yourself
	long commands, wrapping, Dealing with Long Commands-Scheduling Jobs: cron
	manpages for, Get Help with a Command: help, man, and info-Get Help with a Command: help, man, and info
	multiple commands, running, Running More Than One Command at the Same Time: &&, ||-Running More Than One Command at the Same Time: &&, ||
	network, connecting to, Connecting to the Network via the Command Line-More Secure WiFi with Multiple Networks
	previous commands, finding, Search for a Previous Command: Up, Ctrl-R-Try It for Yourself
	prompt on, Understanding the Prompt-Try It for Yourself
	rebooting and shutting down, Rebooting and Shutting Down-Rebooting and Shutting Down
	remote access to, Command-Line Access: ssh-Android/iPhone
	scrolling through terminal, Understanding the Prompt
	searching output from, Searching the Output of a Command: grep-Monitoring a Log File: tail

	Commander One, MacOS-Linux
	ConnectBot app, Android/iPhone
	console, The Terminal or Console	(see also terminal)
	processes running in, Try It for Yourself
	switching sessions, Opening Another Console Session

	contact information for this book, How to Contact Us
	conventions used in this book, Conventions Used in This Book
	cp command, Moving and Deleting Files: cp, mv, and rm
	CPU utilization, When Not to Use the Desktop?, Performance Monitoring: top
	cron utility, Scheduling Jobs: cron-Why This Matters for Makers
	crontab file, Scheduling Jobs: cron-Why This Matters for Makers
	Ctrl-Alt-Func keystrokes, switching between sessions, Opening Another Console Session
	Ctrl-C keystroke, killing processes, Killing a Process: Ctrl-C, ps, kill
	Ctrl-R key, for previous commands, Search for a Previous Command: Up, Ctrl-R-Try It for Yourself
	Ctrl-Z keystroke, pausing processes, Stop, Background, and Foreground Jobs: Ctrl-Z, &, fg-Stop, Background, and Foreground Jobs: Ctrl-Z, &, fg
	curl command, IFTTT, IFTTT-IFTTT

D
	dd command, MacOS, Linux
	desktop, The Linux Desktop-The Linux Desktop, Using the Desktop-Why This Matters for Makers	background image, changing, Changing the Background Image
	connecting to network, Connecting to the Network
	panel, changing location of, Changing the Panel Location
	remote, Remote Desktops: vnc-Transferring Files: scp, sftp
	shortcuts in panel, changing, Changing the Shortcuts in the Application Launch Bar
	shortcuts on, creating, Creating a Desktop Shortcut
	starting from command line, Turning Off the Desktop
	turning off, Turning Off the Desktop-Turning Off the Desktop
	when not to use, When Not to Use the Desktop?-When Not to Use the Desktop?
	when to use, When to Use the Desktop?

	/dev directory, Try It for Yourself
	df command, Checking Disk and File Space Usage: df, du-Checking Disk and File Space Usage: df, du
	directories (see filesystem)
	disk image, Getting Started, Choosing and Downloading a Disk Image	downloading, Choosing and Downloading a Disk Image
	uncompressing, Uncompressing the Disk Image-Linux
	writing to SD card, Writing the Disk Image to the SD Card-Linux

	disk usage, Checking Disk and File Space Usage: df, du-Checking Disk and File Space Usage: df, du
	diskutil list command, MacOS
	diskutil unmountDisk command, MacOS
	distributions of Linux, Preface, Distributions-Try It for Yourself
	DistroWatch website, Try It for Yourself
	dollar sign ($) prompt, Understanding the Prompt
	du command, Checking Disk and File Space Usage: df, du-Checking Disk and File Space Usage: df, du

E
	echo command, Try It for Yourself
	email trigger example, IFTTT-IFTTT
	escape character (\), Dealing with Long Commands-Scheduling Jobs: cron
	/etc directory, Try It for Yourself
	examples (see code examples)
	exit command, Try It for Yourself

F
	fdisk command, Linux
	fg command, Stop, Background, and Foreground Jobs: Ctrl-Z, &, fg
	filesystem, Filesystems and Structures-Try It for Yourself, Creating New Files and Directories: mkdir and touch	absolute paths for, Changing the Working Directory: cd
	commands for, Orienting Yourself in the Filesystem-Get Help with a Command: help, man, and info
	directories, creating, Creating New Files and Directories: mkdir and touch-Creating New Files and Directories: mkdir and touch
	directory contents, printing, Printing Out the Contents of a Directory: ls-Printing Out the Contents of a Directory: ls
	directory location, changing, Changing the Working Directory: cd-Changing the Working Directory: cd
	directory location, determining, Where Am I?: pwd
	expanding, Expanding the Filesystem
	files, creating, Creating New Files and Directories: mkdir and touch
	files, deleting, Moving and Deleting Files: cp, mv, and rm
	files, moving, Moving and Deleting Files: cp, mv, and rm
	files, ownership of, Changing File Ownership and Permissions: chown, chmod-Changing File Ownership and Permissions: chown, chmod
	files, transferring, Transferring Files: scp, sftp-Why This Matters for Makers, Cloud Storage Services from the Command Line-IFTTT
	permissions for, Permissions and sudo-Try It for Yourself, Changing File Ownership and Permissions: chown, chmod-Try It for Yourself
	relative paths for, Changing the Working Directory: cd
	space used by, checking, Checking Disk and File Space Usage: df, du-Checking Disk and File Space Usage: df, du

	Fing - Network Tools app, Android/iPhone-Command-Line Access: ssh
	Flask library, IFTTT-IFTTT
	folders (see filesystem)
	forward slash (/), Try It for Yourself, Try It for Yourself

G
	general-purpose input/output pins (see GPIO pins)
	GID (group id), Users and Groups
	GNU Project, Brief History of the Original Maker Operating System-Brief History of the Original Maker Operating System
	GNU Public License (GPL), Brief History of the Original Maker Operating System
	GPIO (general-purpose input/output) pins, GPIO-Why This Matters for Makers	communicating with Arduino, Talking to Arduino-Talking to Arduino
	I²C protocol with, I²C and SPI-Talking to Arduino
	LED light example, GPIO-GPIO
	mapping physical pins to GPIO numbers, GPIO-GPIO
	pigpio module controlling, GPIO-GPIO
	program status example, I²C and SPI-Try It for Yourself
	relay module example, GPIO-GPIO
	resistors, when needed with, GPIO
	RPi.GPIO module controlling, GPIO
	SPI protocol with, I²C and SPI-I²C and SPI
	status of pins, checking, GPIO-GPIO

	GPL (GNU Public License), Brief History of the Original Maker Operating System
	grep command, Killing a Process: Ctrl-C, ps, kill, Searching the Output of a Command: grep-Monitoring a Log File: tail
	groups, Users and Groups-Users and Groups	adding, Adding a User: adduser, addgroup
	id for (GID), Users and Groups
	permissions for, Permissions and sudo-Try It for Yourself, Changing File Ownership and Permissions: chown, chmod-Try It for Yourself

H
	hash tag (#) prompt, Understanding the Prompt
	headless operation, Headless Operation-Why This Matters for Makers	connecting to Raspberry Pi, Finding Your System on the Network-Command-Line Access: ssh
	desktop, turning off, Turning Off the Desktop-Turning Off the Desktop
	remote command-line access, Command-Line Access: ssh-Android/iPhone
	remote desktops, Remote Desktops: vnc-Transferring Files: scp, sftp
	transferring files, Transferring Files: scp, sftp-Why This Matters for Makers

	help command, Get Help with a Command: help, man, and info-Get Help with a Command: help, man, and info
	/home directory, Try It for Yourself
	hostname, changing, Changing Your Hostname-Changing Your Hostname
	hostname command, Changing Your Hostname
	hostname file, Changing Your Hostname
	hosts file, Changing Your Hostname

I
	I²C protocol, I²C and SPI-Talking to Arduino	communicating with Arduino, Talking to Arduino-Talking to Arduino
	enabling, I²C and SPI-I²C and SPI
	program status example, I²C and SPI-Try It for Yourself

	IFTTT (If This, Then That), IFTTT-Try It for Yourself
	info command, Get Help with a Command: help, man, and info-Get Help with a Command: help, man, and info
	init process (see systemd (system daemon))
	installing software, Installing Software: apt-Try It for Yourself	(see also Raspbian disk image)

	interfaces file, The Interfaces File-Wired Ethernet
	Internet of Things (IoT) devices	security of, Users and Groups
	triggering events from, IFTTT-Try It for Yourself

	ip addr show command, Raspberry Pi
	IP address, determining, Finding Your System on the Network-Command-Line Access: ssh
	iPhone	determining IP address from, Android/iPhone-Command-Line Access: ssh
	SSH client for, Android/iPhone
	VNC client for, Android/iPhone

J
	jobs, scheduling, Scheduling Jobs: cron-Why This Matters for Makers

K
	keyboard layout, Changing the Localization Options-Changing the Localization Options
	kill command, Killing a Process: Ctrl-C, ps, kill-Killing a Process: Ctrl-C, ps, kill

L
	LED light example, IFTTT-Try It for Yourself
	/lib directory, Try It for Yourself
	Lighttpd web server, Run a Dedicated Web Server-Test It Out
	Lightweight X11 Desktop Environment (LXDE), The Linux Desktop
	Linux	desktop (see desktop)
	distributions, Preface, Distributions-Try It for Yourself
	downloading to SD card, Choosing and Downloading a Disk Image-Linux
	filesystem (see filesystem)
	groups (see groups)
	history of, Linux Background-Linus Torvalds
	kernel, The Linux Kernel-The Linux Kernel
	permissions, Permissions and sudo-Try It for Yourself, Changing File Ownership and Permissions: chown, chmod-Try It for Yourself
	processes (see processes)
	services, Services-Processes
	shell, The Shell in a Nutshell-Try It for Yourself
	SSH client for, Linux
	terminal (see terminal)
	uncompressing disk image, Linux
	users (see users)
	VNC client for, Linux-Linux
	writing disk image to SD card, Linux-Linux

	localization options, Changing the Localization Options-Changing the Localization Options
	ls -l command, Permissions and sudo, Try It for Yourself
	ls command, Try It for Yourself, Printing Out the Contents of a Directory: ls-Printing Out the Contents of a Directory: ls
	lsusb command, Finding USB Devices: lsusb-Finding USB Devices: lsusb
	LXDE (Lightweight X11 Desktop Environment), The Linux Desktop
	Lynx Browser, The Linux Desktop

M
	macOS	SSH client for, MacOS-MacOS
	transferring files, MacOS-Linux, From the Command Line: MacOS and Linux-Why This Matters for Makers
	uncompressing disk image, MacOS
	VNC client for, MacOS-MacOS
	writing disk image to SD card, MacOS-MacOS

	Maker service, IFTTT
	man command, Get Help with a Command: help, man, and info-Get Help with a Command: help, man, and info
	/media directory, Try It for Yourself
	memory usage, Performance Monitoring: top-Performance Monitoring: top
	microcontrollers, compared to SBCs, Performance Monitoring: top, Single-Board Computers Versus Microcontrollers-Single-Board Computers Versus Microcontrollers
	Minix, Linus Torvalds
	mkdir command, Creating New Files and Directories: mkdir and touch-Creating New Files and Directories: mkdir and touch
	/mnt directory, Try It for Yourself
	mplayer utility, Playing Audio and Video Files
	multimedia, Using Multimedia-Why This Matters for Makers	analog audio jack, enabling, Choosing HDMI or Analog-Choosing HDMI or Analog
	playing media from omxplayer utility, Playing Audio and Video Files-Playing Audio and Video Files
	playing media from scripts, Playing Media from a Script-Why This Matters for Makers
	volume, controlling, Controlling the Volume-Controlling the Volume

	mv command, Moving and Deleting Files: cp, mv, and rm

N
	nano editor, Try It for Yourself-Try It for Yourself
	network	connecting to, from command line, Connecting to the Network via the Command Line-More Secure WiFi with Multiple Networks
	connecting to, from desktop, Connecting to the Network
	interfaces file for, The Interfaces File-Wired Ethernet
	static IP address, setting, Static IP Address
	transferring files over, Transferring Files: scp, sftp-Why This Matters for Makers
	WiFi, connecting to, Connecting to the Network via the Command Line, WiFi-More Secure WiFi with Multiple Networks
	wired Ethernet, connecting to, Wired Ethernet

	Nimbus, Nimbus-Nimbus
	NOOBS disk image, Choosing and Downloading a Disk Image

O
	omxplayer utility, Playing Audio and Video Files-Playing Audio and Video Files
	online resources	country codes, More Secure WiFi with Multiple Networks
	DistroWatch, Try It for Yourself
	for this book, How to Contact Us
	language codes, Changing the Localization Options
	Make:, How to Contact Us
	Nimbus, Nimbus
	pigpio module, GPIO
	Python module, I²C and SPI
	Raspberry Pi Foundation, Choosing and Downloading a Disk Image
	rclone utility, Cloud Storage Services from the Command Line

	Open Source Media Center distribution, Distributions
	open source software, Installing Software: apt, Brief History of the Original Maker Operating System, How Open Source Software Works-How Open Source Software Works
	OpenElec distribution, Distributions
	operating system (see Linux) (see macOS) (see Windows)
	/opt directory, Try It for Yourself
	Oracle VirtualBox, Virtual Raspberry Pi-Usage
	ownership of files, Changing File Ownership and Permissions: chown, chmod-Changing File Ownership and Permissions: chown, chmod

P
	panel, Understanding the Layout	application launch bar in, Changing the Shortcuts in the Application Launch Bar
	location of, changing, Changing the Panel Location

	parent PID (PPID), Processes
	passwd command, Changing the Default Password
	password, for pi user, Changing the Default Password, Users and Groups
	PCB (printed circuit board), Getting Started
	performance	CPU utilization, When Not to Use the Desktop?, Performance Monitoring: top
	monitoring, Performance Monitoring: top-Try It for Yourself

	permissions, Permissions and sudo-Try It for Yourself, Changing File Ownership and Permissions: chown, chmod-Try It for Yourself
	pi user, Changing the Default Password, Users and Groups
	PID (process id), Processes, Killing a Process: Ctrl-C, ps, kill-Killing a Process: Ctrl-C, ps, kill
	pigpio module, GPIO-GPIO	installing, GPIO-GPIO
	LED light example, GPIO-GPIO
	pin status example, GPIO-GPIO
	relay module example, GPIO-GPIO
	running, GPIO

	pin status example, GPIO-GPIO
	PiNet distribution, Distributions
	pip package management tool, IFTTT
	PPID (parent PID), Processes
	printed circuit board (PCB), Getting Started
	printing directory contents, Printing Out the Contents of a Directory: ls-Printing Out the Contents of a Directory: ls
	/proc directory, Try It for Yourself
	processes, Processes-Why This Matters for Makers	continuing after pausing, Stop, Background, and Foreground Jobs: Ctrl-Z, &, fg
	currently running, listing, Try It for Yourself
	id for (PID), Processes, Killing a Process: Ctrl-C, ps, kill-Killing a Process: Ctrl-C, ps, kill
	killing, Killing a Process: Ctrl-C, ps, kill-Killing a Process: Ctrl-C, ps, kill
	monitoring, Performance Monitoring: top-Try It for Yourself
	parent PID for (PPID), Processes
	pausing, Stop, Background, and Foreground Jobs: Ctrl-Z, &, fg-Stop, Background, and Foreground Jobs: Ctrl-Z, &, fg
	running in background, Stop, Background, and Foreground Jobs: Ctrl-Z, &, fg-Try It for Yourself
	status of, Killing a Process: Ctrl-C, ps, kill-Killing a Process: Ctrl-C, ps, kill

	program status example, I²C and SPI-Try It for Yourself
	prompt on command line, Understanding the Prompt-Try It for Yourself
	ps command, Try It for Yourself, Killing a Process: Ctrl-C, ps, kill-Killing a Process: Ctrl-C, ps, kill
	PuTTY, Windows-Windows, Windows
	pwd command, Where Am I?: pwd
	Python CGI scripts, Configuration for Python, Test It Out

R
	Raspberry Pi, Getting Started	booting, Booting the Raspberry Pi for the First Time
	cloud services, accessing (see cloud services)
	expanding filesystem on, Expanding the Filesystem
	GPIO pins in (see GPIO pins)
	hostname for, changing, Changing Your Hostname-Changing Your Hostname
	IP address for, determining, Finding Your System on the Network-Command-Line Access: ssh
	localization options for, Changing the Localization Options-Changing the Localization Options
	multimedia, playing (see multimedia)
	password for pi user, Changing the Default Password, Users and Groups
	performance, monitoring, Performance Monitoring: top-Try It for Yourself
	power supply for, Booting the Raspberry Pi for the First Time
	SSH server for, Command-Line Access: ssh-Command-Line Access: ssh
	virtual, Virtual Raspberry Pi-Usage
	VNC server for, Setting Up the Raspberry Pi-Setting Up the Raspberry Pi

