
Getting Started with

ARDUINO
4th Edition

The Open Source Electronics
Prototypying Platform
by Massimo Banzi co-founder of Arduino
and Michael Shiloh

Make_GSW_Arduino_4Edition_cover_FIN_front.indd 1Make_GSW_Arduino_4Edition_cover_FIN_front.indd 1 2/11/22 9:54 AM2/11/22 9:54 AM

4TH EDITION

Getting
Started with
Arduino

Massimo Banzi and
Michael Shiloh

978-1-680-45693-6

[LSI]

Getting Started with Arduino, 4th Edition
by Massimo Banzi and Michael Shiloh

Copyright © 2022 Massimo Banzi and Michael Shiloh. All rights reserved.

Printed in the United States of America.

Published by Make Community, LLC
150 Todd Road, Suite 100, Santa Rosa, CA 95407

Make: books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles
For more information, contact our corporate/institutional sales department:
800-998-9938.

Publisher: Dale Dougherty
Editor: Patrick Di Justo

Development Editor: Michelle Lowman
Illustrator: Judy Aime’ Castro

February 2022: Fourth Edition

Revision History for the Fourth Edition

2022-02-11: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781680456936 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Make Community,
LLC. The Make: Community logo is a trademark of Make Community, LLC. Many of
the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Make
Community, LLC was aware of a trademark claim, the designations have been printed
in caps or initial caps. While the publisher and the authors have made good faith
efforts to ensure that the information and instructions contained in this work are
accurate, the publisher and the authors disclaim all responsibility for errors or omis-
sions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes are subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

http://oreilly.com/catalog/errata.csp?isbn=9781680456936

Contents

Preface to the 4th Edition. vii

1/Introduction. 1

Intended Audience. 2

What Is Interaction Design?. 3

What Is Physical Computing?. 3

2/The Arduino Way. 5

Prototyping. 5

Tinkering. 6

We Love Junk!. 6

Hacking Toys. 8

Collaboration. 8

3/The Arduino Platform. 11

The Arduino Hardware. 11

The Software Integrated Development Environment (IDE). 14

Installing Arduino on Your Computer. 15

Installing the IDE: MacOS. 15

Configuring the Drivers: MacOS. 15

Port Identification: MacOS. 16

Installing the IDE: Windows. 17

Configuring the Drivers: Windows. 18

Port Identification: Windows. 18

Installing the IDE: Linux. 19

Configuring the Drivers: Linux. 20

Granting Permission on the Serial Ports: Linux. 20

4/Really Getting Started with Arduino. 23

Anatomy of an Interactive Device. 23

Sensors and Actuators. 23

Blinking an LED. 24

Pass Me the Parmesan. 29

iii

Arduino Is Not for Quitters. 29

Real Tinkerers Write Comments. 30

The Code, Step by Step. 30

What We Will Be Building. 34

What Is Electricity?. 35

Using a Pushbutton to Control the LED. 38

How Does This Work?. 42

One Circuit, a Thousand Behaviours. 43

5/Advanced Input and Output. 51

Trying Out Other On/Off Sensors. 51

Homemade (DIY) Switches. 54

Controlling Light with PWM. 54

Use a Light Sensor Instead of the Pushbutton. 64

Analogue Input. 65

Try Other Analogue Sensors. 68

Serial Communication. 69

Driving Bigger Loads (Motors, Lamps, and the Like). 71

Complex Sensors. 73

The Arduino Alphabet. 74

6/Processing with an Arduino Lamp. 77

Planning. 78

Coding. 80

Assembling the Circuit. 86

Here’s How to Assemble It. 89

7/The Arduino Cloud. 91

Arduino Cloud IDE. 91

Project Hub. 93

IoT Cloud. 93

Arduino Cloud Plans. 96

8/Automatic Garden-Irrigation System. 97

Planning. 99

Testing the Real Time Clock (RTC). 102

Testing the Relays. 108

Electronic Schematic Diagrams. 111

Testing the Temperature and Humidity Sensor. 124

Coding. 128

Setting the On and Off Times. 128

iv Contents

Checking Whether It’s Time to Turn a Valve On or Off. 135

Checking for Rain. 140

Putting It All Together. 141

Assembling the Circuit. 150

The Proto Shield. 154

Laying Out Your Project on the Proto Shield. 156

Soldering Your Project on the Proto Shield. 162

Testing Your Assembled Proto Shield. 176

Assembling Your Project into a Case. 178

Testing the Finished Automatic Garden Irrigation System. 182

Things to Try on Your Own. 183

Irrigation Project Shopping List. 183

9/The Arduino ARM Family. 185

What’s the difference between AVR and ARM?. 185

What difference does 32 bits really make?. 186

What’s the difference between a microcontroller and a microprocessor?. . . 186

Which is better: AVR or ARM?. 187

Introducing the Arduino ARM based boards. 188

Special Features. 189

Operating Voltage. 189

Drive Current. 190

Digital to Analog Converter. 190

USB Host. 191

The Nano and MKR footprints. 191

10/Talking to the internet with ARM: An Internet Connected “Fistbump”. 193

An internet connected “fistbump”. 193

Introducing MQTT: the Message Queueing Telemetry Transfer protocol. . . 194

Internet Connected Fistbump: The hardware. 195

Internet Connected Fistbump: MQTT Broker on Shiftr.io. 199

11/Troubleshooting. 211

Understanding. 211

Simplification and Segmentation. 212

Exclusion and Certainty. 212

Testing the Arduino Board. 212

Testing Your Breadboarded Circuit. 215

Isolating Problems. 216

Problems Installing Drivers on Windows. 217

Problems with the IDE on Windows. 218

Contents v

Identifying the Arduino COM Port on Windows. 218

Other Debugging Techniques. 221

How to Get Help Online. 222

A/The Breadboard. 227

B/Reading Resistors and Capacitors. 231

C/Arduino Quick Reference. 235

D/Reading Schematic Diagrams. 257

Index. 261

About the Authors

vi Contents

Preface to the 4th
Edition

Massimo and Michael are delighted to incorporate many
changes from the rapidly moving electronics prototyping field
into this Fourth Edition of Getting Started with Arduino.

This edition adds two new chapters: Chapter 9 introduces the
more powerful 32-bit ARM family of Arduino boards, and Chap-
ter 10 describes the Arduino Create online integrated develop-
ment environment including a new project: the Internet Fist-
bump.

Apart from these new chapters, other updates have taken place:

• The Fourth Edition is written for version 2.0 of the IDE.
• Installation of the IDE is now easier, and instructions for

Linux have been included.
• The appendix now includes an overview of all Arduino fami-

lies, boards, and footprints, and a selection guide.
• The chapter on the Leonardo has been replaced with a

chapter on the updated Arduino Cloud service, including
the IoT Cloud and Project Hub.

• In order to treat all humans with respect, we have made
changes to the nomenclature:

— SPI signal names now follow the Open Source Hard-
ware resolution at oshwa.org/a-resolution-to-redefine-
spi-signal-names/

— Connector types are now either pin or socket.

In keeping with the spirit of the original text, British spelling is
used throughout.

Over the editions, illustrations have been changed and new ones
added. The authors acknowledge the contributions of Elisa Can-
ducci who did the illustrations in the First and Second Editions,

vii

https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names/
https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names/

Judy Aime’ Castro who revised some existing illustrations and
added many new ones in the Third Edition.

—Michael

Preface
A few years ago I was given a very interesting challenge: teach
designers the bare minimum in electronics so that they could
build interactive prototypes of the objects they were designing.

I started following a subconscious instinct to teach electronics
the same way I was taught in school. Later on I realised that it
simply wasn’t working as well as I would like, and I started to
remember sitting in a class, bored like hell, listening to all that
theory being thrown at me without any practical application
for it.

In reality, when I was in school I already knew electronics in a
very empirical way: very little theory, but a lot of hands-on expe-
rience.

I started thinking about the process by which I really learned
electronics:

• I took apart any electronic device I could put my hands on.
• I slowly learned what all those components were.
• I began to tinker with them, changing some of the connec-

tions inside of them and seeing what happened to the
device: usually something between an explosion and a puff
of smoke.

• I started building some kits sold by electronics magazines.
• I combined devices I had hacked, and repurposed kits and

other circuits that I found in magazines to make them do
new things.

As a little kid, I was always fascinated by discovering how things
work; therefore, I used to take them apart. This passion grew as
I targeted any unused object in the house and then took it apart
into small bits. Eventually, people brought all sorts of devices for
me to dissect. My biggest projects at the time were a dish-
washer and an early computer that came from an insurance
office, which had a huge printer, electronics cards, magnetic

viii Preface to the 4th Edition

card readers, and many other parts that proved very interesting
and challenging to completely take apart.

After quite a lot of this dissecting, I knew what electronic com-
ponents were and roughly what they did. On top of that, my
house was full of old electronics magazines that my father must
have bought at the beginning of the 1970s. I spent hours reading
the articles and looking at the circuit diagrams without under-
standing very much.

This process of reading the articles over and over, with the bene-
fit of knowledge acquired while taking apart circuits, created a
slow, virtuous circle.

A great breakthrough came one Christmas, when my dad gave
me a kit that allowed teenagers to learn about electronics. Every
component was housed in a plastic cube that would magneti-
cally snap together with other cubes, establishing a connection;
the electronic symbol was written on top. Little did I know that
the toy was also a landmark of German design, because Dieter
Rams designed it back in the 1960s.

With this new tool, I could quickly put together circuits and try
them out to see what happened. The prototyping cycle was get-
ting shorter and shorter.

After that, I built radios, amplifiers, circuits that would produce
horrible noises and nice sounds, rain sensors, and tiny robots.

I’ve spent a long time looking for an English word that would
sum up that way of working without a specific plan, starting with
one idea and ending up with a completely unexpected result.
Finally, tinkering came along. I recognised how this word has
been used in many other fields to describe a way of operating
and to portray people who set out on a path of exploration. For
example, the generation of French directors who gave birth to
the Nouvelle Vague were called the tinkerers. The best definition
of tinkering that I’ve ever found comes from an exhibition held at
the Exploratorium in San Francisco:

Tinkering is what happens when you try some-
thing you don’t quite know how to do, guided by
whim, imagination, and curiosity. When you
tinker, there are no instructions—but there are

Preface to the 4th Edition ix

http://www.exploratorium.edu/tinkering

also no failures, no right or wrong ways of doing
things. It’s about figuring out how things work
and reworking them.

Contraptions, machines, wildly mismatched
objects working in harmony—this is the stuff of
tinkering.

Tinkering is, at its most basic, a process that
marries play and inquiry.

From my early experiments I knew how much experience you
would need in order to be able to create a circuit that would do
what you wanted, starting from the basic components.

Another breakthrough came when I was 14. I went to London
with my parents and spent many hours visiting the Science
Museum. They had just opened a new wing dedicated to com-
puters, and by following a series of guided experiments, I
learned the basics of binary math and programming.

There I realised that in many applications, engineers were no
longer building circuits from basic components, but were
instead implementing a lot of the intelligence in their products
using microprocessors. Software was replacing many hours of
electronic design, and would allow a shorter tinkering cycle.

When I came back, I started to save money, because I wanted to
buy a computer and learn how to program.

My first and most important project after that was using my
brand-new ZX81 computer to control a welding machine. I know
it doesn’t sound like a very exciting project, but there was a
need for it and it was a great challenge for me, because I had
just learned how to program. At this point, it became clear that
writing lines of code would take less time than modifying com-
plex circuits.

Many years later I realised I have a passion for teaching about
technology to people who don’t have a background in electron-
ics or programming. Learning how digital technology works is
incredibly empowering to understand and positively influence
today’s world.

—Massimo

x Preface to the 4th Edition

Acknowledgments for Massimo
Banzi
This book is dedicated to Ombretta.

Acknowledgments for Michael
Shiloh
This book is dedicated to my brother and my parents.

First of all I’d like to thank Massimo for inviting me to work on
the Third Edition of this book, and for inviting me to join Arduino
in general. It’s been a real privilege and joy to participate in this
project.

Brian Jepson for guidance, oversight, encouragement, and sup-
port. Frank Teng for keeping me on track. Kim Cofer and Nicole
Shelby for doing a wonderful job of copyediting and production
editing, respectively.

My daughter Yasmine for thinking so highly of me, for her never-
ending support and encouragement of my pursuing my inter-
ests, and for still thinking that I’m kinda cool in spite of being her
dad. I could not have done this without her support.

Last but not least, my partner Judy Aime’ Castro for the endless
hours she spent turning my scribbles into fine illustrations, for
discussing various aspects of the book, and for her endless
patience with me. I could not have done this without her support
either.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width
Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function

Preface to the 4th Edition xi

names, databases, data types, environment variables, state-
ments, and keywords.

Constant width bold
Shows commands or other text that should be typed literally
by the user.

Constant width italic
Shows text that should be replaced with user-supplied val-
ues or by values determined by context.

Using Code Examples
This book is here to help you get your job done. In general, you
may use the code in this book in your programs and documen-
tation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For exam-
ple, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a
CD-ROM of examples from Make: books does require permis-
sion. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a sig-
nificant amount of example code from this book into your prod-
uct’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For exam-
ple: “Getting Started With Arduino, Fourth Edition, by Massimo
Banzi and Michael Shiloh (Make Community LLC). Copyright
2022 Massimo Banzi and Michael Shiloh, 978-1-6804-5693-6.”

If you feel your use of code examples falls outside fair use or the
permission given here, feel free to contact us at books@make.co

xii Preface to the 4th Edition

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

mailto:books@make.co

O’Reilly Online Learning

Our unique network of experts and innovators share their knowl-
edge and expertise through books, articles, and our online
learning platform. O’Reilly’s online learning platform gives you
on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of
text and video from O’Reilly and 200+ other publishers. For
more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

Make: Community LLC

150 Todd Road, Suite 100, Santa Rosa, CA 95407

Make: Community is a growing, global association of makers
who are shaping the future of education and democratizing
innovation. Through Make: magazine, and 200+ annual Maker
Faires, Make: books, and more, we share the know-how of mak-
ers and promote the practice of making in schools, libraries and
homes.

To learn more about Make: visit us at make.co.

We have a kit with the components needed to try most of the
examples (except for the Garden Irrigation Project and the Inter-
net Fistbump) available from the Maker Shed (Getting Started
with Arduino Kit SKU J2121121 on Maker Shed: makershed.com/
products/ getting-started-with-arduino- kit). Over 10,000 kits
sold!

For more information about Arduino, including discussion
forums and further documentation, see http://www.arduino.cc.

Preface to the 4th Edition xiii

For more than 40 years, O’Reilly Media has provided
technology and business training, knowledge, and
insight to help companies succeed.

https://oreilly.com
https://make.co/
http://makershed.com/products/getting-started-with-arduino-kit
http://makershed.com/products/getting-started-with-arduino-kit
http://www.arduino.cc
https://oreilly.com

To comment or ask technical questions about this book, send
email to: books@make.co.

xiv Preface to the 4th Edition

mailto:books@make.co

1/Introduction

Arduino is an open source physical computing platform for cre-
ating interactive objects that stand alone or connect with the
Internet. Arduino was initially designed for artists, designers,
and others who want to incorporate physical computing into
their designs without having to first become electrical engi-
neers. It later became the platform of choice for literally millions
of people who wanted to innovate using digital technology.

The Arduino hardware and software is open source. The open
source philosophy fosters a community that shares its knowl-
edge generously. This is great for beginners as help is often
available geographically nearby and always online, at many dif-
ferent skill levels, and on a bewildering array of topics. Example
projects are presented not just as pictures of the finished
project, but include instructions for making your own or as a
starting point for incorporation into your derivative or related
projects.

The Arduino software, known as the Integrated Development
Environment (IDE), is free. You can download it from www.ardu-
ino.cc. The Arduino IDE is based on the Processing language,
which was developed to help artists create computer art without
having to first become software engineers. The Arduino IDE can
run on Windows, Mac, and Linux.

The Arduino UNO board is inexpensive (about $23) and quite
tolerant of common novice mistakes. If you do somehow man-
age to damage the main component on the Arduino Uno, it can
be replaced for as little as $4.

The Arduino project was developed in an educational environ-
ment and is a very popular educational tool. The same open
source philosophy that created the community which gener-
ously shares information, answers, and projects also shares
teaching methods, curricula, and other information.

1

http://www.arduino.cc
http://www.arduino.cc
http://www.processing.org

Because the Arduino hardware and software are open source,
you can download the Arduino hardware design and build your
own, or use it as a starting point for your own project, based on
(or incorporating) Arduino within its design, or simply to under-
stand how Arduino works. You can do the same things with the
software.

Arduino is designed to be easy to use, and this book is designed
to help beginners with no prior experience get started with
Arduino.

Intended Audience
This book was written for beginners, people who want to learn
to create with electronics and programming without any tech-
nology background, therefore, it tries to explain things in a way
that might drive some engineers crazy. Actually, one of them
called the introductory chapters of the first edition “fluff”. That’s
precisely the point. Let’s face it: being good at something and
being good at explaining are two different thing. If empowering
millions of people by making something understandable is fluff
then let’s delve deep into the fluff.

This book is not meant to be a textbook for teaching electronics
or programming, but you will learn something about electronics
and programming while reading this book.

After Arduino started to become popular, I real-
ised how experimenters, hobbyists, and hackers
of all sorts were starting to use it to create beau-
tiful and crazy objects. I realised that you’re all
artists and designers in your own right, so this
book is for you as well.

—Massimo

2 Getting Started with Arduino

Arduino builds upon the thesis work Hernando Bar-
ragan did on the Wiring platform while studying
under Casey Reas and Massimo at Interaction
Design Institute Ivrea (IDII).

What Is Interaction Design?
Arduino was born to teach Interaction Design, a design disci-
pline that puts prototyping at the centre of its methodology.
There are many definitions of Interaction Design, but the one
that we prefer is this:

Interaction Design is the design of any interactive experience.

In today’s world, Interaction Design is concerned with the cre-
ation of meaningful experiences between us (humans) and
objects. It is a good way to explore the creation of beautiful—
and maybe even controversial—experiences between us and
technology. Interaction Design encourages design through an
iterative process based on prototypes of ever-increasing fidelity.
This approach—also part of some types of conventional design
—can be extended to include prototyping with technology; in
particular, prototyping with electronics.

The specific field of Interaction Design involved with Arduino is
often called physical computing (or Physical Interaction Design).

What Is Physical Computing?
Physical computing uses electronics to prototype new and inno-
vative devices. It involves the design of interactive objects that
can communicate with humans by using sensors and actuators
controlled by a behaviour implemented as software running
inside a microcontroller (a small computer on a single chip).

In the past, using electronics meant having to deal with engi-
neers all the time, and building circuits one small component at
a time; these issues kept creative people from playing around
with the medium directly. Most of the tools were meant for engi-
neers and required extensive knowledge.

In recent years, microcontrollers have become cheaper and eas-
ier to use. At the same time, computers have become faster and
more powerful, allowing the creation of better (and easier)
development tools.

The progress that we have made with Arduino is to bring these
tools one step closer to the novice, allowing people to start
building stuff after only a day or two of a workshop, or by using

Introduction 3

this book. With Arduino, a beginner can get to know the basics
of electronics and sensors very quickly and can start building
prototypes with very little investment.

4 Getting Started with Arduino

2/The Arduino Way

The Arduino Way is a philosophy based on making things rather
than talking about them. It is a constant search for faster and
more powerful ways to build better prototypes. We have
explored many prototyping techniques and developed ways of
thinking with our hands.

Classic engineering relies on a strict process for getting from A
to B; the Arduino Way delights in the possibility of getting lost on
the way and finding C instead.

The Arduino Way is the tinkering process that we are fond of —
playing with the medium in an open-ended way and finding the
unexpected. In this search for ways to build better prototypes,
we have selected a number of software packages that enable
the process of constant manipulation of the software and hard-
ware medium.

The next few sections present some philosophies, events, and
pioneers that have inspired the Arduino Way.

Prototyping
Prototyping is at the heart of the Arduino Way: we make things
and build objects that interact with objects, people, and net-
works. We strive to find a simpler, faster, and cheaper way to
prototype.

A lot of beginners who are approaching electronics for the first
time think that they have to learn how to build everything from
scratch. This is a waste of energy: what you want is to be able to
confirm that something’s working very quickly so that you can
motivate yourself to take the next step or maybe even motivate
somebody else to give you a lot of cash to take the next step.

This is why we developed opportunistic prototyping: why spend
time and energy building from scratch, a process that requires
time and in-depth technical knowledge, when we can take

5

ready-made devices and hack them in order to exploit the hard
work done by large companies and good engineers?

Tinkering
We believe that it is essential to play with technology, exploring
different possibilities directly on hardware and software, some-
times without a very defined goal.

Reusing existing technology is one of the best ways of tinkering.
Getting cheap toys or old discarded equipment and hacking
them to make them do something new is one of the best ways to
get to great results.

We Love Junk!
People throw away a lot of technology these days: old printers,
computers, weird office machines, technical equipment, and
even a lot of military stuff. There has always been a big market
for this surplus technology, especially among young and/or
poorer makers and those who are just starting out. This market

6 Getting Started with Arduino

became evident in Ivrea, where we developed Arduino. The city
used to be the headquarters of the Olivetti company. They had
been making computers since the 1960s; in the mid 1990s, they
threw everything away in junkyards in the area. These are full of
computer parts, electronic components, and weird devices of all
kinds. We spent countless hours there, buying all sorts of con-
traptions for a few euros and adapting them into our prototypes.
When you can buy a thousand loudspeakers for very little
money, you’re bound to come up with some idea in the end.
Accumulate junk and go through it before starting to build
something from scratch.

The Arduino Way 7

Hacking Toys
Toys are a fantastic source of cheap technology to hack and
reuse. With the current influx of thousands of very cheap high-
tech toys from China, you can build quick ideas with a few noisy
cats and a couple of light swords.

I have been doing this for a few years to get my
students to understand that technology is not
scary or difficult to approach. One of my favour-
ite resources is the booklet “Low Tech Sensors
and Actuators” by Usman Haque and Adam
Somlai-Fischer. I think they have perfectly
described this technique in that handbook, and I
have been using it ever since.

—Massimo

Collaboration
Collaboration between users is one of the key principles in the
Arduino world—through the forum at forum.arduino.cc, people
from different parts of the world help each other learn about the
platform. We also set up a website called “Project Hub” where
users document their project and make them available for other

8 Getting Started with Arduino

http://lowtech.propositions.org.uk
http://lowtech.propositions.org.uk
http://forum.arduino.cc
https://create.arduino.cc/projecthub

users to build. It’s so amazing to see how much knowledge
these people pour out on the Web for everybody to use.

The Arduino Way 9

3/The Arduino
Platform

Arduino is composed of two major parts: an Arduino board,
which is the piece of hardware you work on when you build your
objects; and the Arduino Integrated Development Environment,
or IDE, the piece of software you run on your computer. You use
the IDE to create a sketch (a little computer program) that you
upload to the Arduino board. The sketch tells the board what
to do.

Not too long ago, working on hardware meant building circuits
from scratch, using hundreds of different components with
strange names like resistor, capacitor, inductor, transistor, and
so on. Every circuit was wired to do one specific application, and
making changes to the circuit required you to cut wires, solder
connections, and more.

With the appearance of digital technologies and microproces-
sors, these functions, which were once implemented with wires,
were replaced by software. Software is easier to modify than
hardware. With a few keypresses, you can radically change the
logic of a device and try two or three versions in the same
amount of time that it would take you to solder a couple of
resistors.

The Arduino Hardware
The Arduino board is a small microcontroller board, which is a
small circuit (the board) that contains a whole computer on a
small chip (the microcontroller).

11

This computer is at least a thousand times less
powerful than the MacBook I’m using to write
this, but it’s a lot cheaper and very useful for
building interesting devices.

—Massimo

Look at the center of the Arduino Uno board: you’ll see a rectan-
gular black piece of plastic with 28 “legs” (or possibly a tiny
square piece of plastic if you have the SMD edition)—that chip is
the ATmega328, the heart of your board.

We (the Arduino team) have placed on this board all the compo-
nents that are required for this microcontroller to work properly
and to communicate with your computer. The version of the
board we’ll use mostly in this book is the Arduino Uno, which is
the simplest one to use and the best one for learning on. Almost
everything we’ll talk about applies to all Arduinos, including the
most recent ones as well as the earlier ones.

In Figure 3-1, you see that the Arduino has a row of strips at the
top and the bottom with lots of labels. These strips are the con-
nectors, which are used to attach to sensors and actuators. (A
sensor senses something in the physical world and converts it
to a signal a computer can understand, while an actuator con-
verts a signal from a computer into an act in the physical world.
You’ll learn much more about sensors and actuators later in this
book.)

At first, all those connectors might be a little confusing. Here is
an explanation of the input and output pins you’ll learn to use in
this book. Don’t worry if you’re still confused after reading this—
there are many new concepts in this book that might take you a
while to get used to. We’ll repeat these explanations a number of

12 Getting Started with Arduino

In fact, there are a variety of Arduino boards, but the
most common one by far is the Arduino Uno, which
is described here. In Chapter 9 we give a brief over-
view of the entire Arduino family, including what sets
the new ARM family apart from the AVR boards.

different ways, and they’ll especially start making sense to you
once you start building circuits and experiencing the results.

14 Digital I/O (input/output) pins, numbered 0–13.
These pins can be either inputs or outputs. Inputs are used
to read information from sensors, while outputs are used to
control actuators. You will specify the direction (in or out) in
the sketch you create in the IDE. Digital inputs can only read
one of two values, and digital outputs can only output one of
two values (HIGH and LOW).

6 Analogue In pins (pins 0–5)
The analogue input pins are used for reading voltage meas-
urements from analogue sensors. In contrast to digital
inputs, which can distinguish between only two different lev-
els (HIGH and LOW), analogue inputs can measure 1,024 dif-
ferent levels of voltage.

6 Analogue Out pins (pins 3, 5, 6, 9, 10, and 11)
These are actually six of the digital pins that can perform a
third function: they can provide analogue output. As with the
digital I/O pins, you specify what the pin should do in your
sketch.

The board can be powered from your computer’s USB port,
most USB chargers, or an AC adapter (9 volts recommended,
2.1 mm barrel tip, center positive). Whenever power is provided
at the power socket, Arduino will use that, and if there is no
power at the power socket, Arduino will use power from the USB
socket. It’s safe to have power at both the power socket and the
USB socket.

The Arduino Platform 13

Figure 3-1. The Arduino Uno

The Software Integrated
Development Environment (IDE)
The IDE is a special program running on your computer that
allows you to write sketches for the Arduino board in a simple
language modeled after the Processing language. The magic
happens when you press the button that uploads the sketch to
the board: the code that you have written is translated into the C
language (which is generally quite hard for a beginner to use),
and is passed to the avr-gcc compiler, an important piece of
open-source software that makes the final translation into the
language understood by the microcontroller. This last step is
quite important, because it’s where Arduino makes your life
simple by hiding away most of the complexities of programming
microcontrollers.

The programming cycle on Arduino is basically as follows:

1. Plug your board into a USB port on your computer.

14 Getting Started with Arduino

http://www.processing.org

2. Write a sketch that will bring the board to life.

3. Upload this sketch to the board through the USB connection
and wait a couple of seconds for the board to restart.

4. Watch as the board executes (performs) the sketch that you
wrote.

Installing Arduino on Your
Computer
To program the Arduino board, you must first install the IDE by
downloading the appropriate file from the Arduino web-
site. Choose the right version for your operating system. (For
Windows choose the option Win 7 and Newer). On the next page
of the website you may chose to make a financial contribution to
support the Arduino IDE, but you may also click the button that
says JUST DOWNLOAD. Save the file and then proceed with the
appropriate instructions in the following sections.

Installing the IDE: MacOS
When the file download has finished, depending on your
browser settings, it may be automatically expanded or you may
need to manually expand it, usually by double-clicking on it.

Drag the Arduino application into your Applications folder.

Configuring the Drivers: MacOS
The Arduino Uno uses a driver provided by the MacOS operating
system, so there is nothing to install.

Now that the IDE is installed, connect your Arduino Uno to your
Mac via a USB cable.

The green LED labeled PWR on the board should come on, and
the yellow LED labeled L should start blinking.

The Arduino Platform 15

https://www.arduino.cc/en/software
https://www.arduino.cc/en/software

Now that you’ve configured the software, you need to select the
proper port to communicate with the Arduino Uno.

Port Identification: MacOS
Invoke the Arduino IDE, either through the Applications folder or
by using Spotlight.

From the Tools menu in the Arduino IDE, select Serial Port and
then select the port that begins with /dev/cu.usbmodem
or /dev/tty.usbmodem. They will probably also say Arduino/
Genuino Uno following the port name. Both of these ports refer
to your Arduino board, and it makes no difference which one
you select.

Figure 3-2 shows the list of ports.

16 Getting Started with Arduino

You might see a pop-up window telling you that a
new network interface has been detected.

If that happens, Click Network Preferences, and
when it opens, click Apply. The Uno will show up as
Not Configured, but it’s working properly. Quit Sys-
tem Preferences.

Figure 3-2. The Arduino IDE’s list of serial ports on a Mac

You’re almost done! The final thing you should check is that
Arduino is configured for the type of board you’re using.

From the Tools menu in the Arduino IDE, select Board, and then
select Arduino Uno. If you have a different board, you’ll need to
select that board type (the name of the board is printed next to
the Arduino symbol).

Congratulations! Your Arduino software is installed, configured,
and ready to use. You’re ready to go on to Chapter 4.

Installing the IDE: Windows
When the file download has finished, double-click to open the
installer.

You will be shown a license. Read the license, and if you agree
with it, click the I Agree button.

The Arduino Platform 17

If you have trouble with any of these steps, see
Chapter 11, Troubleshooting.

You will be given a list of components to install, and, by default,
all of them will be selected. Leave them all selected and click
Next.

You will be asked to select an installation folder, and the installer
will propose a default for that. Unless you have a good reason
not to, accept the default and click Install.

The installer will display its progress as it extracts and installs
the files.

After the files are installed, a window will pop up asking for per-
mission to install the drivers. Click Install.

When the installer has completed, click Close to finish.

Configuring the Drivers: Windows
Now that the IDE is installed, connect your Arduino Uno to your
computer via a USB cable.

The green LED labeled PWR on the board should come on, and
the yellow LED labeled L should start blinking.

The Found New Hardware Wizard window comes up, and Win-
dows should automatically find the right drivers.

Now that the driver has been configured, you need to select the
proper port to communicate with the Arduino Uno.

Port Identification: Windows
Run the Arduino IDE, either using a desktop shortcut or the
Start menu.

From the Tools menu in the Arduino IDE, select Serial Port. You
will see one or more COM ports with different numbers. One of
the ports will probably say Arduino/Genuino Uno following the
port name. This is the one to select.

18 Getting Started with Arduino

If you have trouble with any of these steps, see
“Problems Installing Drivers on Windows” on page
217 in Chapter 11.

If none of the ports say Arduino/Genuino Uno following the port
name, there is an alternative way to identify the correct port:

1. Make a note of which numbers are available.
2. Unplug your Arduino from your computer, look at the list of

ports again, and see which COM port vanishes. Plug your
Arduino back in and select the port that appears.
(It might take a moment or two for the port to vanish, and
you may have to leave the Tools menu and open it again to
refresh the list of ports.)

Once you’ve figured out the COM port assignment, you can
select that port from the Tools→Serial Port menu in the Arduino
IDE.

You’re almost done! The final thing you should check is that
Arduino is configured for your type of board.

From the Tools menu in the Arduino IDE, select Board and select
Arduino Uno. If you have a different board, you’ll need to select
that board type (the name of the board is printed next to the
Arduino symbol).

Installing the IDE: Linux
When the file download has finished, go to the folder to which
the file was downloaded, which is typically

~/Downloads

and uncompress the file by typing:

tar xf arduino-ide_2.0.0-rc3_Linux_64bit.tar.xz

(or whatever filename you downloaded.) This will take a few sec-
onds during which nothing is displayed. When it finishes you will
find a new folder:

arduino-ide_2.0.0-rc3_Linux_64bit

The Arduino Platform 19

If you have trouble identifying the COM port used by
your Arduino Uno, see “Identifying the Arduino COM
Port on Windows” on page 218 in Chapter 11.

Move this folder to wherever you would like, e.g. your home folder,
by typing:

mv arduino-ide_2.0.0-rc3_Linux_64bit ~

Configuring the Drivers: Linux
The Arduino Uno uses a driver provided by the Linux operating
system, so there is nothing to install.

Granting Permission on the Serial
Ports: Linux
The serial ports that the Arduino uses are normally restricted to
administrators, so you will need to grant yourself permission to
use those serial ports. Do this by adding yourself to the dial
out group by typing:

sudo usermod -a -G dialout $USER

you will be asked to provide your password to authenticate.
After typing your password the command is finished, but it
won’t take effect until the next time you restart the session, so
either log out and back in again, or reboot.

Now that you’ve installed the software, you need to select the
proper port to communicate with the Arduino Uno.

Port Identification: Linux
Invoke the Arduino IDE by typing:

~/arduino-ide_2.0.0-rc3_Linux_64bit/arduino

From the Tools menu in the Arduino IDE, select Serial Port. You
will see one or more serial ports with names like /dev/tty. One of
the ports will say Arduino/Genuino Uno following the port name.
This is the one to select.

Once you’ve figured out the serial port assignment, you can
select that port from the Tools→Serial Port menu in the Arduino
IDE.

You’re almost done! The final thing you should check is that
Arduino is configured for your type of board.

20 Getting Started with Arduino

From the Tools menu in the Arduino IDE, select Board and select
Arduino Uno. If you have a different board, you’ll need to select
that board type (the name of the board is printed next to the
Arduino symbol).

Congratulations! Your Arduino software is installed, configured,
and ready to use. You’re ready to go on to Chapter 4.

The Arduino Platform 21

4/Really Getting
Started with Arduino

Now you’ll learn how to build and program an interactive device.

Anatomy of an Interactive Device
All of the objects we will build using Arduino follow a very simple
pattern that we call the interactive device. The interactive device
is an electronic circuit that is able to sense the environment by
using sensors (electronic components that convert real-world
measurements into electrical signals). The device processes the
information it gets from the sensors with behaviour that’s
described in the software. The device will then be able to inter-
act with the world by using actuators, electronic components
that can convert an electric signal into a physical action.

Sensors and Actuators
Sensors and actuators are electronic components that allow a
piece of electronics to interact with the world.

23

1 LEDs are included in the kit mentioned in the preface

As the microcontroller is a very simple computer, it can process
only electric signals (a bit like the electric pulses that are sent
between neurons in our brains). For it to sense light, tempera-
ture, or other physical quantities, it needs something that can
convert them into electricity. In our body, for example, the eye
converts light into signals that get sent to the brain using
nerves. In electronics, we can use a simple device called a light-
dependent resistor (LDR), also known as a photoresistor, that
can measure the amount of light that hits it and report it as a
signal that can be understood by the microcontroller.

Once the sensors have been read, the device has the informa-
tion needed to decide how to react. The decision-making pro-
cess is handled by the microcontroller, and the reaction is per-
formed by actuators. In our bodies, for example, muscles
receive electric signals from the brain and convert them into a
movement. In the electronic world, these functions could be
performed by a light or an electric motor.

In the following sections, you will learn how to read sensors of
different types and control different kinds of actuators.

Blinking an LED
The LED blinking sketch is the first program that you should run
to test whether your Arduino board is working and is configured
correctly. It is also usually the very first programming exercise
someone does when learning to program a microcontroller. A
light-emitting diode (LED) is a small electronic component that’s
a bit like a lightbulb, but is more efficient and requires a lower
voltage to operate.

Your Arduino board comes with an LED preinstalled. It’s marked
L on the board. This preinstalled LED is connected to pin num-
ber 13. Remember that number because we’ll need to use it
later. You can also add your own LED1—connect it as shown in
Figure 4-1. Note that it’s plugged into the connector hole that is
labeled 13.

24 Getting Started with Arduino

K indicates the cathode (negative), or shorter lead; A indicates
the anode (positive), or longer lead.

Figure 4-1. Connecting an LED to Arduino

Once the LED is connected, you need to tell Arduino what to do.
This is done through code: a list of instructions that you give the
microcontroller to make it do what you want. (The words code,
program, and sketch are all terms that refer to this same list of
instructions.)

Really Getting Started with Arduino 25

If you intend to keep the LED lit for a long period of
time, you should use a resistor as described in “Con-
trolling Light with PWM” on page 54.

On your computer, run the Arduino IDE (on the Mac, it should be
in the Applications folder; on Windows, the shortcut will be
either on your desktop or in the Start menu). Select File→New
and you’ll be asked to choose a sketch folder name: this is
where your Arduino sketch will be stored. Name it Blinking_LED
and click OK. Then, type the following sketch (Example 4-1) into
the Arduino sketch editor (the main window of the Arduino IDE).
You can also download it from the example code link on the
book’s catalog page.

You can also load this sketch simply by clicking File→Exam-
ples→01.Basics→Blink, but you’ll learn better if you type it in
yourself. The built-in example might be slightly different but
basically does exactly the same thing.

It should appear as shown in Figure 4-2.

Example 4-1. Blinking LED
// Blinking LED

const int LED = 13; // LED connected to
 // digital pin 13

void setup()
{
 pinMode(LED, OUTPUT); // sets the digital
 // pin as output
}

void loop()
{
 digitalWrite(LED, HIGH); // turns the LED on
 delay(1000); // waits for a second
 digitalWrite(LED, LOW); // turns the LED off
 delay(1000); // waits for a second
}

26 Getting Started with Arduino

https://makezine.com/go/arduino-4e-github/

Figure 4-2. The Arduino IDE with your first sketch loaded

Now that the code is in your IDE, you need to verify that it is cor-
rect. Click the Verify button (Figure 4-2 shows its location -- the
check mark in the top left); if everything is correct, you’ll see the
message “Done compiling” appear at the bottom of the Arduino
IDE. This message means that the Arduino IDE has translated
your sketch into an executable program that can be run by the
board, a bit like an .exe file in Windows or an .app file on a Mac.

If you get an error, most likely you made a mistake typing in the
code. Look at each line very carefully and check each and every
character, especially symbols like parentheses, braces, semico-
lons, and commas. Make sure you’ve copied uppercase and low-
ercase faithfully, and that you’ve used the letter O and the num-
ber 0 correctly.

Once your code verifies correctly, you can upload it into the
board by clicking the Upload button next to Verify (see
Figure 4-2). This will tell the IDE to start the upload process,
which first resets the Arduino board, forcing it to stop what it’s
doing and listen for instructions coming from the USB port. The
Arduino IDE will then send the sketch to the Arduino board,
which will store the sketch in its permanent memory. Once the
IDE has sent the entire sketch, the Arduino board will start run-
ning your sketch.

Really Getting Started with Arduino 27

This happens fairly quickly. If you keep your eyes on the bottom
of the Arduino IDE, you will see a few messages appear in the
black area at the bottom of the window, and just above that
area, you might see the message “Compiling,” then “Uploading,”
and finally “Done uploading” to let you know the process has
completed correctly.

There are two LEDs, marked RX and TX, on the Arduino board;
these flash every time a byte is sent or received by the board.
During the upload process, they keep flickering. This also hap-
pens very quickly, so unless you’re looking at your Arduino
board at the right time, you might miss it.

If you don’t see the LEDs flicker, or if you get an error message
instead of “Done uploading”, then there is a communication
problem between your computer and Arduino. Make sure you’ve
selected the right serial port (see Chapter 3) in the Tools→Serial
Port menu. Also, check the Tools→Board menu to confirm that
the correct model of Arduino is selected there.

