

Maker Media, Inc.

San Francisco

How to Make a Robot
Gordon McComb

How to Make a Robot
Gordon McComb

Copyright © 2018 Maker Media. All rights reserved.
Printed in the United States of America
Published by Maker Media, Inc., 1700 Montgomery Street, Suite 240, San Francisco, CA 94111

Maker Media books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles
(safaribooksonline.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.
Customers may purchase kits, books, and more directly from us at Maker Shed.

Publisher: Roger Stewart
Illustration and Design: Gordon McComb
Proofreader: Jennifer Meredith
Technical Reviewer: Jon Hapeman
Cover Design: Julie Cohen
March 2018: First Edition
Revision History for the First Edition: 2018-3-15

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker Media, Inc. The Maker Media logo is a trademark of Maker Media, Inc.
How to Make a Robot and related trade dress are trademarks of Maker Media, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. While the publisher and the author have used good faith efforts to ensure that the information
and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work
is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-680-45469-7 [LSI]

The author thanks OpenClipart, ShareCG, Daz, Turbosquid, FirstCAD, and other curators of open source and commercial art materials used in the
preparation of this book,

3

Here's how to make a real robot that follows your commands!
We'll call it Make:Bot.

Build it from scratch using common electronic parts ̶
there's a list on Page 50 ̶ plus tools and materials you can
find at local craft and hardware stores.

Make:Bot uses the Arduino programmable microcontroller to
make it smart. The Arduino is inexpensive and easy to use.

Your Make:Bot is really five robots in one, which show five
major functions of robots:
● Tai Chi Bot replicates a set pattern of pre-programed
movements.

● Touch-and-Go Bot uses "whiskers" to navigate its
environment.

● Bat Bot sends out sound waves to avoid obstacles.

● Remote Bot lets you use a TV remote to control it.

● Line Bot follows a line drawn on poster board.

Let's Build a Robot!

Basic soldering skills are recommended, and you'll want to
brush up on your Arduino programming skills. Otherwise, you
don't need any prior experience to create your own Make:Bot!

Be sure to read through each project before you start. Okay,
time to begin!

4

Tools You’ll Need

Utility knives are very sharp! Use

only with a protective straight-

edge. Cut on a scrap piece of

cardboard to protect surfaces.

Use safety glasses at all times.

Safety glasses

Hot glue gun
and glue sticks
(high temp)

Wire cutters

Needle nosed
pliers

Utility knife
Small Phillips
screwdriver

Ruler

Soldering iron
(25-35 watts)

Solder

Optional

Wire strippers

5

Project 0
Learn Robot Motor Basics!
The ability to travel from one place to another is an essential characteristic for many robots. This movement is
often provided by electric motors. Applying voltage to a motor makes it spin, and this moves the robot.

A battery or battery pack provides power to the motor. To change the direction of the motor simply reverse the
+ and - terminals from the battery.

6

Two important aspects of motor operation are speed and torque.
Speed is the rotational velocity of the motor, typically specified in revolutions
per minute (RPM). Torque is the amount of force the motor exerts.

Turns about 4X faster

The best way to increase
the speed and torque of
a motor is to add more
batteries in series.

Put four batteries in
a four-cell AA holder,
making sure the positive
and negative terminals
are facing the proper
direction. Connect the
motor to the battery
holder.

What happens?

The motor spins about four
times faster because it's
now getting 4X the voltage.

The motor also has more
torque. You need the extra
torque to move your robot
around!

Alkaline AA batteries produce 1.5 volts per cell. A set
of four batteries wired in series make 6V.

Rechargeable AA batteries, such as nickle metal
hydride, produce 1.2 volts per cell, or 4.8V for four.

When using rechargeable batteries, the reduction
in voltage causes the robot motors to run slightly
slower.

Alkaline (1.5V
volts per cell)

NiMH (1.2V
volts per cell)

DO NOT try to power this

type of motor directly from

the Arduino, or you could

wreck your Arduino!

7

-
+
signal

Common servo
wiring color coding

Never EVER reverse the polarity
of the battery connections to the
servo, or damage may result!

The Make:Bot uses a special type of motor, a servo motor intended for radio control (RC) models
and toys. Unlike traditional RC servo motors, which are limited to turning only through a 90° (or
so) arc, servos for robotics turn continuously in either direction.

Core benefit of RC motors: They can be
controlled directly from the Arduino, without
the need for additional power circuitry.

It's also easy to attach wheels to RC servos,
and to mount them to your robot.

Motor case

Color-coded
wires

Terminal
connector

Wheel
shaft

-
+
signal

The operation of the motor is set
by sending a series of pulses of
varying durations, from 1 to 2
milliseconds.

The control signal can be easily
created using an Arduino. See
Project 4.

8

Project 1
Setting Up the Arduino Brain
An Arduino microcontroller operates all the functions of the Make:Bot. Software running inside the Arduino determines what the
robot is supposed to do. Input/output (or IO) pins on the Arduino provide connections to your robot's hardware. Separate power
pins allow you to provide electrical juice to the components you add.

The Arduino is available in numerous models from different
companies. I'm using an Arduino UNO. See Page 50 for a
complete list of Make:Bot parts.

Placement of components on the Arduino can vary between
models. Your board may look a little different than shown,
but that's okay as long as it's UNO compatible.

The USB jack can differ among boards. Be sure to get the
right kind of cable for your Arduino and computer!

The Arduino is programmed from your computer using a USB cable.
The cable also provides power to the Arduino when not using
batteries. Programming software for the Arduino is available for
Windows, Macintosh, and Linux. Get a copy from

www.arduino.cc

and follow the directions provided for downloading and
installing.

#include <Servo.h>

Servo servoLeft;
Servo servoRight;

void setup()
{
 servoRight.attach(9);
 servoLeft.attach(10);
}

9

Before building your robot, connect and test your Arduino microcontroller, and get used to how it works.

If you haven't done so already, go to www.arduino.cc
and download the Arduino software installer for your
computer operating system.

Install the software and follow any prompts that are
displayed. You may need to also install one or more
drivers.

Use the USB cable to plug your Arduino
into your computer. You should see the
Arduino's On light turn on.

Open the Arduino software and type in the sketch you
see below. Be sure to type it EXACTLY!

void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
 digitalWrite(LED_BUILTIN, HIGH);
 delay(250); 		
 digitalWrite(LED_BUILTIN, LOW); 	
 delay(250); 	
}

TIP: Unless otherwise instructed, install the
software before plugging in the Arduino.

Before you can program your Arduino, you must first
download and install the Arduino desktop IDE software (IDE
stands for Integrated Development Environment).