	Raspbian disk image, Choosing and Downloading a Disk Image, Distributions-Distributions	downloading, Choosing and Downloading a Disk Image
	uncompressing, Uncompressing the Disk Image-Linux
	writing to SD card, Writing the Disk Image to the SD Card-Linux

	raspi-config tool, Expanding the Filesystem, Turning Off the Desktop-Turning Off the Desktop, Command-Line Access: ssh
	rc.local file, Starting a Script on Bootup: rc.local-Aliases
	rclone utility, Cloud Storage Services from the Command Line-IFTTT
	RealVNC, Windows-Linux
	rebooting, Rebooting and Shutting Down-Rebooting and Shutting Down
	regular expressions (see grep command)
	relative paths, Changing the Working Directory: cd
	relay module example, GPIO-GPIO
	remote command-line access, Command-Line Access: ssh-Android/iPhone
	remote desktops, Remote Desktops: vnc-Transferring Files: scp, sftp	client for, on Linux, Linux-Linux
	client for, on macOS, MacOS-MacOS
	client for, on Windows, Windows-Windows
	server for, on Raspberry Pi, Setting Up the Raspberry Pi-Setting Up the Raspberry Pi

	resistors, when needed, GPIO
	rm command, Moving and Deleting Files: cp, mv, and rm
	root directory, Try It for Yourself, Try It for Yourself
	/root directory, Try It for Yourself
	root user, Users and Groups, Understanding the Prompt
	router, determining IP address from, Router-Android/iPhone
	RPi.GPIO module, GPIO
	/run directory, Try It for Yourself

S
	SBC (single-board computer), Getting Started, Single-Board Computers Versus Microcontrollers-Single-Board Computers Versus Microcontrollers	(see also Raspberry Pi)

	/sbin directory, Try It for Yourself
	scheduling jobs, Scheduling Jobs: cron-Why This Matters for Makers
	SCP (Secure Copy), Transferring Files: scp, sftp-Why This Matters for Makers
	scripts (see CGI scripts) (see shell scripts)
	SD card	downloading operating system to, Choosing and Downloading a Disk Image-Linux
	requirements for, Getting Started

	Secure Copy (SCP), Transferring Files: scp, sftp-Why This Matters for Makers
	Secure File Transfer Protocol (SFTP), Transferring Files: scp, sftp-Why This Matters for Makers
	secure shell (see SSH client) (see SSH server)
	security	password for pi user, Changing the Default Password, Users and Groups
	root user, limiting use of, Users and Groups
	sudo command, Try It for Yourself
	WPA (WiFi Protected Access), More Secure WiFi with Multiple Networks-More Secure WiFi with Multiple Networks

	semicolon (;)	ending a command, Dealing with Long Commands
	running multiple commands, Running More Than One Command at the Same Time: &&, ||

	services, Services-Processes
	SFTP (Secure File Transfer Protocol), Transferring Files: scp, sftp-Why This Matters for Makers
	sh (Bourne shell), The Shell in a Nutshell
	sh command, Try It for Yourself
	shell, The Shell in a Nutshell-Try It for Yourself	(see also command line; terminal)

	shell scripts, The Shell in a Nutshell-Try It for Yourself	output from, capturing, Logging the Output of a Script: >, >>-Searching the Output of a Command: grep
	playing media files from, Playing Media from a Script-Why This Matters for Makers
	starting on bootup, Starting a Script on Bootup: rc.local-Aliases

	shortcuts	creating on desktop, Creating a Desktop Shortcut
	in panel, changing, Changing the Shortcuts in the Application Launch Bar

	shutdown command, Rebooting and Shutting Down-Rebooting and Shutting Down, Usage
	single-board computer (see SBC)
	smartphones (see Android) (see iPhone)
	software	installation conflicts, resolving, Fixing Conflicts
	installing, Installing Software: apt-Try It for Yourself	(see also Raspbian disk image)

	open source, Installing Software: apt
	removing, apt-get remove
	searching for packages, Using apt-cache-Using apt-get install
	updates, getting, Using apt-get update
	upgrades, getting, Using apt-get upgrade-Using apt-get upgrade, apt-get dist-upgrade

	SPI protocol, I²C and SPI-I²C and SPI
	/srv directory, Try It for Yourself
	SSD1306 display driver, I²C and SPI
	SSH client	for Android, Android/iPhone
	for iPhone, Android/iPhone
	for Linux, Linux
	for macOS, MacOS-MacOS
	for smartphone, Android/iPhone-Android/iPhone
	for Windows, Windows-Windows

	SSH server, Command-Line Access: ssh-Command-Line Access: ssh
	ssh tool, Linux
	startx command, Turning Off the Desktop
	static IP address, Static IP Address
	storage device (see SD card)
	sudo command, Expanding the Filesystem, Try It for Yourself-Try It for Yourself
	super user (see root user)
	SuperUserDo command (see sudo command)
	sync command, MacOS, Linux
	/sys directory, Try It for Yourself
	systemctl command, Try It for Yourself, Setting Up the Raspberry Pi
	systemd (system daemon), Services, Processes
	systemd-analyze command, Try It for Yourself

T
	Tab key, for auto-complete, Auto-Complete a Command: Tab
	tail command, Monitoring a Log File: tail-Monitoring a Log File: tail
	taskbar (see panel)
	TeleTYpe (TTY), Windows
	terminal, The Terminal or Console-The Shell in a Nutshell	(see also command line; shell)
	compared to console, The Terminal or Console
	exiting, Try It for Yourself
	opening, The Terminal or Console
	processes running in, Try It for Yourself
	scrolling, Understanding the Prompt
	switching sessions, Opening Another Console Session

	Terminal application, MacOS-MacOS
	terminal emulator, The Terminal or Console
	time sharing, Brief History of the Original Maker Operating System
	/tmp directory, Try It for Yourself
	Tonido, Tonido-Tonido
	top tool, Performance Monitoring: top-Try It for Yourself
	Torvalds, Linus, Linus Torvalds-Linus Torvalds
	touch command, Creating New Files and Directories: mkdir and touch
	transferring files	over a network, Transferring Files: scp, sftp-Why This Matters for Makers
	to and from cloud services, Cloud Storage Services from the Command Line-IFTTT

	TTY (TeleTYpe), Windows

U
	Ubuntu Mate distribution, Distributions
	UID (user id), Users and Groups
	umount command, Linux
	unzip utility, Linux, Cloud Storage Services from the Command Line
	up arrow key, for previous commands, Search for a Previous Command: Up, Ctrl-R
	uptime command, Performance Monitoring: top
	USB devices	connected, determining, Finding USB Devices: lsusb-Finding USB Devices: lsusb
	power used by, Finding USB Devices: lsusb

	users, Users and Groups-Users and Groups	adding, Adding a User: adduser, addgroup-Adding a User: adduser, addgroup
	default user, pi, Users and Groups
	id for (UID), Users and Groups
	permissions for, Permissions and sudo-Try It for Yourself, Changing File Ownership and Permissions: chown, chmod-Try It for Yourself
	root user, Users and Groups

	/usr directory, Try It for Yourself

V
	/var directory, Try It for Yourself
	vertical bars (||), running multiple commands, Running More Than One Command at the Same Time: &&, ||-Running More Than One Command at the Same Time: &&, ||
	video files, playing (see multimedia)
	Virtual Network Computing (see VNC)
	virtual Raspberry Pi, Virtual Raspberry Pi-Usage
	vlc utility, Playing Audio and Video Files
	VNC (Virtual Network Computing), Remote Desktops: vnc-Transferring Files: scp, sftp	client for, on Android or iPhone, Android/iPhone
	client for, on Linux, Linux-Linux
	client for, on macOS, MacOS-MacOS
	client for, on Windows, Windows-Windows
	server for, on Raspberry Pi, Setting Up the Raspberry Pi-Setting Up the Raspberry Pi
	transferring files, Transferring Files: scp, sftp

	volume, controlling, Controlling the Volume-Controlling the Volume

W
	web server	dedicated, with Lighttpd, Run a Dedicated Web Server-Test It Out
	simple, with Flask, IFTTT-IFTTT

	website resources (see online resources)
	wget command, GPIO, I²C and SPI, Cloud Storage Services from the Command Line
	WiFi, connecting to, Connecting to the Network via the Command Line, WiFi-More Secure WiFi with Multiple Networks
	WiFi Protected Access (WPA), More Secure WiFi with Multiple Networks-More Secure WiFi with Multiple Networks
	Windows	SSH client for, Windows-Windows
	transferring files, Windows-Windows
	uncompressing disk image, Windows
	VNC client for, Windows-Windows
	writing disk image to SD card, Windows

	WinSCP, Windows-Windows
	wired Ethernet, connecting to, Wired Ethernet
	WPA (WiFi Protected Access), More Secure WiFi with Multiple Networks-More Secure WiFi with Multiple Networks
	wpa_supplicant.conf file, More Secure WiFi with Multiple Networks-More Secure WiFi with Multiple Networks

Z
	ZIP files, uncompressing, Uncompressing the Disk Image-Linux

 About the Author

 Aaron Newcomb has been a Maker since he was old enough to hold a screwdriver and has been using Linux since 1997. He has worked in the IT industry for companies like New Relic, NetApp, Oracle, Sun Microsystems, and Hewlett Packard. He cohosts several shows about technology for TWiT LLC, including FLOSS Weekly, All About Android, This Week in Google, and The New Screen Savers. In 2012, he founded the nonprofit organization Benicia Makerspace, where he currently serves as president and executive director when he is not busy at work.

 Colophon

 The image on the cover of Linux for Makers is Tux, the Linux penguin, lovingly cradling the Raspberry Pi logo, symbolizing the synergy between the hardware and software sides of the Maker movement.

 The cover image is by Brian Jepson. The cover and body font is Benton Sans; the heading font is Benton Sans; and the code font is TheSansMonoCd.

OEBPS/assets/lfmk_0402.png
o 7290
| \

OEBPS/assets/lfmk_0521.png
#dtparan=spi=on

Uncomment this to enable the lirc-rpi module
#dtoverlay=lirc-rpi

Additional overlays and parameters are documented /boot/overlays/README

Enable audio (loads snd_bcm283s)
dtparam-audio=on

Force a larger screen size when no monitor is attached
hdmi_force_hotplug=1

hdmi_ignore_edid-0xa5000080

hdni_grou
hdni_mode=16ll

Get Help [writeout [Read File I Prev Page ;i cut Text [Cur Pos
Exit Justify here Is Y Next Page B8 Uncut Textllj To Spell

OEBPS/assets/lfmk_0204.png
B! /bin/bash

for i in "seq 1 10°
o

echo Hello World

Sleep 1
done

cut Text
UnCut Tex

cur Pos

Get Help [Writeout RE Read File R Prev Page
Exit Justify where Ts @l Next Page

To Spell

OEBPS/assets/lfmk_0606.png
1/binssh -e

1
]
3
]
This script is executed at the end of each multiuser runlevel.
Make sure that the script will "exit " on success or any other
value on error.

]

]

]

]

]

In order to enable or disable this script just change the execution
bits.

By default this script does nothing.

¢ Print the IP address
hostnane ~1) |1 true
TS 1P 1 then
printt "My IP address is zswn” "S_IP"
i

mount /deu/sdal sboot <——

S

G Get Help JF UriteOut J Read File gy Prev Page i Cut Text R§ Cur Pos
M Exit JeT Where Is &Y Next Page &1 UnCut Text§hl To Spell

OEBPS/assets/lfmk_aa01.png
Genuino

OEBPS/assets/lfmk_0612.png
pi@raspberrypi:~ § df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/root 15180208 4227616 10275516 30% /

devtmpfs 469536 0 469536 0% /dev

tnpfs 473868 0 473868 0% /dev/shm
tnpfs 473868 6428 467440 2% /run

tnpfs 5120 4 5116 1% /run/lock
tnpfs 473868 0 473868 0% /sys/fs/cgroup
/dev/mncb1kop1 64456 21192 43264 33% /boot

tpfs 94776 4 94772 1% /run/user/1000
pi€raspberrypi:~ § df -h

Filesystem size Used Avail Use% Mounted on

/dev/root 156 4.1G 9.86 30% /

devtmpfs 45OM 0 450M 0% /dev

tnpfs 4634 0 463U 0% /dev/shm

tnpfs 4630 6.3M 457M 2% /run

tnpfs 5.0M 4.0 5.0M 1% /run/lock

tnpfs 4634 0 463U 0% /sys/fs/cgroup
/dev/mmcblkopl 63U 21M 43M 33% /boot

tpfs 93U 4.0K 93M 1% /run/user/1000

pieraspberrypi:~ $ I

OEBPS/assets/lfmk_0425.png
etting up rc-gui (1.1-1)
etting up 1ibrubyz.l:armhf (2.1.5-2+debBu3) ...
etting up rubyz.1 (2.1.5-2+debBu3) ...

etting up ruby (1:2.1.5+debBu2) .
etting up sudo (1.8.10p3-1+debBu3) .
etting up unzip (6.0-16+debBu2) ...
etting up wiringpi (2.32) .
etting up upasupplicant (2.
etting up xarchiver (1:0.5.4-1+debBul) .
ctting up xserver—common (2:1.17.2-1spil) ...
etting up xserver-xorg-core (2:1.17.2-1srpil)
cetting up xserver-xorg-video-fbturbo (1.20150305°205709) ...
etting up xserver-xorg-video-fbdev (1:0.4.4-1+rpil)

etting up xserver-xorg-input-evdey (1:
etting up xserver-xorg-input-synaptics (1.8.2-1"bpoB+1) ...
etting up bluej (3.1.7) ..

ctting up python-picanera (1.12)
etting up pythond-picamera (1.12) ...

etting up raspberrypi-net-nods (1.2.3) ..

jpdating setc/metuork, interfaces. Original backed up as interfaces.dpkg-old.
etting up sonic-pi (1:2.10.0-2)
mabling /etc/security/linits.d/audio.conf for jackdZ

rocessing triggers for initranfs-tools (0.120+debBuz) ...

rocessing triggers for libc-bin (2.19-18+deb8u6) ...

rocessing triggers for 1ibgdk-pixbufz.0-0:armhf (2.31.1-2+debBuS) ...
rocessing triggers for ca-certificates (20141019+debBul) ...

pdating certificates in setc/ssl/certs... 19 added, 18 removed; done.
unning hooks in setc/ca-certificates/update.d. . ..done.

rocessing triggers for systend (215-17+debBus) ...

ieraspberrypi ~ $

-1+debBud) .

OEBPS/assets/lfmk_0911.png
o ®oE R L EoE oW oE®E R
EoE E E B E E E E E E E®EEE®E £ &@

Raspberry Pi 3 Model Bv1.2
© Raspberry Pi 2015

DSI (DISPLAY)

182

ETHERNET

(V¥3UYD)

OEBPS/assets/lfmk_0913.png
/@ Nimbus -Your Personal X\

¢ - C 0 1921680222808

& Ninbus

Welcome to Nimbus - Your Personal Cloud!
It looks like this is your first time logging on, so let's get started. Enter the information below to
Create your account:

Username * Email * Password * Confirm Password *

\ LN J{ 9|

Create Account

OEBPS/assets/lfmk_0518.png
N © P4 @11:30

ConnectBot: Hosts H
pi@10.1.10.173)
Apr 15,2016
pi@10.1.10.213)
Jul 31,2016
pi@10.1.10.247 °
Jul 31,2016
pi@10.10.17.158)
Apr 18,2015
ssh - Lsername@hosmame'port
= Nicci 1 Ben
d1 91 1 4 1 1 4 1 1 °
q w e r t y u i o p
@ #[& ~ 1T 1 T

OEBPS/assets/lfmk_0536.png
L X°) Connections.
New Connection
HEw T

Name: | Raspberry Pi

192.168.0.209 Port:| 22

pi

Password:

"~ Anonymous login

it the number of simultaneous connections to

Mode: Passive g

Remote path:

onnect.

OEBPS/assets/lfmk_0632.png
The dog is running again:)
Traceback (most recent call last):
File “loop.py”. line 7, in <module>
cine sleep(1)
KeyboardInter rupt
pieraspberrypi:~ § more loop.log |grep -ce
21

sl

P —

OEBPS/assets/lfmk_0901.png
pi€raspberrypi:~/rclone-vi.34-linux-arm § ./rclone config
2016/12/08 18:26:51 Failed to load config file “/home/pi/.rclone.conf” - using d|
efaults: open /home/pi/.rclone.conf: no such file or directory

No remotes found - make a new one

n) New remote

s) set configuration password

a) Quit config

n/s/g> n

name> gdrive

Type of storage to configure.