If you are still having problems, check Chapter 11.

Once the code is in your Arduino board, it will stay there until
you put another sketch on it. The sketch will survive if the board
is reset or turned off, a bit like the data on your computer’s hard
drive.

Assuming that the sketch has been uploaded correctly, you will
see the LED L turn on for a second and then turn off for a sec-
ond. If you installed a separate LED as shown back in Figure 4-1,
that LED will blink too. What you have just written and run is a
computer program, or sketch, as Arduino programs are called.
Arduino, as we’ve mentioned before, is a small computer, and it
can be programmed to do what you want. This is done by typing
a series of instructions into the Arduino IDE, which then turns it
into an executable for your Arduino board.

We’ll next show you how to understand the sketch. First of all,
the Arduino executes the code sequentially from top to bottom,
so the first line at the top is the first one read; then it moves
down, a bit like how you might be reading this book, from the
top of each page to the bottom.

28 Getting Started with Arduino

Pass Me the Parmesan
Notice the presence of curly braces, which are used to group
lines of code together. These are particularly useful when you
want to give a name to a group of instructions. If you’re at dinner
and you ask somebody, “Please pass me the Parmesan cheese,”
this kicks off a series of actions that are summarised by the
small phrase that you just said. As we’re humans, it all comes
naturally, but all the individual tiny actions required to do this
must be spelled out to the Arduino, because it’s not as powerful
as our brain. So to group together a number of instructions, you
stick a { before the block of code and a } after.

You can see that there are two blocks of code defined in this way
here. Before each one of them are some strange words:

void setup()

This line gives a name to a block of code. If you were to write a
list of instructions that teach Arduino how to pass the Parme-
san, you would write void passTheParmesan() at the beginning
of a block, and this block would become an instruction that you
can call from anywhere in the Arduino code. These blocks are
called functions. Now that you’ve created a function from this
block of code, you can write passTheParmesan() anywhere in
your sketch, and Arduino will jump to the passTheParmesan()
function, execute those instructions, and then jump back to
where it was and continue where it left off.

This points out something important about any Arduino pro-
gram. Arduino can do only one thing at a time, one instruction at
a time. As Arduino runs your program, line by line, it’s executing,
or running, only that one line. When it jumps to a function, it
executes the function, line by line, before returning to where it
was. Arduino can’t run two sets of instructions at the same time.

Arduino Is Not for Quitters
Arduino always expects that you’ve created two functions: one
called setup() and one called loop().

setup() is where you put all the code that you want to execute
once at the beginning of your program, and loop() contains the

Really Getting Started with Arduino 29

core of your program, which is executed over and over again.
This is done because Arduino is not like your regular computer
—it cannot run multiple programs at the same time, and pro-
grams can’t quit. When you power up the board, the code runs;
when you want to stop, you just turn it off.

Real Tinkerers Write Comments
Any text beginning with // is ignored by Arduino. These lines are
comments, which are notes that you leave in the program for
yourself, so that you can remember what you did when you
wrote it, or for somebody else, so they can understand your
code.

It is very common (we know this because we do it all the time)
to write a piece of code, upload it onto the board, and say “OK—
I’m never going to have to touch this sucker again!” only to real-
ise six months later that you need to update the code or fix a
bug. At this point, you open up the program, and if you haven’t
included any comments in the original program, you’ll think,
“Wow—what a mess! Where do I start?” As we move along,
you’ll see some tricks for how to make your programs more
readable and easier to maintain.

The Code, Step by Step
At first, you might consider this kind of explana-
tion too unnecessary, a bit like when I was in
school and I had to study Dante’s Divina Com-
media (every Italian student has to go through
that, as well as another book called I promessi
sposi, or The Betrothed—oh, the nightmares).
For each line of the poems, there were a hun-
dred lines of commentary! However, the explan-
ation will be much more useful here as you move
on to writing your own programs.

—Massimo

30 Getting Started with Arduino

// Blinking LED

A comment is a useful way for us to write little notes. The pre-
ceding title comment just reminds us that this program,
Example 4-1, blinks an LED.

const int LED = 13; // LED connected to
 // digital pin 13

const int means that LED is the name of an integer number that
can’t be changed (i.e., a constant) whose value is set to 13. It’s
like an automatic search-and-replace for your code; in this case,
it’s telling Arduino to write the number 13 every time the word
LED appears.

The reason we need the number 13 is that the preinstalled LED
we mentioned earlier is attached to Arduino pin 13. A common
convention is to use uppercase letters for constants.

void setup()

This line tells Arduino that the next block of code will be a func-
tion named setup().

{

With this opening curly brace, a block of code begins.

pinMode(LED, OUTPUT); // sets the digital
 // pin as output

Finally, a really interesting instruction! pinMode() tells Arduino
how to configure a certain pin. All of the Arduino pins can be
used either as input or output, but we need to tell Arduino how
we intend to use the pin.

In this case, we need an output pin to control our LED.

pinMode() is a function, and the words (or numbers) specified
inside the parentheses are called its arguments. Arguments are
whatever information a function needs in order to do its job.

The pinMode() function needs two arguments. The first argu-
ment tells pinMode() which pin we’re talking about, and the sec-
ond argument tells pinMode() whether we want to use that pin
as an input or output. INPUT and OUTPUT are predefined con-
stants in the Arduino language.

Really Getting Started with Arduino 31

Remember that the word LED is the name of the constant which
was set to the number 13, which is the pin number to which the
LED is attached. So, the first argument is LED, the name of the
constant.

The second argument is OUTPUT, because when Arduino talks to
an actuator such as an LED, it’s sending information out.

}

This closing curly brace signifies the end of the setup() func-
tion.

void loop()
{

loop() is where you specify the main behaviour of your interac-
tive device. It will be repeated over and over again until you
remove power from the board.

digitalWrite(LED, HIGH); // turns the LED on

As the comment says, digitalWrite() is able to turn on (or off)
any pin that has been configured as an output. Just as we saw
with the pinMode() function, digitalWrite() expects two argu-
ments, and just as we saw with the pinMode() function, the first
argument tells digitalWrite() what pin we’re talking about, and
just as we saw with the pinMode() function, we’ll use the con-
stant name LED to refer to pin number 13, which is where the
preinstalled LED is attached.

The second argument is different: in this case, the second argu-
ment tells digitalWrite() whether to set the voltage level to 0
V (LOW) or to 5 V (HIGH).

Imagine that every output pin is a tiny power socket, like the
ones you have on the walls of your apartment. European ones
are 230 V, American ones are 110 V, and Arduino works at a
more modest 5 V. The magic here is when software can control
hardware. When you write digitalWrite(LED, HIGH), it turns the
output pin to 5 V, and if you connect an LED, it will light up. So at
this point in your code, an instruction in software makes some-
thing happen in the physical world by controlling the flow of
electricity to the pin. Turning on and off the pin will now let us

32 Getting Started with Arduino

translate these into something more visible for a human being;
the LED is our actuator.

On the Arduino, HIGH means that the pin will be set to 5 V, while
LOW means the pin will be set to 0 V.

You might wonder why we use HIGH and LOW instead of ON and
OFF. It’s true that HIGH or LOW usually correspond to on and
off, respectively, but this depends on how the pin is used. For
example, an LED connected between 5V and a pin will turn on
when that pin is LOW and turn off when the pin is HIGH. But for
most cases you can just pretend that HIGH means ON and LOW
means OFF.

delay(1000); // waits for a second

Although Arduino is much slower than your laptop, it’s still very
fast. If we turned the LED on and then immediately turned it off,
our eyes wouldn’t be able to see it. We need to keep the LED on
for a while so that we can see it, and the way to do that is to tell
Arduino to wait for a while before going to the next step. delay()
basically makes the microcontroller sit there and do nothing for
the amount of milliseconds that you pass as an argument. Milli-
seconds are thousandths of seconds; therefore, 1,000 milli-
seconds equals 1 second. So the LED stays on for 1 second here.

digitalWrite(LED, LOW); // turns the LED off

This instruction now turns off the LED that we previously turned
on.

delay(1000); // waits for a second

Here, we delay for another second. The LED will be off for 1 sec-
ond.

}

This closing curly brace marks the end of the loop() function.
When Arduino gets to this, it starts over again at the beginning
of loop().

To sum up, this program does this:

• Turns pin 13 into an output (just once at the beginning)

• Enters a loop

• Switches on the LED connected to pin 13

Really Getting Started with Arduino 33

• Waits for a second

• Switches off the LED connected to pin 13

• Waits for a second

• Goes back to beginning of the loop

We hope that wasn’t too painful. If you didn’t understand every-
thing, don’t feel discouraged. As we mentioned before, if you’re
new to these concepts, it takes a while before they make sense.
You’ll learn more about programming as you go through the
later examples.

Before we move on to the next section, we want you to play with
the code. For example, reduce the amount of delay, using differ-
ent numbers for the on and off pulses so that you can see differ-
ent blinking patterns. In particular, you should see what hap-
pens when you make the delays very small, but use different
delays for on and off. There is a moment when something
strange happens; this “something” will be very useful when you
learn about pulse-width modulation in “Controlling Light with
PWM” on page 54.

What We Will Be Building
I have always been fascinated by light and the
ability to control different light sources through
technology. I have been lucky enough to work on
some interesting projects that involve control-
ling light and making it interact with people.
Arduino is really good at this.

—Massimo

In this chapter, Chapter 5, and Chapter 6, we will be working on
how to design interactive lamps, using Arduino as a way to learn
the basics of how interactive devices are built. Remember,
though, that Arduino doesn’t really understand, or care, what
you connect to the output pins. Arduino just turns the pin HIGH
or LOW, which could be controlling a light, or an electric motor,
or your car engine.

34 Getting Started with Arduino

In the next section, we’ll explain the basics of electricity in a way
that would bore an engineer but won’t scare a new Arduino pro-
grammer.

What Is Electricity?
If you have done any plumbing at home, electronics won’t be a
problem for you to understand. To understand how electricity
and electric circuits work, the best way is to use something
called the water analogy. Let’s take a simple device, like the
battery-powered portable fan shown in Figure 4-3.

Figure 4-3. A portable fan

Really Getting Started with Arduino 35

If you take a fan apart, you will see that it contains a battery, a
couple of wires, and an electric motor, and that one of the wires
going to the motor is interrupted by a switch. If you turn the
switch on, the motor will start to spin, providing the necessary
airflow to cool you down.

How does this work? Well, imagine that the battery is both a
water reservoir and a pump, the switch is a tap, and the motor is
one of those wheels that you see in watermills. When you open
the tap, water flows from the pump and pushes the wheel into
motion.

In this simple hydraulic system, shown in Figure 4-4, two factors
are important: the pressure of the water (this is determined by
the power of the pump) and the amount of water that will flow in
the pipes (this depends on the size of the pipes and the resist-
ance that the wheel will provide to the stream of water hitting it).

Figure 4-4. A hydraulic system

You’ll quickly realise that if you want the wheel to spin faster, you
need to increase the size of the pipes (but this works only up to
a point) and increase the pressure that the pump can achieve.
Increasing the size of the pipes allows a greater flow of water to
go through them; by making them bigger, you have effectively
reduced the pipes’ resistance to the flow of water. This
approach works up to a certain point, at which the wheel won’t
spin any faster, because the pressure of the water is not strong
enough. When you reach this point, you need the pump to be

36 Getting Started with Arduino

stronger. This method of speeding up the watermill can go on
until the point when the wheel falls apart because the water flow
is too strong for it and it is destroyed. Another thing you will
notice is that as the wheel spins, the axle will heat up a little bit,
because no matter how well you have mounted the wheel, the
friction between the axle and the holes in which it is mounted
will generate heat. It is important to understand that in a system
like this, not all the energy you pump into the system will be con-
verted into movement; some will be lost in a number of ineffi-
ciencies and will generally show up as heat emanating from
some parts of the system.

So what are the important parts of the system? The pressure
produced by the pump is one; the resistance that the pipes and
wheel offer to the flow of water, and the actual flow of water
(let’s say that this is represented by the number of litres of
water that flow in one second) are the others.

Electricity works a bit like water. You have a kind of pump (any
source of electricity, like a battery or a wall plug) that pushes
electric charges (imagine them as “drops” of electricity) down
pipes, which are represented by the wires. Various electrical
devices are able to use these drops of electricity to produce
heat (your grandma’s electric blanket), light (your bedroom
lamp), sound (your stereo), movement (your fan), and much
more.

When you read that a battery’s voltage is 9V, think of this volt-
age as the water pressure that can potentially be produced by
this little “pump”. Voltage is measured in volts, named after
Alessandro Volta, the inventor of the first battery.

Just as water pressure has an electric equivalent, the flow rate
of water does too. This is called current, and is measured in
amperes (after André-Marie Ampère, electromagnetism pio-
neer). The relationship between voltage and current can be illus-
trated by returning to the water wheel: a higher voltage (pres-
sure) lets you spin a wheel faster; a higher flow rate (current)
lets you spin a larger wheel.

Finally, the resistance opposing the flow of current over any
path that it travels is called—you guessed it—resistance, and is
measured in ohms (after the German physicist Georg Ohm).

Really Getting Started with Arduino 37

Herr Ohm was also responsible for formulating the most impor-
tant law in electricity—and the only formula that you really need
to remember. He was able to demonstrate that in a circuit, the
voltage, the current, and the resistance are all related to each
other, and in particular that the resistance of a circuit deter-
mines the amount of current that will flow through it, given a
certain voltage supply.

It’s very intuitive, if you think about it. Take a 9 V battery and
plug it into a simple circuit. While measuring current, you will
find that the more resistors you add to the circuit, the less cur-
rent will travel through it. Going back to the analogy of water
flowing in pipes, given a certain pump, if we install a valve (which
we can relate to a variable resistor in electricity), the more we
close the valve—increasing resistance to water flow—the less
water will flow through the pipes. Ohm summarised his law in
these formulas:

R (resistance) = V (voltage) / I (current)
V = R * I
I = V / R

What’s important about this law is understanding it intuitively,
and for this, we prefer the last version (I = V / R) because the
current is something that results when you apply a certain volt-
age (the pressure) to a certain circuit (the resistance). The volt-
age exists whether or not it’s being used, and the resistance
exists whether or not it’s being given electricity, but the current
comes into existence only when these are put together.

Using a Pushbutton to Control
the LED
Blinking an LED was easy, but we don’t think you would stay
sane if your desk lamp were to continuously blink while you were
trying to read a book. Therefore, you need to learn how to con-
trol it. In the previous example, the LED was your actuator, and
the Arduino was controlling it. What’s missing to complete the
picture is a sensor.

In this case, we’re going to use the simplest form of sensor avail-
able: a pushbutton switch.

38 Getting Started with Arduino

2 All of these parts are included in the kit mentioned in the preface

If you were to take apart a pushbutton, you would see that it is a
very simple device: two bits of metal kept apart by a spring, and
a plastic cap that when pressed brings the two bits of metal into
contact. When the bits of metal are apart, there is no circulation
of current in the pushbutton (a bit like when a water valve is
closed); when you press it, you make a connection.

All switches are basically just this: two (or more) pieces of metal
that can be brought into contact with each other, allowing elec-
tricity to flow from one to the other, or separated, preventing the
flow of electricity.

To monitor the state of a switch, there’s a new Arduino instruc-
tion that you’re going to learn: the digitalRead() function.

digitalRead() checks to see whether there is any voltage
applied to the pin that you specify between parentheses, and
returns a value of HIGH or LOW, depending on its findings. The
other instructions that you’ve used so far haven’t returned any
information—they just executed what we asked them to do. But
that kind of function is a bit limited, because it will force you to
stick with very predictable sequences of instructions, with no
input from the outside world. With digitalRead(), you can “ask
a question” of Arduino and receive an answer that can be stored
in memory somewhere and used to make decisions immedi-
ately or later.

Build the circuit shown in Figure 4-5. To build this, you’ll need to
obtain some parts2 (these will come in handy as you work on
other projects as well):

• Solderless breadboard
• Precut jumper wire kit
• One 10 K ohm resistor
• Momentary tactile pushbutton switch

Really Getting Started with Arduino 39

Example 4-2 shows the code that we’ll be using to control the
LED with our pushbutton.

40 Getting Started with Arduino

Instead of buying precut jumper wire, you can also
buy 22 AWG solid-core hookup wire in small spools
and then cut and strip it yourself using wire cutters
and wire strippers.

GND on the Arduino board stands for ground. The
word is historical, but in our case simply means the
negative side of the power. We tend to use the words
GND and ground interchangeably. You can think of it
as the pipe that’s underground in the water analogy
in Figure 4-4.

In most circuits, GND or ground is used very fre-
quently. For this reason, your Arduino board has
three pins labeled GND. They are all connected
together, and it makes no difference which one you
use.

The pin labeled 5V is the positive side of the power,
and is always 5 volts higher than the ground.

Figure 4-5. Hooking up a pushbutton

Example 4-2. Turn on LED while the button is
pressed
// Turn on LED while the button is pressed

const int LED = 13; // the pin for the LED

Really Getting Started with Arduino 41

const int BUTTON = 7; // the input pin where the
 // pushbutton is connected
int val = 0; // val will be used to store the state
 // of the input pin

void setup() {
 pinMode(LED, OUTPUT); // tell Arduino LED is an output
 pinMode(BUTTON, INPUT); // and BUTTON is an input
}

void loop(){
 val = digitalRead(BUTTON); // read input value and store it

 // check whether the input is HIGH (button pressed)
 if (val == HIGH) {
 digitalWrite(LED, HIGH); // turn LED ON
 } else {
 digitalWrite(LED, LOW);
 }
}

In Arduino, select File→New (if you have another sketch open,
you may want to save it first). When Arduino asks you to name
your new sketch folder, type PushButtonControl. Type the
Example 4-2 code into Arduino (or download it from this book’s
catalog page and paste it into the Arduino IDE). If everything is
correct, the LED will light up when you press the button.

How Does This Work?
We have introduced two new concepts with this example pro-
gram: functions that return the result of their work, and the if
statement.

The if statement is possibly the most important instruction in a
programming language, because it allows a computer (and
remember, the Arduino is a small computer) to make decisions.
After the if keyword, you have to write a “question” inside
parentheses, and if the “answer”, or result, is true, the first block
of code will be executed; otherwise, the block of code after else
will be executed.

Notice that the == symbol is very different from the = symbol.
The former is used when two entities are compared, and returns

42 Getting Started with Arduino

https://makezine.com/go/arduino-4e-github/

true or false; the latter assigns a value to a constant or a vari-
able. Make sure that you use the correct one, because it is very
easy to make that mistake and use just = , in which case your
program will never work. We know, because after years of pro-
gramming, we still make that mistake.

It’s important to realise that the switch is not connected directly
to the LED. Your Arduino sketch inspects the switch, and then
makes a decision as to whether to turn the LED on or off. The
connection between the switch and the LED is really happening
in your sketch.

Holding your finger on the button for as long as you need light is
not practical. Although it would make you think about how much
energy you’re wasting when you walk away from a lamp that you
left on, we need to figure out how to make the on button “stick”.

One Circuit, a Thousand
Behaviours
The great advantage of programmable electronics over classic
electronics now becomes evident: I will show you how to imple-
ment many different “behaviours” using the same electronic cir-
cuit as in the previous section, just by changing the software.

As I’ve mentioned before, it’s not very practical to have to hold
your finger on the button to have the light on. You therefore
must implement some form of “memory”, in the form of a soft-
ware mechanism that will remember when you have pressed the
button and will keep the light on even after you have released it.

To do this, you’re going to use what is called a variable. (You
have used one already, but we haven’t explained it.) A variable is
a place in the Arduino memory where you can store data. Think
of it like one of those sticky notes you use to remind yourself
about something, such as a phone number: you take one, you
write “Luisa 02 555 1212” on it, and you stick it to your com-
puter monitor or your fridge. In the Arduino language, it’s
equally simple: you just decide what type of data you want to
store (a number or some text, for example), give it a name, and
when you want to, you can store the data or retrieve it. For
example:

Really Getting Started with Arduino 43

int val = 0;

int means that your variable will store an integer number, val is
the name of the variable, and = 0 assigns it an initial value of
zero.

A variable, as the name intimates, can be modified anywhere in
your code, so that later on in your program, you could write:

val = 112;

which reassigns a new value, 112, to your variable.

In the following program, the variable val stores the result of dig
italRead(); whatever Arduino gets from the input ends up in the
variable and will stay there until another line of code changes it.
Notice that variables use a type of memory called RAM. It is
quite fast, but when you turn off your board, all data stored in
RAM is lost (which means that each variable is reset to its initial
value when the board is powered up again). Your programs
themselves are stored in flash memory—this is the same type
used by your mobile phone to store phone numbers—which
retains its content even when the board is off.

Let’s now use another variable to remember whether the LED
has to stay on or off after we release the button. Example 4-3 is
a first attempt at achieving that.

44 Getting Started with Arduino

Have you noticed that in Arduino, every instruction
ends with a semicolon? This is done so the compiler
(the part of Arduino that turns your sketch into a
program that the microcontroller can run) knows
your statement is finished and a new one is begin-
ning. If you forget a semicolon where one is required,
the compiler won’t be able to make sense of your
sketch.

Example 4-3. Turn on LED when the button is
pressed and keep it on after it is released
const int LED = 13; // the pin for the LED
const int BUTTON = 7; // the input pin where the
 // pushbutton is connected
int val = 0; // val will be used to store the state
 // of the input pin
int state = 0; // 0 = LED off while 1 = LED on

void setup() {
 pinMode(LED, OUTPUT); // tell Arduino LED is an output
 pinMode(BUTTON, INPUT); // and BUTTON is an input
}

void loop() {
 val = digitalRead(BUTTON); // read input value and store it

 // check if the input is HIGH (button pressed)
 // and change the state
 if (val == HIGH) {
 state = 1 - state;
 }

 if (state == 1) {
 digitalWrite(LED, HIGH); // turn LED ON
 } else {
 digitalWrite(LED, LOW);
 }
}

Now go test this code. You will notice that it works…somewhat.
You’ll find that the light changes so rapidly that you can’t reliably
set it on or off with a button press.

Let’s look at the interesting parts of the code: state is a variable
that stores either 0 or 1 to remember whether the LED is on or
off. After the button is released, we initialise it to 0 (LED off).

Later, we read the current state of the button, and if it’s pressed
(val == HIGH), we change state from 0 to 1, or vice versa. We do
this using a small trick, as state can be only either 1 or 0. The
trick I use involves a small mathematical expression based on
the idea that 1 – 0 is 1 and 1 – 1 is 0:

state = 1 - state;

Really Getting Started with Arduino 45

The line may not make much sense in mathematics, but it does
in programming. The symbol = means “assign the result of
what’s after me to the variable name before me”—in this case,
the new value of state is assigned the value of 1 minus the old
value of state.

Later in the program, you can see that we use state to figure out
whether the LED has to be on or off. As I mentioned, this leads
to somewhat flaky results.

The results are flaky because of the way we read the button.
Arduino is really fast; it executes its own internal instructions at
a rate of 16 million per second—it could well be executing a few
million lines of code per second. So this means that while your
finger is pressing the button, Arduino might be reading the
button’s position a few thousand times and changing state
accordingly. So the results end up being unpredictable; it might
be off when you wanted it on, or vice versa. As even a broken
clock is right twice a day, the program might show the correct
behaviour every once in a while, but much of the time it will be
wrong.

How do you fix this? Well, you need to detect the exact moment
when the button is pressed—that is the only moment that you
have to change state. The way we like to do it is to store the
value of val before we read a new one; this allows you to com-
pare the current position of the button with the previous one
and change state only when the button changes from LOW to
HIGH.

Example 4-4 contains the code to do so.

Example 4-4. New and improved button press
formula!
const int LED = 13; // the pin for the LED
const int BUTTON = 7; // the input pin where the
 // pushbutton is connected
int val = 0; // val will be used to store the state
 // of the input pin
int old_val = 0; // this variable stores the previous
 // value of "val"

46 Getting Started with Arduino

int state = 0; // 0 = LED off and 1 = LED on

void setup() {
 pinMode(LED, OUTPUT); // tell Arduino LED is an output
 pinMode(BUTTON, INPUT); // and BUTTON is an input
}
void loop(){
 val = digitalRead(BUTTON); // read input value and store it
 // yum, fresh

 // check if there was a transition
 if ((val == HIGH) && (old_val == LOW)){
 state = 1 - state;
 }

 old_val = val; // val is now old, let's store it

 if (state == 1) {
 digitalWrite(LED, HIGH); // turn LED ON
 } else {
 digitalWrite(LED, LOW);
 }
}

You’ll notice something new in the if statement: there are two
comparisons separated by a new symbol: &&. This symbol per-
forms the logical AND operation, meaning that the compound
statement is true only if both of the two simple statements are
true.

Now test this code: you’re almost there!

You may have noticed that this approach is not entirely perfect,
due to another issue with mechanical switches.

As we explained earlier, pushbuttons are just two bits of metal
kept apart by a spring, that come into contact when you press
the button. This might seem like the switch should be com-
pletely on when you press the button, but in fact what happens
is the two pieces of metal bounce off each other, just like a ball
bounces on the floor.

Although the bouncing is only for a very small distance and hap-
pens for a fraction of a second, it causes the switch to change
between off and on a number of times until the bouncing stops,
and Arduino is quick enough to catch this.

Really Getting Started with Arduino 47

When the pushbutton is bouncing, the Arduino sees a very rapid
sequence of on and off signals. There are many techniques
developed to do debouncing, but in this simple piece of code, it’s
usually enough to add a 10- to 50-millisecond delay when the
code detects a transition. In other words, you just wait a bit for
the bouncing to stop.

Example 4-5 is the final code.

Example 4-5. Another new and improved
formula for button presses—with simple
debouncing!
const int LED = 13; // the pin for the LED
const int BUTTON = 7; // the input pin where the
 // pushbutton is connected
int val = 0; // val will be used to store the state
 // of the input pin
int old_val = 0; // this variable stores the previous
 // value of "val"
int state = 0; // 0 = LED off and 1 = LED on

void setup() {
 pinMode(LED, OUTPUT); // tell Arduino LED is an output
 pinMode(BUTTON, INPUT); // and BUTTON is an input
}

void loop(){
 val = digitalRead(BUTTON); // read input value and store it
 // yum, fresh

 // check if there was a transition
 if ((val == HIGH) && (old_val == LOW)){
 state = 1 - state;
 delay(10);
 }

 old_val = val; // val is now old, let's store it

 if (state == 1) {
 digitalWrite(LED, HIGH); // turn LED ON
 } else {
 digitalWrite(LED, LOW);

48 Getting Started with Arduino

 }
}

One reader, Tami (Masaaki) Takamiya, wrote in with some extra
code that may give you better debouncing:

if ((val == LOW) && (old_val == HIGH)) {
 delay(10);
}

Really Getting Started with Arduino 49

5/Advanced Input
and Output

What you have just learned in Chapter 4 are the most elemen-
tary operations we can do in Arduino: controlling digital output
and reading digital input. If Arduino were some sort of human
language, those would be two letters of its alphabet. Consider-
ing that there are just five letters in this alphabet, you can see
how much more work we have to do before we can write Arduino
poetry.

Trying Out Other On/Off Sensors
Now that you’ve learned how to use a pushbutton, you should
know that there are many other very basic sensors that work
according to the same principle:

Toggle switch
The pushbutton that you’ve been using is a type of switch
called a momentary switch, because once you let it go, it
goes back to where it was. A common example of a momen-
tary switch is a doorbell.

In contrast, a toggle switch stays where you put it. A com-
mon example of a toggle switch is a light switch.

In this book we’ll use the common names for these switches:
a pushbutton refers to a momentary switch, while a switch
refers to a toggle switch.

Although you might not think of a switch as a sensor, in fact
it is: a pushbutton (momentary switch) senses when you are
pressing it, and a (toggle) switch senses (electrically) and
remembers (mechanically) the last state you put it in.

51

Thermostat
A switch that changes state when the temperature reaches a
set value.

Magnetic switch (also known as a reed switch)
This has two contacts that come together when they are
near a magnet; often used for burglar alarms to detect when
a door or window is opened.

Carpet switch
A flat mat-like switch that can be placed under a carpet or a
doormat to detect when a human being (or heavy cat) steps
on them.

Tilt switch or tilt sensor
A simple but clever sensor that contains two (or more) con-
tacts and a little metal ball (or a drop of mercury, but I don’t
recommend using that). Figure 5-1 shows the inside of a typ-
ical model.

Figure 5-1. The inside of a tilt sensor

When the sensor is in its upright position, the ball bridges
the two contacts, and this works just as if you had pressed a
pushbutton. When you tilt this sensor, the ball moves, and
the contact is opened, which is just as if you had released a

52 Getting Started with Arduino

pushbutton. Using this simple component, you can imple-
ment, for example, gestural interfaces that react when an
object is moved or shaken.

Another useful sensor that is often found in burglar alarms is
the passive infrared, or PIR, sensor, shown in Figure 5-2. This
device changes state when a moderate infrared source, like a
human, moves within its proximity. These sensors are often
designed to detect humans but not small animals, so that bur-
glar alarms won’t get triggered by pets.

Figure 5-2. Typical PIR sensor

Advanced Input and Output 53

Detecting humans is actually quite complicated, and the PIR
sensor is quite complex inside. Fortunately, we don’t really care
about the insides. The only thing we need to know is that it
results in a digital signal, indicating whether a human is present
or not. This is why the PIR sensor is a digital sensor.

Homemade (DIY) Switches
You can make your own tilt switch with a metal ball and a few
nails, and by wrapping some wire around the nails. When the
ball rolls to one side and rests on two of the nails, it will connect
those wires.

You can make a momentary switch with a clothespin by wrap-
ping a wire around each handle. When the handles are
squeezed, the switch is closed.

Alternatively, you can wrap the wires around the jaws of the clo-
thespin, and put a piece of cardboard between them to keep the
wires from touching. Tie a piece of string to the cardboard and
tie the other end of the string to a door. When the door is
opened, the string pulls the cardboard out, the wires touch, and
the switch is closed.

Because all of these sensors are digital, any of them can be used
in place of the pushbutton that you worked with in Chapter 4
without having to make any changes to your sketch.

For example, by using the circuit and sketch from “Using a
Pushbutton to Control the LED” on page 38, but replacing the
pushbutton with a PIR sensor, you could make your lamp
respond to the presence of human beings, or you could use a tilt
switch to build a lamp that turns off when it’s tilted on one side.

Controlling Light with PWM
You already know enough to build an interactive lamp, but so far
the result is a little boring, because the light is only either on or
off. A fancy interactive lamp needs to be dimmable. To solve this
problem, we can use a little trick that makes a lot of things pos-
sible, such as TV or cinema. This trick is called Persistence of
Vision, or POV. POV takes advantage of the fact that our eyes
can’t “refresh” what they see more than about 10 times per sec-

54 Getting Started with Arduino

ond. If what we’re looking at changes more rapidly than that, the
eye “blurs” one image into the other, creating the illusion --
some say “interpretation” -- of movement.

As we hinted at after the first example in Chapter 4, if you
reduce the numbers in the delay function until you don’t see the
LED blinking anymore, you will notice that the LED seems to be
dimmer than its normal brightness. If you experiment with this,
you will notice that if you make the on delay different from the
off delay, you can make the LED appear brighter by leaving it on
for longer, and you can make the LED seem to be dimmer by
leaving it off for longer. This technique is called pulse-width
modulation, or PWM, because you are changing the LED’s
brightness by modulating (or changing) the width of the pulse.
Figure 5-3 shows how this works. This works because thanks to
persistence of vision, our eyes can’t see the distinct changes in
the LED, because they’re happening too fast.

Pulse Width Modulation works with some devices other than an
LEDs. For example, you can change the speed of a motor in the
same way. In this case, it isn’t our eyes that allow this to happen,
but rather the motor itself, because it can’t start or stop turning
instantly. It takes a small amount of time for the motor’s rotor to
speed up and slow down. If we change the output (using digital
Write()) faster than the motor can respond, it ends up turning
at some intermediate speed, depending on how much time it’s
turned on, and how much time it’s turned off.

While this trick is very useful, you probably felt that controlling
the LED brightness by fiddling with the delays in your code is a
bit inconvenient. Even worse, as soon as you want to read a sen-
sor, send data on the serial port, or do almost anything else, the
LED brightness will change, because any extra lines of code you
add will take time to execute, which will change the amount of
time the LED is on or off.

Luckily, the microcontroller used by your Arduino includes a
special piece of hardware called a timer/counter. Timer/coun-
ters run independently of whatever program your microcontrol-
ler is performing and can very efficiently blink your LEDs while
your sketch does something else. On the Uno, this hardware is
implemented on pins 3, 5, 6, 9, 10, and 11. Specifically, once set

Advanced Input and Output 55

up correctly, the timer/counters can automatically turn on a pin
for a certain amount of time, and then turn it off for a different
amount of time, all without affecting your program. If you draw a
graph of the voltage at the pin, you will see that the pulses can
vary in width; thus this technique is called Pulse Width Modula-
tion, or PWM.

56 Getting Started with Arduino

Figure 5-3. PWM in action

Advanced Input and Output 57

1 All these components are included in the kit mentioned in the preface

The function that handles PWM on the Arduino is called analog
Write(). analogWrite() takes a value between 0 and 255, where
255 means full brightness and 0 means completely off.

For example, writing analogWrite(9,50) will set the brightness of an
LED connected to pin 9 to quite dim, while writing analog
Write(9,200) will set the brightness of the LED to quite bright. If
you connect a motor to pin 9, analogWrite(9,50) will move the
motor quite slowly, while writing analogWrite(9,200) will make the
motor move much faster.

Let’s try it out. Build the circuit that you see in Figure 5-4. You’ll
need an LED of any colour and some 220-ohm resistors1.

Note that LEDs are polarized, which means they care which way
the electric current goes through them. The long lead indicates
the anode, or positive lead, and in our case should go to the
right, which connects it to pin 9 of the Arduino. The short lead
indicates the cathode, or negative lead, and in this case it should
go to the left, connecting it to the resistor.

Most LEDs also have a flattened edge on the cathode side, as
shown in the figure. An easy way to remember this is that the
flat part looks like a minus sign, and that the short lead has had
something subtracted from it.

As we mentioned in “Blinking an LED” on page 24, you should
always use a resistor with an LED to prevent burning out the
LED. Any value between 220 ohm resistor (red-red-brown) and
1000 ohm (brown-black-red) should be fine.

Then, create a new sketch in Arduino with the code shown in
Example 5-1. You can also download it from the example code
link on the book’s catalog page.

58 Getting Started with Arduino

Having multiple PWM pins is very useful. For exam-
ple, if you buy an RGB LED (an LED that can emit
red, green, and blue light in different intensities), you
can adjust each value to make light of any colour.

https://makezine.com/go/arduino-4e-github/

Figure 5-4. LED connected to PWM pin

Example 5-1. Fade an LED in and out, like on a
sleeping Apple computer
const int LED = 9; // the pin for the LED
int i = 0; // We'll use this to count up and down

Advanced Input and Output 59

void setup() {
 pinMode(LED, OUTPUT); // tell Arduino LED is an output
}

void loop(){

 for (i = 0; i < 255; i++) { // loop from 0 to 254 (fade in)
 analogWrite(LED, i); // set the LED brightness
 delay(10); // Wait 10ms because analogWrite
 // is instantaneous and we would
 // not see any change with no delay
 }

 for (i = 255; i > 0; i--) { // loop from 255 to 1 (fade out)
 analogWrite(LED, i); // set the LED brightness
 delay(10); // Wait 10ms
 }

}

Upload the sketch, and the LED will fade up and then fade down
continuously. Congratulations! You have replicated a fancy fea-
ture of a laptop computer.

Maybe it’s a bit of a waste to use Arduino for something so sim-
ple, but you can learn a lot from this example.

As you learned earlier, analogWrite() changes the LED bright-
ness. The other important part is the for loop: it repeats the ana
logWrite() and the delay() over and over, each time using a dif-
ferent value for the variable i as follows.

The first for loop starts the variable i with the value of 0, and
increases it up to 255, which fades the LED up to full brightness.

The second for loop starts the variable i with the value of 255,
and decreases it up to 0, which fades the LED all the way down
to completely off.

After the second for loop, Arduino starts our loop() function
over again.

The delay() is just to slow things down a bit so you can see the
changing brightness; otherwise, it would happen too fast.

Let’s use this knowledge to improve our lamp.

60 Getting Started with Arduino

Add the circuit we used to read a button (back in Chapter 4) to
this breadboard. See if you can do this without reading past this
paragraph, because I want you to start thinking about the fact
that each elementary circuit I show here is a building block to
make bigger and bigger projects. If you need to peek ahead,
don’t worry; the most important thing is that you spend some
time thinking about how it might look.

To create this circuit, you will need to combine the circuit you
just built (shown in Figure 5-4) with the pushbutton circuit
shown in Figure 4-5. If you’d like, you can simply build both cir-
cuits on different parts of the breadboard; you have plenty of
room.

Take a look at Appendix A to learn more about the solderless
breadboard.

If you’re not ready to try this, don’t worry: simply wire up both
circuits to your Arduino as shown in Figure 4-5 and Figure 5-4.

Now for the next example: if you have just one pushbutton, how
do you control the brightness of a lamp? You’re going to learn
yet another Interaction Design technique: detecting how long a
button has been pressed. To do this, we need to upgrade
Example 4-5 from Chapter 4 to add dimming. The idea is to
build an interface in which a press-and-release action switches
the light on and off, and a press-and-hold action changes bright-
ness.

Have a look at the sketch in Example 5-2. It turns on the LED
when the button is pressed and keeps it on after it is released. If
the button is held, the brightness changes.

Example 5-2. Sketch to change the brightness
of an LED as you hold the button
const int LED = 9; // the pin for the LED
const int BUTTON = 7; // input pin of the pushbutton

int val = 0; // stores the state of the input pin

int old_val = 0; // stores the previous value of "val"
int state = 0; // 0 = LED off while 1 = LED on

Advanced Input and Output 61

int brightness = 128; // Stores the brightness value
unsigned long startTime = 0; // when did we begin pressing?

void setup() {
 pinMode(LED, OUTPUT); // tell Arduino LED is an output
 pinMode(BUTTON, INPUT); // and BUTTON is an input
}

void loop() {

 val = digitalRead(BUTTON); // read input value and store it
 // yum, fresh

 // check if there was a transition
 if ((val == HIGH) && (old_val == LOW)) {

 state = 1 - state; // change the state from off to on
 // or vice-versa

 // remember when the button was last pressed)
 startTime = millis(); // millis() is the Arduino clock
 // it returns how many milliseconds
 // have passed since the board has
 // been reset.

 delay(10); // wait a bit so we can see the effect
 }

 // check whether the button is being held down
 if ((val == HIGH) && (old_val == HIGH)) {

 // If the button is held for more than 500 ms.
 if (state == 1 && (millis() - startTime) > 500) {

 brightness++; // increment brightness by 1
 delay(10); // delay to avoid brightness going
 // up too fast

 if (brightness > 255) { // 255 is the max brightness

 brightness = 0; // if we go over 255
 // let's go back to 0
 }
 }
 }

62 Getting Started with Arduino

 old_val = val; // val is now old, let's store it

 if (state == 1) {
 analogWrite(LED, brightness); // turn LED ON at the
 // current brightness level

 } else {
 analogWrite(LED, 0); // turn LED OFF
 }
}

Now try it out. As you can see, this interaction model is taking
shape. If you press the button and release it immediately, you
switch the lamp on or off. If you hold the button down, the
brightness changes; just let go when you have reached the
desired brightness.

