r

.
Mal_(e

Getting
Started with
Processing. py

Making Interactive Graphics with

Python's Processing Mode
Allison Parrish,
Ben Fry, Casey Reas

Technology & Engineering / Python/Digital Media
Make: Getting Started with Processing.py

This book by the creators of Processing is the best starting point for
anyone interested in using the Python syntax for making drawings,
animations, and interactive images.

With this handy book, readers can learn how to get started with
interactive graphics even if they have no programming experience.
Processing, a programming environment, makes it easy for anyone to
create visual art inreal time. Now Processing.py takes Processing to the
Python programming language!

With Getting Started with Processing.py, you'll learn to make

interactive graphics using Python’s powerful plugin modules!

» Introduces readers to the world of creative coding without having to
leave the comfortable world of Python

» Opens Python to a wider audience: artists, designers, educators,
beginners

» Excellent book for getting young people engaged with computing

» Written by the authors of the original Processing language and an
expert in Python

Processing.py is a library that starts with the original goal of Processing,
to make coding accessible for artists, designers, educators, and
beginners, and integrates it with the popular programming language
Python.

Get out and start py-rocessing!

US $24.99 CAN $28.99
ISBN: 978-1-4571-8683-7

NI i Make:
9781457 | |

MR makezine.com

186837‘

Getting
Started with
Processing.py

Allison Parrish, Ben Fry, and
Casey Reas

J

LV MAKERMEDIA

SAN FRANCISCO, CA

Getting Started with Processing.py
by Allison Parrish, Ben Fry, and Casey Reas

Copyright © 2016 Maker Media. All rights reserved.

Printed in the United States of America.

Published by Maker Media, Inc., 1160 Battery Street East, Suite 125, San Francisco,
CA 94111.

Maker Media books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (http://safaribookson-
line.com). For more information, contact O'Reilly Media's institutional sales depart-
ment: 800-998-9938 or corporate@oreilly.com.

Editor: Patrick Di Justo Indexer: Angela Howard
Production Editor: Nicholas Adams Interior Designer: David Futato
Copyeditor: Jasmine Kwityn Cover Designer: Karen Montgomery
Proofreader: Gillian McGarvey Illustrator: Rebecca Demarest

May 2016: First Edition

Revision History for the First Edition

2016-05-06: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781457186837 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker Media, Inc.
The Maker Media logo is a trademark of Maker Media, Inc. Getting Started with Pro-
cessing.py and related trade dress are trademarks of Maker Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and Maker Media, Inc. was aware of a trademark claim, the designations have been
printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
and authors assume no responsibility for errors or omissions, or for damages result-
ing from the use of the information contained herein.

978-1-457-18683-7
[LSI]

http://safaribooksonline.com
http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781457186837

Contents

Preface. . ..o e e e e ix
T 1= 1
Sketching and Prototyping. v v e v oo i e 2
1o T o] 11 3
L= T 3
Family Tree. ot e e et et e s 5
8o 0 1 5
2/Starting to Code. v ittt it i et e e 7
Y21 1o 1Y/ Yo [8
Your First Program. . v e o e 9
Example 2-1: Draw an Ellipse. v oo v i v i it i e e i i e an e 9
Example 2-2: Make CirCles. « v v vun i it e i e e e e ee s anea e e 10
SO 4 et e e e 10
Save and NeW. ¢ vttt e it ittt e 11
] 11
Examples and Reference. .o v v i i i it it e it s ia et 12
D - 13
The Display WinAOW. « v v ve v i i e st e e s e e et ansaneanernnennannns 13
Example 3-1: Draw a Window. « .« v v v i i e e e i e e e e ann s 14
Example 3-2: Draw @ Point. o oo v o v i e e 14
T2 R Lo | =0 1= 14
Example 3-3: Draw a Line. . oo o v i i i i i e e s s e, 16
Example 3-4: Draw Basic Shapes. . oo v ve i i iii i e iieenenennnns 16
Example 3-5: Draw a Rectangle. .. .o oo v i e i i 16
Example 3-6: Draw an Ellipse. v vvivi it i i 17
Example 3-7: Draw Part of an Ellipse. .o vovvieivii it i iineeens 18
Example 3-8: Draw with Degrees. v vv v e i vin i iinininsnenennrans 19

D= 1T Yo e =Y 20
Example 3-9: Control Your Drawing Order.ovuuieviininnnennenn. 20
Example 3-10: Put [t in Reverse. .o vou i i e e e a et 20

i1l

Shape Properties. v v e it i et e et e sttt e ettt e e 21

Example 3-11: Set Stroke Weight. .. oo oi i et 21
Example 3-12: Set Stroke Caps. « v v v v vinen e i i sa i ie e nnnnnns 21
Example 3-13: Set Stroke JoiNS. . v vvvi v i e 22
Drawing MOGES. « v v vttt e ettt e st i et c et e e s 22
Example 3-14: Onthe Corner. . vv v n it i e i e it e e s e eaenaanenns 23
[0 o T 23
Example 3-15: Paint with Grays. . oo v v i i i e e 25
Example 3-16: Control Fill and Stroke. . .o oo v v i it 25
Example 3-17: Draw with Color. . v v vvi v i e e e e eaeas 26
Example 3-18: Set TransparenCy. v v v v e e e e e e enennsnrneneenennnnns 27
CUSTOM ShapesS. s vt it i et et sttt et e e eaeaa e sa s aneannenns 28
Example 3-19: Draw an ArrOW. s v e v e uven s ennnnsnnnnnsasnnnnenss 28
Example 3-20: Close the Gap. s v vt v i iininii i i i iniesainneneas 28
Example 3-21: Create Some Creatures. .o vvve e e iiiieininennnnnns 29

Lo a4 0T 30
oo i D 31
4/Variables. ii it i i i i i i s 35
First Variables. . oo v it e e e e e e 35
Example 4-1: Reuse the Same Values. .. oo v v i e i i i i eeeanns 35
Example 4-2: Change Values. . v v et it iiiie i et e e i e ieieennnannns 36
MaKing Variables. o v v v ie i et ettt it s et e e s 36
Processing Variables. . v v s i et i ittt 37
Example 4-3: Adjust the Size, See What Follows.t 37
ALittle Math. o v e e 37
Example 4-4: Basic Arithmetic. .o oo i i e i e 38

[T=T 01 14 o] o T 39
Example 4-5: Do the Same Thing Over and Over.....ovvviniinnnnnn. 39
Example 4-6: Use @ for LOOP. v v v vv e vin i ie i ieiain i ianeaannns 40
Example 4-7: Flex Your for Loop's MUSCIES. + v v v e v ii i e iiennannns 41
Example 4-8: Fanning Out the Lines. .. oo v vi i i i i e e e e 411
Example 4-9: Kinking the Lines. .. v v it i i i e e e s 42
Example 4-10: Embed One for Loop in Another.o iiiiiians. 42
Example 4-11: Rows and ColUmMNS. « v v vu s i it e s i e enennaennns 43
Example 4-12: Pins and LiNeS. s v v v v i i i i i e i seinneieainnnens a4
Example 4-13: Halftone Dots. v v v v v i i i i i e e e e e a4
Robot 2: Variables. . v v ve oo e e 45
B/ RESPONSE. « + vttt u s a s e 47
ONce and ForeVer. v vt it e e et i e a7
Example 5-1: The draw() Function. ... vvvvii i i i e aas a7

iv Contents

Example 5-2: The setup() Function. ovv it e e et 48

Example 5-3: Global Variables. . oo v o i e e i e e e 49

] 0 49
Example 5-4: Track the Mouse. .« vt ve i it i i i e e e 49
Example 5-5: The Dot Follows YOU. v o v e v i i i i i i e e en e 50
Example 5-6: Draw ContinUousIy. « v v v e it i e i i e e i e e eeanns 50
Example 5-7: Set Thicknessonthe Fly. ..., 51
Example 5-8: Easing Does It oo oo v it i i i 52
Example 5-9: Smooth Lines with Easing.o oviv it 53
Modifying Global Variables. ... vv v e i e e 54
Lo 55
Example 5-10: Click the MoUSE. + v v v et it i e s et e e s e e nnennnnnns 56
Example 5-11: Detect When Not Clicked. .. .o oviviiiiiii i n s 57
Example 5-12: Multiple Mouse Buttons. oo ovie i an s 58

0 7= 11 1 59
Example 5-13: Find the CUrsor. . vv v et e it e e e ee e neaeannns 60
Example 5-14: The Bounds of aCircle. . oo v e i i i i i i e e aens 61
Example 5-15: The Bounds of a Rectangle.cvvviiiinnn. 62
177 51 64
Example 5-16: Tap a Key. v vvvi i iiie i i i et s i ianiennianenens 65
Example 5-17: Draw Some Letters. . v vvivinin i i i i i cienens 65
Example 5-18: Check for Specific KeyS. c v vv v iiiiii i i iieieinnnnn 66
Example 5-19: Move with Arrow Keys. .o vei it iii i i e iieennens 67
1Y/ o 68
Example 5-20: Map ValuestoaRange.ovvveiiinii i iininnnnns 68
Example 5-21: Map with the map() Function.oovviiiinnnnn 69
RODOt 3 RESPONSE. & v it ittt e ettt ettt ittt a e e e e 70
6/Translate, Rotate, Scale.v ittt it e i tnnsnrenanaranennnnns 73
Translate. o v e e 73
Example 6-1: Translating Location. ooiiii et 74
Example 6-2: Multiple Translations. .« ovove v i i i i e 74
Rotate. . vt e i 75
Example 6-3: Corner Rotation. .« ovve i i i i e e et 76
Example 6-4: Center Rotation.o vi i e as 76
Example 6-5: Translation, Then Rotation., 77
Example 6-6: Rotation, Then Translation.ovevii i iinnnnnn 78
Example 6-7: An Articulating Arm. .. v e v i i e 79
07 1 80
Example 6-8: Scaling. « v vv v ii it i e it e e e 80
Example 6-9: Keeping Strokes Consistent. oo iiviiiii e ant. 81
PUSh @nNd PO, v v s et i i e i 81

Contents v

Example 6-10: Isolating Transformations.cvoviiiiiiiiinenn.. 82

Robot 4: Translate, Rotate, Scale. ... oo i i i e e eas 83
7. (= | 85
o= 86
Example 7-1: Load an Image. « v v v v v it e iin i s e i eneaennnnns 86
Example 7-2: Load MOre Images. .« v v v venennnin s rnnensnranensnn 87
Example 7-3: Mousing Around with Images. ... oo iiiiie i i enannn. 88
Example 7-4: Transparency witha GIF.o i i i i e e e as 90
Example 7-5: Transparency witha PNG.o oeie it 90
0] £ 91
Example 7-6: Drawing with Fonts.ovvi i 92
Example 7-7: Draw Text in @ BOX. v vt v vi i et iiiiieiaeinannannnnns 93
Example 7-8: Store Textin a String. . oo it i e i i e i i eeennn 93

IS = 01 94
Example 7-9: Draw with Shapes. . .. vvv it i e 94
Example 7-10: Scaling Shapes. .« v v v i it i i i i e e i eeeannnes 95
Example 7-11: Creatinga New Shape. . ..o v vviiiiii i i i ea s 95
Robot 5: Media. « v v v e e e 97
£ o 1 99
= 10 0= 99
Example 8-1: See the Frame Rate. ... oo i i 99
Example 8-2: Setthe Frame Rate. . ..o v v i i i i 100
Speed and DIireCtioN. v v v v e et e ittt i e e e e 100
Example 8-3: Move @ Shape. .t v v it i i i e it i e s e s 101
Example 8-4: Wrap Around. . . oo v ie i i e e e e 101
Example 8-5: Bounce Off the Wall. ..o oo i v i i i i e s 103
20T 104
Example 8-6: Calculate Tween Positions. . v v e et ieeiniiennnnnn 104
=T [o 0 105
Example 8-7: Generate Random Values.o vivii i i ennnnn. 105
Example 8-8: Draw Randomly. . o vvvuiiiii i i i i e i eiennas 106
Example 8-9: Move Shapes Randomly. .. ovvvviiinii i iininiannn 106

LI L5 £ 108
Example 8-10: Time Passes. c v cvvie it innnnernnennsrnnennnnnns 108
Example 8-11: Triggering Timed Events., 108
Lo T 109
Example 8-12: Sine Wave Values. . v vvvi i iiiiiiiiiiiecinnna e 111
Example 8-13: Sine Wave Movement. .. ovviine i i iieiniaennnnnn 111
Example 8-14: Circular Motion. . v v vt e e i i e i e et e e e e eeeanans 112
Example 8-15: Spirals. . v v i e iei i it et e i e 113

vi Contents

RObOt B MOtiON. « vt e e e e i e e e e e e 114

L2 0 T 1 o 117
FUNCHON BaSiCS. v v vt et e et i e e e e e et e e e 118
Example 9-1: Roll the Dice. v v v i i et i e i e s 118
Example 9-2: Another Way toRoll. o v v v i i i 119
Make @ FUNCHION. « v vttt it e e st e e i e 120
Example 9-3: Draw the Owl. . oo vt oo e e s e e e e e ae s 120
Example 9-4: TWO'S COMPaANY. « v vt i ti i e e eeeneaaaenannens 121
Example 9-5: An Owl Function.o 122
Example 9-6: Increasing the Surplus Population.ovvveivnnnn. 124
Example 9-7: Owls of Different SizeS...vvveviiiinii i 124
Return Values. . oo v i i e ettt e it 125
Example 9-8: Returna Value. . ..o oo i i i i e s e e e e e 126
Robot 7: Functions. . v o v v e e 127
070) < = o 129
Fields and Methods. .« v v v i it it r e e e e e a e a s 130
DEfiNE @ ClasSS. v v vt v vt s ee s ases e e aa e a e a i a e aaaaas 131
Create ObjectS. o v v it e e e e 135
Example 10-1: Make an Object. o v v v v i i i i i e e 135
Example 10-2: Make Multiple Objects. . vvvviviin i i 136
(070N T N = 137
Robot 8: ObjeCtS. vt it i e e e e e e e e 139
5 T 141
From Variables to Lists. . v v i e i e e 141
Example 11-1: Many Variables. .. .o voeie i i i e eaae s 141
Example 11-2: Too Many Variables. .. v vvuvin i i i i iiinnnnnns 142
Example 11-3: Lists, Not Variables. ..o vevi i i i i e i eanns 143
List Operations. .o vve it et i e it e e e e e a e 144
Example 11-4: Declare and Appendtoa List.....ovievinioianan.. 146
Example 11-5: Compact List Initialization. .. oo vviviniiniinans. 146
Example 11-6: Revisiting the First Example. oo vviviiiiiiiinnnnnn. 146
Repetition and Lists. .o v v v i i et 147
Example 11-7: Filling a Listinafor LOOP. v evviiiniiniiiiiiannnnn 147
Example 11-9: Track Mouse Movements.viviiiiiinnnennnnnn 148
Lists Of ObJeCtS. v v u vttt et sttt s it i 149
Example 11-10: Managing Many Objects. . vvvvvvi i iniiiininennn 149
Example 11-11: A New Way to Manage Objects. .. ovvvivinnnvnnnnn. 150
Example 11-12: Sequences of IMages. v v v v iiiiniiininnnnnnns 151
RODOt O ListS. vt e i e e i 152

Contents vii

12/Dataand Dictionaries. oo it i i it e st et s e n 155

D= I U T T 0= V7 155

9] o3 Ao =T T 156
Example 12-1: (Keyboard) Keys as (Dictionary) Keys. . ..vvvvevunnnn. 157

Lists of Dictionaries. « v v v e it e i e s it e e naaaas 158
Example 12-2: The Planets. . o v v i it i i ii e e e e e e 161

L 1 162
Example 12-3: Readthe Data. . ..o oo i i i e 162
Getting the Right Type. . oo o v i e e e 163
Example 12-4: Draw the Table. .o o v v i i 164
Example 12-5: 29,740 Cities. v v v v e ii et it e i i eaeainnenens 166
1 168
Example 12-6: Read @ JSON File. o oo v i i i e i e e e e aeane s 169
Example 12-7: Visualize Data from a JSON File.o veviiinia 170
Network Data and APIS. .. oo e i e i e et 172
Example 12-8: Parsing the Weather Data.cvvvviiiiiinnnnn. 175
Example 12-9: Chaining Square Brackets ... voviiiiiiiiiiennnt. 175
Robot 10: Data. . v v i i e e 176
5 =Y U 179
0o 10T T PR 180
Example 13-1: Play @ Sample. oo v v ii e i i ie i eninneaennnns 181
Example 13-2: Listen to a Microphone. . .. oo vvevi i i i i iieeens 182
Example 13-3: Create aSineWave. . ..o vi i it iii i iieienannn 184
Image and PDF EXpOrt. . vu v s i e et i e 185
Example 13-4: Saving IMages. .« vt v i i iiiiii et saiineneannnns 185
Example 13-5: Draw toa PDF. o v vt i i 187
Hello, ArdUiNO. v v e s ettt sttt a et n e s asannsansnnsns 188
Example 13-6: Read @ SENSOr. « v vt ittt ie it e ia s e ceeanneaennnnn 189
Example 13-7: Read Data from the Serial Port. ottt 191
Example 13-8: Visualizing the Data Stream.o oo i it 192
Example 13-9: Another Way to Look at the Data..............c.ut. 193
A/Coding TiPs. - s it ittty 197
B/Data TYPeS. « « s s vttt e ii i e e i s tam st n it n s 203
C/Order of Operations.o iinnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 205
D/Variable SCOPe. . . - o vttt i ittt ettt et e e e 207
E/Processing, Python,and Java.o v e vt i i nnnnnnnnnnnnnnnnnnnnnns 211
8T o 215

viii Contents

Preface

Processing.py is an interactive program-
ming and graphics framework for the
Python programming language.
Jonathan Feinberg created Processing.py
in 2010, basing his work on an existing
programming framework called Process-
ing, created by Casey Reas and Ben Fry in
2001. Casey and Ben were inspired by
how simple it was to write interesting pro-
grams with the languages of their child-
hood (Logo and BASIC), and intended
their framework to be a way to sketch
(prototype) full-screen, interactive soft-
ware without the frustration of languages
typically used for this purpose at the time
(C++ and Java).

When the Processing project was first created, it was intended
to be a language-agnostic, arts-oriented approach to interactive
programming, taking inspiration from OpenGL, PostScript, and
Design By Numbers, among other sources. Although early ver-
sions of Processing were compatible with the Python program-
ming language, a decision was made to focus the team’s limited
resources on a Java-based syntax. Jonathan Feinberg's Pro-
cessing.py project restored Python compatibility to the project.
(For more information on the relationship between Processing,
Processing.py, and Python, see Appendix E.)

Processing was designed to be an ideal environment for teach-
ing design and art students how to program and to give more
technical students an easier way to work with graphics. The
combination is a positive departure from the way programming
is usually taught and, since 2001, Processing has been at the
center of a growing movement to promote software literacy in
the visual arts and visual literacy within technology.

I'm a strong believer in the power of the Python programming
language and have taught Python with great success to novice
programmers in many disciplines, from software engineering to
the humanities to the arts. For this reason, | was overjoyed when
Casey and Ben approached me to help write this book, which
brings together their time-tested creative coding framework
with a programming language I've found so friendly and produc-
tive for novice coders and experts alike. We believe that Pro-
cessing.py is not just a great framework for learning how to pro-
gram but an invaluable addition to the toolbox of Python pro-
grammers of all stripes who need a simple and clear means of
making interactive applications.

This book is available in three slightly different versions. One
version is an introduction to Processing using its traditional,
Java-based syntax, and a second covers pb.js, a version of Pro-
cessing reinterpreted for today's Web. The version you now have
in your possession introduces Processing with the Python pro-
gramming language, using Processing.py as the bridge between
the two. The three books are organized in very similar ways, and
much of the content is identical from one book to the other. The
main difference, of course, is that the code examples in this
book are all written in Python. This book also contains some
additional information and educational material about Python-
specific techniques, idioms, and data structures. We believe this
book will work well as an introductory text for the Processing
Development Environment, the Python programming language,
and interactive programming in general.

We hope you'll have fun with this book and be inspired to con-
tinue programming. Let’s begin!

x Preface

How This Book Is Organized

The chapters in this book are organized as follows:

1/Hello: Learn about Processing.py.

2/Starting to Code: Create your first Processing.py pro-
gram.

3/Draw: Define and draw simple shapes.
4/Variables: Store, modify, and reuse data.

5/Response: Control and influence programs with the
mouse and the keyboard.

6/ Translate, Rotate, Scale: Transform the coordinates.

//Media: Load and display media, including images, fonts,
and vector files.

8/Motion: Move and choreograph shapes.
9/Functions: Build new code modules.

10/0Objects: Create code modules that combine variables
and functions.

11/Lists: Simplify working with lists of variables.

12/Data and Dictionaries: Load and visualize data using the
dictionary data structure.

13/Extend: Learn about sound, PDF export, and reading
data from an Arduino board.

Who This Book Is For

This book is written for people who want a casual and concise
introduction to computer programming so that they can create
images and simple interactive programs. It's especially suited to
beginning programmers who want to learn the Python program-
ming language. Getting Started with Processing.py is not a pro-
gramming textbook; as the title suggests, it will get you started.
It's for teenagers, hobbyists, grandparents, and everyone in
between.

Preface xi

This book is also appropriate for people with programming
experience, particularly in the Python programming lan-
guage, who want to learn the basics of interactive computer
graphics. Getting Started with Processing.py contains techni-
ques that can be applied to creating games, animation, and
interfaces.

Conventions Used in This Book
The following typographical conventions are used in this book:

[talic
Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width
Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables, state-
ments, and keywords.

Constant width italic
Shows text that should be replaced with user-supplied val-
ues or by values determined by context.

/ This type of paragraph signifies a general note.

a This element indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you
may use the code in this book in your programs and documen-
tation. You do not need to contact us for permission unless
you're reproducing a significant portion of the code. For exam-
ple, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a

xii Preface

CD-ROM of examples from Make: books does require permis-
sion. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a sig-
nificant amount of example code from this book into your pro-
duct's documentation does require permission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For exam-
ple: “Make: Getting Started with Processing.py by Allison Par-
rish, Ben Fry, and Casey Reas. Copyright 2016 Maker Media,
Inc., 978-1-457-18683-7"

If you feel your use of code examples falls outside fair use or the
permission given here, feel free to contact us at permis-
sions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s
leading authors in technology and business.

Technology professionals, software developers, web designers,
and business and creative professionals use Safari Books Online
as their primary resource for research, problem solving, learn-
ing, and certification training.

Safari Books Online offers a range of plans and pricing for enter-
prise, government, education, and individuals.

Members have access to thousands of books, training videos,
and prepublication manuscripts in one fully searchable data-
base from publishers like Maker Media, O'Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press,
Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley
& Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-
Hill, Jones & Bartlett, Course Technology, and hundreds more.
For more information about Safari Books Online, please visit us
online.

Preface xiii

mailto:permissions@oreilly.com
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

How to Contact Us

Please address comments and questions concerning this book
to the publisher:

Maker Media, Inc.

1160 Battery Street East, Suite 125

San Francisco, California 94111

800-998-9938 (in the United States or Canada)
http://makermedia.com/contact-us/

Make: unites, inspires, informs, and entertains a growing com-
munity of resourceful people who undertake amazing projects in
their backyards, basements, and garages. Make: celebrates your
right to tweak, hack, and bend any technology to your will. The
Make: audience continues to be a growing culture and commu-
nity that believes in bettering ourselves, our environment, our
educational system—our entire world. This is much more than
an audience, it's a worldwide movement that Make: is leading—
we call it the Maker Movement.

For more information about Make:, visit us online;

Make: magazine: http://makezine.com/magazine/
Maker Faire: http://makerfaire.com
Makezine.com: http://makezine.com

Maker Shed: http:/makershed.com/

Acknowledgments

We thank Brian Jepson, Anna Kaziunas France, and Patrick
DiJusto for their great energy, support, and insight.

We can't imagine this book without Massimo Banzi's Getting
Started with Arduino (Maker Media). Massimo's excellent book
is the prototype.

A small group of individuals has, for years, contributed essential
time and energy to Processing. Dan Shiffman is our partner in
the Processing Foundation, the 501(c)(3) organization that sup-
ports the Processing software. Much of the core code for Pro-
cessing 2.0 and 3.0 has come from the sharp minds of Andrés

xiv Preface

http://makermedia.com/contact-us/
http://makezine.com/magazine/
http://makerfaire.com
http://makezine.com
http://makershed.com/

Colubri and Manindra Moharana. Scott Murray, Jamie Kosoy,
and Jon Gacnik have built a wonderful web infrastructure for the
project. James Grady is rocking the 3.0 user interface. We thank
Florian Jenett for his years of diverse work on the project,
including the forums, website, and design. Elie Zananiri and
Andreas Schlegel have created the infrastructure for building
and documenting contributed libraries, and have spent count-
less hours curating the lists. Many others have contributed sig-
nificantly to the project; the precise data is available at https./
github.com/processing.

This book grew out of teaching with Processing at UCLA. Chan-
dler McWilliams has been instrumental in defining these
classes. Casey thanks the undergraduate students in the
Department of Design Media Arts at UCLA for their energy and
enthusiasm. His teaching assistants have been great collabora-
tors in defining how Processing is taught. Hats off to Tatsuya
Saito, John Houck, Tyler Adams, Aaron Siegel, Casey Alt,
Andrés Colubri, Michael Kontopoulos, David Elliot, Christo Alle-
gra, Pete Hawkes, and Lauren McCarthy.

Jonathan Feinberg began developing Processing.py independ-
ently in 2010. Google provided initial support for the develop-
ment of Python Mode for the Processing IDE in April 2014. The
Processing Foundation and Fathom provided additional logisti-
cal support. James Gilles made important contributions to the
development of Python Mode as well. Work on the Reference,
examples, and tutorials was funded in the summer of 2014 in
part by the Integrative Design, Arts, and Technology (IDeATe)
initiative at Carnegie Mellon University, and by a grant from the
National Endowment for the Arts managed by the Frank-
Ratchye STUDIO for Creative Inquiry at CMU. Thank you to
Miles Peyton for his work on the documentation and to Golan
Levin for guidance and support. We also thank Luca Damasco,
who helped bring Processing.py into alignment with the newly
released Processing 3 during the 2015 Google Summer of Code,
again under guidance from Golan Levin and the Frank-Ratchye
STUDIO for Creative Inquiry at CMU.

The Processing.py project is currently maintained by Jonathan
Feinberg and a small team of contributors. You can learn more
about Processing.py at the project’s website.

Preface xv

https://github.com/processing
https://github.com/processing
http://py.processing.org/

Through founding the Aesthetics and Computation Group
(1996-2002) at the MIT Media Lab, John Maeda made all of this
possible.

xvi Preface

1/Hello

Processing is for writing software to make
Images, animations, and interactions.
The idea is to write a single line of code
and have a circle show up on the screen.
Add a few more lines of code, and the cir-
cle follows the mouse. Another line of
code, and the circle changes color when
the mouse is pressed. We call this
Sketching with code. You write one line,
then add another, then another, and so
on. The result is a program created one
piece at atime.

Programming courses typically focus on structure and theory
first. Anything visual—an interface, an animation—is considered
a dessert to be enjoyed only after finishing your vegetables, usu-
ally after several weeks of studying algorithms and methods.
Over the years, we've watched many friends try to take such
courses and drop out after the first lecture or after a long, frus-
trating night before the first assignment deadline. What initial
curiosity they had about making the computer work for them
was lost because they couldn't see a path from what they had to
learn first to what they wanted to create.

Processing offers a way to learn programming through creating
interactive graphics. There are many possible ways to teach
coding, but students often find encouragement and motivation
in immediate visual feedback. Processing’s capacity for provid-
ing that feedback has made it a popular way to approach pro-

gramming, and its emphasis on images, sketching, and commu-
nity is discussed in the next few pages.

Sketching and Prototyping

Sketching is a way of thinking; it's playful and quick. The basic
goal is to explore many ideas in a short amount of time. In our
own work, we usually start by sketching on paper and then mov-
ing the results into code. Ideas for animation and interactions
are usually sketched as storyboards with notations. After mak-
ing some software sketches, the best ideas are selected and
combined into prototypes (Figure 1-1). It's a cyclical process of
making, testing, and improving that moves back and forth
between paper and screen.

£
i
sz,

Figure 1-1. As drawings move from sketchbook to screen, new
possibilities emerge

2 Getting Started with Processing.py

Flexibility

Like a software utility belt, Processing consists of many tools
that work together in different combinations. As a result, it can
be used for quick hacks or for in-depth research. Because a Pro-
cessing program can be as short as one line or as long as thou-
sands, there's room for growth and variation. More than 100
libraries extend Processing even further into domains including
sound, computer vision, and digital fabrication (Figure 1-2).

DXF STL
SVG

oBJ TrueType

Methcla SketchUp

Shaders Non-photorealistic rendering

0sc
MIDI D3

ubP SFTP WordNet
Bluetooth TCP/IP

GStreamer

OpenCV

XML MySQL/SQLite Blob detection

QR code

JSON
Twitter

XBee Face detection TUIO PNG
Mouse

Tablet Keyboard JPEG

TGA

GIF

Camera Joystick

Figure 1-2. Many types of information can flow in and out of
Processing
Giants

People have been making pictures with computers since the
1960s, and there's much to be learned from this history. For
example, before computers could display to CRT or LCD
screens, huge plotter machines such as the one shown in

Hello 3

Figure 1-3 were used to draw images. In life, we all stand on the
shoulders of giants, and the titans for Processing include think-
ers from design, computer graphics, art, architecture, statistics,
and the spaces between. Have a look at Ivan Sutherland’s
Sketchpad (1963), Alan Kay's Dynabook (1968), and the many
artists featured in Ruth Leavitt's Artist and Computer* (Harmony
Books, 1976). The ACM SIGGRAPH and Ars Electronica archives
provide fascinating glimpses into the history of graphics and
software.

N 1 sl) |
| el im]] - |
| i
J : i ‘
g 1~ N
<t i ,: i
q l\ N —: : < {
, = v b 2
~
! §
N t

Figure 1-3. Drawing demonstration by Manfred Mohr at Musée
dArt Moderne de la Ville de Paris using the Benson plotter and a
digital computer on May 11, 1971 (photo by Rainer Mtirle, cour-
tesy bitforms gallery, New York)

1 http://www.atariarchives.org/artist/

4 Getting Started with Processing.py

http://www.atariarchives.org/artist/

Family Tree

Like human languages, programming languages belong to fami-
lies of related languages. Processing is a dialect of a program-
ming language called Java; the language syntax is almost identi-
cal, but Processing adds custom features related to graphics
and interaction (Figure 1-4). The graphic elements of Processing
are related to PostScript (a foundation of PDF) and OpenGL (a
3D graphics specification). Because of these shared features,
learning Processing is an entry-level step to programming in
other languages and using different software tools.

/N

Arduino c Java JavaScript
NN S S
Wiring p5.js
AN N
Design By Numbers —— Processing HTMLS
/! AN
PostScript Ruby Processing

Processing.py

Ruby

Python

Figure 1-4. Processing has a large family of related languages
and programming environments

Join In

Thousands of people use Processing every day. Like them, you
can download Processing without cost. You even have the
option to modify the Processing code to suit your needs. Pro-
cessing is a FLOSS project (that is, free/libre/open source soft-

Hello b5

ware), and in the spirit of community, we encourage you to par-
ticipate by sharing your projects and knowledge online at Pro-
cessing.org and at the many social networking sites that host
Processing content. These sites are linked from the Process-
ing.org website.

6 Getting Started with Processing.py

http://processing.org
http://processing.org

2/Starting to Code

To get the most out of this book, you
need to do more than just read the
words. You need to experiment and prac-
tice. You can't learn to code just by read-
ing about it—you need to do it. To get
started, download Processing and make
your first sketch.

Start by visiting http://processing.org/download and selecting
the OS X, Windows, or Linux version, depending on what
machine you have. Installation on each machine is straightfor-
ward:

« On Windows, you'll have a .zip file. Double-click it, and drag
the folder inside to a location on your hard disk. It could be
Program Files or simply the desktop, but the important
thing is for the processing folder to be pulled out of that .zip
file. Then double-click processing.exe to start.

