

How to Make a Robot

Gordon McComb

Maker Media, Inc.

San Francisco

How to Make a Robot
Gordon McComb

Copyright © 2018 Maker Media. All rights reserved.
Printed in the United States of America
Published by Maker Media, Inc., 1700 Montgomery Street, Suite 240, San Francisco, CA 94111

Maker Media books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles
(safaribooksonline.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.
Customers may purchase kits, books, and more directly from us at Maker Shed.

Publisher: Roger Stewart

lllustration and Design: Gordon McComb
Proofreader: Jennifer Meredith

Technical Reviewer: Jon Hapeman

Cover Design: Julie Cohen

March 2018: First Edition

Revision History for the First Edition: 2018-3-15

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker Media, Inc. The Maker Media logo is a trademark of Maker Media, Inc.
How fo Make a Robot and related trade dress are trademarks of Maker Media, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. While the publisher and the author have used good faith efforts to ensure that the information
and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work
is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-680-45469-7 [LSI]

The author thanks OpenClipart, ShareCG, Daz, Turbosquid, FirstCAD, and other curators of open source and commercial art materials used in the
preparation of this book,

Let's Build a Robot!

Here's how to make a real robot that follows your commands!
we'll call it Make:Bot.

Build it from scratch using common electronic parts—
there's a list on Page 50 — plus tools and materials you can
find at local craft and hardware stores.

Make:Bot uses the Arduino programmable microcontroller to
make it smart. The Arduino is inexpensive and easy to use.

Your Make:Bot is really five robots in one, which show five
major functions of robots:

e Tai Chi Bot replicates a set pattern of pre-programed
movements.

e Touch-and-Go Bot uses "whiskers" to navigate its
environment.

e Bat Bot sends out sound waves to avoid obstacles.

e Remote Bot lets you use a TV remote to control it.
e Line Bot follows a line drawn on poster board.

Basic soldering skills are recommended, and you'll want to
brush up on your Arduino programming skills. Otherwise, you
don't need any prior experience to create your own Make:Bot!

Be sure to read through each project before you start. Okay,
time to begin!

Tools You’ll Need

Needle nosed

Hot glue gun pliers
and glue sticks
(high temp)
Wire cutters
Soldering iron
oldering iro! Optional
Utility knife
Small Phillips 1ty knire
screwdriver Solder
Wire strippers
Safety glasses
Ruler

Project O
Learn Robot Motor Basics!

The ability to travel from one place to another is an essential characteristic for many robots. This movement is
often provided by electric motors. Applying voltage to a motor makes it spin, and this moves the robot.

A battery or battery pack provides power to the motor. To change the direction of the motor simply reverse the
+ and - terminals from the battery.

Two important aspects of motor operation are speed and torque.

Speed is the rotational velocity of the motor, typically specified in revolutions
per minute (RPM). Torque is the amount of force the motor exerts.

Turns about 4X faster

The best way to increase
the speed and torque of
amotor is to add more
batteries in series.

Put four batteries in

o four-cell AA holder,
making sure the positive
and negative terminals
are facing the proper
direction. Connect the
motor to the battery
holder.

What happens?

The motor spins about four
times faster because it's
now getting 4YX the voltage.

The motor also has more
torque. You need the extra
torque to move your robot
around!

Alkaline (1.5V NiMH (1.2v

volts per cell) volts per cell)
Alkaline AA batteries produce 1.5 volts per cell. A set
of four batteries wired in series make GV.

Rechargeable AA batteries, such as nickle metal
hydride, produce 1.2 volts per cell, or 4.8V for four.

When using rechargeable batteries, the reduction
in voltage causes the robot motors to run slightly
slower.

The Make:Bot uses a special type of motor, a servo motorintended for radio control (RC) models
and toys. Unlike traditional RC servo motors, which are limited to turning only through a 90° (or
s0) arc, servos for robotics turn continuously in either direction.

Color-coded
wires

Motor case

Terminal
connector

+
signal
Common servo

wiring color coding

+
signal

Wheel
shaft

The operation of the motor is set
by sending a series of pulses of
varying durations, from I to 2

milliseconds.

The control signal can be easily
created using an Arduino. See
Project 4.

Never EVER reverse the polarity
of the battery connections to the
servo, or damage may result!

Core benefit of RC motors: They can be
controlled directly from the Arduino, without
the need for additional power circuitry.

It's also easy to attach wheels to RC servos,
and to mount them to your robot.

Project 1

Setting Up the Arduino Brain

An Arduino microcontroller operates all the functions of the Make:Bot. Software running inside the Arduino determines what the
robot is supposed to do. Input/output (or IO) pins on the Arduino provide connections to your robot's hardware. Separate power
pins allow you to provide electrical juice to the components you add.

N
The Arduino is available in numerous models from different
companies. I'm using an Arduino UNO. See Page 50 for a
complete list of Make:Bot parts.

Placement of components on the Arduino can vary between
models. Your board may look a little different than shown,
but that's okay as long as it's UNO compatible.

The USB jack can differ among boards. Be sure to get the
right kind of cable for your Arduino and computer!

The Arduino is programmed from your computer using a USB coble.
The cable also provides power to the Arduino when not using
batteries. Programming software for the Arduino is available for
Windows, Macintosh, and Linux. Get a copy from

www.arduino.cc

and follow the directions provided for downloading and
L installing.

Before building your robot, connect and test your Arduino microcontroller, and get used to how it works.

If you haven't done so already, go to www.arduino.cc
and download the Arduino software installer for your
computer operating system.
TIP: Unless otherwise instructed, install the
software before plugging in the Arduino.

Install the software and follow any prompts that are
displayed. You may need to also install one or more
drivers.

Use the USB cable to plug your Arduino
into your computer. You should see the
Arduino's On light turn on.

Open the Arduino software and type in the sketch you
see below. Be sure to type it EXACTLY!

void setup() {
pinMode (LED_BUILTIN, OUTPUT);

}

void loop() { g
digitallirite(LED_BUILTIN, HIGH): Before you can program your P.\rdumo, you must first
delay(250); download and install the Arduino desktop IDE software (IDE
digitalWrite(LED_BUILTIN, LOW); stands for Integrated Development Environment).
delay(250); .

} You use the IDE to create your robot's control programs,

colled sketches.

OOV

click the save button and name the sketch MyFirstsketch. Common IDE icons you should know:

Click the Verify button to check your sketch for errors. If an error is . Save
reported, double-check your typing.

Click the Upload button in the IDE program. This "compiles," then . Verlfy
uploads your new sketch into the Arduino's memory.