You use the IDE to create your robot's control programs,
called sketches.

10

Click the Upload button in the IDE program. This "compiles," then
uploads your new sketch into the Arduino's memory.

During upload, verify everything is work-
ing by watching the TX and RX lights flash.

When the upload is complete, you should see the L light
rapidly flash on and off.

See the Getting Started page

on the Arduino Web site

for important first-time

installation tips and helpful

resources for using the IDE.

Click the Save button and name the sketch MyFirstSketch.

Click the Verify button to check your sketch for errors. If an error is
reported, double-check your typing.

Uh oh! If you get an error instead of a successful upload, you'll
need to determine the cause. Check these for starters:

● USB cable plugged in

● Correct port selected

● Correct board selected

When using the IDE, be sure the correct communications port
and Arduino board model are selected before you upload your
sketch. Otherwise an error may occur.

Save

Verify

Upload

Common IDE icons you should know:

11

Project 2
Make a Motorized Robot Base
The body of the Make:Bot uses commonly available 1/4" thick foam board. Cut the board
with a utility knife and a metal or wood straight edge.

Everything is pieced together using hot melt glue, double-sided tape, and Velcro (or
other hook-and-loop fastener).

1 1/4”

3 3/4”

4 1/2”

3 3/4”

Make 2 of each

1/4” foam board

1/4” foam board

Use a utility or hobby knife to cut the 1/4" foam
board to size.

TIP: Use a scrap piece of cardboard as a cutting
mat.

CUT WITH CARE!!

Cut with extreme care! Use a new,
sharp blade to avoid miscuts.Wear eye protection!!

12

Assemble top and bottom bases Attach tail skid

For best strength I recommend
only high-temperature hot melt
glue and glue gun.

Wooden hole plug with
rounded top from
craft store

Diameter: 3/4" to 1"
Height: 3/8" to 1/2"

When gluing, wear eye protection,
and remember that the glue is
very HOT!

Apply a bead of hot glue to the
smaller foam board. Sandwich the
pieces together so the edges are
flush.

Repeat for the second set of
pieces.

Using an assembled base piece,
apply S-shaped bead of glue to
the center of the board. Position
the wooden hole plug and press
for five seconds.

Do this for only one set of pieces.

13

You should now have two bases:
lower base with the wood plug,
and upper base with nothing
on it.

When gluing the servos make sure:

● The mounting flanges are
flush with the front and
sides of the base

● The white shaft is
closest to the rear of the base
(nearest to the wooden plug)

Orient the RC servos on the top
side of the lower base.

Apply a bead of hot glue to the
underside of each servo. Carefully
press the servos into place.

The Make:Bot is composed of two bases, a
lower base (motors and batteries), and an
upper base (Arduino and other electronics).

Everything is held together using hot melt glue
or double-sided tape for the permanent stuff.
Velcro tabs are used for the things that may
need to be removed.

upper base

lower base front

top side
rear

14

4xAA battery
 holder

Bottom of battery

should not extend

beyond front edge!

Peel off backs of a 1" Velcro tab. Place the tab on the underside
of the AA battery holder.

Firmly press the battery holder onto the lower base so its back
edge is flush with the rear of the base. The wires should stick
out toward the rear of the bot.

Peel off the backs of two 1" Velcro tabs. Stick the
tabs to the tops of the servos.

Carefully position the upper base over the
servos, so that its edges are even with the lower
base. Press down firmly to seat the adhesive of
the Velcro tabs.

Attach the battery snap with barrel
connector (power for the Arduino) to the
9V battery, wires pointing as shown.

Peel off backs of 1" Velcro tab. Place tab
evenly between servos. Press 9V battery
onto the Velcro.

9V battery

15

The breadboard comes with two removable
power rails. You'll only use one rail. Slide off the
rail shown, and put it away for safekeeping.

Solderless
 breadboardArduino

Remove

Apply a Velcro tab to the underside of the Arduino. Stick
the Arduino to the upper base so its edge is about 1/8"
from both the breadboard and the right side of the
upper base..

Keep

Avoid taking off the double sided

tape from the breadboard, or the

breadboard may be damaged.

If the tape must be removed, use

a scraper rather than pulling the

tape.

The solderless breadboard comes with its own double-
sided tape. Peel off the backing of the tape. Apply the
breadboard to the top of the upper deck.

The breadboard should be flush with the front edge of
the upper deck.

16

For each servo, place the rubber tire over the
wheel. It's a tight fit.

Using the screw provided, mount the wheel and tire
to the servo. The wheel and servo shaft are splined
for a positive fit. Don't overtighten the screw!

Your Make:Bot is almost complete. Congratulations!

To make it fully functional, you still need to wire up
the batteries, servos, and Arduino.

That comes next, but this is a good time to review
your work. Check for any lose parts, and fix
problems now!

At this point your Make:Bot will look like this:

17

Project 3
Wire Your Robot's Motors and Batteries

strip insulation
from 5" jumper

Cut into 1/2" lengths ...

Strip the insulation from a 5" solid-wire jumper. Cut into 1/2" lengths to make
8 (eight) short jumpers.

Left servo Right servo AA battery

Use pliers to push the short
jumpers into the servo and AA
battery holder connectors.

Plug the servo
and AA battery
connectors into
the breadboard.

Double-check
your work when
you're through!

Be sure to observe the correct
polarity of all connections!
Otherwise your servos may be
irreversibly damaged!

Wire color coding for
power and servos is
SUPER-CRITICAL!

The ground (black) wire
is always on the right
side of the connector.

18

Make:Bot uses two
battery sources: a 9V
battery that runs the
Arduino, and 4xAA
batteries (4.8 or 6 volts)
for the servos.

This schematic diagram
shows how things are
wired up.

Color coding suggestions:
Left Servo: White (Arduino Digital Pin 10 to breadboard A2)
Right Servo: Yellow (Arduino Digital Pin 9 to breadboard A27)
Gnd (Ground): Black (Arduino GND to breadboard negative rail)
Servo Power Jumper: Gray (breadboard A8-A11 or A8-A13)

Connect four male-to-male jumpers.

Power the servos by plugging in
the 4xAA servo power (observe
correct polarity). Plug 9V battery
into the Arduino power jack.

Unplug the 9V battery when

not using your Make:Bot!

Use a jumper to connect the AA battery power for the
servos. Disconnect when not using servos.