« The OS X version is a .zip file. Double-click it, and drag the
Processing icon to the Applications folder. If you're using
someone else’s machine and can't modify the Applications
folder, just drag the application to the desktop. Then
double-click the Processing icon to start.

« The Linux version is a.tar.gz file, which should be familiar to
most Linux users. Download the file to your home directory,
then open a terminal window and type:

tar xvfz processing-xxxx.tgz
(Replace xxxx with the rest of the file's name, which is the

version number.) This will create a folder named
processing-3.0 or something similar.

http://processing.org/download

Then change to that directory:
cd processing-xxxx
and run it:

./processing

With any luck, the main Processing window will now be visible
(Figure 2-1). Everyone's setup is different, so if the program
didn’t start or you're otherwise stuck, visit the troubleshooting
page for possible solutions.

sketch_150720a Processing
File Edit Sketch Debug Tools Help Menu
o0 YAl Toolbar
sketch_150720a [Tabs
Display Window Text Editor

Message Area

Console

Console

Figure 2-1. The Processing Development Environment

Python Mode

Processing doesn't include support for the Python program-
ming language by default. In order to enable Python support,
you'll need to install an add-on called Python Mode. You can do
this by clicking on the drop-down menu on the right side of the
toolbar and selecting Add Mode.... A window with the title Con-
tribution Manager will appear. Click the tab labelled Modes and

8 Getting Started with Processing.py

https://github.com/jdf/Processing.py-Bugs/issues
https://github.com/jdf/Processing.py-Bugs/issues

scroll down until you see Python Mode for Processing 3, then
press Install.

After you've installed Python Mode, you can switch back and
forth between the Python and Java versions of Processing using
the drop-down menu in the toolbar. If you find yourself getting
strange syntax errors or exceptions when running your pro-
gram, make sure you have the right mode selected!

Your First Program

You're now running the Processing Development Environment
(or PDE). There's not much to it. The large area is the Text Edi-
tor, and there are two buttons across the top—this is the tool-
bar. Below the editor is the Message Area, and below that is the
Console. The Message Area is used for one-line messages, and
the Console is used for more technical details.

Example 2-1: Draw an Ellipse

In the editor, type the following:
ellipse(50, 50, 80, 80)

This line of code means “draw an ellipse, with the center 50 pix-
els over from the left and 50 pixels down from the top, with a
width and height of 80 pixels.” Click the Run button (the triangle
button in the Toolbar).

If you've typed everything correctly, you'll see a circle on the
screen. If you didn't type it correctly, the Message Area will turn
red and complain about an error. If this happens, make sure that
you've copied the example code exactly; the numbers should be
contained within parentheses and have commas between each
of them.

One of the most difficult things about getting started with pro-
gramming is that you have to be very specific about the syntax.
The Processing software isn't always smart enough to know
what you mean and can be quite fussy about the placement of
punctuation. You'll get used to it with a little practice.

Next, we'll skip ahead to a sketch that's a little more exciting.

Starting to Code 9

Example 2-2: Make Circles

Delete the text from the last example, and try this one:

def setup():
size(480, 120)

def draw():
if mousePressed:
£i11(0)
else:
£111(255)
ellipse(mouseX, mouseY, 80, 80)
Python is notoriously picky about formatting, so make sure you
type the code exactly as shown, indentation and all.

This program creates a window that is 480 pixels wide and 120
pixels high, and then starts drawing white circles at the position
of the mouse. When a mouse button is pressed, the circle color
changes to black. We'll explain more about this program later.
For now, run the code, move the mouse, and click to see what it
does. While the sketch is running, the Run button will change to
a square “stop” icon, which you can click to halt the sketch.

Show

If you don't want to use the buttons, you can always use the
Sketch menu, which reveals the shortcut Ctrl-R (or Cmd-R on
0OS X) for Run. The Present option clears the rest of the screen
when the program is run to present the sketch all by itself. You
can also use Present from the toolbar by holding down the Shift
key as you click the Run button. See Figure 2-2.

10 Getting Started with Processing.py

Sketch

Run #R
Present ¥R
Stop

Import Library >
Show Sketch Folder BK
Add File...

Figure 2-2. A Processing sketch is displayed on screen with Run
and Present. The Present option clears the entire screen before
running the code for a cleaner presentation.

Save and New

The next important command is Save. You can find it under the
File menu. By default, your programs are saved to the sketch-
book, which is a folder that collects your programs for easy
access. Select the Sketchbook option in the File menu to bring
up a list of all the sketches in your sketchbook.

It's always a good idea to save your sketches often. As you try
different things, keep saving with different names so that you
can always go back to an earlier version. This is especially help-
ful if—no, when—something breaks. You can also see where the
sketch is located on your computer with the Show Sketch Folder
command under the Sketch menu.

You can create a new sketch by selecting the New option from
the File Menu. This will create a new sketch in its own window.

Share

Processing sketches are made to be shared. The Export Appli-
cation option in the File menu will bundle your code into a single
folder. Export Application creates an application for your choice
of OS X, Windows, and/or Linux. This is an easy way to make
self-contained, double-clickable versions of your projects.

Starting to Code 11

Select if you want the program to be full screen or in a window,
and if there is a stop button and background color.

/ The application folders are erased and re-created
each time you use the Export Application command,
so be sure to move the folder elsewhere if you do not
want it to be erased with the next export.

Examples and Reference

Learning how to program involves exploring lots of code: run-
ning, altering, breaking, and enhancing it until you have resha-
ped it into something new. With this in mind, the Processing
software download includes dozens of examples that demon-
strate different features of the software. To open an example,
select Examples from the File menu and double-click an exam-
ple’'s name to open it. The examples are grouped into categories
based on their function, such as Form, Motion, and Image. Find
an interesting topic in the list and try an example. (The exam-
ples are specific to each Processing mode, so make sure you
have Python Mode selected before you try to access them.)

The Processing Reference for Python explains every code ele-
ment with a description and examples. The Processing Refer-
ence programs are much shorter (usually four or five lines) and
easier to follow than the longer code found in the Examples
folder. We recommend keeping the Processing Reference open
while you're reading this book and while you're programming. It
can be navigated by topic or alphabetically, but sometimes it's
fastest to do a text search within your browser window.

The Processing Reference was written with the beginner in mind;
we hope that we've made it clear and understandable. We're
grateful to the many people who've spotted errors over the
years and reported them. If you think you can improve a refer-
ence entry or you find a mistake, please let us know by clicking
on the link at the top of each reference page.

12 Getting Started with Processing.py

http://py.processing.org/reference/

3/Draw

At first, drawing on a computer screen is
like working on graph paper. It starts as a
careful technical procedure, but as new
concepts are introduced, drawing simple
shapes with software expands into
animation and interaction. Before we
make this jump, we need to start at the
beginning.

A computer screen is a grid of light elements called pixels. Each
pixel has a position within the grid that is defined by coordi-
nates. In Processing, the x coordinate is the distance from the
left edge of the Display Window, and the y coordinate is the dis-
tance from the top edge. We write coordinates of a pixel like this:
(X, y). So, if the screen is 200x200 pixels, the upper-left is (0O,
0), the center is at (100, 100), and the lower-right is (199, 199).
These numbers may seem confusing; why do we go from O to
199 instead of 1 to 2007 The answer is that in code, we usually
count from O because it's easier for calculations that we'll get
into later.

The Display Window

The Display Window is created and images are drawn inside
through code elements called functions. Functions are the basic
building blocks of a Processing program. The behavior of a func-
tion is defined by its parameters. For example, almost every Pro-
cessing program has a size() function to set the width and
height of the Display Window. (If your program doesn’'t have a
size() function, the dimension is set to 100x100 pixels.)

13

Example 3-1: Draw a Window

The size() function has two parameters: the first sets the width
of the window and the second sets the height. To draw a window
that is 800 pixels wide and 600 high, write:

size(800, 600)
Run this line of code to see the result. Put in different values to

see what's possible. Try very small numbers and numbers larger
than your screen.

Example 3-2: Draw a Point

To set the color of a single pixel within the Display Window, we
use the point() function. It has two parameters that define a
position: the x coordinate followed by the y coordinate. To draw
a little window and a point at the center of the screen, coordi-
nate (240, 60), type:

size(480, 120)
point(240, 60)

Try to write a program that puts a point at each corner of the
Display Window and one in the center. Try placing points side by
side to make horizontal, vertical, and diagonal lines.

Basic Shapes

Processing includes a group of functions to draw basic shapes
(see Figure 3-1). Simple shapes like lines can be combined to
create more complex forms like a leaf or a face.

To draw a single line, we need four parameters: two for the start-
ing location and two for the end.

14 Getting Started with Processing.py

(x25y2)
P
~
/,
7
(x1,y1) line(x1, y1, x2, y2)
(x1yy1)
/
B —(x2,y2
—T
(x3,y3) triangle(x1, y1, x2, y2, x3, y3)
rawl AY
R4y Y4
~ (x2- N2
\\ “H)ye
/
(xayyd) T
(x3,y3) quad(x1, y1, X2, y2, x3, y3, x4, y4)
e []
T 1T
Hdt
rect(x, y, width, height)
T[]
N
(oY))
° heigh
./
NS e
'i#tk ellipse(x, y, width, height)
[[[]
TN
ﬁ‘l
— (X;Y) Wé} neign
&
NS e
| | ,,,i+ﬂ- 1] arc(x, y, width, height, start, stop)

Figure 3-1. Shapes and their coordinates

Draw 156

Example 3-3: Draw a Line
To draw a line between coordinate (20, 50) and (420, 110), try:

size(480, 120)
line(20, 50, 420, 110)

Example 3-4: Draw Basic Shapes

Following this pattern, a triangle needs six parameters and a
quadrilateral needs eight (one pair for each point):

size(480, 120)

quad(158, 55, 199, 14, 392, 66, 351, 107)
triangle(347, 54, 392, 9, 392, 66)
triangle(158, 55, 290, 91, 290, 112)

Example 3-5: Draw a Rectangle

Rectangles and ellipses are both defined with four parameters:
the first and second are for the x and y coordinates of the
anchor point, the third for the width, and the fourth for the
height. To make a rectangle at coordinate (180, 60) with a width
of 220 pixels and height of 40, use the rect() function like this:

16 Getting Started with Processing.py

size(480, 120)
rect(180, 60, 220, 40)

Example 3-6: Draw an Ellipse

The x and y coordinates for a rectangle are the upper-left corner,
but for an ellipse they are the center of the shape. In this exam-
ple, notice that the y coordinate for the first ellipse is outside the
window. Objects can be drawn partially (or entirely) out of the
window without an error:

size(480, 120)

ellipse(278, -100, 400, 400)

ellipse(120, 100, 110, 110)

ellipse(412, 60, 18, 18)
Processing doesn’'t have separate functions to make squares
and circles. To make these shapes, use the same value for the
width and the height parameters for ellipse() and rect().

Draw 17

Example 3-7: Draw Part of an Ellipse

The arc() function draws a piece of an ellipse:

y & Pe

size(480, 120)

arc(90, 60, 80, 80, 0, HALF PI)

arc(190, 60, 80, 80, 0, PI+HALF PI)

arc(290, 60, 80, 80, PI, TWO PI+HALF PT)

arc(390, 60, 80, 80, QUARTER PI, PI+QUARTER PT)
The first and second parameters set the location, the third and
fourth set the width and height. The fifth parameter sets the
angle to start the arc, and the sixth sets the angle to stop. The
angles are set in radians, rather than degrees. Radians are angle
measurements based on the value of pi (3.14159). Figure 3-2
shows the relationship between radians and degrees. As fea-
tured in this example, four radian values are used so frequently
that special names for them were added as a part of Processing.
The values PI, QUARTER_PI, HALF_PI, and TWO_PI can be used to
replace the radian values for 180° 45° 90° and 360°.

18 Getting Started with Processing.py

RADIANS

PI + HALF_PI

4.56 471 4.87

PI . DEGREES 0.00 TWO_PI

1
1.73 1,57 1.41

HALF_PT

Figure 3-2. Radians and degrees are two ways to measure an
angle. Degrees move around the circle from O to 360, while radi-
ans measure the angles in relation to pi, from O to approximately
6.28.

Example 3-8: Draw with Degrees

If you prefer to use degree measurements, you can convert to
radians with the radians() function. This function takes an
angle in degrees and changes it to the corresponding radian
value. The following example is the same as Example 3-7 on
page 18, but it uses the radians() function to define the start
and stop values in degrees:

size(480, 120)

arc(90, 60, 80, 80, 0, radians(90))

Draw 19

arc(190, 60, 80, 80, 0, radians(270))
arc(290, 60, 80, 80, radians(180), radians(450))
arc(390, 60, 80, 80, radians(45), radians(225))

Drawing Order

When a program runs, the computer starts at the top and reads
each line of code until it reaches the last line, and then stops. If
you want a shape to be drawn on top of all other shapes, it
needs to follow the others in the code.

Example 3-9: Control Your Drawing
Order

size(480, 120)

ellipse(140, 0, 190, 190)

The rectangle draws on top of the ellipse because it
comes after in the code

rect(160, 30, 260, 20)

Example 3-10: Put It in Reverse

Modify by reversing the order of rect() and ellipse() to see the
circle on top of the rectangle:

size(480, 120)
rect(160, 30, 260, 20)
The ellipse draws on top of the rectangle because it

20 Getting Started with Processing.py

comes after in the code

ellipse(140, 0, 190, 190)
You can think of it like painting with a brush or making a collage.
The last element that you add is what's visible on top.

Shape Properties

The most basic and useful shape properties are stroke weight,
the way the ends (caps) of lines are drawn, and how the corners
of shapes are displayed.

Example 3-11: Set Stroke Weight

The default stroke weight is a single pixel, but this can be
changed with the strokeWeight() function. The single parame-
ter to strokelWeight() sets the width of drawn lines:

000

size(480, 120)

ellipse(75, 60, 90, 90)

strokeWeight(8) # Stroke weight to 8 pixels
ellipse(175, 60, 90, 90)

ellipse(279, 60, 90, 90)

strokelWeight(20) # Stroke weight to 20 pixels
ellipse(389, 60, 90, 90)

Example 3-12: Set Stroke Caps

The strokeCap() function changes how lines are drawn at their
endpoints. By default, they have rounded ends:

NN\

Draw 21

size(480, 120)

strokelWeight(24)

line(60, 25, 130, 95)

strokeCap(SQUARE) # Square the line endings
line(160, 25, 230, 95)

strokeCap(PROJECT) # Project the line endings
line(260, 25, 330, 95)

strokeCap(ROUND) # Round the line endings
line(360, 25, 430, 95)

Example 3-13: Set Stroke Joins

The strokeJoin() function changes the way lines are joined
(how the corners look). By default, they have pointed (mitered)
corners:

L1000

size(480, 120)

strokelWeight(12)

rect(60, 25, 70, 70)

strokeJoin(ROUND) # Round the stroke corners
rect(160, 25, 70, 70)

strokeJoin(BEVEL) # Bevel the stroke corners
rect(260, 25, 70, 70)

strokeJoin(MITER) # Miter the stroke corners
rect(360, 25, 70, 70)

When any of these attributes are set, all shapes drawn afterward
are affected. For instance, in Example 3-11 on page 21, notice
how the second and third circles both have the same stroke
weight even though the weight is set only once before both are
drawn.

Drawing Modes

A group of functions with “mode” in their name change how
Processing draws geometry to the screen. In this chapter, we'll
look at ellipseMode() and rectMode(), which help us to draw

22 Getting Started with Processing.py

ellipses and rectangles, respectively. Later in the book, we'll
cover imageMode() and shapeMode().

Example 3-14: On the Corner

By default, the ellipse() function uses its first two parameters
as the x and y coordinate of the center and the third and fourth
parameters as the width and height. After ellipseMode (CORNER)
is run in a sketch, the first two parameters to ellipse() then
define the position of the upper-left corner of the rectangle the
ellipse is inscribed within. This makes the ellipse() function
behave more like rect(), as seen in this example:

5
_

size(480, 120)

rect(120, 60, 80, 80)
ellipse(120, 60, 80, 80)
ellipseMode (CORNER)
rect(280, 20, 80, 80)
ellipse(280, 20, 80, 80)

You'll find these “mode” functions in examples throughout the

book. There are more options for how to use them in the Pro-
cessing Reference.

Color

All the shapes so far have been filled white with black outlines,
and the background of the Display Window has been light gray.
To change them, use the background(), fill(), and stroke()
functions. The values of the parameters are in the range of O to
255, where 255 is white, 128 is medium gray, and O is black.
Figure 3-3 shows how the values from O to 255 map to different
colors.

Draw 23

R G B R G B

255 204 0 0 102 204
249 201 4 5 105 205
243 199 9 11 108 206

238 197 13
232 194 18
226 192 22
221 190 27
215 188 31
209 185 36
204 183 40
198 181 45
192 179 49
187 176 54
181 174 58
175 172 63
170 170 68
164 167 72
158 165 77
153 163 81
147 160 86
141 158 90
136 156 95
130 154 99
124 151 104
119 149 108
113 147 113
107 145 117
102 142 122

96 140 126

17 112 207
22 115 208
28 119 209
34 122 210
39 125 211
45 129 213
51 132 214
56 136 215
62 139 216
68 142 217
73 146 218
79 149 219
85 153 221
90 156 222
96 159 223
102 163 224
107 166 225
113 170 226
119 173 227
124 176 228
130 180 230
136 183 231
141 187 232
147 190 233
153 193 234
158 197 235

90 138 131 164 200 236
85 136 136 170 204 238
79 133 140 175 207 239
73 131 145 181 210 240
68 129 149 187 214 241
62 126 154 192 217 242
56 124 158 198 221 243
51 122 163 204 224 244
45 120 167 209 2217 245
39 117 172 215 231 247
34 115 176 221 234 248
28 113 181 226 238 249
22 111 185 232 241 250
17 108 190 238 244 251
11 106 194 243 248 252

5 104 199 249 251 253

0 102 204 255 255 255

Figure 3-3. Colors are created by defining RGB (red, green, blue)
values

24 Getting Started with Processing.py

Example 3-15: Paint with Grays

This example shows three different gray values on a black back-
ground:

size(480, 120)

background(0) # Black

fil1(204) # Light gray

ellipse(132, 82, 200, 200) # Light gray circle
£i11(153) # Medium gray

ellipse(228, -16, 200, 200) # Medium gray circle
fil1(102) # Dark gray

ellipse(268, 118, 200, 200) # Dark gray circle

Example 3-16: Control Fill and Stroke

You can disable the stroke so that there's no outline by using
noStroke(), and you can disable the fill of a shape with noFill():

size(480, 120)

fi11(153) # Medium gray

ellipse(132, 82, 200, 200) # Gray circle
noFill() # Turn off fill

ellipse(228, -16, 200, 200) # Outline circle
noStroke() # Turn off stroke

ellipse(268, 118, 200, 200) # Doesn't draw!

Be careful not to disable the fill and stroke at the same time, as
we've done in the previous example, because nothing will draw
to the screen.

Draw 256

Example 3-17: Draw with Color

To move beyond grayscale values, you use three parameters to
specify the red, green, and blue components of a color.

Run the code in Processing to reveal the colors:

size(480, 120)

noStroke()

background(0, 26, 51) # Dark blue color
fil1(255, 0, 0) # Red color

ellipse(132, 82, 200, 200) # Red circle
fill(o, 255, 0) # Green color

ellipse(228, -16, 200, 200) # Green circle
fill(o, 0, 255) # Blue color

ellipse(268, 118, 200, 200) # Blue circle

This is referred to as RGB color, which comes from how comput-
ers define colors on the screen. The three numbers stand for
the values of red, green, and blue, and they range from O to 255,
the same way that the gray values do. Using RGB color isn't very
intuitive, so to choose colors, use Tools—Color Selector, which
shows a color palette similar to those found in other software
(see Figure 3-4). Select a color, and then use the R, G, and B val-
ues as the parameters for your background(), fill(), or
stroke() function.

26 Getting Started with Processing.py

Color Selector

Figure 3-4. Processing Color Selector

Copy

Cancel

Example 3-18: Set Transparency

By adding an optional fourth parameter to fill() or stroke(),
you can control the transparency. This fourth parameter is
known as the alpha value, and also uses the range 0 to 255 to
set the amount of transparency. The value O defines the color as
entirely transparent (it won't display), the value 255 is entirely
opaque, and the values between these extremes cause the col-
ors to mix on screen:

size(480, 120)

noStroke()

background(204, 226, 225) # Light blue color
fill(255, 0, 0, 160) # Red color
ellipse(132, 82, 200, 200) # Red circle
fill(o, 255, 0, 160) # Green color
ellipse(228, -16, 200, 200) # Green circle

Draw 27

fill(o, 0, 255, 160) # Blue color
ellipse(268, 118, 200, 200) # Blue circle

Custom Shapes

You're not limited to using these basic geometric shapes—you
can also define new shapes by connecting a series of points.

Example 3-19: Draw an Arrow

The beginShape() function signals the start of a new shape. The
vertex() function is used to define each pair of x and y coordi-
nates for the shape. Finally, endShape() is called to signal that
the shape is finished:

size(480, 120)
beginShape()
fi11(153, 176, 180)
vertex(180, 82)
vertex(207, 36)
vertex(214, 63)
vertex(407, 11)
vertex(412, 30)
vertex(219, 82)
vertex(226, 109)
endShape()

Example 3-20: Close the Gap

When you run Example 3-19 on page 28, you'll see the first and
last point are not connected. To do this, add the word CLOSE as a
parameter to endShape(), like this:

28 Getting Started with Processing.py

size(480, 120)
beginShape()
fill(153, 176, 180)
vertex(180, 82)
vertex(207, 36)
vertex(214, 63)
vertex(407, 11)
vertex(412, 30)
vertex(219, 82)
vertex(226, 109)
endShape(CLOSE)

Example 3-21: Create Some Creatures

The power of defining shapes with vertex() is the ability to
make shapes with complex outlines. Processing can draw thou-
sands and thousands of lines at a time to fill the screen with fan-
tastic shapes that spring from your imagination. A modest but
more complex example follows:

size(480, 120)

Left creature
fill(153, 176, 180);
beginShape()
vertex(50, 120)
vertex(100, 90)
vertex(110, 60)
vertex(80, 20)
vertex(210, 60)

Draw 29

vertex(160, 80)
vertex(200, 90)
vertex(140, 100)
vertex(130, 120)
endShape()

fill(o)

ellipse(155, 60, 8, 8)

Right creature
fill(176, 186, 163);
beginShape()
vertex(370, 120)
vertex(360, 90)
vertex(290, 80)
vertex(340, 70)
vertex(280, 50)
vertex(420, 10)
vertex(390, 50)
vertex(410, 90)
vertex(460, 120)
endShape()

fi11(0)

ellipse(345, 50, 10, 10)

Comments

The examples in this chapter use a number symbol (#) at the
end of a line to add comments to the code. Comments are parts
of the program that are ignored when the program is run. They
are useful for making notes for yourself that explain what's hap-
pening in the code. If others are reading your code, comments
are especially important to help them understand your thought
process.

Comments are also useful for a number of other purposes, such
as when trying to choose the right color. So, for instance, | might
be trying to find just the right red for an ellipse:

size(200, 200)

fill(165, 57, 57)

ellipse(100, 100, 80, 80)
Now suppose | want to try a different red, but don't want to lose
the old one. | can copy and paste the line, make a change, and
then “comment out” the old one

30 Getting Started with Processing.py

size(200, 200)

#fi11(165, 57, 57)

fi11(144, 39, 39)

ellipse(100, 100, 80, 80)
Placing # at the beginning of the line temporarily disables it. Or |
can remove the # and place it in front of the other line if | want to
try it again:

size(200, 200)

fill(165, 57, 57)

#fill(144, 39, 39)

ellipse(100, 100, 80, 80)
As you work with Processing sketches, you'll find yourself creat-
ing dozens of iterations of ideas; using comments to make notes
or to disable code can help you keep track of multiple options.

/ As a shortcut, you can also use Ctrl-/ (Cmd-/ on OS
X) to add or remove comments from the current line
or a selected block of text.

Robot 1: Draw

Draw 31

This is P5, the Processing Robot. There are 10 different pro-
grams to draw and animate him in the book—each one explores
a different programming idea. P5’s design was inspired by Sput-
nik | (1957), Shakey from the Stanford Research Institute
(1966-1972), the fighter drone in David Lynch’'s Dune (1984),
and HAL 9000 from 2001: A Space Odyssey (1968), among
other robot favorites.

The first robot program uses the drawing functions introduced
in this chapter. The parameters to the fill1() and stroke() func-
tions set the gray values. The line(), ellipse(), and rect()
functions define the shapes that create the robot’s neck, anten-
nae, body, and head. To get more familiar with the functions, run
the program and change the values to redesign the robot:

size(720, 480)

strokelWeight(2)

background(0, 153, 204) # Blue background
ellipseMode (RADIUS)

Neck

stroke(255) # Set stroke to white
line(266, 257, 266, 162) # Left
line(276, 257, 276, 162) # Middle
line(286, 257, 286, 162) # Right

Antennae

line(276, 155, 246, 112) # Small
line(276, 155, 306, 56) # Tall
line(276, 155, 342, 170) # Medium

Body

noStroke() # Disable stroke

fill(255, 204, 0) # Set fill to orange
ellipse(264, 377, 33, 33) # Antigravity orb
il1(0) # Set fill to black

rect(219, 257, 90, 120) # Main body
fil1(102) # Set fill to gray

rect(219, 274, 90, 6) # Gray stripe

Head

fill(o) # Set fill to black
ellipse(276, 155, 45, 45) # Head
fil1(255) # Set fill to white
ellipse(288, 150, 14, 14) # Large eye

32 Getting Started with Processing.py

fill(o) # Set fill to black

ellipse(288, 150, 3, 3) # Pupil

fil1(153, 204, 255) # Set fill to light blue
ellipse(263, 148, 5, 5) # Small eye 1
ellipse(296, 130, 4, 4) # Small eye 2
ellipse(305, 162, 3, 3) # Small eye 3

Draw 33

4/Variables

A variable stores a value in memory so
that it can be used later in a program. The
variable can be used many times within a
single program, and the value is easily
changed while the program is running.

First Variables

One of the reasons we use variables is to avoid repeating our-
selves in the code. If you are typing the same number more than
once, consider making it into a variable to make your code more
general and easier to update.

Example 4-1: Reuse the Same Values

For instance, when you make the y coordinate and diameter for
the two circles in this example into variables, the same values
are used for each ellipse:

size(480, 120)

y = 60

d = 80

ellipse(75, vy, d, d) # Left
ellipse(175, y, d, d) # Middle
ellipse(275, y, d, d) # Right

35

Example 4-2: Change Values

Simply changing the y and d variables alters all three ellipses:

size(480, 120)

y = 100

d = 130

ellipse(75, vy, d, d) # Left

ellipse(175, y, d, d) # Middle

ellipse(275, y, d, d) # Right
Without the variables, you'd need to change the y coordinate
used in the code three times and the diameter six times. When
comparing Example 4-1 on page 35 and Example 4-2 on page
36, notice how the bottom three lines of code are the same, and
only the middle two lines with the variables are different. Vari-
ables allow you to separate the lines of the code that change
from the lines that don't, which makes programs easier to mod-
ify. For instance, if you place variables that control colors and
sizes of shapes in one place, then you can quickly explore differ-
ent visual options by focusing on only a few lines of code.

Making Variables

When you make your own variables, you determine the
name and the value. The name is what you decide to call the
variable. Choose a name that is informative about what the vari-
able stores, but be consistent and not too verbose. For instance,
the variable name “radius” will be clearer than “r” when you look
at the code later.

The range of values that can be stored within a variable is
defined by its data type. For instance, the integer data type can
store numbers without decimal places (whole numbers). There
are data types to store each kind of data: integers, floating-point
(decimal) numbers, words, images, fonts, and so on. Python

36 Getting Started with Processing.py

automatically determines the data type of a variable based on
the value you assign to it.

Processing Variables

Processing has a series of special variables to store information
about the program while it runs. For instance, the width and
height of the window are stored in variables called width and
height. These values are set by the size() function. They can be
used to draw elements relative to the size of the window, even if
the size() line changes.

Example 4-3: Adjust the Size, See
What Follows

In this example, change the parameters to size() to see how it
works:

size(480, 120)
line(o, 0, width, height) # Line from (0,0) to (480, 120)
line(width, 0, 0, height) # Line from (480, 0) to (0, 120)
ellipse(width/2, height/2, 60, 60)
Other special variables keep track of the status of the mouse
and keyboard values and much more. These are discussed in
Chapter 5.

A Little Math

People often assume that math and programming are the same
thing. Although knowledge of math can be useful for certain
types of coding, basic arithmetic covers the most important
parts.

Variables 37

Example 4-4: Basic Arithmetic

size(480, 120)

X = 25

h =20

y =25

rect(x, y, 300, h) # Top

X = X + 100

rect(x, y + h, 300, h) # Middle
X = X - 250

rect(x, y + h*2, 300, h) # Bottom

In code, symbols like +, -, and * are called operators. When
placed between two values, they create an expression. For
instance, 5+ 9 and 1024 - 512 are both expressions. The opera-
tors for the basic math operations are:

+ | Addition
— | Subtraction

* | Multiplication

/ | Division

= | Assignment

Python has a set of rules to define which operators take prece-
dence over others, meaning which calculations are made first,
second, third, and so on. These rules define the order in which
the code is run. A little knowledge about this goes a long way
toward understanding how a short line of code like this works:

X =4+ 4*5 # Assign 24 to x

The expression 4 * 5 is evaluated first because multiplication
has the highest priority. Second, 4 is added to the product of
4 * 5 to yield 24. This is clarified with parentheses, but the
result is the same:

38 Getting Started with Processing.py

X =4+ (4 *5) # Assign 24 to x

If you want to force the addition to happen first, just move the
parentheses. Because parentheses have a higher precedence
than multiplication, the order is changed and the calculation is
affected:

X = (4 +4) *5 # Assign 40 to x

An acronym for this order is often taught in math class:
PEMDAS, which stands for Parentheses, Exponents, Multiplica-
tion, Division, Addition, Subtraction, where parentheses have
the highest priority and subtraction the lowest. The complete
order of operations is found in Appendix C.

Some calculations are used so frequently in programming that
shortcuts have been developed; it's always nice to save a few
keystrokes. For instance, you can add to a variable, or subtract
from it, with a single operator:

X += 10 # This is the same as x = x + 10
y -= 15 # This is the same as y =y - 15

More shortcuts can be found in the Processing Reference.

Repetition

As you write more programs, you'll notice that patterns occur
when lines of code are repeated, but with slight variations. A
code structure called a for loop makes it possible to run a line of
code more than once to condense this type of repetition into
fewer lines. This makes your programs more modular and easier
to change.

Example 4-5: Do the Same Thing Over
and Over

This example has the type of pattern that can be simplified with
a for loop:

Variables 39

NNNNNNN

size(480, 120)
strokelWeight(8)
line(20, 40, 80, 80)
line(80, 40, 140, 80)
line(140, 40, 200, 80)
line(200, 40, 260, 80)
line(260, 40, 320, 80)
line(320, 40, 380, 80)
line(380, 40, 440, 80)

Example 4-6: Use a for Loop

The same thing can be done with a for loop, and with less code:

size(480, 120)

strokelWeight(8)

for i1 in range(20, 400, 60):

line(i, 40, i + 60, 80)

The for loop is different in many ways from the code we've writ-
ten so far. Notice the colon (:) at the end of the line that begins
with for, and how the line directly beneath it is indented (i.e.,
moved over from the lefthand margin with some whitespace).
The indented code between the braces is called a block. This is
the code that will be repeated on each iteration of the for loop.

The for loop has several moving parts. Between the word for
and the word in, there is a variable name, which we'll call the
target variable. Inside the parentheses, following the word range,
there are three values, separated by commas: start, stop, and
step. These three values determine how many times the code
inside the block is run, and what value the target variable will
have on each iteration of the loop:

for target variable in range(start, stop, step):
statements

40 Getting Started with Processing.py

The start value determines what value the target variable will
have on the first iteration of the loop. On the second iteration of
the loop, the step will be added to the start value, and the value
of the target variable will reflect this. This continues until the
resulting value is greater than or equal to the step value, at
which point the loop terminates.