During upload, verify everything is work-
ing by watching the TX and RX lights flagh.

When the upload is complete, you should see the L light
rapidly flash on and off.

Uh oh! I1f you get an error instead of a successful upload, you'll
need to determine the cause. Check these for starters:

® USB cable plugged in

e Correct port selected

e Correct board selected

When using the IDE, be sure the correct communications port

and Arduino board model are selected before you upload your
sketch. Otherwise an error may oceur.

10

Project 2

Make a Motorized Robot Base

The body of the Make:Bot uses commonly available 1/4" thick foam board. Cut the board

with a utility knife and a metal or wood straight edge.

Everything is pieced together using hot melt glue, double-sided tape, and Velero (or

other hook-and-loop fastener).

o \

Use a utility or hobby knife to cut the /4" foom
board to size.

TIP: Use a scrap piece of cardboard as a cutting
mat.

CUT WITH CARE!!

1/4” foam board 3 3/4”

— 412 5

f

1/4” foam board 11/4”

V&

m°“

4——— 3 3/4 ————

o

9 Assemble top and bottom bases

For best strength I recommend
only high-temperature hot melt
glue and glue gun.

@ Attoch tail skid

Wooden hole plug with
rounded top from
craft store

Diameter: 3/4" to 1"
Height: 3/8" to1/2"

Apply a bead of hot glue to the
smaller foam board. Sandwich the
pieces together so the edges are
flush.

Repeat for the second set of
pieces.

When gluing, wear eye protection,
and remember that the glue is
very HOT!

Using an assembled base piece,
apply S-shaped bead of glue to
the center of the board. Position
the wooden hole plug and press
for five seconds.

Do this for only one set of pieces.

12

upper base

lower base front

top side
rear

You should now have two bases:
lower base with the wood plug,
and upper base with nothing
onit.

The Make:Bot is composed of two bases, a
lower base (motors and batteries), and an
upper base (Arduino and other electronics).

Everything is held together using hot melt glue
or double-sided tape for the permanent stuff.
Velero tabs are used for the things that may
need to be removed.

When gluing the servos make sure:

e The mounting flanges are
flush with the front and
sides of the base

e The white shaft is
closest to the rear of the base
(nearest to the wooden plug)

e
Orient the RC servos on the top
side of the lower base.

Apply a bead of hot glue to the

~

underside of each servo. Carefully

press the servos into place.
-

J

13

4xAA battery
holder

6,

9V battery

4

peel off backs of a 1" Velero tab. Place the tab on the underside
of the AA battery holder.

[Attach the battery snap with barrel
connector (power for the Arduino) to the
9V battery, wires pointing as shown.
Firmly press the battery holder onto the lower base so its back
edge is flush with the rear of the base. The wires should stick
out toward the rear of the bot.

peel off backs of 1" Velero tab. Place tob
evenly between servos. Press 9V battery
konto the Velero.

P
Peel off the backs of two 1" Velero tabs. stick the
tabs to the tops of the servos.

Carefully position the upper base over the
servos, so that its edges are even with the lower
base. Press down firmly to seat the adhesive of
kthe Velero tabs.

. Solderless
@ Arduino breadboard

The solderless breadboard comes with its own double-
sided tape. Peel off the backing of the tape. Apply the
breadboard to the top of the upper deck.

The breadboard should be flush with the front edge of
the upper deck.

- _J

Apply a Velero tab to the underside of the Arduino. Stick
the Arduino to the upper base so its edge is about 1/8"
from both the breadboard and the right side of the
upper base..

(The breadboard comes with two removable
power rails. You'll only use one rail. Slide off the
rail shown, and put it away for safekeeping.

Remove

Your Make:Bot is almost complete. Congratulations!

To make it fully functional, you still need to wire up
the batteries, servos, and Arduino.

That comes next, but this is a good time to review
your work. Check for any lose parts, and fix
problems now!

For each servo, place the rubber tire over the
wheel. It's a tight fit.

Using the screw provided, mount the wheel and tire
to the servo. The wheel and servo shaft are splined
for a positive fit. Don't overtighten the screw!

-
At this point your Make:Bot will look like this:

16

Project 3

Wire Your Robot's Motors and Batteries

strip insulation
from 5" jumper

Cut into 1/2" lengths ...

Strip the insulation from a 5" solid-wire jumper. Cut into 1/2" lengths to make
8 (eight) short jumpers.

Be sure to observe the correct
polarity of all connections!
Otherwise your servos may be
irreversibly damaged!

Plug the servo
and AA battery
connectors into

the breadboard.

Double-check
your work when
you're through!

Left servo Rightservo AA battery (

Wire color coding for
power and servos is
SUPER-CRITICAL!

The ground (black) wire
is always on the right
side of the connector.

Use pliers to push the short

~N

jumpers into the servo and AA
battery holder connectors. B

Connect four male-to-male jumpers.

Color coding suggestions:

Left Servo: White (Arduino Digital Pin 10 to breadboard A2)
Right Servo: Yellow (Arduino Digital Pin 9 to breadboard A27)
Gnd (Ground): Black (Arduino GND to breadboard negative rail)
Servo Power Jumper: Gray (breadboard A8-All or A§-A13)

Use a jumper to connect the AA battery power for the
servos. Disconnect when not using servos.

Servo Power
Jumper: ON

Servo Power
Jumper: OFF

4,

18

Power the servos by plugging in
the YxAA servo power (observe
correct polarity). Plug 9V battery
into the Arduino power jack.

unplug the 4
not using Y

Servo Left

Make:Bot uses two

battery sources: a 9V
battery that runs the
Arduino, and YxAA ‘ |

batteries (4.8 or & volts)
I LI |

for the servos.
[|
2 B8

This schematic diagram
shows how things are
wired up.

D11l e
D1 o
DO o

D12 frmm
D10

o4
[=]

D13 p—

= @
o o0 o aao
Digital Input/Output

Arduino GND

Project 4

Program Your Robot to Repeat Steps

Command your Make:Bot to repeat basic movements —the first step in creating an autonomous robot.

ServoTest
#include <Servo.h>

Servo servoRight;
Servo servolLeft;

void setup()
{
servoRight.attach(9);
servoLeft.attach(10);
}

void loop()

{
servoRight.write(0);
servoLeft.write(180);
delay(2000);

servoRight.write(180);
servoLeft.write(0);
delay(2000);

servoRight.write(180);
servoLeft.write(180);
delay(2000);

servoRight.write(0);
servoLeft.write(0);
delay(2000);

// Fwd

// Rev

// Right

// Left

Arduino programming is based on objects. Objects extend the functionality of
the Arduino. This code creates two Servo objects and gives them unique names.