Servo Power
Jumper: OFF

Servo Power
Jumper: ON

19

#include <Servo.h>

Servo servoRight;
Servo servoLeft;

void setup()
{
 servoRight.attach(9);
 servoLeft.attach(10);
}

void loop()
{
 servoRight.write(0); // Fwd
 servoLeft.write(180);
 delay(2000);

 servoRight.write(180); // Rev
 servoLeft.write(0);
 delay(2000);

 servoRight.write(180); // Right
 servoLeft.write(180);
 delay(2000);

 servoRight.write(0); // Left
 servoLeft.write(0);
 delay(2000);
}

Try this sketch yourself!
1. Type the sketch in the Arduino IDE, and name it ServoTest.
2. Move the servo power jumper to the OFF position.
3. Upload the sketch to your Arduino, then move the servo power to the ON position.
4. Hold the robot in your hands and watch the servos change direction!

ServoTest

Project 4
Program Your Robot to Repeat Steps
Command your Make:Bot to repeat basic movements ̶ the first step in creating an autonomous robot.

Arduino programming is based on objects. Objects extend the functionality of
the Arduino. This code creates two Servo objects and gives them unique names.

All Arduino sketches have a setup() function. Code here is run once, when the
Arduino is first powered on.

The code tells the Arduino you have two servos, connected to pins 9 and 10.

All sketches have a loop() function. Code repeats while the Arduino is powered.

Servos are controlled by specifying a direction (in degrees), either 0 or 180. By
alternating the directions the robot moves forward and backward and turns.

delay (2000) pauses sketch execution for 2000 milliseconds (2 seconds).

The Arduino programming language is case sensitive. An error will result if you
use the wrong capitalization.

// is a comment, a note just for you. The Arduino ignores it.

20

#include <Servo.h>

Servo servoRight; // Define right servo
Servo servoLeft; // Define left servo

void setup() {
 servoRight.attach(9); // Right servo pin 9
 servoLeft.attach(10); // Left servo pin 10
}

void loop() {
 goForward();
 delay(2000);
 goReverse();
 delay(2000);
 goRight();
 delay(2000);
 goLeft();
 delay(2000);
 allStop();
 delay (2000);
}

// Motion Routines: forward, reverse, turn, stop
void goForward() {
 servoRight.write(0);
 servoLeft.write(180);
}

With a bit more code, you can extend the functionality of the basic ServoTest sketch. ServoTaiChi reorganizes some of the code and
makes the sketch much more flexible! The sketch is available on the Make:Bot Support Site; see Page 50 for details.

ServoTaiChi

void goReverse() {
 servoRight.write(180);
 servoLeft.write(0);
}
void goRight() {
 servoRight.write(180);
 servoLeft.write(180);
}
void goLeft() {
 servoRight.write(0);
 servoLeft.write(0);
}
void allStop() {
 servoRight.write(90);
 servoLeft.write(90);
}

ServoTaiChi, continued...

When done experimenting, be
sure to remove the power to
the Arduino. Move the servo
power jumper to the OFF
position.

Many statements
can be contained in a
user-defined function.

A function call references a
user-defined function, and
can be used multiple times.

Methods are a special type of statement
that uses an object, such as a servo.
Methods are composed of the object name,
a period, and the action to perform.

Statements are commands
that tell the Arduino what
to do. There's usually one
statement per line.

The ; semi-colon character is the statement
terminator.

The { and } characters form a block, part of Arduino's coding syntax.
Blocks contain multiple statements, and are treated as a unit.

If your robot moves slowly when it should
stop, one or both servos may need to be
calibrated. See Frequently Asked Questions
on Page 47 for more info.

1. Upload sketch then remove USB cable
from Arduino.

2. Connect 9V Arduino power and move
servo power jumper to the ON position.

3. Depress Reset button, place your
Make:Bot on floor (wood or linoleum is best),
and release Reset button.

21

Project 5
Build a Touch-and-Go Bumper Bot
By adding just two switches, your Make:Bot can explore its environment. Should the robot bump something, the
switches will detect the collision. The robot stops, backs up, turns around, and heads in another direction!

The Touch-and-Go feature
relies on snap-action leaf
switches. The leaf is a
metal prong that acts like a
cat's whisker.

Select three 6" male-to-female jumpers, colors shown
at left. For each wire:

1. Cut off just the female end.

2. Remove 1/4" of insulation from the cut end and twist.

3. Use a soldering iron to solder the bare wire ends to
the switch NO (normally open) and Common terminals.

4. Bridge the two Common terminals of the
switches with 3" solid wire jumper.

Normally-open (NO)

Common

Jumpers plug into
Arduino digital pins
2, 3, and 4.

Position two snap-action switches on the
underside of the lower base, facing the front.

Tilt the switches so that the corners are flush
with the front and side edges of the base.

The ends of the metal prongs should be roughly
in front of the wheels.

Once positioned, mark
with a pencil as a
guide when gluing.

Glue the switches to the
underside of the bottom
base.

RightLeft

5. Route wires under right side of robot behind wheel, and
plug into Arduino. Keep wires in place with electrical tape.

22

To understand how the Make:Bot detects collisions, it's
important to know a little about switches.

The Arduino is a small computer that can connect to the
outside world. The connection is made with input/output (or I/O)
pins. Switches are an example of an input ̶ data that comes
into the Arduino.

Switches are digital inputs, meaning that they have only two
states: LOW (or 0) and HIGH (or 1).

On the Arduino UNO the digital input/output pins are along
the top of the board. They are numbered 0 to 13. Pins 0 and 1
are used for communications between the Arduino and PC, so
avoid using these.

The Arduino
UNO also has
six analog I/O
pins along the
bottom edge.
You'll learn
more about
these in Project
9.

Switches are simple mechanical devices, consisting of a
button or lever. Depressing this button closes the contacts
inside the switch, which completes a circuit.

Circuit is open, the
light is of off.

Circuit is closed, the
light is on.

LOW HIGH

23

Check out Make:Bot's newfangled bumper switches with the SwitchTest sketch. The Arduino's builtin LED lights if either switch
is depressed. The Arduino's integrated pullup resistors make the switch HIGH when it's not depressed; LOW when it is!

void setup() {
 pinMode(LED_BUILTIN, OUTPUT);

SwitchTest

Set pin 13 (builtin LED) to output.

Set switch pins (2, 3) as inputs. Set pin 4 as an output so it
can be used as a convenient ground connection.

void loop() {
 if ((digitalRead(2) == LOW) || (digitalRead(3) == LOW))
 digitalWrite(LED_BUILTIN, HIGH);
 else
 digitalWrite(LED_BUILTIN, LOW);
 delay (100);
}

 pinMode(2, INPUT); // Right switch
 pinMode(3, INPUT); // Left switch
 pinMode(4, OUTPUT); // Ground for switches

 digitalWrite(2, HIGH);
 digitalWrite(3, HIGH);

Enable Arduino's internal pullup resistors for switch pins.

 digitalWrite(4, LOW); // Set to 0 volts
}

Set pin 4 LOW (0 volts) to use as ground connection

Test if pin 2 OR pin 3 has gone LOW (0 volts). If so, light up
the builtin LED on pin 13.