You can use whatever name you'd like for the target variable, as
long as it's a valid variable name in Python. The variable name i
is frequently used, but there’s really nothing special about it.

Example 4-7: Flex Your for Loop’s
Muscles

The ultimate power of working with a for loop is the ability to
make quick changes to the code. Because the code inside the
block is typically run multiple times, a change to the block is
magnified when the code is run. By modifying Example 4-6 on
page 40 only slightly, we can create a range of different pat-
terns:

A N

size(480, 120)

strokelWeight(2)

for i in range(20, 400, 8):
line(i, 40, i + 60, 80)

Example 4-8: Fanning Out the Lines

MNNNSSS

Variables 41

size(480, 120)

strokelWeight(2)

for i in range(20, 400, 20):
line(i, 0, i + i/2, 80)

Example 4-9: Kinking the Lines

In this example, we're drawing two lines inside of the for loop
(not just one). Both statements are indented, which tells Python
that both statements should be executed for each iteration of
the loop. It's important in Python to use exactly the same key-
strokes to indent multiple statements in the same for loop.
(Otherwise, you might get a syntax error.) For example, if the
first statement in the for loop is indented with two space char-
acters, the second statement must be indented with two space
characters as well.

P>

size(480, 120)

strokelWeight(2)

for i in range(20, 400, 20):
line(i, 0, i + i/2, 80)
line(i + i/2, 80, i*1.2, 120)

Example 4-10: Embed One for Loop in
Another

When one for loop is embedded inside another, the number of
repetitions is multiplied. First, let's look at a short example, and
then we'll break it down in Example 4-11 on page 43:

42 Getting Started with Processing.py

size(480, 120)
background(0)
noStroke()
for y in range(0, height+45, 40):
for x in range(0, width+45, 40):
£i11(255, 140)
ellipse(x, y, 40, 40)

Example 4-11: Rows and Columns

In this example, the for loops are adjacent, rather than one
embedded inside the other. The result shows that one for loop

is drawing a column of four circles and the other is drawing a
row of 13 circles:

size(480, 120)

background(0)

noStroke()

for y in range(0, height+45, 40):
fill(255, 140)
ellipse(0, y, 40, 40)

for x in range(0, width+45, 40):
£i11(255, 140)
ellipse(x, 0, 40, 40)

When one of these for loops is placed inside the other, as in
Example 4-10 on page 42, the four repetitions of the first loop
are compounded with the 13 of the second in order to run the
code inside the embedded block 52 times (4x13 = 52).

Variables 43

Example 4-10 on page 42 is a good base for exploring many
types of repeating visual patterns. The following examples show
a couple of ways that it can be extended, but this is only a tiny
sample of what's possible. In Example 4-12 on page 44, the code
draws a line from each point in the grid to the center of the
screen. In Example 4-13 on page 44, the ellipses shrink with
each new row and are moved to the right by adding the y coordi-
nate to the x coordinate.

Example 4-12: Pins and Lines

size(480, 120)
background(0)
fi11(255)
stroke(102)
for y in range(20, height-15, 10):
for x in range(20, width-15, 10):
ellipse(x, y, 4, 4)
Draw a line to the center of the display
line(x, y, 240, 60)

Example 4-13: Halftone Dots

size(480, 120)
background(0)
for y in range(32, height, 8):
for x in range(12, width, 15):
ellipse(x +y, y, 16 - y/10.0, 16 - y/10.0)

44 Getting Started with Processing.py

Robot 2: Variables

The variables introduced in this program make the code look
more difficult than Robot 1 (see “Robot 1: Draw"” on page 31), but
now it's much easier to modify, because numbers that depend
on one another are in a single location. For instance, the neck
can be drawn based on the bodyHeight variable. The group of
variables at the top of the code control the aspects of the robot
that we want to change: location, body height, and neck height.
You can see some of the range of possible variations in the fig-
ure. From left to right, here are the values that correspond to
them:

y = 390 y = 460 y = 310 y = 420
bodyHeight = 180 | bodyHeight = 260 | bodyHeight = 80 | bodyHeight
neckHeight = 40 | neckHeight = 95 | neckHeight = 10 | neckHeight

110
140

When altering your own code to use variables instead of num-
bers, plan the changes carefully, then make the modifications in
short steps. For instance, when this program was written, each
variable was created one at a time to minimize the complexity of
the transition. After a variable was added and the code was run
to ensure it was working, the next variable was added:

Variables 45

X = 60 # x coordinate
y = 420 # y coordinate
bodyHeight = 110 # Body height
neckHeight = 140 # Neck height
radius = 45 # Head radius
ny =y - bodyHeight - neckHeight - radius # Neck Y

size(170, 480)
strokelWeight(2)
background(0, 153, 204)
ellipseMode(RADIUS)

Neck

stroke(102)

line(x+2, y-bodyHeight, x+2, ny)
line(x+12, y-bodyHeight, x+12, ny)
line(x+22, y-bodyHeight, x+22, ny)

Antennae

line(x+12, ny, x-18, ny-43)
line(x+12, ny, x+42, ny-99)
line(x+12, ny, x+78, ny+15)

Body

noStroke()

fi11(255, 204, 0)

ellipse(x, y-33, 33, 33)

fil1(0)

rect(x-45, y-bodyHeight, 90, bodyHeight-33)
fill1(102)

rect(x-45, y-bodyHeight+17, 90, 6)

Head

£i11(0)

ellipse(x+12, ny, radius, radius)
£i11(255)

ellipse(x+24, ny-6, 14, 14)
£i11(0)

ellipse(x+24, ny-6, 3, 3)
£i11(153)

ellipse(x, ny-8, 5, 5)
ellipse(x+30, ny-26, 4, 4)
ellipse(x+41, ny+6, 3, 3)

46 Getting Started with Processing.py

5/Response

Code that responds to input from the
mouse, keyboard, and other devices has
to run continuously. To make this hap-
pen, place the lines that update inside a
Processing function called draw().

Once and Forever

The code within the draw() block runs from top to bottom, then
repeats until you quit the program by clicking the Stop button or
closing the window. Each trip through draw() is called a frame.
(The default frame rate is 60 frames per second, but this can be
changed.)

Example 5-1: The draw() Function
To see how draw() works, run this example:

def draw():
Displays the frame count to the Console
print "I'm drawing"
print frameCount

You'll see the following:

I'm drawing
1
I'm drawing
2
I'm drawing
3

In this example program, the print statements write the text
“I'm drawing” followed by the current frame count as counted
by the special frameCount variable (1, 2, 3, ...). The text appears

47

in the Console, the black area at the bottom of the Processing
editor window.

Example 5-2: The setup() Function

To complement the looping draw() function, Processing has a
function called setup() that runs just once when the program
starts:

def setup():
print "I'm starting"

def draw():
print "I'm running"

When this code is run, the following is written to the Console:

I'm starting
I'm running
I'm running
I'm running

The text “I'm running” continues to write to the Console until
the program is stopped.

In a typical program, the code inside setup() is used to define
the starting values. The first line is always the size() function,
often followed by code to set the starting fill and stroke colors,
or perhaps to load images and fonts. (If you don't include the
size() function, the Display Window will be 100x100 pixels.)

Now you know how to use setup() and draw(), but this isn't the
whole story. There's one more location to put code—you can
also place variables outside of setup() and draw(). If you create
a variable inside of setup(), you can’t use it inside of draw(), so
you need to place those variables somewhere else. Such vari-
ables are called global variables, because they can be used any-
where (“globally™) in the program. This is clearer when we list
the order in which the code is run:

1. Variables declared outside of setup() and draw() are cre-
ated.

2. Code inside setup() is run once.

48 Getting Started with Processing.py

3. Code inside draw() is run continuously.

Example 5-3: Global Variables

The following example puts it all together:

X = 280
y = -100
diameter = 380

def setup():
size(480, 120)
fill(102)

def draw():
background(204)
ellipse(x, y, diameter, diameter)

Follow

Now that we have code running continuously, we can track the
mouse position and use those numbers to move elements on
screen.

Example 5-4: Track the Mouse

The mouseX variable stores the x coordinate, and the mouseY vari-
able stores the y coordinate:

def setup():
size(480, 120)
fill(o, 102)
noStroke()

def draw():
ellipse(mouseX, mouseY, 9, 9)

Response 49

In this example, each time the code in the draw() block is run, a
new circle is drawn to the window. This image was made by
moving the mouse around to control the circle's location.
Because the fill is set to be partially transparent, denser black
areas show where the mouse spent more time and where it
moved slowly. The circles that are spaced farther apart show
when the mouse was moving faster.

Example 5-5: The Dot Follows You

In this example, a new circle is added to the window each time
the code in draw() is run. To refresh the screen and only display
the newest circle, place a background() function at the begin-
ning of draw() before the shape is drawn:

def setup():
size(480, 120)
fill(o, 102)
noStroke()

def draw():
background(204)
ellipse(mouseX, mouseY, 9, 9)
The background() function clears the entire window, so be sure
to always place it before other functions inside draw(); other-
wise, the shapes drawn before it will be erased.

Example 5-6: Draw Continuously

The pmouseX and pmouseY variables store the position of the
mouse at the previous frame. Like mouseX and mouseY, these spe-
cial variables are updated each time draw() runs. When com-
bined, they can be used to draw continuous lines by connecting
the current and most recent location:

50 Getting Started with Processing.py

def setup():
size(480, 120)
strokeWeight(4)
stroke(o, 102)

def draw():
line(mouseX, mouseY, pmouseX, pmouseY)

Example 5-7: Set Thickness on the
Fly

The pmouseX and pmouseY variables can also be used to calculate
the speed of the mouse. This is done by measuring the distance
between the current and most recent mouse location. If the
mouse is moving slowly, the distance is small, but if the mouse
starts moving faster, the distance grows. A function called
dist() simplifies this calculation, as shown in the following
example. Here, the speed of the mouse is used to set the thick-
ness of the drawn line:

def setup():
size(480, 120)
stroke(o, 102)

def draw():
weight = dist(mouseX, mouseY, pmouseX, pmouseY)
strokeleight (weight)
line(mouseX, mouseY, pmouseX, pmouseY)

Response 51

Example 5-8: Easing Does It

In Example 5-7 on page 51, the values from the mouse are con-
verted directly into positions on the screen. But sometimes you
want the values to follow the mouse loosely—to lag behind to
create a more fluid motion. This technique is called easing. With
easing, there are two values: the current value and the value to
move toward (see Figure 5-1). At each step in the program, the
current value moves a little closer to the target value:

X = 0.0

easing = 0.01

def setup():
size(220, 120)

def draw():

global x

targetX = mouseX

x += (targetX - x) * easing

ellipse(x, 40, 12, 12)

print targetX, x
The value of the x variable is always getting closer to targetX.
The speed at which it catches up with targetX is set with the
easing variable, a number between O and l—a small value
causes more of a delay than a larger value. With an easing value
of 1, there is no delay. When you run Example 5-8 on page 52,
the actual values are shown in the Console through the
print statement. When moving the mouse, notice how the num-
bers are far apart, but when the mouse stops moving, the x
value gets closer to targetX.

52 Getting Started with Processing.py

easing = 0.1

START TARGET

easing = 0.2

START TARGET

easing = 0.3

START TARGET

easing = 0.4

START TARGET

Figure 5-1. Easing changes the number of steps it takes to move
from one place to another

All of the work in this example happens on the line that begins
x +=. There, the difference between the target and current value
is calculated, then multiplied by the easing variable and added
to x to bring it closer to the target.

You may have noticed the global keyword on the first line of the
draw() function. We'll discuss the purpose of this keyword in
“Modifying Global Variables” on page 54.

Example 5-9: Smooth Lines with
Easing

In this example, the easing technique is applied to Example 5-7
on page 51. In comparison, the lines are more fluid:

Response 53

y = 0.0
px = 0.
py = 0.
easing

I o o

0.05;

def setup():
size(480, 120)
stroke(o, 102)

def draw():
global x, y, px, py
targetX = mouseX;
x += (targetX - x) * easing
targetY = mouseY
y += (targetY - y) * easing
weight = dist(x, y, px, py)
strokelWeight(weight)
Line(x, y, px, py)

Py =Yy
px = X

Modifying Global Variables

As explained earlier, a variable is global if the first time you
assign a value to the variable occurs outside of a function (e.g.,
outside of draw and setup). You can use a global variable any-
where in your program without worries, as long as you're only
using the variable's existing value in statements and expres-
sions. However, if you want to change the value of a global vari-
able from within a function (like draw() or setup()), you have to
perform an extra step: include the global keyword as the first
line in your function, with the name of the variable you want to
change after the keyword. Here's what it looks like:

54 Getting Started with Processing.py

X =0
def draw():
global x
X =Xx+1
ellipse(x, height/2, 10, 10)
If you want to modify multiple variables in the same function,
put a comma-separated list of the variable names after
the global keyword:
X =0
y =0
def draw():
global x, y
X =Xx+1
y=y+1
ellipse(x, y, 10, 10)
The global keyword exists in Python to make your life easier. It
prevents you from absentmindedly creating a new variable in
your draw() function (or any other function) that has the same
name as a global variable, and overwriting the value in that
global variable as a result.

If you forget to include the global keyword, your program might
fail in various ways. You might get an “Unbound Local Error,”
which is Python's way of saying that you're attempting to use
the value of a variable before having assigned a value to it. Alter-
natively, you might get no syntax errors at all, but your pro-
gram’s behavior will be strange: things that you intended to
move will stay still. If either of these things happen, check to
ensure that you've used the global keyword appropriately.

Click

In addition to the location of the mouse, Processing also keeps
track of whether the mouse button is pressed. The mousePressed
variable has a different value when the mouse button is pressed
and when it is not. The mousePressed variable is a data type
called boolean, which means that it has only two possible values:
True and False. The value of mousePressed is True when a button
is pressed.

Response 5b

Example 5-10: Click the Mouse

The mousePressed variable is used along with the if statement to
determine when a line of code will run and when it won't. Try this
example before we explain further:

def setup():
size(240, 120)
strokelWeight(30)

def draw():
background(204)
stroke(102)
line(40, 0, 70, height)
if mousePressed == True:
stroke(0)
line(o0, 70, width, 50)
In this program, the code inside the if block runs only when a
mouse button is pressed. When a button is not pressed, this
code is ignored. Between the if keyword and the colon at the
end of the line, there is a test expression that is evaluated to
True or False:

if test:
statements
When the test expression evaluates to True, the code inside the
block is run; when the expression evaluates to False, the code
inside the block is not run.

The == symbol compares the values on the left and right to test
whether they are equivalent. This == symbol is different from the
assignment operator, the single = symbol. The == symbol asks,
“Are these things equal?” and the = symbol sets the value of a
variable.

56 Getting Started with Processing.py

grammers, to write = in your code when you mean to
write ==. The Processing software won't always warn
you when you do this, so be careful.

a It's a common mistake, even for experienced pro-

Alternatively, the test in draw() can be written like this:
if mousePressed:

Boolean variables, including mousePressed, don't need the
explicit comparison with the == operator, because they can be
only True or False.

Example 5-11: Detect When Not
Clicked

A single if block gives you the choice of running some code or
skipping it. You can extend an if block with an else block, allow-
ing your program to choose between two options. The code
inside the else block runs when the value of the if block test is
false. For instance, the stroke color for a program can be white
when the mouse button is not pressed, and can change to black
when the button is pressed:

def setup():
size(240, 120)
strokeWeight(30)

def draw():
background(204)
stroke(102)
line(40, 0, 70, height)
if mousePressed:
stroke(0)

Response 57

else:
stroke(255)
line(o, 70, width, 50)

Example 5-12: Multiple Mouse
Buttons

Processing also tracks which button is pressed if you have more
than one button on your mouse. The mouseButton variable can

be one of three values: LEFT, CENTER, or RIGHT. To test which but-
ton was pressed, the == operator is needed, as shown here:

def setup():
size(120, 120)
strokeleight(30)

def draw():
background(204)
stroke(102)
line(40, 0, 70, height)
if mousePressed:
if mouseButton == LEFT:
stroke(255)
else:
stroke(0)
line(0, 70, width, 50)

A program can have many more if and else structures (see
Figure 5-2) than those found in these short examples. They can
be chained together into a long series with each testing for
something different, and if blocks can be embedded inside of
other if blocks to make more complex decisions.

58 Getting Started with Processing.py

if test:
statements

if test:
statements 1

else:
statements 2

if test:
statements 1

elif test 2:
statements 2

test ‘Fa]'L

\Ltrue

statements

li

- false

\Ltrue

statements 1 statements 2

| |
l

false

test 1 —‘

l}true

false
statements 1 test 2

\Ltrue

statements 2

Figure 5-2. The if and else structure makes decisions about

which blocks of code to run

Location

An if structure can be used with the mouseX and mouseY values
to determine the location of the cursor within the window.

Response 59

Example 5-13: Find the Cursor

For instance, this example tests to see whether the cursor is on
the left or right side of a line and then moves the line toward the
cursor:

o -

X = 0.0

def setup():

global x
size(240, 120)
X = width / 2
def draw():
global x
background(204)
offset = 0
if mouseX > x:
X += 0.5
offset = -10
if mouseX < x:
X -= 0.5
offset = 10

Draw arrow left or right depending on "offset" value
line(x, 0, x, height)

line(mouseX, mouseY, mouseX + offset, mouseY - 10)
line(mouseX, mouseY, mouseX + offset, mouseY + 10)
line(mouseX, mouseY, mouseX + offset*3, mouseY)

To write programs that have graphical user interfaces (buttons,
checkboxes, scrollbars, etc.), we need to write code that knows
when the cursor is within an enclosed area of the screen. The
following two examples introduce how to check whether the cur-
sor is inside a circle and a rectangle. The code is written in a
modular way with variables, so it can be used to check for any
circle and rectangle by changing the values.

60 Getting Started with Processing.py

The test expressions in these if statements require further
explanation. The expressions (mouseX > x and mouseX < x) are
examples of relational expressions: expressions that compare
two values with a relational operator. The most common rela-
tional operators are:

> | Greater than

< | Less than

>= | Greater than or equal to

<= | Less than or equal to

== | Equal to

= | Not equal to

The relational expression always evaluates to True or False. For
instance, the expression 5 > 3 is True. We can ask the question,
“Is five greater than three?” Because the answer is “yes,” we say
the expression is True. For the expression 5 < 3, we ask, “Is five
less than three?” Because the answer is “no,” we say the expres-
sion is False. When the evaluation is True, the code inside the
block is run, and when it's False, the code inside the block is not
run.

Example 5-14: The Bounds of a Circle

For the circle test, we use the dist() function to get the distance
from the center of the circle to the cursor, then we test to see if
that distance is less than the radius of the circle (see
Figure 5-3). If it is, we know we're inside. In this example, when
the cursor is within the area of the circle, its size increases:

@

X = 120
y = 60
radius = 12

Response 61

def setup():
size(240, 120)
ellipseMode(RADIUS)

def draw():
global radius
background(204)
d = dist(mouseX, mouseY, x, y)
if d < radius:
radius += 1
fil1(0)
else:
fi11(255)
ellipse(x, y, radius, radius)

dist(x, y, mouseX, mouseY) < radius

N,

Figure 5-3. Circle rollover test. When the distance between the
mouse and the circle is less than the radius, the mouse is inside
the circle.

Example 5-15: The Bounds of a
Rectangle

We use another approach to test whether the cursor is inside a
rectangle. We make four separate tests to check if the cursor is

62 Getting Started with Processing.py

on the correct side of each edge of the rectangle, then we com-
pare each test and if they are all True, we know the cursor is
inside. This is illustrated in Figure 5-4. Each step is simple, but it
looks complicated when it's all put together:

80
30
80
60

S == X
LI | R | |

def setup():
size(240, 120)

def draw():
background(204);
if mouseX > x and mouseX < x+w and mouseY > y and mouseY <y
+h:
£i11(0)
else:
fill(255)
rect(x, y, w, h)
The test in the if statement is a little more complicated than
we've seen. Four individual tests (e.g., mouseX > x) are com-
bined with the logical AND operator, written with the key-
word and, to ensure that every relational expression in the
sequence is True. If one of them is False, the entire test is False
and the fill color won't be set to black. This is explained further
in the reference entry for and.

Response 63

mouseX > X

mouseX < X + w

mouseY > y

mouseY <y + h

(mouseX > x) and (mouseX < x+w) and
(mouseY > y) and (mouseY < y+h)

Figure 5-4. Rectangle rollover test. When all four tests are com-
bined and true, the cursor is inside the rectangle.

Type

Processing keeps track of when any key on a keyboard is
pressed, as well as the last key pressed. Like the mousePressed
variable, the keyPressed variable is True when any key is
pressed, and False when no keys are pressed.

64 Getting Started with Processing.py

Example 5-16: Tap a Key

In this example, the second line is drawn only when a key is
pressed:

def setup():
size(240, 120)

def draw():

background(204)

line(20, 20, 220, 100)

if keyPressed:

line(220, 20, 20, 100)

The key variable stores the most recent key that has been
pressed. The key variable holds a string value whose length is
1. Unlike the boolean variable keyPressed, which reverts to False
each time a key is released, the key variable keeps its value until
the next key is pressed. The following example uses the value of
key to draw the character to the screen. Each time a new key is
pressed, the value updates and a new character draws. Some
keys, like Shift and Alt, don't have a visible character, so when
you press them, nothing is drawn.

Example 5-17: Draw Some Letters

This example introduces the textSize() function to set the size
of the letters, the textAlign() function to center the text on its x
coordinate, and the text() function to draw the letter (these
functions are discussed in more detail in “Fonts” on page 91):

Response 65

W

def setup():
size(120, 120)
textSize(64)
textAlign(CENTER)

def draw():
background(0)
if keyPressed:
text(key, 60, 80)

Example 5-18: Check for Specific Keys

In this example, we test for an H or N to be typed. We use the
comparison operator, the == symbol, to see if the key value is
equal to the characters we're looking for:

def setup():
size(120, 120)

def draw():
background(204)
if keyPressed:
if key == 'h' or key == 'H':
line(30, 60, 90, 60)
if key == 'n' or key == 'N':
line(30, 20, 90, 100)
line(30, 20, 30, 100)
line(90, 20, 90, 100)

66 Getting Started with Processing.py

When we watch for H or N to be pressed, we need to check for
both the lowercase and uppercase letters in the event that
someone hits the Shift key or has the Caps Lock set. We com-
bine the two tests together with a logical OR, using the or key-
word. If we translate the second if statement in this example
into plain language, it says, “If the h key is pressed OR the H key
is pressed.” Unlike with the logical AND (the and keyword), only
one of these expressions need be True for the entire test to be
True.

Some keys are more difficult to detect, because they aren't tied
to a particular letter. Keys like Shift, Alt, and the arrow keys are
coded and require an extra step to figure out if they are pressed.
First, we need to check if the key that's been pressed is a coded
key, then we check the code with the keyCode variable to see
which key it is. The most frequently used keyCode values are ALT,
CONTROL, and SHIFT, as well as the arrow keys, UP, DOWN, LEFT, and
RIGHT.

Example 5-19: Move with Arrow Keys

The following example shows how to check for the left or right
arrow keys to move a rectangle:

x = 215
def setup():
size (480, 120)

def draw():
global x
if keyPressed and key == CODED: # If it's a coded key
if keyCode == LEFT: # If it's the left arrow

x -=1
elif keyCode == RIGHT: # If it's the right arrow
X +=1

rect(x, 45, 50, 50)

This example illustrates the elif keyword, short for “else if”
This keyword allows you to write an if structure that checks to
see if more than one expression evaluates to true, flowing down
to the next condition if the first condition evaluates to false.
Translated into plain English, the inner if structure in this exam-
ple translates as “if the keyCode is LEFT, then decrease x by one;

Response 67

otherwise, if the keyCode is RIGHT, then increase x by one.” You
can use multiple elifs in one if structure, and if structures
with elifs caninclude a final else clause as well.

Map

The numbers that are created by the mouse and keyboard often
need to be modified to be useful within a program. For instance,
if a sketch is 1920 pixels wide and the mouseX values are used to
set the color of the background, the range of O to 1920 for
mouseX might need to move into a range of O to 255 to better
control the color. This transformation can be done with an equa-
tion or with a function called map().

Example 5-20: Map Values to a Range

In this example, the location of two lines are controlled with the
mouseX variable. The gray line is synchronized to the cursor posi-
tion, but the black line stays closer to the center of the screen to
move further away from the white line at the left and right
edges:

def setup():
size(240, 120)
strokelWeight(12)

def draw():
background(204)
stroke(102)
line(mouseX, 0, mouseX, height) # Gray line
stroke(0)
mx = mouseX/2 + 60
line(mx, 0, mx, height) # Black line

The map() function is a more general way to make this type of
change. It converts a variable from one range of numbers to

68 Getting Started with Processing.py

another. The first parameter is the variable to be converted, the
second and third parameters are the low and high values of that
variable, and the fourth and fifth parameters are the desired low
and high values. The map() function hides the math behind the
conversion.

Example 5-21: Map with the map()
Function

This example rewrites Example 5-20 on page 68 using map():

def setup():
size(240, 120)
strokelWeight(12)

def draw():

background(204)

stroke(102)

line(mouseX, 0, mouseX, height) # Gray line

stroke(0)

mx = map(mouseX, 0, width, 60, 180)

line(mx, 0, mx, height) # Black line
The map() function makes the code easy to read, because the
minimum and maximum values are clearly written as the
parameters. In this example, values for mouseX between O and
width are converted to a number from 60 (when mouseX is O) up
to 180 (when mouseX is equal to width). You'll find the useful
map() function in many examples throughout this book. (If
you're an experienced Python programmer, you'll recognize that
Processing’'s map() function is different from Python's built-in
map () function. This difference is discussed in “Built-In Function
Names” on page 212.)

Response 69

Robot 3: Response

This program uses the variables introduced in Robot 2 (see
“Robot 2: Variables” on page 45) and makes it possible to
change them while the program runs so that the shapes
respond to the mouse. The code inside the draw() block runs
many times each second. At each frame, the variables defined
in the program change in response to the mouseX and mouse
Pressed variables.

The mouseX value controls the position of the robot with an eas-
ing technique so that movements are less instantaneous and
feel more natural. When a mouse button is pressed, the values
of neckHeight and bodyHeight change to make the robot short.

X = 60.0 # x coordinate
y = 440.0 # y coordinate
radius = 45 # Head radius
bodyHeight = 160 # Body height

neckHeight = 70 # Neck height
easing = 0.02
def setup():

size(360, 480)
strokelWeight(2)

70 Getting Started with Processing.py

ellipseMode(RADIUS)

def draw():
global x
targetX = mouseX
x += (targetX - x) * easing

if mousePressed:
neckHeight = 16

bodyHeight = 90
else:

neckHeight = 70

bodyHeight = 160

ny =y - bodyHeight - neckHeight - radius
background(0, 153, 204)

Neck
stroke(255)
line(x+12, y-bodyHeight, x+12, ny)

Antennae

line(x+12, ny, x-18, ny-43)
line(x+12, ny, x+42, ny-99)
line(x+12, ny, x+78, ny+15)

Body

noStroke()

fill(255, 204, 0)

ellipse(x, y-33, 33, 33)

fi11(0)

rect(x-45, y-bodyHeight, 90, bodyHeight-33)

Head

fi11(0)

ellipse(x+12, ny, radius, radius)
fil11(255)

ellipse(x+24, ny-6, 14, 14)
fil11(0)

ellipse(x+24, ny-6, 3, 3)

Response 71

6/Translate, Rotate,
Scale

An alternative technique for positioning
and moving things on screen is to change
the screen coordinate system. For
instance, you can move a shape 50 pixels
to the right, or you can move the location
of coordinate (0,0) 50 pixels to the right
—the visual result on screen is the same.

By modifying the default coordinate system, we can create dif-
ferent transformations including translation, rotation, and
scaling.

Translate

Working with transformations can be tricky, but the translate()
function is the most straightforward, so we'll start with that. As
Figure 6-1 shows, this function can shift the coordinate system
left, right, up, and down.

73

translate(40, 20) translate(60, 70)
rect(20, 20, 20, 40) rect(20, 20, 20, 40)

Figure 6-1. Translating the coordinates

Example 6-1: Translating Location

In this example, notice that the rectangle is drawn at coordinate
(0,0), but it is moved around on the screen, because it is affec-
ted by translate():

def setup():
size(120, 120)

def draw():
translate(mouseX, mouseY)
rect(o, 0, 30, 30)
The translate() function sets the (0,0) coordinate of the screen
to the mouse location (mouseX and mouseY). Each time
the draw() block repeats, the rect() is drawn at the new ori-
gin, derived from the current mouse location.

Example 6-2: Multiple Translations

After a transformation is made, it is applied to all drawing func-
tions that follow. Notice what happens when a second translate
function is added to control a second rectangle:

74 Getting Started with Processing.py

™

def setup():
size(120, 120)

def draw():

translate(mouseX, mouseY)

rect(o, 0, 30, 30)

translate(35, 10)

rect(o, 0, 15, 15)
The values for the translate() functions are added together.
The smaller rectangle was translated the amount of mouseX + 35
and mouseY + 10. The x and y coordinates for both rectangles are
(0,0), but the translate() functions move them to other posi-
tions on screen.

However, even though the transformations accumulate within
the draw() block, they are reset each time draw() starts again at
the top.

Rotate

The rotate() function rotates the coordinate system. It has one
parameter, which is the angle (in radians) to rotate. It always
rotates relative to (0,0), known as rotating around the origin.
Refer back to Figure 3-2 to see the radians angle values.
Figure 6-2 shows the difference between rotating with positive
and negative numbers.

Translate, Rotate, Scale 75

rotate(PI/12.0) rotate(-PI/3)
rect(20, 20, 20, 40) rect(20, 20, 20, 40)

Figure 6-2. Rotating the coordinates

Example 6-3: Corner Rotation

To rotate a shape, first define the rotation angle with rotate(),
then draw the shape. In this sketch, the amount to rotate
(mouseX / 100.0) will be between 0 and 1.2 to define the rotation
angle because mouseX will be between O and 120, the width of
the Display Window specified with the size() command. Note
that you should divide by 100.0 not 100, because of how num-
bers work in Python (see “Making Variables” on page 36).

def setup():
size(120, 120)

def draw():
rotate(mouseX / 100.0)
rect(40, 30, 160, 20)

Example 6-4: Center Rotation

To rotate a shape around its own center, it must be drawn with
coordinate (0,0) in the middle. In this example, because the
shape is 160 wide and 20 high as defined in rect(), it is drawn at

76 Getting Started with Processing.py

the coordinate (-80, -10) to place (0,0) at the center of the
shape:

—]

def setup():
size(120, 120)

def draw():
rotate(mouseX / 100.0)
rect(-80, -10, 160, 20)
The previous pair of examples showed how to rotate around
coordinate (0,0), but what about other possibilities? You can
use the translate() and rotate() functions for more control.
When they are combined, the order in which they appear affects
the result. If the coordinate system is first moved and then rota-
ted, that is different than first rotating the coordinate system,
then moving it.

Example 6-5: Translation, Then
Rotation

To spin a shape around its center point at a place on screen
away from the origin, first use translate() to move to the loca-
tion where you'd like the shape, then call rotate(), and then
draw the shape with its center at coordinate (0,0):

angle = 0.0

def setup():

Translate, Rotate, Scale 77

size(120, 120)

def draw():
global angle
translate(mouseX, mouseY)
rotate(angle)
rect(-15, -15, 30, 30)
angle += 0.1

Example 6-6: Rotation, Then
Translation

The following example is identical to Example 6-5 on page 77,
except that translate() and rotate() are reversed. The shape

now rotates around the upper-left corner of the Display Window,
with the distance from the corner set by translate():

)

angle = 0.0

def setup():
size(120, 120)

def draw():
global angle
rotate(angle)
translate(mouseX, mouseY)
rect(-15, -15, 30, 30)
angle += 0.1

/ Another option is to use the rectMode(), ellipse
Mode(), imageMode(), and shapeMode() functions,
which make it easier to draw shapes from their cen-
ter. You can read about these functions in the Pro-
cessing Reference.