Choose a number from below, or type in your own value

1/ Amazon Drive
\ “amazon cloud drive”
2 / Amazon S3 (also Dreamhost, Ceph, Minio)
\ "s3"
3 / Backblaze B2
\ "b2"
4 / Dropbox
\ “dropbox"
5 / Encrypt/Decrypt a remote
\ “crypt”
6 / Google Cloud Storage (this is not Google Drive)
\ “google cloud storage”
7 / Google Drive
\ “drive”
8 / Hubic
\ “hubic*
9 / Local Disk
\ “local”
10 / Microsoft OneDrive
\ “onedrive”
11/ Openstack Swift (Rackspace Cloud Files, Memset Memstore, OVH)
\ “swift"
12 / Yandex Disk
\ “yandex"
storage> 7
Google Application Client Id - leave blank normally
client_id>

Google Application Client Secret - leave blank normally
client_secret>

Remote config

Use auto config?

*say Y if not sure

* Say N if you are working on a remote or headless machine or Y didn't work
y) Yes

n) No

OEBPS/assets/lfmk_0624.png
pieraspberrypi:~ § ./loop.py
am still running :)
am still running
am still running
am still running
am still running
am still running
am still running :
I am still running :)

rz

[11+ Stopped ~/1o0p.py
pieraspberrypi:- § Il

OEBPS/assets/lfmk_aain01.png
Last year this ad offered you

the best time-share buy

on the market.

Now we’ve got an even
|f your time-share better deal. Our new system
bill runs over handles twice the users
$2,300 amonth for just $3117 a month.

youire being had!

HEWLETT“ PACKARD

DIGITAL COMPUTE

CIRCLE NO. 10 O INQUIRY CARD

OEBPS/assets/lfmk_0540.png
File Edit View Go Bookmarks Help

-

= Desktop

8 Documents

F~ Music

3 Pictures

F% Videos

¥ Downloads
Recent

I File System
@ Trash

Network

& usbdisk

& pion192.1...
5 Network

gnome2_private

A

File Edit View Go Bookmarks

/0on 192.168.0.209

Help

¥ My Computer
£3 Home
7= Desktop
M8 Documents
F~ Music
3 Pictures
= Videos
¥ Downloads

Recent

- I File sy:
Templates @ Trash
Network
[R— 2 usbdisk
.cache
B pion1921.. O
& Network
.dbus

[I—

42 items, Free space: 6.6 Gl

lost+found

|

opt

boot

home

media

proc

sbin

tmp

19 items, Free space: 10.9 GB

root

I

srv

OEBPS/assets/lfmk_0611.png
aspbian GNU/Linux 8 raspberrypi ttyl

aspberrypi login: pi (automatic login)
ast login: Fri Oct 14 16:15:27 PDT 2016 on ttyl
inux raspberrypi 4.1.7+ #2 Mon Oct 12 19:10:17 BRT 2015 arnubl

The prograns included with the Debian GNU/Linux system are free softuare;
he exact distribution terns for each progran are described in the
individual files in susr/share/doc/x/copyright.

ebian GNU/Linux comes with ABSOLUTELY NO UARRANTY, to the extent
ermitted by applicable lau.
§ lshydate

ruxe-xe-x 2 4096 Sep 22 python_ganes
ruxe-xe-x 5 409 Sep 22 Docunents
ruxe-xe-x 2 i 409 Sep 22 Dounloads
ruxe-xe-x 2 i 409 Sep 22 Tenplates
ruxe-xe-x 2 i 409 Sep 22 Public
ruxe-xe-x 2 i 409 Sep 22 Uideos
ruxe-xe-x 2 i 409 Sep 22 Pictures
ruxe-xe-x 2 i 409 Sep 22 Music
ruxe-xe-x 2 i 409 Oct 2 Desktop

i@raspberryp:

OEBPS/assets/lfmk_0634.png
pi@raspberrypi:~ § tail loop.log

The
The
The
The
The
The

dog
dog
dog
dog
dog
dog

is
is
is
is
is
is

running
running
running :
running again:
running agai

running agai

Traceback (most recent call last)

File “loop.py”. line 7, in <module>
time.sleep(1)

KeyboardInterrupt

pieraspberrypi:- § Il

OEBPS/assets/lfmk_0203.png

OEBPS/assets/lfmk_0526.png
VNC Viewer

VNC® Viewer c

VNC Server: | 192.168.0.209

Encryption: _Let VNC Server choose

Options...

OEBPS/assets/lfmk_0637.png
pi@raspberrypi:~ $ sudo addgroup admins
Adding group "admins’ (GID 1002)

Done..

pieraspberrypi:~ § sudo adduser pi adnins
Adding user 'pi’ to group admins’
Adding user pi to group admins

Done..

pi€raspberrypi:~ § sudo adduser user adnins
Adding user -user’ to group ‘admins’
Adding user user to group admins

Done..

pieraspberrypi:~ § I

OEBPS/assets/lfmk_0630.png
pi@raspberrypi:~ § python loop.py &>> loop.log
ACpieraspberrypi:~ § more loop.log

I am still running :
I an still running

I an still running
I an still running
I an still running
I an running again
I an running again
I an running again
I an running again
I an running again
1

1

1

1

1

1

1

T

an running again
am still running
am still running
am still running
am still running
am still running
am still running
raceback (most recent call last)
File “loop.py”. line 7, in <module>
time.sleep(1)
KeyboardInter rupt
pi@raspberryp:

OEBPS/assets/lfmk_0522.png
RealVNC

New

Enter VNC Server License Key
New

Start Listening VNC Viewer
New

VNC Address Book
New
@® VNC Server
New
VNC Server (User Mode)
=) New

VNC Server on the Web

OEBPS/assets/lfmk_0621.png
pi€raspberrypi:~ § ps
PID TTY TINE QWD
9593 pts/0 00:00:00 ps
20756 pts/0 00:00:00 bash
pi€raspberrypi:~ § ps -ef

uID PID PPID C STIME TTY an
root 1 00 H /sbin/init splash
root 2 00 H [kthreadd]

root 3 20 H [ksoftirgd/0]
root 5 20 H Tkworker/0:0H]
root 7 20 H [rcu_sched]

root 8 20 H [rcu_bh]

root 9 20 H [migration/0]
root 0 20 H [migration/1

root i 20 H Tksoftirqd/1

root 3020 H Tkworker/1:0H]
root w20 H [migration/2]
root 520 H Tksoftirgd/2]
root 720 H Tkworker/2: 0H]
root 8 20 H [migration/3]
root 19 20 H Tksoftirgd/3]
root 21 20 H Tkworker/3:0H
root 2 20 H Tkdevtmpfs]

root 23 2 0 2 [netns]

OEBPS/assets/lfmk_0628.png
pi@raspberrypi:~ § python loop.py > loop.log
ACTraceback (most recent call last)
File “loop.py”. line 7, in <module>
time.sleep(1)

KeyboardInter rupt

pieraspberrypi:
I an still running
am still running
am still running
am still running
am still running
am still running
am still running
am still running
am still running
am still running
am still running
am still running
am still running
pieraspberrypi:~ §

s more loop.log
B

OEBPS/assets/lfmk_0506.png
[Linksys Smart WicFi X

¢ > C O ® 19216801/u/1099167514/Gynamic/nome i @ o oo
LINKSYS™ Smart WiFi Ao Conter k0121 v Sgnowt v

WRT1900AC

Network Map 2 Show widgetan he hamepage

Filter map ~

=

= Linksys01221

e

GuestRoom

OEBPS/assets/lfmk_0422.png
plﬂraspberrgpl
Get:1 http://archive.raspberrypi.org

sarchive .raspberrypi .org

://archive .raspberrypi .org
varchive .raspberrypi .org
varchive .raspberrypi .org

//mirrordirector .
//mirrordirector .
//mirrordirector .
//mirrordirector .
//mirrordirector .
//mirrordirector .
http://mirrordirector.raspbian.
gn http://mirrordirector .raspbian.
Fetched 9,343 kB in 28s (332 kB/s)
Reading package lists... Done
pieraspberrypi ~

http:
http:
http
http
http:
http

raspbian..
raspbian..
raspbian..
raspbian..
raspbian..
raspbian..

i//mirrordirector .raspbian.

/mirrordirector.raspbian.

9 sudo apt-get update

Jjessie InRelease [13.2 kB1
org jessie InRelease [14.9 kB1
Jjessie/main Sources [50.3 kB1

org jessie/main armhf Packages [8,982 kB1
Jjessiesui Sources [10.6 kB1

Jjessiesmain armhf Packages [148 kB1
Jessiesui armhf Packages [14.8 kB1

http://archive.raspberrypi.org jessie/main Translation-en_US

http://archive.raspberrypi.org jessiesui Translation-en US
http://archive.raspberrypi.org jessiesui Translation-en

/mirrordirector . raspbian.
/mirrordirector.raspbian.

org jessie/contrib armhf Packages [37.5 kB]
org jessie/snon-free armhf Packages [70.3 kB

:10 http://mirrordirector.raspbian.ory jessie/rpi armhf Packages [1,356 B1
org
org
org
org
org
org
org
org

Jjessiescontrib Translation-en_US
Jjessiescontrib Translation-en
Jjessie/main Translation-en_US
Jessiesmain Translation-en
Jjessiesnon-free Translation-en_US
Jjessiesnon-free Translation-en
Jjessiesrpi Tramslation-en_US
Jessiesrpi Tramslation-en

OEBPS/assets/lfmk_0514.png
1ogin as: pi
pi6152.160.0.209"s passwoza:]

OEBPS/toc01.html
		Preface

		Conventions Used in This Book

		O’Reilly Safari

		How to Contact Us

		Acknowledgments

		1. Getting Started

		Choosing and Downloading a Disk Image

		Uncompressing the Disk Image

		Windows

		MacOS

		Linux

		Writing the Disk Image to the SD Card

		Windows

		MacOS

		Linux

		Booting the Raspberry Pi for the First Time

		Expanding the Filesystem

		Changing the Localization Options

		Changing the Default Password

		Why This Matters for Makers

		2. Linux Principles

		The Linux Desktop

		The Terminal or Console

		The Shell in a Nutshell

		Try It for Yourself

		Filesystems and Structures

		Try It for Yourself

		Users and Groups

		Permissions and sudo

		Try It for Yourself

		Try It for Yourself

		Services

		Try It for Yourself

		Processes

		Try It for Yourself

		Why This Matters for Makers

		3. Using the Desktop

		When to Use the Desktop?

		When Not to Use the Desktop?

		Understanding the Layout

		Connecting to the Network

		Changing the Look and Feel

		Changing the Panel Location

		Changing the Background Image

		Changing the Shortcuts in the Application Launch Bar

		Creating a Desktop Shortcut

		Why This Matters for Makers

		4. Command-Line Basics

		Understanding the Prompt

		Try It for Yourself

		Orienting Yourself in the Filesystem

		Where Am I?: pwd

		Changing the Working Directory: cd

		Printing Out the Contents of a Directory: ls

		Creating New Files and Directories: mkdir and touch

		Moving and Deleting Files: cp, mv, and rm

		Try It for Yourself

		Get Help with a Command: help, man, and info

		Try It for Yourself

		Eliminate Some Typing

		Auto-Complete a Command: Tab

		Search for a Previous Command: Up, Ctrl-R

		Try It for Yourself

		Connecting to the Network via the Command Line

		The Interfaces File

		Wired Ethernet

		Static IP Address

		WiFi

		More Secure WiFi with Multiple Networks

		Installing Software: apt

		Using apt-get update

		Using apt-get upgrade

		Using apt-cache

		Using apt-get install

		apt-get remove

		apt-get dist-upgrade

		Fixing Conflicts

		Try It for Yourself

		Rebooting and Shutting Down

		Why This Matters for Makers

		5. Headless Operation

		Turning Off the Desktop

		Finding Your System on the Network

		Raspberry Pi

		Router

		Android/iPhone

		Command-Line Access: ssh

		Windows

		MacOS

		Linux

		Android/iPhone

		Remote Desktops: vnc

		Setting Up the Raspberry Pi

		Windows

		MacOS

		Linux

		Android/iPhone

		Transferring Files: scp, sftp

		Windows

		MacOS

		Linux

		From the Command Line: MacOS and Linux

		Why This Matters for Makers

		6. Tips and Tricks

		Changing Your Hostname

		Starting a Script on Bootup: rc.local

		Try It for Yourself

		Aliases

		Try It for Yourself

		Checking Disk and File Space Usage: df, du

		Performance Monitoring: top

		Try It for Yourself

		Killing a Process: Ctrl-C, ps, kill

		Stop, Background, and Foreground Jobs: Ctrl-Z, &, fg

		Try It for Yourself

		Finding USB Devices: lsusb

		Logging the Output of a Script: >, >>

		Searching the Output of a Command: grep

		Monitoring a Log File: tail

		Adding a User: adduser, addgroup

		Changing File Ownership and Permissions: chown, chmod

		Running More Than One Command at the Same Time: &&, ||

		Opening Another Console Session

		Dealing with Long Commands

		Scheduling Jobs: cron

		Why This Matters for Makers

		7. Controlling the Physical World

		GPIO

		I²C and SPI

		Talking to Arduino

		Why This Matters for Makers

		8. Using Multimedia

		Choosing HDMI or Analog

		Playing Audio and Video Files

		Controlling the Volume

		Playing Media from a Script

		Why This Matters for Makers

		9. Accessing Cloud Services

		Cloud Storage Services from the Command Line

		IFTTT

		Try It for Yourself

		Run a Dedicated Web Server

		Installation

		Configuration for Python

		Test It Out

		Roll Your Own

		Nimbus

		Tonido

		Why This Matters for Makers

		10. Virtual Raspberry Pi

		Requirements

		Installation

		Usage

		Why This Matters for Makers

		A. Linux Background

		Brief History of the Original Maker Operating System

		Try It for Yourself

		Linus Torvalds

		The Linux Kernel

		Distributions

		Try It for Yourself

		How Open Source Software Works

		Single-Board Computers Versus Microcontrollers

		Why This Matters for Makers

		Index

OEBPS/assets/lfmk_0206.png
oweN a|l4

PaYIPON B1eq

saifg u o215)4

dnoio
JoumMO

8114 SIUL 0} SHur JO JoquinN

uoissiuLad JBYI0

uoissiwad dnoig

uoissIuLd JOUMO

uoissiuag [e0ads

Downloads

4096 Sep 24 2015

0

example.txt

Jul 14 2016

pi

pi

OEBPS/assets/lfmk_0902.png
y/n> n
If your browser doesn't open automatically go to the following link: https://acc
ounts. google . com/0/0auth2/auth?client_id= 4 W 1s.s.apps. googleusercontent . com
Sredirect_uri=urnt3AietfX3Angt3A0authit3A2. 0%3A00baresponse._type-codesscope-https
K3A%2F%2Fiwn . googleapis . comk2Fauth%2Fdrivesstate=t - o -

Log in and authorize rclone for access
ENTer Verification Code> & W i S 4o s S

gdrive]

client_id =
client_secret =

token = {“access_token
g ", " token_type

y) Yes this is Ok
e) Edit this remote
d) Delete this remote
y/e/d> y

Current remotes:

Name Type

gdrive drive

e) Edit existing remote
n) New remote

d) Delete remote

s) Set configuration password
@) Quit config

e/nsdssza> B

OEBPS/assets/lfmk_0114.png
4 Configuring locales
Locales are a framework to switch between multiple languages and allow
users to use their language, country, characters, collation order
etc.

Please choose which locales to generate. UTF-8 locales should be
chosen by default, particularly for new installations. Other character
sets may be useful for backwards compatibility with older systems and
software.