Output is HIGH
when switch is not
depressed

Output is LOW
when switch is
depressed

Pullup
resistor
keeps the
input from
"floating"
when the
switch is
open

24

#include <Servo.h>

Servo servoRight;
Servo servoLeft;

volatile int pbLeft = LOW; // Flag for left switch
volatile int pbRight = LOW; // Flag for right switch
boolean started = false; // True after first start

void setup() {
 // Set pin modes for switches
 pinMode(2, INPUT);
 pinMode(3, INPUT);
 pinMode(4, OUTPUT);

 // Set internal pull up resistors for switches
 digitalWrite(2, HIGH); // Right switch
 digitalWrite(3, HIGH); // Left switch

 digitalWrite(4, LOW); // Pin 4 as ground

 servoRight.attach(9); // Right servo to pin 9
 servoLeft.attach(10); // Left servo to pin 10

 // Set up interrupts
 attachInterrupt(0, hitRight, FALLING);
 attachInterrupt(1, hitLeft, FALLING);

 started = true; // Okay to start moving
}

BumperBot wanders the room, and goes into a new direction if it hits things. After uploading
the sketch, set the robot on the floor, and depress either switch to start movement.

BumperBot

Download the BumperBot

sketch from the Support Site.

See Page 50.

Variables are used to store information that changes when the
sketch executes. The pbLeft/pbRight variables monitor the right and
left "bumper" switches.

This #include statement tells the Arduino you want to work with servos.

The left and right switches connect to pins 2, 3, and 4. Pins 2 and 3 are
defined as inputs from the switches. Pin 4 is defined as an output. It
provides a 0 volt (GND, or ground) connection to the switch.

Input pins need a default digital state. The Arduino has built-in pullup
resistors that hold the pin HIGH until the switch is activated.

Make:Bot uses the Arduino's hardware interrupt feature, which allows
the Arduino to immediately sense when a switch is hit.

We don't want the Make:Bot to do anything until all the setup() code has
been run. The started variable is set to true when everything is ready.

25

BumperBot, continued...
void loop() {
 if (pbLeft == HIGH) { // If left bumper hit
 goReverse(); // Reverse for 1/2 sec
 delay(500);
 goRight(); // Spin 1 sec
 delay(1000);
 goForward(); // Go forward again
 pbLeft = LOW; // Reset flag shows "hit"
 }

 if (pbRight == HIGH) { // If right bumper hit
 goReverse();
 delay(500);
 goLeft();
 delay(1000);
 goForward();
 pbRight = LOW;
 }
}

// Interrupt handlers
void hitLeft() {
 if (started) // Only if robot has started
 pbLeft = HIGH;
}
void hitRight() {
 if (started) // Same as left switch handler
 pbRight = HIGH;
}

// Add Motion Routines from ServoTaiChi here

}When the left bumper switch has been activated, the
Make:Bot steers around the obstacle by backing up for
500 milliseconds (ms), spins right for 1000 ms, and heads
forward again.

The same as above, but this happens when the right bumper
switch is activated.

The Arduino is immediately interrupted when either switch
is activated. The code simply sets the pbLeft or pbRight
variable to HIGH, meaning "the switch has been struck!" This
variable is subsequently checked inside the loop() function.

}
}

To save space the motion routines (goForward, etc.) are not
shown here. Grab them from the ServoTaiChi sketch on Page 20.

26

Project 6
Build an Ultrasonic "Bat Bot"!
An inexpensive ultrasonic sensor allows your Make:Bot to actually "see" its environment by using a series of very high
frequency chirps, just like a bat! Unless you're a bat yourself you can't hear the chirping sounds!

Bat Bot uses an ultrasonic
sensor that is able to detect
objects using sound waves.

Plug the ultrasonic sensor
into the front row of the

breadboard.

The left most pin (marked
VCC) goes into socket J12.

Ultrasonic sensors measure
the time delay between a short
high-frequency "ping" and its
return echo.

Echo times are measured in
microseconds (µs, millionth of
a second).

For a close object, the echo
takes less time to come back.

27

#define Trigger 7
#define Echo 8

void setup(){
 Serial.begin(9600);

 pinMode(Echo, INPUT);
 pinMode(Trigger, OUTPUT);
}

void loop(){
 digitalWrite(Trigger, LOW);
 delayMicroseconds(2);

 digitalWrite(Trigger, HIGH);
 delayMicroseconds(10);
 digitalWrite(Trigger, LOW);

 int distance = pulseIn(Echo, HIGH);

 distance = distance / 74 / 2;
 Serial.println(distance);

 delay(100);
}

Sound travels 1" in about 74 microseconds. Echo times
are always halved to calculate the round trip distance.
Example: An echo that takes 750 µs is roughly 5" away.

5 = 750 / 74 / 2	 (result is rounded off)

Set up connections to Arduino: Trig
(trigger) to pin 7 , Echo to Pin 8

Establish Serial Monitor communications
Define "direction" of pins: Echo (pin 8) is an
Input, Trigger (pin 7) is an Output

Reset Trigger by making pin LOW (0 volts)
for 2 µs (microseconds).

Send ping by making pin HIGH (5 volts) for
10 µs.
Measure time until Echo pin changes to HIGH
(echo is received)

Convert echo time to distance, in inches

Wait 100 ms before doing it again

Test the ultrasonic sensor to make sure it's working. The BatBotTest sketch reads the
sensor and displays the result in the Arduino's Serial Monitor window (see Page 28). Add wiring to connect the sensor to the

Arduino.

Sensor		 Arduino		
VCC		 5V
Echo		 Pin 8
Trig		 Pin 7
GND		 (breadboard ground)

BatBotTest

formula

Existing wiring
shown in gray

28

BatBotTest uses the Arduino's Serial Monitor to display the distance results. To
open the Serial Monitor:

1. Upload the sketch.

2. After uploading is complete, click on the Serial Monitor icon.

3. Verify these settings:
 Autoscroll: checked
 Line ending: No Line ending
 Baud: 9600 baud

Place your hand in front of the sensor and move it back and forth. Watch the
values in the Serial Monitor change according to the distance.