78 Getting Started with Processing.py

Example 6-7: An Articulating Arm

In this example, we've put together a series of translate() and
rotate() functions to create a linked arm that bends back and
forth. Each translate() further moves the position of the lines,
and each rotate() adds to the previous rotation to bend more:

angle = 0.0
angleDirection = 1
speed = 0.005

def setup():
size(120, 120)

def draw():

global angle, angleDirection

background(204)

translate(20, 25) # Move to start position

rotate(angle)

strokelWeight(12)

line(o, 0, 40, 0)

translate(40, 0) # Move to next joint

rotate(angle * 2.0)

strokelWeight(6)

line(o, 0, 30, 0)

translate(30, 0) # Move to next joint

rotate(angle * 2.5)

strokeWeight(3)

line(o, 0, 20, 0)

angle += speed * angleDirection

if angle > QUARTER_PI or angle < 0:
angleDirection = -angleDirection

The angle variable grows from O to QUARTER_PI (one quarter of
the value of pi), then decreases until it is less than zero, then the
cycle repeats. The value of the angleDirection variable is always
1 or -1 to make the value of angle correspondingly increase or
decrease.

Translate, Rotate, Scale 79

Scale

The scale() function stretches the coordinates on the screen.
Because the coordinates expand or contract as the scale
changes, everything drawn to the Display Window increases or
decreases in dimension. Use scale(1.5) to make everything
150% of their original size, or scale(3) to make them three
times larger. Using scale(1) would have no effect, because
everything would remain 100% of the original. To make things
half their size, use scale(0.5). See Figure 6-3 for an illustration
of how the scale() function affects the coordinate system.

scale(1.5) scale(3)
rect(20, 20, 20, 40) rect(20, 20, 20, 40)

(0,0) (0,0)

[

Figure 6-3. Scaling the coordinates

Example 6-8: Scaling

Like rotate(), the scale() function transforms from the origin.
Therefore, as with rotate(), to scale a shape from its center,
translate to its location, scale, and then draw with the center at
coordinate (0,0):

def setup():
size(120, 120)

def draw():

80 Getting Started with Processing.py

translate(mouseX, mouseY)
scale(mouseX / 60.0)
rect(-15, -15, 30, 30)

Example 6-9: Keeping Strokes
Consistent

From the thick lines in Example 6-8 on page 80, you can see
how the scale() function affects the stroke weight. To maintain
a consistent stroke weight as a shape scales, divide the desired
stroke weight by the scalar value:

def setup():
size(120, 120)

def draw():
translate(mouseX, mouseY)
scalar = mouseX / 60.0
scale(scalar)
if scalar > 0.0:
strokeWeight(1.0 / scalar)
else:
strokelWeight(0)
rect(-15, -15, 30, 30)
In this example, the value for the variable scalar might be zero if
the value of mouseX is also zero (zero divided by 60 is zero). It's
for this reason that we need to ensure that the value of scalar is
greater than zero before performing the division to determine
the appropriate stroke weight. Division by zero is an illegal oper-
ation in Python, and your program will immediately stop running
if Python encounters a division expression where the divisor is
Zero.

Push and Pop

To isolate the effects of a transformation so they don't affect
later commands, you can use the pushMatrix() and popMatrix()
functions. When pushMatrix() is run, it saves a copy of the cur-
rent coordinate system and then restores that system after pop
Matrix(). This is useful when transformations are needed for
one shape but not wanted for another.

Translate, Rotate, Scale 81

Example 6-10: Isolating
Transformations
In this example, the smaller rectangle always draws in the same

position because the translate(mouseX, mouseY) is cancelled by
the popMatrix():

IicH

def setup():
size(120, 120)

def draw():
pushMatrix()
translate(mouseX, mouseY)
rect(o, 0, 30, 30)
popMatrix()
translate(35, 10)
rect(o, 0, 15, 15)

The pushMatrix() and popMatrix() functions are
always used in pairs. For every pushMatrix(), you
need to have a matching popMatrix().

82 Getting Started with Processing.py

Robot 4: Translate, Rotate, Scale

Wi,

%0/4

The translate(), rotate(), and scale() functions are all utilized
in this modified robot sketch. In relation to “Robot 3: Response”
on page 70, translate() is used to make the code easier to
read. Here, notice how the x value no longer needs to be added
to each drawing function because translate() moves every-
thing.

Similarly, the scale() function is used to set the dimensions for
the entire robot. When the mouse is not pressed, the size is set
to 60% and when it is pressed, it goes to 100% in relation to the
original coordinates. The rotate() function is used within a loop
to draw a line, rotate it a little, then draw a second line, then
rotate a little more, and so on until the loop has drawn 30 lines
half-way around a circle to style a lovely head of robot hair:

X = 60 # x coordinate
y = 440 # y coordinate
radius = 45 # Head radius
bodyHeight = 180 # Body height

neckHeight = 40 # Neck height

easing = 0.04

Translate, Rotate, Scale 83

def setup():
size(360, 480)
strokelWeight(2)
ellipseMode(RADIUS)

def draw():
background(0, 153, 204)

translate(mouseX, y) # Move all to (mouseX, y)
if mousePressed:

scale(1.0)
else:

scale(0.6) # 60% size when mouse is pressed

Body

noStroke()

fill1(255, 204, 0)

ellipse(0, -33, 33, 33)

fi11(0)

rect(-45, -bodyHeight, 90, bodyHeight-33)

Neck

stroke(255)

neckY = -(bodyHeight + neckHeight + radius)
line(12, -bodyHeight, 12, neckY)

Hair

pushMatrix()

translate(12, neckY)

angle = -PI/30.0

for i in range(31):
line(80, 0, 0, 0)
rotate(angle)

popMatrix()

Head

noStroke()

fil1(0)

ellipse(12, neckY, radius, radius)
£ill(255)

ellipse(24, neckY-6, 14, 14)
fil1(0)

ellipse(24, neckY-6, 3, 3)

84 Getting Started with Processing.py

7/Media

Processing is capable of drawing more
than simple lines and shapes. It's time to
learn how to load raster images, vector
filles, and fonts into our programs to
extend the visual possibilities to photog-
raphy, detailed diagrams, and diverse
typefaces.

Processing uses a folder named data to store such files, so that
you never have to think about their location when moving
sketches around and exporting them. We've posted some media
files online for you to use in this chapter’'s examples.

Download this file, unzip it to the desktop (or somewhere else
convenient), and make a mental note of its location.

/ To unzip on OS X, just double-click the file, and it will
create a folder named media. On Windows, double-
click the media.zip file, which will open a new win-
dow. In that window, drag the media folder to the
desktop.

Create a new sketch, and select Add File from the Sketch menu.
Find the lunar.jpg file from the media folder that you just unzip-
ped and select it. To ensure that the file was added successfully,
select Show Sketch Folder in the Sketch menu. You should see a
folder named data, with a copy of lunar.jpg inside. When you add
a file to the sketch, the data folder will automatically be created.
Instead of using the Add File menu command, you can do the
same thing by dragging files into the editor area of the Process-

85

http://www.processing.org/learning/books/media.zip

ing window. The files will be copied to the data folder the same
way (and the data folder will be created if none exists).

You can also create the data folder outside of Processing and
copy files there yourself. You won't get the message saying that
files have been added, but this is a helpful method when you're
working with large numbers of files.

On Windows and OS X, extensions are hidden by
default. It's a good idea to change that option so that
you always see the full name of your files. On OS X,
select Preferences from the Finder menu and then
make sure “Show all filename extensions” is
checked in the Advanced tab. On Windows, look for
“Folder Options” and set the option there.

Images

There are three steps to follow before you can draw an image to
the screen:

1. Add the image to the sketch's data folder (instructions given
previously).

2. Create a variable to store the image.
3. Load the image into the variable with loadImage().

Example 7-1: Load an Image

After all three steps are done, you can draw the image to the
screen with the image() function. The first parameter to image()
specifies the image to draw; the second and third set the x and y
coordinates:

86 Getting Started with Processing.py

img = None

def setup():
global img
size(480, 120)
img = loadImage("lunar.jpg")

def draw():
image(img, 0, 0)
Optional fourth and fifth parameters to the image function set
the width and height to draw the image. If the fourth and fifth
parameters are not used, the image is drawn at the size at which
it was created.

Note that we've initialized the img variable in the preceding
example to the value None, which is a special placeholder value
in Python that allows us to create a variable but leave it “empty.”
It's only later, in setup, that we call the loadImage function and
assign a real value to the img variable. (This variable assignment
dance is necessary because the loadImage function—and many
of the other functions for loading and creating media resources
discussed in this chapter—can't be called until after setup is
called.)

These next examples show how to work with more than one
image in the same program and how to resize an image.
Example 7-2: Load More Images

For this example, you'll need to add the capsule.jpg file (found in
the media folder you downloaded) to your sketch using one of
the methods described earlier:

Media 87

img1 = None
img2 = None

def setup():
global imgl, img2
size(480, 120)
imgl = loadImage("lunar.jpg")
img2 = loadImage("capsule.jpg")

def draw():
image(imgl, -120, 0)
image(img1, 130, 0, 240, 120)
image(img2, 300, 0, 240, 120)

Example 7-3: Mousing Around with
Images

When the mouseX and mouseY values are used as part of the
fourth and fifth parameters of image(), the image size changes
as the mouse moves:

img = None

def setup():
global img
size(480, 120)
img = loadImage("lunar.jpg")

def draw():

88 Getting Started with Processing.py

background(0)
image(img, 0, 0, mouseX * 2, mouseY * 2)

/ When an image is displayed larger or smaller than its
actual size, it may become distorted. Be careful to
prepare your images at the sizes they will be used.
When the display size of an image is changed with
the image() function, the actual image on the hard
drive doesn't change.

Processing can load and display raster images in the JPEG,
PNG, and GIF formats. (Vector shapes in the SVG format can be
displayed in a different way, as described in “Shapes” on page
94.) You can convert images to the JPEG, PNG, and GIF formats
using programs like GIMP and Photoshop. Digital cameras typi-
cally save JPEG images that are much larger than the drawing
area of most Processing sketches, so resizing such images
before they are added to the data folder will make your sketches
run more efficiently.

GIF and PNG images support transparency, which means that
pixels can be invisible or partially visible (recall the discussion of
color() and alpha values in Example 3-17 on page 26). GIF
images have 1-bit transparency, which means that pixels are
either fully opaque or fully transparent. PNG images have 8-bit
transparency, which means that each pixel can have a variable
level of opacity. The following examples show the difference,
using the clouds.gif and clouds.png files found in the media
folder that you downloaded. Be sure to add them to the sketch
before trying each example.

Media 89

Example 7-4: Transparency with a
GIF

img = None

def setup():
global img
size(480, 120)
img = loadImage("clouds.gif")

def draw():
background(255)
image(img, 0, 0)
image(img, 0, mouseY * -1)

Example 7-5: Transparency with a
PNG

img = None

def setup():
global img
size(480, 120)
img = loadImage("clouds.png")

def draw():
background(255)
image(img, 0, 0)
image(img, 0, mouseY * -1)

90 Getting Started with Processing.py

/ Remember to include the file extensions .gif, .jpg,
or .png when you load the image. Also, be sure that
the image name is typed exactly as it appears in the
file, including the case of the letters. And if you
missed it, read the note earlier in this chapter about
making sure that the file extensions are visible on
OS X'and Windows.

Fonts

The Processing software can display text using TrueType (.ttf)
and OpenType (.otf) fonts, as well as a custom bitmap format
called VLW. For this introduction, we will load a TrueType font
from the data folder, the SourceCodePro-Regular.ttf font
included in the media folder that you downloaded earlier.

/ The following websites are good places to find fonts
with open licenses to use with Processing:

+ http://www.google.com/fonts
* http://openfontlibrary.org
+ http:/www.theleagueofmoveabletype.com

Now it's possible to load the font and add words to a sketch.
This part is similar to working with images, but there's one extra
step:

1. Add the font to the sketch’s data folder (instructions given
previously).
2. Create a variable to store the font.

3. Create the font and assign it to a variable with createFont().
This reads the font file, and creates a version of it at a spe-
cific size that can be used by Processing.

4. Use the textFont() command to set the current font.

Media 91

http://www.google.com/fonts
http://openfontlibrary.org
http://www.theleagueofmoveabletype.com

Example 7-6: Drawing with Fonts

Now you can draw these letters to the screen with the text()
function, and you can change the size with textSize():

That’s one small step fc

That’s one small step for man...

font = None

def setup():
global font
size(480, 120)
font = createFont("SourceCodePro-Regular.ttf", 32)
textFont(font)

def draw():
background(102)
textSize(32)
text("That’s one small step for man...", 25, 60)
textSize(16)
text("That’s one small step for man...", 27, 90)

The first parameter to text() is the character(s) to draw to the
screen. (Notice that the characters are enclosed within quotes.)
The second and third parameters set the horizontal and vertical
location. The location is relative to the baseline of the text (see
Figure 7-1).

(x,y)

Figure 7-1. Typography coordinates

92 Getting Started with Processing.py

Example 7-7: Draw Text in a Box

You can also set text to draw inside a box by adding fourth and
fifth parameters that specify the width and height of the box:

That’s one small

step for man...

font = None

def setup():
global font
size(480, 120)
font = createFont("SourceCodePro-Regular.ttf", 24)
textFont(font)

def draw():
background(102)
text("That’s one small step for man...", 26, 24, 240, 100)

Example 7-8: Store Text in a String

In the previous example, the words inside the text() function
start to make the code difficult to read. We can store these
words in a variable to make the code more modular. The string
data type is used to store text data. Here's a new version of the
previous example that uses a string:

font = None
quote = "That’s one small step for man..."

def setup():
global font
size(480, 120)
font = createFont("SourceCodePro-Regular.ttf", 24)
textFont(font)

def draw():

background(102)
text(quote, 26, 24, 240, 100)

Media 93

There's a set of additional functions that affect how letters are
displayed on screen. They are explained, with examples, in the
Typography category of the Processing Reference.

Shapes

If you make vector shapes in a program like Inkscape or lllustra-
tor, you can load them into Processing directly. This is helpful for
shapes you'd rather not build with Processing’s drawing func-
tions. As with images, you need to add them to your sketch
before they can be loaded.

There are three steps to load and draw an SVG file:
1. Add an SVG file to the sketch's data folder.

2. Create a variable to store the vector file.
3. Load the vector file into the variable with loadShape().

Example 7-9: Draw with Shapes

After following these steps, you can draw the image to the
screen with the shape() function:

network = None

def setup():
global network
size(480, 120)
network = loadShape("network.svg")

def draw():
background(0)
shape(network, 30, 10)
shape(network, 180, 10, 280, 280)

94 Getting Started with Processing.py

The parameters for shape() are similar to image(). The first
parameter tells shape() which SVG to draw, and the next pair
sets the position. Optional fourth and fifth parameters set the
width and height.

Example 7-10: Scaling Shapes

Unlike raster images, vector shapes can be scaled to any size
without losing resolution. In this example, the shape is scaled
based on the mouseX variable, and the shapeMode() function is
used to draw the shape from its center, rather than the default
position, the upper-left corner:

qr v. 4;-

network = None

def setup():
global network
size(240, 120)
shapeMode (CENTER)
network = loadShape("network.svg")

def draw():
background(0)
diameter = map(mouseX, 0, width, 10, 800)
shape(network, 120, 60, diameter, diameter)

Processing doesn't support all SVG features. See the
reference entry for PShape for more details.

Example 7-11: Creating a New Shape

In addition to loading shapes through the data folder, new
shapes can be created with code through the createShape()
function. In the next example, one of the creatures from Exam-

Media 95

ple 3-21 on page 29 is built in the setup(). Once this hap-
pens, the shape can be used anywhere in the program with the
shape() function:

dino =

None

def setup():
global dino
size(480, 120)

dino

dino.
dino.
dino.
dino.
dino.
dino.
dino.
dino.
dino.
dino.
dino.
dino.

= createShape()
beginShape()
fil1(153, 176, 180)
vertex(50, 120)
vertex(100, 90)
vertex(110, 60)
vertex (80, 20)
vertex(210, 60)
vertex(160, 80)
vertex (200, 90)
vertex(140, 100)
vertex(130, 120)
endShape()

def draw():
background(204)
translate(mouseX - 120, 0)
shape(dino, 0, 0)

Making a custom PShape with createShape() can make
sketches more efficient when the same shape is drawn many

times.

96 Getting Started with Processing.py

Robot 5: Media

Unlike the robots created from lines and rectangles drawn in
Processing in the previous chapters, these robots were created
with a vector drawing program. For some shapes, it's often eas-
ier to point and click in a software tool like Inkscape or Illustrator
than to define the shapes with coordinates in code.

There's a trade-off to selecting one image creation technique
over another. When shapes are defined in Processing, there's
more flexibility to modify them while the program is running. If
the shapes are defined elsewhere and then loaded into Process-
ing, changes are limited to the position, angle, and size. When
loading each robot from an SVG file, as this example shows, the
variations featured in Robot 2 (see “Robot 2: Variables” on page
45) are impossible.

Images can be loaded into a program to bring in visuals created
in other programs or captured with a camera. With this image in
the background, our robots are now exploring for life forms in
Norway at the dawn of the 20th century.

The SVG and PNG file used in this example can be downloaded
from http:/www.processing.org/learning/books/media.zip:

Media 97

http://www.processing.org/learning/books/media.zip

bot1 = None
bot2 = None
bot3 = None

landscape = None

easing = 0.05
offset = 0

def setup():
global bot1, bot2, bot3, landscape
size(720, 480)
bot1 = loadShape("roboti.svg")
bot2 = loadShape("robot2.svg")
bot3 = loadShape("robot3.svg")
landscape = loadImage("alpine.png")

def draw():
global offset

Set the background to the "landscape" image; this image
must be the same width and height as the program
background(landscape)

Set the left/right offset and apply easing to make
the transition smooth

targetOffset = map(mouseY, 0, height, -40, 40)
offset += (targetOffset - offset) * easing

Draw the left robot
shape(bot1, 85 + offset, 65)

Draw the right robot smaller and give it a smaller offset
smallerOffset = offset * 0.7
shape(bot2, 510 + smallerOffset, 140, 78, 248)

Draw the smallest robot, give it a smaller offset

smallerOffset *= -0.5;
shape(bot3, 410 + smallerOffset, 225, 39, 124)

98 Getting Started with Processing.py

8/Motion

Like a flip book, animation on screen is
created by drawing an image, then draw-
ing a slightly different image, then
another, and so on. The illusion of fluid
motion is created by persistence of
vision. When a set of similar images is
presented at a fast enough rate, our
brains translate these Iimages into
motion.

Frames

To create smooth motion, Processing tries to run the code
inside draw() at 60 frames each second. A frame is one trip
through the draw() and the frame rate is how many frames are
drawn each second. Therefore, a program that draws 60 frames
each second means the program runs the entire code inside
draw() 60 times each second.

Example 8-1: See the Frame Rate

To confirm the frame rate, run this program and watch the val-
ues print to the Console. The frameRate variable keeps track of
the program'’s speed:

def draw():
print frameRate

99

Example 8-2: Set the Frame Rate

The frameRate() function changes the speed at which the pro-
gram runs. To see the result, uncomment different versions of
frameRate() in this example:

def setup():
frameRate(30) # Thirty frames each second
#frameRate(12) # Twelve frames each second
#frameRate(2) # Two frames each second
#frameRate(0.5) # One frame every two seconds

def draw():
print frameRate

/ Processing tries to run the code at 60 frames each
second, but if it takes longer than 1/60th of a sec-
ond to run the draw() method, then the frame rate
will decrease. The frameRate() function specifies
only the maximum frame rate, and the actual frame
rate for any program depends on the computer that
is running the code.

Speed and Direction

To create fluid motion examples, we use a data type called
float. This type of variable stores numbers with decimal places,
which provide more resolution for working with motion. For
instance, when using ints, the slowest you can move each
frame is one pixel at atime (1, 2, 3, 4, . . .), but with floats, you
can move as slowly as you want (1.01,1.01,1.02,1.03, . . .).

The data type of a variable depends on the value that you assign
to it. To create a value of type float, include a decimal point as
part of the number in your code. If you don't include a decimal
point, Python will create a value of type int. In the following
code snippet, for example, the data type of variable vari is
float, whereas the data type of variable var2 is int:

12.5 # float
4 # int

varl
var2

100 Getting Started with Processing.py

In Python, you can write arithmetic expressions that mix ints
and floats (e.g., 6 * 0.5). The data type that results from such
expressions is always float.

Example 8-3: Move a Shape

The following example moves a shape from left to right by
updating the x variable:

radius = 40.0
X = -radius
speed = 0.5

def setup():
size(240, 120)
ellipseMode(RADIUS)

def draw():

global x

background(0)

x += speed # Increase the value of x

arc(x, 60, radius, radius, 0.52, 5.76)
When you run this code, you'll notice the shape moves off the
right of the screen when the value of the x variable is greater
than the width of the window. The value of x continues to
increase, but the shape is no longer visible.

Example 8-4: Wrap Around

There are many alternatives to this behavior, which you can
choose from according to your preference. First, we'll extend the
code to show how to move the shape back to the left edge of the
screen after it disappears off the right. In this case, picture the
screen as a flattened cylinder, with the shape moving around
the outside to return to its starting point:

Motion 101

radius = 40.0
X = -radius
speed = 0.5

def setup():
size(240, 120)
ellipseMode(RADIUS)

def draw():

global x

background(0)

X += speed # Increase the value of x

if x > width+radius: # If the shape is off screen,

X = -radius # move to the left edge

arc(x, 60, radius, radius, 0.52, 5.76)
On each trip through draw(), the code tests to see if the value of
x has increased beyond the width of the screen (plus the radius
of the shape). If it has, we set the value of x to a negative value,
so that as it continues to increase, it will enter the screen from
the left. See Figure 8-1 for a diagram of how it works.

102 Getting Started with Processing.py

width

(x,y)
: X = width

) X = width+radius

o5y x = -radius

Figure 8-1. Testing for the edges of the window

Example 8-5: Bounce Off the Wall

In this example, we'll extend Example 8-3 on page 101 to have
the shape change directions when it hits an edge, instead of
wrapping around to the left. To make this happen, we add a new
variable to store the direction of the shape. A direction value of 1
moves the shape to the right, and a value of —1 moves the shape
to the left:

radius = 40.0
X = 110.0
speed = 0.5
direction = 1

def setup():
size(240, 120)
ellipseMode(RADIUS)

Motion 103

def draw():
global x, direction
background(0)
x += speed * direction
if x > width-radius or x < radius:
direction = -direction # Flip direction
if direction == 1:
arc(x, 60, radius, radius, 0.52, 5.76) # Face right
else:
arc(x, 60, radius, radius, 3.67, 8.9) # Face left

When the shape reaches an edge, this code flips the shape’'s
direction by changing the sign of the direction variable. For
example, if the direction variable is positive when the shape
reaches an edge, the code flips it to negative.

Tweening

Sometimes you want to animate a shape to go from one point
on screen to another. With a few lines of code, you can set up
the start position and the stop position, then calculate the in-
between (tween) positions at each frame.

Example 8-6: Calculate Tween
Positions

To make this example code modular, we've created a group of
variables at the top. Run the code a few times and change the
values to see how this code can move a shape from any location
to any other at a range of speeds. Change the step variable to
alter the speed:

startX = 20.0 # Initial x coordinate
stopX = 160.0 # Final x coordinate
startY = 30.0 # Initial y coordinate
stopY = 80.0 # Final y coordinate
x = startX # Current x coordinate

104 Getting Started with Processing.py

y = startY # Current y coordinate
step = 0.005 # Size of each step (0.0 to 1.0)
pct = 0.0 # Percentage traveled (0.0 to 1.0)

def setup():
size(240, 120)

def draw():

global x, y, pct

background(0)

if pct < 1.0:
x = startX + ((stopX-startX) * pct)
y = startY + ((stopY-startY) * pct)
pct += step

ellipse(x, y, 20, 20)

Random

Unlike the smooth, linear motion common to computer graph-
ics, motion in the physical world is usually idiosyncratic. For
instance, think of a leaf floating to the ground, or an ant crawling
over rough terrain. We can simulate the unpredictable qualities
of the world by generating random numbers. The random() func-
tion calculates these values; we can set a range to tune the
amount of disarray in a program.

Example 8-7: Generate Random
Values

The following short example prints random values to the Con-
sole, with the range limited by the position of the mouse. As you
can see when you run the example, the random() function always
returns a floating-point value:
def draw():

r = random(0, mouseX)

print r
Note that the random() function is a Processing function, and
behaves differently from the random module included in the
Python standard library. See “Python Standard Library” on page
213 for more information.

Motion 105

Example 8-8: Draw Randomly

The following example builds on Example 8-7 on page 105; it
uses the values from random() to change the position of lines on
screen. When the mouse is at the left of the screen, the change
is small; as it moves to the right, the values from random()
increase and the movement becomes more exaggerated.
Because the random() function is inside the for loop, a new ran-
dom value is calculated for each point of every line:

def setup():
size(240, 120)

def draw():
background(204)
for x in range(20, width, 20):
mx = mouseX / 10
offsetA = random(-mx, mx)
offsetB = random(-mx, mx)
line(x + offsetA, 20, x - offsetB, 100)

Example 8-9: Move Shapes Randomly

When used to move shapes around on screen, random values
can generate images that are more natural in appearance. In the
following example, the position of the circle is modified by ran-
dom values on each trip through draw(). Because the back
ground() function is not used, past locations are traced:

106 Getting Started with Processing.py

speed = 2.5
diameter = 20
X = 0.0

y = 0.0

def setup():
global x, y
size(240, 120)
X = width/2
y = height/2

def draw():

global x, y

x += random(-speed, speed)

y += random(-speed, speed)

ellipse(x, y, diameter, diameter)
If you watch this example long enough, you may see the circle
leave the window and come back. This is left to chance, but we
could add a few if structures or use the constrain() function to
keep the circle from leaving the screen. The constrain() func-
tion limits a value to a specific range, which can be used to keep
x and y within the boundaries of the Display Window. By replac-
ing the draw() in the preceding code with the following, you'll
ensure that the ellipse will remain on the screen:

def draw():
global x, y
X += random(-speed, speed)
y += random(-speed, speed)
x = constrain(x, 0, width)
y = constrain(y, 0, height)
ellipse(x, y, diameter, diameter)

/ The randomSeed() function can be used to force
random() to produce the same sequence of numbers
each time a program is run. This is described further
in the Processing Reference.

Motion 107

Timers

Every Processing program counts the amount of time that has
passed since it was started. It counts in milliseconds (thou-
sandths of a second), so after 1 second, the counter is at 1,000;
after 5 seconds, it's at 5,000; and after 1 minute, it's at 60,000.
We can use this counter to trigger animations at specific times.
Themillis() function returns this counter value.

Example 8-10: Time Passes

You can watch the time pass when you run this program:

def draw():
timer = millis()
print timer

Example 8-11: Triggering Timed
Events

When paired with an if block, the values from millis() can be
used to sequence animation and events within a program. For
instance, after two seconds have elapsed, the code inside the if
block can trigger a change. In this example, variables called
timel and time2 determine when to change the value of the x
variable:

timel = 2000
time2 = 4000
X = 0.0

def setup():
size(480, 120)

def draw():

global x

currentTime = millis()

background(204)

if currentTime > time2:
X -= 0.5

elif currentTime > timel:
X += 2

ellipse(x, 60, 90, 90)

108 Getting Started with Processing.py

Circular

If you're a trigonometry ace, you already know how amazing the
sine and cosine functions are. If you're not, we hope the next
examples will trigger your interest. We won't discuss the math in
detail here, but we'll show a few applications to generate fluid
motion.

Figure 8-2 shows a visualization of sine wave values and how
they relate to angles. At the top and bottom of the wave, notice
how the rate of change (the change on the vertical axis) slows
down, stops, then switches direction. It's this quality of the
curve that generates interesting motion.

The sin() and cos() functions in Processing return values
between -1 and 1 for the sine or cosine of the specified angle.
Like arc(), the angles must be given in radian values (see Exam-
ple 3-7 on page 18 and Example 3-8 on page 19 for a reminder of
how radians work). To be useful for drawing, the float values
returned by sin() and cos() are usually multiplied by a larger
value.

Motion 109

Figure 8-2. A sine wave is created by tracing the sine values of
an angle that moves around a circle

110 Getting Started with Processing.py

Example 8-12: Sine Wave Values

This example shows how values for sin() cycle from -1 to 1 as
the angle increases. With the map() function, the sinval variable
is converted from this range to values from O and 255. This new
value is used to set the background color of the window:

angle = 0.0

def draw():
global angle
sinval = sin(angle)
print sinval
gray = map(sinval, -1, 1, 0, 255)
background(gray)
angle += 0.1

Example 8-13: Sine Wave Movement

This example shows how these values can be converted into
movement:

angle = 0.0
offset = 60.0
scalar = 40.0
speed = 0.05

def setup():
size(240, 120)

def draw():
global angle
background(0)
yl = offset + sin(angle) * scalar
y2 = offset + sin(angle + 0.4) * scalar
y3 = offset + sin(angle + 0.8) * scalar

ellipse(80, y1, 40, 40)
ellipse(120, y2, 40, 40)

Motion 111

ellipse(160, y3, 40, 40)
angle += speed

Example 8-14: Circular Motion

When sin() and cos() are used together, they can produce cir-
cular motion. The cos() values provide the x coordinates, and
the sin() values provide the y coordinates. Both are multiplied
by a variable named scalar to change the radius of the move-
ment and summed with an offset value to set the center of the
circular motion:

angle = 0.0
offset = 60.0
scalar = 30.0
speed = 0.05

def setup():
size(120, 120)

def draw():
global angle
x = offset + cos(angle) * scalar
y = offset + sin(angle) * scalar
ellipse(x, y, 40, 40)
angle += speed

112 Getting Started with Processing.py

Example 8-15: Spirals

A slight change made to increase the scalar value at each frame
produces a spiral, rather than a circle:

o e,
e

9

angle = 0.0
offset = 60.0
scalar = 2.0
speed = 0.05

def setup():
size(120, 120)
fil1(0)

def draw():
global angle, scalar
x = offset + cos(angle) * scalar;
y = offset + sin(angle) * scalar;
ellipse(x, y, 2, 2)
angle += speed
scalar += speed

Motion 113

Robot 6: Motion

M o ——
gt —

In this example, the techniques for random and circular motion
are applied to the robot. The background() was removed to
make it easier to see how the robot’s position and body change.

At each frame, a random number between -4 and 4 is added to
the x coordinate, and a random number between -1 and 1 is
added to the y coordinate. This causes the robot to move more
from left to right than top to bottom. Numbers calculated from
the sin() function change the height of the neck so it oscillates
between 50 and 110 pixels high:

x = 180.0 # x coordinate

y = 400.0 # y coordinate
bodyHeight = 153.0 # Body height
neckHeight = 56.0 # Neck height
radius = 45.0 # Head radius
angle = 0.0 # Angle for motion

def setup():
size(360, 480)
ellipseMode(RADIUS)
background(0, 153, 204)

114 Getting Started with Processing.py

def draw():
global x, y, angle
Change position by a small random amount
x += random(-4, 4)
y += random(-1, 1)

Change height of neck
neckHeight = 80 + sin(angle) * 30
angle += 0.05

Adjust the height of the head
ny =y - bodyHeight - neckHeight - radius

Neck

stroke(102)

line(x+2, y-bodyHeight, x+2, ny)
line(x+12, y-bodyHeight, x+12, ny)
line(x+22, y-bodyHeight, x+22, ny)

Antennae

line(x+12, ny, x-18, ny-43)
line(x+12, ny, x+42, ny-99)
line(x+12, ny, x+78, ny+15)

Body

noStroke()

fil1(255, 204, 0)

ellipse(x, y-33, 33, 33)

fil1(0)

rect(x-45, y-bodyHeight, 90, bodyHeight-33)
£i11(102)

rect(x-45, y-bodyHeight+17, 90, 6)

Head

fill(o)

ellipse(x+12, ny, radius, radius)
£111(255)

ellipse(x+24, ny-6, 14, 14)
fill(o0)

ellipse(x+24, ny-6, 3, 3)

Motion 115

9/Functions

Functions are the basic building blocks
for Processing programs. They have
appeared in every example we've presen-
ted. For instance, we've frequently used
the size() function, the line() function,
and the fill() function. This chapter
shows how to write new functions to
extend the capabilities of Processing
beyond its built-in features.