All Arduino sketches have a setup() function. Code here is run once, when the
Arduino is first powered on.

The code tells the Arduino you have two servos, connected to pins 9 and 10.

All sketches have a. loop() function. Code repeats while the Arduino is powered.
Servos are controlled by specifying a direction (in degrees), either O or 180. By
alternating the directions the robot moves forward and backward and turns.
[l is o.comment, o.note just for you. The Arduino ignores it.

delay (2000) pauses sketch execution for 2000 milliseconds (2 seconds).

The Arduino programming language is case sensitive. An error will result if you
use the wrong capitalization.

Try this sketch yourself!
1. Type the sketch in the Arduino IDE, and hame it ServoTest.
2. Move the servo power jumper to the OFF position
3. Upload the sketch to your Arduino, then move the servo power to the ON position.
4. Hold the robot in your hands and watch the servos change direction!

With a bit more code, you can extend the functionality of the basic ServoTest sketch. ServoTaiChi reorganizes some of the code and
makes the sketch much more flexible! The sketch is available on the Make:Bot Support Site; see Page 50 for details.

ServoTaiChi

#include <Servo.h>

Servo servoRight;
Servo servolLeft;

// Define right servo
// Define left servo

void setup() {

}

void loop() {

}

// Motion Routines: forward, reverse, turn, stop
void goForward() {

3

servoRight.attach(9);
servoLeft.attach(10);

// Right servo pin 9
// Left servo pin 10

A function call references a
user-defined function, and

goForward();

delay(2000); can be used multiple times.
goReverse();

delay(2000);

goRight(); Statements are commands
delay(2000); that tell the Arduino what
goLeft(); to do. There's usually one
delay(2000); statement per line
allStop(); P :

delay (2000);

ServoTaiChi, continued...

void goReverse() {
servoRight.write(180);
servoLeft.write(0);

}

void goRight() {
servoRight.write(180);
servoLeft.write(180);

}

void goLeft() {
servoRight.write(0);
servoLeft.write(0);

}

void allStop() {
servoRight.write(90);
servoLeft.write(90);

}

Many statements
con be contained in a
user-defined function.

servoLeft.write(180) terminator.

servoRight.write(0); «The; semi-colon character is the sto.tement]

The { and } characters form a block, part of Arduino's coding syntax.
Blocks contain multiple statements, and are treated as a unit.

20

(1. Upload sketch then remove USB cable
from Arduino.

2. Connect 9V Arduino power and move
servo power jumper to the ON position.

3. Depress Reset button, place your
Make:Bot on floor (wood or linoleum is best),

kand release Reset button.

J

Methods are a special type of statement
that uses an object, such as a servo.
Methods are composed of the object name,
a period, and the action to perform.

When done experimenting, be
sure to remove the power to
the Arduino. Move the servo
power jumper to the OFF
position.

If your robot moves slowly when it should
stop, one or both servos may need to be
calibrated. See Frequently Asked Questions
on Page 47 for more info.

Project 5

Build a Touch-and-Go Bumper Bot

By adding just two switches, your Make:Bot can explore its environment. Should the robot bump something, the
switches will detect the collision. The robot stops, backs up, turns around, and heads in another direction!

1

Once positioned, mark
with a pencilas a
quide when gluing.

~

Position two snap-action switches on the
underside of the lower base, facing the front.

Tilt the switches so that the corners are flush
with the front and side edges of the base.

The ends of the metal prongs should be roughly
in front of the wheels.

-

The Touch-and-Go feature
relies on snap-action leaf
switches. The leaf is a
metal prong that acts like a
cat's whisker.

_J

.
p
9 Normally-open (NO)

Left Right

Common

Jumpers plug into
Arduino digital pins
2, 3,and 4.

Select three 6" male-to-female jumpers, colors shown
at left. For each wire:

1. Cut off just the female end.
2. Remove 1/4" of insulation from the cut end and twist.

3. Use a soldering iron to solder the bare wire ends to
the switch NO (normally open) and Common terminals.

Y. Bridge the two Common terminals of the
switches with 3" solid wire jumper.

5. Route wires under right side of robot behind wheel, and
plug into Arduino. Keep wires in place with electrical tape.

N
Glue the switches to the
underside of the bottom
base.

21

To understand how the Make:Bot detects collisions, it's
important to know a little about switches.

The Arduino is a small computer that can connect to the
outside world. The connection is made with input/output (or I/0)
pins. Switches are an example of an input—data that comes
into the Arduino.

Switches are digital inputs, meaning that they have only two
states: LOW (or O) and HIGH (or).

LOow HIGH

Circuit is closed, the
light is on.

Circuit is open, the
light is of off.

On the Arduino UNO the digital input/output pins are along
the top of the board. They are numbered O to 13. Pins O and 1
are used for communications between the Arduino and PC, so
avoid using these.

The Arduino
UNO also has
six analog I/0
pins along the
bottom edge.
You'll learn
more about
these in Project
Q.

—o0" o0—

Switches are simple mechanical devices, consisting of a
button or lever. Depressing this button closes the contacts
inside the switch, which completes a circuit.

—0—0—

22

Check out Make:Bot's newfangled bumper switches with the SwitchTest sketch. The Arduino's builtin LED lights if either switch
is depressed. The Arduino's integrated pullup resistors make the switch HIGH when it's not depressed; LOW when it is!

SwitchTest

void setup() {
pinMode(LED_BUILTIN, OUTPUT);

[Set pin 13 (builtin LED) to output.]

pinMode(2, INPUT); // Right switch

pinMode(3, INPUT); // Left switch

pinMode(4, OUTPUT); // Ground for switches Pullup

Set switch pins (2, 3) as inputs. Set pin Y as an output so it ;:asels;o&e

can be used as a convenient ground connection. ,-,,p{,)t from
"floating"

digitalWrite(2, HIGH); vvh?rrthe

digitalWrite(3, HIGH); switch is
open

[Enable Arduino's internal pullup resistors for switch pins. j

digitalWrite(4, LOW); // Set to 0 volts
}

[Set pin 4 LOW (O volts) to use as ground connection j

void loop() {
if ((digitalRead(2) == LOW) || (digitalRead(3) == LOW))
digitalWrite(LED_BUILTIN, HIGH);
else
digitalWrite(LED_BUILTIN, LOW);
delay (100);

Test if pin 2 OR pin 3 has gone LOW (O volts). If so, light up
the builtin LED on pin 13.