#include <Servo.h>
Servo servoRight;
Servo servoLeft;
#define Trigger 7
#define Echo 8

void setup() {
 servoRight.attach(9);
 servoLeft.attach(10);
 pinMode(Echo, INPUT);
 pinMode(Trigger, OUTPUT);
 randomSeed(analogRead(3));
 delay(200);
 goForward();
}

void loop() {
 int distance = doPing();
 if (distance <= 2)
 goReverse();
 delay(500);
 if (random(2) == 0)
 goRight();
 else
 goLeft();
 ...

BatBotWander (partial only)

Download the BatBotWander

sketch from the Support Site.

See Page 50 more information.

Note: Keep the USB cable
connected between
your computer and the
Arduino.
	

Now let's combine moving the Make:Bot while
looking for objects with the ultrasonic sensor!

29

With the bulb of the sensor facing up,
insert the leads into Analog pins 0, 1,
and 2. DO NOT plug in backwards!

Project 7
Build a Remote Controlled Robot
Command your robot from the comfort of your easy chair! Remote Bot uses an ordinary TV
remote control and an inexpensive infrared sensor.

The Remote Bot uses a
ready-to-go sensor

that plugs directly
into the Arduino.

The sensor is
sensitive to

infrared
light from

a TV
remote.

Cut here

Bend
here

3/8"

1/4"

Carefully
bend

at right angle

Clip sensor leads
to length. Use small
pliers to bend the
leads. The rounded
"bulb" of the sensor
should face away
from the end of the
bent leads.

I/O pins directly provide power and
ground to the sensor. This is okay
because the sensor consumes very low
current, and doesn't need to be plugged
into the 5V and GND power pins.

30

Program a universal remote control to
operate a Sony TV .

You need to look up SONY TV in the instruction
manual for the remote, and enter the matching
code.

Try different Sony TV codes until you find one
that works with the IRTest sketch.

Add the IRremote third-party
code library. The library comes

with all the Remote Bot sketches
provided on the Make:Bot Support
Site.

1. Download the IRTest sketch and un-
zip it into your Arduino sketch folder.

2. In the Arduino IDE, choose
Sketch→Include Library→Add .ZIP
Library.

3. Navigate to the folder that
contains the IRTest sketch you placed
in Step 1.

4. Select the IRremote.zip file, click OK
to add it to your IDE.

5. Exit the IDE and restart it.

Compile and upload the
IRTest sketch to your

Arduino.

Open the Serial Monitor window,
and make sure the settings are the
same as on Page 28.

Verify the actions of the remote by
pressing the number buttons.

31

#include <IRremote.h>

int RECV_PIN = A0;	 // Analog pin 0
IRrecv irrecv(RECV_PIN);
decode_results results;

RemoteBot (portions only shown, based on BumperBot)

With the infrared sensor installed and tested it's time to program your Remote Bot. Use the number buttons on the remote control to
drive your robot around the room. If the bot hits an obstacle, it'll automatically back up and steer in a new direction!

 irrecv.resume(); // Receive the next value
 delay(2);

RemoteBot, continued...

Adds the IRremote library to your Arduino IDE.
(Remember, you MUST install this library before you can
use this sketch; see Page 30).

 pinMode(A1, OUTPUT); // IR power, ground pins
 pinMode(A2, OUTPUT);
 digitalWrite(A1, LOW); // IR ground; analog pin 1
 digitalWrite(A2, HIGH); // IR power; analog pin 2
...
 irrecv.enableIRIn(); // Start the receiver

Turns pins A1 and A2 into power and ground for use by the
infrared sensor, and then starts the IRremote process.

if (irrecv.decode(&results)) {
 switch (results.value) {
 case 0x10:
 Serial.println("1"); // Turn left forward
 turnLeftFwd();
 break;
...

Detects pressing buttons 1 thru 9 on the remote, and
performs the associated action (e.g. left forward turn for
button "1"). Then resets the IRremote process and waits
2 ms before repeating again.

void loop() {
 if (pbLeft == HIGH) { // If left bumper hit
 goReverse();
 delay(500);
...
 if (pbRight == HIGH) { // If right bumper hit
 goReverse();
 delay(500);

Continuously loop: react to left or right switch.

void goForward() {
 servoRight.write(0);
 servoLeft.write(180);
}
void goReverse() {
 servoRight.write(180);
 servoLeft.write(0);
}
void goSpinRight() {
 servoRight.write(180);
...

Motion routines for steering the robot. RemoteBot uses
additional user-defined functions besides the ones in the
BumperBot sketch.

Download the RemoteBot

sketch from the Support Site.

See Page 50.

32

Project 8
Make a Robot That Follows a Line
With just a pair of inexpensive sensors that detect reflected infrared light, your Make:Bot
can dutifully follow a black line you've made on poster board ̶ or white butcher paper, a
kitchen floor, or any other white surface!

Two
miniature
reflective
light sensors
allow the
Make:Bot
to follow a
black line on
white poster
board.

3/4”

Make 2

3/8”1/4" foam board

Use a utility knife to cut two IR sensor pads
to 3/8" by 3/4". Exact size isn't critical,
but the pads need to fit between the two
switches on the underside of the Make:Bot.

Glue the two pads
together to make
a stack.

Then glue the set
of pads to the
underside of the
lower deck.

The pads must be
centered on the
base and almost
flush with the
front edge.

Keep your fingers away from the
knife while you cut. Use a wooden
or steel ruler to hold the small
foam board in place!

Mark centers and align

33

With pliers
break off a
set of 3-pin
straight

headers. The headers are
included with the sensor.

Make two sets of 3-pin headers
(one for each sensor).

Orient the sensor so that the emitter/receiver optics
are face up. This is the bottom of the sensor.

Poke the header pins into the three holes so that the
short side of the pins stick out the sensor bottom.

Solder the pin headers into place.

After soldering, use a magnifying glass to inspect
your work. Make sure the solder joints are complete,
and that the three terminals don't "bridge" into one
another with blobs of excess solder!Front view

Plug six male-female jumpers
into the pin headers using the
colors shown.

Leave the other ends of the
jumpers disconnected for now.

Front view

34

Cut a piece of double-sided tape to
match the IR sensor pads. Stick the
tape to the pads, then press the
sensors onto the tape.

Position the sensors so that the
connectors are flush against the
front of the robot.

Use the connectors as a handle while
you align them over the tape.

The sensors should be 1/8"-1/4" from
the poster board. Tweak as needed.

Front view

Center the sensors
over the mark on pads

4" solid
strand
jumpers

6" male-
to-female
jumpers

Connect the six male-to-female jumpers from the
sensors to the breadboard.

Existing wiring
shown in gray

35

LineSensorsTest

Test the two infrared sensors using the LineSensorsTest sketch. Upload the sketch as usual, and then open the Arduino Serial Monitor
window. Wave your hand directly in front of the sensors. The readings should change. Expected values are 0-1023.