Just as we said before about thinking about the circuit, try to
spend a bit of time trying to understand the program.

Probably the most confusing line is this one:

 if (state == 1 && (millis() - startTime) > 500) {

This line of code checks to see if the button is held down for
more than 500 ms by using a built-in function called millis(),
which is just a running count of the number of milliseconds
since your sketch started running. By keeping track of when the
button was pressed (in the variable startTime), we can compare
the current time to the start time to see how much time has
passed.

Of course, this makes sense only if the button is currently
pressed, which is why at the beginning of the line we check to
see if state is set to the value of 1.

As you can see, switches are really pretty powerful sensors,
even though they are so simple. Now let’s learn how to use some
other sensors.

Advanced Input and Output 63

2 LDRs are included in the kit mentioned in the preface

Use a Light Sensor Instead of the
Pushbutton
Now we’re going to try an interesting experiment using a light
sensor2, like the one pictured in Figure 5-5.

Figure 5-5. Light-dependent resistor (LDR)

As its name suggests, the light-dependent resistor (LDR) is
some sort of resistor that depends on light. In darkness, the
resistance of an LDR is quite high, but when you shine some
light at it, the resistance quickly drops and it becomes a reason-
ably good conductor of electricity. It is thus a kind of light-
activated switch.

Build the circuit shown in Figure 4-5 (see “Using a Pushbutton
to Control the LED” on page 38 in Chapter 4), and then upload
the code from Example 4-2 to your Arduino. Press the pushbut-
ton to make sure it works.

Now carefully remove only the pushbutton, and insert the LDR
into the circuit exactly where the pushbutton was. The LED

64 Getting Started with Arduino

should come on. Cover the LDR with your hands, and the LED
turns off.

You’ve just built your first real sensor-driven LED. This is impor-
tant because for the first time in this book, you are using an
electronic component that is not a simple mechanical device:
it’s a real, rich sensor. In fact, this is only a small example of
what the LDR can be used for.

Analogue Input
As you learned in the previous section, Arduino is able to detect
whether there is a voltage applied to one of its pins and report it
through the digitalRead() function. This kind of either/or
response is fine in a lot of applications, but the light sensor that
we just used is able to tell us not only whether there is light, but
also how much light there is. This is the difference between an
on/off or digital sensor (which tells us whether something is
there or not) and an analogue sensor, which can tell us how
much of something there is.

In order to read this type of sensor, we need to use a special
Arduino pin.

Turn your Arduino around so it matches Figure 5-6.

In the top-left part of the board, you’ll see six pins marked Ana-
log In; these are special pins that not only can tell you whether
there is a voltage applied to them, but also can measure the
amount of that voltage by using the analogRead() function. The
analogRead() function returns a number between 0 and 1023,
which represents voltages between 0 and 5 volts. For example, if
there is a voltage of 2.5 V applied to pin number 0, analog
Read(0) returns 512.

If you now build the circuit that you see in Figure 5-6, using a 10
K ohm resistor, and run the code listed in Example 5-3, you’ll see
the onboard LED blinking at a rate that depends on the amount
of light that shines on the sensor.

Advanced Input and Output 65

Figure 5-6. An analogue sensor circuit

Example 5-3. Blink LED at a rate specified by
the value of the analogue input
const int LED = 13; // the pin for the LED

int val = 0; // variable used to store the value
 // coming from the sensor
void setup() {
 pinMode(LED, OUTPUT); // LED is as an OUTPUT

66 Getting Started with Arduino

 // Note: Analogue pins are
 // automatically set as inputs
}

void loop() {

 val = analogRead(0); // read the value from
 // the sensor

 digitalWrite(LED, HIGH); // turn the LED on

 delay(val); // stop the program for
 // some time

 digitalWrite(LED, LOW); // turn the LED off

 delay(val); // stop the program for
 // some time
}

Now add an LED to pin 9 as we did before, using the circuit
shown in Figure 5-4. Because you already have some stuff on
the breadboard, you’ll need to find a spot on the breadboard
where the LED, wires, and resistor won’t overlap with the LDR
circuit. You may have to move some things around, but don’t
worry, this is good practice because it helps your understanding
of circuits and the breadboard.

When you are done adding the LED to your LDR circuit, type in
Example 5-4 and upload it to your Arduino.

Example 5-4. Set the LED to a brightness
specified by the value of the analogue input
const int LED = 9; // the pin for the LED

int val = 0; // variable used to store the value
 // coming from the sensor

void setup() {

 pinMode(LED, OUTPUT); // LED is as an OUTPUT

 // Note: Analogue pins are

Advanced Input and Output 67

 // automatically set as inputs
}

void loop() {

 val = analogRead(0); // read the value from
 // the sensor
 analogWrite(LED, val/4); // turn the LED on at
 // the brightness set
 // by the sensor

 delay(10); // stop the program for
 // some time
}

Once it’s running, cover and uncover the LDR and see what hap-
pens to the LED brightness.

As before, try to understand what’s going on. The program is
really very simple, in fact much simpler than the previous two
examples.

Try Other Analogue Sensors
The light-dependent resistor is a very useful sensor, but Arduino
cannot directly read resistance. The circuit of Figure 5-6 takes

68 Getting Started with Arduino

We specify the brightness of the LED by dividing val
by 4, because analogRead() returns a number up to
1023, and analogWrite() accepts a maximum of
255. The reason for this is that it is always desireable
to read analog sensors with as much precision as
possible, while our eyes can’t detect more subtle dif-
ferences in the brightness of an LED. If you are won-
dering why analogRead() doesn’t return an even big-
ger range of numbers, it’s because that would
occupy more space on the piece of silicon at the
heart of the microcontroller, space that would have
to come at the price of some other feature. Design-
ing microntrollers is always a careful balance of fea-
tures, space, heat, cost, and the number of pins.

the resistance of the LDR and converts it to a voltage that Ardu-
ino can read.

This same circuit works for any resistive sensor, and there are
many different types of resistive sensors, such as sensors that
measure force, stretching, bending, or heat. For example, you
could connect a thermistor (heat-dependent resistor) instead of
the LDR and have an LED that changes brightness according to
the temperature.

Up to now, we have used an LED as the output device. It would
be difficult to measure temperature, for instance, by trying to
judge how bright an LED is. Wouldn’t it be nice if we could
actually get the values that Arduino is reading from the sensor?
We could make the LED blink the values in Morse code, but
there is a much easier way for Arduino to send information to us
humans, using that same USB cable that you’ve been using to
upload your sketches into the Arduino.

Serial Communication
You learned at the beginning of this book that Arduino has a
USB connection that is used by the IDE to upload code into the
microcontroller. The good news is that after a sketch is uploa-
ded and is running, the sketch can use this same connection to
send messages to or receive messages from from your com-
puter. The way we do this from a sketch is to use the serial
object.

Advanced Input and Output 69

If you do work with a thermistor, be aware that there
isn’t a direct connection between the value you read
and the actual temperature measured. If you need
an exact reading, you should read the numbers that
come out of the analogue pin while measuring with a
real thermometer. You could put these numbers side
by side in a table and work out a way to calibrate the
analogue results to real-world temperatures. Alter-
nately, you could use a digital temperature sensor
such as the Analog Devices TMP36.

In the Arduino programming language, anobject is a collection
of related capabilities bundled together for convenience, and
the serial object allows us to communicate over the USB con-
nection. You can think of the serial object as a way to get a mes-
sage to or from the Arduino, one character at a time. Of course,
the serial object contains lots of complicated stuff that we don’t
need to worry about. We just need to learn how to use the serial
object.

In this example you’ll take the last circuit we built with the pho-
toresistor, but instead of controlling the brightness of an LED,
you’ll send the values that are read from analogRead() back to
the computer. Type the code in Example 5-5 into a new sketch.
You can also download it from the example code link on the
book’s catalog page.

Example 5-5. Send the computer the values
read from analogue input 0
const int SENSOR = 0; // select the input pin for the
 // sensor resistor

int val = 0; // variable to store the value coming
 // from the sensor

void setup() {

 Serial.begin(9600); // open the serial port to send
 // data back to the computer at
 // 9600 bits per second
}

void loop() {

 val = analogRead(SENSOR); // read the value from
 // the sensor

 Serial.println(val); // print the value to
 // the serial port

 delay(100); // wait 100ms between
 // each send
}

70 Getting Started with Arduino

https://makezine.com/go/arduino-4e-github/

After you’ve uploaded the code to your Arduino, you might think
that nothing interesting happens. Actually, your Arduino is work-
ing fine: it is busy reading the light sensor and sending the infor-
mation to your computer. The problem is that nothing on your
computer is showing you the information that is coming from
your Arduino.

What you need is a software function called the serial monitor,
and it’s built in to the Arduino IDE.

The Serial Monitor button is near the top-right corner of the
Arduino IDE. It looks a bit like a magnifying glass, as if you were
spying on the communication from the Arduino to your com-
puter.

Click the Serial Monitor button to open the monitor, and you’ll
see the numbers rolling past in the bottom part of the window.
Cover up the photoresistor to make it darker, and see how the
numbers change. Notice that the numbers never go below zero,
and never go above 1023, as this is the range of numbers that
analogRead() can produce.

This serial communication channel between Arduino and your
computer opens up a whole new world of possibilities. There are
many programming languages that let you write programs for
your computer that can talk to the serial port, and through the
serial port, those programs can talk to your Arduino.

A particularly good complement to Arduino is the Processing
language), because the languages and IDEs are so similar. You’ll
learn more about Processing in Chapter 6 in “Coding” on page
80, and your Arduino IDE includes some examples, such as
File→Examples→04.Communication→Dimmer and
File→Examples→04.Communication→Graph. You can also find
many examples on the Internet.

Driving Bigger Loads (Motors,
Lamps, and the Like)
Each of the pins on an Arduino board can only be used to power
devices that use a very small amount of current, such as an
LED. If you try to drive something big like a motor or an incan-
descent lamp, the pin might stop working, and could perma-

Advanced Input and Output 71

http://www.processing.org
http://www.processing.org

nently damage the microcontroller that is the heart of your
Arduino.

Don’t worry, though. There are a number of simple techniques
that allow you to control devices that use much more current.
The trick is a bit like using a lever and fulcrum to lift a very heavy
load. By putting a long stick under a big stone and a fulcrum in
the right place, you can pull down on the long end of the stick,
and the short end, under the stone, has much more force. You
pull with a small force, and the mechanics of the lever apply a
larger force to the stone.

In electronics, one way to do this is with a MOSFET. A MOSFET
is an electronic switch that can be controlled by a small current,
but in turn can control a much larger current. A MOSFET has
three pins. You can think of a MOSFET as a switch between two
of its pins (the drain and source), which is controlled by a third
pin (the gate). It is a little like a light switch, where the gate is
represented by the part you move to turn the light on and off. A
light switch is mechanical, so it is controlled by a finger, but a
MOSFET is electronic, so it is controlled by a pin from your
Arduino.

72 Getting Started with Arduino

To be safe, the current going through an Arduino’s
I/O pin should be limited to 20 milliamps.

MOSFET means “metal-oxide-semiconductor field-
effect transistor”. It’s a special type of transistor that
operates on the field-effect principle. This means
that electricity will flow though a piece of semicon-
ductor material (between the drain and source pins)
when a voltage is applied to the gate pin. As the gate
is insulated from the rest through a layer of metal
oxide, no current flows from Arduino into the MOS-
FET, making it very simple to interface. MOSFETs are
ideal for switching on and off large loads at high fre-
quencies.

3 All these components are included in the kit mentioned in the preface

In Figure 5-7, you can see how you would use a MOSFET like the
IRF520 to turn on and off a motor attached to a fan. In this cir-
cuit, the motor actually takes its power from the VIN connector
on the Arduino board, which is intended for a voltage between 7
and 12 volts. This is another benefit of the MOSFET: it allows us
to control devices that need a different voltage from the 5 V
used by Arduino.

The black component with the white band around it is a diode,
and in this circuit it’s being used to protect the MOSFET.

Conveniently, MOSFETs can be turned on and off very quickly,
so you can still use PWM to control a lamp or a motor via a
MOSFET. In Figure 5-7, the MOSFET is connected to pin 9, so
you can use analogWrite() to control the speed of the motor
through PWM. (Remember that only pins 3, 5, 6, 9, 10, and 11
can be used with analogWrite().

To build the circuit, you will need an IRF520 MOSFET and an
1N4007 diode. If the motor randomly turns on during upload,
place a 10 K ohm resistor between pin 9 and GND3.

In Chapter 8 you’ll learn about a relay, which is another way to
control devices that use more current.

Complex Sensors
We define complex sensors as those that provide their informa-
tion in a way that can’t be read with digitalRead() or analog
Read() alone. These sensors usually have a whole circuit inside
them, possibly with their own microcontroller. Some examples
of complex sensors are digital temperature sensors, ultrasonic
rangers, infrared rangers, and accelerometers. One reason for
this complexity might be to provide more information or more
accuracy; for example, some sensors have unique addresses, so
you can connect many sensors to the same wires and yet ask
each one individually to report its data.

Fortunately, Arduino provides a variety of mechanisms for read-
ing these complex sensors. You’ll see some of them in Chap-
ter 8, in “Testing the Real Time Clock (RTC)” on page 102 to
read a Real Time Clock, and in “Testing the Temperature and

Advanced Input and Output 73

Humidity Sensor” on page 124, to read a Temperature and
Humidity Sensor.

You can find more examples on the Arduino website by search-
ing for “tutorials” and under Community->Project Hub.

Tom Igoe’s Making Things Talk, 3rd edition has extensive cover-
age of complex sensors.

Figure 5-7. A motor circuit for Arduino

The Arduino Alphabet
In the preceding chapters, you learned the basics of Arduino
and the fundamental building blocks available to you. Let’s go
over what makes up the “Arduino Alphabet”:

Digital output
We used it to control an LED but, with the proper circuit, it
can be used to control motors, make sounds, and a lot more.

74 Getting Started with Arduino

https://www.oreilly.com/library/view/making-things-talk/9780596510510/

Analogue output
This gives us the ability to control the brightness of the LED,
not just turn it on or off. We can even control the speed of a
motor with it.

Digital input
This allows us to read the state of sensors that just say yes
or no, like pushbuttons or tilt switches.

Analogue input
We can read signals from sensors that have more informa-
tion than just on or off, like a potentiometer that can tell
where it’s been turned to, or a light sensor that can tell how
much light is on it.

Serial communication
This allows us to communicate with a computer and
exchange data or simply monitor what’s going on with the
sketch that’s running on the Arduino.

Now that you have learned the alphabet we can start to write
poetry!

Advanced Input and Output 75

6/Processing with an
Arduino Lamp

In this chapter, we’re going to see how to put together a working
application using what you have learned in the previous chap-
ters. This chapter should show you how every single example
can be used as a building block for a complex project.

Here is where the wannabe designer in me
comes out. We’re going to make the twenty-
first-century version of a classic lamp by my
favourite Italian designer, Joe Colombo. The
object we’re going to build is inspired by a lamp
called Aton from 1964.

—Massimo

The lamp, as you can see in Figure 6-1, is a simple sphere sitting
on a base with a large hole to keep the sphere from rolling off
your desk. This design allows you to orient the lamp in different
directions.

77

Figure 6-1. The finished lamp

In terms of functionality, we want to build a device that would
connect to the Internet, fetch the current list of articles on the
Make blog, and count how many times the words “peace,”
“love,” and “Arduino” are mentioned. With these values, we’re
going to generate a colour and display it on the lamp. The lamp
itself has a button we can use to turn it on and off, and a light
sensor for automatic activation.

Planning
Let’s look at what we want to achieve and what bits and pieces
we need. First of all, we need Arduino to be able to connect to
the Internet. As the Arduino board has only a USB port, we can’t
plug it directly into an Internet connection, so we need to figure
out how to bridge the two. Usually what people do is run an
application on a computer that will connect to the Internet, pro-

78 Getting Started with Arduino

http://blog.makezine.com

cess the data, and send Arduino some simple bit of distilled
information.

Arduino is a simple computer with a small memory; it can’t pro-
cess large files easily, and when we connect to an RSS feed,
we’ll get a very verbose XML file that would require a lot more
RAM. On the other hand, your laptop or desktop computer has
much more RAM and is much better suited for this kind of work,
so we’ll implement a proxy to simplify the XML using the Pro-
cessing language to run on your computer.

Processing
Processing is where Arduino came from. We love this language
and use it to teach programming to beginners as well as to build
beautiful code. Processing and Arduino are the perfect combi-
nation. Another advantage is that Processing is open source
and runs on all the major platforms (Mac, Linux, and Windows).
It can also generate standalone applications that run on those
platforms. What’s more, the Processing community is lively and
helpful, and you can find thousands of premade example
programs.

Get Processing from https://processing.org/download.

The proxy does the following work for us: it downloads the RSS
feed from http://makezine.com and extracts all the words from
the resulting XML file. Then, going through all of them, it counts
the number of times “peace,” “love,” and “Arduino” appear in the
text. With these three numbers, we’ll calculate a colour value
and send it to Arduino. The Arduino code, in turn, will send to
the computer the amount of light measured by the sensor,
which the Processing code will then display on the computer
screen.

On the hardware side, we’ll combine the pushbutton example,
the light sensor example, the PWM LED control (multiplied by
3!), and serial communication. See if you can identify each of
these circuits when you build it in “Assembling the Circuit” on
page 86. This is how typical projects are made.

Processing with an Arduino Lamp 79

https://processing.org/download

As Arduino is a simple device, we’ll need to codify the colour in a
simple way. We’ll use the standard way that colours are repre-
sented in HTML: # followed by six hexadecimal digits.

Hexadecimal numbers are handy, because each 8-bit number is
stored in exactly two characters; with decimal numbers this
varies from one to three characters. Predictability also makes
the code simpler: we wait until we see a #, and then we read the
six characters that follow into a buffer (a variable used as a tem-
porary holding area for data). Finally, we turn each group of two
characters into a byte that represents the brightness of one of
the three LEDs.

Coding
There are two sketches that you’ll be running: the Processing
sketch and the Arduino sketch. Example 6-1 is the code for the
Processing sketch. You can also download it from the example
code link on the book’s catalog page.

Example 6-1. Arduino Networked Lamp
Parts of the code are inspired by a blog post by Tod E. Kurt
(http://todbot.com).

import processing.serial.*;
import java.net.*;
import java.io.*;
import java.util.*;

String feed = "http://makezine.com/feed/";

int interval = 5 * 60 * 1000; // retrieve feed every five
minutes;
int lastTime; // the last time we fetched the
content

int love = 0;
int peace = 0;
int arduino = 0;

int light = 0; // light level measured by the lamp

Serial port;

80 Getting Started with Arduino

https://makezine.com/go/arduino-4e-github/
http://todbot.com

color c;
String cs;

String buffer = ""; // Accumulates characters coming from Arduino

PFont font;

void setup() {
 size(640, 480);
 frameRate(10); // we don't need fast updates

 font = createFont("Helvetica", 24);
 fill(255);
 textFont(font, 32);

 // IMPORTANT NOTE:
 // The first serial port retrieved by Serial.list()
 // should be your Arduino. If not, uncomment the next
 // line by deleting the // before it, and re-run the
 // sketch to see a list of serial ports. Then, change
 // the 0 in between [and] to the number of the port
 // that your Arduino is connected to.
 //println(Serial.list());
 String arduinoPort = Serial.list()[0];

 port = new Serial(this, arduinoPort, 9600); // connect to Ardu
ino

 lastTime = millis();
 fetchData();
}

void draw() {
 background(c);
 int n = (lastTime + interval - millis())/1000;

 // Build a colour based on the 3 values
 c = color(peace, love, arduino);
 cs = "#" + hex(c, 6); // Prepare a string to be sent to Arduino

 text("Arduino Networked Lamp", 10, 40);
 text("Reading feed:", 10, 100);
 text(feed, 10, 140);

 text("Next update in "+ n + " seconds", 10, 450);
 text("peace", 10, 200);

Processing with an Arduino Lamp 81

 text(" " + peace, 130, 200);
 rect(200, 172, peace, 28);

 text("love ", 10, 240);
 text(" " + love, 130, 240);
 rect(200, 212, love, 28);

 text("arduino ", 10, 280);
 text(" " + arduino, 130, 280);
 rect(200, 252, arduino, 28);

 // write the colour string to the screen
 text("sending", 10, 340);
 text(cs, 200, 340);

 text("light level", 10, 380);
 rect(200, 352, light/10.23, 28); // this turns 1023 into 100

 if (n <= 0) {
 fetchData();
 lastTime = millis();
 }

 port.write(cs); // send data to Arduino

 if (port.available() > 0) { // check if there is data waiting
 int inByte = port.read(); // read one byte
 if (inByte != 10) { // if byte is not newline
 buffer = buffer + char(inByte); // just add it to the buffer
 } else {

 // newline reached, let's process the data
 if (buffer.length() > 1) { // make sure there is enough data

 // chop off the last character, it's a carriage return
 // (a carriage return is the character at the end of a
 // line of text)
 buffer = buffer.substring(0, buffer.length() -1);

 // turn the buffer from string into an integer number
 light = int(buffer);

 // clean the buffer for the next read cycle
 buffer = "";

 // We're likely falling behind in taking readings

82 Getting Started with Arduino

 // from Arduino. So let's clear the backlog of
 // incoming sensor readings so the next reading is
 // up-to-date.
 port.clear();
 }
 }
 }
}

void fetchData() {
 // we use these strings to parse the feed
 String data;
 String chunk;

 // zero the counters
 love = 0;
 peace = 0;
 arduino = 0;
 try {
 URL url = new URL(feed); // An object to represent the URL
 // prepare a connection
 URLConnection conn = url.openConnection();
 conn.connect(); // now connect to the Website

 // this is a bit of virtual plumbing as we connect
 // the data coming from the connection to a buffered
 // reader that reads the data one line at a time.
 BufferedReader in = new
 BufferedReader(new InputStreamReader(conn.getInput
Stream()));

 // read each line from the feed
 while ((data = in.readLine()) != null) {

 StringTokenizer st =
 new StringTokenizer(data, "\"<>,.()[] ");// break it down
 while (st.hasMoreTokens ()) {
 // each chunk of data is made lowercase
 chunk= st.nextToken().toLowerCase() ;

 if (chunk.indexOf("love") >= 0) // found "love"?
 love++; // increment love by 1
 if (chunk.indexOf("peace") >= 0) // found "peace"?
 peace++; // increment peace by 1
 if (chunk.indexOf("arduino") >= 0) // found "arduino"?
 arduino++; // increment arduino by 1

Processing with an Arduino Lamp 83

 }
 }

 // Set 64 to be the maximum number of references we care
about.
 if (peace > 64) peace = 64;
 if (love > 64) love = 64;
 if (arduino > 64) arduino = 64;
 peace = peace * 4; // multiply by 4 so that the max is
255,
 love = love * 4; // which comes in handy when building a
 arduino = arduino * 4; // colour that is made of 4 bytes
(ARGB)
 }
 catch (Exception ex) { // If there was an error, stop the sketch
 ex.printStackTrace();
 System.out.println("ERROR: "+ex.getMessage());
 }
}

There is one thing you need to do before the Processing sketch
will run correctly: you need to confirm that the sketch is using
the correct serial port for talking to Arduino. You’ll need to wait
until you’ve assembled the Arduino circuit and uploaded the
Arduino sketch before you can confirm this. On some systems,
this Processing sketch will run fine. However, if you don’t see
anything happening on the Arduino and you don’t see any infor-
mation from the light sensor appearing onscreen, find the
comment labeled IMPORTANT NOTE in the Processing sketch and
follow the instructions there.

Example 6-2 is the Arduino sketch. You can also download it
from the example code link on the book’s catalog page.

84 Getting Started with Arduino

If you’re on a Mac, there’s a good chance your Ardu-
ino will be on the last serial port in the list. If so, you
can replace the 0 in Serial.list()[0] with
Serial.list().length -1. This subtracts one from
the length of the list of all serial ports; array indexes
count from zero, but length tells you the size of the
list (counting from one), so you need to subtract one
to get the actual index.

https://makezine.com/go/arduino-4e-github/

Example 6-2. Arduino Networked Lamp
(Arduino sketch)
const int SENSOR = 0;
const int R_LED = 9;
const int G_LED = 10;
const int B_LED = 11;
const int BUTTON = 12;

int val = 0; // variable to store the value coming from the sensor

int btn = LOW;
int old_btn = LOW;
int state = 0;
char buffer[7] ;
int pointer = 0;
byte inByte = 0;

byte r = 0;
byte g = 0;
byte b = 0;

void setup() {
 Serial.begin(9600); // open the serial port
 pinMode(BUTTON, INPUT);
}

void loop() {
 val = analogRead(SENSOR); // read the value from the sensor
 Serial.println(val); // print the value to
 // the serial port

 if (Serial.available() > 0) {

 // read the incoming byte:
 inByte = Serial.read();

 // If the marker's found, next 6 characters are the colour
 if (inByte == '#') {

 while (pointer < 6) { // accumulate 6 chars
 buffer[pointer] = Serial.read(); // store in the buffer
 pointer++; // move the pointer forward by 1
 }

 // now we have the 3 numbers stored as hex numbers

Processing with an Arduino Lamp 85

 // we need to decode them into 3 bytes r, g and b
 r = hex2dec(buffer[1]) + hex2dec(buffer[0]) * 16;
 g = hex2dec(buffer[3]) + hex2dec(buffer[2]) * 16;
 b = hex2dec(buffer[5]) + hex2dec(buffer[4]) * 16;

 pointer = 0; // reset the pointer so we can reuse the buffer

 }
 }

 btn = digitalRead(BUTTON); // read input value and store it

 // Check if there was a transition
 if ((btn == HIGH) && (old_btn == LOW)){
 state = 1 - state;
 }

 old_btn = btn; // val is now old, let's store it

 if (state == 1) { // if the lamp is on

 analogWrite(R_LED, r); // turn the leds on
 analogWrite(G_LED, g); // at the colour
 analogWrite(B_LED, b); // sent by the computer
 } else {

 analogWrite(R_LED, 0); // otherwise turn off
 analogWrite(G_LED, 0);
 analogWrite(B_LED, 0);
 }

 delay(100); // wait 100ms between each send
}

int hex2dec(byte c) { // converts one HEX character into a number
 if (c >= '0' && c <= '9') {
 return c - '0';
 } else if (c >= 'A' && c <= 'F') {
 return c - 'A' + 10;
 }
}

Assembling the Circuit
Figure 6-2 shows how to assemble the circuit. Just as you did in
“Controlling Light with PWM” on page 54 in Chapter 5, use a

86 Getting Started with Arduino

220-ohm resistor (red-red-brown) with each LED, and just as
you did in “Analogue Input” on page 65, use a 10 K ohm resistor
with the photoresistor.

Remember from “Controlling Light with PWM” on page 54 that
LEDs are polarized: in this circuit, the anode (long lead, positive)
should go to the right, and the cathode (short lead, negative) to
the left. Figure 6-2 also shows the flattened side of the LED,
which indicates the cathode.

Build the circuit as shown, using one red, one green, and one
blue LED. Next, load the sketches into Arduino and Processing.
Upload the Arduino sketch to the Arduino, and then run the Pro-
cessing sketch and try it out (you will need to press the button
to get the lamp to come on). If you run into any problems, check
Chapter 11.

Instead of using three separate LEDs, you can use a single RGB
LED, which has four leads coming off it. You’ll hook it up in much
the same way as the LEDs shown in Figure 6-2, with one change:
instead of three separate connections to the ground pin on
Arduino, you’ll have a single lead (called the common cathode)
going to ground.

Processing with an Arduino Lamp 87

Figure 6-2. The Arduino Networked Lamp circuit

Adafruit sells a four-lead RGB LED for a few dollars. Also, unlike
discrete single-colour LEDs, the longest lead on this kind of RGB
LED is the one that goes to ground. The three shorter leads will
need to connect to Arduino pins 9, 10, and 11 (with a 220-ohm
resistor between the leads and the pins, just as with the sepa-
rate red, green, and blue LEDs).

The Maker Shed Getting Started with Arduino Kit includes an
RGB LED as well.

88 Getting Started with Arduino

https://www.adafruit.com/product/159
https://www.makershed.com/products/getting-started-with-arduino-kit

Now let’s complete the construction by placing the breadboard
into a glass sphere. The simplest and cheapest way to do this is
to buy an IKEA FADO table lamp. It’s now selling for about US
$19.99/€14.99/£11.99 (ahh, the luxury of being European).

Here’s How to Assemble It
Unpack the lamp and remove the cable that goes into the lamp
from the bottom. You will no longer be plugging this into the
wall.

You can use a rubber band to strap the Arduino to the bread-
board, and then hot-glue the breadboard onto the back of the
lamp, as shown in Figure 6-1. Leave some room so that you can
insert the LED and glue it in place.

Solder longer wires to the RGB LED and glue it where the light-
bulb used to be. Connect the wires coming from the LED to the
breadboard (where it was connected before you removed it).
You can save a bit of time by noting that you will need only one
connection to ground, whether you’re using the RGB LED or
three separate LEDs.

Processing with an Arduino Lamp 89

The Arduino sketch is designed to work with a com-
mon cathode RGB LED (one where the long lead
goes to ground). If you’re getting the wrong output,
you might have a common anode RGB LED. If that’s
the case, change the code where you set the LED
intensity as shown (you are basically inverting the
values; where you used 0, you’d now use 255):

 if (state == 1) { // if the lamp is on
 analogWrite(R_LED, 255 - r); // turn the leds
on
 analogWrite(G_LED, 255 - g); // at the colour
 analogWrite(B_LED, 255 - b); // sent by the
computer
 } else {
 analogWrite(R_LED, 255); // otherwise turn off
 analogWrite(G_LED, 255);
 analogWrite(B_LED, 255);
 }

Now find a nice piece of wood with a hole that can be used as a
stand for the sphere, or just cut the top of the cardboard box
that came with the lamp at approximately 5 cm (or 2″) and
make a hole with a diameter that cradles the lamp. Reinforce the
inside of the cardboard box by using hot glue all along the inside
edges, which will make the base more stable.

Place the sphere on the stand and bring the USB cable out of
the top and connect it to the computer.

Fire off your Processing code, press the On/Off button, and
watch the lamp come to life. Invite your friends over and amaze
them!

As an exercise, try to add code that will turn on the lamp when
the room gets dark. Other possible enhancements are as fol-
lows:

• Add tilt sensors to turn the lamp on or off by rotating it in
different directions.

• Add a PIR sensor to detect when somebody is around, and
turn it off when nobody is there to watch.

• Create different modes so that you can get manual control
of the colour or make it fade through many colours.

Think of different things, experiment, and have fun!

90 Getting Started with Arduino

7/The Arduino Cloud

The Arduino Cloud is an online service developed by Arduino
which allows anybody to build and manage connected devices
just using a browser. It’s main modules are:

• The Web Editor, a fully functional Arduino IDE implemented
as a website. You just need a web browser to write, compile
and upload Arduino code.

• IoT Cloud, a service that lets you create , program and man-
age connected devices with a minimal amount of code
(what people nowadays call “Low Code”). For example you
can easily build a device to water your plants and control it
from your smartphone while you’re working on your tan at
the beach.

• Project Hub, a repository of literally thousands of projects
and tutorials built by the community. This is a great place to
start if you’re looking for a great project to start with.

Let’s have a closer look at each single module.

Arduino Cloud IDE

The Arduino Cloud IDE (previously known as Arduino Create) is
a cloud based development environment for Arduino which can
be used with any modern internet browser. Very simply, you can
login from anywhere in the world to a fully functional Arduino
IDE which stores your code in the cloud. This is particularly use-
ful if you’re on a Chromebook or you use several different com-
puters and you want to have the same setup everywhere. In an
emergency, you can borrow somebody else’s computer and find
all your files and libraries there. A special feature of the Cloud
IDE is that the Arduino sketch folder can also accommodate
schematic diagrams and layout diagrams. You just need to place
a schematic.png and layout.png image in the folder and they will

91

show up as tabs in your IDE. Easy! Another interesting advan-
tage of the Cloud IDE is that every single Arduino library known
to us (a few thousands!) are pre-installed so you don’t have to
spend time looking for libraries and installing them. Just include
them; they are there already. To get started you just need to go
to https://cloud.arduino.cc and you’ll be asked to login or create
an Arduino account. Once you’re in, you’ll see this screen where
you can find your sketchbook and everything else you need.

Figure 7-1. Arduino Cloud IDE

If you use the new Arduino IDE 2.0 you can synchronise the
sketchbook you see on the cloud with the one on your computer
(more or less similar to what happens with Dropbox and similar
services) If it’s the first time you’ve used the Cloud IDE, you’ll be
asked to install a very small program, the Arduino Create Agent,
which allows your browser to communicate with serial ports so
that you can upload your sketches on actual boards.

If you’re using certain types of boards like the MKRs, Nano 33
IoT and similar, you can include a feature called OTA (Over the
Air updates) which will allow you to upload new code to the
board over an internet connection. Pretty neat eh? Providing a
full and detailed description of how the Cloud IDE works is

92 Getting Started with Arduino

beyond the scope of this introductory book, but you can find
more info at https://cloud.arduino.cc

Project Hub

One very powerful feature of the Arduino Cloud is “Project Hub”,
a place where you can find literally thousands of tutorials and
projects for any Arduino board, covering all sorts of topics: from
music to installations, from home automation to gardening,
from pet feeders to robots. Some of the projects are very
sophisticated and very well documented, if you’re looking for a
project to get started building with Arduino, that’s the place
where to look!

Figure 7-2. The Arduino Project Hub

IoT Cloud

An IoT Cloud is an online service that can act as a bridge
between your connected devices and, for example, a mobile
app, a web dashboard or even other devices. If you have an IoT-
compatible Arduino or similar board, the IoT Cloud service will
detect when it is connected.

The Arduino Cloud 93

Figure 7-3. Connecting an Arduino to the IoT Cloud

However, if you are using a non-IoT-compatible board like a
standard Uno, you’ll get the following message, so make sure
you select the right board for your IoT project.

Figure 7-4. Non-compatible devices won’t work on IoT Cloud

Let’s say you just built a device that allows you to deliver a little
treat for your dog and you want to control it with your smart-
phone. One thing you can do is use an Arduino with WiFi,
develop a sketch that can implement a simple web server (you
can find tons on the internet), and when the device connects to
your home WiFi, you can control it with your phone or computer.

Now if you leave home and, say, go shopping, you’ll find that you
can no longer connect to your device because any connection to

94 Getting Started with Arduino

it coming from outside is blocked by your firewall. The firewall is
usually one of the bits of software that run on the internet
router/access point provided by your internet provider. Its job is
to let your devices (your computer, tablet, phone, smart ther-
mostat, etc.) connect to the internet from inside your home
while blocking any connection initiated from the outside. This is
super important to protect your home, your devices and your
personal life from malicious “hackers”.

While it’s technically possible to open a “hole” in the firewall to
allow one specific connection to reach one specific device, it’s
actually quite cumbersome and each “Access Point” does it in a
different way, so the best way to solve this is to use an external
service which receives connection from all of your devices
spread across the world and lets them talk to each other. This is
where the IoT Cloud comes in.

Features of the Arduino IoT Cloud

Beside “bridging” between devices, the Arduino IoT Cloud pro-
vides a lot of useful features:

• Dashboard: A user interface to monitor and control multiple
devices without writing a single line of code. You just drag
and drop elements (like, for example, a slider, a button or a
gauge indicator), select variables from different “things”
and, in less than no time, you have a working dashboard.

• Automatic code generation: When you define the basic
characteristics of a “thing” through a web interface, you
press a button and you get the whole sketch written for you
with sophisticated logic to manage the connection to the
cloud. What’s left to do is add the code that reads data from
sensors and send data to actuators. The rest of the work of
communicating with the cloud is managed automatically
from the code Arduino generates for you. All of this is in the
Arduino Cloud Web IDE where you edit your sketch without
leaving the browser.

• Data Logging: The Arduino Cloud has the ability to store the
historical value of certain variables so you can check how
some quantity changed over time and analyse the data fur-
ther.

The Arduino Cloud 95

• Mobile App: There is a free mobile app that lets you interact
with your devices with your smartphone.

• Node-RED Integration: Node-RED is a popular visual pro-
gramming tool used by many people to automate their
smart home. Arduino Cloud provides a free “node” that lets
you use Node-RED to interact with your devices and inte-
grate them in complex automations, connecting with hun-
dreds of different APIs.

• Webhooks: You can instruct the Arduino Cloud to send the
current state of a device to a certain URL every time the
data changes. This allows you to integrate the Cloud with
services like IFTT, Zapier, or Google Apps

• API: If you know how to program with languages like Python
or Javascript, you can build applications that interact with
the Arduino Cloud through its API.

• Alexa Integration: the Arduino Cloud can talk to an Amazon
Alexa smart speaker and lets you control your devices with
voice commands.

You can find more detailed information at https://cloud.ardu-
ino.cc.

Arduino Cloud Plans

The Arduino Cloud is free for a lot of users but if you want to be
able to control a lot of devices or share dashboards with some-
body else you might need to purchase a plan. They start at
$1.99 a month. You can see the different plans here https://
store.arduino.cc/digital/create

96 Getting Started with Arduino

8/Automatic Garden-
Irrigation System

In Chapter 6 you combined what you had learned about Arduino
into a project, the Arduino Networked Lamp. Part of the fun was
to combine some of the simple exercises into a practical project.
You also learned about the Processing language and how to use
it to create a proxy on your computer to do things that would be
difficult or impossible with your Arduino.

In this chapter you will again combine simple examples with
some new ideas to make a practical project. Along the way you’ll
learn more about electronics, communication, and program-
ming, and we’ll give some attention to construction techniques.

The goal of this project is to automatically turn the water on and
off at the right time each day, except if it’s raining.

As a professor, I teach many students to build
things. Along the way it occurred to me that stu-
dents sometimes think that I instantly know
exactly how to build a project. In fact, designing
a project is an extremely iterative process.

—Michael

97

If you don’t have a garden, you can still have some
fun with this project. If you just have a small house-
plant you want to water, try building this with only
one valve. If you need to dispense a tasty beverage
of your choice at 5 p.m. each day, consider using a
food-grade pump instead of the water valve. For
example, Adafruit sells a Peristaltic Liquid Pump
with Silicone Tubing.

https://www.adafruit.com/product/1150
https://www.adafruit.com/product/1150

To create a project, start with an idea, and rough out little pieces
of it; as you go, this sometimes requires making changes to the
initial idea. We often have to take a detour to learn how a new
electronic part works, or to figure out a programming concept
we’ve not encountered before, or remind ourselves how to use a
feature of Arduino we’ve not used in a long time or is new to us.
Sometimes we have to turn to our textbooks, the Internet, or
ask someone for advice. We review many examples, tutorials,
and projects that contain bits related to what we are doing. We
take bits and pieces from different places and combine them,
perhaps very roughly at first, like Frankenstein’s monster, to see
how things will work together.

As the project progresses from concept to rough design to test-
ing parts of the hardware and software, we keep having to go
back and make changes in something we did earlier, so that
everything will work together properly. We don’t know a single
engineer who starts with a blank piece of paper, designs a whole
project from start to finish, which then works exactly as plan-
ned, without ever having to go back and change anything.

All of the preceding is true for hardware as well as software.

The point here is that even if you are a beginner, you are ready to
design projects. Start with what you know, and slowly add fea-
tures, one new idea or part at a time. Don’t be afraid to explore
intriguing ideas that have no immediate use.

Whenever I hear of an electronic part or pro-
gramming concept or trick that seems interest-
ing, I try it out, even if I don’t have a use for it
right away. This knowledge then becomes
another tool in my toolkit. If you get stuck or
don’t know something, remember that even pro-
fessional engineers have to learn new things all
the time.