Locales to be generated:

<ok> <Cancel>

OEBPS/assets/lfmk_0530.png
VNC Viewer - Authentication
VNC Server. 192.168.0.209:5900
Usemname: | pi
password: |]
Catchphrase: Market aloha poncho. Explain cabaret printer.
Signature: 9e-0-b1-eh-9a-82-51-5¢

cancel oK

OEBPS/assets/lfmk_0306.png
File Edit Search Options Help

[Desktop Entryl
Name=Some Name

Comment=Click here to run this thing
Icon=/usr/share/pixmaps/openbox. xpm
Exec=sh /home/pi/hello.sh
Type=Application

Encoding=UTF-8

Terninal=true

Categories=None;

OEBPS/assets/lfmk_0905.png
if then that

OEBPS/assets/lfmk_0412.png
(reverse-i-search) mano” : nano hello.sh

OEBPS/assets/lfmk_0407.png
pieraspberrypi 5 cd -
pieraspberrupi ~ § mkdir Sub
pieraspberrypi ~ § Is -1tr

total 48
druxeuxe—x 2 pi pi 409 Jan 27 2015 python_ganes
druxe-xe-x 5 pi pi 4096 Sep 24 2015 Docunents
druxe-xe-x 2 pi pi 4096 Sep 24 2015 Dounloads
druxe-xe-x Z pi pi 409 Sep 24 2015 Uideos
druxe-xe-x 2 pi pi 4096 Sep 24 2015 Templates
druxe-xe-x Z pi pi 409 Sep 24 2015 Public
druxe-xe-x 2 pi pi 409 Sep 24 2015 Pictures
druxe-xe-x 2 pi pi 409 Sep 24 2015 Music

—ru-r 1pipi 33 Jul 13 13:49 example.txt
druxe-xe-x 2 pi pi 409 Aug 11 14:43 Desktop
—ru-r 1pipi 68 fug 11 14:59 hello.sh

druxe-xe-x 2 pi_pi 409 Sep 18 21:31 Sub
pieraspberrypi ~ 9 cd Sub

piraspberrupi “/Sub § pud

/home./pi/Sub

pieraspberrypi “/Sub § touch testfile
pieraspberrupi “/Sub § 1s -1

total 0

-ru-r—-r—- 1 pi_pi 0 Sep 18 21:31 testfile
piGraspberrupi “/Sub § cp testfile testfilez
piraspberrupi “/Sub § 1s -1

total 0

~ru-r—-r—- 1 pi pi 0 Sep 18 21:31 testfile
r——r-— 1 pi pi 0 Sep 18 21:31 testfilez
piraspberrypi “/Sub § rm testfile
pieraspberrypi “/Sub § cd

piraspberrupi ~ § rm -R Sub

pieraspberrupi ~ § 1s -1

druxe-xe—x 2 pi pi 4096 Sep 24 2015 Templates
druxe-xe-x Z pi_pi 4096 Sep 24 2015 Videos
piBraspberrypi ~ S

total 44
druxe-xe-x 2 pi pi 4096 Aug 11 14:43 Desktop
druxe-xe-x 5 pi pi 4096 Sep 24 2015 Docunents
druxe-xe-x 2 pi pi 4096 Sep 24 2015 Dounloads
“ru-r 1pipi 33 Jul 13 13:49 example.txt
“ru-r 1pipi 68 Aug 11 14:59 hello.sh
druxe-xe-x 2 pi pi 409 Sep 24 2015 Music
druxe-xe-x 2 pi pi 409 Sep 24 2015 Pictures
druxe-xe-x Z pi pi 409 Sep 24 2015 Public
druxeuxe—x 2 pi pi 409 Jan 27 2015 python_ganes

2

2

OEBPS/assets/lfmk_0101.png
Home Share

vi

Compressed FolderTools D\ Download\2017-01-11-raspbian-jessie.

Exract

4 [3 > THsPC > Downloads > 2017-01-11-raspbian-jessiezip

Quick access.
9 Desitop

3 Downloads
2 Documents
= Pictures

& Google Drive
[125to uly
0 tin

) LinuxFor Makers Images
[Musicallys
I Desicop

Titem 1 item selected 407 GB

Nome Type
[0 200701 1-raspbianesieimg Discmge ile

v |0 | search2

Compressed size Password

1438313K8 No

11-raspbian.. P

Size

(1 Btract Compressed Bippec) Folders

Select a Destination and Extract Files.

EH=

OEBPS/assets/lfmk_0620.png
root

EEH
416920
166780
s112

o

0
10940
47220

o
23802
o

17280
102676
52980
2476

o

0

7204
19012

o
3968
o

10408
51436
35516

6736
16060

2740

vncserver-x11-c
chromiun-browse
Xorg

top
1rq/92-mmc1
mmcqd/0
vncagent
1xterminal
koworker/u8: 1
systemd
Kthreadd
ksoftirqd/0
koworker/0:0H
reu_sched
reu_bh
migration/0
migration/1

OEBPS/assets/lfmk_0627.png
pi€raspberrypi:~ § lsusb
Bus 001 Device 003: ID 0424:ec00
Ethernet Adapter

Bus 001 Device 002: ID 0424:
Bus 001 Device 001: ID 1deb:
pieraspberrypi:~ § lsusb
Bus 001 Device 004: ID 0d8c:013c

o514
0002

r
Bus 001 Device 003: ID 0424:ec00
Ethernet Adapter

Bus 001 Device 002:
8us 001 Device 001
pieraspberrypi:- $ Il

ID 0424:9514
D 1d6b:0002

standard Microsystems Corp. SWSC9512/9514 Fast

Standard Microsystems Corp.
Linux Foundation 2.0 root hub

C-Media Electronics, Inc. GM108 Audio Controlle
standard Microsystems Corp. SWSC9512/9514 Fast

Standard Microsystems Corp.
Linux Foundation 2.0 root hub

OEBPS/assets/lfmk_0115.png
I

File Edit Tabs Help

Geographic area:

Configuring tzdata

Please select the geographic area in which you live. Subsequent
configuration questions will narrow this down by presenting a list of
Cities, representing the time zones in which they are located

Africa

Amer1.
Antarctica
Australia
Arctic Ocean
Asia

Atlantic Ocean
Europe

<Cancel>

OEBPS/assets/lfmk_0903.png
pi€raspberrypi:~/rclone-vi.34-linux-arm § mkdir Sounds
pieraspberrypi:~/rclone-vi.34-linux-arm § ./rclone copy gdrive:Sounds /home/pi/r
clone-v1.34-linux-arm/Sounds/
2016/12/08 21:54:16 Local file system at /home/pi/rclone-v1.34-1linux-arm/Sounds:
Vaiting for checks to finish
2016/12/08 21:54:16 Local file system at /home/pi/rclone-v1.34-1linux-arm/Sounds:
Vaiting for transfers to finish
2016/12/08 21:54:17
Transferred: 9.223 MBytes (1.591 MBytes/s)

0

Errors:
Checks: 0
Transferred: 29
Elapsed time 5.75

piraspberrypi:~/rclone-v1.34-Linux-arm § |

OEBPS/assets/lfmk_0635.png
pi€raspberrypi:~ § sudo adduser user
Adding user user’ ...
Adding new group “user’ (1001)
Adding new user “user’ (1001) with group "user’
Creating home directory °/home/user
Copying files from */etc/skel’
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for user
Enter the new value, or press ENTER for the default
Full Name []: User
Room Number [1:
viork Phone []
Home Phone [1:
other [1:
Is the information correct? [Y/n]
pi@raspberryp:

OEBPS/assets/lfmk_0414.png
pi@raspberrypl 5 cd D
Desktop/ Documents,/ Dounloads/
piGraspberrypi ~ $ cd Dounloads/
(reverse-i-search) “tou’ : touch filel

OEBPS/assets/lfmk_0405.png
pilraspberrypi ~ 9
total 44

druxe-xe-x 2 pi pi
druxe-xe-x 5 pi pi
druxe-xe-x 2 pi pi
“ru-r 1 pi pi
~ru-r—-r—- 1 pi pi
druxe-xe-x 2 pi pi
druxe-xe-x 2 pi pi
druxe-xe-x 2 pi pi
druxeuxe—x 2 pi pi
druxe-xe-x 2 pi pi
2

druxe-xe—x 2 pi_pi
pieraspberrypi = $

Is =

4096
4096
4096

33

68
4096
4096
4096
4096
4096
4096

Aug
Sep
Sep
Jul
Aug
Sep
Sep
Sep
Jan
Sep
Sep

11
24
24
13
11
24
24
24
2?7
24
24

14:43
2015
2015

13:49

14:59
2015
2015
2015
2015
2015
2015

Desktop
Docunents
Dounloads
exanple.txt
hello.sh
Music
Pictures
Public
python_ganes
Tenplates
Videos

OEBPS/assets/lfmk_0709.png

OEBPS/assets/lfmk_0701.png
Physical

OEBPS/assets/lfmk_0916.png
@ Tonido | anewcomb2

& c O [GJ 192.168.0.222:10001/ui/core/index.htmi#expl-tabl.

Access your Computer : https:// - tonidoid.com

F&NIDO —
- .

B Files
uBRARY
43 Music
[) Photos
5 Videos

SHARING

sHoRTcuTs
© Recent
H Favorites
MEDIA

73 Player
wisc

G Apps
9% Settings

Get the power of Tonido
for your business

‘Warning: applications
are suspended!

OEBPS/assets/lfmk_0626.png
pi€raspberrypi:
[1] 18089
pi€raspberrypi:~ § T am still running :
I an still running
I an still running
1s

$./loop.py &

dash2.py loop.py omxplayer.log python_script.py
dash.py Music output_tts.mp3 Templates
Desktop node modules parrot.py tts.mp3
Documents node-v4.3.2-linux-armv61 Pictures tts.py
Downloads node-va.3.2-linux-amvél.tar.gz Public Videos
index.py nohup.out python_games

pieraspberrypi:~ § I am still running :

I an still running
I am still running :
fI am still running :

g
;/Loop oy
I an still running
still running
still running
still running
still running

OEBPS/assets/lfmk_0625.png
pi€raspberrypi:

an
an
an
an
an
an
an
I am
"z

[11+

still
still
still
still
still
still
still
still

Stopped

running

running
running
running
running
running
running
running
running

running :
running

running
running
running
running
running

-/100p.py

OEBPS/assets/lfmk_0112.png
anewcomb@anewcomb-VirtualBox ~ $ sudo umount /dev/sdb*
umount: /dev/sdb: not mounted

anewconb@anewconb-VirtualBox ~ $ cd ~/Downloads

anewconb@anewconb-VirtualBox ~/Downloads $ sudo dd if=2017-61-11-raspbian-jessie]
.ing of=/dev/sdb bs=aM

1042+1 records in

1042+1 records out

4371513344 bytes (4.4 GB) copied, 598.563 s, 7.3 MB/s
anewcomb@anewcomb-VirtualBox ~/Downloads $ |

OEBPS/assets/lfmk_0910.png
pi@raspberrypi:~/rclone-vi.34-linux-arm § curl -X POST https://maker.ifttt.com/t
rigger/button_pressed/with/key/ e it S

Congratulations! You've fired the button_pressed eventpi@raspberrypi:
.34-linux-arm §

/rclone-v1

OEBPS/assets/lfmk_0505.png
i@raspberrypi:” 5 ip addr show
lo: <LODPBACK,UP,LOVER_UP> ntu 65536 qdisc nogueue state UNKNOUN group defaul

Link/ loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inct 1276018 scope host lo
alid_Ift forever preferred_Let forever
. etho: <DROADGAST, MOLTICAST ,UF LOWER_UP> méu 1500 qdise pfifo_fast state UNKNO
Group default qlen 1000
Tink, 0:12:34:56 brd €03 00:00: 00508500
inct 10.0.2.16/24 brd 10.0.2.255 scope glabal etho
ever profersed_Lrt forever

OEBPS/assets/lfmk_0109.png
eoe & anewcomb — dd + sudo — 80x29

Sat Jan 21 23:59:52 on ttys000
anewconbs diskutil list
/dey/diskd (externat, physical):

TYPE NAME s1ze IDENTIFIER
GUID_partition_scheme 484.8 GB disko
EFI EFI 209.7 MB diskosl
Apple_HFS Internal HD 84.0 GB diskos2
Apple_Boot Recovery HD 650.0 M8 diskos3
/devldxskl (external, physical):
TYPE NAME s1ze IDENTIFIER
FDisk_partition_scheme 48.0 GB diskl
DoS_FAT_32 8.0G8 disklsl

Aarons-Mac:~ anewcombs diskutil unmountDisk /dev/diski

Unmount of all volumes on diskl was successful

Aarons-Mac:~ anewcombs sudo dd if=Downloads/2017-01-11-raspbian-jessie-lite.ing
dev/rdiskl bs=1n

WARNING: Inproper use of the sudo command could lead to data loss
or the deletion of important system files. Please double-check your
typing when using sudo. Type "man sudo" for more information.

To proceed, enter your password, or type Ctrl-C to abort.

Password:
load: 1.37 cnd: dd 538 uninterruptible 0.00u 0.60s

549+0 records in

548+0 records out

574619648 bytes transferred in 71.079200 secs (8084217 bytes/sec)

OEBPS/assets/lfmk_0207.png
uIp PID
root 1
root 2
root 3
root 5
root ?
root 8
root 9
root 10
root 11
root 12
root 13
root 15
root 16
root 17
root 18
root 23
root 24
root 25
root 26
root 31
root 33
root 34
root ES
root 67
root 68
root

n0.pid ~1f suar/1ib/dhcp/dhclient .cthd.

root. 449

PPID

RPRAENNNNNNNNNNNNNNNNNNNNN GO

©00000000000000000000000000
I

Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
Oct1?
0ct1?

TIME T

13 D D)) D

-

1 0 0ctl1? 7

b
ssbin/init
Ikthreadd]
Iksoftirgd 01
[kuorker/0:0H1
Ikhelper]
Ikdeutnpfs]
Inetns]
Turiteback]
Ibioset]
Ikblockd]
Irpciod]
Iksuapd01
[fsnotify_mark]

Infsiod]

[kuorker/u2:11

Iscsi_eh_01

Iscsi_tnf_01

[kuorker/0: 1H1

[kuorker/u2:21

Ikpsmoused]

Ideferug]

[jbdz/sdaz-81

[extd-rsu-conver1
/lib/systend/systend-udevd
/1ib/systend/systend- journald
dnclient —v —pf /runsdhclient.et

leases eth
00:00:01 susr/sbin/cron —f

OEBPS/assets/lfmk_0524.png
N

iy

|| V& VNC Viewer - Authentication

UNC Server: 192.168.0.209:5900

e
pasors

Catchphrase: Market aloha poncho. Explain cabaret printer.

Signature: 9e-f0-b1-eb-0a-82-51-5e

Cancel

o

n>

OEBPS/assets/lfmk_0408.png
pi@raspberrypi = § mkdir
nkdir: invalid option — ’h

Try ’mkdir —help’ for more information.

piGraspberrypi ~ $ mkdir —help

Usage: mkdir [OPTIONI... DIRECTORY..

Create the DIRECTORY(ies), if they do not already exist.

Mandatory argunents to long options are mandatory for short options too.
-n, —-node=MODE ~ set file mode (as in chmod), not a=rux - umask

-p, —parents no error if existing, make parent directories as needed
-u, —-verbose print a message for each created directory
-z set SELinux security context of each created directory

to the default tupe

—-context[=CTX1 like -2, or if CTX is specified then set the SELinux
or SMACK security context to CTX

~help display this help and exit

—version output version information and exit

GNU coreutils online help: <http://uuu.gnu.org/softuare/coreutils/>
Full documentation at: <http://uwu.gnu.org/softuare/coreutils/mkdir>
or available locally via: info ’(coreutils) mkdir invocation
pieraspberrypi ~

OEBPS/assets/lfmk_0605.png
pieuirtualpi:
virtualpi
piguirtualpi:

9 hostnane

$

OEBPS/assets/lfmk_0802.png
——— Raspberry Pi Software Configuration Tool (raspi-config) ————

A1 overscan You may need to configure oversca
A2 Hostname Set the visible name for this Pi
Jemor

A5 Resolution Set a specific screen resolution
A6 GL Driver Enable/Disable experimental deskt
<select> <Back>

| |
| |
| |
| |
| |
| |
| AO Update Update this tool to the latest ve |
| |
| |
| |
| |
| |
| |
| |

OEBPS/assets/lfmk_0517.png
9 ssh pie132.168.0.209
The authenticity of host ’192.168.0.209 (192.168.0.209)" can’t be established
CDSA key fingerprint is be:d6:5e:05:93:47:a3 2:iee:66:76

re you sure you want to continue comnecting (yes/mo)? yes

jarning: Permanently added *192.168.0.209’ (ECDSA) to the list of knoun hosts
i0192.168.0.209"s passuord:

The prograns included with the Debian GNU/Linux system are free softuare;
he exact distribution terns for each progran are described in the
individual files in susr/share/doc/x/copyright.

ebian GNU/Linux comes with ABSOLUTELY NO UARRANTY, to the extent
ermitted by applicable lau.

ast login: Thu Oct 6 17:58:01 2016 from study.neucombnet.com
i@raspberrypi:” §

OEBPS/assets/lfmk_0712.png
pi@raspberrypi:~ § sudo pigpiod &
111 1224
piéraspberrypi:~ § ./i2c naster.py
lessage