TestLineSensors, continued...

Sets up variables (temporary storage for data) for use
elsewhere in the sketch.

#define is for coding convenience. The names represent
the I/O pins connected to the reflective sensors.

The instantaneous value of the right and left sensors are
read and stored in variables.

The values that are captured range from 0 to 1023.
These values represent an analog (continuously variable)
voltage, from 0 to 5 volts.

A value of 1023 means the sensor detects pure black (no
light reflected); 0 means white, lots of light reflected.

 Serial.print ("Left:");
 Serial.print ("\t");		 // Makes a tab space
 Serial.print (irReflectL);	 // Inserts value for left
 Serial.print ("\t");
 Serial.print ("Right:");
 Serial.println (irReflectR);	 // Inserts value for right
 delay(100);			 // and starts a new line
}

Prepares the Serial Monitor so you can see values.

Verify that the infrared sensor wiring looks like this. Wrap
the wires with electrical tape to bundle them together and
tuck them between the ultrasonic sensor elements.

#define lineLeft A4
#define lineRight A5
int irReflectL = 0;
int irReflectR = 0;

void setup() {
 Serial.begin (9600);
}

void loop() {
 irReflectL = analogRead(lineLeft);
 irReflectR = analogRead(lineRight);

The sensor values are printed in the Serial Monitor
window. To see the results, upload the sketch and open
the Serial Monitor (see Page 28).

36

Make a line-following course using a 22" by 28" white poster board and 3/4" black electrical tape. High quality tape works best ̶
the cheap stuff can wrinkle and "lift up" over time. You can also use white craft paper, even an all-white linoleum floor!

Use a pencil to lightly mark a border no less than 3" from the edge of the poster board. Start anywhere and apply the tape.
Firmly press the tape into place as you go. Don't overstretch. Erase the pencil markings when done.

Very tight turns

Right angles

Intersections

Avoid:

22" x 28" poster board

3/4" black electrical tape

Keep minimum 3" margin
●	 Make several track courses with different

shapes. Use only one side of the poster.

●	 Race with a friend who has built her own
Make:Bot!

●	 Remove the six jumper wires to the line
sensors when using the ultrasonic sensor.

Try These Ideas:

●	 If your bot "jumps the track" too much, try
another course with simpler turns. Be sure the
sensors are clean and properly aligned.

●	 Keep the sensor-to-poster distance between
about 1/8" and 1/4".

●	 Try a lower threshold value in the LineFollow
sketch if the robot can't stay on the line.

●	 Electrical tape can lift with age and humidity.
Press it back down, or replace.

When Things Go Wrong:

37

LineFollow (partial)

With the race course made, it's time to follow some lines! Upload the LineFollow sketch. Press the Arduino's Reset button
while you place the bot over the black line. Release the button and go, baby, go!

The thresh variable defines a threshold for determining
whether the reflective sensors are over a line. You can
experiment with this value to see what works best. Try a
lower number if your bots turns around a lot.

...
int thresh = 500;

LineFollow, continued...

The instantaneous values of the two sensors are
captured every loop through the sketch.

A series of conditional if tests compare the values of the
sensors to determine if the robot is straddling the black
line or veering to the right or left. The code

irReflectL >= thresh && irReflectR >= thresh

compares the sensors to the threshold value. If both
are greater than the threshold, the sensors "see" black,
which means the robot is over the line.

Other if tests determine if the robot is veering to the
right or left, so that small course corrections may be
made.

 if (irReflectL >= thresh && irReflectR >= thresh) {
 line_forward(); // on line
 }
 if (irReflectL >= thresh && irReflectR <= thresh) {
 line_slipLeft(); // veering off right
 delay(4);
 }
 if (irReflectL <= thresh && irReflectR >= thresh) {
 line_slipRight(); // veering off left
 delay(4);
 }
 if (irReflectL < thresh && irReflectR < thresh) {
 line_spinRight(); // try to re-acquire line if lost
 delay(20);
 }
}

void loop() {
 irReflectL = analogRead(lineLeft);
 irReflectR = analogRead(lineRight);

void line_forward() {
 servoRight.write(0);
 servoLeft.write(180);
}
void line_slipRight() {
 servoRight.write(90);
 servoLeft.write(180);
}
void line_slipLeft() {
 servoRight.write(0);
 servoLeft.write(90);
}
...

User-defined functions provide steering for the robot.

38

Project 9
Learn About Digital and Analog Signals

When applying a signal
to the Arduino Uno, be
sure the signal does not
exceed 5 volts!

Analog signals are
continuously variable,
from 0 to 5 volts.
Inside the Arduino
these voltages
are translated to
numbers ranging
from 0 to 1023.

Digital signals have only
two states:

0 Volts = LOW, or 0
5 volts = HIGH, or 1

Robots are all about the sensors connected to
them. Without sensors, your creation is deaf and
blind. Sensors attach to the Arduino using I/O
pins and communicate with it using digital or
analog signals.

The type of signal is important: it dictates which
I/O pins on the Arduino you can use. Digital
signals connect to any I/O pin; analog signals can
only connect to the pins marked Analog In.

39

#define SWITCH 3 // Switch to pin 3 (left)
int swValue; // Variable holds value

void setup() {
 pinMode(SWITCH, INPUT); // Left switch input
 pinMode(4, OUTPUT); // Ground for switches
 digitalWrite(SWITCH, HIGH); // Set internal pullup
 Serial.begin (9600); // Start Serial Monitor
}

void loop() {
 swValue = digitalRead(SWITCH); // Read switch value
 Serial.println (swValue); // Display value
 delay(250); // Wait 1/4 sec
}

DigitalTest
#define SENSOR A5 // Right line analog pin A5
int sValue = 0; // Variable holds value

void setup() {
 Serial.begin (9600); // Start Serial Monitor
}

void loop() {
 sValue = analogRead(SENSOR); // Read sensor value
 Serial.println (sValue); // Display value
 delay(250); // Wait 1/4 second
}

AnalogTest

Use one of the bumper switches connected to the Make:Bot to
demonstrate reading a digital signal.

Use one of the line following sensors connected to the Make:Bot
to demonstrate reading an analog signal.

What To See
Open the Serial Monitor (see Page 28) and press the left
bumper switch. Observe the values:

	 Switch State		 Value
	 Open			 1 (HIGH)
	 Closed			 0 (LOW)

The switch is 1 (HIGH) when not activated because it is
connected to a pullup resistor inside the Arduino. Closing
the switch connects it to ground, so the signal goes 0 (LOW).

What To See
Open the Serial Monitor and wave your hand over the line
sensors. Values range from 0 to 1023.