—Michael

Thanks to the wide and generous Arduino community, you have
many resources via the Internet, and unless you are a hermit on
a mountain top you can probably find a local Arduino meetup,
club, makerspace, hackerspace, or even individual who can help.

98 Getting Started with Arduino

For some hints on how to make the best use of online resources,
see “How to Get Help Online” on page 222.

So, in addition to teaching you more about electronics, pro-
gramming, and construction, I’m going to show you a bit about
the design process. You’ll see that some of the simplistic circuits
or sketches will get modified again and again until we arrive at
the final project. Even so, I’ve skipped over some iteration steps
in order to keep this chapter from becoming an entirely new
book. Iterations take time!

Planning
As in Chapter 6, start by thinking about what you want to ach-
ieve and what bits and pieces you’ll need.

This project will use common gardening electric water valves,
available in home improvement stores. While at the store, you
will also need one power supply, or transformer, suitable for
these water valves. In Chapter 5 you learned how to use a MOS-
FET to control a motor. This might work for the water valves,
except that some water valves might use alternating current
(AC), and MOSFETs can control only direct current (DC). In
order to control AC, you need a relay, which can control both AC
and DC.

In order to know when to turn the water on and off, we’ll need a
clock of some kind. You could try to do this in your program
using the Arduino built-in timer, but it would be complicated,

Automatic Garden-Irrigation System 99

In “Driving Bigger Loads (Motors, Lamps, and the
Like)” on page 71 in Chapter 5, you learned that a
MOSFET is a type of transistor, in which the gate pin
can control whether electricity flows between the
drain and source pins. In this sense, a MOSFET is a
switch. A relay is also a switch. Inside the relay is a
tiny mechanical switch controlled by an electromag-
net: by turning on and off the electromagnet, you
control whether electricity flows through the
mechanical switch.

and worse, it’s not terribly accurate. As it turns out, a device
that does this exists, is quite inexpensive, and is easy to use with
Arduino. The RTC (Real Time Clock) is similar to the device in
your computer that keeps track of the date and time even if you
leave it turned off for a long time.

We’ll also need a sensor to tell us if it’s raining. We’ll use a Tem-
perature and Humidity Sensor, as they are inexpensive and easy
to use. We don’t need to know the temperature, but you get that
extra feature “for free” and it might be useful.

Finally, we’ll need a way to set the on-times and off-times, i.e.,
the user interface. To keep this project from getting out of hand,
I’ll use the serial monitor for the user interface. As you become
more fluent in Arduino, you could replace this with an LCD dis-
play and pushbuttons.

Before you start programming, you need to think about how the
hardware will be connected. I like to use a rough block diagram
to help me see all the parts I need and to think through how they
should be connected. Eventually, you’ll need to know exactly
how to connect things, but in the block diagram (Figure 8-1) we
just use one line to symbolize some kind of connection.

Figure 8-1. Block diagram showing Real Time Clock, Arduino,
MOSFETs, relays, valves, and power supplies

100 Getting Started with Arduino

In this diagram we assumed three separate water valves, but
you can see how this can be generalized to whatever your needs
are.

As this is a more advanced project, I’ll introduce construction
techniques. This project must work reliably for many months,
perhaps even years, so you’ve got a different goal from a simple
example that is only meant to show you how something works.
The solderless breadboard you used earlier is great for proto-
typing or experimenting, but for reliability we’ll build this project
by soldering components to a Proto Shield. We’ll also consider
how to distribute power and make all the connections to the var-
ious external parts like the water valves. We’ll even look at how
this project could be protected in some kind of enclosure.

Another feature that is useful as your projects get more com-
plex is an indication of what is going on. This is helpful for
debugging, and is especially useful when parts of your system
are far away, such as the water valves. We’ll add LEDs to indi-
cate that the water valves are activated. Don’t forget the resis-
tors for the LEDs.

Now that we have a few more details, I like to make a tentative
shopping list. With complex systems, I expect that I’ll have to
make changes: for example, as I work on the sketch, I might
realise that I need another part. (The final, complete shopping
list, with links, is at “Irrigation Project Shopping List” on page
183.)

Don’t worry if you don’t know what all these parts are. We’ll
cover them in detail as we go:

• One Real Time Clock (RTC)

• One Temperature and Humidity Sensor

• One Proto Shield

Automatic Garden-Irrigation System 101

Shields are boards that plug into the pins of an Ardu-
ino and provide additional functionality. The Arduino
Proto Shield is a particular shield that is designed to
let you build your own circuit on it.

• Three electric water valves

• One transformer or power supply for the water valves

• Three relays to control the water valves

• Three sockets for relays

• Three LEDs as valve activation indicators

• Three resistors for LEDs

• One power supply for Arduino (so it will work even when a
computer isn’t attached)

Now that you have a tentative list, let’s look at each item and
work out the details. Let’s start with the RTC.

Testing the Real Time Clock (RTC)
When I plan to use a device that is new to me, I like to first verify
that I understand how it works, before designing the whole sys-
tem. Because the RTC is new to you, let’s take a look at how it
works.

The main part of an RTC is the chip itself. The most common
one is the DS1307, which requires a crystal for correct timekeep-
ing and a battery to keep it running when the rest of the system
is switched off. Rather than build this ourselves, we’ll use one of
the many RTC modules available, saving us time for very little
cost.

DS1307 RTC modules are available from many different sources.
Fortunately, they all function and interface in very similar ways. I
ended up with the TinyRTC, available from Elecrow.

102 Getting Started with Arduino

https://www.elecrow.com/tiny-rtc-for-arduino-p-323.html

Figure 8-2. TinyRTC Real Time Clock module

Note that the pins are not always included; you may have to
order those separately and solder them in. You can get pins
from many sources; for example, Adafruit part #392 includes
plenty of pins for this and future projects.

This device uses an interface called I2C, sometimes also called
the Two Wire Interface (TWI) or simply Wire. Arduino provides a
built-in library for the I2C interface (conveniently called Wire),
and Adafruit provides a library for the DS1307 called RTClib. To
install RTClib, do the following in the Arduino IDE:

1. Open the library manager by selecting Sketch->Include
Library->Manage Libraries

2. In the “Filter your search” box type RTCLib
3. Click on the “Install” button for the RTClib by Adafruit
4. Click on the “Close” button

You can check that you’ve installed the library correctly by
checking the example that comes with this library. You don’t
need to build a circuit for this, and technically you don’t even

Automatic Garden-Irrigation System 103

If you’re new to soldering, there is a link to a great
soldering tutorial in “Soldering Your Project on the
Proto Shield” on page 162.

https://www.adafruit.com/product/392

need to have your Arduino handy. In the Arduino IDE, open the
File menu and select Examples→RTClib→ds1307 to open an
example program. Instead of clicking the Upload button, click
the Verify button (see Figure 4-2). If you get the message “Done
compiling,” then you have installed the library correctly.

The TinyRTC module comes with two sets of pins: one consists
of five positions and the other of seven positions. Most of the
pins are duplicated, and other pins provide additional features.
To test the RTC, you only need to worry about four pins: the two
pins that form the I2C interface, power, and ground; the RTC
must be provided with 5 V on its pin labeled VCC; and its ground
must be connected to the Arduino ground.

For a quick test, you can make use of a common trick: for devi-
ces that use very little power, such as the RTC, you can use the
digital outputs to provide power by setting one pin to HIGH and
another to LOW, if the pins line up properly. An I/O pin that is set
to output HIGH is essentially the same as 5 V, and an I/O pin
that is set to output LOW is essentially the same as the ground.

On an Uno, SCL is A5 and SDA is A4. In addition to these two
interface pins, we need to connect VCC and GND to any other
I/O pins to provide 5V and GND. This can be accomplished by

104 Getting Started with Arduino

After installing a new library, it’s wise to verify that
the library is installed properly, and that any libraries
it depends on are also installed properly, before you
try writing your own program.

Most libraries written for Arduino include examples,
and because they were probably written by the same
people who wrote the library, they are most likely
correct.

On the hardware side, I2C is supported by two spe-
cific Arduino pins (SDA and SCL), as described in
the Arduino Wire Library reference.

http://arduino.cc/en/reference/wire

aligning the TinyRTC as shown in Figure 8-3 on the Arduino Uno
analogue input pins. You could also use a breadboard and
jumper wires to make the connection.

Figure 8-3. TinyRTC plugged directly into Arduino Uno analogue
input pins. The offset is intentional and enables SCL to plug into
A5, and SDA to A4.

Automatic Garden-Irrigation System 105

Note that on some Arduinos with different micro-
controllers, the I2C signals (SDA and SCL) could be
on different pins. For this reason, all recent Arduinos
with the Uno R3 footprint comply with a new stan-
dard pin layout, which adds the 12C pins after AREF.
This is in addition to and duplicates whatever other
pins happen to be the 12C pins.

Analogue input A4 and A5 will deal with I2C communication,
while A2 and A3 will provide power and ground. A3 needs to pro-
vide 5 V to the RTC pin labeled VCC, so we will set it HIGH, while
A2 will be set LOW to provide ground.

Now we are ready to test! In the Arduino IDE, open the File menu
and select Examples→RTClib→ds1307 to open the example
program. Before you compile and upload, remember that you
need to set up pins A2 and A3 to deliver power to the TinyRTC.
Add the following four lines to setup(), right at the very top:

void setup() {
 pinMode(A3, OUTPUT);
 pinMode(A2, OUTPUT);
 digitalWrite(A3, HIGH);
 digitalWrite(A2, LOW);

You can also download the example with this modification from
the example code link on the book’s catalog page.

While here, note that the example opens the serial port at
57,600 baud.

Now you can upload, and after the upload has completed, open
the serial monitor. Check the baud rate selection box in the
lower-right corner of the serial monitor, and select “57600
baud”. You should see output resembling this:

2013/10/20 15:6:22
 since midnight 1/1/1970 = 1382281582s = 15998d
 now + 7d + 30s: 2013/10/27 15:6:52

2013/10/20 15:6:25
 since midnight 1/1/1970 = 1382281585s = 15998d
 now + 7d + 30s: 2013/10/27 15:6:55

Note that the date and time may be wrong, but you should see
the seconds count increasing. If you get an error, double-check

106 Getting Started with Arduino

If you are using a board that’s wired differently, you’ll
need to use a breadboard and jumper wires to con-
nect it, so you should not add those extra lines of
code. Just be sure to wire the board as instructed by
the supplier.

https://makezine.com/go/arduino-4e-github/

that the RTC is in the right position, i.e., that SCL is connected
to A5 etc., and double-check that you set pins A2 and A3 prop-
erly in setup().

To set the correct time in the RTC, look in the setup() function.
Towards the end you will see this line:

 rtc.adjust(DateTime(__DATE__, __TIME__));

This line takes the date and time at which the sketch was com-
piled (__DATE__ and __TIME__, respectively) and uses that to set
the RTC. Of course, it might be off by a second or two, but that’s
close enough for our purposes.

Copy that line so that it’s outside the if() condition, e.g., just
below the rtc.begin():

 rtc.begin();
 rtc.adjust(DateTime(__DATE__, __TIME__));

Compile and upload the sketch, and now the serial monitor
should display the correct date and time:

014/5/28 16:12:35
 since midnight 1/1/1970 = 1401293555s = 16218d
 now + 7d + 30s: 2014/6/4 16:13:5

Of course, if your computer has the wrong date and time, this
will be reflected here.

After you set the time on the RTC you should comment out the
rtc.adjust (and upload the code), otherwise you will keep reset-
ting the time to when that sketch was compiled. This RTC will
now keep time for years.

For more information on the library and examples, read Arduino
Library and Understanding the Code on Adafruit’s tutorial for
theirDS1307 Breakout Board kit.

Note that while the Adafruit board is different, the code is the
same.

Now that you feel comfortable with the RTC, let’s move on to the
relays.

Automatic Garden-Irrigation System 107

https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/arduino-library
https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/arduino-library
https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/understanding-the-code
https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit?view=all

Testing the Relays
What kind of relays do we need? It depends on how much cur-
rent the water valves need. Most garden valves seem to use 300
milliamps. This is a small amount of current, and so a small
relay is enough. Relays that can be operated at different vol-
tages are available; we’ll use one that uses 5 V so we don’t need
another power source. Figure 8-4 shows a popular small 5 V
relay.

Figure 8-4. 5 V relay

You can buy it at Digi-Key, as well as from many other vendors.

Almost every electronic device has what’s called a data sheet,
where all the detailed technical information on the device is doc-
umented. It can be a little overwhelming for the beginner, as
there is so much information, and usually you need only a very
tiny part of it. As you get more experienced, you’ll learn what’s
important and how to find it quickly. If you search for the data
sheet for the relay we’ve chosen, you’ll see that it can handle up
to 2 amps and 30 volts of direct current (DC), or 1 amp and 125
volts of alternating current (AC), which is more than enough for
us. This relay also has the advantage of being compatible with
our solderless breadboard as well as the Proto Shield you will
use later.

108 Getting Started with Arduino

https://www.digikey.com/en/products/detail/DS2E-S-DC5V/255-1062-ND/251834

Whenever you want to control something with an Arduino out-
put, you have to remember that an Arduino pin should power
only devices that use up to 20 milliamps (see “Driving Bigger
Loads (Motors, Lamps, and the Like)” on page 71). If you search
for the current used by this relay in the data sheet, you won’t
find it. However, you will find the resistance. Now you have to do
some math, because knowing the resistance of the relay (125
ohms) and voltage that Arduino puts out on the I/O pins (5 V),
you can calculate the current by using Ohm’s law, which you
learned about near the end of “What Is Electricity?” on page 35.
Dividing the voltage (5) by the resistance (125), we get the cur-
rent: 40 milliamps.

Since that’s over our limit, we’ll need MOSFETs. For a change,
we’ll use a different MOSFET from the one we used in “Driving
Bigger Loads (Motors, Lamps, and the Like)” on page 71. We’ll
use the 2N7000, and you can find its data sheet posted on the
Onsemi Semiconductor website.

Just as in “Driving Bigger Loads (Motors, Lamps, and the Like)”
on page 71, the gate will be controlled by the Arduino I/O pin,
and the drain and source will be the switch that will control the
relay. You’ll have to to add three 2N7000 MOSFETs to the shop-
ping list, one for each relay.

To avoid the MOSFET gates from floating, add three 10K ohm
resistors to your shopping list, one for each relay.

Automatic Garden-Irrigation System 109

https://www.onsemi.com/products/discrete-power-modules/mosfets/2n7000

Whenever we control a relay or motor, we should add a diode to
protect the MOSFETs from the flyback voltage generated by the
collapsing magnetic field when the relay is turned off. Although
our MOSFET has a built-in diode, it is a relatively small one, so
for reliability, it is wise to add an additional, external diode. So,
another addition to your shopping list, this time for three
1N4148 (or similar) diodes. While we’re at it, we should add the
relay part number, and because we know the type of relay, we
can also indicate the correct socket for the relay. Here are the
additions that take the shopping list to what we’ll call revision
0.1:

• Add three MOSFETs to control the relays, 2N7000

• Add three resistors, 10K ohm

• Add three diodes, 1N4148 or equivalent

110 Getting Started with Arduino

When you turn on or reset an Arduino, all the digital
pins start off as inputs, until your program starts
running and your pinMode() changes any pins to out-
puts. This is important because in that brief period
of time, before the pinMode() function changes your
pin to an output, the gate will be neither HIGH nor
LOW: it will be left floating, which means that the
MOSFET could easily turn on, causing the water to
come on briefly. While this might not be the end of
the world in most projects, it’s a good habit to
account for this. As hinted at in “Driving Bigger
Loads (Motors, Lamps, and the Like)” on page 71 in
Chapter 5, a 10K ohm between the I/O pin and
ground prevents this. 10K ohms is a low enough
resistance to make sure the gate doesn’t “float”, but
it’s also a large enough resistance that it won’t get in
our way when we want to turn on the water.

A resistor used this way is called a pull-down resis-
tor, because it “pulls” the gate down to ground.
Sometimes a connection needs to be “pulled” to 5V;
in this case, it’s called a pull-up resistor.

• Add three relays, DS2E-S-DC5V

Sounds like this circuit is getting complex, doesn’t it? It’s hard to
visualise how all the components are supposed to be connected
to each other.

Fortunately, a clever system exists for capturing this informa-
tion. It’s called a schematic diagram.

Electronic Schematic Diagrams
Most electronic circuits are completely defined by two things: 1)
which components are used and 2) how they are to be connec-
ted. By capturing only this information as clearly as possible, a
schematic diagram is the clearest way to visualise and commu-
nicate an electronic circuit.

A schematic diagram intentionally does not convey the size,
shape, or colour of components, or how they are physically
placed next to each other, because this information is not rele-
vant to the definition of the circuit; rather, these are construc-
tion details for a particular implementation of that circuit.

Each component is represented by a schematic symbol, which
unambiguously identifies the component, but says nothing
about its size, colour, etc.

In some cases, schematic symbols look very much like the com-
ponents they represent, while in other cases they are quite dif-
ferent. In particular, you will see that the schematic symbol for
an Arduino does not look at all like an Arduino. From the point of
view of a schematic diagram, the only thing that matters about
an Arduino is that it has certain pins (power, inputs, outputs,
etc.). Thus, it is drawn as a very plain box with just the pins indi-
cated.

Electronic schematic symbols and diagrams are designed to
convey their functions as quickly and clearly as possible, and
some conventions have become common. Two of the most
important conventions are as follows:

• The lowest voltage is shown at the bottom of the schematic
diagram, and the highest voltage is at the top. Usually this

Automatic Garden-Irrigation System 111

means that the GND connection is at the bottom and that
5V (or a higher voltage if that’s used) is at the top.

• The information flows from left to right. Thus sensors and
other input devices are shown on the left, and outputs such
as motors, LEDs, relays, and water valves are on the right. If
the information travels from Arduino to the MOSFET to a
relay to a water valve, they will be shown on a schematic
diagram in that order from left to right, even though when
you build your circuit, you will have different priorities and
your layout may be quite different.

The schematic symbol for an Arduino reflects these conven-
tions too: VIN, 5V, and 3V3 are at the top, GND is at the bottom,
and the various controls (RESET, AREF, etc.) are on the left
because they are inputs to the Arduino. Although Arduino has
three GND pins, only one is shown on the schematic symbol
since they are electrically identical. Because the digital and ana-
logue pins can be either inputs or outputs, their placement is
somewhat arbitrary.

You can learn more about schematic diagrams in Appendix D.

Back to the project at hand: Figure 8-5 shows the schematic
diagram for the circuit we’ve been discussing. Remember, the
goal is to verify that we can control a relay by using a MOSFET
(although the finished system will have three water valves, for
the purpose of verifying that the plan works, we need to check
only one).

112 Getting Started with Arduino

Note the pin numbers next to the schematic symbol
of the relay. These are important because they tell
you which pin is connected to what inside. It is criti-
cal to understand this in order to wire up your circuit
properly. Note that the pin spacing is not equal: pins
1 and 4 are farther apart than pins 4 and 8. Note that
there is a black stripe on the top between pins 8 and
9. Finally, note that the pin numbers are as viewed
from the bottom.

Figure 8-5. Circuit schematic diagram for testing Arduino con-
trol of a relay

For reference, Figure 8-6 is a picture of the same circuit on a sol-
derless breadboard in the style we’ve used up to now. You might
think of this as a pictorial circuit diagram, as opposed to the
schematic in Figure 8-5.

Automatic Garden-Irrigation System 113

Figure 8-6. Pictorial circuit diagram for testing Arduino control
of a relay

114 Getting Started with Arduino

Once you’ve built the circuit, the next step is to write the sketch.
For testing, I prefer to use one of Arduino’s built-in examples, if
possible, since I know the sketch is correct. Because the relay
will make a faint clicking sound when activated, if you run the

Automatic Garden-Irrigation System 115

Just like the relay, the MOSFET pins must be prop-
erly identified and wired up correctly. Note that the
MOSFET has a curved side and a flat side, as shown
in Figure 8-6. This is necessary to indicate the
proper order of the pins. Be aware that this order is
particular to the 2N7000, but is not necessarily uni-
versal. Other MOSFETs might have a different order
of the pins. You always have to check the data sheet
to find the order of pins for your particular MOSFET.

Pay attention to the diodes, MOSFET, and the relay:
the diodes are polarized, the MOSFET must have the
flat side facing the right way, and the relay needs to
have the stripe at the proper end for everything to
work.

If you look at Figure 8-5 and Appendix D, you’ll
notice that some components, like resistors, light
sensors, and (some) capacitors, have circuit sym-
bols that are symmetrical, in that you can flip them
upside down and they look exactly the same, while
other components, like LEDs, diodes, and MOSFETs,
are not symmetrical. Resistors, light sensors, and
(some) capacitors are unpolarized, meaning they
work the same regardless of which way the current
flows through them, while components, like LEDs
and diodes, are polarized, meaning they work differ-
ently depending on which way the current flows
through them. Similarly, MOSFET pins have very
specific functions, and can’t be used interchangea-
bly. While not uniformly true, generally components
that have symmetrical schematic symbols are unpo-
larized, and components with asymmetrical sche-
matic symbols are polarized.

Blink example, you should hear the relay clicking once a second,
and you won’t have to write a line of code.

Before uploading the sketch, verify that the sketch is controlling
the pin that is attached to the MOSFET. If you have followed the
schematic, you will be connected to pin 13, which is in fact the
pin that is controlled in the Blink example sketch. Additionally,
the LED will blink at the same time the relay should click.

If you don’t hear the relay clicking, check the troubleshooting
hints in Chapter 11. Remember, the clicking is very faint; you’ll
need to put your ear very close to the relay and be in a very quiet
room.

Now we can add the water valve. The water valve will connect to
the relay and its own power supply. The water valve and power
supply probably come with stranded wire, which is almost
impossible to use with a solderless breadboard. You’ll find it
handy to attach a short piece of solid-core wire to the stranded
wire when you’re working with a solderless breadboard, as
shown in Figure 8-7.

Figure 8-7. Short piece of solid-core wire soldered to stranded
wire for solderless breadboard work

You’ll need to insulate the joint with some electrical tape or heat
shrink tubing to prevent it from touching a wire that it shouldn’t.

116 Getting Started with Arduino

Before you upload a sketch, it’s a good habit to verify
that the pins used in the sketch are indeed the pins
that you have wired up. You might have a perfectly
correct sketch, and a perfectly built circuit, but if
your sketch uses different pins than your circuit,
things won’t work, and you might waste lots of time
trying to find the problem.

At this point you might realise that you’ll need a way to make
this connection when you build the final system. There are many
ways to do this, but good-quality screw terminals are a great
choice, as shown in Figure 8-8.

Automatic Garden-Irrigation System 117

Whenever you have an exposed piece of metal, such
as the wires you just joined together, or the long,
bare leads of a photoresistor, or even something that
is not part of the circuit, like a screw, you need to
make sure that it can’t touch other parts of a circuit,
making a connection that you don’t want. This is
called a short circuit, and it can make your project
fail to work properly. To prevent short circuits,
always insulate any exposed wires or secure things
in such a way that they can’t move and touch some-
thing that they shouldn’t.

You are probably already familiar with electrician’s or
insulating tape, which is a common, inexpensive,
and easy method. A more professional technique is
to use heat shrink tubing. The tubing is cut to size
and slipped over the exposed wires or connections,
and then heated up with a heat gun, which causes
the tubing to shrink tightly around the connection.

Figure 8-8. Good-quality screw terminal with two positions

So you have another addition to your shopping list. Here are the
additions to take us to revision 0.2 of the shopping list:

• Four two-position screw terminals (one pair for each water
valve, plus one pair for the water valve power supply) e.g.,
Jameco part no. 1299761

Figure 8-9 shows the circuit schematic with the water valve and
power supply added.

118 Getting Started with Arduino

http://www.jameco.com

Figure 8-9. Circuit schematic for testing Arduino control of one
water valve

And Figure 8-10 shows the pictorial circuit diagram of exactly
the same circuit.

Automatic Garden-Irrigation System 119

Figure 8-10. Pictorial circuit diagram for testing Arduino control
of one water valve

120 Getting Started with Arduino

You can use the same Blink sketch; you should still hear the
relay clicking. You might not hear the water valve clicking,
because some water valves work only when they have water
pressure inside of them. I was fortunate; my water valves made
a very loud click when they were turned on.

What about the LEDs? They can be installed in a number of dif-
ferent places: at the digital outputs, at the MOSFET output, or at
the relay output. When possible, I like to put the LED on the far-
thest point, to verify as much as possible, so let’s put it at the
relay output. (If you want, you can put LEDs at all mentioned
stages, making it very easy to spot exactly where the signal
stops.)

What resistor should we use? This LED will be getting power
from the water valve power supply. Most water valves seem to
be either 12 or 24 volts. For safety, let’s design for a 24 V sys-
tem, and if yours is a 12 V system, you can either reduce the
value or have a slightly dimmer LED. It should still be quite visi-
ble.

LED resistor = (voltage of supply - voltage of LED)/(desired
LED current)

Automatic Garden-Irrigation System 121

The order of the water valve and the water valve
power supply are changed in these two views. I did
this to avoid having wires cross in the diagrams for
clarity. When connecting a component and a power
supply via a switch, the order doesn’t matter, as long
as the switch controls whether the circuit is closed
or open.

If you’re uncertain about what value resistor to use
when you’re using it to limit current, it’s always safer
to choose a bigger-value resistor. The LED will be
visible over quite a wide range of values, and, if it’s
too dim, you can always reduce the resistance.

Most LEDs use about 2 volts and are safe below 30 mA, so we
have R = (24-2)V/30mA = 733 ohms. You can safely round this up
to 1K ohm; the result will be a little less current and a slightly
dimmer LED.

But wait, in “Planning” on page 99, I told you that some water
valves use AC, and then later in “Electronic Schematic Dia-
grams” on page 111, I told you that LEDs are polarized. Polarized
means that the LEDs care which way the current flows, and AC
means that the current changes direction all the time. Won’t
that damage the LEDs? As it turns out, LEDs can withstand a
certain amount of voltage in the wrong direction, but if the volt-
age is too high, the LED might be damaged. Fortunately, other
diodes can withstand much higher voltages safely, so let’s use
another three 1N4148 diodes to protect the LEDs, giving us an
addition that takes the shopping list to revision 0.3:

• Change quantity of 1N4148 or similar diodes to six

• Specify the LED resistor value is 1K ohm

Figure 8-11 shows the circuit schematic with the LED and diode
added. We’ve indicated the polarity of the water valve power
supply and of the water valve, but this is relevant only if you
have a DC system. If you have an AC system (which seems to be
more common), these have no polarity.

122 Getting Started with Arduino

Figure 8-11. Schematic diagram for testing the water valve with
added LED

And Figure 8-12 shows the pictorial circuit diagram. I’ve left off
the resistor values, so make sure you compare with the sche-
matic and get the right resistor in the right place. Also pay atten-
tion to the LED and diode polarity—the LED anode connects to
the water valve and the diode anode connects to the LED
cathode.

Before you plug in the water valve power supply, double check
your wiring, especially the relay connections. You don’t want the
water valve power supply voltage to get into the Arduino, as it
would almost certainly cause damage. Once again, run the Blink
sketch. In addition to hearing the relay and possibly the valve
clicking, you should see the LED light up.

Automatic Garden-Irrigation System 123

Figure 8-12. Pictorial circuit diagram for testing the water valve
with added LED

Now that we have the relay and water valve figured out, let’s test
the Temperature and Humidity Sensor.

Testing the Temperature and
Humidity Sensor
The DHT11 is a popular Temperature and Humidity Sensor. Like
the RTC, it is inexpensive and easy to use with Arduino. Accord-
ing to the data sheet, the DHT11 is connected as shown in
Figure 8-13. Note the pullup resistor on the data pin.

124 Getting Started with Arduino

Figure 8-13. Schematic diagram for testing the DHT11 Tempera-
ture and Humidity Sensor

Because we’re adding a component that needs one, let’s add
another 10K ohm resistor to our shopping list. We’re now at ver-
sion 0.4:

• Add one resistor, 10K ohm (for Temperature and Humidity
Sensor)

Because of the pull-up resistor, we can’t use the trick we did
with the RTC (snapping it directly onto the Arduino), so we’ll
have to put this on a breadboard (Figure 8-14).

Automatic Garden-Irrigation System 125

The schematic diagram of a circuit is the same
regardless of whether you build the circuit on a
breadboard or in some other way.

Figure 8-14. Pictorial circuit diagram for testing the DHT11 Tem-
perature and Humidity Sensor

You can install the Adafruit DHT11 library exactly as you did the
RTClib library.

Check that you’ve properly installed the library by opening the
DHTtester example in the DHT category of examples, and then
click the Verify button (see Figure 4-2). If you get the message
“Done compiling”, you have installed the library correctly.

Before you upload the sketch to your Arduino, note that the
example supports three different models of DHT sensors:
DHT11, DHT21, and DHT22. To correctly select the proper
model, a constant named DHTTYPE is defined to be either
DHT11, DHT21, or DHT22:

126 Getting Started with Arduino

// Uncomment whatever type you're using!
//#define DHTTYPE DHT11 // DHT 11
#define DHTTYPE DHT22 // DHT 22 (AM2302)
//#define DHTTYPE DHT21 // DHT 21 (AM2301)

Notice that DHT11 and DHT21 are ignored, because those two
lines are comments or, as programmers say, those lines are
commented out. Because you are using a DHT11 sensor, you
need to comment out the line with the DHT22, and “uncom-
ment” the line with the DHT11:

// Uncomment whatever type you're using!
#define DHTTYPE DHT11 // DHT 11
//#define DHTTYPE DHT22 // DHT 22 (AM2302)
//#define DHTTYPE DHT21 // DHT 21 (AM2301)

The lines with the DHT22 and the DHT21 aren’t doing anything,
but they serve to remind us that the library will work with these
three sensors, and that this is how you specify which one you
are using.

Once you have defined the correct type of DHT sensor, verify
that the sketch uses the same pin that you have connected to

Automatic Garden-Irrigation System 127

You may have encountered another type of con-
stant: the constant variable. Apart from the awkward
name, it too is important and useful.

The differences between a variable (like an integer),
a constant variable, and a named constant value are
subtle and a bit complicated. In broad terms, a con-
stant variable uses a tiny bit of your Arduino’s mem-
ory and obeys scope rules. In contrast, a named con-
stant value does not use any memory and always
has global scope.

As a general rule, you should avoid using named
constant values and use them only if a library
requires them.

You can learn more about named constant values,
the const keyword, and variable scope on the Ardu-
ino website.

https://www.arduino.cc/reference/en/language/structure/further-syntax/define/
https://www.arduino.cc/reference/en/language/variables/variable-scope-qualifiers/const/
https://www.arduino.cc/reference/en/language/variables/variable-scope-qualifiers/scope/

the sensor, and upload the DHTtester example to your Arduino
and open the serial monitor. You should see something like this:

DHTxx test!
Humidity: 47.00 % Temperature: 24.00 *C 75.20 *F Heat index:
77.70 *F
Humidity: 48.00 % Temperature: 24.00 *C 75.20 *F Heat index:
77.71 *F

You can check the humidity sensor by gently exhaling on it. The
moisture in your breath should make the humidity rise. You can
try to raise the temperature by placing your fingers around the
sensor, but since you’re touching the plastic case and not the
sensor itself, you may not be able to raise the temperature by
much.

Now that you can feel confident in your components, you can
start designing the software.

Coding
Guess what? Writing code (coding) requires planning as well.
You need to think a little about what you are trying to do before
you start typing away. Similar to the way you tested the new
electronics before doing the whole design, you’ll test each piece
of code before going on. The less code there is, the easier it is to
find problems.

Setting the On and Off Times
We want to turn the water valves on and off at different times of
the day. We’ll need some way to record those values. Because
we have three valves, we might use an array, with one entry for
each valve. This will also make it easier if we later want to add
more water valves. You might recall that we used an array
named buffer (see Example 6-2 in Chapter 6) to store the char-
acters as they were sent from the Processing sketch. Arrays are
described briefly in “Variables” on page 236.

Here’s one way to do that:

const int NUMBEROFVALVES = 3;
const int NUMBEROFTIMES = 2;

int onOffTimes [NUMBEROFVALVES][NUMBEROFTIMES];

128 Getting Started with Arduino

Note that instead of using fixed numbers for the dimensions of
the array, I first created two constant variables. This serves to
remind me what these numbers mean, and make it easier to
change later. Constant variable names are in uppercase letters
to remind us that they are constants.

If you’ve never seen a two-dimensional array, don’t be fright-
ened. Think of it as a spreadsheet. The number in the first [] is
the number of rows, and the number in the second [] is the
number of columns. A row represents a valve, and we’ll use the
first column to store the time at which to turn the valve on, and
the second column to store the time at which to turn the valve
off.

Let’s make constant variables for the column numbers as well.
Remember that the index of elements within an array always
starts at zero:

const int ONTIME = 0;
const int OFFTIME = 1;

Next we need a way to input this information; that is, some sort
of user interface. Typically, a user interface is a menu, but we’re
going to make something extremely simple using the serial
monitor.

Remember in Chapter 6 we needed a way to tell Arduino what
colour to make the light? As I mentioned there, because Arduino
is a simple device, we chose a simple way to codify the colour.

We’re going to do a similar thing here: codify the times in as sim-
ple a way as possible.

Automatic Garden-Irrigation System 129

For simplicity, we’ll assume you turn the water on
and off at the same time every day of the week. As
your programming skills increase, you can modify
this to accommodate different schedules on differ-
ent days of the week, and even multiple times in one
day. When you start a project, it’s good to start with
the most simple system possible, and add features
as you verify that things work properly.

We need to be able to set the ON time and OFF time for each
valve. We could use a number indicating the desired valve fol-
lowed by the letter N for “on” and F for “off,” followed by the
time. We could input the time in 24-hour notation, e.g., 0135 for
1:35 a.m. Thus, we would type

2N1345 2F1415

to turn valve 2 on at 1:45 p.m. and off at 2:15 p.m.

To make our life easier, let’s insist that we always use uppercase
letters for N and F.

In our code, we would need to parse, or separate, the string that
we type into the correct groups.

If you look at the Arduino sketch (Example 6-2), you’ll see we
made use of Serial.available() and Serial.read(), which are
functions of the serial object. It turns out the serial object has
more functions, as described at Arduino.

We’ll use the Serial.parseInt() function, which reads digit
characters and converts them to integers. It stops when it sees
a character that isn’t a number. We read the letters (N or F)
directly with Serial.read().

For the purposes of testing, we’ll just print out the entire array
after each line is read, as shown in Example 8-1.

Example 8-1. Parsing the commands sent to the
irrigation system
/*
 Example 8-1. Parsing the commands sent to the irrigation system
 */
const int NUMBEROFVALVES = 3;
const int NUMBEROFTIMES = 2;
int onOffTimes [NUMBEROFVALVES][NUMBEROFTIMES];

const int ONTIME = 0;

130 Getting Started with Arduino

A group of consecutive characters is called a string.

https://www.arduino.cc/reference/en/language/functions/communication/serial/

const int OFFTIME = 1;

void setup(){
 Serial.begin(9600);
};

void loop() {
 // Read a string of the form "2N1345" and separate it
 // into the first digit, the letter, and the second number

 // read only if there is something to read
 while (Serial.available() > 0) {

 // The first integer should be the valve number
 int valveNumber = Serial.parseInt();

 // the next character should be either N or F
 // do it again:
 char onOff = Serial.read();

 // next should come the time
 int desiredTime = Serial.parseInt();
 //Serial.print("time = ");
 //Serial.println(desiredTime);

 // finally expect a newline which is the end of
 // the sentence:
 if (Serial.read() == '\n') {
 if (onOff == 'N') { // it's an ON time
 onOffTimes[valveNumber][ONTIME] = desiredTime;
 }
 else if (onOff == 'F') { // it's an OFF time
 onOffTimes[valveNumber][OFFTIME] = desiredTime;
 }
 else { // something's wrong
 Serial.println ("You must use upper case N or F only");
 }
 } // end of sentence
 else {
 // Sanity check
 Serial.println("no Newline character found");
 }

 // now print the entire array so we can see if it works
 for (int valve = 0; valve < NUMBEROFVALVES; valve++) {
 Serial.print("valve # ");

Automatic Garden-Irrigation System 131

 Serial.print(valve);
 Serial.print(" will turn ON at ");
 Serial.print(onOffTimes[valve][ONTIME]);
 Serial.print(" and will turn OFF at ");
 Serial.print(onOffTimes[valve][OFFTIME]);
 Serial.println();
 }
 } // end of Serial.available()
}

You can download this sketch from this book’s catalog page.

After loading the sketch into Arduino, open the serial monitor
and check the baud rate and line-ending selection boxes in the
lower-right corner of the serial monitor. Select Newline and
9600 baud. The line-ending type makes sure that every time
you end a line by pressing the Enter key on your computer, your
computer will send a newline character to your Arduino.

For instance, if you want to turn on valve #1 at 1:30 p.m., type
1N1330 and press Enter. You should see this:

valve # 0 will turn ON at 0 and will turn OFF at 0
valve # 1 will turn ON at 1330 and will turn OFF at 0
valve # 2 will turn ON at 0 and will turn OFF at 0

In the sketch, notice that I check to make sure that the charac-
ter between the numbers is either N or F, and that after the sec-
ond number is a newline character. This sort of “sanity check-
ing” is handy to catch mistakes you might make while typing,
which might confuse your program. These sort of checks are
also useful for catching mistakes in your program. You might
think of other sanity checks; for instance, you might check that
the time is valid, e.g., it is less than 2359, and that the valve
number is less than NUMBEROFVALVES.

132 Getting Started with Arduino

https://makezine.com/go/arduino-4e-github/

Before we go on, I want to show you a new trick. This chunk of
code we just developed is lengthy, and we still have a lot to add.
It’s going to start getting confusing to read and manage the pro-
gram.

Fortunately, we can make use of a very clever and common pro-
gramming technique. In “Pass Me the Parmesan” on page 29 we
explained what a function is, and that setup() and loop() are
two functions that Arduino expects to exist. So far you’ve cre-
ated your entire program within these two functions.

What I didn’t emphasize is that you can create other functions
the same way you create setup() and loop().

Why is this important? Because it’s a very convenient way to
break a long and complicated program into small functions,
each of which has a specific task. Furthermore, since you can
name those functions anything you want, if you use names that
describe what they do, reading the program becomes much
simpler.

Automatic Garden-Irrigation System 133

A program that is designed to handle only the cor-
rect data is very delicate, as it is sensitive to any
errors, whether caused by user input or a mistake
elsewhere. By checking the data before operating on
it, your program will be able to identify errors
instead of trying to operate with faulty data, which
could lead to unexpected or erroneous behavior.
This makes your program robust, which is a highly
desireable quality, especially since humans won’t
always do what they are supposed to do.

For instance, the code we just developed reads a command
from the serial monitor, parses it, and then stores the times into
the array. If we made this a function called expectValveSet
ting(), our loop is simply:

void loop() {

 expectValveSettings();

}

That’s much easier to read, and most important, easier to
understand as we develop the rest of the program.

Of course we need to create this function, which we do like this:

void expectValveSettings() {
 // Read a string of the form "2N1345" and separate it
 // into the first digit, the letter, and the second number

 // read only if there is something to read
 while (Serial.available() > 0) {
 // ... rest of the code not repeated here
 }

The rest is exactly the same as Example 8-1; I left out the rest of
the function because I didn’t want to waste another two pages.