- 1
- 2
- 3
- 4
- 5
- 6
- 7
-]
- 9

Message 10

OEBPS/assets/lfmk_0430.png
pi@raspberrypi ~ 5 sudo apt-get autoremove
Reading package lists... Done
Building dependency tree
Reading state infornation... Done
The following packages will be REMOUED:
Iibasn1-8-heindal libdrn-freedrenol 1ibdrn-nouveauz 1ibdrn-radeonl libelf1
libgssapi3-heindal 1ibhcryptod-heindal 1ibheinbasel-heindal
pigpio
0 upgraded, 0 newly installed, 1 to remove and 11 not upgraded
after this operation, 857 kB disk space will be freed.
Do you want to continue? [¥/nl
(Reading database ... 110787 files and directories currently installed.)
Remouing pigpio (1.30-1) .
Processing triggers for man-db (2.7.0.2-5) ...
piraspberrupi

OEBPS/assets/lfmk_0302.png

OEBPS/assets/lfmk_0615.png
top - 19:38:30 up 3 days. 9, 2 users, load average: 0.62, 0.20, 0.06
Tasks: 157 total, 1 running, 156 sleeping, O stopped, O zombie
1.2us. 0.65y. 0.0ni, 98.2 id, 0.0wa, 0.0 hi, 0.0si, 0.0st
947740 total. 606868 used, 340872 free, 78044 buffers
102396 total, 0 used, 102396 free. 320672 cached Mem

e

20 0 33412 17280 10408 5 2.6 7.17 vncserver-x11-c
20 0 416920 102676 51436 5 2.0 9.07 chromiun-browse
20 0 166780 52980 35516 5 1.0 0.74 Xorg
20 0 5112 2476 2002R 1.0 0:00.22 top
510 0 0 0s 03 -23 irq/92-mmct
20 o 0 0 0s 0.3 .26 mncqd/0
20 0 10940 7204 67365 0.3 .28 vncagent
20 0 47220 19012 16060 5 0.3 .57 Ixterminal
20 o 0 0 0s 0.3 .46 knorker/ug:
20 0 23892 3968 27405 0.0 .32 systemd
20 o 0 0 0s 0.0 .12 kthreadd
20 o 0 0 0s 0.0 .92 ksoftirqd/0
0 -20 0 0 0s 0.0 -0 kworker/0:0H
20 o 0 0 0s 0.0 .26 rcu_sched
20 o 0 0 0s 0.0 -0 rcu_bh
rtoo 0 0 0s 0.0 ~10 migration/o
et 0 0 0 0s 0.0 .06 migration/1

OEBPS/assets/lfmk_0619.png
1B | 947740 606868 uscq.| | 340872 fro
\ 02396 <) 102396

OEBPS/assets/lfmk_0538.png
Home. -+ x
Edit View Go Bookmarks Help

& NewTab okt 1a .
3 New Window cukN

/W Create New Folder Shift+Ctri+N.
R o ! @ O |

Desktop Documents Downloads
o g
Cubq| fimpeg sources Music
bW
B H
Templates Videos adobe
cinnamon config dbus
gnome2 gnome2_private. java
Jocal macromedia mozilla
wnc kernel-qemuessie kernel.qemu-wheezy

Connectto a remote computer o shared disk —_——

OEBPS/assets/lfmk_0803.png
Choose the audio output

m
2 Force HDMI

<ok> <Cancel>

OEBPS/assets/lfmk_0710.png
GND VCC SCL_SDA

-

enom SCL S

DA

'“b'nu

»
\

OEBPS/assets/lfmk_0104.png
anewcomb@anewcomb-VirtualBox ~ $ cd Downloads
anewcomb@anewcomb-VirtualBox ~/Downloads $ unzip 2017-81-11-raspbian-jessie.zip
Archive: 2017-81-11-raspbian-jessie.zip

inflating: 2017-081-11-raspbian-jessie.img
anewcomb@anewcomb-VirtualBox ~/Downloads $ |

OEBPS/assets/lfmk_0607.png
GNU nano 2.2.6

binssh -e
re.local

]
]

]

This script is executed at the end of each multiuser runlevel.
Make sure that the script will "exit 0" on success or any other
value on error.
]
]
]
]
]

In order to enable or disable this script just change the execution
bits.
By default this script does nothing.

Print the IP address
_IP-5(hostnane ~1) |1 true

if [“§_IP" 1; then

printf "My IP address is 7s\

3
sh /hone/pishello.sh <——

Sxit 0

i Get Help JF UriteOut J Read File j§j Prev Page i Cut Text Qg Cur Pos
M Exit X Justify Where Is QL Next Page Ml UnCut Text@ To Spell

OEBPS/assets/lfmk_0541.png
anewconb@anewcomb-VirtualBox ~ § scp python script.py pi@192.168.0.209:/home/pi
pi@192.168.6.269's password:

python_script.py 100% 0 0.0KB/s 00:00
anewcomb@anewcomb-VirtualBox ~ $ |

OEBPS/assets/lfmk_0103.png
File Edit View Go Bookmarks Help

- T .
2017-01-11-raspbian-jessie.zip -+ x
Archive Edit View Help
£l i3 open v | M) AddFies (B Extract

“ sk > 4 & locton |

Name ~ | size Type Modified

2 2017-01-11-raspbian-jessieimg 4468 Raw diskimage 10 January 2017, 09:59

1 object (4.4 GB)

*2017-01-11-raspbian-jessie zip" selected (1.5 GB), Free space: 5.0 GB

OEBPS/assets/lfmk_0202.png
Starting Wait for Plynouth Boot Screen to Quit...
Starting Terminate Plynouth Boot Screen...

Started Login Service.

Started Uait for Plynouth Boot Screen to Quit.
Starting Getty on ttyl...

Started Getty on ttyl.

Reached target Login Prompts.

Started Terminate Plynouth Boot Screen.

Started LSB: IPu4 DHCP client with IPu4LL support.
Reached target Multi-User System.

Starting Update UTHP about System Runlevel Changes. ..

ce
EE]

o
]

Raspbian GNU/Linux 8 raspberrypi ttyl

raspberrypi login: pi (automatic login)
Last login: Fri Feb 5 20:03:40 UTC 2016 on ttyl
Linux raspberrypi 4.1.7+ #2 Mon Oct 12 19:10:17 BRT 2015 armu6l

The prograns included with the Debian GNU/Linux system are free softuare;
the exact distribution terns for each program are described in the
individual files in susr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO UARRANTY, to the extent
pernitted by applicable lau.
piGraspberrypi

OEBPS/assets/lfmk_0516.png
eo6 pi@raspberrypi: ~ — ssh — 80x24

Last login: Thu Oct 6 12:49:30 on console E
Helcone to Darwin!

benicia-makerspaces-poverbosk-g#:~ nokerspace ssh pleis?.163.8.209

The authenticity of host '132.166.0.209 (192.168.8.209)" can't be establ ished.

RS key fingerprint is o6:25:05:54:00:60:34:c5:df 158:91 121 145:00:00:48.

Are you sure you vant: to continue connecting (ves/no)? yes

Harning: Pernanently added '132.166.0.289" (R3A) to the List of known hosts.
PiG192.160.0.289'5 passvord:

The prograns included with the Debian GNU/Linux systen are free sof tuare;
the exact distribution terns for each progran are described in the
individual files in /ust/share/doc/%/copyrignt .

Debian GNU/Linux cones with ABSOLUTELY ND WARRANTY, to the extent
pernitted by applicoble lav.

Last login: Thu Dot 6 18:24:11 2816 from study necontnet .con
pieraspberrypiz~ §

OEBPS/assets/lfmk_0205.png
1@raspberrypi ~ 3 Is -1

otal 3
ruxe-xe-x 2 pi pi 409 Sep 24 2015
ruxe-xe-x 5 pi pi 409 Sep 24 2015
ruxe-xe-x 2 pi pi 409 Sep 24 2015
ru-r—r-- 1 pi pi 0 Jul 13 20:31
ruxe-xe-x 2 pi pi 409 Sep 24 2015
ruxe-xe-x 2 pi pi 409 Sep 24 2015
ruxe-xe-x 2 pi pi 409 Sep 24 2015
ruxruxe-x 2 pi pi 409 Jan 27 2015
ruxe-xe-x 2 pi pi 409 Sep 24 2015
ruxe-xe-x 2 pi_pi 409 Sep 24 2015

ieraspberrypi = $

Desktop
Docunents
Dounloads
exanple. txt
Music
Pictures
Public
python_ganes
Tenplates
Videos

OEBPS/assets/lfmk_0108.png
eoce A anewcomb — -bash — 80x24

Sat Jan 21 23:59:52 on ttysi
~ anewconbs diskutil list
/dey/diskd (externat, physical):

TYPE NAME IDENTIFIER
GUID_partition_scheme disko
EFI EFI diskos1
Apple_HFS Internal HD diskos2
Apple_Boot Recovery HD diskes3
/devldxskl (external, physical):
TYPE NAME IDENTIFIER
FDisk_partition_scheme disk1)
DoS_FAT_32 diskis1

Aarons-Maci~ anewconb$ diskutil unmountDisk /dev/diski
Unmount of 3Ll volunes on Giskl was successful
Rarons-tac:~ anewconbs |

OEBPS/assets/lfmk_1002.png
Starting setc/rc.local Compatibility. ..
[0k 1 Reached target Netuork is Online.
Starting LSB: Start NTP daemon
Starting Permit User Sessions.
0K 1 Started Pernit User Sessions.
g IP address is 10.0.2.16
0K 1 Started Systen Logging Service.
0K 1 Started LSB: Autogenerate and use a suap file.
0K 1 Started setc/rc.local Compatibility.
\ Starting Terminate Plynouth Boot Screen..
L Starting Hold until boot process finishes up..

aspbian GNU/Linux B raspberrypi ttyl

aspberrgpl login: pi (autonatic login)
ast login: Sat Oct 22 21:17:18 PDT 2016 on ttyl
Linux raspberrypi 4.1.7+ 42 Hon Oct 12 19:10:17 BRT 2015 arnv6l

The prograns included uith the Debian GNU/Linux system are free softuare:
he exact distribution terms for each program are described in the
individual files in susr/sharesdoc/x copyright.

ebian GNU/Linux comes with ABSOLUTELY NO UARRANTY, to the extent
ermitted by applicable lau.
i@raspberrypi:” §

OEBPS/assets/lfmk_0111.png
anewcomb@anewcomb-VirtualBox ~ $ sudo fdisk -1

Disk /dev/sda: 21.5 GB, 21474836480 bytes
255 heads, 63 sectors/track, 2610 cylinders, total 41943040 sectors
Units = sectors of 1 * 512 = 512 bytes

sector size (logical/physical): 512 bytes / 512 bytes

1/0 size (minimun/optimal): 512 bytes / 512 bytes

Disk identifier: 0x000c6eS8

Device Boot start End Blocks Id System
/dev/sdal * 2048 37748735 18873344 83 Linux
/dev/sda2 37750782 41940991 2095105 5 Extended
/dev/sdas 37750784 41940991 2095104 82 Linux swap / Solaris

7ausssaats bytes
231 heads, 28 sectors/track, 2411 cylinders, total 15597568 sectors
Units = sectors of 1 * 512 = 512 bytes

sector size (logical/physical): 512 bytes / 512 bytes

1/0 size (mininun/optinal): 512 bytes / 512 bytes

Disk identifier: 0x000Cc086

Device Boot start End Blocks Id System
/dev/sdbl 2048 15597567 7797766 b W95 FAT32
anewcomb@anewcomb-VirtualBox ~ $ I

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/assets/lfmk_0904.png
Maker settings
View activity log

Account Info

Connected as: anewcomb2
URL: https://maker.ifttt.com/use/w .
Status: active

Edi .

OEBPS/UbuntuMono-Regular.otf

OEBPS/css_assets/titlepage_footer_ebook.png
MEDIA

SAN FRANCISCO, CA

OEBPS/assets/lfmk_0113.png
——— Raspberry Pi Software Configuration Tool (raspi-config) h———

Expand Filesys
Change User Password
Boot Options
Localisation Options
Interfacing Options
overclock

Advanced Options
About raspi-config

<select>

Change password for the default u
Configure options for start-up
Set up language and regional sett
Configure connections to peripher
Configure overclocking for your P
Configure advanced settings
Information about this configurat

<Finish>

OEBPS/assets/lfmk_0510.png
—————1 Raspberry Pi Software Configuration Tool (raspi-config) F——

| |
| PicCamera Enable/Disable connection to the |
| T |
| P3WNC Enable/Disable graphical remote a |
| PaspI Enable/Disable automatic loading |
| P51 Enable/Disable automatic loading |
| P6 serial Enable/Disable shell and kernel m |
| P7 1-wire Enable/Disable one-wire interface |
| P8 Remote GPIO Enable/Disable remote access to 6 |
| |
| |
| |
| |
I <select> <Back> |
| |

OEBPS/DejaVuSans-Bold.otf

OEBPS/DejaVuSerif.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/assets/lfmk_0616.png
??°? 9

OEBPS/assets/lfmk_0708.png

OEBPS/assets/lfmk_0424.png
Get :203 http:ssarchive.raspberrypi.orgsdebian/
1.0-1srpil [90.1 kB1

Get:204 http:/sarchive.raspberrypi.org/debian/
2.3-1+rpil [28.4 kB1

Get:205 http://archive.raspberrypi.org/debian/
Lerpil 1216 KkB1

Get:206 http://archive.raspberrypi.org/debian/
3-1srpi1 [149 kB

Get:207 http:/sarchive.raspberrypi.org/debian/
rpil [105 KB1

Get:208 http:/sarchive.raspberrypi.org/debian/

Get:209 http://archive.raspberrypi.org/debian/
-14.5-1+debBulrpilrpily [3,061 kB1

Get:210 http://archive.raspberrypi.org/debian/
5-1+debBulrpilrpily [1,884 kB1

Get:211 http://archive.raspberrypi.org/debian/
on all 1:2.4.1-1rpi53rpily [462 kB

Get:212 http://archive.raspberrypi.org/debian/
thf 1:2.4.1-1rpi53rpilg 15,212 kB1

Get:213 http://archive.raspberrypi.org/debian/
3.0-0 armhf 1:2.4.1-1rpi53rpily [1,716 KBI
Get:214 http://archive.raspberrypi.org/debian/
-1bpoB+1 [38.6 kBI

Get:215 http://archive.raspberrypi.org/debian/
£ Bu6S [62.2 MBI

Get:216 http://archive.raspberrypi.org/debian/
10.3.1+2016012407 [236 MB1

55/ [216 wolfran-engine 56.5 MB/236 MB 2421

Jessiesmain
Jjessiesmain
Jjessiesmain
Jjessiesmain
Jjessiesmain
Jjessiesmain
Jjessiesmain
Jjessiesmain
Jjessiesmain
Jjessiesmain
Jjessiesmain
Jjessiesmain
Jjessiesmain

Jjessiesmain

libegll-mesa armhf 11
libfn-extrad arnhf 1.
libfn-data all 1.2.3-
libfn-gtk4 arnhf 1.2.
libfnd armhf 1.2.3-1+
libfn-gtk-data all 1.
Tibgtk-3-comnon all 3
1ibgtk-3-0 arnhf 3.14
Tibuebkitgtk-3.0-comn
Tibuebkitgtk-3.0-0 ar
1ibjavascriptcoregtk-
Tibudpaul arnmhf 1.1.1
oracle- javaB-jdk armh
wolfran-engine arnhf

1,348 kB/s 3min 3s_

OEBPS/assets/lfmk_0411.png
pil@raspberrypl 5 mkd
nkdir mkdosfs
pieraspberrypi ~ $ mkd

OEBPS/assets/lfmk_0527.png
e VNC Viewer - Authentication

“ ve

E yNce VNC Server:

92.168.0.209:

WNC|

Enct
: Market aloha poncho. Explain cabaret printer.

e-10-b1-eb-92-82-51-5¢

Cancal r

OEBPS/assets/lfmk_0416.png
interfaces(5) file used by ifup(8) and ifdown(8)

Please note that this file is written to be used with dhcpcd
For static IP, consult /etc/dhcpcd.conf and ‘man dhcped.conf

Include files from /etc/network/interfaces.d:
source-directory /etc/network/interfaces.d

auto lo
iface 1o inet loopback

#iface eth0 inet manual
iface etho inet static
address 192.168.0.100
netmask 255.255.255.0
gatenay 192.168.0.1
dns-nameservers 8.8.8.8 8.8.4.4

allow-hotplug wlan0
iface wlan0 inet manual
wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

allow-hotplug wlant
iface wlani inet manual
wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

OEBPS/assets/lfmk_0633.png
pi@raspberrypi:~ § more loop.log | grep dog | grep again
The dog is running again:
The dog is running again:
The dog is running again:
pieraspberrypi:- $ I