Output is HIGH
when switch is not
depressed

Output is LOW
when switch is
depressed

23

BumperBot wanders the room, and goes into a new direction if it hits things. After uploading
the sketch, set the robot on the floor, and depress either switch to start movement.

BumperBot
#include <Servo.h>

Servo servoRight;
Servo servolLeft;

volatile int pbLeft = LOW; // Flag for left switch
volatile int pbRight = LOW; // Flag for right switch
boolean started = false; // True after first start

void setup() {
// Set pin modes for switches
pinMode(2, INPUT);
pinMode(3, INPUT);
pinMode(4, OUTPUT);

// Set internal pull up resistors for switches

digitalWrite(2, HIGH); // Right switch
digitalWrite(3, HIGH); // Left switch
digitalWrite(4, LOW); // Pin 4 as ground
servoRight.attach(9); // Right servo to pin 9
servoLeft.attach(10); // Left servo to pin 10

// Set up interrupts
attachInterrupt(@, hitRight, FALLING);
attachInterrupt(1, hitLeft, FALLING);

started = true; // Okay to start moving

24

Bot
Downlood the Bumpercot |
cketch from the support Site.

see Page 50-

This #include statement tells the Arduino you want to work with servos.

Variables are used to store information that changes when the
sketch executes. The pbLeft/pbRight variables monitor the right and
left "bumper" switches.

The left and right switches connect to pins 2, 3, and Y. Pins 2 and 3 are
defined as inputs from the switches. Pin Y is defined as an output. It
provides a O volt (GND, or ground) connection to the switch.

Input pins need a default digital state. The Arduino has built-in pullup
resistors that hold the pin HIGH until the switch is activated.

Make:Bot uses the Arduino's hardware interrupt feature, which allows
the Arduino to immediately sense when a switch is hit.

We don't want the Make:Bot to do anything until all the setup() code has
been run. The started variable is set to true when everything is ready.

BumperBot, continued...

void loop() {

if (pbLeft == HIGH) {
goReverse();
delay(500);
goRight();
delay(1000);
goForward();
pbLeft = LOW;

}

if (pbRight == HIGH) {
goReverse();
delay(500);
goLeft();
delay(1000);
goForward();
pbRight = LOW;

}

// If left bumper hit
// Reverse for 1/2 sec

// Spin 1 sec
// Go forward again

// Reset flag shows "hit"

// If right bumper hit

}

// Interrupt handlers
void hitLeft() {
if (started)
pbLeft = HIGH;

// Only if robot has started

}
void hitRight() {
if (started)
pbRight = HIGH;

// Same as left switch handler

}

// Add Motion Routines from ServoTaiChi here

When the left bumper switch has been activated, the
Make:Bot steers around the obstacle by backing up for
500 milliseconds (ms), spins right for 1000 ms, and heads
forward again.

The same as above, but this happens when the right bumper
switch is activated.

The Arduino is immediately interrupted when either switch
is activated. The code simply sets the pbLeft or pbRight
varioble to HIGH, meaning "the switch has been struck!" This
variable is subsequently checked inside the loop() function.

shown here. Grab them from the ServoTaicChi sketch on Page 20.

{ To save space the motion routines (goForward, etc.) are not }

15

Project 6
Build an Ultrasonic "Bat Bot™"!

An inexpensive ultrasonic sensor allows your Make:Bot to actually "see" its environment by using a series of very high
frequency chirps, just like a bat! Unless you're a bat yourself you can't hear the chirping sounds!

()
Ultrasonic sensors measure
the time delay between a short
high-frequency "ping" and its
return echo.

Echo times are measured in
microseconds (us, millionth of
a second).

Bat Bot uses an ultrasonic For a close object, the echo
sensor that is able to detect takes less time to come back.
_objects using sound waves.

_J
r—ﬂ N
Plug the ultrasonic sensor

into the front row of the
breadboard.

The left most pin (marked
VCC) goes into socket JI2.

20

Test the ultrasonic sensor to moke sure it's working. The BatBotTest sketch reads the
sensor and displays the result in the Arduino's Serial Monitor window (see Page 28).

BatBotTest

#define Trigger 7
#define Echo 8

void setup(){
Serial.begin(9600);

pinMode(Echo, INPUT);
pinMode(Trigger, OUTPUT);
}

void loop(){
digitalWrite(Trigger, LOW);
delayMicroseconds(2);
digitalWrite(Trigger, HIGH);
delayMicroseconds(10);
digitalWrite(Trigger, LOW);
int distance = pulseIn(Echo, HIGH);

distance = distance / 74 / 2;
Serial.println(distance);

delay(100);

Set up connections to Arduino: Trig
(trigger) to pin 7, Echo to Pin §

Establish Serial Monitor communications

Define "direction" of pins: Echo (pin 8) is an
Input, Trigger (pin 7) is an Output

Reset Trigger by making pin LOW (O volts)
for 2 us (microseconds).

Send ping by making pin HIGH (5 volts) for
10 ps.

Measure time until Echo pin changes to HIGH
(echo is received)

Convert echo time to distance, in inches

Wait 100 ms before doing it again

sound travels 1" in about 74 microseconds. Echo times
are always halved to calculate the round trip distance.
Example: An echo that takes 750 s is roughly 5" away.

5=750/74/2 (resultis rounded off)

(Add wiring to connect the sensor to the

Arduino. 9
Sensor Arduino

vCcC 5v

Echo Pin 8

Trig Pin7

GND (breadboard ground)

Existing wiring
shown in gray

27

BatBotTest uses the Arduino's Serial Monitor to display the distance results. To
open the Serial Monitor:

1. Upload the sketch.
2. After uploading is complete, click on the Serial Monitor icon.
3. Verify these settings:

Autoscroll: checked
Line ending: No Line ending
Baud: 9600 baud

Place your hand in front of the sensor and move it back and forth. watch the
values in the Serial Monitor change according to the distance.

Note: Keep the USB cable
connected between
your computer and the
Arduino.

Now let's combine moving the Make:Bot while
looking for objects with the ultrasonic sensor!

BatBotWander (partial only)

#include <Servo.h>
Servo servoRight;
Servo servolLeft;
#define Trigger 7
#define Echo 8

void setup() {
servoRight.attach(9);
servoLeft.attach(10);
pinMode(Echo, INPUT);
pinMode(Trigger, OUTPUT);
randomSeed(analogRead(3));
delay(200);
goForward();

}

void loop() {
int distance = doPing();
if (distance <= 2)

goReverse();

delay(500);

if (random(2) == 0)
goRight();

else
goLeft();

Download the bo.tbotWonder

cketch from the Su_pport site.
gee Page 50 more information.