134 Getting Started with Arduino

Any time a chunk of code that does a specific task
becomes large, it is a good candidate for becoming a
function. How large is large enough? That’s up to
you. My rule of thumb is that as soon as a chunk of
code takes up more than two screens, it is a candi-
date for becoming a function. I can keep two screen-
fuls in my head, but not more than that.

An important consideration is whether the chunk of
code can easily be extracted. Does it depend on
many variables that are visible only within another
function? As you learn more about variable scope,
you’ll see this is important too.

Now we can turn to the other things we need to do, and make
them functions as well.

Checking Whether It’s Time to
Turn a Valve On or Off

Next, let’s look at the data from the RTC and figure out how we’ll
use this to decide whether it’s time to turn something on or off.
If you go back to the RTC example ds1307, you’ll see how the
time is printed:

Serial.print(now.hour(), DEC);

Conveniently, this is already a number, so comparing with the
hours and minutes we have stored will be easy.

In order to access the RTC, you’ll need to add parts of the
ds1307 example to your program. At the top, before setup(),
add this:

#include <Wire.h>
#include "RTClib.h"

RTC_DS1307 rtc;

This time we won’t use the analogue input pins to provide 5V
and GND. Why? Because analogue inputs are scarce; there are
only six of them, and we already lost two for the 12C interface to
the RTC. At the moment our project doesn’t need any analogue
inputs, but we might think of something later.

In setup() you’ll need the following:

 #ifdef AVR
 Wire.begin();
 #else
 // I2C pins connect to alt I2C bus on Arduino Due
 Wire1.begin();
 #endif
 rtc.begin();

Now think about what you need to do: as long as the current
time is greater than the time you want to turn a valve ON, and

Automatic Garden-Irrigation System 135

less than the time you want to turn the valve OFF, you should
turn it on. At all other times you want it turned OFF.

From the RTC library you can get the current time like this:

 dateTimeNow = rtc.now();

and then you can access parts of the time like this:

 dateTimeNow.hour()
 dateTimeNow.minute()

Can you see the problem? We’ve stored time as a four-digit
number, where the first two digits are the hour and the last two
digits are the minutes. We can’t do a mathematical comparison
without separating this number into hours and minutes, and
then the comparison gets complicated.

It would be nice if we could have just one number. We can do
this if, instead of storing the time as hours and minutes, we just
converted the hours to minutes and stored the number of
minutes since midnight. That way, we only have to deal with one
number and the mathematical comparison is easy. (We have to
remember never to turn on the water before midnight and off
after midnight. This would be another opportunity for a sanity
check to make our program more robust.)

The following code illustrates this:

int nowMinutesSinceMidnight = (dateTimeNow.hour() * 60) +
 dateTimeNow.minute();

and then the comparison looks like this:

if ((nowMinutesSinceMidnight >= onOffTimes[valve][ONTIME]) &&
 (nowMinutesSinceMidnight < onOffTimes[valve][OFFTIME]))
{
 digitalWrite(??, HIGH);
}
else
{
 digitalWrite(??, LOW);
}

Wait a minute, what about those question marks? We need to
know the pin number of each valve. Our for() loop just counts
off the valves: 0, 1, and 2. We need a way to indicate what pin
number corresponds to which valve. We can use an array:

136 Getting Started with Arduino

int valvePinNumbers[NUMBEROFVALVES];

By using the same constant variable we created earlier, this
array will always have exactly the same number of rows as the
other array, even if you later change the number of valves.

In setup() we’ll insert the correct pin numbers into the array:

valvePinNumbers[0] = 6; // valve 0 is on pin 6
valvePinNumbers[1] = 8; // valve 1 is on pin 8
valvePinNumbers[2] = 3; // valve 2 is on pin 3

Now we can fix our question marks:

if ((now.hour() > onOffTimes[valve][onTime]) &&
 (now.hour() < onOffTimes[valve][offTime])) {

 Serial.println("Turning valve ON");
 digitalWrite(valvePinNumbers[valve], HIGH);
}
else {
 Serial.println("Turning valve OFF");
 digitalWrite([valve], LOW);
}

One last thing: we’re going to need to separate the four-digit
numbers in the array into hours and minutes. It might be easier
to do that when the user types in the information. We’ll ask the
user to add a : between the hours and minutes, we’ll read them
as separate numbers, do the conversion to minutes since mid-
night right there, and store the minutes since midnight in the
array. When we print the times we’ll have to convert this back to
the usual time format. Example 8-2 now shows our modified
expectValveSetting() function along with the new printSet
tings() function.

Automatic Garden-Irrigation System 137

Whenever you need to look up some information
based on an index, an array is a good way to do that.
Think of it as a lookup table.

Example 8-2. The expectValveSetting() function
/*
 * Example 8-2. expectValveSetting() and printSettings() functions
 * Read a string of the form "2N13:45" and separate it into the
 * valve number, the letter indicating ON or OFF, and the time
 */

void expectValveSetting() {

 // The first integer should be the valve number
 int valveNumber = Serial.parseInt();

 // the next character should be either N or F
 char onOff = Serial.read();

 int desiredHour = Serial.parseInt(); // get the hour

 // the next character should be ':'
 if (Serial.read() != ':') {
 Serial.println("no : found"); // Sanity check
 Serial.flush();
 return;
 }

 int desiredMinutes = Serial.parseInt(); // get the minutes

 // finally expect a newline which is the end of the sentence:
 if (Serial.read() != '\n') { // Sanity check
 Serial.println("You must end your request with a Newline");
 Serial.flush();
 return;
 }

138 Getting Started with Arduino

You have probably thought of two or three different
ways of doing this. Most programming problems, in
fact most engineering problems, can be solved
many different ways. A professional programmer
might consider efficiency, speed, memory usage,
perhaps even cost, but as a beginner you should use
whatever is easiest for you to understand.

 // Convert desired time to # of minutes since midnight
 int desiredMinutesSinceMidnight
 = (desiredHour*60 + desiredMinutes);

 // Put time into the array in the correct row/column
 if (onOff == 'N') { // it's an ON time
 onOffTimes[valveNumber][ONTIME]
 = desiredMinutesSinceMidnight;
 }
 else if (onOff == 'F') { // it's an OFF time
 onOffTimes[valveNumber][OFFTIME]
 = desiredMinutesSinceMidnight;
 }
 else { // user didn't use N or F
 Serial.print("You must use upper case N or F ");
 Serial.println("to indicate ON time or OFF time");
 Serial.flush();
 return;
 }

 printSettings(); // print the array so user can confirm settings
} // end of expectValveSetting()

void printSettings(){
 // Print current on/off settings, converting # of minutes since
 // midnight back to the time in hours and minutes
 Serial.println();
 for (int valve = 0; valve < NUMBEROFVALVES; valve++) {
 Serial.print("Valve ");
 Serial.print(valve);
 Serial.print(" will turn ON at ");

 // integer division drops remainder: divide by 60 to get hours
 Serial.print((onOffTimes[valve][ONTIME])/60);
 Serial.print(":");

 // minutes % 60 are the remainder (% is the modulo operator)
 Serial.print((onOffTimes[valve][ONTIME])%(60));

 Serial.print(" and will turn OFF at ");
 Serial.print((onOffTimes[valve][OFFTIME])/60); // hours
 Serial.print(":");
 Serial.print((onOffTimes[valve][OFFTIME])%(60)); // minutes
 Serial.println();
 }
}

Automatic Garden-Irrigation System 139

Checking for Rain

What about checking for rain with the humidity sensor? You can
do this at the same time you check the time, but it becomes a
very long line. It’s OK to use another if() statement; long-time
programmers might tell you this is less efficient, but your gar-
den won’t care if the water comes on a split second later. Much
more important is that you can read and understand the pro-
gram.

Example 8-3 shows a way to turn the water on only if it’s not
raining.

Example 8-3. Turn on the water only if it’s not
raining
 if ((nowMinutesSinceMidnight >= onOffTimes[valve][ONTIME]) &&
 (nowMinutesSinceMidnight < onOffTimes[valve][OFFTIME])) {
 // Before we turn a valve on make sure it's not raining
 if (humidityNow > 50) { // Arbitrary; adjust as necessary
 // It's raining; turn the valve OFF
 Serial.print(" OFF ");
 digitalWrite(valvePinNumbers[valve], LOW);
 }
 else {
 // No rain and it's time to turn the valve ON
 Serial.print(" ON ");
 digitalWrite(valvePinNumbers[valve], HIGH);
 } // end of checking for rain
 } // end of checking for time to turn valve ON
 else {

140 Getting Started with Arduino

Be aware of well-intentioned experienced program-
mers who might show you clever tricks for reducing
the number of lines in your program, or for improv-
ing efficiency. As you gain experience, it’s good to
understand why these tricks work, but as a beginner,
you should always choose whatever is easiest for
you to understand.

 Serial.print(" OFF ");
 digitalWrite(valvePinNumbers[valve], LOW);
 }

Of course we’ll make another function for this. Let’s call it check
TimeControlValves().

We’ll also create a separate function for reading the humidity
sensor and the RTC. Let’s call that getTimeTempHumidity().

Now our loop looks something like this:

void loop() {

 // Remind user briefly of possible commands
 Serial.print("Type 'P' to print settings or 'S2N13:45'");
 Serial.println(" to set valve 2 ON time to 13:34");

 // Get (and print) the current date, time,
 // temperature, and humidity
 getTimeTempHumidity();

 // Check for new time settings:
 expectValveSettings();

 // Check to see whether it's time to turn any
 // valve ON or OFF
 checkTimeControlValves();

 // No need to do this too frequently
 delay(5000);
}

Putting It All Together

We’re almost done with the sketch. Just a couple of other minor
things to consider, and then we can put this all together.

First, what if the user wants to see the current valve schedule?
That’s easy, but how does the user tell us? The user could type
the letter P for “Print”, but now the sketch needs to be ready for
either the letter P or a number. This is tricky; it would be easier if
we always expect the first character to be a letter and then
decide whether to expect a number. Let’s say that if the first let-
ter is P, then we print the current settings, and if the first letter

Automatic Garden-Irrigation System 141

is S, then we expect a new setting to follow. If the user types
anything other than P or S, we’d better remind them what’s OK
to type:

/*
 * Check for user interaction, which will
 * be in the form of something typed on
 * the serial monitor.
 *
 * If there is anything, make sure it's
 * properly-formed, and perform the
 * requested action.
 */
void checkUserInteraction() {

 // Check for user interaction
 while (Serial.available() > 0) {

 // The first character tells us what to expect for the
 // rest of the line
 char temp = Serial.read();

 // If the first character is 'P'
 // then print the current settings
 // and break out of the while() loop
 if (temp == 'P') {

 printSettings();
 Serial.flush();
 break;

 } // end of printing current settings

 // If first character is 'S'
 // then the rest will be a setting
 else if (temp == 'S') {
 expectValveSetting();
 }

 // Otherwise, it's an error. Remind the user
 // what the choices are and break out of the
 // while() loop
 else
 {
 printMenu();
 Serial.flush();

142 Getting Started with Arduino

 break;
 }

 } // end of processing user interaction

}

The following code is the printMenu() function. It’s short, but we
might want to use it elsewhere. Also, in my experience, the
menu tends to grow as the project becomes more and more
complex, so this function is actually a nice way to document the
menu within the sketch. For instance, later you might want to
add a menu item to set the RTC time:

void printMenu() {
 Serial.println(
 "Please enter P to print the current settings");
 Serial.println(
 "Please enter S2N13:45 to set valve 2 ON time to 13:34");
}

Finally, Example 8-4 shows the entire sketch.

Example 8-4. The irrigation system sketch
/* Example 8-4. The irrigation system sketch */

#include <Wire.h> // Wire library, used by RTC library
#include "RTClib.h" // RTC library
#include "DHT.h" // DHT temperature/humidity sensor library

// Analog pin usage
const int RTC_5V_PIN = A3;
const int RTC_GND_PIN = A2;

// Digital pin usage
const int DHT_PIN = 2; // temperature/humidity sensor
const int WATER_VALVE_0_PIN = 8;
const int WATER_VALVE_1_PIN = 7;

Automatic Garden-Irrigation System 143

Any time a block of code is to be used more than
once, it is a good candidate for becoming a function,
no matter how short it is.

const int WATER_VALVE_2_PIN = 4;

const int NUMBEROFVALVES = 3; // How many valves we have
const int NUMBEROFTIMES = 2; // How many times we have

// Array to store ON and OFF times for each valve
// Store this time as the number of minutes since midnight
// to make calculations easier
int onOffTimes [NUMBEROFVALVES][NUMBEROFTIMES];
int valvePinNumbers[NUMBEROFVALVES];

// Which column is ON time and which is OFF time
const int ONTIME = 0;
const int OFFTIME = 1;

#define DHTTYPE DHT11
DHT dht(DHT_PIN, DHTTYPE); // Create a DHT object

RTC_DS1307 rtc; // Create an RTC object

// Global variables set and used in different functions

DateTime dateTimeNow; // to store results from the RTC

float humidityNow; // humidity result from the DHT11 sensor

void setup(){

 // Power and ground to RTC
 pinMode(RTC_5V_PIN, OUTPUT);
 pinMode(RTC_GND_PIN, OUTPUT);
 digitalWrite(RTC_5V_PIN, HIGH);
 digitalWrite(RTC_GND_PIN, LOW);

 // Initialize the wire library
 #ifdef AVR
 Wire.begin();
 #else
 // Shield I2C pins connect to alt I2C bus on Arduino Due
 Wire1.begin();
 #endif

 rtc.begin(); // Initialize the RTC object
 dht.begin(); // Initialize the DHT object
 Serial.begin(9600); // Initialize the Serial object

144 Getting Started with Arduino

 // Set the water valve pin numbers into the array
 valvePinNumbers[0] = WATER_VALVE_0_PIN;
 valvePinNumbers[1] = WATER_VALVE_1_PIN;
 valvePinNumbers[2] = WATER_VALVE_2_PIN;

 // and set those pins all to outputs
 for (int valve = 0; valve < NUMBEROFVALVES; valve++) {
 pinMode(valvePinNumbers[valve], OUTPUT);
 }

};

void loop() {

 // Remind user briefly of possible commands
 Serial.print("Type 'P' to print settings or ");
 Serial.println("'S2N13:45' to set valve 2 ON time to 13:34");

 // Get (and print) the current date, time,
 // temperature, and humidity
 getTimeTempHumidity();

 checkUserInteraction(); // Check for request from the user

 // Check to see whether it's time to turn any valve ON or OFF
 checkTimeControlValves();

 delay(5000); // No need to do this too frequently
}

/* Get, and print, the current date, time,
 * humidity, and temperature
 */
void getTimeTempHumidity() {
 // Get and print the current time
 dateTimeNow = rtc.now();

 if (! rtc.isrunning()) {
 Serial.println("RTC is NOT running!");
 // Use this to set the RTC to the date and time this sketch
 // was compiled. Use this ONCE and then comment it out
 // rtc.adjust(DateTime(__DATE__, __TIME__));
 return; // if the RTC is not running don't continue
 }

Automatic Garden-Irrigation System 145

 Serial.print(dateTimeNow.hour(), DEC);
 Serial.print(':');
 Serial.print(dateTimeNow.minute(), DEC);
 Serial.print(':');
 Serial.print(dateTimeNow.second(), DEC);

 // Get and print the current temperature and humidity
 humidityNow = dht.readHumidity();
 float t = dht.readTemperature(); // temperature Celsius
 float f = dht.readTemperature(true); // temperature Fahrenheit

 // Check if any reads failed and exit early (to try again).
 if (isnan(humidityNow) || isnan(t) || isnan(f)) {
 Serial.println("Failed to read from DHT sensor!");
 return; // if the DHT is not running don't continue;
 }

 Serial.print(" Humidity ");
 Serial.print(humidityNow);
 Serial.print("% ");
 Serial.print("Temp ");
 Serial.print(t);
 Serial.print("C ");
 Serial.print(f);
 Serial.print("F");
 Serial.println();
} // end of getTimeTempHumidity()

/*
 * Check for user interaction, which will be in the form of
 * something typed on the serial monitor If there is anything,
 * make sure it's proper, and perform the requested action.
 */
void checkUserInteraction() {
 // Check for user interaction
 while (Serial.available() > 0) {

 // The first character tells us what to expect
 // for the rest of the line
 char temp = Serial.read();

 // If the first character is 'P' then print the current
 // settings and break out of the while() loop.
 if (temp == 'P') {
 printSettings();
 Serial.flush();

146 Getting Started with Arduino

 break;
 } // end of printing current settings

 // If first character is 'S' then the rest will be a setting
 else if (temp == 'S') {
 expectValveSetting();
 }

 // Otherwise, it's an error. Remind the user what the choices
 // are and break out of the while() loop
 else
 {
 printMenu();
 Serial.flush();
 break;
 }
 } // end of processing user interaction
}

/*
 * Read a string of the form "2N13:45" and separate it into the
 * valve number, the letter indicating ON or OFF, and the time.
 */
void expectValveSetting() {

 // The first integer should be the valve number
 int valveNumber = Serial.parseInt();

 // the next character should be either N or F
 char onOff = Serial.read();

 int desiredHour = Serial.parseInt(); // the hour

 // the next character should be ':'
 if (Serial.read() != ':') {
 Serial.println("no : found"); // Sanity check
 Serial.flush();
 return;
 }

 int desiredMinutes = Serial.parseInt(); // the minutes

 // finally expect a newline which is the end of the sentence:
 if (Serial.read() != '\n') { // Sanity check
 Serial.println(
 "Make sure to end your request with a Newline");

Automatic Garden-Irrigation System 147

 Serial.flush();
 return;
 }

 // Convert the desired hour and minute time
 // to the number of minutes since midnight
 int desiredMinutesSinceMidnight
 = (desiredHour*60 + desiredMinutes);

 // Put time into the array in the correct row/column
 if (onOff == 'N') { // it's an ON time
 onOffTimes[valveNumber][ONTIME]
 = desiredMinutesSinceMidnight;
 }
 else if (onOff == 'F') { // it's an OFF time
 onOffTimes[valveNumber][OFFTIME]
 = desiredMinutesSinceMidnight;
 }
 else { // user didn't use N or F
 Serial.print("You must use upper case N or F ");$
 Serial.println("to indicate ON time or OFF time");$
 Serial.flush();
 return;
 }

 printSettings(); // print the array so user can confirm settings
} // end of expectValveSetting()

void checkTimeControlValves() {

 // First, figure out how many minutes have passed since
 // midnight, since we store ON and OFF time as the number of
 // minutes since midnight. The biggest number will be at 2359
 // which is 23 * 60 + 59 = 1159 which is less than the maximum
 // that can be stored in an integer so an int is big enough
 int nowMinutesSinceMidnight =
 (dateTimeNow.hour() * 60) + dateTimeNow.minute();

 // Now check the array for each valve
 for (int valve = 0; valve < NUMBEROFVALVES; valve++) {
 Serial.print("Valve ");
 Serial.print(valve);

 Serial.print(" is now ");
 if ((nowMinutesSinceMidnight >=
 onOffTimes[valve][ONTIME]) &&

148 Getting Started with Arduino

 (nowMinutesSinceMidnight <
 onOffTimes[valve][OFFTIME])) {

 // Before we turn a valve on make sure it's not raining
 if (humidityNow > 70) {
 // It's raining; turn the valve OFF
 Serial.print(" OFF ");
 digitalWrite(valvePinNumbers[valve], LOW);
 }
 else {
 // No rain and it's time to turn the valve ON
 Serial.print(" ON ");
 digitalWrite(valvePinNumbers[valve], HIGH);
 } // end of checking for rain
 } // end of checking for time to turn valve ON
 else {
 Serial.print(" OFF ");
 digitalWrite(valvePinNumbers[valve], LOW);
 }
 Serial.println();
 } // end of looping over each valve
 Serial.println();
}

void printMenu() {
 Serial.println(
 "Please enter P to print the current settings");
 Serial.println(
 "Please enter S2N13:45 to set valve 2 ON time to 13:34");
}

void printSettings(){

 // Print current on/off settings, converting # of minutes since
 // midnight back to the time in hours and minutes
 Serial.println();
 for (int valve = 0; valve < NUMBEROFVALVES; valve++) {
 Serial.print("Valve ");
 Serial.print(valve);
 Serial.print(" will turn ON at ");

 // integer division drops remainder: divide by 60 to get hours
 Serial.print((onOffTimes[valve][ONTIME])/60);
 Serial.print(":");

Automatic Garden-Irrigation System 149

 // minutes % 60 are the remainder (% is the modulo operator)
 Serial.print((onOffTimes[valve][ONTIME])%(60));

 Serial.print(" and will turn OFF at ");
 Serial.print((onOffTimes[valve][OFFTIME])/60); // hours
 Serial.print(":");
 Serial.print((onOffTimes[valve][OFFTIME])%(60)); // minutes
 Serial.println();
 }
}

You can also download this sketch from from the example code
link on the book’s catalog page.

Assembling the Circuit
Finally, we’re done with the sketch and we’ve tested all the com-
ponents! Are we ready to start soldering? Not quite: we’ve
tested the various components separately, but not together. You
might think that this step is unnecessary, but integration testing
is vital. This step discovers unexpected interactions between
components, whether hardware or software. For instance, two
components might require the same feature on Arduino that is
available on only one pin, or two libraries might conflict with
each other, or the sketch logic might need to be reorganised. It’s
better to do this on the solderless breadboard in case wiring
changes need to be made.

To get our full automatic garden-irrigation system, we need to
combine three schematics: Figure 8-11, Figure 8-13, and the
schematic for the RTC. Although our final system will have three
valves, it will be quite a lot of work (and quite a squeeze for the
solderless breadboard), for not much gain in information. If it
works for one water valve, it should work for all three, so let’s do
just one valve for now.

150 Getting Started with Arduino

https://makezine.com/go/arduino-4e-github/

Figure 8-15 shows the schematic and Figure 8-16 the pictorial
circuit diagram for the entire system for one valve. Again, I’ve
indicated the polarity of the water valve power supply and of the
water valve, but this is relevant only if you have a DC system. If
you have an AC system (which seems to be more common),
these have no polarity.

Automatic Garden-Irrigation System 151

Be very careful making assumptions, as they may be
wrong and could come back to haunt you later.
Never assume that if things work OK by themselves
that they will work well together. Any engineer will
tell you that integration testing is vital and very often
finds problems that were not seen earlier.

Notice that I made an assumption: that testing with
only one valve would be sufficient. This is exactly the
sort of assumption I’m warning you against. For
instance, more valves and more relays consume
more power. Can the Arduino digital outputs provide
power to all three relays if they are all on at the same
time? Can the water valve power supply provide
power to all three water valves if they are all on at the
same time?

I’ve allowed myself to make these assumptions
because I’ve done the rough calculations in my
head, and because my years of experience tell me
this is very low risk. However, as a beginner, you
should avoid making such assumptions and test
everything before you start soldering or assembling
a project inside a case.

I’ve seen too many students have to take beautifully
constructed projects apart because something
didn’t work the way they expected it to. (Even worse,
it always seems to be the part that’s hardest to
get to.)

—Michael

Figure 8-15. Circuit schematic for full automatic garden-
irrigation system, one valve

152 Getting Started with Arduino

Figure 8-16. Pictorial circuit diagram for full automatic garden-
irrigation system, one valve

Automatic Garden-Irrigation System 153

Before building a complex circuit, print out the sche-
matic. As you build your circuit, use a coloured pen
or highlighter to mark each connection you make.
This will make it easy to see what you’ve done and
what you’ve not yet done.

This is also useful when verifying a circuit, marking
each connection as you verify it.

Build this on your breadboard and upload the complete system
sketch from Example 8-4. It’s OK that the sketch assumes three
valves and we have only one: you can set times and allow the
other two to activate, but nothing will happen.

Now test it: Press P to display the current settings and verify
that they are all zero. Note the current time. Press S and set an
ON time that is a minute or so away, and then set an OFF time
for a minute after that. Your relay should click and the LED
should come on. Your water valve may or may not do anything,
depending on whether it works without any water pressure
(mine makes a very reassuring click even without water).

Problems? Double-check your wiring. Pay particular attention to
the diodes, the MOSFETs, and the relay. Remember that each
pin of the MOSFET has a particular function, and you must use
the correct pin. Remember that the diode is polarized. The black
band indicates the cathode. Remember that the relay has a
black strip indicating pins 8 and 9. If your water valve power
supply and water valves use direct current (DC), make sure the
positive and negative ends are connected where they are sup-
posed to be. Check out Chapter 11.

This step also helps remind you of the importance of getting the
MOSFETs, diodes, and relays wired up the right way. Once you
solder these components, it won’t be so easy to change. So
once you get things working, make sure you understand why.
Make notes of any mistakes you made and how you fixed them.
You might even want to take some pictures of your breadboard
for reference. It’s always a good idea to document your work.

Once you’re happy with that, you can move on to the Proto
Shield.

The Proto Shield

As I mentioned earlier, we’ll use the Proto Shield because it pro-
vides a secure and easy way to connect a project to Arduino.
You can buy this from the Arduino Store. There are many other
Proto Shields available. Any will work, but you may have to make
changes to the layout to fit your particular shield. Some shields

154 Getting Started with Arduino

http://arduino.cc/protoShield

come with the pins, while others require that you buy them sep-
arately.

As you can see, the shield has pins on the bottom that will plug
into your Arduino, bringing all the Arduino pins to the shield. The
shield has holes next to each Arduino pin for soldering wires,
which are connected by the shield to the Arduino pin. To make a
connection to an Arduino pin, simply solder a wire into the cor-
responding hole. This makes a much more reliable connection
than poking the wires in to the headers as we’ve done in the
past.

Most of the shield is taken up by a grid of tiny holes. They are a
little like the holes on the solderless breadboard, in that you can
place components and wires anywhere (almost) that you like,
but unlike the solderless breadboard, very few connections are
provided. You will be making most of the connections by solder-
ing wires directly to the components, usually on the bottom of
the board. You can minimize the number of connections you
have to wire yourself by making clever use of any busses or
other connected holes the shield offers.

Automatic Garden-Irrigation System 155

When using a Proto Shield, or in fact any perforated
soldering breadboard, it is common to put the com-
ponents and wires on top and do the soldering on
the bottom. This is especially important with a Proto
Shield, as the bottom of the shield will be quite close
to the Arduino, and there isn’t much room there.
Remember that none of your connections on the
bottom of the shield must touch any metal on top of
the Arduino, such as components, traces, or the
USB port.

If you do have to place any components or wires on
the bottom, make sure they are as flat as possible.

Laying Out Your Project on the Proto
Shield
The first step is to think about what needs to fit on here, and
where they will be. We need to make room for the MOSFETs,
relays, LEDs, and screw terminals. The screw terminals should
be along a side that is accessible, and it would be nice if the
LEDs were near the appropriate screw terminals. The MOSFETs
are pretty small and can go anywhere, but it would be nice if
each were next to the relay it controlled.

The relays are the biggest objects, so we need to give them
space before we fill up the shield.

Avoid the area that sits above the USB connector. If you are
using the Arduino Proto Shield, this area is intentionally free of
holes.

156 Getting Started with Arduino

It’s easy to confuse the top of the shield and the bot-
tom, so make sure you place the components on the
right side. I have written TOP and BOTTOM on the
following illustrations to remind you. I suggest you
write TOP and BOTTOM on your shield with a per-
manent marker.

Make sure you don’t use any holes that already have
a function, such as the ICSP connector or the lone
ground not far from the IOREF pin. In the illustra-
tions, I have indicated these holes with a black-filled
circle.

I promised I’d explain what the sockets are for. You can see that
the relays would have to be soldered into the Proto Shield. What
happens if one of the relays goes bad? Happily, the relays will fit
a socket. The socket gets soldered onto the Proto Shield, and
the relay plugs into the socket.

If the relays get sockets, why doesn’t every component get a
socket? For a couple of reasons: resistors are easy to remove by
desoldering. In the worst case, they can be cut out. Same thing
for the MOSFETs. The relays would be very hard to desolder
because they have eight pins. By the time we heat up the sec-
ond pin, the first would have cooled down already. Also, once
the relay is soldered in place, it’s impossible to cut it out. Finally,
the relay is a mechanical device with moving parts, and moving
parts are more likely to fail than purely electronic parts. (Still,
the relay should work for many years.)

Note that the sockets have an orientation: there is a small semi-
circle in the plastic indicating the top, or where pin 1 goes. The
socket really doesn’t care; it would work either way. This is
meant to help you put the component in the right way around,
so make sure you put the socket in facing the way you intend to
wire it up. Again, making drawings and notes to yourself will help
you later. Remember that when you flip the shield over, the ori-
entation of the sockets will be reversed. I like to draw a circle

Automatic Garden-Irrigation System 157

Whenever you are soldering a circuit, think about
where you will place things before you start any sol-
dering. Start with connectors and the big items, and
then place the smaller components close to where
they need to connect. You can use the leads of the
components to make the connections by bending
the leads over on the underside of the shield and sol-
dering them directly to the correct pins.

Don’t solder anything until you are happy with the
placement. Document your placement either by
drawings or photographs before you begin solder-
ing, in case anything falls out before you solder it
into place.

around pin 1 of each socket on the bottom side of the board, to
make sure I’m oriented properly.

When you flip the shield over, the sockets will fall out, so bend
the leads over to hold them in place. They can be bent almost all
the way as long as they don’t touch any other holes.

Figure 8-17 shows one possible layout.

Note that I have distorted the image a little to enlarge certain
areas. We’ll be doing lots of work there later, and I wanted to
make it easier to see the details. The number of holes and the
orientation of the rows and columns is accurate.

As we add the smaller components, I’ll show you a trick. We’ll
make use of their leads to make some of our connections.

Look at the schematic. You’ll see that the three diodes that go
near the relay go from pin 1 to pin 16. If we place the diodes on
that end, we can just bend the leads over on the underside of
the shield and solder them directly to the correct pins. Make
sure you observe the polarity of the diodes or you’ll be cursing
later. (I know because I’ve done that many times too.) The cath-
ode is indicated by the ring near one end of the diode, and it
goes to pin number 1 of the socket.

158 Getting Started with Arduino

Whenever you are soldering a circuit, use sockets for
relays and chips.

Figure 8-17. One possible way to place the large components on
the Proto Shield (note the orientation of the relay sockets)

Bending the leads of the diode also helps keep it in place when
you flip over the shield to solder the bottom.

The MOSFET has one pin (the drain) that is connected to the
relay pin 16. Let’s place that right next to the diode, and we can
bend the MOSFET lead over and solder it to the diode. The 10K
ohm resistor that connects the gate of each MOSFET to the
GND can go between the gate and the source of the MOSFET,
since the source also goes to GND. We do this by standing the
resistor on its end and using the resistor’s leads to make the
necessary connections, without having to add any wire.

Try to get all components as close to the shield as possible. The
diodes should lie flat against the shield. You can bend the leads
of the MOSFETs a little to make them low, but don’t bend them
too much or they will break. The resistor is standing, but one
end of the resistor should be sitting on the shield.

I’ll show you how to make all these connections in a moment.

Figure 8-18 shows the top view with the relay sockets, MOSFETs,
diodes, and resistors added.

Automatic Garden-Irrigation System 159

Figure 8-18. Top view with the relay sockets, MOSFETs, diodes,
and resistors added

What about the RTC and DHT11? The DHT11 needs to be out in
the garden on four long wires. Rather than solder these wires
directly to the Proto Shield, we’ll solder a strip of pins to the wire
and mount a strip of sockets on the shield so that we can unplug
it if necessary. I’ll show you how to do this later. The 10K ohm
resistor (on the data pin of the DHT11) can be made to fit almost
anywhere, so leave that for later.

The RTC already has pins, so another socket will be perfect for
the RTC. Remember that the RTC takes up quite a bit of space,
so place this somewhere where there is room. The top edge of
the board, after the MOSFETs and their related circuitry, might
be a good place. I placed them in the very last row. This still left

160 Getting Started with Arduino

me an empty row between the MOSFETs and the sockets for any
related wiring, as shown in Figure 8-19.

Figure 8-19. A four position socket for the DHT11 sensor and a
five position female header for the RTC

Better add all these headers to the shopping list! These headers
usually come in long strips and often multiple pieces. They are
designed to be cut to whatever length you need. When you cut

Automatic Garden-Irrigation System 161

Whenever you have to attach long wires from else-
where to a board, don’t solder the wires directly to
the board. Instead, use a connector of some sort to
make it easy to remove. A pair of pins and sockets of
the right number of positions make a good, inexpen-
sive choice for small wires; screw terminals are good
for larger wires.

Whenever you have to attach a module with headers
to a board, don’t solder the module headers directly
to your board. Instead, mount a corresponding
header of the other gender on your board. This will
allow you to remove the module in case you need to
for any reason.

the pins, you can usually break the strip exactly where you need
it. When you cut the sockets, you have to sacrifice one position.
Here are the additions that take our shopping list to version 0.5:

• Add set of sockets, .1” pitch, such as Adafruit product ID
598

• Add set of pins, .1” pitch, such as Adafruit product ID 392

Soldering Your Project on the
Proto Shield

For a great tutorial on how to solder, study the “Adafruit Guide
to Excellent Soldering.”

Now, finally, you’re ready to start soldering!

You can remove the screw terminals and the sockets for now so
that you can place the shield flat on your work surface to keep
the parts in place.

Solder the sockets in place first to keep them from falling out.
This will also give you a chance to practice soldering a little.

162 Getting Started with Arduino

Don’t rush. Be careful. Remember to breathe and
relax. Double-check the schematic for each connec-
tion before you solder it. Inspect your work often for
bad solder joints or other mistakes.

Don’t try to make all the connections at once. Do
them in small groups, and take a short break
between groups. When you come back, double-
check what you just did.

Try not to follow my directions blindly. Try to under-
stand what’s being done and make sure you agree
with it.

https://learn.adafruit.com/adafruit-guide-excellent-soldering?view=all
https://learn.adafruit.com/adafruit-guide-excellent-soldering?view=all

Next come the sets of diode, MOSFET, and resistor. Remember
that we wanted to use their leads (on the bottom of the board)
to make the connections. Bend them over very flat against the
board so that the components are pulled tight against the
board, and then over to where you need to make the connection.
You don’t need to wrap the lead around the pin; it’s enough that
the lead overlaps the pad around the pin. Make sure the solder
flows onto all leads that are being connected.

When you’re done soldering a connection, cut any excess leads
as close as possible to the solder joint. You don’t want any extra
bit poking out that might touch something else later. This is
detailed in the “Making a good solder joint” tutorial by Adafruit.

The MOSFET source pins all go to GND, so they chould be con-
nected together. You can use the long leads of the resistors to
connect all three together, which will provide a useful GND strip
for anything else that needs to be connected to GND. These
common strips are often called buses. Note that at this point
our GND bus is not yet connected to the Arduino GND. I usually
leave that for later so as not to occupy a hole that I later might
need, but we have to remember to make this connection at the
end.

Figure 8-20 shows the bottom view, with all the leads folded
over and soldered in place. The shadowed areas indicate the
relay sockets on the top side, and the cones indicate the solder.

Automatic Garden-Irrigation System 163

When you trim a lead or wire after soldering, make
sure you catch the piece you cut off and throw it
away, to make sure it does not fall back on your
work, where it might touch something it shouldn’t
and make a short circuit.

https://learn.adafruit.com/adafruit-guide-excellent-soldering/making-a-good-solder-joint

Figure 8-20. Bottom view of the relay socket, MOSFET, and
diode

Now you can replace the screw terminals. Before you solder
them in place, make sure the openings for the wire are facing
the right direction, towards the outside of the board! (Another
mistake I learned the hard way.) As always, make sure they are
flush against the shield. Leave the sockets for later.

At this point it’s a good idea to decide which screw terminal is
what. Document this as shown in Figure 8-21 so that you don’t
forget and make the wrong connection later.

164 Getting Started with Arduino

Figure 8-21. Documenting which screw terminal does what

Now you can add the indicator LEDs and their associated diodes
and resistors. Again, by cleverly placing these components, you
can use the component leads to make the connections. Note
that this particular Proto Shield has some rows of three connec-
ted pins. I used these to help with the connections. Remember
that LEDs and diodes are polarized: the anode (longer lead) of
each LED goes to the screw terminal, and the anode of each
diode goes the cathode of its LED.

Automatic Garden-Irrigation System 165

It’s important to note that there are two strips (buses) of 5V and
GND that we’re not using, so you have to carefully make sure
the LED leads are above these and do not touch them. If the LED
accidentally touched 5V or GND, this could bring the 24 V from
the water valve power supply into Arduino, which would proba-
bly damage the Arduino. To be safe, you can cut a piece of elec-
trical tape to the proper size and tape it over the 5V and GND
buses. These buses are on the bottom side as well and must be
avoided there too.

In Figure 8-22 we’ve shown the components quite high so that
you can see where they are all connected, but when you build
the circuit, place them as close to the shield as possible, as
mentioned earlier. Remember that this illustration is distorted
to enlarge certain details, but that the holes used are accurate.

In this and many of the following figures I’ve left off most of the
components from previous steps so that you can see more
clearly the components and locations of each step.

Figure 8-22. Top view showing LED, resistor, and diode
placement

Figure 8-23 shows the bottom view. As before, we’ve used the
component leads to make connections to each other and to the
screw terminals. It’s a good thing we documented the screw ter-

166 Getting Started with Arduino

minals, because we’d get confused now as to which one does
what.

Figure 8-23. Bottom view showing LED leads soldered to screw
terminal pins

Note the black circle near IOREF. That’s a ground connection
and must not be used unless you’re making a connection to
ground.

This is a complicated section. Study it carefully and don’t solder
anything until you are sure you understand what it’s doing and
are convinced it’s going to the right place.

Now that all the components are on the shield, you have to wire
up the remaining connections; use 22 AWG solid-core wire.
Smaller would work as well but might be harder to work with.
Use whatever works for you.

Automatic Garden-Irrigation System 167

The general principle is this: wires go on the top, and into holes
that are next to the pin you need to connect to. On the bottom,
you fold the wire over and solder to the appropriate pin, just as
you did earlier with the component leads.

All the Arduino pins have their own holes, so you don’t need to
fold the wire over. Just solder the wire in the appropriate hole.

Sometimes you simply can’t get close to the pin you need from
the top. In these cases, it’s OK to put the wires on the bottom,
but make sure to keep them as flat as possible.

Let’s start with the MOSFETs and their related circuitry. We’ve
made all the connections we could with the leads. We need to
connect the pin number 1 of all the relays to 5V. I’ve added red
wires to make the 5V connection as shown in Figure 8-24
(remember the GND connection we’ll make at the end).

168 Getting Started with Arduino

Choose a consistent color scheme: use red wire for
anything connecting to 5V and black wire for any-
thing connecting to ground. You can make up your
own colour coding for the others, but don’t use red
or black for anything else. You might want to use
orange for the water valve power supply positive
connections, and green for the water valve power
supply negative connections. Any wires that connect
together should be the same colour, and any wires
that do not connect together should be different col-
ours.

Figure 8-24. Making the 5V connections to the relay circuitry

Next, connect all the positive screw terminals. This is all done on
the bottom of the board, as shown in Figure 8-25. Make sure not
to allow any leads or solder to touch those 5V and GND buses!

Automatic Garden-Irrigation System 169

Figure 8-25. Connecting all the positive screw terminals

Connect the LED/resistor/diode chain to the negative screw ter-
minal. Keep the middle hole clear, as we’ll use it in the next step
to connect to the relays. In this case, I used two wires on the top
and one on the bottom, as shown in Figure 8-26.