The power of functions is modularity. Functions are independ-
ent software units that are used to build more complex pro-
grams—Ilike LEGO bricks, where each type of brick serves a spe-
cific purpose, and making a complex model requires using the
different parts together. As with functions, the true power of
these bricks is the ability to build many different forms from the
same set of elements. The same group of LEGOs that makes a
spaceship can be reused to construct a truck, a skyscraper, and
many other objects.

Functions are helpful if you want to draw a more complex shape
like a tree over and over. The function to draw the tree shape
would be made up of Processing’s built-in commands, like
line(), which create the form. After the code to draw the tree is
written, you don't need to think about the details of tree drawing
again—you can simply write tree() (or whatever you named the
function) to draw the shape. Functions allow a complex
sequence of statements to be abstracted, so you can focus on
the higher-level goal (such as drawing a tree), and not the
details of the implementation (the line() commands that

117

define the tree shape). Once a function is defined, the code
inside the function need not be repeated again.

Function Basics

A computer runs a program one line at a time. When a function
is run, the computer jumps to where the function is defined and
runs the code there, then jumps back to where it left off.

Example 9-1: Roll the Dice

This behavior is illustrated with the rollDice() function written
for this example. When a program starts, it runs the code in
setup() and then stops. The program takes a detour and runs
the code inside rollDice() each time it appears:

def setup():
print "Ready to roll!"
rollDice(20)
rollDice(20)
rollDice(6)
print "Finished."

def rollDice(numSides):
d = 1 + int(random(numSides))
print "Rolling...", d
The two lines of code in rollDice() select a random number
between 1 and the number of sides on the dice, and prints that
number to the Console. Because the numbers are random,
you'll see different numbers each time the program is run:

Ready to roll!

Rolling... 8
Rolling... 13
Rolling... 2
Finished.

Each time the rollDice() function is run inside setup(), the
code within the function runs from top to bottom, then the pro-
gram continues on the next line within setup().

The random() function (described in Example 8-7 on page 105)
returns a number from O up to (but not including) the number
specified. So random(6) returns a number between O and

118 Getting Started with Processing.py

5.99999.... Because random() returns a float value, we also use
int() to convert it to an integer. So int(random(6)) will return O,
1, 2, 3,4, or 5. Then we add 1 so that the number returned is
between 1 and 6 (like a die). Like many other cases in this book,
counting from O makes it easier to use the results of random()
with other calculations.

Example 9-2: Another Way to Roll

If an equivalent program were written without the rollDice()
function, it might look like this:

def setup():

print "Ready to roll!"

di = 1 + int(random(20))

print "Rolling...", d1

d2 = 1 + int(random(20))

print "Rolling...", d2

d3 = 1 + int(random(6))

print "Rolling...", d3

print "Finished."
The rollDice() function in Example 9-1 on page 118 makes the
code easier to read and maintain. The program is clearer
because the name of the function clearly states its purpose. In
this example, we see the random() function in setup(), but its
use is not as obvious. The number of sides on the die is also
clearer with a function: when the code says rollDice(6), it's
obvious that it's simulating the roll of a six-sided die. Also,
Example 9-1 on page 118 is easier to maintain, because informa-
tion is not repeated. The phrase Rolling... is repeated three
times here. If you want to change that text to something else,
you would need to update the program in three places, rather
than making a single edit inside the rollDice() function. In addi-
tion, as you'll see in Example 9-5 on page 122, a function can
also make a program much shorter (and therefore easier to
maintain and read), which helps reduce the potential number of
bugs.

Functions 119

Make a Function

In this section, we'll draw an owl to explain the steps involved in
making a function.

Example 9-3: Draw the Owl

First, we'll draw the owl without using a function:

def setup():
size(480, 120)

def draw():
background(176, 204, 226)
translate(110, 110)
stroke(138, 138, 125)
strokelWeight(70)
line(0, -35, 0, -65) # Body
noStroke()
£111(255)
ellipse(-17.5, -65, 35, 35) # Left eye dome
ellipse(17.5, -65, 35, 35) # Right eye dome
arc(o, -65, 70, 70, 0, PI) # Chin
fill(s1, 51, 30)
ellipse(-14, -65, 8, 8) # Left eye
ellipse(14, -65, 8, 8) # Right eye
quad(o, -58, 4, -51, 0, -44, -4, -51) # Beak

Notice that translate() is used to move the origin (0,0) to 110
pixels over and 110 pixels down. Then the owl is drawn relative to
(0,0), with its coordinates sometimes positive and negative as
it's centered around the new 0,0 point. See Figure 9-1.

120 Getting Started with Processing.py

(0,-100)
pRT e

(-14,-65)\ /(14,-65)

- d
Bl Ol

Figure 9-1. The ow!’s coordinates

Example 9-4: Two’'s Company

The code presented in Example 9-3 on page 120 is reasonable if
there is only one owl, but when we draw a second, the length of
the code is nearly doubled:

def setup():
size(480, 120)

def draw():
background(176, 204, 226)

Left owl

translate(110, 110)
stroke(138, 138, 125)
strokelWeight(70)

line(o, -35, 0, -65) # Body
noStroke()

fill(255)

Functions 121

ellipse(-17.5, -65, 35, 35) # Left eye dome
ellipse(17.5, -65, 35, 35) # Right eye dome
arc(o, -65, 70, 70, 0, PI) # Chin

fill(51, 51, 30)

ellipse(-14, -65, 8, 8) # Left eye
ellipse(14, -65, 8, 8) # Right eye
quad(0, -58, 4, -51, 0, -44, -4, -51) # Beak

Right owl

translate(70, 0);

stroke(138, 138, 125)

strokeleight(70)

line(o, -35, 0, -65) # Body

noStroke()

£i11(255)

ellipse(-17.5, -65, 35, 35) # Left eye dome

ellipse(17.5, -65, 35, 35) # Right eye dome

arc(o, -65, 70, 70, 0, PI) # Chin

fill(51, 51, 30)

ellipse(-14, -65, 8, 8) # Left eye

ellipse(14, -65, 8, 8) # Right eye

quad(o, -58, 4, -51, 0, -44, -4, -51) # Beak
The program grew from 21 lines to 34: the code to draw the first
owl was cut and pasted into the program and a translate() was
inserted to move it to the right 70 pixels. This is a tedious and
inefficient way to draw a second owl, not to mention the head-
ache of adding a third owl with this method. But duplicating the
code is unnecessary, because this is the type of situation where
a function can come to the rescue.

Example 9-5: An Owl Function

In this example, a function is introduced to draw two owls with
the same code. If we make the code that draws the owl to the
screen into a new function, the code need only appear once in
the program:

122 Getting Started with Processing.py

def setup():
size(480, 120)

def draw():
background(176, 204, 226)
owl(110, 110)
owl (180, 110)

def owl(x, y):
pushMatrix()
translate(x, y)
stroke(138, 138, 125)
strokelWeight(70)
line(0, -35, 0, -65) # Body
noStroke()
fi11(255)
ellipse(-17.5, -65, 35, 35) # Left eye dome
ellipse(17.5, -65, 35, 35) # Right eye dome
arc(o, -65, 70, 70, 0, PI) # Chin
fill(51, 51, 30)

ellipse(-14, -65, 8, 8) # Left eye
ellipse(14, -65, 8, 8) # Right eye
quad(o, -58, 4, -51, 0, -44, -4, -51) # Beak
popMatrix()

You can see from the illustrations that this example and Exam-
ple 9-4 on page 121 have the same result, but this example is
shorter, because the code to draw the owl appears only once,
inside the aptly named owl() function. This code runs twice,
because it's called twice inside draw(). The owl is drawn in two
different locations because of the parameters passed into the
function that set the x and y coordinates.

Parameters are an important part of functions, because they
provide flexibility. We saw another example in the rollDice()
function; the single parameter named numSides made it possible
to simulate a 6-sided die, a 20-sided die, or a die with any num-
ber of sides. This is just like many other Processing functions.
For instance, the parameters to the 1ine() function make it pos-
sible to draw a line from any pixel on screen to any other pixel.
Without the parameters, the function would be able to draw a
line only from one fixed point to another.

Each parameter is a variable that gets created each time the
function runs. When this example is run, the first time the owl

Functions 123

function is called, the value of the x parameter is 110, and y is
also 110. In the second use of the function, the value of x is 180
and y is again 110. Each value is passed into the function and
then wherever the variable name appears within the function,
it's replaced with the incoming value.

Example 9-6: Increasing the Surplus
Population

Now that we have a basic function to draw the owl at any loca-
tion, we can draw many owls efficiently by placing the function
within a for loop and changing the first parameter each time
through the loop:

o/

def setup():
size(480, 120)

def draw():
background(176, 204, 226)
for x in range(35, width + 70, 70):
owl(x, 110)

Insert owl() function from Example 9-5

It's possible to keep adding more and more parameters to the
function to change different aspects of how the owl is drawn.
Values could be passed in to change the owl's color, rotation,
scale, or the diameter of its eyes.

Example 9-7: Owls of Different Sizes

In this example, we've added two parameters to change the gray
value and size of each owl:

124 Getting Started with Processing.py

def setup():
size(480, 120)

def draw():
background(176, 204, 226)
randomSeed(0)
for i in range(35, width + 40, 40):
gray = int(random(0, 102))
scalar = random(0.25, 1.0)
owl(i, 110, gray, scalar)

def owl(x, y, g, s):
pushMatrix()
translate(x, y)
scale(s) # Set the scale
stroke(138-g, 138-g, 125-g) # Set the gray value
strokeleight(70)
line(0, -35, 0, -65) # Body
noStroke()
£i11(255)
ellipse(-17.5, -65, 35, 35) # Left eye dome
ellipse(17.5, -65, 35, 35) # Right eye dome
arc(o, -65, 70, 70, 0, PI) # Chin
fill(51, 51, 30)
ellipse(-14, -65, 8, 8) # Left eye
ellipse(14, -65, 8, 8) # Right eye
quad(o, -58, 4, -51, 0, -44, -4, -51) # Beak
popMatrix()

Return Values

Functions can make a calculation and then return a value to the
main program. We've already used functions of this type, includ-
ing random() and sin(). Notice that when this type of function
appears, the return value is usually assigned to a variable:

r = random(1, 10)

In this case, random() returns a value between 1 and 10, which is
then assigned to the r variable.

A function that returns a value is also frequently used as a
parameter to another function. For instance:

point(random(width), random(height));

In this case, the values from random() aren’t assigned to a vari-
able—they are passed as parameters to point() and used to
position the point within the window.

Example 9-8: Return a Value

To make a function that returns a value, specify the data to be
passed back with the keyword return. For instance, this exam-
ple includes a function called calculateMars() that calculates
the weight of a person or object on our neighboring planet:

def setup():
yourhWeight = 132.0
marsWeight = calculateMars(yourhWeight)
print marsWeight

def calculateMars(w):
newWeight = w * 0.38
return newheight
Notice the last line of the block, which returns the variable new
Weight. In the second line of setup(), that value is assigned to
the variable marsWeight. (To see your own weight on Mars,
change the value of the yourleight variable to your weight.)

126 Getting Started with Processing.py

Robot 7: Functions

In contrast to Robot 2 (see “"Robot 2: Variables” on page 45),
this example uses a function to draw four robot variations within
the same program. Because the drawRobot() function appears
four times within draw(), the code within the drawRobot () block
is run four times, each time with a different set of parameters to
change the position and height of the robot’s body.

Notice how what were global variables in Robot 2 have now been
isolated within the drawRobot() function. Because these vari-
ables apply only to drawing the robot, they belong inside the
drawRobot() function block. Because the value of the radius
variable doesn't change, it need not be a parameter. Instead, it
is defined at the beginning of drawRobot ():

def setup():
size(720, 480)
strokelWeight(2)
ellipseMode(RADIUS)

def draw():
background(0, 153, 204)
drawRobot (120, 420, 110, 140)
drawRobot (270, 460, 260, 95)

Functions 127

drawRobot (420, 310, 80, 10)
drawRobot (570, 390, 180, 40)

def drawRobot(x, y, bodyHeight, neckHeight):

radius = 45
ny =y - bodyHeight - neckHeight - radius

Neck

stroke(102)

line(x+2, y-bodyHeight, x+2, ny)
line(x+12, y-bodyHeight, x+12, ny)
line(x+22, y-bodyHeight, x+22, ny)

Antennae

line(x+12, ny, x-18, ny-43)
line(x+12, ny, x+42, ny-99)
line(x+12, ny, x+78, ny+15)

Body

noStroke()

fill(255, 204, 0)

ellipse(x, y-33, 33, 33)

fi11(0)

rect(x-45, y-bodyHeight, 90, bodyHeight-33)
fill(255, 204, 0)

rect(x-45, y-bodyHeight+17, 90, 6)

Head

fill(o)

ellipse(x+12, ny, radius, radius)
£i11(255)

ellipse(x+24, ny-6, 14, 14)
fill(o)

ellipse(x+24, ny-6, 3, 3)
£i11(153)

ellipse(x, ny-8, 5, 5)
ellipse(x+30, ny-26, 4, 4)
ellipse(x+41, ny+6, 3, 3)

128 Getting Started with Processing.py

10/Objects

Object-oriented programming (OOP) is a
different way to think about your pro-
grams. Although the term “object-
oriented programming”™ may sound
intimidating, there's good news: you've
been working with objects since Chap-
ter /, when you started using PImage,
PFont, String, and PShape. Unlike the
primitive data types boolean, int, and
float, which can store only one value, an
object can store many. But that's only a
part of the story. Objects are also a way
to group variables with related functions.
Because you already know how to work
with variables and functions, objects sim-
ply combine what you've already learned
into a more understandable package.

Objects are important, because they break up ideas into smaller
building blocks. This mirrors the natural world where, for
instance, organs are made of tissue, tissue is made of cells, and
so on. Similarly, as your code becomes more complicated, you
must think in terms of smaller structures that form more com-
plicated ones. It's easier to write and maintain smaller, under-
standable pieces of code that work together than it is to write
one large piece of code that does everything at once.

129

Fields and Methods

A software object is a collection of related variables and func-
tions. In the context of objects, a variable is called a field (some-
times known as an instance variable or data attribute in Python)
and a function is called a method. Fields and methods work in a
manner similar to the variables and functions covered in earlier
chapters, but we'll use the new terms to emphasize that they
are a part of an object. To say it another way, an object com-
bines related data (fields) with related actions and behaviors
(methods). The idea is to group together related data with
related methods that act on that data.

For instance, to model a radio, think about what parameters can
be adjusted and the actions that can affect those parameters:

Fields
volume, frequency, band(FM, AM), power(on, off)

Methods
setVolume, setFrequency, setBand

Modeling a simple mechanical device is easy compared to mod-
eling an organism like an ant or a person. It's not possible to
reduce such complex organisms to a few fields and methods,
but it is possible to model enough to create an interesting simu-
lation. The Sims video game is a clear example. This game is
played by managing the daily activities of simulated people. The
characters have enough personality to make a playable, addic-
tive game, but no more. In fact, they have only five personality
attributes: neat, outgoing, active, playful, and nice. With the
knowledge that it's possible to make a highly simplified model of
complex organisms, we could start programming an ant with
only a few fields and methods:

Fields
type(worker, soldier), weight, length

Methods
walk, pinch, releasePheromones, eat

If you made a list of an ant's fields and methods, you might
choose to focus on different aspects of the ant to model.

130 Getting Started with Processing.py

There's no right way to make a model, as long as you make it
appropriate for the purpose of your program’s goals.

Define a Class

Before you can create an object, you must define a class. A class
is the specification for an object. Using an architectural analogy,
a class is like a blueprint for a house, and the object is like the
house itself. Each house made from the blueprint can have var-
iations, and the blueprint is only the specification, not a built
structure. For example, one house can be blue and another red;
one house might come with a fireplace and another without.
Likewise with objects, the class defines the data types and
behaviors, but each object (house) made from a single class
(blueprint) has variables (color, fireplace) that are set to differ-
ent values. To use a more technical term, each object is an
instance of a class and each instance has its own set of fields
and methods.

Before you write a class, we recommend a little planning. Think
about what fields and methods your class should have. Do a lit-
tle brainstorming to imagine all the possible options and then
prioritize and make your best guess about what will work. You'll
make changes during the programming process, but it's impor-
tant to have a good start.

The fields inside a class can be any type of data. A class can
simultaneously hold many booleans, floats, images, strings, and
so on. Keep in mind that one reason to make a class is to group
together related data elements. For your methods, select clear
names and decide the return values (if any). The methods are
used to change the values of the fields and to perform actions
based on the fields’ values.

For our first class, we'll convert one of our earlier examples
(Example 8-9 on page 106). We start by making a list of the
fields from the example:

X

y
diameter

speed

Objects 131

The next step is to figure out what methods might be useful for
the class. In looking at the draw() function from the example
we're adapting, we see two primary components. The position
of the shape is updated and drawn to the screen. Let's create
two methods for our class, one for each task:

def move()

def display()
When we next write the class based on the lists of fields and
methods, we'll follow these steps:

1. Write the class definition.

2. Writean __init method (explained shortly) to initialize the
object and assign values to the fields.

3. Add the methods.

First, we write the class definition:
class JitterBug(object):

Notice that the keyword class is lowercase and the name Jitter
Bug is uppercase. Naming the class with an uppercase letter
isn't required, but it is a convention (that we strongly encour-
age) used to denote that it's a class. (The keyword class, how-
ever, must be lowercase because it's a rule of the programming
language.)

Second, we add an __init method (that's two underscore
characters before init and two underscore characters after
it). Python automatically calls this method whenever an object
(an instance of the class) is created. The purpose of the
__init method is to assign the initial values to the object’s
fields. You can use the parameters passed to __init__ to initial-
ize fields in the object, or you can initialize fields to a value that
doesn’t change from one object to the next. For the JitterBug
class, we've decided that the values for x, y, and diameter will be
passed in, but the value for speed will be the same for every
object that belongs to the class.

The code inside the _init method is run once when the
object is first created. As discussed earlier, we're passing in
three parameters to this method when the object is initialized.

132 Getting Started with Processing.py

Each of the values passed in is assigned to a temporary variable
that exists only while the code inside the __init _ method is
run. To clarify this, we've added the name temp to each of these
variables, but they can be named with any terms that you prefer.
In this example, these variables are used only to assign the val-
ues to the fields that are a part of the class. Also note that the
__init method never returns a value and therefore doesn't
have a return statement init.

After adding the __init method, the class looks like this:

class JitterBug(object):
def _init_ (self, tempX, tempY, tempDiameter):
self.x = tempX
self.y = tempY
self.diameter = tempDiameter
self.speed = 0.5

The first parameter to any method in Python, including
the _init__ method, is the word self. This is a special parame-
ter that Python automatically passes to methods. Its value is the
object that the method is being called on. The self parameter is
what allows you to set the value for a field (e.g., the expression
self.x = tempXin the preceding example) or to use the value of
that field in an expression.

Figure 10-1 shows another example of a class definition: a
“Train” class that has fields for the train's name and distance.
The illustration highlights how values flow from the main pro-
gram to the fields of the newly created object via the _init
method.

Objects 133

class Train(object):
def _init_ (self, tempName, tempDistance):
self.name = tempName

self.distance =-tempDistance

red = Train("Red Line", 90) Assign “Red Line" to the name
blue = Train("Blue Line", 120) field for the red object
Assign 90 to the distance
field for the red object

def setup():

size (400, 400)

class Train(object):
def _init_ (self, tempName, tempDistance):
self.name = tempName

self.distance = tempDistance

red = Train("Red Line", 90)

blue = Train("Blue Line", 120) Assign “Blue Line” to the name
field for the blue object
Assign 120 to the distance
£ :
def setup() field for the blue object

size(400, 400)

Figure 10-1. Passing values into the __init__ method to set the
values for an object’s fields

The last step in creating a class is to add the other methods.
This part is straightforward; it's just like writing functions, but
here they are contained within the class. Also, note the code
spacing. Every line within the class is indented a few spaces to
show that it's inside the block. Within the methods, the code is
spaced again to clearly show the hierarchy:

134 Getting Started with Processing.py

class JitterBug(object):
def _init_ (self, tempX, tempY, tempDiameter):
self.x = tempX
self.y = tempY
self.diameter = tempDiameter
self.speed = 0.5

def move(self):
self.x += random(-self.speed, self.speed)
self.y += random(-self.speed, self.speed)

def display(self):
ellipse(self.x, self.y, self.diameter, self.diameter)

Create Objects

Now that you have defined a class, to use it in a program you
must define an object from that class. There are two steps to
create an object:

1. Create a variable to store the object.

2. Create (initialize) the object by “calling” the name of the
class as though it were a function.

Example 10-1: Make an Object

To make your first object, we'll start by showing how this works
within a Processing sketch and then continue by explaining each
part in depth:

class JitterBug(object):
def _init_ (self, tempX, tempY, tempDiameter):
self.x = tempX
self.y = tempY
self.diameter = tempDiameter
self.speed = 0.5

Objects 135

def move(self):
self.x += random(-self.speed, self.speed)
self.y += random(-self.speed, self.speed)

def display(self):
ellipse(self.x, self.y, self.diameter, self.diameter)

bug = JitterBug(240, 60, 20)

def setup():
size(480, 120)

def draw():

bug.move()

bug.display()
Once we've created a variable to store the object, the second
step is to initialize the object. The syntax for accomplishing this
in Python is to write the name of the class that you want to
instantiate, followed by a pair of parentheses with parameters
inside them. It looks just like you're “calling” the name of the
class, as though it were a function:

bug = JitterBug(200.0, 250.0, 30)

The three numbers within the parentheses are the parameters
that are passed into the __init method defined in the Jitter
Bug class. Because Python automatically inserts self as the first
parameter to any method (including _init_), the number of
parameters inside the parentheses should be exactly one fewer
than the number definedin _init .

Example 10-2: Make Multiple Objects

In Example 10-1 on page 135, we see something else new: the
period (dot) that's used to access the object’'s methods inside of
draw(). The dot operator is used to join the name of the object
with its fields and methods. This becomes clearer in this exam-
ple, where two objects are made from the same class. The
jit.move() command refers to the move() method that belongs
to the object named jit, and bug.move() refers to the move()
method that belongs to the object named bug:

136 Getting Started with Processing.py

Put a copy of the Jitterbug class here

JitterBug(160, 60, 50)
JitterBug(320, 60, 10)

jit
bug

def setup():
size(480, 120)

def draw():

jit.move()

jit.display()

bug.move()

bug.display()
Now that the class exists as its own module of code, any
changes will modify the objects made from it. For instance, you
could add a field to the JitterBug class that controls the color,
or another that determines its size. These values can be passed
in using the _ init__ method or assigned using additional
methods, such as setColor() or setSize(). And because it's a
self-contained unit, you can also use the JitterBug class in
another sketch.

Code in Tabs

Now is a good time to learn about the tab feature of the Pro-
cessing Development Environment (Figure 10-2). Tabs allow you
to spread your code across more than one file. This makes
longer code easier to edit and more manageable in general. A
new tab is usually created for each class, which reinforces the
modularity of working with classes and makes the code easy to
find.

To create a new tab, click on the arrow at the righthand side of
the tab bar. When you select New Tab from the menu, you will
be prompted to name the tab within the message window. Using

Objects 137

this technique, modify this example's code to try to make a new
tab for the JitterBug class.

Processing
File Edit Sketch Debug Tools Help

00

Ex_09_02 JitterBug

class JitterBug(object):
def __init__(self, tempX, tempY, tempDiameter):
self.x = tempX
self.y = tempY
self.diameter = tempDiameter
self.speed = 0.5

def move(self):
self.x += random(-self.speed, self.speed)
self.y += random(-self.speed, self.speed)

def display(self):
ellipse(self.x, self.y, self.diameter, self.diameter)

Console

Figure 10-2. Code can be split into different tabs to make it eas-
ler to manage

138 Getting Started with Processing.py

Robot 8: Objects

A software object combines methods (functions) and fields
(variables) into one unit. The Robot class in this example defines
all of the robot objects that will be created from it. Each Robot
object has its own set of fields to store a position and the illus-
tration that will draw to the screen. Each has methods to update
the position and display the illustration.

The parameters for bot1 and bot2 define the x and y coordinates
and the .svg file that will be used to depict the robot. The tempX
and tempY parameters are passed into the _init method and
assigned to the xpos and ypos fields. The svgName parameter is
stored in the field svgName, and the file named in the field is
loaded later in setup() by calling the loadSvg() method. The
objects (bot1 and bot2) draw at their own location and with a dif-
ferent illustration because they each have unique values passed
into the objects through their __init methods:

class Robot(object):
def _init_ (self, tempSvgName, tempX, tempY):
self.svgName = tempSvgName
self.xpos = tempX
self.ypos = tempY
self.angle = random(0, TWO PI)

Objects 139

self.yoffset = 0

def loadSvg(self):
self.botShape = loadShape(self.svgName)

def update(self):
self.angle += 0.05
self.yoffset = sin(self.angle) * 20

def display(self):
shape(self.botShape, self.xpos, self.ypos + self.yoffset);

bot1
bot2

Robot("robot1.svg", 90, 80)
Robot ("robot2.svg", 440, 30)

def setup():
size(720, 480)
bot1.loadSvg()
bot2.loadSvg()

def draw():
background(0, 153, 204)

Update and display first robot
bot1.update()
bot1.display()

Update and display second robot

bot2.update()
bot2.display()

140 Getting Started with Processing.py

11/Lists

A list is a group of variables that share a
common name. Lists are useful because
they make it possible to work with more
variables without creating a new name
for each one. This makes the code
shorter, easier to read, and more conve-
nient to update.

From Variables to Lists

When a program needs to keep track of one or two things, it's
not necessary to use a list. In fact, adding a list might make the
program more complicated than necessary. However, when a
program has many elements (for example, a field of stars in a
space game or multiple data points in a visualization), lists
make the code easier to write.

Example 11-1: Many Variables

To see what we mean, refer to Example 8-3 on page 101. This
code works fine if we're moving around only one shape, but
what if we want to have two? We need to make a new x variable
and update it within draw():

141

x1 = -20.0
x2 = 20.0

def setup():
size(240, 120)
noStroke()

def draw():
global x1, x2
background(0)
X1 += 0.5
X2 += 0.5
arc(x1, 30, 40, 40, 0.52, 5.76)
arc(x2, 90, 40, 40, 0.52, 5.76)

Example 11-2: Too Many Variables

The code for the previous example is still manageable, but what
if we want to have five circles? We need to add three more vari-
ables to the two we already have:

x1 = -10.0
X2 = 10.0
x3 = 35.0
x4 = 18.0
x5 = 30.0

def setup():
size(240, 120)
noStroke()

def draw():
global x1, x2, x3, x4, X5
background(0)
x1 += 0.5
X2 += 0.5
X3 += 0.5
X4 += 0.5

142 Getting Started with Processing.py

x5 += 0.5

arc(x1,
arc(x2,
arc(x3,
arc(x4,
arc(xs,

5.76)
5.76)

20,
40)

20,
20,

20,
20,

0.52,
0.52,
60, 20, 20, 0.52, 5.76)
80, 20, 20, 0.52, 5.76)
100, 20, 20, 0.52, 5.76)

This code is starting to get out of control.

Example 11-3: Lists, Not Variables

Imagine what would happen if you wanted to have 3,000 circles.

This would

mean creating 3,000 individual variables, then

updating each one separately. Could you keep track of that

many variables? Would you want to? Instead, we use a list:

def setup():
size(240, 120)
noStroke()
fil1(255, 200)
for i in range(3000):
x.append(random(-1000, 200))

def draw():
background(0)
for i in range(len(x)):
x[i] += 0.5
y=1i*o0.4
arc(x[i], y, 12, 12, 0.52, 5.76)

We'll spend the rest of this chapter talking about the details that
make this example possible.

Lists 143

List Operations

Each item in a list is called an element, and each has an index
value to mark its position within the list. Just like coordinates on
the screen, index values for a list start counting from 0. For
instance, the first element in the list has the index value O, the
second element in the list has the index value 1, and so on. If
there are 20 values in the list, the index value of the last element
is 19. Figure 11-1 shows the conceptual structure of a list.

years = [1920, 1972, 1980, 1996, 2010]

years | 1920 1972 | 1980 | 1996 | 2010 []
R\\\:i 1 2 3 4
List name \ Element number Value

Figure 11-1. A list is a group of one or more variables that share
the same name

A list value in Python looks like a pair of square brackets. This
statement assigns a list to the variable x:

x =[]
You can also initialize the items in the list by putting comma-
separated values inside the square brackets:

x =[5, 10, 15, 20]

Lists in Python can contain values of varying data types. This list
has an integer, a floating-point number, and a string:

stuff = [89, 1.24, "hello"]

You can also use the built-in Python function list() to create a
list value:

X
X

list() # creates an empty list
list(5, 10, 15, 20) # creates a list with four initial
elements

Python list values are objects, and support a number of useful
methods. The list method we'll use most is append(), which
adds an item to a list:

144 Getting Started with Processing.py

x = [] # x is empty

x.append(5) # now x has one item, the integer value 5
Once there are items in your list, you can access the item at a
particular index using square bracket syntax. Write the name of
the variable that contains your list, followed by a pair of square
brackets with a number between them, like so:

x =[5, 10, 15, 20]

print x[0] # prints 5

print x[1] # prints 10

print x[2] # prints 15

print x[3] # prints 20
List indices in Python are zero-based, meaning that the number
you use in square brackets to access the first element of the list
is O (not 1). Likewise, to get the second element, use 1; to get the
third element, use 2; and so forth.

After the list has been created, you can overwrite the value of an
item at a particular index in a list by writing an expression with
the square bracket syntax, followed by an equal sign (=) and the
new value for that item:

x =[5, 10, 15, 20]

print x[2] # prints 15

x[2] = 789

print x[2] # prints 789
To determine the length of a list, use Python's built-
in len() function:

x = [5, 10, 15, 20]

print len(x) # prints 4

y =[]

print len(y) # prints o
Now that we've looked at some of the basic syntax for working
with lists, let's slow down and talk about common ways to use
lists in our programs. There are a number of steps to working
with a list:

1. Create a list value with square brackets or the list() func-
tion.

2. Assign that list value to a variable.

Lists 145

3. Optionally, use the list's append() method of the list to add
new items to the list.

Each of the three following examples shows a different techni-
que to create a list called x that stores two integers, 12 and 2.
Pay close attention to what happens before setup() and what
happens within setup().

Example 11-4: Declare and Append to
a List

First, we'll declare an empty list outside of setup() and then
append values to the list.

x =[] # Create the list
def setup():
size(200, 200)

x.append(12) # Append the first value
x.append(2) # Append the second value

Example 11-5: Compact List
Initialization

Here's a slightly more compact example, in which the list is ini-
tialized with its items when the value is first created:

x = [12, 2] # Create a new list with two items, assigned to x

def setup():
size(200, 200) # No further action needed in setup()!

/ Avoid creating lists within draw(), because creating a
new list on every frame will slow down your frame
rate.

Example 11-6: Revisiting the First
Example

As a complete example of how to use lists, here we've recoded
Example 11-1. Although we don't yet see the full benefits

146 Getting Started with Processing.py

revealed in Example 11-3, we do see some important details of
how lists work:

x = [-20.0, 20.0]

def setup():
size(240, 120)
noStroke()

def draw():

background(0)

x[0] += 0.5 # Increase the first element

x[1] += 0.5 # Increase the second element

arc(x[0], 30, 40, 40, 0.52, 5.76)

arc(x[1], 90, 40, 40, 0.52, 5.76)
Note that the global keyword is not needed in the draw() func-
tion here. See Appendix D for more information.

Repetition and Lists

The for loop, introduced in “Repetition” on page 39, makes it
easier to work with large lists while keeping the code concise.
The way we use for loops to operate on lists is different depend-
ing on exactly what we want to do with the list.