OEBPS/assets/lfmk_0533.png
B My Documents - pi@192.166.0.209 - WinSCP. - o x
Local Mark Files Commands Session Options Remote Help
R 5 [Synchronize| | B o | @ (5 Queue - Transer Settings Defoutt .-
& pi@192.1680.209 G New Session
[EMy documents - [- BERQRZ|% - (@R @ R FindFiles | By
Upload |7 Edit - X & & - | it - X P Eiry
Name Size Type Changed - ~ Size Changed - Rights Owner
I Parent directory 10/7/2016 1:33:50 PM 9/22/2016 7:26:56 PM XX root
o For Miakers ... Fiefolder 107772016 2011470 YRIOGAIAIM mowrx
) Virtual Machines File folder 10/7/2016 1:3350 PM [} Templates 9216 9034PM rwmrxx
[} Assassin's Creed Unity File folder 10/7/2016 11:56:01 AM [} Public 9216 9034PM rwmrxx
roid File folder 10/4/2016 3:08:52 PM [} Pictures 9216 9034PM rwmrxx
eagle Fiefolder /2472016 73749 M Music YRIOGNIAIM mowrx
|| My Kindle Content File folder 8/18/2016 836:19PM [} Downloads 9216 9034PM rwmrxx
[} Overwatch File folder 8/16/2016 835:11 AM [} python_games 92/201685239PM rasrxex
[} Plants vs Zombies GW2 File folder 7/16/2016 432:20PM [} Documents 92/201685239PM rasrxx
[} My Spore Creations File folder /1572016 628:39PM [} Desktop 92/201685230PM rwaxrx pi
Fiefolder 7872016 715160
Fiefolder 72672016 91533 AM
Fiefolder /1572016 94318 PM
Fiefolder /772016 83026PM
Fiefolder 67772016 83024PM
Fiefolder 7772016 82741 PM
Fiefolder /772016 82651 PM
Fiefolder /772016 82516M
[} olivia's folder File folder 6/7/2016 8:13:06 PM
|| MyNewApplicationA... File folder 6/7/2016 8:11:02PM
) Sheet Music File folder 6/7/2016 8:1025PM
[assets File folder 6/7/2016 8:07:07PM
[} gPodder File folder 6/7/2016 8:06:21PM .
0B ot 372MB n 001 1247 Thidden 0B of0Bin0r 17 hidden
a sea 0:00:08

OEBPS/assets/lfmk_0915.png
e\
/ 4 Tonido x\

< c 0 [G) 192.168.0.222:10001/ui/core/index.html

F&NIDO

Select a unique name for this computer

Did you know?
* You are creating a local account
« You can login without having to be online
* Your passwords are NEVER transmitted to us

Language
english

Account Name

Enter name
Password

Enter account password

Repeat Password
Re-enter account password

Email

Enter email id

@ 1 agree to Terms of Use @

© More Options +

OEBPS/assets/lfmk_0419.png
Btrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_conf i
country=G8

OEBPS/assets/lfmk_0646.png
#mh dom mon dow command

3023%10 /home/pi/hello.sh #Every Sunday in January at exactly 11:30pm
00*** /home/pi/hello.sh #Every day at midnight
0/10 * * * * /home/pi/hello.sh #0nce every 10 minutes

i 0/4 * * 1,3,5 /home/pi/hello.sh #Once every 4 hours on Mon, Vied and Fri

Get Help [writeout [Read File I Prev Page ;i cut Text [Cur Pos
Exit Justify Where Is [Next page B Uncut Textl] To Spell

OEBPS/assets/lfmk_0525.png
[RealvNC

ece
< R o [#-)l 5 a Q search
Favorites Q iBooks |- Advanced >
- Image Capture 8 VNC Address Book
Al My Files e
B © unes [VEJNG View]
& iCloud Drive || g Launchpad
/A Applications || ® Mail
 Maps
9 Deskiop © Messages
[H Documents B Mission Control
T Notes
O = & Photo Booth
Devices. & Photos
. Preview
() €1 Capi VNC Viewer
(= ElCapitanR.. | @ quickTime Player
[RealvNC. >
Shared .
U Reminders App - 2.9 MB
@ soferi Created 6/6/16,12:00 PM
o oo Modified Today, 154 PM
] oxies Last opened Today, 1:58 PM
] System Preferences Version 6.3.2(r19179)
TextEdit sazine

© Time Machine
B utilities

OEBPS/assets/lfmk_0528.png
- All Applications

. 8 Accessories
"4 Graphics

- I p—
& office

7 sound & Video
[Administration
Preferences
B Places

B Recent Files

(o] (o] o] B O

Firefox Web Browser

0 Hexchat

f® Pidgin Internet Messenger
Thunderbird Mail

[Transmission

B3 vnc address Book

B e viewer

VNC Viewer
Connect to computers running VNC Server

@ venu = F [ITerminal

1
)

OEBPS/assets/lfmk_0537.png
W Raspberry Pijhome/pi

(o 2N BIK - JI¥-;]

5 internal D @ Network ([ETTEIIIIT A Process Viewer

H =

© etk By 1

3 Process Viewer

[Raspberry Pi | Zero KB of Zero K8 free & Internal HD | 66.23GB of 83.97 GB free
| L + | | ‘anewcomb
1] Raspberry Pi > [home » [pi /% Internal HD »] Users » % anewcomb
name e | s | modtes s name S e | s | modfes
] DIR | 10/13/16, 5:17 AM | folder @ . DIR | 10/7/16, 6:45PM | folder
Desktop DIR | 10/12/16, 5:55PM | folder [Desktop. DIR | 10/7/16, 1:42 PM folder
B Documents DIR 92316, 3:52 AM DIR 107116, 1:42PM folder
[Downloads DIR 92316, 4:03 AM DIR 10/7/16,7:47PM folder
Music DIR | 9/23/16, 4:03 AM 908 bytes. DIR | 10/7/16, 1:42 PM folder
B Pictures DIR | 9/23/16,4:03AM | | Modified: October 12, 2016 at 11:37:00 PM DIR 107116, 1:42PM folder
Public DIR | 9/23/16, 4:03 AM DIR ' 10/7/16, 1:42 PM folder
[python_games DIR | 9/23/16, 352 AM DR 107716, 142PM | folder
[Templates. DIR 92316, 4:03 AM Python script
Videos DIR 9/23/16, 4:03 AM 908 bytes.
“Bndec oy | o08by... 1002716, 1137 M homels
@ ts mp3 | 12KB 10/12/16, 5:21 PM S TR
s Py 262 by... 10/12/16, 5:20 PM
revin:
Sharing & Permissions
[
Owner:
Group: 0
Public: 0
Oytes 113 K803 (s 0 /9 i) Nomerisvaise: 0755 0bytesn 00 (s 07 i)
g
[home/pi
View - F3 Edit - F4 New Folder - F7 Delete - F8

OEBPS/assets/lfmk_0106.png
O o || @ et comee

£ Internet Explorer

T sencaro | @ iPnoro & oigitaiColor Meter
isync ! Directory Access >
g

@ iTunes & Disk Utility
[peskton & web ¥ Grab
& mail ® Grapher
R maesvae || 5 v & inater L]
[QuickBooks NUE NI .
[quicken 2006 * A Keychain Access

Name Terminal

[vocuments || @ QuickTime layer & wigraton Assisant Kind_ Application

- @ RealPlayer @ Netinfo Manager Size 4 MB on disk

g voves @ safari @ Network Utilty ot 130106 209
2 sherlock £ ODBC Administrator lodified 9/26/1

Last opened 1/30/06 5:13 PM

é Music [sMARTUtility 1.1 » || #= print center Veraton 151

) stickies = Printer Setup Utility
Pictures & Stuffit Expander € Remote Install Mac 05 X

« System Preferences. % @ System Profiler

7 Textdit i
[~ utilities Il L@ VoiceOver Utility " 1
: 1 of 26 selected, 14.45 GB available

More info.

OEBPS/assets/lfmk_1003.png
XTerminal.

Debian
ducation
Graphics
ntemet

office

Sound & Video

OEBPS/assets/lfmk_0602.png
GNU nano 2 File: cetc/hos
127.0.0.1 localhost raspberrypi <——

1 localhost ip6-localhost ip6-loopback
r102::1 ip6-allnodes

ip6-allrouters

127.0.1.1 raspberrypi <

Get Help Jg UriteOut J Read File g Prev Page i Cut Text Rg Cur Pos
M Exit X Justify Uhere Is K1 Mext Page @1 UnCut Textgi To Spell

OEBPS/assets/lfmk_0622.png
pi@raspberrypi:~ § ps -ef | grep lighttpd

wwi-data 674 1 0 20:42 7 00:00:00 /usr/sbin/lighttpd -D -f /etc/li
ghttpd/ lighttpd. conf
pi 12250 29756 0 22:00 pts/0 00:00:00 grep --color-auto lighttpd

pieraspberrypi:~ $ I

OEBPS/assets/lfmk_0638.png
pi@raspberrypi:~ $ ls -1 loop.py

~rwxr-xr-x 1 pi pi 96 Nov 1 21:02 loop.py

§ sudo_chown user:user loop.py
- $ 1s -1 loop.py

~rwxr-xr-x 1 user user 96 Nov 1 21:02 loop.py
$ sudo_chown pi loop.py

$ 1s -1 loop.py

-rwxr-xr-x 1 pi user 96 Nov 1 21:02 loop.py
pieraspberrypi:- § Il

OEBPS/assets/lfmk_0421.png
ctrl_interface:
update_config=1
country=G8

IR=/var/run/wpa_supplicant GROUP=netdev

networl
ssid="YourssID"
scan_ssid=0
psk="YourPassword"
key_mgnt=WPA-PSK

psk="0therfassword"
key_mgnt=WPA-PSK

OEBPS/assets/lfmk_0511.png
G & o

OEBPS/assets/lfmk_0406.png
pi@raspberryp:
total 116
druxr-xr-x 20

EhroNALNNNRINOORNRNONOR e R, W

druxe-xr-x
druxe-xr-x

—ru

pieraspberry)

i

i~ 9

Sep

Aug
Aug
Sep

-bash_history
~bashrc

.cache

.config

.dbus

Desktop
Docunents
Dounloads
exanple. txt
.gstreaner—0.10
hello.sh
~local
_Mathematica
Music
Pictures
.profile
Public
python_ganes
Tenplates
.themes
_thunbnails
Videos
-olfranEngine
Xauthority
.xsession-errors

OEBPS/assets/lfmk_0644.png
min (@ - 59)
hour (e - 23)
day of month (1 - 31)
month (1 - 12)
day of week (6 - 6) (Sunday to Saturday;
7 is also Sunday)

%+ %+ command to execute

OEBPS/assets/lfmk_0503.png
——— Raspberry Pi Software Configuration Tool (raspi-config) b——

B2 Console Autologin Text console, automatically logged in as 'pi' user
B3 Desktop Desktop GUI, requiring user to login
B4 Desktop Autologin Desktop GUI, automatically logged in as 'pi’ user

|
|
|
|
|
|
|
|
|
|
|
|
|
| <ok> <Cancel>
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

OEBPS/assets/lfmk_0636.png
pi@raspberrypi:~ § sudo addgroup admins
Adding group “admins’ (GID 1002) .

Done..
pieraspberrypi:- $ Il

OEBPS/assets/lfmk_0110.png
anewcomb@anewcomb-VirtualBox ~ $ sudo fdisk -1

Disk /dev/sda: 21.5 GB

21474836480 bytes

255 heads, 63 sectors/track, 2616 cylinders, total 41943040 sectors

Units = sectors of 1 * 512
Sector size (logical/physical):
I/0 size (minimum/optimal):
Disk identifier: ©x000c6e58

Device Boot
/dev/sdal
/dev/sda2
/dev/sda5

start

2048
37750782
37750784

512 bytes
512 bytes / 512 bytes
512 bytes / 512 bytes

End
37748735
41940991
41949991

anewcomb@anewcomb-Virtualox ~ $ [

Blocks
18873344
2095105
2095104

1d
83

82

Systen
Linux

Extended

Linux swap / Solaris

OEBPS/assets/lfmk_0623.png
e s el] grep et
10 20:42 :00:00 /usr/sbin/lighttpd -D -f /etc/1i
ghttpd Lighttpd cont

24652 29756 0 22:21 pts/0 00:00:00 grep --color-auto lighttpd
bieraspberrypa:- ¢ cudo kKill 674

pieraspberrypi:- § ps -ef | grep lighttpd

pi 1055 20758 0 22125 pes/o 90:00:00 grep -color-auto ighttpd
bieraspberryps:- ¢ I

OEBPS/assets/lfmk_0520.png
pi@raspberrypiz = sudo systemctl enable vncserver-x1l-serviced.service
Synchronizing state for vncserver-x11-serviced.service with sysvinit using update-rc.d
Executing /usr/sbin/update-rc.d vncserver-x11-serviced defaults

Executing /usr/sbin/update-rc.d vncserver-xii-serviced enable

pieraspberrypi: - sudo systenctl start vncserver-xil-serviced service
pi@raspberrypiz- S

OEBPS/assets/lfmk_0532.png
e v e - (B F [o [

OEBPS/assets/lfmk_0519.png

OEBPS/assets/lfmk_0609.png
GNU nano 2.2.6

ile: .bashrc

o 16 this is an xtern set the title to userehost:

jcase “STERM” in

Ixterne irxute
PS1="\[\e10:${debian_chroot

(Sdebian_chroot)}\u@\h: \uNa\I§PS1”

)

o enable color support of Is and also add handy aliases
if [-x susr/bindircolors 1: then
test -r “/.dircolors && eval “"$(dircolors -b ~/.dircolors)” 11 eval "$(dirc$|
alias 1s=’Is --color=auto’
Halias dir="dir —color=auto’
Halias vdir="udir —color=auto’

alias grep='grep ~-color=auto’
alias fgrep=' fgrep —color=auto’
alias egrep="egrep ——color=auto’
i

T s p—
Jnexport. GCC_COLORS=" error=01:31 tuarning=01:35 note=01:36 carct =01:32: locus =013

g Get Help R UriteOut g Read File jj Prev Page i Cut Text R§ Cur Pos
N Exit Justify Where Is Y Next Page 1 UnCut Textfi To Spell

OEBPS/assets/lfmk_0118.png
pi@raspberrypi:~ § passwd
Changing password for pi.
(current) UNIX password:

Enter new UNIX password
Retype new UNIX password:

passwd: password updated successfully
pieraspberrypi:~ § Il

OEBPS/assets/lfmk_0432.png
piéraspberrypi = § sudo apt-get install -y pigpio python-pigpio
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
pigpio python-pigpio
0 upgraded, 2 neuly installed, © to remove and 270 not upgraded.
Need to get 256 kB of archives.
after this operation, 1,017 kB of additional disk space will be used
Get:1 http://archive.raspberrypi.org/debian/ jessiesmain pigpio armhf 1.30-1 [22
9 kB1
Get:2 http://archive.raspberrypi.org/debian/ jessie/main python-pigpio armhf 1.3
0-1 [26.7 kB1
Fetched 256 KB in 1s (171 kB/s)
Selecting previously unselected package pigpio.
(Reading database ... 116795 files and directories currently installed.)
Preparing to unpack .../pigpio_1.30-1 arnhf.deb ..
Unpacking pigpio (1.30-1) ...
Selecting previously unselected package python-pigpio.
Preparing to unpack .../python-pigpio_1.30-1_armhf.deb ..
Unpacking python-pigpio (1.30-1) .
Processing triggers for man-db (2.
Setting up pigpio (1.30-1) ...
Setting up python-pigpio (1.30-1) ...
pieraspberrupi ~

0.2-5) ...

OEBPS/assets/lfmk_0105.png
3 Win32 Disk Imager
InageFie
[D:/Download/p0 17-0 1-11-raspbian jessie.img

(Copy| [MDS Hash:

Progress.