170 Getting Started with Arduino

Figure 8-26. Connecting the negative screw terminals

Now connect pin 8 of each relay to the appropriate negative
screw terminal, as shown in Figure 8-27.

Automatic Garden-Irrigation System 171

Figure 8-27. Connecting pin 8 of each relay to the appropriate
negative screw terminal

Pin 4 of all the relays connect to the negative screw terminal of
the water valve power supply. This is done with two wires on the
top and one on the bottom, as shown in Figure 8-28.

172 Getting Started with Arduino

Figure 8-28. Connect pin 4 of all the relays to the water valve
power supply’s negative screw terminal

Next, connect the Arduino digital pins to the MOSFET gates, as
shown in Figure 8-29. Remember the holes next to the Arduino
pins are already connected to the Arduino pins so you don’t
need to bend the wire and solder it directly to the pin.

Automatic Garden-Irrigation System 173

Figure 8-29. Connecting the Arduino pins to the MOSFET gates

Finally, add the two sockets: one for the RTC and one for the
DHT11, and connect them to the appropriate Arduino pins. Don’t
forget the 10K ohm resistor that the DHT11 needs, as shown in
Figure 8-30. I’ve also taken this opportunity to connect the
ground bus we created earlier to the Arduino GND pin.

174 Getting Started with Arduino

Figure 8-30. Connecting the RTC and DHT11 headers to the
Arduino pins

Document which pins do what on the sockets, so that you can
plug in the RTC and the DHT11 properly (an ultrafine Sharpie is
handy for this).

The last step is to solder in the male or pass-through headers
that will fit into the Arduino pins. This should be done last
because the headers get in the way of the work you are doing on
the bottom of the shield. Although you don’t need all the pins,

Automatic Garden-Irrigation System 175

it’s wise to put them all in for mechanical strength and possible
future enhancements.

Don’t forget that the male pins should point down; that is,
towards the Arduino, as shown in Figure 8-34. Make sure the
pins are straight so that they will fit into the sockets on your
Arduino.

When you are done, it’s time to test.

Testing Your Assembled Proto
Shield

First test your shield without the valves or valve power supply.
Plug the shield into your Arduino. Make sure the male header on
the shield goes into the correct Arduino pins. Look between the
two and make sure that no connections from the bottom of the
shield are touching anything on the Arduino. If they are, you’ll
need to put some insulating electrical tape to prevent that from
happening.

Connect your Arduino to a USB port on your computer and look
for the Arduino ON LED. If it’s off, it means that you have a short
circuit, and that your computer has protected itself by turning
off the USB port. Unplug the USB cable and find the problem
before going further.

Next you can plug in and test the relays. Remember that they
are polarized and that the stripe indicates pins 8 and 9. Upload
the Blink example, each time testing a different relay. Test the
relays one at a time to verify that each is working.

Next we’ll test the water valve power supply and indicator LED.
We’ll do the valves last.

Connect the water valve power supply to the proper screw ter-
minals. If the water valve system is a DC system, pay careful
attention to the polarity.

Again upload the Blink example and test each relay in turn. This
time, the appropriate LED should come on.

176 Getting Started with Arduino

Now add the valves and check them, again using Blink for each
valve.

Next let’s check the RTC and the DHT11. Plug in the RTC to the
header, making sure the RTC pins are in the right place. Use the
RTC example to test.

Before you test the DHT11 sensor, add the long wires that will
reach outdoors. Use the same colour wires as you did on the
shield for consistency. Use stranded wires for this part because
stranded wire is more flexible (Figure 8-31). For a more profes-
sional look, slip six short pieces of heat shrink tubing over the
wires (two on each wire) before you solder. After you solder the
wires to the headers and sensor, slide the tubing over the solder
joints and shrink the tubing to hold it in place. I like to use clear
tubing so that I can see if a solder joint breaks, and the clear
tubing seems to be more in the spirit of “open”.

Figure 8-31. Adding long stranded wires and a male header to
the DHT11 sensor

Automatic Garden-Irrigation System 177

Plug the male header from the DHT11 sensor into the corre-
sponding female header, again paying careful attention to get-
ting the right pins in the right place. Test using the DHT test
example.

Assembling Your Project into
a Case

Now we need to consider mounting the project in a case. Your
best bet is a case that is not too deep to allow easy access, and
lay everything out with a bit of room around them. Remember
that the Arduino has a shield on top of it, and perhaps the RTC is
standing vertically, adding to its height. The Arduino should be
mounted on little feet called standoffs. A screw holds the Ardu-
ino to the standoff, and another screw from the back of the case
will hold the standoff to the case, as shown in Figure 8-32.

178 Getting Started with Arduino

Solid-core wire should be used only in places where
it will never move, i.e., when both ends are soldered
to the same board.

Stranded wire should always be used between
things that move relative to each other, such as
between boards, or from a board to a connector.

I have seen many projects fail due to broken solid
core wires that were moved too often.

Figure 8-32. Arduino mounted on standoffs inside case

Always plan for a bigger case than you think you’ll need. Don’t
forget the power supplies and connectors, and remember that
wires take up space as well. You want to route the wires between
the boards and not over the boards so they don’t interfere if you
have to work on or remove anything. For tidy wiring, I like these
self-adhesive mounts for cable ties, as shown in Figure 8-33.

Figure 8-33. Self-adhesive cable-tie mount with wires

For projects with multiple power supplies, as we have here, con-
sider mounting a small outlet strip inside the case. Use a strong
double-sided tape to mount the outlet strip. If both your power
supplies have only two prongs, you can use a two-pronged

Automatic Garden-Irrigation System 179

extension with at least two outlets instead of a larger three-
pronged outlet strip.

This means another revision to our shopping list (we’re now at
revision 0.6):

• Case

• Standoffs

• Mounting screws and/or nuts

• Cable ties

• Adhesive cable-tie mounts (available from Jameco)

• Strong double-sided tape (e.g., Digi-Key part number 3539-
B831141-ND)

• Outlet strip

I like to keep the power supplies away from the Arduino. You
should mount the Arduino near the bottom so that the wires
from the valves and the DHT11 sensor can enter from the bot-
tom, but not too close. You’ll be happy to have room for your
hands and a screwdriver when attaching wires to the screw ter-
minals, or if you need to work on the Arduino.

The USB cable can come out of any side.

You should always try to route the wires in straight lines and in
tidy bundles. This makes working on the project later so much
easier.

180 Getting Started with Arduino

https://www.jameco.com/z/HC-101-R-Tie-Mount-Cable-Nylon-7-8-Inch-Square-Adhesive-4-Way_71408.html
https://www.digikey.com/en/products/detail/3m/B831141/14017372

Figure 8-34. Completed automatic garden-irrigation system

In this figure I’ve left many components off the Proto Shield to
make it easier to see how things are connected. I’ve shown one
cable tie, but you should use as many cable ties as you need to
keep the wiring organized and tidy. Always use a cable tie before
a wire leaves the enclosure; this serves as strain reliever in case
the cable gets tugged: it will stress the cable-tie mount, and not
your delicate circuitry.

As before, pay careful attention to the polarity of the water valve
power supply, if it’s a DC system.

Automatic Garden-Irrigation System 181

Testing the Finished
Automatic Garden
Irrigation System

Start by testing the Arduino and Proto Shield without the two
power supplies connected. This means that your computer is
providing power to the Arduino. As before, use the Blink exam-
ple to test each digital output. The LEDs won’t light without the
water valve power supply, but you should hear the relay clicking.
Use DHTtester to test the DHT11 sensor, and the ds1307 exam-
ple to test the RTC.

This might seem like you’re duplicating the tests you made after
you assembled the Proto Shield, but there is a reason for this:
before going on, you want to make sure that none of the work
you’ve done has affected what worked before.

Now plug in the Arduino power supply and unplug your laptop to
make sure your Arduino is getting powered without your laptop.
Leave one of the relays clicking (using the Blink example) so
that you can hear that your Arduino is still running the sketch.

Finally, connect the water valve power supply, upload the real
program, and test the valves as you did earlier, by setting three
different times in the near future. Check that each LED comes at
the appropriate time, and that the water valves open and water
flows.

Now relax in your garden and enjoy a well-deserved rest. You’ve
accomplished a lot!

Congratulations! That was a complicated project! Take some
pictures of your project, brag about it on Facebook, and submit
it to the Arduino blog.

182 Getting Started with Arduino

Always test your projects in modules individually at
first, in whatever way the project allows you to do
this.

https://create.arduino.cc/projecthub/Arduino_Genuino/how-to-submit-content-on-arduino-project-hub-cf2177

Things to Try on Your Own
This is a complex project with many different components.
There are endless things you can do differently. Here are a few
suggestions:

• Modify the program to allow turning the water on and off at
multiple times in one day.

• Add the day of the week, and allow for different schedules
on different days of the week.

• Add an LED indicating that no ON and OFF times have been
set. Turn this LED on upon reset, and turn it off the first time
a time is set. This is useful in case your Arduino loses power
and resets, in which case it will forget any ON and OFF set-
tings you made.

• Add a small LCD display to report the current time and set-
tings

• A more advanced exercise: The RTC module we used has a
tiny memory chip in it as well that will not forget when it
loses power. You can research how to use this, and save the
valve ON and OFF settings into that memory, so that in case
the Arduino resets, you will still have the settings.

Irrigation Project Shopping List
For your convenience, here is the final shopping list, with links:

• One Real Time Clock (RTC)

• One DHT11 Temperature and Humidity Sensor

• One Arduino Proto Shield

• Three electric water valves

• One power supply for the water valves

• Three relays to control the water valves

• Three sockets for relays

• Three LEDs as valve activation indicators

• Three 1K resistors for LEDs

Automatic Garden-Irrigation System 183

https://www.elecrow.com/tiny-rtc-for-arduino-p-323.html
https://www.adafruit.com/product/386
https://store-usa.arduino.cc/products/proto-shield-rev3-uno-size
https://www.adafruit.com/product/996
https://www.adafruit.com/product/352
https://www.digikey.com/en/products/detail/DS2E-S-DC5V/255-1062-ND/251834
https://www.digikey.com/en/products/detail/amphenol-icc-(fci)/DILB16P-223TLF/4292068
https://www.adafruit.com/product/298
https://www.adafruit.com/product/2780

• One power supply for Arduino

• Three MOSFETs to control the relays, 2N7000, 10-pack

• Four resistors, 10K ohm, 10-pack

• Six diodes, 1N4148 or equivalent, 25-pack

• Three relays (e.g., DS2E-S-DC5V, such as Digi-Key part
number 255-1062-ND)

• Four dual-screw terminals (e.g., Jameco part no. 1299761)

• Sockets, .1” pitch, 5-pack of 20 position strips

• Pins, .1” pitch, 10-pack of 36 position strips

• Case: make your own or use a plastic storage bin (e.g., a
Sterilite or a fancy metal box (available from Automation 4
Less)

• Standoffs

• Mounting screw, standoff to case

• Mounting screw, Arduino to standoff

• Cable ties

• Adhesive cable-tie mounts

• Strong double-sided tape (e.g., Digi-Key part number
M9828-ND)

• Outlet strip or extension cord with at least two outlets

184 Getting Started with Arduino

https://www.adafruit.com/product/5130
https://www.digikey.com/en/products/detail/onsemi/2N7000/244278
https://www.adafruit.com/product/2784
https://www.digikey.com/en/products/detail/onsemi/1N4148/458603
https://www.digikey.com/en/products/detail/DS2E-S-DC5V/255-1062-ND/251834
https://www.jameco.com/z/39880-0302-Molex-13-5-A-Modular-Terminal-Block-1-Row-1-Deck_1299761.html
https://www.adafruit.com/product/598
https://www.adafruit.com/product/392
https://www.amazon.com/Sterilite-Quart-Basic-Clear-Storage/dp/B00M0I1QP8
https://www.amazon.com/Sterilite-Quart-Basic-Clear-Storage/dp/B00M0I1QP8
https://www.automation4less.com/store/proddetail.asp?prod=28040
https://www.automation4less.com/store/proddetail.asp?prod=28040
https://www.digikey.com/en/products/detail/1902B/1902BK-ND/61866
https://www.digikey.com/en/products/detail/PMS%20440%200038%20PH/H781-ND/274992
https://www.digikey.com/en/products/detail/NY%20PMS%20440%200025%20PH/H542-ND/50449
https://www.jameco.com/z/HC-101-R-Tie-Mount-Cable-Nylon-7-8-Inch-Square-Adhesive-4-Way_71408.html
https://www.digikey.com/en/products/detail/3m/B831141/14017372
https://www.staples.com/apc-surgearrest-essential-6-outlet-1080-joules-10-foot-cord-pe610/product_24380480

9/The Arduino ARM
Family

The original Arduino family of boards was based on Atmel AVR
8-bit microcontrollers. These devices are excellent in terms of
price, flexibility, and ease of use, but the limited processing
speed and small memory size make it difficult to support
modern networking protocols. Arduino has taken advantage of
the availability of low-cost 32-bit microcontrollers based on the
ARM architecture to create a family of dramatically more power-
ful and flexible boards.

What’s the difference between AVR
and ARM?
Both AVR and ARM refer to families of devices. The ARM archi-
tecture was developed by the ARM company and is licensed to
other companies, while the AVR architecture was developed by
Atmel and pretty much stayed within Atmel (now owned by
Microchip).

Both AVR and ARM are microprocessors. AVR never appears as
a stand-alone microprocessor, but is always integrated with
memory, input-output ports, and other peripherals to make a
microcontroller. ARM, on the other hand, is available both as
part of a microcontroller, as well as a stand-alone microproces-
sor.

The AVR based microcontroller line started with relatively sim-
ple and slow 8 bit processors, and the product line has since
grown to include 16 and 32 bit processors. Designed from the
start to be the core of a microcontroller, the AVR processor has
efficient commands for manipulating individual bits in input-
output ports, while the more generic ARM processor might lack
these features.

185

ARM based microcontrollers, on the other hand, are typically 32
bit devices with more complex peripherals, with substantially
more memory, and running at speeds greater than AVR based
devices.

What difference does 32 bits really
make?
The phrases “8 bits”, “32 bits”, and “64 bits” are seen quite fre-
quently these days, but what do they really mean? They mean
that microcontroller’s internal pathways can carry that many
bits of data at the same time. At the very least, this means that
whenever a 32-bit microcontroller wants to get information
from memory, it can get 4 times as much as an 8-bit microcon-
troller could in the same amount of time, just as a 32 lane high-
way could carry 4 times as many cars at a time than an 8 lane
highway could. Furthermore, it means that most of the internal
processing, such as mathematical calculations, work on 32 bits
at a time. This means that numerical calculations will be much
faster. This, coupled with the faster clock speed, makes these
boards practical for larger programs and more complex calcula-
tions where an 8-bit microcontroller might not have been able to
read sensors, analyze the data, make a decision, and output
control signals fast enough.

What’s the difference between a
microcontroller and a
microprocessor?
There is no hard definitions and many devices blur the distinc-
tion, but these are general guidelines:

A microcontroller is designed to be self-contained device that
can be used to control a wide range of machines. In this context
it is called an embedded controller. In addition to the processor,
a microcontroller will include program and data memory and a
range of peripherals such as timers, input and output ports, and
analog-to-digital and digital-to-analog converters. The outputs
of a microcontroller will usually be able to provide enough cur-
rent to drive LEDs and possibly even small relays. A microcon-

186 Getting Started with Arduino

troller typically does not have an operating system, but runs
only the program necessary to control the machine. A micro-
controller is designed for building embedded systems with as
few external components as possible.

A microprocessor is only the core of a computer, the part that
reads data from memory, manipulates that data, and stores the
results back in memory. A microprocessor is expected to be
part of a larger system, and lacks memory and peripherals.
Because it is expected to interface to other integrated circuits, a
microprocessor will have very limited ability to provide current.
This current will be enough to connect to the inputs of other
integrated circuits, but probably not enough to drive even LEDs.
Microprocessors range from very simple and relatively slow,
that might be used in a microcontroller, to very complex and
fast, such as those used in modern desktop computers.

Which is better: AVR or ARM?
The answer to this depends entirely on what you are trying to
do. Generally speaking, AVR based systems will be less expen-
sive and simpler to design and program. On the other hand, sys-
tems that require lots of memory and faster, more complex pro-
grams are likely to be better served with ARM based devices.

If you are just getting started, you should almost certainly
should start with Arduino boards based on the simpler, more
common AVR family. If you feel comfortable with Arduino cir-
cuits and programs, and need special features like wireless net-
working or complex mathematical calculations, then an ARM
based Arduino is probably more suitable because the increased
word size, speed, and amount of memory are better able to han-
dle the larger and more complex programs.

Another reason you might choose an ARM based board is if you
want to do any networking. With much more memory (256KB
FLASH, compared to 32K on the Uno, and 32KB SRAM com-
pared to 2K on the Uno, on all ARM based Arduino boards
except the BLE and BLE Sense which have 1MB FLASH and
256KB SRAM) and much faster processing speed, these boards
are ideal for handling wired or wireless networking protocols. As

The Arduino ARM Family 187

you’ll see below, most ARM based Arduino boards support one
or more wireless networking protocol.

Introducing the Arduino ARM
based boards
Here we introduce the ARM family of Arduino boards. These
boards use three variations of the ARM core: Cortex M0, Cortex
M0+, and M4.

The ARM Cortex M0 core was optimized for low cost as a 32 bit
replacement for 8 bit microcontrollers. The Cortex M0+ was fur-
ther optimized to reduce power and adds some new features.
The Cortex M4 is a much more powerful core with a range of
new features designed to support industries such as motor con-
trol, automotive, power management, embedded audio and
industrial automation with the addition of DSP (Digital Signal
Processing) instructions and an optional FPU (Floating Point
Unit). The DSP instructions and the FPU allow the Cortex M4 to
perform mathematical operations extremely quickly.

As of this writing, the ARM family of Arduino boards consists of:

• Arduino Zero (Uno R3 footprint, ARM Cortex-M0+ micro-
controller)

• Arduino Nano 33 BLE (Nano footprint, ARM Cortex-M4
microcontroller, BLE and Bluetooth radio protocols)

• Arduino Nano 33 BLE Sense (Nano footprint, ARM Cortex-
M4 microcontroller, BLE and Bluetooth radio protocols)

• Arduino Nano 33 IoT (Nano footprint, ARM Cortex-M0+
microcontroller, WiFi, BLE, and Bluetooth radio protocols)

• Arduino MKR Zero (MKR footprint, ARM Cortex-M0+ micro-
controller

• Arduino MKR WAN 1300, 1310 - (MKR footprint, ARM
Cortex-M0+ microcontroller, LoRa (low bandwidth, long-
range) radio protocol)

• Arduino MKR Vidor 4000 - (MKR footprint, ARM Cortex-
M0+ microcontroller, WiFi, BLE, and Bluetooth radio proto-
cols)

188 Getting Started with Arduino

• Arduino MKR NB 1500 - (MKR footprint, ARM Cortex-M0+
microcontroller, internet over 4G GSM network radio proto-
col)

• Arduino MKR WiFi 1010 - (MKR footprint, ARM Cortex-M0+
microcontroller, WiFi, BLE, and Bluetooth radio protocols)

• Arduino MKR GSM 1400 - (MKR footprint, ARM Cortex-
M0+ microcontroller, internet over 3G GSM network radio
protocol)

Special Features

Some of these boards have other special features. The Arduino
MKR Zero has an I2S port and an SD card socket. I2S is a digital
audio interface. With these capabilities, the MKR Zero can play
and analyze audio files and can connect directly to other digital
audio devices which support the I2S interface.

In addition to the ARM microcontroller common on all these
boards, the Arduino MKR Vidor 4000 includes a device called a
Field Programmable Gate Array or FPGA. While beyond the
scope of this book, an FPGA contains a large number of the
hardware building blocks (gates) that are present in every digital
integrated circuit, and the way these gates are connected can
be controlled through software. Thus, an FPGA basically allows
you to design integrated circuits. Because your design is imple-
mented in hardware, as opposed to software, a project imple-
mented on an FPGA is incredibly fast. For example, the Arduino
MKR Vidor 4000 includes a micro HDMI port, because it is fast
enough to generate video frames in real-time.

Operating Voltage

In contrast to the Arduino Uno, which operates at 5 V, all of the
ARM boards operate at 3.3 volts, so they will run off a single cell
rechargeable Li-Ion or Li-Po battery. Some of the boards, such
as the MKR WIFI 1010 and the MKR WAN 1310, include a battery
connector and charging circuitry that will charge the battery
whenever USB power is available, making these boards ideal for
wireless battery operated projects.

The Arduino ARM Family 189

Operating at 3.3 V means that you must take this into consider-
ation when connecting external components such as LEDs and
sensors. Switches and resistive sensors, such as the LDR we
learned about in "Use a Light Sensor Instead of the Pushbutton"
in Chapter 5, will work fine, but active sensors designed for 5 V,
such as the sensor from "Testing the Temperature and Humidity
Sensor" in Chapter 8, may not work properly at 3.3 V. Extreme
caution must be used when mixing both 3.3 V and 5 V compo-
nents in a circuit. In particular, voltages greater than 3.3 V must
never be present at any pin of a 3.3 V component.

Drive Current

In "Driving Bigger Loads (Motors, Lamps, and the Like)" in
Chapter 5, we learned that each pin on an Arduino should be
used for at most 20 milliamps. Checking on the Arduino website
for "DC Current per I/O Pin" under “Tech Specs”, we find that for
all Arduino boards based on the SAMD21 microcontroller (indi-
cated above by ARM Cortex-M0+) this number is only 7 milli-
amps! Assuming a worst-case LED voltage of 1.8V, 3.3v - 1.8v
leaves 1.5V on the resistor, and solving Ohm’s law for resistance
R = V/I = 1.5/0.007 = 220 ohms. This means that you should
always use a resistor of at least 220 ohms with an LED, and if
your LED is too faint you will need to use a transistor.

Digital to Analog Converter

Although all Arduinos support the analogWrite() function, in
"Controlling Light with PWM" in Chapter 5, you learned that
Arduino simulates an analog voltage by using Pulse Width Mod-
ulation (PWM). This works fine to control the brightness of LEDs
and the speed of motors, but sometimes you might need a true
analog voltage. In that case, the ARM-based boards are ideal
because they contain a device called a Digital to Analog Con-
verter or DAC. This does exactly what you would expect: You
give it a number, and it generates a voltage proportional to that
number. This can be invaluable for controlling a variety of devi-
ces.

190 Getting Started with Arduino

https://docs.arduino.cc/hardware/zero

Arduino boards that have a DAC include: Arduino Zero, Arduino
Nano IOT, Arduino MKR 1010, Arduino MKR WAN, Arduino MKR
NB, Arduino MKR GSM, and Arduino MKR Vidor 4000

USB Host

Arduino boards based on the SAMD21 microcontroller (indica-
ted above by ARM Cortex-M0+) can configure a USB port in the
Host mode. This means that rather than being a dumb device,
subject to the whims of the USB Host, your SAMD21-based
Arduino can be a USB Host initiating transactions with USB
devices such as a keyboard or a mouse. In addition, these
boards can pretend to be USB devices such as a keyboard or a
mouse, controlling an attached computer or invoking and then
sending data to program on an attached computer.

The Nano and MKR footprints
Except for the Arduino Zero, which is in the traditional Arduino
Uno R3 footprint, all other ARM-based Arduino boards are in
either the Nano or the MKR footprints. Apart from size, what
sets these apart is the type of connector used for the pins:
instead of sockets mounted on the top of the board, as was the
case with the Arduino Uno, the Nano and MKR footprints have
pins that are mounted on the bottom of the board, making them
suitable to plug directly into a breadboard. Similarly, whereas
shields sit on top of an Uno, shields for MKR or Nano boards sit
underneath the microcontroller board.

The Arduino ARM Family 191

10/Talking to the
internet with ARM:

An Internet
Connected

“Fistbump”

 As mentioned earlier, one of the wonderful things about these
powerful ARM based Arduinos is the ability to handle complex
networking protocols. In this chapter, we’ll show you how to
make a simple internet connected project based on the MKR
WiFi 1010. As the name suggests, this board has a build-in mod-
ule that allows you to connect to a WiFi network, and from there
to the internet. (It will also work on the Nano 33 BLE since it has
built-in WiFi; you’ll just be missing the onboard battery connec-
tor that’s on the MKR.)

 Inspiration for this project came from Michael Ang, who
demonstrated this at a job interview, and assistance with the
JavaScript and Glitch came from Jack B. Du.

An internet connected “fistbump”
Hopefully by the time you read this the COVID pandemic will be
well under control, but at the time of writing, social distancing is
very much still necessary and we have all gotten used to giving
gentle “fistbumps” (if that) rather than hugs or shaking hands.
This project will allow someone to send you a fistbump over the
internet, from anywhere in the world, simply by clicking on a
webpage.

At home, most of us have some sort of a modem which con-
nects us to the internet, and a router which usually provides
some wired Ethernet ports in addition to wireless Ethernet over

193

https://michaelang.com
https://jackbdu.com/

WiFi. Even though there might be multiple device in your home
connected to the internet, your home only has one IP address
by which it is known to the outside world.

When you browse to a website or check your email, your router
keeps track of which computer made that request, and when
the website or email comes back, it is routed to the correct
computer. This is how multiple computers on your internal net-
work can independently access information on other computers
on the internet.

However if someone outside of your internal network wants to
contact a computer (or more likely a service) on your internal
network, they are unable to do so because your router doesn’t
know which computer to route the message to. (Obviously this
is also good for the security of your computers). How then can
someone send you a fistbump?

Introducing MQTT: the Message
Queueing Telemetry Transfer
protocol
Communicating on the internet utilizes a stack of protocols. The
lowest level protocols interface directly with the hardware, while
protocols higher up interface with those below them. This allows
a variety of protocols to be developed without having to re-
implement the lower levels. In terms of data, the lower level pro-
tocols handle individual bytes, slightly above these are protocols
that group the bytes into packets, and higher yet are protocols
that group the packets into various messages. At each layer
multiple protocols with different features are available, the
choice of which depends on what you are trying to accomplish.
We will be using a protocol called MQTT, which is a great choice
for exchanging short messages in near real-time between a
number of devices.

An MQTT system consists of one or more clients and a broker
which is responsible for relaying messages from one client to
another. Clients can generate, consume, or both generate and
consume messages. Each client (for instance, an Arduino) is
assigned an ID, and a client that generates messages can do so

194 Getting Started with Arduino

1 All these components are included in the kit mentioned in the preface

on one or more topic (for instance, one topic for each attached
sensor). Messages are identified with the client ID and the mes-
sage topic.

Clients that consume messages will subscribe (via the broker)
to one or more topic. When the broker receives a message, it
forwards it each clients that has registered on the message
topic.

The beauty of this scheme is that if a broker is on the global
internet, e.g. not in your home, it can be accessed from any-
where on the internet, allowing clients that are on an internal
network (your Arduino, someone’s browser) to send messages
to each other.

MQTT is a protocol, not a product. You can write your own
MQTT broker, you can install one of the many MQTT brokers
available, or you can use a public broker already running on the
internet. We will use a broker provided by the company Shiftr.io,
which runs a public broker that is free to use with some restric-
tions. On the client side, we will create two clients: one on an
Arduino MKR WiFi 1010, and one as a web page. We will host the
web page on another free service provided by Glitch.com. Simi-
lar to Shiftr.io, Glitch.com provides a free web server with some
restrictions.

This project is divided into four parts:

1. Hardware circuit and physical construction
2. A broker on Shiftr.io
3. Arduino code
4. A web page, including JavaScript code, on Glitch.com

Internet Connected Fistbump: The
hardware
The circuit for this project is trivial, consisting only of a hobby
servo motor. You will also need a solderless breadboard and
some jumper wires1.

Talking to the internet with ARM: An Internet Connected “Fistbump” 195

In Driving Bigger Loads (Motors, Lamps, and the Like) in Ch. 5,
you learned how to control a simple DC motor. This type of
motor is designed to turn continuously rather quickly, which is
exactly what you want in a fan. However, if you need to move
something a specific distance these motors are not very good.
Hobby servo motors were created to move the control surfaces
of model airplanes, and they are quite precise. They do this by
incorporating feedback: inside the hobby servo motor is a sen-
sor which detects the rotational position of the shaft, and a cir-
cuit which moves the motor in the appropriate direction to move
it to the destination you have indicated. Hobby servo motors
also include gears, reducing the high speed of the internal DC
motor to a more useful speed, while at the same time increasing
the torque proportionally. Hobby motors do not rotate continu-
ously, but rather rotate only through 180 degrees. While this
might seem strange, remember they were designed to move the
control surfaces on model airplanes, for example the tail rudder.
The rudder doesn’t rotate more than 180 degrees.

Hobby servo motors are incredibly useful even if you’re not
building model airplanes. Imagine that you want to build an ani-
matronic puppet, where the eyes might move left and right, eye-
lids might open and close, and the head might rotate towards
the left and right. None of these motions require more than 180
degrees of rotation, and many animatronic puppets use hobby
servo motors extensively.

Hobby servo motors are different from DC motors from an elec-
trical point of view also: DC motors have two wires: when a suit-
able voltage is applied between those two wires, the motor
turns. Hobby servo motors have three wires: a voltage of 5-6
volts is applied between two of them, and a control signal is sent
on the third. The control signal is a pulse of a certain duration,
where the pulse duration tells the servo motor what angle
(between 0 and 180 degrees) to go to.

Hobby servo motors are usually terminated with a plastic con-
nector housing the three terminals. The wires are color coded
as follows:

Wire Color Arduino Connection

Black Ground

196 Getting Started with Arduino

Red or Brown 5V

White or Yellow Control signal (any Arduino pin)

To build the circuit, insert a wire or wire jumper into the connec-
tor and then connect to your Arduino. Ideally, us the same col-
ors to avoid making mistakes later. Use a solderless breadboard
to make the connections. For the servo control signal, you can
use any pin number. I used pin 9 because it matches the built-in
examples. Visit the Product page for Arduino MKR WiFi 1010
and click on the Documentation tab to see the pin names.

Figure 10-1. Servo Motor

Once you have the wires connected, test that the servo motor
works properly with the “sweep” built-in example (File->Exam-
ples->Servo->Sweep). Once you load this program, the motor

Talking to the internet with ARM: An Internet Connected “Fistbump” 197

https://store-usa.arduino.cc/products/arduino-mkr-wifi-1010

shaft should rotate from its zero position to 180 degrees and
then back to zero continuously.

We will use the hobby servo motor to move a picture of a fist
towards or away from you. You can draw a picture of a fist or
print out the fist emoji. To make it easier to attach the emoji to
the motor hub, use one of the horns included with your servo
motor. I used a bit of hot glue to attach the fist to a cardboard
“arm” and then to the servo horn:

Figure 10-2. cardboard arm with drawing of fist

Finally, make a cardboard stand to hold the servo motor.
Before you attach the arm, use the following code to deter-
mine which angle will correspond to the fist being withdrawn,
and which will correspond to the fist being “bumped”:

Example 10-1.
#include <Servo.h>

Servo myservo;

void setup() {
 myservo.attach(9);
 myservo.write(45); // move to position 45 degrees
}

198 Getting Started with Arduino

void loop() {
}

Note the position of the motor shaft, then change the number
45 to 135 and see which direction the shaft moved. In my case
10 degrees was a good position for the fist being withdrawn and
170 degrees for “bumped”. You need to do this before attaching
the arm to avoid damaging the arm by accidentally slamming it
into the ground.

Change the number to move the arm back to the withdrawn
position, and then attach the arm at the appropriate angle for
the withdrawn position:

Figure 10-3. Cardboard arm with fist attached to servo motor

Now we are ready to get our project on the internet!

Internet Connected Fistbump: MQTT
Broker on Shiftr.io
As mentioned earlier, Shiftr.io provides a free public broker
which anyone can use. This broker is accessed at pub-

Talking to the internet with ARM: An Internet Connected “Fistbump” 199

lic.cloud.shiftr.io. Note that anyone else can potentially access
your messages or even send you a message. If you want a pri-
vate broker, you need to set up an account on Shiftr.io. To con-
nect to the public broker we use the username “public” and the
password “public”.

For client ID I have chosen “GSWA4E_ARM_Demo”, and for the
topic I have chosen “fistbump”. You can change both of these to
whatever you want. We will see how to use them in the code that
follows.

Internet Connected Fistbump: Arduino code

The code below is commented fairly heavily, so I’ll only describe
it here in general terms:

The setup() function does 4 things:

1. Wait for the serial monitor to open
2. Connect to the WiFi network
3. Connect to the MQTT broker
4. Attach the servo motor

The loop() does the following:

1. If the connection to the MQTT broker has been dropped,
reconnect

2. If a message arrives, read the message, convert any num-
bers to an integer, and send that integer to the servo motor.

/*
 A simple MQTT client with a servo motor
 which connects to a broker and subscribes to a topic.
 When a message is received, the servo motor moves
 to the position in the message.
 Connect a picture of a fist to the servo motor arm
 and you can receive a "fistbump"
 from friends around the world

 This sketch uses https://shiftr.io/try as the MQTT broker.

 the circuit:
 - A servo motor attached to pin 9

 the secrets.h file:

200 Getting Started with Arduino

 #define SECRET_SSID "sammydog" // your WiFi network name
 #define SECRET_PASS "12345678" // your WiFi network password
 #define SECRET_MQTT_USER "public" // Shiftr.io broker username
 #define SECRET_MQTT_PASS "public" // Shiftr.io broker password

 20 May 2021 - Created by Michael Shiloh
 Based almost entirely on MqttClientButtonLed
 example by Tom Igoe. See
 https://tigoe.github.io/mqtt-examples/

*/

#include <WiFiNINA.h> // Library for WiFi functionality on the
 // Nano 33 Iot. See
 // https://www.arduino.cc/en/Reference/
WiFiNINA
#include <ArduinoMqttClient.h> // Library for MQTT protocol. See
 //
#include "arduino_secrets.h" // Usernames and passwords

// initialize WiFi connection:
WiFiClient wifi; // WiFi client object
MqttClient mqttClient(wifi); // Create the MQTT client object
 // and attach it to the WiFi object

// details for MQTT client:
char broker[] = "public.cloud.shiftr.io";
int port = 1883; // The Internet Protocol (IP) uses different port
 // numbers to identify different services running
 // on the same IP address. The MQTT protocol
 // has been assigned the number 1883
char topic[] = "fistbump"; // You choose topic
char clientID[] = "GSWA4E_ARM_Demo_Arduino"; // You choose the
client ID

#include <Servo.h>
Servo servo; // Each servo motor needs an object of class Servo
const int servoPin = 9;

void setup() {

 Serial.begin(9600);
 // wait for serial monitor to open.
 // This is necessary only if you want to catch all
 // messages. The Serial object will not exist until
 // you open the serial monitor, so effectively the

Talking to the internet with ARM: An Internet Connected “Fistbump” 201

 // setup() function will loop here until you open
 // the serial monitor
 while (!Serial) // As long as there is no serial monitor ...
 ; // ... do nothing

 // WiFi setup
 // initialize WiFi, if not connected:
 while (WiFi.status() != WL_CONNECTED) {
 Serial.print("Connecting to ");
 Serial.println(SECRET_SSID);
 WiFi.begin(SECRET_SSID, SECRET_PASS);
 delay(2000);
 } // Keep retrying until WiFi connection is established

 // print IP address once connected:
 Serial.print("Connected. My IP address: ");
 Serial.println(WiFi.localIP());

 // MQTT broker setup
 // set the credentials for the MQTT client:
 mqttClient.setId(clientID);
 mqttClient.setUsernamePassword(SECRET_MQTT_USER,
SECRET_MQTT_PASS);

 // try to connect to the MQTT broker:
 while (!connectToBroker()) {
 Serial.println("attempting to connect to broker");
 delay(1000);
 } // Keep retrying until connection to Shiftr.io is established

 Serial.println("connected to broker");

 // Servo motor setup
 // The servo object is attached to the relevant pin
 servo.attach(servoPin);
}

void loop() {

 // Sometimes the connection to the Shiftr.io MQTT broker
 // is dropped. This is normal, as the MQTT protocol
 // does not require a permanent connection.
 // if not connected to the broker, try to connect:
 if (!mqttClient.connected()) {
 Serial.println("reconnecting");
 // Note that the return value from connectToBroker()

202 Getting Started with Arduino

 // is not checked, so we may in fact not be connected.
 // That won't cause trouble, because in the next step we
 // won't have a message, so we will loop back here and
 // try again anyway.
 connectToBroker();
 }

 // if a message comes in, read it:
 if (mqttClient.parseMessage() > 0) {
 Serial.print("Got a message on topic: ");
 Serial.println(mqttClient.messageTopic());
 // read the message:
 while (mqttClient.available()) {
 // convert numeric string to an int:
 int message = mqttClient.parseInt();
 Serial.println(message);
 servo.write(message);
 }
 }
}

// Connect to the MQTT broker
// Returns: true if connection established
// false otherwise
boolean connectToBroker() {
 // if the MQTT client is not connected:
 if (!mqttClient.connect(broker, port)) {
 // print out the error message:
 Serial.print("MOTT connection failed. Error no: ");
 Serial.println(mqttClient.connectError());
 // return that you're not connected:
 return false;
 }

 Serial.print("Connected to broker ");
 Serial.print(broker);
 Serial.print(" port ");
 Serial.print(port);
 Serial.print(" topic ");
 Serial.print(topic);
 Serial.println();

 // once connected, subscribe to the topic
 mqttClient.subscribe(topic);

 // return that you're connected:

Talking to the internet with ARM: An Internet Connected “Fistbump” 203

 return true;
}

 Note the first thing in setup() will cause the program to loop
forever until the serial port is opened. This is to give you time to
turn on the serial monitor, so that you don’t miss any messages.
However this also means that if you don’t open the serial moni-
tor, the program won’t progress any further. Once you know that
everything is working properly, you can remove this if you want.

Internet Connected Fistbump: The Web Page
The web page consists of two files: index.html and sketch.js
which contains the code which will detect a click and then
send a message to the MQTT broker. The index.html file is
quite trivial; it loads two libraries (p5.js and an MQTT
library) and the sketch.js JavaScript code (which does all the
work), enclosed by the appropriate html tags:

Example 10-2.
<html>
 <head>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.0.0/p5.min.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/paho-mqtt/
1.0.1/mqttws31.min.js" type="text/javascript"></script>
 <script src="sketch.js"></script>
 </head>
 <body>
 </body>
</html>

 The JavaScript code, which does all the work, is below. Again,
the code is commented fairly heavily. p5.js is similar to the
Arduino language in that there is a setup() function which runs
once, and then a draw() function which runs continuously there-
after. The setup() function does the following:

1. Create the MQTT object, which will be used to communicate
with the MQTT library

2. Set the callback functions, which will be called a connection
to the MQTT broker is established or lost, and when a mes-
sage arrives

204 Getting Started with Arduino

3. Creates elements on the web page for displaying different
types of messages

4. Set the background colour of the canvas

The draw() function does nothing, because everything happens
in the callback functions

Most of the interesting work happens in the mousePressed() and
mouseReleased() callback functions. These events are detected
by the p5.js system, and when they occur these functions are
called, if they exist:

• The mousePressed() function sends a message (using the
helper function sendMqttMessage()) to move the fist forward
to create the “fistbump”, and also changes the canvas color
to provide some visual feedback that a mouse button has
been clicked

• The mouseReleased() function sends a message to retract
the fist, and returns the canvas to the original color.