Example 11-7: Filling a List in a for
Loop

A for loop can be used to fill a list with values or to read the val-
ues back out. In this example, the list is first filled with random
numbers inside setup(), and then these numbers are used to
set the stroke value inside draw(). Each time the program is run,
a new set of random numbers is put into the list:

Lists 147

gray = []

def setup():
size(240, 120)
for i in range(width):
gray.append(random(0, 255))

def draw():
for i in range(len(gray)):
stroke(gray[i])
line(i, 0, i, height)

Example 11-9: Track Mouse
Movements

In this example, there are two lists to store the position of the
mouse—one for the x coordinate and one for the y coordinate.
These lists store the location of the mouse for every frame. With
each new frame, the newest coordinate is inserted at the begin-
ning of the list. This example visualizes this action. Also, at each
frame, all coordinates are used to draw a series of ellipses to the
screen:

X
y
def setup():

size(240, 120)
noStroke()

def draw():
background(0)
x.insert(o, mouseX)
y.insert(0, mouseY)
for 1 in range(len(x)):
Fi11(i * 4)
ellipse(x[i], y[i], 40, 40)

148 Getting Started with Processing.py

This example demonstrates another method of the list
object, insert(), which takes two parameters: the first is an
index in the list, and the second is the value to insert into the list
at that index. The code x.insert(0, mouseX) inserts the value in
the variable mouseX at index O of the list (i.e., the beginning of the
list).

The technique for storing coordinates in a list is inef-
ficient. Because there's no built-in limit to the num-
ber of coordinates the list will store, the list in this
program can quickly grow very large in memory,
causing your sketch to slow down or even crash. For
a more efficient technique that only stores the
last n numbers, see the Examples — Basics — Input
— Storinglnput example included with Python
Mode.

Lists of Objects

The two short examples in this section bring together every
major programming concept in this book: variables, iteration,
conditionals, functions, objects, and lists. Making a list of
objects is nearly the same as making the lists we introduced on
the previous pages, but there's one additional consideration:
because each list element is an object, it must first be instanti-
ated before it can be appended to the list. (For a built-in Pro-
cessing class such as PImage, you need to use the loadImage()
function to create the object before it's assigned.)

Example 11-10: Managing Many
Objects

This example creates a list of 33 JitterBug objects and then
updates and displays each one inside draw(). For this example
to work, you need to add the JitterBug class (see Chapter 10) to
the code:

Lists 149

Copy JitterBug class here

bugs = []

def setup():
size(240, 120)
for i in range(33):
x = random(width)
y = random(height)
r=1+2
bugs.append(JitterBug(x, y, r))

def draw():
for i in range(len(bugs)):
bugs[i].move()
bugs[i].display()

Example 11-11: A New Way to
Manage Objects

Because iterating over every item in a list is a very common task
when writing computer programs, Python has a shorthand syn-
tax for making it easier. Instead of creating a new counter vari-
able, such as the i variable in Example 11-10 on page 149, and
iterating over the result of the range() function, it's possible to
iterate over the elements of a list directly. In the following exam-
ple, each object in the bugs list of JitterBug objects is assigned
to b in order to run the move() and display() methods for all
objects in the list.

This form of the for loop is often tidier than looping with a num-
ber, although in this example, we didn’t use it inside setup()
because i was needed inside the loop (to set the size of the
JitterBug object). This demonstrates how it's sometimes help-
ful to have the number around:

150 Getting Started with Processing.py

Copy JitterBug class here
bugs = []

def setup():
size(240, 120)

for i in range(33):
x = random(width)
y = random(height)
r=1+2

bugs.append(JitterBug(x, y, r))

def draw():
for b in bugs:
b.move()
b.display()
The final list example loads a sequence of images and stores
each as an element within a list of PImage objects.

Example 11-12: Sequences of Images

To run this example, get the images from the media.zip file as
described in Chapter 7. The images are named sequentially
(frame-0000.png, frame-0001.png, etc.), which makes it possi-
ble to create the name of each file within a for loop, as seen in
the eighth line of the program:

numFrames = 12 # The number of frames
images = [] # Make the list
currentFrame = 0

def setup():
size(240, 120)
for i in range(numFrames):
imageName = "frame-" + nf(i, 4) + ".png"
images.append(loadImage(imageName))
frameRate(24)

Lists 1561

def draw():
global currentFrame
image(images[currentFrame], 0, 0)
currentFrame += 1 # Next frame
if currentFrame >= len(images):
currentFrame = 0 # Return to first frame

The nf() function formats numbers so that nf(1, 4) returns the
string “0001" and nf(11, 4) returns “0011" These values are
concatenated with the beginning of the filename (“frame-") and
the end (“.png”) to create the complete filename as a string.
The files are appended to the list on the following line. The
images are displayed to the screen one at a time in draw().
When the last image in the list is displayed, the program returns
to the beginning of the list and shows the images again in
sequence.

Robot 9: Lists

(ML

g
[

Lists make it easier for a program to work with many elements.
In this example, a list intended to contain Robot objects is cre-
ated at the top. The list is then filled with Robot objects inside
setup(). In draw(), another for loop is used to update and dis-
play each element of the bots list.

162 Getting Started with Processing.py

The for loop and a list make a powerful combination. Notice the
subtle differences between the code for this example and Robot
8 (see "Robot &: Objects” on page 139) in contrast to the
extreme changes in the visual result. Once a list is created and a
for loop is put in place, it's as easy to work with three elements
as itis 3,000.

The decision to load the SVG file within setup() rather than in
the Robot class is the major change from Robot 8. This choice
was made so the file is loaded only once, rather than as many
times as there are elements in the list (in this case, 20 times).
This change makes the code start faster because loading a file
takes time, and it uses less memory because the file is stored
once. Each element of the bot list references the same file:

class Robot(object):

Set initial values

def _init_ (self, shape, tempX, tempY):
self.botShape = shape
self.xpos = tempX
self.ypos = tempY
self.angle = random(0, TWO PI)
self.yoffset = 0.0

def update(self):
self.angle += 0.05
self.yoffset = sin(self.angle) * 20

def display(self):
shape(self.botShape, self.xpos, self.ypos + self.yoffset)

bots = [] # Create list for Robot objects
botCount = 20

def setup():

size(720, 480)

robotShape = loadShape("roboti.svg")

Create each object

for i in range(botCount):
Create a random x coordinate
x = random(-40, width-40)
Assign the y coordinate based on the order
y = map(i, 0, botCount, -100, height-200)

Lists 1563

bots.append(Robot(robotShape, x, y))

def draw():
background(0, 153, 204)
for b in bots:
b.update()
b.display()

154 Getting Started with Processing.py

12/Data and
Dictionaries

Data visualization is one of the most
active areas at the intersection of code
and graphics and is also one of the most
popular uses of Processing. This chapter
builds on what has been discussed about
storing and loading data earlier in the
book and introduces more features rele-
vant to data sets that might be used for
visualization.

There is a wide range of software that can output standard visu-
alizations like bar charts and scatter plots. However, writing
code to create visualization from scratch provides more control
over the output and encourages users to imagine, explore, and
create more unique representations of data. For us, this is the
point of learning to code and using software like Processing, and
we find it far more interesting than being limited by prepack-
aged methods or tools that are available.

Data Summary

It's a good time to rewind and discuss how data was introduced
throughout this book. Recall that every value in a Python pro-
gram has a data type. Each kind of data is unique and is stored
in a different way. We started the book talking about simple data
types like int (for integers) or float (for numbers with decimals).
Later, we discussed compound data types like objects and lists.
A compound data type keeps track of multiple values. The val-

155

ues in a list are accessed by their numerical index, whereas the
values in an object are accessed by name as data attributes.

The examples in this chapter introduce a new compound data
type: the dictionary. Dictionaries are data structures that are
conceptually similar to lists, except instead of accessing values
by numerical index, you access them by name. This makes dic-
tionaries a data type especially suited for storing, transmitting,
and processing structured data. There are several built-in
Python tools that read data in various formats (e.g., from
the data folder for a sketch) and return dictionaries. We'll load
data into dictionaries from two different sources: tables of data
in comma-separated values (CSV) format, and data in JSON for-
mat.

Dictionaries

You can think of a dictionary as being sort of like a list, except
you index its values not with a number but with a key. Dictionary
keys are usually strings that identify the values they point to in
an easy-to-remember way. Let's say, for example, that we
wanted to include in our sketch some information about the
planets of our solar system. Here's what a dictionary with infor-
mation about Earth might look like in Python:

planetInfo = {
"name": "Earth",
"knownMoons": 1,
"eqRadiusKm": 6387.1,
"hasRings": False

}

In this example, we've created a dictionary and assigned it to a
variable called planetInfo. The keys in this dictionary are name,
knownMoons, eqRadiusKm, and hasRings. The values for those keys
are Earth, 1, 6387.1, and False, respectively. As this example
shows, dictionary values can be any data type: strings, integers,
floating-point numbers, booleans—even objects, lists, and other
dictionaries can be stored as dictionary values.

Once you've defined a dictionary, you can get the value for a
particular key using square bracket notation. This looks similar
to how you get the value for a particular index in a list, except

166 Getting Started with Processing.py

this time we're putting a string between the square brackets
instead of a number:

planetInfo = {
"name": "Earth",
"knownMoons": 1,
"eqRadiusKm": 6387.1,
"hasRings": False

}

print planetInfo['name'] # prints "Earth"
print planetInfo['knownMoons'] # prints 1

If you attempt to get the value for a key that is not present in the
dictionary, Python will raise a KeyError, and your program will
halt:

print planetInfo['extraterrestrialCount'] # raises KeyError

You can check to see whether or not a key is present in a dictio-
nary by using the special operator in. Put the key you want to
check for on the lefthand side of in, and the dictionary you want
to check on the righthand side. The entire expression will
return True or False, so you can use it in an if statement:

print 'extraterrestrialCount' in planetInfo # prints False
if 'eqRadiusKm' in planetInfo:

print "Planetary radius (km): ", planetInfo['eqRadiusKm']
else:

print "No radius information available."

The name dictionary is meant to evoke a physical dictionary, in
which you look up words (keys) to find their definitions (values).
In other computer languages (such as Java and C++), the analo-
gous data structure is called a map. Sometimes when talking
about dictionaries, we'll say that keys “map” to values. (For
instance, in the preceding example, the key name maps to the
value Earth.)

Example 12-1: (Keyboard) Keys as
(Dictionary) Keys

The following sketch shows how dictionaries can be used to
store information and retrieve it in response to user input:

Data and Dictionaries 157

sizes = {

‘a': 40,
'b': 80,
'c': 120,
'd': 160

}
def setup():

size(200, 200)
rectMode(CENTER)
def draw():

background(0)

£i11(255)

if keyPressed:

if key in sizes:
rect(100, 100, sizes[key], sizes[key])

This sketch displays rectangles of various sizes to the screen in
response to user input. A dictionary called sizes maps particu-
lar keystrokes to integer values. Inside of draw(), we check to
see if a keyboard key has been pressed and whether the string
value of that keyboard key is present in the sizes dictionary. If
so, we display a rectangle with its size determined by the value
stored for that key.

Lists of Dictionaries

Let’s return to our dictionary with information about a particular
planet. It looks like this:

planetInfo = {
"name": "Earth",
"knownMoons": 1,
"eqRadiuskm": 6387.1,
"hasRings": False

}

Now, let's imagine that we want our program to contain infor-
mation not just about Earth, but all of the terrestrial planets

168 Getting Started with Processing.py

(Mercury, Venus, Earth, and Mars). We could do this by creating
several dictionaries, one for each planet:

mercuryInfo = {
"name": "Mercury",
"knownMoons": 0,
"eqRadiusKm": 2439.64,

}

venusInfo = {
"name": "Venus",
"knownMoons": 0,
"eqRadiuskm": 6051.59,

}

earthInfo = {
"name": "Earth",
"knownMoons": 1,
"eqRadiuskm": 6387.1,

}

marsInfo = {
"name": "Mars",
"knownMoons": 2,
"eqRadiusKm": 3397.0

}
So far, so good. Let's set ourselves to another task: how would
you calculate the average equatorial radius for all planets in this
data? Here's the most obvious way to do it:

planetCount = 4

radiusSum = mercuryInfo['eqRadiuskm']

radiusSum += venusInfo['eqRadiusKm']

radiusSum += earthInfo['eqRadiusKm']

radiusSum += marsInfo['eqRadiusKm']

print radiusSum / planetCount # prints 4568.8325
But this solution has some problems, the foremost being the
repetition. If we add more planet data, we would have to man-
ually add each new planet to our statements that calculate the
sum of their radii. This could get tedious very quickly.

Thankfully, in just the same way that Python allows us to make
lists of integers or floating-point numbers, we can create lists of
dictionaries:

planetlList = [mercuryInfo, venusInfo, earthInfo, marsInfo]

Data and Dictionaries 159

This statement creates a list called planetList. Each element
of planetlist is a dictionary. We can access any value for a par-
ticular key for one of the dictionaries in this list like so:

print planetlList[2]['name'] # prints 'Earth’

print planetList[3]['knownMoons'] # prints 2
That's a lot of square brackets! Here's how to understand what
an expression like planetList[2]['name'] means. First, we
know that we can put square brackets with a number
inside (e.g., [2]) right after any expression that evaluates to a
list. That expression will evaluate to the value stored at that
index of the list, which in this case is a dictionary. We also know
that we can put square brackets with a string inside (e.g.,
['name']) right after any expression that evaluates to a dictio-
nary. That expression will, in turn, evaluate to the value stored in
the dictionary for that key. Keeping both of these ways to form
expressions in mind, you can read the expression planetList[2]
['name'] from left to right like so:

* planetlistisalist

 planetList[2] is the element at index 2 of planetlist,
which is a dictionary

« planetList[2]['name'] is the value for key name in that dic-
tionary (Earth)

We can loop over a list of dictionaries the same way we loop over
aregular list, with a for loop:

radiusSum = 0
for i in range(len(planetList)):
radiusSum += planetList[i]['eqRadiusKm']
print radiusSum / len(planetlList) # prints 4568.8325

Alternatively, we can use the for...in looping syntax intro-
duced in Example 11-11 on page 150. The “temporary loop vari-
able” in this case will be a dictionary. With that in mind, here’s
some revised code to calculate the average radius of all four ter-
restrial planets:

radiusSum = 0

for p in planetlist:

radiusSum += p['eqRadiusKm']
print radiusSum / len(planetlList) # prints 4568.8325

160 Getting Started with Processing.py

Example 12-2: The Planets

This example takes a simplified version of our list of planet infor-
mation dictionaries and uses it as a data source for drawing to
the screen:

planetlList = [
"name": "Mercury", "eqRadiusKm": 2439.64},
{"name": "Venus", "eqRadiusKm": 6051.59},
"name": "Earth", "eqRadiusKm": 6387.1},
"name": "Mars", "eqRadiusKm": 3397.0}
]
def setup():
size(600, 150)
textAlign(LEFT, CENTER)
def draw():
background(0)
£111(255)
planetCount = len(planetlist)
for i in range(planetCount):
scale radius to be screen-friendly
planetRadius = planetlList[i]['eqRadiuskm'] * 0.01
offset = 50 + ((width/planetCount) * i)
ellipse(offset, height/2, planetRadius, planetRadius)
text(planetList[i]["name'], 10+offset+(planetRadius/2),
height/2)

The sketch begins with a simplified version of our planet
List variable. Here, instead of creating a variable for each dictio-
nary first and then putting the variable names into the list decla-
ration, we simply write the dictionaries straight into the list. In
the draw() function, we loop over the list of planets and use each
planet’'s radius and name to draw it to the screen (using the
planet’s position in the list to determine where on the screen to
draw it).

Data and Dictionaries 161

CSV Files

Many data sets are stored in spreadsheets. You may have
worked with a program like Microsoft Excel or Google Sheets
that allows you to manipulate data in this format. Spreadsheets
are made out of rows and columns, with each row usually repre-
senting one item and each cell in the row representing some
aspect of that item.

Spreadsheet data is often stored in plain-text files with columns
using commas or the tab character. A comma-separated values
file is abbreviated as CSV, and uses the file extension .csv. When
tabs are used, the extension .tsv is sometimes used. Python
includes a library to make it easy to work with data stored in this
format. In this chapter, we will focus on loading data from a CSV
file.

To load a CSV or TSV file, you'll need to place it in your sketch's
data folder (as described in Chapter 7).

The data for the next example is a simplified version of Boston
Red Sox player David Ortiz's batting statistics from 1997 to
2014. From left to right, it is the year, number of home runs, runs
batted in (RBIs), and batting average. When opened in a text
editor, the first five lines of the file ook like this:

1997,1,6,0.327
1998,9,46,0.277
1999,0,0,0
2000,10,63,0.282
2001,18,48,0.234

Example 12-3: Read the Data

To load this data into Processing, we need to use one of
Python’s built-in libraries called csv. The csv library provides
functions and classes that make it easy to work with data in CSV
format. We also need to use the built-in Python func-
tion open() to gain access to the file in the sketch’s data folder.
Once we've created a CSV reader object, we use a for loop to
operate on each row of data in sequence:

162 Getting Started with Processing.py

import csv

statsFileHandle = open("ortiz.csv")
statsData = csv.reader(statsFileHandle)
for row in statsData:
year = row[0]
homeRuns = row[1]
rbi = row[2]
average = row[3]
print year, homeRuns, rbi, average
The import statement at the beginning of the program is what
signals to Python that we want to use the built-in csv library in
our program. The open() function takes the name of the CSV file
we want to work with as a parameter, and returns a special kind
of object called a file handle. We then pass that file handle as a
parameter to the csv.reader() function, which returns a CSV
reader object (which we've assigned to a variable called stats-
Data here). A CSV reader object works a lot like a list, in that we
can iterate over it with a for loop. (We've called the temporary
loop variable here row, but there's nothing special about that
word. You can call it whatever you want!)

Inside the for loop, we can access data for the current row using
the numerical index of the relevant column. The expres-
sion row[0] evaluates to the item in the first column of the row
(i.e., the year), the expression row[1] evaluates to the item in the
second column, and so forth.

Getting the Right Type

There's one tricky thing about using CSV files, which is that they
don’t contain any information about what kind of data they're
storing. To illustrate, think about how you might go about finding
the sum of David Ortiz’'s home runs in his career. You might
write some code that looks like this:

import csv

statsFileHandle = open("ortiz.csv")
statsData = csv.reader(statsFileHandle)

homeRunTotal = 0
for row in statsData:

Data and Dictionaries 163

homeRunTotal += row[1]

print homeRunTotal

In this code, we made a variable called homeRunTotal to store the
total number of home runs. As we iterate over each row, we add
the number from the second column, which contains the num-
ber of home runs for that year. Looks good, right? But there's a
problem. If you try to run this, you'll get the following error:

TypeError: unsupported operand type(s) for +: 'int' and 'str

This error is telling you that you were attempting to add
an int to a str. Python doesn’'t know how to do that, so your
program didn't work. This happened because the csv library
always gives you data from a CSV file as a string, even if the
underlying data looks like a number. If you want to use that
string as a number, you have to explicitly convert it your-
self, using one of Python's built-in conversion functions
like int().

Here's a corrected version of the preceding example. The only
change we've made is to the line inside the for loop, where we
use the int() function to convert the value from the CSV file
from a string to an int:

import csv

statsFileHandle = open("ortiz.csv")
statsData = csv.reader(statsFileHandle)

homeRunTotal = 0
for row in statsData:
homeRunTotal += int(row[1])

print homeRunTotal

Example 12-4: Draw the Table

The next example builds on the last. It creates a list
called homeRuns to store data after it is loaded inside setup() and
the data from that list is used within draw(). In setup(), we again
use open() to get a file handle for our CSV file, and then give the
file handle as a parameter to csv.reader(). In a for loop, we

164 Getting Started with Processing.py

append each home run count to our homeRuns list, taking care to
convert the values to integers first.

Two separate tasks are accomplished in draw(). First, a for loop
draws vertical lines for our graph based on the number of
entries in the homeRuns list. A second for loop reads each ele-
ment of the homeRuns list and plots a line on the graph using the
data.

This example is the visualization of a simplified version of Bos-
ton Red Sox player David Ortiz's batting statistics from 1997 to
2014 drawn from a table:

import csv
homeRuns = list()

def setup():
size(480, 120)
statsFileHandle = open("ortiz.csv")
statsData = csv.reader(statsFileHandle)
for row in statsData:
homeRuns . append(int(row[1]))
print homeRuns

def draw():

background(204)

Draw background grid for data

stroke(153)

line(20, 100, 20, 20)

line(20, 100, 460, 100)

for i in range(len(homeRuns)):
x = map(i, 0, len(homeRuns)-1, 20, 460)
line(x, 20, x, 100)

Draw lines based on home run data

noFill()

stroke(0)

beginShape()

Data and Dictionaries 165

for
X

in range(len(homeRuns)):

map(i, 0, len(homeRuns)-1, 20, 460)

map(homeRuns[i], 0, 60, 100, 20)
vertex(x, y)

endShape()

This example is so minimal that it's not necessary to store this
data in lists, but the idea can be applied to more complex exam-
ples you might want to make in the future. In addition, you can
see how this example will be enhanced with more information—
for instance, information on the vertical axis to state the number
of home runs and on the horizontal to define the year.

Example 12-5: 29,740 Cities

To get a better idea about the potential of working with data
tables, the next example uses a larger data set and introduces a
convenient feature. This table data is different because the first
row—the first line in the file—is a header. The header defines a
label for each column to clarify the context. This is the first five
lines of our new data file called cities.csv:

I e

zip,state,city,lat,lng

35004,AL,Acmar,33.584132,-86.51557

35005,AL,Adamsville,33.588437,-86.959727

35006,AL,Adger,33.434277,-87.167455

35007,AL,Keystone,33.236868,-86.812861
The header makes it easier to read the data—for example, the
second line of the file states the zip code of Acmar, Alabama, is
35004 and defines the latitude of the city as 33.584132 and the
longitude as -86.51557. In total, the file is 29,741 lines long and it
defines the location and zip codes of 29,740 cities in the United
States.

The next example loads this data within the setup() and then
draws it to the screen in a for loop within the draw().
The setXY() function converts the latitude and longitude data
from the file into a point on the screen:

166 Getting Started with Processing.py

import csv

citiesData = None

def setXy(lat, lng):
x = map(lng, -180, 180, 0, width)
y = map(lat, 90, -90, 0, height)
point(x, y)

def setup():
global citiesData
size(240, 120)
citiesFileHandle = open("cities.csv")
citiesData = list(csv.DictReader(citiesFileHandle))
strokeleight(0.1)
stroke(255)

def draw():
background(0, 26, 51)
xoffset = map(mouseX, 0, width, -width*3, -width)
translate(xoffset, -300)
scale(10)
for row in citiesData:
latitude = float(row["lat"])
longitude = float(row["lng"])
setXY(latitude, longitude)

The csv.DictReader object is a little different from the
csv.reader object that we used in the previous example. When
we used the csv.reader object, we had to access each cell in a
row of data by its numerical index. The csv.DictReader object,
on the other hand, gives us a dictionary for each row. This dictio-
nary uses the strings in the header line of the CSV file as its
keys, and each key maps to the corresponding value for the row
in question. Because each row is a dictionary, we can use (for
example) the expression row["lat"] to access the latitude col-

Data and Dictionaries 167

umn, which is much easier to remember than if we needed to
reference the column by its numerical index.

You may have noticed the curious use of the built-in
list() function in setup(). This is necessary because
csv.DictReader objects, unlike regular lists, can only be iterated
over once. We use the 1list() function to read all of the rows
from one of these objects at once and store them in a separate
variable. The resulting value, stored in the variable citiesData, is
a list of dictionaries (much like the planetsList variable in
Example 12-2 on page 161).

JSON

The JavaScript Object Notation (JSON) format is another com-
mon system for storing data. Like HTML and XML formats, the
elements have labels associated with them. For instance, the
data for a film might include labels for the title, director, release
year, rating, and more. These labels will be paired with the data
like this:

"title": "Alphaville"

"director": "Jean-Luc Godard"

"year": 1964

"rating": 9.1
To work as a JSON file, the film labels need a little more punctu-
ation to separate the elements. Commas are used between
each data pair, and braces enclose it. The data defined within
the curly braces is a JSON object.

With these changes, our valid JSON data file looks like this:

"title": "Alphaville",

"director": "Jean-Luc Godard",

"year": 1964,

"rating": 9.1

}

There's another interesting detail in this short JSON sample
related to data types: you'll notice that the title and director
data is contained within quotes to mark them as strings, and the
year and rating are without quotes to define them as numbers.
Specifically, the year is an integer and the rating is a floating-

168 Getting Started with Processing.py

point number. This distinction becomes important after the
datais loaded into a sketch.

To add another film to the list, a set of brackets placed at the top
and bottom are used to signify that the data is an array of JSON
objects. Each object is separated by a comma.

Putting it together looks like this:

[
{
"title": "Alphaville",
"director": "Jean-Luc Godard",
"year": 1964,
"rating": 9.1

b

{

"title": "Pierrot le fou",

"director": "Jean-Luc Godard",

"year": 1965,

"rating": 7.3

}
]

This pattern can be repeated to include more films. At this
point, it's interesting to compare this JSON notation to the cor-
responding CSV representation of the same data.

As a CSV file, the data looks like this:

title,director,year,rating

Alphaville,Jean-Luc Godard,1965,9.1

Weekend, Jean-Luc Godard,1967,7.3
Notice that the CSV notation has fewer characters, which can
be important when working with massive data sets. On the
other hand, the JSON version is often easier to read because
each piece of data is labeled.

Now that the basics of JSON and its relation to CSV data has
been introduced, let’s look at the code needed to read a JSON
file into a Processing sketch.

Example 12-6: Read a JSON File

You may have noticed that the JSON format looks very similar to
the way Python data structures look when we include them

Data and Dictionaries 169

directly in our program. This similarity is a little misleading, as
there are a number of subtle differences between the two, and
you can't just paste a JSON data structure verbatim into your
Python program and expect it to work. What we need is a way to
read data stored in JSON format and convert it into a Python
data structure that we can use in our program. Python supplies
us with this functionality through the built-in json library.

This sketch loads the JSON file from the beginning of this sec-
tion, the file that includes only the data for the film Alphaville:

import json

def setup():

filmFileHandle = open("film.json")

film = json.load(filmFileHandle)

title = film["title"]

director = film["director"]

year = film["year"]

rating = film["rating"]

print "Title: ", title

print "Director: ", director

print "Year: ", year

print "Rating: ", rating
The json.load() function loads data in JSON format from a
given file handle. (Just as with the CSV examples, we need to
create the file handle first with the built-in open() function.)
The json.load() function returns a value of a compound data
type that corresponds to the data in the JSON file. In this exam-
ple, the JSON object in film.json is converted into a Python dic-
tionary, which we store in the variable film. We can then use
square bracket syntax to access values for particular keys in
that dictionary. After we've converted the JSON into Python, the
types of the values retrieved will reflect their types from the
original JSON data structure (i.e., JSON integers will become
Python integers, JSON strings will become Python strings, etc.).

Example 12-7: Visualize Data from a
JSON File

In this example, the data file started before has been updated to
include all of the director’s films from 1960-1966. The name of

170 Getting Started with Processing.py

each film is placed in order on screen according to the release
year and assigned a gray value based on the rating value.

There are several differences between this example and Exam-
ple 12-4 on page 164. The most important is the fact that the
data structure in films.json is a list of dictionaries, not just a sin-
gle dictionary. As a result, the call to json.load() in setup()
returns a list. Each item in this list is a dictionary that contains
data for a particular film. Inside draw(), we iterate over each
item in this list and display its values to the screen:

import json
films = []

def setup():
global films
size(480, 120)
filmFileHandle = open("films.json")
films = json.load(filmFileHandle)

def draw():
background(0)
for i in range(len(films)):
film = films[i]
ratingGray = map(film["rating"], 6.5, 8.1, 102, 255)
pushMatrix()
translate(i*32 + 32, 105)
rotate(-QUARTER PI)
fill(ratingGray)
text(film["title"], 0, 0)
popMatrix()
This example is bare bones in its visualization of the film data. It
shows how to load the data and how to draw based on those
data values, but it's your challenge to format it to accentuate
what you find interesting about the data. For example, is it more
interesting to show the number of films Godard made each

Data and Dictionaries 171

year? Is it more interesting to compare and contrast this data
with the films of another director? Will all of this be easier to
read with a different font, sketch size, or aspect ratio? The skills
introduced in the earlier chapters in this book can be applied to
bring this sketch to the next step of refinement.

Network Data and APIs

Public access to massive quantities of data collected by govern-
ments, corporations, organizations, and individuals is changing
our culture, from the way we socialize to how we think about
intangible ideas like privacy. This data is most often accessed
through software structures called APIs.

The acronym API is mysterious, and its meaning—application
programming interface—isn't much clearer. However, APls are
essential for working with data and they aren’t necessarily diffi-
cult to understand. Essentially, they are requests for data made
to a service. When data sets are huge, it's not practical or
desired to copy the entirety of the data; an API allows a pro-
grammer to request only the trickle of data that is relevant from
a massive sea.

This concept can be more clearly illustrated with a hypothetical
example. Let's assume there's an organization that maintains a
database of temperature ranges for every city within a country.
The API for this dataset allows a programmer to request the
high and low temperatures for any city during the month of
October in 1972. In order to access this data, the request must
be made through a specific line or lines of code, in the format
mandated by the data service.

Some APIs are entirely public, but many require authentication,
which is typically a unique user ID or key so the data service can
keep track of its users. Most APIs have rules about how many, or
how frequently, requests can be made. For instance, it might be
possible to make only 1,000 requests per month, or no more
than one request per second. Many APIs also require you to reg-
ister as a developer on their site to obtain an “API key,” a special
identifying string that must be included with the APl request.

172 Getting Started with Processing.py

Processing can request data over the Internet when the com-
puter that is running the program is online. CSV, TSV, JSON, and
XML files can be loaded using the corresponding load function
with a URL as the parameter. For instance, the current weather
in Cincinnati is available in JSON format at this URL:

« http://api.openweathermap.org/data/2.5/find?q=Cincin-
nati&units=imperial&appid=YOUR_API_KEY

Read the URL closely to decode it:

1. It requests data from the api subdomain of the openweather-
map.org site.

2. It specifies a city to search for (g is an abbreviation for
query, and is frequently used in URLs that specify searches).

3. It indicates that the data will be returned in imperial format,
which means the temperature will be in Fahrenheit. Replac-
ing imperial with metric will provide temperature data in
degrees Celsius.

4. Itincludes your APl key, supplied as the appid parameter.

Visit http://openweathermap.org/api for more information on
accessing the Open Weather Map APl and obtaining an API key.

Looking at this data from OpenWeatherMap is a more realistic

example of working with data found in the wild rather than the

simplified data sets introduced earlier. At the time of this writ-

ing, the file returned from that URL looks like this:
{"message":"accurate","cod":"200","count":1,"list": [{"id":
4508722, "name":"Cincinnati", "coord":{"lon":-84.456886,"lat":
39.161999}, "main”:{"temp":34.16,"temp_min":34.16,"temp_max":
34.16,"pressure":999.98,"sea level":1028.34,"grnd level":
999.98, "humidity":77},"dt":1423501526, "wind" : {"speed":
9.48,"deg":354.002},"sys" :{"country":"US"},"clouds": {"all":
80}, "weather":[{"id":803,"main":"Clouds", "description":"broken
clouds","icon":"04d"}]}]1}

This file is much easier to read when it's formatted with line
breaks and the JSON object and list structures defined with
braces and brackets:

Data and Dictionaries 173

http://openweathermap.org/api

"message": "accurate",

"count": 1,
"cod": "200",
"list": [{

"clouds": {"all": 80},
"dt": 1423501526,
"coord": {
"lon": -84.456886,
"lat": 39.161999

b
"id": 4508722,
"wind": {

"speed": 9.48,
"deg": 354.002

}s

"sys": {"country": "US"},

"name": "Cincinnati",

"weather": [{
"id": 803,
"icon": "04d",
"description”: "broken clouds",
"main": "Clouds"

1,

"main": {
"humidity": 77,
"pressure": 999.98,
"temp_max": 34.16,
"sea level": 1028.34,
"temp_min": 34.16,
"temp": 34.16,
"grnd level": 999.98

}

1
}

Note that brackets are seen in the "list" and "weather" sec-
tions, indicating a list of JSON objects. Although the list in this
example only contains a single item, in other cases, the API
might return multiple days or variations of the data from muilti-
ple weather stations.