	 Value			 Voltage
	 0			 0
	 1-1022			 0.1 to 4.9
	 1023			 5

Because of the way the sensors are constructed, higher
values = less light reflecting into the sensor.

40

Project 10
Add Blinky Lights to Your Make:Bot!

Clip the cathode lead
of the LED to about
1/4". (Err on the side of
making it longer, rather
than shorter.)

Clip one end of the
current-limiting
resistor to 3/8".

Identify the cathode
lead of the LED. It's on
the flattened side, and
is shorter.

Important! When
soldering apply
heat to the LED and
resistor for 3 seconds
or less. Otherwise
you could damage the
components.

Cut the bottom leads of the LED
and resistor to 3/8"

Insert into Arduino pins 11 and 12.
The resistor end plugs into pin 11.

Lights are an easy way for your Make:Bot to communicate with you. Lights are cheap and easy to add: just a light emitting
diode (LED) and a resistor. This project shows how to add a single LED that glows or blinks in two colors!

Top View

Side View

CathodeAnode

41

LEDs are a kind of semi-
conductor made to emit light.

Most LEDs are a single color.
The Make:Bot's LED is special:
it produces two colors, red or
green.

The color you see is determined
by the +/- polarity of the
LED's power leads, and can be
controlled by the Arduino.

Color Codes

NEVER use an LED without
a resistor to limit current.

Otherwise the LED will burn out
in seconds!

Symbol for one-color LED

Symbol for bi-color LED

LEDs are used with a resistor,
which limits current flowing
through the semiconductor.

Resistors are color coded using
bands. The bands indicate the
amount of resistance, in ohms,
provided by the resistor.

A common resistor value for
use with LEDs is 330 ohms,
abbreviated as 330Ω.

Symbol for resistor

42

BlinkyTest

BlinkyTest flashes the LED connected to pins 11 and 12. Because 5V
power is applied to the LED cathode (pin 11), it blinks green.

The loop() function repeatedly toggles the LED_GREEN pin
(pin 11) HIGH and LOW, which makes the LED flash green.

#define LED_GREEN 11
#define LED_RED 12

The Arduino has a built-in LED which is permanently
connected to pin 13. You can control LEDs on any other
pin by specifying the pin number. The #define statements
associate the external LED with pins 11 and 12.

BlinkyColors

The loop() consists of calls to two user-defined functions
(below), which make the LED flash green or red.

#define and setup() are the same as BlinkTest.

void loop() {
 digitalWrite(LED_GREEN, HIGH);
 delay(250);
 digitalWrite(LED_GREEN, LOW);
 delay(250);
}

void setup() {
 pinMode(LED_RED, OUTPUT);
 pinMode(LED_GREEN, OUTPUT);
 digitalWrite(LED_RED, LOW);
 digitalWrite(LED_GREEN, LOW);
}

Pins 11 and 12 are made outputs, and set to LOW (0 volts).
During the sketch pin 12 (LED_RED) doesn't change, and
simply serves as a ground (0 volt) connection.

BlinkyColors flashes the LED between red and green, by
alternating the polarity (LOW and HIGH) of pins 11 and 12.

void loop() {
 red_blink();
 green_blink();
}

void red_blink() {
 digitalWrite(LED_RED, HIGH);
 delay(250); 		
 digitalWrite(LED_RED, LOW); 	
 delay(250); 	
}
void green_blink() {
 digitalWrite(LED_GREEN, HIGH);
 delay(250); 		
 digitalWrite(LED_GREEN, LOW); 	
 delay(250); 	
}

The red or green color is determined by the LED polarity.

	 Pin 12		 Pin 11		 Color
	 LOW		 LOW		 -off-
	 HIGH		 LOW		 Red
	 LOW		 HIGH		 Green
	 HIGH		 HIGH		 -off-

43

LEDs can help you confirm operation: You know things are working if the LED glows. Here's how you can enhance the BumperBot
sketch by adding green/red LED signalling whenever the robot goes forward or backward.

BumperBotLights

Add lines in red; existing lines from BumperBot sketch are
shown in gray.

...
boolean started = false;
#define LED_GREEN 11
#define LED_RED 12

void setup() {
 ...
 started = true;
 pinMode(LED_GREEN, OUTPUT);
 pinMode(LED_RED, OUTPUT);
 digitalWrite(LED_GREEN, LOW);
 digitalWrite(LED_GREEN, LOW);
}

Make the LED green when the robot goes forward; make it
red when it goes in reverse.

void goForward() {
 servoRight.write(0);
 servoLeft.write(180);
 led_green();
}
void goReverse() {
 servoRight.write(180);
 servoLeft.write(0);
 led_red();
}

BumperBotLights, continued...

void led_green() {
 digitalWrite(LED_GREEN, HIGH);
 digitalWrite(LED_RED, LOW); 	
}
void led_red() {
 digitalWrite(LED_GREEN, LOW);
 digitalWrite(LED_RED, HIGH);
}
void led_off() {
 digitalWrite(LED_GREEN, LOW);
 digitalWrite(LED_RED, LOW);
}

void goRight() {
 servoLeft.write(180);
 servoRight.write(180);
 led_off();
}
void goLeft() {
 servoLeft.write(0);
 servoRight.write(0);
 led_off();
}

Turn the LED off for turns.

Set LOW/HIGH polarity for green or red. Set both pins 11
and 12 to LOW to turn LED off.

44

Project 11
Create Sounds with Your Make:Bot!
Add simple robotic sounds to your Make:Bot using an inexpensive piezo transducer. The Arduino
generates signals that come out as plain buzzing and beeping tones.

A miniature piezo
transducer makes
simple sounds and does
not require an amplifier.

Plug the piezo transducer into breadboard
sockets J26 and J29. The + pin of the
transducer goes into socket J26.

Your transducer may come with a label that
says "Remove seal after washing." Do not

wash with water! The label is intended
for automated assembly

machines.
Use a pre-stripped solid
jumper wire between
breadboard sockets
E29-F29. This is the
ground connection to the
transducer.

Use an orange male-
male 6" jumper between
Arduino digital pin 5 and
breadboard socket F26.

Existing wiring
shown in gray

45

SoundTest verifies the piezo transducer is properly connected to
the Arduino. It repeats a sequence of three tones.

SoundTest

Defines Arduino pin 5 connected to the + terminal of the
piezo transducer (the - terminal is connected to ground).

 tone(SPKR, 131, 300);
 delay(200);
 tone(SPKR, 1175, 300);
 delay(200);
}

Makes a tone through the transducer. The frequency
is 247 Hertz, with a duration of 300 milliseconds. The
sketch then pauses for 200 milliseconds.