The MQTT callback functions are detected and called by the
MQTT library:

• The onConnect() function subscribes to our topic
• The onConnectionLost() function only reports when a con-

nection is lost
• The onMessageArrived() function prints out any messages

that are received

/*
 * This web page is an example to be paired with a servo motor
 * and an MQTT client subscribed to the same topic. When this web
 * page is clicked, a message is sent via an MQTT broker. The
subscribed
 * client, when it receives the message, will move the servo
motor to the
 * position indicated in the message. The purpose is to deliver a
remote
 * physical "fistbump" to an individual located elsewhere in the
world
 * but on the internet.
 *
 * This sketch uses https://shiftr.io/ as the MQTT broker.
 *

Talking to the internet with ARM: An Internet Connected “Fistbump” 205

 * This code uses the Eclipse Paho MQTT client library:
 * https://www.eclipse.org/paho/clients/js/
 *
 * 20 May 2021 - Created by Michael Shiloh
 * Based almost entirely on MqttClientButtonLed by
Tom Igoe
 * See https://tigoe.github.io/mqtt-examples/
*/

/*
 * Although this is a comment, it tells Glitch that there are
 * globally available functions and objects. This prevents Glitch
 * from complaining about the MQTT and p5.js objects and functions
*/
/* global Vue, VueLocalStorage */

// MQTT client details:
let broker = {
 hostname: 'public.cloud.shiftr.io',
 port: 443
};

// MQTT client:
let client;
// client credentials:
// For shiftr.io, use public for both username and password
// unless you have an account on the site.
let creds = {
 clientID: 'GSWA4E_ARM_Demo_webPage',
 userName: 'public',
 password: 'public'
};
// topic to subscribe to when you connect
// For shiftr.io, use whatever word you want for the topic
// unless you have an account on the site.

let topic = 'fistbump';

// HTML divs for messages
let localDiv; // local messages
let remoteDiv; // remote messages
let statusDiv; // debugging info
let instructionsDiv; // instructions

function setup() {
 createCanvas(windowWidth, windowHeight);

206 Getting Started with Arduino

 // Create an MQTT client:
 client = new Paho.MQTT.Client(broker.hostname, broker.port,
creds.clientID);
 // set callback handlers for the client:
 client.onConnectionLost = onConnectionLost;
 client.onMessageArrived = onMessageArrived;
 // connect to the MQTT broker:
 client.connect(
 {
 onSuccess: onConnect, // callback function for when
you connect
 userName: creds.userName, // username
 password: creds.password, // password
 useSSL: true // use SSL
 }
);

 // create a div for the instructions
 instructionsDiv = createDiv('Click anywhere to send a
fistbump');
 instructionsDiv.position(20, 20); // coordinates for the div

 // create a div for local messages:
 localDiv = createDiv('local messages will go here');
 localDiv.position(20, 50);

 // create a div for the response:
 remoteDiv = createDiv('waiting for messages');
 remoteDiv.position(20, 80);

 // create a div for status messages:
 statusDiv = createDiv('status messages will go here');
 statusDiv.position(20, 110);

 // Set the canvas color
 background(240); // very light grey
}

function draw() {
 // Nothing to do in draw() because all functionality is
 // event driven via callback functions
}

/*
 * Callback functions
 */

Talking to the internet with ARM: An Internet Connected “Fistbump” 207

/* Callback functions for events that are detected by the
 * p5.js system
 */

// Clicking the mouse anywhere in the canvas will send the MQTT
// message '170', which causes the servo motor to move to position
// 170 degrees, and the canvas color changes to medium grey.
function mousePressed() {
 sendMqttMessage('170');
 background(220); // medium grey
 localDiv.html('I sent a fistbump!');
}

// When a mouse button is released anywhere in the canvas send
the MQTT
// message '10', which causes the servo motor to move to position
// 10 degrees, and the canvas returns to light grey.
function mouseReleased(){
 sendMqttMessage('10');
 background(240); // very light grey
 localDiv.html('I withdrew my fist');
}

/* Callback functions that were set in the MQTT object.
 * The MQTT library detects these events, and when they
 * occur, the user supplied callback function are called.
 */

// called when the client connects
function onConnect() {
 localDiv.html('client is connected');
 remoteDiv.html('topic is ' + topic);
 client.subscribe(topic);
}

// called when the client loses its connection
function onConnectionLost(response) {
 if (response.errorCode !== 0) {
 localDiv.html('onConnectionLost:' + response.errorMessage);
 }
}

// called when a message arrives
function onMessageArrived(message) {
 remoteDiv.html('I received a message:' + message.payloadString);

208 Getting Started with Arduino

}

/*
 * End of callback functions
 */

// Helper function which is called in order to send a message:
function sendMqttMessage(msg) {
 // if the client is connected to the MQTT broker:
 if (client.isConnected()) {
 // start an MQTT message:
 message = new Paho.MQTT.Message(msg);
 // choose the destination topic:
 message.destinationName = topic;
 // send it:
 client.send(message);
 // print what you sent:
 // statusDiv.html('I sent: ' + message.payloadString);
 }
}

Now we need a place on the internet to serve this web page.
There are many services for this, both paid and unpaid. We will
use a service called glitch.com:

1. Visit the website glitch.com
2. Click on “Log In”
3. Create an account, or sign in using one of the listed

accounts you already may have.
4. (Alternately, if you don’t want to create an account, you can

click on “Email Magic Link”, enter your email address, and
click on the link sent to your email address. This will give you
an anonymous project.)

5. You will be presented with the “Manage Your Projects” page
and shown a variety of possible website types.

6. Click on “Remix” button in the “Hello Webpage” box, which
creates a new project with 4 default files: README.md,
index.html, script.js, and style.css. We only need two of
these, but the other two won’t bother us so you can leave
them.

7. Click on the “index.html” file and you will be presented with
a simple editing screen. Delete everything there and paste in
the contents shown above.

Talking to the internet with ARM: An Internet Connected “Fistbump” 209

8. Click on the “script.js” file and paste in the contents shown
above for this file.

9. Change the name of the file “script.js” to “sketch.js”, which is
the convention for a p5 script file and is also the name we
used in “index.html”

10. Create a new file called “.eslintrc.json”. For the contents of
this file just put in “{}”

11. You may notice red dots on some lines (those containing
calls to the MQTT and p5.js libraries). You can get rid of
these by creating an empty file called “.eslintrc.json”, open-
ing the terminal (available in the “tools” menu near the bot-
tom left), typing “refresh” and pressing “enter”.

You can test the web page right there in the project. Near the
top left corner you will see a pair of glasses and the word
“Show”. Click on this and select one of the two options. I usually
prefer “Next to The Code”. You will see our web page which con-
sists of four lines, the first of which says “Click anywhere to
send a fistbump”. If you click on this page you should see your
servo motor move.

Once you have this all working properly, you can provide the
URL to your friends around the world. To get this URL, click on
the “Change URL” button above the window on the right, and
copy the first line, which is the URL of your project. Glitch.com
automatically assigns a new random URL to every project. Send
this URL to your friends, and they can send you a fistbump!

210 Getting Started with Arduino

11/Troubleshooting

There will come a moment in your experimentation when noth-
ing will be working and you will have to figure out how to fix it.
Troubleshooting and debugging are ancient arts in which there
are a few simple rules, but most of the results are obtained
through careful work and paying attention to details. More
important than being smart is being stubborn.

The most important thing to remember is that you have not
failed! Most makers, both amateurs and professionals, spend
most of their time fixing mistakes that they themselves have
made. (True, we get better at finding and fixing problems, but
we also create more complicated problems.)

As you work more with electronics and Arduino, you too will
learn and gain experience, which will ultimately make the pro-
cess less painful. Don’t be discouraged by the problems that you
will find—it’s all easier than it seems at the beginning. The more
mistakes you make and correct, the better you will get at finding
them.

As every Arduino-based project is made both of hardware and
software, there will be more than one place to look if something
goes wrong. While looking for a bug, you should operate along
three lines: understanding, simplification and segmentation,
and exclusion and certainty.

Understanding
Try to understand as much as possible how the parts that you’re
using work and how they’re supposed to contribute to the fin-
ished project. This approach will allow you to devise some way
to test each component separately. If you’ve not already done
so, try drawing a schematic of your project. This helps you
understand your project, and is also useful if you have to ask for
help. Schematics are discussed in Appendix D.

211

Simplification and Segmentation
The ancient Romans used to say divide et impera: divide and
rule. Try to break down (at least mentally, and even better by
sketching) the project into its components by using the under-
standing you have and figure out where the responsibility of
each component or part of your program begins and ends.

Exclusion and Certainty
While investigating, test each component separately so that you
can be absolutely certain that each one works by itself. You will
gradually build up confidence about which parts of a project are
doing their job and which ones are dubious. The best way to do
this is using the built-in examples, as they are unlikely to have
bugs.

Debugging is the term used to describe this process as applied
to software. The legend says it was used for the first time by
Grace Hopper back in the 1940s, when computers were mostly
electromechanical, and one of them stopped working because
actual insects got caught in the mechanisms.

Many of today’s bugs are not physical anymore: they’re virtual
and invisible, at least in part. Therefore, they require a some-
times lengthy and boring process to be identified. You will have
to trick the invisible bug into revealing itself.

Debugging is a little like detective work. You have a situation that
you need to explain. To do this, you do some experiments and
come up with results, and from these results you try to deduce
what has caused your situation. You then run some more experi-
ments to test whether your deductions were correct or not. It’s
elementary, really.

Testing the Arduino Board
Before trying very complicated experiments, it’s wise to check
the simple things, especially if they don’t take much time. The
first thing to check is that your Arduino board works, and the
very first example, Blink, is always a good place to start,
because you are probably most familiar with it, and because the

212 Getting Started with Arduino

LED that is already on your Arduino means that you won’t
depend on any external components.

Follow these steps before you connect your project to your
Arduino. If you’ve already connected jumpers between your
Arduino and your project, remove them for now, keeping careful
track of where each jumper should go.

Open the basic Blink example in the Arduino IDE and upload it to
the board. The onboard LED should blink in a regular pattern.

What if Blink doesn’t work?

Before you start blaming your Arduino, you should make sure
that a few things are in order, as airline pilots do when they go
through a checklist to make sure that the airplane will be flying
properly before takeoff:

• Is your Arduino getting power, either from a computer
though a USB cable or from an external power supply? If
the green light marked PWR turns on, this means that your
Arduino is getting power. If the LED seems very faint, some-
thing is wrong with the power.

If you are using a computer, make sure the computer is on
(yes, it sounds silly, but it has happened). Make sure the
USB cable is plugged in all the way on both ends. Try a dif-
ferent USB cable. Inspect the computer’s USB port and the
Arduino’s USB plug to see whether there is any damage. Try
a different USB port on your computer, or a different com-
puter entirely. If you have lots of USB cables on your work-
bench, make sure that the one plugged into your Arduino is
the one that is plugged into the computer (yes, we’ve done
this).

If you are using external power, verify that the external
power supply is plugged in. Make sure your outlet strip or
extension cord is plugged in. If you are using an outlet strip
with a switch, make sure it’s turned on.

(If you are using a very old Arduino, verify that the power
selection jumper is in the correct position. Modern Ardui-
nos do this automatically and don’t have this jumper.)

Troubleshooting 213

• If the Arduino is brand new, the yellow LED marked L might
start blinking even before you upload the Blink example.
This is likely the test program that was loaded at the factory
to test the board and is OK. But don’t take this to mean that
you have uploaded successfully. Change the delay() values
to 100 to make the blinking faster and verify that you can
upload successfully.

• Verify that the sketch uploaded successfully.

If upload failed, check first that your program has no errors
by clicking Verify.

Try uploading again. On rare occasions, an upload will fail
for no apparent reason, and will succeed the next time
without changing anything.

Make sure you selected the proper board in the Tools menu.
As you start to accumulate different Arduino boards, it’s a
good habit to always make sure that the board selected is
indeed the one you have connected.

Check that the port in the Tools menu is selected properly.
If you unplugged your Arduino at some point, it might
appear on a different port.

Sometimes you have to unplug the Arduino and plug it in
again. If you have the Serial Port selection menu open, you
have to close it (just move to another tab) and then go back
to Tools→Serial Port and select the proper port.

Poor-quality USB cables can sometimes prevent the driver
from finding the Arduino Uno. If your Arduino port doesn’t
show up in the Port list, try using a known good USB cable.

Once you have the basic Blink example loaded and the LED
blinking, you can be confident that your Arduino has basic func-
tionality, and can proceed to the next step.

214 Getting Started with Arduino

Testing Your Breadboarded Circuit
The next step is to check for short circuits between 5V and GND
on your project. Connect your Arduino to your breadboard by
running a jumper from the 5V and GND connections to the posi-
tive and negative rails of the breadboard. (Notice we are follow-
ing the “divide and rule” principle by connecting only these two
jumpers, and not all the jumpers for your project.) If the green
PWR LED turns off, remove the jumpers immediately. This
means there is a big mistake in your circuit and you have a
“short circuit” somewhere. When this happens, your board
draws too much current and the power gets cut off to protect
the computer.

If you’re getting a short circuit, you have to start the “simplifica-
tion and segmentation” process. What you must do is go
through every sensor and actuator in the project and connect
just one at a time until you identify the part or connection that is
causing the short circuit.

Alternately, or in addition to, remove all your jumper wires and
build your circuit again. Often you will unconsciously correct a
mistake you made the first time. The second time you build your
circuit you have 100% more experience!

Troubleshooting 215

If you’re concerned that you may damage your com-
puter, remember that almost all computers limit the
amount of current a USB device can draw. If the
device tries to take too much current, the computer
immediately disables power on the USB port. Also,
the Arduino board is fitted with a polyfuse, a current-
protection device that resets itself when the fault is
removed.

If you’re really paranoid, you can always connect the
Arduino board through a self-powered USB hub. In
this case, if it all goes horribly wrong, the USB hub is
the one that will be pushing up daisies, not your
computer.

The first thing to start from is always the power supply (the con-
nections from 5V and GND). Look around and make sure that
each part of the circuit is powered properly. The most likely
cause is a jumper that is in the wrong place. Other causes might
be an incorrect component such as a resistor with too small a
value, or a switch or transistor that is connecting 5V to GND.
Less likely but also possible is a piece of wire or a screw that
happens to be touching both 5V and GND somewhere. Check
also that the polarity is correct on any polarized components,
ICs, or modules. We’ve seen some components which, when 5V
and GND are swapped, behave like a short circuit.

Working step by step and making one single
modification at a time is the number one rule for
fixing stuff. This rule was hammered into my
young head by my school professor and first
employer, Maurizio Pirola. Every time I’m debug-
ging something and things don’t look good (and
believe me, it happens a lot), his face pops in my
head saying, “One modification at a time…one
modification at a time” and that’s usually when I
fix everything. This is very important, because
you will know what fixed the problem. (It’s all too
easy to lose track of which modification actually
solved the problem, which is why it’s so impor-
tant to make one at a time.)

—Massimo

Each debugging experience will build up in your head a “knowl-
edge base” of defects and possible fixes. And before you know
it, you’ll become an expert. This will make you look very cool,
because as soon as a newbie says, “This doesn’t work!” you’ll
give it a quick look and have the answer in a split second.

Isolating Problems
Another important rule is to find a reliable way to reproduce a
problem. If your circuit behaves in a funny way at random times,
try really hard to identify what seems to cause this. Does it hap-
pen only when you press a switch? Only when an LED lights up?
Whenever you move a jumper? (Many problems are caused by
loose wires, either not connecting where they should, or con-

216 Getting Started with Arduino

necting where they shouldn’t.) Try to repeat the steps that
cause the problem, paying attention to small details and making
one change at a time: does it happen every time the LED lights
up, or only if you press the switch while the LED is on? This pro-
cess will allow you to think about a possible cause. It is also very
useful when you need to explain to somebody else what’s going
on.

Loose connections are notoriously difficult to find. Try gently
wiggling different parts of your circuit and when you identify a
region that affects the problem, slow down and wiggle one wire
or component at a time.

Describing the problem as precisely as possible is also a good
way to find a solution. Try to find somebody to explain the prob-
lem to—in many cases, a solution will pop into your head as you
articulate the problem. Brian W. Kernighan and Rob Pike, in The
Practice of Programming (Addison-Wesley, 1999), tell the story
of one university that “kept a teddy bear near the help desk.
Students with mysterious bugs were required to explain them to
the bear before they could speak to a human counselor.” If you
don’t have someone (or a teddy bear) to talk to, start writing an
email describing your problem. This isn’t time wasted, because
(a) it often leads to solving the problem and (b) if you need to
ask someone for help, you will be prepared

Problems Installing Drivers on
Windows
Sometimes the Found New Hardware Wizard fails to locate the
proper driver. In this case you might have to manually tell it
where the driver is located.

The Found New Hardware Wizard will first ask you whether to
check Windows Update; select the “No, not at this time” option
and click Next.

On the next screen, choose “Install from a list or specific loca-
tion” and click Next.

Navigate to and select the Uno’s driver file, named Ardui-
noUNO.inf, located in the Drivers folder of the Arduino Software

Troubleshooting 217

download (not the FTDI USB Drivers subdirectory). Windows will
finish up the driver installation from there.

Problems with the IDE on Windows
If you get an error when you double-click the Arduino icon, or if
nothing happens, try double-clicking the Arduino.exe file as an
alternative method to launch Arduino.

Windows users may also run into a problem if the operating sys-
tem assigns a COM port number of COM10 or greater to Ardu-
ino. If this happens, you can usually convince Windows to assign
a lower port number to Arduino by freeing up (temporarily) a
COM port with a lower number.

First, open up the Device Manager by clicking the Start menu,
right-clicking Computer (Vista) or My Computer (XP), and
choosing Properties. On Windows XP, click Hardware and
choose Device Manager. On Vista, click Device Manager (it
appears in the list of tasks on the left of the window).

Look for the serial devices in the list under Ports (COM & LPT).
Find a serial device that you’re not using that is numbered
COM9 or lower. A modem or serial port make good candidates.
Right-click it and choose Properties from the menu. Then,
choose the Port Settings tab and click Advanced. Set the COM
port number to COM10 or higher, click OK, and click OK again to
dismiss the Properties dialogue.

Now, do the same with the USB Serial Port device that repre-
sents Arduino, with one change: assign it the COM port number
(COM9 or lower) that you just freed up.

Identifying the Arduino COM Port
on Windows
Connect your Arduino Uno to your computer via a USB cable.

Open the Device Manager by clicking the Start menu, right-
clicking Computer (Vista) or My Computer (XP), and choosing
Properties. On Windows XP, click Hardware and choose Device
Manager. On Vista, click Device Manager (it appears in the list of
tasks on the left of the window).

218 Getting Started with Arduino

Look for the Arduino device in the list under Ports (COM & LPT).
The Arduino will appear as Arduino UNO and will have a name
like COM7, as shown in Figure 11-1.

Troubleshooting 219

On some Windows machines, the COM port has a
number greater than 9; this numbering creates
some problems when Arduino is trying to communi-
cate with it.

Figure 11-1. The Windows Device Manager showing all available
serial ports

220 Getting Started with Arduino

Other Debugging Techniques
• Ask someone else to look over your project. We sometimes

become blind to our own mistakes. Don’t tell the other per-
son what connections you meant to make; have them verify
that you have correctly implemented whatever schematic
you are working from. This way, you don’t prejudice them to
see what you intended to do and miss the mistake. If you
don’t have a schematic, you should make one. Of course,
the schematic might also have a mistake, which will be the
next thing to check.

• “Divide and rule” works for sketches, too. Save a copy of
your sketch, and then start removing the parts of your
sketch that don’t have anything to do with the part that is
giving you trouble. You might find an unexpected interac-
tion between something that seems to be working fine and
the problem. If this doesn’t solve your problem, it will pro-
vide the minimal test program that demonstrates your
problem, which will make it easier when you ask for help.

• If your project involves any sensors (including switches),
test each one individually with the most basic appropriate
examples: AnalogReadSerial and DigitalReadSerial, which
you can find at File→ Examples→ 01.Basics→ AnalogReadSerial/
DigitalReadSerial.

• If any sensor fails, verify that the Arduino input is working
correctly. Disconnect your sensor, and connect a jumper
from the suspect input directly to 5V and GND (one at a
time, obviously), while monitoring with AnalogReadSerial or
DigitalReadSerial. You should see 0 when the input is con-
nected to GND, and 1 or 1023 when the input is connected
to 5V.

If you have multiple sensors and one is failing while others
work, swap parts of the circuit (one at a time) between the
one that works and the one that fails, and see if the problem
moves.

• If your project involves any actuators, test each one individ-
ually with the most basic appropriate examples: Blink or

Troubleshooting 221

Fade. If the actuator fails, replace it with an LED to make
sure the Arduino output is working correctly.

• If your sketch involves decision making, such as if state-
ments, use the Serial.println() function to tell you what
it’s doing. This is also useful in loops, to make sure the loop
is starting and stopping when you think it should.

• If you are using any libraries, verify they work correctly
using the examples that came with them. If you are having
trouble with a library that is not from Arduino, see if there is
a forum or other online community for that library and join
it.

If these suggestions don’t help, or if you’re having a problem not
described here, search for “troubleshooting” at arduino.cc.

How to Get Help Online
If you are stuck, don’t spend days running around alone—ask
for help. One of the best things about Arduino is its community.
You can always find help if you can describe your problem well.

Get into the habit of cutting and pasting things into a search
engine and see whether somebody is talking about it. For exam-
ple, when the Arduino IDE spits out a nasty error message, copy
and paste it into a Google search and see what comes out. You
may have to put the message in quotes to prevent matching
those words in random orders. Do the same with bits of code
you’re working on or just a specific function name. If you get too
many hits that aren’t useful, add the word Arduino to the search.

Look around you: everything has been invented already and it’s
stored somewhere on a web page. I’m surprised how often
something I think happened only to me turns out to be well doc-
umented on the Web, along with the solution.

For further investigation, start from the main website and look
at the FAQ; then move on to the Arduino Playground, a freely
editable wiki that any user can modify to contribute documenta-
tion. It’s one of the best parts of the whole open source philoso-
phy: people contribute documentation and examples of any-
thing you can do with Arduino. Before you start a project, search

222 Getting Started with Arduino

http://www.arduino.cc
http://www.arduino.cc/en/Main/FAQ
http://playground.arduino.cc/

the Playground and you’ll find a bit of code or a circuit diagram
to get you started.

(Consider paying the open source community back, by docu-
menting a project you came up with or a solution you found that
was not previously documented. There are many ways to pub-
lish your work: Arduino Project Hub, Github, Instructables, Face-
book, Instragram, etc. - it really doesn’t matter how you publish,
as long as you do, and document it as well as you can possibly
manage with code, schematics, diagrams, etc. Don’t just post a
teaser video of the project working - tell us how you made it!)

If you still can’t find an answer that way, search the Arduino
forum.

After you’ve tried everything else, it’s time to post a question to
the Arduino forum. Pick the correct board for your problem:
there are different areas for software or hardware issues and
even forums in different languages. If you’re unsure which board
is appropriate, post in the Project Guidance board.

Compose your post carefully. Post as much information as you
can, and be clear and thorough. Taking the time to clearly and
correctly describe your problem is well worth it. This also shows
that you’ve already done as much as you could by yourself, and
aren’t relying on the forum to do your work for you. Here are
some guidelines:

• Before you start, search for and read the post titled “Gen-
eral Guidance and How to use the Forum”

• What Arduino board are you using?

• What operating system are you using to run the Arduino
IDE?

• What version of the Arduino IDE are you using?

• Give a general description of what you’re trying to do. Post
links to data sheets of strange parts you’re using. Don’t
clutter up your post with irrelevant information, such as the
project concept or a picture of the enclosure if it doesn’t
pertain to the problem.

• Post the minimal sketch and/or circuit (schematic dia-
grams are great for this) that shows your problem. (You

Troubleshooting 223

http://forum.arduino.cc/
http://forum.arduino.cc/

found this when you were debugging, right?). The “How to
use this forum” post shows you how to format code and
include attachments.

• When you search the forum for existing help, pay attention
to the culture, especially the types of questions that get
good help versus the types of questions that don’t. You
want to copy the style of those that work.

• Describe exactly what you think should happen, and what is
happening instead. Don’t just say, “It doesn’t work.” If you
get an error message, post the error. If your program prints
output, post that output.

• Now that you’ve described your problem carefully, go back
and revise the subject. You want a subject that summarises
the technical issue, not the goal of your project (e.g.,
“pressing multiple switches causes short circuit” and not
“help with control panel for rocket ship”).

• Never, never use phrases like PLEASE READ or URGENT!

Remember that the number of answers you get, and how
quickly you get them, depends on how well you formulate your
question.

Your chances increase if you avoid these things at all cost (these
rules are good for any online forum, not just Arduino’s):

• Typing your message all in CAPITALS. It annoys people a lot
and is like walking around with “newbie” tattooed on your
forehead (in online communities, typing in all capitals is
considered “shouting”).

• Posting the same message in several different parts of the
forum.

• Bumping your message by posting follow-up comments
asking, “Hey, how come no one replied?” or even worse,
simply posting the text “bump.” If you didn’t get a reply,
take a look at your posting. Was the subject clear? Did you
provide a well-worded description of the problem you are
having? Were you nice? Always be nice.

• Writing messages like “I want to build a space shuttle using
Arduino how do I do that.” This means that you want people

224 Getting Started with Arduino

to do your work for you, and this approach is simply not fun
for a real tinkerer. It’s better to explain what you want to
build and then ask a specific question about one part of the
project and take it from there. In addition to helpful
answers, you might also get useful suggestions for your
larger project.

• A variation of the previous point is when the question is
clearly something the poster of the message is getting paid
to do. If you ask specific questions, people are happy to
help, but if you ask them to do all your work (and you don’t
share the money), the response is likely to be less nice.

• Posting messages that look suspiciously like school assign-
ments and asking the forum to do your homework. Profes-
sors like us roam the forums and slap such students with a
large trout. Forum regulars are also good at spotting these.

Troubleshooting 225

A/The Breadboard

The process of getting a circuit to work might involve making
lots of changes until it behaves properly. As you iterate your cir-
cuit, you might get ideas that help you refine your design, per-
haps improving its behaviour, making it more reliable, or requir-
ing fewer parts. The design evolves in your hands as you try dif-
ferent combinations; that’s something like an electronic equiva-
lent to sketching.

Ideally, you’d like a way to build circuits that allows you to
change the connections between components quickly and
easily. While soldering is great for creating reliable, permanent
circuits, you’d like something faster.

The answer to this problem is a very practical device called a
solderless breadboard. As you can see from Figure A-1, it’s a
small plastic board full of holes, each of which contains a spring-
loaded contact. You can push a wire or a component’s leg into
one of the holes, and the spring will hold the component or wire
in place. More important, because the spring is connected to
adjacent springs, it will establish an electrical connection with
certain other holes.

In the central region (the rows labeled a–j), the springs run ver-
tically, and so any component placed in these holes is immedi-
ately connected with any other components in the same vertical
column of holes.

Some solderless breadboards have additional rows: two on top
and two on the bottom, often indicated by red and blue stripes
and sometimes marked with + and –. These rows are connected
horizontally, and are intended for any electrical signal that gets
used often. These rows are perfect for 5V or GND, which are the
most common connections in the projects in this book, and in
almost any electronic project. These rows are often called rails
or buses.

227

If you connect the red row (or the one marked +) to the 5V on
your Arduino, and the blue (or the one marked –) row to the
GND on your Arduino, you will always have 5V and GND near any
point of the breadboard.

A good example of these rails is in Chapter 6.

Some components, like resistors, capacitors, and LEDs, have
long flexible legs that can be bent to reach holes in different
places.

However, other components, like chips, have legs (known to
techies as pins) that cannot be moved. These pins almost
always have a spacing of 2.54 mm, so the holes on the solder-
less breadboard use this same spacing.

Most chips have two rows of pins, and if the breadboard col-
umns were connected all the way across, the pins on one side of
the chip would be connected (by the breadboard) to the pins on
the other side. This is the reason for the gap in the middle, which
interrupts each vertical line of holes. If you place a chip so that it
straddles the gap, the pins on one side will not be connected to
the pins on the other side. Clever, eh?

228 Getting Started with Arduino

On some breadboards, the rails do not go all the way
across, and instead are broken in the middle. Some-
times this is indicated by a break in the red or blue
stripe, and sometimes this is indicated by a gap
between pins that is slightly larger than usual. As it is
easy to forget this, many people permanently leave a
jumper bridging this break on each row.

Some breadboards have letters indicating the rows,
and numbers indicating the columns. We won’t be
referring to these, as not all breadboards are the
same. Whenever we say pin number, we’re referring
to the Arduino pin, and not anything on the bread-
board.

Figure A-1. The solderless breadboard

The Breadboard 229

B/Reading Resistors
and Capacitors

In order to use electronic parts, you need to be able to identify
them, which can be a difficult task for a beginner. Most of the
resistors that you find in a shop have a cylindrical body with two
legs sticking out and have strange coloured markings all around
them. When the first commercial resistors were made, there
was no way to print numbers small enough to fit on their body,
so clever engineers decided that they could just represent the
values with stripes of coloured paint.

Today’s beginners have to figure out a way to interpret these
signs. The key is quite simple: generally, there are four stripes,
and each colour represents a number. One of rings is usually
gold-coloured; this one represents the tolerance of that resistor.
To read the stripes in order, hold the resistor so the gold (or sil-
ver in some cases) stripe is to the right. Then, read the colours
and map them to the corresponding numbers. In the following
table, you’ll find a translation between the colours and their
numeric values.

Colour Value

Black 0

Brown 1

Red 2

Orange 3

Yellow 4

Green 5

Blue 6

Violet 7

Grey 8

White 9

231

Colour Value

Silver 10 %

Gold 5 %

For example, brown, black, orange, and gold markings mean 1 0
3 ±5 %. Easy, right? Not quite, because there is a twist: the
third ring actually represents the number of zeros in the value.
Therefore 1 0 3 is actually 1 0 followed by three zeros, so the end
result is 10,000 ohms ±5 %.

Electronics geeks tend to shorten values by expressing them in
kilo ohms (for thousands of ohms) and mega ohms (for millions
of ohms), so a 10,000-ohm resistor is usually shortened to 10K
ohm, while 10,000,000 becomes 10M ohm. Because engineers
are fond of optimising everything, on some schematic diagrams
you might find values expressed as 4k7, which means 4.7 kilo
ohms, or 4700.

Sometimes you’ll run into resistors with a higher precision of 1
or 2%. These resistors add a fifth ring so that the value can be
specified more precisely. It’s the same code, but with the first
three rings representing the value and the fourth ring represent-
ing the number of zeros after the value. The fifth ring would be
the tolerance: red for 2% and brown for 1%. For example, the
10K ohm example (brown, black, orange, and gold) would be
brown, black, black, red, and brown, for a 1% resistor.

Capacitors are a bit easier: the barrel-shaped capacitors (elec-
trolytic capacitors) generally have their values printed on them.
A capacitor’s value is measured in farads (F), but most capaci-
tors that you encounter will be measured in micro farads (μF).
So if you see a capacitor labeled 100μF, it’s a 100 micro farad
capacitor.

Many of the disc-shaped capacitors (ceramic capacitors) do not
have their units listed, and use a three-digit numeric code indi-
cating the number of pico farads (pF). There are 1,000,000pF in
one μF. Similar to the resistor codes, you use the third number
to determine the number of zeros to put after the first two, with
one difference: if you see 0–5, that indicates the number of
zeros. 6 and 7 are not used, and 8 and 9 are handled differently.

232 Getting Started with Arduino

If you see 8, multiply the number that the first two digits form by
0.01, and if you see 9, multiply it by 0.1.

So, a capacitor labeled 104 would be 100,000pF or 0.1μF. A
capacitor labeled 229 would be 2.2pF.

As a reminder, here are the multipliers commonly used in
electronics.

Multiplier Value Example

M (mega) 106 = 1,000,000 1,200,000 ohm = 1.2M ohm

k (kilo) 103 = 1,000 470,000 ohm = 470K ohm

m (milli) 10-3 = .001 .01 A = 10mA

u (micro) 10-6 = .000001 4700 u amps = 4.7mA

n (nano) 10-9 10,000 n farads = 10μF

p (piclo) 10-12 1,000,000 p f = 1μF

Reading Resistors and Capacitors 233

C/Arduino Quick
Reference

Here is a quick explanation of all the standard instructions sup-
ported by the Arduino language.

For a more detailed reference, see the Arduino “Language Refer-
ence” page.

Structure
An Arduino sketch runs in two parts:

void setup()

This is where you set things up that have to be done once before
the loop starts running, and then don’t need to happen again.

void loop()

This contains the main code of your sketch. It contains a set of
instructions that get repeated over and over until the board is
switched off.

Special Symbols
Arduino includes a number of symbols to delineate lines of
code, comments, and blocks of code.

; (semicolon)
Every instruction (line of code) is terminated by a semicolon.
This syntax lets you format the code freely. You could even
put two instructions on the same line, as long as you sepa-
rate them with a semicolon. (However, this would make the
code harder to read.)

Example:

delay(100);

235

https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/

{} (curly braces)
These are used to mark blocks of code. For example, when
you write code for the loop() function, you have to use a
curly brace before and after the code.

Example:

void loop() {
 Serial.println("ciao");
}

Comments
These are portions of text ignored by the Arduino microcon-
troller, but are extremely useful to explain to others (and to
remind yourself) what a piece of code does.

There are two styles of comments in Arduino:

// single-line: this text is ignored until the end of the
line
/* multiple-line:
 you can write
 a whole poem in here
*/

Constants
Arduino includes a set of predefined keywords with special val-
ues.

HIGH and LOW are used, for example, when you want to turn on or
off an Arduino pin. INPUT and OUTPUT are used to set a specific
pin to be either an input or an output.

true and false are used to test whether a condition or expres-
sion is true or false. They are used primarily with comparison
operators.

Variables
Variables are named areas of the Arduino’s memory where you
can store data. Your sketch can use and manipulate this data by
referring to it by the variable name. As the word variable sug-
gests, variables can be changed as many times as you like.

236 Getting Started with Arduino

Because Arduino is a very simple microcontroller, when you
declare a variable, you have to specify its type. This means tell-
ing the microcontroller the size of the value you want to store.

Following are the datatypes that are available.

boolean
Can have one of two values: true or false.

char
Holds a single character, such as the letter A. Like any com-
puter, Arduino stores it as a number, even though you see
text. When chars are used to store numbers, they can hold
values from –128 to 127. A char occupies 1 byte of memory.

byte
Holds a number between 0 and 255. Like a char, a byte uses
only 1 byte of memory. Unlike chars, a byte can store only
positive numbers.

int
Uses 2 bytes of memory to represent a number between –
32,768 and 32,767. The int is the most common datatype
used in Arduino. If you are unsure of what datatype to use,
try an int.

Arduino Quick Reference 237

There are two major sets of characters available
on computer systems: ASCII and UNICODE.
ASCII is a set of 127 characters that was used for,
among other things, transmitting text between
serial terminals and time-shared computer sys-
tems such as mainframes and minicomputers.
UNICODE is a much larger set of values used by
modern computer operating systems to repre-
sent characters in a wide range of languages.
ASCII is still useful for exchanging short bits of
information in languages such as Italian or
English that use Latin characters, Arabic numer-
als, and common typewriter symbols for punctu-
ation and the like.

unsigned int
Like int, uses 2 bytes of memory, but the unsigned prefix
means that it can’t store negative numbers, so its range
goes from 0 to 65,535.

long
This is twice the size of an int and holds numbers from
–2,147,483,648 to 2,147,483,647.

unsigned long
Unsigned version of long; it goes from 0 to 4,294,967,295.

float
This is quite big and can hold floating-point values, which is
a fancy way of saying that you can use a float to store num-
bers with a decimal point. A float will eat up 4 bytes of your
precious RAM, and the functions that can handle them use
up a lot of code memory as well, so use floats only when you
need to.

double
Double-precision floating-point number, with a maximum
value of 1.7976931348623157 x 10308. Wow, that’s huge!

string
A set of ASCII characters used to store textual information
(you might use a string to send a message via a serial port,
or to display on an LCD display). For storage, they use 1 byte
for each character in the string, plus a null character (1 byte)
at the end to tell Arduino that it’s the end of the string. The
following are equivalent:

char string1[] = "Arduino"; // 7 chars + 1 null char
char string2[8] = "Arduino"; // Same as above

array
A list of variables that can be accessed via an index. They are
used to build tables of values that can easily be accessed.
For example, if you want to store different levels of bright-
ness to be used when fading an LED, you could create six
variables called light01, light02, and so on. Better yet, you
could use a simple array like this:

int light[6] = {0, 20, 50, 75, 100};

238 Getting Started with Arduino

The word array is not actually used in the variable declara-
tion: the symbols [] and {} do the job.

Arrays are ideal when you want to do the same thing to a
whole lot of pieces of data, because you can write what you
need to do once and then perform it on each variable in the
array simply by changing the index—for example, using a for
loop.

Variable Scope
Variables in Arduino have a property called scope. Variables can
be local or global, depending on where they are declared.

A global variable is one that can be seen (and used) by every
function in a program. Local variables are visible only to the
function in which they are declared.

When programs start to get larger and more complex, local vari-
ables are a useful way to ensure that each function has access
to its own variables. This prevents programming errors when
one function inadvertently modifies variables used by another
function. Variables that must be used by multiple functions can
be global.

In the Arduino environment, any variable declared outside of a
function (e.g., setup(), loop(), or your own functions), is a
global variable. Any variable declared within a function is local
(and accessible) only within that function.

It is also sometimes handy to declare and initialize a variable
inside a for loop. This creates a variable that can only be
accessed from inside the for loop braces. In fact, any time a
variable is declared within curly braces, it is local only within that
block of code.

Control Structures
Arduino includes keywords for controlling the logical flow of
your sketch.

if…else
This structure makes decisions in your program. if must be
followed by a question specified as an expression contained

Arduino Quick Reference 239

in parentheses. If the expression is true, whatever follows will
be executed. If it’s false, the block of code following else will
be executed. The else clause is optional.

Example:

if (val == 1) {
 digitalWrite(LED,HIGH);
}

for
Lets you repeat a block of code a specified number of times.

Example:

for (int i = 0; i < 10; i++) {
 Serial.print("ciao");
}

switch case
The if statement is like a fork in the road for your program.
switch case is like a massive roundabout. It lets your pro-
gram take a variety of directions depending on the value of a
variable. It’s quite useful to keep your code tidy as it replaces
long lists of if statements.

It’s important to remember the break statement at the end
of each case, or else Arduino will execute the instructions of
the following cases, until it reaches a break or the end of the
switch case.

Example:

switch (sensorValue) {
 case 23:
 digitalWrite(13,HIGH);
 break;
 case 46:
 digitalWrite(12,HIGH);
 break;
 default: // if nothing matches this is executed
 digitalWrite(12,LOW);
 digitalWrite(13,LOW);
}

240 Getting Started with Arduino

while
Similar to if, this executes a block of code if a certain condi-
tion is true. However, if executes the block only once,
whereas while keeps on executing the block as long as the
condition is true.

Example:

// blink LED while sensor is below 512
sensorValue = analogRead(1);
while (sensorValue < 512) {
 digitalWrite(13,HIGH);
 delay(100);
 digitalWrite(13,HIGH);
 delay(100);
 sensorValue = analogRead(1);
}

do…while
Just like while, except that the code is run before the condi-
tion is evaluated. This structure is used when you want the
code inside your block to run at least once before you check
the condition.

Example:

do {
 digitalWrite(13,HIGH);
 delay(100);
 digitalWrite(13,HIGH);
 delay(100);
 sensorValue = analogRead(1);
} while (sensorValue < 512);

break
This term lets you break out of a while or for loop even if the
loop condition says to go on looping. It’s also used to sepa-
rate the different sections of a switch case statement.