174 Getting Started with Processing.py

Example 12-8: Parsing the Weather
Data

The first step in working with this data is to study it and then to
write minimal code to extract the desired data. In this case,
we're curious about the current temperature. We can see that
our temperature data is 34.16. It's labeled as temp and it's inside
the main object, which is inside the list of objects given as a
value for the key 1list. A function called getTemp() was written
for this example to work with the format of this specific JSON
file organization:

import json

def getTemp(fileName):
weatherFileHandle = open(fileName)
weather = json.load(weatherFileHandle)
list value = weather["list"] # get value for "list" key
item = list value[0] # get first item from list value
main = item["main"] # item is a dictionary; get "main" value
temperature = main["temp"] # get value for "temp" key
return temperature

def setup():

temp = getTemp("cincinnati.json")

print temp
The name of the JSON file, cincinnati.json, is passed into the
getTemp() function inside setup() and loaded there. Next,
because of the format of the JSON file, a series of lists and dic-
tionaries are needed to get deeper and deeper into the data
structure to finally arrive at our desired number. This number is
stored in the temperature variable and then returned by the
function to be assigned to the temp variable in setup() where it is
printed to the console.

Example 12-9: Chaining Square
Brackets

The sequence of JSON variables created in succession in the
last example can be approached differently by chaining the

indexes together. This example works like Example 12-8 on page
175 except that each square bracket index is connected directly

Data and Dictionaries 175

to the previous one, rather than calculated one at a time and
assigned to variables in between:

import json

def getTemp(fileName):
weather = json.load(open(fileName))
return weather["list"][0]["main"]["temp"]

def setup():

temp = getTemp("cincinnati.json")

print temp
This example can be modified to access more of the data from
the feed and to build a sketch that displays the data to the
screen rather than just writing it to the console. You can also
modify it to read data from another online APl—you'll find that
the data returned by many APIls shares a similar format.

Robot 10: Data

The final robot example in this book is different from the rest
because it has two parts. The first part generates a data file
using random values and for loops, and the second part reads
that data file to draw an army of robots onto the screen.

176 Getting Started with Processing.py

The first sketch uses several new code elements. First, we'll use
the open() function to create a new file, and then we'll use the
file handle object’s write() method to write data to that file. In
this example, the file handle object is called output and the file is
called botArmy.tsv. (You'll need to adjust the path in the follow-
ing example to reflect a folder that exists on your own com-
puter.) Random values are used to define which of three robot
images will be drawn for each coordinate. For the file to be cor-
rectly created, the close() method must be run before the pro-
gram is stopped.

Notice that we called the open() function in this example with a
second parameter: the string "w". This parameter signals to
Python that we want to open the file not just to read its con-
tents, but to write new contents to it. (The w stands for write.)

The code that draws an ellipse is a visual preview to reveal the
location of the coordinate on screen, but notice that the ellipse
isn't recorded into the file. Also note that the we need to use the
str() function to explicitly convert the x, y, and robotType values
to strings so that we can build the line of text that gets written to
the file:

def setup():

size(720, 480)

Create the new file

output = open("/Users/allison/botArmy.tsv", "w")

Write a header line with the column titles

output.write("type\tx\ty\n")

for y in range(0, height+1, 60):

for x in range(0, width+1, 20):

robotType = str(int(random(1, 4)))
output.write(robotType+"\t"+str(x)+"\t"+str(y)+"\n")
ellipse(x, y, 12, 12)

output.close() # Finish the file

After that program is run, you'll find a file named botArmy.tsv in
the location you specified in the first parameter to the open()

function. Open it to see how the data is written. The first five
lines of that file will be similar to this:

type X y
3 0 0
1 20 0
2 40 0

Data and Dictionaries 177

1 60 0
3 80 0

The first column is used to define which robot image to use, the
second column is the x coordinate, and the third column is the y
coordinate.

The next sketch loads the botArmy.tsv file and uses the data for
these purposes. Note that because the data was written in tab-
separated values (TSV) format instead of comma-separated val-
ues (CSV) format, we need to include delimiter="\t" as an
extra parameter in the call to csv.DictReader:

import csv

def setup():
size(720, 480)
background(0, 153, 204)
bot1 = loadShape("roboti.svg")
bot2 = loadShape("robot2.svg")
bot3 = loadShape("robot3.svg")
shapeMode (CENTER)
robotsFileHandle = open("/Users/allison/botArmy.tsv")
robots = csv.DictReader(robotsFileHandle, delimiter="\t")
for row in robots:
bot = int(row["type"])
x = int(row["x"])
y = int(row["y"])
sc = 0.3
if bot == 1:
shape(bot1, x, y, botl.width*sc, boti.height*sc)
elif bot == 2:
shape(bot2, x, y, bot2.width*sc, bot2.height*sc)
else:
shape(bot3, x, y, bot3.width*sc, bot3.height*sc)

178 Getting Started with Processing.py

13/Extend

This book focuses on using Processing
for interactive graphics, because that's
the core of what Processing does. How-
ever, the software can do much more and
s often part of projects that move
beyond a single computer screen. For
example, Processing has been used to
control machines, create images used in
feature films, and export models for 3D
printing.

Over the last decade, Processing has been used to make music
videos for Radiohead and R.E.M., to make illustrations for publi-
cations such as Nature and the New York Times, to output
sculptures for gallery exhibitions, to control huge video walls, to

knit sweaters, and much more. Processing has this flexibility
because of its system of libraries.

A Processing library is a collection of code that extends the soft-
ware beyond its core functions and classes. Libraries have been
important to the growth of the project, because they let devel-
opers add new features quickly. As smaller, self-contained
projects, libraries are easier to manage than if these features
were integrated into the main software.

To use a library, select Import Library from the Sketch menu and
select the library you want to use from the list. Choosing a
library adds a line of code that indicates that the library will be
used with the current sketch.

179

For instance, when the PDF Export Library (pdf) is added, this
line of code is added to the top of the sketch:

add library('pdf")

In addition to the libraries included with Processing (these are
called the core libraries), there are over 100 contributed libraries
that are linked from the Processing website. All libraries are lis-
ted online at http://processing.org/reference/libraries/ .

Before a contributed library can be imported through the
Sketch menu, it must be added through the Library Manager.
Select the Import Library option from the Sketchbook menu
and then select Add Library to open the Library Manager inter-
face. Click on a library description and then click on the Install
button to download it to your computer.

The downloaded files are saved to the libraries folder that is
located in your sketchbook. You can find the location of your
sketchbook by opening the Preferences. The Library Manager
can also be used to update and remove libraries.

As mentioned before, there are more than 100 Processing libra-
ries, so they clearly can't all be discussed here. We've selected a
few that we think are fun and useful to introduce in this chapter.

Sound

The Sound audio library introduced with Processing 3.0 has the
ability to play, analyze, and generate (synthesize) sound. This
library needs to be downloaded with the Library Manager as
described earlier. (It's not included with the main Processing
download because of its size.)

Like the images, shape files, and fonts introduced in Chapter 7,
a sound file is another type of media to augment a Processing
sketch. Processing’'s Sound library can load a range of file for-
mats including WAV, AIFF, and MP3. Once a sound file is loaded,
it can be played, stopped, and looped, or even distorted using
different “effects” classes.

180 Getting Started with Processing.py

http://processing.org/reference/libraries/

Example 13-1: Play a Sample

The most common use of the Sound library is to play a sound as
background music or when an event happens on screen. The
following example builds on Example 8-5 on page 103 to play a
sound when the shape hits the edges of the screen. The blip.wav
file is included in the media folder that can be downloaded by
following the instructions in Chapter 7.

As with other media, the variable that will contain the SoundFile
object is defined at the top of the sketch, it's loaded within
setup(), and after that, it can be used anywhere in the program:

add_library('sound")

blip = None
radius = 120
Xx =0
speed = 1.0

direction = 1

def setup():
global blip, x
size(440, 440)
ellipseMode(RADIUS)
blip = SoundFile(this, "blip.wav")
x = width/2 # Start in the center

def draw():
global x, direction
background(0)
x += speed * direction
if x > width-radius or x < radius:
direction = -direction # Flip direction
blip.play()
if direction == 1:
arc(x, 220, radius, radius, 0.52, 5.76) # Face right
else:
arc(x, 220, radius, radius, 3.67, 8.9) # Face left

The sound is triggered each time its play() method is run. This
example works well because the sound is only played when the
value of the x variable is at the edges of the screen. If the sound
were played each time through draw(), the sound would restart
60 times each second and wouldn't have time to finish playing.

Extend 181

The result is a rapid clipping sound. To play a longer sample
while a program runs, call the play() or loop() method for that
sound inside setup() so the sound is triggered only a single
time.

The SoundFile class has many methods to control
how a sound is played. The most essential are
play() to play the sample a single time, loop() to
play it from beginning to end over and over, stop() to
halt the playback, and jump() to move to a specific
moment within the file.

Example 13-2: Listen to a Microphone

In addition to playing a sound, Processing can listen. If your
computer has a microphone, the Sound Library can read live
audio through it. Sounds from the mic can be analyzed, modi-
fied, and played:

add_library('sound")

None
None

mic
amp

def setup():
global mic, amp
size(440, 440)
background(0)

182 Getting Started with Processing.py

Create an audio input and start it

mic = AudioIn(this, 0)

mic.start()

Create a new amplitude analyzer and patch into input
amp = Amplitude(this)

amp.input(mic)

def draw():

Draw a background that fades to black

noStroke()

fill(26, 76, 102, 10)

rect(0, 0, width, height)

The analyze() method returns values between 0 and 1,

so map() is used to convert the values to larger numbers

diameter = map(amp.analyze(), 0, 1, 10, width)

Draw the circle based on the volume

£111(255)

ellipse(width/2, height/2, diameter, diameter)
There are two parts to getting the amplitude (volume) from an
attached microphone. The Audioln class is used to get the sig-
nal data from the mic and the Amplitude class is used to meas-
ure the signal. Objects from both classes are defined at the top
of the code and created inside setup().

After the Amplitude object (named amp here) is made, the
AudioIn object (named mic) is patched in to the amp object with
the input() method. After that, the analyze() method of the amp
object can be run at any time to read the amplitude of the
microphone data within the program. In this example, that is
done each time through draw() and that value is then used to
set the size of the circle.

In addition to playing a sound and analyzing sound as demon-
strated in the last two examples, Processing can synthesize
sound directly. The fundamentals of sound synthesis are wave-
forms that include the sine wave, triangle wave, and square
wave.

A sine wave sounds smooth, a square wave is harsh, and a trian-
gle wave is somewhere between. Each wave has a number of
properties. The frequency, measured in hertz, determines the
pitch—the highness or lowness of the tone. The amplitude of the
wave determines the volume—the degree of loudness.

Extend 183

Example 13-3: Create a Sine Wave

In the following example, the value of mouseX determines the fre-
quency of a sine wave. As the mouse moves left and right, the
audible frequency and corresponding wave visualization
increase and decrease:

add_library('sound")

sine = None
freq = 400.0

def setup():
global sine
size (440, 440)
Create and start the sine oscillator
sine = SinOsc(this)
sine.play()

def draw():
background(176, 204, 176)
Map the mouseX value from 20Hz to 440Hz for frequency
hertz = map(mouseX, 0, width, 20.0, 440.0)
sine.freq(hertz)
Draw a wave to visualize the frequency of the sound
stroke(26, 76, 102)
for x in range(width):
angle = map(x, 0, width, 0, TWO PI * hertz)
sinvalue = sin(angle) * 120
line(x, 0, x, height/2 + sinValue)

184 Getting Started with Processing.py

The sine object, created from the SinOsc class, is defined at the
top of the code and then created inside setup(). Like working
with a sample, the wave needs to be played with the play()
method to start generating the sound. Within draw(), the freq()
method continuously sets the frequency of the waveform based
on the left-right position of the mouse.

Image and PDF Export

The animated images created by a Processing program can be
turned into a file sequence with the saveFrame() function. When
saveFrame() appears at the end of draw(), it saves a numbered
sequence of TIFF-format images of the program's output
named screen-000L.tif, screen-0002.tif, and so on to the
sketch's folder.

These files can be imported into a video or animation program
and saved as a movie file. You can also specify your own file-
name and image file format with a line of code like this:

saveFrame("output-###t.png")

Use the # (hash mark) symbol to show where the numbers will
appear in the filename. They are replaced with the actual frame
numbers when the files are saved. You can also specify a sub-
folder to save the images into, which is helpful when working
with many image frames:

saveFrame("frames/output-####.png")

When using saveFrame() inside draw(), a new file is
saved each frame—so watch out, as this can quickly
fill your sketch folder with thousands of files.

Example 13-4: Saving Images

This example shows how to save images by storing enough
frames for a two-second animation. It loads and moves the
robot file from “Robot 5: Media” on page 97. See Chapter 7 for
instructions for downloading the file and adding it to the sketch.

Extend 185

The example runs the program at 30 frames per second and
then exits after 60 frames:

bot = None
0

def setup():
global bot
size(720, 480)
bot = loadShape("robot1.svg")
frameRate(30)

def draw():
global x
background(0, 153, 204)
translate(x, 0)
shape(bot, 0, 80)
saveFrame("frames/SaveExample-#f#. tif")
X += 12
if frameCount == 60:
exit()

Processing will write an image based on the file extension that
you use (.png, .jpg, and .tif are all built in, and some platforms
may support others). A .tif image is saved uncompressed, which
is fast but takes up a lot of disk space. Both .png and .jpg will
create smaller files, but because of the compression, will usually
require more time to save, making the sketch run slowly.

If your desired output is vector graphics, you can write the out-
put to PDF files for higher resolution. The PDF Export library
makes it possible to write PDF files directly from a sketch. These
vector graphics files can be scaled to any size without losing
resolution, which makes them ideal for print output—from post-
ers and banners to entire books.

186 Getting Started with Processing.py

Example 13-5: Draw to a PDF

This example builds on Example 13-4 on page 185 to draw more
robots, but it removes the motion. The PDF library is imported
at the top of the sketch to extend Processing to be able to write
PDF files.

This sketch creates a PDF file called Ex-13-5.pdf because of the
third and fourth parameters to size():

add_library('pdf")
bot = None

def setup():
global bot
size(600, 800, PDF, "Ex-13-5.pdf")
bot = loadShape("robot1.svg")

def draw():
background(255)
for i in range(100):
rx = random(-bot.width, width)
ry = random(-bot.height, height)
shape(bot, rx, ry)
exit()
The geometry is not drawn on the screen; it is written directly
into the PDF file, which is saved into the sketch's folder. The
code in this example runs once and then exits at the end of
draw(). The resulting output is shown in Figure 13-1.

There are more PDF Export examples included with the Pro-
cessing software. Look in the PDF Export (pdf) section of the
Processing examples to see more techniques.

Extend 187

!III.P :

@'_

S =
o
(@

. ©
IHHHHHHIH‘

i
L k -

(L
||||||||||||||”’ '
Q4

N,

|

i
|

()
‘ |||||||||||||I||‘
()

@! I
‘@
N

o (o

i |
i

Figure 13-1. PDF export from Example 13-5

Hello, Arduino

Arduino is an electronics prototyping platform with a series of
microcontroller boards and the software to program them. Pro-
cessing and Arduino share a long history together; they are sis-

188 Getting Started with Processing.py

ter projects with many similar ideas and goals, though they
address separate domains. Because they share the same editor
and programming environment and a similar syntax, it's easy to
move between them and to transfer knowledge about one into
the other.

In this section, we focus on reading data into Processing from
an Arduino board and then visualizing that data on screen. This
makes it possible to use new inputs into Processing programs
and to allow Arduino programmers to see their sensor input as
graphics. These new inputs can be anything that attaches to an
Arduino board. These devices range from a distance sensor to a
compass or a mesh network of temperature sensors.

This section assumes that you have an Arduino board and a
basic working knowledge of how to use it. If not, you can learn
more online at http./www.arduino.cc and in the excellent book
Getting Started with Arduino by Massimo Banzi (Maker Media).
Once you've covered the basics, you can learn more about send-
ing data between Processing and Arduino in another outstand-
ing book, Making Things Talk by Tom Igoe (Maker Media).

Data can be transferred between a Processing sketch and an
Arduino board with some help from the Processing Serial
Library. Serial is a data format that sends one byte at a time. In
the world of Arduino, a byte is a data type that can store values
between 0 and 255; it works like an int, but with a much smaller
range. Larger numbers are sent by breaking them into a list of
bytes and then reassembling them later.

In the following examples, we focus on the Processing side of
the relationship and keep the Arduino code simple. We visualize
the data coming in from the Arduino board one byte at a time.
With the techniques covered in this book and the hundreds of
Arduino examples online, we hope this will be enough to get you
started.

Example 13-6: Read a Sensor

The following Arduino code is used with the next three Process-
ing examples:

Extend 189

http://www.arduino.cc

// Note: This is code for an Arduino board, not Processing

int sensorPin = 0; // Select input pin
int val = 0;

void setup() {
Serial.begin(9600); // Open serial port

void loop() {
val = analogRead(sensorPin) / 4; // Read value from sensor
Serial.write((byte)val); // Print variable to serial port
delay(100); // Wait 100 milliseconds

There are two important details to note about this Arduino
example. First, it requires attaching a sensor into the analog
input on pin O on the Arduino board. You might use a light sen-
sor (also called a photo resistor, photocell, or light-dependent
resistor) or another analog resistor such as a thermistor
(temperature-sensitive resistor), flex sensor, or pressure sensor
(force-sensitive resistor). The circuit diagram and drawing of the
breadboard with components are shown in Figure 13-2. Next,
notice that the value returned by the analogRead() function is
divided by 4 before it's assigned to val. The values from analog
Read() are between O and 1023, so we divide by 4 to convert
them to the range of O to 255 so that the data can be sent ina

single byte.
+5V ANALOG INPIN O GROUND
/// +5V
4
R
g// ANALOG INPIN O
1K
GRO_UND

Figure 13-2. Attaching a light sensor (photo resistor) to analog
inpin O

190 Getting Started with Processing.py

Example 13-7: Read Data from the
Serial Port

The first visualization example shows how to read the serial data
in from the Arduino board and how to convert that data into the
values that fit to the screen dimensions:

add library('serial')
port = None # for object from Serial class
val = 0.0 # Data received from the serial port

def setup():

global port

size(440, 220);

IMPORTANT NOTE:
The first serial port retrieved by Serial.list()
should be your Arduino. If not, uncomment the next
line by deleting the # before it. Run the sketch
again to see a list of serial ports. Then, change
the 0 in between [and] to the number of the port
that your Arduino is connected to.
#print Serial.list()
arduinoPort = Serial.list()[0]
port = Serial(this, arduinoPort, 9600)

H oM o oE O

def draw():
global val
if port.available() > 0: # If data is available,
val = port.read() # read it and store it in val

val = map(val, 0, 255, 0, height) # Convert the value
rect(40, val-10, 360, 20)

The Serial library is imported on the first line and the serial port
is opened in setup(). It may or may not be easy to get your Pro-
cessing sketch to talk with the Arduino board; it depends on
your hardware setup. There is often more than one device that
the Processing sketch might try to communicate with. If the
code doesn't work the first time, read the comment in setup()
carefully and follow the instructions.

Within draw(), the value is brought into the program with the
read() method of the Serial object. The program reads the data
from the serial port only when a new byte is available. The
available() method checks to see if a new byte is ready and
returns the number of bytes available. This program is written

Extend 191

so that a single new byte will be read each time through draw().
The map() function converts the incoming value from its initial
range from O to 255 to a range from O to the height of the
screen; in this program, it's from O to 220.

Example 13-8: Visualizing the Data
Stream

Now that the data is coming through, we'll visualize it in a more
interesting format. The values coming in directly from a sensor
are often erratic, and it's useful to smooth them out by averag-
ing them. Here, we present the raw signal from the light sensor
illustrated in the top half of the example and the smoothed sig-
nal in the bottom half:

add library('serial')

port = None # for Serial object

val = 0.0 # Data received from the serial port
X =0

easing = 0.05

easedVal = 0.0

def setup():
global port
size(440, 440)
frameRate(30)
arduinoPort = Serial.list()[0]
port = Serial(this, arduinoPort, 9600)
background(0)

def draw():

192 Getting Started with Processing.py

global x, val, easedVal
if port.available() > o: # If data is available,
val = port.read() # read it and store it in val
val = map(val, 0, 255, 0, height) # Convert the values
targetVal = val;
easedVal += (targetVal - easedVal) * easing

stroke(0)

line(x, 0, x, height) # Black line
stroke(255)

line(x+1, 0, x+1, height) # White line
line(x, 220, x, val) # Raw value

line(x, 440, x, easedVal + 220) # Averaged value

X +=1
if x > width:
X=0

Similar to Example 5-8 on page 52 and Example 5-9 on page 53,
this sketch uses the easing technique. Each new byte from the
Arduino board is set as the target value, the difference between
the current value and the target value is calculated, and the cur-
rent value is moved closer to the target. Adjust the easing vari-
able to affect the amount of smoothing applied to the incoming
values.

Example 13-9: Another Way to Look
at the Data

This example is inspired by radar display screens. The values
are read in the same way from the Arduino board, but they are
visualized in a circular pattern using the sin() and cos() func-
tions introduced earlier in Example 8-12 on page 111 to Example
8-15 on page 113:

Extend 193

add library('serial')

port = None # Serial class object

val = 0.0 # Data received from the serial port
angle = 0.0

radius = 0.0

def setup():
global port
size(440, 440)
frameRate(30)
strokelWeight(2)
arduinoPort = Serial.list()[0]
port = Serial(this, arduinoPort, 9600)
background(0)

def draw():
global val, angle, radius
if port.available() > 0: # If data is available,
val = port.read() # read it and store it in val
Convert the values to set the radius
radius = map(val, 0, 255, 0, height * 0.45)

middleX = width/2

middleY = height/2

x = middleX + cos(angle) * height/2
y = middleY + sin(angle) * height/2
stroke(0)

line(middleX, middleY, x, y)

X
y

middleX + cos(angle) * radius
middleY + sin(angle) * radius

194 Getting Started with Processing.py

stroke(255)
line(middleX, middleY, x, y)

angle += 0.01

The angle variable is updated continuously to move the line
drawing the current value around the circle, and the val variable
scales the length of the moving line to set its distance from the
center of the screen. After one time around the circle, the values
begin to write on top of the previous data.

We're excited about the potential of using Processing and Ardu-
ino together to bridge the world of software and electronics.
Unlike the examples printed here, the communication can be
bidirectional. Elements on screen can also affect what's happen-
ing on the Arduino board. This means you can use a Processing
program as an interface between your computer and motors,
speakers, lights, cameras, sensors, and almost anything else
that can be controlled with an electrical signal. Again, check out
http://www.arduino.cc for more information about Arduino.

Extend 195

http://www.arduino.cc

A/Coding Tips

Coding is a type of writing. Like all types of writing, code has
specific rules. For comparison, we'll quickly mention some of
the rules for English that you probably haven’t thought about in
a while because they are second nature. Some of the more invis-
ible rules are writing from left to right and putting a space
between each word. More overt rules are spelling conventions,
capitalizing the names of people and places, and using punctua-
tion at the end of sentences to provide emphasis! If we break
one or more of these rules when writing an email to a friend, the
message still gets through. For example, “hello ben. how r u
today” communicates nearly as well as, “Hello, Ben. How are
you today?” However, flexibility with the rules of writing don't
transfer to programming. Because you're writing to communi-
cate with a computer, rather than another person, you need to
be more precise and careful. One misplaced character is often
the difference between a program that runs and one that
doesn't.

Processing tries to tell you where you've made mistakes and to
guess what the mistake is. When you press the Run button, if
there are grammar (syntax) problems with your code (we call
them bugs), then the Message Area turns red and Processing
tries to highlight the line of code that it suspects as the problem.
The line of code with the bug is often one line above or below the
highlighted line, though in some cases, it's nowhere close. The
text in the Message Area tries to be helpful and suggests the
potential problem, but sometimes the message is too cryptic to
understand. For a beginner, these error messages can be frus-
trating. Understand that Processing is a simple piece of soft-
ware that's trying to be helpful, but it has a limited knowledge of
what you're trying to do.

Long error messages are printed to the Console in more detail,
and sometimes scrolling through that text can offer a hint. Addi-
tionally, Processing can find only one bug at a time. If your pro-

197

gram has many bugs, you'll need to keep running the program
and fix them one at a time.

Please read and reread the following suggestions carefully to
help you write clean code.

Functions and Parameters

Programs are composed of many small parts, which are grou-
ped together to make larger structures. We have a similar sys-
tem in English: words are grouped into phrases, which are com-
bined to make sentences, which are combined to create para-
graphs. The idea is the same in code, but the small parts have
different names and behave differently. Functions and parame-
ters are two important parts. Functions are the basic building
blocks of a Processing program. Parameters are values that
define how the function behaves.

Consider a function like background(). Like the name suggests,
it's used to set the background color of the Display Window. The
function has three parameters that define the color. These num-
bers define the red, green, and blue components of the color to
define the composite color. For example, the following code
draws a blue background:

background(51, 102, 153)

Look carefully at this single line of code. The key details are the
parentheses after the function name that enclose the numbers,
and the commas between each number. All of these parts need
to be there for the code to run. Compare the previous example
line to these two broken versions of the same line:

background 51, 102, 153 # Error! Missing the parentheses
background(51 102, 153) # Error! Missing a comma

The computer is very unforgiving about even the smallest omis-
sion or deviation from what it's expecting. If you remember
these parts, you'll have fewer bugs. But if you forget to type
them, which we all do, it's not a problem. Processing will alert
you about the problem, and when it's fixed, the program will run
well.

198 Appendix A

Color Coding

The Processing Development Environment color-codes different
parts of each program. Words that are a part of Processing are
drawn as blue and orange to distinguish them from the parts of
the program that you invent. The words that are unique to your
program, such as your variable and function names, are drawn
in black. Basic symbols such as (), [], and > are also black.

Comments

Comments are notes that you write to yourself (or other people)
inside the code. You should use them to clarify what the code is
doing in plain language and provide additional information such
as the title and author of the program. A comment starts with a
pound symbol (#) and continues until the end of the line:

This is a comment

When a comment is correctly typed, the color of the text will
turn gray. The entire commented area turns gray so you can
clearly see where it begins and ends.

Uppercase and Lowercase

Python distinguishes uppercase letters from lowercase letters
and therefore reads “Hello” as a distinct word from “hello”. If
you're trying to draw a rectangle with the rect() function and
you write Rect(), the code won't run. You can see if Processing
recognizes your intended code by checking the color of the text.

Style
Python is somewhat flexible about how much space is used to
format your code. Python doesn't care if you write:
rect(50, 20, 30, 40)
or:
rect (50,20,30,40)
or even:
rect (50,20,30, 40)

Appendix A 199

However, Python uses spaces at the beginning of lines (known
as “indentation”) to determine the structure of your program.
For this reason, you need to use indentation carefully when
you're writing Python programs. For example, this code will
work:
for i in range(10):

square = i * i

print square
But this code will not (notice how the line beginning
with print has one fewer space than the previous line):

for i in range(10):

square = i * i

print square
It's in your best interest to make the code easy to read. This
becomes especially important as the code grows in length.
Clean formatting makes the structure of the code immediately
legible, and sloppy formatting often obscures problems. Get
into the habit of writing clean code. Python has an informal style
guide that is used by many programmers called PEPS8, which
has good ideas for how to format your code. You can read it
here: https:/www.python.org/dev/peps/pep-0008/.

Console

The Console is the bottom area of the Processing Development
Environment. You can write messages to the Console with the
print statement. For example, the following code prints a mes-
sage followed by the current time:

print "Hello, Processing."
print "The time is " + str(hour()) + ":" + str(minute())

The Console is essential to seeing what is happening inside of
your programs while they run. It's used to print the value of vari-
ables so you can track them in order to confirm if events are
happening and to determine where a program is having a prob-
lem.

200 Appendix A

https://www.python.org/dev/peps/pep-0008/

One Step at a Time

We recommend writing a few lines of code at a time and running
the code frequently to make sure that bugs don't accumulate
without your knowledge. Every ambitious program is written
one line at a time. Break your project into simpler subprojects
and complete them one at a time so that you can have many
small successes, rather than a swarm of bugs. If you have a bug,
try to isolate the area of the code where you think the problem
lies. Try to think of fixing bugs as solving a mystery or puzzle. If
you get stuck or frustrated, take a break to clear your head or
ask a friend for help. Sometimes, the answer is right under your
nose but requires a second opinion to make it clear.

Appendix A 201

B/Data Types

There are different categories of data. For instance, think about
the data on an ID card. The card has numbers to store weight,
height, date of birth, street address, and postal code. It has
words to store a person’'s name and city. There's also image
data (a photo), and often an organ donor choice, which is a
yes/no decision. In Processing, we have different data types to
store each kind of data. Each of the following types is explained
in more detail elsewhere in the book, but this is a summary:

Name Description

int Integers (whole numbers)

float | Floating-point values

bool | Logical value

str Sequence of characters
PImage | PNG, JPG, or GIF image

PFont | Use the createFont() function or the Create Font tool to
make fonts to use with Processing

PShape | SVG file

As a guideline, a float number has about four digits of accuracy
after the decimal point. If you're counting or taking small steps,
you should use an int value to take the steps, and then perhaps
scale it by a float if necessary when putting it to use.

Python automatically determines the data type of a value when
you first create it. You can use the built-in type() function to
check the type of a value or variable. This can be helpful when
debugging. For example:

X = 10
print type(x) # prints <type 'int'>
y = 17.4

print type(y) # prints <type 'float'>

203

There are more data types than those mentioned here, but
these are the most useful for the work typically made with Pro-
cessing. In fact, as mentioned in Chapter 10, there are infinite
types of data, because every new class is a different data type.

204 Appendix B

C/Order of
Operations

When mathematical calculations are performed in a program,
each operation takes place according to a prespecified order.
This order of operations ensures that the code is run the same
way every time. This is no different from arithmetic or algebra,
but programming has other operators that are less familiar.

In the following table, the operators on the top are evaluated
before the operators later in the list—e.g., multiplication will be
evaluated before addition.

Name Symbol Examples
Parentheses O a* (b+c)
Unary negation | - -X
Multiplicative | * / % a*hb
Additive + - a+b
Comparisons | > < <= >= == | ifa>b
= in
Logical NOT not if not mousePressed
Logical AND and if mousePressed and (a > b)
Logical OR or if mousePressed or(a > b)

205

D/Variable Scope

The rule of variable scope in Python is defined simply: a variable
created inside a function exists only inside that function. This
means that a variable created inside setup() can be used only
within setup(), and likewise, a variable declared inside draw()
can be used only inside draw(). The exception to this rule is a
variable declared outside of setup() and draw(). These variables
can be used in both setup() and draw() (or inside any other
function that you create). We call these variables global vari-
ables, because they can be used anywhere within the program.
We call a variable that is used only within a single function a
local variable. Following are a couple of code examples that fur-
ther explain the concept. First:

i =12 # Assign value 12 to global variable i

def setup():
size(480, 320)
i = 24 # Assign value 24 to local variable i
print i # Prints 24 to the console

def draw():
print i # Prints 12 to the console

And second:

def setup():
size (480, 320)
i = 24 # Assign 24 to local variable i

def draw():
print i # ERROR! The variable i is local to setup()

As you can see from the initial example, if you make an assign-
ment to a variable inside a function that has the same name as a
global variable, Python assumes that you wanted to create a
new (local) variable with the same name. If you wanted instead
to change the value of the global variable, you need to declare

207

this variable as global at the beginning of the function using
the global keyword:

i =12 # Assign value 12 to global variable i

def setup():
global i # "i" now means the global variable, not a new local
size(480, 320)
i = 24 # Assign value 24 to global variable i
print i # Prints 24 to the console

def draw():
print i # Prints 24 to the console

You need to use the global keyword for any kind of assignment,
including the incrementation shortcut operator. Here's an exam-
ple to illustrate:

X =0

def setup():
size(200, 200)

def draw():

background(0)

stroke(255)

X += 1

ellipse(x, 100, 15, 15)
The preceding code gives an error when you try to run it (“local
variable ‘x’ referenced before assignment”). That's because we
never told Python that we want x inside of the draw() function to
refer to the global variable x. As a consequence, when we try to
increment the value of x, Python doesn’t know what we mean,
as we never created a variable with that name inside of draw()!
We can fix the problem by adding global at the beginning of the
function:

X =0

def setup():
size(200, 200)

def draw():
global x
background(0)
stroke(255)

208 Appendix D

X += 1
ellipse(x, 100, 15, 15)

Note that the global keyword is needed only when you're plan-
ning to overwrite the value assigned to a variable. You don't need
to use the global keyword when performing operations that
merely change the object’s internal state. To illustrate, in the fol-
lowing example, you don't need to use the global keyword, as
the value of the variable x (i.e., the list) is not being overwritten.
We're merely calling a method on that object and assigning to
one of its indexes. (The global keyword would be needed, how-
ever, if we wanted to create an entirely new list and assign it to
the same variable x.)

x =[]

def setup():
size(600, 200)
frameRate(5)

def draw():

background(0)

noStroke()

x.append(random(width))

fil11(255, 16)

for i in range(len(x) - 1):
ellipse(x[i], height/2, 25, 25)

fi11(255)

ellipse(x[-1], height/2, 25, 25)

AppendixD 209

E/Processing, Python,
and Java

The core Processing project is written in the Java programming
language. Processing.py, the flavor of Processing used in this
book, allows you to write Processing programs in Python, but is
otherwise very closely based on this original Java implementa-
tion. A special version of Python (called Jython) is used inter-
nally by Processing.py as a “bridge” that allows for direct access
to the Processing classes and functions implemented in Java.