28

Project 7

Build a Remote Controlled Robot

Command your robot from the comfort of your easy chair! Remote Bot uses an ordinary TV
remote control and an inexpensive infrared sensor.

Clip sensor leads

to length. Use small
pliers to bend the
leads. The rounded
"bulb" of the sensor
should face away
from the end of the
bent leads.

Carefully
bend
A at right angle

~

The Remote Bot uses a
ready-to-go sensor
that plugs directly
into the Arduino.
The sensoris
sengitive to
infrared
light from
aTv
remote.

1/ "

v 2,
----------------- 'A' Bend

h
e with the bulb of the sensor facing up,
3/8" insert the leads into Analog pins O, |,
and 2. DO NOT plug in backwards!

I/0 pins directly provide power and
ground to the sensor. This is okay
because the sensor consumes very low
current, and doesn't need to be plugged
into the 5V and GND power pins.

29

30

p—
Program a universal remote control to
operate o Sony TV.

You need to look up SONY TV in the instruction

manual for the remote, and enter the matching

code.

Try different Sony TV codes until you find one
that works with the IRTest sketch.

Add the IRremote third-party

p—
0 code library. The library comes

with all the Remote Bot sketches
provided on the Make:Bot Support
Site.

1. Download the IRTest sketch and un-
zip it into your Arduino sketch folder.

2. In the Arduino IDE, choose
Sketch—Include Library—Add .zIP
Library.

3. Navigate to the folder that
contains the IRTest sketch you placed
in Step 1.

Y. Select the IRremote.zip file, click OK
to add it to your IDE.

5. Exit the IDE and restart it.

~

Compile and upload the

pu—
6 IRTest sketch to your

Arduino.

Open the Serial Monitor window,
and make sure the settings are the
same as on Page 28.

Verify the actions of the remote by
pressing the number buttons.

With the infrared sensor installed and tested it's time to program your Remote Bot. Use the number buttons on the remote control to
drive your robot around the room. If the bot hits an obstacle, it'll automatically back up and steer in a new direction!

RemoteBot (portions only shown, based on BumperBot)

#include <IRremote.h>

int RECV_PIN = AOQ;
IRrecv irrecv(RECV_PIN);
decode_results results;

// Analog pin 0

Adds the IRremote library to your Arduino IDE.
(Remember, you MUST install this library before you can
use this sketch; see Page 30).

pinMode (A1, OUTPUT);
pinMode (A2, OUTPUT);
digitalWrite(A1, LOW);
digitalWrite(A2, HIGH);

irrecv.enableIRIn();

// IR power, ground pins

// IR ground; analog pin 1
// IR power; analog pin 2

// Start the receiver

[Turns pins Al and A2 into power and ground for use by the

infrared sensor, and then starts the IRremote process.

void loop() {
if (pbLeft == HIGH) {
goReverse();
delay(500);

"if (pbRight == HIGH) {
goReverse();
delay(500);

// If left bumper hit

// If right bumper hit

(Continuously loop: react to left or right switch.

RemoteBot, continued...

if (irrecv.decode(&results)) {
switch (results.value) {
case 0x10:
Serial.println("1");
turnLeftFwd();
break;

// Turn left forward

irrecv.resume();
delay(2);

// Receive the next value

Detects pressing buttons 1 thru 9 on the remote, and
performs the associated action (e.q. left forward turn for
button "1"). Then resets the IRremote process and waits
2 ms before repeating again.

void goForward() {
servoRight.write(0);
servoLeft.write(180);

}

void goReverse() {
servoRight.write(180);
servoLeft.write(0);

}

void goSpinRight() {
servoRight.write(180);

pownlood the pemotepot .
cketch from the support site.

see Page 50.

Motion routines for steering the robot. RemoteBot uses
additional user-defined functions besides the ones in the
BumperBot sketch.

31

Project 8

Make a Robot That Follows a Line

With just a pair of inexpensive sensors that detect reflected infrared light, your Make:Bot
can dutifully follow a black line you've made on poster board—or white butcher paper, a

kitchen floor, or any other white surface!

1,

Keep your fingers away from the
A knife while you cut. Use a wooden
or steel ruler to hold the small
foam board in place!

1/4" foam board

- Y —

3/8” 9

Y

Use a utility knife to cut two IR sensor pads
to 3/8" by 3/4". Exact size isn't critical,

but the pads need to fit between the two
switches on the underside of the Make:Bot.

Mark centers and align

32

~

Two
miniature
reflective
light sensors
allow the
Make:Bot

to follow a
black line on
white poster
board.

Glue the two pads
together to make
a stack.

Then glue the set
of pads to the
underside of the
lower deck.

The pads must be
centered on the
base and almost
flush with the
front edge.

384

with pliers
break off a
set of 3-pin
straight
headers. The headers are
included with the sensor.

Make two sets of 3-pin headers T Y

(one for each sensor).

5

Front view

Orient the sensor so that the emitter/receiver optics
are face up. This is the bottom of the sensor.

Poke the header pins into the three holes so that the
short side of the pins stick out the sensor bottom.

Solder the pin headers into place.

After soldering, use a magnifying glass to inspect
your work. Make sure the solder joints are complete,
and that the three terminals don't "bridge" into one
another with blobs of excess solder!

Plug six male-female jumpers
into the pin headers using the
colors shown.

Leave the other ends of the
Jjumpers disconnected for now.

33

3y

Connect the six male-to-female jumpers from the

sensors to the breadboard. 6

6" male-
to-female
Center the sensors Jumpers
over the mark on pads
| Cuta piece of double-sided tape to
match the IR sensor pads. Stick the
tape to the pads, then press the
sensors onto the tape.
Position the sensors so that the et -
connectors are flush against the Xisting wiring
shown in gra " .
front of the robot. el 4" solid
strand
Use the connectors as a handle while ICIPES
you align them over the tape.
Eront view The sensors should be 1/8"-1/4" from
) the poster board. Tweak as needed.

Test the two infrared sensors using the LineSensorsTest sketch. Upload the sketch as usual, and then open the Arduino Serial Monitor
window. Wave your hand directly in front of the sensors. The readings should change. Expected values are 0-1023.

LineSensorsTest

#define lineLeft A4
#define lineRight A5
int irReflectL = 0;
int irReflectR = 0;

Sets up variables (temporary storage for data) for use
elsewhere in the sketch.