RemoteBotSound

 if (pbLeft == HIGH) {
 goReverse();
 makeSound (NOTE_B3, 200);
 makeSound (NOTE_C3, 200);
 makeSound (NOTE_D6, 200);
...
 if (pbRight == HIGH) {
 goReverse();
 makeSound (NOTE_D6, 200);
 makeSound (NOTE_C4, 200);

boolean started = false;
#define NOTE_B3 247
#define NOTE_C3 131
#define NOTE_C4 262
#define NOTE_D6 1175
#define SPKR 5

Defines "musical" notes and their corresponding
frequencies. These #defines are a convenience for coding.

Adds sequence of tones when the switches are hit.

#define SPKR 5

void setup() {		 // setup() is intentionally empty
}

void loop() {
 tone(SPKR, 247, 300);
 delay(200);

Produces additional tones at different frequencies, also
with a duration of 300 ms. The sketch pauses between
each tone for 200ms. The tones are repeated.

RemoteBotSound adds tones to the RemoteBot sketch. Different
tones play when the left or right switch is actuated.

void makeSound(int frequency, int duration) {
 tone(SPKR, frequency, duration);
 delay(100);
}

Plays sound using the Arduino tone statement.

Added lines in red; existing lines from RemoteBot in gray.

46

Make:Bot is a "two deck" robot, consisting of a lower and upper deck. The
decks are separated by battery cells and motors. These views show the major
components of the Make:Bot.

Top View

Bottom View

Between
Decks View

Make:Bot Top to Bottom

47

Frequently Asked Questions
Everyone has questions. Here are some common ones, and what to do about them.
If you're new to the Arduino, check out the various help pages on the www.arduino.cc website.

Can I use a non-UNO Arduino board?
It might work but it's not recommended. Arduino boards can
differ in their voltage requirements, pin functions, and other
features. Substitute only if you already know the issues.

Why do my servos turn when the robot is supposed to stop?
The servos may need to be calibrated. Upload the Calibrate
sketch from the MakeBot: Support Site to your Arduino. Use
a small Phillips screwdriver to adjust the knob in the side of
the servos. The servos are calibrated when the motors stop.

Can I just use the 9V battery to run the Make:Bot?
No. The 9V battery does not provide enough current to
operate the servo motors.

How about using just one battery pack instead of the two?
Not recommended. Arduino requires at least 7 volts, but most
servos are made for just 4.8-6V. And, it's not advisable to
run servos from the Arduino's 5V regulated supply.

How do I make the IDE recognize my Arduino board?
Try plugging in the USB cable and restarting the IDE. See also
the Getting Started page at the www.arduino.cc website for
additional troubleshooting ideas.

Why won't my sketches compile and upload?
Most common problem: incorrect programming syntax.
Check for typos, proper capitalization, and semi-colons at
the end of statement lines. Some Make:Bot sketches require
additional third-party libraries. See the text.

Why is my robot only turning in circles?
Check the servo wiring. Be sure the power, ground, and signal
wires are properly placed.

Why won't the robot move after uploading a sketch?
Be sure the servo power jumper wire is in the ON position.
Check if the batteries need to be replaced.

What type of surfaces are best for Make:Bot?
Tabletops, wood floors, tile, and very low nap carpet.

Why does my LED glow red when it should glow green?
The anode and cathode connections of the LED are reversed.
Simply turn the LED around in its pins.

48

Make:Bot Wiring Diagram

49

Resources for Building Better Bots
Be a robot maker maven with these affordable books and kits. These are among my favs!
Everything is available at www.makershed.com.

Learn Electronics with
Arduino
Culkin & Hagen

No experience with
electronics or Arduino? No
problem! Covers everything
you need to know.

Includes quick hands-on
projects. In color, with tons
of illustrations.

...And More!
Getting Started With
Arduino, 3rd Ed., Banzi &
Shiloh

Getting Started with
Soldering, de Vinck

Soldering Kit

Master the art of
soldering with this
handy kit ̶ comes
with soldering iron
and solder.

Also includes tools,
cleaning supplies,
how-to book, and
nifty practice
project!

Easy Electronics
Kit

Learn electronics
without blowing
up your brain!

Includes parts
and project
booklet written
by electro-guru
Charles Platt.

50

Find these parts online at www.jameco.com
Item					 Jameco Part	 Qty
Arduino Microcontroller UNO R3		 2163840		 1
USB-A Male to USB-B Male Cable*		 222010		 1
400-Point Solderless Breadboard		 20601		 1
9V Battery Snap with Barrel Plug		 2207056	 1
4x AA Battery Holder with Wired Connector	 105858		 1
Flexible-wire Jumpers Male to Male (40pcs)	 2260738		 1
Flexible-wire Jumpers Male to Female (40pcs)	 2260754		 1
70-piece solid-wire jumper wire kit		 2127718		 1
Continuous Rotation Servo			 283039		 2
Boe-Bot/Sumobot Wheel/Tire Set		 2109624		 2
Piezo Transducer				 2098523		 1
Snap Action Switch 			 187805		 2
HC-SR05 Ultrasonic Distance Sensor		 2245407		 1
38 kHz Infrared Receiver			 2229351		 1
QTR-1A Reflectance Sensor (2-Pack)		 2229343		 1
LED Bi-Color Green/Red			 94553		 10
Resistor 330 Ohm 1/4 Watt 			 690742 		 10
3M Tartan Vinyl Electrical Tape Roll		 285587		 1

Parts List
Find these materials at a local craft store...
Item					 Qty
1/4" Foam board, 20" x 30"			 1
Velcro tab, 1", round or square		 5
Double-sided foam tape (1")			 1
White poster board, 22" by 28"		 1
Round hole plug, 3/4" to 1" diameter		 1
 3/8" to 1/2" height (example: Cindoco #F34B)

Get these most anywhere...
AA batteries, alkaline or NiMH		 4
9V alkaline battery			 1
Universal remote (Sony TV compatible)	 1

All code examples are available online for your convenience.
Get the code from the Make:Bot Support Site:

www.robotoid.com/make-bot

1. Click on the code file you wish to download and save to your
computer.
2. All examples are compressed in zip file format. Unzip to
your Arduino sketches directory.
3. Open the example in the Arduino IDE software program for
use with your Arduino.

For more information see the Getting Started section at
www.arduino.cc.

Save time! Save money!
Get a kit of all electronics parts from:

makershed.com/products/make-how-to-make-a-robot

*The USB cable you get depends on the USB connectors on your computer
and Arduino. See Page 8.

Get Code!

Reflects
minimum
quantity

requirements

	Blank Page
	Blank Page