[o

Write data in ‘Image File' to ‘Device'

OEBPS/assets/cover.png
Understanding the Operating System That Runs
Raspberry Pi and Other Maker SBCs
Aaron Newcomb

L

OEBPS/assets/lfmk_0704.png
EE®rE R E®E®E
EEEEEEE®EEE D@

Raspberry Pi 3 Model Bv1.2
© Raspberry Pi 2015

DSI (DISPLAY)

ETHERNET

OEBPS/assets/lfmk_0303.png
Size

width: 100 |
Height: (36|
Icon size:[36_|

Alignment
® Left
Centre
O Right

Pixels

% Percent v

Pixels v

Margin
0

Monitor:

E]

0K

OEBPS/assets/lfmk_0431.png
pieraspberrypi = J apt-cache search pigpio

pigpio - Library for Raspberry Pi GPID control

python-pigpio - Python module uhich talks to the pigpio daemon (Python 2)
python3-pigpio — Python module which talks to the pigpio daemon (Python 3)
pieraspberrupi ~

OEBPS/assets/lfmk_0107.png
eoce A anewcomb — -bash — 80x24

Last Logir
Aarons—Hac:~ anewconbs diskutil list
Jgeu/disko (external, physical):

TYPE NAME
GUID_partition_scheme

EFI EFI

3
sscurai (externor, physico:
TYPE NAME
FDisk_partition_scheme
D0S_FaT_32
Aarons-Hac:~ anewconbs |

Sat Jan 21 23:59:52 on ttysi

Apple_HFS Internal HD
Apple_Boot Recovery HD

IDENTIFIER
disko
diskos1
diskos2
diskes3

IDENTIFIER
disk1)
diskis1

OEBPS/assets/lfmk_0426.png
pi@raspberrypi ~ § apt-cache search gpio

lednon - Enclosure LED Utilities

stn32flash - STM32 chip flashing utility using a serial bootloader

pigpio - Library for Raspberry Pi GPI0 control

python-gpiozero - Simple API for controlling devices attached to the GPID pins.
puthon-gpiozero-doc - Docunentation for the gpiozero APT

python-pigpio - Python module which talks to the pigpio daemon (Python 2)
python-rpi .gpio - Python GPIO module for Raspberry Pi

pthon-ulthernsensor — Python ul thern sensor module (Python 2)
python3-gpiozero - Simple API for controlling devices attached to the GPIO pins.
python3-pigpio - Python module which talks to the pigpio daemon (Python 3)
python3-rpi.gpio - Python 3 GPI0 module for Raspberry Pi

python3-ulthernsensor - Python ul thern sensor module (Python 3)

raspi-gpio - Dump the state of the BCMZ?0x GPIOS

wiringpi - The wiringPi libraries, headers and gpio command

pieraspberrupi ~

OEBPS/assets/lfmk_0529.png
VNC Viewer

n
—
\

YNC Server.

Encryption: | Let VN Server choose -

Adout Optians. Cannect

OEBPS/assets/lfmk_0404.png
piéraspberrypi 3 Is

Desktop Downloads hello.sh Pictures python_games Uideos
Docunents example.txt Music ~ Public Templates
pieraspberrupi - $ _

OEBPS/assets/lfmk_0512.png
R PUTTY Configuration

7 X

Basic optons for your PuTTY session
‘Specty the destnation you want to connect to
Host Name for IP address) Pot

192.168.0.209]

Connecton type:
ORaw OTenet ORogn @SSH O Seral

Defat Setings Load

OEBPS/assets/lfmk_0301.png
T = [fdx]o131 A

OEBPS/assets/lfmk_0603.png
GNU _nano File: cetc/hosts

127.0.0.1 localhost virtualpi

localhost ip6-localhost ip6-loopback
ip6-allnodes

ip6-allrouters

127.0.1.1 virtualpi

[Get Help J UriteOut QG Read File jjfj Prev Page i Cut Text [{§ Cur Pos
¥ Exit | Justify Where Is Next Page @I UnCut Text@i To Spell

OEBPS/assets/lfmk_0534.png
[N 8 Internal HD/Users/anewcomb

<L 88 ® 0] o o =] O
@ Network I Process Viewer @ Network [Process Vvig Connections Manager |
M Internal HD B 66.25 GB of 83.97 GB free = M Internal HD B 66.25 GB of 83.97 GB free 2
anewcomb E. ‘anewcomb
A% Internal HD » [Users » /& anewcomb % /% Internal HD > [Users > 7 anewcomb = %
name A~ ext size modified kind name Al ext | size modified kind
DIR :45 PM folder ® . DIR 10/7/16, 645 PM folder
[Desktop DIR folder [Desktop DIR | 10/7/16, folder
[Documents DIR folder [Documents DIR 10[7[16, B folder
[Downloads DIR folder [Downloads DIR | 10/7/16, folder
(8 Movies DIR folder [Movies DIR 10/7/16, folder
I Music DIR folder m Music DIR 10/7/18, folder
[l Pictures DIR folder [Pictures DIR 10/7/18, folder
& Public DIR 10/76, folder [Public DIR ' 10/7/16, 1:: folder
0 bytes / 0 bytes in 0 / 0 file(s). 0 / 7 dir(s) 0 bytes / 0 bytes in 0 / 0 file(s). 0 / 7 dir(s)
/Users/anewcomb

View - F3 Edit - F4 Copy - F5 Move - F6 New Folder - F7 Delete - F8

OEBPS/assets/lfmk_0642.png
pieraspberrypi:
Now is the time
pieraspberrypi:- § echo
“Now" is the time
pieraspberrypi:- § Il

OEBPS/assets/lfmk_0909.png
Your key is: St S

4 Back to Channel

To trigger an Event

Make a POST or GET web request to:
https://maker. ifttt.con/trigger/| ’m‘ /with/key/ -

With an optional JSON body of:

-, "values" :

Crvaer o[], vanuer : | s

The data is completely optional, and you can also pass valuet, value2, and value3 as query parameters or form
variables. This content will be passed on to the Action in your Recipe.

YYou can also try it with cur1 from a command line.

curl -X POST https://maker.ifttt.com/trigger/{event}/uith/key/ i -

Test It

OEBPS/assets/lfmk_0304.png
mm Desktop Preferences

Appearance | Desktop Icons | Advanced |

Background

Wallpaper mode: | Center unscaled image on the monitor

Wallpaper: |8 raspberry-pi-logo-small png =)
 Use the same wallpaper on all desktops
Background colour: |
Text
Label text Font: | Roboto Light 12
Label text Colour: | [Shadow Colour: |

Close

OEBPS/assets/lfmk_0906.png
m Choose trigger

Step 2 of 6

Receive a web request

This trigger fires every time
the Maker service receives a
web request to notify it of
an event. For information on
triggering events, go to
your Maker service settings
and then the listed URL
(web) or tap your username
(mobile)

OEBPS/assets/lfmk_1001.png
§ Oracle VM VirtualBox Manager

File | Machine Help

Preferences...
Import Appliance...

Export Appliance...

Virtual Media Manager...
Network Operations Manager.
Check for Updates...

Reset All Warnings

&
@
®
&
A
N

Bit

Import an appliance into VirtualBox

CtrleG

Ctrlel
CtrisE

CtrleD.

ctri-Q

General

Neme: Vitual ReY
Dperating System: Debian (64-bit)

1 s

Soot Order:
Recelration:

1024M8
Fioppy, Optical Hard Disk
VTx/AMD-Y, Nested
Paging, KVM
Paravrtualzation

& Display

Video Memory:
Acceleration

Remote Desktop Server:
Video Capture:

@ storage

Controler: IDE
IDE Secondary Master:

Controler: SATA
SATAPort 0:

B Awo

Host Driver:
Controler:

1518
»

Disabled
Disabled

[OpticalDrive] Ematy

Virtual RPigisk L.vmdk (Normal, 16.00 G8)

Wiindows DirectSound
ICHACS7

OEBPS/assets/lfmk_0116.png
~ I

File Edit Tabs Help

Configuring keyboard-configuration
Please select the model of the keyboard of this machine

Keyboard model:

Diamond 9801 / 9802 series

DTK2000

Ennyah DKB-1008

Everex STEPnote

FLSO

Fujitsu-Siemens Computers AMILO laptop
Generic 101-key PC

Generic 102-key (Intl) PC

Generic 104 ke‘ pC

<ok> <Cancel>

7
[——

OEBPS/assets/lfmk_0631.png
D e L 5 1T foop-toe | erep seain
running again :
- running again
I an running again
I an running again
I an running again
I an running again
pieraspberrypi:~ §

OEBPS/assets/lfmk_0702.png
strip --strip-unneeded libpigpiod_if.so
gcc -shared -o libpigpiod if2.s0 pigpiod_if2.0 command.o
size libpigpiod_if.so
text data bss dec hex filename
59203 4292 49244 112739 1b863 libpigpiod_if.so
gcc -0 pigaved pig2ved.o
strip pig2vcd
strip --strip-unneeded libpigpiod_if2.so
gcc -0 pigs pigs.o command.o
size libpigpiod_if2.50
text data bss dec hex filename
69710 4292 1984 75086 1282 libpigpiod_if2.so
gcc -0 x_pigpiod_if x_pigpiod_if.o -L. -lpigpiod if -pthread -1rt
strip pigs
gcc -0 x_pigpiod_if2 x_pigpiod_if2.0 -L. -lpigpiod_if2 -pthread -1rt
gcc -shared -o 1ibpigpio.so pigpio.o command.o
Strip --strip-unneeded libpigpio.so
size libpigpio.so
text data bss dec hex filename
247360 5324 596672 849356 cfScc libpigpio.so
gcc -0 x_pigpio x_pigpio.o -L. -lpigpio -pthread -lrt
gcc -o pigpiod pigpiod.o -L. -lpigpio -pthread -1rt
strip pigpiod

pi@raspberrypi:~/PIGPIO $ sudo make installl]

OEBPS/assets/lfmk_0703.png
31=1

OEBPS/assets/lfmk_0705.png
0-18-0QAS0-QNS
uo>= YOI QoMo
Q<>n§ YOI QOS2

DI (DISPLAY)
uss 2x

Audio

(VH3UY)) 159
ETHERNET

OEBPS/assets/lfmk_0608.png
Hello World!

Hello Uorld?

Hello Uorld?

Hello Uorld?

Hello Uorld?

Hello Uorld?

Hello Uorld?

Hello Uorld?

[0K 1 Started setcsrc.local Compatibility.
Starting Terminate Plynouth Boot Screen...
Starting Hold until boot process finishes up...

Raspbian GNU/Linux 8 raspberrypi ttyl

raspberrypi login: pi_(autonatic login)
Last login: Mon Oct 17 16:06:17 PDT 2016 on ttyl
Linux raspberrypi 4.1.7+ #2 Mon Oct 12 19:10:17 BRT 2015 armubl

The prograns included with the Debian GNU/Linux system are free softuare;
the exact distribution terns for each program are described in the
individual files in susr/share/doc = copyright.

Debian GNU/Linux comes with ABSOLUTELY NO UARRANTY, to the extent
pernitted by applicable lau.
piBraspberryp

OEBPS/assets/lfmk_0617.png
O 6 © 0 06

Tasks: 157 total |11 running J1156 Slecping | 10 Stopped || 0 zonbiel

OEBPS/assets/lfmk_0645.png
daemon’s notion of time and timezones.

output of the crontab jobs (including errors) is sent through
email to the user the crontab file belongs to (unless redirected)

For example, you can run a backup of all your user accounts
at 5 a.m every week with:
05 * * 1 tar -zcf /var/backups/home.tgz /home/

For more information see the manual pages of crontab(5) and cron(8)

B i dae s et dn

m h dom mon dow command

30 23 * 1 0 /home/pi/hello.shll

Get Help [writeout [Read File I Prev Page ;i cut Text [Cur Pos
Exit Justify Where Ts Y Next Page B Uncut Textl® To Spell

OEBPS/assets/lfmk_0907.png
if [l then B3 that

Want to build even richer Applets?

OEBPS/assets/lfmk_0804.png
pieraspberrypi:~ § omxplayer -o local tts.mp3

Audio codec mp3 channels 1 samplerate 24000 bitspersample 16
subtitle count: 0, state: off, index: 1, delay: 0

have a nice day :
pieraspberrypi:~ § omxplayer -o local Nyam\ Cat.mpd.

Video codec omx-h264 width 540 height 360 profile 578 fps 29.970030

Audio codec aac channels 2 samplerate 44100 bitspersample 16

subtitle count: 0, state: off, index: 1, delay: 0

V:PortsettingsChanged: 540x360629.97 interlace:0 deinterlace:0 anaglyph:0 par:1.
00 display:0 layer:0 alpha:255 aspectilode:0

Stopped at: 00:00:17

have a nice day :)

pi€raspberrypi:~ § I

OEBPS/assets/lfmk_0535.png
Connections

L

. FTP with TLS/SSL

@ Dropbox
g Amazon S3

@ WebDAV

- FTP with Implicit SSL

- SFTP

o Google Drive

OneDrive

OEBPS/assets/lfmk_0502.png
——— Raspberry Pi Software Configuration Tool (raspi-config) ————

51 D / LI

| |
| S| |
| B2 vait for Network at Boot Choose whether to wait for networ |
| B3 splash screen Choose graphical splash screen or |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| <select> <Back> |
| |

OEBPS/assets/lfmk_0613.png
pi@raspberrypi:~ § du -h -d 0
7M.
pieraspberrypi:~ § du -h -d 1

36K -/.pki,
4.0k ./Downloads

154 ./.npm

16K ~/.vnc

2.2 ./node_modules
2.81 ./.node-gyp

4.0k ./.gconf

16K -/.Tocal

4.0k ./Desktop

a0 -/.config

4.0k ./Pictures

12K -/.thumbnails
30l ~/node-v4.3.2-linux-armv61l
4.0k ./Videos

4.0k ./Music

68M -/.cache

4.0k ./Templates

1.84 ./python_games
12K -/.dbus

4.0k ./Public

92K ./.gstreamer-0.10
281 ./.themes

3.94 ./Documents

1721

pieraspberrypi:~ § II

OEBPS/assets/lfmk_0429.png
pieraspberrypi = 5 sudo apt-get remove pigpio
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages will be REMOUED:
pigpio
0 upgraded, 0 newly installed, 1 to remove and 11 not upgraded
after this operation, 857 kB disk space will be freed.
Do you uant to continue? [¥/nl
(Reading database ... 110787 files and directories currently installed.)
Removing pigpio (1.30-1) .
Processing triggers for man-db (2.7.0.2-5) ...
pieraspberrypi -

OEBPS/assets/lfmk_0539.png
Connect to Server x

Server Details

sener: 1921680209 Jpoc[z2 =]+

OEBPS/assets/lfmk_0410.png
File: coreutils.info, Node: mkdir invocation, Next:

In invocation, Up: Special file types

12.3 mmkdirm: Make directories

snkdirm creates directories with the specified names.

mkdir [OPTIONIm= NAMEm

mnkfifo invocation,

Synopsis:

ankdirs creates each directory NAME in the order given. It reports
n error if NAME already exists, unless the s-pm option is given and

NAME is a directory.

The progran accepts the following options. Also see »note Common

options::.

—mode=MODEw

Set the file permission bits of created directories to MODE, which
uses the same syntax as in schmodm and uses ma-ruxm (read, urite
and execute allowed for everyone) for the point of the departure.

»Note File permissions::.

Normally the directory has the desired file mode bits at the moment
it is created. As a GNU extension, MODE may also mention special
mode bits, but in this case there may be a temporary window during

which the directory exists but its special mode bits are incorrect

(coreutils.info.gz)nkdir invocation, 66 lines

Preu:\

Jelcome to Info version 5.2. Type h for help, m for menu item.

OEBPS/assets/lfmk_0643.png
pi@raspberrypi:~ § crontab -e
no crontab for pi - using an empty one

Select an editor. To change later, run ‘select-editor’
1. /bin/ed
2. /bin/nano <
3. /usr/bin/vim. tiny

easiest

Choose 1-3 [21: Il

OEBPS/assets/lfmk_0640.png
pi€raspberrypi:~ § 1s -1 loop.log && echo "I found it
-rw-r--r-- 1 pi pi 498 Nov 2 23:29 loop.log

I found i
pi€raspberrypi:~ § 1s -1 loop.lol || echo "I didn't find it!"
Is: cannot access loop.lol: o such file or directory
I didn't find it!

pieraspberrypi:~ § 1s -1 loop.lol & echo "I found it
Is: cannot access loop.lol: o such file or directory
I didn't find it

pieraspberrypi:~ § I

Il echo *I didn't find it"

OEBPS/assets/lfmk_0401.png
i@raspberrypi — 9

OEBPS/assets/lfmk_0409.png
User Commands

NAME
nkdir - make directories
SYNOPSIS
mkdir [OPTIONI... DIRECTORY...
DESCRIPTION

Create the DIRECTORY(ies), if they do not already exist.

Mandatory arguments to long options are mandatory for short options
too.

-n, —node=10DE
set file mode (as in chmod), not a=rux - umask

—parents
o error if existing, make parent directories as needed

-u, —-verbose
print a message for each created directory

-z set SELinux security context of each created directory to the
default type

—-context[=CTX]
like -2, or if CIX is specified then set the SELinux or SMACK
security context to CTX

Manual page mkdir(1) line 1 (press h for help or q to qu.