#define is for coding convenience. The names represent
the I/0 pins connected to the reflective sensors.

void setup() {

Serial begin (9600); Ver‘ify. that ‘Fhe infrar.ed sensor wiring looks like this. Wrap
} the wires with electrical tape to bundle them together and
(- . tuck them between the ultrasonic sensor elements.
Prepares the Serial Monitor so you can see values.)
void loop() { TestLineSensors, continued...
irReflectL = analogRead(lineLeft); Serial.print ("Left:");
irReflectR = analogRead(lineRight); Serial.print ("\t"); // Makes a tab space
- - - N Serial.print (irReflectL); // Inserts value for left
The instantaneous value of the right and left sensors are Serial.print ("\t");
read and stored in variables. Serial.print ("Right:"); _
Serial.println (irReflectR); // Inserts value for right
The values that are captured range from O to 1023. delay(100); /7 and starts a new line
These values represent an analog (continuously variable) }
voltage, from O to 5 volts. The sensor values are printed in the Serial Monitor
A value of 1023 means the sensor detects pure black (no window. To see the results, upload the sketch and open
. light reflected); O means white, lots of light reflected. the Serial Monitor (see Page 28).
J

35

Make a line-following course using a 22" by 28" white poster board and 3/4" black electrical tape. High quality tape works best—
the cheap stuff can wrinkle and "“lift up" over time. You can also use white craft paper, even an all-white linoleum floor!

Use a pencil to lightly mark a border no less than 3" from the edge of the poster board. Start anywhere and apply the tape.
Firmly press the tape into place as you go. Don't overstretch. Erase the pencil markings when done.

Keep minimum 3" margin
- — — e

| 3/4" black electrical tape

L T/ - - — — 4
22" x 28" poster board

AVOID;

Very tight turns

Right angles

Intersections

TRy THESE IDEAS:

® Moke several track courses with different
shapes. Use only one side of the poster.

e Race with a friend who has built her own
Moke:Bot!

® Remove the six jJumper wires to the line
sensors when using the ultrasonic sensor.

WHEN THINGS 66 WRONG:

e If your bot "jumps the track" too much, try
another course with simpler turns. Be sure the
sensors are clean and properly aligned.

® Keep the sensor-to-poster distance between
about 1/8" and 1/4".

e Trya lower threshold value in the LineFollow
sketch if the robot can't stay on the line.

e Electrical tape can lift with age and humidity.
Press it back down, or replace.

36

With the race course made, it's time to follow some lines! Upload the LineFollow sketch. Press the Arduino's Reset button
while you place the bot over the black line. Release the button and go, baby, go!

LineFollow (partial) LineFollow, continued...
- e : . X A
int thresh = 500; A series of conditional if tests compare the values of the
The thresh variable defines a threshold for determining ?ensors = fietermlf‘ne '_f I”c]he rch:t lshstro.dddllng the black
whether the reflective sensors are over a line. You can ine or veering to the right or left. The code
experiment with this value to see what works best. Try a irReflectL >= thresh & irReflectR >= thresh
lower number if your bots turns around o lot.
compares the sensors to the threshold value. If both
VO@degopiz { JogRead(LineLeft) are greater than the threshold, the sensors "see" black,
1rreriec = analogkrea ilneLe ; . o q
irReflectR = analogRead(lineRight): which means the robot is over the line.
The instantaneous values of the two sensors are O,ﬂ;ir 'fltiits diﬁe;mme llr the robot is vc:grmg e tEe
captured every loop through the sketch. right or left, so that small course corrections may be
mode.
& J
if (irReflectL >= thresh && irReflectR >= thresh) { void line_forward() {
line_forward(); // on line servoRight.write(0);
3 servolLeft.write(180);
if (irReflectL >= thresh && irReflectR <= thresh) { 3}
line_slipLeft(); // veering off right void line_slipRight() {
delay(4); servoRight.write(90);
3} servolLeft.write(180);
if (irReflectL <= thresh && irReflectR >= thresh) { }
line_slipRight(); // veering off left void line_slipLeft() {
delay(4); servoRight.write(0);
3} servoLeft.write(90);
if (irReflectL < thresh && irReflectR < thresh) { 3}
line_spinRight(); // try to re-acquire line if lost
delay(20);
) 3 [uger—deﬁned functions provide steering for the robot.]

Project 9

-

38

Learn About Digital and Analog Signals

Robots are all about the sensors connected to
them. wWithout sensors, your creation is deaf and
blind. Sensors attach to the Arduino using I/0
pins and communicate with it using digital or
analog signals.

The type of signal is important: it dictates which
I/0 pins on the Arduino you can use. Digital
signals connect to any I/0 pin; analog signals can
only connect to the pins marked Analog In.

Analog signals are
continuously variable,
from O to 5 volts.
Inside the Arduino
these voltages

are translated to
numbers ranging
from O to1023.

When applying a signal
to the Arduino Uno, be
sure the signal does not
exceed 5 volts!

Digital signals have only
two states:

O Volts = LOW, or O
5 volts = HIGH, or 1

Use one of the bumper switches connected to the Make:Bot to
demonstrate reading a digital signal.
DigitalTest

#define SWITCH 3
int swValue;

// Switch to pin 3 (left)
// Variable holds value

void setup() {
pinMode (SWITCH, INPUT);
pinMode(4, OUTPUT);
digitalWrite(SWITCH, HIGH);
Serial.begin (9600);

}

// Left switch input

// Ground for switches
// Set internal pullup
// Start Serial Monitor

void loop() {
swValue = digitalRead(SWITCH);
Serial.println (swValue);
delay(250);

}

// Read switch value
// Display value
// Wait 1/4 sec

Open the Serial Monitor (see Page 28) and press the left
bumper switch. Observe the values:

Switch State Value
Open 1 (HIGH)
Closed 0 (Low)

The switch is 1 (HIGH) when not activated because it is
connected to a pullup resistor inside the Arduino. Closing

(WMAT TO SEE)

kthe switch connects it to ground, so the signal goes O (LOW).

Use one of the line following sensors connected to the Make:Bot
to demonstrate reading an analog signal.

AnalogTest

#define SENSOR A5
int sValue = 0;

// Right line analog pin A5
// Variable holds value

void setup() {
Serial.begin (9600); // Start Serial Monitor

}

void loop() {
sValue = analogRead(SENSOR);
Serial.println (sValue);
delay(250);

// Read sensor value
// Display value

// Wait 1/4 second

}

(WHAT To See 1

Open the Serial Monitor and wave your hand over the line
sensors. Values range from O to1023.