For most uses, this integration is seamless. If it's something that
Python can do, or if it's something that the Java implementation
of Processing can do, you can do it in Processing.py. But you
might occasionally encounter a hiccup or two. This appendix
describes a few things to look out for as you continue your
exploration of Processing and Python.

Python Versions

First off, we should talk about what versions of Python are sup-
ported by Processing.py. There are two versions of Python in
common use: Python 2 and Python 3. The two versions are very
similar, but Python 3 has a number of changes in both syntax
and functionality that make it incompatible with previous ver-
sions.

Although Python 3 has been available for a number of years,
Python 2 remains popular, and many if not most of the Python
tutorials and example programs you're likely to find on the Inter-
net are written with Python 2 in mind. Processing.py itself uses
Python 2 internally (in particular, it uses a custom build of
Jython 2.5, which is largely compatible with Python 2.7). Keep
this in mind when consulting documentation and code samples.

211

Built-In Function Names

There are a number of built-in Processing functions that share
the same name as built-in Python functions. Processing.py does
a good job of automatically deciding which of these functions to
use, based on the number and kind of parameters passed to the
function. But you may occasionally find yourself on the receiving
end of error messages or strange behavior when using these
functions. The trickiest of these functions are listed here, along
with a description of how Processing.py decides which version
of the function to call:

set()
The Python built-in function with this name returns a new
set object. This function will be called in Processing.py if you
provide it with zero parameters or one parameter. Other-
wise, the Processing built-in function will be called, which
sets a pixel at a particular coordinate on the screen to the
given color.

map ()
This is a Python built-in function that creates a new list by

applying a function call to each item in the list. In Processing,
this is a linear interpolation function. If your call to the func-
tion has five numeric parameters, Processing.py will call the
Processing built-in function; otherwise, the Python built-in
will be called.

filter()

In Python, this built-in function creates a copy of a list
including only those members for which a given test evalu-
ates to true. In Processing, this is a built-in function that pro-
cesses on-screen pixels. The Processing version is called if
supplied with one or two numeric parameters (including
Processing constants identifying filter modes); the Python
version is called otherwise.

Colors

Some Processing programmers may be accustomed to specify-
ing colors using a pound symbol, like so: #003399. This syntax
does not work in Processing.py. Instead, you can pass a string

212 Appendix E

literal with the same notation to any Processing function that
accepts a color. For example:

£i11("#003399")
stroke("#FFFFFF")
rect(10, 10, 80, 80)

Python Standard Library

Because Processing.py is just Python under the hood, you can
use any module included in Python's standard library. We took
advantage of this fact to use the csv and json libraries in Chap-
ter 12. Using a module in the standard library is easy: simply
include an import statement at the beginning of your source
code. For example, to use the Python datetime library:

import datetime

print the current time in IS08601 format

print datetime.datetime.utcnow().isoformat()
You can find a full list of libraries included with Python
here: https://docs.python.org/2.7/library/index.html.

Note that the Python random library shares the same name as
the Processing built-in function random. If you import
Python’s random library, it will make the Processing random func-
tion unavailable in your program.

Processing Libraries and Example
Code

The Java implementation of Processing has many helpful libra-
ries, including hundreds of libraries contributed by volunteers
and community members. One of the benefits of Process-
ing.py’'s Java-based implementation is that most of these libra-
ries will work in your program with little or no modification.

But there's a problem: you're likely to find that most Processing
libraries you come across have example code for Java Process-
ing only. Fortunately, it's usually possible to translate simple
Java examples to Python with a little bit of know-how and effort.

To demonstrate, here's the Java example program for Nikolaus
Gradwohl's ttslib library, which makes it easy to add text-to-

Appendix E 213

https://docs.python.org/2.7/library/index.html

speech to your Processing sketch. (You can download this
library in the Processing IDE by selecting Sketch — Import
Library... — Add Library... and then searching for “ttslib” in the
Library Manager.) We've annotated the code with comments
about what needs to be changed to make the example work in
Processing.py.

import guru.ttslib.*; // use add library() instead of import
TTS tts; // don't need to include class type ("TTS")

void setup() { // change to def setup():
tts = new TTS(); // don't need to use "new" keyword in Python

}

void draw() { // change to def draw():
} // use Python "pass" keyword here to replace empty curly
brackets

void mousePressed() { // change to def mousePressed():
tts.speak("Hi! I am a speaking Processing sketch");

Here's the equivalent code in Python:
add library('ttslib")

tts = None

def setup():
global tts
tts = TTS()

def draw():
pass

def mousePressed():
tts.speak("Hi! I am a Processing dot pie sketch")

Many Processing libraries (including the sound library intro-
duced in “Sound” on page 180) require a reference to the cur-
rent PApplet object. In the Java implementation of Processing,
you can use the this keyword for this purpose. Python, however,
doesn’t have a built-in this keyword, so Processing.py automati-
cally provides a global variable called this that you can pass to
libraries that require it.

214 Appendix E

Symbols

* (asterisk), multiplication opera-
tor, 38, 205

: (colon)
in for loops, 40
in if blocks, 56

{} (curly braces), enclosing JSON
objects, 168-169

= (equal sign), assignment opera-
tor, 38, 205

== (equal sign, double), equal to
operator, 56-57, 61, 205

I= (exclamation point, equal sign),
not equal to operator, 61, 205

< (left angle bracket), less than
operator, 61, 205

<= (left angle bracket, equal sign),
less than or equal operator, 61,
205

- (minus sign), subtraction opera-
tor, 38, 205

(number sign)
indicating comments, 30-31
preceding color values, 212

() (parentheses), in expressions,
39, 205

. (period), dot operator, 136

+ (plus sign), addition operator, 38,
205

> (right angle bracket), greater
than operator, 61, 205

>= (right angle bracket, equal
sign), greater than or equal
operator, 61, 205

/ (slash), division operator, 38, 205

[1 (square brackets)
chaining, 175-176

Index

enclosing dictionary keys,
156-157
enclosing list values, 144, 145

A

add_library() function, 180

AIFF files, 180

alpha value, 27

ALT value, 67

and operator, 63, 67, 205

animation, 99
bouncing off screen edges,

103-104
circular movement, 109-114
frames, 99-100
moving randomly, 105-107
moving shapes, 100-104
moving with tweening, 104-105
robot using, 114
saving as images, 185-186
timed movement, 108
wrapping around screen,
101-103

APIs, accessing network data with,
172-176

append() method, 144, 146

applications, exporting sketches
as, 11

arc() function, 18-19

Arduino platform, 188-195
reading a sensor, 189-190
reading from serial port, 191-192
visualizing data from, 192-195

arithmetic operators, 37-39, 205

arrays (see lists)

arrow keys, 67

arrow shape, 28-29

asterisk (*), multiplication opera-
tor, 38, 205

215

B

background() function, 25, 26, 50

Banzi, Massimo (Getting Started
with Arduino), 189

beginShape() function, 28

bool data type, 203

boolean data type, 55

bouncing shapes off screen edges,
103-104

C

case sensitivity, 199
circles
detecting whether cursor is
within, 61-62
drawing, 10
circular movement, 109-114
classes, 131-135
(see also objects)
creating objects from, 135-137
fields in, 130, 131
__init__method in, 132-134
methods in, 130, 132, 134-135
code examples
permission to use, xii-xiii
in Processing.py window, open-
ing, 12
CODED value, 67
coding (see programming)
colon ()
in for loops, 40
in if blocks, 56
color
background color, 25, 26, 50
fill color, 25, 26, 27
gray values, 25
outline color, 23, 26
transparency of, 27
values of, 23-25, 26, 212
color coding in PDE, 199
Color Selector option, Tools menu,
26
comma-separated values file (see
CSV and TSV files)
comments in code, 30-31, 199

216 Index

comparison operators (see rela-
tional operators)

compound data types, 155-156
(see also dictionaries; lists;

objects)

Console, in PDE, 9, 48, 200

contact information for this book,
XV

CONTROL value, 67

conventions used in this book, xii

coordinate system, 13, 73

cos() function, 109-114

createFont() function, 91

createShape() function, 95-96

creature shapes, 29-30

CSV and TSV files, 162-168
data typesin, handling, 163-164
header row in, 166-168
reading data from, 162-163
reading data into dictionaries,

166-168

reading data into lists, 164-166
robot using, 176-178

csv library, 162

curly braces ({}), enclosing JSON
objects, 168-169

cursor, location of, 59-64

D

data (see CSV and TSV files; dic-
tionaries; JSON files;network
data)
data folder, 85-86
data types, 36, 155-156, 203
degrees, 19
dictionaries, 156-157
checking for keys in, 157
keys in, 156-158
lists of, 158-161
reading CSV data into, 166-168
reading JSON files into, 169-172
DictReader() function, 167
Display Window, 13-14, 37
dist() function, 51
dots (see points)
DOWN value, 67

draw() function, 47-48
drawing, 13
arcs, 18-19
continuously (see draw() func-
tion)
lines (see lines)
modes for, 22-23
order shapes are drawn, 20-21
points, 14, 50
shapes (see shapes)
sketching and prototyping, 2-3
drawings (see sketches)

E

easing, 52-54

elif keyword, 67

ellipse() function, 9,17, 23

ellipseMode() function, 78

ellipses, 9-10, 17, 23

else blocks, 57

endShape() function, 28-29

equal sign (=), assighment opera-
tor, 38, 205

equal sign, double (==), equal to
operator, 56-57, 61, 205

errors, 197

events, timed, 108

Examples option, File menu, 12

exclamation point, equal sign (!=),

not equal to operator, 61, 205
Export Application option, File
menu, 11
expressions, 38

F

Feinberg, Jonathan, ix-x
fields, 130, 131, 136
File menu
Examples option, 12
Export Application option, 11
New option, 11
Save option, 11
fill() function, 25, 26, 27
filter() function, 212
float data type, 100, 203
fonts, 91-94

drawing text with, 92-93
finding online, 91
setting, 91
types supported, 91
for loops, 39-45
calling functions in, 124
embedding inside each other,
42-45
listsin, 147-149, 150
frame rate, 47, 99-100
frameCount variable, 47
frameRate variable, 99
frames, 47, 99-100
(see also draw() function)
Fry, Ben, ix-x
functions, 13, 117-119
(see also specific functions)
calling in for loops, 124
guidelines for, 198
in objects (see methods)
parameters for, 123-124, 198
return value for, 125-126
robot using, 127
writing, 120-124

G

Getting Started with Arduino
(Banzi), 189

GIF files, 89

global keyword, 54-55, 208

global variables, 48-49, 54-55,
207-209

graphics, history of, 3-5
(see also images; shapes;

sketches)
gray values, 25

H

HALF_PI value, 18
height variable, 37

I

icons used in this book, xii
if blocks, 56, 57

Index 217

Igoe, Tom (Making Things Talk),
189
image() function, 86-88
imageMode() function, 78
images
distortion of, 89
file formats for, 89
list of, 151-152
loading and drawing, 86-88
resizing with mouse, 88-89
saving animations as, 185-186
import statement, 163, 213
in operator, 157, 205
__init__method, 132-134
insert() method, 148
int data type, 100, 203
int() function, 164

J

Java/Python drop-down menu, 9

JavaScript Object Notation files
(see JSON files)

JPEG files, 89

JSON files, 168-172

jump() method, 182

K

key press
drawing letters based on, 65
if pressed, detecting, 64
which key pressed, detecting,

65, 66-68

key variable, 65, 66-68

keyCode variable, 67

keyPressed variable, 64

L

left angle bracket (<), less than
operator, 61, 205

left angle bracket, equal sign (<=),
less than or equal operator, 61,

205
LEFT value, 67
letters (see text)
libraries, 179

218 Index

importing, 163, 179-180, 213
Java implementations, using,
213-214
Python standard library, 213
libraries folder, 180
line() function, 16
lines
drawing, 16
drawing from mouse movement,
50-51
endings of (caps), 21
joins between, 22
weight of, 21
Linux, downloading and installing
Processing, 7
list() function, 144
lists, 141-143
accessing in for loops, 147-149
appending values to, 144, 146
creating, 144, 146
data typesin, 144
of dictionaries, 158-161
elementsin, 144
in for loops, 150
index values in, 144
initializing, 144, 146, 147
inserting values in, 148
length of, determining, 145
of objects, 149
overwriting values in, 145,
146-147
reading CSV data into, 164-166
robot using, 152
tracking mouse coordinates
with, 148
load() function, 170
loadimage() function, 86-88
loadShape() function, 94
local variables, 207-209
logical operators, 63, 67, 205
loop() method, 182
loops (see for loops)
lowercase, in code, 199

M

Maker Movement, xiv

Making Things Talk (Igoe), 189
map() function, 69, 212
mapping values to a range, 68-69
media files, 85-86
(see also fonts; images; vector
shapes)
Message Area, in PDE, 9, 197
methods, 130, 132, 134-135, 136
millis() function, 108
minus sign (-), subtraction opera-
tor, 38, 205
mode drop-down menu, 9
motion (see animation)
mouse
clicked, detecting, 55-57
location of, detecting, 59-64
not clicked, detecting, 57
robot responding to, 70
tracking, 49-53
tracking loosely, 52-54
tracking with lists, 148
which button clicked, detecting,
58-59
mouseButton variable, 58
mousePressed variable, 55
mouseX variable, 49
mouseY variable, 49
MP3 files, 180

N

network data
accessing with APls, 172-176
parsing, 175-176

New option, File menu, 11

nf() function, 152

noFill() function, 25

None value, 87

noStroke() function, 25

not operator, 205

number sign (#)
indicating comments, 30-31
preceding color values, 212

o

object-oriented programming
(O0P), 129

objects, 129-131
(see also classes)
classes for, 131-135
creating (instantiating), 135-137,
149
lists of, 149
robot using, 139
online resources
Arduino, 189
fonts, 91
for this book, xiv
libraries, 180
media files, 85
Processing, 5, 7
Processing Reference for
Python, 12
Python libraries, 213
robot vector shapes, 97
style guidelines, 200
OOP (object-oriented program-
ming), 129
open() function, 162, 212
OpenType fonts, 91
operator precedence, 38, 205
operators
arithmetic, 37-39, 205
logical, 63, 67, 205
relational, 61-61, 205
or operator, 67, 205
order of code execution, 48-49, 118
order of operations (see operator
precedence)
OS X
downloading and installing Pro-
cessing, 7
showing file extensions, 86
outlines
color of, 23, 26
eliminating, 25

P

P5 robot (see robot)

parameters, of functions, 123-124,
198

parentheses (()), in expressions,
39, 205

Index 219

patterns, repeating (see for loops)
PDE (see Processing Development
Environment)
PDF files, exporting sketches to,
187
period (.), dot operator, 136
persistence of vision, 99
PFont data type, 203
Plvalue, 18
Plmage objects, 203
instantiating, 149
list of, 151-152
pixels, 13
play() method, 181

plus sign (+), addition operator, 38,

205
pmouseX variable, 50
pmouseY variable, 50
PNG files, 89
point() function, 14
points

drawing, 14

drawing from mouse movement,

50
popMatrix() function, 81-82
Present option, Sketch menu, 10
print statement, 200
Processing, ix-x
downloading and installing, 7-8
Python mode (see Process-
ing.py)
Processing Development Environ-
ment (PDE), 9
color coding in, 199
Console, 9, 48, 200
Display Window, 13-14, 37
main window, &, 9
menus (see specific menus)
Message Area, 9, 197
tabs, 137-139
toolbar, 9, 10
Processing Reference for Python,
12
Processing.py, ix-x
animation (see animation)
code executed once at startup
(see setup() function)

220 Index

comments in code, 30-31
conditional execution (see if
blocks)
continuous execution (see
draw() function)
data (see data)
development environment for
(see Processing Develop-
ment Environment)
downloading and installing, 7-8
features of, 3
functions (see functions)
guidelines for, 197-201
languages related to, 5
lists (see lists)
objects (see objects)
order of code execution, 48-49,
118
Python mode, enabling, 8-9
repeated execution (see for
loops)
sketches (see sketches)
variables (see variables)
programming, 1-2
(see also Processing.py)
guidelines for, 197-201
object-oriented programming
(0O0P), 129
process of, 1-2, 201
prototyping (see sketching and
prototyping)
PShape data type, 96, 203
pushMatrix() function, 81-82
Python, ix-x
versions of, 211
Python mode, for Processing, 8-9
(see also Processing.py)
Python/Java drop-down menu, 9

Q

quad() function, 16
QUARTER_PI value, 18

R

radians, 18-19
radians() function, 19

random() function, 105-107, 118
randomSeed() function, 107
range() function, 40
reader() function, 163
Reas, Casey, ix-x
rect() function, 16
rectangles
detecting whether cursor is
within, 62-64
drawing, 16
rectMode() function, 78
relational operators, 61, 205
repetition (see for loops)
return keyword, 126
return value, for functions, 125-126
RGB (red, green, blue) values,
23-25, 26
right angle bracket (>), greater
than operator, 61, 205
right angle bracket, equal sign
(>=), greater than or equal oper-
ator, 61, 205
RIGHT value, 67
robot
changing dimensions of, 45
circular movement, 114
dimensions responding to
mouse movements, 70
drawing, 32
drawing with functions, 127
image background for, 97
objects for, 139
as objects in list, 152-153
random movement, 114
transformations of, 83
TSV file containing data for,
176-178
vector shapes for, 97
rotate() function, 75-79
rotations, 75-79
Run button, toolbar, 9
Run option, Sketch menu, 10

S

Save option, File menu, 11
saveFrame() function, 185-186

scale() function, 80-81
scaling, 80-81, 95
scope of variables, 207-209
self parameter, 133
sensor, reading from, 189-190
serial port, reading from, 191-192
set() function, 212
setup() function, 48
shape() function, 94, 95-96
shapeMode() function, 78, 95
shapes, 14-19
(see also sketches)
animating (see animation)
arrow shape, 28-29
background color, 25, 26
circles, 10
creature shapes, 29-30
custom shapes, 28-30
ellipses, 9-10, 17, 23
fill color, 25, 26
fill, eliminating, 25
order drawn, 20-21
outline color, 23, 26
outline, eliminating, 25
quadrilaterals, 16
rectangles, 16
robot using, 32
rotating, 75-79
scaling, 80-81
translating, 73-75, 77-79
triangles, 16
vector shapes, 94-96
SHIFT value, 67
Show Sketch option, Sketch menu,
1
sin() function, 109-114
size() function, 13-14, 37, 48
Sketch menu, 10-11
Show Sketch option, 11
sketchbooks
saving sketches to, 11
viewing list of sketches in, 11
sketches
animating (see animation)
creating, 11
creating applications from, 11
exporting to PDF files, 187

Index 221

presenting, 10
running, 9, 10
saving, 11
saving as images, 185-186
stopping, 10
transforming (see transforma-
tions)
sketching and prototyping, 2-3
slash (/), division operator, 38, 205
sound file formats, 180
Sound library, 180-185
playing sound samples, 181-182
reading audio through micro-
phone, 182-183
sine wave, creating, 184-185
special variables
frameCount, 47
frameRate, 99
height, 37
key, 65, 66-68
keyCode, 67
keyPressed, 64
mouseButton, 58
mousePressed, 55
mouseX and mouseY, 49
pmouseX and pmouseY, 50
width, 37
spiral movement, 113
spreadsheet data files (see CSV
and TSV files)
square brackets ([])
chaining, 175-176
enclosing dictionary keys,
156-157
enclosing list values, 144, 145
Stop button, toolbar, 10
stop() method, 182
str (string) data type, 93, 203
stroke() function, 23, 26
strokeCap() function, 21
strokeJoin() function, 22
strokes (see lines; outlines)
strokeWeight() function, 21, 51, 81
style guidelines, 199-200
SVG files, 94

222 Index

T

tab-separated values file (see CSV
and TSV files)
tabs, in PDE, 137-139
text
drawing, 65-66
fonts, 91-94
storing in variables, 93
text() function, 65-66, 92-93
textAlign() function, 65-66
textFont() function, 91
textSize() function, 65-66, 92-93
this global variable, 214
timed events, 108
timers, 108
toolbar, 9, 10
Tools menu, Color Selector option,
26
transformations
isolating, 81-82
mappings, 68-69
robot using, 83
rotations, 75-79
scaling, 80-81
translations, 73-75, 77-79
translate() function, 73-75, 77-79
translations, 73-75, 77-79
transparency
of color, 27
of images, 89-91
triangle() function, 16
TrueType fonts, 91
TSV files (see CSV and TSV files)
tweening, 104-105
TWO_PI value, 18
type (see data type; key press;
text)
type() function, 203

U

UP value, 67
uppercase, in code, 199

VvV
variables, 35-37

arithmetic with, 37-39 scaling, 95-95

creating, 36 vertex() function, 28

data type of, 36

in for loops, 40 W

glo?(a)l;fgggbles, 48-49, 54-55, WAV files. 180

list of (see lists) website resources (see online
local variables, 207-209 resources)

name of, 36 white space, in code, 199

in objects (see fields) width variable, 37

: Windows
robot using, 45))))
scope of, 207-209 downloadmg and installing Pro
cessing, 7

special variables (see special
variables)
value of, 36
when created, 48
vector shapes, 94-96

showing file extensions, 86
windows in PDE (see Processing

Development Environment)
wrapping shapes around screen,

creating, 95-96 101-103

drawing, 94 X

file formats for, 94

loading, 94 x and y coordinates, 13, 73

robot using, 97

Index 223

About the Authors

Allison Parrish is a computer programmer, poet, educator, and
game designer who lives in Brooklyn. She recently completed a
two-year term as the Digital Creative Writer-in-Residence at
Fordham University and is a long-time adjunct professor at ITP,
where she teaches a course on writing computer programs that
generate poetry.

Casey Reas is a professor in the Department of Design Media
Arts at UCLA and a graduate of the MIT Media Laboratory. His
software has been featured in numerous solo and group exhibi-
tions at museums and galleries in the United States, Europe,
and Asia. With Ben Fry, he cofounded Processing in 2001. He is
the coauthor of Processing: A Programming Handbook for Visual
Designers and Artists (2007) and Form+Code in Design, Art, and
Architecture (2010). His work is archived at www.reas.com.

Ben Fry is principal of Fathom, a design and software consul-
tancy located in Boston. He received his PhD from the Aesthet-
ics + Computation Group at the MIT Media Laboratory, where
his research focused on combining fields such as computer sci-
ence, statistics, graphic design, and data visualization as a
means for understanding information. Ben cofounded Process-
ing with Casey Reas in 2001.

Colophon

The body typeface is Benton Sans designed by Tobias Frere-
Jones and Cyrus Highsmith. The code font is TheSansMono
Condensed Regular by Luc(as) de Groot. The display typeface is
Serifa designed by Adrian Frutiger.

http://www.reas.com

	Copyright
	Table of Contents
	Preface
	How This Book Is Organized
	Who This Book Is For
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Hello
	Sketching and Prototyping
	Flexibility
	Giants
	Family Tree
	Join In

	Chapter 2. Starting to Code
	Python Mode
	Your First Program
	Example 2-1: Draw an Ellipse
	Example 2-2: Make Circles

	Show
	Save and New
	Share
	Examples and Reference

	Chapter 3. Draw
	The Display Window
	Example 3-1: Draw a Window
	Example 3-2: Draw a Point

	Basic Shapes
	Example 3-3: Draw a Line
	Example 3-4: Draw Basic Shapes
	Example 3-5: Draw a Rectangle
	Example 3-6: Draw an Ellipse
	Example 3-7: Draw Part of an Ellipse
	Example 3-8: Draw with Degrees

	Drawing Order
	Example 3-9: Control Your Drawing Order
	Example 3-10: Put It in Reverse

	Shape Properties
	Example 3-11: Set Stroke Weight
	Example 3-12: Set Stroke Caps
	Example 3-13: Set Stroke Joins

	Drawing Modes
	Example 3-14: On the Corner

	Color
	Example 3-15: Paint with Grays
	Example 3-16: Control Fill and Stroke
	Example 3-17: Draw with Color
	Example 3-18: Set Transparency

	Custom Shapes
	Example 3-19: Draw an Arrow
	Example 3-20: Close the Gap
	Example 3-21: Create Some Creatures

	Comments
	Robot 1: Draw

	Chapter 4. Variables
	First Variables
	Example 4-1: Reuse the Same Values
	Example 4-2: Change Values

	Making Variables
	Processing Variables
	Example 4-3: Adjust the Size, See What Follows

	A Little Math
	Example 4-4: Basic Arithmetic

	Repetition
	Example 4-5: Do the Same Thing Over and Over
	Example 4-6: Use a for Loop
	Example 4-7: Flex Your for Loop’s Muscles
	Example 4-8: Fanning Out the Lines
	Example 4-9: Kinking the Lines
	Example 4-10: Embed One for Loop in Another
	Example 4-11: Rows and Columns
	Example 4-12: Pins and Lines
	Example 4-13: Halftone Dots

	Robot 2: Variables

	Chapter 5. Response
	Once and Forever
	Example 5-1: The draw() Function
	Example 5-2: The setup() Function
	Example 5-3: Global Variables

	Follow
	Example 5-4: Track the Mouse
	Example 5-5: The Dot Follows You
	Example 5-6: Draw Continuously
	Example 5-7: Set Thickness on the Fly
	Example 5-8: Easing Does It
	Example 5-9: Smooth Lines with Easing

	Modifying Global Variables
	Click
	Example 5-10: Click the Mouse
	Example 5-11: Detect When Not Clicked
	Example 5-12: Multiple Mouse Buttons

	Location
	Example 5-13: Find the Cursor
	Example 5-14: The Bounds of a Circle
	Example 5-15: The Bounds of a Rectangle

	Type
	Example 5-16: Tap a Key
	Example 5-17: Draw Some Letters
	Example 5-18: Check for Specific Keys
	Example 5-19: Move with Arrow Keys

	Map
	Example 5-20: Map Values to a Range
	Example 5-21: Map with the map() Function

	Robot 3: Response

	Chapter 6. Translate, Rotate, Scale
	Translate
	Example 6-1: Translating Location
	Example 6-2: Multiple Translations

	Rotate
	Example 6-3: Corner Rotation
	Example 6-4: Center Rotation
	Example 6-5: Translation, Then Rotation
	Example 6-6: Rotation, Then Translation
	Example 6-7: An Articulating Arm

	Scale
	Example 6-8: Scaling
	Example 6-9: Keeping Strokes Consistent

	Push and Pop
	Example 6-10: Isolating Transformations

	Robot 4: Translate, Rotate, Scale

	Chapter 7. Media
	Images
	Example 7-1: Load an Image
	Example 7-2: Load More Images
	Example 7-3: Mousing Around with Images
	Example 7-4: Transparency with a GIF
	Example 7-5: Transparency with a PNG

	Fonts
	Example 7-6: Drawing with Fonts
	Example 7-7: Draw Text in a Box
	Example 7-8: Store Text in a String

	Shapes
	Example 7-9: Draw with Shapes
	Example 7-10: Scaling Shapes
	Example 7-11: Creating a New Shape

	Robot 5: Media

	Chapter 8. Motion
	Frames
	Example 8-1: See the Frame Rate
	Example 8-2: Set the Frame Rate

	Speed and Direction
	Example 8-3: Move a Shape
	Example 8-4: Wrap Around
	Example 8-5: Bounce Off the Wall

	Tweening
	Example 8-6: Calculate Tween Positions

	Random
	Example 8-7: Generate Random Values
	Example 8-8: Draw Randomly
	Example 8-9: Move Shapes Randomly

	Timers
	Example 8-10: Time Passes
	Example 8-11: Triggering Timed Events

	Circular
	Example 8-12: Sine Wave Values
	Example 8-13: Sine Wave Movement
	Example 8-14: Circular Motion
	Example 8-15: Spirals

	Robot 6: Motion

	Chapter 9. Functions
	Function Basics
	Example 9-1: Roll the Dice
	Example 9-2: Another Way to Roll

	Make a Function
	Example 9-3: Draw the Owl
	Example 9-4: Two’s Company
	Example 9-5: An Owl Function
	Example 9-6: Increasing the Surplus Population
	Example 9-7: Owls of Different Sizes

	Return Values
	Example 9-8: Return a Value

	Robot 7: Functions

	Chapter 10. Objects
	Fields and Methods
	Define a Class
	Create Objects
	Example 10-1: Make an Object
	Example 10-2: Make Multiple Objects
	Code in Tabs

	Robot 8: Objects

	Chapter 11. Lists
	From Variables to Lists
	Example 11-1: Many Variables
	Example 11-2: Too Many Variables
	Example 11-3: Lists, Not Variables

	List Operations
	Example 11-4: Declare and Append to a List
	Example 11-5: Compact List Initialization
	Example 11-6: Revisiting the First Example

	Repetition and Lists
	Example 11-7: Filling a List in a for Loop
	Example 11-9: Track Mouse Movements

	Lists of Objects
	Example 11-10: Managing Many Objects
	Example 11-11: A New Way to Manage Objects
	Example 11-12: Sequences of Images

	Robot 9: Lists

	Chapter 12. Data and Dictionaries
	Data Summary
	Dictionaries
	Example 12-1: (Keyboard) Keys as (Dictionary) Keys
	Lists of Dictionaries
	Example 12-2: The Planets

	CSV Files
	Example 12-3: Read the Data
	Getting the Right Type
	Example 12-4: Draw the Table
	Example 12-5: 29,740 Cities

	JSON
	Example 12-6: Read a JSON File
	Example 12-7: Visualize Data from a JSON File

	Network Data and APIs
	Example 12-8: Parsing the Weather Data
	Example 12-9: Chaining Square Brackets

	Robot 10: Data

	Chapter 13. Extend
	Sound
	Example 13-1: Play a Sample
	Example 13-2: Listen to a Microphone
	Example 13-3: Create a Sine Wave

	Image and PDF Export
	Example 13-4: Saving Images
	Example 13-5: Draw to a PDF

	Hello, Arduino
	Example 13-6: Read a Sensor
	Example 13-7: Read Data from the Serial Port
	Example 13-8: Visualizing the Data Stream
	Example 13-9: Another Way to Look at the Data

	Appendix A. Coding Tips
	Functions and Parameters
	Color Coding
	Comments
	Uppercase and Lowercase
	Style
	Console
	One Step at a Time

	Appendix B. Data Types
	Appendix C. Order of Operations
	Appendix D. Variable Scope
	Appendix E. Processing, Python, and Java
	Python Versions
	Built-In Function Names
	Colors
	Python Standard Library
	Processing Libraries and Example Code

	Index
	About the Authors