OEBPS/assets/lfmk_0711.png
]
DSI (DISPLAY)

ETHERNET

OEBPS/assets/lfmk_0423.png
Reading pachoge 1ists... pong | TOTME
fead ing package 1ists. .. Don
Duilding dependency troe

feading state Infornation. .. Done

Calculating upgrade. - The follouing packages uere autonatically installed and a

bdrn-radeont 1ibelf1
1ibgssapia-heindal |ibherypts 1" 1ibhe imhased-heindal
b imnt 0 e ndal 1 Iohas0s 5 a1 IbRAbSSE N indal 11110035
Vibrokentd heindal 1ibuindo-heindal 1ibxfcedui 1.0 xfco keyboard shortcuts
Use apt-get autorenove’ 10 renove then
hone
The follouing packages have besn kept back
Tibraspberrypi-bin Libraspherrypi-dev 1ibraspberrypi-doc Libraspberrupio
Ixpane] Lepanel-data muscratch plonouth pypy-upstrean raspberrypi-boot loader
raspberrypi-ui-nods
The ol louing packages will be upgraded
Clacarts apt apt-utils bindd-host blue ca-certificates claws-nail
Slaus’na 11100 cpio el dhepcds dnsotuy apky Apky-dey cZfs1ibs czrsprogs
ocr—data Fil he
Tirhuars-brond0z11 firmuare-11bortes irmaarc-ralink firmuare-realtek
fontconfig fontcontig-contig fonts-opensynbol fusc gird.2-gdkpixbuf-2.0
gind 2-gth-3.0 g1t git-core git-nan Gwip Gnpy-agent SPIZ gLy
streanerd 0 onx gtkz-engines-clear 10okapix GUKZ-engines-pixiur
fa1e pgthonz.7 Inttrante-tools. isc-dhopt (sc_dhcp-comnon krbS-locales
1ibapt-inst1s 11bapt-pkgd 12 1ibarchivel3 1ibaudiofilel 1ibavcodecse
Tibavformatsé 1ibauresanplez ©ibautilsd 1ibbind9-90 1ibblustoothd 1ibe-bin
Hihedeu"bin 1ibet Tibc6-dhy 110 oy Tibeaivo gob jectz Tibcairoz
Iibconere? 1ibeupstiltersi 1ibeurt3 ©ib

1ibfn-gtk1 1ibfn-nodules 1ibim Libfontcontigl 1ibfrcotuped 1iberootupes-dev
1ibfusez Libgbni 1ibgergpt20 1ibgdd 1ibgdk-pixburz.0-0
Tibgis wesaal' 1bglapinesa 1ibgraphitez-3

1ibpan-nodules 1ibpan-nodules-bin 1bpan-runtine 1ibpan- sust:nd Libpanog.
Tibpered Libpixnan-1-0 1ibpng12-0 1ibpng1Z-dev 1ibpolkit-agent-1-0
Hibporkit-backend-1-0. LibpoTkit-dob eetoL-o. 11bpoppIerdd 1 iomsthonz.?
Pstalin 1ibreoffice
‘gsticancr 1ibreoffice-base 1ibreaffice-base-care
calc1ibreof fice-connon
Iibreoffice-core libreoffice-drav 1ibreoffice-gth | jbreoffice-inpress

Lasnd 6 1ibtabd 1ibtevento 1
Iibudev 1ibudpaul 11bupx1 1ibubel tento 1ibuebkitytk-3.0-0
Tibucbkitgtk-3.0-connon 11bx264-142 |ibrapianzz 11bxnl2 libes11.1 locales
login Ixinput Ixkeunap Ixterminal multiarch-support ntp omxplayer oponbox
openssh-client openssh-serucr openssh-sfip. seruer openss! oracie. jaund- sk
passud ponantn perd perl-base perl-modules pinixee pipanel policykit-1
poppler-utils python picanera python-pil puthon-rpi gpio puthon-sense-hat
puthon-tallac pythonz.7 python.7-nininal pythond-pgzero mython
BUthon3-pi1 puthon3 rpi.Gpio puthond-sense-hat pythond-uno
raspherrypi-nct-nods raspi-config re-gui rsyslog ruby rubyz.1 sanba-common
Sanba. 1106 sonic-pi soh Sudo ystend Systomd-susy tzdata udev uno-11bs3

259 upgraded, © neuly Inctalled, 0 to renove and 11 not upgraded.
jccd €0 get 540 M of archives.
after this operation, 196 MB of additional disk space uill be used.
Do you uant to continue? [¥/n:

OEBPS/assets/lfmk_0513.png
PUTTY Security Alert

‘The server's host key is not cached in the registry. You
have no guarantee that the server is the computer you
think itis.

The server's sa2 key fingerprint s

sshorsa 2048 c6:25:05:540c:6c:34:c5:d 580 2:45:0b:0ck48
If you trust this host, hit Yes to add the key to

PUTTY's cache and carry on connecting,

If you want to carry on connecting just once, without
adding the key to the cache, hit No,

If you do not trust this host, hit Cancel to abandon the
connection.

OEBPS/assets/lfmk_0415.png
B interfaces(S) file used by ifup(8) and ifdown(8)

Please note that this file is written to be used with dhcpcd
For static IP, consult /etc/dhcpcd.conf and 'man dhcped.conf

Include files from /etc/network/interfaces.d:
source-directory /etc/network/interfaces.d

auto 1o
iface lo inet loopback

iface etho0 inet manual

allow-hotplug wlano
iface wlan0 inet manual
wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

allow-hotplug wlant
iface wlani inet manual
wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

OEBPS/assets/lfmk_0102.png
Archive Ut

Archiving "2017-01-11-rasp!

Cancel

OEBPS/assets/lfmk_0117.png
-
File Edit Tal

Configuring keyboard-configuration
Please select the layout matching the keyboard for this machine.

Keyboard layout:

English (UK)

English (K) - English (UK, Colemak

English (K) - English (LK, Dvorak

English (K) - English (UK, Dvorak with UK punctuation
English (K) - English (UK, extended Winkeys

English (K) - English (UK, international with dead keys
English (K) - English (UK, Macintosh

EnEbsh (UK) Enibsh (UK, Macintosh international)

<ok> <Cancel>

OEBPS/assets/lfmk_0912.png
[3 Welcome page x

<€ c 0 \G) 192.168.0.222

Placeholder page

The owner of this web site has not put up any web pages yet. Please come back later.

You should replace this page with your own web pages as soon
as possible.

Unless you changed its configuration, your new server is configured as follows:

Configuration files can be found in /etc/lighttpd. Please read /etc/lighttpd/conf-available/README
file.

The DocumentRoot, which is the directory under which all your HTML files should exist, is set to
Jvar/waw.

CGI scripts are looked for in /usr/1ib/cgi-bin, which is where Debian packages will place their
scripts. You can enable cgi module by using command "1ighty-enable-mod cgi”.

Log files are placed in /var/log/lighttpd, and will be rotated weekly. The frequency of rotation can
be easily changed by editing /etc/logrotate.d/lighttpd.

The default directory index is index. htnl, meaning that requests for a directory /foo/bar/ will give
the contents of the file /var/www/foo/bar/index.html if it exists (assuming that /var/ww is your
DocumentRoot).

You can enable user directories by using command "1ighty-enable-mod userdir”

About this page

This is a placeholder page installed by the Debian release of the Lighttpd server package.

This computer has installed the Debian GNU/Linux operating system, but it has nothing to do with the
Debian Project. Please do not contact the Debian Project about it.

If you find a bug in this Lighttpd package, or in Lighttpd itself, please file a bug report on it. Instructions on
doing this, and the list of known bugs of this package, can be found in the Debian Bug Tracking
System.

OEBPS/assets/lfmk_0420.png
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config:
country=68

ourssIn”
scan_ssid=off

psk="YourPassword"
key_mgnt=WPA-PSK

OEBPS/assets/lfmk_0908.png
Complete action fields

Step 5 of 6
EventName
+Ingredient
EventName
OccurredAt

Value1 Value2
Value3

+Ingredient

Create action

OEBPS/assets/lfmk_0417.png
interfaces(5) file used by ifup(8) and ifdown(8)

Please note that this file is written to be used with dhcpcd
For static IP, consult /etc/dhcpcd.conf and ‘man dhcped.conf

Include files from /etc/network/interfaces.
source-directory /etc/network/interfaces.d

auto lo
iface 1o inet loopback

#iface eth0 inet manual
iface etho inet static
address 192.168.0.100
netmask 255.255.255.0
gateway 192.168.0.1
dns-nameservers 8.8.8.8 8.8.4.4

allow-hotplug wlan0

iface wlan0 inet manual

wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf
wpa-ssid "YourSSID
wpa-psk "YourPassword

allow-hotplug wlant
iface wlani_inet manual
wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

OEBPS/assets/lfmk_0914.png
& Nimbus - Your Personal - X

¢ C [® 1921680222080 #idzshboard
.N{ITI/MS/ Dashboard Files Media Sharing | Hi, anewcomb v

System Details

30% 20%

[4.4GB used 0f14.5GB] [194 MiB used of 926 MiB]

Disk Usage Memory Usage

Raspberry Piis 2 trademark of the Raspberry i Foundztion

Nimbus Details

0 4%

[oBtotal] [19 MiB used of 582 MiB]

Files Managed Memory Usage

OEBPS/assets/lfmk_0618.png
000060000

KCpu(s): |12 us)10.6 5y |]0.0 ni||98.2 1 1]0.0wa |l 0.0hi]l0.0<i]]0.05t]

OEBPS/assets/lfmk_0641.png
“Now 1s the
their country”

Now is the time for all
pieraspberrypi:~ § echo
> for all good men \

> to come fo the aid \
> of their country”

Now is the time for all
pieraspberrypi:- $ Il

good men to
“Now is the

good men to

time for all good men to come to the aid of

come to the aid of their country
time \

come to the aid of their country

OEBPS/assets/lfmk_0504.png
Starting setc/rc.local Compatibility...

[0K 1 Reached target Network is Online.
Starting LSB: Start NP daemon.
Starting Pernit User Sessions

[Ok 1 Started Sessions.

My IP address is|10.0.2.16

[Ok 1 Started ng Service.

[0K 1 Started /etc/rc.local Compatibility.
Starting Terninate Plynouth Boot Screen. ..
Starting Hold until boot process finishes up...

[Ok 1 Started LSB: Autogencrate and use a suap file.

Raspbian GNU/Linux 8 raspberrypi ttyl

raspberrypi login: pi_(automatic login)
Last login: Ued Oct 5 10:35:27 PDT 2016 from 10.0.2.2 on pts/0
Linux raspberrypi 4.1.7+ 42 Mon Oct 12 19:10:17 BRT 2015 arnubl

The prograns included with the Debian GNU/Linux system are free softuare:
the exact distribution terns for each program are described in the
individual files in susr/share/doc/%/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO UARRANTY, to the extent
pernitted by applicable lau.
pi@raspberrypi:” §

OEBPS/assets/lfmk_0601.png
pieraspberrypi:- 3 hostnane
raspberrypi

pieraspberrypi

OEBPS/assets/lfmk_0604.png
GO _nano

virtualpi

g Get Help
¥ Exit

A uritelut
8 Justify

Read
[—

[Read 1 line 1|
File

§| Prev Page

! Next Page

Cut Text [{§ Cur Pos
UnCut Textg@) To Spell

OEBPS/assets/lfmk_0523.png
V2 VNC Viewer

VNC® Viewer

ncrypton: [LEVNG e chowse

Ao | (gt |

OEBPS/assets/lfmk_0201.png

OEBPS/assets/lfmk_0805.png
: bam2835 ALSA
: Broadcom Mixer

AlsaMixer v1.0.28
Help
System information
select sound card
Exit

F3: [Playback] F4: Capture F5: ALL
: PQM [dB gain: -1.76]

OEBPS/assets/lfmk_0610.png
enable color support of ls and also add handy aliases
if [-x susr/binsdircolors 1: then

test -r “/.dircolors && eval “$(dircolors -b “/.dircolors)” 11 eval
alias I

'$(dircs

s Isbydate=’Is ~1te’

colored GCC warnings and errors
export GCC_COLORS=" error=01;31 uarning

sone nore 1s aliases

A uriteOut Jg Read File Jfj Prev Page i Cut Text Jg Cur Pos
R Justify Where Is R Next Page I UnCut Textfl To Spell

OEBPS/assets/lfmk_0403.png
i@raspberrypi ~ 5 pud
home,/pi
ieraspberrypi ~ § _

OEBPS/assets/lfmk_0639.png
‘touch
1s -1
0 tov

$ chmod

Is -1
0 tov

$ chmod

-rwxr--r-- 1 pi pi
pieraspberrypi:~ §

Is -1
0 tov

program.py
program.py

17 19:21 program.py
+x program.py
program.py

17 19:21 program.py
744 program.py
program.py

17 19:21 program.py

OEBPS/assets/lfmk_0531.png
Are you sure you want to connect?
VN Servr not recognized

Yourtbewered sbout s gain.

O 1921680208:8900

Market aloha poncho, Explin cabaret
priner

g Scblebsnzse

CRd A 20 L

X Authentication conminve X

Remember passord

O 1521680208:5500

Marketaloha poncho. xplain cabaret
priner

g Selobiepssszsise

OEBPS/assets/lfmk_0629.png
pi@raspberrypi:~ § python loop2.py >> loop.log
ACTraceback (most recent call last)
File "loop2.py”. line 7, in <module>

time.sleep(1)

KeyboardInterrupt

pieraspberrypi:~ § more loop.log

I an still running :

am still running

am still running

am still running

am still running

an running again

an running again

an running again

an running again

an running again

an running again

pieraspberrypi:- $ Il

OEBPS/assets/lfmk_0427.png
pi@raspberrypi ~ § apt-cache show pigpio
Package: pigpio
ersion: 1.30-1
Architecture: arnhf
Maintainer: Serge Schueider <serge@raspberrypi.org>
Installed-Size: 837
Depends: 1ibce (>= 2.17), init-system-helpers (>= 1.187)
Homepage : http://abyz.co.uk/rpi/pigpios
Priority: optional
Section: utils
Filenane: pool/main/p/pigpio/pigpio_1.30-1_arnhf.deb
Size: 229000
6c61526aeb0389Fd7b021cd 1cce54562a2140869940b179057134a17e4 183220
£££1c4b463b197d00e192003d0797b31b5754d8
6134ceach2f3cb053bI59F61a637bebd
Description: Library for Raspberry Pi GPIO control
Library for the Raspberry which allous control of the General Purpose Input Du
tputs (GP10).

pigpio is written in C but may be used by other languages.

In particular the pigpio daenon offers a socket and pipe interface to the unde
rlying library.
Description-nds: 95c13711224672badacd34ar4bIactd?

pieraspberrypi = §

OEBPS/assets/lfmk_0508.png
= © 4 w1212
Fing

= Newcomb2_5GHz
* Wireless network

192.168.0.1 Linksys01221
94:10:3E:91:26:25 Linksys / WRT1900AC
192.168.0.2 ANEWCOMB-GAMING-2|
D8:CB:8A:70:0F:CE Micro-Star INTL
+192.168.0.3 www
00:24:21:51:20:FC Micro-Star Int'l
= 192.168.0.6 Canon-MX922-Hom UPnP|
18:0C:AC2D:82:19 Canon / MX920 series
192.168.0.20 (+1) opensprinkler
80:1F-02:9BFESE Edimax Technology
192.168.0.113 My Phone|
EC:88:92:73:6E:90 Motorola / Nexus 6
2192.168.0.133
D8:EB:97:B3:EB:E6 TRENDnet
192.168.0.147
BCF5ACFO:A220 L6
192.168.0.209 raspberrypi
BE:27EBO7:AAT0 [
y)
0:3F-0E84:5E.E7 Netgear / WNDR3700
192.168.0.253
94:0C:60:82:32:77 TP-Link
4 family: MythTV AV Media Server|

< o [m] H

OEBPS/assets/lfmk_0428.png
pieraspberrypi = § sudo apt-get install pigpio
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
pigpio
0 upgraded, 1 neuly installed, O to remove and 11 not upgraded
Need to get 0 B/229 kB of archives.
after this operation, 857 kB of additional disk space will be used.
Selecting previously unselected package pigpio.
(Reading database ... 110763 files and directories currently installed.)
Preparing to unpack . ../pigpio_1.30-1 arnhf deb ..
Unpacking pigpio (1.30-1)
Processing triggers for man-db (2.7.0.2-5) ...
Setting up pigpio (1.30-1) ...
pieraspberrypi ~

OEBPS/assets/lfmk_0305.png
File Manager
™ Terminal

2 Mathematica

@ Wolfram

Epiphany Web Browser

Installed Applications

I B8 Accessories
& Education

= & Games
 Graphics

= @ Intemnet

= ¥ Office

= & Other

% <% Programming
B Sound & Video
£ System Tools

1+ [7#] Preferences

OK

OEBPS/assets/lfmk_0507.png
Edit

< raspberrypi

Change
Device Details:

Name: raspoemypi
Manufacturer:

Mods

os: Lnux

P Adress (Wireless)-1; 1921680208
MAC Adaress: B827EBST AATO

OEBPS/assets/lfmk_0413.png
pi@raspberrypi 5 cd D
Desktop/ Documents,/ Dounloads/
piGraspberrypi ~ $ cd D