Value Voltage
0 0
1-1022 O0.1to 4.9
1023 5

Because of the way the sensors are constructed, higher
| values = less light reflecting into the sensor.

39

Project 10

Add Blinky Lig

40

hts to Your Make:Bot!

Lights are an easy way for your Make:Bot to communicate with you. Lights are cheap and easy to add: just a light emitting
diode (LED) and a resistor. This project shows how to add a single LED that glows or blinks in two colors!

Top View

Anode

O Side View

Cathode

Identify the cathode
lead of the LED. It's on
the flattened side, and
is shorter.

Important! When
soldering apply

heat to the LED and
resistor for 3 seconds
or less. Otherwise
you could damage the
components.

Clip the cathode lead
of the LED to about
1/4". (Err on the side of
making it longer, rather
than shorter.)

Clip one end of the
current-limiting
resistor to 3/8".

Cut the bottom leads of the LED

ond resistor to 3/8"

Insert into Arduino pins 1l and 12.
The resistor end plugs into pin 1.

. . Symbol for one-color LED
LEDs are a kind of semi-

conductor made to emit light.

Most LEDs are a single color.
The Make:Bot's LED is special:
it produces two colors, red or
green.

The color you see is determined
by the +/- polarity of the
LED's power leads, and can be

controlled by the Arduino.
Symbol for bi-color LED

LEDs are used with a resistor,
which limits current flowing
through the semiconductor.

Resistors are color coded using
bands. The bands indicate the
omount of resistance, in ohms,
provided by the resistor.

Symbol for resistor A common resistor value for
use with LEDs is 330 ohms,
obbreviated as 330Q.

NEVER use an LED without
o resistor to limit current.
Otherwise the LED will burn out
in seconds!

ColorCodes

4l

BlinkyTest flashes the LED connected to pins 11 and 12. Because 5V
power is applied to the LED cathode (pin 11), it blinks green.

BlinkyTest

#define LED_GREEN 11
#define LED_RED 12

The Arduino has a built-in LED which is permanently
connected to pin 13. You can control LEDs on any other
pin by specifying the pin number. The #define statements
associate the external LED with pins 11 and 12.

void setup() {
pinMode (LED_RED, OUTPUT);
pinMode (LED_GREEN, OUTPUT);
digitalWrite(LED_RED, LOW);
digitalWrite(LED_GREEN, LOW);
}

Pins Il and 12 are made outputs, and set to LOW (O volts).
During the sketch pin 12 (LED_RED) doesn't change, and
simply serves as a ground (O volt) connection.

void loop() {
digitalWrite(LED_GREEN, HIGH);
delay(250);
digitalWrite(LED_GREEN, LOW);
delay(250);

}

The loop() function repeatedly toggles the LED_GREEN pin
(pin 1) HIGH and LOW, which makes the LED flash green.

42

BlinkyColors flashes the LED between red and green, by
alternating the polarity (LOW and HIGH) of pins 11 and 12.

BlinkyColors

[#deﬁne and setup() are the same as BlinkTest.)

void loop() {
red_blink();
green_blink();
3

[The loop() consists of calls to two user-defined functions]

(below), which make the LED flash green or red.

void red_blink() {
digitalWrite(LED_RED, HIGH);
delay(250);
digitalWrite(LED_RED, LOW);
delay(250);

}

void green_blink() {
digitalWrite(LED_GREEN, HIGH);

delay(250);
digitalWrite(LED_GREEN, LOW);
delay(250);
}
(The red or green color is determined by the LED polarity.
Pin12 Pin color
Low Low -off-
HIGH LOW Red
Low HIGH Green
HIGH HIGH -off-

LEDs can help you confirm operation: You know things are working if the LED glows. Here's how you can enhance the Bumpersot
sketch by adding green/red LED signalling whenever the robot goes forward or backward.

BumperBotLights

boolean started = false;
#tdefine LED_GREEN 11
#define LED_RED 12

void setup() {

started = true;

pinMode (LED_GREEN, OUTPUT);

pinMode(LED_RED, OUTPUT);

digitalWrite(LED_GREEN, LOW);

digitalWrite(LED_GREEN, LOW);
}

Add lines in red; existing lines from BumperBot sketch are

[shown in gray.

J

void goForward() {
servoRight.write(0);
servolLeft.write(180);
led_green();

void goReverse() {
servoRight.write(180);
servoLeft.write(0);
led_red();

}

Make the LED green when the robot goes forward; make it

[red when it goes in reverse.

|

BumperBotLights, continued...

void goRight() {
servoLeft.write(180);
servoRight.write(180);
led_off();

}

void goLeft() {
servoLeft.write(0);
servoRight.write(0);
led_off();

}

[Turn the LED off for turns.

void led_green() {
digitalWrite(LED_GREEN, HIGH);
digitalWrite(LED_RED, LOW);

}

void led_red() {
digitalWrite(LED_GREEN, LOW);
digitalWrite(LED_RED, HIGH);

}

void led_off() {
digitalWrite(LED_GREEN, LOW);
digitalWrite(LED_RED, LOW);

}

Set LOW/HIGH polarity for green or red. Set both pins i

[and 12 to LOW to turn LED off.

43

4y

Project 11
Create Sounds with Your Make:Bot!

Add simple robotic sounds to your Make:Bot using an inexpensive piezo transducer. The Arduino
generates signals that come out as plain buzzing and beeping tones.

Plug the piezo transducer into breadboard 9
sockets J26 and J29. The + pin of the
transducer goes into socket J26. A miniature piezo

Your transducer may come with a label that ti.“ansducer S
simple sounds and does

says "Remove seal after washing." Do not + reauir lifier
wash with water! The label is intended \no equire an ampimer.)
o for automated assembly

machines.

Use a pre-stripped solid
jumper wire between
breadboard sockets
E29-F29. This is the
ground connection to the
transducer.

Use an orange male-
Existing wiring male 6" jumper between
shown in gray Arduino digital pin 5 and

breadboard socket F26.