Example:

// blink LED while sensor is below 512
do {
 // Leaves the loop if a button is pressed
 if (digitalRead(7) == HIGH)
 break;
 digitalWrite(13,HIGH);

Arduino Quick Reference 241

 delay(100);
 digitalWrite(13,LOW);
 delay(100);
 sensorValue = analogRead(1);
} while (sensorValue < 512);

continue
When used inside a loop, continue lets you skip the rest of
the code inside it and force the condition to be tested again.

Example:

for (light = 0; light < 255; light++)
{
 // skip intensities between 140 and 200
 if ((x > 140) && (x < 200))
 continue;
 analogWrite(PWMpin, light);
 delay(10);
}

continue is similar to break, but break leaves the loop, while
continue goes on with the next repetition of the loop.

return
Stops running a function and returns to whatever called the
function. You can also use this to return a value from inside a
function.

For example, if you have a function called computeTempera
ture() and you want to return the result to the part of your
code that invoked the function, you would write something
like this:

int computeTemperature() {
 int temperature = 0;
 temperature = (analogRead(0) + 45) / 100;
 return temperature;
}

Arithmetic and Formulas
You can use Arduino to make complex calculations using a spe-
cial syntax. + and – work just like you’ve learned in school; mul-
tiplication is represented with an *, and division with a /.

242 Getting Started with Arduino

There is an additional operator called modulo (%), which
returns the remainder of an integer division.

Just as you learned in algebra, you can use as many levels of
parentheses as you wish to to group expressions the proper
way. Contrary to what you might have learned in school, square
brackets and curly braces are not used for arithmetic forumulas
because they are reserved for other purposes (array indexes
and blocks, respectively).

Example:

a = 2 + 2;
light = ((12 * sensorValue) - 5) / 2;
remainder = 7 % 2; // returns 1

Comparison Operators
When you specify conditions or tests for if, while, and for
statements, these are the operators you can use:

== Equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

When testing for equality, be very careful to use the == compari-
son operator and not the = assignment operator, or your pro-
gram will not behave the way you expect.

Boolean Operators
These are used when you want to combine multiple conditions.
For example, if you want to check whether the value coming
from a sensor is between 5 and 10, you would write this:

if ((sensor => 5) && (sensor <=10))

There are three Boolean operators: and, represented with &&; or,
represented with ||; and finally not, represented with !.

Arduino Quick Reference 243

Compound Operators
These are special operators used to make code more concise
for some very common operations like incrementing a value.

For example, to increment value by 1, you would write:

value = value +1;

but using a compound operator, this becomes:

value++;

It’s perfectly fine not to use these compound operators, but
they are so common that, as a beginner, you will have a hard
time learning from examples if you don’t understand these
operators.

increment and decrement (–– and ++)
These operators increment or decrement a value by 1. Be care-
ful—they work both in front of or behind a variable, but they
have a very subtle difference: if you write i++, this first incre-
ments i by 1 and then evaluates to the equivalent of i + 1, while
++i first evaluates to the value of i and then increments i. The
same applies to ––.

+= , –=, *=, and /=
Similar to ++ and ––, but these allow you to increment and
decrement by values other than 1, and also allow multiplica-
tion and division. The following two expressions are equiva-
lent:

a = a + 5;
a += 5;

Input and Output Functions
One of the main jobs of Arduino is to input information from
sensors and to output values to actuators. You’ve already seen
some of these in the example programs throughout the book.

pinMode(pin, mode)
(Re)configure a digital pin to behave either as an input or an
output.

244 Getting Started with Arduino

Example:

pinMode(7,INPUT); // turns pin 7 into an input

Forgetting to set pins to outputs using pinMode() is a com-
mon cause of faulty or nonfunctioning output.

Although typically used in setup(), pinMode() can be used in
a loop as well if you need to change the pin’s behaviour.

(When a function name is used in text, it is often written with
empty parentheses at the end to indicate that a function is
being discussed.)

digitalWrite(pin, value)
Turns a digital pin either HIGH or LOW. Pins must be explic-
itly made into an output using pinMode() before digital
Write() will have the expected effect.

Example:

digitalWrite(8,HIGH); // sets digital pin 8 to 5 V

Note that while HIGH or LOW usually correspond to on and
off, respectively, this depends on how the pin is used. For
example, an LED connected between 5V and a pin will turn
on when that pin is LOW and turn off when the pin is HIGH.

int digitalRead(pin)
Reads the state of an input pin, and returns HIGH if the pin
senses some voltage or LOW if there is no voltage applied.

Example:

val = digitalRead(7); // reads pin 7 into val

int analogRead(pin)
Reads the voltage applied to an analogue input pin and
returns a number between 0 and 1023 that represents the
voltages between 0 and 5 V.

Example:

val = analogRead(0); // reads analog input 0 into val

analogWrite(pin, value)
Changes the PWM rate on one of the PWM pins. pin can only
be a pin that supports PWM, that is, pins 3, 5, 6, 9, 10, or 11

Arduino Quick Reference 245

on the Arduino Uno (different Arduino boards may support
PWM on different pins). value must be a number between 0
and 255. You can think of value to represent the average
amount of power Arduino will deliver, where a value of zero
corresponds to fully off, while a value of 255 corresponds to
fully on.

Example:

analogWrite(9,128); // Dim an LED on pin 9 to 50%

A value of 0 sets the output fully LOW, while a value of 255
sets an output fully HIGH.

shiftOut(dataPin, clockPin, bitOrder, value)
Sends data to a shift register, devices that are used to
expand the number of digital outputs. This protocol uses
one pin for data and one for clock. bitOrder indicates the
ordering of bytes (least significant or most significant) and
value is the actual data to be sent out.

Example:

shiftOut(dataPin, clockPin, LSBFIRST, 255);

unsigned long pulseIn(pin, value)
Measures the duration of a pulse coming in on one of the
digital inputs. This is useful, for example, to read some infra-
red sensors or accelerometers that output their value as pul-
ses of changing duration.

Example:

time = pulsein(7,HIGH); // measures the time the next
 // pulse stays high

Time Functions
Arduino includes functions for measuring elapsed time and also
for pausing the sketch.

unsigned long millis()
Returns the number of milliseconds that have passed since
the sketch started.

246 Getting Started with Arduino

Example:

duration = millis()-lastTime; // computes time elapsed
since "lastTime"

delay(ms)
Pauses the program for the amount of milliseconds speci-
fied.

Example:

delay(500); // stops the program for half a second

delayMicroseconds(µs)
Pauses the program for the given amount of microseconds.

Example:

delayMicroseconds(1000); // waits for 1 millisecond

Math Functions
Arduino includes many common mathematical and trigonomet-
ric functions:

min(x, y)
Returns the smaller of x and y.

Example:

val = min(10,20); // val is now 10

max(x, y)
Returns the larger of x and y.

Example:

val = max(10,20); // val is now 20

abs(x)
Returns the absolute value of x, which turns negative num-
bers into positive. If x is 5, it will return 5, but if x is –5, it will
still return 5.

Example:

val = abs(-5); // val is now 5

Arduino Quick Reference 247

constrain(x, a, b)
Returns the value of x, constrained between a and b. If x is
less than a, it will just return a, and if x is greater than b, it will
just return b.

Example:

val = constrain(analogRead(0), 0, 255); // reject values
bigger than 255

map(value, fromLow, fromHigh, toLow, toHigh)
Maps a value in the range fromLow and maxLow to the range
toLow and toHigh. Very useful to process values from ana-
logue sensors.

Example:

val = map(analogRead(0),0,1023,100, 200); // maps the
value of
 // analog 0 to a
value
 // between 100
and 200

double pow(base, exponent)
Returns the result of raising a number (base) to a value (expo
nent).

Example:

double x = pow(y, 32); // sets x to y raised to the 32nd
power

double sqrt(x)
Returns the square root of a number.

Example:

double a = sqrt(1138); // approximately 33.73425674438

double sin(rad)
Returns the sine of an angle specified in radians.

Example:

double sine = sin(2); // approximately 0.90929737091

double cos(rad)
Returns the cosine of an angle specified in radians.

248 Getting Started with Arduino

Example:

double cosine = cos(2); // approximately -0.41614685058

double tan(rad)
Returns the tangent of an angle specified in radians.

Example:

double tangent = tan(2); // approximately -2.18503975868

Random Number Functions
If you need to generate random numbers, you can use Arduino’s
pseudorandom number generator. Random numbers are useful
if you want your project to behave differently each time it’s
used.

randomSeed(seed)
Resets Arduino’s pseudorandom number generator.
Although the distribution of the numbers returned by ran
dom() is essentially random, the sequence is predictable. So,
you should reset the generator to some random value. A
good seed is a value read from an unconnected analogue
input, as an unconnected pin will pick up random noise from
the surrounding environment (radio waves, cosmic rays,
electromagnetic interference from cell phones and fluores-
cent lights, etc.) and so will be unpredictable.

Example:

randomSeed(analogRead(5)); // randomize using noise from
pin 5

long random(max) long random(min, max)
Returns a pseudorandom long integer value between min
and max – 1. If min is not specified, the lower bound is 0.

Example:

long randnum = random(0, 100); // a number between 0 and 99
long randnum = random(11); // a number between 0 and 10

Arduino Quick Reference 249

Serial Communication
As you saw in Chapter 5, you can communicate with devices
over the USB port using a serial communication protocol. Fol-
lowing are the serial functions.

Serial.begin(speed)
Prepares Arduino to begin sending and receiving serial data.
You’ll generally use 9600 baud (bits per second) with the
Arduino IDE serial monitor, but other speeds are available,
usually no more than 115,200 bps. The specific baud rate
doesn’t matter much, as long as both sides agree and use
the same rate.

Example:

Serial.begin(9600);

Serial.print(data) Serial.print(data, encoding)
Sends some data to the serial port. The encoding is optional;
if not supplied, the data is treated as much like plain text as
possible.

Examples (note that the final example uses Serial.write):

Serial.print(75); // Prints "75"
Serial.print(75, DEC); // The same as above.
Serial.print(75, HEX); // "4B" (75 in hexadecimal)
Serial.print(75, OCT); // "113" (75 in octal)
Serial.print(75, BIN); // "1001011" (75 in binary)
Serial.write(75); // "K" (the letter K happens
 // to be 75 in the ASCII set)

Serial.println(data) Serial.println(data, encoding)
Same as Serial.print(), except that it adds a carriage
return and linefeed (\r\n) as if you had typed the data and
then pressed Return or Enter.

Examples:

Serial.println(75); // Prints "75\r\n"
Serial.println(75, DEC); // The same as above.
Serial.println(75, HEX); // "4B\r\n"
Serial.println(75, OCT); // "113\r\n"
Serial.println(75, BIN); // "1001011\r\n"

250 Getting Started with Arduino

int Serial.available()
Returns how many unread bytes are available on the serial
port for reading via the read() function. After you have
read() everything available, Serial.available() returns 0
until new data arrives on the serial port.

Example:

int count = Serial.available();

int Serial.read()
Fetches 1 byte of incoming serial data.

Example:

int data = Serial.read();

Serial.flush()
Because data may arrive at the serial port faster than your
program can process it, Arduino keeps all the incoming data
in a buffer. If you need to clear the buffer and let it fill up with
fresh data, use the flush() function.

Example:

Serial.flush();

The Arduino Family
When somebody thinks about Arduino, the first board that
comes to mind is the Arduino UNO, but over the years we
have created a whole family of boards of different shapes
and functionality. Let’s look at the main family members and
their features.

The Arduino UNO is the timeless classic; it’s very robust and
it’s ideal for learning and prototyping. We still recommend it
for beginners and learners. It’s hard to break it, and there are
a ton of shields and libraries compatible with it. The main
drawbacks are the limitations of the 8-bit processor with
very little RAM and inability to run on battery for a long time.

Right after the introduction of the UNO, people started to
request boards with more inputs and outputs, and the Ardu-
ino Mega was born. It became quite popular as the “mother-

Arduino Quick Reference 251

board” for 3D printers and other devices where you need a
lot of I/O and more memory than the UNO.

As people progress in their prototyping effort, they often
need to go smaller, and this is where the Arduino Nano
comes in. The first Nano was designed to “shrink” the origi-
nal UNO format into something you could put in a bread-
board and use to build small, portable devices. The classic
Nano suffers from some of the limitations of the original
UNO, so for newer projects we recommend you take a look
at the Arduino Nano Every. It’s powered by a much more
powerful 8 bit processor (the latest generation of AVR pro-
cessors) with more RAM, program memory and computing
power while still being compatible with almost all of the 8-bit
code. One further advantage of the Every is that all the parts
are mounted on top of the PCB so you can solder it directly
on another PCB without using extra pin-header connectors.
It’s also the cheaper member of the Nano family, so it’s a
good way to get started on a budget.

The Nano family has also recently branched out to 32-bit
arm processors: the Nano 33 IoT provides a fast arm pro-
cessor coupled with a WiFi/Bluetooth module that makes it
easy to build connected projects, and the Arduino 33 Nano
BLE Sense, a powerful Bluetooth board packed with sensors
that has become quite popular with people who run Artificial
Intelligence algorithms on Microcontrollers (TinyML).

The Internet of Things is a very popular topic, and to make it
simpler for makers to build robust connected devices, we
introduced the MKR Family, a series of 32-bit arm boards
with the same footprint but available with all the most popu-
lar types of connectivity. They range from WiFi to GSM, from
LoRA to Narrowband IOT and more. These boards are
designed to run on battery and provide a LiPO battery
charger along with software libraries to take advantage of
the “Low Power” modes of the processor. Finally one inter-
esting feature of the MKRs is the presence of a “Crypto
Chip”, a small IC which is used to make authentication and
connection to the cloud very robust to increase the security
of the devices people build.

252 Getting Started with Arduino

Finally the latest family we introduced is the Portenta family,
designed for professional users looking to build industrial
grade projects. It’s the most powerful Arduino board out
there with a Dual-Core processor, a Cortex M7 coupled with
a Cortex M4. (Note: “Cortex” is the way ARM indicates the
class of their processors, going from Cortex M0 to Cortex
M7. As the number after the M grows, so does the complex-
ity and technical capabilities of the processor.) This dual pro-
cessor architecture running at 480Mhz allows running com-
plex software including computer vision and other tasks
which require a lot of computing power coupled with the
robustness and power efficiency of microcontrollers. If
you’re a beginner, the Portenta might be a bit difficult to
approach, but if you’re trying to build a sophisticated project
that needs to be useable in an industrial setting, the Por-
tenta will give all the power you need.

A final note: Over 90% of the hardware that is designed and
sold directly from Arduino (and its distributors) is still manu-
factured in Italy at very high standard of quality and reliabil-
ity. If you want to support Arduino and want a product that
won’t let you down, buy an original. It’s also much cooler to
have an original.

Arduino clones, derivatives,
compatibles and counterfeits

The family we just described is made of the “official” boards
but, due to the open source nature of Arduino, there are
other types of compatible boards that are divided in these
broad categories:

counterfeits
Although Arduino is open source the name itself is pro-
tected and trademarked. Anybody wanting to put the
“Arduino” brand on their product has to licensed it from
us. Unfortunately there are quite a lot of unscrupulous
individuals who manufacture hardware designed to fool
people into thinking that they are buying an original

Arduino Quick Reference 253

products. This is quite common in the fashion world
where you can find a lot of fake items of clothing pre-
tending to be original We spend a lot of time and energy
pursuing these people because they tarnish our brand
and our reputation. Please make sure that the products
you buy are original or from a reputable company like the
ones I mentioned above. Faking a brand is like identity
theft, it’s not cool.

compatibles
These products are designed without starting from an
Arduino design , maybe using processors that are not
found in the “official” boards, but provide different levels
of software/hardware compatibility with Arduino. For
example the Teensy boards by Paul Stoffregen is soft-
ware compatible with Arduino while using a different
type of processor. Paul does a fantastic job at contribu-
ting back to Arduino and working with us to ensure soft-
ware compatibility while others aim only at partial com-
patibility so, as they say, “your mileage may vary” quite a
lot.

clones
These are boards manufactured by using the files we
share online with no modifications. The manufacturers of
these devices generally do not contribute anything back
to the community or Arduino. A lot of them are no-name
products of varying quality. Although many of them are
quite cheap, it’s common to find boards that don’t work
well or have troubles down the line. Buyer beware: what
you save in hardware you might spend in your own time
fixing various problems.

derivatives
These are devices which are derived from the original
design of an Arduino board but provide different configu-
rations or enhancements. Most of these designs are
released as open source like the original boards. The

254 Getting Started with Arduino

makers of these devices tend to contribute back in differ-
ent ways to the Arduino community. Popular makers of
derivatives are, among others, Adafruit, Sparkfun, and
Seeedstudio.

Arduino Quick Reference 255

D/Reading Schematic
Diagrams

In most of this book I’ve given very detailed illustrations to
describe how to assemble the circuits, but as you can imagine,
it’s not exactly a quick task to draw one of those for each experi-
ment you might want to document.

Similar issues arise, sooner or later, in every discipline. In music,
after you write a nice song, you need to write it down using
musical notation.

Engineers, being practical people, have developed a quick way
to capture the essence of a circuit in order to be able to docu-
ment it and later rebuild it or pass it to somebody else.

In electronics, schematic diagrams (or schematics) allow you to
describe your circuit in a way that is understood by the rest of
the community. Individual components are represented by
schematic symbols that are a sort of abstraction of either the
shape of the components or the essence of them. For example,
the capacitor is made of two metal plates separated by either air
or plastic; therefore, its symbol is as shown in Figure D-1.

Figure D-1. Schematic symbol for a capacitor

257

Another clear example is the inductor, which is built by winding
copper wire around a cylindrical shape; consequently, the sym-
bol looks like Figure D-2.

Figure D-2. Schematic symbol for an inductor

The connections between components are usually made using
either wires or tracks on the printed circuit board and are repre-
sented on the diagram as simple lines. When two wires are con-
nected, the connection is represented by a big dot placed where
the two lines cross, as shown in Figure D-3.

Figure D-3. Schematic symbol showing connected wires

This is all you need to understand basic schematics. Figure D-4
shows schematic symbols for components that are commonly
found in Arduino circuits.

258 Getting Started with Arduino

Figure D-4. Common schematic symbols seen in Arduino cir-
cuits

You may encounter variations in these symbols (for example,
both variants of resistor symbols are shown here). See Wikipe-
dia for a larger list of electronics symbols.

In addition to this (somewhat) standard set of symbols, there
are conventions for how schematics are organised. Schematics
are drawn so that information flows from left to right. For exam-
ple, a radio would be drawn starting with the antenna on the left,
following the path of the radio signal as it makes its way to the
speaker, which would be the last thing on the right.

Figure D-5 describes the pushbutton circuit shown earlier in this
book.

Reading Schematic Diagrams 259

https://en.wikipedia.org/wiki/Electronic_symbol
https://en.wikipedia.org/wiki/Electronic_symbol

Figure D-5. A pushbutton connected to an Arduino digital input

You can see that the Arduino has been reduced to a box with a
pin and GND, because these are the only important things to
know about Arduino for this particular circuit. You can also see
two wires that are shown connected the label GND. This means
the wires are connected together. Connecting wires via labels is
useful for connections that get very busy (such as GND) or have
to get from one side of the schematic to the far side, crossing
many other wires and components.

Chapter 8 shows many practical examples of schematics, and
“Electronic Schematic Diagrams” on page 111 discusses sche-
matic diagrams in a little more detail.

260 Getting Started with Arduino

Index

Symbols
// (comment indicator), 30, 127
1N4007 diode, 73
22 AWG solid core wire, 167
2N7000 MOSFET, 109
5V pin, 40
; (semicolon), 44
= (assignment) operator, 42
== (comparison) operator, 42
{} (curly braces), 29

A
AC vs. DC electricity, 122
actuators, 23

testing, 221
Adafruit, 88, 97

male headers at, 103
Adafruit Guide to Excellent Solder-

ing, 162-176
Adafruit Guide To Making A Good

Solder Joint, 163
Alexa, 96
Alighieri, Dante, 30
Ampère, André-Marie, 37
Analog Devices TMP36, 69
analog inputs, 65-69

controlling blinking LEDs with,
66

controlling brightness of LEDs
with, 67

dealing with I2C communica-
tions, 106

pins, 13
analog pins, 13
analogRead() function, 65, 70, 73

return values of, 68
analogWrite() function, 55, 60
anodes, 25, 58

Arduino
groups, 98
LEDs on, 28
meetups, 98
philosophy of, 5
schematic symbol for, 112
troubleshooting, 212

Arduino Create (see Cloud IDE)
Arduino Forum, 223

etiquette in, 224
Arduino Leonardo

LED controller on, 55
Arduino Library, 107
Arduino platform, 11-21

hardware, 11-13
Arduino Store, 39, 154
Arduino Uno, 12

LED controller on, 55
AREF pins, 105
arithmetic in Processing, 242
ARM, 185, 193
arrays, 238

as lookup table, 137
buffers held in, 128
two-dimensional, 129

ASCII character set, 237
assumptions, 151
ATmega328 microcontroller, 12
Aton lamp, 77
automatic garden irrigation system

project, 97-184
assembling circuit for, 150-182
assembling project, 178-181
coding for, 128-150
complete sketch for, 141-150
electronic schematic diagrams,

111-124
humidity sensor, checking, 140
on/off times, checking, 135

261

on/off times, setting, 128-135
relays, 108-111
RTC for, 102-107
shopping list for, 183
temperature and humidity sen-

sor, 124-128
testing, 182

avr-gcc compiler, 14

B
Barragan, Hernando, 2
batteries, 37
Blink sketch, 26

testing with, 115, 121, 123, 176
blinking LEDs project

code for, 26
code for, explained, 30-34

blocks of code, 29
boolean operators, 243
breadboards

connecting power to compo-
nents on, 167-174

connecting TinyRTC with, 105
soldering on, 155
soldering projects to, 162-176
troubleshooting, 215
wiring conventions for, 168
wiring DHT11s with, 125
wiring warnings for, 156

buffers, 80
held in arrays, 128

burglar alarms, 53

C
C language, 14
cable ties, 179

protecting against strain with,
181

capacitors on schematics, 115
carpet switches, 52
carpets, putting sensors under, 52
cathodes, 25, 58
certainty and troubleshooting, 212
character sets, 237
circuits

assembling into a case, 178-181

for automatic garden irrigation
system, 150-182

for networked lamp project, 86
on schematics, 115
planning layout of, 157
soldering, 162-176

classic engineering, 5
code, 25

chunking into functions, 133
code blocks, 29
collaboration, 8
Colombo, Joe, 77
COM ports

assigning to Arduino on Win-
dows, 218

finding on Mac, 16, 20
finding on Windows, 18

comments, 30, 127, 236
common cathode, 87
comparison operators, 243
computers, 6

possibility of shorting, 215
const keyword, 31
constant variable, 127
constants, 31, 127, 236
continue command, 242
current, 37

D
Dashboard (see IoT Cloud)
data sheets of electronic devices,

108
data, storing, 43
DC vs. AC electricity, 122
debouncing, 48
debugging, 45, 212
decision-making process, 24
delay() function, 33, 60
Device Manager (Windows), 218
DHT11 temperature and humidity

sensor, 124-128
installation, checking, 126
library, installing, 126

Digi-Key, 108
digital I/O pins, 13

262 Index

connecting to MOSFET gates,
173

initial status of, 110
pinMode() and, 31

digitalRead() function, 39, 65, 73
digitalWrite() function, 32

controlling motor speed, 55
diodes, 73

laying out on breadboard, 158
on schematics, 115, 115

Divina Commedia (Alighieri), 30
do … while loops, 241
doormats, putting sensors under,

52
drain pins (MOSFET), 72, 99
drivers

installing on Linux, 20
installing on Macs, 15
installing on Windows, 18
troubleshooting on Windows,

217
DS1307 Breakout Board kit, 107
DS1307 RTC chip, 102

library for, 103

E
electricians tape, 117
electricity, 35-38

types of, converting, 122
wiring conventions for, 168

electronic schematic diagrams,
111-124
conventions of, 111

examples
automatic garden irrigation sys-

tem, 97-184
blinking LEDs, 24-34
button press, 40, 44, 46
interactive lamp, 34-49

exclusion and troubleshooting, 212

F
FAQ (Arduino.cc), 222
female headers, adding to bread-

board, 174
flaky results, avoiding, 46

floating gates, 110
flyback voltage, 110
for() loops, 60
formulas in Processing, 242
Found New Hardware Wizard (Win-

dows), 18, 217
Frankenstein’s monster, 98
functions, 29, 133

with return values, 42

G
gate pins (MOSFET), 72, 99

floating, 110
GND pin, 40

schematic symbol for, 112
unused, protecting, 166

Google, finding solutions with, 222
ground, 40

H
hackerspaces, 98
hacks

toy, 8
Haque, Usman, 8
hardware

Proto Shield, 154-176
to blink LEDs, 55

heat shrink tubing, 117
heat-dependent resistors, 69
help, finding, 222
HTML hexadecimal color codes, 80
humans, detecting, 54
hydraulic system, 36

I
I promessi sposi (Manzoni), 30
I2C port

RTCs and, 103
IDII Ivrea, 2
if statements, 42, 239

debugging, 222
Igoe, Tom, 74
IKEA FADO table lamp, 89
increment/decrement operators,

244

Index 263

information flows on electronics
schematics, 112

input/output, 51-74
analog inputs, 65-69
complex sensors, 73
digital I/O pins, 13
functions for, 244
homemade, 54
light sensors, 64
on/off sensors, 51
powering devices and, 71
pushbuttons, 38-42, 44-49
serial, 69
thermostat, 52
toggle switches, 51

insulating tape, 117
int keyword, 31
Integrated Development Environ-

ment (IDE), 11, 14
installing, 15-21
Linux, installing on, 19
Macintosh, installing on, 15-17
on Mac, 16, 20
on Windows, installing, 17
opening, 26
programming in, 29-34
Serial Monitor in, 71
specifying board for, 17
troubleshooting on Windows,

218
integration testing, 150
interaction design, 3
interactive devices, 23-49

actuators, 23
LEDs, controlling, 24-34
sensors, 23

interactive lamp example, 34-49
pushbuttons, 38-42

Internet forums, 8
Arduino Forum, 223
etiquette in, 224

IoT Cloud, 91
IRF520 MOSFET, 73
Ivrea, 7

J
jumper wires, connecting TinyRTC

with, 105
junk, 6

K
Kernighan, Brian W., 217
Kurt, Tod E., 80

L
lamps, driving, 71
LEDs

blinking at specified rate, 66
blinking, controlling with analog

inputs, 66
brightness, controlling with ana-

log inputs, 67
connecting power to, 170
current direction/voltage and,

121
in garden irrigation project, 121
LED, 15
polarization of, 58
preventing burnout, 25, 58
pushbuttons, controlling with,

38-42
resistors and, 25, 58
RGB, 87
soldering to breadboards, 165

libraries, debugging, 222
light sensors on schematics, 115
light-activated switch, 64
light-dependent resistor (LDR), 24,

64
Linux

installing IDE on, 19
Processing on, 79

lookup table, 137
loop() function, 29, 32
Low Tech Sensors and Actuators

(Haque and Somlai-Fischer), 8
lowest voltage, representation on

schematics, 111

264 Index

M
Macintosh

installing IDE on, 15-17
Processing on, 79
serial ports on, 84

magnetic switches, 52
Maker Shed, 39
Maker Shed Getting Started with

Arduino Kit, 88
makerspaces, 98
Making Things Talk (Igoe), 74
male headers, 103

on shields, 154
soldering, 175

math functions, 247-249
metal-oxide-semiconductor field-

effect transistor (see MOSFETs)
microcontroller, 3, 11
military equipment, 6
millis() function, 63
momentary switches, 54
Morse code, 69
MOSFETs, 72

connecting digital pins to gates,
173

connecting power to, 168
in garden irrigation project, 99
laying out on breadboards, 159
on schematics, 115
soldering to breadboards, 163
voltage, modifying with, 109

motors
driving, 71
resistors and, 73
speeds of, 55

N
Network Preferences (Mac), 16
networked lamp project, 74-90

assembling, 89
circuit, assembling, 86
code for, 80-86
planning for, 78

Node-RED, 96

O
object, 70
oddWires, 102
office machines, 6
Ohm, Georg, 37
ohms, 37
Ohms Law, 37, 109
Olivetti company, 7
opportunistic prototyping, 5
OTA

Over the Air, 92

P
parsing, sample code for, 130
passive infrared (PIR), 53
Peristaltic Liquid Pump with Sili-

cone Tubing (Adafruit), 97
Persistence of Vision (POV), 54
photoresistor, 24

resistors for, 87
physical computing, 3
Pike, Rob, 217
pinMode() function, 31

digital pins and, 110
pins

Analog In, 65
analog input, 13
analog out, 13
I/O, voltage limits on, 72
on schematics, 112
SCL, 104
SDA, 104
VCC, 104

Pirola, Maurizio, 216
planning projects, 99-102
Playground wiki, 8, 222
polyfuse, 215
port identification

in Windows, 18
on Macs, 16, 20

ports
COM, 16, 18, 20
I2C, 103, 106
identifying in Windows, 218
identifying on Windows, 218

Index 265

on Macintosh, 84
serial, 84, 106
USB, 13

power
external, troubleshooting, 213
for devices, 13, 71
supplies, in cases, 179
troubleshooting, 213

power selection jumper, 213
precut jumper wire kit, 39
printers, 6
Processing language, 1, 14, 71, 79

symbols in, 235
programmers, well-intentioned,

140
programming, 29-34

code blocks, 29
commenting lines out, 127
comments, 30
compiling, 27
debugging, 45
executing instructions, 29
for garden irrigation system,

128-150
functions with return values, 42
humidity sensor, checking, 140
if statements, 42
on/off times, checking, 135
on/off times, setting, 128-135
variable scope, 127
variables, 43

programs, 25, 28
Project Hub, 91
Proto Shield, 101, 154-176

assembling into a case, 178-181
connecting power to compo-

nents on, 167-174
female headers, adding, 174
in garden irrigation project, 101
laying out projects on, 156-162
relays compatible with, 108
sockets, 157
soldering on, 155
soldering projects to, 162-176
testing, 176-182

prototyping, 5
proxies, implementing, 79

pull-down resistors, 110
pull-up resistors, 110

on DHT11, 124-128
pulse width modulation (PWM),

54-63
changing light intensity with, 61

pulse-width modulation (PWM), 55
pushbutton example, 40, 44, 46
pushbuttons

changing light intensity with, 61
code for, 44-49
controlling LEDs with, 38-42
detecting length of time

pressed, 61
momentary tactile, 39

PWR LED, 15

R
RAM (random access memory), 44
real time clock (RTC), 73, 102-107

connecting to breadboard, 160
on/off times, setting with,

128-135
setting time on, 107

Real Time Clock (RTC), 100
Reas, Casey, 2
recycling, 6
relays, 108-111

attaching water valves to, 116
connecting power to, 171
on Proto Shields, 157

resistance, 37
on data sheets, 109

resistors, 86
choosing, 121
LEDs and, 25, 58
on schematics, 115
pull-down, 110
pull-up, 110

return command, 242
RGB LED, 87
RSS feeds, 79
rtc.hour() function, 136
rtc.minute() function, 136
rtc.now() function, 136
RTClib library

266 Index

verifying installation of, 104
RX LED, 28

S
schematic diagram, 111

printing out, 153
SCL pins, 104
scope rules, 127, 239
screw terminals, 117

attaching to breadboards, 164
connecting power to, 169

SDA pins, 104
sensors, 12, 23

complex, 73
light, 64
testing, 221

serial communication functions,
250-251

serial monitor, 71
and garden irrigation project,

132
serial objects, 69
serial ports, 84

speed of, 106
Serial.list() function, 84
Serial.parseInt() function, 130
serial_ports

installing on Linux, 20
setup() function, 29
shields, 101

male headers on, 154
shopping list

for automatic garden irrigation
system project, 183

pushbutton project, 39
short circuits, 117

power supply and, 216
troubleshooting, 215

sketches, 25, 28
Arduino vs. Processing, 80
debugging, 221
verifying upload, 214

sockets (Proto Shield), 157
orientation of, 157

soldering, 162-176
warnings, 162

solderless breadboards, 39
in garden irrigation project, 101
on schematics, 113
relays compatible with, 108
stranded wire and, 116

solid-core hookup wire, 40
stranded wire vs., 178

Somlai-Fischer, Adam, 8
source pins (MOSFET), 72, 99
standoffs, 178
stranded wire

solderless breadboards and, 116
solid-core vs., 178

strings
parsing, 130

switches
carpet, 52
magnetic, 52
momentary, 54
testing, 221
tilt, 52
tilt, homemade, 54
toggle, 51

T
Takamiya, Tami (Masaaki), 49
technical equipment, 6
temperature and humidity sensor,

74, 100, 124-128
checking, 140
connecting to breadboard, 160
DHT11 sensor, 124-128
testing, 127

testing
actuators, 221
automatic garden irrigation sys-

tem project, 182
circuits during wiring phase, 154
individual components, 212
integration, 150
Proto Shields, 176-182
sensors, 221
switches, 221
temperature and humidity sen-

sor, 127

Index 267

The Practice of Programming (Ker-
nighan and Pike), 217

thermistor, 69
thermostat, 52
tilt switches/sensors, 52

homemade, 54
time functions, 246
tinkering, 6
TinyRTC, 102, 104
toggle switches, 51
toys

hacking, 8
troubleshooting, 211-225

Arduino board, 212
basics of, 211
breadboards, 215
during wiring phase, 154
getting help online, 222
isolating problems, 216
Windows drivers, 217
Windows IDE, 218

Two Wire Interface (TWI), 103
TX LED, 28

U
Understanding the Code (Adafruit

tutorial), 107
UNICODE character set, 237
Upload button (IDE), 27
uploaded sketches, verifying, 214
USB cables, troubleshooting, 213
USB ports

powering Arduino through, 13
user interface, 100

for garden irrigation project, 129

V
variables, 43

constants and constant vari-
ables vs., 127

scope of, 127
types of, 236-238

VCC pin, 104
Verify button (IDE), 27
Vin connectors, 73
Volta, Alessandro, 37
voltage, 37

W
water analogy for electricity, 35
water valves, 99

attaching to relays, 116
electrical requirements of, 108

Web Editor (see Cloud IDE)
while loops, 241
Windows

Device Manager, 218
drivers, troubleshooting, 217
Found New Hardware Wizard,

217
identifying ports on, 218
installing IDE on, 17
Processing on, 79
troubleshooting IDE on, 218

Windows Vista, 218
Windows XP, 218
Wire Arduino library, 103
wires

22 AWG solid core, 167
color coding conventions for,

168
insulating, 117
jumper, 105
long, connecting to breadboard,

161
organizing in cases, 179
precut jumper, 39
solid-core hookup, 40

268 Index

About the Authors

Massimo Banzi is the co-founder of the Arduino project. He is
an Interaction Designer, Educator and Open Source Hardware
pioneer. In addition to working for Arduino he currently teaches
Cyber Physical System at USI University in Lugano (Switzer-
land), Interaction Design at SUPSI Lugano and CIID Copenha-
gen.

Michael Shiloh is an associate professor at the California Col-
lege of the Arts, where he teaches electronics, programming,
robotics, and mechatronics. Trained formally as an electrical
engineer, Michael worked for various consumer and embedded
engineering firms before discovering a passion for teaching.
Michael also prefers applying his engineering skills to creative
and artistic devices rather than consumer devices. Michael fre-
quently lectures and speaks at conferences and universities
worldwide. In 2013, Michael started working for Arduino, speak-
ing about and teaching the open source electronics prototyping
platform to new audiences.

Colophon

The cover image is by Judy Aime’ Castro. The cover and text
font is Benton Sans; the heading font is Benton Sans; and the
code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Preface to the 4th Edition
	Preface
	Acknowledgments for Massimo Banzi
	Acknowledgments for Michael Shiloh
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us

	Chapter 1. Introduction
	Intended Audience
	What Is Interaction Design?
	What Is Physical Computing?

	Chapter 2. The Arduino Way
	Prototyping
	Tinkering
	We Love Junk!
	Hacking Toys
	Collaboration

	Chapter 3. The Arduino Platform
	The Arduino Hardware
	The Software Integrated Development Environment (IDE)
	Installing Arduino on Your Computer
	Installing the IDE: MacOS
	Configuring the Drivers: MacOS
	Port Identification: MacOS

	Installing the IDE: Windows
	Configuring the Drivers: Windows
	Port Identification: Windows

	Installing the IDE: Linux
	Configuring the Drivers: Linux
	Granting Permission on the Serial Ports: Linux

	Chapter 4. Really Getting Started with Arduino
	Anatomy of an Interactive Device
	Sensors and Actuators
	Blinking an LED
	Pass Me the Parmesan
	Arduino Is Not for Quitters
	Real Tinkerers Write Comments
	The Code, Step by Step
	What We Will Be Building
	What Is Electricity?
	Using a Pushbutton to Control the LED
	How Does This Work?
	One Circuit, a Thousand Behaviours

	Chapter 5. Advanced Input and Output
	Trying Out Other On/Off Sensors
	Homemade (DIY) Switches

	Controlling Light with PWM
	Use a Light Sensor Instead of the Pushbutton
	Analogue Input
	Try Other Analogue Sensors
	Serial Communication
	Driving Bigger Loads (Motors, Lamps, and the Like)
	Complex Sensors
	The Arduino Alphabet

	Chapter 6. Processing with an Arduino Lamp
	Planning
	Coding
	Assembling the Circuit
	Here’s How to Assemble It

	Chapter 7. The Arduino Cloud
	
	
	
	

	Chapter 8. Automatic Garden-Irrigation System
	Planning
	Testing the Real Time Clock (RTC)
	Testing the Relays
	Electronic Schematic Diagrams
	Testing the Temperature and Humidity Sensor
	Coding
	Setting the On and Off Times
	
	
	

	Assembling the Circuit
	
	Laying Out Your Project on the Proto Shield
	
	
	
	

	Things to Try on Your Own
	Irrigation Project Shopping List

	Chapter 9. The Arduino ARM Family
	What’s the difference between AVR and ARM?
	What difference does 32 bits really make?
	What’s the difference between a microcontroller and a microprocessor?
	Which is better: AVR or ARM?
	Introducing the Arduino ARM based boards
	
	
	
	
	
	The Nano and MKR footprints

	Chapter 10. Talking to the internet with ARM: An Internet Connected “Fistbump”
	An internet connected “fistbump”
	Introducing MQTT: the Message Queueing Telemetry Transfer protocol
	Internet Connected Fistbump: The hardware
	Internet Connected Fistbump: MQTT Broker on Shiftr.io

	Chapter 11. Troubleshooting
	Understanding
	Simplification and Segmentation
	Exclusion and Certainty
	Testing the Arduino Board
	Testing Your Breadboarded Circuit
	Isolating Problems
	Problems Installing Drivers on Windows
	Problems with the IDE on Windows
	Identifying the Arduino COM Port on Windows
	Other Debugging Techniques
	How to Get Help Online

	Appendix A. The Breadboard
	Appendix B. Reading Resistors and Capacitors
	Appendix C. Arduino Quick Reference
	Structure
	Special Symbols
	Constants
	Variables
	Variable Scope
	Control Structures
	Arithmetic and Formulas
	Comparison Operators
	Boolean Operators
	Compound Operators
	increment and decrement (–– and ++)

	Input and Output Functions
	Time Functions
	Math Functions
	Random Number Functions
	Serial Communication
	The Arduino Family

	Appendix D. Reading Schematic Diagrams
	Index
	About the Authors