SoundTest verifies the piezo transducer is properly connected to RemoteBotSound adds tones to the RemoteBot sketch. Different

the Arduino. It repeats a sequence of three tones. tones play when the left or right switch is actuated.
SoundTest RemoteBotSound
#define SPKR 5 [Added lines in red; existing lines from RemoteBot in gray. j
[Deﬁnes Arduino pin 5 connected to the + terminal of the] boolean started = false;
piezo transducer (the - terminal is connected to ground). pletne xggzgg e

#define NOTE_C4 262
#define NOTE_D6 1175

void setu // setu is intentionally empt
} PO { PO y empty #define SPKR 5

void 1oop() { Defines "musical" notes and their corresponding
tone(ngR, 247, 300); frequencies. These #defines are a convenience for coding.
delay(200);
if (pbLeft == HIGH) {
Makes a tone through the transducer. The frequency gf,Reverse();)
is 247 Hertz, with a duration of 300 milliseconds. The makeSound (NOTE_B3, 200);

makeSound (NOTE_C3, 200);

sketch then pauses for 200 milliseconds. nakesound (NOTE_ DG, 200).

tone(SPKR, 131, 300); 'if (pbRight == HIGH) {
delay(200); goReverse();
tone(SPKR, 1175, 300); makeSound (NOTE_D6, 200);
delay(200); makeSound (NOTE_C4, 200);
}
" ; ; Adds sequence of tones when the switches are hit. j
Produces additional tones at different frequencies, also [9

with a duration of 300 ms. The sketch pauses between void makeSound(int frequency, int duration) {

each tone for 200ms. The tones are repeated. tone(SPKR, frequency, duration);
delay(100);
}

[Plays sound using the Arduino tone statement. j

45

Make:Bot Top to Bottom

Make:Bot is a "two deck" robot, consisting of a lower and upper deck. The
decks are separated by battery cells and motors. These views show the major
components of the Make:Bot.

g

BETWEEN
Decks VIEw

46

TopP VIEw

J

BoTromM ViEw

Frequently Asked Questions

Everyone has questions. Here are some common ones, and what to do about them.
If you're new to the Arduino, check out the various help pages on the www.arduino.cc website.

Con I use a.non-UNO Arduino board?

It might work but it's not recommended. Arduino boards can
differ in their voltage requirements, pin functions, and other
features. Substitute only if you already know the issues.

Why do my servos turn when the robot is supposed to stop?

The servos may need to be calibrated. Upload the Calibrate
sketch from the MakeBot: Support Site to your Arduino. Use
a small Phillips screwdriver to adjust the knob in the side of
the servos. The servos are calibrated when the motors stop.

Can I just use the 9V battery to run the Make:Bot?

No. The 9V battery does not provide enough current to
operate the servo motors.

What type of surfaces are best for Make:Bot?

Tabletops, wood floors, tile, and very low nap carpet.

How about using just one battery pack instead of the two?

Not recommended. Arduino requires at least 7 volts, but most
servos are made for just 4.8-6V. And, it's not advisable to
run servos from the Arduino's 5V regulated supply.

How do I make the IDE recognize my Arduino board?

Try plugging in the USB cable and restarting the IDE. See also
the Getting Started page at the www.arduino.cc website for
additional troubleshooting ideas.

Why won't my sketches compile and upload?

Most common problem: incorrect programming syntax.
Check for typos, proper capitalization, and semi-colons at
the end of statement lines. Some Make:Bot sketches require
additional third-party libraries. See the text.

Why won't the robot move after uploading a sketch?

Be sure the servo power jumper wire is in the ON position.
Check if the batteries need to be replaced.

Why is my robot only turning in circles?

Check the servo wiring. Be sure the power, ground, and signal
wires are properly placed.

Why does my LED glow red when it should glow green?

The anode and cathode connections of the LED are reversed.
Simply turn the LED around in its pins.

47

Make:Bot Wiring Diagram

48

Resources for Building Better Bots . BUD MORE!

Be a robot maker maven with these affordable books and kits. These are among my favs! Getting Started With

Everything is available at www.makershed.com.

Learn Electronics with

Arduino
Culkin &« Hagen

No experience with
electronics or Arduino? No
problem! Covers everything
you need to know.

Includes quick hands-on
projects. In color, with tons
of illustrations.

Soldering Kit

Master the art of
soldering with this
handy kit —comes
with soldering iron
and solder.

Also includes tools,
cleaning supplies,
how-to book, and
nifty practice
project!

Arduino, 3rd Ed, Banzi &
shiloh

Getting Started with
Soldering, de Vinck

Easy Electronics
Kit
Learn electronics

without blowing
up your brain!

Includes parts
and project
booklet written
by electro-quru
Charles Platt.

49

Parts List

50

Find these parts online at www.jameco.com

Flexible-wire Jumpers Male to Female (HOpcs) 2260754

Item Jameco Part Qty
Arduino Microcontroller UNO R3 2163840 1
UsSB-A Male to USB-B Male Cable* 222010 1
40OO0-pPoint Solderless Breadboard 20601 1
9V Battery Snap with Barrel Plug 2207056 1
4Yx AA Battery Holder with Wired Connector 105858 1
Flexible-wire Jumpers Male to Male (4Opcs) 2260738 1

1
70-piece solid-wire jumper wire kit 2127718 1
Continuous Rotation Servo 283039 2
Boe-Bot/Sumobot Wheel/Tire Set 2109624 2
Piezo Transducer 2098523 1
Snap Action Switch 187805 2
HC-SROS Ultrasonic Distance Sensor 2245407 1
38 kHz Infrared Receiver 2229351 1
QTR-1A Reflectance Sensor (2-Pack) 2229343 1
LED Bi-Color Green/Red 94553 10
Resistor 330 Ohm 1/4 watt 690742 10
3M Tartan Vinyl Electrical Tape Roll 285587 1

*The USB cable you get depends on the USB connectors on your computer
and Arduino. See Page 8.

Save time! Save money!
Get a kit of all electronics parts from:

makershed.com/products/make-how-to-make-a-robot

Find these materials ot a local croft store...

Item Qty
1/4" Foam board, 20" x 30"

Double-sided foam tape (1")
White poster board, 22" by 28"
Round hole plug, 3/4" to 1" diameter
3/8" to1/2" height (example: Cindoco #F34B)

1
Velero tab, 1, round or square 5
1
1
1

Get these most anywhere...

AA batteries, alkaline or NiMH]
9V alkaline battery 1
Universal remote (Sony TV compatible) 1

Get Code!

All code examples are available online for your convenience.
Get the code from the Make:Bot Support Site:

wwuw.robotoid.com/make-bot

1. Click on the code file you wish to download and save to your
computer.

2. All examples are compressed in zip file format. Unzip to
your Arduino sketches directory.

3. Open the example in the Arduino IDE software program for
use with your Arduino.

For more information see the Getting Started section at
www.arduino.cc.

	Blank Page
	Blank Page

